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ABSTRACT 
 

In the face of today’s large-scale agricultural issues, the need for robust methods of agricultural 

forecasting has never been clearer. Yet, the accuracy and precision of recent forecasts remains limited by 

current tools and methods. Past studies have proposed and tested soil moisture data assimilation as a method 

to merge soil moisture observations with process-based crop models, thereby accounting for spatial 

heterogeneity in soil water dynamics and improving crop model estimates. Building on these previous 

studies, the following work systematically and comprehensively explored the potential for soil moisture 

data assimilation to serve as a powerful and generalizable tool for improving agricultural predictions in the 

U.S. Midwest. First, a scalable, flexible, and robust data-assimilation system was developed. The system 

(1) utilizes ensemble-based filtering approaches to constrain model states and update model parameters at 

observed time steps, (2) propagates uncertainties, and (3) incorporates an algorithm that improves system 

performance through the joint estimation of system error matrices. After assimilating in situ soil moisture 

observations into the APSIM crop model for an experimental site in central Illinois over two growing 

seasons, the system demonstrated strong constraint of soil moisture forecasts, improving soil moisture 

estimates in the two assimilation layers by 42% and 48%. Such constraint propagated into improved 

accuracy in estimates of lower layer soil moisture, annual tile flow, and annual nitrate loads, but did not 

have strong impacts on aboveground measures of crop productivity due to a lack of water stress at the site. 

To further evaluate the developed system, the constraint of in situ soil moisture data assimilation 

was evaluated for 5 experimental sites across the U.S. Midwest using observations spanning 19 site-years. 

The system’s impact on estimates of soil moisture, yield, NDVI, tile drainage, and nitrate leaching was 

assessed across all simulated growing seasons. For all site-years, the accuracy of soil moisture forecasts in 

the assimilation layers was improved. These changes also led to improved simulation of soil moisture in 

deeper parts of the soil profile in most cases. Although crop yield was improved for most site-years, the 

greatest improvement in yield accuracy was demonstrated in site-years with higher water stress, where 

assimilation served to increase available soil water for crop uptake. Alternatively, estimates of annual tile 

drainage and nitrate leaching were not well constrained across the study sites. Trends in drainage constraint 

suggest the importance of evapotranspiration observations as a next point for constraint. 

Finally, to test the full generalizability of the developed system, the application of remote sensing 

surface soil moisture observations was investigated. Four different data products were assimilated within 

the developed data-assimilation system for the same 5 study sites. The assimilation of surface soil 

moisture showed weaker constraint of downstream model state variables when compared to the 

assimilation of root-zone soil moisture values from the previous analysis. The median reduction in soil 

moisture RMSE for observed soil layers was lower, on average, by a factor of 4. However, crop yield 
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estimates were still improved overall with a median RMSE reduction of 17.2%, and there is strong 

evidence that yield improvement was higher when under water-stressed conditions. Comparisons of 

system performance across different combinations of remote sensing data products indicated the 

importance of high temporal resolution and accurate observation uncertainty estimates when assimilating 

surface soil moisture observations. This study highlighted many opportunities and challenges of soil 

moisture data assimilation as an agricultural forecasting tool and laid a strong foundation for future 

innovation and application of the approach.  
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CHAPTER 1  

INTRODUCTION 

The global community faces an array of complex, large-scale agricultural challenges. Population 

growth and climate change threaten to disrupt crop productivity and broaden yield gaps (Pradhan et al., 

2015). Monoculture cropping systems, chemical inputs, and other traditional agricultural practices support 

rural livelihoods but degrade soil health, water quality, biodiversity, and natural habitats (Brummer et al., 

1998; Christianson et al., 2018; Reading et al., 2019; Silva and Giller, 2021). To anticipate, measure, and 

manage these issues, there is great need for reliable, comprehensive agricultural forecasts. Such predictions 

could help to inform policy, reduce waste, and drive innovation, and there has been great effort to push 

forward new tools and compile expansive, comprehensive databases to support progress in the field (e.g., 

Marj and Meijerink, 2011; Abendroth et al., 2017; Dietze et al., 2017; Chighladze et al., 2021). However, 

despite huge strides in both data availability and method development, current methods in agricultural 

forecasting remain relatively poor and inefficient.  

 Today, the most popular approaches in agricultural forecasting leverage process-based crop 

models, crop monitoring data, and/or remote sensing imagery. Individually, each of these tools has its own 

unique advantages but is, nonetheless, limited in prediction accuracy, precision, or both. For example, 

process-based crop models are valuable as they combine state-of-the-art knowledge on agricultural 

processes to more comprehensively monitor and simulate cropping systems than field experiments due to 

greater system complexity (Boote et al., 1996; Jin et al., 2018; Pasley et al., 2021). This exhaustive 

representation of the system can simulate observed and unobserved system state variables and estimate their 

covariance while maintaining system mass balances (Archontoulis et al., 2020). Yet, the application of 

these models remains controversial despite their extensive development and demonstrated value. The 

strongest controversy focuses on the unaccounted uncertainties associated with crop model parameters, 

inputs, and structure (Huang et al., 2019; Dokoohaki et al., 2021). First, in their development, most process-

based crop models are developed on top of deterministic schemes in which the uncertainties associated with 

model parameters and drivers are ignored. Then, later, when models are used, they are frequently 

unconstrained and/or hand-tuned. In the case that constraints are applied, the employed methodology is 

typically unable to utilize all available information (Dietze et al., 2013). Such modeling activities often 

focus on constraining a model to a single site with a single data product, an approach in direct contrast with 

the diverse range of available data products and the dimensionality of the true system (Dietze et al., 2013; 

Fer et al., 2021; Seidel et al., 2018). Subsequent applications of the final calibrated model can be justified 

only within a narrow inference space and are, otherwise, unreliable.  
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Aside from crop models, agricultural forecasts have also been produced by fitting machine learning 

models with field observations. This approach focuses on the prediction of an observed response variable 

using a set of observed features. Depending on the complexity of the applied model, its interpretation can 

lead to a better understanding of agroecosystem processes at the field scale. In addition, new technology 

has broadened the application of this method by enabling the efficient and high-precision monitoring of a 

broader range of agricultural variables in field experiments, including soil moisture, tile drainage, and leaf 

area index. These advancements have increased the range of state variables that can be predicted through 

this method. However, despite recent improvements, the inference space for this method still falls short. 

While measured data from field experiments have been essential to improving our understanding of many 

processes in soil and cropping systems, analyses of field experiment data alone are inherently limited in 

dimensionality. They can only increase the predictive capacity for agricultural variables which can be 

directly measured, and the application of the fitted models is limited in time and space. Therefore, this 

approach fails to capture the complexity of the high-level applied research questions at the core of many 

agricultural issues (“Systems Thinking”, 2020). This method also cannot readily leverage all available 

information, as combining measurements and data products from different instruments and experiments 

and across different temporal and spatial resolutions is rarely straightforward and often impossible with 

typical machine learning approaches (Dietze et al, 2013). Consequently, only a fraction of available 

information can be effectively used. 

Agricultural forecasts can also be generated by combining remote sensing (RS) observations with 

machine learning models. RS data products are particularly valuable compared to in situ observations as 

they are broadly and consistently collected in space and time. This is an advantage as it eliminates between-

site variability introduced by collection methods and can easily and thoroughly account for spatiotemporal 

variability agricultural state variables at broad scales. However, like crop models and in situ observations, 

the application of RS observations for agricultural predictions is limited. First, as discussed with in situ 

observations, RS data products can only be used to characterize a certain subset of agricultural system 

variables and, thus, can only build predictive models that leverage and estimate variables and relationships 

which can be approximated with spectral information. RS observations also introduce two new problems 

when making agricultural predictions (Huang et al., 2019). The first issue centers on the fact that RS data 

products are often, themselves, model estimates and, therefore, their application can impose additional 

biases and uncertainties, which are typically not well known. Next, RS data products provide estimates at 

spatial and temporal resolutions which are far coarser than what is needed to best characterize 

agroecosystems at the field-scale. Consequently, the information contained in RS observations may not be 

representative of the true in-field state variable since their estimation is based on spectral reflectance from 

a much broader region.    
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 It is evident that, individually, current agricultural forecasting methods cannot effectively provide 

the necessary predictions for investigating large-scale agricultural issues. Yet, each tool boasts an important 

advantage for the task. Process-based models simulate higher system complexity, field observations 

accurately and locally represent an array of important state variables, and remote sensing data products 

account for important spatiotemporal variability in agricultural processes. To leverage each of these critical 

benefits, state data assimilation (SDA) has emerged as a viable method to bring these 3 methods together 

(Jin et al., 2018). SDA fuses process-based crop models and observed data together, allowing them to speak 

to and build on one another despite differing temporal and spatial scales (Dietze et al., 2013). As a 

foundation, the model provides a temporally continuous, high-dimensional scaffold in which a variety of 

observations can be smoothly integrated (Dietze et al., 2013; Liu et al., 2021). Then, observations (in situ 

or RS) are merged with model predictions using one of many robust, systematic algorithms, including the 

Ensemble Kalman Filter (EnKF), variational Bayes, and particle filters (Huang et al., 2019). Through this 

process, uncertainty around spatially-heterogenous and dynamic properties in agricultural systems can be 

reduced. This increases precision and accuracy in simulations while decreasing dependence on extensive 

site-level model calibration, a process that has limited the application of process-based models in the past 

(Mishra et al., 2021). The SDA process can also be a tool for investigating and reducing biases in model 

structure and parameters (Launay and Guerif, 2005; Lü et al., 2011; Hu et al., 2017).  

 Numerous studies have explored the potential for SDA to constrain crop model estimates. These 

studies have focused on a variety of state variables, including leaf area index (e.g., Nearing et al., 2012; 

Ines et al., 2013; Ma et al., 2013; Chen et al., 2018; Lu et al., 2021), biomass (e.g., Linker and Ioslovich, 

2017) and evapotranspiration (e.g., Huang et al., 2015), which have been made available through field 

experiments and remote sensing imagery. Additionally, these studies have employed a host of different 

process-based crop models, including WOFOST (e.g. de Wit and van Diepen, 2007), APSIM (e.g., 

Machwitz et al., 2014), and DSSAT (e.g., Ines et al., 2013), and have been executed at a range of spatial 

scales. Dorigo et al. (2008), Jin et al. (2018), and Huang et al. (2019) have all compiled and published 

reviews of the work completed in this field.  

 However, despite the investigation of assimilation applications in crop modeling, there is still an 

evident need for a benchmark systems approach in the field. Many past studies have been able to 

successfully assimilate observations into crop models, but, typically, their approaches have been designed 

to complete one-off objectives. To effectively innovate and utilize SDA for the purpose of agricultural 

forecasting, a scalable, flexible, and robust data-assimilation system will need to be developed. Scalability 

will allow for both small- and large-scale forecasts such that estimates can be generated at meaningful 

resolutions to answer a range of different research questions. Flexibility will ensure that a baseline system 

can be applied consistently and effectively across crop models, assimilation observation types, agronomic 
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management practices, site-level uncertainties, and spatial scales. Lastly, a robust system will ensure 

accurate estimates of state variables, as well as their associated uncertainties through the application of 

state-of-the-art algorithms and comprehensive uncertainty propagation (Keenan et al., 2011; Tandeo et al., 

2020; Dokoohaki et al., 2021). The development of a data-assimilation system with these 3 characteristics 

will best drive progress in agricultural forecasting methods.  

 In addition to benchmark infrastructure, another important gap in current SDA approaches in crop 

modeling concerns the evaluation of system performance. Although many different state variables have 

been directly constrained with SDA, studies typically do not evaluate the impact of assimilation beyond 

estimates of the assimilated state variable and annual crop yield. This makes sense in the case of regional 

studies where observations are difficult to collect at scale (e.g., de Wit and van Diepen, 2007; Dente et al., 

2008; Wu et al., 2021). However, for studies based on field experiments (e.g., Launay and Guerif, 2005; 

Zhao et al., 2013; Jiang et al., 2014), this approach fails to leverage the full dimensionality of process-based 

crop models and the full suite of data-assimilation services, leaving many possible downstream model 

constraints uninspected and, therefore, undiscovered. When observations are available, future assimilation 

studies in agricultural forecasting should be rigorous in evaluating assimilation’s impact on all observed 

model processes. Such an approach will help to highlight biases and new opportunities in the established 

system and methods, pushing further system innovation and application. A few published studies have 

performed more comprehensive evaluations of downstream assimilation impacts, including Thorp et al. 

(2010) who evaluated model estimates of canopy weight and evapotranspiration in a LAI-assimilation study 

and Lu et al. (2021) who evaluated model estimates of canopy cover, evapotranspiration, biomass, and 

yield. Such studies provide a more comprehensive understanding of how the assimilation system is 

functioning.    

 In the following work, a data-assimilation system will be developed, tested, and evaluated to help 

fill these demonstrated gaps in current agricultural forecasting methods. All 3 predictive methods (i.e., 

remote sensing imagery, field experiment observations, process-based crop models) will be explored and 

tested in the system through a multidimensional evaluation process that exhausts available observations on 

the true system. Chapter 2 focuses on the development of a scalable, flexible, and robust data-assimilation 

system which leverages well-established tools and algorithms to optimize system performance. In the 

chapter, the system is developed and evaluated using a range of field experiment observations from a single 

study site. Chapter 3 broadens the application and evaluation of the developed system to a larger number 

of study sites to test the generalizability of the single-site results and identify universal strengths and 

weaknesses of the system. Moving beyond in situ observations, Chapter 4 considers the application of RS 

observations in the developed system and explores how the selection of an RS data product can impact 

system performance. It includes an evaluation of system performance under RS assimilation and discusses 
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the opportunities and challenges in assimilating RS information moving forward. Finally, in Chapter 5, key 

findings of this work, as well as their implications for the future of agricultural forecasting, are summarized 

and discussed. 
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CHAPTER 2  

DEVELOPMENT AND EVALUATION OF AN OPTIMAL SOIL MOISTURE DATA 

ASSIMILATION SYSTEM AND ITS CONSTRAINT OF NITRATE LEACHING FORECASTS 

IN THE APSIM MODEL 

 
INTRODUCTION 

To support efficient and comprehensive innovation in agricultural forecasting, there is great need 

for a scalable, flexible, and robust data-assimilation system. Such a system must be composed of state-of-

the-art tools and methods and be able to accommodate a diverse array of observations, operate at a range 

of spatiotemporal scales, and accurately estimate and propagate system uncertainties. To allow for these 

capabilities, the selection of a data-assimilation approach is of critical importance. In the past, many 

different state data assimilation (SDA) techniques have been applied to improve crop model predictions 

(Huang et al., 2019). However, the ensemble Kalman filter (EnKF; Evensen, 2003) stands out as one of the 

most popular SDA techniques for use with non-linear dynamic crop models due to its ease of 

implementation, computational efficiency, and ability to intuitively propagate uncertainty within model 

forecasts (Dietze, 2017; Mishra et al., 2021). At each observed time step, the filter combines information 

from available observed data and the model forecast distribution through the computation of an analysis 

distribution, which has lower uncertainty than either of the input distributions alone. One limitation of the 

EnKF is that its performance is highly dependent on the accurate estimation of the forecast and observation 

uncertainties in the system, which is a difficult task in practice due to computational limitations, time, and 

data availability (De Lannoy et al., 2007; Zhao et al., 2013; Huang et al., 2019). Several algorithms have 

been developed and tested to systematically and jointly estimate both uncertainty matrices within the EnKF 

system to overcome this issue (Tandeo et al., 2020). Other recent studies have advanced and generalized 

the EnKF by numerically solving the analysis step (in contrast to the original analytical approach) such that 

process error and state variables are estimated as latent variables in a fully Bayesian framework (Raiho et 

al., 2020). This approach adds extra flexibility by relaxing assumptions of the EnKF. All these filter 

improvement methods have been applied successfully with geophysical and ecosystem models (e.g., 

Hoffman et al., 2013; Dokoohaki et al., 2021b). However, they have yet to be employed with crop models.  

Of the many data products that have been assimilated into crop models, soil moisture (in situ or remotely 

______________________ 
This chapter includes work that was previously published in Science of the Total Environment and is reprinted here 
with appropriate permission from the copyright owner: Kivi, M.S., Blakely, B., Masters, M., Bernacchi, C.J., Miguez, 
F.E., Dokoohaki, H., 2022. Development of a data-assimilation system to forecast agricultural systems: A case study 
of constraining soil water and soil nitrogen dynamics in the APSIM model. Science of The Total Environment 820, 
153192. https://doi.org/10.1016/J.SCITOTENV.2022.153192. 
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high sensitivity of agricultural system function to soil moisture levels, as well as the natural heterogeneity 

of soil moisture in space (de Wit and van Dipen, 2007; Monsivais-Huertero et al., 2010; Chakrabati et al., 

2014; Mishra et al., 2021). Initially, studies that assimilated soil moisture into crop models focused on how 

the process impacted estimates of the assimilation state variable itself (i.e., soil moisture), as well as model 

estimates of crop yields (e.g., de Wit and van Diepen, 2007; Chakrabati et al., 2014; Liu et al., 2019). Soil 

moisture assimilation was found to be especially beneficial for estimates of yield in water-stressed or 

irrigated study areas (Chakrabati et al., 2014; Liu et al., 2021; Lu et al., 2021; Mishra et al., 2021).  

Beyond crop yields, the impact of soil moisture assimilation on root-zone soil moisture estimates 

has also been evaluated within crop models (Monsivais-Huertero et al., 2010; Mishra et al., 2021), as well 

as within hydrological (Bolten et al., 2010) and land surface models (Lü et al., 2011; Wu et al., 2016; Liu 

et al., 2017). Lü et al. (2011) and Liu et al. (2017) determined that model estimates of root-zone soil 

moisture were more accurate when soil moisture states were assimilated, but optimal estimates of root-zone 

soil moisture were achieved when the assimilation system estimated soil hydraulic parameters in addition 

to the soil moisture states. Assuming uncertain dynamic model parameters to be constant in time and/or 

space can impose large biases in model state estimates (Hu et al., 2017). For example, soil bulk density or 

hydraulic conductivity are kept constant in crop models, but, in a field condition, these parameters are often 

dynamic due to freeze-thaw cycles or disturbances related to field operations (Quine and Zhang, 2002). To 

allow for variation in parameters in the EnKF, parameters can be included in the model forecast distribution 

and updated in the analysis time step according to their covariance with the assimilated states via the state 

augmentation technique (Evensen, 2009; Liu et al., 2017). Though this method has not yet been applied in 

soil moisture assimilation studies with crop models, its performance in hydrological models shows promise 

(Lü et al., 2011; Liu et al., 2017; Liu et al., 2021).   

Past studies have been successful in using soil moisture assimilation as a method of constraining 

yield, canopy cover, and root-zone soil moisture. However, soil moisture plays a much larger role within 

an agroecosystem, impacting an array of atmospheric, soil, crop, and water processes (Engman, 1991). 

Consequently, the assimilation of soil moisture into a crop model that includes these processes has the 

potential to constrain them, leading to improved forecasts of related agricultural state variables even if they 

are not directly observed. One critical candidate for such constraint is nitrate leaching. Over the past few 

decades, nitrate (NO3) leaching from agricultural soils has become an issue of increasing concern for the 

United States Midwest (Christianson et al., 2018). A shift in the region’s typical agricultural practices to 

monoculture production systems, artificial subsurface tile drainage, excessive N fertilization, as well as an 

overall intensification of regional crop production, has been linked to increased NO3 concentrations in local 

and downstream water sources, which is both an environmental and human health concern (Dinnes et al., 

2002; Bijay-Singh and Craswell, 2021). However, current strategies to quantify agricultural NO3 losses in 
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the U.S. Midwest remain limited by the high costs associated with data collection and the resulting lack of 

direct NO3 leaching observations (Hansen et al., 2006; Liang et al., 2014; Gurevich et al., 2021). Limited 

observed data restricts not only our understanding of temporal and spatial trends but also our ability to 

accurately calibrate process-based models for broader areas (van der Laan et al., 2014; Liang et al., 2017; 

Reading et al., 2019). As a result, models are also insufficient for estimating NO3 leaching at the regional 

scale. Soil moisture SDA has the potential to overcome these weaknesses and improve model estimates of 

NO3 leaching through the constraint of its modeled relationship with soil moisture.  

The following chapter focuses on the development of a robust and generalizable data-assimilation 

system for the purpose of agricultural forecasting and explores the potential of soil moisture SDA as a 

method to systematically improve the accuracy and precision of various agricultural state variables, 

including NO3 leaching, in a process-based crop model. The Agricultural Production Systems Simulator 

(APSIM) is a popular, well-validated, and comprehensive crop model that has been widely trusted to 

simulate agricultural systems in the U.S. Midwest (Keating et al., 2003; Archontoulis et al., 2014; 

Dokoohaki et al., 2018; Archontoulis et al., 2020) and has been used in past studies to estimate site-level 

(Puntel et al., 2016; Ojeda et al., 2018) and regional NO3 leaching (Reading et al., 2019). Within APSIM, 

estimates of NO3 leaching losses directly depend on estimates of tile drainage and soil NO3 concentration 

in the lowest layer of the soil profile. APSIM’s soil nitrogen (N) and soil water cycle are closely linked, 

such that rate factors controlling soil N transformations (i.e., denitrification, mineralization, etc.) are 

estimated as a function of soil moisture. Hence, both tile drainage and soil NO3 concentration depend on 

previous model estimates of soil moisture. Based on this fact, it is hypothesized the successful assimilation 

of soil moisture observations into the APSIM model will constrain and improve estimates of NO3 leaching 

(as well as crop yield, canopy cover, and tile drainage) later in the model process without the need for 

observing the states directly. To the author’s knowledge, this work is the first to assimilate data into the 

APSIM model, the first to apply state-parameter assimilation and uncertainty estimation techniques to a 

crop model, and the first to explore the impact of soil moisture assimilation on crop model forecasts of 

several downstream processes, including NO3 leaching.  

 

This chapter has two main objectives:  

1. To determine the optimal data assimilation scheme for constraining estimates of soil moisture in 

the APSIM model using in situ soil moisture observations.  

2. To evaluate the impact of soil moisture assimilation on the accuracy and precision of downstream 

model estimates including crop yield, leaf area index, tile drainage, and NO3 leaching.  
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MATERIALS AND METHODS 

Study site 

To test and evaluate an optimal data assimilation system, this study focuses on the University of 

Illinois’s Energy Farm in Urbana, IL, USA. Although this research farm has numerous experimental plots  

that are 4 ha. in size, all data used in this study are from the plot located at 40.06 °N, -88.20 °W from 2018 

to 2019 (Fig. 2.1). This plot was selected due to the wealth of data available on soil conditions, yield, 

drainage, and management. It follows agricultural practices typical for maize production in the U.S. 

Midwest (Moore et al., 2021). Both characteristics justify the use of this study site as a reasonable baseline 

for testing an agricultural forecasting system for the U.S. Midwest.  

Since accurately specified management information is crucial to ensure accurate model predictions 

(Archontoulis et al., 2020), all known management details were included as constants across simulations. 

Management information was collected through personal correspondence with Energy Farm personnel  

(Mies, personal communication, 2020). For the 2018 growing season, fertilizer was applied to the plot on 

the day of planting (8 May 2018) in the form of 32% liquid UAN (urea ammonium nitrate) at a rate of 202 

kg/ha. Maize was planted at a rate of 8.4 plants/m2. For the 2019 growing season, soybean was planted on 

17 May at a rate of 34.6 plants/m2, and no fertilizer was applied. Both crops were sown at a depth of 1.5 

in/3.8 cm and in 76.8 cm/30 in. rows. Any residue on the plot at the beginning of each growing season was 

assumed to be from the previous year’s crop, which was maize in both cases. Information on tillage, 

herbicide, nor pesticide practices was not included in simulations at this point of the project.  

 

Figure 2.1.  Aerial 
image of the Energy 
Farm research plots 
outside of Urbana, IL. 
The “Maize Control” 
plot is outlined by the 
red square on the 
zoomed right panel. 

Observed data 

Model drivers 

There are two important model drivers used in this study—climate and soil drivers—which function 

to best recreate growing conditions at the Energy Farm for the years and location under study. To account 

for the uncertainty in these model drivers, 11 weather ensembles and 25 soil ensembles were independently 
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randomized across model ensembles for each simulation series. 10 of the 11 weather ensembles were 

products of the ERA5 dataset produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF). ERA5 is a global gridded reanalysis data product that characterizes weather variables at hourly 

timesteps with associated uncertainties (Hersbach et al., 2020). The derived ensembles included data on 

solar radiation, maximum air temperature, minimum air temperature, precipitation, and wind speed 

aggregated to daily resolution. The remaining weather ensemble was aggregated from observed weather 

data collected on site (“Water,” 2021). Soil drivers for this analysis were derived from the SoilGrids global 

gridded soil database (Hengl et al., 2014) and characterize 30 soil properties, including those which define 

water holding capacity, soil pH, conductivity, albedo, and initial 2018 soil nutrient pools. 25 soil ensembles 

were generated based on the given mean and uncertainties provided in the SoilGrids dataset. The depth of 

each soil profile was reduced to approximately the depth of the drainage tiles at the study site (i.e., roughly 

1.4 m.).     

