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ABSTRACT 

 

This dissertation consists of three essays that apply quantitative analysis in commodity markets. 

The first paper essay studies the pass-through impacts from the Low Carbon Fuel Standard (LCFS) 

program to wholesale fuels provided in California. The goal of LCFS is to reduce carbon intensity 

of transportation fuels provided in California. LCFS mandates an overall carbon intensity 

reduction for fuels in gasoline pool and diesel pool by 10% by 2020 through the tradable LCFS 

credit system. To evaluate if LCFS effectively discourages the consumption of traditional fuels, 

we estimate the long-run equilibrium and short-run dynamics of the pass-through from the LCFS 

credit prices to wholesale gasoline and wholesale diesel prices in California from 2016 to early 

2020. Our pass-through models control for fundamental time-constant fixed effects and time-

varying seasonal patterns in wholesale fuel prices. Wholesale gasoline fuels have quick and 

complete pass-through over the full sample period, suggesting fuel suppliers can pass the full 

LCFS credit costs to downstream buyers about 4 business days; for wholesale diesel fuels, they 

have incomplete long-run pass-through, and over 15 business days, they can only recoup 64% of 

the LCFS credit costs.  

The second essay examines the forecasting accuracy of a batch of yield forecasting models 

that directly transform the ordinal crop condition ratings to the numeric condition index along with 

a recently developed model introduced by Begueria and Maneta in 2020 that applies the 

cumulative link mixed model to transform the condition ratings to the continuous condition index. 

We conduct the out-of-sample yield forecasts recursively for corn and soybean from 2000 through 

2020 for all models. We measure the forecasting errors of this group of models and find throughout 

the growing season, the average root-mean-square-percentage-error (RMSPE) is about 5% for corn 
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and 6% for soybean. Our findings suggest this group of models that use crop conditions data 

provide accurate yield forecasts. Next, we compare the model developed by Begueria and Maneta 

(BM model) with its four competing yield forecasting models that have already been widely 

applied by industry practitioners. Single-horizon model forecasting comparison tests like modified 

Diebold Mariano test and Model Confidence Set test fail to show that BM model significantly 

outperforms its competitors for each week throughout the growing season. We also conduct the 

multi-horizon forecasting comparison test. The results from the average Superior Predictive 

Ability test show that despite BM model has more complex model specification, throughout the 

growing season, it does not provide superior out-of-sample yield forecasts than its competitors.  

The third essay applies a recently developed cross-quantilogram (CQ) test to examine the 

impact of Commodity Index Traders (CIT) positions on returns in four agricultural futures markets 

from 2004 – 2019. Most previous studies reject the basic tenet of the Masters Hypothesis that 

financial index investments have pressured agricultural futures prices upward. However, the 

impact of this investment may be more complicated and nuanced than can be detected by the 

relatively simple linear Granger causality tests used in many previous studies. We conduct three 

linear causality tests to provide the baseline about the relationship between CIT positions and 

futures returns. Test results fail to reject the null of no causality in most of the cases across the 

different tests, measures of position pressure, or the sample period considered. Next, we apply the 

CQ test of directional predictability in the tails of the distributions of the CIT positions and price 

movements. Consistent with the standard linear causality tests, we find no evidence that supports 

the Master Hypothesis. 
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CHAPTER 1:  

INTRODUCTION 

 

The first essay of this dissertation focusses on the prices of wholesale petroleum fuels and how 

they are affected by market-based policy that aims at reducing carbon emissions in transportation 

sectors. For example, in California, the Low Carbon Fuel Standard (LCFS) designs a transaction 

mechanism based on the carbon intensity of regulated fuels that levies tax on traditional fuels and 

rewards credits to renewable fuels. In a competitive market, upstream obligated parties have the 

incentives to fully pass-through the LCFS credit costs and cause the inflation of prices. LCFS 

reaches its goal by increasing the prices of these less-clean fuels. We build wholesale gasoline and 

diesel price spreads between Los Angeles and other bulk markets outside of California to measure 

the pass-through impacts from LCFS. To validate the design of the pass-through framework, we 

build the price spreads between two markets that are free from the obligation of LCFS and then 

measure if they respond to the variations in LCFS credit prices as the placebo analysis. We find 

that there are no pass-through impacts from LCFS. Pooling three wholesale gasoline spreads 

between Los Angeles and the other three bulk markets, we find complete and fast pass-through, 

suggesting within a few business days, fuel suppliers can fully pass-through LCFS credit costs. In 

wholesale diesel market, we find incomplete pass-through in both long-run and short-run, 

suggesting fuel suppliers have to undertake a certain portion of the credit costs. This study 

estimates the magnitude and speed of the pass-through rate of LCFS credit prices. Our results show 

the effectiveness of LCFS and we further present the different market structures for wholesale 

gasoline market and wholesale diesel market.   
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The second essay of this dissertation focuses on the fundamentals of agricultural spot 

markets. Crop yield forecasts have been an essential component of supply, demand, and price 

forecasting. We focus on a group of yield forecasting models that use the crop conditions data to 

provide yield forecasts. Among these models, a recently developed model by Begueria and Maneta 

(2020) has sophisticated specifications, and they claim it outperforms other simpler models that 

use the same crop condition information provided by USDA. We conduct forecast competitions 

between the model developed by Begueria and Maneta (2020) and other simpler crop condition 

models developed by Irwin and Good (2017a,b) and Bain and Fortenbery (2017) using recursively 

out-of-sample yield forecasts. The data for the study consists of weekly state and national crop 

condition ratings from 1986 through 2020 for corn and soybean. Statistical forecast comparison 

tests do not provide any supporting evidence to show the model proposed by Begueria and Maneta 

(2020) outperforms simpler models.  

The third essay of this dissertation focuses on agricultural futures market, and we revisit 

the Master Hypothesis that blames the buying pressure from index traders drive up the commodity 

futures prices. Most previous studies apply the linear Granger causality tests find evidence against 

the Master Hypothesis. However, as the impact of financial index investment in agricultural futures 

markets is more complicated and nuanced than can be detected by relatively simple linear 

frameworks, our study applies the recently developed cross-quantilogram test to examine the 

relationship between index investment and futures prices in the tails of the data. We use weekly 

index traders’ positions and futures returns from January 6, 2004 through December 31, 2019 for 

Chicago Board of Trade (CBOT) corn, wheat, soybeans, and Kansas City Board of Trade 

(KCBOT) wheat. Similar to the linear tests, we find very little evidence of a directional relationship 

in the extremes of the distributions.  
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CHAPTER 2:  

THE PASS-THROUGH OF THE LOW CARBON FUEL STANDARD CREDIT 

PRICES TO WHOLESALE FUELS PRICES IN CALIFORNIA 

 

2.1 Introduction 

The California Low Carbon Fuel Standard (LCFS) was created in 2007 to enhance the regulations 

on in-state petroleum carbon emissions. The program aims at reducing carbon pollution and 

dependencies on non-renewable fuels in the transportation sector besides incentivizing the 

development of alternative fuels and alternative fuel vehicles. This program is fuel-neutral as it 

encourages the use of biofuels, electricity, and hydrogen fuels; and it has been a key tool applied 

to reduce emissions of greenhouse gas (GHG), nitrogen oxides, and particulate matter. In 2011, 

LCFS provided the annual Carbon Intensity (CI) Compliance Schedule for all transportation fuels 

supplied in California. CI measures the “life-cycle” emissions of each fuel. The goal of LCFS is 

to reduce the average carbon intensity (CI) of the California transportation fuel pool by at least 

10% by 2020, based on crude oil’s CI level in 2010 (LCFS, 2015). In 2018, LCFS amendments 

were voted and passed with a 2030 target of 20% CI reduction from the 2010 CI levels (CARB, 

2018).  

Fossil fuels have higher CI ratings than their obligated LCFS standards. They generate 

deficits in proportion to the amount that are above the standard CI. On the other hand, CI ratings 

of renewable fuels are lower than their assigned LCFS standards. They generate credits in 

proportion to the amount that are below the standard CI. To meet the mandates of LCFS CI 

standards, fossil fuel suppliers can either purchase the LCFS credits from fuel providers who hold 

surplus credits, or they can implement more renewable fuel content in their final products to offset 

the deficits. With no outside money invested in the LCFS credit market, this policy is revenue 
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neutral by building upon the bilateral “over the counter” transaction system between obligated 

parties. The value of LCFS credits reflect the cost difference between the more expensive 

renewable fuels and the more economic traditional fuels. Moreover, in the market, it sends out 

signals of tax and subsidy to drivers in California and affect their choice of fuels. Through the 

credit transfer system, LCFS simultaneously subsidizes cleaner fuels and taxes fossil fuels. The 

economic effectiveness of LCFS is realized through its credit trading system at different stages of 

the transportation fuel supply chain. With the hypothesis that obligated parties have incentives to 

pass-through the additional LCFS credit costs to their downstream buyers, as traditional fuels get 

more expensive through the supply chain, LCFS eventually motivates the consumption of cleaner 

fuels in California.  

The pass-through model is a powerful tool to investigate if tax policies impact markets and 

consumer welfares. Alfred Marshall (2009) defines “pass-through” as the “diffusion throughout 

the community of economic changes which primarily affect some particular branch of production 

or consumption”. In energy markets, “economic changes” refer to the context where fuel prices 

become more expensive as the result of more stringent energy policies that usually levy taxes on 

carbon emissions. It also refers to the additional input costs borne by suppliers who has the 

incentives to pass them down to downstream buyers through the supply chain (Stolper, 2016). The 

pass-through from cost changes to fuel prices has been widely discussed in the energy industry 

(Chesnes, 2016; Lade and Bushnell, 2016). For example, Borenstein, Cameron, and Gilbert (1997), 

Bachmeier and Griffin (2003), and Lewis (2011) studied the price transmissions from crude oil to 

retail gasoline and the asymmetric responses from retail gasoline prices to the increase and 

decrease of crude oil prices. 
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The tax incidence model in a perfectly competitive fuel market suggests that a pass-through 

rate is bounded between 0% – 100%. Pass-through rate is defined as 𝜌 =
1

1+
𝜀𝐷
𝜀𝑆

, where 𝜀𝐷 and 𝜀𝑆 

are the elasticities of demand and supply, respectively (Weyl and Fabinger, 2013). Figure 2.1 

illustrate in a perfectly competitive market, how tax costs are split between sellers and buyers. 

When demand and supply are relatively elastic, as shown in Figure 2.1(a), pass-through rate 𝜌 ∈

(0,1), tax costs are undertaken proportionately by buyers and sellers. The pass-through rate is 

100% when supply is perfectly elastic (𝜀𝑆 → ∞), as shown in Figure 2.1(b) or when demand is 

perfectly inelastic (𝜀𝐷 → 0), as shown in Figure 2.1 (c). The two extreme cases show buyers 

shoulder the complete tax burden. Evidence of pass-through in competitive markets was found in 

RINs credit market where wholesale fuels can fully pass-through the mandating credit costs to fuel 

prices (Knittel, Meiselman, and Stock, 2017). In the U.S. manufacturing industries, Ganapati, 

Shapiro, and Walker (2016) showed that suppliers in the plant-level units can pass down 70% of 

energy price-driven changes in input costs to consumers. When demand function is sufficiently 

convex, or suppliers have market power at a certain level, pass-through rate 𝜌 is greater than 100% 

and known as overfull pass-through (Stolper, 2016). Evidence of the overfull pass-through was 

found in Spain that 24% of gas stations have estimated pass-through rates greater than 100% 

(Stolper, 2016). Burkhardt (2016) found that during 2013–2014, when the RINs credit price 

increased due to unexpected shocks, in the gasoline market, the costs were borne 16 times more 

by consumers than producers. Similarly in the diesel market, the extra costs were borne 1.28 times 

more by consumers than producers. 

The U.S. Renewable Fuel Standard (RFS) implemented nationwide in 2005 has a similar 

goal but different regulatory framework from LCFS. RFS mandates that fuels for transportation 

use must satisfy volumetric requirements through different categories of biofuels. These 
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requirements are met through Renewable Identification Numbers (RINs), which are generated with 

the production or import of renewable fuels, and they are tradable credits after renewable fuels are 

blended with traditional fuels. Under RFS, the RINs transaction mechanism provides subsidy to 

biofuels producers by levying extra taxes from conventional fuels producers. Studies observed that 

variations in wholesale fuel price spreads and net RINs obligations are linked. The co-movement 

of fuel price spreads1 and RINs prices suggests that transportation fuel prices in the U.S. are 

responsive to the incidence of RFS. Evidence showed that fuel providers can fully pass-through 

the RINs costs to fuel prices quickly and sufficiently, but not immediately (Burkholder, 2015; 

Knittel, Meiselman, and Stock, 2017).  

To build the pass-through framework, we measure how price difference between fuels 

provided in California and other states respond to the movement of LCFS credit prices. The 

strategy of using price spreads follows the empirical design proposed by Knittel, Meiselman, and 

Stock (2017) for the following reasons. First, RFS and LCFS share similar mechanisms of credit 

generations, and they both focus on stimulating the consumption of cleaner fuels. It is reasonable 

to expect that LCFS credit costs are likely to be passed down to wholesale fuels prices in 

California. Second, fuel price spreads between wholesale fuels in California and other states 

remove price impacts from the RINs and other time-constant fixed effects. Third, because similar 

wholesale fuels in other states are free of the LCFS obligations, fuel price spreads reflect the extra 

LCFS credit costs carried by California fuel providers and should respond to the variations in 

LCFS credit prices. To collect vigorous spot market prices, we choose Los Angeles wholesale 

petroleum market and three representative markets across the nation: New York, Chicago, and 

Gulf Coast as they are three recognized bulk petroleum markets where wholesale fuels prices are 

 
1 Price spreads are defined as price differences for the same fuel between two different markets.  
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determined and large amount of fuels transactions take place (Pouliot, Smith, and Stock, 2017). 

Before we estimate the pass-through impacts from LCFS credit prices to wholesale fuels in 

California, we conduct a placebo analysis that estimates the long-run pass-through from LCFS 

credit prices to price spreads between markets outside of California. The placebo analysis of 

having zero impact from the fake treatment groups further validates our framework of using price 

spreads and LCFS credit costs to estimate the pass-through from LCFS credits to wholesale fuels 

provided in California. We provide long-run and short-run estimations of pass-through rates of 

LCFS credit obligations to wholesale fuel prices. The empirical analysis allows us to estimate the 

magnitude and speed of the pass-through from LCFS credit prices to wholesale petroleum fuels 

prices in California.  

This paper contributes to the literature by extending the pass-through model applied in the 

RINs market to a subnational LCFS credits market in California. Some studies show that LCFS 

and RFS are two mutually reinforcing policies (Whistance, Thompson, and Meyer, 2017) because 

together they promote the use of cleaner fuels especially fuels with high ethanol-content. Huang 

et al. (2013) provide evidence that in California, having both programs in effective can achieve a 

higher reduction in GHG emissions and lead to a cut down on first generation biofuels (corn 

ethanol and sugarcane ethanol) and an increase in second generation biofuels (cellulosic ethanol 

and Biomass to Liquid (BtL)). Our study provides a different angle to show besides RFS, whether 

the incidence of LCFS in California successfully encourages the consumption of renewable 

energies and ultimately reaches the goal of reducing GHG emission.  

2.2 Background 

LCFS defines regulated parties as the initial fuel producers and importers of designated 

transportation fuels provided in California. Deficits are generated by fossil fuels, mainly gasoline 
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and diesel blendstocks. Credits are generated by alternative fuels, for example, renewable fuels 

(biofuels, biogas), hydrogen, and electricity. LCFS proposes two separate standards for gasoline 

and its substitutes (gasoline pool), and diesel and its substitutes (diesel pool). Each individual 

standard is based on the CI rating of the fuel, and this setup prevents the incentives of shifting from 

one fossil fuel to another (Yeh et al., 2016). Table 2.1 provides the LCFS Carbon Intensity (CI) 

compliance schedule and the average CI ratings of CARBOB and ULSD for both gasoline pool 

and diesel pool respectively. In mid-2015, CARB started the process of readopting LCFS and 

establishing a more stringent compliance target with 10% CI reduction from a 2010 baseline by 

2020. Starting January 1, 2016, LCFS was officially readopted and set up an annual 2% CI 

reduction for both gasoline pool and diesel pool.  

LCFS uses the equations below to calculate credits or deficits for each fuel in gasoline or 

diesel pools:  

                   𝐶𝑟𝑒𝑑𝑖𝑡𝑖,𝑡
𝑋𝐷(𝐷𝑒𝑓𝑖𝑐𝑖𝑡𝑖,𝑡

𝑋𝐷) = (𝐶𝐼𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑,𝑡
𝑋𝐷 −

𝐶𝐼𝑖,𝑡
𝑋𝐷

𝐸𝐸𝑅𝑖,𝑡
𝑋𝐷) ∙ 𝐸𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒

𝑋𝐷 ∙
1𝑀𝑇𝐶𝑂2𝑒

106𝑔𝐶𝑂2𝑒
,                (2.1) 

and 

                                                     𝐸𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒
𝑋𝐷 =  𝐸𝑖,𝑡 ∙ 𝐸𝐸𝑅𝑖,𝑡

𝑋𝐷 ,                                                                 (2.2) 

where 𝑋𝐷 identify whether a fuel (𝑖) is in gasoline pool or diesel pool; 𝐶𝐼𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑,𝑡
𝑋𝐷  (𝑔𝐶𝑂2𝑒/𝑀𝐽) 

is the carbon intensity standard of fuel 𝑖 under 𝑋𝐷 in year 𝑡; 𝐶𝐼𝑖,𝑡
𝑋𝐷 (𝑔𝐶𝑂2𝑒/𝑀𝐽) is the carbon 

intensity of fuel 𝑖 in year 𝑡; 𝐸𝑖,𝑡 (𝑀𝐽/𝑔𝑎𝑙𝑙𝑜𝑛) is the fuel energy density; 𝐸𝐸𝑅𝑖,𝑡
𝑋𝐷  is the Energy 

Economy Ratio of fuel 𝑖, as an adjustment for the energy efficiency compared to gasoline or diesel. 

For example, energy density of CARBOB is 119.53  𝑀𝐽/𝑔𝑎𝑙𝑙𝑜𝑛.Table 2.1 shows that in 

2017 the standard CI of gasoline pool is 95.02 (𝑀𝐽/𝑔𝑎𝑙𝑙𝑜𝑛), and the CI score of CARBOB is 

99.78 (𝑀𝐽/𝑔𝑎𝑙𝑙𝑜𝑛). Applying the Equations (2.1) and (2.2), we can calculate that one gallon of 

CARBOB generates |(95.02 − 99.78)| × 119.53 × 10−6 = 5.69 × 10−4(𝑀𝑇) deficits. For 
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ULSD, the energy density is 134.47 (𝑀𝐽/𝑔𝑎𝑙𝑙𝑜𝑛). Table 2.1 shows in 2017 the standard CI of 

diesel pool is 98.44 (𝑔𝐶𝑂2𝑒/𝑀𝐽) and the CI score for ULSD is 102.01 (𝑔𝐶𝑂2𝑒/𝑀𝐽). Using 

Equations (2.1) and (2.2), we can calculate that burning one gallon of ULSD would generate 

|(98.44 − 102.01)| × 134.47 × 10−6 = 4.8 × 10−4(𝑀𝑇) deficits. To convert LCFS deficits 

from $/𝑀𝑇 to $/𝐺𝑎𝑙𝑙𝑜𝑛, we assume LCFS credit price is transacted at $200/𝑀𝑇, for gasoline, 

the credit price is |(95.02 − 99.78)| × 119.53 × 10−6 × 200 = 0.114 ($/𝑔𝑎𝑙𝑙𝑜𝑛), for ULSD, 

the credit price for diesel is |(98.44 − 102.01)| × 134.47 × 10−6 × 200 = 0.098 ($/𝑔𝑎𝑙𝑙𝑜𝑛).  

LCFS offers multiple options for deficit generators to meet their annual obligations. They 

can directly purchase credits from alternative fuels providers, or they can transfer obligations to 

downstream blenders with the ownership of fuels. These options under this mechanism increases 

fuel costs by the amount of LCFS credit prices. For this study, we focus on fuels provided publicly 

in the wholesale markets. A simplified illustration of LCFS credits and deficits generation and 

obligation transfer mechanisms on the gasoline supply chain is presented in Figure 2.2. In the first 

case, a simplified credit transfer mechanism is shown in Figure 2.2 (a), where fuels initial providers 

are the designated regulated parties, and downstream blenders are free of compliance obligations. 

Here we use wholesale gasoline (CARBOB) and ethanol as an example to illustrate the pass 

through of LCFS credit prices to wholesale fuel prices, considering wholesale diesel (ULSD) and 

diesel pool have a very similar credit transfer mechanism. LCFS credit price is determined by the 

demand and supply in the market. For example, now we assume credits are transacted between 

regulated parties at $𝑎/𝑔𝑎𝑙𝑙𝑜𝑛. For each gallon of ethanol, producers are awarded by CARB at 

$𝑎/𝑔𝑎𝑙𝑙𝑜𝑛. For each gallon of CARBOB, refiners and importers are required to retire a gallon of 

credit at $𝑎/𝑔𝑎𝑙𝑙𝑜𝑛 to CARB to demonstrate their compliance. This can be achieved through 

directly purchasing credits from ethanol producers. Purchasing credits brings extra cost to gasoline 
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providers. To recoup it, when they sell their fuels to downstream blenders, they charge a higher 

gasoline price at $(𝑥 + 𝑎)/𝑔𝑎𝑙𝑙𝑜𝑛, assuming the net cost of gasoline is $𝑥/𝑔𝑎𝑙𝑙𝑜𝑛. When ethanol 

producers sell their fuels to blenders because there is no LCFS credit value remained in ethanol at 

this stage, assuming price for ethanol is $𝑦/𝑔𝑎𝑙𝑙𝑜𝑛, now without the LCFS value in ethanol, price 

becomes $(𝑦 − 𝑎)/𝑔𝑎𝑙𝑙𝑜𝑛. In this scenario, the resulting blended fuel costs are $(𝑥 + 𝑦)/𝑔𝑎𝑙𝑙𝑜𝑛. 

In the second case, initial regulated parties choose to transfer their compliance obligations to fuel 

blenders, along with the transfer of their fuels’ ownerships. A simplified credit transfer system is 

shown in Figure 2.2 (b) using wholesale gasoline and ethanol as an example. After acquiring the 

ownership of CARBOB and ethanol, fuel blenders are considered as regulated parties under LCFS. 

They are required to retire credits to CARB for blends’ gasoline components at $𝑎/𝑔𝑎𝑙𝑙𝑜𝑛 and 

they are awarded with credits for blends’ ethanol components at $𝑎/𝑔𝑎𝑙𝑙𝑜𝑛. In this transaction, 

fuel blenders receive a gallon of wholesale gasoline from CARBOB refiners and imports for 

$𝑥/𝑔𝑎𝑙𝑙𝑜𝑛, and a gallon of ethanol with $𝑎/𝑔𝑎𝑙𝑙𝑜𝑛 LCFS credit value from ethanol fuel 

producers for $𝑦/𝑔𝑎𝑙𝑙𝑜𝑛. In this scenario, the resulting blended fuel costs are $(𝑥 + 𝑦)/𝑔𝑎𝑙𝑙𝑜𝑛.  

LCFS created the Credit Clearance Market system that relaxes the situation when the 

market is short of credits. Through the process, a regulated party can choose to purchase its “pro-

rata shares of credit”2 when it fails to retire the requested credits by the end of that year (LCFS, 

2015). The LCFS credits are directly exchanged between credit providers and deficit holders “over 

the counter”. The total amount of available credits determines the price. With credit price being 

positive, LCFS provides a cash transfer mechanism that directly brings the obligation payments to 

cleaner fuels producers as an incentive for more environment friendly fuels. Yeh et al. (2016) point 

 
2 The calculation of the “pro-rata shares” of a regulated party (A) is defined as (A′s deficit/total deficit) ×
min(pledge credits, total deficits).  
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out that the current positive credit prices indicate a binding and effective program, and it would 

continue to have an expected positive marginal compliance with the development of the program.  

2.3 Data and Descriptive Statistics 

2.3.1 Data and construction of variables 

Our data consists of daily spot prices of wholesale gasoline and diesel from Los Angeles, New 

York, Chicago, and Gulf Coast markets, and LCFS credit prices for gasoline pool and diesel pool 

respectively. They are all collected from the Ethanol & Biodiesel Information Service Report 

provided by OPIS. The full sample period covers the U.S. business days from January 4, 2016, to 

March 12, 2020, with 1050 observations. Wholesale gasoline and diesel in Los Angeles are 

provided in the form of California Reformulated Blendstock for Oxygenate Blending (CARBOB) 

and Ultra Low Sulfur Diesel (ULSD), respectively. In New York, Chicago, and Gulf Coast 

markets, wholesale gasoline and diesel are supplied in the form of Reformulated Blendstock for 

Oxygenate Blending (RBOB) and ULSD, respectively. 

Pass-through models measure the impacts from LCFS credit prices to wholesale fuel prices 

in California. Since wholesale fuels provided outside of California are free of LCFS obligations, 

we assume the price spreads between Los Angeles and other wholesale fuel markets are positive 

and they would respond to variations in LCFS credit prices. The estimations of pass-through rates 

are based on the following assumptions: (1) RFS obligations have the same price impacts on 

wholesale fuels provided across the nation. (2) Wholesale price spreads remove similar time-

constant fixed effects on individual wholesale price. The spreads are mainly affected by variations 

in LCFS credit prices3. (3) Wholesale fuels provided in Los Angeles were more expensive than 

 
3 RFS has a pull on the availability of renewable fuels to California. As alternative fuels in California enjoy 

subsidies from both RFS and LCFS, they have incentives to expand their supplies and produce more of the LCFS 

credits, which would affect the price of renewable fuels and the LCFS credit prices. However, the impacts from the 



12 

 

other bulk markets before the implementation of LCFS, which are mainly caused by local supply 

shocks and the more stringent fuel quality required for fossil fuels in California by CARB. We 

assume neither of them directly relate to price fluctuations in the LCFS credit prices. 

Based on the above assumptions, fuel spreads are the price differences between fuels 

supplied in LA and three wholesale fuel markets outside of California: Los Angeles (LA), Chicago 

(CHI), and Gulf Coast (GC) as presented in the equations below: 

Wholesale gasoline price spreads: 

• LA–NY RBOB spread = LA RBOB − NY RBOB 

• LA–CHI RBOB spread = LA RBOB − CHI RBOB 

• LA–GC RBOB spread = LA RBOB − GC RBOB 

Wholesale diesel price spreads: 

• LA–NY diesel spread = LA ULSD − NY ULSD 

• LA–CHI diesel spread = LA ULSD − CHI ULSD 

• LA–GC diesel spread = LA ULSD − GC ULSD 

2.3.2 Descriptive statistics and time series plots 

Table 2.2 provides summary statistics for six wholesale fuel spreads and their corresponding LCFS 

credit prices over the full sample period. Figure 2.4 plots the LCFS credit prices for both gasoline 

pool and diesel pool. Figure 2.5 and Figure 2.6 plot wholesale gasoline spreads and diesel spreads 

with the corresponding LCFS credit prices. 

