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ABSTRACT

Diagnostic ultrasound is the most heavily utilized imaging modality in medicine

worldwide second only to digital X-ray. Conventional B-mode imaging relies

on small impedance differences (often <5%) between tissues to provide image

contrast. This perceived contrast is further reduced because B-mode images

are replete with speckle. The development of novel imaging techniques us-

ing ultrasound signals that have different sources of image contrast and may

not be affected by speckle is medically significant; for example those based

on mapping quantitative ultrasound (QUS) parameters. However, different

types of tissues or tissues under different disease states are known to have

different coefficients of nonlinearity (B/A). For example, fatty tissues have a

B/A of 11, liver has a B/A of 6.6, and water has a B/A of 5. At low pressures

it can be assumed that QUS parameters are not changed by acoustic nonlin-

ear distortion, whereas at higher pressures the nonlinear distortion transfers

energy from the fundamental frequency of the ultrasound wave into higher

harmonics. These distortions can affect the bias and variance of spectral-

based QUS estimates, such as the backscatter coefficient and attenuation

coefficient. In the first part of this dissertation, we aim to determine con-

ditions that can decrease acoustic nonlinear effects. We explored an in situ

calibration approach which would minimize nonlinear distortion on QUS es-

timates. In the second part of this dissertation we present two methods to

calculate the B/A based on observations related to QUS estimation. The first

method was an heuristic approach based on estimating the excess attenua-

tion coefficient and required two well-characterized reference phantoms. The

second method for B/A estimation needed only one reference phantom and

was performed mainly in the time-domain using the conservation of energy

principle. Using the later method we can construct parametric images to

map the cumulative average B/A versus depth.
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CHAPTER 1

INTRODUCTION

1.1 Nonlinearity parameter B/A

In a fluid nonlinear medium, the degree of nonlinearity is typically charac-

terized by its nonlinearity parameter B/A [1, Chapter 2], where A and B

are the 1st and 2nd order terms in the isentropic power series expansion of

the total pressure P (equilibrium pressure P0 plus acoustic pressure p) as

function of density ρ (understood in the spatio-temporal domain), namely,

the adiabatic equation of state

P (ρ) = P0 +
∂P

∂ρ

∣∣∣∣
ρ=ρ0

(ρ− ρ0) +
∂2P

∂ρ2

∣∣∣∣
ρ=ρ0

(ρ− ρ0)
2 + · · · , (1.1)

where ρ0 is the equilibrium density, A ≡ ∂P
∂ρ

∣∣
ρ=ρ0

and B ≡ ∂2P
∂ρ2

∣∣
ρ=ρ0

. Whereas

truncation of the Eq. (1.1) up to the 1st order is required to produce the

linear acoustic wave equation, truncation up to the 2nd order term can later

be combined with the equation of momentum and equation of continuity of

fluids (also truncated up to the 2nd order) to obtain nonlinear expressions

for the acoustic pressure of a propagating monochromatic plane wave [2,

Chapter 11].

An important result of acoustic nonlinearity is that the local sound speed

during compression (cC = c0 + βu) is faster than the local sound speed dur-

ing rarefaction (cR = c0 − βu), where c0 is the small-signal speed of sound,

u is the particle velocity amplitude, and β = 1 + B
2A

is defined as the non-

linearity coefficient. This asymmetry leads to a cumulative distortion of the

acoustic wave until the slope of waveform becomes infinity, theoretically. The

distance at which this “shock” occurs is named the shock distance. In the

frequency domain, the aforementioned nonlinear distortion of the propagat-

ing wave results in generation of the 2nd, 3rd, and higher order harmonics.
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These harmonics require that energy be transferred out of the fundamental

frequency. Moreover, other effects such as saturation can be observed under

certain circumstances.

1.2 Quantitative ultrasound

Current diagnostic ultrasound is limited in its capabilities because imag-

ing is based on the contrast in tissue acoustic impedance, which only varies

by about 5% [3, Chapter 4]. Furthermore, speckle in conventional B-mode

images results in reduced ability to visualize contrast. Therefore, speckle-

free imaging modalities with higher contrast, e.g., MRI, X-ray CT, PET,

are preferred for many diagnostic imaging tasks. However, these imaging

modalities are expensive (i.e., they have low accessibility to under-resourced

communities), not portable, and X-ray and PET introduce ionizing radia-

tion. Quantitative ultrasound (QUS) is a branch in the ultrasound field that

attempts to provide a set of quantitative parameters that can be used to com-

plement the characterization of materials given by traditional ultrasound by

creating speckle-free images with new sources of image contrast [4]. In the

last two decades, several efforts have focused on estimating QUS parameters

of soft tissues in vivo, such as the backscatter coefficient (BSC), attenua-

tion coefficient (AC), speed of sound, and viscoelasticity, among other QUS

parameters. In the first part of this dissertation we focus on the AC and

BSC that can be estimated using relatively simple methods in the frequency

domain.

1.2.1 AC and BSC for tissue characterization

The attenuation refers to losses such as absorption or scattering as ultrasound

propagates in a medium [3, Chapter 4]. The attenuation is an acoustical

property of tissues and has been used as a quantitative ultrasonic parameter

for tissue characterization, including recent studies in soft tissues such as

liver [5], breast [6], placenta [7], and indirectly in muscle [8], among other

biological tissues. Empirical results from studies have found that the attenu-

ation coefficient, α(f), for several soft tissues follows a power-law dependence

vs frequency f , i.e., α(f) = α0f
γ, where α0 is an attenuation coefficient fac-
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tor and γ is the frequency dependent exponent, commonly γ ∈ (1, 2) [9, p.

74]. Hence, current methods for estimating AC are performed mainly in the

frequency domain.

The BSC describes internal scattering structures in a medium [10, Chap-

ter 9]. Recently, the BSC has been used to characterize bone [11], liver [12],

breast [13], and pancreas [14], among other in vivo studies. The BSC is cal-

culated from estimates of the power spectra of the backscattered signals from

a medium. However, the BSC must be calibrated to account for diffraction

and system effects and compensated for frequency-dependent attenuation.

Whereas the attenuation coefficient can be experimentally estimated and

the diffraction can be analytically approximated for simple transducer ge-

ometries; the effects of system settings cannot be exactly modeled. In order

to compensate for the system effects, a couple of methods have been applied,

i.e., the planar reflector method [15, 16] and the reference phantom method

[17]. In the planar reflector method, additional signals are acquired from

the reflection off of a smooth plate with known reflectivity around the trans-

ducer focal region. In the reference phantom method, calibration signals are

acquired from a well-characterized reference phantom, i.e., a phantom with

known BSC and attenuation coefficient.