 

Soil moisture 

Soil moisture observations were collected at the study site for 2018-2019 at 30-minute intervals. 

Measurements were taken at 5 different soil depths (i.e., 10, 20, 50, 75, and 100 cm.) using Hydra Probe II 

soil sensors and measured as the volumetric water fraction at each depth (Moore et al., 2021). Only 

measurements of soil moisture available at the 10 and 20 cm depths were employed for the purposes of 

assimilation. These two state variables will be referred to as SM3 and SM4, respectively, hereafter. 

Observations for the 75 and 100 cm depths were used for evaluation of lower-layer soil moisture estimates. 

Since assimilation occurs at the end of each model day, end-of-day soil moisture was computed as the  

 
Figure 2.2.  Time series of observed soil moisture from the study site for 2018-2019. Vertical black bars mark the 
breadth of a 95% confidence interval around the mean daily estimate with an assumed 10% observation standard 
error. Though some observations were available in the winter months of 2018 and 2019, those values were not 
included in our analysis and, thus, were excluded from this figure. 
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average value between the hours of 22:00 of the current day and 02:00 of the next day for each depth. These 

computed values constituted the state variables within the observed mean vector (Yt) for every day where  

data was available. To account for instrument failures, days with fewer than 5 measurements for this 4-hour 

period were excluded. Data points from the winter months (i.e., January, February, and December) were 

also removed to avoid possible sensor inaccuracies related to freezing soils. Due to a low observation 

sample size, a 10% observation error was assumed around the mean for both soil depths (Fig. 2.2).  

 
Crop yield and leaf area index 

 Data on harvested yield for both growing seasons were measured at the time of harvest at the 

Energy Farm. Maize was harvested on 9 October 2018 with a yield of 13 Mg/ha, and soybean was harvested 

on 9 October 2019 with a yield of 4.15 Mg/ha. Maize and soybean harvests were recorded as dry grain-

only biomass. Measurements of leaf area index (LAI) for the plot were collected using a LAI-2200 optical 

instrument at 3 different locations, approximately weekly. After removing observations without replication 

(i.e., n=1), there were 10 and 14 LAI observations available for the 2018 and 2019 growing seasons, 

respectively (Bernacchi, 2020).   

 

Tile flow and nitrate loads 

For both growing seasons, the Energy Farm collected information on tile flow for the study plot at 

15-minute intervals using an area velocity sensor (pressure transducer, Hach Company, Loveland CO) to 

measure water height and flow speed above the weir within the drainage system. Flow was summed to give 

daily observed tile flow, as well as cumulative tile flow for each growing season. Tile flow data were 

unavailable for the study plot from 18 August 2019 until January 2020 due to sensor malfunction. However, 

based on data collected from nearby plots, the Energy Farm team estimated the missing flow to be small 

relative to the year’s total, so it was assumed there was no drainage at this time.   

Measurements of NO3 concentration in drainage waters were collected using an autosampler 

(American Sigma 900MAX portable sampler) that systematically collected samples at flow proportional 

intervals (i.e., every X number of liters). This value of X was adjusted based on historical measurements of 

drainage for the plot such that approximately 30 grab samples were collected each season. In practice, 29 

and 42 NO3 concentration samples were taken for the 2018 and 2019 growing seasons, respectively. These 

samples were filtered through a 0.45 µm membrane and analyzed by project collaborators at the University 

of Southampton. To calculate NO3 loads for each 15-minute interval, NO3 concentrations were linearly 

interpolated between samples, multiplied by the instantaneous flow rate at each 15-minute time point, 

averaged between the two values at the ends of each interval, and then multiplied by t. Loads were then 

summed to daily resolution for use within this study. 
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Data-assimilation system  

Crop model  

The Agricultural Production Systems Simulator (APSIM Classic Version 7.10) is a robust modular 

modeling framework which allows flexibility in management, cultivar parameterization, and model climate 

drivers (Holzworth et al., 2014). The crop model has been widely trusted as an aid for management decision 

making, production system design, supply chain analysis, and U.S. agricultural policy making, among other 

tasks (Keating et al., 2003). It has been calibrated and applied in numerous studies to simulate agricultural 

settings within the U.S. Corn Belt (e.g., Archontoulis et al., 2020; Pasley et al., 2021). For the APSIM 

simulations in this study, the following available modules were included: Fertiliser, SoilWat, SurfaceOM, 

SoilN, Soybean, and Maize. Apart from those model parameters related to management (Table A.1), 

minimal changes were made to the model’s parameterization. For the source code, a new version of the 

model was compiled to allow for online communication with R statistical software (R Core Team, 2021) 

through RDotNet and the .NET framework. APSIM module documentation and source code is available at 

https://www.apsim.info/.  

For the purposes of this analysis and the larger project, the two APSIM modules controlling soil 

water and soil N were of particular importance. The APSIM SoilWat module operates as a cascading water 

balance model to estimate the movement of water and solutes between and across soil layers, on the soil 

surface (i.e., runoff and evaporation), and out of the system (i.e., drainage). It, therefore, estimates the soil 

moisture content of each soil layer as a balance of water input and output to the soil profile. Soil water can 

move between layers via three different types of flow: saturated flow, unsaturated flow, and above 

saturation flow. The soil water flow type simulated by the module for each layer and each day depends on 

that layer’s soil moisture content and how it relates to the soil moisture at saturation and the drained upper 

limit within that layer. Each flow type has specified model equations and parameters which are used to 

calculate how much water (and relevant solutes, such as NO3 or urea) moves between each layer. Estimates 

of daily drainage of soil water and dissolved NO3 are calculated as the amount of water and solute that flow 

from the lowest layer in the soil profile each day. Complete mixing of the solute within the layer is assumed. 

The SoilN module in APSIM controls N availability to plants, NO3
 concentrations in leachate, and 

N losses via denitrification. More specifically, the module tracks movement of nutrients through the N cycle 

through five processes: mineralization, immobilization, nitrification, denitrification, and urea hydrolysis. 

These five processes move nutrients between four pools of soil organic matter—fresh organic matter, a 

fast- and intermediate-decomposing pool, and an inert pool—and move N in and out of these pools into 

plant-available forms or, as in the case of denitrification, into system N losses. The rate at which these 

processes occur each day depends on rate factors related to daily soil moisture estimates, which are  
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Figure 2.3.  (a) Sample functions 
for determining soil moisture rate 
factors for soil N processes in 
APSIM based on soil moisture 
content. This example was 
generated based on the lower limit 
(SMC = 0.19), drained upper limit 
(SMC = 0.36), and saturated limit 
(SMC = 0.45) of Layer 3 at the 
study site. These limits are shown in 
the figure as blue, dashed vertical 
lines.  (b) Piecewise functions that 
determine the 3 soil water deficit 
factors for maize leaf expansion, 
phenology, and photosynthesis 
based on the total soil supply to crop 
water demand ratio.  

 
 

calculated within the SoilWat module. Figure 2.3a demonstrates specifically how soil moisture affects the 

rate factors associated with each of these processes. Immobilization of mineral N occurs in tandem with 

mineralization, such that there is a balance between the N released during decomposition and microbial 

synthesis and humification. 

The APSIM modules responsible for growing maize and soybean at the study site were the Maize 

and the Plant module, respectively. The former is based on the CERES-Maize model and simulates maize 

growth on an area basis at each daily time step. The Plant module is a more general crop module which has 

been parameterized to simulate the development of several crops, including soybean. In both modules, crop 

phenology and productivity are impacted by weather, soil water, and soil N. Water stress is introduced to 

the crop via three soil water deficit factors (i.e., swdef_pheno, swdef_photo, and swdef_expan), which 

respectively impact phenology, photosynthesis, and leaf expansion. The Plant module also includes a soil 

water deficit factor for N fixation in soybean. These deficit factors are calculated as functions of a water 

availability ratio (i.e., actual to potential soil water supply) and can take on values between 0 and 1, where 

(A) 

(B) 
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a value of 1 indicates no stress. The functions which determine the maize soil water deficit factors are 

shown in Figure 2.3b. Like water stress, N stress impacts photosynthesis, expansion, phenology, and grain 

filling through the computation of N deficit factors in the Maize module. The Plant module only includes 

N deficit factors for photosynthesis, phenology, and grain filling. These factors are calculated the same way 

in the two modules where the computed N concentration ratio for the plant stover is scaled by a different 

constant factor for each process. A scalar of 1, 1.25, 0.8, and 5.75 are used to slow grain N concentration, 

radiation use efficiency, leaf area expansion, and phenological development, respectively. Again, a deficit 

value of 1 indicates no stress, such that crop phenology is least affected by N stress. 

 
Ensemble Kalman filter 

Within this analysis, observed soil moisture data were assimilated into the APSIM model using the 

ensemble Kalman filter (EnKF). The EnKF is an extension of the Kalman filter that has been successfully 

employed to assimilate soil moisture data into crop models (e.g., de Wit and van Diepen, 2007; Chakrabati 

et al., 2014; Liu et al., 2019; Lu et al., 2021; Mishra et al., 2021). It estimates the optimal state of the system 

at time t by combining the two pieces of available information—an ensemble of model forecasts and 

observed data—into an analysis distribution using Bayes’ theorem. 

!(#!|%!)	~	!(%!|#!)	!(#!) 

This EnKF relies on two fundamental assumptions. First, it assumes observations (y) are related to 

the true state of the system (X) such that  

)!	#	*#! + 	, 

,	~	-(0, 0!) 

where H is the observation operator, connecting the model variable space to observation space. Second, the 

system assumes the distribution of forecasted states is Normal with mean vector Xf and covariance matrix 

Pf.  

Founded on these assumptions, the EnKF computes the analysis distribution (i.e., the posterior) at 

each time step using the Kalman Gain (K). The result is the weighted mean of the forecast and observation 

distributions based on their respective precision values. The resulting posterior distribution is Normal with 

mean vector Xa and Pa.  

1! 	= 	!$,!*&(0! 	+ 	*!$,!*&)'( 

#),! 	= 	#$,! 	+ 	1!(%! −*#$,!) 

!),! 	= 	 (4	 −	1!*)!$,! 

In the presented system, the EnKF was used to compute the analysis distribution at the end of each 

day where observations were available. Each model ensemble forecast was updated from the analysis 

distribution based on its respective likelihood within the forecast distribution. Thus, the analysis distribution 
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was used as the initial condition for the model forecast into the next time step and could have potentially 

constrained any model process in the next time step which depended on the assimilation state variables.  

 

Miyoshi algorithm 

Filter divergence is an issue commonly seen in data assimilation systems that rely on the ensemble 

Kalman filter. It occurs when observations are repeatedly rejected by the filter due to poorly estimated 

observation (R) and/or forecast uncertainty (Pf), which can result from low observation sample size, low 

ensemble size, and/or an overly confident model (Huang et al., 2019). The filter places too much weight on 

the forecast distribution, and, thus, neglects the observations when estimating the posterior distribution. 

Consequently, the correct specification of both error covariance matrices is imperative for proper filter 

performance (Park and Xu, 2009). Since the observation sample size for soil moisture at Energy Farm was 

limited at each time step (i.e., n = 2), there was insufficient information to accurately quantify R in this 

study. In addition, due to high computational cost, the potential ensemble size for this analysis was 

relatively small (n = 50), which limited the accurate representation of Pf. To overcome these issues, a 

method presented by Miyoshi et al. (2013) was adapted that systematically and jointly estimates R and Pf 

at each analysis time step to better quantify uncertainties within the filter and avoid filter divergence.  

The Miyoshi algorithm is based on innovation statistics derived as diagnostic checks for 

assimilation performance. At each analysis time step, it adaptively estimates a forecast inflation factor D 

and a diagonal R using known relationships between system innovations, Pf, and R. One important caveat 

of the algorithm rests in the circular nature of its assumptions, such that the estimation of forecast inflation 

depends on an accurate specification of R and vice versa. Therefore, in the presented system, it did not 

function to exactly estimate both values for a given analysis time step. Rather, the algorithm used the 

estimates of all previous time steps to inform each successive analysis, allowing for the system to naturally 

adapt to new information and converge to optimal value ranges over the course of the simulation. Three 

notable changes to the algorithm presented in Miyoshi et al. (2013) were made to better suit the needs of 

this analysis. First, a constraint was applied to estimates of Pf such that variance values never dropped below 

1. This ensured that the algorithm was inflating and never shrinking forecast uncertainty. Second, an 

inflation matrix was estimated rather than an inflation scalar to account for possible scale differences across 

state variables. Only the diagonal terms of the computed inflation matrix were considered so that only 

forecast variance (not covariance) was inflated. Lastly, observation errors were assumed to be independent 

between state variables at each time step, and, therefore, only the diagonal elements of R were estimated.  

The Miyoshi algorithm was appended to the assimilation workflow as an offline estimator at time 

t for Dt+1 and Rt+1. Prior to the start of assimilation, estimates of D and R were initialized as 

∆(	= 	4 
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0( 	= 	Σ 

where I is the identity matrix (only the diagonal values are relevant) and S is a diagonal matrix where the 

standard deviation of each observed variable is assumed to be 10% of the measured mean value at analysis 

time step t = 1. At each analysis time step t, Dt and Rt were used to compute the analysis distribution as 

follows: 

1! 	= 	∆!!$,!*&(0! 	+ 	*∆!!$,!*&)'( 

#),! 	= 	#$,! 	+ 	1!(%! −*#$,!) 

!),! 	= 	 (4	 −	1!*)∆!!$,! 

Upon the completion of the analysis distribution at analysis timestep t, a diagonal R was estimated 

using a relationship demonstrated by Desroziers et al. (2005),  

Ε(8*')8*'$
& ) 	= 	0+,!	 

where do-a and do-f represent the observation-analysis and observation-forecast innovations for the current 

time step, respectively, E denotes the expectation operator. Only the diagonal values were maintained in 

the estimate of R as previously noted.    

Next, the algorithm employed the estimated R to estimate D using an equation first proposed by 

Wang and Bishop (2003),   

∆+,!	= 	
8*'$
& 	8*'$ 		− 	0+,!

*∆!$*&
	 

where do-f represents the observation-forecast innovations for the current time step, and Pf is the forecast 

covariance matrix and D is the inflation factor from the current time step. To preserve the forecast variance 

propagated by the model, a lower bound of 1 was imposed on the estimated values of Dest. Finally, the 

algorithm proposed values of Dt+1 and Rt+1 (i.e., values to be used in the next analysis time step) using a 

temporal smoother that combined the current values with the new estimates in a weighted average, 

0!-( 	= 	 (9)0+,! 	+ 	(1 − 9)0!	 

∆!-(	= 	 (9)∆+,! 	+ 	(1 − 9)∆! 

where r is a user-defined weight given to the new estimate. This analysis used r = 0.05 to smooth noisy 

estimates and ensure that a single estimate of observation error at time t could not heavily influence the 

error estimates informed by all previous time steps.  

 

State-parameter data assimilation 

In addition to state variables, EnKF also allows for constraining model parameters such that they 

can be included in the state vector Xf and, thus, updated at each analysis step based on their covariance with 

the updated state variables (estimated in Pf; Evensen, 2009). This is a powerful function of the EnKF, as it 
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adjusts both the initial conditions of the next model forecast and the underlying model processes generating 

the forecast, while state data assimilation only updates the former. Furthermore, PDA is useful because (1) 

it can adjust parameters that, by nature, are dynamic throughout the growing season, but are treated as 

constants in the model (e.g., bulk density, hydraulic conductivity parameters) and (2) it’s online 

optimization of parameters has lower computational costs compared to classic Bayesian parameter 

optimization methods (e.g., Markov Chain Monte Carlo), which then also employ optimized parameters in 

a fixed manner (e.g., Dokoohaki et al., 2018). However, the extent to which model processes can be 

improved by EnKF is dependent on the parameter and the magnitude of its impact on the assimilated model 

states (Liu et al., 2017). To determine the parameters updated within this analysis, the innovations from a 

preliminary SDA simulation were used to determine which soil water flow type was associated most with 

large prediction error. This approach was taken to maximize the potential for error reduction.   

 

Modeling platform  

The complete modeling framework in this study consists of several diverse and important pieces 

that, together, allow for comprehensive, flexible, and robust analyses using the high-performance 

computers on the campus cluster at the University of Illinois at Urbana-Champaign. At the base of the 

modeling workflow on the cluster, Docker containers generated and executed each of the crop model 

ensemble simulations using the “parallel System for Integrating Impact Models and Sectors” (pSIMS). 

pSIMS is an open-source framework developed to enable large-scale ensemble simulations by integrating 

and translating data inputs at varying spatial scales for use with different site-based models and reformatting 

model output into useful and approachable datatypes (Elliott et al., 2014). The platform generates model 

ensembles for a given pixel location, formats site-specific drivers into model-appropriate inputs, and 

incorporates uncertainty through ensembles of model drivers and parameters as part of the system’s 

“Campaign” feature.  

Though the presented system has the capacity to perform regional model-data fusion exercises 

across broad tiled spaces by leveraging pSIMS, the pSIMS functionalities for this analysis were utilized at 

a single pixel that best represented the study area. Additionally, for the purpose of this study, new features 

within the pSIMS platform were developed to perform ensemble-based simulations and include uncertainty 

in soil, weather, model parameters, and initial conditions for a single site. Given a fixed number of ensemble 

members and a series of priors on cultivar parameters, the uncertainty propagation workflow within the 

pSIMS platform used a Monte Carlo sampling approach to generate random samples of soil, weather, and 

cultivar parameters for each ensemble member. Dokoohaki et al. (2021) described these changes in more 

detail.   
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Figure 2.4.  Flowchart of full data assimilation workflow. The Miyoshi algorithm steps, which are shown in blue, 
are not included in the SDA simulation workflow. Dashed arrows signify that the movement occurs in the next 
iteration (i.e., t + 1). 

 
System set-up 

The features presented above comprise the fundamental pieces of the full data-assimilation system. 

On top of the “Dockerized” pSIMS platform, crop model forecasts were performed using APSIM, which 

operated in series with the ensemble Kalman filter and the Miyoshi filter tuning algorithm, which were built 

into the model using the APSIM’s C# manager functionality and were called at the end of each day’s 

forecast. The full overall workflow is demonstrated in Figure 2.4.   

The data-assimilation system was incrementally developed and tested with four series of 

simulations for the study site. These series will be referred to as schemes hereinafter. Table 2.1 outlines the 

different schemes and the features they include, as well as their naming protocol within this study. All 

schemes were completed with 50 ensembles, and each was performed separately for the 2018 and 2019 

growing seasons. As demonstrated by Lu et al. (2021), this is an adequate ensemble size for achieving 

stability in crop model assimilation studies.  

Within the model ensembles, initial soil N pools and water balance were randomized on 1 January 

2018, and distributions of soil water and nutrients on 31 December 2018 were used to initialize the 

beginning of the 2019 model ensemble for each scheme. Like the simulation study performed by 

Archontoulis et al. (2020), model ensembles were begun on 1 January 2018 to initialize the soil water and  
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nutrient pools in the profile and allow the model to reach an equilibrium prior to planting 4 months later. 

For those plot management details that were unavailable, associated model parameters were randomized 

across the model ensemble to account for uncertainty, where parameter values were drawn randomly from 

informed prior distributions to incorporate the full range of management possibilities within each scheme 

(see Table A.2 for prior distributions). Model parameters that were randomized included initial 2018 soil 

water, cultivar parameters, and initial residue weight for both years. Prior distributions for maize cultivar 

parameters were adopted from those presented by Archontoulis et al. (2020) who used experimental data 

from 56 site-years to calibrate APSIM maize parameters for Iowa, an important agricultural state in the 

U.S. Midwest. For soybean cultivar, a set of APSIM-defined cultivars was selected based on preliminary 

performance in free model simulations and, then, cultivars were randomly assigned within the model 

ensemble. For summarized information on parameter priors and fixed management parameters, see Table 

A.1 and Table A.2.   

 
Ensemble weights 

An ensemble weighting strategy was applied to interpret and evaluate results from each tested 

scheme more accurately. The use of ensemble weights rests on the assumption that ensembles which most 

accurately estimated the assimilation state variables were also more likely to have accurately estimated 

other components of the system. Therefore, to systematically emphasize the best available forecasts, the 

following ensembles weight strategy was applied. 

After the simulations were completed, a weight was assigned to each ensemble at each analysis 

time step by estimating the posterior probability of the ensemble’s forecast as given below: 

!(	#	|	;) , !)	) 

where X is the forecast matrix of the assimilated state variables. This equation estimates a relative weight 

representing the likelihood of producing the model simulations given the posterior (analysis) state of the 

system, which follows a Normal distribution. The weights were normalized for each time step across all 

Table 2.1.  Overview of simulation components and naming conventions 
 
Simulation name Workflow components Variables included in Xf 

Free APSIM None 

SDA APSIM + EnKF Soil moisture (10 and 20 cm) 

Miyoshi APSIM + EnKF + adapted Miyoshi algorithm Soil moisture (10 and 20 cm) 

PDA APSIM + EnKF + adapted Miyoshi algorithm 
Soil moisture (10 and 20 cm), 
SWCON (10 and 20 cm) 
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ensembles (i.e., summed to 1), and later, the average weight of each ensemble was computed for each year. 

The free model ensembles were given equal weights as no posterior distribution was computed.    

 

Evaluation statistics  

The spectral norm (||.||2), which represents the maximum singular value of a matrix, was computed 

to compare differences in forecast precision of assimilated state variables across schemes. The spectral 

norm represents the magnitude of Pf for a given scheme and can be compared to identify how forecast 

precision within each simulation changes with time. The spectral norm of Pf was calculated as 

||!$||. =	<=>?@ABA	C@DEFG>HBE	IJ	!$
/!$ 

where Pf 
H represents the conjugate transpose of Pf. A weighted variance was used to quantify the precision 

of each simulation scheme in estimating all other relevant model variables. This value was calculated for 

annual output values as  

K>L@>FME = 	
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2
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where N is the number of ensembles, wi is the average weight of the ith ensemble, x̅W is the weighted mean 

across ensembles, and xi is the forecasted value of the ith ensemble. For daily output values, variance was 

calculated as 
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where M is the number of simulation days, xi,m is the forecasted value of ensemble i on day m, and x̅W,m is 

the weighted mean on day m across all ensembles. 

Following the same notation, the accuracy of different simulation schemes was compared for 

annual output values using the root mean squared error (RMSE), calculated as 

0=SC	 = 	TR(	O0 	 ∗ 	 ())556)7 	− 	?0).
2
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where yannual is the annual observed value. RMSE was also used for comparing daily output values,  
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where T is the number of simulation days with observed data, yt is the tth observed daily value, and xi,t is 

the forecasted value of ensemble i on day t with observed data.   
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RESULTS 

In this section, the four different data assimilation schemes in this study are compared and the most 

robust scheme for soil moisture estimation in both accuracy and precision is identified. Then, the 

performance of the optimal scheme is evaluated and compared with the free model in estimating daily soil 

moisture, soil N, LAI, annual yield, tile flow, and annual NO3 loads.   

 
Evaluation of different data assimilation schemes 

The APSIM model performed sufficiently well without data assimilation and without intensive site-

specific model calibration. As seen in the free model, the model was able to generally capture trends in LAI 

for both crop types (Fig. A.1) and trends in soil moisture throughout the soil profile (Fig. 2.5). Such 

performance points to the validity of both the underlying model processes and the model drivers. However, 

throughout the simulation period and, especially, during critical growth periods in the growing season (i.e., 

planting, vegetative phase), the free model overpredicted available soil moisture, which impacted 

downstream model estimates of crop water uptake, crop development, and tile flow, among others. 

 

 
Figure 2.5.   Time series of simulated and observed soil moisture estimates for the 2 soil layers where 
assimilation is performed within the soil profile. SM3 refers to 9.1-16.6 cm (observed at 10 cm), and SM4 refers 
to 16.6-28.9 cm (observed at 20 cm). 95% confidence intervals are shown surrounding the mean line for the 
simulated estimates, and vertical bars around the mean observed value demonstrate the 95% confidence interval 
for those data as estimated by the Miyoshi algorithm in PDA. 
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 Compared to the free model, the assimilation of observed data via the EnKF helped to improve 

accuracy and precision of forecasts of soil moisture for the two soil layers (Table 2.2). Figure 2.6a shows a 

smoothed time series of the spectral norms of Pf for each simulation. The forecast uncertainty for all 

simulation series was high at the initiation of 2018 following a wide prior on initial soil water balance but 

then dropped by the spring of 2018. However, the SDA forecast uncertainty (as well as that of the other 

two assimilation schemes) remained low for the duration of the simulation period. The free model, on the 

other hand, experienced large jumps in uncertainty during both growing seasons, which may reflect 

uncertainties in crop parameters and/or model drivers. Since high precision and accuracy are most crucial 

within the growing season for the purpose of agricultural modeling, SDA clearly outperformed the free 

model by constraining soil water dynamics across the full parameter-input space.   