 
RINs are limited, and this is because the credit-generating systems of two policies have different emphases. LCFS is 

a fuel-neutral program, and it is designed as a performance standard that provides LCFS credit benefits to alternative 

fuels based on their CI ratings. RFS promotes the blending of cleaner fuels by requesting specific volumetric targets 

for different categories of biofuels. However, this leaves an open question for the future development of this paper. 
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Figure 2.4 presents the development of two LCFS credit prices from 2014 to 2020, 

including LCFS credit prices before and after the readoption of program in the beginning of 2016. 

Before 2016, LCFS credit prices are close to zero and are lack of volatilities. After 2016, when 

LCFS with more rigorous standards was readopted, prices started to increase by each year. We 

observe a few structural breaks in credit prices. They usually occur at the beginning of each year 

from 2016 – 2020. They are likely caused by the transaction mechanism of LCFS credits, which 

requires obligated parties to offset their deficits by the end of year, and each year the CI standards 

for gasoline pool and diesel pool continue to decline causing greater CI gap between the CI of 

traditional petroleum fuels and the assigned standard CI. The jumps in the beginning of each year 

reflect demand shocks for LCFS credits as traditional fuels providers expect the increasing demand 

in the following years and they have the incentives to purchase more credits that can meet their 

program mandates. Figure 2.4 shows two credit prices have similar volatility, and from Table 2.2 

it presents two credit prices have similar standard deviations of $0.06/gallon. And yet LCFS credit 

prices for gasoline pool are slightly greater than that of diesel pool, reflecting the fact that in 

California credit demand in gasoline pool are higher than the credit demand in diesel pool.  

Table 2.2 shows that, on average, all spreads are positive. For three wholesale gasoline 

spreads, they are over 10 cents/gallon; and for three wholesale diesel spreads, they are smaller than 

10 cents/gallon. Positive fuel price spreads suggest during the full sample period, wholesale fuel 

gasoline and diesel are more expensive in Los Angeles market than that in other bulk markets. 

Figure 2.5 and Figure 2.6 show the development of three gasoline spreads and three diesel spreads 

from 2014 – 2020. We can observe that before 2016, spreads fluctuated around zero, and since 

early 2016, spreads have been positive and showed the tendency of moving along with LCFS credit 

prices. We also observe the oscillation patterns in spreads. As spreads remove time-constant fixed 



14 

 

effects, the remaining components are time-varying fixed effects on fuel prices. The patterns of 

spreads suggest daily seasonality, so before we run pass-through analysis, we need to specify 

seasonal components in the regressions.  

2.4 Time Series Analysis 

2.4.1 Empirical strategy for pass-through estimations 

The pass-through model reflects the impacts from LCFS credit prices to wholesale fuel prices in 

California. For example, if wholesale gasoline and diesel markets are perfectly competitive and 

we relax the assumption on the elasticities of demand and supply, we would assume the estimated 

pass-through rate is between 0 and 1. When pass-through rate is 1 it indicates the wholesale fuels 

markets are perfectly competitive and it further implicates either the elasticity of supply is perfectly 

elastic, or the elasticity of demand is perfectly inelastic. It might seem plausible to directly apply 

the price level of two series to estimate the pass-through impacts on wholesale fuel prices from 

LCFS credit prices, but this would only work theoretically when two series have similar levels of 

price variations. In practice, factors like supply and demand shocks and transportation costs would 

magnify fluctuations in fuel prices.  

Having wholesale fuel prices and LCFS credit prices, we follow the approach proposed by 

Knittel, Meiselman, and Stock (2017) to remove time-constant fixed effects and aviod omitted 

variable bias. Spreads are the price difference between wholesale fuels supplied in Los Angeles 

and other three bulk markets, where fuels in Los Angeles are considered as the treatment group 

and fuels in other three markets are considered as the control group.  

For the long-run equilibrium of pass-through model, the LCFS credit prices and price 

spreads of wholesale fuels are defined: 

                                               𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

= 𝛼𝑖
𝑗
+ 𝛽𝑖

𝑗
𝐿𝐶𝐹𝑆𝑡

𝑗
+ 𝑢𝑖,𝑡

𝑗
,                                                  (2.3) 
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where 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

 refers the price differences between Los Angeles and other three markets (𝑖) of 

fuel 𝑗 (diesel or gasoline) on day t, 𝑢𝑖,𝑡
𝑗

 refers to other factors that contribute to the price variations 

in 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

, 𝛽𝑖
𝑗
 is the pass-through coefficient for 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡

𝑗
 which captures the impact from 

LCFS credit prices to wholesale fuel prices in Los Angeles. For example, suppose the estimated 

pass-through rate is 1, when we have $1/gallon increase in the LCFS credit prices, 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

 would 

increase by $1/gallon. Because fuels sales in other states are free of LCFS credit obligations, ceteris 

paribus, we would further expect fuel price in LA increase by $1/gallon. Therefore, our pass-

through model is equivalent to directly estimating the relationship between fuel prices in LA and 

the LCFS credit prices, but with a more comprehensive control over time-constant fixed effects on 

individual wholesale fuel price.  

This approach fits the pass-through relationship well for the following reasons. First, fuel 

spreads fully capture the magnitude the LCFS obligations. At the same time, because both 

wholesale gasoline and diesel are under the national RINs obligations, the spreads can remove 

price fluctuations caused by RFS. Second, spreads take away some common factors that fluctuate 

fuel prices in different markets, for example, demand and supply shocks, crude oil prices, crack 

spread, and transportation costs. Third, because fuels provided in different markets are physically 

comparable, this strategy reassures that the spreads do not contain varying input costs from fuels' 

different chemical components. 

2.4.2 Validation of pass-through model  

To validate the framework of estimating the impact from LCFS credit prices to wholesale fuel 

price in Los Angeles, we conduct the placebo analysis. We build control group and fake treatment 

group that consist of price spreads between wholesale fuels provided in Chicago, New York, and 



16 

 

Gulf Coast. As fuels transacted in these places are not affected by LCFS, therefore, these price 

spreads should not respond to the variations of LCFS credit prices.  

The placebo analysis has the following steps: (1) build pairwise price spreads from three 

wholesale markets outside of California for gasoline and diesel. For each fuel, there are three 

combinations of two markets without repetition. (2) As the pass-through model does not 

distinguish different wholesale markets, the analysis is built on pooling observations over: three 

gasoline spreads, three diesel spreads, and six gasoline and diesel spreads. (3) We run OLS 

regressions where dependent variable is price spread and independent variables are LCFS credit 

prices and seasonal components. (4) The impact from LCFS credit to price spreads is estimated 

using Newey-West heteroskedasticity-and autocorrelation-consistent (HAC) standard errors with 

30 lags. 

Placebo analysis results are summarized in Table 2.3. For pooled wholesale gasoline 

spreads, pooled diesel spreads, and pooled spreads of two fuels, the impact from LCFS credit 

prices on price spreads between markets outside of California are not significantly different from 

zero. To account for time-varying seasonal components in price spreads, we first estimate seasonal 

components using full sample period from 2016 – early 2020. We also estimate seasonality of 

spreads using sample period from 2013 – 2015 where LCFS was not fully adopted in California. 

This approach removes any potential impacts from LCFS credit prices on the normal seasonal 

pattern of spreads. Results of placebo analysis suggest that fuels provided outside of California are 

not affected by LCFS program. And they further validate the design and results of pass-through 

models by using fuel price spreads between Los Angeles and other wholesale markets and LCFS 

credit prices. 
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2.4.3 Identification problem  

One factor that might cause biased pass-through estimation is other clean energy programs 

promoted in California. One example is the Cap-and-Trade program that requires regulated parties 

to turn in allowances for their emissions. The allowances are obtained quarterly through auctions 

organized by CARB. The collected funds are deposited at CARB and will later be used to support 

the development of cleaner transportation. The Cap-and-Trade allowances and LCFS credits 

increase obligated parties’ marginal costs, but they are distinctively different in terms of the level 

and volatility of credit prices as shown in Figure 2.2. From 2016 to 2018, the LCFS credit prices 

increased from $80/MT to over $180/MT with relatively high price variations, while the Cap-and-

Trade allowances stayed at around $14/MT. The behaviors of two price series indicate that the 

LCFS credit prices have downward impacts on the Cap-and-Trade allowances, as LCFS has more 

stringent GHG emissions targets than Cap-and-Trade. When a regulated party meet its LCFS 

compliance, it can automatically satisfy the compliance of Cap-and-Trade. Therefore, due to the 

low-price levels and lack of variations of Cap-and-Trade allowances, we assume it does not cause 

any additional marginal input costs to fuel providers in California.  

In energy markets, there are some other factors that also impact fuel prices. For these 

factors that cannot be removed by taking price differences of petroleum fuels, they usually have 

time-varying characteristics, for example, changing demand, supply, and income. The application 

of dynamic OLS that includes leads and lags of the first difference of LCFS credit prices can 

remove the endogeneity between independent variable and omitted variables in error term, 

especially for the pass-through regression where we have a I(0)/I(1) system between spreads and 

LCFS credit prices (Stock and Watson, 1993).  
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2.4.4 Seasonality specifications 

The movement of wholesale fuel spreads suggest their variations are perceived as the combination 

of a deterministic seasonal component caused by market fundamentals and the response to LCFS 

credit prices. Figures 2.4 and 2.5 show that the seasonal patterns are available in all spreads. The 

inclusion of seasonal components in pass-through regressions avoid omitted variable bias.  

Our study consists of daily prices of the LCFS credit and wholesale fuels spreads. To 

smooth out the daily variations and avoid the price jumps from week to week, we set up a 

seasonality model that has a parameterized linear combination of trigonometric functions with 

daily seasonal frequencies (Hannan, Terrell, and Tuckwell, 1970; Knittel, Meiselman, and Stock, 

2017). The daily indicator variables use four sine and cosine functions applying on calendar days 

to reflect weekly peak and trough without breaking the continuity of daily prices, as shown in 

equation (1.4)4. Including eight harmonic frequencies in our seasonality model fits well for daily 

patterns, as they capture variation periods from annually (k=1) up to quarterly (when k=4).  

                   𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

= 𝜇𝑖 + ∑ 𝛾𝑖,𝑐,𝑘
𝑗4

𝑘=1 cos (
2𝜋𝑡𝑘

366
) + ∑ 𝛾𝑖,𝑠,𝑘

𝑗4
𝑘=1 sin (

2𝜋𝑡𝑘

366
) + 𝑣𝑖,𝑡

𝑗
, 5                (2.4) 

To validate the specification of seasonality and to reduce any potential impacts from LCFS 

credit prices to the normal seasonal pattern of spreads, we apply data before 2016 to test if all the 

seasonal coefficients are significant. Before 2016, as LCFS credit prices are not binding, and 

 
4 Other specifications of this model are applied for robustness check, for example, we extend to including 10 and 12 

indicator variables. Results are similar, and they have the same level of statistical significance. Therefore, having four 

sine and four cosine seasonality model would be sufficient and parsimonious for each spread. Including eight harmonic 

frequencies in our seasonality model fits well for daily patterns, as they capture variation periods from annually (k=1) 

up to quarterly (when k=4). 
5 We also provide an alternative approximation for the seasonality model. As there is no observation for non-business 

days, there are only about 260 daily prices for each year. In this model, we index time only on business days and adjust 

seasonal frequencies to 260 as a robustness check for our base seasonality model. This model is specified as:  

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

= 𝜇𝑖 + ∑ 𝛾𝑖,𝑐,𝑘
𝑗

4

𝑘=1

cos (
2𝜋𝑡𝑘

260
) + ∑ 𝛾𝑖,𝑠,𝑘

𝑗

4

𝑘=1

sin (
2𝜋𝑡𝑘

260
) + 𝑣𝑖,𝑡

𝑗
 

F-tests conclude that all the spreads have seasonal factors at 1% significance level.  
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credits transactions were relatively small, we assume there is no impacts from LCFS credit prices 

to spreads normal seasonality. We estimate coefficients in Equation (2.4) with observations from 

2013–2015. We conduct an F-test on all seasonality coefficients. The test statistics and 𝑅2 of our 

seasonal model are summarized in Table 2.2. F-tests conclude that all the spreads have seasonal 

factors at 1% significance level. 𝑅2 indicates that for each spread, daily seasonal indicators explain 

a considerable portion of variations in spreads. 

2.4.5 Time series properties 

Before we run time series regression models on fuel spreads and the LCFS credit prices, the first 

thing we check is each series order of integration. When two series have different degrees of 

integration, their relationship tends to be spurious, and the least square estimates could be 

inconsistent. Figure 2.5 and Figure 2.6 present the price movement of six spreads and two LCFS 

credit prices. We use Augmented Dickey Fuller (ADF) test and Dicky-Fuller Generalized Least 

Squares (DF-GLS) test for unit root test. Test results are summarized in Table 2.5 under ADF and 

DF-GLS columns. ADF test statistics suggest that at 1% significance level, all the six spreads are 

integrated of order zero, i.e., being stationary, and two LCFS credit price series fail to reject the 

null hypothesis of being nonstationary. DF-GLS tests show four out of six spreads are stationary 

and two credit prices are nonstationary. Altogether, for spreads 10 out of 12 cases suggest they are 

stationary; and for LCFS credit prices, none of unit root tests suggest they are stationary.  

Without accounting for structural breaks, unit root test tends to provide biased conclusions 

about whether a series is stationary. During full sample period, there are a few structural breaks in 

both LCFS credit prices. They usually appear at the beginning of each year, and throughout the 

year, credit prices show a mean-reverting pattern. One reason behind is that LCFS tightens the 

standard CI for regulated fuels year by year, and the program requires obligated parties to offset 
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the deficits by each year, which cause demand shocks in the market that appear in the beginning 

of each year. However, as credits can be stored in the bank and would not expire, and LCFS 

incorporates more renewable energy fuels that build larger credit supply, the lagging effect from 

supply side slowly takes away the demand shocks. We find in Figure 2.5 and Figure 2.6, at the 

beginning of each year, there is no clear evidence to show structural breaks in spreads. Therefore, 

we apply the dummy variables to control for price jumps in these periods and the model is defined: 

          𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑗

= 𝛼𝑖
𝑗
+ 𝛽𝑖

𝑗
𝐿𝐶𝐹𝑆𝑡

𝑗
+ 𝑢𝑖,𝑡

𝑗
+ 𝛼𝑖,1

𝑗
𝐷2017 + 𝛼𝑖,2

𝑗
𝐷2018+𝛼𝑖,3

𝑗
𝐷2019 + 𝛼𝑖,4

𝑗
𝐷2020 

         +𝛽𝑖,1
𝑗

𝐷2017 × 𝐿𝐶𝐹𝑆𝑡
𝑗
+ 𝛽𝑖,2

𝑗
𝐷2018 × 𝐿𝐶𝐹𝑆𝑡

𝑗
+𝛽𝑖,3

𝑗
𝐷2019 × 𝐿𝐶𝐹𝑆𝑡

𝑗
+ 𝛽𝑖,4

𝑗
𝐷2030 × 𝐿𝐶𝐹𝑆𝑡

𝑗
  (2.5) 

 Table 2.4 presents estimated coefficients before the slope dummy variables. We assume 

the relationship between LCFS credit prices and spreads should be constant, except for a few days 

where the relationship is changed due to demand shocks. Test results suggest that all the slope 

dummy variables are not significantly different from zero, indicating they cannot change the 

overall impact from LCFS credit prices to spreads.  

2.4.6 Long-run pass-through estimations and results 

With the assumption that the LCFS credit prices are exogenous to spreads, we specify the pass-

through model for two wholesale fuels as below: 

                               𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑔𝑎𝑠

= 𝛼𝑖
𝑔𝑎𝑠

+ 𝛽𝑖
𝑔𝑎𝑠

𝐿𝐶𝐹𝑆𝑡
𝑔𝑎𝑠

+ 𝑤𝑖,𝑡
𝑔𝑎𝑠

+ 𝑢𝑖,𝑡
𝑔𝑎𝑠

,                                   (2.6) 

and, 

                     𝑆𝑝𝑟𝑒𝑎𝑑𝑗,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 = 𝛼𝑗

𝑑𝑖𝑒𝑠𝑒𝑙 + 𝛽𝑗
𝑑𝑖𝑒𝑠𝑒𝑙𝐿𝐶𝐹𝑆𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 + 𝑤𝑗,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 + 𝑢𝑗,𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 ,                      (2.7) 

where 𝛽𝑖
𝑔𝑎𝑠

 and 𝛽𝑗
𝑑𝑖𝑒𝑠𝑒𝑙  are two pass-through coefficients, 𝑤𝑖,𝑡 and 𝑤𝑗,𝑡 refer to the 8 seasonal 

indicator variables as specified in equation (2.4), and we apply Newey-West HAC standard errors 

with 10 lags.  
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We apply long-run pass-through models over the full sample period from 2016 to the early 

2020 for the following reasons. (1) Before 2016 LCFS was not fully developed. Although LCFS 

credits were available for transactions between obligated parties, the number of transactions were 

limited, and the general credit price was relatively low. Figure 2.4 shows during this period from 

2014 – 2015, LCFS credit prices are lack of volatilities, therefore variations in two credit prices 

were too small to be reflected in the corresponding spreads. (2) The updated LCFS policy was 

implemented at the beginning of the 2016. Since then, the credit prices became relatively stable 

and reflected a relatively stable demand and supply for the credits. 

Knittel, Meiselman, and Stock (2017) pointed out that the pass-through theory does not 

distinguish between the spreads derived from different wholesale markets, therefore we can 

assume the same pass-through rates for different spreads. Moreover, as individual pass-through 

estimate has large standard error, pooling price spreads improves the precision of estimates, and it 

averages out the idiosyncratic time-constant fixed effects for price spreads.  

Table 2.5 summarizes the estimated long-run pass-through coefficients for six individual 

spread and the pooled regressions for two groups: three gasoline spreads and three diesel spreads 

with different seasonality specifications. For wholesale gasoline, the estimated pass-through 

coefficients for individual spread and the pooling of three spreads are not significantly different 

from 1, indicating wholesale gasoline providers in LA have complete pass-through and 

downstream buyers fully undertake the LCFS credit costs. For wholesale diesel, three individual 

spreads and the pooling of three spreads show pass-through rate is significantly different from one 

and is about 0.5. This indicates fuel providers can only pass down half of their LCFS credit costs.  

Similar results are provided by the dynamic OLS that include five leads and lags of the first 

differences of LCFS credit prices as additional regressors. Dynamic OLS corrects for endogeneity 
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in the regression and provides efficient estimator when variables in equation (2.6) and equation 

(2.7) have unit roots and are cointegrated.  

The findings of complete pass-through in California wholesale gasoline market suggests 

that over the long-run, downstream buyers of wholesale fuels undertake the full LCFS credit costs. 

As traditional fuels are more expensive under LCFS, it further shows the effectiveness of the 

program in terms of discoursing the consumption of less-clean fuels. However, in wholesale diesel 

market, it shows an incomplete pass-through of LCFS credit prices to wholesale fuel prices, which 

indicates that fuel providers can only pass down half of LCFS credit costs. The incomplete pass-

through implies LCFS is not as effective in wholesale diesel market as it is in wholesale gasoline 

market, as the extra costs from LCFS are not fully passed down to downstream buyers, and the 

incentives of increasing the consumption of cleaner fuels are discounted. This can be explained by 

the underlying elasticities of demand and supply, where both demand and supply should be elastic. 

In California, gasoline and diesel are the largest and the second largest used fuels in the state. It is 

reasonable to assume the demand elasticity of wholesale diesel is more elastic than gasoline. 

Moreover, as the total consumption of wholesale diesel is smaller than gasoline, diesel suppliers 

does not have the flexibility of passing LCFS credit costs to their buyers over the sample period. 

Supporting evidence is presented in Figure 2.4 where LCFS credit price for diesel pool is lower 

than gasoline pool, which implies the demand for credits is lower and the demand for wholesale 

diesel fuels is lower.  

2.4.7 Short-run pass-through estimations and results 

In this section, we discuss the pass-through dynamics between the LCFS credit prices and 

wholesale fuel price spreads by applying the structural vector autoregressions (SVARs) model. 
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The SVAR model estimates spreads’ dynamic responses to unexpected shocks in the LCFS credit 

prices with a mathematical specification below: 

                                             𝑌𝑡 = Π0 + ∑ Φ𝑘
𝑝
𝑘=1 𝑌𝑡−𝑘 + ΓΨ𝑡 + 𝑢𝑡 ,                                                      (2.8) 

where 𝑌𝑡
′ = (𝐿𝐶𝐹𝑆𝑡

𝑗
, 𝑆𝑝𝑟𝑒𝑎𝑑𝑡

𝑗,𝑖
). 𝐿𝐶𝐹𝑆𝑡

𝑗
 are credit prices for diesel or gasoline on day t. 𝑆𝑝𝑟𝑒𝑎𝑑𝑡

𝑗,𝑖
 

refers to the individual wholesale spread on day t. Ψ𝑡 includes eight seasonal indicator variables 

for each spread. 𝑢𝑡 is the VAR innovation. The impulse response function of the short-run model 

provides dynamic pass-through estimates from the LCFS credit price to wholesale fuels, especially 

measures how wholesale fuels in California respond to an unexpected shock in LCFS credit prices. 

We assume LCFS credit prices are exogenous and uncorrelated to any structural shocks of fuel 

price spreads. Therefore, in the SVAR specification, the unexpected credit price shock is placed 

as the first element of 𝑢𝑡, and the dynamic response of 𝑌2𝑡 to 𝑢1𝑡 estimates the response of the 

spread to the credit price shocks. The choice of lags 𝑘 = 2 in the autoregression is determined by 

the Akaike information criterion (AIC). AIC shows that five out of six spreads can be specified 

with 2 lags in the autoregression. The bivariate SVAR short-run pass-through dynamics over the 

full sample period are summarized in Table 2.6. 

We also apply the pooled SVAR model to estimate the dynamics of short-run pass-through. 

Theoretically, pass-through theory does not distinguish different markets and the response of 

individual spread to an unexpected shock in the same LCFS credit price should not be different 

from each other (Knittel, Meiselman, and Stock, 2017). Pooling three spreads for wholesale 

gasoline and wholesale diesel can also average out the idiosyncratic price variations in individual 

spread. For the pooled model, we extend the response vector to 𝑌𝑡
′ = 

(𝐿𝐶𝐹𝑆𝑡
𝑗
, 𝑆𝑝𝑟𝑒𝑎𝑑𝑡

𝑖,1, 𝑆𝑝𝑟𝑒𝑎𝑑𝑡
𝑖,2, 𝑆𝑝𝑟𝑒𝑎𝑑𝑡

𝑖,3
). The restriction lies upon the matrix Φ𝑘. For example, 

the equation for 𝑆𝑝𝑟𝑒𝑎𝑑𝑡
𝑖,1

 should have the following restrictions: (1) coefficient before other 
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spreads (i.e. 𝑆𝑝𝑟𝑒𝑎𝑑𝑡−𝑘
𝑖,2

 and 𝑆𝑝𝑟𝑒𝑎𝑑𝑡−𝑘
𝑖,3

) should all be zero; (2) coefficient before 𝐿𝐶𝐹𝑆𝑡−𝑘
𝑗

 are the 

same for all spread equations; (3) own-lag coefficient should be the same for all spread equations. 

Estimation results over the full sample period are summarized in Table 2.7.  

The bivariate short-run pass-through estimates suggest the following conclusions. First, the 

estimates for gasoline show a pattern that after 15 days, all spreads show the evidence of full pass-

through, and for the first few days, cumulative pass-through rates have large standard errors. 

Second, for diesel, three spreads have very different pass-through patterns. For the LA–NY spread, 

over the first 15 days, LCFS has negative pass-through rate. For the LA–CHI spread, pass-through 

rates are all below 1, however, the t-test shows that they are not significantly different from 1, 

suggesting the complete cumulative short-run pass-through. For the LA–GC spread, after 13 days, 

the cumulative pass-through rates become positive, and yet they are significantly smaller than 1, 

indicating the incomplete dynamic pass-through. The evidence in wholesale diesel markets is not 

consistent for all three spreads. This is because individual spread has unique behavior over the full 

sample period, and the volatility of LCFS credit prices for diesel is lower than gasoline. Therefore, 

the measure of how spreads respond to the shocks in LCFS credit prices over a short period of 

time, i.e., we use 15 days to illustrate the reaction, are likely to be less accurate.  

To avoid the inconsistent pass-through estimates from individual spread with the bivariate 

SVAR model, we also report the dynamic pass-through rates from the pooled SVAR model that 

increases the accuracy of estimators. For wholesale gasoline, we observe that after 4 days, fuel 

suppliers can achieve complete pass-through. The estimated pass-through rates become more 

precise as they have lower standard errors till after 15 days, the estimated pass-through rate is 

about 1.22 with the lowest standard error of 0.39. For wholesale diesel, the pass-through rates in 

the early days are all negative and they become positive after 6 days when there is an unexpected 
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shock in LCFS credit prices. After 15 days, the short-run pass-through rate is about 0.64, which is 

significantly smaller than 1, suggesting incomplete pass-through. The findings in short-run pass-

through present a similar pattern that for gasoline, it has full pass-through, whereas for diesel, it 

has incomplete pass-through. The contrasting findings are caused by more elastic demand for 

wholesale diesel and the lower credit prices for diesel pool. Therefore, the obligated parties of 

wholesale diesel do not have the ability and incentives to fully pass down LCFS credit costs to 

their buyers.  

2.5 Conclusions 

In conclusion, our study estimates the long-run pass-through equilibrium and the short-run pass-

through dynamics from LCFS credit prices to California wholesale gasoline and diesel prices. Our 

discussions focus on wholesale petroleum prices and LCFS credit prices from 2016 to the early 

2020, during which LCFS was readopted, and the variations of credit prices are large enough for 

the estimations of pass-through. For wholesale gasoline, pooled long-run estimated coefficient is 

1.06 with a Newey-West HAC standard error of 0.2, suggesting in wholesale gasoline markets, 

fuel providers and fully recoup their LCFS obligations by passing the extra credit costs to their 

downstream buyers. For wholesale diesel, pooled estimated coefficient is about 0.5, with a Newey-

West HAC standard error of 0.1, showing that suppliers of wholesale diesel can only pass down 

half of the credit costs to their downstream buyers. For short-run pass-through, in wholesale 

gasoline markets, obligated parties have complete pass-through after 4 business days, but in 

wholesale diesel markets, in the first few days, pass-through rates are negative and after 15 days, 

they can only recoup 60% of the LCFS credit costs.  