1.2.2 QUS biases because of acoustic nonlinear effects

In spectral-based methods to estimate the BSC or the AC, acoustic propa-

gation models are typically assumed to be linear despite the very well known

nonlinear nature of all media for acoustic propagation. In particular, the

nonlinearity parameter, B/A (to be read as “B over A”), is used to char-

acterize the nonlinearity of a medium, including biological tissues [18]. In

practical terms, the nonlinear distortion manifests through the generation of

harmonics, i.e., the energy in the ultrasonic fundamental frequency band is

transferred to higher bands (harmonics). This transferring of energy effec-

tively produces a distortion of the fundamental band from the backscattered

echoes used in the estimation of the BSC and AC, thus, theoretically it in-

troduces biases in the QUS estimates.

Particularly, potential bias in QUS estimates involving soft tissues have

been noted in early studies. For example, in Carstensen et al. [19] the ab-
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sorption coefficient (i.e., an important component of attenuation) measured

through heat production showed an increment of 100% in absorption coeffi-

cient from bovine liver samples when the power source incremented 10 dB.

Similarly, in work from Goss and Fry [20], a 7 dB increment of an SPTP

(spatial peak temporal peak) intensity increased the estimated absorption

coefficients of various soft tissues of a rat in vivo between 70% to 210%.

More recent studies using present spectral-based techniques have also found

biases in nonlinear regime. Nonlinear distortion in the through transmission

substitution technique (not suitable in vivo) was evaluated by Zeqiri et al.

[21] and found underestimated values of AC between 30%-40% in liver sam-

ples when the propagation between source and receiver went from half the

shock distance to double the shock distance. However, experiments in pulse-

echo mode by D’hooge et al. [22] showed an overestimation of the liver AC

in vivo as the transmit ultrasonic power increased. In that study, the log

spectral difference found an increment of AC in liver from 0.57 dB/cm/MHz

to 0.69 dB/cm/MHz (i.e., about 21%). The basic difference between through

transmission and pulse-echo cases, was that the calibration signal in the first

case (across the water path) distorted more than the sample signal; whereas

the “calibration signal” in the spectral log difference in [22] came from a

location within the liver closer to the source, i.e., distorted less, than the the

sample signal that came from a deeper region within the liver.

Hence, in the first part of this dissertation, our goal is to understand the

effects of nonlinear distortion by the intrinsic nonlinear nature of a medium

on the bias and variance of the other spectral-based parameter, the BSC, in

pulse-echo estimation methods and to determine under which conditions the

nonlinear effects can be decreased or minimized. Regarding the AC, we also

expanded findings of the work from D’hooge et al. [22] on AC estimation in

pulse-echo by including cases where diffraction effects are non-negligible, i.e.,

using moderately focused sources calibrated by well-characterized reference

phantoms.

1.2.3 B/A for tissue characterization

When using ultrasound for imaging tasks, such as medical diagnostics, it

cannot be assumed that these nonlinear phenomena will be absent. Because
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backscattering from soft tissues is small compared to the incident field, in

order to improve the signal-to-noise (SNR) ratio for specific imaging tasks,

larger input pressure levels (energy levels, excitation levels, power levels,

etc.) are often used during data acquisition resulting in a higher likelihood

of nonlinear distortion of the ultrasonic waves. In the previous section, we

stated that biases in the QUS parameters are likely to occur in nonlinear

regime and care would be needed to minimize nonlinear effects. Hence, tissue

characterization using estimates of B/A itself opens an alternative parameter

for characterizing tissue, a new source of image contrast and could potentially

be used to account for biases in other QUS estimates.

Recently, QUS parameter estimates based on the BSC and AC have shown

better predictive capabilities for grading of hepatic steatosis than conven-

tional ultrasound imaging [23]. Steatosis is an advanced stage of the non-

alcoholic fatty liver disease (NAFLD) that affects millions of people world-

wide [24]. Because fatty tissues are highly nonlinear compared to parenchy-

mal tissues [25, 26], in vivo estimation of the B/A could address the early

diagnosis of NAFLD. In a similar approach, the B/A could be used to assess

the non-dense tissue in breast, which could be a tool in early diagnosis of

breast cancer [27]. Therefore, estimation of B/A has the potential to improve

diagnosis of multiple disease states.

1.2.4 B/A estimation in pulse-echo

Several techniques exist for estimation of B/A including: thermodynamic

methods, aqueous solutions and finite amplitude methods [28, 29]. However,

tissue characterization in vivo with clinically-available probes in the common

diagnostic ultrasound frequency range (1–10 MHz) would generally require

a pulse-echo approach. Currently, there are no widely accepted methods

for estimating the nonlinearity parameter of tissues using ultrasound with a

pulse-echo system, despite the potential contrast advantages offered. In one

group of techniques to map B/A, it is estimated from the received signals

in the second harmonic and the fundamental band of the wave [30, 31]. In

order to estimate the second harmonic energy, Gong et al. [30] devised a

theoretical approach and experimentally required two transducers that op-

erated at different bandwidths (one for recording the 2nd harmonic signals),
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e.g., dual piezoelectric. In some applications such as ultrasonic harmonic

imaging, the fundamental and 2nd harmonic frequencies might be acquired

by a single wide band transducer. For such transducers the bandwidth of the

source could be divided into smaller sub-bands in reception to capture the

second harmonic (van Sloun et al. [31]) as in harmonic imaging. In this ap-

proach, however, the spatial resolution is deteriorated because the bandwidth

is partitioned resulting in a longer pulse length of the fundamental.

Another approach is the pulse-echo pump wave method. Cain [32] used a

low-frequency continuous pump wave and a high-frequency probe (the center

frequency was large by an order of magnitude). The interaction of both

produces a change of phase in the pump wave that can be related to the B/A

of the propagating media. A modern version of the pump wave approach is

presented by Kvam et al. [33], but the requirement of ad hoc transducers

could limit rapid translation to clinical settings.

A third group of pulse-echo B/A estimation approaches are based on the

envelope distortion of a pulse at the fundamental band when several energy

levels are utilized. Fatemi and Greenleaf [34] observed that the attenuation

of ultrasound increased with the acoustic pressure level in pulse-echo experi-

ments. Their setup used calibrated signal from wire targets embedded in the

medium assessed (similar to the pulse-echo method use by Liu and Nikoon-

ahad [35] to estimate B/A of liquids) and a theoretical model to predict the

change in the envelope of a broadband pulse. The change was observed by

mapping out the pressure magnitude of a beam over the depth of focus versus

different excitation levels. In addition, the apparent attenuation increased

versus pressure level, i.e., it was the highest near the focus of the beam. The

apparent excess attenuation occurs because more energy in the ultrasound

wave is transferred from the fundamental to the higher harmonics and this

effect increases with increasing pressure. Because the transducer used for

imaging is band limited to the fundamental, on receive the energy that was

transferred to the higher harmonics is not recorded and this results in an

apparent excess attenuation of the fundamental bandwidth signal. Calibra-

tion signals from nylon wire targets located within predefined depths were

required to provide calibrated backscattered signals. Fatemi and Greenleaf

[34] were able to construct qualitative B/A images characterized by shad-

owing following a strong nonlinear region (similar to the effect of region of

strong attenuation). Another limitation of the method is the need for strong

6



echoes from wire targets embedded in the assessed material. The need for

embedded wire targets limits potential implementation in vivo.