Yet, despite major improvements in forecast accuracy and precision, SDA showed filter 

divergence. An overestimated R and an underestimated Pf provided inaccurate weighting of the observed 

data and the model. As a result, the filter mostly ignored the observed data and overemphasized the forecast 

distribution in the computation of the analysis distribution. By including the Miyoshi algorithm as an offline 

estimator of forecast and observed variances, this type of filter behavior mostly disappeared in Miyoshi 

(Fig. A.2). Assuming divergence to be where the observed mean did not fall within the 95% confidence 

interval of the analysis distribution for at least one state variable, SDA diverged at 63.8% of analysis time 

steps, while Miyoshi diverged at 37.4%. This was a consequence of improved estimates of the two error 

matrices (i.e., R and Pf) when using the Miyoshi algorithm. 

The final data assimilation scheme tested in this study was parameter data assimilation. In 

preliminary analyses of SDA innovations, the module’s prediction error for both soil layers was often found 

to be the greatest on days with high precipitation and where end-of-day soil moisture was higher than or 

near the layer’s drained upper limit. Since these conditions pointed to the use of the saturated flow model 

processes, the SWCON model parameter for both soil layers (10 and 20 cm) was selected for update within 

the EnKF. For each layer (T), the SWCON parameter controls the proportion of soil water (SW) above the 

drained upper limit (DUL) that flows into the next deepest layer for each day by the following equation:   

S>VBL>VE8	WHIO	JLIA	X>)EL	U	 = 	 SYZ[-& 	?	(SY& 	− 	\]X&) 

In PDA, the SWCON model parameter was adjusted for both layers at each analysis time step 

according to the covariance between the parameter and the observed state variables. Though there were 

shifts in estimates of the two SWCON parameters with PDA (Fig. 2.6b), these parameter adjustments did 

not lead to overall improved model performance in soil moisture estimation. PDA and Miyoshi performed 

similarly in terms of model accuracy and precision in estimates of soil moisture for the two assimilation 

layers. Yet, even though performance was not improved further in PDA, the final scheme allowed for more 

flexibility in the model, which served as an added benefit compared to Miyoshi. For this reason, the rest of  
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Figure 2.6.  (a) Time series of the spectral norm of the forecast covariance matrix (i.e., ||Pf||2) for SM3 and SM4 

for all simulations for both years with local regression (LOESS) smoothing applied (a = 0.25). Assimilation 
periods for both simulation years are indicated with the two sets of dashed lines.  (b) Time series of SWCON 
parameter values under PDA optimization, where SWCON3 and SWCON4 correspond to the third and fourth soil 
layer, respectively. Dashed horizontal black lines denote the default model value for these two parameters. 

 

this section focuses on a comparison between the free model and the best-performing and most 

comprehensive data assimilation scheme: PDA.   

 

Soil moisture 

Estimates of soil moisture from the different simulation schemes are shown in Figure 2.5, and Table 

2.2 compares the accuracy and precision of daily soil moisture forecasts. Though the free model was able 

to capture the general trends of soil moisture in the soil profile, data assimilation helped to greatly improve 

soil moisture forecasts for the two layers with data assimilation. PDA was 40.2% and 44.3% more accurate, 

and 41.0% and 54.2% more precise for the two assimilation layers. However, assimilation also improved  
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Figure 2.7.  (a-c) Time series of simulated soil NO3-N in (a) the total soil profile (b) the assimilation layers (i.e., 
Layers 3 and 4), and (c) the lowest soil layer (i.e., Layer 7). 95% credibility intervals are indicated by the shaded 
ribbon surrounding the mean lines for each scheme. 

Table 2.2.  Comparison of soil moisture forecast accuracy and precision metrics 
 

Layer Depth rangea 
cm 

RMSE 
proportion 

Average variance  
1 x 10-4 

Free SDA Miyoshi PDA Free SDA Miyoshi PDA 

SM3 9.1 – 16.6 0.061 0.038 0.034 0.036 6.1 3.5 3.7 3.6 

SM4 16.6 – 28.9 0.064 0.042 0.037 0.035 7.2 3.3 3.9 3.3 

SM6 49.3 – 82.9 0.084 0.073 0.072 0.074 5.8 4.4 5.1 5.0 

SM7 82.9 – 138.3 0.142 0.076 0.074 0.076 6.0 4.1 4.5 3.2 
 

a Layers SM1 (0-4.5 cm), SM2 (4.5-9.1 cm), and SM5 (28.9-49.3 cm) are excluded here as observed data was not 
available for these layers during our study period. 
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estimation of deeper soil layers; SM6 and SM7 estimate accuracy improved by 12.2% and 46.2%, and 

precision improved by 13.8% and 46.7%, respectively. Since the lower layers were not directly adjusted in 

the assimilation workflow, their improvement under assimilation is indicative of the “top-down” benefit 

that near-surface soil moisture assimilation can have for a model with a cascading water balance. 

 

Soil nitrogen  

With improved estimates of soil moisture, estimates of soil N dynamics throughout the soil profile 

were also impacted by data assimilation. On one hand, differences in estimates of total soil profile 

ammonium (NH4) were minor for the duration of the simulation period with an average difference of 0.22 

kg NH4-N/ha and a maximum difference of 2.33 kg NH4-N/ha. However, there were great differences in 

estimates of total soil profile NO3. Overall, the free model estimated lower NO3 levels in the soil profile 

than PDA with an average difference of 3.92 kg NO3-N/ha and a maximum difference of 9.35 kg NO3-N/ha 

over the course of the study period. Large differences in total soil NO3 are noticeable beginning in the 

middle of the 2018 growing season (Fig. 2.7a-b). These differences are suspected to be the consequence of 

differences in soil moisture estimates. At that time, the free model often estimated soil moisture values 

above the drained upper limit for the assimilation layers, while PDA estimated soil moisture values below 

it. As shown in Figure 2.3a, this difference had the potential to alter the process rates within APSIM’s soil 

N cycle, serving to increase the rate at which NO3 was added to these layers (i.e., mineralization, urea 

hydrolysis, and/or nitrification) or decrease the rate at which NO3 was lost (i.e., denitrification). The lower 

soil moisture estimates in the two assimilation layers also may have reduced the amount of soil water 

moving vertically through the soil profile and, thereby, limited the amount of NO3 that leached into the 

lowest soil layer and lost from the system via leaching (Fig. 2.8c). 

 

Leaf area index and annual yield  

Aboveground measures of crop production, including LAI and annual yield, were less affected by 

assimilation, and changes in forecast precision and accuracy were mixed. Table A.3 provides a more 

explicit comparison of accuracy and precision between simulation schemes and years for these variables. 

For maize in 2018, PDA was 10.2% and 0.1% less accurate than the free model when estimating yield and 

LAI. For soybean in 2019, PDA was 0.6% less accurate than the free model in estimating yield, but 14.1% 

more accurate when estimating LAI. Overall, though, the difference in accuracy was relatively minute 

between schemes when estimating aboveground variables. For precision, on the other hand, PDA improved 

estimates of LAI for both crops and yield for maize. On average, variance was reduced by 12.9%, 9.8%, 

and 57.5% for estimates of maize LAI, soybean LAI, and maize yield, respectively. The average variance 

for soybean yield estimates increased by 36.7% with PDA.  
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Tile drainage and NO3 loads  

Following the improved soil moisture predictions with assimilation, similar improvements can be 

seen in estimates of daily and cumulative tile drainage. Although both the free model and PDA consistently 

overestimated daily tile drainage, PDA was more accurate and precise. PDA reduced RMSE by 23.0% and 

variance by 42.7% for daily tile flow estimates across both years. This improvement in PDA at the daily 

time scale led to similar improvements for cumulative annual estimates. On average, PDA reduced the 

RMSE by 43.1% and variance by 34.3% in annual estimates of tile drainage (Fig. 2.8a-b). As the free model 

often overestimated soil moisture in the two assimilation layers, it is suspected that constraining soil 

moisture in PDA decreased the amount of soil water in the assimilation layers and, thus, decreased the  

 

 
 
Figure 2.8.  (a) Time series of simulated and observed cumulative annual tile drainage (mm) for 2018 and 2019 
from the study plot. 95% credibility intervals are indicated by the shaded ribbon surrounding the mean lines for 
each simulation. Black lines demonstrate the observed trends. Due to missing data from the end of 2019 as 
discussed in Sec. 2.2.4, we extrapolate the observed trend with a dashed line for 2019 following information from 
plot managers.  (b) Boxplot summarizing the estimated distribution of total annual NO3 load for each scheme in 
2018 and 2019. Dashed horizontal lines mark the observed values for each growing season, with a load of 8.81 
Kg NO3-N/ha observed in 2018 and 8.65 Kg NO3-N/ha observed in 2019. 
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amount of soil water drained from the system. Constraint of annual tile drainage with PDA was especially 

strong in 2018, where there was great improvement in both accuracy and precision. This constraint was 

weaker in 2019, where there was exceptional improvement in accuracy but only slight improvement in 

precision.  

For estimates of annual NO3 loads, PDA was more accurate and precise than the free model for 

2018. It predicted lower NO3 loads and reduced RMSE by 19.3% and variance by 42.0%. However, PDA 

did not achieve the same constraint for annual NO3 loads in 2019, where PDA’s higher estimates reduced 

RMSE by just 1.82% and increased variance by about 120% compared to the free model (Fig 2.8c). Such 

a large increase in uncertainty in 2019 likely stemmed from the large uncertainty associated with PDA 

estimates of NO3 in the lowest soil layer (Fig. 2.7c). On the other hand, considering daily estimates of NO3 

load over the course of the simulation period, there was only a small 5.8% increase in accuracy and an 

18.2% decrease in precision with PDA.  

 
DISCUSSION 

Most crop modeling studies using data assimilation approaches focus on how SDA improves 

estimates of crop yield or biomass (e.g., de Wit and van Diepen, 2007; Fang et al., 2008; Ines et al., 2013; 

Mishra et al., 2021). However, in this study, crop yield estimates did not tell the full story. There are 4 key 

points to highlight within the results: 

 

1. PDA effectively constrained soil moisture estimates for the two assimilation layers. One of the 

downstream impacts of this constraint was better soil moisture estimates for the two deeper layers (75 

and 100 cm), where there were improvements in both forecast accuracy and precision with PDA (Table 

2.2). In a similar study, Liu et al. (2017) attempted to use soil moisture assimilation to constrain root-

zone soil moisture within the SWAT model by appending lower layers to the state vector at each 

analysis time step. However, due to the weak vertical coupling of SWAT, the improvement in soil 

moisture prediction in their analysis decreased with soil depth. The APSIM SoilWat module, on the 

other hand, operates as a cascading water balance model (Sec. 2.3.1), which exhibits strong downward 

vertical coupling between soil layers and, thus, increases the potential for constraint of those soil layers 

falling below the assimilation layers. Such potential is demonstrated by the strong constraint of soil 

moisture in Layer 7 in the presented results. 

 

2. The presented data assimilation workflow did not dramatically impact maize yield or LAI forecasts 

compared to the free model. However, considering the high levels of precipitation during the 2018 

growing season (Moore et al., 2021) and the nature of the research site, which was managed to not be 
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N-limited, there was little potential for data assimilation to impact aboveground estimates for maize at 

this study site. Assimilation typically lowered model soil moisture estimates, reducing the amount of 

soil water available to the crop, but the adjusted soil moisture value was often still greater than the 

maize crop’s water demand. As a result, water uptake by maize was largely unaffected by the 

assimilation step (Fig. A.3). This result mirrors that of Lu et al. (2021) who found soil moisture 

assimilation to more effectively improve aboveground measures of maize in the presence of water 

stress.  

 

3. Conversely, assimilation did play an impactful role in soybean LAI and yield estimates. In 2019, PDA 

estimated greater root-zone soil NO3 compared to the free model, which is believed to be the result of 

lower estimates of soil moisture in the two assimilation layers leading to changes in N cycle process 

rates. The increased availability of soil NO3 may have more aptly fulfilled the crop’s N demand, which 

then increased N uptake, water demand, water uptake, and, consequently, crop growth. This can be 

shown in PDA’s higher estimates of LAI in 2019. The soil N changes in PDA led to more accurate and 

precise estimates of soybean LAI in 2019 as compared with the free model. This improvement did not 

translate into improved estimates of soybean yield, however. Observed data on other portions of the 

water cycle, like plant water uptake, runoff, and evapotranspiration, could help to better understand 

these limitations of the presented data-assimilation system and identify missing or incorrectly defined 

model processes to improve them. For example, if estimates of LAI and water uptake but not yield were 

improved with data assimilation, parameters or processes that connect LAI to grain development may 

need to be closely investigated and possibly adjusted. 

 

4. Compared to the free model, PDA was more accurate in its estimation of cumulative tile drainage than 

the free model, predicting lower cumulative tile drainage for both growing seasons. Since leaching is a 

function of both available soil NO3 and tile drainage in APSIM, lower estimates of NO3 load would be 

expected with reduced drainage if soil moisture was the only variable affected by assimilation. This 

partially explains the PDA results in 2018, where lower estimates of tile drainage aligned with lower 

and more accurate estimates of annual NO3 load. However, in 2019, PDA estimated higher annual NO3 

load than the free model despite lower overall drainage from the system. Such a result highlights the 

downstream impact of assimilation on the soil N processes in the model and its interaction with the 

growing crop. Soil moisture could not have been the only variable affected by assimilation. Though a 

more comprehensive study of the SoilN module is necessary to draw conclusions on how assimilation 

specifically led to these improvements, these results demonstrate the potential for improving estimates 

related to NO3 leaching via soil moisture data assimilation.  
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Upon highlighting the findings of this study, it is also imperative to highlight areas for 

improvement. Overall, the assimilation of soil moisture observations into the APSIM model was effective 

in improving model forecasts of soil moisture and downstream processes such as NO3 leaching, which was 

a primary goal of the study. However, data assimilation algorithms—especially the EnKF—do not currently 

check for a water mass balance in the overall cropping system. This means that, at each analysis time step, 

assimilation is either erasing water or creating water within the modeled system rather than redistributing 

it to other parts of the model (e.g., evaporation, crop water uptake, other soil layers, etc.). For this study, 

assimilation typically lessened soil moisture in the two assimilation layers and, thus, removed water from 

the forecasted soil profile when performing adjustment. With less water flowing through the soil profile, 

PDA estimated lower and more accurate tile drainage when compared with the observed data. Yet, by 

removing water with assimilation, PDA also disregards the system’s water mass balance. The 

overestimation of soil moisture and tile drainage in the free model is indicative of inaccurate or missing 

processes within the APSIM model itself. Though PDA was able to improve tile drainage simulation, it did 

not account for these missing processes nor explain the ecological significance of the overestimation. 

Adding a water balance constraint (such as that presented in Wu et al. 2016) to this data-assimilation system, 

in conjunction with observed data on other water cycle components (e.g., evaporation, crop water uptake, 

runoff) would be useful to better understand where and why the model is making errors. 

Further improvement to the assimilation workflow will also require reconsideration of the adjusted 

model parameter within the PDA workflow. As shown in the presented results, adjusting the SWCON 

model parameter for the two assimilation layers, though marginally helpful, did not dramatically improve 

soil moisture estimates as compared with Miyoshi. One possible explanation for the limited improvement 

with PDA could be the frequency with which SWCON is used for estimating water movement between soil 

layers. The SWCON parameter is associated with the saturated water flow process in the SoilWat module, 

which is only applied to those days and soil layers where soil moisture is above the drained upper limit but 

below saturation. In other words, soil moisture estimates (and, thus, innovations) in the two assimilation 

layers are dependent on the parameter value only when saturated flow happens in those layers. However, 

the modeling workflow assumed the estimates were correlated with the SWCON model parameters for the 

two layers and adjusted them accordingly at all analysis time steps. For more consistent and improved PDA 

performance, model parameters that are associated with soil moisture at all analysis time steps should be 

considered.  

Another important consideration for future assimilation studies with the APSIM model concerns 

evaluating the model’s soil N processes, an imperative component of cropping systems that remains poorly 

understood. At times within this study, assimilation of soil moisture had a dramatic impact on the soil N 

process rates and, thus, estimation of soil N pools. Since the model forecasts of soil moisture were improved 



 
 

30 

in PDA, it would logically follow that the estimates of the soil moisture rate factors would also be improved, 

thereby improving soil N estimates. If data were available to evaluate how APSIM’s SoilN changes with 

assimilation, one could feasibly distinguish weak points in the model process by identifying estimates that 

were not improved. Such a process could help to systematically improve the underlying processes in 

APSIM given adequate observed data for N cycle components. One process to investigate in the APSIM 

model that was highlighted in this study is crop uptake of mineral N forms. Currently, APSIM’s SoilN 

module assumes that crops can only take up NO3 and not NH4, even though NH4 fertilizer was also applied 

in the presented simulations and NH4 uptake has lower energy requirements than NO3 uptake in crops and 

is, therefore, preferred (Hachiya and Sakakibara, 2016). With adequate observed data, one could use soil 

moisture assimilation to understand the implications of this assumption more accurately. 

The model-data fusion system introduced in this study provides a unique opportunity for the most 

complete account of uncertainty in modeling agricultural systems while allowing the dynamic constraint of 

uncertainties in both model parameters and state variables. Though the use of model-data fusion techniques 

in crop modeling is not new, the infrastructure developed, tested, and presented in this study is unique in 

that it (1) can be easily accommodated to assimilate other state variables or other types of observations 

(e.g., data collected from field experiments, flux towers, remote sensing, etc.), (2) jointly estimates the two 

error matrices in parallel with the simulation to dynamically improve filter performance, (3) can be 

expanded in space (allowing for performing regional data assimilation studies), (4) works well with all 

types of crops within the APSIM model, and (5) can leverage multi-data stream observations allowing for 

constraining different modules simultaneously. No other known system shares all these advantages.  

In expanding this analysis to the regional scale, the demonstrated results show that there is great 

potential for improved regional modeling of field-level NO3 losses and tile drainage by using the presented 

system. Past regional studies were able to estimate NO3 leaching with crop models by informing model 

inputs with coarse spatial data on soil type, land use, weather, water quality, and/or management 

information from the literature, public databases, and surveys (e.g., de Paz and Ramos, 2004; David et al., 

2013; Roelsma and Hendriks, 2014; Reading et al., 2019; Li et al., 2020; Spijker et al., 2021). However, 

such applications fail to account for the fine-scale spatial variation in soil moisture and soil properties, 

which has been shown to be important for high accuracy and precision in estimates of NO3 losses and tile 

drainage (Ojeda et al., 2018; Reading et al., 2019; Gurevich et al., 2021; Spijker et al., 2021). Given the 

appropriate observed data on soil moisture, the presented workflow has the capacity to improve on past 

regional studies by dynamically constraining soil moisture and soil hydraulic parameters at the field scale. 

By constraining the spatial and temporal variability of these model parameters and states across different 

fields, one could increase the accuracy and precision of NO3 leaching estimates each field across a given 

region. This approach could potentially be applied to other regions given adequate data. 
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 Yet, further investigation is necessary to validate the performance of the presented assimilation 

system prior to broader application. In particular, the system should be applied for a range of sites across 

the U.S. Midwest where sufficient observations are available for the application and evaluation of the 

presented system. By increasing the sample size of this study, more robust conclusions can be drawn on 

which downstream model states can be constrained by the presented soil moisture data-assimilation system 

and where, when, and why the system’s constraint is effective. This is the central purpose of Chapter 3.  
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CHAPTER 3 

EXPANDED APPLICATION AND EVALUATION OF THE DEVELOPED SYSTEM ACROSS 

THE UNITED STATES MIDWEST 

 

INTRODUCTION 

 To effectively address important large-scale agricultural issues, agricultural forecasting tools must 

exhibit high system performance at broad spatial and temporal scales. However, typical forecasting methods 

are often limited in their inference space due to limitations in observations and/or calibration and validation 

methods (Dietze et al., 2013). These limitations are especially strict when forecasting agricultural state 

variables due to the complexity of underlying biophysical processes (Silva and Giller, 2020). When using 

low dimensional calibration approaches to optimize complex, nonlinear models (i.e., process-based crop 

models), the final parameterized model could give the right answer for the wrong reason (e.g., fortuitous 

cancellation of errors). Such models would not be reliable for further application (van der Laan et al., 2014). 

For example, Pasley et al. (2021) calibrated the APSIM model to estimate yield, drainage, and NO3 leaching 

using 56 site-years of data from sites across the U.S. Midwest and reported satisfactory performance in 

estimating NO3 leaching. However, though performance was acceptable overall, the final calibrated model 

did not perform consistently across sites, with prediction errors in cumulative NO3 leaching estimates as 

large as 100 kg NO3-N/ha for some locations (see Supplementary Figure 8 in the work). These site-level 

inconsistencies were not explored in the published work. Li et al. (2014) experienced greater success in 

their calibration of the DNDC model for estimating NO3 leaching in northern China. After calibration, 

RMSE dropped from 16 to 4 kg N/ha for NO3 leaching estimates at their calibration site; however, their 

calibrated model was still not able to estimate the high leaching rate at one of their validation sites. They 

also note two other limitations—namely, regional data scarcity, soil heterogeneity, and low representation 

of management schemes—that restrict the application of their calibrated model to sites that fall outside of 

their study region and/or follow different tillage or crop rotation practices. Thus, it is clear that calibration 

or validation data must account for the true variability in soil properties, climate, management, etc. for the 

entire study region when training a process-based model for broader application. However, considering the 

resources and time that would be required to calibrate a process-based model across all of these dimensions, 

it is unlikely that current methods of process-based modeling will ever be able to answer complex, large-

scale agricultural research questions with accuracy and precision.  

 On the other hand, machine learning (ML) approaches can achieve higher accuracy in predicting 

agricultural state variables across broader areas by fitting simpler models. These practices can for spatial 

variability by including representative predictors in the model. However, due to the heterogeneity of 
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agricultural landscapes, these fitted models are limited in their inference space, as well as in the resolution 

in which they can be interpreted (Flathers and Gessler, 2018). For example, a machine learning approach 

by Spijker et al. (2021) employed nitrate data from a national monitoring program and an array of auxiliary 

spatial datasets to predict nitrate concentration in leachate from agricultural soils in the Netherlands using 

a Random Forest model. The final model performed satisfactorily, explaining about 58% of the variability 

in nitrate concentration estimates at the farm scale. However, even within the bounds of the study region, 

the fitted model generated “unexpected” results when applied to areas that were not included in the model 

training dataset and differed in farm management, land use, etc. Moreover, the application of the fitted 

model to other regions would require a similar intensive, large-scale auxiliary dataset as the one used in the 

study, which would necessitate immense time and resources. Thus, the presented approach in Spijker et al. 

is not conducive to broader forecasting applications. ML models are limited as they cannot be easily applied 

to areas that fall outside of the training parameter space and can still require intensive data collection. A 

study by Hoffman et al. (2020) revealed another shortcoming of ML approaches. In the work, they fit a 

Random Forest model to investigate the relationship between sorghum, maize, and soybean yields, 

technological advancements, and climate variables for counties in the U.S. Midwest. Although their fitted 

model was highly accurate in predicting yield for their compiled dataset and provided insights on crop 

sensitivity to climatic and technological conditions, their fitted model cannot provide detailed insights on 

the specific agronomic practices or agricultural processes that contributed to the high spatiotemporal 

variability in yields. ML approaches are also limited in the new information they provide on underlying 

agroecological processes as, inherently, they can only partially explain variability for a single state variable 

along explicitly measured dimensions.  

 To overcome the inference limitations of common forecasting methods, studies have shown that 

SDA can help reduce the need for site-level model calibration and the possibility of overfitting a model by 

systematically constraining model processes that are highly variable in space and time. Guerif and Duke 

(2000) were among the first to propose data assimilation as a substitute for site-level model calibration. 