The evidence of the complete LCFS pass-through rates in wholesale gasoline market for 

both long-run and short-run shows eventually customers pay for the LCFS credit prices and shows 
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the effectiveness of the program by discouraging the consumption of traditional fuels. The 

evidence of incomplete pass-through in wholesale diesel for both long-run and short-run shows 

obligated parties can only pass down a portion of LCFS credit costs to their buyers. The more 

elastic demand for diesel, the lower credit prices, and the lack of volatility for diesel pool make 

obligated parties do not have the capacity and incentives to pass down LCFS credit costs.  

Some other factors can also explain the partial pass-through rates. For example, LCFS has 

the back-loaded credit system: deficits and credits are matched and cleared up by the end of each 

fiscal year. Due to this mechanism, daily variations in prices cannot accurately reflect the 

fundamentals of the fuel markets. For large refineries, they usually provide fuels with the lowest 

possible prices. Because of the high productivity, these refineries can price-match their external 

competitors and recover themselves from the reduced markups, i.e., price difference between the 

selling price and the cost. For fuels providers, they face a situation where the change in their 

markups is greater than the additional LCFS credit costs. Even though they add the full LCFS 

credit costs to their prices, the prices would still be lower than their internal competitors. For small 

and more vulnerable refineries, they are less productive, so cannot reduce the markup and they 

have to add the full LCFS credit costs to the selling prices. Between the above two extreme cases, 

we have refineries that are in the middle. The prices we have for wholesale fuels are at an average 

level that neutralizes each fuel provider's pricing decisions. Therefore, it is reasonable to observe 

estimated pass-through rates that are between 0 and 1. Future studies may wish to apply the pass-

through rates and include key variables that affect fuel prices for the estimate of demand and supply 

elasticities. As spreads are highly volatile, it would be increasing to estimate pass-through at the 

volatility level.  
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2.6 Tables and Figures 

Table 2.1: Current Carbon Intensity of wholesale gasoline and diesel and LCFS Carbon Intensity 

compliance schedule for gasoline pool and diesel pool 

 

Year   CARBOB Gasoline Standard   ULSD Diesel Standard 

   (𝑔𝐶𝑂2𝑒/𝑀𝐽) (𝑔𝐶𝑂2𝑒/𝑀𝐽)   (𝑔𝐶𝑂2𝑒/𝑀𝐽)  (𝑔𝐶𝑂2𝑒/𝑀𝐽)  

2016  99.78 96.5  102.01 99.97 

2017  99.78 95.02  102.01 98.44 

2018  99.78 93.55  102.01 96.91 

2019  100.82 93.23  100.45 94.17 

2020   100.82 91.98   100.45 92.92 

Notes: 

(1) Gasoline Standard is applied to gasoline and fuels used as a substitute for gasoline.  

(2) Diesel Standard is applied to diesel and fuels used as a substitute for diesel.   

(3) In 2015, California readopted the LCFS with an updating CI modeling system. The average 

CI standard of each fuel for years from 2016 to 2018 reflects reductions from the revised base 

year (2010).  

(4) Staring in 2016, LCFS set up a reduction of 2% in CI for both diesel and gasoline fuel pools 

each year from 2010 baseline levels, with the target of achieving 10 percent by 2020. From 2013-

2015, the annual reduction mandates were 1% for both fuel pools.  

(5) Since 2019, to smooth and strengthen the CI reduction through 2030, the amended regulation 

changes the annual reduction to 1.5%, from the 5% total reduction in 2018 to the 20% total 

reduction in 2030.  

(6) The current CIs of two fuels are provided in Market Data Used in Price Assessments, OPIS’s 

California LCFS Carbon Intensity Calculations. Available at 

https://www.opisnet.com/about/pdf/OPIS-RenewableFuels-RINCredits.pdf. 

(7) The target CI of two fuels are available in Low Carbon Fuel Standard regulation. Final 

Regulation Or-der.Title17, California Code of Regulations. PP. 32-33. 
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Table 2.2: Summary statistics: daily fuel spreads and LCFS credit prices 

 

    Summary Statistics and Unit Root Tests:     Seasonal Components 

   Jan 4, 2016 - Mar 12, 2020    Jan 4, 2013 - Dec 31, 2015 

  Mean SD Min Max DF-GLS ADF  F-Stat R2 

Fuel spreads:          

LA-NY RBOB 0.147 0.184 -0.314 1.227 -1.560 -5.077^^^  11.400^^^ 0.156 

LA-CHI RBOB 0.104 0.223 -1.096 1.145 -1.900^ -5.563^^^  16.440^^^ 0.211 

LA-GC RBOB 0.168 0.186 -0.310 1.265 -1.608 -5.185^^^  10.560^^^ 0.147 

LA-NY ULSD 0.047 0.065 -0.108 0.382 -4.381^^^ -4.582^^^  35.420^^^ 0.365 

LA-CHI ULSD 0.071 0.090 -0.155 0.398 -4.484^^^ -4.631^^^  17.980^^^ 0.226 

LA-GC ULSD 0.092 0.066 -0.044 0.425 -4.455^^^ -4.517^^^  24.780^^^ 0.287 

LCFS Credit Prices:           

Gasoline Pool 0.104 0.062 0.022 0.230 -1.033 -2.593  - - 

Diesel Pool 0.086 0.060 0.015 0.221 -1.100 -2.192   - - 

Notes:  

(1) We conduct a joint test on the seasonal variables in a regression of individual wholesale fuel spreads on a constant and the seasonal components 

using data from January 4, 2013 to December 31, 2015, before LCFS was readopted by California.  

(2) We use F-statistic to test on the joint significance of the seasonal components with the null hypothesis that they have no power in explaining the 

variation in wholesale fuel spreads. 𝑅2 of the seasonal components are presented in the last column.  

(3) To test the null hypothesis that wholesale fuel spreads and LCFS credit prices have a unit root, we use the DF-GLS test and ADF test. For fuel 

spreads, both tests have specifications of intercept, no linear time trend, maximum lags of six, and lags chosen by modified AIC. For LCFS credit 

prices, two tests have the same specification as the one for spreads, except that we include linear time trend.  

(4) ^^^, ^^, ^ indicates significance level at 1%, 5%, 10%, respectively.  
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Table 2.3: Placebo analysis of the long-run regression between price spreads 

outside of California and LCFS credit prices 

 

 RBOB ULSD 

Full Sample 0.192 -0.154 

(Seasonal 2016 - 2020) (0.117) (0.099) 

   
Full sample 0.0834 -0.2365 

(Seasonal 2013 - 2015) (0.174) (0.171) 
Notes: 

(1) Table presents t-test statistic and Newey-West standard error with 30 lags in the 

parenthesis. 

(2) For the first set of tests, we use sample from 2016 – 2020 to estimate the seasonal 

components. For the second set of tests, we use sample from 2013 – 2015, when LCFS 

program was not officially introduced to the public, to estimate the seasonal 

components.  

(3) The null hypothesis of test statistic is that the coefficient is equal to zero.  
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Table 2.4: Dummy variables for potential structural breaks in LCFS credit prices 

 

 

LA-NY 

RBOB 

LA-CHI 

RBOB 

LA-GC 

RBOB 

LA-NY 

ULSD 

LA-CHI 

ULSD 

LA-GC 

ULSD 

D_2017 49.796 60.054 2.499 -18.627 -24.649 -14.516 

 (85.845) (112.806) (4.849) (40.058) (57.914) (39.724) 

D_2018 0.693 1.539 0.000 0.729 -0.606 -0.306 

 (17.802) (23.393) (1.810) (10.806) (15.623) (10.716) 

D_2019 145.366 160.971 13.288 78.167 170.747 71.947 

 (273.311) (359.149) (47.546) (119.901) (173.344) (118.900) 

D_2020 6.625 27.641 -1.420 -2.192 -1.680 5.241 

  (50.399) (66.227) (11.184) (20.733) (29.974) (20.560) 

Notes: 

(1) Table presents t-test statistic and Newey-West standard error (in parenthesis) with 10 lags.  

(2) The null hypothesis of the t-test is that the coefficient is equal to zero.  
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Table 2.5: Level regressions and cointegration statistics 

 
  Individual Wholesale Spreads   Pooled Wholesale 

Spreads 

Regression Coefficients 
         

(SEs) LA-NY 

RBOB 

LA-CHI 

RBOB 

LA-GC 

RBOB 

LA-NY 

ULSD 

LA-CHI 

ULSD 

LA-GC 

ULSD 

  RBOB ULSD 

(1) OLS, full sample, 1.052 1.05 1.306 0.240*** 0.697** 0.428*** 
 

1.136 0.455*** 

no seasonals (0.272) (0.318) (0.269) (0.117) (0.132) (0.119) 
 

(0.274) (0.113)           

(2) OLS, full sample, 1.03 0.895 1.256 0.305*** 0.720** 0.486*** 
 

1.06 0.504*** 

seasonals (0.214) (0.248) (0.212) (0.098) (0.124) (0.098) 
 

(0.214) (0.098) 
          

(3) OLS, full sample,  1.031 0.894 1.254 0.302*** 0.716** 0.483*** 
 

1.06 0.500*** 

augmented seasonals (0.215) (0.248) (0.211) (0.093) (0.115) (0.093) 
 

(0.213) (0.091) 
          

(4) DOLS, full sample,  1.112 0.965 1.339 0.310*** 0.690** 0.484*** 
 

1.139 0.495*** 

seasonals (0.218) (0.255) (0.215) (0.102) (0.127) (0.103) 
 

(0.216) (0.101) 
          

Engle-Granger ADF  -5.593^^^ -5.938^^^ -5.957^^^ -5.066^^^ -6.065^^^ -5.344^^^ 
   

cointegration test                   

Notes: 
(1) Full sample are daily observations from January 4, 2016 to January 4, 2016 to March 12, 2020.  

(2) Seasonally adjusted uses pre-2016 fuel spreads to estimate seasonal components and then subtract predicted seasonal components from the full sample 

spreads. 

(3) Newey-West standard errors with 10 lags are provided in the parenthesis below estimated coefficients.  

(4) The null hypothesis of level regressions is that estimated coefficients are zero, i.e., there is no pass-through from LCFS obligation costs to fuel prices.  

(5) DOLS regressions include five leads and five lags of the first difference of LCFS credit prices.  

(6) The null hypothesis of Engle-Granger ADF cointegration test is that the wholesale spreads and their corresponding LCFS credit prices have no cointegration.  

(7) ***, **, * indicates significance level at 1%, 5%, 10%, respectively. The null hypothesis is that the coefficient is equal to 1. 

(8) ^^^, ^^, ^ indicates significance level at 1%, 5%, 10%, respectively. The null hypothesis of cointegration test is that two series are not correlated.  
 



 32 

Table 2.6: Bivariate VARs for individual wholesale spreads: cumulative structural impulse response functions 

 

  LA-NY RBOB LA-CHI RBOB LA-GC RBOB LA-NY ULSD LA-CHI ULSD LA-GC ULSD 

Lag Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 

0 -0.207* (0.719) -0.833 (1.120) -0.178 (0.744) -0.130*** (0.181) 0.363** (0.248) -0.106*** (0.185) 

1 -0.866* (1.052) -2.341** (1.590) -0.955* (1.074) -0.201*** (0.268) 0.325* (0.372) -0.188*** (0.273) 

2 -1.048 (1.278) -2.612* (1.886) -1.024 (1.304) -0.476*** (0.333) 0.600 (0.470) -0.473*** (0.336) 

3 0.386 (1.460) -0.830 (2.123) -0.042 (1.497) -0.546*** (0.382) 0.540 (0.540) -0.501*** (0.385) 

4 0.573 (1.414) -0.569 (1.975) 0.110 (1.449) -0.509*** (0.371) 0.561 (0.530) -0.448*** (0.372) 

5 0.684 (1.322) -0.327 (1.782) 0.281 (1.365) -0.452*** (0.351) 0.544 (0.502) -0.380*** (0.350) 

6 0.819 (1.217) -0.008 (1.588) 0.478 (1.262) -0.397*** (0.327) 0.552 (0.464) -0.318*** (0.325) 

7 0.879 (1.093) 0.173 (1.366) 0.598 (1.129) -0.348*** (0.307) 0.555 (0.436) -0.261*** (0.304) 

8 0.913 (0.973) 0.311 (1.164) 0.696 (0.999) -0.301*** (0.288) 0.559 (0.411) -0.207*** (0.285) 

9 0.938 (0.863) 0.433 (0.990) 0.781 (0.881) -0.258*** (0.270) 0.563 (0.388) -0.157*** (0.267) 

10 0.956 (0.766) 0.526 (0.840) 0.850 (0.774) -0.217*** (0.255) 0.566 (0.367) -0.110*** (0.251) 

11 0.970 (0.680) 0.601 (0.715) 0.908 (0.680) -0.179*** (0.241) 0.569 (0.348) -0.067*** (0.236) 

12 0.981 (0.605) 0.662 (0.614) 0.957 (0.599) -0.144*** (0.228) 0.572 (0.330) -0.027*** (0.224) 

13 0.990 (0.542) 0.712 (0.533) 0.999 (0.531) -0.111*** (0.217) 0.575 (0.314) 0.010*** (0.212) 

14 0.997 (0.488) 0.753 (0.470) 1.034 (0.474) -0.080*** (0.206) 0.578 (0.300) 0.044*** (0.202) 

15 1.004 (0.443) 0.787 (0.422) 1.064 (0.428) -0.051*** (0.197) 0.580 (0.287) 0.076*** (0.193) 

Notes:  

(1) We use full sample period to apply the structural VAR analysis, from January 4, 2016 to March 12, 2020.  

(2) Estimates are impose responses from the structural VAR model with standard errors in the parenthesis below.   

(3) For structural VAR model, we include 2-day lags and control for seasonal components.  
(4) ***, **, * indicates whether the estimated coefficients are significantly different from 1 at 1%, 5%, 10% level respectively. 



 33 

Table 2.7: Pooled VARs for wholesale spreads: cumulative structural impulse 

response functions  
 

  RBOB   ULSD   

Lag Coefficient (SE)   Coefficient (SE)   

0 -0.168 (0.715)  -0.080*** (0.181)  

1 -0.856* (0.988)  -0.134*** (0.255)  

2 -0.936* (1.165)  -0.364*** (0.311)  

3 0.412 (1.295)  -0.406*** (0.351)  

4 0.715 (1.394)  -0.223*** (0.382)  

5 0.779 (1.281)  -0.170*** (0.352)  

6 0.867 (1.169)  -0.119*** (0.323)  

7 1.010 (1.060)  -0.089*** (0.294)  

8 1.068 (0.956)  -0.065*** (0.272)  

9 1.103 (0.837)  -0.038*** (0.255)  

10 1.131 (0.734)  -0.012*** (0.240)  

11 1.159 (0.643)  0.013*** (0.226)  

12 1.180 (0.566)  0.035*** (0.213)  

13 1.196 (0.498)  0.055*** (0.201)  

14 1.210 (0.441)  0.074*** (0.190)  

15 1.220 (0.394)   0.091*** (0.181)   

Note: 

(1) We use full sample period to apply the structural VAR analysis, from January 

4, 2016 to January 4, 2016 to March 12, 2020.  

(2) Estimates are impulse responses from the structural VAR model with standard 

errors in the parenthesis below.  

(3) In the structural VAR model, we include 2-day lags (𝑝 = 2) and seasonal 

components for spreads in the model specification. 

(4) ***, **, * indicates whether the estimated coefficients are significantly different 

from 1 at 1%, 5%, 10% level respectively. 
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                   (a) Elastic demand and supply                               (b) Perfectly elastic supply                                     (c) Perfectly inelastic demand  

Figure 2.1: Illustration of tax incidence under perfect competition  
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(a) Scenario 1: Fuel providers are regulated parties 

 
(b) Scenario 2: Fuel providers transfer their obligations to blenders 

Figure 2.2: Simplified LCFS credits and deficits generation and obligation transfer mechanisms on 

the gasoline supply chain (ethanol only) 
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Figure 2.3: LCFS Credit prices and GHG Cap-and-Trade allowances prices from 2013 – 2019  

 

Notes: CARB publishes the LCFS credit prices monthly, and CARB publishes Cap-and-Trade 

allowances quarterly. Source: Plot is derived from https://scholar.harvard.edu/_les/stavins/_les/dp 

92 schatzki-stavins.pdf 
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Figure 2.4: LCFS Credit prices for LCFS gasoline pool and diesel pool from 2014 – 2020 
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(a) LA–NY RBOB spreads and LCFS credit price for gasoline pool 

 
(b) LA–CHI RBOB spreads and LCFS credit price for gasoline pool 

 
(c) LA–GC RBOB spreads and LCFS credit price for gasoline pool 

Figure 2.5: Wholesale gasoline fuel spreads and LCFS credit price for gasoline pool from 2014 – 

2020  
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(a) LA–NY ULSD spreads and LCFS credit price for diesel pool 

 
(b) LA–CHI ULSD spreads and LCFS credit price for diesel pool 

 
(c) LA–GC ULSD spreads and LCFS credit price for diesel pool 

Figure 2.6: Wholesale diesel fuel spreads and LCFS credit price for diesel pool from 2014 – 2020  
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CHAPTER 3:  

DOES COMPLEXITY PAY? FORECASTING CORN AND SOYBEAN YIELDS 

USING CROP CONDITION RATINGS 

 

3.1. Introduction 

Accurate forecasts of crop yield are highly valuable from several perspectives. From a market 

perspective, yield forecasts are an essential component of supply, demand, and price forecasting. 

From a policy perspective, yield forecasts are important to governments around the world to assess 

drought impacts and food insecurity. In addition, these forecasts are crucial for farmers and 

agribusiness firms in developing marketing and risk management plans.  

Given the importance of crop yield forecasts, it is no surprise that there is a very large 

literature on the relationship between weather, technology, and crop yields dating back to the early 

1900s (Tannura, Irwin, and Good, 2008). Broadly speaking, this literature shows that summer 

precipitation and air temperature directly influence yield potential, along with other factors 

including soil quality, planting date, disease, insects, and technological improvements from seed 

genetics, fertilizers, and producer management techniques.   

Kaufmann and Snell (1997) and others observe that the various methods of forecasting 

crop yields can be categorized into three groups. The first group consists of crop simulation models 

that directly assess the effects of weather and soil properties on plant physiology. While such 

models have a strong foundation in biological theory and experimental data, they are nonetheless 

highly complex and difficult to generalize to aggregate areas such as crop reporting districts or 

states (e.g., Walker 1989). The second group consists of multiple regression models that estimate 

the relationship of weather and technology to crop yields. Regression models are relatively simple 

to specify and estimate for aggregate areas, an advantage when forecasting, but aggregation of 
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variables across time and space can harm accuracy (Shaw, 1964). The third group consists of 

models based on remote-sensing data collected from earth-orbiting satellites. By far the most 

popular approach is to convert remote-sensing data into a vegetative index (NDVI) and correlate 

this to yield (e.g., Sakamoto, Gitelson, and Arkebauer, 2013). While there has been a great deal of 

work along these lines, the advantage in forecasting crop yields has not been proven convincingly 

to date.  

There is still another approach to crop yield forecasting that is widely used by market 

analysts in both the private and public sectors. The U.S. Department of Agriculture (USDA) 

publishes weekly condition ratings for important crops during the growing season. The condition 

ratings reflect the subjective judgment of nearly 4,000 observers about crop yield prospects and 

are reported as the percentage of a crop rated in five mutually exclusive and exhaustive categories: 

very poor, poor, fair, good, and excellent. A popular approach is to use the sum of good and 

excellent condition ratings to build a simple condition index and relate this to trend-adjusted crop 

yields. Several representative articles applying this approach to forecasting U.S average corn and 

soybean yields can be found at the farmdoc daily website (Irwin and Good, 2017a,b; Irwin and 

Hubbs, 2018a,b,c,d).  

Despite the widespread use of crop condition ratings to forecast crop yields in the private 

and public organizations, there are only a few studies in the academic literature that investigate 

condition-based forecasts. The general idea behind these studies is to transform the ordinal 

condition ratings to a numeric condition index, and then construct a time-series model between 

yields and the condition index. For example, Kruse and Smith (1994) developed a weighting 

system that estimates a changing yield weight for each crop condition class in the growing season 

for corn and soybean. By multiplying each crop condition ratings by its yield weights, they 
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computed an average in-sample yield estimate at state-level. Fackler and Norwood (1999) built a 

similar state-level yield forecasting model for corn, cotton, soybean, and spring wheat with 

estimated yield weight that is unchanging throughout the growing season for each crop condition 

level. They showed that for each condition class, the product of estimated yield weight and 

condition ratings reflects its average yields. Bain and Fortenbery (2017) used fixed weights to 

construct a condition index in a yield forecasting model for wheat. Their condition index is based 

on a straightforward system where for the lowest very poor condition is assigned a weight of 0, 

and as the condition increase by one level, the corresponding weight will increase by 0.25 until it 

reaches the highest excellent condition with a weight of 1.  

Most recently, Begueria and Maneta (2020) developed a sophisticated two-stage yield 

forecasting model based on crop condition ratings for corn, cotton, soybean, and winter wheat at 

the state level. They argue that spatial and temporal differences in crop condition information 

should be directly modeled before making yield forecasts. Hence, the authors developed a 

cumulative link mixed model to transform raw condition data to a continuous and almost normal-

distributed crop condition index. After removing space and time effects, they argue that maximum 

information can be extracted from crop condition ratings, which offers a better possibility of 

providing unbiased and accurate yield forecasts. Begueria and Maneta (BM) purport that their 

modeling approach achieves large improvements in accuracy over simpler condition-based 

forecasts, such as Irwin and Good (2017a,b).  

The improvements in forecast accuracy reported by BM are interesting for two reasons.  

First, the finding that a complex model beats simpler models in terms of forecast accuracy runs 

counter to a large body of literature on forecasting. Armstrong (2001, p. 693) summarizes the 

evidence as “…showing that while some complexity may improve accuracy, seldom does one need 
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highly complex methods. In some studies, complexity harmed accuracy.” The results provided by 

BM may represent an important exception to this general result. Second, the forecast results in 

Begueria and Maneta model (BM model, hereinafter) are based on a cross-validation procedure 

that leaves out one observation at a time and forecasts the “missing observation” regardless of its 

ordering in time. This procedure is only applied to the second stage of the estimation as well. This 

approach is quite different from the recursive out-of-sample procedures that are standard in the 

time-series forecasting literature. Third, BM did not compute forecast error statistics for simpler 

models using the same data set as in their study, but, rather, relied on forecast statistics reported in 

the original articles.  

The purpose of this study is to conduct a forecast competition between BM model and 

simpler crop condition models in forecasting U.S. average corn and soybean yields. Specifically, 

we compare the forecast accuracy of BM model to Irwin and Good (2017a,b) and Bain and 

Fortenbery (2017) models. The data for the study consists of weekly state and national crop 

condition ratings from 1986 through 2020 for corn and soybean. To evaluate the predictability of 

all yield forecasting models, we use data from 2000 through 2020 as the out-of-sample period. 

We first recursively estimate all yield forecasting models and provide true out-of-sample yield 

forecasts. Next, we apply the modified Diebold-Mariano test to conduct a weekly pair-wise 

comparison between BM model and its competitors. Test results suggest that BM model does not 

have a systematic superior predictability than other more straightforward yield forecasting 

models. We also apply the Model Confidence Set tests to select the best individual yield 

forecasting models. Moreover, we add the composite forecasts as the arithmetic average of the 

five individual yield forecasts in the set of models. Test results for individual yield forecasting 

models suggest early in the growing season, Irwin and Good Bias Adjustment model is the best 
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model, and by the end of growing season model BM model and Bain and Fortenbery model are 

the two models selected out with the best yield forecasting performance. When we include 

composite forecasts from Equal Weighted model, test results show composite forecasts provide 

the most accurate yield predictions. However, test statistics are not significant, indicating all best 

models fail to outperform their competitors. Last, we apply the multi-horizon average Super 

Predictive Ability (aSPA) test developed by Quaedvlieg (2021) to compare BM model with its 

four competitors across the entire growing season. Again, test results indicate that BM model 

fails to provide more accurate yield forecasts than the competing and simpler forecasting models.  

3.2. Data 

3.2.1 Crop condition ratings 

From roughly late April until the end of November each growing season, USDA weekly Crop 

Progress reports provide progress and condition ratings for corn and soybean in 18 major 

producing states. The reports are published on the first business day of the week after 4:00 pm 

Eastern time.  Estimates in the report are based on non-probability subjective surveys conducted 

by nearly 4,000 local crop observers, who are drawn from the ranks of extension agents, USDA 

Farm Service Agency (FSA) staff, elevator managers, and other agricultural professionals.  Each 

local observer follows the standard definitions and guidelines provided by the USDA to conduct 

assessments of crops in their local area. Data are reported on the progress of producer activities 

(e.g., planting and harvesting), various phenological stages of development (e.g., emergence, 

flowering), and crop condition ratings. It is important to emphasize that weekly observations are 

entirely subjective and the result of visual field observations, direct conversations with farmers, 

and expert local knowledge.  For this reason, the data collection process for USDA Crop Progress 

reports can be described as a system of “people as crop sensors.” Finally, state-level estimates are 
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based on weighting of local observer estimates, usually at the county level, and national-level 

estimates are based on weighting of each state’s planted acreage estimate from the previous year 

(NASS, 2021; Irwin and Good, 2017a).  

The data released in the weekly Crop Progress report are followed closely by grain market 

participants. For example, Lehecka (2014) notes that these reports are among the most requested 

publications distributed by the USDA between monthly Crop Production and World Agricultural 

Supply and Demand Estimates (WASDE) reports. Using event study methods, Lehecka shows the 

strongest corn and soybean futures market reactions are found in July and August, when weather 

conditions are most critical for crop development. He also finds that market reactions have 

increased over time.  

Lehecka’s work shows that Crop Progress reports have substantial informational value to 

participants in the grain futures markets. As discussed above, this is especially true during the heart 

of the summer growing season for corn and soybean. It is during these months that crop condition 

ratings take center stage. The ratings are reported in five exhaustive categories as follows (NASS, 

2021): 

Very Poor – Extreme degree of loss to yield potential, complete or near crop failure. Pastures 

provide very little or no feed considering the time of year. Supplemental feeding is 

required to maintain livestock condition. 