Another hurdle for developing imaging of nonlinearity in vivo is that the

accumulation of energy in the second harmonic occurs more rapidly near the

focus of the source and is not uniform throughout an image region due to

the acoustic beam diffraction. This results in a decreased ability to image

outside of the focal region of a source. Because the second harmonic energy

accumulates with propagation depth, the change in the second harmonic

energy with depth must be accurately mapped.

For the second part of this dissertation, two novel B/A estimation ap-

proaches are presented. First, because phenomenon like excess attenuation

(increasing of AC in the nonlinear regime) occurs due to nonlinear distor-

tion, we aim to use such distortion on spectral-based AC estimates to reveal

important information about the B/A of the interrogated media. This is an

heuristic approach that was tested in simulations only.

For a second approach, a time-domain estimation technique utilizing con-

servation of energy is used to map B/A. A time-based approach is used

because a spectral-based approach would have the limited spatial resolution

common to parametric images made from spectral-based BSC estimates. In

this second B/A estimation approach we will, in a sense, combine methods

that use the 2nd harmonic measurements like [30], but instead of using a dual

transducer, the energy transferred to the second harmonic is estimated from

the energy in the fundamental at two excitation levels. The instantaneous

second harmonic energy is estimated versus depth and calculated implicitly

using two acquisitions performed at two source power levels (low quasi-linear

and high nonlinear). The change in the amplitudes of the envelopes will pro-

vide information about the energy transferred to the second harmonic (like

the work in [34]). The method will require a reference phantom with known

acoustic parameters, including B/A, to generate a numerical B/A map.

The development of a B/A imaging mode will complement diagnostic ca-

pabilities of medical ultrasound but also will have notable advantages over

conventional ultrasound imaging. Namely, the range of contrast between tis-

sues will be much greater for imaging of the acoustic nonlinearity parameter

for tissues compared to acoustic impedance. Second, the acoustic nonlinear

coefficient images will not suffer from speckle artifacts, which are inherent in

conventional B-mode images.
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1.3 Objectives

The goal of the proposed dissertation is twofold. In the first part, we aim

to predict the degrees of distortion that can be observed in BSC and AC

estimates by using different levels of acoustic pressures while still below FDA

(Food and Drug Administration) safety limits set for the Mechanical Index

(MI). We aim to assess how acoustic nonlinearity affects two prevalent QUS

parameters, i.e., the BSC and the AC. Also, correcting for potential nonlinear

distortion on the BSC using a calibration in situ will be assessed.

For the second part, we will present novel B/A estimation techniques. The

first technique will be based on measurements of the excess attenuation co-

efficient computed in a quasi-linear scenario vs propagation in the nonlinear

regime. The second technique will be a time-domain method that can map

the B/A versus depth based on conservation of energy principle and an im-

plicit calculations of the 2nd harmonic. The time-domain B/A estimation

methods will be tested in numerical simulations, ex vivo and in vivo.

This present dissertation follows this structure: in Chapter 2, we quan-

tify the influence of acoustic nonlinearities on the estimation of the BSC.

In Chapter 3, we will quantify the effects of acoustic nonlinearities on the

estimation of the AC. In Chapter 4, we present an in situ calibration ap-

proach to minimize nonlinear distortion for BSC estimation. In Chapter 5,

we suggest a guide to convert information of the excess attenuation into the

nonlinearity parameter for estimating B/A for a homogeneous material. In

Chapter 6, we construct two-dimensional B/A maps for different degrees of

acoustic pressures. Finally, we present the conclusions in Chapter 7 along

with potential future directions of this work.
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CHAPTER 2

EFFECTS OF ACOUSTIC
NONLINEARITIES ON THE

BACKSCATTER COEFFICIENT

2.1 Introduction

When estimating the BSC, it is common to assume linear acoustic propa-

gation. However, all media are nonlinear in terms of acoustic propagation.

Therefore, if the excitation signal produces acoustic waves with finite ampli-

tude, i.e., not small acoustic pressures, the waveform might undergo harmonic

generation, which is not predicted by linear acoustic theory. This nonlinear

distortion is a function of the nonlinearity parameter B/A of the medium,

derived from the pressure-density equation of state for fluids [2]. Further-

more, another parameter that contributes indirectly to nonlinear distortion

of ultrasonic waves is the attenuation coefficient of the medium. For exam-

ple, in a high attenuating medium, the acoustic pressures will decrease over a

shorter distance than for a low attenuating medium with higher frequencies

attenuating at a higher rate than lower frequencies. Hence, for a medium

with the same B/A but a higher attenuation, less nonlinear distortion will be

observed. On the other hand, in a low attenuating medium, excitation sig-

nals with larger amplitudes are more likely to undergo nonlinear distortion.

In the particular case of plane waves, the ratio of the nonlinearity coefficient

β = 1 + B
2A

and the attenuation coefficient, are used for the the calcula-

tion of the Gol’dberg number, Γ, which predicts the occurrence of significant

nonlinear distortion (Γ ≫ 1) or its absence (Γ ≪ 1) [36].

Distilled water has a nonlinearity parameter B/A=5 (at 20 °C) [18], which
is lower than most tissues [37]. On the other hand, water has a low at-

tenuation coefficient for frequencies used in clinical sonography scanners (1–

10 MHz) compared to soft tissues. For example, at 5 MHz, the attenuation

coefficient of water is 0.055 dB/cm [9], whereas in soft tissue, the attenu-

ation at 5 MHz can be higher than 5 dB/cm. Therefore, any estimation
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technique, such as the estimation of the BSC, that uses a water path might

produce unwanted nonlinear distortion of the estimate. One accepted cali-

bration method for BSC estimation is the planar reflector technique. The

system signal is calibrated by reflecting a pulse from a smooth planar re-

flector of known reflectivity. Therefore, we hypothesize that when using the

planar reflector method in water, water might be an undesired source of non-

linear distortions of the reflected signals. This nonlinear distortion in the

calibration signal can distort the final BSC estimate. On the other hand,

when using the reference phantom method, the attenuation of the phantom

can be constructed such that it is closer to the attenuation of tissue. Hence,

the potential is for the nonlinear distortion in the calibration signal from the

reference phantom to be less than that from a planar reflector in water.

