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ABSTRACT

The combination of the growing size and complexity of application datasets
is introducing a new challenge to accelerators. The growing size of datasets
forces us to place them in a larger CPU memory, and the growing complexity
of datasets introduces more irregularity in data access patterns. However, the
existing data transfer mechanisms are optimized toward transferring regular
and densely accessed datasets, and not for the complex and sparse datasets.
With the existing methods, now the accelerators often spend more time ac-
cessing complex datasets stored in CPU memory rather than actually doing
the computation.

To overcome the limitations of the existing data transfer mechanisms, this
dissertation proposes to utilize many fine-grained memory accesses over I/O
interconnect, such as the industry standard PCIe, instead of the traditional
coarse-grained block data transfer method. While the fine-grained memory
access over I/O interconnect poses a danger of introducing high per-packet
overhead, the benefit from its flexibility in accessing complex data structures
can outweigh the overhead. To accurately evaluate the overhead and benefit
of the fine-grained memory access over I/O interconnect, we begin by devel-
oping a methodology to directly analyze I/O traffic. While the direct I/O
level analysis is not a prevalent approach in the current academic research,
the existing indirect application-level analysis approach is insufficient to fully
capture the intricacy of I/O behaviors. We fill this gap by designing our own
custom I/O analyzer using a field-programmable gate array (FPGA) and
demonstrate how the potential overhead of the fine-grained access over I/O
interconnect can be identified and avoided. Based on the insights we gained
from the analysis, we redesign and optimize several real-world applications
using the fine-grained memory access over I/O interconnect and show that
we can speed up the applications several times over the existing methods.

Next, this dissertation addresses the question of integrating the fine-grained
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memory access over I/O interconnect into the existing software development
environment. Since most programmers may not have a deep hardware-level
understanding of the fine-grained memory access over I/O interconnect, it is
necessary to abstract away any optimizations that require deep understand-
ing of the hardware and provide these optimizations in libraries and frame-
works. To achieve this goal, in our work, we abstract away the hardware-level
optimizations behind our custom array class called UnifiedTensor, and trans-
parently apply the optimizations whenever remote memory accesses are done
through this class. With the help of the abstraction, only about 2-3 lines of
code modifications are sufficient to fully utilize our method for most of the
existing programs. At the same time, we also provide a flexible development
environment to enable quick deployment of new hardware optimizations for
the framework developers.

Finally, we conclude this dissertation by proposing a flexible data tiering
strategy in modern systems with the fine-grained memory access over I/O
interconnect. While there are multiple tiers of memory in modern computer
systems, currently partitioning sparse datasets over multiple tiers of memory
and seamlessly accessing them in applications requires a lot of programming
effort. To overcome the programming difficulty, we unify all data access
methods to different tiers of memory with the fine-grained memory access
over I/O interconnect. This not only keeps the overall application structure
concise but also allows the programmers to quickly try out different data
partitioning strategies in favor of achieving better data locality.
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CHAPTER 1

INTRODUCTION

With the rapid growth of compute-intensive applications, using dedicated
hardware accelerators such as graphics processing units (GPUs) has become
essential for modern computing systems. These accelerators are capable
of delivering a massive amount of computation power and are equipped
with extremely high bandwidth memory devices to sustain high computa-
tion throughput. However, often such high bandwidth memory devices come
with small capacity, and their expandability is limited due to their physi-
cal properties. To overcome such limitations, user applications must place
datasets in a larger CPU memory and feed them to the accelerators during
the runtime. While this is a common practice for many existing real-world
applications, the increasing use of large sparse datasets is introducing a new
challenge in the current paradigm.

Modern analytics and recommendation systems place great emphasis on
analyzing not only the individual entities but also the relations of those en-
tities in large-scale databases [1, 2]. To capture such relational information,
the use of sparse datasets like graphs is becoming important. However, com-
pared to accessing dense datasets, accessing sparse datasets often generates
many irregular and fine-grained memory accesses. Such data access patterns
are highly undesirable for the existing CPU-accelerator data communication
methods since they only focus on transferring a single large chunk of data to
mitigate the overhead of launching direct memory access (DMA).

To address such discrepancy, several alternatives have been introduced in
the past [3, 4]. The introduced alternatives either: (1) aim to transfer a large
chunk of data regardless of the size of the immediately requested data in the
hope of having some spatial locality or (2) attempt to dynamically prepro-
cess the input data into a preferable format for the data transfer. Unfor-
tunately, neither method provides a meaningful efficiency improvement, and
both methods leave the accelerators heavily throttled by the CPU-accelerator
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data communication.
With the current inefficiency of coarse-grained data access over I/O inter-

connect, it is inevitable to question the current approach’s practicality and
study the fundamental interaction between the interconnect and the acceler-
ators from scratch. The suboptimal application performances with the sparse
datasets motivate us to look in the opposite direction and use finer-grained
memory access over I/O interconnect instead. This dissertation’s key contri-
butions lie in analyzing and proving the feasibility of the fine-grained memory
access over I/O interconnect (hereafter referred to as "I/O") in real-world
applications, as we describe next.

Systematic Analysis of Fine-Grained Memory Access Over I/O:
While fine-grained memory access over I/O poses a danger of introducing high
per-packet overhead, the benefit from its flexibility in accessing complex data
structures can outweigh the overhead. Thus, the major technical concern
that we need to address in this dissertation is whether a large number of
overlapping fine-grained memory accesses over I/O can be sustained to:

• Tolerate the long latency of I/O

• Fully utilize the available I/O bandwidth

• Ultimately, achieve good application performance

Unfortunately, evaluating these items would require a capability to probe
low-level I/O interactions, which can be difficult in academia. In the presence
of the challenge, several previous works [5, 6] instead attempted to perform
high-level analysis by simply measuring application execution times, but we
find the application execution time to be insufficient to reveal exact I/O-level
details. To overcome this limitation, we introduce a field-programmable gate
array (FPGA) based PCIe switch, which is an accessible PCIe research plat-
form. The FPGA switch mimics the behavior of regular PCIe switches, and
it can be immediately deployed into the existing systems without incurring
additional software and hardware modifications. We also leverage embedded
CPUs in FPGAs and allow FPGA programmers to offload several control-
heavy functionalities into C/C++ programs for flexible and user-interactive
design. The use of embedded CPUs is not mandatory for our FPGA switch
design, and FPGAs without embedded CPUs can still utilize our soft-IP-
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based implementation. We use this device throughout the experiments in
this dissertation to monitor and understand the detailed I/O behaviors.

Demonstration in Real-World Applications: To prove the feasibility
of fine-grained memory access over I/O in real-world applications, we demon-
strate it using GPUs with graph analytic applications. In our demonstration,
we reprogram existing graph analytic applications by replacing block data
transfer methods with zero-copy access. Zero-copy access comes with vari-
ous I/O access sizes such as 32, 64, 96, and 128 bytes, and it allows GPUs
to choose the access size programmatically. With such fine-grained I/O ac-
cess sizes, we show that zero-copy access is very effective in accessing sparse
datasets without making excessive data transfer over I/O. Furthermore, by
removing unnecessary data transfer preprocessing, we show that our im-
plementation using zero-copy access provides better performance scalability
than the baseline implementation with increasing I/O bandwidth. The use
of the FPGA switch additionally reveals several optimization opportunities
such as memory access alignment and defragmentation for higher I/O band-
width utilization.

Framework Integration: The use of fine-grained memory access over
I/O may require very different flows of memory allocation, memory map-
ping, and function calls from the traditional block data transfer method. For
example, enabling zero-copy access for NVIDIA GPUs requires specific types
of CUDA APIs to be called in a particular order, and adding case-specific
zero-copy access performance optimizations requires inserting arbitrary code
blocks flexibly at the framework level. However, the current implementa-
tions of existing Python-based frameworks such as PyTorch, Tensorflow, and
MXNet only define the block data transfer method in their programming
models.

To overcome such limitations, we introduce a new tensor class called Uni-
fied Tensor, which is specialized to support unconventional cross-device mem-
ory accesses for the existing frameworks. From the framework develop-
ment perspective, Unified Tensor provides a more flexible flow of deploying
architecture-and-device-specific system APIs and optimizations, which was
impossible in the previous block data transfer flow. From the framework
users’ perspective, Unified Tensor works similarly to the existing array type
of data structures, and users can dereference data allocated by Unified Ten-
sor by simply passing indices to it. The enablement of Unified Tensor is easy,
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and with several examples, we show that modifying only about 2-3 lines of
code in the user-level program is sufficient.

The introduction of Unified Tensor is already making an impact on the
industry. Unified Tensor has become one of the core methods for remote data
accesses in the Deep Graph Library (DGL) [7] framework, and it replaces the
conventional block data transfer method for large-scale graph neural network
(GNN) training. The usage of Unified Tensor is expanding now, and several
follow-up projects are proposed from the industry based on Unified Tensor to
further optimize the data transfer between CPU and accelerator for different
types of sparse datasets.

Data Access Optimization in Multi-Level Memory System: A
modern system’s memory hierarchy may contain several types of memory-
attached devices such as host, local, and peer devices. Often those memory
devices are connected to each other using different grades of interconnects,
and optimizing data placement among those memory devices can have a
significant impact on application performances [8]. While partitioning dense
datasets over multiple memory devices is straightforward, it is less clear to
partition sparse datasets over multiple memory devices due to the irregular
memory access pattern. However, with the use of fine-grained memory access
over I/O, this challenge can be mitigated.

Our work proposes unifying all memory access types with fine-grained
memory access over I/O, such as zero-copy access, to simplify memory ac-
cess to different kinds of memory devices. The use of fine-grained memory
access over I/O eliminates the need for runtime sparse dataset transformation
for the data transfers and significantly reduces the programming complex-
ity. With the reduced programming complexity, programmers can attempt
more advanced data placement strategies for different memory devices to
better utilize high-bandwidth interconnects in the system. We demonstrate
our work using graph neural networks (GNNs) training with sparse datasets
reaching several hundreds of gigabytes and show how the advanced data
placement strategies with the fine-grained memory access over I/O can dra-
matically improve the application performance.
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CHAPTER 2

ANALYSIS AND CASE-STUDY

2.1 Introduction

Graph workloads are becoming increasingly widespread in various applica-
tions such as social network analysis, recommendation systems, financial
modeling, biomedical applications, graph database systems, web data, ge-
ographical maps, and many more [9, 10, 11, 12, 13, 14, 15, 16]. Graphs used
in these applications often come in huge sizes. A recent survey conducted by
the University of Waterloo [9] finds that many organizations use graphs that
consist of billions of edges and consume hundreds of gigabytes of storage.

Graph application developers currently face the main challenge of perform-
ing graph traversals on such large graphs [9]. GPUs are increasingly used to
perform graph analytics because of the massive parallel computation oppor-
tunities in graph traversals. However, the ability to process large graphs in
GPUs is currently hampered by their limited memory capacity. Thus in this
work, we primarily focus on developing an efficient graph traversal system
using GPUs that accesses large graph data from CPU (host) memory.

For efficient storage and access, graphs are typically stored in compressed
forms such as the sparse row (CSR) data format to reduce memory overhead.
In the CSR format, a graph is stored as the combination of a vertex list and
an edge list. Even with CSR data format, large graph datasets cannot fit
in today’s GPU memory. Thus, most prior works store these large graphs
in host memory and have GPUs access them through the unified virtual
memory (UVM) mechanism [17, 3, 18, 19, 20, 21, 22, 23]. UVM brings
CPU and GPU memory into a single shared address space. UVM allows
GPUs to access the data in the unified virtual address space simply, and
it transparently migrates required pages between CPU memory and GPU
memory using a paging mechanism.
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However, several prior works [3, 18, 19, 20, 21, 22, 23] have reported that
the performance of graph traversal using UVM is not competitive. This
is because memory accesses that go to the edge list during graph traversal
are irregular in nature. Furthermore, based on our analysis of 1122 graphs
with at least 1M vertices and edges from LAW [11], SuiteSparse Matrix
Collection [10], and Network Repository [12], we find that the average degree
per vertex is about 71. This implies that when those graphs are represented
in a compressed adjacency list format such as CSR, each vertex’s neighbor
edge list is about 71 elements long on average. Thus transferring an entire
page, as in the case of UVM, can cause memory thrashing and unnecessary
I/O read amplification.

As a result, prior works have also proposed pre-processing of input graphs
by partitioning and loading those edges that are needed during the compu-
tation [24, 25, 26, 4], UVM-specific hardware or software changes such as
locality enhancing graph reordering [3], GPU memory throttling [18, 19],
overlapping compute and I/O [27], or even a new prefetching policies in
hardware that can increase data locality in GPU memory [21, 22, 23].

In this work, we take a step back and revisit the existing hardware memory
management mechanism for data that does not fit in GPU memory. Specifi-
cally, we focus on zero-copy memory access, allowing GPUs to directly access
the host memory in cacheline granularity. With zero-copy, no complicated
data migration is needed, and GPUs can fetch data as small as 32-byte from
the host memory. Even with such advantages, unfortunately, zero-copy is
known to have underwhelming performance, allegedly due to the low ex-
ternal interconnect bandwidth [5]. Interestingly, however, we do not find
any systematic analysis showing the exact limiting factor of the zero-copy
performance or leading to any effort to improve it.

Instead of making a premature conclusion, we build a system with a
custom-designed FPGA-based PCIe traffic monitor and explore any oppor-
tunity to optimize zero-copy performance. We use the system to address the
question of whether a sufficiently large number of overlapping cacheline-sized
accesses can be sustained to (1) tolerate the long latency to host memory,
(2) fully utilize the available bandwidth, and (3) achieve favorable execution
performance for graph traversal applications. To this end, the key goal of
our work is to avoid performing any pre-processing or data manipulation on
the input graph and allow GPU threads to directly perform cacheline-sized
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accesses to data stored in host memory during graph traversals.
Using a toy example, we show that the system cannot saturate the PCIe

3.0 x16 bandwidth by naïvely enabling zero-copy (see Section 2.3.3). To ad-
dress this shortcoming, we propose two key software optimizations needed
to best exploit PCIe bandwidth for the zero-copy access. First, we pro-
pose the merged memory access optimization that optimizes for generating
maximum-sized PCIe requests to zero-copy memory (see Section 2.3.3). Sec-
ond, we propose the forced memory access alignment which shifts all warp
memory accesses to 128-byte boundaries when misalignment occurs. This is
because the memory access merge optimization does not guarantee memory
request alignment, and such misalignment can result in performance degra-
dation. While these optimizations sacrifice some parallelism and incur addi-
tional control divergences during kernel execution, their benefit in improved
bandwidth utilization outweighs the cost. We then apply these two optimiza-
tions to popular graph traversal applications, including breadth-first search
(BFS), single-source shortest path (SSSP), connected components (CC), and
PageRank (PR) to enable efficient traversal on large graphs.

Using real-world and synthetic large graphs (see Table 2.2 on page 25), we
show that EMOGI can achieve 2.93× speedup on average compared to the
optimized UVM implementations of BFS, SSSP, CC, and PR benchmarks
across various graphs. We also evaluate EMOGI on the latest generation of
the NVIDIA Ampere A100 GPU with PCIe 4.0 and show that EMOGI still
remains performant and scales better than the UVM solution when using
higher-bandwidth interconnect. EMOGI achieves speedups of up to 4.73×
over current state-of-art GPU solutions [3, 4] for large out-of-memory graph
traversals. In addition, EMOGI does not require pre-processing or a runtime
page migration engine.

To the best of our knowledge, EMOGI is the first work to systematically
characterize GPU PCIe access patterns to optimize zero-copy access and
provide in-depth profiling results of varying PCIe access behaviors for a wide
range of graph traversal applications. Overall, our main contributions can
be summarized as follows:

1. We propose EMOGI, a novel zero-copy-based system for very large
graph traversal on GPUs.

2. We propose two zero-copy optimizations, memory access merge and
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memory access alignment, applied to graph traversal kernel code to
maximize PCIe bandwidth.

3. We show EMOGI performance scales linearly with CPU-GPU inter-
connect bandwidth improvement by evaluating PCIe 3.0 and PCIe 4.0
interconnects.

The rest of the chapter is organized as follows: We provide a brief primer on
GPU-based graph traversal and the challenges in executing graph traversals
using UVM in Section 2.2. We then discuss how to enable zero-copy mem-
ory with GPUs and discuss the reasons for its poor performance in a naïve
but common kernel code pattern in Section 2.3. Using the gained insights,
we then apply zero-copy optimizations to graph traversal algorithms in Sec-
tion 2.4. We discuss EMOGI’s performance improvement for various graph
traversal algorithms on several large graphs in Section 2.5 and we conclude
in Section 2.7.

2.2 Background

In this section, we first provide a brief primer on GPU-based graph traversal.
Then we will describe techniques that can be used to optimize the speed of
graph traversal when graphs cannot fit into the GPU memory.

2.2.1 Parallelizing Graph Traversal on GPUs

The exact workflow of the graph traversal depends on the type of the appli-
cation and the optimization level, but a general flow can be described with
Algorithm 1. First, before the traversal begins, initial active vertices need
to be set. In the case of BFS, only a single vertex needs to be set as active,
which is basically a source vertex. The graph traversal can begin once all
the initial active vertices are set. Graph traversal is composed of multiple
iterations of sub-traversals. In each sub-traversal, all immediately neighbor-
ing vertices of the currently active vertices are exhaustively traversed. The
condition to set the next active vertices depends on the type of application
as well. In the case of BFS, any neighboring vertices which have not been

8



Algorithm 1 High-level Graph Traversal Flow
1: set_initial_active_vertex()
2: while there exist active vertices in G do
3: for all vertices v1 in Graph G do
4: if v1 is active then
5: set v 1 as inactive
6: for all neighbors v2 of v1 do traverse_with_computation()
7: if application_dependent_condition() then
8: set v 2 as active
9: end if

10: end for
11: end if
12: end for
13: end while

visited before are marked to be the next active vertices. The traversal ends
once no more active vertices are left in the graph.

The main benefit of the GPU implementation of the graph traversal comes
from the massive number of vertices [15, 16, 13]. With the help of several
atomic instructions, both the inner loop and the outer loop in Algorithm 1
can be fully parallelized with GPU for various kinds of graph traversal ap-
plications [28, 29, 30, 31].