Poor – Heavy degree of loss to yield potential which can be caused by excess soil moisture, 

drought, disease, etc. Pastures are providing only marginal feed for the current time 

of year. Some supplemental feeding is required to maintain livestock condition. 
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Fair – Less than normal crop condition. Yield loss is a possibility but the extent is unknown. 

Pastures are providing generally adequate feed but still less than normal for the time 

of year. 

Good – Yield prospects are normal. Moisture levels are adequate and disease, insect damage, 

and weed pressures are minor. Pastures are providing adequate feed supplies for the 

current time of year. 

Excellent – Yield prospects are above normal. Crops are experiencing little or no stress. 

Disease, insect damage, and weed pressures are insignificant. Pastures are 

supplying feed in excess of what is normally expected at the current time of year. 

The ratings for a given crop in each condition category are expressed as a percentage, reflecting 

the proportion of the crop rated in a particular category. Since the categories are exhaustive, the 

percentages in the five categories sum to 100.  

We collected all weekly condition ratings for corn and soybean at the state and national 

level starting in 1986, when the program was established, through 2020. For each year, the 

coverage of weeks in the growing season is not the same because ratings do not begin until a 

substantial part of the crop has emerged and do not end until most of the crop is mature. Since 

dates for emergence and maturity vary from year-to-year, the beginning and ending dates for 

condition ratings also vary. To have a consistent evaluation period for all competing models, we 

use weeks 23 – 39 for corn and weeks 25 – 39 for soybean to evaluate the weekly yield forecasts. 

The ranges of these weeks roughly correspond to early June to late September for corn and late 

June to late September for soybean. Corn and soybean ratings are available for all years during the 

sample period for these weeks and for all but a few of the 18-states included for each crop in the 

Crop Progress report. 
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3.2.2 Harvested acres  

BM model provides weekly yield forecasts at the state-level for the 18 major-producing states 

included in the Crop Progress report for corn and soybean due to the design of their modelling 

framework. We are interested in yield forecasts at the national level because this is a key 

determinant of market prices rather than yield in any individual state. To compare all competing 

models at the national level, we developed a straightforward method of converting a set of state-

level forecasts to one national level forecast. Specifically, we use the ratio of weighted-average 

yields of 18 states to the national yields. Once the state-level yield forecasts are available, forecasts 

of national yields can be easily calculated using the estimated ratio. For these 18 states, each 

individual state has different productivity for corn and soybean. We use the proportion of 

individual state’s harvested acres out of the total harvested acres of 18 states to estimate the yield 

weight for each state. Each year for each state, we use previous five-year moving-average yield 

weight as a forecast for current year’s yield weight. For the ratio of weighted sum of state-level 

yields to the final estimates of national yields, we apply a similar previous five-year moving-

average procedures to acquire a forecast for the current year’s state-to-national yield ratio.  

Since five-year moving-average procedures are applied to harvested acres, and the first 

year we use the crop condition ratings for yield forecasts is 1986, we collected harvested acres for 

each state from 1976 – 2020. The harvested acres data are obtained from NASS Quick Stats, and 

they are published in the Acreage reports released by NASS each year by the end of June. The 

Acreage report produces the revised harvested acres for the previous year and forecasted harvested 

area for the current year. The timing of the Acreage report roughly lines up with the beginning of 

the forecast window each year.  
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3.2.3 Annual yield estimates  

All weekly yield forecasts are compared to the final yield estimates published at the NASS Quick 

Stats website. As only one five-year moving-average procedure is applied to yields, we collected 

yield data from 1981 through 2020.  

3.3. Yield Forecasting Models  

3.3.1 Yield forecasting cycles  

The goal of all yield forecasting models in this study is to provide early yield projections when 

weekly condition ratings are available for corn and soybean. Figure 3.1 uses corn to illustrate a 

typical forecast cycle. Each year of our sample, the first yield prediction starts in week 23. The yield 

forecasts for week 23 are obtained using crop condition ratings published in this week. Importantly, 

all the forecast models are estimated recursively using samples that end before a given forecast week. 

The out-of-sample period is 2000 through 2020 and forecasts for corn are made for week 23 – week 

39 in each year and for soybean for week 25 – week 39. To evaluate the performance of yield 

forecasting models, we compare the weekly forecasts with final yield estimates published in the 

USDA’s Crop Production Annual Summary report that is released in January after the growing 

season.  

3.3.2 Begueria and Maneta model  

Begueria and Maneta (BM) model (2021) is the most technically sophisticated model considered in 

this forecast competition. They argue that spatial and temporal differences in crop condition 

information should be directly modeled before making yield forecasts. Hence, BM developed a 

cumulative link mixed model (CLMM) to transform raw condition data to a continuous and almost 

normal-distributed crop condition index (CCI). After removing space and time effects, they argue 
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that maximum information can be extracted from crop condition ratings, which offers a better 

possibility of providing unbiased and accurate yield forecasts.  

In formal terms, the first step of BM model is to estimate the CLMM using a probit link 

function to connect ordinal response with numeric factors. The CLMM is specified as: 

              𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤)) = 𝜃𝑗 + 𝛽𝑦𝑦 + 𝛽𝑤𝑤 + 𝑣𝑠 + 𝑣𝑦,𝑠𝑦 + 𝑣𝑤,𝑠𝑤 + 𝜖𝑠𝑖 ,             (3.1) 

where 𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤)) is the probability that the 𝑖th report’s condition ratings are no 

greater than category 𝑗, and 𝑗𝜖[1,4] since there are five condition categories; 𝑠, 𝑦 and 𝑤 are state 

year and week in report 𝑖, respectively; and 𝜃𝑗 is a threshold parameter which remains constant and 

determines the range of the response variable in a certain category 𝑗. There are two fixed effects in 

the model: a long-term (year) effect and a temporal (week) effect. Three random effect components 

are included: state, the interaction between state and year, and the interaction between state and week. 

The error term 𝜖𝑠𝑖  is the unbiased CCI that is specific for each state and is free of any long-term or 

temporal time effects.  

In the second stage of their modeling process, BM develop a mixed model, where the fixed 

effects are the long-term (year) effects and CCI effects and the random effect is conditional on each 

state including the intercept two slopes with the interactions from year and CCI. This model provides 

weekly yield forecasts for each state and is specified as: 

                          𝜇𝑖(𝑠) = 𝛽0 + 𝛽𝑦𝑦𝑖 + 𝛽𝑐𝐶𝐶𝐼𝑖 + 𝑣(𝑠) + 𝑣𝑦(𝑠)𝑦𝑖 + 𝑣𝑐(𝑠)𝐶𝐶𝐼𝑖 + 𝜖𝑖                 (3.2) 

where 𝜇𝑖(𝑠) is the expected yield at state 𝑠 and time 𝑖, 𝑦𝑖 is the transformed year index at time 𝑖, 

𝐶𝐶𝐼𝑖  is the crop condition index at time 𝑖, 𝛽0 is the global intercept, 𝛽𝑦 is the long-term year effects 

and 𝛽𝑐 is the CCI effect (they are both fixed effects and have the same effects on all the states). 

The BM model treats state as the random components, meaning for different states, they have 

different temporal effects and CCI effects. 
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Figure 3.2 uses corn as an example to illustrate how BM model recursively provide out-of-

sample weekly yield forecasts. Yield forecasts for week 23 in 2000 were estimated with the 

following steps: i) the CLMM model is estimated using crop condition ratings from the first 

published Crop Progress report in 1986 to the most recent report published in week 23 of 2000. 

With the updated model, we can transform and update the ordinal crop condition ratings for all the 

weeks till week 23, 2000. Second, we can estimate the mixed model using the updated CCI and 

other variables in week 23 from 1986 to 1999. Third, updated CCI and year index of week 23, 

2000 were entered in the mixed model and we can obtain a yield projection for week 23, 2000. 

Following these steps, as we move forward in the growing season, we can have weekly updates of 

yield forecasts.  

We also present BM yield forecasts for corn and soybean at the national level. We calculate 

the weighted average yields of 18 states where the weight for each state is the proportion of 

harvested acres. To transform the weighted average yields of 18 states to the national yields, we 

apply the ratio of weighted average yields of 18 states to the national yields. Yield forecasts at 

national level are available from 2000 to 2020.  

3.3.3 Irwin and Good model 

The design of Irwin and Good model (Irwin and Good, 2017a) makes it applicable for both state-

level and national-level yield forecasts. At the national level, Irwin and Good model (IG National 

model, hereinafter) is specified as below: 

                                     𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝛽2𝑆𝑈𝑀𝑡 + 𝜖𝑡                                  (3.3) 

where 𝑌𝑖𝑒𝑙𝑑𝑡 is national final yield estimates in year 𝑡; 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the time index in year 𝑡; 

𝑆𝑈𝑀𝑡 is the sum of “excellent” and “good” ratings at the end of the season in year 𝑡.  
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With corn as an example, Figure 3.3 illustrates how to provide recursively out-of-sample 

yield forecasts with the model. Yields forecasts for 2000 week 23 are obtained with the following 

steps. First, we run IG National model with time index, the percentage of corn rated in “good” and 

“excellent” conditions at the end of years, and the national final yield estimates from 1986 to 1999. 

Second, the sum of ratings in week 23 and the year index for 2000 are entered in the model to get 

the yield forecasts for week 23, 2000.  

State-level yield forecasts follow the same procedure of national level. Instead of using 

national yield estimates, they use state-level final yield estimates to build Irwin and Good State 

model (IG State model, hereinafter) and eventually receive weekly yield forecasts for each state. 

For individual state, we can also compare the predictability of BM model and IG State model to 

examine if there is a significant trade-off between model complexity and forecast accuracy.  

Irwin and Good (2017b) pointed out that the disadvantage of this straightforward approach 

is that it does not consider the bias in the early weeks’ condition ratings within the growing season. 

Their weekly analysis (Irwin and Good, 2017a) showed that in early weeks the correlations 

coefficients between the sum of “good” and “excellent” ratings and the yields are lower than that 

of final weeks. The reason behind this observation is that, on average, the early weeks’ ratings for 

corn and soybean are over-estimated. Early in the growing season, crops usually are in a normal 

or a better than normal condition. However, for a few years (like drought in 2012), when adverse 

weather conditions occur, crop yields would deteriorate and become worse than normal. This 

would make crop ratings of “good” and “excellent” in the final week lower than that in early weeks, 

which makes the final week’s ratings lower than the average ratings in early weeks. To measure 

the size of bias, we follow definition of bias proposed by Irwin and Hubbs (2018a,c) and specify 

the bias as:  
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                                𝑏𝑖𝑎𝑠𝑡 = 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 − 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡,                             (3.4) 

where 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the current year’s sum of “good” and “excellent” ratings at the end 

of growing season and 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the sum of “good” and “excellent” ratings of each 

early week in year 𝑡. Because on average final ratings are lower than that of early weeks’ ratings, 

we expect the bias to be negative. To adjust the bias in the early weeks, we need to add the bias 

to the early weeks’ ratings as: 

                                 𝑎𝑑𝑗_𝑒𝑎𝑟𝑙𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑡 = 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 + 𝑏𝑖𝑎𝑠𝑡.                             (3.5) 

For both corn and soybean, we consider weeks before 31 as the early weeks that need bias 

correction. Therefore, these weeks are week 23 – week 30 for corn and week 25 – week 30 for 

soybean.  

We apply the moving-average procedures to estimate the size of bias. With ten-year 

moving-average approach, we first calculate the weekly rating difference between the final week 

and each of the early weeks over the previous ten years. Then, as we have the average bias for 

each week of the early weeks, for the current year, we can add the bias to the reported ratings to 

have the adjusted ratings for a week that is in the range of early weeks. For some weeks, we do 

not have consecutive observations in all each year. In these scenarios, we use all the data we have 

from the previous ten or five years, but we might not have all the ten or five data points to calculate 

the average bias. These two approaches are considered as two augmented bias-adjusted Irwin and 

Good models (IG National with Bias Adjustment model, hereinafter).  

3.3.4 Bain and Fortenbery model  

Bain and Fortenbery (2017) fixed weight model (BF model, hereinafter) assigned fixed weights to 

each condition category to transform the ordinal condition ratings to a numerous crop condition 

index (CCI). Below is the definition of fixed weights CCI:  
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𝐶𝐶𝐼𝑛𝑑𝑒𝑥 = 100% ⋅ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 + 75% ⋅ 𝐺𝑜𝑜𝑑 + 50% ⋅ 𝐹𝑎𝑖𝑟 

                                                 +25% ⋅ 𝑃𝑜𝑜𝑟 + 0 ⋅ 𝑉𝑒𝑟𝑦 𝑃𝑜𝑜𝑟                                                 (3.6) 

The ratings for each condition category are in percentages, therefore fixed weights CCI is bounded 

between 0 and 1. Bain and Fortenbery built the weekly crop yield forecasting model by having the 

end of season 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 in the framework, and the model is specified as: 

                                        𝑌𝑖𝑒𝑙𝑑𝑖 = 𝛼0 + 𝛼1 ∙ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽1 ⋅ 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 + 𝑒𝑖                           (3.7) 

where 𝑌𝑖𝑒𝑙𝑑𝑖 is the final yields in year i, 𝑇𝑟𝑒𝑛𝑑𝑖 is the time index for year i, 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 is the end 

of season 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 value for year i. For example, the yield forecasts for week 23, 2000 for corn 

are estimated with the following steps. First, we transform crop conditions of the end of growing 

season to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 from 1986 through 1999. Second, we run the model with 

annual final yield estimates as the response variable and year index and the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 

as explanatory variables. Third, once we obtain the crop condition ratings for week 23, 2000, we 

transform them to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 and enter them in the model with updated year index 

for 2000 to have the yield forecasts.  

3.4. Model Comparison and Forecast Evaluation 

There are two sets of comparisons conducted by our study. First, we compare all five yield 

forecasting models with naïve trend yield model to evaluate the value of crop condition index as a 

yield indicator. Second, we set BM model as a benchmark to compare it with other four simpler 

yield forecasting models. The comparisons are conducted both at state level and national level, by 

focusing on the forecast errors for week 29 of mid-July, over the out-of-sample period from 2000 

through 2020, and the root mean squared percentage error (RMSPE) of each yield forecasting 

model over the out-of-sample period throughout the entire growing season.  
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We use the absolute value of the difference between final yield estimates and the yield 

forecasts for week 29 to measure the forecast error in week 29. The weekly forecast errors 𝑒𝑤,𝑡
𝑖  for 

model 𝑖 are defined as the percentage difference between the USDA final yields and this model’s 

yield forecasts: 

                                                               𝑒𝑤,𝑡
𝑖 = 100 ∙

(𝑦𝑡−𝑦𝑤,𝑡
𝑖̂ )

𝑦𝑡
                                                   (3.8) 

where 𝑦𝑡 is the final USDA yield estimates and 𝑦𝑤,𝑡
𝑖̂  is the predicted yields in year 𝑡 for week 𝑤 

produced by model 𝑖. We use the root mean squared percentage error (RMSPE) to measure each 

model’s predicative accuracy. RMSPE is defined as 

                                                 𝑅𝑀𝑆𝑃𝐸𝑤,𝑡
𝑖 = √1

𝑛
∑(

(𝑦𝑡−𝑦𝑤,𝑡
𝑖̂ )

𝑦𝑡
)

2

                                                (3.9) 

where 𝑛 is the number of observations for each week over the out-of-sample period. One advantage 

of RMSPE error is that it transforms the error to the positive percentage value, so it avoids 

offsetting positive and negative errors, and we only need to consider one direction of the error. 

The other advantage is that RMSPE makes the errors comparable for corn and soybean.  

3.4.1 Naïve trend yield model  

One of the key factors that determines crop yields is the technology development over the years. 

Crops tend to increase their yields year by year, which is known as the “trend yield” (Irwin, Good, 

and Tannura, 2009). Naïve trend yield model serves as the base model that we use to compare with 

five yield forecasting models. This is because naïve trend yield model only includes time to 

account for the variations in yields over time, and yet yield forecasting models include time and 

crop condition ratings to explain the development of yields. The comparisons provide clear 

evaluations of whether additional crop condition ratings contain valuable yield information as 
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naïve model only includes year index to account for the variations in national yields. Naïve trend 

yield model is specified as below: 

                                         𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1,𝑡𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝜖𝑡,                                            (3.10) 

where 𝑌𝑖𝑒𝑙𝑑𝑡 is the national final yield estimates in year 𝑡, 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the corresponding 

year index running from 1 to 35 for the year from 1986 to 2020.  

The yield forecasts provided by naïve trend yield model also follow the recursively out-of-

sample forecasting approach. For example, when we are in year 2000, we use yields and time 

indices from 1986 to 1999 to train the model. In 2000, we can make yield predictions using the 

updated year index of 15 for all weeks during the growing season for corn and soybean. 

3.4.2 Comparison at state level 

Both BM model and IG State model provide the state-level yield forecasts. To compare which 

model systematically provide better yield forecasts, we compare: (i) the absolute value of yield 

forecast errors for mid-growing season, that is approximately week 29 for both corn and soybean 

over the out-of-sample period; (ii) weekly RMSPE over the out-of-sample period for each week 

during the growing season. We conduct the comparisons for two representative states given their 

geographic difference: Illinois and South Dakota.  

Figure 3.4 and Figure 3.5 present the percentage difference between forecasted yields 

provided by BM model and IG State model for week 29 over the out-of-sample period for corn 

and soybean, respectively. Figure 3.4 (a) and Figure 3.5 (a) show that in Illinois, there is no clear 

pattern of which model outperforms over time. Figure 3.4 (b) and Figure 3.5 (b) show a similar 

pattern in South Dakota. For year 2012 when crop productions are largely impacted by droughts, 

we observe that for Illinois, BM model provided more accurate yield forecasts than IG State model 

in the mid-growing season, whereas for South Dakota, it shows IG State model is more accurate.  
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Figure 3.6 and Figure 3.7 present the RMSPE for each week during the growing season 

over the out-of-sample period for corn and soybean. For Illinois, Figure 3.6 (a) show that BM 

model has better performance since mid-July till the end of growing season for corn; Figure 3.7 

(a) shows IG State model outperforms BM model from mid-July to mid-August for soybean. For 

South Dakota, Figure 3.6 (b) suggests BM model takes the lead from early-June to early-July, then 

IG State model provides more accurate yield forecasts from early-July till the end of growing 

season for corn; Figure 3.7 (b) suggests that BM model has better forecasting performance from 

early-June to late-August, then Irwin and Good model takes the lead till the end of growing season 

for soybean.  

3.4.3 Comparison at national level  

All yield forecasting models been discussed in this study provide national-level yield forecasts for 

each week during the growing season over the out-of-sample period. First, we focus on the forecast 

errors for mid-growing season from 2000 – 2020. Figure 3.8 and Figure 3.9 presents the forecast 

error between national yield forecasts provided by five yield forecasting models and the final 

USDA yield estimates for corn and soybean, respectively. We also present the yield forecasts 

provided by naïve tend yield model. It suggests that from 2000 – 2020, all forecasting models 

provide more accurate yield forecasts than naïve trend yield model, which shows the value of crop 

condition ratings for yield forecasts. To compare the forecast errors of each forecasting model, we 

observe that there is no clear pattern to show which model has the superior forecasting 

performance.  

Table 3.1 summarizes the RMSPE of five forecasting models for each week during the 

growing season. RMSPE of all five models for corn are bounded with a maximum level of 9.1% 

from IG National model, indicating that for week 23, the yield forecasts provided by IG National 



 57 

model are within 9.1% of the final average yields. A minimum level of 3.85% from BM model for 

week 39, indicating the yield forecasts provided by Bain and Fortenbery model are within 3.5% of 

the final yields estimates. The average of RMSPE for corn is about 5% throughout the growing 

season. For soybean, the pattern is similar. RMSPE are in the range of (3.8%, 7.8%), and the 

overall average RMSPE across the whole forecasting path is about 6%.  

Figure 3.10 shows for corn, all five forecasting models provide more accurate yield 

forecasts than naïve trend yield model since week 24, about early-June till the end of growing 

season. Figure 3.11 shows for soybean, all five forecasting models show the forecasting advantage 

since early-August. Both plots present the pattern of the yield forecasts provided by BM model 

and its four competitors: near the end of growing season, all models provide the most accurate 

yield forecasts; and later in the growing season, there is no forecasting improvements. This pattern 

indicates by the mid-August, yield forecasting models apply the crop condition ratings reach the 

limits as human observations cannot fully capture the true underlying information in the fields. 

3.4.4 Single-horizon yield forecasts comparison 

For each week we conduct a pairwise comparison between BM model and its four competitors. 

We apply the modified Diebold-Mariano (MDM) test for each week to test if BM model provides 

more accurate yield forecasts at single horizon throughout the growing season. The MDM test is 

developed by Harvey, Leybourne, and Newbold (1997) with the advantage that the MDM test 

works well for small samples; and with the increase in forecasting horizons, the over-sized MDM 

test results remain stable. The MDM test is applied on two models’ out-of-sample forecast errors. 

For each week, there are 21 observations as the out-of-sample period covers years from 2000 – 

2020.  
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The null hypothesis is that two models have the same predictive accuracy, and it lies upon 

the loss function between two models’ errors. To be more specific, we test if the difference in 

RMSPE between BM model and other of its competitors is significant. Here we assume the loss 

function to be quadratic, and when we fail to reject the null hypothesis, we have: 

                                                     𝑑𝑤,𝑡 = (𝑒𝑤,𝑡
2 )

2
− (𝑒𝑤,𝑡

1 )
2
                                                    (3.11) 

                                                            𝐸(𝑑𝑤,𝑡) = 0                                                                 (3.12) 

where 𝑒𝑤,𝑡
1  represents the yield errors from BM model, and 𝑒𝑤,𝑡

2  represents the yield errors from 

one of its competing models.  

For the ℎ-step ahead yield forecasts, the statistic of MDM is defined as: 

                              𝑀𝐷𝑀 = [
𝑛+1−2ℎ+𝑛−1ℎ(ℎ−1)

𝑛
]

1

2
∙ 𝑑̅𝑤 ∙ [𝑉(𝑑̅𝑤)]

−
1

2                                        (3.13) 

                                         𝑉(𝑑̅𝑤) = [𝑛−1(𝛾0 + 2∑ 𝛾𝑠
ℎ−1
𝑠=1 )]                                                    (3.14) 

where 𝑑̅𝑤 is the sample mean of 𝑑𝑤,𝑡, 𝑤 is the forecast week and 𝑤 = 1,2,3,… ,17 for corn and 

𝑤 = 1,2,3,… ,15 for soybean, 𝛾0 = 𝑛−1 ∑ (𝑑𝑤,𝑡 − 𝑑̅𝑤)2𝑛
𝑡=1  as the variance of 𝑑𝑤,𝑡, 𝛾𝑠 =

𝑛−1 ∑ (𝑑𝑤,𝑡 − 𝑑̅𝑤)(𝑑𝑤,𝑡−𝑠 − 𝑑̅𝑤), 𝑠 = 1,2,3,… , ℎ − 1𝑛
𝑡=𝑠+1 , as the 𝑠th auto-covariance of 𝑑𝑤,𝑡. 

As each week we make yield predictions for a year ahead, we have one-step ahead forecasts where 

ℎ = 1. Therefore, the MDM statistics for each forecast week is: 

                         𝑀𝐷𝑀𝑤 = [(𝑛 − 1)]
1

2 ∙ 𝑑̅𝑤 ∙ [𝑛−1(∑ (𝑑𝑡,𝑤 − 𝑑̅𝑤
𝑛
𝑡=1 )

2
)]

−
1

2
                              (3.15) 

The MDM test statistics for corn and soybean are summarized in Table 3.3 and Table 3.4. 

The null hypothesis is that: each week throughout the out-of-sample forecasting period, the 

forecasting performance of BM model and one of its competing models have the same 

predictability. Test statistics show that for corn, out of 68 cases of pair-wise yield forecast 

comparisons, from week 23 to week 39, all test statistics are insignificant. These results suggest 
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that we fail to reject the null hypothesis that BM model does not have better forecasting 

performance than other less-computation demanding models. For soybean, out of 60 cases of pair-

wise yield forecast comparisons, covering forecast weeks from week 25 – week 39, there is no 

significant cases. These results suggest for soybeans, BM model does not outperform its 

competitors for each week throughout the growing season. 

3.4.5 Best model selected by the Model Confidence Set (MCS) 

Each week, all five yield forecasting models produce weekly yield forecasts for corn and soybean. 

In the previous section, we apply the MDM test to conduct a pairwise yield performance test 

between BM model and one of its competing models. To extend the pairwise comparisons, Model 

Confidence Set (MCS) test allows model selection for all yield forecasting models (Hansen, 

Lunde, and Nason, 2011). For a given significance level 𝛼, MCS test selects the model with best 

forecasting accuracy from a set of models.  

Colino et al. (2012) show that equal-weighted composites provide more accurate forecasts 

than individual outlook programs for hog prices. Following their approaches, we build the Equal 

Weighted Model that produce composite forecasts which are the arithmetic average of the five 

individual yield forecasts. We include the composite forecasts in the set of yield forecasting models 

and we apply the MCS test to test whether composite forecasts outperform individual forecasts.  

As MCS is built on the iterative procedures where each step, it eliminates the worst 

performing model from the set of six models (ℳ0) until the last model survives from the tests in 

all previous five steps. Each step, to select which model should be eliminated, it is based on the t-

statistics proposed by Hansen, Lunde, and Nason (2011): 

                                                  𝑡𝑖 . =
𝑑𝑖.̅̅̅̅

√𝑣𝑎𝑟̂(𝑑𝑖.̅̅̅̅ )
, for 𝑖, 𝑗 ∈ ℳ0                                                     (3.16) 
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where 𝑑𝑖.̅̅̅̅ ≡ 𝑚−1 ∑ 𝑑𝑖𝑗̅̅ ̅̅
𝑗∈ℳ0

, 𝑑𝑖𝑗̅̅ ̅̅ = 𝑛−1 ∑ 𝑑𝑖𝑗,𝑡
𝑛
𝑡=1 , 𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡, 𝐿(∙) is the squared error 

function. Corresponding p-values are collected from the bootstrap of the test statistics. The best 

model selected by MCS has p-value equals to 1. When more than one model has p-value equals to 

1, we use the equivalence test: 𝑇𝐷 ≡ ∑ (𝑡𝑖 . )
2

𝑖∈ℳ0
 to test if the last survived model outperforms its 

competitors.  

Our study reports the last model selected by MCS test based on the p-values produced by 

2,000 bootstrap replicates for each week. We first show MCS test results for the set of models only 

consists of five individual yield forecasting models; next we show the MCS test results for the set 

of models with Equal Weight Model and five individual yield forecasting models. The significance 

level for MCS test is 10%. We also report the p-values for the equivalence test. When p-values 

greater than 0.1, it suggests the best selected model fails to have superior predictability than its 

competitors.  