In previous works on BSC estimation, it has been assumed that nonlinear

distortion is negligible. Although assuming linear behavior in acoustic wave

propagation simplifies the analysis, there are instances where high pressure

amplitudes are needed, for example, when internal tissue structures are in-

sonified with high pressures to increase the signal-to-noise ratio (SNR). The

goal of the study described in this chapter is to assess the BSC estimation

from two calibration methods, i.e., the planar reflector method and reference

phantom method, when higher ultrasonic pressures are used in the acqui-

sition of RF data and how nonlinear distortion can affect the estimates of

BSC.

2.2 Methods

Two BSC estimation methods are described in this section. The acoustic

properties and data acquisition from physical phantoms, and the metrics

used for validation of the hypothesis are detailed.

2.2.1 BSC estimation methods

Two widely used BSC estimation strategies were assessed: the planar reflec-

tor method and the reference phantom method. The first method exploits

the simple geometry of the transducer to analytically compute the diffrac-

tive effects. The second method can be used with more complex transducer

10



geometries but can increase the variance of estimates without sufficient en-

semble averaging of the reference spectrum.

Planar reflector method

The planar reflector method has been used with transducers having simple

geometry, e.g., spherical focused transducers, because the effects of diffrac-

tion can be computed analytically and incorporated into the BSC calculation

[15]. In our experiments, a spherically focused single-element transducer was

used for BSC estimation. Gated scan lines of RF data from an interrogated

medium corresponding to an axial length ∆z and centered at the focal dis-

tance F , i.e., between ⟨F − 0.5∆z, F + 0.5∆z⟩, were recorded. The BSC,

denoted by σ(f), was computed from this data using Eq. (5) in [16]

σ(f) = 2.17D(Gp)
γ2F 2

πR2∆z

S(f, F )

Sw(f, F )
A(f, F ),

D(Gp) = | exp (−iGp)[Jo(Gp) + iJ1(Gp)]− 1|2, (2.1)

where S(f, F ) is the power spectrum averaged over several gated scan lines

estimated from a data block, Sw(f, F ) is the average power spectrum of

reflected echoes from a planar reflector located at depths between ⟨F −
0.5∆z, F + 0.5∆z⟩, A(f, F ) compensates for the attenuating effects of un-

known medium and water, R is the transducer radius, γ is the reflectivity

coefficient of the planar reflector, Gp = (kR2)/(2F ) is the focal gain and Jν is

the Bessel function of the first kind and order ν. In (2.1), the system effects

are assumed to be cancelled in the ratio of the spectra S(f, F )/Sw(f, F ).

Reference phantom method

The system effects can also be compensated using a reference phantom

method. Assuming equivalent sound speed in both sample and reference

phantom, the diffractive effects are compensated through measurements as

opposed to theory. The reference phantom needs to be previously well char-

acterized, i.e., its acoustic parameters such as sound speed, BSC and atten-
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uation coefficient are known. The BSC from the sample is estimated as [17]

σ(f) = σref(f)
S(f, F )

Sref(f, F )

Aref(f, F )

A(f, F )
, (2.2)

where S(f, F ) and Sref(f, F ) are the averaged power spectra from data blocks

located at the same depth in the sample and the reference phantom, respec-

tively, A(f) and Aref(f, F ) are the attenuation compensation functions for the

sample and reference phantom, respectively, and σref(f) is the known BSC

of the reference phantom. An advantage of the reference phantom method

is that the processed echoes need not arrive from the focal region, although,

in our work data were acquired in the focal region of the transducer. In

(2.2), the system effects are assumed to be canceled in the ratio of the power

spectra S(f, F )/Sref(f, F ).

2.2.2 Physical phantoms

Two physical phantoms were used for validation. Both cylindrically shaped

phantoms had a 90 mm diameter and 39 mm height. The phantoms were

constructed from agarose, n-propanol, condensed milk, and water with glass

bead scatterers uniformly placed in the phantom spatially at random. The

size ranges and concentrations of the glass beads in the two phantoms are

described in Table 2.1.

Table 2.1: Size ranges and concentrations of glass beads in physical phantoms A
and B.

Phantom A Phantom B
Glass bead diameters (µm) 75–90 9–43
Concentration 5/mm3 800/mm3

For each phantom, the attenuation coefficient was estimated using an in-

sertion loss approach. The attenuation from phantoms A and B were found

to be αA(f)=0.41f 1.15 dB/cm and αB(f)=0.79f 1.05 dB/cm, respectively, over

the frequency range from 4.8 to 8 MHz. Furthermore, both phantoms had

layers of saran wrap at the top and bottom to protect the agar matrix and act

as acoustic windows. The effects of the saran layer were compensated using

the physical parameters and the Eq. (3) described in [38]. The phantoms
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were constructed according to the recipe in [39]. According to the literature,

phantoms of this type have a B/A of 6.6 ± 0.3 [40].

2.2.3 RF data acquisition

RF data acquisition was performed in a water filled tank using two scenarios.

First, a low power pulser/receiver was used in order to minimize the presence

of nonlinear distortions. Second, a high power unit was used in order to pro-

duce higher ultrasonic pressures and nonlinear distortion of the ultrasound

signal. For both scenarios, a spherically focused single-element transducer

with a 5 MHz nominal frequency (ISR054, NdtXducer LLC, USA), 12.5 mm

diameter and 25.4 mm focal length was used. The planar reflector was Plex-

iglas with reflectivity γ=0.37. Figure 2.1 depicts the acquisition setup.

Figure 2.1: RF acquistion setup. Backscattered signals around the focal region
were used for BSC estimation.
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Low Power and High Power acquisition

In the low power acquisition, the excitation signal for the transducer was

generated with a pulser/receiver (5800PR, Panametrics Olympus, USA). Fig-

ure 2.2(a) shows a pulse generated by the pulser/receiver when using the low

power setting and its corresponding power spectrum. The RF data from a

sample phantom were recorded to a PC using a 14-bit UF3-4121 A/D card

with 250 MHz sampling frequency (Strategic Test Corporation, Woburn,

MA). Successive RF signals from a sample were captured by moving the

transducer in the horizontal plane above the sample in a grid of 20 mm ×
20 mm with steps of 2 mm in both directions. In addition, RF signals from

a planar reflector were acquired using the same settings. However, the trans-

ducer was moved along the transducer axis in a step size of 0.5 mm such that

the signals from the reflector were recorded throughout the depth of field of

the transducer.