They assimilated spectral reflectance information into a coupled SUCROS-SAIL model and were able to 

improve regional estimates of sugar beet yield in northern France through the constraint of LAI, as well as 

cultivar and management parameters. Similarly, Lu et al. (2021) assimilated in situ soil moisture and canopy 

cover information into the AquaCrop model for 6 years at an experimental station in Nebraska, U.S. to test 

SDA’s ability to account for heterogeneity in maize cultivar. Their EnKF-based assimilation framework 

was able to better capture variability in maize phenology compared to the free model, reducing yield 

nRMSE from 18.61% to 11.48%. Lastly, a synthetic study by Zhu et al. (2017) found that the assimilation 

of coarse resolution surface soil moisture data into a water flow model could estimates of soil moisture in 

the first 50 cm of the soil profile despite explicitly unaccounted spatial heterogeneity in soil properties. 
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These studies provide clear evidence that SDA can efficiently overcome the need for explicit model 

parameter calibration when performing model simulations. 

However, despite overall improvement in model forecasts, many past SDA studies have reported 

inconsistent model performance in downstream model constraint from site to site. For example, de Wit and 

van Diepen (2007) observed inconsistencies in yield constraint when assimilating remotely sensed soil 

wetness index (SWI) observations into the WOFOST model across agricultural regions of Spain, Germany, 

France, and Italy. They partially attributed poor predictions in certain regions to irrigation processes that 

were not captured by the model nor in the coarse resolution SWI observations. The abovementioned study 

by Lu et al. (2021) also saw year-to-year variability in the performance of their assimilation framework. 

When assimilating soil moisture independently, canopy cover estimates were better constrained in drier 

years. They suspected this to be the result of canopy cover’s lower sensitivity to soil moisture when water 

is in surplus. Such trends in system behavior are important to highlight to identify the conditions where 

system performance is more reliable as well as to drive further improvement and advance performance 

more broadly. However, to investigate these trends, a system must be applied and evaluated across a variety 

of management and environmental conditions.  

In Chapter 2, an optimal data-assimilation system was developed that can integrate a variety of 

observations, propagate system uncertainties, and generate robust agricultural forecasts of several important 

state variables without the need for site-level model calibration. The system was applied to simulate a corn-

soybean rotation at an experimental site in Illinois, and, by assimilating in situ soil moisture observations, 

the system constrained estimates of soil moisture, tile drainage, and, to a lesser extent, NO3 leaching at the 

study site. Aboveground measures of crop productivity (i.e.., crop yield and LAI) were not well-

constrained. However, this was hypothesized to be the result of simulating a non-water limited system, 

where changes in soil moisture would not greatly affect crop growth. Overall, the results from Chapter 2 

demonstrate great potential for the developed data-assimilation system to be a powerful tool in agricultural 

forecasting. However, as demonstrated by past studies, the performance of an SDA system for one site-year 

does not necessarily reflect how it will perform in another site-year. Since it is imperative that agricultural 

forecasting tools put forward for large-scale application exhibit high performance across broad 

environmental and management conditions, further evaluation of the system across different climate, 

management, and soil spaces is necessary to validate the results in Chapter 2. This need for further 

evaluation was the main driver of this chapter. In this study, the developed data-assimilation system was 

applied to assimilate in situ soil moisture observations for 19 site-years across the U.S. Midwest, a feat 

made possible by the remarkable database of field experimental observations compiled by the Transforming 

Drainage project. After application, the system’s downstream constraint of APSIM estimates was evaluated 
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and trends in system performance, as well as areas for future system improvement, were identified and 

discussed.  

 

This chapter has two main objectives:  

1. To test and evaluate soil moisture SDA in the presented system as a method for constraining 

downstream APSIM estimates of soil moisture, crop yield, leaf area index, tile drainage, and NO3 

leaching across several study sites in the U.S. Midwest.  

2. To highlight the strengths and weaknesses of the presented system to drive future application and 

development.  

 

MATERIALS AND METHODS 

Study sites 

In this chapter, the developed data-assimilation system is tested across 5 different sites in the U.S. 

Midwest and 19 site-years spanning 2011-2019. The 5 study sites are in 5 different states and include the 

Energy Farm (i.e., the study site from the previous chapter) and 4 experimental sites available through the 

Transforming Drainage (TD) project (Chighladze et al., 2021). The TD project database contains high-

quality data from 42 research sites on an array of agricultural variables, including tile drainage, yield, water 

table, water quality, and soil characteristics, among many others. Of the numerous sites available as part of 

the project, the sites and years selected for this work included plots with the following:  
 

• A free tile drainage system  

• Available NO3 load and tile flow data at the plot level  

• Available soil moisture sensor data 

• Maize and/or soybean cropping systems 
 

To set up the APSIM model for each of the 5 sites, we included all available site information on 

year, cropping system, residue type, planting details, harvest date, tillage practices, and fertilizer 

applications as constants in the simulations. All sites were rain-fed, and tillage practices were included for 

all sites due to increased knowledge of Energy Farm management practices as defined by Moore et al. 

(2021). Site locations are shown in Figure 3.1, and plot and management information for the 5 sites is given 

in Table 3.1. Study sites will be referred to by their given study ID in the table hereinafter.  
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Figure 3.1.  
Geographic location 
of the study sites in 
this study. 

 
Observed data 

 The following sections highlight the additional data products that were considered in this chapter 

relative to those described in Chapter 2. They also indicate any changes that were made to the data presented 

in Chapter 2 for the sake of this study.  

 

Model drivers 

The two model drivers applied in Chapter 2 were also employed in this analysis (i.e., SoilGrids 

and ERA5). 25 soil ensembles were generated for each site location, and the depth of each soil profile was 

reduced to the depth of the drainage tile placement at each study site to appropriately simulate vertical 

water movement (Table 3.1). The observed weather ensemble used in Chapter 2 for the Energy Farm was 

excluded from this analysis, and only 10 weather ensembles were used at each of the 5 sites to ensure 

consistency in inputs. Observed weather data were available through the TD database for all but one site-

year among the TD sites in this analysis. These daily observations of precipitation, air temperature, and 

solar radiation were leveraged to identify climatic trends in system performance and soil moisture 

innovations through correlation analyses and feature selection. 

 

Soil moisture 

Soil moisture information for the TD sites is available as daily averages for an array of soil depths 

and is measured as the volumetric water fraction at each depth. This analysis focuses on the soil moisture 

data available for the 10- and 20-cm depths, which will be referred to as SM3 and SM4, respectively, 

hereinafter. To ensure data consistency across the study sites, the daily soil moisture values for the Energy 

Farm were re-computed as daily averages instead of end-of-day averages (as used in Chapter 2). Days 
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Table 3.1.  Site management information as defined across all APSIM simulations in this study. 
 
Study ID   
(Original ID) Site information Year Crop Planting 

date 
Harvest 
date Tillage Fertilizerc 

IL  (Energy Farm) 
 
 

Plot ID: Maize Control 
 
Soy cultivar: 3.5 – 4.5 
 
Tile depth: 1.383 m 

2018 maize 08 May 09 Oct 

 

08 May: chisel 50 mma 

 
24 Oct: chisel 150 mm 
 

 

08 May: urea_N (101) 
              NH4NO3 (288.57) 

2019 soy 17 May 09 Oct N/A N/A 

IN   (IN_Randolph) 

Plot ID: SW 
 
Soy cultivar: 3.0 – 4.0 
 
Tile depth: 0.975 mb 

2011 soy 07 Jun 24 Oct N/A N/A 

2012 maize 23 Apr 10 Oct 

 

12 Apr: disc 50 mma 

 
28 Nov: disc 200 mm 
 

 

13 Feb: NH4_N (22.42) 
             broadcast_P (46.25) 
 

23 Apr: urea_N (17.88) 
             NH4NO3 (51.09) 
             banded_P (13.96) 
 

25 May: urea_N (100.35)  
               NH4NO3 (286.7) 
 

2013 soy 20 May 14 Oct 

 

09 Apr: disc 50 mma 
 
21 Oct: chisel 150 mm 
 

 

21 Mar: NH4_N (18.48) 
              broadcast_P (38.12) 
 

2014 maize 27 Apr 21 Oct 

 

13 Nov: chisel 150 mm  
 

 

24 Apr: NH4_N (17.93) 
             broadcast_P (36.99) 
 

23 Apr: urea_N (17.88) 
             NH4NO3 (51.09) 
             banded_P (13.96) 
 

25 May: urea_N (108.82)  
               NH4NO3 (310.9) 
 

2015 soy 06 Jun 12 Oct N/A N/A 

 



 
 

38 

 
Table 3.1.  (cont.) 
 

Study ID   
(Original ID) Site information Year Crop Planting 

date 
Harvest 
date Tillage Fertilizerc 

IN (cont).  2016 maize 26 Apr 07 Oct 

 

N/A 
 

 

26 Apr: urea_N (16.71) 
             NH4NO3 (47.73) 
             banded_P (13.05) 
 

02 Jun: urea_N (104.91)  
               NH4NO3 (299.7) 
 

MN  (MN_Redwood1) 

Plot ID: BE 
 
Soy cultivar: 1.5 – 2.5 
 
Tile depth: 1.22 m 

2012 maize 10 May 06 Oct 

 

06 May: disc 76.2 mma 

 

01 Nov: rip 228.6 mm 

 

06 May: urea_N (177.1)  
              NH4_N (13.4) 
              broadcast_P (34.2) 
 

10 May: NH4_N (7.84)  
               banded_P (76.2) 
 

2013 maize 24 May 31 Oct 

 

23 May: disc 76.2 mma 
 

03 Nov: rip 228.6 mm 

 

22 May: urea_N (182.75) 
              NH4_N (13.4) 
              broadcast_P (34.2) 
 

24 May: NH4_N (7.84) 
              banded_P (11.63) 
 

2014 maize 17 May 29 Oct 

 

16 May: disc 76.2 mma 

 

01 Nov: rip 228.6 mm 

 

16 May: urea_N (150.47) 
              NH4_N (12.05) 
              broadcast_P (30.8) 
 

17 May: NH4_N (7.84) 
              banded_P (11.63) 
 

2015 maize 30 Apr 13 Oct 

 

29 Apr: disc 50.8 mma 
 

27 Oct: rip 228.6 mm 

 

28 Apr: urea_N (148.37) 
             NH4_N (14.15) 
             broadcast_P (18.6) 
 

01 May: NH4NO3 (47.8) 
              urea_N (16.49) 
 



 
 

39 

 
Table 3.1.  (cont.) 
 
Study ID   
(Original ID) Site information Year Crop Planting 

date 
Harvest 
date Tillage Fertilizerc 

MN (cont.)  

2016 soy 13 May 18 Oct 

 

11 May: disc 50.8 mma 
 

01 Nov: rip 228.6 mm 
 

 

N/A 
 

2017 maize 06 May 03 Nov 
 

06 May: disc 50.8 mma 
 

06 May: NH4_N (7.84) 
              broadcast_P (11.63) 
 

OH  (OH_Auglaize2) 
 
 

Plot ID: WS 
 
Soy cultivar: 3.0 – 4.0 
 
Tile depth: 0.975 mb 
 

2013 maize 09 May 22 Oct 

 

N/A 
 

 

09 May: broadcast_P (20.53) 
              NH4_N (11.76) 
              urea_N (201.43) 
 

2014 soy 15 May 20 Oct 
 

05 Nov: disc 200 mm 
 

N/A 
 

2015 maize 30 Apr 16 Oct 

 

N/A 
 

 

30 Apr: NH4_N (18.38) 
             broadcast_P (38.12) 
             urea_N (178.76) 
 

SD  (SD_Clay) 
 
 

 
Plot ID: Plot7 
 
Soy cultivar: 2.0 – 3.0 
 
Tile depth: 1.22 m 
 

2016 maize 18 May 21 Oct 
 

15 May: disc 101.6 mma 
 

14 Apr: urea_N (180.32) 
 

2017 soy 02 June 13 Oct N/A N/A 

a Documentation on site-level management indicated the use of a field cultivator during spring tillage for several site-years. However, since the APSIM tillage 
module does not include parameterization for a field cultivator, the disc implement was applied at the documented depth instead due to similarities between 
the two implements in relation to incorporation.  
 
b OH and IN both fall within the same tile of the gridded soil driver. Therefore, since the drainage tiles were placed at similar depths at the two sites (i.e., 0.91 
and 1.04 m), the soil profile depth was adapted to the average depth of the two for simplicity.  
 
c This column includes information on fertilizer application date, type, and amount as defined for each site-year. The notation for fertilizer type reflects 
fertilizer names in APSIM. If the fertilizer name contains N or P, amount is in Kg N/ha or Kg P/ha, respectively. Otherwise, amount is in Kg fertilizer/ha. 
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with fewer than 40 observations for a given day were excluded. A comparison of end-of-day soil moisture 

values from the Energy Farm (Chapter 2) with the newly computed daily average values show their 

differences to be negligible with a mean absolute difference of 0.006 mm/mm, a finding similar to that of 

Dietzel et al. (2015). Across all sites, data points from the winter months (December-March) were excluded 

from assimilation to avoid possible sensor inaccuracies related to freezing soils. Due to limited replication 

or limited information on replication, a 10% observation error is assumed around the mean for all soil 

depths. This observation error is estimated by the Miyoshi algorithm for the two assimilation layers. All 

other available soil moisture observations for lower soil layers were used in the evaluation of the 

downstream impacts of assimilation on the soil water profile. Observations were paired with an APSIM 

soil layer based on the recorded sensor depth and the site soil profile. The average soil moisture was 

computed for each day and layer with the assumption of uniform soil moisture content in each APSIM layer 

at a given time.  

 

Crop yield and NDVI  

 Data on harvested yield are available for the TD sites was converted from grain at standard moisture 

content (i.e., 15.5% for maize and 13% for soybean) to dry-grain weight for best comparison with APSIM 

output. In Chapter 2, LAI observations from the Energy Farm were leveraged to evaluate APSIM’s 

simulation of crop phenological development. However, since reliable and consistent measurements of LAI 

were not available for the TD sites, another type of observation was needed to serve this same purpose. The 

normalized difference vegetation index (NDVI) is a remote-sensing data product that can be used to 

quantify vegetation cover and reasonably track the phenological development of crops (Gao and Zhang, 

2021). In this study, NDVI is used instead of LAI to assess APSIM’s understanding of crop phenology at 

each of the tested site-years. NDVI time series were extracted for each of the sites from Landsat 7 remote 

sensing imagery via Google Earth Engine.  

 

Tile flow and nitrate loads 

Data tracking daily tile flow (mm) and daily NO3 load (kg NO3-N/ha) in the drainage water were 

available for all the TD sites considered in this analysis. Values were normalized by the total drainage area 

for each plot. Any missing daily values of drainage were imputed using an approach described by Helmers 

et al. (2022) and used to approximate missing daily values of NO3. Helmers et al. (2022) provides further 

information on the specific methods and instrumentation used to collect and process these data at each of 

the TD sites. In this study, daily values for both tile flow and NO3 load were summed to annual values for 

comparison. Days with NA values for tile flow were assumed to have no drainage and no NO3 leaching. 
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Drought indices 

 Drought monitoring information from the United States Drought Monitor (USDM) was collected 

at the point level for each site-year using the Google Climate Engine. The drought monitor classifies 

drought intensity each week across the United States using five climatological indicators and local 

condition reports. Its classification system has the following categories: none (i.e., no drought conditions), 

abnormally dry, moderate drought, severe drought, extreme drought, and exceptional drought. In this 

study, the total number of observations between April and September with any drought classification 

above “none” was determined for each site-year. This value characterizes the proportion of weeks during 

the growing season where a site was drier than normal, and it is used in this analysis to better understand 

how drought impacts assimilation system performance. 

 

Data-assimilation system  

 The workflow tested in this chapter closely resembles the Miyoshi iteration of the workflow 

presented in Chapter 2  in overall structure of the workflow and the major components (i.e., pSIMS, APSIM, 

EnKF, Miyoshi algorithm). However, the following sections note the important changes made to the data-

assimilation system as presented in Chapter 2 that defined the system used in this chapter.  

 

APSIM Operations module 

 To help reduce the resources required for site-level APSIM simulations, the Operations module 

was introduced into the modeling framework to enable multi-year simulations in APSIM and eliminate the 

time-consuming process of running multiple single-year simulations. The Operations module allows for 

the specification of day and year (rather than only day) when defining management events for an APSIM 

simulation and, thus, increases the flexibility of the model, allowing for crop rotations and changing 

management practices over time (e.g., reduced fertilizer applications, no tillage, etc.). In this analysis, this 

flexibility allowed for the most representative specification of management practices in APSIM for each of 

the sites. In addition, this change allowed for flawless continuity in all system pools across different 

growing seasons at each location. In Chapter 2, such continuity was made possible for the soil nitrogen and 

soil water pools by the manual adjustment of model initial conditions; however, some pools, such as the 

surface organic matter pool, were not carried over between years. Any differences between the Energy 

Farm simulations presented in Chapter 2 and those presented in this chapter can be attributed to this change 

in model structure. See the APSIM documentation for more information on the Operations module and its 

functionalities.  
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Table 3.2.  Updated prior distributions and descriptions of ensemblized maize cultivar parameters. “Norm(mu,sd)” 
indicates a Normal prior distribution with mean mu and standard deviation sd, and “Unif(lower,upper)” indicates 
a uniform prior distribution with lower bound lower and upper bound upper. 
 

APSIM Parameter Description Distribution 

largestLeafParams1 
Intercept in a fitted exponential regression which 
predicts the area of the largest leaf from total leaf 
number in maize (Eq. 13, Birch et al., 1998) 

Norm(-1.09497, 0.02947) 

leaf_init_rate Thermal time (degree days) to initiate each leaf 
primordium until floral initiation Norm(25.12144, 0.18726) 

leaf_app_rate1 Thermal time (degree days) required to develop a 
leaf ligule for first leaves Norm(64.34875, 0.92697) 

tt_emerg_to_endjuv Thermal time (degree days) between emergence 
and end of the juvenile phase 

Norm(420.08108, 9.27756) 

tt_flower_to_maturity Thermal time (degree days) between flowering 
and maturity 

Unif(780, 860) 

tt_flower_to_start_grain Thermal time (degree days) between flowering 
and start of grain fill 

Unif(150, 200) 

tt_maturity_to_ripe Thermal time (degree days) between maturity and 
harvest ripe 

Unif(150, 250) 

head_grain_no_max Maximum potential number of kernels per ear  Unif(750, 900) 

grain_gth_max Potential growth rate of grain (mg grain/day) Unif(7.1, 8.57) 

 

Model parameter priors  

 Within model ensembles, initial soil water, cultivar, initial residue weight, and, if unavailable in 

management data, planting depth were randomized across model ensembles for each site. In the case of 

planting depth, separate prior distributions were set for each crop, maize and soybean, in order to reflect 

reasonable ranges for the two crops in the Midwest as described in extension websites produced by the 

University of Missouri (Luce, 2016) and Michigan State University (Staton, 2012). Using a uniform prior 

distribution, planting depth ranged from 1.5 to 2.5 inches for maize, and from 1 to 2 inches for soybean. 

Prior distributions for cultivar parameters changed notably in this chapter. For maize, the number 

of “ensemblized” cultivar parameters was increased from 6 to 9 to include three additional leaf-related 

parameters. The decision to add new maize parameters was based on a global sensitivity analysis of the 

APSIM Maize module in the U.S. Midwest by Dokoohaki et al. (in prep) which identified the maize cultivar 

parameters to which LAI estimates were most sensitive. The fourth parameter identified in this analysis, 

tt_emerg_to_endjuv, had already been included from the previous analysis. The global optimized value 

distributions for these four parameters, as computed in Dokoohaki et al. (in prep) through a hierarchical 
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Bayesian optimization approach, were used as the prior distributions in this analysis. Table 3.2 gives more 

detailed information on all randomized parameters and their prior distributions. A preliminary assessment 

of the Maize module at each of the sites demonstrated that, under these parameter value ranges, APSIM 

was capable of appropriately simulating the phenological development and grain yield for maize at each 

site.  

In contrast to the approach described in Chapter 2, the selection of soybean cultivars included at 

each site was determined using a semi-systematic approach. First, a range of maturity groups was 

determined for each site based on a study by Mourtzinis and Conley (2017) which delineated soybean 

maturity groups across the U.S. The range for each site was bounded using the contour lines shown in the 

Figure 4 of the published study. Initial APSIM simulations were performed for each site using all APSIM-

defined soybean cultivars falling within the prescribed maturity group range. The model results were 

compared to the observed soybean yields at each site, and the best-performing maturity group MG for each 

site was determined. The final range for each site was MG ± 0.5. In each ensemble, cultivar for each crop 

at each site was assumed to be constant across site-years. 

 

PROSAIL model 

 Since APSIM does not currently estimate NDVI, the PROSAIL model was coupled with APSIM 

within the larger modeling framework to estimate daily NDVI values and enable the appropriate evaluation 

of the model’s simulation of crop phenology at the study sites. The PROSAIL model is a radiative transfer 

tool that combines PROSPECT, a leaf optical properties model, and SAIL, a canopy bidirectional 

reflectance model, to estimate spectral reflectance for a given vegetative area based on soil and plant/canopy 

properties. In this study, APSIM’s daily forecasts of soil and plant variables were transformed and used as 

inputs into the PROSAIL model to compute the spectral reflectance for each ensemble following the method 

presented by Dokoohaki et al. (in prep). Then, for each day and ensemble, the estimated spectral information 

was used to estimate NDVI using the vegindex function within the hsdar R library.  

 

System set-up 

 In this analysis, two distinct simulation schemes were used to simulate each site. Following the 

same notation as given in Chapter 2, a Free run and a Miyoshi run were completed for each site, with the 

former serving as a basis for comparison for the latter. For simplicity, the Miyoshi scheme will be referred 

to as the SDA scheme hereinafter. Each scheme was tested with 100 ensembles, an increase from the 

ensemble number employed in Chapter 2 (i.e., n = 50). The number of ensembles was increased to more 

fully account for system uncertainties. All simulations were started on January 1 of the first simulated site-

year for each site to allow for model pools to reach an equilibrium prior to the first growing season. 
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Estimates of D and R were not re-initialized within the Miyoshi algorithm each year but were carried over 

from one site-year to the next. Following the key discussion points from Chapter 2 and poor performance 

in preliminary results, the PDA scheme was not explored in this chapter.  

 

System evaluation 

Ensemble weighting scheme 

This study follows the same ensemble weighting strategy as presented in Chapter 2, such that daily 

ensemble weights were summarized to annual ensemble weights for each site. Though this approach does 

not leverage all available information within the model ensemble, effectively smoothing over information 

on model accuracy for daily forecasts, the application of annual weights was found to be the most robust 

for evaluating yearly estimates in this study (e.g., yield, cumulative NO3 load, cumulative tile drainage). 

Furthermore, a more detailed analysis of the use of daily vs. annual weights found only negligible 

differences in daily weighted estimates for all state variables except soil moisture. These two points justified 

the use of the simpler annual ensemble weights for evaluating SDA performance. See the Appendix for 

more detailed information on how ensemble weighting strategies were evaluated. 

 

Evaluation statistics  

 In addition to the evaluation metrics applied in Chapter 2 (i.e., RMSE, spectral norm, and weighted 

variance), a few new metrics will be employed in this chapter to evaluate and compare system performance. 

First, to help standardize accuracy measures across site-years, a normalized v RMSE will be calculated as  

!"#$%	(%) = 100 ∗	
"#$%

./
 

where ./ is the average observed value.  

The coefficient of determination (R2) will be used to more effectively compare model performance 

for each state variable across all observed time points. It was calculated as 

"! = 1 −	
∑ (." −	2/")!#"$%

∑ (." −	2/")!#
"$% +	∑ (2/" − ./)!#

"$%
 

where Yt is the observed value at the tth observed time step and 2/"	is the simulated weighted mean at the tth 

observed time step. All observations (n = T) from all site-years were included in this calculation. Separate 

R2 values were computed for Free and SDA results, and weighted mean estimates for each observed time 

point for each scheme were computed using annual ensemble weights. 

 To characterize both accuracy and direction of bias for system forecasts, the relative error for annual 

model forecasts for the kth site-year was calculated as  
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"%& 	(%) = 100 ∗ 4 5' 	 ∗
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where wi and Xi,k are, respectively, the average weight and simulated value for the ith ensemble of the kth 

site-year, and Yk is the observed annual value of the kth site-year.  

 To identify and quantify relationships between variables, one of two correlation statistics were 

employed depending on the sample size of the data. When comparing data with a sufficiently large sample 

size (i.e., n > 30), the Pearson correlation coefficient (r) was calculated to determine the direction and 

strength of the linear relationship between two variables.  

6 = 	
∑ (7' −	7̅
+
'$% )	(9' −	9/)

:∑ (7' −	7̅+
'$% )	!	 ∗ :∑ (9' −	9/+

'$% )	!		
 

where x and y denote the two variables being compared, n is the number of complete samples, and a bar 

represents the mean value. When comparing data at the site-level (i.e., n  £ 19), the Spearman rank-order 

correlation coefficient (rs) was applied, which is a nonparametric measure of the strength and direction of 

the monotonic relationship between two variables. Though the sample size in this case is still too small for 

appropriate application, the Spearman coefficient was applied as its assumptions are less strict than the 

Pearson coefficient and some metric for comparison was needed. It is calculated as  

6, = 	1 −	
6	 ∑ <'

!+
'$%

!	(!! − 1)
 

where the di is the distance between the two ranks of the ith complete pair (i.e., xi and yi). For both 

coefficients, a test for association between paired samples was used to determine significance.  