Weekly MCS test results for corn and soybean are reported in Table 3.5 and Table 3.6. In 

Table 3.5, we report the best model that survives four steps of model selections for each week. The 

set of models consist of five individual yield forecasting models. For both corn and soybean, early 

in the growing season, the best model is IG National with Bias Adjustment, and by the end of 

growing season, BM model and BF model provide the most accurate yield predictions. In Table 

3.6, we report the MCS test for the set of models including Equal Weighted model and five 

individual yield forecasting models. For both crops throughout the growing stages, the best model 

selected is Equal Weighted model that provide equal-weighted composite forecasts of five 

individual yield forecasts. For Table 3.5 and Table 3.6, each week, the p-value of each step’s model 

elimination is greater than the significance level of 0.1, and there is more than one model has p-

value equals to 1. The equivalence test p-values are also reported in Table 3.5 and Table 3.6. They 
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fail to reject the null hypothesis of whether these models have equal predictive ability. These 

findings suggest the selected best models indeed provide more accurate yield forecasts, however, 

they to significantly outperform their competitors.  

3.4.6 Weekly forecasting errors correlation 

During the growing season, crop conditions ratings are published each week. In the estimation 

process, the data under preparation are compared with data reported in previous week and in 

surrounding counties. This procedure makes the weekly condition ratings correlated in a year. We 

want to test if such dependence is available in the forecasting error between the USDA final yields 

and the yield forecasts produced by one of our selected yield forecasting models. We conduct the 

correlation test for corn and soybean forecasting errors using BM model as we assume that for 

other models because the out-of-sample yield forecasts are also produced recursively, they should 

follow a similar pattern. We run multiple OLS models between the first week and the weeks ahead. 

Each OLS estimation, the first week is treated as the independent variable, and each week ahead 

is the dependent variable.  

Correlation test results for corn and soybean are summarized in Table 3.2. We use 

Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors to produce t-statistic and 

p-value. Test results show that the first week are correlated significantly to all weeks in the growing 

season at the 5% significant level. As all competing yield forecasting models have similar patterns 

of yield forecast errors over the growing season, we can expect this correlation embedded in these 

forecasting models as well.  

3.4.7 Multi-horizon yield forecasts comparison  

One limitation of the MDM test is that it only provides comparison test results for two competing 

models at each horizon 𝑤. It is very common to find that at some horizons the first model 
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outperforms the second, and at some other horizons, such situation reverses. Sometime, only using 

the single horizon forecast comparison test like the MDM test is likely to conclude contradictory 

results. For two competing models that cover multi-horizons, it is necessary to perform an omnibus 

test on all the forecasting horizons. When we argue which model has better forecasting 

performance, the omnibus test adds more conclusive evidence. Quaedvlieg (2021) introduced the 

multi-horizon superior predictive ability (SPA) tests that enable the comparison of forecasts of 

different models jointly, combining these models’ predictability across all horizons. The author 

proposed two tests, the first one is the uniform SPA test that tests if a model has superior 

forecasting performance at each individual horizon; the second one is the average SPA test that 

tests if a model has superior forecasting performance considering the whole forecasting path. For 

our study, we follow Quaedvlieg (2021) average SPA test as we can see in Figure 3.10 and Figure 

3.11 that there are some cross-over points between BM model and its competing models for corn 

and soybean, suggesting for some weeks, BM model has lower forecast errors while in some other 

weeks, its competing models achieve lower forecast errors. Therefore, it is more appropriate to 

apply the multi-horizon average Super Predictive Ability (aSPA) test (2021) pair-wisely between 

BM model and the other four forecasting models. This test extends the MDM test and compare 

two models’ yield forecasts across the whole growing season. 

Each year USDA final yields are denoted as 𝑦𝑡, and the weekly yield forecasts produced 

by model 𝑖 is denoted as 𝑦𝑡
𝑖̂. In multi-horizon test framework, 𝑦𝑡

𝑖̂ is a 17-dimension vector, 𝑦𝑡
𝑖̂ =

[𝑦1,𝑡
𝑖̂ , 𝑦2,𝑡

𝑖̂ , … 𝑦ℎ,𝑡
𝑖̂ , … , 𝑦17,𝑡

𝑖̂ ], where ℎ indicate the week that produces the yield forecasts; 𝑖 represents 

different choice of forecasting models; 𝑡 is the year when the fixed-event forecasts happen. We 

define the loss function as 𝐿𝑡
𝑖 = 𝐿(𝑦𝑡, 𝑦𝑡

𝑖̂), and it projects the final yield estimates onto a 17-

dimension space. The loss function is defined in a quadratic form, that is the square of the 
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percentage difference between the final yield estimates and each week’s yield forecasts provided 

by model 𝑖. Here we use notation “1” to stand for BM model, and “2” for its competing model. 

Then we define the loss differential for the two competing yield forecasts as 𝑑𝑡 = 𝐿𝑡
2 − 𝐿𝑡

1. 𝐷 is 

the loss differentials matrix and its dimensions are 21 ×  17. 𝐷 = [𝑑1
𝑇 , … , 𝑑𝑡

𝑇 , … , 𝑑21
𝑇 ]𝑇, where  

𝑑𝑡 = [𝑑𝑡
1, … , 𝑑𝑡

ℎ , … , 𝑑𝑡
17]. Each entry of the matrix 𝐷 is denoted as 𝑑𝑡

ℎ, and 𝐷 is specified as: 

                                           𝐷 =

[
 
 
 
 
𝑑1

1 … 𝑑1
ℎ … 𝑑1

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑𝑡

1 … 𝑑𝑡
ℎ … 𝑑𝑡

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑21

1 … 𝑑21
ℎ … 𝑑21

17]
 
 
 
 

21×17

                                             (3.17) 

We use the mean loss differentials, 𝜇𝑎𝑆𝑃𝐴 = ∑ 𝑤ℎ𝜇17
ℎ=1 ℎ

, to compare two models’ overall 

predictability. 𝜇𝑎𝑆𝑃𝐴 can be taken as the weighted sum of each week’s average differentials, where 

𝑤ℎ  is the weights for each forecast week; 𝜇ℎ = lim
𝑇→∞

1

𝑇
∑ 𝑑𝑡

ℎ𝑇
𝑡=1  is the mean of each week’s loss 

differentials and we use 𝑑̅ℎ = 
1

21
∑ 𝑑𝑡

ℎ̂21
𝑡=1  to estimate 𝜇ℎ. The null hypothesis of the aSPA test is 

𝜇𝑎𝑆𝑃𝐴 ≤ 0, meaning considering all horizons, on average, BM model fails to provide better 

performance than its competitors. The studentized statistic for aSPA test is: 

                                                            𝑡𝑎𝑆𝑃𝐴 =
√𝑇 ∑ 𝑤ℎ⋅𝑑̅ℎ

17
ℎ=1

𝜍̂
                                                         (3.18) 

where 𝜍̂ = √𝑤′Ω̂𝑤; 𝑤 = [𝑤1, … , 𝑤ℎ , … , 𝑤17]
𝑇is the 17-dimentional weight vector. Ω is the 

variance-covariance matrix of matrix 𝐷. We denote 𝐷 = [𝐷𝑡
1, … , 𝐷𝑡

ℎ, … , 𝐷𝑡
17], where 𝐷𝑡

ℎ =

[𝑑1
ℎ, … , 𝑑21

ℎ ]𝑇. The variance-covariance matrix Ω of matrix D is defined as: 

                                       Ω = [
𝑣𝑎𝑟(𝐷𝑡

1) … 𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17)
⋮ ⋮ ⋮

𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17) … 𝑣𝑎𝑟(𝐷𝑡
17)

]

17×17

,                                         (3.19) 
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where 𝑣𝑎𝑟(𝐷𝑡
1) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
1) =

1

𝑇
∑ (𝑑𝑡

1)221
𝑡=1 ; 𝑐𝑜𝑣(𝐷𝑡

1, 𝐷𝑡
17) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
17) =

1

𝑇
∑ 𝑑𝑡

1 ∙21
𝑡=1

𝑑𝑡
17. For a given year, from our correlation test results, we found each week’s differentials are 

highly correlated. Instead of directly estimating the full variance-covariance matrix Ω, we use the 

Newey-West HAC estimator to find its estimator, Ω̂. The choices of weights are flexible. We 

follow the examples proposed by Quaedvlieg (2021): first, we select the equal weight where 𝑤ℎ =

1

17
 for each week; second, we use “efficient” weights to minimize 𝜍 as the yield forecasts during 

the growing season are based on accumulated crop growing survey information. We assign small 

weights to early forecasts where variance is high, and we assign large weights to near end-of-

season forecasts where variance is low. Therefore, the inverse-variance weights are defined as 

𝑤ℎ =
1

𝜎ℎ
2(∑ 𝜎𝑖

217
𝑖=1 )

 and they satisfy the condition that the sum of weights is equal to 1. To obtain the 

critical values and p-values, we use the moving block bootstrap (MBB) technique to draw the 

distribution. We focus on the significance level at 5%, and the significance level is the 

corresponding percentile of the bootstrap distribution.  

From the single-horizon MDM test, throughout the growing season, for both corn and 

soybean, the test results produce mixed evidence. To test if BM model has better forecasting 

performance throughout the whole growing season, we perform multi-horizon average SPA test. 

First, we assign equal weights to each horizon for the loss differentials. The null hypothesis of the 

average SPA test is that considering all horizons, on average, simple yield forecasting model has 

better performance than BM model. Test results are summarized in Table 3.7. The multi-horizon 

average SPA test p-values are all greater than 5%, suggesting BM model fails to have significantly 

better predictability than its four competitors. Second, we conduct the average SPA test with 

varying weights for each week of the growing season. Test results are summarized in Table 3.8. 

The findings with average SPA tests are consistent with what we found with the single horizon 
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MDM test: BM model fails to systematically outperforms its competing models during the growing 

season for corn and soybean. A plausible argument for this finding is that BM model only controls 

for the time and spatial variations in the state-level crop condition ratings, so the transformed 

weekly CCI do not contain more determinate factors to account for the variations in yields than 

the other yield forecasting models which apply simple approaches to transform the ordinal 

condition ratings.  

3.5. Conclusions  

Crop production forecasts have been an important indicator for price changes in agricultural 

commodity markets. A small group of studies use the crop conditions data to build the yield 

forecasting models. Condition ratings are the products of human sensors, and they provide 

consistent subjective assessment about crops conditions that highly correlated with crops’ yields.  

This study examined the forecasting accuracy of a batch of yield forecasting models that 

directly transform the ordinal crop condition ratings to the numeric condition index along with a 

recently developed model introduced by Begueria and Maneta in 2020 that applies the cumulative 

link mixed model to transform the condition ratings to the continuous condition index. We conduct 

the out-of-sample yield forecasts recursively for corn and soybean from 2000 through 2020 for all 

models. We compared each model’s yield forecasts with USDA final yield estimates and we used 

RMSPE to measure each model’s forecasting accuracy. We found all models provide a pattern of 

the forecasting accuracy: in early weeks of the growing season, RMSPE are relatively higher than 

that in the final weeks. This pattern is reasonable as we move toward the end of season, crops are 

about to mature, so their conditions connect to yields more closely. The average RMSPE level for 

all models throughout the growing season is about 5% for corn and 6% for soybean. Our findings 

suggest this group of models that use crop conditions data provide accurate yield forecasts.  
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This study compared the forecasting performance of BM model with its four competing 

yield forecasting models that have already been widely applied by industry practitioners. One 

disadvantage of BM model is that it is more complex and computational demanding. Our study 

evaluates if the BM model provides significantly superior yield forecasts than its competitors so 

its disadvantage can be compensated. We use the modified Diebold Mariano test for the single-

horizon pair-wise forecasts comparisons. Test results suggest for both corn and soybean, BM 

model fails to outperform its competitors. With Model Confidence Set test, we find among 

individual yield forecasting models, in early weeks IG with Bias Adjustment is usually the best 

model, and in final weeks, BM model and BF model are selected as the best models. With 

composite forecasts in the set of models, Equal Weighted model is selected as the best model. 

However, all best models fail to significantly outperform their competitors. Furthermore, we 

conduct the multi-horizon average Superior Predictive Ability test to test whether averaging out 

the forecasting performance over the growing season, BM model has superior predictability. Test 

results show that for both corn and soybean, BM model fails to provide significantly more accurate 

yield forecasts than its competing yield forecasting models.  
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3.6. Tables and Figures 

Table 3.1: The RMSPE of weekly yield forecasting models for corn and soybean at national level 

over 2000 – 2020 

 

Date BM Model 
IG State 

Model 

IG National 

Model 

IG National with 

Bias Adjustment Model 
BF Model 

Panel A: Corn  

June 03 7.9 8.6 9.1 7.9 8.7 

June 10 7.7 8.1 8.6 7.5 8.4 

June 17 7.2 7.6 7.9 6.7 7.7 

June 24 6.4 6.8 7.1 5.9 6.8 

July 01 5.9 5.9 6.3 5.3 5.8 

July 08 5.2 5.0 5.2 4.6 4.7 

July 15 4.6 4.5 4.7 4.5 4.3 

July 22 4.4 4.2 4.5 4.4 4.1 

July 29 4.4 4.2 4.4 4.4 4.0 

August 05 4.4 4.1 4.4 4.4 4.1 

August 12 4.3 4.0 4.3 4.3 4.0 

August 19 4.2 4.0 4.1 4.1 3.8 

August 26 4.3 4.1 4.3 4.3 4.1 

September 02 4.3 4.2 4.3 4.3 4.2 

September 09 4.2 4.2 4.3 4.3 4.1 

September 16 3.9 4.1 4.2 4.2 3.8 

September 23 3.8 3.9 4.0 4.0 3.5 

Panel B: Soybean 

June 17 6.4 7.2 7.5 6.6 7.7 

June 24 6.5 7.1 7.4 6.6 7.8 

July 01 6.7 7.1 7.3 6.8 7.7 

July 08 6.9 7.1 7.3 6.9 7.6 

July 15 7.1 7.0 7.2 6.9 7.6 

July 22 6.9 6.9 6.9 6.6 7.4 

July 29 6.7 6.7 6.7 6.7 7.2 

August 05 6.6 6.6 6.7 6.7 7.0 

August 12 5.9 5.9 5.9 5.9 6.2 

August 19 4.9 5.0 5.0 5.0 5.2 

August 26 4.3 4.5 4.5 4.5 4.6 

September 02 4.2 4.4 4.3 4.3 4.3 

September 09 4.1 4.2 4.2 4.2 4.2 

September 16 3.9 4.1 4.0 4.0 3.9 

September 23 3.7 3.8 3.9 3.9 3.8 

Notes: For each week, there are 21 observations in the out-of-sample period from 2000 – 2021. The RMSPE 

measures the average forecast errors over the out-of-sample period, and it is measured in percentage (%). BM model 

is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment 

Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and Fortenbery (2017).  
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Table 3.2: Correlation test results for BM model for corn and soybean over 2000 – 2020 

 
Panel A: Corn, independent variable: forecasting error 

week 23 (June 03) 

Panel B: Soybean, independent variable: error in week 

25 (June 17)  

Dependent 

Week  

Coefficient t-Statistic p-Value Dependent 

Week  

Coefficient t-Statistic p-Value 

Date Date 

June 10 0.969 70.881 1.70E-24 
    

June 17 0.905 48.456 2.25E-21 
    

June 24 0.799 21.316 9.97E-15 June 24 1.003 51.069 8.35E-22 

July 01 0.714 15.04 5.25E-12 July 01 1.007 29.283 2.84E-17 

July 08 0.587 10.564 2.16E-09 July 08 1.004 19.573 4.71E-14 

July 15 0.454 7.311 6.22E-07 July 15 0.974 14.435 1.08E-11 

July 22 0.395 5.632 1.98E-05 July 22 0.906 11.455 5.66E-10 

July 29 0.396 6.015 8.71E-06 July 29 0.9 13.453 3.67E-11 

August 05 0.39 6.714 2.04E-06 August 05 0.857 12.864 7.93E-11 

August 12 0.408 7.444 4.80E-07 August 12 0.786 13.558 3.21E-11 

August 19 0.388 6.287 4.91E-06 August 19 0.622 9.832 6.91E-09 

August 26 0.376 6.251 5.29E-06 August 26 0.546 8.775 4.13E-08 

September 02 0.376 6.899 1.41E-06 September 02 0.521 8.719 4.56E-08 

September 09 0.36 7.581 3.69E-07 September 09 0.491 8.093 1.41E-07 

September 16 0.333 7.259 6.88E-07 September 16 0.474 8.681 4.88E-08 

September 23 0.327 6.913 1.36E-06 September 23 0.457 9.497 1.20E-08 

Notes: Correlation test results with the OLS regression where the independent variable is the forecast error in the 

first week; and the dependent variable is each one of the other weeks in the growing season. Regression function is 

specified as: 𝑒1+𝑖 = 𝛼𝑖 + 𝛽𝑖𝑒1 + 𝜎𝑖 , 𝑖 = 1, … , 16 for corn and 𝑖 = 1, … , 14 for soybean. HAC estimation is used to 

correct for autocorrelation and heteroskedasticity. Coefficients in bold indicate they are significantly at the level that 

is no greater than 5%. BM model is proposed by Begueria and Maneta (2020).  
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Table 3.3: The Modified Diebold Mariano (MDM) test statistics between the BM 

model and other yield forecasting models for Corn 

 

Date 
BM vs IG 

State 
BM vs IG National 

BM vs IG National 

with Bias Adjustment 
BM vs BF 

June 03 0.306 0.664 -0.455 0.434 

 (0.763) (0.514) (0.654) (0.669) 

June 10 0.056 0.463 -0.846 0.245 

 (0.956) (0.648) (0.408) (0.809) 

June 17 0.020 0.319 -1.359 0.119 

 (0.984) (0.753) (0.189) (0.907) 

June 24 0.083 0.385 -1.370 0.082 

 (0.935) (0.704) (0.186) (0.935) 

July 01 -0.415 0.002 -1.442 -0.493 

 (0.683) (0.998) (0.165) (0.628) 

July 08 -0.545 -0.194 -1.470 -0.811 

 (0.592) (0.848) (0.157) (0.427) 

July 15 -0.521 -0.067 -0.710 -0.856 

 (0.608) (0.947) (0.486) (0.402) 

July 22 -0.659 -0.055 -0.167 -0.871 

 (0.517) (0.957) (0.869) (0.394) 

July 29 -0.923 -0.326 -0.326 -1.092 

 (0.367) (0.748) (0.748) (0.288) 

August 05 -0.998 -0.307 -0.307 -0.661 

 (0.330) (0.762) (0.762) (0.516) 
August 12 -1.484 -0.360 -0.360 -0.790 

 (0.153) (0.723) (0.723) (0.439) 

August 19 -1.739 -0.801 -0.801 -0.984 

 (0.097) (0.432) (0.432) (0.337) 

August 26 -1.626 -0.724 -0.724 -0.381 

 (0.120) (0.477) (0.477) (0.707) 

September 02 -0.540 0.347 0.347 0.091 

 (0.595) (0.732) (0.732) (0.929) 

September 09 -0.064 0.459 0.459 -0.002 

 (0.949) (0.651) (0.651) (0.998) 

September 16 0.308 0.773 0.773 -0.123 

 (0.761) (0.449) (0.449) (0.903) 

September 23 0.096 0.234 0.234 -0.903 

 (0.924) (0.817) (0.817) (0.377) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test. The null 

hypothesis is that for each week, each of the four competing forecasting models have the same 

predictability as the BM model. BM model is proposed by Begueria and Maneta (2020), IG State 

model, IG National model, IG National with Bias Adjustment Model are proposed by Irwin and 

Good (2017a), and BF model is proposed by Bain and Fortenbery (2017). 
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Table 3.4: The Modified Diebold Mariano (MDM) test statistics between the BM 

model and other yield forecasting models for soybean 

 

Date 
BM vs IG 

State 
BM vs IG National 

BM vs IG National 

with Bias Adjustment 
BM vs BF 

June 17 0.224 0.445 -0.210 0.626 

 (0.825) (0.661) (0.836) (0.538) 

June 24 0.163 0.411 -0.226 0.643 

 (0.872) (0.685) (0.824) (0.527) 

July 01 0.019 0.233 -0.186 0.450 

 (0.985) (0.818) (0.855) (0.657) 

July 08 -0.061 0.120 -0.274 0.393 

 (0.952) (0.906) (0.787) (0.699) 

July 15 -0.588 0.003 -0.694 0.647 

 (0.563) (0.998) (0.496) (0.525) 

July 22 -0.544 -0.422 -2.387 0.426 

 (0.593) (0.677) (0.027) (0.675) 

July 29 -0.391 -0.379 -0.379 0.469 

 (0.700) (0.709) (0.709) (0.644) 

August 05 -0.357 -0.165 -0.165 0.494 

 (0.725) (0.871) (0.871) (0.626) 

August 12 -0.253 -0.304 -0.304 0.414 

 (0.803) (0.764) (0.764) (0.683) 

August 19 0.250 0.220 0.220 0.978 

 (0.805) (0.828) (0.828) (0.340) 
August 26 0.613 0.708 0.708 1.318 

 (0.547) (0.487) (0.487) (0.202) 

September 02 1.039 0.813 0.813 0.597 

 (0.311) (0.426) (0.426) (0.557) 

September 09 0.934 0.933 0.933 0.896 

 (0.362) (0.362) (0.362) (0.381) 

September 16 1.437 0.959 0.959 0.305 

 (0.166) (0.349) (0.349) (0.764) 

September 23 1.159 0.911 0.911 0.559 

  (0.260) (0.373) (0.373) (0.582) 

Notes: *, **, *** is the significant level at 10%, 5%, 1% respectively. This table presents the t-

statistics and p-values (in parenthesis) for the MDM test. The null hypothesis is that for each 

week, each of the four competing forecasting models have the same predictability as the BM 

model. BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 



 71 

Table 3.5: Weekly best model selected by MCS test for corn and soybean from 2000 – 2020 
 

Panel A: Corn      Panel B: Soybean     

Date Best Model with MCS Test MCS  

p-values 

Date Best Model with MCS Test MCS 

p-values 

June 03 IG National with Bias Adjustment 0.289 
   

June 10 IG National with Bias Adjustment 0.380 
   

June 17 IG National with Bias Adjustment 0.362 June 17 IG National with Bias Adjustment 0.262 

June 24 IG National with Bias Adjustment 0.322 June 24 IG National with Bias Adjustment 0.257 

July 01 IG National with Bias Adjustment 0.570 July 01 IG National with Bias Adjustment 0.444 

July 08 IG National with Bias Adjustment 0.662 July 08 IG National with Bias Adjustment 0.403 

July 15 BF 0.744 July 15 IG State 0.218 

July 22 BF 0.318 July 22 IG National with Bias Adjustment 0.240 

July 29 BF 0.540 July 29 IG Nation 0.196 

August 05 IG State 0.595 August 05 IG State 0.257 

August 12 IG State 0.275 August 12 IG Nation 0.519 

August 19 BF 0.691 August 19 BM 0.637 

August 26 IG State 0.156 August 26 BM 0.739 

September 02 IG State 0.891 September 02 BM 0.799 

September 09 IG State 0.814 September 09 BM 0.856 

September 16 BM 0.588 September 16 BM 0.739 

September 23 BF 0.727 September 23 BM 0.759 

Notes: MCS p-values are all greater than the significance level of 0.1, suggesting the selected best performing model fails to significantly outperform other 

individual yield forecasting models. The best model selected by MCS test is based on the significance level of 0.1, p-values are produced with 2000 bootstrap 

replicates for the test statistics.  
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Table 3.6: Weekly best model selected by MCS test for corn and soybean from 2000 – 2020 
 

Panel A: Corn      Panel B: Soybean     

Date Best Model with MCS Test  MCS 

p-values  

Date Best Model with MCS Test MCS 

p-values 

June 03 Equal Weighted model 0.209 
   

June 10 Equal Weighted model 0.289 
   

June 17 Equal Weighted model 0.238 June 17 Equal Weighted model 0.217 

June 24 Equal Weighted model 0.248 June 24 Equal Weighted model 0.245 

July 01 Equal Weighted model 0.460 July 01 Equal Weighted model 0.400 

July 08 Equal Weighted model 0.640 July 08 Equal Weighted model 0.404 

July 15 Equal Weighted model 0.766 July 15 Equal Weighted model 0.212 

July 22 Equal Weighted model 0.246 July 22 Equal Weighted model 0.251 

July 29 Equal Weighted model 0.588 July 29 Equal Weighted model 0.158 

August 05 Equal Weighted model 0.617 August 05 Equal Weighted model 0.218 

August 12 Equal Weighted model 0.290 August 12 Equal Weighted model 0.421 

August 19 Equal Weighted model 0.766 August 19 Equal Weighted model 0.613 

August 26 Equal Weighted model 0.128 August 26 Equal Weighted model 0.724 

September 02 Equal Weighted model 0.896 September 02 Equal Weighted model 0.774 

September 09 Equal Weighted model 0.816 September 09 Equal Weighted model 0.795 

September 16 Equal Weighted model 0.671 September 16 Equal Weighted model 0.663 

September 23 Equal Weighted model 0.779 September 23 Equal Weighted model 0.732 

Notes: Equal Weighted model produce yield forecast composites of five yield forecasting models. MCS p-values are all greater than the significance level of 0.1, 

suggesting Equal Weighted model fails to significantly outperform individual yield forecasting models. The best model selected by MCS test is based on the 

significance level of 0.1, p-values are produced with 2000 bootstrap replicates for the test statistics.  
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Table 3.7: The multi-horizon average superior predictive ability (aSPA) test between  

BM model and other yield forecasting models for corn and soybean with fixed weights 

 

Crop BM vs IG State 
BM vs IG 

National 

BM vs IG National with 

Bias Adjustment 
BM vs BF 

corn -0.210 0.210 -0.745 -0.344 
 (0.566) (0.408) (0.740) (0.607) 

soybean 0.0304 0.251 -0.285 0.659 
 (0.482) (0.397) (0.595) (0.220) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon 

aSPA test. The null hypothesis is that considering all horizons, on average, the competing yield 

forecasting model has better performance than BM model. BM model is proposed by Begueria 

and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment 

Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and 

Fortenbery (2017). 
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Table 3.8: The multi-horizon average superior predictive ability (aSPA) test between  

BM model and other yield forecasting models for corn and soybean with varying weights  

 

Crop BM vs IG State 
BM vs IG 

National 

BM vs IG National with 

Bias Adjustment 
BM vs BF 

corn -1.062 -0.094 -0.414 -0.995 
 (0.869) (0.574) (0.678) (0.834) 

soybean 0.836 1.079 0.531 0.943 
 (0.269) (0.135) (0.312) (0.170) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon 

aSPA test. The null hypothesis is that considering all horizons, on average, the competing 

yield forecasting model has better performance than BM model. BM model is proposed by 

Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias 

Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by 

Bain and Fortenbery (2017). 
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Figure 3.1: Yield forecasting cycle for corn 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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Figure 3.2: Recursive out-of-sample yield forecasts with Begueria and Maneta model (2017) 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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Figure 3.3: Recursive out-of-sample yield forecasts with IG State model and IG National model 

(2017a) 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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                                                  (a) Illinois Corn                                                                                    (b) South Dakota Corn  

Figure 3.4: The forecast error (%) of BM model and IG State model for week 29 for corn, for Illinois and South Dakota, 2000 – 2020 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                          (a) Illinois Soybean                                                                            (b) South Dakota Soybean 

Figure 3.5: The forecast error (%) of BM model and IG State model for week 29 for soybean, for Illinois and South Dakota, soybean, 

2000 – 2020 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                                  (a) Illinois Corn                                                                                    (b) South Dakota Corn  

Figure 3.6: Weekly RMSPE of BM model and Irwin and Good model for Illinois and South Dakota for corn, 2000 – 2020 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                          (a) Illinois Soybean                                                                            (b) South Dakota Soybean 

Figure 3.7: Weekly RMSPE of BM model and Irwin and Good model for Illinois and South Dakota for soybean, 2000 – 2020  

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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Figure 3.8: The forecast error (%) of five yield forecasting models for week 29 for corn, 2000 – 

2020 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 
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Figure 3.9: The forecast error (%) of five yield forecasting models for week 29 for soybean, 2000 

– 2020 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 
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Figure 3.10: RMSPE of five yield forecasting models at national level from 2000 – 2020 for corn 

 

Notes: we also include naïve trend yield model to illustrate the value of crop condition ratings as 

a yield indicator. BM model is proposed by Begueria and Maneta (2020), IG State model, IG 

National model, IG National with Bias Adjustment Model are proposed by Irwin and Good 

(2017a), and BF model is proposed by Bain and Fortenbery (2017). 
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Figure 3.11: RMSPE of five yield forecasting models at national level from 2000 – 2020 for 

soybean 

 

Notes: we also include naïve trend yield model to illustrate the value of crop condition ratings as 

a yield indicator. BM model is proposed by Begueria and Maneta (2020), IG State model, IG 

National model, IG National with Bias Adjustment Model are proposed by Irwin and Good 

(2017a), and BF model is proposed by Bain and Fortenbery (2017). 
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CHAPTER 4:  

DO EXTREME CIT POSITION CHANGES MOVE PRICES IN GRAIN FUTURES 

MARKETS? 