Large ultrasonic pressures were utilized to visualize the nonlinear distor-

tion; therefore, a high power pulser/receiver (RAM-5000, Ritec Inc., USA)

was used to generate high ultrasonic pressures. Specifically, six different

excitation levels (EL) were used in the experiments corresponding to peak-

to-peak voltages between 381 and 1168 V. The excitation signal for the trans-

ducer was a 1-cycle tone burst with a center frequency of 5 MHz. RF signals

were recorded by an oscilloscope (LeCroy Wavesurfer 44Xs). Figure 2.2(b)

shows the excitation signal when using the high power settings and recorded

with a broadband needle hydrophone. It should be noted that subsequent

band pass filtering by the 5 MHz transducer will occur on both transmit and

receive.

The peak positive pressure and peak negative pressure with the low power

and high power settings were measured using a needle hydrophone (Precision

Acoustics Ltd., UK). The needle hydrophone was located along the trans-

ducer axis to obtain the maximum peak positive pressure at the largest high

power excitation level. Table 2.2 lists the peak positive pressure and peak

negative pressure associated with the settings used in the present experi-

ments.

Using the peak positive pressure in Table 2.2, the Gol’dberg number for the

low power settings were Γwater = 34.9, ΓA = 0.9, and ΓB = 0.5. On the other

hand, for high power settings, Γwater ∈ (403.1, 643.4), ΓA ∈ (10.4, 16.6), and
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(b) High power setting (EL6)

Figure 2.2: Representative signals and their respective power spectra measured
with a needle hydrophone for the low power setting (a) and high power setting
with the largest excitation level (b).

ΓB ∈ (6.3, 10.1). Hence, based on the estimated Gol’dberg numbers, strong

nonlinear distortion in the signals are expected using the planar reflector

method.

In order to explore the importance of nonlinear distortion and harmonic

generation on the accuracy of BSC estimation we used the KZK equation and

simulator to attempt to match the experimental conditions and examine the

harmonic generation of references and samples [41, 42]. The KZK equation

was used to obtain pulse shapes when propagating through media equivalent

to phantoms A and B using a 5 MHz transducer and through water. We

used the experimentally determined positive peak pressures from Table II to
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Table 2.2: Summary of peak positive pressure and peak negative pressure values
associated with the settings used, measured using a needle hydrophone at the focus
of the transducer.

Peak positive
pressure (MPa)

Peak negative
pressure (MPa)

Low Power
Excitation level 1 0.66 0.75

High Power
Excitation level 1 7.58 2.78
Excitation level 2 9.10 3.38
Excitation level 3 10.22 3.83
Excitation level 4 11.02 4.21
Excitation level 5 11.54 4.52
Excitation level 6 12.10 4.74

find parameters that matched the KZK peak positives pressures in water.

Once we found the six source pressures for the KZK simulator, we repeated

the simulations modifying the B/A and attenuation parameters that fit the

values for phantoms A and B. Figure 2.3 shows the simulated waveforms and

their power spectra at the focus of the 5 MHz transducer. The simulation

results predict that the nonlinear distortion will be less for phantom B than

for phantom A due to the larger attenuation of phantom B (second harmonic

is at 20.4 dB below fundamental for phantom B, 12.5 dB for phantom A and

7 dB for water). Therefore, the KZK simulations suggest increased effects

on the BSC estimation due to nonlinear distortion when using a water path

for the reference technique.

Linearity of transducer

For the high power excitation signals, we verified that the transducer was

operating in the linear regime. Figure 2.4, shows the peak-to-peak acous-

tic pressures measured with a needle hydrophone (Precision Acoustics Ltd.,

UK) when located a few millimeters from the transducer surface, i.e., where

acoustic nonlinearity is expected to be negligible. The acoustic pressures

at the output of the transducer were observed to increase linearly with the

peak-to-peak voltage of the corresponding excitation level up to 800 V. At

excitation voltages higher than 800 V the pressure increase was no longer

linear and presumably at high enough voltages the transducer output would
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Figure 2.3: Representative signals and their respective power spectra at the focal
length simulated with KZK. The signals were simulated to match the peak positive
pressure at the focal length in water (a) for the high power setting with the largest
excitation level. Waveforms corresponding to propagation through phantoms A (b)
and B (c) showed that the second and third harmonics are 14.5 dB and 26.5 dB
below the fundamental band for phantom A; and 20.4 dB and 38.4 dB below the
fundamental band for phantom B and 26.5; whereas for water path propagation
the harmonics were only 7 dB and 11.3 dB below the fundamental band in water,
respectively.
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saturate. However, any nonlinearity introduced by the transducer could be

taken into account through the calibration process.
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Figure 2.4: Acoustic pressures (close to the transducer surface) vs. high power
peak-to-peak voltages used. The pressure was observed to increase linearly with
excitation voltage up to 800 V with nonlinear behavior beginning to appear for
the last two excitation levels.

BSC estimation procedures

In order to compute the BSCs, 121 independent scan lines were gated—

around the focal length 25.4 mm—and a power spectrum was calculated

from each scan line. The analysis bandwidth in both low and high pressure

scenarios was chosen to correspond to −10 dB bandwidth. Pre-processing

was performed on the echo signals by applying a bandpass filter between 1

and 50 MHz to improve SNR of the backscattered signals. For BSC estima-

tion, an averaged power spectrum was calculated from the power spectra of

121 scan lines to reduce the noise in the BSC estimates.

The first BSC values were estimated using the low power acquisition setting

and the planar reflector method for phantoms A and B, respectively. The

BSCs obtained using the low power setting and the planar reflector method

were subsequently utilized as the ground truth BSCs and also as the σref(f)

when computing the BSC with the reference phantom method.

When using high power settings and the planar reflector method, six BSCs

were computed for each phantom A and B, corresponding to the six excita-

tion levels used, i.e., from σHP-1(f) to σHP-6(f). When using high power

settings and the reference phantom method, six BSCs were computed for
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the phantoms A and B, respectively, corresponding to the six excitation lev-

els. For estimating BSCs of A, the reference phantom was phantom B, and

vice-versa.

2.2.4 Metrics

Three metrics—the power fit exponent, root mean square error, and effec-

tive scatterer diameter—were used for performance comparison of the BSC

estimation strategies in the nonlinear acoustic regime.

Power fit exponent

The BSC was fit to a power law function such as σ(f) = bfn in order to obtain

the frequency dependence exponent n. The exponent n provides a simple

parameter describing the frequency dependence of the BSC. For example,

n=4 corresponds to Rayleigh scattering. Moreover, the exponent n is related

to other quantitative ultrasound parameters such as the effective scatterer

diameter (ESD). Rearranging by taking the logarithm of the Taylor’s series

expansion of the σ(f)=bfn and approximating to the line around the center

frequency f0 gives

log (σ(f)) ≈ log(b) + n log(f0) + (n/f0)f. (2.3)

Thus, n can be computed as the slope of the natural logarithm of the BSC

vs. frequency, scaled by f0.