 Finally, to allow for comparison between soil moisture time series across site-years, a time series 

decomposition approach was used to estimate the magnitude of the noise in each site-year time series. An 

additive model was assumed  

." =	=" + 	>	 

>	~@A6B(0, Σ) 

where the trend (T) was estimated using cubic splines for each soil depth. Then, a diagonal variance matrix 

S was computed for the residuals. Sensor errors were assumed to be independent across layers following 

the assumption declared in Chapter 2. The magnitude of the noise was then calculated as the spectral norm 

of S (see Chapter 2), which will be denoted as ||S||2. Higher values of ||S||2 indicate “noisier” time series.  

 

Analysis of innovations 

 An analysis of soil moisture innovations was completed to better understand how different system 

conditions impacted accuracy of daily SDA soil moisture estimates. First, the total soil water adjustment 

was calculated for each ensemble at each analysis time step by, first, calculating the change in soil water in 
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each assimilation layer due to assimilation as the change in soil moisture content after the analysis (i.e., 

given as mm/mm) multiplied by the layer’s depth (mm). Then, the change in soil water was summed across 

the two assimilation layers for each ensemble and, finally, the average total value was computed across all 

ensembles. To determine the most important predictors of daily soil moisture innovation, daily information 

was compiled to characterize soil-crop interactions, soil water dynamics, input weather, observed weather, 

and assimilation conditions for each analysis time step for all site-years, and a Random Forest model was 

fit to identify the most important covariates for predicting daily soil moisture adjustment.  

 

Method of comparison  

 When quantifying system performance across site-years, a classification system was defined to 

distinguish between situations where SDA led to improved, degraded, or similar performance. The relative 

change in accuracy and precision metrics were computed as  

∆	(%) = 100 ∗	
(F- − F.)

F.
 

where CF and CS were computed evaluation metrics for the Free and SDA schemes, respectively, at a given 

site-year. The RMSE was used for classifying changes related to model accuracy, and weighted variance 

was used for classifying changes related to model precision. Performance was classified as follows 

• If D < -5%, SDA improved performance. 

• If D > 5%, SDA degraded performance.  

• Otherwise, SDA performed similarly to the free model.  

 
RESULTS 

Soil moisture 

In soil moisture forecasts for the two assimilation layers (i.e., SM3 and SM4), SDA performed as 

well or better than the free model in accuracy across all site-years. The median change in RMSE due to 

SDA was -17% and -28% for SM3 and SM4, respectively. Average forecast precision was also increased 

with SDA in 84% of cases and by 23% on average. The three site-years where precision was not increased 

in SDA include OH in 2013 and 2014 and MN in 2013. Interestingly, these site-years where precision was 

not improved were among those with the greatest improvement in forecast accuracy for the same state 

variables. This relationship is intuitive considering the nature of the Miyoshi algorithm, which 

systematically inflates model forecast uncertainty at time steps when observed and forecasted soil moisture 

distributions differ greatly. At the cost of reduced forecast precision, such inflation allows for the filter to 

pull the model forecast toward the observed distribution and improve accuracy in future predictions. 

Looking generally, SDA constrained precision well for the assimilation state variables, reducing variance 

for SM3 and SM4 estimates, on average, by 3% and 49%, respectively.  
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(B) 
 

 

 
 
Figure 3.2.  Boxplots demonstrating the distribution of relative change in (a) accuracy (RMSE) and (b) precision 
(weighted variance) due to SDA for each state variable across all site-years. Change is computed relative to the 
free model results. Negative values indicate improvement (e.g., (RMSES – RMSEF) / RMSEF). 

 
Across all assimilation time steps, the model forecast tended to overpredict soil moisture within the 

two assimilation layers (Fig. 3.3), and, therefore, the adjustment in the analysis step typically reduced the 

total amount of water in the soil profile. An analysis of daily soil moisture innovations across all site-years 

highlighted strong positive autocorrelation in time, such that the strongest predictor of daily soil moisture 

adjustment (i.e., the increase or decrease in total soil water due to assimilation) was the adjustment value 

from the previous time step. Such a result points to consistent model biases in model soil water processes. 

Despite correcting these state variables at each time step in SDA, APSIM often reproduced a similar error 

in the next forecast.  

Two other important predictors for daily soil water adjustment were daily precipitation and daily 

precipitation error, where daily precipitation is the average daily precipitation (mm) across weather 

ensembles for a given site-day and daily precipitation error (mm) is the difference in observed daily  

(A) 
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Figure 3.3.  One-to-one plots for soil moisture estimates (mm/mm) in the two assimilation layers for the free model 
and SDA across all analysis time-steps and site-years. The least-squares regression line is shown for both schemes 
next to the black dashed line which demonstrates a perfect fit.  
 
 

precipitation and the average daily precipitation in the model inputs. As demonstrated in Figure 3.4, with 

increasing input precipitation, the assimilation adjustment tended to remove more water from the two 

assimilation layers. Similarly, on days where input precipitation exceeded what was observed, the 

assimilation step typically reduced the amount of water in the soil profile to account for this error.  

As seen in Chapter 2, SDA’s constraint of SM3 and SM4 also led to the indirect constraint of soil 

moisture in deeper layers of the soil profile. Across all site-years with available data, the median change in 

RMSE for SDA estimates of SM5, SM6, and SM7 was -14%, -8%, and -14%, respectively. There were 1-

2 site-years for each of these state variables where SDA functioned to increase RMSE, but most site-years 

saw improvement or, at the very least, similar performance compared to the free run (Fig. 3.2). In terms of 

precision, SDA had an overall positive impact on lower layer soil moisture estimates. The average change 

in weighted variance was -16%, -6%, and -20% for estimates of SM5, SM6, and SM7, respectively. 

 

Yield and NDVI 

Overall, soil moisture data assimilation improved yield estimates in this study. Compared to the 

free model, SDA predictions of yield explained 17.7% more variation in observed yield values (Table 3.3). 

It improved yield accuracy in 63% of site-years and performed comparably to the free model in 16% of 

site-years. Based on an analysis of site conditions, SDA was most effective at improving yield accuracy in 

site-years with a higher proportion of drought days during the growing season. This is an unintuitive result 

since SDA, overall, removed soil water from the profile over the course of each site-year. However, in those 
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Table 3.3.  Summary statistics to quantify the impact of SDA on forecast accuracy of APSIM state variables. The 
“N” column indicates the number of site-years with available data for each state variable, and the “n” column 
indicates the total number of observations across site-years. (F) denotes a value computed for the free model 

estimates, and (S) denotes a value for the SDA estimates. The median change (D) in RMSE was computed as 
RMSES - RMSEF / RMSEF. Relative error (RE) is also given as a median value.  
 

Variable N n 
RMSE (F) RMSE (S) D RMSE 

R2 (F) R2 (S) RE (S) 

median value 
SM3 
mm/mm 19 12252 0.085 0.073 -17.4% 0.488 0.566 -19.9 

SM4 
mm/mm 

19 12735 0.074 0.053 -27.9% 0.520 0.727 -12.4 

SM5 
mm/mm 

17 11325 0.075 0.054 -14.3% 0.453 0.379 0.3 

SM6 
mm/mm 

19 12846 0.065 0.068 -8.0% 0.424 0.341 9.2 

SM7 
mm/mm 

9 5715 0.081 0.057 -14.3% 0.428 0.336 15.6 

NDVI 
unitless 

19 244 0.246 0.189 -7.6% 0.615 0.663 4.6 

Yield 
Mg/ha 

19 19 1.80 1.27 -23.1% 0.554 0.731 8.3 

Annual drainage 
mm 

19 19 151 145 -8.3% 0.472 0.457 6.2 

Annual NO3 load 
Kg NO3-N/ha 19 19 36.2 21.6 +12.5% 0.416 0.449 50.8 

 
 
 

 

 
Figure 3.4.  Scatterplots demonstrating the relationship between daily soil water adjustment and its three most 
important predictors. Dashed black lines demonstrate the least squares regression line for each relationship, and 3 

asterisks (***) indicate a significant linear relationship at all significance levels (a @ 0). Together, these three 
predictors explain 47.6% of the variation in soil moisture innovations.   
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cases where yield estimates were improved, SDA often increased available soil water at critical points in 

crop development, leading to reduced crop soil water deficit factors and increased yield compared to the 

free model (Fig. 3.6, Fig A.4). The most evident example of SDA yield improvement is IN in 2012. Here, 

the free model estimated complete maize crop failure (i.e., no grain yield) due to leaf senescence in mid-

July, but SDA estimated a harvestable crop. By constraining soil moisture, SDA increased available soil 

water in the soil profile in the weeks prior to the estimated crop failure. This increased soil moisture can  

 
Figure 3.5.  Time series of yield estimates from the two schemes with the mean daily estimates demonstrated with 
line graphs and the 95% credibility interval demonstrated by the shaded regions. Black points represent the observed 
harvest date and yield for each site-year.    
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explain the reduced soil water deficit factors, increased annual crop water uptake by 85 mm, and the survival 

of the maize crop into grain production demonstrated in SDA for that site-year. Looking instead to poor 

performance, the 4 site-years where SDA reduced yield accuracy include OH in 2013 and 2015, where 

RMSE increased by 131% and 115%, respectively. These two site-years, which comprise both maize 

growing seasons at OH, contradict the pattern noted above such that reduced overall crop water stress with 

SDA did not improve yield forecasts.     

 Generally, the free model was able to capture the phenological development of the cropping 

systems simulated in this study, as demonstrated by the good agreement between observed and simulated 

NDVI (Fig. A.5). SDA’s impact on NDVI accuracy was similar to its impact on yield accuracy, such that 

it typically either increased accuracy due to lessened water stress or did not greatly affect model 

performance. A comparison of R2 values demonstrates that SDA helped to explain 4.8% more variation in 

observed NDVI values compared to the free model. Intuitively, the site-years with the greatest jumps in 

NDVI accuracy also usually saw great improvement in yield accuracy, highlighting a generally well-

defined physiological relationship between vegetation and grain yield in APSIM’s simulation of maize and 

soybean development. The two site-years where SDA reduced NDVI accuracy were MN in 2015 (+50% 

RMSE) and IN in 2014 (+10% RMSE).  

 The impact of SDA on precision in both yield and NDVI estimates was largely mixed. Roughly 

47% and 53% of site-years saw reduced precision (i.e., higher weighted variance) in estimates of NDVI 

and yield, respectively. On average, precision was reduced by 126% for NDVI estimates and by 40% for 

yield estimates. However, these average effects were highly skewed by two large outliers where precision 

was decreased by more than 900%. After removing the outlying site-year for both state variables SDA’s 

average impact was more moderate with a 10% reduction in NDVI precision and a 15% increase in yield 

precision. The two site-years with the greatest reduction in NDVI precision (i.e., reduction by 2209% and 

280%) correspond with the site-years where yield accuracy was also dramatically reduced with SDA (i.e., 

OH 2013 and 2015). Intuitively, reduced constraint in NDVI seems to have led to reduced yield 

performance.  

 

Tile drainage 

 Across the 19 site-years simulated in this study, the free model and SDA showed overall poor 

performance in estimating annual drainage with nRMSE values ranging from 18-215% with a median value 

of 54.3% with SDA and from 20-250% in the free model with a median value of 52.4%. In the site-years 

with the lowest accuracy, APSIM often overpredicted drainage in both the free model and SDA. However, 

these cases of large overestimation in drainage were also among those site-years that were most improved 

with SDA. Since SDA resulted in a net loss of soil water for all site-years in this study, it is unsurprising  
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Figure 3.6.  Scatterplots comparing changes in cumulative soil water deficits due to SDA with relative changes in 
yield and NDVI RMSE values across all site-years. Least squares regression lines are given by a black dashed line 
and the Spearman rank-order correlation coefficient is included for each scatterplot. Single asterisks (*) denote 
significant monotonic relationships with p-values < 0.05. Change on both axes is defined as the SDA estimate less the 
free model estimate. Change in cumulative soil water deficit is given as the difference of the mean annual sum of the 
3 deficit factors across ensembles, such that a negative value on the x-axis indicates reduced crop water stress.  

 

that 72% of the site-years where SDA improved estimates of annual drainage were cases where the free 

model overestimated tile flow (Fig. 3.7). In these cases, SDA functioned to remove available water from 

the soil profile and correctly lower the amount of water lost from the system.  

SDA improved accuracy in 58% of drainage estimates compared to the free model; these improved 

site-years were either low-yield maize years or soybean years. The other 42% of site-years where SDA 

reduced accuracy in drainage estimates were typically maize years, aside from the soybean year at MN. 

Beyond crop type, two other variables help explain SDA performance in tile drainage constraint: (1) 

increased crop water uptake and (2) drought conditions. Cases where SDA reduced accuracy typically had 

higher uptake increases and lower drought intensity (Fig. 3.8). Conversely, site-years where SDA improved 

drainage accuracy were often drier, especially when crop water uptake was increased by the system.   

 SDA’s impact on precision for annual drainage estimates was also highly variable. Although 63% 

of site-years saw improvements in precision, SDA’s effect on precision across site-years was highly skewed 

to the left. Thus, on average, SDA decreased precision by 3.4%, but the median effect was an 18% increase. 

At the site-year level, the change in weighted variance for annual drainage estimates was strongly and 

positively correlated with the change in weighted variance for SM7 estimates, the state variable that 
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describes the soil moisture content in the lowest soil layer (Fig. 3.9). This finding indicates that SM7 

constraint propagated as a top-down constraint for tile drainage in the presented system.  

 

 
 
 
Figure 3.7.  Time series of cumulative drainage estimates from the two schemes for each site-year with the mean 
daily estimates demonstrated with line graphs and the 95% credibility interval demonstrated by the shaded regions. 
Black dashed lines represent the observed cumulative drainage for each site-year.    
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Figure 3.8.  Scatterplot 
comparing the change in 
estimated mean crop water 
uptake between SDA and the 
free model with the 
proportion of drought days 
for each site-year. Color 
indicates the impact of SDA 
on annual drainage accuracy. 
A dashed black line is 
included to demonstrate an 
effective separation of the 
two classes across these two 
dimensions. 

  

 

 

Figure 3.9.  Scatterplot 
comparing the relative 
change in weighted 
variance for SM7 with that 
of annual drainage. The 
least squares regression line 
is shown with a blue 
dashed line, and the 
Spearman rank-order 
correlation coefficient is 
shown in text. The 
correlation coefficient is 
significant with a p-value < 
0.01.  

 
 
Nitrate load 

 Next to annual drainage, APSIM also struggled to accurately estimate annual NO3 load for the 

tested site-years in this study (Fig. A.6). For the free model, nRMSE values ranged from 23-681% with a 

median value of 83.7% and, for SDA, nRMSE values ranged from 17-833% with a median value of 86.9%. 

At the site-year level, the free model commonly struggled when site-years had a low annual NO3 load to 

annual drainage ratio. These were typically site-years at IL or MN (Fig. 3.10).  

Among state variables considered in this analysis, estimates of annual NO3 load were the most 

poorly constrained by SDA in terms of accuracy and precision. SDA’s impact on precision was split, 

increasing precision in 53% of site-years and reducing precision in 42% of site-years. Moreover, accuracy 

was improved in 32% and reduced in 58% of SDA estimates. Among those 6 site-years where SDA 
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improved NO3 load accuracy, SDA typically reduced estimates compared to the free model. These sites  

were often maize years characterized by high amounts of input winter precipitation (Jan-Apr). On the other 

hand, no clear environmental nor agronomic trend was identified among those 11 site-years where SDA 

reduced accuracy.  

 

Soil moisture time series quality  

 Across the 19 site-years, the distribution of ||S||2 was highly right-skewed. The greatest outlying 

points included MN in 2014 and 2017, which both had ||S||2 values that are at least 2x as great as the next 

noisiest site-year (Fig 3.11). The 3 OH soil moisture time series were the next noisiest. In comparing values 

of ||S||2 with system performance, the expectation was that noisier sensor observations would demonstrate 

poorer performance. At the least, performance in SM3 and SM4 estimates was expected to be strongly 

related to time series quality. However, a simple correlation analysis of ||S||2 against system performance 

for all state variables did not reflect these expectations. The analysis only indicated significant monotonic 

relationships with ||S||2 for NDVI accuracy (rs = 0.628, p = 0.005) and SM7 accuracy (rs = -0.8, p = 0.014). 

With increasing noise in the soil moisture time series, SDA reduced NDVI accuracy and increased SM7 

accuracy. There were no significant relationships between noise and state variable precision. 

 
DISCUSSION 

 This study highlights how SDA’s impact on downstream model estimates depends on each state 

variable’s sensitivity to the assimilated state variable (i.e., soil moisture). Lower layer soil moisture 

estimates—the most sensitive state variables evaluated—were the most strongly constrained. Figure A.8 

demonstrates the significant linear relationship between daily changes in forecasted SM3 and SM4 due to 

SDA and daily changes in soil moisture estimates for all deeper soil layers. However, as expected with a 

cascading water balance model, the strength of the linear relationship weakens as the vertical distance  

 

Figure 3.10.  Scatterplot 
demonstrating the relationship 
between free model relative error in 
annual NO3 load estimates and the 
observed ratio of annual NO3 load to 
drainage for each site-year. Colors 
indicate the site location for each 
point. The Spearman correlation 
coefficient is shown in text and is 
significant with a p-value < 0.05.  
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Figure 3.11.  Column chart demonstrating the computed spectral norm of the noise variance matrix for each site-
year soil moisture time series. The x-axis labels, as well as the fill color, indicate site location. 
  

 
between soil layers increases. In the model, soil moisture in each layer can influence soil moisture estimates 

of deeper soil layers, but only indirectly through its influence on the soil moisture in the layer immediately 

below it. Therefore, the influence of the assimilation layers is reduced by each subsequent soil moisture 

process down through the soil profile and is weakest in the final soil layer (SM7). Yet, the constraint of 

SM7 was still quite strong in this study. By assimilating soil moisture for two upper soil layers into the 

APSIM model, the accuracy of soil moisture estimates improved immensely by simply leveraging the pre-

existing model structure (compare to Liu et al., 2017).  

 Crop yield showed the next strongest constraint in this study. However, as noted in Chapter 2, its 

sensitivity to soil moisture and its constraint with soil moisture SDA were conditional (Lu et al., 2021). 

While changes in soil moisture influenced lower layer soil moisture at all analysis time steps, crop yield is 

only influenced when the changes affect crop water stress. Daily crop water uptake is determined in APSIM 

as the minimum of crop water demand and soil water supply. Therefore, SDA could only influence crop 

yield when the soil water adjustment pushes the soil water supply to be above or below the demand 

threshold. Any other type of change in soil moisture had no effect on daily crop development. There do 

exist other pathways that soil moisture can impact crop yield in APSIM, like soil N cycling, but these 

processes did not play a strong role in this study.  

 The impact of soil moisture SDA on APSIM drainage estimates can also be beneficial given certain 

conditions. As shown in the results, drainage was affected by SM3 and SM4 through 2 pathways: (1) 

changes in total soil water with assimilation adjustment and (2) changes in crop water uptake due to changes 

in crop water stress. The role of each of these pathways varied over the course of the year, such that the 
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presence of a growing crop and root system weakened the sensitivity of drainage estimates to changes in 

the assimilation layers. To quantify this change in sensitivity, daily model forecasts were divided into two 

categories—with crop water uptake (June-Sept) and without crop water uptake—and the relationship 

between changes in SM3 and SM4 and changes in drainage was analyzed separately for each group. There 

was not a significant linear relationship when looking at SM3 changes in either case. However, the linear 

relationship between changes in SM4 and changes in daily drainage was stronger when no crop was present 

(r = 0.23, p = 0.00) than when a crop was present (r = 0.14, p = 0.00). This is similar to the findings of Hu 

et al. (2008), who identified notable changes in drainage dynamics during rapid crop growth compared to 

out-of-season dynamics in SPWS model simulations. In this study, annual drainage estimates tended to 

improve in dry years where crop yield was still underpredicted.   

 Among the state variables considered in this analysis, NO3 leaching has the weakest and most 

complex relationship with SM3 and SM4 in APSIM. Therefore, it follows logically that the presented 

system performed most poorly in its constraint of annual NO3 leaching estimates. In APSIM, daily NO3 

leaching estimates are computed as the product of two different daily values: estimated NO3 concentration 

in the lowest soil layer and estimated tile drainage. Therefore, in addition to its impact on drainage, SDA 

can affect NO3 load estimates through (1) changes in N cycle processes via soil moisture rate factors (Fig. 

2.3) and (2) changes in the vertical movement of soil water (and N solutes) through the soil profile. The 

convoluted nature of this system, as well as limited observations tracking soil N and soil water cycle 

components, made identifying a trend in NO3 leaching constraint difficult across the 19 site-years in this 

study. The prediction error for each site-year seemed to originate from its own unique pathway. In a 

validation study of APSIM N processes, Sharp et al. (2011) also observed inconsistent model behavior in 

annual leaching estimates for their experimental site in New Zealand, when simulating 3 years of a potato-

rye rotation. Their final calibration of the model process only improved one of the annual estimates but did 

not constrain estimates in the other two years.  

Several past studies have identified nitrate leaching estimates as a great forecasting challenge 

(Stewart et al., 2006; Sharp et al., 2011; van der Laan et al., 2014; Brilli et al., 2017). This study highlighted 

a few ways in which leaching estimates could be improved in APSIM by accounting for misrepresented or 

missing processes. First, the APSIM model currently does not account for snow, freezing soils, nor spring 

snowmelt in its soil water processes. Within numerous site-years, there were large overpredictions of 

drainage in the early winter months (i.e., Jan-Feb) and large underpredictions in the spring (i.e., Mar-May). 

Such behavior could point to missing snow-related processes in APSIM, an issue also highlighted by Ojeda 

et al. (2018) who used the model to simulate continuous-corn and corn-soybean rotations at 3 Indiana 

locations and saw great underpredictions of early spring drainage. Moreover, APSIM also does not 

currently account for the effect of tillage nor residue cover on water infiltration and movement in the soil 
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profile (Malone et al., 2007; Brilli et al., 2017; Ojeda et al., 2018). Therefore, the model cannot distinguish 

between certain management practices across different locations when predicting infiltration. This can help 

explain the strong linear relationship between soil moisture innovations and simulated precipitation, such 

that the model overpredicted soil water inputs on high-precipitation days (Fig. 3.4). Accounting for 

management differences could help clarify the muddled results in this study’s nitrate leaching errors. 

Though these model changes would be nontrivial, incorporating them could greatly benefit APSIM’s 

understanding of the soil water and soil N cycles and improve future estimates of soil water and soil N 

fluxes.  

 In this study, the inconsistent impact of soil moisture SDA on estimates of annual drainage further 

emphasized the important caveats in the presented system first discussed in Chapter 2. Across all site-years 

in this study, SDA led to a net reduction in total soil water. However, instead of redistributing this water to 

other model components, the workflow simply eliminates this water from the system. Though this 

elimination can correct precipitation error in the inputs as previously discussed, it can also serve to violate 

the system’s water balance, creating water deficits in other model estimates. Nonetheless, there are cases 

where this approach still successfully constrained drainage despite a possible violation. As shown in Figure 

3.8, soil moisture SDA was more effective in improving drainage estimates in site-years with more frequent 

drought conditions and with smaller increases in crop water uptake. In these cases, it could be speculated 

that the water eliminated from the system via assimilation was “supposed” to be lost from the system via 

crop water uptake or evaporation. Therefore, its removal was beneficial for the sake of improving drainage 

estimates but costly for estimates of yield (which were largely underestimated in this study) or other soil 

water cycle components. Such a hypothesis reflects the findings of past studies where yield inaccuracies 

were partially attributed to inaccurate drainage predictions (Malone et al., 2007; van der Laan et al., 2014). 

However, this possible explanation is purely speculation in the context of this study and essentially useless 

for informing future system applications. The only way to improve constraint of annual drainage with soil 

moisture SDA is to confront model predictions with observations spanning more (or all) components of the 

soil water cycle. Considering the hypothesis above, observations on transpiration and evaporation could be 

critical for identifying biases and advancing system performance (Stewart et al., 2006; Lu et al., 2021). A 

potential future direction could be to leverage remote sensing data products, such as the ECOSTRESS 

evapotranspiration product, to fill this gap (Fisher et al., 2020). It would help constrain two important water 

loss pathways (i.e., evaporation and transpiration) in agricultural systems and, thus, improve the model’s 

estimate of how much water is moving through the soil profile.  