As an input graph format for the GPU graph traversal, we use the com-
pressed sparse row (CSR) format. CSR is arguably the most popular way to
represent a graph because of its low memory overhead [24, 25, 26, 4, 32, 33].
Certain graph processing frameworks such as nvGRAPH [34] support other
input formats like coordinate list (COO), but they internally convert the in-
puts to the CSR format before the actual processing step. CSR encodes the
entire graph with just two arrays, as shown in Figure 2.1. The edge list stores
each vertex’s neighbor list sequentially, such that all the neighbors of vertex
0 are stored first, then the neighbors of vertex 1, and so on. The vertex list is
indexed by a vertex ID and stores the starting offset of that vertex’s neighbor
list in the edge list. The datatypes of both edge and vertex lists can vary
depending on the graph size. For example, using a 4-byte datatype for the
edge list can identify at most 4 billion nodes.
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Figure 2.1: A sample undirected (a) graph and its (b) CSR representation.
The edge list contains the neighbor list for each node. The vertex list is
indexed by vertex IDs and contains the offsets for the starting position of
that vertex’s neighbor list in the edge list.

2.2.2 Out-of-Memory Graph Traversal on GPUs

Even in the CSR format, graphs can be orders of magnitude larger than
GPU memory. The easiest way to enable GPU-based graph traversal on
such graphs is to use the Unified Virtual Memory (UVM) [17, 35, 36, 3, 18,
19, 20, 37, 21, 22, 23]. UVM is a unified memory management module that
provides a single memory address space accessible by both CPU and GPU
through the page faulting mechanism. UVM reduces the burden on the
programmer as they do not have to manage where the data resides explicitly.
UVM transparently allows device memory oversubscription with the use of
CPU memory, enabling computation on large data sets that exceed GPU
device memory capacity. The UVM driver is responsible for on-demand page
migration between the CPU and GPU.

The granularity of the data migration may vary depending on the data
access pattern, but the minimum granularity is a system page size (4 kB).
Once the page is migrated, subsequent accesses to the same page do not
need additional data migrations, and the accesses can directly go to the
GPU memory. If the kernel’s memory footprint is larger than the GPU
memory, some pages need to be evicted from the GPU memory to host other
pages during the kernel runtime. Since the entire management process is
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single-threaded, the overall performance of the UVM page migration heavily
depends on the single-thread performance of the host CPU.

The inefficiency of UVM in graph traversal comes in two ways. First, it
is hard for the very large graphs to exploit temporal locality as the limited
GPU memory capacity will cause frequent page thrashing. Second, there is
a lack of spatial locality between neighbor lists, causing significant I/O read
amplification and more frequent page migrations. For example, in Figure 2.1,
the neighbor lists of the vertex 1 and 3 need to be accessed at the same time
we start BFS from the vertex 4. However, as shown in the CSR represen-
tation, the lists are non-contiguous in the edge list. In a more realistic case
with a large graph, these lists can be separated by millions of elements in
the edge list. Therefore, accessing these two lists will likely generate two
separate 4 kB page migrations. Assuming that all accesses to the different
neighbor lists will generate separate 4 kB page migrations, all neighbor lists
should have at least 512 to 1024 elements (depending on the datatype size) to
transfer the 4 kB data 100% efficient, which might be quite challenging. By
combining the frequent page migrations caused by the lack of data locality
and the high page fault handling overhead of UVM, GPU performance can
be severely throttled.

2.3 Zero-Copy

To allow GPU threads access to the external memory in smaller granularity
than UVM, GPUs support marking memory address ranges as zero-copy
memory [38]. Zero-copy, also often referred to as direct access, does not
require any page migration or duplication between the external and GPU
memories.

Instead, GPU threads access zero-copy memory as if it were GPU global
memory. The GPU translates memory requests from the threads to memory
requests over an external interconnect like PCIe. The target of the mem-
ory requests can be anywhere in the system as long as the location can be
memory-mapped into the shared bus address. Common examples include
system memory, peer-connected PCIe network interface cards, and peer-
connected GPUs. Due to the high latency of the external interconnects,
using zero-copy was thought to have low bandwidth [5] and thus used only
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for accessing small and frequently shared data. This section describes how
to enable zero-copy and use a custom FPGA PCIe switch to explore any
optimization opportunities available for zero-copy in detail. Based on the
analysis, we propose several optimizations and show that correctly using
zero-copy can nearly saturate the PCIe bandwidth and achieve much higher
levels of application performance than previous approaches.

2.3.1 Enabling Zero-Copy

From the system’s point of view, zero-copy is enabled as follows: First, the
data to be shared with the GPU must be pinned in the host memory. Pinned
memory cannot be swapped out to the disk or relocated by the host OS
memory manager. Second, the corresponding bus address (e.g. PCIe) of the
pinned data should be mapped into the GPU page table so the GPU can
generate a correct external memory request. Finally, the mapped address
should be passed to the user space so the programmer can use pointers in
the GPU kernel to access the region.

From CUDA API’s point of view, zero-copy can be enabled in three ways.
The first technique uses cudaMallocManged() to allocate UVM space and
applies cudaMemAdviseSetAccessedBy flag with cudaMemAdvise(). The
resulting data pointer can be directly used from CUDA kernels to gen-
erate zero-copy memory access. One thing worth noting here is that the
cudaMemAdviseSetAccessedBy flag should not be used with other cudaMemAdvise()
flags since the other flags override cudaMemAdviseSetAccessedBy. The sec-
ond is by using cudaMallocHost(). This is the simplest method since the
memory allocated by cudaMallocHost() can be directly used in the CUDA
kernel to do zero-copy access. The last scheme uses general memory alloca-
tors like malloc() and cudaHostRegister() + cudaGetDevicePointer()

on top of the allocated memory. In this case, the cudaHostRegister() pins
the allocated memory space and cudaGetDevicePointer() returns a CUDA-
compatible pointer. Our experiments showed that all three techniques pro-
vided the same performance.
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Figure 2.2: PCIe traffic monitoring environment. The FPGA is used to
characterize the zero-copy memory access pattern from GPU.

2.3.2 Zero-Copy Analysis Setup

To understand how GPU accesses external zero-copy memory over PCIe, we
design and build a monitoring system shown in Figure 2.2. The FPGA sits
between the GPU and the CPU as a PCIe switch. The internal design of
our FPGA switch is mainly divided into: (1) Upstream/Downstream PCIe
IPs, (2) Router and control logic, and (3) User logic. The PCIe IPs are ad-
vertised as PCIe upstream/downstream switch ports to other PCIe devices.
Therefore, functionality-wise, the FPGA switch is just a bridge between two
PCIe devices, and it looks transparent to the user applications. The router
and control logic handles miscellaneous PCIe-specific controls that the PCIe
IPs do not deal with. For example, if an incoming PCIe configuration space
request from the host is targeted for the downstream PCIe IP, the request
should not be passed to the GPU but should be terminated at the down-
stream PCIe IP. In such a case, the router and control logic modifies the
incoming packet appropriately so the request is served and the downstream
PCIe IP returned to the host if it was a read request. The PCIe IPs provided
by Xilinx do not include such a level of complexity; thus, we should explicitly
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Figure 2.3: The FPGA switch setup in a real system. (1) Connection to a
host system. (2) FPGA switch. (3) Connection to a test device. (4) A test
device. In this example setup we are using an NVMe SSD as the test device.

implement those functionalities.
The FPGA can function as a standard PCIe switch with the two PCIe

IPs and the router and control logic. However, we would like to utilize this
design to monitor further the PCIe traffic between the host and the GPU,
and therefore we add a custom traffic probe. The probe is connected to the
external control server running Linux, and the probe provides user-interactive
functionality so the users can initialize, trigger, and view the probe at will.
In Figure 2.3, we show the real-world setup of our FPGA switch using an
NVMe SSD device. From the user application side, we do not need any
specific modification and the regular zero-copy memory allocation techniques
can be reused.

2.3.3 Zero-Copy Mechanism and Optimization

Now that we can track zero-copy memory requests, we next need to under-
stand the GPU access pattern to zero-copy memory. We create a toy example
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Figure 2.4: GPU PCIe memory request patterns observed with FPGA. In
(a), each thread scans a different 128 B block and ends up making multiple
32 B PCIe memory read requests. In (b), individual 32 B memory read
requests in a contiguous address space occur at the same time and GPU
merges them into a single 128 B PCIe memory read request. In (c) each
warp is performing a misaligned memory request (off by 32 B from 128 B
boundary) resulting in generating a 32 B PCIe and 96 B PCIe request. In
this figure, we assume each memory access is 4 B.

where the GPU needs to traverse a large 1D array in a zero-copy region and
use a GPU kernel to copy its content to the GPU’s global memory. The algo-
rithm to solve the toy example can either perform strided access, merge with
misaligned access, or merge with aligned access. All PCIe traffic generated
by these three variants is monitored using the FPGA monitoring platform
and Intel VTune [39]. The PCIe layer in Figure 2.4 shows the GPU access
patterns we observed with the FPGA monitoring platform while trying dif-
ferent CUDA kernels. We observe that the GPU can access the zero-copy
memory in four sizes starting from 32-byte to 128-byte in 32-byte steps. The
access size is dependent on the algorithm access pattern and is described
next.

Strided Access: In this method, each thread takes a chunk of the 1D-
array and iterates over the chunk one element at a time. This access pattern
is illustrated in Figure 2.4 (a). With GPU threads iterating over their own
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neighbor lists, we find that each thread generates a new 32-byte PCIe request
every time they cross a 32-byte address boundary. Therefore, if the datatype
of the array is 4-byte, each PCIe request can serve up to 8 memory accesses.

However, this 32-byte request brings several limitations to the overall sys-
tem. First, each PCIe 3.0 transaction layer packet (TLP) has at least an 18-
byte header overhead. Thus, fetching 32-byte of data makes the PCIe over-
head ratio at least 36%. Second, considering the PCIe latency, the number
of outstanding requests to saturate the PCIe interconnect is non-negligible.
With our test platform, we find the PCIe round trip time (RTT) between
the GPU and the FPGA is roughly 1.0 µs to 1.6 µs. By the PCIe 3.0 specifi-
cation, the maximum number of outstanding requests is 256 as the width of
the tag field used to record the outstanding request is 8-bit [40]. In this case,
the maximum bandwidth we can achieve with only 32-byte requests and 1.0
µs of RTT is merely 32 B / ( 1.0 µs / 256 ) = 7.63 GB/s. If we assume the
PCIe RTT is always 1.6 µs, the bandwidth decreases to 4.77 GB/s. Third,
the test system’s minimum memory access size for DDR4 DRAM is 64-byte.
Considering that a DDR4 2400MHz DRAM channel can provide 19.2 GB/s
of sequential bandwidth, requesting only 32-byte read requests halves the
effective per-channel DRAM bandwidth to 9.6 GB/s. Even if the overall
DRAM bandwidth can be increased by adding more memory channels, this
is still very wasteful. Finally, these 32-byte data items will likely occupy the
GPU cachelines and can be evicted before all elements are traversed due to
cache thrashing.

Figure 2.5 shows the average PCIe and DRAM bandwidth utilization over
time when executing the traversing kernel as reported by Intel VTune. The
peak bandwidth we achieved with UVM is drawn as a red dashed line in the
figure as a reference. Looking at Figure 2.5 (a), we can clearly identify the
limitations previously described. The amount of data that needs to be read
from DRAM is doubled to serve 32-byte PCIe requests. The PCIe bandwidth
is also far from the maximum PCIe 3.0 x16 bandwidth as the number of
outstanding requests is not enough and the per-request PCIe overhead is
significant.

Furthermore, using UVM results in transferring more bytes to the GPU
compared to the original dataset size due to the frequent cacheline evictions.
The key to addressing these limitations is to align and merge accesses. We
will analyze the PCIe and DRAM bandwidth utilization with these optimiza-
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Figure 2.5: Average PCIe and DRAM bandwidth utilization for the
different zero-copy access patterns, as reported by Intel VTune.

tions next.
Merged and Aligned Access: In this case, threads are grouped into

warps, with each warp containing 32 threads, and the threads in a warp
access consecutive elements in a 128-byte cacheline of the input array. This
allows the GPU coalescing unit to automatically merge the contiguous 32-
byte memory requests into a single larger 128-byte PCIe request (Figure 2.4
(b)). With 128-byte PCIe requests, it becomes much easier to reach the
maximum PCIe bandwidth. First, the PCIe TLP overhead ratio decreases
from 36% to 12.3%. Second, having only 135 PCIe outstanding requests is
sufficient to reach 16 GB/s of bandwidth (without considering other PCIe
overheads). Lastly, because 128-byte is a multiple of the DRAM request size
(64-byte), there is no wasted bandwidth in the DRAM interface. In Figure 2.5
(b), we see this approach can saturate the PCIe bandwidth at about 12.23
GB/s, matching the measured bandwidth when using the cudaMemcpy() API
to perform a block data transfer.

Merged but Misaligned Access: However, for all practical purposes,
guaranteeing 128-byte alignment for any data structure can be difficult. It
is possible that the starting index of a warp is not aligned with the 128-
byte boundary. Some warps may need to make two separate PCIe requests
to fetch a single 128-byte cacheline. In the worst case, if a warp’s memory
access is not 128-byte aligned and warps access contiguous memory regions,
the misalignment can be cascaded to all subsequent warps. Unfortunately,
this results in all warps generating two PCIe requests. In Figure 2.4 (c), we
show an emulated misaligned case where each warp is intentionally accessing
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memory offset by 32-byte from 128-byte boundary, and therefore all warps
end up generating a 32-byte and a 96-byte PCIe request. From Figure 2.5
(c), we can see the achieved PCIe bandwidth is lower than the aligned case.
To avoid this, either the starting index of warps should be shifted, or the
input data must be shifted in memory so the data accessed first is 128-byte
aligned.

2.4 EMOGI: Zero-Copy Graph Traversal

Now that we understand zero-copy memory and its characteristics, we show
how to efficiently use zero-copy memory for graph traversal when the graph
cannot fit in the GPU memory. First, we describe the micro data locality we
observed in graph traversal applications to justify why zero-copy should per-
form better than UVM (see Section 2.4.1). Then, we introduce our baseline
graph traversal algorithm (see Section 2.4.2) and optimize it for zero-copy
memory based on the knowledge we gathered from Section 2.3.3 (see Sec-
tion 2.4.3).

2.4.1 Data Locality in Graph Traversal

To exploit zero-copy for graph traversal, we prefer at least 128-byte of spatial
locality to best use each memory access. A single 128-byte zero-copy access
can have 16 or 32 elements of data if the CSR datatype is 8-byte or 4-byte,
respectively. Compared to UVM, which requires at least 4 kB of spatial
locality (512 or 1024 elements of data), finding 16 to 32 elements of spatial
locality is much easier for the graphs we studied.

Based on our analysis of 1,122 graphs from Network Repository [12],
SuiteSparse Matrix Collection [10], and LAW [11], we find the average de-
gree per vertex is 71. This means when those graphs are represented in an
adjacency list format like CSR, each vertex’s neighbor list is 71 elements long
on average, with a standard deviation of 30. Considering that graph traver-
sal algorithms require scanning the entire neighbor list of a vertex, we can
obtain a spatial locality of 71 elements on average in graphs. Such a spatial
locality can benefit from efficient 128-byte requests to zero-copy memory. In
contrast, it is more difficult to achieve the same efficiency level using UVM
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since the available spatial locality is significantly less than the required 512
or 1024 elements.

2.4.2 EMOGI Baseline

EMOGI assumes the input graph is stored in the memory using the CSR data
layout (see Section 2.2.1). All input data structures are statically mapped
during initialization. The edge list is allocated in the host memory as it does
not fit in GPU memory, but other small data structures such as buffers and
the vertex list are allocated in GPU memory. It is worth noting that even for
the biggest graphs we evaluated (see Section 2.5.2), the vertex list consumes
at most 1 GB of memory while the edge list can consume 38 GB. Thus, GPU
memory is sufficient for the vertex list.

EMOGI adopts vertex-centric graph traversal algorithms. For every vertex
that needs to be processed, a worker is assigned and the worker traverses a
neighbor list associated with the vertex in the edge list. In the vertex-centric
graph traversal approach, the input graph is traversed by a single vertex
depth on every kernel execution. Listing 2.1 shows the pseudo-code of our
naïve baseline kernel implementation. Here, the worker is a single GPU
thread, and each worker is assigned to the neighbor list associated with its
corresponding vertex. When each neighbor list is larger than 128-byte, this
baseline implementation has a memory access pattern similar to that of the
strided case explained in Section 2.3.3.

Compared with the UVM approach, EMOGI’s graph traversal approach
removes the page faults from occurring and reduces the I/O amplification as
now we do not need to enforce the excessive amount of data movement.

2.4.3 Optimizations

Since the EMOGI baseline implementation is similar to the strided case pre-
sented in Section 2.3.3, it suffers from uncoalesced memory requests. As we
noted, without addressing this, one cannot generate efficient PCIe requests
to the zero-copy memory. In this subsection, we will discuss how EMOGI
addresses this limitation using the insights from Section 2.3.3 and modifying
only the GPU kernel code of the traversal application. Thus, it is entirely
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possible to package the proposed optimizations into a library to lessen the
programmer’s effort when trying to exploit them.

Merged Memory Access

EMOGI performs merged memory accesses in per-vertex granularity, simi-
lar to [31]. The difference between EMOGI and [31] is that EMOGI always
fixes the worker size to an entire warp (i.e., 32 threads). Thus a whole warp
is responsible for traversing the neighbor list of one vertex. The specific
implementation of this optimization is explained with green comments in
Listing 2.2. This allows EMOGI to always optimize for generating the maxi-
mum sized PCIe request to the zero-copy memory. Suppose the input graph
fits in the GPU memory and the average degree of vertices in the graph is
small. In that case, fine-tuning the worker size could reduce the number
of idle threads during each fetch, exploit more memory parallelism, and ul-
timately utilize GPU global memory bandwidth more efficiently. However,
EMOGI’s primary goal is to achieve good performance on graphs that do not
fit in the GPU memory, and it requires fetching data over an external inter-
connect whose speed is about 1 to 10 percent of the GPU global memory. In
this case, fine-tuning and reducing the worker size cannot add any additional
benefit as there is no further room to accept more memory requests in the
already constrained interconnect. In fact, making smaller memory requests
can adversely affect and decrease the effective bandwidth. Empirically, we
observed that when the interconnect bandwidth is low, many threads are
idle. Therefore, assigning a 32-thread warp to fetch data for even vertices
with very few neighbors results in acceptable performance.
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void strided (*edgeList , *offset , ...) {
thread_id = get_thread_id ();
...
start = offset[thread_id ];
end = offset[thread_id + 1];

// Each thread loops over a chunk of edge list}
for (i = start; i < end; i++) {

edgeDst = edgeList[i]; ...
} ...