Root mean square error

The normalized root mean square error between BSC estimates from different

power settings was computed as

RMSEx =
∥σHP-x(f)− σLP(f)∥

∥σLP(f)∥
(2.4)

where the subscripts HP-x and LP correspond to the BSCs using high power

setting x (with x ∈ {1, 2, · · · , 6}) and low power setting, respectively. The

low power estimate of the BSC was used as a baseline reference.
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Effective scatterer diameter

The ESD was estimated from the BSC by searching values of an effective

scatterer radius, aeff, that minimized the average squared deviation [43] be-

tween the estimated BSC and the BSC derived from Faran theory [44]. The

search of aeff ranged from 0.5 to 100 µm. The theoretical BSC was estimated

through the Faran’s scattering theory given the properties of the glass bead

scatterers (density: 2380 kg/m3, speed of sound: 5572 m/s, Poisson’s ratio:

0.21) and the surrounding medium (density: 1540 m/s, speed of sound: 1020

kg/m3).

2.2.5 B/A offset of the reference phantom

We did not have access to phantom materials with B/A values outside of the

range of 5.8 to 6.6. Therefore, to assess the effects of nonlinear distortion

when the reference B/A material had a larger mismatch to the sample, we

acquired additional data by adding a layer of corn oil on top of the reference

material and having a standoff to the phantom. Corn oil has acoustic proper-

ties close to that of soft tissue, i.e., density: 920 kg/m3, speed of sound: 1466

m/s, and attenuation 1.24 dB/cm at 4.5 MHz [40]. However, corn oil has a

B/A of 10.6, which is at the high end of what is expected to be encountered

in tissue. Therefore, the corn oil standoff simulated having a reference phan-

tom with a higher degree of nonlinear distortion than using the reference

phantom alone with no standoff. Figure 2.5 depicts the acquisition setup

using a reference phantom with a corn oil standoff of approximately 17 mm.

This standoff was selected in order to place the focus just below the reference

phantom surface for selection of reference backscattered signals within the

depth of focus of the source.

2.3 Results

In this section, the power spectra—utilized calculate BSCs—and the BSCs

are shown to note the effects of the nonlinear distortion vs frequency. The

three metrics and the special case of a large B/A mismatch between sample

and reference are presented as well.
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Figure 2.5: RF acquisition in the reference phantom method (left) and when
using a a corn oil stand off to increase nonlinear distortion (i.e., standoff of 17 mm
thickness, whereas the focal length was 25.4 mm). Backscattered signals were
acquired in the focal region for BSC estimation.

2.3.1 Power Spectra

Figure 2.6 shows the power spectra when using the low power setting (one

excitation level) and high power settings (six excitation levels). Power spectra

were estimated from phantoms A and B, and the Plexiglas planar reflector.

The power spectra in high power settings had a narrower bandwidth than

the power spectra in low power settings, which is a result of the different

systems used to generate the low and high power settings.

2.3.2 BSC results

The first BSC estimation approach that was evaluated was the planar reflec-

tor method using the low power setting. Figure 2.7 shows the BSCs from the

phantoms A and B, respectively. The analysis bandwidth was 3 to 6.4 MHz,

which corresponded to a fractional bandwidth of approximately 70%.

Figures 2.8(a) and 2.8(c) show the BSC estimated using the planar re-

flector method and high power settings, i.e., excitation levels from 1 to 6,

for phantoms A and B, respectively. In both phantoms, BSCs estimated

using the planar reflector method and increasing excitation levels followed

the ground truth BSC for low frequencies but increasingly deviated at high

frequencies.

Figures 2.8(b) and 2.8(d) show the BSC estimated using the reference

phantom method and high power acquisition settings. For estimating the
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Figure 2.6: Normalized power spectra (to their corresponding maxima) used
for BSC estimation using the low power setting (top) and high power settings
(bottom, 6 excitation levels) for phantom A (a)(d), phantom B (b)(e), and the
Plexiglas planar reflector (c)(f). The −10 dB below the maximum is depicted in
dashed lines.
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Figure 2.7: BSCs from phantom A (blue) and B (red) when using the planar
reflector method and low power settings.

BSCs of the phantom A, the σref(f) used was σLP(f) of B, whereas for es-

timating the BSCs of the phantom B, the σref(f) used was σLP(f) of A. In

both phantoms, BSCs estimated using the reference phantom technique were

closer to the ground truth BSC throughout the analysis bandwidth compared

to the Plexiglas reference data.
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Figure 2.8: BSC estimates from phantom A (top) and phantom B (bottom)
when using the planar reflector method (left) and the reference phantom method
(right) with high power settings (6 excitation levels). Solid lines are the baseline
BSCs estimated using the low power settings (from Figure 2.7).

2.3.3 Exponent n results

Estimated values of n, when fitting the BSC to a power function σ(f) = bfn,

for the low power setting were 2.6 and 3.7 for phantoms A and B, respectively.

For phantom A, when using the planar reflector method the values of n were

2.5 at the lowest high power setting of 1 and increased monotonically to

3.6 for the largest high power setting of 6. Using the reference phantom

technique, no monotonic increase was observed as the settings increased. The

estimated value of n averaged across the settings was 2.61 ± 0.12. Similarly

for the phantom B, when using the planar reflector technique a monotonic

increase in the estimate of n was observed starting with a value of 3.48 at

the lowest high power setting of 1 and increasing to 4.77 at the largest high

power setting of 6. Using the reference phantom technique resulted in minor

changes in estimated values of n versus settings, i.e., the mean value of n
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estimated across the settings was 3.7 ± 0.12. From Figure 2.9, the estimated

n values were more stable when using the reference phantom method and

did not result in increased error in the estimate versus higher power settings.

These patterns were observed in both phantoms.
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Figure 2.9: Estimates of exponent n versus different excitation levels when fitting
σ(f) = bfn, using the planar reflector method and the reference phantom method
for phantoms A (top) and B (bottom). The dashed lines correspond to the n
values obtained using low power settings.