Due to the weak relationships between SM3 and SM4 and the other APSIM state variables 

evaluated in this study, the potential for perfect constraint of all or any state variables with soil moisture 

SDA was low. To improve the constraint of other state variables, other types of observations with more 
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direct influence should be considered for assimilation. For example, observations of plant and soil N could 

help to constrain and correct N cycle processes, leading to better estimates of nitrate leaching (van der Laan 

et al., 2014). Such an approach could also lead to more accurate parameterization of crop N uptake, an 

APSIM process which has been recognized as inaccurate in the past (Malone et al., 2007). Additionally, 

the results of this study suggest the assimilation of daily drainage could improve estimates of nitrate 

leaching. Daily innovations for drainage explained about 21.5% of the variation in daily innovations of 

nitrate leaching in a linear regression analysis. Malone et al. (2007) identified a similar relationship between 

errors, attributing a large portion of error in predicting nitrate leaching to poorly estimated drainage. 

Furthermore, the assimilation of drainage observations could also serve to inform and nudge soil moisture 

estimates by leveraging their modeled covariance through the PDA configuration.  

 The analysis of soil moisture innovations revealed two important takeaways of this study. First, it 

highlighted an important benefit of soil moisture SDA: a systematic way to offset input error (Ines et al., 

2013). Gridded weather datasets are necessary for making agricultural forecasts at broad scales but are not 

able to accurately represent local weather patterns, which are critical to understanding crop development. 

In particular, daily precipitation can be highly variable at small spatial scales yet is an important factor for 

estimating daily crop growth (de Wit and van Diepen, 2007; Thaler et al., 2018). By using a coarse 

resolution gridded weather dataset to estimate daily precipitation for the sites in this study, additional biases 

might be introduced into each day’s forecast and propagated through the model (Fig. A.9). However, by 

assimilating observed soil moisture into the model at daily time steps, the adjustment step partially 

accounted for this input error, increasing total soil water when precipitation input was too low and 

decreasing total soil water when precipitation input was too high (Fig. 3.4). This is a strong advantage of 

SDA when observed weather information is not available for a location of interest.  

 The second important point of the soil moisture innovation analysis concerns the strong 

autocorrelation in soil moisture innovations. By assimilating observed soil moisture into the model, the 

system integrated all available information to optimize and set up the initial conditions for the next forecast. 

Yet, each day’s soil water adjustment was highly correlated with the previous day’s adjustment. This result 

points to biases in the model process that persist despite improved initial conditions. A study by de Wit and 

van Diepen (2007) highlighted similar temporal correlation in soil moisture innovations when assimilating 

maize fields and attributed the persistent errors to poor cultivar parameterization and inaccurate initial 

conditions. However, in this study, it is difficult to pinpoint the origin of these errors without sufficient 

observations. Daily forecasts of soil moisture depend on initial soil water, daily precipitation inputs, daily 

estimates of soil water outputs (e.g., evaporation, transpiration, drainage), and the previous day’s soil 

moisture estimate, so any combination of those processes could have caused error in soil moisture 

predictions. Nonetheless, as other studies have observed similar soil moisture overpredictions in APSIM 



 
 

60 

(Sharp et al., 2011; Archontoulis et al., 2014), it seems likely that APSIM’s soil water processes could be 

improved.  

 Considering the inherent variability of soil water dynamics, a relatively simply approach for 

decomposing the soil moisture time series was employed in this study (Basak et al., 2017). However, it 

provided a necessary measure of assimilation data quality and, thus, allowed for more appropriate 

comparison of the system applications presented in this study. Estimates of observation uncertainty (R) 

from the Miyoshi algorithm also helped validate this approach. Across all site-years, average spectral norm 

of observation uncertainty (R) was significantly and positively associated (rs = 0.707, p = 0.001) with ||S||2 

indicating that the applied decomposition method and Miyoshi understood observation uncertainty 

similarly for each site-year. Yet, contrary to expectations, differences in soil moisture data quality did not 

have a strong impact on SDA performance at the study sites. This, however, could point to the strength of 

the data-assimilation system itself. In the case of accuracy, the presented system was designed to adaptively 

estimate observation uncertainty based on filter performance using the Miyoshi algorithm. These estimates 

were likely able to account for sensor variability, reducing the influence of the observed distribution in the 

EnKF and suppressing the weight of noisy estimates when appropriate. In the case of precision, the impact 

of sensor noise may have been subdued on account of the EnKF. The EnKF computes an analysis 

distribution with lower uncertainty than either the observed or forecast distribution alone. If estimated 

observation uncertainty (or sensor noise) was high, a more confident forecast distribution would have 

helped to reduce the uncertainty propagated forward into the adjusted system state, diminishing the impact 

of sensor noise. Considering these 2 mechanisms, the presented EnKF-Miyoshi workflow could be an 

invaluable approach for assimilating datasets with low replication and poorly estimated uncertainties.  

 Considering past crop modeling works, this study is the first to apply data-assimilation methods to 

improve estimates of soil moisture, nitrate leaching, tile drainage, and yield at multiple locations across 

several years. However, other studies have employed calibrated crop models to achieve similar goals with, 

often, greater reported success than reported here. For example, Malone et al. (2007) used APSIM to 

simulate 12 site-years at an Iowa site and achieved RMSE values of 0.2525 Mg/ha and 0.372 Mg/ha for 

maize and soybean yields, respectively. This study reported a median RMSE value of 1.27 Mg/ha for both 

crops with SDA. Malone et al. also achieved lower RMSE values for drainage (15.5 vs. 145 mm) and nitrate 

leaching (6.0 vs. 21.6 Kg NO3-N/ha) when compared to this study’s median values. Martinez-Feria et al. 

(2019) used the APSIM model to simulate 7 long-term experimental sites across the U.S. Midwest, 

including 2 TD sites presented in this study (i.e., IN and MN). They reported nRMSE values for annual 

nitrate load and crop yield as 40.2% and ~13%, respectively, which also outperformed the median nRMSE 

values of 52.4% and 20.7% achieved here.   
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Yet, there is an important distinction to highlight between these past works and the results presented 

in this chapter. Though past modeling techniques were successful in estimating specific state variables for 

a few site-years, the model applied in those works could not be reasonably applied more broadly in space 

without great losses in accuracy due to the way in which they were carefully calibrated (Wallach, 2011; 

van der Laan et al., 2014; Seidel et al., 2018). For example, Puntel et al. (2016), who used a multistep 

calibration approach for their study, state that the application of their calibrated APSIM model can be 

justified for years outside of their time range but not for other locations. Their parameterization is limited 

to a certain genetic, environmental, and management inference space. Archontoulis et al. (2014), who also 

calibrated the APSIM model using 5 independent datasets for sites near Ames, Iowa, also discuss limitations 

in the application of their intensively calibrated model. They note that the model may require additional 

calibration for cropping systems with rotations or that fall outside of the evaluated climate-soil space. Li et 

al. (2014) predicted drainage satisfactorily for 5 sites in northern China with a calibrated DNDC model but 

expressed concern about broader application of the model due to soil heterogeneity.  

Intensive calibration can be practical if only a single location is to be simulated. However, as 

demonstrated in this study, the immense variability in agricultural systems across time, space, and 

management factors cannot be well-represented by one single model parameterization. Consider, for 

example, the error in nitrate leaching estimates across the 19 tested site-years. Despite an intensive 

investigation, the error patterns were unpredictable in terms of timing, magnitude, and direction. No clear 

trend was found. This demonstrates the need for site-level calibration for accurate nitrate estimates since 

errors were so variable across site-years. However, the resources and time needed to apply the necessary 

calibration measures for 19 site-years, let alone an entire region, would be immense (Seidel et al., 2018). 

Intensive site-level calibration would also provide little to no benefit in terms of systematic model 

improvement and would not lessen calibration efforts for future applications. Instead, model calibration can 

lead to an overfit model and/or a fortuitous cancellation of errors within calibrated model processes. Such 

a model will not be reliable for extrapolated applications (van der Laan et al., 2014).  

On the other hand, this work, which aims to develop and test a forecasting system that can be 

confidently applied at regional scales, holds generalizability as a central goal. All presented simulations 

were performed by the same version of the APSIM model, and little to no changes were made to the original 

model parameterization prior to application across the study sites. At the site-level, there were only two 

major changes applied: (1) the adjustment of the soil profile to account for artificial tile drainage and (2) 

the selection of soybean maturity group range. Apart from these changes, all other differences in model 

configuration between sites and site-years were applied systematically and with propagated uncertainty 

within the system. Thus, like the work of Guerif and Duke (2000), this study investigates how uncertainty 

propagation and data assimilation can help account for the site-level nuisances which traditional model 
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calibration techniques target. As this system continues to be iteratively enhanced and generalized, the end 

goal is to be able to apply it uniformly and effectively across a gridded region. The reported differences in 

accuracy measures can be attributed to this difference in philosophy and serve as a baseline for further 

improvement.  

Yet, for the sake of generalizability, this study has one great shortcoming: the availability of soil 

sensor soil moisture data. As they are expensive and difficult to collect, sensor-based soil moisture data 

would be an unrealistic data source for regional forecasting purposes. Alternative types of soil moisture 

data would need to be tested in the presented system if it were to be applied at regional scales. One possible 

solution could be soil moisture estimates derived from remote sensing (RS) imagery. RS soil moisture data 

products are readily available and have the strong advantage of broad and consistent spatiotemporal 

coverage. However, these data will likely introduce new caveats into the system, as they characterize soil 

moisture with greater (and poorly characterized) uncertainty and at different scales than soil sensors (Huang 

et al., 2019; Peng et al., 2021). Therefore, testing the utility of this workflow with RS-based soil moisture 

data products will be imperative prior to broader applications of the system. The current system with soil 

sensor soil moisture shows strong constraint of soil moisture and crop yields. Can the system still be 

effective in these constraints with RS soil moisture? The analysis presented in Chapter 4 investigates this 

possibility.  



 
 

63 

CHAPTER 4  

SYSTEM APPLICATIONS AT SCALE: EXPLORING THE OPPORTUNITIES AND 

CHALLENGES OF ASSIMILATING REMOTELY SENSED SURFACE SOIL MOISTURE 

DATA ASSIMILATION 

 

INTRODUCTION 

 Many of today’s most pressing agricultural issues operate at scales that cannot be easily 

characterized by field experiment data alone. For example, there is great concern about the increasing 

incidence and intensity of droughts due to climate change and the impact that such natural disasters could 

have on agricultural productivity and stability in the U.S. Midwest (Bolten et al., 2010). However, to 

reliably investigate such questions at the regional scale, tools are needed that can consistently simulate 

agroecosystems across broad heterogenous landscapes with accuracy and precision. Such a tool must 

account for the spatiotemporal uncertainties in important agricultural variables—such as soil moisture, 

weather, soil properties, and management—at spatial scales that are relevant to the original research 

question. This will be especially important in the coming decades as social and environmental pressures 

continue to drive drastic changes in the spatial configuration and management of agroecosystems (Weiss et 

al, 2020). As demonstrated in Chapters 2 and 3, the soil moisture data-assimilation system presented in this 

work is scalable and capable of efficiently and systematically incorporating uncertainty across relevant 

dimensions when data are available to improve simulations. However, the data products previously 

employed in the system to constrain spatiotemporal variability in soil moisture (i.e., in situ soil moisture) 

are not available at the required spatial scales. To overcome this limitation, remote sensing (RS) soil 

moisture data products, which can effectively capture spatiotemporal variability in soil moisture dynamics 

across regions, could be invaluable for agricultural forecasting efforts, especially when employed in data-

assimilation systems (Dorigo et al., 2007; Huang et al., 2019; Weiss et al., 2020). Over the past few decades, 

numerous studies have successfully assimilated RS soil moisture into process-based models to incorporate 

spatial heterogeneity within soil water processes and, thereby, improve predictions. However, due to the 

nuances and required resources for many such studies, there is still work to be done to make the assimilation 

of RS soil moisture more practical, effective, and generalizable for the purposes of broader predictions.  

 For example, an assimilation study by Liu et al. (2021) assimilated RS-based LAI and soil moisture 

estimates across cropland in China’s Loess Plateau and experienced great success in constraining estimates 

of yield in the CERES-Wheat model across irrigated and non-irrigated regions. However, the high-

resolution estimates of soil moisture assimilated in this study were derived based on a modeled relationship 

between Sentinel-1 radiance information, a water cloud model, and a high-quality, expansive field 
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experiment dataset covering 45 sites across their specific study region. This method helped to localize the 

derivation of soil moisture estimates for their study. However, to recreate the performance of this study for 

a different region, a similarly comprehensive dataset with observed in situ soil moisture would be required. 

Similarly, a study by Chakrabati et al. (2014) downscaled the SMOS RS soil moisture data product from 

25 km to 1 km and, then, assimilated the downscaled data product into the DSSAT crop model. Their system 

was able to improve estimates of soybean yield for 2 growing seasons in the lower La-Plata Basin in Brazil 

when compared to the free model. However, their downscaling approach required in situ observations of 

soil moisture and soil texture which were available at high temporal resolutions (i.e., every 3 hours) for 

roughly 26 site-years. Thus, this assimilation approach serves as another example of a systems approach 

that would be difficult to replicate for new locations and at broader scales.  

Yet, the development of a RS soil moisture data-assimilation system that is both high-performing 

and generalizable is no easy task. The application of RS soil moisture (and other RS data products) in SDA 

poses several challenges for agricultural forecasting (Huang et al., 2019). First, uncertainty and biases in 

RS data products are typically poorly defined (Huang et al., 2019). RS soil moisture estimates are, 

themselves, based on modeled relationships, and, as they are predicted as a function of surface reflectance 

information, the largely unknown uncertainties in the raw radiance information and in the employed model 

propagate unsupervised into soil moisture estimates (Weiss et al., 2020). Additionally, although estimates 

of RS soil moisture are developed to represent surface soil moisture, this representation is typically 

imperfect in its characterization of the true, in-field values. This stems from a modeled relationship that has 

been generalized across diverse landscapes (not just agricultural landscapes) and a spatial resolution that is 

larger than agricultural fields (Huang et al., 2019). The downscaling approach by Chakrabati et al. (2014) 

and the localized derivation of Liu et al. (2021) helped their data-assimilation systems overcome this 

challenge. Compared to other state variables, surface soil moisture, which characterizes the first 5 cm of 

the soil profile, has also demonstrated limited constraint of soil-plant-water dynamics in past studies. 

Among others, De Lannoy et al. (2007) and Monsivais-Huertero et al. (2010) both found the assimilation 

of near-surface soil moisture to be far less effective than the assimilation of other soil layers when 

constraining soil moisture profiles due to largely de-coupled moisture pools (Mishra et al., 2021). Yet, since 

surface soil moisture is typically the layer where fertilizers are added, its accurate estimation is nonetheless 

important for today’s agroecosystems (Verburg and CSIRO, 1996).   

 Considering these limitations, there are many clear opportunities for improvement when it comes 

to the generalizability and performance of RS soil moisture SDA in crop models. First, even though it is 

well known that uncertainty in RS data products is often not well characterized (Huang et al., 2019), there 

have been few attempts to estimate uncertainty in RS soil moisture estimates in the context of SDA. Instead, 

many studies utilize reported accuracy metrics (i.e., standard errors) from the literature (e.g., Dente et al., 
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2008; Ines et al., 2013; Lu and Steele-Dunne, 2019) or compare the RS estimates to in situ values available 

for their study region (e.g., Liu et al., 2021). However, the generalizability of such estimates is unknown. 

Since the performance of data-assimilation systems can be highly sensitive to prescribed values of 

observation uncertainty (Ouaadi et al., 2021), there is great potential for an algorithm, such as the Miyoshi 

algorithm, to better represent system uncertainties and to improve assimilation performance. Second, past 

SDA studies have typically assimilated soil moisture estimates from a single RS data product and, therefore, 

have leveraged only a small fraction of the available information. Combining information from several data 

products could help to reduce uncertainties related to the derivation of the estimates (Beck et al., 2020) and 

reduce the assimilation interval (Huang et al., 2019). In fact, Lu and Steele-Dunne (2019) found that 

assimilating SMOS and SMAP soil moisture estimates together increased assimilation frequency by 41% 

and outperformed the performance of the free model and the assimilation of each data product individually. 

Other studies have echoed the importance of high assimilation frequency when assimilating soil moisture 

to improve model constraint (e.g., De Lannoy et al., 2007; Pauwels et al., 2007). Finally, the data, 

derivation, and availability of RS soil moisture data products continues to improve. Soil moisture can be 

inferred from optical, thermal, and microwave RS information. However, the majority of recent RS data 

products have focused on the use of microwave radiance—from both passive and active sensors—to 

estimate soil moisture as it is less impacted by cloud cover (Peng et al., 2021). By combining information 

from passive and active sources, new data products aim to achieve higher spatial and temporal resolution 

(Lievens et al., 2017). Further evaluation and comparison of such RS soil moisture data products in SDA 

contexts can help drive innovation in agricultural forecasting methods and help guide the generation of 

future remote sensing data products.  

 In the following study, 4 critical issues regarding RS-based soil moisture SDA are investigated in 

the context of agricultural forecasting. These issues concern (1) the trade-off between temporal resolution 

and spatial resolution in assimilated RS soil moisture observations, (2) the impact of combining 

observations from different RS data products on system constraint, (3) the value of systematic estimates of 

observation uncertainty on EnKF performance, and, finally, (4) the potential for surface soil moisture to 

constrain model estimates related to root-zone soil moisture and crop productivity. To investigate these 

issues, the developed data-assimilation system was adapted and applied to assimilate surface soil moisture 

observations from 4 different RS soil moisture data products for 10 site-years across the U.S. Midwest. The 

included data products varied broadly in derivation, revisit time, and spatial resolution and were evaluated 

both individually and in combination with other data products with regard to their constraint of downstream 

APSIM state variables. This study presents a generalizable and robust approach for assimilating RS soil 

moisture into a crop model and highlights important insights for the future innovation and expansion of 

these methods.  
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This chapter has three main objectives:  

1. To assimilate 4 RS soil moisture data products individually using the presented data-assimilation 

system and to evaluate and compare their downstream constraint of soil moisture, NDVI, and 

crop yield with respect to the spatial and temporal resolution of the observations. 

2. To assess the added impact on system performance when combining soil moisture observations 

from different RS data product.  

3. To investigate the potential downstream constraint of RS soil moisture data assimilation on soil 

water dynamics and crop development for experimental sites across the U.S. Midwest. 

 

MATERIALS AND METHODS 

Study sites 

 The 5 study sites presented in Chapter 3 were also considered in this study. However, due to the 

limited temporal coverage of some RS data products, only site-years in 2015 and later were evaluated. 

Aside from the RS soil moisture data products, no additional site-level observations were introduced for 

evaluating system performance. Evaluation focused on the soil sensor soil moisture, yield, and NDVI 

observations for the site-years as described in previous chapters.  

 

Remote sensing soil moisture  

 In this chapter, 4 RS soil moisture data products, spanning different temporal and spatial 

resolutions, were extracted at the point-level for the study sites and utilized in the data-assimilation 

workflow (Table 4.1). Unlike the sensor-based soil moisture observations employed in previous chapters, 

the RS-based soil moisture observations represent surface soil moisture, which characterizes the first 5 cm 

of the soil profile. Only estimates from April through November were considered to avoid issues with snow 

cover and freezing soils in the winter months. Upon introducing each data product below, the study IDs 

provided in Table 4.1 will be used to identify them for the duration of this work.  

 
ESA-CCI 

 The soil moisture dataset with the coarsest spatial resolution in this study is the ESA-CCI soil 

moisture product. Each year, the European Space Agency Climate Change Initiative (ESA CCI) 

algorithmically merges active and passive Level 2 microwave sensor data products to estimate daily surface 

soil moisture across the globe for over 40 years. Three soil moisture products are produced annually: 

ACTIVE, PASSIVE, and COMBINED. Dorigo et al. (2017) provides the full documentation on how these  
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Table 4.1.  Overview of remote sensing soil moisture data products used in this study.  
 

Product Study ID Temporal 
coverage 

Temporal 
frequency 

Spatial 
resolution 

Average 
availabilitya 

Average 
variance Reference 

ESA-CCI ESA 1978-2019 1-2 days 0.25°  219 days 0.0003 

Dorigo et al. 
(2017); 
Gruber et al. 
(2019); 
Gruber et al. 
(2017) 

SMAP-
Hydroblocks 

SMAPHB 2015-2019 3 hours 30 m  127 days 0.0050 
Vergopolan et 
al. (2021) 

SMAP-
Sentinel1 

1KM/3KM 2015-now 12 days 1 km/3 km 7 days 0.0025 
Das et al. 
(2019) 

aAvailability calculated after removing observations in the winter months (i.e., Dec-Mar) and are given on a per-
year basis.  

 

data products are produced. The COMBINED product (version v06.1), which includes daily estimates of 

uncertainty, was extracted for use in this study through the ESA-CCI website in January 2022. Several past  

studies have assimilated this data product into process-based models with varying levels of success (e.g., 

Zhou et al., 2016; Liu et al., 2017; Liu et al., 2018; Naz et al. 2019).  

 

SMAP-HydroBlocks 

 The SMAP-HydroBlocks soil moisture dataset, the data product with the highest spatial resolution 

in this study, was first introduced in 2021 by Vergopolan et al. (2021). The data product leverages 

information from the HydroBlocks land surface model, a Tau-Omega radiative transfer model, machine 

learning, satellite-based data products, and in situ observations to estimate surface soil moisture with 30-

meter resolution across the contiguous United States. The Hydroblocks model was coupled with a Tau-

Omega radiative transfer model (HydroBlocks-RTM) and used to simulate soil moisture, soil temperature, 

and brightness temperature at a 3-hour, 30-meter resolution. Brightness temperature estimates from 

NASA’s Soil Moisture Active Passive (SMAP) mission were then merged with the HydroBlocks-RTM 

estimates using a spatial cluster-based Bayesian merging scheme and, using the inverse HydroBlocks-RTM, 

soil moisture was estimated at the same 3-hour, 30-meter resolution. Vergopolan et al. (2021) report an 

RMSE of 0.07 mm3/mm3 after comparing SMAP-Hydroblocks estimates to in situ observations from 233 

independent experimental sites. The published article provides more detail on the estimation materials and 

methods.  
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Figure 4.1.  Time series for surface soil moisture estimates from the 4 RS data products included in 
this study. Points indicate the mean values for all data products. Ribbon plots are used to demonstrate 
the 95% confidence interval around the mean estimates for ESA and SMAPHB, as they are more 
complete time series. 95% confidence intervals for the sparser data products—1KM and 3KM—are 
represented by point ranges.  
 

 This study is the first to assimilate SMAP-HydroBlocks soil moisture estimates into a crop model. 

Soil moisture estimates were provided at the daily resolution, and site-level estimates were computed as the 

mean value of any data point within 0.0005° of the given site coordinates. The variance of each estimate 

was calculated based on the spatial variability of selected data points and the reported standard error (SE = 

0.07 mm3/mm3) as 

GH6I.,,"J = GH6(9") + $%!	 

where, for site s at the tth available time step, Y represents the site-level soil moisture estimate and y presents 

soil moisture estimates within 0.0005° of the site location.  
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SMAP-Sentinel1 

 The final dataset considered in this study is the SMAP-Sentinel1 soil moisture product, which was 

produced by merging information collected by the SMAP L-band radiometer and the Copernicus Project 

Sentinel-1 C-band radar. The SMAP mission was intended to acquire high spatiotemporal resolution soil 

moisture estimates globally, but, in July 2015, the SMAP radar became inoperable. Therefore, Sentinel-1 

active microwave data were used to supplement passive microwave sensor information from the still-

operating SMAP radiometer to help account for the system malfunction and to allow for the continued use 

of the active-passive algorithm to estimate surface soil moisture content. The merge increased the revisit 

interval from 3 to 12 days, and data are available at two different spatial resolutions (i.e., 1 km and 3 km; 

Lievens et al., 2017). Upon comparison of the estimates with in situ soil moisture measurements, the 

reported RMSE for SMAP-Sentinel1 soil moisture estimates was roughly 0.05 m3/m3. In this study, this 

value was applied as the standard error for soil moisture estimates at both spatial resolutions and at all 

available time steps. Data was obtained from the NASA Distributed Active Archive Center (DAAC) at the 

National Snow and Ice Data Center (NSIDC) using Python notebooks provided on the NSIDC website. 

Estimates were available for all TD site-years but were not available for IL. 

 

Data-assimilation system 

 In general, the data-assimilation system applied in this chapter is identical to the system presented 

in Chapter 3. However, two notable changes were made and are explained in the following sections. The 

first change concerns the method by which the posterior distribution and the inflation factor are estimated, 

while the second change concerns the formatting and application of the observed data and the simulation 

set-up.   