}

Listing 2.1: Uncoalesced Memory Access

#define WARP_SIZE 32

void aligned (*edgeList , *offset , ...) {
thread_id = get_thread_id ();
lane_id = thread_id % WARP_SIZE;
// Group by warp
warp_id = thread_id / WARP_SIZE;
...
start_org = offset[warp_id ];
// Align starting index to 128-byte boundary
start = start_org & ~0xF; // 8-byte data type
end = offset[warp_id + 1];

// Every thread in a warp goes to the same edgelist
for (i = start; i < end; i += WARP_SIZE) {

// Prevent underflowed accesses
if (i >= start_org) {

edgeDst = edgeList[i + lane_id ];
...

}
} ...

}

Listing 2.2: Coalesced Memory Access (Merged + Aligned)
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Aligned Memory Access

As we discussed in Section 2.3.3, each misaligned access to the 1D data array
can result in multiple smaller zero-copy requests. To address this, we have
to merge memory accesses and align them as well. However, doing this on
a CSR edge list is not straightforward, and this is because CSR does not
align the edge list as alignment requires padding and thus increases memory
footprint. Starting addresses of neighbor lists for graphs stored in CSR can
be at any location in the memory.

One way to address this challenge is to pre-process the CSR graphs and
align neighbor lists to 128-byte boundaries. However, this might incur ex-
cessive memory overhead. More importantly, one of the goals of this work is
to avoid any pre-processing.

Therefore, instead of manipulating the input data, we force all warps to
start from the closest preceding 128-byte boundary when misalignment oc-
curs. For instance, as shown in Listing 2.2 with blue comments, all starting
indices fetched from the offset array are shifted to the closest 128-byte bound-
ary before the list. With this change to the GPU kernel code, all subsequent
warp memory accesses are guaranteed to have 128-byte alignment. Of course,
some of the threads in the warp must be turned off during the first iteration
of data fetching with a conditional statement to prevent reading unnecessary
bytes. Similar to the memory access merge optimization, this additional con-
ditional statement increases the occurrence of control divergence in CUDA
kernels. However, due to the high external interconnect latency, it is more
important not to miss any opportunity for generating large memory requests.

2.5 Evaluation

Our evaluation shows that (1) EMOGI improves the performance of graph
traversal algorithms by efficiently accessing the zero-copy memory for very
large graphs, (2) EMOGI is mainly limited by the PCIe bandwidth and it
scales almost perfectly linearly when PCIe 3.0 is replaced with PCIe 4.0,
(3) EMOGI remains performant even with the latest generation of GPU
NVIDIA Ampere A100 [41] and achieves better scaling compared to the
UVM optimized implementation.
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2.5.1 Experiment Setup

System Overview

We use a Cascade-lake server machine with two 20 core Intel Xeon Gold 6230
CPUs equipped with 256 GB of DDR4 2933 MHz memory and an NVIDIA
Tesla SXM2 V100 16 GB GPU as our evaluation platform. The system
is configured as shown in Figure 2.2. We use the FPGA only to analyze
the zero-copy memory access pattern across different graphs. The detailed
system specification is provided in Table 2.1. Graph edge lists are stored in
the host memory while the vertex list and other temporary data structures
are stored in the GPU memory.

Systems Compared

To show the performance benefit of EMOGI, we use four different graph
traversal algorithms: Breadth-First Search (BFS), Single-Source Shortest
Path (SSSP), Connected Components (CC), and PageRank (PR) [42]. We
base our initial implementation of BFS and SSSP from [43, 44], CC baseline
implementation from [45], and PR baseline implementation from [46]. We
compare EMOGI with the following systems:

(a) UVM implementation stores the CSR edge list in the UVM address
space while the vertex list is kept in the GPU memory. In addition, the CSR
edge list in the UVM address space is marked as cudaMemAdviseSetReadMostly
using the cudaMemAdvise() CUDA API call. This optimization allows the
GPU to create a read-only copy of the accessed pages in the GPU’s memory.
We also tested other UVM driver flags but did not observe notable differences
(b) Naïve implementation is the baseline implementation of EMOGI using
zero-copy memory and is identical to Algorithm 2.1. The vertex list is stored
in the GPU memory in this implementation, while the edge list is kept in
the zero-copy host memory. (c) Merged implementation of EMOGI merges
the memory requests to the zero-copy memory, as discussed in Section 2.4.3.
However, there is no guarantee that accesses to the zero-copy memory are
aligned in this implementation. (d) Merged+Aligned implementation is
the fully optimized version of EMOGI where the memory accesses are not
only merged but we force all warps to shift to the 128-byte boundary when
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Table 2.1: Evaluation system configuration.

Category Specification

CPU Dual Socket Intel Xeon Gold 6230 20C/40T

Memory DDR4 2933 MHz 256 GB in Quad Channel Mode

GPU Tesla V100 HBM2 16 GB, 5120 CUDA cores

OS CentOS 8.1.1911 & Linux kernel 5.5.13

S/W NVIDIA Driver 440.82 & CUDA 10.2.89

there is a misalignment. This implementation is discussed in Section 2.4.3.

2.5.2 Evaluation Datasets

For the evaluation, we use the graphs listed in Table 2.2. GK, GU, FS,
and ML are the largest four graphs from SuiteSparse Matrix Collection [10],
and SK and UK5 are commonly used large graphs from LAW [11]. This
collection of graphs covers data from different areas such as biomedicine,
social networks, web crawls, and even synthetic graphs. All the graphs,
except for SK and UK5, are undirected. We use the default weights for GU,
GK, and ML graphs while randomly initializing weights for the rest of the
graph from the integer values between 8 and 72. The average degree of the
graphs is 38, except for the ML graph, which has an average degree of 222.
For fair BFS and SSSP performance evaluations, we pick 64 random vertices
from each graph as the starting sources and reuse the selected vertices for
all measurements. The final execution time is calculated by averaging the
execution times of the 64 cases, but some results are removed from the average
when the selected vertices have no outgoing edges. Edge weight values are
only used by the SSSP algorithm.

2.5.3 Case-Study: Breadth-First Search

In this section, we take BFS as an example and thoroughly evaluate PCIe
traffic for request size distribution, achieved bandwidth, and the total amount
of data transferred. Throughout the evaluation, we use the UVM implemen-
tation as the baseline.
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Table 2.2: Graph Datasets. V = Vertex, E = Edge, and w = Weight.

Abbreviation Graph Number Size (GB)
|V | |E| |E| |w|

GK GAP-kron [14] 134.2M 4.22B 31.5 15.7
GU GAP-urand [14] 134.2M 4.29B 32.0 16.0
FS Friendster [13] 65.6M 3.61B 26.9 13.5
ML MOLIERE_2016 [47] 30.2M 6.67B 49.7 24.8
SK sk-2005 [15, 16, 11] 50.6M 1.95B 14.5 7.3

UK5 uk-2007-05 [15, 16] 105.9M 3.74B 27.8 13.9

Zero-copy Request Size Distribution:

In this evaluation, we show the impact of optimizing the memory access
pattern from Section 2.3.3 on generating different sizes of PCIe request. The
histogram of the PCIe request size is gathered using the FPGA monitoring
platform explained in Section 2.3.2. In Figure 2.6, we show the breakdown
of request sizes for all the PCIe requests from the three implementations:
Naïve, Merged, and Merged+Aligned.

We observe in Figure 2.6 that nearly all PCIe requests in the case of Naïve
implementation are of 32-byte granularity. This is because it is only possible
to generate a PCIe request larger than 32-byte in the Naïve implementation
when multiple neighbor lists happen to be spatially near in the edge list,
and multiple threads in a single warp access them. However, such a scenario
is extremely unlikely. For example, we observe that only 1.3% of the PCIe
requests from BFS on the FS graph are of a size bigger than 32-bytes.

We observe the following when we analyze the request size distribution
for the Merged andMerged + Aligned optimized implementations. First, al-
though the Merged approach’s portion of 128-byte requests increases to about
40% on average, the portion of 128-byte requests is slightly higher than av-
erage for the ML graph, at about 46.7%. Second, when using the +Aligned

approach on graphs with most of their edges associated with high-degree ver-
tices, we expect that most zero-copy memory requests should be 128-bytes.
This is expected because, in the +Aligned implementation, zero-copy mem-
ory requests are merged and aligned to 128-byte granularity whenever pos-
sible. We observe this behavior for most graphs in Figure 2.6. For example,
the percent of 128-byte requests improves by 1.86× for the GK graph be-
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Figure 2.6: Distribution of PCIe read request sizes in BFS. +Aligned is an
abbreviation for Merged+Aligned. As the merged and aligned
optimizations are added, the BFS application generates more 128-byte
requests for efficient access.

tween the Merged and +Aligned implementations. However, the percentage
of 128-byte requests improves by only 1.25× between the two implementa-
tions on the GU graph, which has a similar number of edges and vertices as
the GK graph.

To further analyze these behaviors, we plot in Figure 2.7, the cumulative
distribution function (CDF) on the number of edges in each graph. CDF on
the number of edges provides a better understanding of the distribution of
the neighbor list sizes in the graph. The horizontal axis of this CDF is cut
to 96 as many of the graphs have vertices with an extremely high degree.
From Figure 2.7, we see that the ML graph has nearly no edges associated
with small degree vertices. Thus, many requests can be merged to 128-bytes
for the ML graph with the Merge optimization. The other graphs, like FS,
have some edges associated with small degree vertices. Thus not all of their
requests can be merged. Due to the fact that most vertices have long neighbor
lists in the ML graph, the +Aligned optimization further maximizes the 128-
byte zero-copy accesses, as shown in Figure 2.6, and, as a result, reduces the
total number of zero-copy memory requests by 28.8%, as shown in Figure 2.8.
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Figure 2.7: Number of edges CDF of evaluation graph. This plot provides a
better understanding of the distribution of the neighbor list sizes in the
graphs. For example, the GU graph has all of its edges associated with
vertices with degree between 16 and 48, meaning the neighbor lists contain
at most 48 neighbors.

To understand why the request size distribution of GK and GU graphs
is significantly different for the +Aligned optimization, we need to under-
stand these graphs’ neighbor list size distributions. The neighbor lists of
the GK graph are extremely unbalanced, while the GU graph has uniformly
low degrees varying from 16 to 48. If we assume the starting location of
each neighbor list is uniformly random, then the chance of each neighbor list
starting at the exact 128-byte boundary is only 6.25% when the datatype
size is 8-bytes. Therefore, in most cases, the neighbor lists of graphs are not
aligned at the 128-byte boundary by default. If the neighbor list sizes are
extremely unbalanced, like in GK, then the misalignment is less problematic
since the high degree vertices can amortize the one-time misalignment cost
over a large number of subsequent aligned accesses. However, if all vertices
have uniformly low degrees, like in GU, then there is no opportunity to amor-
tize the cost of the one-time misalignment fix per vertex. Due to this, among
all the graphs evaluated, only GU shows very little improvement with the
+Aligned optimization.
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Figure 2.8: Number of PCIe requests sent for Naïve, Merged and
Merged+Aligned implementations while executing BFS on various graphs.
Collected from FPGA. Merged optimization reduces the PCIe memory
requests by up to 83.3% compared to the Naïve implementation.
Merged+Aligned optimization can further reduce the PCIe memory
requests by up to 28.8%. +Aligned is an abbreviation for Merged+Aligned.

PCIe Bandwidth Analysis

The bandwidths we measured are more or less aligned with PCIe request size
distributions. In Figure 2.9, we show the average achieved PCIe bandwidth
while executing BFS. As a measure of merit, we use the maximal achiev-
able PCIe bandwidth by cudaMemcpy() as the upper limit of what practical
data access methods can hope to achieve. When transferring large data
blocks, cudaMemcpy() incurs little overhead beyond the PCIe TLP head-
ers. We measured the maximum achievable PCIe Gen3 bandwidth with
cudaMemcpy() to be 12.3 GB/s, which is achieved when transferring data
blocks of 16 megabytes and beyond. Because of the page faulting overhead
present in the UVM, it can only achieve PCIe bandwidth of 9 GB/s.

EMOGI’s Naïve implementation of BFS can only reach up to 4.7 GB/s
PCIe bandwidth. This is consistent with what we observed using the toy ex-
ample in Figure 2.5. With the Merge optimization, the PCIe bandwidth uti-
lization increased up to 11 GB/s, reaching about 90% of the peak cudaMemcpy()

bandwidth. With the Merged+Aligned optimization, we add about 0.5 to 1
GB/s of additional bandwidth utilization on top of Merge optimization in
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Figure 2.9: Average PCIe 3.0 x16 bandwidth utilization of the different
implementations executing BFS.

all cases. The GU graph has the least improvement from the alignment op-
timization among all graphs. This is because BFS on the GU graph cannot
send enough of 128-byte requests to saturate PCIe interconnect bandwidth.
By comparing Figure 2.6 and Figure 2.9, we can clearly see the correlation
between the distribution of PCIe request sizes and the achieved bandwidths
in a real application, thus confirming our analysis in Section 2.3.3.

Analysis of Zero-copy Optimizations

We next evaluate the performance difference between Naïve, Merge, and
Merge+Aligned implementation of BFS on various graphs and compare it
with the UVM implementation. The performance is measured based on the
traversed edges per second (TEPS) and is inversely proportional to the ex-
ecution time. As shown in Figure 2.10, the Naïve implementation’s per-
formance is 0.73× that of UVM on average. As discussed in Section 2.3.3,
this is expected as the Naïve implementation does not use the PCIe band-
width efficiently. On the other hand, merging requests that go to zero-copy
memory with the Merged implementation provides a speedup of 3.24× over
the UVM baseline on average. For the SK graph, the Merged optimization’s
performance gain is only 1.21× over UVM. This is because the SK graph
can almost fit in the 16 GB GPU memory. As a result, all the bytes trans-
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Figure 2.10: BFS performance of the Naïve, Merged and Merged+Aligned
implementations against the UVM baseline.

ferred by page faults of the UVM approach are eventually used, minimizing
the negative of the I/O amplification of the UVM approach. When we add
memory access alignment optimization on top of merging of request with the
Merged+Aligned implementation, we notice a 1.10× improvement in per-
formance over the Merged implementation on average. This improvement
can be associated with the reduced number of PCIe requests that go out to
the zero-copy memory because of the Merged+Aligned optimization, as was
shown in Figure 2.8.

I/O Read Amplification

We now demonstrate the I/O read amplification benefit of EMOGI’s fine-
granular data accesses over the 4 kB page movement in UVM in BFS graph
traversal. We chose the Merge+Aligned EMOGI implementation to represent
EMOGI as it provides the best performance for this experiment. Figure 2.11
shows the ratio of data read from the host memory over the dataset size while
performing BFS using UVM and EMOGI on each graph. UVM generally has
a very high I/O read amplification factor, up to 5.16× for the FS graph, as
for these graphs, the neighbor lists accessed during traversal are in different
locations in memory, and thus there is very little spatial locality exploited
for each 4 kB page moved. However, the two notable exceptions to this are
the ML and SK graphs as UVM’s I/O read amplification factors for them are
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Figure 2.11: I/O read amplification of EMOGI and the UVM baseline while
performing BFS.

2.28× and 1.14×, respectively. This is because the average degree of a vertex
in the ML graph is 222, and the SK graph is so small that it can almost fit
in GPU memory, thus making UVM’s page movements a little more efficient
in both cases. In contrast, EMOGI’s I/O read amplification factor does not
exceed 1.31× because the fine-granular, merged, and aligned data access to
zero-copy memory allows EMOGI to efficiently move only the necessary bytes
over the slow PCIe interconnect.

2.5.4 Beyond BFS

In this section, we apply EMOGI’s optimization techniques to other graph
traversal applications and measure their execution time. In addition to BFS
from the previous sections, we add the single-source shortest path (SSSP),
connected components (CC), and PageRank (PR) applications. We do not
evaluate the performance of CC with SK and UK5 graphs as these graphs
are directed. For PR, we do not evaluate ML graph as it is a multigraph.
The overall performance results are shown in Figure 2.12.

EMOGI provides the best performance for all the graph traversal appli-
cations and graph datasets we studied. On average, EMOGI is 2.60× faster
than UVM, and EMOGI shows lower speedups over UVM than the other
applications for CC and PR. In the case of SSSP and BFS, a specific vertex
is selected as a root vertex and the applications start traversing the entire

31



0

1

2

3

4

5

6

7

G
K

G
U

F
S

M
L

S
K

U
K

5

G
K

G
U

F
S

M
L

S
K

U
K

5

G
K

G
U

F
S

M
L

G
K

G
U

F
S

S
K

U
K

5

A
v
g

SSSP BFS CC PR

N
o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n

c
e

UVM EMOGI

3
3

.4

1
9

.0

1
2

.2

5
1

.0

1
1

.2

1
4

.7

1
6

.9

1
2

.3

1
.9

9
.3

1
0

.3

8
.5

6
.6

2
0

.7

2
1

8
.3

1
8

7
.5

1
9

0
.7

4
.5

1
4

2
.0

3
0

.1

1
3

0
.5

Figure 2.12: Performance comparison between UVM and EMOGI with
different graph traversal applications with V100. Actual execution times of
UVM cases are written on top of the bars (in seconds).

graph from the root vertex. However, with CC and PR, all vertices are set
as root vertices instead of picking a specific vertex to start with, and the
entire edge list is traversed. In this case, the application data access pattern
is similar to streaming the edge list resulting in more spatial locality when
compared to the other applications and less I/O read amplification for UVM.

Using smaller datatypes can reduce the overall PCIe traffic and therefore
reduce the overall execution time as well. In Figure 2.13, we show the per-
formance comparison of EMOGI when using a 4-byte edge list vs. an 8-byte
edge list. On average, we observe about 1.57× of performance improvement
when using 4-byte over 8-byte for EMOGI. In the case of GK and ML graphs
in CC, the performance differences are nearly 2×. The performance differ-
ences in SSSP are smaller than the other applications since SSSP needs to
transfer the weight values as well. Due to the higher computation to memory
ratio in PR [48], PR also shows relatively smaller performance differences.