2.3.4 RMSE results

The RMSEs of the high power BSCs were computed with the low power BSC

as ground truth to quantify the differences when high power excitation levels

were used. The mean and standard deviation of the RMSE for phantom

24



A were 0.62 ± 0.42 and 0.21 ± 0.06 using the planar reflector method and

the reference phantom method, respectively. Similarly, for phantom B, the

RMSE values were 0.98 ± 0.77 and 0.25 ± 0.12 using the planar reflector

method and the reference phantom method, respectively. Figure 2.10 shows

the RMSEs for phantoms A and B at each excitation level. The values of

the RMSEs had lower variation for different excitation levels when using

the reference phantom method. In contrast, the planar reflector method

produced a wide range of RMSE values depending on the excitation level

used.
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Figure 2.10: Normalized RMSE values of the high power BSCs with respect to
the low power BSC for phantoms A (top) and B (bottom) when using the planar
reflector method (blue bars) and the reference phantom method (yellow bars).
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2.3.5 ESD results

Estimated values of ESD when using the low power settings were 75µm and

39 µm for phantoms A and B, respectively. When estimating the ESD using

the high power settings, the variation of the ESD depended on the method

of calibration. Figure 2.11, shows the mean estimates of the ESD at each

power setting for both the planar reflector technique and the reference phan-

tom technique. For phantom A, when using the planar reflector method, at

the power setting 1, the ESD estimate was 76µm and decreased monotoni-

cally to an ESD estimate of 45µm with the highest power setting of 6. When

using the reference phantom method, no monotonic decrease in ESD was

observed and across the settings the mean value of the ESD estimate was

74.7 ± 2.3 µm. Similarly, for phantom B, when using the planar reflector

method the ESD estimates at a power setting of 1 was 47 µm and by a power

setting of 3 the ESD estimate collapsed to a value of 0.5 µm. When non-

linear distortion occurs, higher frequencies distort more rapidly than lower

frequencies resulting in a downshift in the center frequency of the reference

spectrum, as evidenced by Figure 2.6(f). When dividing the sample spec-

trum by the distorted reference spectrum, the slope of the estimated BSC is

increased. The slope of the BSC increases as the excitation level increases,

resulting in progressively smaller estimates of ESD. On the other hand, the

reference phantom method provided consistent estimates of ESD at all power

settings with a mean ESD estimate across all settings of 39.2 ± 5.6 µm.

2.3.6 B/A mismatch in the reference phantom

The results of BSC estimates when introducing a mismatch between the B/A

values of the the sample and reference phantom through a corn oil standoff are

shown in Figure 2.12. The root mean squared error between BSC estimates

acquired at the highest excitation level 6 and BSC estimates at the excitation

level 1 was 8.6% and 10.2% for phantoms A and B, respectively, when no corn

oil standoff was present. Using the corn oil standoff, the errors were 8.2%

and 36% for phantoms A and B, respectively. Therefore, the mismatch of

B/Acan produce substantial error (more than 30%) in the case when phantom

A was used as the reference. When the phantom B was used as reference, the

error between the BSC estimates from phantom A at the different excitation
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Figure 2.11: ESD estimates of phantoms A (top) and B (bottom) using six high
power settings. The dashed lines correspond to the ESD estimate with low power
settings.

levels was similar with and without the corn oil standoff on the reference.

Therefore, when using the reference phantom technique a mismatch in B/A

values from the reference to the sample can result in BSC error. However,

the attenuation of ultrasound reduces the nonlinear distortion effects on the

BSC estimate, which is evidenced by the higher attenuation in phantom B.

2.4 Discussion

We demonstrated in physical phantoms that the BSC estimated using the

reference phantom method had less sensitivity to nonlinear distortion than

the planar reflector method. The phantoms used were chosen to have atten-

uating properties that are similar to those found in soft tissues. For example,
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(b) Phantom B

Figure 2.12: BSC estimates from phantom A (top) and phantom B (bottom)
when using a calibration reference signal with larger B/A. Solid lines are the
baseline BSCs estimated using the low power settings (from Figure 2.7) and the
dashed lines represent the BSC estimated at different power levels.

in [37] a large number of soft tissues could be characterized by an attenua-

tion coefficient of 0.54 ± 0.37 dB/cm at 1 MHz and nonlinear parameter of

B/A = 7.5± 1.1

Power spectra were confirmed to be sensitive to amplitude variations of

the excitation signals with distortions in the power spectra shape due to

nonlinear wave propagation effects. In Figures 2.6(d)–(f), it can be observed

that the normalized power spectra shifted to lower frequencies. The shift

to lower frequencies results from the acoustic nonlinearity of the medium.
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Higher frequencies more rapidly distort due to acoustic nonlinearity, trans-

ferring energy to higher harmonics, as can be ascertained from the Gol’dberg

number, which is inversely proportional to wavelength. In addition, the mag-

nitude of the fundamental bandwidth is decreased as energy is transferred

from the fundamental to the higher harmonics resulting in an apparent ex-

cess attenuation of the fundamental [34]. This phenomena is highlighted in

Figure 2.6(f), where the propagation of the ultrasound through water at high

pressures resulted in an increasingly larger shift to lower frequencies in the

spectrum reflected off of the planar reflector. These results suggest that the

nonlinear distortion from the water path propagation using the planar reflec-

tion method combined with the low attenuation of water was the source of

the distortion to the BSC estimates observed in the data.

Using the planar reflector method with high power acquisition settings, the

BSC estimates were increasingly divergent from the BSC obtained using the

low power settings. The BSC curves in Figure 2.8 had a larger variation when

estimated using the planar reflector method in comparison to the BSC curves

obtained using the reference phantom method. The B/A values for the phan-

toms (B/A assumed 6.6) were larger than that of water (B/A=5). However,

the attenuation was larger in the phantoms resulting in smaller Gol’dberg

numbers. Therefore, the nonlinear distortion of the reference spectra from

the phantoms was smaller than observed for the planar reflector. The re-

sult from these subtle differences in calibration techniques suggest that the

reference phantom technique would provide more consistent estimates of the

BSC. Thus, when using high ultrasonic pressures to increase the SNR for

BSC estimation, these results indicate that the reference phantom technique

should be used and the planar reflector technique avoided.

In the next set of experiments, we examined the parameterization of the

BSC by considering nonlinear distortion introduced through the calibration

method. Similar behaviors were observed when fitting the BSC to a power

law and when extracting the ESD for the glass beads in the phantoms. Esti-

mates that were obtained using the planar reflector technique demonstrated

trends where the estimates at higher excitation energies became increasingly

divergent from the low power estimates of the parameters. The exponent n is

another parameter that was found less consistent with BSC curves obtained

using the planar reflector method. These findings might be crucial for an

application such as tissue characterization where either the exponent n or
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the ESD are derived directly from the shape of the BSC. In that scenario,

malignant cells (typically larger structures with small n) might be misinter-

preted as healthy cells (smaller structures with larger n) only based on the

exponent n and its similarities with Rayleigh scattering.

The ESD values were in better agreement (scatterer diameters from Table

2.1) when using the reference phantom method. For example, in phantom

B, the ESD values obtained for excitation settings larger than 2 using the

planar reference were 0.5 µm, which was the minimum value possible. In other

words, the ESD estimation lost accuracy as the signal power increased. This

again supports the importance of using a reference method that minimizes

the effects of nonlinear distortion. Hence, the planar reflector method, under

certain high power settings, provided ESD estimates that did not correspond

to anything meaningful.