 

4.1. Introduction 

A global controversy erupted during the 2007-08 spike in commodity prices about the role of new 

participants in futures markets—financial index investors. A variety of commodity investment 

instruments typically are lumped together under the heading “financial index investment” (Engelke 

and Yuen, 2008). Regardless of the form, these investments have the common goal of providing 

financial investors with long exposure to returns from a basket of commodity futures. The surge 

in financial index investment led to widespread charges that the investment wave caused irrational 

and gross mispricing across a wide range of commodities. This has been labeled the “Masters 

Hypothesis”, which according to Sanders and Irwin (2017), has the following tenets: 1) financial 

index investors were directly responsible for driving commodity futures prices higher; 2) the 

deviations of futures prices from fundamental value were economically very large; and 3) the 

impact was pervasive across commodity futures markets. These claims have been used to justify 

the need for tighter regulations on speculation in commodity futures markets around the world.  

Some studies find evidence in support of the Masters Hypothesis in agricultural futures 

markets (e.g., Mayer, 2012; Gilbert and Pfuderer, 2014; Tadesse et al., 2014). However, a much 

longer list of studies fails to find a significant price impact of commodity index traders (CITs). 

Many of these studies use linear Granger causality tests between weekly futures returns and CIT 

positions reported by the U.S. Commodity Futures Trading Commission (CFTC). Noteworthy 

examples include Stoll and Whaley (2010), Sanders and Irwin (2011), Aulerich, Irwin, and Garcia 

(2014), Lehecka (2015), and Hamilton and Wu (2015).  Over a wide range of markets, data, and 



 

 

 

87 

methods, these studies find, at best, very limited evidence of a direct link between CIT positions 

and returns in agricultural futures markets. 

Despite the weight of the evidence against the Masters Hypothesis, it continues to resonate 

with a number of market participants, civic organizations, and policymakers. This may reflect the 

fact that the impact of financial index investment in agricultural futures markets is more 

complicated and nuanced than can be detected by relatively simple linear Granger causality tests 

commonly used in prior literature. Instead of the linear causality at the mean, the relationship 

between index investment and futures prices may be non-linear and/or hidden in the tails of the 

data. As noted by Lee and Yang (2012), some statistical relationships may fail to present at the 

mean of the data but can show up in the tails of the distribution. 

To date, only two studies in the CIT literature have used statistical tests to detect these 

more subtle relationships. Palazzi et al. (2020) applied non-linear Granger causality tests to CIT 

positions and returns in 12 agricultural futures markets, finding that the more sophisticated non-

linear causality test also failed to find evidence of a significant relationship. Algieri, Kalkuhl, and 

Koch (2017) estimate a multinomial logit model to investigate which factors are associated with 

the propagation of extreme events in agricultural futures markets, and once again, do not find 

evidence of an impact of CIT positions. However, neither of these studies analyzed the relationship 

across different quantiles of the distributions. Given that the discussion on the Master Hypothesis 

mostly centers around episodes with significant upward price movements, there is clearly a need 

for additional research to investigate whether the linkage between CIT positions and prices differs 

under various pricing scenarios. 

Our study applies a recently-developed cross-quantilogram (CQ) test to examine the impact 

of CIT positions on returns in four agricultural futures markets. Han et al. (2016) developed the 
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CQ test to thoroughly analyze the causal relationship between two series in all parts of their 

distributions, especially the tail quantiles. This test has several advantages, as it: i) captures the 

lead-lag relationships across all parts of distributions; ii) does not require moment conditions; iii) 

only requires the time series to be stationary; and iv) includes long lags in the model specification 

to avoid concerns about degrees-of-freedom. The CQ test has been applied under a variety of 

contexts, including the spillovers between the U.S. and Chinese agricultural futures markets (Jiang 

et al., 2016), the spillover of spot gold prices to U.S. stock prices (Baumöhl and Lyócsa, 2017), 

the quantile dependence and predictability between various energy prices (Scarcioffolo and 

Etienne, 2021), among others. To the best of our knowledge, the present study is the first to apply 

the CQ test to analyze the price impact of CIT positions in any type of commodity futures market. 

The data for the study consists of weekly CIT positions and returns from January 6, 2004 

through December 31, 2019 for Chicago Board of Trade (CBOT) corn, wheat, soybeans, and 

Kansas City Board of Trade (KCBOT) wheat. We first conduct three types of linear causality tests 

to provide a baseline for the relationship between CIT positions and prices movements. We fail to 

reject the null of no causality in most of the cases, across the different tests, measures of position 

pressure, or the sample period considered. Next, we apply the CQ test of directional predictability 

in the tails of the distributions of the CIT positions and price movements. Similar to the linear 

tests, we find very little evidence of a directional relationship in the extremes of the distributions. 

Our results add to the growing evidence that the Masters Hypothesis is not a useful description of 

the price impact of CITs in agricultural futures markets. 
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4.2. Data 

4.2.1 Commodity index trader positions 

The Supplemental Commitment of Traders (SCOT) report published by the CFTC provides 

weekly CIT positions for CBOT corn, CBOT wheat, CBOT soybeans, and KCBOT wheat. Every 

Friday at 3:30 p.m. Eastern time, the CFTC publishes SCOT reports in conjunction with the 

traditional Commitments of Traders (COT) report. CIT positions in the SCOT report are released 

as the number of long and short contracts held by index traders as of the previous Tuesday’s market 

settlement. One potential issue with the CIT position data is the internal netting of positions by 

swap dealers that offer index products to investors. In some markets, short swap positions for 

certain commodity products tend to offset long swap positions associated with commodity index 

investments. Fortunately, previous research shows that netting of swap activity is minimal in 

agricultural markets, and therefore, CIT positions in the SCOT report are generally regarded as 

accurate measures of aggregate CIT positions (Irwin and Sanders, 2012; Sanders and Irwin, 2013).  

The CIT position data are publically available starting from January 2006. Previous studies 

argue that using post-2006 data may lead to biased results because the buildup of CIT positions in 

grain futures markets was concentrated in the previous two years (Sanders and Irwin, 2011; Irwin 

and Sanders, 2011). The CFTC collected additional data for selected grain futures markets over 

2004-2005 at the request of the U.S. Senate Permanent Subcommittee on Investigations (USS/PSI, 

2009) and the additional data is used for this study. Specifically, weekly CIT positions for the four 

grain futures markets are available from January 6, 2004 to December 31, 2019, for a total of 853 

weekly observations for each market.  

We consider two widely used measures that directly reflect the “weight” of index positions 

in grain futures markets. To start, we compute the net long CIT position for a given market as: 

                                                𝐶𝐼𝑇 𝑁𝑒𝑡 𝐿𝑜𝑛𝑔𝑡 = 𝐶𝐼𝑇𝐿𝑡 − 𝐶𝐼𝑇𝑆𝑡 ,                                                  (4.1) 
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where 𝐶𝐼𝑇𝐿𝑡 and 𝐶𝐼𝑇𝑆𝑡 are the numbers of long and short contracts held by CITs at week 𝑡, 

respectively. In general, CITs hold relatively small short positions in grain futures markets, so the 

difference between long and net long positions is not large. The first measure of CIT pressure is 

the change in CIT net positions for a given market: 

                            ∆𝐶𝐼𝑇 𝑁𝑒𝑡 𝐿𝑜𝑛𝑔𝑡 = (𝐶𝐼𝑇𝐿𝑡 − 𝐶𝐼𝑇𝑆𝑡) − (𝐶𝐼𝑇𝐿𝑡−1 − 𝐶𝐼𝑇𝑆𝑡−1),                     (4.2) 

The second measure of pressure is the weekly percentage growth of CIT net long positions, defined 

as, 

                                  %𝐶𝐼𝑇 𝑁𝑒𝑡 𝐿𝑜𝑛𝑔𝑡 =
(𝐶𝐼𝑇𝐿𝑡−𝐶𝐼𝑇𝑆𝑡)−(𝐶𝐼𝑇𝐿𝑡−1−𝐶𝐼𝑇𝑆𝑡−1)

(𝐶𝐼𝑇𝐿𝑡−1−𝐶𝐼𝑇𝑆𝑡−1)
,                                           (4.3) 

Descriptive statistics for the two measures of index position pressure are presented in Table 4.1. 

For net long positions, distributions for all four commodities are left-skewed. They each have 

positive kurtosis, indicating heavy-tailed distributions. The Jarque-Bera (JB) test suggests that 

none of the series are normally distributed. The two index position measures both have heavy tails. 

Augmented Dickey-Fuller (ADF) tests results are not surprising, indicating that CIT net long 

positions are non-stationary, while the change in net long positions and percent growth in positions 

are stationary. 

4.2.2 Futures prices and returns 

We collect nearby futures prices and compute weekly returns (percentage change in prices) for 

each of the four markets. To avoid inconsistency in price series when contract rollover occurs, we 

always calculate returns using the same nearest-to-expiration contract. Since the CFTC compiles 

the data for SCOT reports as of Tuesday each week, we use Tuesday’s closing price to represent 

the price observation for a week.  

Descriptive statistics for futures prices and returns are also presented in Table 4.1. All 

nearby futures prices are right-skewed with heavy tails, and non-normally distributed. For return 
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distributions, corn and soybeans are left-skewed, and the two wheat markets are right-skewed.  All 

returns have heavy tails and the JB test suggests none of them are normally distributed. ADF test 

results suggest that nearby futures prices are non-stationary while returns are stationary. 

4.2.3 Sample break 

As noted above, our data covers index trader positions and nearby futures prices from the 

beginning of 2004 to the end of 2019. Figure 4.1 plots the total notional value of CIT positions 

summed across the four grain markets. Notional value for a given week is computed by multiplying 

the CIT position in a market by the corresponding nearby futures price, and after adjusting for 

contract size, summing across the four markets. We also include the stages of “financialization,” 

recently proposed by Irwin, Sanders, and Yan (2022), that overlap with the sample period for this 

study. The first is the growth stage of financialization from 2004 to 2011, during which we observe 

a rapid increase in commodity index investment. Two spikes in the notional value of CIT positions 

are observed during the growth stage, one in 2007-2008, and the other one in 2010-2011. These 

peaks are between $35 and $40 billion. The second stage is the post-financialization period from 

2012 to 2019, where we observe CIT notional value decreasing steadily to around $15 billion in 

the last three years of the sample. If price pressure from CITs exists, it would make the most sense 

for it to be evident in the growth stage. In the statistical analysis that follows, we report results for 

the full sample and the two sub-samples based on the growth stages of financialization. This 

accounts for the very different structural dynamics of index investment before and after 2011. 

4.3. Linear Tests 

Plots of CIT positions and futures prices for the four commodities are shown in Figure 4.2. The 

plots confirm no contemporaneous increase in futures prices during the large build-up of index 

traders’ positions during 2004 – 2005. Thereafter, if anything, there appears to be a negative 
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relationship between CIT positions and futures prices. Of course, graphical evidence like this is 

only suggestive. It is important to test for direct statistical links between CIT positions and prices. 

We begin with the standard linear Granger causality test that has been used in numerous studies in 

the literature on CIT positions and movements in agricultural futures prices. While these tests have 

been conducted numerous times in the past, we include them here to provide a benchmark using 

the same data for the later CQ tests.  

4.3.1 Linear Granger causality tests 

In the widely-used linear causality framework (Granger, 1980), a time-series regression is used to 

determine if one series is useful in forecasting another, or simply, “Granger causing.” The 

specification of the test for returns and CIT pressure in grain futures markets is shown below for a 

given market: 

                       𝑅𝑒𝑡𝑢𝑟𝑛𝑡 = 𝛼𝑡 + ∑ 𝛾𝑖
𝑚
𝑖=1 𝑅𝑒𝑡𝑢𝑟𝑛𝑡−𝑖 + ∑ 𝛽𝑗

𝑛
𝑗=1 𝛥𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡−𝑗 + 𝜖𝑡 ,                      (4.4)  

where 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 is the log-difference in nearby weekly futures prices for a given market at time t, 

and Δ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡 is the measure of CIT pressure in the same market. All series are stationary (see 

Table 4.1). The null hypothesis is that all 𝛽𝑗  are jointly zero, suggesting that CIT positions do not 

Granger-cause returns. Alternatively, if CIT pressure indeed drives up futures prices, then 𝛽𝑗  will 

be greater than zero. The optimal lag order based on Akaike Information Criterion (AIC) is one 

for both returns and the growth of positions (m=1, n=1) for each of the four grain futures markets.  

The results of the linear Granger causality test estimated over the full sample period and 

two subsample periods are presented in Table 4.2. For the full sample period (2004 – 2009), in 

only two out of the eight cases the null hypothesis of no Granger-causality is rejected at the 5% 

significance level. Both cases are in the CBOT wheat market. Note that the direction of the 

estimated relationship is negative, suggesting that lagged changes in CIT positions negatively 
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correlate with price changes, just the opposite of that implied by the Masters price pressure 

hypothesis. In the first subsample (2004 – 2011) or the growth stage of financialization, in all eight 

cases we fail to reject no Granger-causality from positions to returns at the 5% significance level. 

In the second subsample from 2012 to 2019, i.e., the post-financialization stage, significant 

directional predictability from positions to returns is once again only found for the CBOT wheat 

market.  The estimated directional impact is negative. 

4.3.2 Augmented Granger causality tests 

The second set of tests in the linear Granger causality framework is the augmented test of Toda 

and Yamamoto (1995). This method estimates a VAR model in levels to detect the dynamic causal 

relationship between two processes that may be integrated or cointegrated of arbitrary order. When 

two time series are cointegrated or are not strictly stationary, the traditional Granger causality test 

may detect a spurious relationship, invalidating the results. To avoid such inconsistency, the Toda 

and Yamamoto (1995) test for Granger causality in a VAR model that accounts for cointegration 

and stationarity. The model is specified below for a given market: 

                  [
𝑃𝑟𝑖𝑐𝑒𝑡

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡
] = ∑ [

𝛾1,𝑖 𝛾2,𝑖

𝛾3,𝑖 𝛾4,𝑖
]

𝑝+𝑑𝑚𝑎𝑥
𝑖=1 [

𝑃𝑟𝑖𝑐𝑒𝑡−𝑖

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡−𝑖
] + [

𝛼1

𝛼2
] + 𝑡 [

𝛽1

𝛽2
] + [

𝜖1,𝑡

𝜖2,𝑡
],           (4.5) 

where 𝑃𝑟𝑖𝑐𝑒𝑡 is the nearby futures price and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡 is the net long CIT position. We conduct 

the augmented Granger Causality test in the following steps: i) each series is tested for the order 

of integration using the ADF test; ii) determine the value 𝑑𝑚𝑎𝑥, which is the maximum order of 

integration of two series; iii) set up the VAR model and use the AIC to determine the optimal lags 

𝑝 for the system; iv) use the augmented lag 𝑝 + 𝑑𝑚𝑎𝑥 to estimate the VAR system; and v) apply 

the Wald test to determine if the position coefficients are significantly different from zero.  
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Augmented GC test results are presented in Table 4.3. Note that only one set of results is 

presented since this test is based on the level of net long CIT positions instead of the change or 

percent growth in positions. We focus on the direction from index positions to futures prices as 

the VAR model avoids invalid estimates when two series have different integration orders. We 

first estimate 𝑑𝑚𝑎𝑥 = 1 based on the ADF test. Then to determine the lag orders of the VAR model, 

we use AIC to find the appropriate lags with a maximum lag order of 20 lags and select two lags 

for the bivariate VAR model. As shown in Table 4.3, we fail to reject the null of no causality in 

all cases when utilizing the augmented Granger causality test.  

4.3.3 Long-horizon regression tests 

Both the standard and augmented Granger causality tests are designed to detect relationships 

between weekly CIT positions and returns. Such tests may have low power when detecting 

relationships over longer horizons (e.g., Summers 1986). Index trader positions may flow in 

“waves” that build up slowly that eventually push up prices, and then fade slowly as the process 

is reversed (Sanders and Irwin, 2011). In this situation, horizons longer than a week may be needed 

to fully capture the relationship between CIT position pressure and futures returns. We follow 

Sanders and Irwin (2014, 2016) and implement the long-horizon framework developed by 

Valkanov (2003). The model is defined for a given market as: 

                               ∑ 𝑅𝑒𝑡𝑢𝑟𝑛𝑡+𝑖
𝑘−1
𝑖=0 = 𝛼 + 𝛽 ∑ 𝛥𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡+𝑖−1

𝑘−1
𝑖=0 + 𝜖𝑡,                                (4.6) 

where all variables are the same as before. To obtain the estimated coefficients, we run an OLS 

regression of the long-horizon dependent variable on the long-horizon independent variable. Once 

the horizon 𝑘 is determined, the dependent variable is the sum of futures returns from 𝑡 to 𝑡 + 𝑘 −

1, and the independent variable is the sum of growth/change in CIT positions from 𝑡 − 1 to 𝑡 + 𝑘. 

In essence, equation (6) is an OLS regression of a k-period moving sum of the dependent variable 
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at time t against a k-period moving sum of the independent variable in the previous period, time t-

1. If the estimated  is positive, this indicates a fads-style model where prices tend to increase 

slowly over a relatively long period after widespread index fund buying. To be consistent with 

previous studies, we choose 𝑘 = 4 and 𝑘 = 12 to represent monthly and quarterly time horizons 

using the weekly data (Singleton, 2014; Hamilton and Wu, 2015; Sanders and Irwin, 2014, 2016). 

Valkanov (2003) demonstrates that the OLS slope estimator in equation (4.6) is consistent 

and converges at a high rate as the sample size increases. However, this specification obviously 

creates an overlapping horizon problem for testing. Valkanov shows that Newey-West t-statistics 

do not converge to well-defined distributions and suggests using the re-scaled t-statistic, t T , 

along with simulated critical values for inference. Valkanov also demonstrates that the re-scaled 

t-statistic generally is the most powerful among several alternative long-horizon test statistics. 

Valkanov (2003) provides the simulated critical values for the re-scaled statistic under various 

scenarios. For sample size 𝑇 = 750, and two nuisance parameters 𝑐 = 0 and 𝛿 = 0, the critical 

values at the 5% significance level at two tails are (−0.672, 0.727).  

We report the estimated OLS slope coefficients and the rescaled t-statistics for the 

Valkanov test at the monthly and quarterly horizons in Table 4.4. When we compare the test 

statistics with provided critical values, there is no single case where the rescaled t-statistics are 

outside the range of the critical values. Once again, estimation results from this linear test suggest 

no evidence that CIT positions pressure grain futures prices upward. 

4.4. Cross-Quantilogram (CQ) Tests  

In the previous section, we conducted three linear causality tests to provide a comprehensive 

baseline for the relationship between CIT positions and futures prices movements. We fail to reject 

the null of no causality in most cases, for different testing methods, measures of position pressure, 
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and the sample period considered. These findings are consistent with most prior studies that use 

similar linear tests (e.g., Stoll and Whaley, 2010; Sanders and Irwin, 2011; Hamilton and Wu, 

2015; Lehecka, 2015). 

As noted earlier, a concern with these findings is that the relationship between CIT 

positions and returns may be more subtle and difficult to detect than is possible with linear tests. 

In particular, linear tests may fail to detect a causal relationship hidden in the tails of the 

distribution (Lee and Yang, 2012). To address this limitation, we apply the recently developed CQ 

test to investigate the directional predictability from the change in CIT net long positions to futures 

returns in the four grain futures markets. We also apply the CQ test to examine the directional 

impact of futures returns to the change in CIT net long positions.   

Linton and Whang (2007) introduced the quantilogram, which measures the directional 

predictability of a stationary time-series based on different parts of the distribution of a time-series 

variable. The quantilogram method provides estimates of sample lead-lag correlation of quantiles 

and a Box-Pierce-type statistic that aggregates the individual correlations across lags. Based on 

the concept of the quantilogram for a single series, Han et al. (2016) developed the cross-

quantilogram (CQ) to measure the directional predictability of a pair of stationary times-series in 

all parts of the distributions and a Box-Ljung version of a portmanteau test for overall directional 

predictability. According to Han et al. (2016), the CQ method has several advantages, as it: i) 

captures the directional lead-lag relationships across all parts of distributions; ii) does not require 

moment conditions of series; iii) only requires the time series to be stationary; and iv) includes 

long lags in the model specification to avoid concerns about degrees-of-freedom.  

Specifically, for two strictly stationary time-series variables, 𝑥1,𝑡 and 𝑥2,𝑡 , we define their 

cumulative distribution as 𝐹𝑖  (∙), and their density function as 𝑓𝑖 (∙). Next, we define the quantile 
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function of each series as 𝑞𝑖 (𝛼𝑖) = 𝑖𝑛𝑓(𝑣: 𝐹𝑖(𝑣) ≥ 𝛼𝑖) , ∀𝛼𝑖 ∈ (0,1) for 𝛼 ≡ (𝛼1, 𝛼2)
𝑇. This 

quantile function returns the minimum quantile of 𝑥𝑖 for the probability at 𝛼𝑖. The CQ for quantile 

𝛼 and lag 𝑘 is specified as: 

                                       𝜌𝛼(𝑘) =
𝐸[𝜓𝛼1(𝑥1,𝑡−𝑞1,𝑡(𝛼1))𝜓𝛼2(𝑥2,𝑡−𝑘−𝑞2,𝑡−𝑘(𝛼2))

√𝐸[𝜓𝛼1
2 (𝑥1,𝑡−𝑞1,𝑡(𝛼1))]√𝐸[𝜓𝛼2

2 (𝑥2,𝑡−𝑘−𝑞2,𝑡−𝑘(𝛼2))]
,                        (4.7) 

where 𝜓𝛼𝑖
(𝑢) ≡ 1(𝑢 < 0) − 𝛼𝑖 is a check function that captures the direction of deviation for a 

given quantile; 𝑘 = 0,±1, ±2, …. Inside the check function, {1[[𝑥𝑖,𝑡 ≤ 𝑞𝑖,𝑡(∙)]]} is an indicator 

function, also known as the quantile-hit or quantile-exceedance process in the literature, that takes 

on a value of one when [𝑥𝑖,𝑡 ≤ 𝑞𝑖,𝑡(∙)] and zero otherwise. The 𝜓𝛼𝑖
(∙) function transforms the 

indicator observations into a sorted sequence for a given quantile level. When an observation is 

smaller or equal to a given quantile, 𝜓𝛼𝑖
(∙) returns 1 − 𝛼𝑖 ; whereas when an observation is greater 

than a given quantile, 𝜓𝛼𝑖
(∙) returns −𝛼𝑖. In essence, the CQ is the cross-correlation of two 

quantile-hit processes (Han et al., 2016). 

Empirically, we have two series of interests—the change in CIT net long positions and 

returns. We denote these two stationary time series as {𝑥1,𝑡, 𝑥2,𝑡}𝑡=1
𝑇 , respectively. First, we 

estimate the unconditional quantile functions 𝑞𝑖̂(∙) for each series by solving for the following 

minimization functions: 

                                                 𝑞𝑖̂(𝛼𝑖) = argmin
𝑣𝑖∈ℝ

∑ 𝜋 𝛼𝑖
(𝑥𝑖,𝑡 − 𝑣𝑖)

𝑇
𝑡=1 ,                                                 (4.8) 

where𝜋 𝛼𝑖
(𝑢) ≡ 𝑢(𝛼𝑖 − 1[𝑢 < 0]), 𝑖 = 1, 2. For a set of quantiles of two series 

{𝑞̂1,𝑡(𝛼1), 𝑞̂2,𝑡−𝑘(𝛼2)}, the sample CQ is defined: 

                              𝜌̂𝛼(𝑘) =
∑ 𝜓𝛼1

𝑇
𝑡=𝑘+1 (𝑥1,𝑡−𝑞̂1,𝑡(𝛼1))𝜓𝛼2(𝑥2,𝑡−𝑘−𝑞̂2,𝑡−𝑘(𝛼2))

√∑ 𝜓𝛼1
2 (𝑥1,𝑡−𝑞̂1,𝑡(𝛼1)𝑇

𝑡=𝑘+1 )√∑ 𝜓𝛼2
2𝑇

𝑡=𝑘+1 (𝑥2,𝑡−𝑘−𝑞̂2,𝑡−𝑘(𝛼2))
,                        (4.9) 
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where 𝑘 = 0,±1,±2,…The CQ estimates, 𝜌̂𝛼(𝑘), capture the directional predictability between 

two series at a given quantile set {𝛼1, 𝛼2}. Further, 𝜌̂𝛼(𝑘) ∈ [−1,1]. For example, when 𝜌̂𝛼(1) =

0, this indicates that when the change in CIT net long positions at time 𝑡 is above or below the 

quantile 𝑞̂2,𝑡−1(𝛼2) there is no correlation with returns at time 𝑡 + 1 being above or below the 

quantile 𝑞̂1,𝑡(𝛼1). When 𝜌̂𝛼(1) > 0, it suggests there is directional predictability between the 

change in CIT net long positions at time 𝑡 and returns at time 𝑡 + 1, given the two series hit in the 

quantiles of 𝛼1 and 𝛼2. 