2.5.5 Comparison with Previous Works

In this section, we compare EMOGI with the current state-of-the-art GPU
solutions for out-of-memory graph traversals, HALO [3] and Subway [4]. Due
to their varying runtime requirements, we also modify our EMOGI testing
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Figure 2.13: Performance comparison between using 4 B edge and 8 B edge
for EMOGI with V100. Actual execution times of EMOGI + 8B cases are
written on top of the bars (in seconds).

environment for accurate comparisons. The details of the modifications are
described in the following sections.

HALO

HALO proposes a new CSR reordering method to improve data locality and
data transfer during graph traversal with UVM. Since the source code of
the HALO is not publicly available, we compare EMOGI with the results
available in the published paper. As HALO’s results were gathered using a
Titan Xp GPU, we also use a Titan Xp instead of V100 for fair comparison
and re-measure our execution times. The comparison results are shown in
Table 2.3. Overall, EMOGI shows 1.34× to 3.19× speedups against HALO.

Subway

Subway proposes a design of graph partitioning that preprocesses to deter-
mine the activeness of a vertex. Instead of relying on UVM, Subway focuses
on generating a small temporal CSR (also called subgraph) that fits in the
GPU memory in each iteration. Since the original CSR is located in the host
memory, CPUs need to generate the temporal CSR for every iteration. To
transfer the new temporal CSR, cudaMemcpy() is called by the host program.

We evaluate Subway using all the publicly available source codes (SSSP,
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Table 2.3: Execution time comparison with HALO [3]. NVIDIA Titan Xp
(12 GB) used.

Application Graph Exe. Time SpeedupHALO EMOGI

BFS

ML 9.54 s 4.43 s 2.15×
FS 8.27 s 2.59 s 3.19×
SK 2.17 s 1.62 s 1.34×

UK5 6.03 s 4.00 s 1.51×

Table 2.4: Execution time comparison with Subway [4]. NVIDIA Tesla
V100 (16 GB) used. 4-byte edge used due to the Subway requirement.

Application Graph Exe. Time SpeedupSubway EMOGI

SSSP

GK 20.96 s 7.94 s 2.64×
FS 14.95 s 6.97 s 2.14×
SK 8.99 s 3.92 s 2.30×

UK5 25.78 s 8.08 s 3.19×

BFS

GK 6.88 s 1.66 s 4.14×
FS 4.22 s 1.49 s 2.83×
SK 1.69 s 0.85 s 1.99×

UK5 8.75 s 1.85 s 4.73×

CC GK 6.34 s 3.11 s 2.04×
FS 4.31 s 2.75 s 1.57×

BFS, and CC) with our platform described in Section 2.5.1. Since one of
the goals of EMOGI is to avoid any data manipulation, we include the sub-
graph generation time of Subway as well in our measurements. The publicly
available implementation of Subway fails to execute on the GU graph due
to unidentified CUDA out-of-memory errors, and it cannot execute on the
ML graph as the framework currently supports a maximum of 232 edges.
The comparison results are shown in Table 2.4. Overall, across all the graph
datasets and graph traversal algorithms, EMOGI observes speedups of 1.57×
to 4.73×.

34



02468

1
0

1
2

G
K

G
U

F
S

M
L

S
K

U
K

5
G

K
G

U
F

S
M

L
S

K
U

K
5

G
K

G
U

F
S

M
L

G
K

G
U

F
S

S
K

U
K

5
A

v
g

S
S

S
P

B
F

S
C

C
P

R

Normalized Performance

U
V

M
 +

 P
C

Ie
 3

.0
U

V
M

 +
 P

C
Ie

 4
.0

M
M

IO
 +

 P
C

Ie
 3

.0
M

M
IO

 +
 P

C
Ie

 4
.0

30.1

129.6

33.5

19.3

11.7

49.7

10.8

13.7

16.3

12.4

1.8

8.8

9.9

7.8

6.5

20.5

187.0

155.0

163.9

3.3

123.5

F
ig

ur
e

2.
14

:
P
er

fo
rm

an
ce

co
m

pa
ri

so
n

be
tw

ee
n

U
V

M
an

d
E

M
O

G
I

us
in

g
P

C
Ie

3.
0

an
d

P
C

Ie
4.

0.
A

ll
re

su
lt

s
ar

e
m

ea
su

re
d

in
D

G
X

A
10

0.
A

ct
ua

le
xe

cu
ti

on
ti

m
es

of
UV

M
+

PC
Ie

3.
0

ca
se

s
ar

e
w

ri
tt

en
on

to
p

of
th

e
ba

rs
(i

n
se

co
nd

s)
.

35



2.5.6 Performance Scaling with PCIe 4.0

As was shown in Section 2.5.3 and Section 2.5.3, EMOGI can nearly satu-
rate the PCIe 3.0 bandwidth while outperforming the UVM implementation.
NVIDIA’s latest GPU, the Ampere A100, communicates with the host mem-
ory over the PCIe 4.0 interconnect. PCIe 4.0’s measured peak bandwidth
with cudaMemcpy(), approximately 24 GB/s, is twice as much as PCIe 3.0’s
peak measured bandwidth of approximately 12 GB/s. In this section, we
study the ability of both UVM and EMOGI to take advantage of the in-
creased bandwidth in accessing the host memory. To this end, we use a DGX
A100 machine [49] with the A100 GPU and Dual AMD EPYC Rome 7742
CPUs paired with 1TB of system memory. This machine allows us to switch
the root port to run in either PCIe 3.0 mode or PCIe 4.0 mode. Neither the
EMOGI implementation nor the UVM implementation was re-optimized for
the A100 GPU in these experiments, and A100 memory is throttled to 16
GB.

The overall evaluation results comparing the performance of UVM and
EMOGI on the DGX A100 system are shown in Figure 2.14. Here, we nor-
malize the performance speedup achieved by each configuration to the UVM
implementation running on the A100 GPU with the PCIe 3.0 interconnect.
While EMOGI’s performance scales by 1.88× on average with the faster in-
terconnect, UVM’s performance scales by only 1.53× on average. This is
because the UVM implementation suffers from page fault handling overhead
when accessing pages of the edge list in host memory. The page fault handler
is part of the UVM driver running on the CPU and cannot keep up to use
the higher bandwidth of the PCIe 4.0 interface. However, EMOGI does not
suffer any page faulting overhead as the edge list is pinned in host mem-
ory, leading to EMOGI’s performance scaling almost linearly with the PCIe
bandwidth.

2.6 Discussion

Extending to other input formats: In this work, EMOGI is targeting
CSR, which is used by many popular graph processing frameworks [24, 46,
34, 43, 50], but the main idea of EMOGI can be extended to different for-
mats as well. The most immediately applicable format is compressed sparse
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column (CSC). The edge lists in CSR represent outgoing edges (push-based),
but the edge lists in CSC represent incoming edges (pull-based). Although
the directions are different between the CSR and CSC, the memory access
pattern to the edge lists in both input formats is identical. Another in-
teresting format expansion for EMOGI would be dynamic graphs [51] and
compressed graphs [52]. The graph input formats used in these works are not
strictly identical to the classical CSR format, but their fundamental struc-
tures resemble CSR to retain some level of data locality for better bandwidth
utilization. Therefore, the EMOGI’s zero-copy memory access optimization
strategies can also be applied to these formats.

Additional optimizations: Several additional optimizations are avail-
able for EMOGI such as data compression and data caching in GPU global
memory. Data compression on a graph [52, 53] can reduce the total amount of
data transferred to the GPU, and we can obtain an effect similar to that of in-
creasing the external interconnect bandwidth. As discussed in Section 2.4.3,
GPU is severely underutilized due to the low external interconnect band-
width. Thus the idling GPU cores can be potentially used to decompress data
from the host memory, without interfering with the original graph traversing
process. For data caching, a work similar to [54, 55] can be applied to ex-
ploit data locality further. For this optimization, we expect that a workload
with high vertex revisits, such as PR, would benefit the most. However, one
thing to note is that there is currently no full hardware-based mechanism
to naturally use the GPU global memory as a large cache. Therefore, a
software-based caching mechanism needs to be implemented.

2.7 Conclusion

In this chapter, we presented EMOGI, a new method for optimizing the
traversal of very large graphs with a GPU using zero-copy. We used a thor-
ough analysis of fine-grained GPU memory access patterns over PCIe to
zero-copy memory. We identified key optimizations to best utilize band-
width to zero-copy memory: merged and aligned memory accesses. Our
experiments show that EMOGI outperforms the state-of-the-art solutions
for traversing large graphs. This is because EMOGI avoids I/O read ampli-
fication by leveraging efficient fine-grained accesses to fetch only the needed
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bytes from zero-copy memory. Furthermore, EMOGI’s performance scales
almost linearly with the improved bandwidth of newer interconnects as it is
not bottlenecked by the page fault handling overhead of traditional methods
using UVM.
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CHAPTER 3

FRAMEWORK INTEGRATION

3.1 Introduction

The use of fine-grained memory access over I/O may require very different
flows of memory allocation, memory mapping, and function calls from the
traditional block data transfer method. For example, enabling zero-copy ac-
cess for NVIDIA GPUs requires specific types of CUDA APIs to be called
in a particular order, and adding case-specific zero-copy access performance
optimizations needs a capability to insert arbitrary code blocks flexibly at
the framework level. While Chapter 2 has demonstrated that EMOGI can be
used by an application kernel to achieve benefit over previous mechanisms,
many modern applications are based on frameworks and application develop-
ers do not have the option to write/adapt data access kernels. This chapter
shows how to adapt such a framework in the machine learning domain with
the example of graph neural network (GNN) [56], and allow application de-
velopers to transparently benefit from the fine-grained memory access over
I/O with simple adaptation.

The acceleration of modern machine learning models is often severely lim-
ited by insufficient memory bandwidth [57, 58, 59]. To provide the best
possible memory bandwidth, data is usually placed in the memory closest
to the processing units of the accelerators [60, 61]. However, with extremely
large datasets, it is inevitable to put data farther from the processing units
to take advantage of larger capacity (e.g., host memory). In this case, di-
rectly accessing remote data from the processing units can be very inefficient
due to slow external interconnects. Thus, modern hardware systems utilize
direct memory access (DMA) engines to free processing units from spending
excessive time accessing remote data.

DMA engines are specialized to transfer large blocks of data independently.
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Figure 3.2: (a) A simple example of GNN training on single node. (b) An
illustration of node features in memory. The neighboring nodes’ features
are scattered in memory.

By providing source and destination memory pointers along with the data
size, DMA engines transfer data behind the scenes while keeping processing
units available for other tasks. Initiating each DMA requires multiple in-
teractions between the user application and the operating system, but these
overheads can be offset by transferring large data blocks (Figure 3.1 (a)).

The recent adaptation of machine learning to a wide range of tasks has led
modern deep neural networks to work on more complicated data structures
such as graphs. Graphs are essential in representing real-world relational
information in social networks and e-commerce. The capability to build
high-quality recommender systems on graphs is indispensable to multiple
businesses. In these graph data structures, the data which we need to access
is often not coalesced together but scattered in memory (Figure 3.1 (b)).

One of the most successful deep neural network model adaptations to graph
data is GNN. The core idea of GNN is to create node embeddings by itera-
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tively aggregating neighboring nodes’ attributes using neural networks. Due
to its neighboring node’s attribute lookup, training GNN requires accessing
multiple scattered locations in memory. In Figure 3.2 (a), we show a simple
example of GNN training. To generate the embedding of node 4, we traverse
the input graph and aggregate node 4’s features alongside the features of all
neighboring nodes in the node feature tensor. The example that we show here
is only a toy example. In real-world graphs, each node can be connected to
thousands of nodes. To collect relational information from those neighboring
nodes, we may need to access thousands of scattered locations in memory.
Without a doubt, such data access patterns make the traditional block data
transfer method ineffective.

In this chapter, we propose a processor-oriented, software-defined data
communication architecture. Instead of using DMA engines, we program
GPU cores to directly access host memory with zero-copy memory access.
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This approach allows the application developers to direct the GPU cores to
exactly the locations that hold the data needed for computation. Conven-
tional wisdom may still argue that since the node feature data is in host
memory, CPU has a significant bandwidth advantage over GPUs, and there-
fore DMA should be a better option because CPU can quickly gather the
sparse features on the fly. However, after the CPU gathers the sparse fea-
tures, the gathered data still needs to be transferred to the GPU memory
via the interconnect. Thus, the process is ultimately limited by the I/O in-
terconnect bandwidth. In Chapter 2, we have shown that the ability to issue
a massive number of concurrent memory accesses enables GPUs to tolerate
latency effectively when accessing complicated data structures like graphs
that reside in host memory [62]. Therefore, in GNN training, the proposed
zero-copy access approach can offer a significant advantage over the DMA if
GPUs can make targeted fine-grained host memory accesses for sparse fea-
tures while fully utilizing the system interconnect (e.g., PCIe) bandwidth.
Removing the CPU gathering stage shortens data access latency for GPUs
and dramatically reduces the CPU and host memory utilization (Figure 3.3).
Offloading CPU workloads to GPUs also helps with training GNN with mul-
tiple GPUs as we can prevent the CPU from becoming the bottleneck with
an increasing number of workers.

In order to propose the GPU-oriented data communication architecture
for GNN training, we address three major questions in this chapter. First,
can zero-copy memory access fully utilize PCIe bandwidth while training
GNN considering the long latency for accessing host memory? Second, what
would be the price of consuming GPU cores for zero-copy memory access?
Finally, after resolving the above two questions, can we show real end-to-end
application performance benefit from our method?

In this chapter, we answer all three questions by proposing and applying
the following optimization techniques to the GNN training framework DGL.
First, we propose an automatic data access alignment optimization in the
GPU data indexing kernel to maintain the best possible PCIe packet effi-
ciency with zero-copy memory access. As we showed in Chapter 2, zero-copy
accesses over PCIe can achieve up to 93% of block transfer PCIe bandwidth
with our optimization. Second, we propose a novel CUDA multi-process ser-
vice (MPS) [63] based resource provisioning optimization to minimize GPU
resource consumption of zero-copy memory accesses. Based on careful inves-
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tigation of PCIe protocol and GPU architecture, we conclude that we can
saturate PCIe even by using only a few GPU cores to generate zero-copy
accesses. Therefore, our optimization only requires a small portion of GPU
resources for the zero-copy accesses and leaves the rest for computationally
intensive workloads.

Finally, we build an end-to-end zero-copy GNN training flow in PyTorch.
To enable zero-copy memory access, we devise a new class of tensor called
"unified tensor". This tensor provides an address mapping of host memory
for GPUs so they can directly access host memory with zero-copy accesses.
By simply declaring multiple unified tensor instances for multiple GPUs,
our GNN training flow can also support zero-copy access in a multi-GPU
training environment. Our modifications are seamlessly integrated with the
existing PyTorch framework, and therefore we can quickly apply our method
on existing GNN training applications. We evaluate our design on multiple
large graph datasets where the largest one has 111 million nodes and 1.6
billion edges. In a single-GPU training environment, our method is 16–44%
faster than the DMA-based method, but our method becomes 65–92% faster
than the DMA-based method in a multi-GPU training environment. Our
method is efficient in hiding the remote sparse feature access time with the
training time and can even match with the all-in-GPU-memory method for
some graphs that fit in the GPU memory.

In summary, the main contributions of this chapter are as follows:

• As opposed to the traditional DMA-based data communication archi-
tecture, we propose GPU-oriented, software-defined data communica-
tion architecture with zero-copy memory accesses for efficient sparse
accesses to graph node features in GNN training.

• To improve the efficiency of zero-copy memory access, we propose au-
tomatic data alignment and novel CUDA MPS-based resource provi-
sioning optimizations.

• We seamlessly integrate our modifications with the existing PyTorch
framework for easier programming and show 65–92% of end-to-end
training performance gain.

The rest of the chapter is organized into the following sections. Section 3.2
provides the necessary background for the proposed approach. Section 3.3
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gives a brief overview of the proposed approach. Section 3.4 presents an
experimental evaluation of the proposed approach. Section 3.5 discusses
potential future work. Section 3.6 offers concluding remarks.

3.2 Background

3.2.1 Graph Neural Network

The idea of graph neural networks (GNNs) [64, 65, 66, 67, 56, 68, 69] started
by an attempt to apply filters similar to convolutional neural networks (CNNs)
[70] on graph structures. Bruna et al. [64] were the first to propose the GNN
model, where the authors utilized Laplacian filters as hidden layers to ex-
ploit the global structure of the graph. Such spectral construction was later
adopted by many GNNs, including [56, 67].

GNNs are widely adopted in graph representation learning [71], where
GNN is trained to produce high-quality embeddings of the given nodes.
These embeddings can be used for performing several tasks such as link
prediction and node classification. Traditional representation learning algo-
rithms, including node2vec [72] and DeepWalk [73], are inherently shallow,
transductive, and do not share parameters or utilize node attributes to en-
code nodes [71]. These characteristics limit the model’s representation power
and prevent it from inferring the representation when the nodes or edges are
unseen in training. GNN opens up the potential to develop algorithms to
tackle these problems [65, 66].

One severe issue with the early GNN is that the Laplacian filters in each
layer are matrices whose dimension increases as the number of nodes in the
graph increases. This effectively throttles the depth of GNN and the size of
the graph it can be applied to, due to the large memory footprint. As an
example, Kipf and Welling [56] present a model for semi-supervised node clas-
sification using GNN. The simplified form of its forward-propagation function
can be written as:

H(l+1) = f
(
H(l), A

)
= softmax

(
AH(l)W (l)

)
where A is an N×N adjacency matrix (N is a number of nodes) representing
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the node connectivity, H is an embedding table, W is a weight table, and l

is a layer number. Here, we can see the memory capacity requirement of the
operation grows at least as fast as N2, and the size of N can go easily up to
hundreds of millions in large-scale graphs.

3.2.2 Neighborhood Sampling

To tackle the limitation of GNN, GraphSAGE [65] introduces neighborhood
sampling and aggregating approach. By sampling a fixed number of neighbor-
ing nodes instead of demanding the whole adjacency matrix, neighborhood
sampling essentially reduces the computation and memory footprints and
enables a fixed-size minibatching in both training and inference.