 

Generalized ensemble filter 

To increase flexibility in model definition and to allow for the relaxation of the normality 

assumptions of the EnKF, an alternative sequential data assimilation approach was tested in this analysis to 

replace the EnKF-Miyoshi method. The new method, which is known hereinafter as the Generalized 

Ensemble Filter (GEF), comprises a fully numerical Bayesian approach to estimating the analysis 

distribution, as well as a variance inflation scalar. The model resembles the approach presented by Raiho 

et al. (2020) and has the following form:  

K	~	L(0.001, 5) 

2	~	@(	O/ , 	P/ + (K − 1) ∗ IQ ∗ P/J) 

.	~	@(2, ") 
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where Q is the estimated forecast inflation scalar and I is the identity matrix. The estimation of the analysis 

distribution (X) and Q was completed using a Markov Chain Monte Carlo (MCMC) approach by leveraging 

the NIMBLE R library (de Valpine et al., 2017). 

For the purposes of this study, the GEF was preferred over the previously applied system when (1) 

assimilating more than 1 observation for a single state variable at a given time step and (2) the observation 

operator (H) was changing over the course of the simulation (i.e., not all data products are available on a 

given day). The Miyoshi algorithm, as implemented in the previous workflow, could not be easily adjusted 

to perform well under these conditions. The GEF also allows for the definition and estimation of more 

complex relationships between observations and model forecasts (e.g., nonlinear observation operators). 

Based on these two advantages, the GEF was developed, tested, and applied over the original workflow for 

all multi-observation assimilation schemes in this study. Preliminary applications of the GEF with the 

sensor-based soil moisture observations from Chapter 3 showed satisfactory performance with the new 

scheme (results not shown). See Figure A.10 for a schematic that highlights the differences in the GEF 

scheme compared to the Miyoshi scheme (Fig. 2.4).  

 
Simulation set-up 

 The next major difference in the system concerns the observation operator and simulation set-up. 

In Chapter 2 and 3, each SDA run had the same observation format and utilized the same data-assimilation 

workflow: two observations of the same type (i.e., soil sensor) that characterize two different state variables 

(i.e., SM3 and SM4) were assimilated into the APSIM model using the EnKF-Miyoshi workflow at time 

steps where both observations were available. However, this chapter introduces new complexities to the 

data-assimilation configuration as all RS observations estimate the same quantity (i.e., surface soil 

moisture).  

First, the Miyoshi scheme was applied to independently assimilate each individual RS data product 

into APSIM. The GEF was not applied when assimilating one observation as the MCMC did not converge 

in these conditions. These individual runs were performed to directly compare the value of different RS 

data products in the context of site-level soil moisture data-assimilation. Next, the GEF scheme was applied 

to jointly assimilate observations from multiple RS soil moisture data products into APSIM following an 

additive approach, such that each subsequent SDA run introduced another RS data product to the 

observation list. The first iteration included observations from one data product and the fourth iteration 

included all available observations. Since the RS data products varied in terms of temporal availability, the 

observation operator (H) was dynamically adjusted within the GEF scheme to reflect observation 

availability each day. A minimum of 2 observations per day were required for data assimilation due to 

limitations of the GEF (i.e., lack of MCMC convergence). Data products were added in succession based  
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Table 4.2.  Overview of system structure, observation format, and naming protocol for data-assimilation runs 
presented in this chapter.  
  

Group Scheme Study ID Included observations 

Individual observations Miyoshi 

SMAPHB SMAPHB 

1KMa 1KM 

3KMa 3KM 

ESA ESA 

Additive observations GEF 

+SMAPHB ESA + SMAPHB 

+1KMa ESA + SMAHB + 1KM 

ALLa ESA + SMAHB + 1KM + 3KM 
 

a Soil moisture estimates from 1KM and 3KM were not available for IL so some runs were not completed for those 
site-years.  

 

on availability, such that the first data product tested had the highest average number of observations per 

year. By sequentially adding new data products, the information contribution of each RS data product could 

be effectively quantified. 

In this study, all RS soil moisture observations were merged with APSIM model forecasts of 

surface soil moisture (SM1). See Table 4.2 for more details on the configuration and naming protocol of 

the runs evaluated in the following sections. The same free model runs evaluated in Chapter 3 will serve 

again here as a baseline for comparison. The runs in this chapter are also consistent with Chapter 3 in 

ensemble number (i.e., n = 100), continuity of Miyoshi parameter values, and first-year initialization period 

length (i.e., Jan 1).  

 

Evaluation metrics 

 For quantifying changes in forecast accuracy and precision, this study utilized only a subset of the 

metrics described in the previous 2 chapters. RMSE, nRMSE, weighted variance, spectral norm, and the 

Pearson correlation coefficient (R) were all employed in this work to help characterize changes in system 

performance across different configurations of RS data products. An innovation analysis of soil moisture 

adjustments was also completed as demonstrated in Chapter 3. The classification of site-years as 

“improved” or “reduced” in terms of forecast accuracy and precision was completed following the same 

approach as outlined in Chapter 3. 
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Evaluated state variables 

 Unlike Chapters 2 and 3, the evaluation of forecast accuracy and precision was not completed for 

the assimilation state variable (SM1) as no observations were available to serve as the “ground truth.” 

Previous chapters employed sensor soil moisture data to evaluate model forecasts of soil moisture. 

However, surface soil moisture was not directly observed with soil sensors at any of the study sites. 

Furthermore, since biases within RS soil moisture data products are not well known and can vary greatly, 

the application of RS estimates for evaluation purposes would not be justifiable (Huang et al., 2019). 

Consequently, evaluation of each run in this work focused on the top-down effects of state data assimilation, 

quantifying how changes in SM1 due to assimilation indirectly impacted the accuracy and precision of 

observed downstream state variables. Evaluated state variables include soil moisture in all observed layers 

(SM3-7), NDVI, and crop yield. Following the inconsistent constraint by the system as presented in Chapter 

3, annual drainage and nitrate load were not evaluated here.   

 

Information contribution 

A new method was introduced in this chapter to quantify the information contribution of each data 

product to system constraint. With each new data product added to the system within the additive runs, the 

average change in µa and Pa across all analysis time steps was calculated relative to the previous system 

estimates. This average change represents the new information contributed by each data product relative to 

the information that had already been added to the system. Higher values indicate more information. Since 

there were no observations to evaluate SM1 constraint, it was not possible to evaluate the quality of each 

data product’s information contribution.  

 

RESULTS 

 The results of this chapter are presented in three distinct sections. The first section focuses on the 

comparison of individual RS data products and their constraint of APSIM state variables in forecast 

accuracy and precision. The second section moves to the comparison of the additive SDA runs and the 

quantification of the information contribution of each added data product and its impact on system 

constraint in APSIM. Finally, the last section presents a closer investigation of APSIM constraint when 

assimilating all available RS information (i.e., ALL) compared to the free model.   

 

Individual runs 

 As expected, the individual influence of each RS data product was heavily dependent on temporal 

availability. ESA, the most widely available data product, had the greatest impact on both assimilation and 

downstream state variables, while assimilation with 1KM and 3KM imposed only slight changes in 
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Figure 4.2.  Boxplots demonstrating the distribution of relative change (%) in state variable (a) accuracy (RMSE) 
and (b) precision (weighted variance) due to the assimilaton of each of the RS data products individually across 
all site-years. Change is computed relative to the free model results. Negative values indicate improvement (e.g., 
(RMSES – RMSEF) / RMSEF). 

 

estimates when compared to the free model. However, ESA did not always lead to improvements in model 

performance. As demonstrated in Figure 4.2a, ESA results were more variable across site-years in terms of 

the accuracy of state variable estimates, in some cases leading to great improvement and, in other cases, 

leading to reduced performance. ESA led to reduced accuracy in predicting SM3 and SM4 in 40% of site-

years but was the most effective in improving accuracy in estimates of annual yield, SM6, and SM7 

compared to other data products. It had mixed impacts on NDVI and SM5. ESA also outperformed the 

other 3 RS data products in constraining forecast precision for all state variables (Fig. 4.2b), improving 

precision in 60-100% of site-years. Importantly, it showed the greatest reduction in the spectral norm of the  

(A) 

(B) 
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Figure 4.3.  The spectral norm was computed 
for the weighted covariance matrix of daily soil 
moisture estimates across all soil layers (i.e., 
SM1-SM7) for each run as a measure of total 
soil moisture precision. The scatterplot 
compares the free model results with the results 
of each individual RS-SDA run. The 1:1 line is 
represented by the black dashed line. 

  

soil moisture covariance matrix when compared to the free model, indicating the best constraint of soil 

moisture precision across the entire profile (Fig. 4.3). 

 Alternatively, the assimilation of SMAPHB, another temporally frequent RS data product, 

demonstrated more conservative performance than ESA across state variables. For almost all state variables, 

it typically performed similarly or better than the free model. Any improvements (or reductions) in forecast 

accuracy were more moderate than observed with ESA. For example, accuracy in NDVI estimates was 

never reduced with SMAPHB, but the greatest improvement observed in the tested site-years was a 10.1% 

accuracy increase. On the other hand, NDVI accuracy was reduced for 40% of site-years with ESA, but the 

maximum improvement was a 67% increase. This trend in the results highlights one important trade-off 

when assimilating more certain observations (i.e., ESA) over less certain observations (i.e., SMAPHB) 

when both data products have unknown biases. In terms of forecast precision, SMAPHB was overall quite 

effective in constraining state variable predictions, especially when compared to 1KM and 3KM. However, 

SMAPHB largely underperformed compared to ESA in this regard. 1KM and 3KM both underperformed 

in accuracy constraint when compared to ESA and SMAPHB, showing little to no change in RMSE when 

compared to the free model.  

Considering the 4 individual runs, more frequent assimilation time steps also led to more robust 

performance of the EnKF-Miyoshi workflow. Filter divergence (i.e., when the observed mean falls outside 

of the 95% credibility interval of the analysis distribution) occurred at 52% and 59% of analysis time steps 

for 1KM and 3KM, respectively, but occurred at only 44% and 30% of analysis time steps for SMAPHB 

and ESA, respectively. For 1KM and 3KM, the Miyoshi algorithm also tended to estimate greater forecast 

inflation at analysis time steps, which could be a consequence of having great discrepancies between the 

observed and forecasted means at analysis time points (e.g., see Oct. and Nov. in Fig. 4.4). For estimates 

of observation uncertainty, the Miyoshi algorithm predicted lower uncertainty for all observations than  
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Figure 4.4.  Time series of surface soil moisture estimate (SM1) distributions from the free model, SDA forecast, 
and RS observations for each individual RS data product. The lines represent the mean estimates, and the shaded 
regions indicate the 95% confidence interval at each time point. The black points represent observed means with 
vertical lines demonstrating 95% confidence intervals based on the reported standard error in the literature. This 
time series shows results from the IN 2016 site-year, which had the most observations for the 1KM and 3KM data 
products of all site-years. 

 

reported in the literature. Standard error in SMAPHB estimates was reported as 0.07 mm3/mm3 but 

estimated to be 0.005 ± 0.003 mm3/mm3. Standard errors in 1KM and 3KM estimates were reported as 0.05 

m3/m3 but estimated by the system to be 0.005 ± 0.002 mm3/mm3. SMAPHB had the greatest estimated 

uncertainty and ESA had the lowest estimated uncertainty according to Miyoshi estimates, a result that 

mimics reported values.  

  

Additive runs 

 The baseline run for the additive RS-SDA runs was ESA, which demonstrated inconsistent 

constraint of forecast accuracy and strong constraint of forecast precision. As the second most available 

data product, SMAPHB was the next RS data product added and assimilated into the system. New 

SMAPHB observations, on average, imposed a -0.012 mm/mm change in µa and a -0.0003 change in Pa for   
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SM1 estimates. These changes translated into lower overall surface soil moisture estimates and increased 

precision. For downstream forecast accuracy, the addition of SMAPHB led to improved and/or more 

consistent constraint for all state variables except SM7 (Fig. 4.5a). At times, the added information from 

SMAPHB dampened the benefit of SDA, decreasing the degree to which accuracy measures are improved 

and producing estimates that are closer to the free model. However, the incidence and magnitude of reduced 

accuracy was decreased. This is clear when considering yield in Figure 4.5a, where a larger part of the  

 

 

 

 

 
 
Figure 4.5.  Boxplots demonstrating the distribution of relative change (%) in state variable (a) accuracy (RMSE) 
and (b) precision (weighted variance) due to the assimilaton of each iteration of the additive RS data products 
across all site-years. Change is computed relative to the free model results. Negative values indicate improvement 
(e.g., (RMSES – RMSEF) / RMSEF). 
 

(A) 

(B) 
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distribution falls below zero in +SMAPHB compared to ESA (i.e., more site-years saw net reduction in 

RMSE) but the lower bound is much higher. For forecast precision, the addition of SMAPHB observations 

reduced performance for all state variables compared to ESA (Fig. 4.5b). However, in most cases, 

+SMAPHB performance in precision was still better than or similar to that of the free model. SM4, SM5, 

and SM6 were exceptions to this rule, such that forecast precision was notably reduced for those state 

variables. 

 The subsequent additions of the sparser 1KM and 3KM RS data products were less impactful than 

the addition of SMAPHB. New 1KM observations imposed an average -0.0004 mm/mm change in µa, and, 

later, new 3KM observations imposed an average -0.0003 change in µa. These changes are less than 4% of 

the change imposed by the initial addition of SMAPHB. Neither additional data product effected a notable 

average change in Pa. Following these minimal changes in the analysis adjustment of SM1, there was also 

little change in forecast accuracy and precision for downstream state variables in +1KM and ALL as 

compared to +SMAPHB (Fig. 4.5). Nevertheless, adding 1KM observations to +SMAPHB did hold some 

benefit for estimates of SM3 and SM4 in terms of accuracy and precision. Forecast precision for the two 

state variables, which had decreased with the addition of SMAPHB, was again constrained to a similar 

extent as observed with ESA. Accuracy for SM3 and SM4 was better in +1KM than both ESA and 

+SMAPHB. Therefore, the 1KM observations were generally useful additions to the system despite their 

limited information contribution. The effect of the 3KM observations was almost negligible or, even at 

times, harmful to system performance.  

 

Analysis of downstream impact 

 The following sections look closer at the downstream impacts of RS-SDA on the soil water cycle 

and aboveground crop estimates. Although the addition of 3KM observations did not have a dramatic 

impact on system performance compared to +1KM, the following sections focus on the results from ALL 

to include all RS observations for the sake of completeness. Hereafter, ALL will be referred to as RS-SDA. 

As IL did not have available 1KM or 3KM observations, the +SMAPHB will replace ALL for those site-

years as RS-SDA.  

 

Soil water cycle 

 The assimilation of RS soil moisture had minor impacts on the soil water cycle. Figure 4.6 

demonstrates differences between the free model and RS-SDA in SM1 estimates, the state variable 

directly constrained by assimilation. For several site-years, RS-SDA estimated significantly higher SM1 

values in the early growing season (i.e., May-Jun) compared to the free model. Then, in the late season 

and fall, RS- SDA often estimated lower SM1 values. As seen previously, the impact of these SM1  
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Table 4.3.  Summary statistics to quantify the impact of RS-SDA on forecast accuracy of APSIM state variables. 
The “N” column indicates the number of site-years with available data for each state variable, and the “n” column 
indicates the total number of observations across site-years. (F) denotes a value computed for the free model 
estimates, and (S) denotes a value for the RS-SDA estimates. Relative error (RE) is also given as a median value. 

The median change (D) in RMSE was computed as RMSES - RMSEF / RMSEF. 
 

Variable N n 
RMSE (F) RMSE (S) D RMSE 

R2 (F) R2 (S) RE (S) 

median value 
SM3 
mm/mm 10 5592 0.082 0.084 -0.9% 0.48 0.48 -29.2 

SM4 
mm/mm 

10 6141 0.068 0.069 -2.8% 0.43 0.43 -18.2 

SM5 
mm/mm 

8 5101 0.061 0.059 -2.6% 0.45 0.45 5.83 

SM6 
mm/mm 

10 6169 0.075 0.075 -1.0% 0.43 0.42 12.8 

SM7 
mm/mm 

6 3265 0.088 0.077 -5.4% 0.44 0.43 21.5 

NDVI 
unitless 

10 134 0.206 0.201 -1.8% 0.69 0.71 9.11 

Yield 
Mg/ha 

10 10 1.45 1.24 -17.2% 0.53 0.69 13.4 

 

changes on lower layer soil moisture values seemed to decrease with depth, such that differences between 

the free model and RS-SDA mean estimates were more subtle in deeper layers (Fig. A.13). This reduced 

impact on lower layers is also, in part, a reflection of the increasing total soil water volume represented by 

soil layers down through the profile (see Table 2.2 for soil layer depths). Nonetheless, any differences in 

soil moisture estimates did not lead to notable improvement in accuracy for any soil moisture layer (Table 

4.3). Moreover, the increased available soil water with assimilation did not propagate into large differences 

in soil evaporation, drainage, nor runoff estimates (Fig. 4.7). Notable changes were visible, however, in the 

soil water deficit factors for several growing seasons, such that RS-SDA led to reduced water stress for the 

growing crop. This could be the result of increased available soil water in the root zone during initial periods 

of crop water uptake (i.e., June). 

 An analysis of soil moisture innovations identified 3 important predictors for soil water adjustment 

in this work. Two of these predictors were also highlighted as important innovation predictors in Chapter 

3, including daily error in precipitation input and daily simulated precipitation. The first of these points to 

the correction of input error when assimilating soil moisture, such that the workflow tended to add water 

when precipitation inputs missed observed rainfall, and the second indicates that assimilation was more 

likely to remove water on days with high precipitation inputs. Unlike the innovation analysis results 

presented in Chapter 3, assimilation’s previous soil water adjustment was not identified as a strong predictor  
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Figure 4.7.  Comparison of annual estimates for major components of the soil water cycle for the free model and 
RS-SDA. Mean values are indicated by the points and 95% credibility intervals are demonstrated by vertical 
lines.   
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for soil moisture innovations in this work. Instead, simulated daily radiation was found to be strongly 

correlated with soil water adjustment, where days with higher simulated radiation were more likely to see 

added soil water with assimilation.  

Forecast precision for soil water-related estimates also did not change substantially with 

assimilation, but, in most cases, the small changes were beneficial. For SM1 estimates, assimilation greatly 

reduced variability across site-years (Fig. 4.6). This constraint of soil moisture in the surface soil layer, in 

many cases, did not propagate into large changes for precision in lower layer estimates (Fig. A.14). 

However, on average, precision was improved rather than reduced with assimilation, with the greatest 

downstream constraint in the soil layers closest to the surface. Beyond soil moisture state variables, forecast 

precision was also noticeably improved for other components of the soil water cycle. Figure 4.7 

demonstrates reduced variability in estimates of cumulative soil water deficit factors, drainage, crop water 

uptake, and evaporation for most site-years in this study.  

 

Aboveground measures 

 With limited constraint of the soil water cycle, RS-SDA did demonstrate some constraint of NDVI 

and annual crop yield. Considering the R2 values reported in Table 4.3, RS-SDA explained roughly 2% and 

16% more of the variation in NDVI and yield observations than the free model, respectively. Based on 

these results, there is evidence that surface soil moisture data assimilation can constrain, to some extent, 

estimates of annual yield. All site-years except OH 2015 demonstrated increased yield accuracy and 60% 

of sites demonstrated increased yield precision with RS-SDA. However, unlike previous chapters, there 

  

 
 

Figure 4.8.  Scatterplots demonstrating the relationship between daily soil water adjustment and its three most 
important predictors. Dashed black lines demonstrate the least squares regression line for each relationship, and 3 

asterisks (***) and 2 asterisks (**) indicate a significant linear relationship at all significance levels (a @ 0). 
Together, these three predictors explain 26.6% of the variation in soil moisture innovations.   
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was no significant trend among site-years between yield improvement and dry conditions, though this could 

be a consequence of sample size. Compared to estimates of yield, RS-SDA was less impactful in its 

constraint of NDVI. However, since the free model was able to reasonably predict NDVI (R2 = 0.69), there 

was less potential for improvement with assimilation. Of the site-years in this study, 60% saw reduced 

RMSE and 70% saw reduced weighted variance for NDVI estimates.  

 

DISCUSSION 

 Compared to results seen in Chapter 3, the assimilation of RS surface soil moisture observations 

imposed far weaker constraint on APSIM state variables compared to the assimilation of the soil sensor 

observations at the same study sites. For example, the median reduction in soil moisture RMSE ranged 

from 7-27% across different layers of the soil profile with soil sensor observations (Table 3.3), but, with 

RS observations, it ranged from roughly 1-5% (Table 4.3). The weakened constraint with RS-SDA was 

likely not an issue of inaccuracy in the observations, though. Instead, there is greater evidence to show that 

changes in SM1 simply had less influence on downstream state variables than changes in SM3 and SM4. 

This is due, in part, to the increased vertical distance between the surface soil moisture layer (SM1) and 

other observed soil layers in this study (i.e., SM3-7). Increased distance between 2 layers weakens the 

relationship between their soil moisture estimates as discussed in Chapter 3. Thus, the assimilation 

adjustment of SM1 estimate would not be as strongly tied to lower layer estimates by a top-down approach 

as the adjustment of SM3 and SM4. Surface soil moisture data assimilation did notably change SM2 

estimates, the soil moisture estimates for the layer just below it. This result reflects the findings of Lu and 

Steele-Dunne (2019), who assimilated RS surface soil moisture observations into a surface energy balance 

model. They found SDA improved SM estimates in the second layer to a greater extent than in lower layers 

when comparing estimates to observations. Since observations were not available for SM2 at the study 

sites, this hypothesis cannot be tested within this system.  

Furthermore, the two different assimilation protocols (i.e., assimilation of SM1 vs. assimilation of 

SM3 and SM4) were also markedly different in the quantity of soil water associated with their assimilation 

adjustments. Where soil layers 3 and 4 corresponded to almost 14% of the soil profile (20 cm depth), the 

near-surface soil layer only corresponded to about 3.6% of the soil profile (5 cm depth). Thus, when 

considering the top-down effect of soil moisture assimilation on lower layers, each adjustment with RS 

assimilation had just 25% of the impact of the previous system given the same adjustment in volumetric 

soil water content. This 5-fold reduction in potential impact closely mirrors the change in RMSE reduction 

for soil moisture layers as highlighted in the above paragraph (i.e., 7-27% to 1-5%). One way to overcome 

this limitation of surface soil moisture is to leverage the strong covariance between SM1 and soil moisture 

in nearby layers (i.e., SM2 and SM3) to directly nudge their values within the analysis time step through 



 
 

83 

the PDA framework (see Chapter 2), as demonstrated in Ines et al. (2013). This would increase the soil 

profile depth directly adjusted with assimilation, thereby increasing the potential impact of assimilation for 

downstream estimates. This approach would also reduce or eliminate the need for RS-based root-zone soil 

moisture (RZSM) data products generated through the assimilation of RS surface soil moisture observations 

into land surface models (Pablos et al., 2018; Peng et al., 2021).  

 Despite its limited potential for constraint when compared to previous systems, surface soil 

moisture data assimilation still demonstrated strong potential for improving APSIM forecasts within this 

study. First, the assimilation of surface soil moisture still functioned to improve estimates of crop yield 

overall when compared to the free model, with a median RMSE reduction of 17.2%. Past RS soil moisture 

data assimilation studies had similar success in improving estimates of crop yield, and several attributed 

the improvement to increased surface soil moisture and reduced crop water stress with soil moisture 

assimilation (e.g., Ines et al., 2013; Chakrabati et al., 2014). The results of the current study were 

inconclusive regarding the impact of water stress on RS-SDA performance (Fig A.15), but, considering the 

major changes in crop water stress due to SDA (Fig. 4.7), the results do indicate that water stress had an 

important role in this study. Although observations are not available for crop water uptake to test this 

hypothesis, one possible explanation could be that RS-SDA increased available soil water at critical growth 

stages and, thus, increased crop water uptake. 

 Second, as seen in previous chapters, RS-SDA demonstrated the capacity to account for errors 

associated with coarse resolution precipitation inputs. This is clear in the results of the innovation analysis 

where precipitation error was identified as a critical variable for understanding variability in soil water 

adjustments (Fig. 4.8). At times where precipitation inputs exceeded what was measured at the site, the 

assimilation workflow was able to compensate for the error by removing water from the SM1 soil layer. 