An example for corn over the full sample period is presented in Figure 3.3 to help illustrate 

how CQ statistics are computed. This plot shows an example for a pair of observations that both 

hit the quantile with 𝛼1 = 𝛼2 = 0.1. On September 27, 2011, the change in corn CIT net long 

positions is -15,920 contracts and hits in the 0.1 quantile for position changes. One week later on 

October 4, 2011 we observe a corn return of -10.41% and it hits in the 0.1 quantile for returns as 

well. The arrow shows that when changes in CIT net long positions are below the 0.1 quantile, it 

is followed by a return one week later that is also below its 0.1 quantile. This type of comparison 

is repeated for all observations to compute a CQ statistic for 𝛼1 = 𝛼2 = 0.1. 

To test for the directional predictability of two series in different quantiles up to 𝑘 lags, we 

follow the quantile version of the portmanteau statistical test proposed by Han et al. (2016). To 

test if there is overall directional predictability from 𝑥2,𝑡−𝑘  to 𝑥1,𝑡, for 𝑘 ∈ {1,2,… , 𝑝}, the null 

hypothesis is 𝐻0: 𝜌𝛼(1) = 𝜌𝛼(2) = ⋯ = 𝜌𝛼(𝑝) = 0, against the alternative hypothesis 

𝐻𝑎: 𝜌𝛼(𝑘) ≠ 0. The test statistics is: 

                                                         𝑄̂𝑎
(𝑝)

=
𝑇(𝑇+2)∑ 𝜌̂𝛼

2(𝑘)
𝑝
𝑘=1

𝑇−𝑘
,                                                                         (4.10) 

where 𝑄̂𝑎
(𝑝)

 is the portmanteau test statistic for overall directional predictability. The corresponding 

critical values for the portmanteau test (Han et al., 2016) are derived from the stationary bootstrap 
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of Politis and Romano (1994). The stationary bootstrap is a block bootstrap procedure, and the 

length of each block is randomly determined. The strength of the block bootstrap is that it can 

reach a high convergence rate using nonparametric estimation to find critical values regardless of 

the distribution (Han et al., 2016).  

The cross-quantilograms (CQ) for the full sample period are presented in Figures 4.4 

through 4.7 for CBOT corn, CBOT soybeans, CBOT wheat, and KCBOT wheat, respectfully.6 We 

consider four quantiles for both returns and CIT positions: 0.10, 0.25, 0.75, 0.90, resulting in 16 

pairs of CQ results for each commodity. These four quantiles represent extreme large decreases, 

large decreases, large increases, and extreme large increases for the two series. Within each figure, 

there are 16 subplots that visualize how returns in extreme quantiles respond to the dynamics of 

lagged extreme changes in CIT net long quantiles. These plots are organized in four panels: (a)–

(d), where each panel presents the estimated sample CQ estimates from one of the four quantiles 

of position changes to all four extreme levels of returns. 

Consider Figure 4.4(a) as an example. Here, the four CQ estimates for the lagged changes 

in CIT net long positions at the extreme low quantile (𝛼2 = 0.1) and returns at the extreme low 

(𝛼1 = 0.10), low (𝛼1 = 0.25), high (𝛼1 = 0.75), and extreme high (𝛼1 = 0.90) quantiles for corn 

over the full sample period are presented. The black bar is the estimated sample CQ statistic at lag 

𝑘, i.e., 𝜌̂𝛼(𝑘). The null hypothesis is that at lag 𝑘 there is no predictability from the large negative 

movements in CIT position changes to large movements in futures returns. The red-dashed lines 

represent the 95% bootstrapped confidence intervals for no directional predictability with 1,000 

 
6 To save space, we only discuss the CQ estimates for the full sample period and the change in CIT net long 

positions in the paper. Results for all other tests, including two subsample periods are presented in the Appendix B. 

These results do not differ materially from the full sample results presented here.  
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bootstrapped replicates. We include 13 lags as this is approximately the same quarterly horizon 

we used in the long-horizon linear tests in the previous section. 

Caution is needed when interpreting the sign of the CQ estimates. For CIT position changes 

in the two low quantiles (𝛼2 = 0.1 or 0.25) and returns in two low quantiles (𝛼1 = 0.1 or 0.25), 

which corresponds to the top row of plots in Figures 4.4-4.7, a positive CQ estimate suggests that 

a large drop in CIT net long positions are likely to predict large decreases in futures prices; on the 

other hand, when the sign is negative, a large drop in CIT net positions are less likely to predict a 

subsequent large decrease in futures prices. Meanwhile, for CIT position changes in the two low 

quantiles and returns in two high quantiles (𝛼1 = 0.75 or 0.9), a positive CQ estimate (as plotted 

in the second row of Figures 4.4-4.7) suggests when a large drop in CIT net positions occurs, the 

likelihood of predicting a large increase in futures prices is low; whereas when CQ estimate is 

negative, the likelihood of predicting a large price increase is high. 

CQ test statistic is mostly non-significant in panels (a) and (b) of Figures 4.4-4.7. This 

suggests that over a 13-week horizon, whether CIT position changes are smaller or greater than 

the 0.1 or 0.25 quantiles cannot predict returns located in either the left (quantiles 0.1 and 0.25) or 

right tails (quantiles 0.75 and 0.9) of the distribution. For the few cases where the CQ estimates 

are significant, empirical evidence for different commodity markets is mixed. For example, during 

the full sample period in the soybean market, we observe that large decreases in CIT net long 

positions positively predict large decreases in returns. By contrast, in the CBOT wheat market we 

observe that large CIT net long decreases are followed by large increases in returns. 

Panels (c) and (d) in Figures 4.4-4.7 plot the CQ estimates when the lagged CIT positions 

are in the two high quantiles (0.75 and 0.9). For returns located in the two low quantiles, i.e., 𝛼1 =

0.1 or 0.25, a positive CQ estimate suggests that a large increase in CIT net positions is less likely 



 

 

 

101 

to predict a large drop in futures prices, whereas a negative estimate suggests that a large increase 

in CIT net long positions is more likely to be followed by large decreases in futures prices. For 

returns in two high quantiles (𝛼1 = 0.75, 𝛼1 = 0.9), when CQ estimates are positive, it indicates 

that when CIT net long positions exceed high quantiles, they are likely to predict returns located 

in high quantiles. Meanwhile, a negative CQ estimate suggests that a large increase in CIT net 

long positions is less likely to predict returns with a large increase. For most cases when CIT 

positions experience a substantial increase, there is no significant directional predictability from 

the change in CIT net long positions to returns. Taken together, Figures 4.4-4.7 suggest that there 

are no systematic lead-lag relationships from CIT positions to futures prices when both series are 

in extreme quantiles.  

The portmanteau test statistics for directional predictability from changes in CIT net long 

positions to returns are presented in Table 4.5, covering the full sample period and two subsample 

periods. As noted earlier, the portmanteau test is an omnibus test that aggregates the CQ test 

statistics from 1 to 13 lags for each pair of quantiles of the two series. During the full sample 

period, only one case out of 64 has a significant relationship from positions to returns. For the first 

and second subsamples, there are six and two cases, respectively, out of 64 that fail to reject the 

null hypothesis of no directional predictability. In total, there are only 9 cases out of 192 (or 4.7%) 

with a significant portmanteau statistic, slightly less than the number of significant test statistics 

one would expect at random for a 5% significance level.  

For the cases with a significant portmanteau statistic in Table 4.5, the dominant sign of the 

underlying CQ estimates over the 1-13 lags is reported in parentheses. Dominance is defined as 

the sign that appeared more frequently for the 13 estimates. We do this to aid in interpreting these 

few cases with overall significance. With one exception, the dominant sign is consistent with CIT 
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position changes having the price pressure impact expected under the Masters Hypothesis. For 

example, during the growth stage of financialization (panel B), the portmanteau statistic for 

soybeans is significant for 𝛼1 = 𝛼2 = 0.1 and the dominant sign is positive. This implies that large 

decreases in CIT positions directionally predict large decreases in soybean returns. The one 

exception is CBOT wheat futures during the post-financialization period (panel C) and 𝛼1 =

0.1, 𝛼2 =0.75. Here, the dominant sign is negative, implying that large decreases in CIT positions 

tend to directionally predict large increases in wheat returns. It is important to emphasize that the 

number of significant cases, regardless of the dominant sign, is basically what one would expect 

based on random chance.  

As the final part of the analysis, we examine the direction of predictability of futures returns 

to CIT positions. There is a documented tendency for large non-commercial speculators in 

agricultural futures markets to be trend-followers (Sanders, Irwin, and Merrin, 2009). That is, 

positions of large speculators in agricultural futures markets tend to increase after futures prices 

increase, and vice versa. The available evidence for CITs is not as strong. For instance, Auerlich, 

Irwin, and Garcia (2014) find a significant but small impact of past returns on daily CIT positions 

in 12 agricultural markets, but this disappears when the analysis is limited to roll windows. 

Lehecka (2015) analyzes weekly CIT positions in the same 12 agricultural futures markets and 

reports that past returns do not significantly impact CIT positions. 

The portmanteau test statistics for directional predictability from returns to CIT net position 

changes are presented in Table 4.6 for the full and two subsample periods.7 During the full sample 

period, only two cases out of 64 have a significant relationship from positions to returns. For the 

first and second subsample periods, there are five and three cases, respectively, out of 64 that fail 

 
7 Results for the percentage changes in CIT net long positions are included in the Appendix B. 
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to reject the null hypothesis of no directional predictability. In total, there are only 10 cases out of 

192 with a significant portmanteau statistic. Mirroring the results for positions leading returns, this 

is only 5.2% of the total cases, slightly greater than the number of significant test statistics one 

would expect at random for a 5% significance level. Furthermore, in the 10 significant cases, only 

five show evidence that CIT net long positions have a large decrease following a drop in futures 

prices. The above results provide scant support for the idea that extreme CIT position changes 

have a trend-following component. This is actually not all that surprising given that financial index 

investment is motivated by long-term investment objectives rather than short-term trading (e.g., 

Stoll and Whaley, 2010). 

4.5. Conclusions 

The price impact of financial index investment in agricultural futures markets continues to be a 

concern to many market participants, civic organizations, and policymakers. The concern that 

waves of financial index investment have led to irrational and gross mispricing in agricultural 

futures markets has been labeled the “Masters Hypothesis.” While the bulk of the evidence 

suggests this hypothesis is not well-founded, it’s also possible that the impact of index investment 

in agricultural futures markets is more complicated and nuanced than can be detected by relatively 

simple linear causality tests used in many studies. The relationship between index investment and 

futures prices may be non-linear and/or hidden in the tails of the data. The purpose of this study 

was to use the cross-quantilogram (CQ) test recently developed by Han et al. (2016) to examine 

whether predictability exists between the change in commodity index trader (CIT) positions and 

returns in the tails of the distributions for four agricultural futures markets. In addition to making 

no assumptions of the distributions of the data, the CQ test is able to determine if there is a causal 
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relationship between two series in all parts of the distributions of the series, especially the tail 

quantiles. 

The data for the study consists of weekly CIT positions and returns from January 6, 2004 

through December 31, 2019 for Chicago Board of Trade (CBOT) corn, CBOT wheat, CBOT 

soybeans, and Kansas City Board of Trade (KCBOT) wheat. We first conduct three types of linear 

causality tests to provide a comprehensive baseline for the relationship between CIT positions and 

agricultural futures prices movements. The null of no causality was not rejected in the majority of 

the cases across the different tests, measures of position pressure, or the sample period considered. 

Next, we apply the CQ test to the same data to determine if there is a relationship between the tails 

of the distributions of index positions and price movements. Consistent with the standard linear 

causality tests, we find no evidence of a relationship between index positions and returns. 

Commodity markets continue to attract investors who seek to diversify their portfolios and 

hedge against inflation. Given the increasing complexity of global commodity markets, concerns 

remain on the role that different types of traders play in shaping commodity prices. The present 

paper adds to the growing evidence that the Masters Hypothesis is not a useful description of the 

price impact of CITs in agricultural futures markets, even when prices underwent extreme 

movements. Future studies may wish to examine other types of traders on both the long- and short-

term pricing of commodity markets.  
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4.6. Tables and Figures 

 

Table 4.1: Summary statistics for weekly commodity index traders (CIT) positions and nearby futures prices in four grain futures 

markets, January 6, 2004 to December 31, 2019 

 
Commodity (units) obs Min Max Mean Std. Dev Skewness Kurtosis JB Test ADF Test 

Panel A: CIT Net Long Positions 

(number of contracts) 

         

CBOT Corn  835 64646 503937 332391 85529 -0.822 3.561 105.074*** -2.700 

CBOT Soybean  835 27101 201251 128727 36529 -0.848 3.804 122.643*** -3.036 

CBOT Wheat  835 33696 229565 149459 42852 -0.258 2.564 15.885*** -3.093 

KCBOT Wheat  835 12055 66592 37162 12303 -0.242 2.187 31.173*** -3.413** 

Panel B: Change in CIT Net Long 

Positions (number of contracts) 

         

CBOT Corn  834 -44788 60317 213 9195 0.291 8.569 1089.39*** -12.535*** 

CBOT Soybean  834 -23250 27251 138 4520 -0.218 9.125 1310.35*** -13.138*** 

CBOT Wheat  834 -33227 15010 85 3862 -0.660 10.635 2086.52*** -13.451*** 

KCBOT Wheat  834 -6400 14342 45 1641 0.812 12.361 3136.5*** -14.525*** 

Panel C: Percent Change in CIT Net 

Long Positions (%) 

         

CBOT Corn  834 -14.007 21.958 0.159 3.052 0.516 9.622 1560.83*** -12.807*** 

CBOT Soybean  834 -20.146 23.204 0.197 3.697 0.342 10.090 1762.9*** -12.903*** 

CBOT Wheat  834 -20.405 14.166 0.136 2.811 -0.206 9.132 1312.65*** -13.884*** 

KCBOT Wheat  834 -19.574 26.412 0.165 4.223 0.473 8.231 981.879*** -14.155*** 

Panel D: Price ($/bushel) 
         

CBOT Corn  835 1.863 8.313 4.154 1.459 0.856 3.061 101.998*** -1.969 

CBOT Soybean  835 5.035 17.683 10.157 2.753 0.237 2.447 18.468*** -2.100 

CBOT Wheat  835 2.898 12.230 5.468 1.616 0.822 3.548 104.553*** -2.627 

KCBOT Wheat  835 3.170 12.610 5.729 1.764 0.819 3.087 93.69*** -2.409 

Panel E: Return (%) 
         

CBOT Corn  835 -16.493 18.410 -0.151 3.954 -0.002 5.183 165.606*** -13.441*** 

CBOT Soybean  835 -15.668 11.337 0.064 3.365 -0.233 4.128 51.802*** -14.239*** 

CBOT Wheat  835 -17.625 16.837 -0.225 4.330 0.204 4.048 43.955*** -14.166*** 

KCBOT Wheat  835 -16.373 16.215 -0.169 4.131 0.126 3.782 23.448*** -14.393*** 

Notes: * indicates statistical significance at 5%. Skewness measures the symmetry of a series’ distribution; when it is negative (positive), it indicates the distribution 

is skewed to the left (right). Kurtosis measures the tail shape of the distribution; when it is negative (positive), it indicates a thin (heavy)-tailed distribution. Jarque-

Bera (JB) test is a “goodness of fit” test with the null hypothesis that a series follows a normal distribution. The null of the Augmented Dickey-Fuller (ADF) test 

is that a series has a unit root. 
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Table 4.2: Granger causality test results for weekly commodity index traders (CIT) positions and 

nearby futures prices in four grain futures markets, January 6, 2004 to December 31, 2019 

 
Commodity F-statistic 

  Full Sample 2004-2011 2011-2019 

Panel A: dependent variable: returns, independent variable: growth in CIT net long positions 

CBOT corn 1.976 3.471 0.017 
 

(0.160) (0.063) (0.895) 

CBOT soybean 0.214 0.942 0.020 
 

(0.644) (0.332) (0.888) 

CBOT wheat 5.366* 2.044 3.931* 
 

(0.021) (0.154) (0.048) 

 KCBOT wheat 0.235 0.453 0.061 
 

(0.628) (0.501) (0.805) 

Panel B: dependent variable: returns, independent variable: percentage growth in CIT net long positions 

CBOT corn 1.004 1.977 0.003 
 

(0.317) (0.160) (0.959) 

CBOT soybean 0.042 0.106 0.000 
 

(0.837) (0.745) (0.993) 

CBOT wheat 6.201* 2.572 4.365* 
 

(0.013) (0.110) (0.037) 

 KCBOT wheat 0.121 0.116 0.034 

  (0.728) (0.734) (0.854) 

Notes: * indicates statistical significance at 5%. F-test statistics are reported in the table, with the corresponding p-

values in the parenthesis below. The full sample period consists of 834 weekly observations. For the growth stage of 

financialization, there are 416 weekly observations from January 13 to December 27, 2011. The post-financialization 

period runs from January 3, 2012 to December 31, 2019, resulting in weekly observations. The null hypothesis is that 

there is no Granger causality from CIT position changes to futures returns. The estimated coefficients associated with 

the position variable are negative for cases with significant test statistics.  
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Table 4.3: Augmented Granger causality test results for weekly commodity index traders (CIT) 

positions and nearby futures prices in four grain futures markets, January 6, 2004 to December 31, 

2019 

 

Commodity Wald statistic 

  Full Sample 2004-2011 2011-2019 

Dependent variable: CIT Net Long Positions, independent variable: price 

CBOT corn 1.758 4.590 0.649 

 (0.415) (0.101) (0.723) 

CBOT soybean 0.159 1.954 1.163 

 (0.923) (0.376) (0.559) 

CBOT wheat 2.229 1.992 5.838 

 (0.328) (0.369) (0.054) 

 KCBOT wheat 3.356 1.436 3.403 

  (0.187) (0.488) (0.182) 
Notes: * indicates statistical significance at 5%. Wald test statistics are reported in the table, with 

the corresponding p-values are in the parenthesis below. The full sample period consists of 834 

weekly observations. For the growth stage of financialization, there are 416 weekly observations 

from January 13 to December 27, 2011. The post-financialization period runs from January 3, 2012 

to December 31, 2019, resulting in weekly observations. The null hypothesis is that there is no 

Granger causality from CIT position changes to futures returns.  
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Table 4.4: Long-horizon regression tests for weekly commodity index traders (CIT) positions and 

nearby futures prices in four grain futures markets, January 6, 2004 to December 31, 2019 

 
Commodity Full Sample 2004-2011 2011-2019 

Horizon (k) 
Slope 

Rescaled 

t-statistic Slope 

Rescaled 

t-statistic Slope 

Rescaled 

t-statistic 

Panel A: dependent variable: returns, independent variable: CIT Net Long Change   

CBOT corn       
Monthly (k=4) 0.0000289 0.0825 0.0000337 0.0557 0.0000237 0.0615 

Quarterly (k=12) 0.0000498 0.156 0.0000660 0.129 0.0000248 0.0653 

CBOT soybean       
Monthly (k=4) 0.000150 0.252 0.000366 0.295 0.0000613 0.107 

Quarterly (k=12) 0.000238 0.440 0.000507 0.520 0.0000928 0.170 

CBOT wheat       
Monthly (k=4) 0.0000106 0.0110 -0.0000346 -0.0218 0.0000547 0.0473 

Quarterly (k=12) 0.0000333 0.0400 -0.0000395 -0.0308 0.000135 0.118 

 KCBOT wheat       
Monthly (k=4) 0.000476 0.222 0.000622 0.126 0.000426 0.199 

Quarterly (k=12) 0.000468 0.204 0.000452 0.0962 0.000452 0.201 

Panel B: dependent variable: returns, independent variable: CIT Net Long Pct Change 

CBOT corn       
Monthly (k=4) 0.000282 0.0988 0.000614 0.0673 0.000175 0.0720 

Quarterly (k=12) 0.000238 0.178 0.000595 0.139 0.0000486 0.0932 

CBOT soybean       
Monthly (k=4) 0.000232 0.248 0.000629 0.257 0.000105 0.109 

Quarterly (k=12) 0.000143 0.447 0.000753 0.459 -0.000176 0.168 

CBOT wheat       
Monthly (k=4) 0.000487 0.0183 0.000907 -0.0214 0.000354 0.0556 

Quarterly (k=12) 0.000485 0.0640 0.000842 -0.0239 0.000303 0.161 

 KCBOT wheat       
Monthly (k=4) 0.000476 0.229 0.000622 0.129 0.000426 0.200 

Quarterly (k=12) 0.000468 0.252 0.000452 0.143 0.000452 0.215 

 Notes: * indicates statistical significance at 5%. Critical values for the rescaled t-statistics shown in the table (-0.672, 

0.727) are available in Valkanov (2003) table 4.4 for case 2, 𝑐 = 0, 𝛿 = 0, 𝑇 = 750. The full sample period consists 

of 834 weekly observations. For the growth stage of financialization, there are 416 weekly observations from January 

13 to December 27, 2011. The post-financialization period runs from January 3, 2012 to December 31, 2019, resulting 

in weekly observations. The null hypothesis is that there is no Granger causality from CIT position changes to futures 

returns.   



 

 

 

109 

Table 4.5: Cross-quantilogram portmanteau test results for weekly commodity index traders (CIT) positions and nearby futures prices 

in four grain futures markets, positions leading returns, January 6, 2004 to December 31, 2019 

 
Dependent variable: returns, independent variable: CIT Net Long Change  

Returns Quantile Level 
 

Returns Quantile Level 

CIT Net Long Change 

Quantile Level 

0.1 0.25 0.75 0.9 CIT Net Long Change 

Quantile Level 

0.1 0.25 0.75 0.9 

Full sample: 2004 - 2019 
Panel A: CBOT Corn  

    
Panel B: CBOT Soybean 

    

0.1 14.696 8.382 16.902 13.818 0.1 16.027 21.238 20.012 17.588 

0.25 6.558 13.742 8.83 16.982 0.25 16.350 21.836 17.382 10.200 

0.75 9.044 10.408 15.002 19.715 0.75 12.115 13.051 12.311 10.016 

0.9 14.793 9.388 11.803 7.915 0.9 17.077 15.167 23.623 6.825 

Panel C: CBOT Wheat 
 

Panel D: KCBOT Wheat  
 

0.1 26.306 20.02 22.123 31.059 0.1 12.627 8.782 22.295 14.923 

0.25 19.723 14.367 31.918*(-) 26.411 0.25 10.151 9.578 5.167 4.548 

0.75 20.299 7.924 19.906 11.742 0.75 15.508 8.598 11.476 5.327 

0.9 24.085 8.181 27.142 7.944 0.9 31.224 8.386 13.363 9.604 

Growth stage of financialization: 2004 - 2011 
Panel A: CBOT Corn  

 
Panel B: CBOT Soybean 

 

0.1 33.952 21.98 16.405 21.96 0.1 61.417*(+) 36.780*(+) 13.836 28.311 

0.25 11.059 17.225 22.603 18.313 0.25 31.591 27.531 14.437 22.619 

0.75 14.251 7.82 17.027 36.734*(+) 0.75 16.737 23.009 9.837 18.608 

0.9 19.438 14.157 11.508 14.341 0.9 12.425 17.715 12.694 5.516 

Panel C: CBOT Wheat 
 

Panel D: KCBOT Wheat  
 

0.1 24.058 33.127*(+) 18.146 24.211 0.1 11.996 9.92 23.353 20.377 

0.25 35.379 38.026*(+) 41.714*(-) 31.944 0.25 12.105 17.746 8.849 9.176 

0.75 12.972 11.383 10.239 12.092 0.75 12.846 14.904 11.813 7.952 

0.9 21.654 10.602 25.324 7.375 0.9 13.178 9.455 11.749 10.329 

Post-financialization stage: 2012 - 2019 
Panel A: CBOT Corn  

 
Panel B: CBOT Soybean 

 

0.1 16.443 14.257 17.503 11.078 0.1 18.461 21.019 8.895 9.584 

0.25 13.724 16.065 7.057 4.225 0.25 15.887 16.915 16.198 18.809 

0.75 12.124 15.192 14.21 16.211 0.75 12.85 6.735 6.562 7.078 

0.9 7.149 11.058 15.096 12.283 0.9 9.699 11.842 17.141 10.333 

Panel C: CBOT Wheat 
 

Panel D: KCBOT Wheat  
 

0.1 19.802 34.054*(-) 26.624 29.637 0.1 15.054 15.226 26.481 34.934 

0.25 11.049 18.288 30.470*(-) 12.305 0.25 14.334 11.551 21.385 19.391 

0.75 10.592 12.088 14.66 15.66 0.75 31.934 7.347 9.162 12.869 

0.9 11.031 9.163 12.301 19.458 0.9 21.349 10.567 9.73 19.403 

Notes: * indicates statistical significance at 5%. Box-Ljung test statistics for 13 lags are in the table. The sign (+/-) next to the test statistics indicates the dominant 

sign of the underlying CQ estimates for the Box-Ljung test statistics. 
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Table 4.6: Cross-quantilogram portmanteau test results for weekly commodity index traders (CIT) positions and nearby futures prices 

in four grain futures markets, returns leading positions, January 6, 2004 to December 31, 2019 

 
Dependent variable: CIT Net Long Change, independent variable: returns    

CIT Net Long Change Quantile Level 
 

CIT Net Long Change Quantile Level 

Returns Quantile Level 0.1 0.25 0.75 0.9 Returns Quantile Level 0.1 0.25 0.75 0.9 

Full sample: 2004 - 2019 
Panel A: CBOT Corn  

    
Panel B: CBOT Soybean 

    

0.1 10.965 15.793 17.586 30.847 *(+) 0.1 19.468 16.947 24.280 *(+) 9.061 

0.25 18.625 17.175 17.414 22.69 0.25 13.381 18.636 18.341 11.876 

0.75 16.102 18.174 7.292 7.666 0.75 17.855 13.487 21.334 12.803 

0.9 15.922 17.321 12.7 11.683 0.9 14.016 8.316 8.761 8.494 

Panel C: CBOT Wheat 
   

Panel D: KCBOT Wheat  
    

0.1 28.253 17.624 12.26 9.607 0.1 15.269 12.492 20.846 15.167 

0.25 11.002 22.932 17.1 17.531 0.25 15.087 23.241 15.497 14.437 

0.75 24.846 13.878 13.715 10.709 0.75 17.181 17.759 15.269 7.543 

0.9 31.025 18.937 8.128 20.215 0.9 14.654 14.634 17.523 8.096 

Growth stage of financialization: 2004 - 2011 
Panel A: CBOT Corn  

 
Panel B: CBOT Soybean 

 

0.1 9.129 8.654 13.778 23.934 *(+) 0.1 57.767 *(+) 49.56 *(+) 18.089 4.943 

0.25 21.342 9.917 14.718 19.629 0.25 28.917 26.240 23.573 15.417 

0.75 11.98 14.241 7.379 8.12 0.75 32.921 *(-) 17.368 15.897 7.270 

0.9 16.692 6.971 18.737 13.692 0.9 20.317 7.457 8.127 12.885 

Panel C: CBOT Wheat 
   

Panel D: KCBOT Wheat  
    

0.1 12.513 14.255 27.695 20.689 0.1 13.91 8.621 17.088 15.278 

0.25 6.569 19.882 24.256 25.37 0.25 13.87 16.705 12.767 9.107 

0.75 37.02 *(-) 25.503 16.24 17.313 0.75 19.317 19.617 13.947 10.424 

0.9 21.543 23.11 21.714 30.078 0.9 15.731 17.396 11.868 11.472 

Post-financialization stage: 2012 - 2019 
Panel A: CBOT Corn  

 
Panel B: CBOT Soybean 

 

0.1 11.470 8.762 13.696 11.082 0.1 29.250 *(-) 36.448 *(-) 14.505 6.986 

0.25 11.396 9.172 19.546 14.857 0.25 11.194 23.157 18.155 9.767 

0.75 13.891 17.085 6.331 6.407 0.75 11.551 11.793 23.743 16.455 

0.9 19.059 20.057 9.893 16.304 0.9 13.258 9.55 20.099 20.056 

Panel C: CBOT Wheat 
   

Panel D: KCBOT Wheat  
    

0.1 31.157 23.023 12.623 12.714 0.1 16.593 11.461 24.700 20.069 

0.25 13.377 27.779 *(+) 20.501 15.769 0.25 21.15 8.219 17.220 27.112 

0.75 12.473 24.576 16.978 8.097 0.75 29.309 16.392 13.124 11.271 

0.9 28.042 19.352 15.083 11.494 0.9 17.361 19.085 8.303 11.376 

Notes: * indicates statistical significance at 5%.  Box-Ljung test statistics for 13 lags are in the table. The sign (+/-) next to the test statistics indicates the dominant 

sign of the underlying CQ estimates for the Box-Ljung test statistics.  
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Figure 4.1: Notional value of commodity index investment in four grain futures markets 

 

Notes: The notional value of commodity index investment is calculated using the index positions 

retrieved from SCOT report and corresponding nearby futures prices during the sample period. 