GraphSAGE models are a sequence of aggregation layers, which can be
LSTM, pooling, or mean operations. The neighborhood sampling is applied
to every neighboring node in every aggregation step. GraphSAGE uses a
uniformly random selection process to sample the neighboring nodes, but
other works such as FastGCN [74] and VR-GCN [75] use more complex al-
gorithms to determine the neighboring nodes that need to be sampled. The
commonly used hyperparameters for the neighborhood sampling size Slayer

are (S1, S2) = (10, 25) (i.e., up to 10 samples from the immediate layer of
neighboring nodes and up to 25 samples from the layer of nodes that are two
layers away) and (S1, S2, S3) = (10, 10, 10). It is uncommon to go beyond the
three layers of sampling due to the exponential growth in the number of nodes
that need to be sampled. Such a lower depth of network layers than other
deeper neural networks [76, 77] makes optimizing data transfer time-critical
in GNN training. After the sampling, a sub-graph containing only the sam-
pled nodes is created, so the computation kernel knows how to aggregate the
node features of interest. Over different epochs of training, a new sampling
is done to increase the learning entropy and cover more corner cases. The
exact implementation of the sampling process is framework-dependent. In
the case of deep graph library (DGL) [7], this part is written in C++ with
OpenMP to maximize the performance, but PyTorch-Geometric [78] simply
uses a Python code.

If the entire node feature table does not fit in the GPU memory, the
sampled nodes’ features must be transferred after each sampling step [66].
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Since the sampled nodes’ features are scattered over the feature table, the
current GNN implementations in PyTorch or TensorFlow, the frameworks
which use DMA as a data transfer method, require the features to be collected
into a dense format prior to the data transfer.

3.2.3 CPU–GPU Data Communication

CUDA provides developers with three ways to transfer data between host
and GPUs: (1) DMA APIs, (2) automatic page migration, and (3) zero-copy
access [79].

As the first method, CUDA provides both synchronous and asynchronous
APIs to copy data among host and devices. The two most commonly used
APIs are cudaMemcpy() and cudaMemcpyAsync(). Both functions take a
source pointer, a destination pointer, a data size, and a data transfer direc-
tion. For this method, the DMA engine is used for the data transfer. DMA
engine is efficient at transferring a single large data block but suboptimal for
transferring small-sized data due to the DMA request setup latency caused
by user program ⇐⇒ operating system interactions. According to Pearson
et al. [80], to make the effective bandwidth of DMA to about 90% of the
maximum PCIe 3.0 x16 bandwidth, the data block size should be at least
256 kB. With 64 kB of a data block transfer, the DMA efficiency drops to
less than 50% of the maximum PCIe 3.0 x16 bandwidth.

Page migration is the second way. To provide convenience to programmers,
NVIDIA introduced the Unified Virtual Memory (UVM) [35, 36, 41, 17, 80].
Data pointers to the memory regions managed by the UVM driver can be
dereferenced by both GPU kernels and CPU functions. When a processor
(either CPU or GPU) attempts to access a page that it does not own in its
local memory, the accessed page needs to be migrated from a remote location.
Similarly, if other processors access this page later, page migration to that
processor will be triggered. The minimum migration granularity is identical
to the system page size (4 kB), but it can be as large as 2 MB. UVM makes
programming easier by removing the need for explicit calls of cudaMemcpy()
by users. To allocate the UVM-backed memory region, programmers sim-
ply need to call cudaMallocManaged() with the desired size. However, the
programmer-friendly page migration is not designed to be a performant data
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transfer mechanism. Its performance is limited with irregular access patterns
due to high page miss rate. This leads to an excessive amount of page faults
that stall the execution and create I/O read amplification. With a larger dis-
crepancy between the dataset size and the GPU memory size, more frequent
page migrations will be incurred by severe page thrashing.

Finally, CUDA enables zero-copy access, which is also known as direct
access. In zero-copy access, GPU sends a cacheline-sized memory request
directly through an external interconnect (e.g., PCIe), without explicit data
copy or page migration that will happen in the two methods mentioned above.
The source memory region can be the host memory, peer PCIe devices, or
other GPUs connected over NVLink. Zero-copy is useful in accessing fine-
grained data, but it needs GPU cores to be engaged in generating memory
requests.

3.3 Fine-Grained and GPU-Oriented Data
Communication Architecture

Due to the widespread use of DMA-based data communication architecture,
many system-level modifications must be established to support our GPU-
oriented data communication architecture in the higher-level programming
models. In this section, we first describe how we enable zero-copy accesses
in PyTorch, and then we discuss some of the technical aspects of zero-copy
access to identify its weaknesses and how to overcome them. Finally, we
describe the end-to-end GNN training flow using zero-copy accesses.

3.3.1 Zero-Copy Enablement in PyTorch

For GNN training, we use PyTorch, one of the most popular Python-based
ML frameworks. However, including PyTorch, there are no Python-based ML
libraries which naturally support zero-copy access for GPUs. To overcome
this issue, we create an extension of the existing PyTorch implementation
with several modifications in its source code.

In PyTorch, data is allocated through a class called "tensor". The physical
location of data is determined by a context value which is passed to the class
upon a declaration (Table 3.1). In the current implementation of PyTorch,
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Table 3.1: PyTorch tensor class comparison.

Existing This Work

Context CPU CUDA Unified
Worker CPU GPU GPU

Data Storage Host Memory GPU Memory Host Memory

processing units can only compute data located within their own local mem-
ories. For example, a new tensor with CUDA context should be created to
perform GPU-accelerated matrix multiplication on the CPU tensor. When
the new CUDA tensor is created based on the old CPU tensor, PyTorch
automatically calls DMA to copy the data in the host memory to the GPU
memory.

In our design, we aim to aggressively avoid the implicit DMA data copy
performed by PyTorch. We give GPUs direct access to tensor data in the
host memory by mapping the host-memory data pointers into the GPU ad-
dress space. To achieve our goal, we create a new class of tensor with a
new "unified" context. A tensor with this new context can be declared
from any existing CPU tensors. Upon the declaration, the tensor calls the
cudaHostReigster() and cudaHostGetDevicePointer() CUDA APIs in-
ternally.

Calling cudaHostReigster() page-locks the given CPU tensor data and
cudaHostGetDevicePointer() maps page-locked data into the GPU ad-
dress space and returns a device pointer that can be used in GPU kernels
for zero-copy accesses. There are several other ways of allocating a host
memory space for zero-copy such as cudaMallocHost(), cudaHostAlloc(),
or cudaMallocManaged() with cudaMemAdvise(), but these methods have
some limitations for multi-GPU training, which we will explain in Section 3.3.4.
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import torch

#Input tensor data in host memory
input_tensor = torch.randn ([100] , device="cpu")

#CUDA tensor created , data copied by DMA (e.g., cudaMemcpy ())
gpu_tensor = input_tensor.to(device="cuda")

#Unified tensor created , no data copy occurs
unified_tensor = input_tensor.to(device="unified")

#gpu_tensor data comes from GPU memory
#unified_tensor accessed through zero -copy access
#Computation done by GPU
output = gpu_tensor + unified_tensor

Listing 3.1: PyTorch Programming with CPU Tensor, GPU Tensor, and
Unified Tensor

Besides the pointer manipulation, other existing PyTorch tensor mech-
anisms remain the same, and therefore there are no noticeable functional
differences introduced to the end-users. Listing 3.1 shows a simple vector
addition example in PyTorch using a unified tensor. From the code, we can
see declaring the unified tensor is as simple as declaring the existing CUDA
tensor. While the CUDA tensor is created by explicitly copying data from the
CPU tensor, the unified tensor only creates a mapping to the host memory
for the GPU. We have empirically measured that the GPU memory usage by
the memory mapping is about 1/512 of the data size. Therefore, while the
CUDA tensor will immediately fail on declaration if the data size is larger
than the GPU memory capacity, the unified tensor can hold up to 512 times
more.

3.3.2 Improving Zero-Copy Efficiency Over PCIe

One of the common misconceptions of zero-copy access is its low data transfer
efficiency compared to the DMA-based methods [5]. The misconception is
mainly coming from the fact that the users are treating the zero-copy without
any specific care. However, as the zero-copy access requests are made over
PCIe, it is important to understand how the zero-copy accesses interact with
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Figure 3.4: (a) A perfectly coalesced 128-byte access from a warp. (b) A
warp accessing a misaligned data needs to generate multiple PCIe requests.

PCIe. In this section, we take a deep-dive into the technical aspect of PCIe
protocol and its interaction with GPUs. We then present two important
techniques for maximizing the zero-copy efficiency during GNN training.

Aligned Memory Access

Even though our purpose of using zero-copy is to make fine-grained memory
accesses to the host memory, it is still desirable to make coarser-grained PCIe
memory requests whenever possible for a couple of reasons. First, each PCIe
packet has 12–16 bytes of header overhead. Therefore, it is better to increase
the payload size by requesting a larger memory request to compensate for
the overhead. Second, PCIe devices have a hard limit on the number of
outstanding requests they can create. Since the PCIe round trip time (RTT)
is very long (1–5us, variable), submitting multiple read requests in a pipelined
fashion is necessary to occupy the interconnect fully. However, if we squander
the capacity of the allowed number of outstanding requests by generating
too many small read requests, it becomes difficult to tolerate the latency and
utilize the PCIe bandwidth fully. The numbers of maximum outstanding
read requests for PCIe 3.0 and PCIe 4.0 are 256 and 768, respectively.

Now, how do we generate coarser-grained PCIe requests with all that in
mind? According to Min et al. [62] and also presented in Chapter 2, to
make PCIe read requests more efficient, the same technique used for the
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GPU memory coalescing [81] can be used. Figure 3.4 illustrates two cases
where (a) memory accesses from a warp are contiguous and aligned with the
GPU cacheline, and (b) memory accesses from a warp are contiguous but
misaligned with the GPU cacheline. In the case of (a), the accesses from the
threads in a warp are perfectly coalesced, and the coalesced requests become
a single 128 B PCIe read request. In the case of (b), the accesses from a
warp are scattered over two GPU cachelines, and they result in generating
two separate PCIe read requests. The possible memory access granularities
are 32 B, 64 B, 96 B, and 128 B, while 32 B is a single sector size of GPU
cacheline [82]. Each GPU cacheline is composed of four sectors.
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#define WARP_SIZE 32
__global__ void index(float* dst , float* src ,

int* idx_list , int feat_size ,
int numElem) {

int linearIdx = blockDim.x * blockIdx.x
+ threadIdx.x;

for (int i = linearIdx; i < numElem;
i += blockDim.x * gridDim.x) {

int dstIdx = i / feat_size;
int offset = i % feat_size;

// src: host memory , dst: GPU memory
int dstStart = dstIdx * feat_size;
int srcStart = idx_list[dstIdx] * feat_size;

int dstOffset = offset + dstStart;
int srcOffset = offset + srcStart;

// Cacheline -size -aware circular shift stage added
if (feat_size > WARP_SIZE && feat_size % WARP_SIZE) {

int diff = (dstStart - srcStart) % WARP_SIZE;
diff = diff < 0 ? diff + WARP_SIZE : diff;

dstOffset += diff;
srcOffset += diff;

if (srcOffset >= srcStart + feat_size) {
dstOffset -= feat_size;
srcOffset -= feat_size;

}
}

dst[dstOffset] = src[srcOffset ];
}

}

Listing 3.2: GPU Indexing Kernel and Automatic Alignment

Of course, we would not need to worry about the misaligned accesses if
the node feature objects always start at 128 B boundaries and the sizes of
node features are always multiples of 128 B, but it is very unlikely to be
so in reality. For example, if a certain dataset’s node feature size is 480 B,
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Figure 3.5: Circular shift optimization explained. Circular shift transforms
memory requests into a GPU cacheline-friendly way.

accessing the second node feature will start from accessing the 480th byte
in a memory address. In this case, we are off by 32 B from the closest 128
B boundary (512 B). To automatically resolve this issue, we add a circular
shift stage in the PyTorch indexing CUDA kernel. In Listing 3.2, we show
the circular shift stage code we added, but in a simplified manner. The shift-
ing stage is aware of the GPU cacheline size and shifts the memory access
indices by calculating the offset between the nearest 128 B aligned location
and the current indexing location. The visualization of our circular shift
mechanism is shown in Figure 3.5. In this example, we want to access the
second node feature with zero-copy access, where each node feature size is
480 B. Without the optimization, each warp starts reading from misaligned
locations and ends up generating 8 PCIe requests. However, once our op-
timization is applied, the warps adjust their indexing locations and try to
generate aligned memory accesses as much as possible. In this example, the
total number of PCIe read requests is reduced to 5.

We do not apply the circular shift stage if the node feature size is less than
the GPU cacheline size or if it is already a multiple of the GPU cacheline
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size. All these adjustments are transparent to the high-level programmers
due to our modifications to PyTorch source code.

Asynchronous Operations and Resource Provisioning

One important distinction of our design is that zero-copy accesses are done
by GPU kernels. In other words, the other following GPU kernels need to
wait until the zero-copy kernel is finished, even if it is simply reading the host
memory. However, like in many other ML algorithms, GNN can also greatly
benefit from overlapping data communication time and training time, which
naturally happens in DMA-based methods. To achieve the best training
performance, we must devise a way to overlap our design’s training GPU
kernels and zero-copy GPU kernels.

Normally, concurrency and overlapping activities can be accomplished by
using CUDA streams. CUDA streams allow GPU kernels and API service ac-
tivities in different streams to execute in arbitrary order so as to enable over-
lapped operations. Unfortunately, there are several situations where achiev-
ing concurrency is impossible. First, there are several blocking CUDA APIs
such as cudaMalloc(), cudaFree(), and cudaEventQuery() that serialize
the GPU operations. In the current implementation of PyTorch, some of the
listed APIs are called in the background implicitly, such as by the memory
allocation manager. If one of the CUDA APIs is called in between the zero-
copy GPU kernel and the training GPU kernel, the latter GPU kernel must
wait until the earlier GPU kernel’s operation is finished. Second, when a
current GPU kernel completely consumes the GPU resources, the following
kernel must wait until the resources are released. In general, most of the
GPU kernels try to occupy as much as of GPU resources as they can, and
the serialization situation is very likely to occur.

However, in fact, we have missed a fundamental question here. Before we
think about concurrency, how much GPU resource do we need for the zero-
copy GPU kernels? If we need the entire GPU resource to utilize the PCIe
bandwidth fully, then there is no point in attempting to achieve concurrency
in the first place. This is the core question that needs to be answered to
verify the validity of the idea of overlapping zero-copy and training GPU
kernels.

To answer to this question, we explore the architecture details of NVIDIA
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Table 3.2: NVIDIA RTX 3090 specifications.

Category Specification

PCIe Generation 4.0

Max # of Outstanding PCIe 4.0 Read Requests 768

# of Multiprocessors 82

# of Threads per Multiprocessor 1536

# of Threads per Warp 32

GPUs. In NVIDIA GPUs, to better utilize computation units and to hide
long GPU memory access latency, every single physical core may have multi-
ple active warps to issue instructions from [83]. In this way, the physical core
will not be stalled when some of the warps are waiting for the completion
of their memory requests. Therefore, the number of physical GPU cores we
need to reserve is much smaller than the number of memory requests we want
to generate.

As we discussed in Section 3.3.2, there is a hard limit on the number of
outstanding PCIe read requests that PCIe devices can generate at a given
moment. Therefore, if we can prove that we only need a small amount of
GPU resources to saturate the limit fully, it is worthwhile to seek a way
to achieve concurrency. In Table 3.2, we list the specifications of NVIDIA
RTX 3090 GPU which we use for our evaluations. At any given moment,
the PCIe interface would not allow the GPU to generate more than 768 out-
standing PCIe read requests. To identify the portion of GPU resource we
need to generate 768 outstanding PCIe read requests, we perform the fol-
lowing calculation. First, assume each warp’s memory requests are coalesced
to a single PCIe read request, and ignore the payload size for now. In this
case, we need 768 warps available to the scheduler to reach the PCIe 4.0
limit. Since each streaming multiprocessor (physical processor) can hold up
to 1,536 threads at a given moment, each multiprocessor can sustain up to
1,536 / 32 = 48 outstanding PCIe read requests. Now, we have 82 multi-
processors in RTX 3090, so the amount of GPU resource that we need to
reserve for the zero-copy GPU kernel is about 16 / 82 = 19.5%. However,
this is the upper bound for the extreme case. If we assume we can always
generate 128B PCIe read requests, we can saturate the PCIe 4.0 bandwidth
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with far fewer outstanding requests. For example, the measured maximum
PCIe bandwidth with cudaMemcpy() in RTX 3090 is 25.8 GB/s and if we
assume RTT (Round-Trip-Time) of PCIe is 1.5 µs [84], the number of out-
standing requests that we need to sustain is (25.8 GB/s) / (128 B) × 1.5 µs
= 324.6. That is, assuming all PCIe requests are 128 B in size, we need to
reserve only 8.2% of the total GPU resource for the zero-copy GPU kernel.
In reality, since some of the requests will be smaller, this number is a lower
bound and the actual number will be somewhat higher. In short, even if we
try to maximize the zero-copy GPU kernel efficiency, there are at least 80%
and up to 91.8% of the GPU resources available for other workloads.

Now, finally, since we realize how much GPU resource should be allocated
for the zero-copy kernel, we explore the method to enforce the limitation
in practice. Fortunately, NVIDIA GPUs already provide support for lim-
ited execution resource provisioning through CUDA multiprocessing service
(MPS) [63]. MPS is originally designed to improve the quality of service
(QoS) between different clients’ workloads, but we utilize this service to con-
trol the resource utilization of the zero-copy GPU kernel. To assign different
resource limitations to different kernels, the kernels must be running in dif-
ferent contexts/processes. Since PyTorch already supports a multiprocessing
programming model, it is simple to launch the zero-copy GPU kernel and the
training GPU kernel in two separate processes.

To manually partition the GPU resource, we use the cuCtxCreate_v3()

API from CUDA. With this API, we can control the amount of GPU re-
sources that we want to reserve at the user-programming level. For exam-
ple, if we want to only use two SMs of GPU for a given context/process,
we can set the CUexecAffinitySmCount argument to 2 and pass it to the
cuCtxCreate_v3() API. Now, later in the program, if we want to launch
a CUDA kernel with only up to two SMs, we just need to switch to the
context that we created with the API. Another side benefit of the multi-
processing approach is that the different GPU kernels running in different
processes are not affected by the other processes’ blocking CUDA API calls.
With our approach, zero-copy accesses can take full advantage of the PCIe
bandwidth while leaving the majority of GPU resources available for other
computationally intensive workloads.