The workflow helped to account for the scale mismatch between point-level simulations and gridded 

weather estimates, “localizing” weather inputs for more accurate simulations. This is an important capacity 

of RS soil moisture data products that has been demonstrated and discussed in several previous works (e.g., 

Ines et al., 2013; Lu and Steele-Dunne, 2019; Nair and Indu, 2019). Studies have also shown surface soil 

moisture assimilation can go beyond weather inputs and identify missing water that was applied through 

irrigation (Peng et al., 2021). For instance, Nair and Indu (2019) found that assimilating ESA soil moisture 

estimates (COMBINED v4.2) into the Noah land surface model correctly identified winter irrigation 

periods and accounted for missing rainfall in precipitation inputs in an assimilation study covering 

agricultural areas in India. Although the study sites in this chapter were all rainfed, this capability could be 

critical for scaling up the presented system for regional forecasting since irrigation information would be 

almost impossible to obtain at the needed resolution.  
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 The results of the innovation analysis in this chapter also provided further evidence for structural 

and/or parameter errors in APSIM soil water processes. First, as discussed in Chapter 3, the strong linear 

relationship between soil moisture innovations and precipitation inputs demonstrates that APSIM tends to 

overpredict surface soil moisture on days with heavy rainfall. This could point to an array of missing 

processes in APSIM related to tillage, soil properties, preferential flow, runoff, etc. (Malone et al., 2007; 

van der Laan et al., 2014; Brilli et al., 2017; Ojeda et al., 2018). More observations would be needed to 

properly diagnose and address the origin[s] of these errors. Second, an analysis of the innovations identified 

input radiation as a significant predictor of assimilation adjustment. On simulation days with greater solar 

radiation, assimilation was more likely to add soil water to the profile. This finding suggests potential errors 

in the model processes related to evaporation, which is the only process where solar radiation can impact 

surface soil moisture estimates in APSIM (Verburg and CSIRO, 1996). Observations on evaporation would 

be necessary to be able to further investigate this hypothesis. In fact, the joint assimilation of RS soil 

moisture and evapotranspiration could function as a systematic and robust way to evaluate and re-

parameterize the soil water dynamics in APSIM, leading to better forecasts in the future.   

In this study, four different RS soil moisture data products were independently assimilated into the 

APSIM model and evaluated in their constraint of downstream model variables. These data products varied 

quite broadly in terms of spatial resolution. SMAPHB observations were available at the finest spatial 

resolution (30-meter) and ESA observations were available at the coarsest spatial resolution (0.25°). 

However, despite these grand differences in spatial scale, the individual performance of RS data products 

seemed to be most closely tied to the temporal availability of observations, such that the order of best to 

worst data product in terms of performance exactly reflected the ordering from the highest to lowest number 

of available observations. ESA, which had, on average, 219 observations per growing season, showed the 

best overall constraint of forecast precision and good constraint of forecast accuracy in downstream state 

variables among the 4 individual data products. Alternatively, the 1KM and 3KM data products, which each 

had an average of 8 observations per growing season, had almost no impact on forecast accuracy and only 

a slight impact on forecast precision. This study was not designed to independently test the impact of 

temporal and spatial resolution. However, these results echo the findings of Lu et al. (2019), who found 

high temporal resolution to be far more important to assimilation performance than high spatial resolution. 

They suspected that increased time between assimilation adjustments allowed errors in model structure, 

inputs, and/or parameters to go unchecked for longer periods of time, thereby allowing the magnitude of 

simulation errors to become large and unreasonable. This is especially important in the case of crop 

modeling since the timing of crop phenology—which can be highly sensitive to soil moisture—is critical 

to accurately estimating yield. More specifically, in the APSIM Maize module, the time between the sowing 

and germination stages and the time between the emergence and flowering stages both depend on soil 
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moisture. In the latter example, water stress delays phenology stages through the swdef_pheno deficit factor 

(see Fig 2.3). If model error goes unconstrained by assimilation for just a few weeks and imposes inaccurate 

phenological delays, such delays will be carried forward throughout the model, delaying all the stages that 

follow, including the start of grain fill. More frequent assimilation helps to mitigate the impact of such 

model errors and improve overall crop model predictions by correcting errors more often (De Lannoy et 

al., 2007; Pauwels et al., 2007; Lu et al., 2021). Alternatively, in the case of low temporal resolution, a 

recalibration-based assimilation approach or the inclusion of a bias correction method might be more 

appropriate (De Lannoy et al., 2007; Curnel et al., 2011).   

 When comparing RS data products in this study, it is important to recognize that all data products 

considered in this work are based, in part, on SMAP radiometer data. SMAPHB merged SMAP brightness 

temperature data with the HydroBlocks-RTM model, ESA includes SMAP as one of its 10 passive 

microwave sensors, and 1KM and 3KM rely exclusively on SMAP for passive microwave information 

within their derivation. Since all 4 data products include SMAP data, it can be assumed that they will 

overlap to some degree in terms of the information they contribute to the SDA system. In fact, this 

redundancy is evident when comparing the additive runs. In the first iteration, ESA contributed most of the 

information provided by the SMAP radiometer to the model and, therefore, imposed large changes in SM1 

estimates. Then, with each additional data product, the overall impact on the analysis distribution weakened 

as much of the new information had already been provided to the system by the data products before it. 

Though the analysis of somewhat redundant data products may see ineffectual, this overlap in information 

across data products served to further validate the importance of temporal resolution in this study. Each 

data product contained similar information, but, when assimilated individually, system performance still 

varied considerably due to temporal availability.   

Estimates of observation uncertainty (R) also had important implications for system performance. 

In the individual runs, the Miyoshi algorithm estimated notably different levels of uncertainty in the data 

products. ESA, which was associated with the lowest estimated R, led to the strongest overall constraint of 

forecast precision and the largest (good and bad) shifts in downstream model estimates. Alternatively, 

SMAPHB, which was associated with a higher estimated R, had a more moderate impact on model 

predictions, generating predictions that were closer to the free model. These differences in estimated R can 

be partially explained by the number of sources employed in the derivation of each RS data product. ESA, 

which included information from 10 passive and 3 active microwave sensors, had the lowest uncertainty, 

while SMAPHB, which included just 1 passive microwave sensor and a process-based model, had the 

greatest uncertainty. 1KM and 3KM were estimated to have slightly lower uncertainty than SMAPHB 

estimates and included 1 passive and 1 active microwave sensor. Though it is difficult to disentangle the 

impact of temporal resolution from those of observation uncertainty in the individual runs, differences in 
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forecast precision between ESA and SMAPHB, which had similar temporal resolution, suggest that the 

added information in the derivation of ESA was beneficial to improvements in forecast precision.  

 Alternatively, within the additive runs, estimates of observation uncertainty (R) for SMAPHB, 

1KM, and 3KM were based on reported values in the literature. However, these estimates of uncertainty 

were likely inaccurate for the purposes of this study. It is well known in the literature that RS soil moisture 

data products, like most RS data products, have poorly characterized uncertainties (Peng et al., 2021). For 

each data product, uncertainty was typically reported as a standard error value after comparing the data 

product to a limited set of observations. These values do not capture all possible sources of uncertainty and 

cannot be generalized across space and time (Huang et al., 2019); yet, in the additive analysis, they were 

applied uniformly across time and space and without consideration of their native spatiotemporal 

resolutions. Consequently, it is likely these estimates of R did not well represent the true variability in the 

observations. This is one of the main caveats of this study, as inaccurate estimates of uncertainty directly 

impact the computed analysis distribution with the EnKF and the GEF and, therefore, impact all 

downstream forecast distributions. For example, in the case of SMAPHB, the reported RMSE of 0.07 

mm3/mm3 for the data product served to generate an observed distribution that spanned most of the soil 

moisture value range and was, thereby, almost uninformative for downstream model estimates (Fig 4.1., 

Fig. 4.4). The RS data product likely contributed more information than this distribution would suggest, 

and, thus, poor estimates of observation uncertainty for SMAPHB, 1KM, and 3KM likely contributed to 

the limited impact of adding these observations in the additive runs. Their added information could have 

been more effectively leveraged by providing better approximations of uncertainty for each observation, a 

task that could be performed by the Miyoshi algorithm. In the individual runs, the Miyoshi algorithm 

improved, varied, and, often, lowered estimates of observation uncertainty over time for each data product, 

mitigating the impact of misrepresented uncertainties. Future applications of the GEF scheme could benefit 

from additional terms in the model that could capture R or the use of the Miyoshi algorithm.  

 When selecting a RS soil moisture data product for data assimilation applications, the results of 

this study indicate that temporal resolution and accurately estimated observation uncertainty are two critical 

components to consider for optimal system performance. They also provide evidence that increasing the 

number of sensors in the derivation step or combining several data products can help to reduce uncertainty 

in soil moisture estimates.  However, further investigation is needed to independently test the impact of 

observation sample size (i.e., number of data products), temporal resolution, spatial resolution, and 

uncertainty on system performance. Furthermore, the data products considered in this study do not represent 

the full range of RS soil moisture data products that are available publicly. This work should be expanded 

to evaluate data products derived from other satellites/derivations both individually and in combination 

with other sources to exhaust all available options.
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CHAPTER 5  

MAJOR CONCLUSIONS  

 
In the face of pressing, large-scale agricultural issues, there is great need for accurate and precise 

agricultural forecasting methods that are scalable, flexible, robust, consistent, and comprehensive. 

However, most current forecasting methods fall short. To help fill this gap, this project completed three 

important objectives. First, a crop model data-assimilation system was developed that estimates 

uncertainty matrices, propagates a range of system uncertainties, allows for easy customization, and 

performs state-parameter assimilation. Second, the developed system was tested for a range of 

experimental sites across the U.S. Midwest where in situ soil moisture observations at the 10 and 20 cm 

depths were assimilated into the APSIM crop model. The system’s constraint of several agricultural 

processes, including soil water dynamics, nitrate leaching, and crop development, was evaluated using 

available in situ observations, and the strengths and weaknesses of the developed system were 

investigated. Finally, to explore the generalizability of the system, 4 different RS surface soil moisture 

data products were assimilated within the developed data-assimilation system across the same 

experimental sites. System forecasts of soil water dynamics and crop development were again evaluated 

using in situ observations, and the impact of temporal resolution, spatial resolution, satellite sources, and 

estimated observation uncertainty for system performance were evaluated. The main findings of this 

project served to strengthen the results of past work and to provide new approaches and insights for the 

continued application and innovation of soil moisture data assimilation in agricultural forecasting.  

As the first critical contribution of this project, the data-assimilation system developed in this work 

is unmatched in the literature. The established framework systematically merges observed data with a crop 

model using two different filtering approaches (i.e., EnFK and GEF) and can be easily adapted to assimilate 

a diverse range of observations at local to regional scales. By including the Miyoshi algorithm with the 

EnKF, the system leverages well-established tools from other forecasting disciplines to accurately estimate 

system error matrices, which are imperative for system performance but are difficult to define in practice. 

The GEF, on the other hand, allows for flexibility in both system configuration and model definition. Lastly, 

the system can efficiently propagate an array of uncertainties, such as those associated with climate, 

management, cultivar, soil, and initial conditions, to better account for variability in system components 

and improve the precision and accuracy of forecasts. In a single-site case study, the system was found to 

effectively constrain soil moisture, maintain high filter performance, and dynamically estimate soil 

properties in time using state-parameter assimilation. In fact, in broader applications, the system was able 

to mitigate the impact of soil moisture data quality on system performance by accurately estimating 
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observation uncertainty through the Miyoshi algorithm and by leveraging the power of the EnKF to reduce 

overall uncertainty in the posterior distribution. Altogether, this system stands apart from previous 

assimilation efforts in crop modeling for its generalizability, its careful treatment of uncertainty, and its 

ability to accommodate a range of constraints and scales. Although there is still progress to be made, this 

innovative system can serve as a promising benchmark for further data-assimilation applications in crop 

modeling.  

Another notable feature of the presented system is generalizability. Compared to traditional crop 

modeling studies (e.g., Malone et al., 2007; Ojeda et al., 2018) and other data-assimilation studies (e.g., 

Chakrabati et al., 2014; Liu et al., 2021), the approach for this work focused on the application of methods 

and data products that could be easily replicated/extracted for new sites or regions. The system employed 

an untouched APSIM model parameterization, gridded soil and climate drivers, globally-optimized cultivar 

parameter distributions, and a systematic method for estimating system error matrices. The use of these 

tools ensures a more realistic evaluation of soil moisture data assimilation for regional applications and will 

facilitate easier and faster future applications of the presented system for new locations. Even more 

importantly, the assimilation of soil moisture partially served to replace the role of site-level model 

calibration to improve site-level APSIM simulations, reducing the time required for model set-up and the 

possibility of overfitting the model. This difference in forecasting philosophy is important to consider when 

comparing the accuracy metrics reported in this study to the results of past crop modeling works (e.g., 

Malone et al., 2007; Martinez-Feria et al., 2019).  

 The last major novelty of this project is its multidimensional approach to system evaluation. To 

increase knowledge on the functionality of APSIM and of the system, the constraint of 5 different state 

variables, including yield, vegetative cover (i.e., NDVI and LAI), soil moisture, tile drainage, and annual 

NO3 load, was evaluated against in situ observations for 19 site-years. In the past, many data-assimilation 

studies have focused their evaluation efforts exclusively on crop yield estimates (e.g., Launay and Guerif, 

2005; Zhao et al., 2013; Jiang et al., 2014). However, this approach fails to leverage the full benefits of 

process-based crop models. Through its defined relationships in the model, the direct constraint of a state 

variable in a process-based crop model will impact, to some extent, all downstream model estimates that 

stem from the assimilated state variable. For example, by constraining soil moisture in the APSIM model 

in this study, the simulation of crop development and the soil water and N cycles, which are dependent on 

soil moisture estimates, typically diverged from the free model estimates. By investigating these changes, 

one can reveal important insights on the function of the assimilation system and the model processes. This 

study employed all available observations for the study sites to critically assess the value and implications 

of these downstream changes for future applications. In some cases, the changes indicated strong 
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downstream constraint of model variables, and, in other cases, the changes were indicative of model 

biases. 

  One highlighted advantage of soil moisture data assimilation in this study is its capacity for 

improving model estimates in water-limited conditions. When assimilating in situ and RS soil moisture 

observations, the system demonstrated the ability to increase and improve crop yield estimates by 

reducing crop water stress and increasing crop water uptake at critical points in the growing season. The 

system was less effective in constraining yield when soil water availability was not a limiting factor for 

growth. This finding reflects the results of several past crop modeling studies (e.g., Chakrabati et al., 

2014; Lu et al., 2021) and points to the utility of soil moisture SDA for constraining a crop model’s 

understanding of soil-water-plant dynamics in drier years. Furthermore, in situ soil moisture data 

assimilation also demonstrated conditional constraint of annual tile drainage when experiencing drought 

conditions. Although more observations are needed on soil water cycle components to clearly identify the 

conditions where the system is valuable for drainage estimates, the constraint of drainage seems to be 

stronger when the model underestimates crop water uptake. This finding points to new ways that the 

presented data-assimilation system can be leveraged to improve agricultural forecasting more broadly. 

The constraint of tile drainage estimates with soil moisture data assimilation is a topic that has not been 

well investigated in the literature. 

 Next to improved simulation in drought years, soil moisture innovations from both the in situ and 

RS system applications point to another advantage of soil moisture data assimilation: the correction of 

precipitation input errors. Like many studies before (e.g., Ines et al., 2013; Lu and Steele-Dunne, 2019; 

Nair and Indu, 2019), the findings of this study reaffirm the capacity of soil moisture data assimilation to 

“localize” gridded weather estimates of precipitation to more accurately reflect observed values. Since 

cropping systems are highly sensitive to precipitation inputs and precipitation can be highly variable in 

space and time (Thaler et al., 2018), this is a strong advantage of soil moisture data assimilation for 

improving regional agricultural forecasts. Given high spatial resolution soil moisture data, the presented 

system can account for input error at fine spatial scales and improve model simulations when coarse 

resolution gridded weather datasets are applied. 

 In addition to highlighting opportunities, the comprehensive evaluation of the system in this study 

also identified several areas for improvement in both the APSIM model and the data-assimilation 

framework. First, the highlighted trend between weather conditions and soil water innovations indicates 

biases in the model’s soil water processes. The model made larger errors in estimating surface and root-

zone soil moisture after large precipitation events. This could indicate a number of missing or ill-defined 

processes in APSIM’s SoilWat module related to vertical soil water flow, infiltration, and evaporation, 

among others. Second, the system’s poor constraint of annual NO3 leaching estimates demonstrates the 
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need for more intensive evaluation of APSIM’s SoilN module. In this study, soil moisture data 

assimilation consistently improved soil moisture forecasts throughout the soil profile, which, 

theoretically, should have improved the simulation of soil N processes via improved estimates of the soil 

moisture rate factors. The lack of constraint of NO3 leaching estimates in this study highlights structural 

and/or parameter errors in APSIM’s soil N processes. Lastly, the current method of assimilation 

adjustment in the system invalidates the model’s water mass balance, removing or creating soil water at 

every time step. This approach can be beneficial when system inputs are biased (e.g., too much or too 

little precipitation), but, in any other case, these adjustments can lead to large errors in other model 

estimates. All three of these APSIM shortcomings need to be investigated and improved with further 

observation constraints.  

The application of remote sensing soil moisture data products in the presented data-assimilation 

system could be a promising approach to improve regional agricultural forecasting capacity. However, 

this study highlighted important caveats for such applications. First, the assimilation of surface soil 

moisture is not as powerful as the assimilation of root-zone soil moisture values in terms of model 

constraint as it represents a smaller proportion of the soil profile and is not as closely related to other 

important state variables (De Lannoy et al., 2007). The PDA framework could be leveraged to overcome 

this limitation (Ines et al., 2013). Second, high temporal resolution was far more important to system 

performance than high spatial resolution as it helped to limit the magnitude of model errors. To reduce the 

assimilation interval for soil moisture data assimilation purposes, observations from several RS data 

products can be combined and assimilated after their individual values have been evaluated. Finally, 

accurate estimates of observation uncertainty are imperative for optimal system performance. Systematic 

approaches, like the Miyoshi algorithm or an adjusted GEF, can and should be used to ensure system 

uncertainties are well represented in the data-assimilation system.  
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APPENDIX A 

SUPPLEMENTARY TABLES AND FIGURES 

 

 
Figure A.1.  (a) Time series of simulated and observed LAI estimates for study period. 95% credibility intervals 
are indicated by the shaded ribbon surrounding the mean lines for each simulation. Observed mean values are 
shown as points with bars demonstrating a 95% confidence interval (Student-t distribution, n = 3). (b) Boxplot 
summarizing the estimated distribution of yield for each scheme in both years. Dashed horizontal lines mark the 
observed yield value for both crops. 

 
 
 
 
 
 
 
 
 



 
 

105 

 
 
 

 
 
Figure A.2.  Time series of SM4 estimates from the (a) SDA and (b) Miyoshi simulations with both the forecast 
and analysis distributions shown (95% confidence interval ribbon around the mean line). The observed means and 
95% confidence intervals are shown with black points and lines, respectively. For both time series, the time 
period from 15 March 2019 to 15 April 2019 is highlighted to demonstrate a period of filter divergence in SDA 
(a) and its resolution in Miyoshi (b). 
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Figure A.3.  Time series of simulated (a) cumulative crop water uptake (mm) and (b) cumulative soil water 
supply (mm) over the course of the study period at the Energy Farm. 95% credibility intervals are indicated by 
the shaded ribbon surrounding the mean lines for each simulation. 
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Figure A.4.  Time series of soil moisture estimates at (a) 10 cm and (b) 20 cm from the two schemes with the 
mean daily estimates demonstrated with line graphs and the 95% credibility interval demonstrated by the shaded 
regions. 

 
 

(A) 

(B) 
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Figure A.5.  Time series of NDVI estimates from the two schemes for each site-year with the mean daily estimates 
demonstrated with line graphs and the 95% credibility interval demonstrated by the shaded regions. Black points 
represent the observed values.   
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Figure A.6.  Time series of cumulative NO3 load estimates from the two schemes for each site-year with the mean 
daily estimates demonstrated with line graphs and the 95% credibility interval demonstrated by the shaded regions. 
Black dashed lines represent the observed cumulative value for each site-year.    
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Figure A.7.  Time series of the decomposed trend (i.e., fitted cubic spline) and noise (i.e., remainder) for each site-
year soil moisture time series.  
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Figure A.8.  Scatterplots comparing change (i.e., SDA – free model) in mean SM5, SM6, SM7, daily drainage, daily 
NO3 leaching estimates with change in mean SM3 and SM4 estimates at each analysis time step. For each variable 
combination, the least squares regression line is demonstrated by a dashed line and the Pearson correlation 
coefficient is displayed. Asterisks denote significant coefficient values (** indicates p-value < 0.01 and *** indicates 
p-value ~ 0).  
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Figure A.9.  Time series of cumulative precipitation (mm) for each site-year where the observed precipitation data 
(black line) is directly compared to the ensemble mean from the input weather ensembles (blue line) and the 
ensemble upper and lower limits (shaded blue region). Observed precipitation data were not available for the end 
of OH 2014, and no observations were available for OH 2015. 
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Figure A.10.  Flowchart of full data assimilation workflow with the GEF instead of the EnKF-Miyoshi 
workflow. 
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Figure A.11.  Time series of SM1 estimates for different individual RS data product assimilation runs.  
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Figure A.12.  Time series of SM1 estimates for the additive RS data product assimilation runs.  
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Figure A.13.  Time series of differences in soil moisture mean estimates between the free model and RS-SDA 
(computed as RS-SDA – Free) for downstream soil layers. 
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Figure A.14.  Time series of differences in soil moisture weighted variance estimates between the free model and 
RS-SDA (computed as RS-SDA – Free) for downstream soil layers.  
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Figure A.15.  Scatterplot of proportion of USDM drought days in the growing season and percent change in 
RMSE for yield estimates between RS-SDA and the free model for the 10 RS site-years. The monotonic 
relationship between the two variables was not significant at reasonable significance levels (p = 0.113). The 
points representing IN 2016 (0.35, -20.7) and MN 2015 (0.35, -20.6) are not distinguishable in this plot. 
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Table A.1.  Fixed management parameters for the Energy Farm (2018-2019) 
 

Variable Units 2018 Value 2019 Value 

Crop crop type maize soybean 

Residue type crop type maize maize 

Planting date date 8 May 2018 17 May 2019 

Row spacing mm 762 762 

Planting depth mm 38 38 

Sowing density plants/m2 8.4 34.6 

Fertilizer date date 8 May 2019 N/A 

Fertilizer type(s) APSIM fertilizer types urea_N, NH4NO3 N/A 

Fertilizer amount(s) kg/ha 32.32, 92.3 N/A 
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Table A.2.  Prior distributions for model ensembles 
 

APSIM Variable Description Units Distribution 

icrag Initial residue weight on the field kg Uniform (0, 2500) 

water_fraction_full Initial soil water fraction by volume proportion Uniform (0.05, 0.6) 

tt_flower_to_maturity 
Thermal time between flowering and 
maturity (maize cultivar) 

ºC/day Uniform (780, 860) 

tt_flower_to_start_grain 
Thermal time between flowering and 
start of grain fill (maize cultivar) 

ºC/day Uniform (150, 200) 

tt_maturity_to_ripe 
Thermal time between maturity and 
ripe stage (maize cultivar) 

ºC/day Uniform (150, 250) 

tt_emerg_to_endjuv 
Thermal time between emergence and 
end of juvenile stage (maize cultivar) 

ºC/day Uniform (240, 260) 

head_grain_no_max 
Maximum potential number of 
kernels per ear (maize cultivar) 

Number of 
kernels/ear 

Uniform (750, 900) 

grain_gth_rate 
Maximum potential growth rate of 
grain (maize cultivar) 

Grain (g)/day Uniform (7.1, 8.57) 
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Table A.3.  Comparison of accuracy and precision in model forecasts between the Free and PDA schemes 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Year 
RMSE Variance 

Free PDA Free PDA 

Leaf Area Index 
Unitless 

2018 0.869 0.870 0.074 0.064 

2019 1.165 1.000 0.411 0.370 

Yield 
Mg/ha 

2018 0.884 0.974 0.120 0.164 

2019 0.978 0.984 0.972 0.413 

Daily Tile Flow 
mm 

2018 1.308 0.997 0.774 0.418 

2019 1.214 0.945 0.397 0.253 

Both 1.262 0.972 0.586 0.335 

Annual Tile Flow 
mm 

2018 265.6 143.6 18405 8510.9 

2019 205.1 122.5 5673.5 4830.5 

Daily NO3 Load 
Kg NO3-N/ha 

2018 0.060 0.062 0.0016 0.0009 

2019 0.040 0.044 0.0007 0.0009 

Both 0.051 0.054 0.0011 0.0009 

Annual NO3 Load 
Kg NO3-N/ha 

2018 4.407 3.555 18.131 10.517 

 
2019 

4.942 4.852 10.742 23.595 