The growth stage of financialization and the post-financialization stage is defined following Irwin, 

Sanders, and Yan (2022).
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Figure 4.2: Weekly commodity index trader positions and nearby futures prices of CBOT corn, soybean, wheat, and KCBOT wheat, 

January 2004 to December 2019 
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Figure 4.3: Illustration of the lead-lag dependence from CIT net long position changes at 𝑡 − 1 to futures returns at 𝑡 when both are in 

the low quantile of 0.1, full sample period in the corn market 

 

Notes: On September 27, 2011, the change in corn CIT net long positions is -15,920 contracts and hits in the 0.1 quantile for position 

changes. One week later on October 4, 2011 we observe a corn return of -10.41% and it hits in the 0.1 quantile for returns as well. The 

arrow shows that when changes in CIT net long positions are below the 0.1 quantile, it is followed by a return one week later that is also 

below its 0.1 quantile. This type of comparison is repeated for all observations to compute a CQ statistic for 𝛼1 = 𝛼2 = 0.1. 
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                    (a) Position change at quantile level 0.1                    (b) Position change at quantile level 0.25 

 
                    (c) Position change at quantile level 0.75                   (d) Position change at quantile level 0.9 

Figure 4.4: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT corn futures market, 2004 – 2019 
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                    (a) Position change at quantile level 0.1                    (b) Position change at quantile level 0.25   

 
                    (c) Position change at quantile level 0.75                   (d) Position change at quantile level 0.9 

Figure 4.5: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT soybean futures market, 2004 – 2019 
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                    (a) Position change at quantile level 0.1                    (b) Position change at quantile level 0.25

 
                    (c) Position change at quantile level 0.75                   (d) Position change at quantile level 0.9 

Figure 4.6: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT wheat futures market, 2004 – 2019 
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                    (a) Position change at quantile level 0.1                    (b) Position change at quantile level 0.25

 
                    (c) Position change at quantile level 0.75                   (d) Position change at quantile level 0.9 

Figure 4.7: Cross-quantilogram from changes in CIT net long positions to returns in the KCBOT wheat futures market, 2004 – 2019
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CHAPTER 5:  

CONCLUSIONS 

 

The first essay of the dissertation estimates the pass-through equilibrium and the short-run pass-

through dynamics from LCFS credit prices to California wholesale gasoline and diesel prices. Our 

analysis focus on the period from 2016 through 2020 when LCFS was readopted with more 

ambitious goals of reducing carbon emissions. During this period, LCFS credit prices have inflated 

fluctuations that we apply them to estimate the pass-through in wholesale prices. For wholesale 

gasoline, after pooling three spreads, the long-run estimated coefficient is 1.06 with a Newey-West 

HAC standard error of 0.2, suggesting in wholesale gasoline markets, fuel providers and fully 

recoup their LCFS obligations by passing the extra credit costs to their downstream buyers. For 

wholesale diesel, the pooled estimated coefficient is about 0.5, with a Newey-West HAC standard 

error of 0.1, showing that suppliers of wholesale diesel can only pass down half of the credit costs 

to their downstream buyers. For short-run pass-through, in wholesale gasoline markets, obligated 

parties have complete pass-through after 4 business days, but in wholesale diesel markets, in the 

first few days, pass-through rates are negative and after 15 days, they can only recoup 60% of the 

LCFS credit costs. Evidence in wholesale gasoline market for both long-run and short-run shows 

downstream customers pay for the LCFS credit prices and shows the effectiveness of the program 

by discouraging the consumption of traditional fuels. The evidence of incomplete pass-through in 

wholesale diesel for both long-run and short-run shows obligated parties can only pass down a 

portion of LCFS credit costs to their buyers. The more elastic demand for diesel, the lower credit 

prices, and the lack of volatility for diesel pool make obligated parties do not have the capacity 

and incentives to pass down LCFS credit costs. This essay contributes to the literature by being 
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the first paper that applies the econometric methods to measure the magnitude and speed of the 

pass-through rates under LCFS in California. We also include a placebo analysis to show that only 

fuels prices in California respond to this state-level policy. Future work may wish to investigate 

the market structure of two fuels and estimate the elasticities of demand and supply of wholesale 

fuels in California. 

The second essay of the dissertation examines the forecasting accuracy of a batch of yield 

forecasting models that directly transform the ordinal crop condition ratings to the numeric 

condition index and compares the recently proposed BM model with other four simpler models. 

We conduct the out-of-sample yield forecasts recursively for corn and soybeans from 2000 through 

2020 for all models. We compare each model’s yield forecasts with USDA final yield estimates 

and we used RMSPE to measure each model’s forecasting accuracy. We find all models provide 

accurate yield forecasts as throughout the growing season, the average RMSPE is 5% for corn and 

6% for soybean. We apply modified Diebold Mariano test and Model Confidence Set test for each 

week of the growing season to compare the forecasting performance of BM model and its 

competitors. Test results suggest BM model fail to significantly outperform simpler models. We 

also apply the average SPA test to compare models’ overall performance across the growing 

season. Test results fail to show BM model provides significantly more accurate yield forecasts. 

This essay contributes to the literature by using extended crop condition data to build recursively 

out-of-sample yield forecasts and show if there is a trade-off between model complexity and 

forecasting accuracy. As all models use the same set of data, we illustrate more complex model 

does not necessarily provide more accurate forecasts. Future work may wish to improve the yield 

forecasts by adding more information like crop progress data and to extend the discussion to other 

agricultural commodities. 
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The third essay use the recently developed cross-quantilogram (CQ) test to examine 

whether predictability exists between the change in commodity index trader (CIT) positions and 

returns in the tails of the distributions for four agricultural futures markets. CQ test has the 

advantages that it does not need to make any assumptions of the distributions of the data, it captures 

the lead-lag relationship across all parts of distributions, and it includes long lags without concerns 

about degrees-of-freedom. We first conduct three types of linear causality tests to provide a 

comprehensive baseline for the relationship between CIT positions and agricultural futures prices 

movements. The null of no causality was not rejected in the majority of the cases across the 

different tests, measures of position pressure, or the sample period considered. Next, we apply the 

CQ test to the same data to determine if there is a relationship between the tails of the distributions 

of index positions and price movements. Consistent with the standard linear causality tests, we 

find no evidence of a relationship between index positions and returns. This essay contributes to 

the literature by providing evidence against Master Hypothesis using extreme movements in index 

traders’ positions and returns. Future studies may wish to examine other types of traders on both 

the long- and short-term pricing of commodity markets. 
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APPENDIX A: 

SUPPLEMENTAL MATERIALS FOR CHAPTER 2 

 

This appendix presents results supplementing the essay entitled, “The Pass-Through of the Low 

Carbon Fuel Standard to Wholesale Fuels Prices in California”. We present pass-through impacts 

estimated from the distributed lag model developed by Pouliot, Smith and Stock (2017).  

The specification of the distributed lag model captures the long-run and the dynamics of 

pass-through impacts, as in petroleum markets, tax costs usually cannot be reflected 

instantaneously in fuel prices, rather it might take a few days to pass down the costs to their 

downstream buyers. The distributed lag analyses for gasoline and diesel are specified as: 

                  𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝑔𝑎𝑠

= 𝛼𝑖
𝑔𝑎𝑠

+ 𝛽𝑖
𝑔𝑎𝑠

𝐿𝐶𝐹𝑆𝑡−𝑑
𝑔𝑎𝑠

+ ∑ 𝛽𝑖,𝑛
𝑔𝑎𝑠

∆𝐿𝐶𝐹𝑆𝑡−𝑛
𝑔𝑎𝑠

+𝑑−1
𝑛=0 Γ𝑤𝑖,𝑡

𝑔𝑎𝑠
+ 𝑢𝑖,𝑡

𝑔𝑎𝑠
    (A.1) 

and, 

𝑆𝑝𝑟𝑒𝑎𝑑𝑗,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 = 𝛼𝑗

𝑑𝑖𝑒𝑠𝑒𝑙 + 𝛽𝑗
𝑑𝑖𝑒𝑠𝑒𝑙𝐿𝐶𝐹𝑆𝑡−𝑑

𝑑𝑖𝑒𝑠𝑒𝑙 

                                                                 +∑ 𝛽𝑗,𝑛
𝑑𝑖𝑒𝑠𝑒𝑙∆𝐿𝐶𝐹𝑆𝑡−𝑛

𝑑𝑖𝑒𝑠𝑒𝑙 +𝑑−1
𝑛=0 Γ𝑤𝑗,𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 + 𝑢𝑗,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙    (A.2) 

The long-run pass-through of the LCFS credit is measured as 𝛽𝑖
𝑔𝑎𝑠

 and 𝛽𝑗
𝑑𝑖𝑒𝑠𝑒𝑙 ; the coefficients 

𝛽𝑖,𝑛
𝑔𝑎𝑠

 and 𝛽𝑗,𝑛
𝑑𝑖𝑒𝑠𝑒𝑙  estimate the cumulative pass-through effects after n days, which capture the short-

run dynamics of how spreads respond to an unexpected shock in LCFS credit prices; we also 

include the season components as 𝑤𝑖,𝑡
𝑔𝑎𝑠

 and 𝑤𝑗,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 . We use 15 lags, 𝑑 = 15, in the distributed 

lag model. 

Estimated results are summarized in Table A1 over the full sample period. Estimated 

results are the pooled regression for two groups: wholesale gasoline and wholesale diesel. For 

wholesale gasoline, the long-run pass-through rate is about 1.22 and it is not significantly different 

from 1, indicating complete pass-through. The short-run pass-through rates are less precise, and 
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the dynamics over first 14 days show a very unstable pattern. For example, after 6 days, the rate is 

about 0.04, and after 8 days, the rate increases to 1.39. For wholesale diesel, the long-run pass-

through is 0.46 and it is significantly smaller than 1, showing obligated parties can only pass down 

46% of LCFS credit costs. The short-run pass-through rates show that in the first few days, they 

have full pass-through, however these estimates are less precise as the standard errors are almost 

as 10 times as the standard error for long-run pass-through rate. After 15 days, the pass-through 

rates drop back to 0.22 and it is significantly smaller than 1. For wholesale diesel, both long-run 

and short-run pass-through estimates show that obligated parties cannot fully pass LCFS credit 

costs to their buyers.  
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Table A1: Long-run and short-run dynamics of LCFS pass-through 

 

  Pooled Wholesale Spreads 

 RBOB ULSE 

 coefficient (SE) coefficient (SE) 

Long-run 1.221 (0.203) 0.464 *** (0.088) 

     
Short-run lag     

0 0.359 (0.923) 1.528 (0.581) 

1 -0.535 (1.051) 1.461 (0.589) 

2 -0.595 (1.096) 1.313 (0.685) 

3 0.923 (1.166) 1.249 (0.692) 

4 1.072 (1.066) 1.468 (0.764) 

5 0.787 (0.983) 1.466 (0.802) 

6 0.041 (1.108) 1.207 (0.732) 

7 0.114 (1.222) 0.963 (0.709) 

8 1.386 (1.250) 0.879 (0.706) 

9 1.235 (1.039) 0.955 (0.621) 

10 0.693 (0.988) 1.001 (0.681) 

11 1.361 (1.179) 0.842 (0.679) 

12 0.425 (1.123) 0.772 (0.539) 

13 0.877 (1.176) 0.256 ** (0.355) 

14 1.712 (1.190) 0.22 ** (0.353) 

Notes:  

(1) We use the full sample period to apply the distributed lag analysis, 

from January 4, 2016 to March 12, 2020.  

(2) Newey-West standard error with 30 lags is in the parenthesis next 

to the estimated coefficients.  

(3)  ***, **, * indicates whether the estimated coefficients are 

significantly different from 1 at 1%, 5%, 10% level respectively. 
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APPENDIX B: 

SUPPLEMENTAL MATERIALS FOR CHAPTER 4 

 

This appendix presents results supplementing the essay entitled, “Do Extreme CIT Position 

Changes Move Prices in Grain Futures Markets?” We provide the Box-Ljung version of 

portmanteau tests from the percentage growth in commodity index traders (CIT) net long positions 

to returns, and the other way around, for four agricultural futures markets over the full sample 

periods, the growth stage of financialization, and the post-financialization period. We plot the CQ 

estimates for the level growth of CIT net long positions over two subsample periods, and the 

percentage growth of CIT net long positions over the full sample period and two subsample 

periods.  

Table B1 reports the portmanteau test statistics for directional predictability from the 

percentage change in CIT net long positions to returns. For the full sample and two subsample 

periods, there are only 10 cases out of 192 with a significant portmanteau statistic. Only four of 

the 10 significant cases suggest that a large drop in CIT net long positions predicts the subsequent 

large drop in futures returns.  

Table B2 reports the portmanteau test statistics for directional predictability from returns 

to the percentage change in CIT net long positions. For the full sample and two subsample periods, 

there are only 10 cases out of 192 with a significant portmanteau statistic. These significant cases 

fail to show a systematic pattern that index traders are trend-followers—only 5 cases out of 10 

show a large drop in returns predicts the subsequent large drop in percentage change in CIT net 

long positions.  
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We have shown the CQ estimates for the full sample period in the paper. In this section, 

we first present the CQ estimates from the level growth in CIT net long positions to returns for the 

two subsample periods. Figures B1-B4 present the CQ estimates from the level growth in CIT net 

long positions to returns for the growth stage of financialization. In general, most CQ estimates 

are insignificant. For the few significant cases, they do not show a systematic lead-lag relationship 

from positions to prices. Figures B5-B8 present the CQ estimates from the level growth in CIT net 

long positions to returns for the post-financialization stage. Only in a very small portion of cases 

the CQ estimates are significant, yet they fail to provide evidence for the Master Hypothesis.  

For the CQ estimates from the percentage change in CIT net long positions to returns, 

Figures B9-B12 present the CQ estimates for the full sample period, Figures B13-B16 present the 

CQ estimates for the growth stage of financialization, and Figures B17-B20 present the CQ 

estimates for the post-financialization stage. Similar to the findings with the change in CIT net 

long positions, we fail to find evidence supporting the directional predictability from the 

percentage change in CIT net long positions to returns. 
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Table B1: Cross-quantilogram portmanteau test results for impacts of percentage changes in CIT net long positions to futures returns in 

four grain futures markets for full sample, the growth stage of financialization, and the post-financialization stage 

 
Dependent variable: returns, independent variable: CIT Net Long % Change  

Returns Quantile Level 
 

Returns Quantile Level 

CIT Net Long % Change 

Quantile Level 

0.1 0.25 0.75 0.9 CIT Net Long % Change 

Quantile Level 

0.1 0.25 0.75 0.9 

Full sample: 2004 - 2019 

Panel A: CBOT Corn  
    

Panel B: CBOT Soybean 
    

0.1 13.449 13.826 25.351 16.679 0.1 17.781 27.351 17.276 16.189 

0.25 4.788 14.99 9.342 15.367 0.25 16.252 24.919 16.868 9.707 

0.75 7.828 8.342 16.256 12.052 0.75 9.017 9.851 14.836 7.184 

0.9 9.541 9.198 9.042 15.512 0.9 6.466 9.726 25.169 *(-) 8.33 

Panel C: CBOT Wheat 
    

Panel D: KCBOT Wheat  
    

0.1 24.993 15.293 30.04 *(-) 27.164 0.1 9.100 6.357 15.009 20.261 

0.25 21.599 8.025 20.952 15.213 0.25 11.800 11.192 9.117 6.000 

0.75 22.95 8.332 18.689 15.004 0.75 24.987 7.593 8.607 7.656 

0.9 22.762 8.352 20.317 6.549 0.9 26.697 9.761 6.963 9.431 

Growth stage of financialization: 2004 - 2011 

Panel A: CBOT Corn  
 

Panel B: CBOT Soybean 
 

0.1 27.24 26.772 17.915 25.053 0.1 37.219 39.794 *(+) 21.991 33.291 

0.25 13.064 22.496 21.414 18.345 0.25 35.885 *(+) 35.938 *(+) 16.2 25.637 

0.75 11.545 5.89 12.812 18.839 0.75 14.57 16.913 12.44 11.763 

0.9 9.604 10.972 18.259 18.382 0.9 10.744 11.159 16.022 5.249 

Panel C: CBOT Wheat 
    

Panel D: KCBOT Wheat  
    

0.1 40.535 34.081 *(+) 14.822 25.71 0.1 6.725 11.343 13.566 11.105 

0.25 29.595 28.706 27.808 28.598 0.25 14.098 24.417 13.705 11.691 

0.75 22.344 7.783 25.153 21.008 0.75 14.284 11.137 8.342 7.308 

0.9 22.896 10.741 21.812 12.502 0.9 14.928 10.895 8.637 13.588 

Post-financialization stage: 2012 - 2019 
Panel A: CBOT Corn  

 
Panel B: CBOT Soybean 

 

0.1 14.799 14.29 13.274 9.493 0.1 22.444 13.883 17.286 12.096 

0.25 14.069 20.406 4.873 8.686 0.25 13.541 13.345 15.209 16.196 

0.75 12.023 18.083 12.415 16.775 0.75 13.527 6.328 9.501 6.501 

0.9 8.898 14.188 13.131 10.791 0.9 12.939 7.403 12.456 7.435 

Panel C: CBOT Wheat 
 

Panel D: KCBOT Wheat  
    

0.1 17.224 28.496 *(-) 26.036 21.386 0.1 14.174 15.111 21.053 28.241 

0.25 13.182 20.747 29.407 *(-) 7.853 0.25 10.708 11.255 20.907 18.533 

0.75 9.107 15.148 14.77 15.304 0.75 31.541 *(-) 7.661 9.327 19.751 

0.9 14.095 9.699 17.082 15.094 0.9 19.445 10.073 15.602 25.202 

Notes: * indicates statistical significance at 5%.  Box-Ljung test statistics for 13 lags are in the table. The sign (+/-) next to the test statistics indicates the dominant 

sign of the underlying CQ estimates for the Box-Ljung test statistics.  



 

 

 

136 

Table B2: Cross-quantilogram portmanteau test results for impacts of futures returns to the percentage change in CIT net long positions 

in four grain futures markets for full sample, the growth stage of financialization, and the post-financialization stage 

 
Dependent variable: CIT Net Long % Change, independent variable: returns   

 CIT Net Long % Change Quantile Level  CIT Net Long % Change Quantile Level 

Returns Quantile Level 0.1 0.25 0.75 0.9 Returns Quantile Level 0.1 0.25 0.75 0.9 

Full sample: 2004 - 2019 

Panel A: CBOT Corn      Panel B: CBOT Soybean     
0.1 8.586 18.635 12.928 29.433 *(+) 0.1 17.959 23.64 12.465 4.945 

0.25 19.736 20.748 12.198 24.686 0.25 15.048 24.334 13.77 6.53 

0.75 20.023 26.130 8.209 5.605 0.75 19.324 16.573 23.638 16.09 

0.9 16.200 17.824 12.995 12.112 0.9 10.748 16.04 6.694 7.336 

Panel C: CBOT Wheat    Panel D: KCBOT Wheat      
0.1 32.49 *(+) 16.822 10.545 6.815 0.1 16.079 14.808 19.759 14.548 

0.25 15.547 18.91 16.239 8.515 0.25 22.741 18.672 13.55 20.206 

0.75 16.791 17.47 15.36 15.618 0.75 14.674 19.28 16.077 8.801 

0.9 24.223 20.397 11.66 15.53 0.9 18.434 17.267 17.279 5.529 

Growth stage of financialization: 2004 - 2011 

Panel A: CBOT Corn   Panel B: CBOT Soybean  
0.1 8.681 8.952 13.565 24.105 0.1 71.098 *(+) 51.831 *(+) 8.008 4.931 

0.25 23.258 9.901 7.358 13.99 0.25 47.296 *(+) 28.169 23.505 21.537 

0.75 10.38 17.637 12.771 11.235 0.75 27.484 20.052 18.206 12.917 

0.9 13.941 9.726 20.594 14.573 0.9 21.698 11.887 6.368 12.58 

Panel C: CBOT Wheat    Panel D: KCBOT Wheat      
0.1 24.331 14.927 17.995 11.269 0.1 12.084 12.226 18.486 19.558 

0.25 8.175 19.379 29.811 *(+) 10.892 0.25 17.198 20.972 15.398 18.075 

0.75 31.305 *(-) 21.467 15.438 19.219 0.75 8.423 16.776 14.458 8.342 

0.9 24.392 20.056 14.852 28.442 *(-) 0.9 14.359 21.182 16.791 7.192 

Post-financialization stage: 2012 - 2019 

Panel A: CBOT Corn   Panel B: CBOT Soybean  
0.1 11.762 9.516 15.824 13.135 0.1 28.896 *(-) 37.041 *(-) 15.441 12.786 

0.25 13.616 10.172 22.837 13.826 0.25 12.359 19.769 19.782 9.605 

0.75 17.795 18.747 9.355 9.509 0.75 13.111 9.846 23.758 19.025 

0.9 9.624 19.697 14.972 20.386 0.9 12.439 8.928 22.797 18.437 

Panel C: CBOT Wheat    Panel D: KCBOT Wheat      
0.1 27.132 18.719 14.85 11.449 0.1 21.826 14.236 24.764 25.4 

0.25 16.68 22.269 18.255 13.514 0.25 25.678 11.677 15.478 24.189 

0.75 13.53 19.36 17.689 5.766 0.75 26.76 19.337 10.033 12.271 

0.9 19.71 10.446 13.516 10.553 0.9 16.829 17.71 6.55 11.611 

Notes: * indicates statistical significance at 5%.  Box-Ljung test statistics for 13 lags are in the table. The sign (+/-) next to the test statistics indicates the dominant 

sign of the underlying CQ estimates for the Box-Ljung test statistics.  
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B1: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT corn futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B2: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT soybean futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B3: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT wheat futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B4: Cross-quantilogram from changes in CIT net long positions to returns in the KCBOT wheat futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B5: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT corn futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     © Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B6: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT soybean futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B7: Cross-quantilogram from changes in CIT net long positions to returns in the CBOT wheat futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B8: Cross-quantilogram from changes in CIT net long positions to returns in the KCBOT wheat futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B9: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT corn futures market, 2004 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B10: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT soybean futures market, 2004 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B11: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT wheat futures market, 2004 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B12: Cross-quantilogram from percentage changes in CIT net long positions to returns in the KCBOT wheat futures market, 2004 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B13: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT corn futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B14: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT soybean futures market, 2004 – 2011 

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.1

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.25

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.75

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.9

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.1

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.25

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.75

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.9

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.1

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.25

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.75

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.9

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.1

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.25

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.75

Lag

Q
ua

nt
ilo

gr
am

2 4 6 8 10 12

−0
.2

−0
.1

0.
0

0.
1

0.
2

a1 = 0.9

Lag
Q

ua
nt

ilo
gr

am



 

 

 

151 

 
                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B15: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT wheat futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B16: Cross-quantilogram from percentage changes in CIT net long positions to returns in the KCBOT wheat futures market, 2004 – 2011 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B17: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT corn futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                    (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B18: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT soybean futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B19: Cross-quantilogram from percentage changes in CIT net long positions to returns in the CBOT wheat futures market, 2012 – 2019 
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                     (a) Position change at quantile level 0.1                      (b) Position change at quantile level 0.25 

 
                     (c) Position change at quantile level 0.75                                  (d) Position change at quantile level 0.9 

Figure B20: Cross-quantilogram from percentage changes in CIT net long positions to returns in the KCBOT wheat futures market, 2012 – 2019 
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