Figure 3.6 summarizes the benefit of our approach. When the zero-copy
kernel is not throttled, it blocks the follow-up work (Figure 3.6 (a)), while the
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Figure 3.6: GPU and PCIe utilization comparison on different scenarios of
workload executions and GPU resource partitioning.

GPU resource is mostly idling. When the other kernels (e.g., computation)
are not throttled, the GPU can focus on the computation, but the PCIe
is not utilized at all (Figure 3.6 (b)). When we enable the GPU resource
partitioning, now we can properly utilize both the GPU and the PCIe at the
same time (Figure 3.6 (c)).

With this optimization, we can transform the GPU cores into an intelligent
DMA engine that can asynchronously perform complex data accesses such
as data dependent index calculations and fine-grained host memory accesses.
This optimization can also be useful for some workloads that utilize peer-to-
peer GPU memory accesses with zero-copy accesses.

3.3.3 Workload Scheduling

In this section, we combine all the implementation details we discussed in
the previous sections, and explain the overall flow of our GNN training with
zero-copy accesses enabled. In Figure 3.7 (a), we show the initial tensor
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related to data accesses are shown. (a) We set up unified tensor and the
returned pointer is passed to GPU for zero-copy accesses. (b) The sampler
generates node IDs used by the producer and the producer gathers
scattered node features in the host memory. The consumer uses the
gathered node features for training.

allocations during the initialization step. First, we map the whole node
feature tensor into the GPU address space using the unified tensor. This
unified tensor holds a memory pointer that the GPU can use in its kernel to
generate zero-copy accesses to the node feature tensor. Next, we create two
sets of ping pong buffers for interprocess communications. The goal of using
ping pong buffers is to remove the usage of locking mechanisms between two
different processes sharing data and allow them to start working for the next
minibatch immediately after finishing their current works. In our design,
each process needs to be synchronized just once per minibatch.

After the initialization, the training pipeline begins from the sampler pro-
cess, randomly selecting nodes and collecting their neighbors’ node indices
(Figure 3.7 (b)). Once all the node indices are identified, the combined list
is transferred to the producer process running on GPU for the zero-copy ac-
cesses. The list of node indices is transferred over DMA as it is contiguous
and small. Once the node features are all gathered into one of the ping pong
buffers, the producer notifies the consumer to train on the new minibatch
data as soon as it is ready. Since the GPU ping pong buffers are located
in the same GPU memory, it naturally makes sense for the consumer to di-
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rectly access the buffer owned by the producer instead of copying it to its
own space. To achieve this, we utilize CUDA interprocess communication
(IPC) APIs. With the CUDA IPC APIs, two different GPU kernels running
on different processes can share the same GPU memory space without data
copies in between. This specific GPU pointer sharing procedure is imple-
mented in the PyTorch Queue class and we utilize it for our application. The
ping pong buffers are statically located for the entire training process, and
therefore the pointer sharing needs to be done only once at the beginning of
the producer process.

From the user’s point of view, the training process is pipelined in a sampler
→ producer → consumer order (Figure 3.8). Except for the unified tensor
declaration, all of our end-to-end GNN training implementations are devel-
oped with the existing PyTorch functionalities, making our method more
accessible for the existing users. Another benefit of using PyTorch is the ac-
cess to multiple fault-tolerant mechanisms in PyTorch, such as checkpointing
and TorchElastic [85] framework, which allow users to recover from failure
or to train even with faulty hardware steadily. Our implementation does not
alter those mechanisms, and they can be used at the same time. Our modifi-
cations are isolated into the data transfer portion of the GNN training, and
the training algorithms are unaffected.
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3.3.4 Multi-GPU Training

The final challenge of our method is supporting a multi-GPU training en-
vironment. Multi-GPU training is one of the keystones of modern ML for
reducing the training time, and the existing DMA-based method already
supports the multi-GPU training. Therefore, it is not useful or practical to
propose a method that can only support a single-GPU training environment.

For multi-GPU training, we take the data parallelism approach used in
DGL [7]. In the original DGL implementation, the multi-GPU training is
done by increasing the number of sampler-consumer pairs and assigning one
GPU to each pair. On top of the DGL implementation, we add the GPU-
based producer process into each pair. The DGL implementation does not
have a dedicated producer process as it assumes the node feature data is
collected by the sampler and transferred into each GPU’s memory. The
simplified diagram of our multi-GPU training design is shown in Figure 3.9.

The main difficulty of multi-GPU training with zero-copy accesses lies
in sharing the same host memory space across different GPUs running in
different processes. In general, sharing the host memory space across dif-
ferent GPUs is simple when the kernels are launched by a single process.
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In this case, programmers simply need to allocate a memory space by ei-
ther calling cudaHostAlloc() with a cudaHostAllocPortable flag or call-
ing cudaMallocManaged(). However, with this method, the host memory
space allocated is bound to the process which called the memory allocators.
Currently, due to how the CUDA memory allocators work, there is no way
for the users to make the space allocated by them to be shareable with the
other processes. It is possible to create multiple copies of node feature ten-
sors for each training process, but this leads to extremely inefficient usage of
host memory capacity.

import torch
import torch.multiprocessing as mp

def producer(features , process_id , ...):
#Specify target GPU ID
torch.cuda.set_device(process_id)
#Map host shared memory to GPU address space
features = features.to(device="unified")
...

if __name__ == ’__main__ ’:
features = torch.randn ([100] , device="cpu")
# Allocate shared memory space
features = features.share_memory_ ()
...
#Pass feature tensor alloctead in shared memory space
#and call producers for multiple GPUs
producer1 = ctx.Process(target=producer ,

args=(features , 0, ...))
producer2 = ctx.Process(target=producer ,

args=(features , 1, ...))
...

Listing 3.3: Unified Tensor Declaration in Multiprocessing Environment

Therefore, we take the opposite direction of memory allocation in our im-
plementation. Instead of sharing a memory space after allocating with CUDA
APIs, we first allocate a shareable memory space and then call CUDA APIs
to allow GPUs to access the space. In Linux, to allow multiple processes to
share the same memory space, shared memory can be used. Here, this shared
memory refers to a specific Linux implementation to allow interprocess com-
munication, and it should not be confused with other similar terminologies,
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such as the GPU shared memory. We utilize the cudaHostRegister() API
because it can be used on top of the Linux shared memory. Therefore, by
letting different processes call cudaHostRegister() individually on the same
shared memory space which has been already allocated, each GPU can get
identical address mapping to the same host memory space. The specific
code that implements this approach is shown in Listing 3.3. Line 14 shows
the declaration of a shared memory tensor in the main process. Shared
memory allocation is already supported in PyTorch code by simply adding
.share_memory_() command after the CPU tensor instance. To map this
shared memory space for different GPUs, we pass the shared CPU tensor
to the producer processes running on the GPUs (Lines 18 and 21). Each
producer process simply calls the unified tensor declaration (Line 8) to effec-
tively convert the shared CPU tensor into a unified tensor and maps it into
the GPU’s address space for zero-copy access.

Inside the producer code (Lines 4-9), the first thing that we must do
is select the correct CUDA device (e.g., producer0 → GPU0, producer1
→ GPU1, and so on). Without this step, all unified tensor declarations
in different producer processes will create a mapping for the default CUDA
device defined by the system (e.g., GPU0).

3.4 Evaluation

This section presents an evaluation of the impact of our proposed design on
GNN training time. We first take a closer look at the improvements made
by our optimizations one by one, and then show the overall training time
reduction achieved.

3.4.1 Methodology

Evaluation System

For our evaluation, we use the system described in Table 3.3. Our host
system can hold two RTX 3090 GPUs and both are operating in PCIe 4.0
mode. With PCIe 4.0 interconnects, both GPUs can achieve about 25.8 GB/s
of host to GPU DMA bandwidth in our microbenchmark. The measured
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aggregated bandwidth of the two GPUs performing DMA on host memory
at the same time is about 51.7 GB/s.

Application

Our unified tensor implementation and the indexing kernel modification are
based on PyTorch 1.8.0-nightly version. For the GNN training, we use the
GraphSAGE [65] implementation of DGL [7]. We only modify the data
communication portion of the implementation. The sampling mechanism
and the training algorithm remain unmodified.

(a) CPU-Only implementation only uses CPU for training GNN. In this
case, there is no need for data transfer over PCIe since GPUs are not involved
in the training.

(b) DMA-based implementation uses CPU to gather node features into a
contiguous buffer. The gathering process in CPU is multithreaded by default
in PyTorch and the data transfer time is overlapped with the training time
by using asynchronous DMA.

(c) Naïve Zero-Copy uses zero-copy as a main data transfer method,
but does not include any optimizations we discussed in this chapter. Uni-
fied tensors are used to allow GPUs to perform zero-copy accesses on host
memory.

(c) Zero-Copy implementation enables zero-copy accesses and addition-
ally includes all optimizations we discussed in this chapter. Unified tensors
are used to allow GPUs to perform zero-copy accesses on host memory.

(d) All-in-GPU implementation allocates the entire node feature array
into each GPU memory before the training begins. This implementation is
used to show the rough upper bound of the performance improvement we
can achieve through the data transfer optimization. Due to the limited GPU
memory capacity, we do not evaluate all datasets with this implementation.
We explicitly denote such cases as "out-of-memory (OOM)".

Dataset

In Table 3.4, we show the datasets we used for the evaluation. wikipedia [86]
network consists of the wikilinks of Wikipedia in the English language. Nodes
are Wikipedia articles, and directed edges are wikilinks. amazon [87] dataset
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Table 3.3: Evaluation system configuration.

Category Specification

CPU AMD Ryzen Threadripper 3960x 24C/48T

Memory DDR4 3200 MHz 256 GB in Quad Channel

GPU 2x NVIDIA Ampere RTX 3090 24 GB

OS Ubuntu 20.04.1 & Linux Kernel 5.8.0

S/W CUDA 11.2 & PyTorch 1.8.0-nightly

Table 3.4: Evaluation dataset.

Name #Feature #Node #Edge Size

ogbn-products 128 - 4096 2.4M 61.9M -
wikipedia 315 13.6M 437.2M 17.1 GB
amazon 578 14.7M 64.0M 34.0 GB

ogbn-papers100M 128 111.1M 1.6B 56.9 GB

is based on Amazon product network connected by "also viewed" and "also
bought" links. ogbn-papers100M dataset is a directed citation graph of 111
million papers indexed by MAG [88]. The above datasets are used for basic
performance evaluations. ogbn-products [89] dataset is based on Amazon
co-purchasing network [90] where nodes represent products sold in Amazon,
and edges between two products indicate that the products are purchased
together. ogbn-products is only used for the training time vs. node feature
size sensitivity analysis on Section 3.4.4.

3.4.2 Bandwidth Analysis

In Figure 3.10, we show the comparison of the effective bandwidths we mea-
sured during the wikipedia dataset training. To observe the impact of the
misaligned node feature access on the PCIe bandwidth, we sweep the node
feature size from 1024 B to 1044 B in this experiment. Zero-copy naïve ap-
proach does not implement the circular shift optimization we discussed in
Section 3.3.2. Throughout the experiment, the effective bandwidth of the
DMA-based approach is only about half of the zero-copy approaches as it
requires a long CPU gathering process.
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Figure 3.10: Effective data transfer bandwidth measured during the
wikipedia dataset training. We sweep feature size to observe the impact of
misaligned zero-copy accesses over PCIe.

When the node feature size is 1024 B, regardless of the circular shift op-
timization existence, the zero-copy implementations show the best effective
bandwidth numbers. Because the GPU cacheline size is 128 B, in this case ac-
cessing any node features results in generating perfectly coalesced accesses.
Considering that the best cudaMemcpy() bandwidth we achieved is about
25.8 GB/s, we can roughly estimate the upper bound efficiency of zero-copy
access is about 95.1%. With more misaligned accesses, the efficiency of the
naïve zero-copy implementation drops to 78–82% while the optimized zero-
copy implementation can achieve 88–93% of efficiency.

In general, the results re-emphasize the importance of making cacheline-
aligned accesses whenever using zero-copy accesses. For savvy programmers,
we expect them to understand the underlying hardware mechanism and to
consider padding the input data if the overhead is not too big. However, even
if they fail to do so, our optimizations would still reduce the performance
penalty for them.

3.4.3 Concurrency Analysis

The best way to check if our MPS-based resource provisioning is helping
concurrency is to profile the workload and visually inspect the GPU kernel
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Figure 3.11: Snapshots of NVIDIA Nsight Systems Profiler during GNN
training. CPU workloads not shown here.

timeline. In Figure 3.11, we show two profiling results of GNN training where
(a) we do not apply any resource restriction and (b) we allocate 10% of GPU
resource for the zero-copy kernels and 90% for the training kernels. Without
any MPS running, there is almost no concurrency occurring since each kernel
is trying to consume the whole GPU resource. In this specific case, the index-
ing (zero-copy) kernel is blocking other training kernels using GPU resources.
The training kernels are already scheduled into the queue, but most of them
cannot be actually executed until the zero-copy kernel is finished. Only a
few kernels which require a small amount of GPU resource can be executed
along the zero-copy kernel. In the NVIDIA tools, the GPU is considered to
be 100% utilized at this point, but as we discussed in Section 3.3.2, in fact
only a limited number of cores can actually submit memory requests over
PCIe due to the protocol limitation (i.e., up to 768 pending PCIe requests
over PCIe). Most of the cores are simply stalled, waiting for their turns to
submit memory requests.

On the other hand, when we enable the MPS and limit the GPU resource
usage for the zero-copy kernel to 10%, it does not block the following train-
ing kernels anymore. Furthermore, even though the zero-copy kernel can now
use only up to 10% of the GPU resource, there is no significant bandwidth
drop. In Figure 3.12, we show the zero-copy PCIe bandwidth change over
allocating different amount of GPU resource to the zero-copy kernel. With
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Figure 3.12: MPS resource partitioning ratio sensitivity analysis.

2.5–10% of resource allocations, the zero-copy kernel cannot generate enough
PCIe read requests and therefore the measured PCIe bandwidth is limited
to 9.5–20.2 GB/s. Further increasing the GPU resource allocation can make
the zero-copy bandwidth reach around 23.0 GB/s, but we do not observe any
significant improvement after 15% of allocation. At this point, the amount of
GPU resource allocated is excessive and we have already reached the maxi-
mum number of PCIe read requests that we can generate. The results roughly
fall into the estimation we made in Section 3.3.2. If the other users want to
apply the same optimization technique on different types of GPUs, the same
methodology we used to make the estimation could be useful.

For the training time, 2.5–5% of resource allocation is not enough to over-
lap (hide) the zero-copy kernel time with other processes and therefore the
minibatch time is longer than the optimal case. We achieve the best mini-
batch training time when the resource allocation is 10%. With more resource
allocation on the zero-copy kernel, the computation kernels start to starve
from lack of GPU resource. If one wants to apply the same technique for
different types of workloads, it might be worthwhile to fine-tune the ratio.
However, still, one must be aware of the PCIe bandwidth limit. For the
rest of our evaluations, we simply use an allocation ratio of 10:90 since the
minibatch time is quite stable with small variations in the allocation ratio.

Additionally, we test how the usage of vector datatypes can further reduce
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a larger vector datatype, we can use fewer GPU cores to saturate the PCIe
bandwidth.

the amount of GPU resources used by the zero-copy kernel. Figure 3.13 shows
the GPU resource requirement to saturate the PCIe bandwidth while using
different datatypes for the zero-copy access. CUDA supports custom int2

and int4 vector datatypes, which are 8 B and 16 B, respectively. By using the
int4 datatype, we can theoretically reduce the number of threads required
to saturate the PCIe bandwidth to 1/4 compared to the int datatype. For
example, Figure 3.13 shows that while we need to use about 20% of GPU
resources to saturate the PCIe 4.0 x16 with the int datatype, it takes only
about 5% with the int4 datatype. If the computation power demand of
the training model is critically high, then additionally applying those vector-
type-based zero-copy access optimization can be considered.
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Figure 3.14: GNN training time comparison. OOM denotes out-of-memory.

3.4.4 Training Performance

Overall Comparison

In Figure 3.14, we show the overall training performance comparison. Through-
out the entire comparison, the CPU-only case shows the worst performance.
By limiting the computation unit to CPU, there is no need to worry about
efficient data transfers over PCIe, but at the same time the computation
power is severely limited. In general, the CPU-only method is 32–43% as
fast as the DMA-based method. This performance difference is an important
motivation for moving the training part into the GPUs.

For the DMA-based method, doubling the number of GPUs does help re-
duce the overall training time, but an additional GPU results in only 21-27%
performance improvement across different datasets. Because the DMA-based
method amplifies the usage of CPU resource and host memory bandwidth,
increasing the number of GPUs throttles the entire training process. At this
point, we observe that the host memory is 100% utilized. The CPU gathering
process is a massive memory copy operation and we often observe that any
other overlapping processes slow down in comparison to the usual cases.

For the naïve zero-copy method, we observe a 2–17% performance degra-
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dation compared to the DMA-based method in a single-GPU setup. This
degradation is consistent with the conventional wisdom that naïve zero-copy
is inferior to DMA-based methods. Without our proposed optimizations, the
zero-copy method suffers from the low bandwidth and the serialization issues
described in Section 3.3.2 and Section 3.3.2. This result also gives us an
idea how the programmers can make a premature conclusion to not further
investigate the usage of zero-copy accesses.

With two GPUs, the naïve zero-copy method shows much better perfor-
mance as well as performance scalability than the DMA-based method. In
a dual-GPU setup, the naïve zero-copy method becomes 30–41% faster than
the DMA-based method. This is because, even without the optimizations,
the zero-copy method by default much more efficiently uses the CPU resource
and host memory bandwidth than the DMA-based method. However, this
benefit is not visible until the number of GPUs increases.

Finally, with our zero-copy optimizations, we can now clearly see the ben-
efit of zero-copy in all cases. In a single-GPU setup, the optimized zero-
copy method is 16–44% faster than the DMA-based method, and in a dual-
GPU setup it is 65–92% faster. More surprisingly, with all optimizations
included, the performance of the zero-copy method matches with the all-in-
GPU method for the wikipedia dataset training. Since the data communi-
cation time is completely hidden by the training process in this case, there
is no disadvantage compared to the all-in-GPU method. Overall, we ob-
serve a very significant benefit of using zero-copy accesses for GNN training.
Thanks to the design flow optimizations we discussed in Section 3.3.3, we do
not observe any performance impact from the interprocess communications.

Node Feature Size Sensitivity Analysis

Even though we use multiple different graphs to evaluate GNN training per-
formance, some of other real-world datasets can have very different node
feature dimensions. For example, the node feature dimension of Pinterest
dataset [66] is about 4096, which is far larger than the node feature di-
mensions in our datasets. However, many of those real-world datasets are
proprietary and difficult to obtain for academic purposes. Therefore, in this
section, we artificially sweep the node feature dimension of ogbn-products
dataset and compare the performances of zero-copy method and DMA-based
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Figure 3.15: Node feature size sensitivity analysis.

method.
In Figure 3.15, we show the node feature size sensitivity analysis results.

In this experiment, we use two GPUs. With small node feature dimensions,
the zero-copy method is only 1.5–1.6× faster than the DMA-based method.
However, when the node feature dimension is 4096, the zero-copy method
is about 2.7× faster than the DMA-based method. This is an expected
behavior as with small node feature dimensions, other overheads in the GNN
training processes take a sizable portion of training time and therefore the
data transfer time is relatively less important. This experiment result stresses
the necessity of using efficient data communication architecture when training
GNN with large node feature dimensions.

3.5 Discussion

Physical GPU Resource Partitioning. Even though the CUDA MPS is
already providing workload partitioning service, it is still a logical partition-
ing rather than a physical partitioning. To guarantee a stable and high zero-
copy PCIe bandwidth, it is better to physically isolate the GPU resources
used by the training kernels from those used by the zero-copy kernels. With
recent introduction of Ampere architecture GPUs, NVIDIA started to sup-
port partitioning of a single GPU into multiple GPU instances [91]. Each
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GPU instance has dedicated GPU memory resources which limit both the
available capacity and bandwidth, and provide memory QoS. Currently it is
impossible to share the same piece of data between different GPU instances,
but such advances in supporting hardware partitioning capability can poten-
tially help isolate the zero-copy kernels with better QoS in the future.

DMA vs. Zero-Copy Trade-Off Point. By increasing the length of
feature dimension, the DMA method may become efficient enough to send
each node feature to GPU without the need for CPU gathering. To un-
derstand this trade-off, we conduct a microbenchmark measuring the setup
time of asynchronous DMA. In this microbenchmark, we send a series of
DMA requests back-to-back. The microbenchmark result shows that the av-
erage DMA setup time is about 3.16 µs in our setup, which is identical to
the time of sending 85.5 kB of data over PCIe 4.0 x16. Therefore, if the size
of individual item is larger than 85.5 kB, using a series of DMA operations
can be an alternative to the zero-copy method. For the GNN training, our
current largest node feature size is 16 kB, as shown in Section 3.4.4, which
is only about 18.7% of the 85.5 kB requirement.

Applications Beyond GNNs. Our work benefits machine learning mod-
els other than GNNs as well, as embedding is a widely adopted technique
to represent entities, especially when the data scale is large. For example,
Facebook’s large-scale recommendation systems model DLRM [92] involves
a sparse embedding lookup process, thus benefiting from our work [93, 94].
Aside from models for large-scale recommendation systems, our work also
benefits some traditional machine learning operators. For instance, the Hum-
mingbird compiler [95] converts many supported machine learning operators
to tensor operations. Tensor operations of tree models after conversion show
the same feature gathering challenge in batch inference. Therefore, such sce-
narios would identically benefit from our work when the input data size is
large.

Comparison with Remote DMA (RDMA). The main performance
benefit of our work comes from eliminating the intermediate data buffering
for the DMA data transfer. A similar technique was previously introduced in
the networking field, where usually the Ethernet packets were first buffered in
the kernel space. The kernel space packet buffering was causing a huge host
memory bandwidth waste, and now many high-speed network interface cards
(NICs) support remote DMA (RDMA) [96, 6], which directly delivers data
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to the userspace without going through the kernel space. This elimination
of the "intermediate data copy" is the same way we improve the application
performance in our work. Yet, one main difference of RDMA compared to
our work is that in our work, the data transfer is initiated by accelerators
while the RDMA is still set up by CPU. Therefore, the RDMA operation still
needs the CPU-device synchronization which may add some more latency in
data transfers.

3.6 Conclusion

In this chapter, we introduced a GPU-oriented, software defined data transfer
architecture for efficient GNN training on large graphs. In large-scale GNN
training, one of the most challenging tasks is to efficiently transfer node fea-
tures scattered in the host memory to GPUs. As opposed to the traditional
DMA-based method, we directly utilize GPU cores as a data moving agent to
access sparse features in the host memory over zero-copy accesses. Our eval-
uations show that together with zero-copy accesses and our optimizations,
the GNN training performance can be improved by 65–92%. Furthermore,
the benefit of our proposed approach is significantly larger for 2-GPU train-
ing than 1-GPU training. By implementing the end-to-end zero-copy based
GNN training flow in PyTorch, we also show that our modifications can be
seamlessly integrated with the existing high-level DNN programming models.
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CHAPTER 4

DATA ACCESS OPTIMIZATION IN
MULTI-LEVEL MEMORY HIERARCHY

4.1 Introduction

A modern system’s memory hierarchy may contain several types of memory-
attached devices such as host, local, and peer devices. Often those memory
devices are connected to each other using different grades of interconnects,
and optimizing data placement among those memory devices can have a
significant impact on application performances [8]. While partitioning dense
datasets over multiple memory devices is straightforward, it is less clear how
to partition sparse datasets over multiple memory devices due to the irregular
memory access pattern. However, with the use of fine-grained memory access
over I/O, this challenge can be mitigated.

This chapter proposes unifying all memory access types with fine-grained
memory access over I/O, such as zero-copy access, to simplify memory access
to different kinds of memory devices. The use of fine-grained memory access
over I/O eliminates the need for runtime sparse dataset transformation for
the data transfers and significantly reduces the programming complexity.
With the reduced programming complexity, programmers can attempt more
advanced data placement strategies for different memory devices to better
utilize high-bandwidth interconnects in the system.

In this chapter, we apply the idea of Data Tiering with the GNN training,
that we have shown in Chapter 3 to demonstrate the effectiveness of the fine-
grained memory access over I/O in multi-level memory hierarchy systems.
Our data tiering technique improves GNN training by providing a statistical
method to effectively predict the access frequency of each node feature in
the input graphs and identify which nodes should be located in the GPU
memory. The less frequently accessed node features can be located in the
peer-GPU’s memory or the CPU memory and we can access them in runtime
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without incurring additional control sequences because now with the fine-
grained memory access over I/O, we do not need the peer-GPUs and CPU
to gather those node features at runtime.

We evaluate our work using public frameworks PyTorch and DGL. The
demonstration of our work on realistic GNN training shows that our approach
eliminates PCIe traffic by 87–95% in various datasets by loading only 10%
of them into GPU memory. With the data transfer time optimization alone
from our data tiering strategy, we find the training speeds of the existing
GNN implementations can be improved by 1.6–2.1×. To demonstrate the
scalability of our work, we also train a dataset with 350 GB of size in a
system with four NVIDIA V100 32 GB GPUs.

4.2 Data Tiering

4.2.1 Scoring Function

By definition, the neighborhood sampling process is random, and it is diffi-
cult to predict exactly which nodes will be sampled during training. Thus,
we must statistically approach the problem of identifying and exploiting lo-
cality. The first metric we can use is the out-degree of each node in the
input graph. With a high out-degree, even if the node is not selected in a
specific run of neighborhood sampling, the cumulative chance of the node
being selected during the entire training process is higher than that of the
less connected nodes. Considering that we perform quite a significant num-
ber of samplings per training epoch for the large graphs, this prediction is
statistically reasonable, as we empirically prove in Section 4.4.2. In the case
of ogbn-papers100M, we sample about 130 million nodes per training epoch.

The second option is a reverse pagerank (R-Pagerank) [97]. In the orig-
inal pagerank, the score of each node is higher if the in-degree is higher and
the out-degree is lower. For the reverse pagerank, it is the opposite. In
Figure 4.1, we depict the difference between the original pagerank and the
reverse pagerank further. For simplicity, we only show a case of node A with
single iteration, but this is done for all nodes until the score values converge
in the real implementation. In the original pagerank, to calculate the score
of the source node, we sum the scores of the nodes which are targeting the
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Figure 4.1: Snapshot of Pagerank vs. Reverse Pagerank. Only a single
iteration of algorithms shown. In case of regular pagerank, the score is
divided by the out-degree, but in case of reverse pagerank, the score is
divided by the in-degree.

source node and divide the summed score by the out-degree of the source
node. With the reverse pagerank, we sum the scores of the nodes targeted
by the source node and divide the summed score by the in-degree of the
source node. The idea behind this mechanism is that if a certain node A has
many outgoing edges, it can potentially get a higher score by summing many
nodes’ scores. Therefore, if another node B targets node A, node B also gets
a higher score by adding the score of node A.

In the context of neighbor sampling, the scoring mechanism of the reverse
pagerank can be understood by referring to Figure 4.2. The green nodes are
sampled while generating the embedding for the red node, referred to as node
A, because they have an outgoing edge to A. The blue nodes are sampled
because they have an outgoing edge to the green nodes. Therefore, if a node
can reach many nodes directly or indirectly through its outgoing edges, it will
likely be picked during the sampling process. Since the probability of node A

being picked is high, the other nodes targeting this node also have a higher
likelihood of being picked when we are sampling multiple layers. However, if
the node A also has a high in-degree, because now there are so many nodes
that can be sampled from node A, the other nodes have lower likelihood of
being sampled when the node A is selected. Thus, in this case, we divide the
score of node A by the in-degree before propagating it to the other nodes,
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Figure 4.2: Node feature aggregation and label prediction.

so these nodes receive less increase to their estimated probability of being
picked during sampling.

The potential advantage of using the reverse pagerank over the simple
degree method is to capture further multi-layer sampling patterns. For the
simple degree method, the information we can capture is limited to a single
hop of relationship, while the actual neighbor sampling can extend to multiple
hops. On the other hand, in reverse pagerank, the score value of each node
is propagated to multiple layers of nodes away until the score converges to
a certain limit. Therefore, by using the reverse pagerank, it is possible to
capture the subtle pattern of multi-layer sampling in the neighbor sampling
in a better way. To the best of our knowledge, this is the first work to utilize
the reverse pagerank in GNN training, and the past works [98, 99] did not
seek the opportunity to use a smarter scoring function than the degree-based
method.

The third option is to further incorporate the labeling status of the nodes
into the reverse pagerank method. As we explained in Chapter 3 Sec-
tion 3.2.1, the goal of GNN training is to create a model which can predict
the labels for the unlabeled nodes. To train such models, we must be able to
compare the predicted labels with the ground-truth labels. Therefore, during
training, the nodes we can pick to start the neighbor sampling are reduced to
the nodes that come with labels. This means that if we can create a method
to statistically put further emphasis on those nodes and their surrounding
nodes, we can compress the search space.
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Algorithm 2 Weighted Reverse Pagerank
1: Input: graph g, iteration iter, damp d, train_id tid
2: num_node = num_nodes(g)
3: num_train = length(tid)
4: for i = 0 to num_node− 1 do
5: score[i] = 1/num_node
6: in_degree[i] = num_in_degree(g, i)
7: end for
8: weight = num_node/num_train
9: for i = 0 to num_train− 1 do

10: score[tid[i]] = score[tid[i]] ∗ weight
11: end for
12: for i = 0 to iter − 1 do
13: for j = 0 to num_node− 1 do
14: score[j] = score[j]/in_degree[j]
15: end for
16: pull_from_neighbor(g, score)
17: for j = 0 to num_node− 1 do
18: score[j] = (1− d)/num_node+ d ∗ score[j]
19: end for
20: end for

To do this, we add some tweaks on top of the reverse pagerank algorithm
by uniformly applying a weight value to the labeled nodes. The detailed
implementation of the weighting process is described in Algorithm 2. First,
before we decide how to weight the labeled nodes, we need to decide how
much we want to weight them. The assumption behind the weighting is that
by knowing the exact starting locations of the neighbor sampling, we can
focus more on those nodes and their surroundings. This means that if there
are few starting nodes available in the graph, the sampling tendency will be
more biased toward them and their surrounding nodes. Inversely, if every
node can be selected as a starting node, there is no starting bias and simply
the nodes with high out-degree are likely to be selected during the sampling.
As a result, the weighting intensity should be high if there are few labeled
nodes, and the weighting intensity should be low if there are many labeled
nodes. In our algorithm, we reflect this by defining weight = (# of all nodes)
/ (# of labeled nodes).

Next, the actual weighting is done by multiplying the initial scores of the
labeled nodes with the weight value we calculated (Algorithm 2, Line #10).
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Figure 4.3: Adjacency Matrix Reordering Overview.

In the original pagerank algorithm, the default initial score of all nodes is one
divided by the total number of nodes in the graph. In general, by running
pagerank long enough, the initial impact of the initial scores wears down,
and the scores converge to certain values. To avoid this, we do not run our
weighted reverse pagerank until the scores converge, but only five iterations.
The rest of the algorithm is identical to the reverse pagerank algorithm. We
call this algorithm a weighted reverse pagerank (Weighted R-Pagerank).

4.2.2 Adjacency Matrix Reordering

With the score values, now we want to split the node features into a high
score group and a low score group. The simplest way to achieve this is to
sort the node features in the descending order of the score values and divide
them into top X% of hot portion and bottom 100-X% of cold portion. To
maintain the correctness of the GNN function, reordering the node feature
tensor H in Chapter 3 Section 3.2.1 also requires reordering the adjacency
matrix A.

However, unfortunately, the process of reordering the adjacency matrix is
less intuitive than reordering the node feature tensor because the adjacency
matrix is often represented by a sparse matrix format. Due to its counter-
intuitive nature, the current implementation of adjacency matrix reordering
in existing frameworks like DGL has a simple sequential implementation,
but the sequential approach may consume a significant amount of time when
the input graphs have hundreds of millions of nodes. Therefore, in this
chapter, we implement our own parallel version of algorithm to accelerate
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the reordering process.
To convey a better understanding of our implementation, we first briefly

explain the adjacency matrix reordering problem in general (Figure 4.3). In
compressed sparse representation (CSR), the adjacency matrix is divided into
an edge list and a node list. The edge list is a collection of many neighbor lists
where each contains the IDs of the connected nodes. To reorder an adjacency
matrix, we need to perform the following three tasks: First, we need to create
a new node list containing the neighbor lists’ new starting indices. Second, we
need to reorder the neighbor lists based on the new starting indices. Third,
we need to relabel all node ID values inside all neighbor lists.

The key to parallelizing the workloads is to generate a full mapping of old
to new IDs in advance, so the ID translations in the later processes become
simple table lookup processes. The old to new ID mapping table is created
based on the score values we generated from Section 4.2.1. The indices in
this mapping table indicate the new placing order of the old neighbor lists.
For example, if the table has [4, 1, 3, 2], that means the 1st neighbor list
(blue in Figure 4.3) now should be placed in the 4th place, the 2nd neighbor
list (red in Figure 4.3) now should be placed in 1st place, the 3rd neighbor
list (yellow in Figure 4.3) now should be placed in 3rd place, and so on.
Because the sparse matrix A has varying row sizes, unlike the simple 2-D
matrix H, the new starting index of each neighbor list should be calculated
using cumulative sum.

Once the cumulative sum is done, we simply need to copy & paste the
old neighbor lists into the new edge list based on the new starting indices.
This process can be easily done in parallel. After relocating the neighbor
lists, we now need to update the ID values in each neighbor list. The update
can be done by simply looking up the previously set mapping table, and this
process can also be easily done in parallel. When we define n as a number of
nodes and e as a number edges, the time complexity of this algorithm is either
O(nlogn) due to the score sorting during the mapping table creation, or O(e)

when the number of edges is very large. However, thanks to our parallelizable
approach, we find the end-to-end adjacency matrix reordering takes only
about 31 seconds with ogbn-papers100M dataset (Table 4.1), which has 111
million nodes and 3.2 billion edges.
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Figure 4.4: Simple data placement and access method overview.

4.3 Data Placement and Access

4.3.1 Memory Allocation and Indexing Scheme

The overall data placement and access strategy is shown in Figure 4.4. With
the sorted node feature tensor, the hot data portion with a high score is
placed in the GPU memory, and the rest of the cold data portion with a low
score is placed in the CPU memory. From the user application perspective,
we provide a single monolithic and contiguous fake view of the two tensors
so the user application can use the existing array indexing scheme.

For the cold data access, it is important to maintain a low end-to-end
data transfer overhead since crossing over PCIe is already a huge burden.
One of the most common mistakes made by programmers during CPU-GPU
data communications is that the programs often spend too much time coor-
dinating the data transfer. Using cross-device data copy engines like DMA
is widespread, but it is only effective when the size of data that we want to
transfer is large enough. In the case of node feature sampling and aggrega-
tion, the data transfer size is typically between 512 B and 4 kB, much smaller
than the size required to make DMA transfers efficient.

Therefore, in this chapter, we take a GPU-centric approach to accessing
data instead of depending on DMA or CPU. At the hardware level, the GPU-
centric method is enabled by using the zero-copy access capability of NVIDIA
GPUs. The zero-copy accessible CPU memory space is mapped into the GPU
page table, and it allows us to directly access the CPU memory space from
the GPU kernel code. At the user (application) level, we utilize the DGL’s
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UnifiedTensor [100] implementation to enable this data access mechanism.
With our data placement and access strategy, the overall flow of node

feature access in GNN training is as follows. First, the neighbor sampling
function traverses the input graph and generates a list of sampled node IDs.
Next, the node IDs are sent to GPU(s), and GPU threads start accessing
the node features with the node IDs. While reading the node IDs, the GPU
threads check if the ID values are within the hot data boundary set by the
users. If the ID values are within the boundary, then the threads use a pre-
stored GPU memory pointer and take advantage of fast local memory access.
If the node ID is outside the boundary, then the threads use a pre-stored CPU
memory pointer and perform the zero-copy access.

One major benefit of our approach is that we do not inflict any changes
in the original programming structure. Our implementation of the fake ten-
sor can provide the same experience to the users as if they are accessing a
single large tensor as they did previously. The hardware-level details can be
hidden behind the framework and the user-level understanding requirement
is minimal. Unlike the other large GNN training solutions such as Roc [101]
and NeuGraph [102] which mandate a new holistic pipeline restructuring for
the data transfer optimization, only changing about 2-3 lines of code would
be sufficient for our approach.

4.3.2 Tensor Distribution over Multiple GPUs

GNN training also extensively utilizes multiple GPUs to accelerate the train-
ing process, similar to the other neural network training methods. With
fast GPU-to-GPU interconnects like NVLink, we can create a larger pool
of collective GPU memory space (Figure 4.5) from multi-GPU systems. In
Figure 4.6, we show the complete view of our data tiering strategy in a
multi-GPU system. To load the hot data into this collective memory space,
we use an interleaved data loading method instead of a naïve blocked par-
tition method. Since the node feature tensor is sorted in descending order
of the score, a simple block partitioning scheme can result in unbalanced
memory and interconnect bandwidth consumption across GPUs. With the
combined GPU memory space, we can hold a larger portion of hot data in a
faster tier of memory space.
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From the implementation perspective, the combined tensor is basically a
table which contains multiple pointers pointing to different memory locations
in different devices (e.g., CPU and peer GPUs). Depending on the index
value from the user space, we pick the corresponding pointer and let the
GPU kernel access the node feature. The brief mechanism of this process
is explained in Listing 4.1. The real CUDA kernel implementation of the
indexing function is more complicated than the code provided here for several
optimization purposes.

#define WARP_SIZE 32
void index_feature(int row_id , int **table , int *threshold ,

int feat_len , int gpu_num , int *output_feat) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int *row_ptr;
local_boundary = threshold [0];
multi_boundary = threshold [1];

// Data is in local GPU tensor
if (row_ids[i] < local_boundary)

row_ptr = table [0] + feat_len * row_ids[i];
// Data is in multi -GPU tensor
else if (row_ids[i] < multi_boundary) {

int offset = row_ids[i] - local_boundary;
row_ptr = table[offset % gpu_num + 1] + feat_len * offset
/ gpu_num;

}
// Data is in CPU tensor
else {

int offset = row_ids[i] - multi_boundary;
row_ptr = table[gpu_num + 1] + feat_len * offset;

}

for (int i = tid; i < feat_len; i+= WARP_SIZE)
output_feat[i] = row_ptr[i];

}

Listing 4.1: Indexing the Combined Tensor

For the GPU memory sharing, we use the following APIs: cudaMalloc(),
cudaIpcGetMemhandle(), and cudaIpcOpenMemhandle(). cudaMalloc()

allocates a memory space in GPU, and cudaIpcGetMemhandle() creates a
memory handle that can be shared with other processes to create a virtual
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mapping of the originally allocated GPU space. In short, this memory han-
dle can be understood as a medium to share the virtual mapping between
two different processes. In action, cudaIpcOpenMemhandle() takes the mem-
ory handle created by cudaIpcGetMemhandle() and maps the other GPU’s
memory space into the GPU device that belongs to the current process. The
overview of this process is shown in Figure 4.7.

GPU0

Process 0

Data
� Allocate memory 

    with cudaMalloc()

GPU1

Process 1

handle
� Create memory handle 

    with cudaIpcGetMemHandle()

� Pass this memory handle 

    through CPU shared memory

*ptr
� Use cudaIpcOpenMemHandle()

    to create the mapping of the 

    space in GPU0

Figure 4.7: Peer-to-peer GPU memory sharing mechanism in
multiprocessing setup.

In our experience, the NVLink bandwidth is fast enough to hide most of the
data transfer time of GNN training, but in case the data transfer time is still
an issue, we can additionally replicate some hot data over multiple GPUs.
In this case, the most frequently accessed data will come from the local
GPU memory, the next most frequently accessed data from the peer GPU
memory, and the least frequently accessed data from the CPU memory. The
generation of the combined tensors is fully automated in our implementation.
To generate this combined tensor, users simply need to provide the sizes of
local GPU tensor and multi-GPU tensor, and the number of GPUs connected
over NVLink. If there are no high-speed links between GPUs, the mapping
simply falls back to Figure 4.4. The optimal distribution factor of each
GPU’s memory capacity between the replicated hot data and the interleaved
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hot data in the collective memory space may vary depending on the dataset.
For our experiments, we simply maximize the multi-GPU tensor and do not
utilize the replicated local GPU tensor.

4.4 Evaluation

4.4.1 Methodology

Application & Dataset

For the evaluation, we implement data tiering on PyTorch and DGL. Since
neither of the frameworks supports kernel-level direct peer GPU memory ac-
cess, we modify their tensor implementations to enable it. Currently, the
frameworks can only perform peer-to-peer DMAs. We use GraphSAGE im-
plementation of DGL to explore various neighbor sampling strategies. For the
dataset, we use the following three from Open Graph Benchmark (OGB) [89]:
ogbn-papers100M, MAG240M, and WikiKG90M. WikiKG90M is from a dif-
ferent task domain and does not come with the labels needed for node clas-
sification, but due to the lack of public large datasets we repurpose it as
a node classification task dataset with synthetic label values. Further de-
tails of the datasets are shown in Table 4.1. To make our experiment re-
alistic, we use the carefully tuned hyperparameters for different datasets
which are taken from previous GNN training works with high-accuracy mod-
els [103, 104, 105]. Based on the previous works, we use (12, 12, 12) as
neighbor sampling fanout parameter for ogbn-papers100M and (25, 15) for
MAG240M. For WikiKG90M, we use the identical parameters used in ogbn-
papers100M training.

Hardware

Throughout the evaluation, we use a machine with two Intel Xeon Gold 6230
CPUs and four NVIDIA V100 32 GB GPUs (Figure 4.5). All NVIDIA V100
GPUs are connected over NVLink with 50 GB/s unidirectional bandwidth
per connection. Because each GPU is connected to three other peer GPUs,
the aggregated NVLink bandwidth is 3×50 GB/s = 150 GB/s for each GPU.
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Table 4.1: Evaluation datasets.

Name #Nodes #Edges
Node Feature

Total Size

ogbn-papers100M 111.1M 3.2B 53 GB
MAG240M 244.2M 3.5B 350 GB
WikiKG90M 87.1M 1.0B 125 GB

4.4.2 Scoring Function vs. Measured Data Reuse

In this experiment, we try to determine if the scoring functions discussed in
Section 4.2.1 can correctly predict the data reusability in real GNN training.
In Figure 4.8, we list the nodes of graphs in the X-axis in descending order of
scores with the three different scoring functions: node degree, reverse pager-
ank, and weighted reverse pagerank. In the Y-axis, we show the measured
access frequency of each node during GNN training in a cumulative fashion.
In general, we find all functions can provide some benefits when we perform
data tiering in GNN training. For example, based on the scores calculated,
when we keep the top 10% of nodes, we can expect at least 35% hit ratio
during the training regardless of the dataset. By keeping the top 25% of
nodes, the minimum hit ratio further increases to 56%.

Also, in general, we find it becomes easier to predict which nodes would
have high data access counts if a graph has a more extreme power-law dis-
tribution. For example, WikiKG90M graph has extremely unbalanced edge
connectivity, and 80% of edges in the entire graph are connected to only 1%
of nodes. With such extremely concentrated connections, we can observe
that simply choosing a few nodes with the highest degrees automatically
guarantees a very high hit ratio during the neighbor sampling. In cases of
ogbn-papers100M and MAG240M, the edge connectivities of the datasets are
more balanced, and the ratios are 32% and 46%, respectively. However, even
though the simple degree method can be effective for certain graphs, we find
the weighted reverse pagerank is preferable in general because it consistently
gives the best prediction result as it best represents the multiple layers of
neighboring node embedding accesses in the sampling process.
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Figure 4.8: Access frequency distribution comparison on different datasets
with different scoring functions. It is easy to cluster frequently accessed
nodes with Weighted R-Pagerank function.
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Figure 4.9: Single epoch training time comparison.

4.4.3 GNN Training Time (Single GPU)

In this section, we evaluate the actual benefit of our work in GNN training.
We compare the performance of our work against the following two existing
methods: (1) CPU gathering and (2) zero-copy access. The CPU gathering
method relies on CPU to gather node features and then utilize GPU DMA
engine to copy the gathered node features into GPU memory. Due to the
additional data gathering process, this method wastes the CPU memory
bandwidth and adds a non-negligible amount of data transfer latency to
GPU. This is the only way currently available in PyTorch to transfer scattered
data from CPU memory to GPU memory.

The zero-copy access method is a method recently introduced in Chapter 2
and adopted into DGL to overcome the data gathering overhead in the CPU
gathering method. With this method, GPU kernels can directly dereference
CPU memory pointers, and thus we do not need to rely on CPU to gather
data for the GPUs. Recall that to enable the zero-copy access capability,
DGL implements a new class of tensor called UnifiedTensor, which trans-
forms the CPU tensor of PyTorch into a zero-copy accessible tensor. In Uni-
fiedTensor, the specific task is done by utilizing cudaHostRegister() API
from CUDA on top of existing CPU memory allocation. The further technical
detail is identical to the process explained in Chapter 3, Section 3.3.1.
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In our approach, we first score the nodes with the weighted reverse pager-
ank function like in Figure 4.8, and then reorder the node feature tensor and
the graph nodes in the datasets. For this experiment, we load 10% of hot
data for ogbn-papers100M and WikiKG90M, but only 5% for MAG240M due
to the GPU memory limitation.

In Figure 4.9, we show the overall comparison. From this comparison,
we can first observe that relying on CPU to gather data results in seriously
increasing the overall training time. In this case, we find that the GPU is
only about 10–30% utilized and mostly idling. By adopting the zero-copy
access method, the training performance is significantly improved (2.5–4.6×).
The zero-copy only method does not leverage any temporal data locality
strategies, but simply removing CPU from the data access path significantly
increases the overall performance. Finally, with our method, the training
performance is further improved by 1.6–2.1× over the zero-copy only method.
Considering that we have run the entire experiment on top of PyTorch and
DGL with Python, the benefits that we observe are immediately deliverable
to the regular users as well.

4.4.4 Case Study: ogbn-papers100M

Now, we take ogbn-papers100M as an example for more detailed analysis.
First, even though we know that most existing GNN works use two to three
layers of sampling depths, we still want to know how much increasing the
sampling depth can affect the data tiering efficiency. To understand the im-
pact, we use different sampling depths during the GNN training and observe
how the node access frequency distribution varies. In Figure 4.10, we show
two access frequency charts similar to Figure 4.8, but now with the varying
sampling parameters of (10, 10), (10, 10, 10), (10, 10, 10, 10), and (10, 10, 10,
10, 10). For the scoring functions, we use the weighted reverse pagerank and
the degree count. For both cases, we observe that the accesses are now more
spread out with the deeper sampling parameters. This is expected behavior
because with a deeper sampling depth, the graph coverage of each minibatch
becomes larger, and we start to access secluded nodes more frequently.

However, even with the spreading out of the deeper sampling cases, we
can still identify a significant portion of accesses that are made to a few
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Figure 4.10: Access frequency distribution comparison of using different
neighbor sampling depths in ogbn-papers100M.

selected nodes. For example, with the (10,10,10,10,10) sampling parameter,
the top 10% of the highest score nodes of the weighted reverse pagerank and
the degree count functions account for 52% and 28% of the entire accesses,
respectively. This experiment result shows that the benefit of data tiering is
not immediately nullified with a growing sampling layer depth. The result
opens the way for future GNN models that may attempt to sample deeper.

For the second analysis, we would like to more closely: (1) verify the
hardware-level benefit of data tiering and (2) observe the impact of con-
trolling the portion of data loaded to GPU. To achieve these, we sweep the
portion of data loaded in GPU during GNN training and measure the volume
of PCIe traffic and the training time (Figure 4.11). For this experiment, we
perform data tiering with the weighted reverse pagerank function on ogbn-
papers100M. To measure the PCIe traffic, we use the NVIDIA profiling tool
nvprof. As we can see, our data placement and access strategy effectively
reduce the PCIe traffic with more hot data loaded into the GPU memory.
When we compare the cases with no data loading and 25% of data loading,
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we can achieve about 97% of PCIe traffic reduction. At this point, most of
the node feature accesses are resolved within GPU, and only very few data
accesses need to be directed to the CPU memory over slow PCIe.

The performance gains in GNN training show a similar trend to the PCIe
traffic reduction. With the 5% of data loaded, we can already reduce the
training time by 33%, and with the 25% of data loaded, we can further reduce
the training time by 42%. In general, the GPU memory consumed by the
training process itself is proportional to the minibatch size, and the minibatch
size is exponentially proportional to the sampling depth [106]. Therefore,
hypothetically, if the sampling depth is very deep, the GPU memory available
for hot data can be stolen by the training process memory requirement.
However, because the default memory space complexity of GNN training
is relatively low, the rapidly growing minibatch size is unlikely to have a
realistic impact. For example, in the case of ogbn-papers100M training with
3-layer sampling, we consume only about 400 MB of GPU memory, and
the rest of the space is left unused. Additionally, considering the trend of
increasing the capacity of GPU memory (e.g., NVIDIA A100 80 GB) and
the distributed Multi-GPU tensor solution we discussed in Section 4.3.2, we
believe the actual impact is negligible.

4.4.5 Multi-GPU Training

In this section, we show the performance benefit of the multi-GPU imple-
mentation of our work described in Section 4.3.2. In this experiment, we use
four V100 32 GB, and therefore we can have a total of 128 GB of collective
GPU memory space. For the training dataset, we use MAG240M which has
350 GB of node feature tensor. For data placement, we divide the node fea-
ture tensor into two tensors, a multi-GPU tensor and a CPU tensor. We do
not allocate any space for the replicated GPU tensor.

In Figure 4.12, we show the training time evaluation of MAG240M with
increasing sizes of hot data loaded in the multi-GPU tensor. Before we go
into further detail of the GPU sampling results, we first focus on the CPU
sampling results. Similar to the results from Figure 4.11, we observe a sharp
drop of training time with 5% of node features loaded into GPU memory.
Beyond that, we observe only marginal performance improvements. The
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ogbn-papers100M dataset used.

overall performance improvements in multi-GPU training are underwhelming
because the single GPU training of MAG240M in Figure 4.9 can reach 23.5
seconds already. This means, with four GPUs, we can reduce only about 3
seconds of training time further.

After performing several profilings, we find that in the multi-GPU training,
the neighbor sampling process itself starts to throttle the whole training pro-
cess and gives us poor scalability. As we described in Chapter 3 Section 3.2.2,
the sampling step traverses the graph structure and generates the node IDs
for a minibatch in preparation for the node feature aggregation step. We
have been using the CPU for the neighbor sampling since the graph struc-
ture is stored in the CPU memory. In a single GPU training, the CPU could
sample neighbors fast enough and provide their IDs to GPU in a reasonable
amount of time. However, now in a multiple-GPU training, the number of
minibatches that we need to generate is multiplied by the number of GPUs,
which starts to affect the overall training time. Just to clarify, the imple-
mentation of the CPU sampling process is already done in a parallel fashion.
In short, the amount of parallelism available from the CPU is not enough
to quickly traverse the graph structure and sample neighbors for multiple
GPUs.
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This problem can be overcome with the GPU-based sampling method,
but only with our multi-GPU data placement strategy. This is because to
perform the GPU-based sampling, we now need to consider how to let GPUs
access the graph structure as well. Of course, the simplest way of achieving
this is to load the entire graph structure to each GPUs’ memory, but the size
of the graph structure of MAG240M alone is 30 GB, and it is too wasteful
to load it into every GPU. To resolve this issue, we expand the idea of a
multi-GPU node feature data placement strategy to the graph structure as
well and distribute the graph structure over multiple GPUs. The benefit of
the combination of our data placement strategy and the GPU sampling is
shown in Figure 4.12. When we compare the memory footprints of the CPU
sampling method and the GPU sampling method, we find that in general
the GPU sampling chart has been shifted to the right because now the graph
structure is consuming some GPU memory space. However, in terms of
overall performance, the GPU sampling method removes the CPU sampling
bottleneck and notably increases the training speed in the multi-GPU setup.
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4.5 Conclusion

In this chapter, we presented a data tiering technique for GNN training. In
general, we found the training time of GNN can be easily improved with
well-defined data placement and rearrangement optimizations. Our data
tiering strategy is a novel solution that does not affect the algorithm of GNN
at all but still maximizes the benefit of the multi-tier memory subsystem
of modern hardware. We empirically showed that our work can effectively
reduce the data transfer time over the slow interconnect and improve the
overall training time. We further demonstrated that our approach improves
the scalability of multi-GPU training by eliminating the CPU bottleneck
in both the sparse data access operation and the neighborhood sampling
operation. We demonstrated our work by using existing libraries such as
PyTorch and DGL, and showed that the end-users can immediately adopt
our data tiering implementation in their programs.
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CHAPTER 5

CONCLUSION

The increasing use of large sparse datasets with challenging memory access
behaviors limits accelerators’ effectiveness from multiple directions. Such
memory access behaviors are often deeply associated with the application
characteristics, and it is challenging to tackle the problem with software-
only approaches. In this dissertation, we started solving the problem at the
I/O-level and proposed using fine-grained memory access over I/O.

Chapter 2 takes graph analytics, such as breadth-first-search and PageR-
ank, as examples and analyzes the impact of using the fine-grained memory
access over I/O. The I/O-level analysis using FPGA shows that overcoming
the limited number of outstanding requests over I/O is the key to achiev-
ing high effective bandwidth. This chapter demonstrates two optimization
techniques, opportunistic packet merging and address alignment, in GPU
implementation to overcome such limitations. We also show that the use
of fine-grained memory access over I/O has a massive advantage over the
previous algorithm-only solutions, which still incur the penalty of frequent
CPU-GPU synchronization for small data accesses.

Chapter 3 discusses how the new data access method can be integrated
into the existing machine learning frameworks such as PyTorch. The ex-
isting frameworks solely focus on using the traditional block data transfer
method, and the modification is exceptionally rigid. In our work, we propose
a new data class called Unified Tensor to accommodate newer data access
methods and provide a flexible interface to both the users and the frame-
work developers. The use of Unified Tensor simplifies the adoption of the
fine-grained memory access over I/O at the framework level and requires
minimum algorithm changes at the user program level.

Finally, in Chapter 4, we show other data transfer optimization techniques
in multi-level memory hierarchy systems using the fine-grained memory ac-
cess over I/O. The multi-level memory hierarchy system provides different
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tiers of memory devices, and it is difficult to efficiently access sparse datasets
spread over different memory devices due to the irregular memory access
pattern. In our implementation, by allowing the finer grain of memory ac-
cess to different tiers of memory directly, we can avoid the memory access
complexity existing in the previous work and significantly increase the data
access efficiency.
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