In the reference phantom method, the mismatch of the B/A parameter

between the sample and reference phantom, through the use of a corn oil

standoff, suggests that mismatches in nonlinear distortion between the refer-

ence and the sample can still result in BSC estimation error. However, due to

the low attenuation of water, the reference phantom technique still provides

better BSC estimates because the nonlinear distortion from the reference can

be controlled through choice of B/A properties and attenuation of the fab-

ricated phantom. The reference phantom can have a larger B/A value than

water, but results in less nonlinear distortion because the attenuation of the

phantom is much larger than that of water, which is the typical propagation

medium used in the planer reflector method.

The main reason for using higher excitation settings for estimating the

BSC and associated parameters is to increase the SNR. Low SNR results in

higher bias and variance of estimates. However, higher pressure values can

also lead to higher nonlinear distortion effects, which in turn can lead to

increases in estimate bias and variance. Therefore, the results shown sug-

gest that to improve BSC estimate bias and variance, high ultrasonic powers

can be used, but should be used with a reference medium that allows a low

Gol’dberg number. This is difficult to achieve with water as the propaga-

tion pathway, which is why the reference phantom method provided better

estimate performance. However, a planar reflector method could potentially

provide good estimates without nonlinear distortion if another propagation

medium were used instead of water that resulted in a low Gol’dberg number,

30



i.e., a medium that balanced the B/A value with a higher attenuation. An-

other alternative to overcome the strong harmonic generation due to a water

propagation with the planar reflector method would consist of using a low

power setting for the reference acquisition and scaling the setting to higher

power for the sample acquisition. Less nonlinear distortion will occur due to

the low signal level of the reference. The BSC can then be estimated with

the low power reference by correcting with the scaling factor, assuming the

scaling factor can be accurately known.

2.5 Conclusion

In this chapter, the bias and variance of two BSC estimation methods were

compared when nonlinear distortion was present. The findings suggest that

accuracy of the planar reflector method when using a water propagation path

is more sensitive to nonlinear distortion effects than the reference phantom

method. In general, the reference phantom method provided more consis-

tent BSC estimates when finite amplitude waves (i.e., not small acoustic

pressures) were used during the RF data acquisition, thus improving the

consistency of the BSC for tissue characterization.
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CHAPTER 3

EFFECTS OF ACOUSTIC NONLINEARITY
ON PULSE-ECHO ATTENUATION

COEFFICIENT ESTIMATION

3.1 Introduction

Spectral-based methods in pulse-echo mode for attenuation estimation in

vivo using backscattered signals assume that the power spectrum from some

block of data is proportional to the product of the system acquisition effects

(scanner, transducer, and diffraction) along with effects derived from intrin-

sic acoustic properties of the medium (cumulative attenuation and BSC) [45].

In the nonlinear regime, however, the power spectra from a block of data in

a sample and its calibration power spectra could undergo different nonlin-

ear distortions as shown by D’hooge et al. [22]. For pulse-echo, D’hooge et

al. [22] found an overestimation of the attenuation coefficient when the cali-

brated signal developed less nonlinear distortion with respect to the ‘sample’

signal. Similarly, in pulse-echo experiments and due to nonlinear distortion,

the amplitudes of the envelopes of backscattered signals from a block of data

are susceptible to changes of the input pressure levels [34]. Fatemi et al. [34]

found that an increment of the peak pressure as low as 9 dB could generate

strong distortion of the echo envelope of a transmitted pulse measured from

a wire target. Such distortions in the echo envelope manifest as excess atten-

uation at the larger input pressure levels, i.e., the estimated attenuation of

the medium can be dependent on the input pressure level. This phenomenon

occurs due to the inherent acoustic nonlinear propagation in the propagation

path between the transducer and the targeted region.

A descriptive parameter for nonlinearity, called the Gol’dberg number,

provides a rule of thumb to predict the degree of acoustic nonlinearity an-

ticipated during the transmission of a plane wave with frequency f0 in a

lossy media. The Gol’dberg number is computed as Γ = βkM
α(f0)

[36], where

k is the wave number, β = 1 + B
2A
, is the nonlinearity coefficient of the
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medium, M is the Mach-number equal to the particle velocity amplitude at

the source divided by the equilibrium sound speed of the medium, and α(f0)

is the attenuation coefficient of the medium. Γ ≪ 1 predicts the acoustic

nonlinearity to be negligible, whereas Γ ≫ 1 predicts significant nonlineari-

tiy can be expected to develop. Moreover, a large Gol’dberg number implies

that a non-negligible generation of harmonics (2f0, 3f0, etc.) and energy

transferred out of the fundamental frequency f0 occurs at short propagation

distances. Similar behavior (generation of harmonics) could be expected for

a broadband pulse wave propagation where there is a band of frequencies

propagating rather than a mono-frequency wave, in which case 2nd and 3rd

harmonic bands are generated out of energy from the fundamental frequency

band.

Most pulse-echo based attenuation estimation methods use the power spec-

tra of the fundamental frequency band. In Chapter 2 and [46], we demon-

strated that the presence of nonlinear distortion adversely affects estimates

of the BSC changing both the slope and magnitude of the backscatter coeffi-

cient spectrum. The slope of the BSC is affected by nonlinearity because the

strength of the nonlinear distortion is higher with higher frequency. There-

fore, we aim to quantify how much the harmonic generation might also lead to

inaccuracies in attenuation coefficient estimation when using a spectral-based

estimation method, especially when large acoustic pressures are used. In the

present chapter, we analyzed a representative method for attenuation coeffi-

cient estimation in the frequency domain, namely, the spectral log difference

(SLD) method for estimating the attenuation coefficient. It should be noted

that the SLD method diverges from the log spectral difference in [22] because

we used an external reference phantom to compensate for diffraction effects

of moderate focusing without being restricted to plane wave assumptions. In

the study presented in this chapter, analysis of attenuation coefficient esti-

mation accuracy in the presence of nonlinear media will first be performed in

numerical simulations using the k-Wave toolbox [47] and then corroborated

with experiments in physical phantoms. The acoustic pressure amplitudes

used in the study were within the FDA (Food and Drug Administration) reg-

ulated limits for diagnostic ultrasound determined by the mechanical index

(MI ≡ PNP√
f0

< 1.9), where PNP is the peak negative pressure (after derating

by a factor of 0.3 dB/cm/MHz when measured in water). In this chapter, we

will expand the work of [22] to non-negligible diffraction effects of focused
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sources but also we will relate the excess attenuation with the Gol’dberg

number defined for lossy media.

3.2 Methods

The spectral log difference method—technique used to estimate the attenu-

ation coefficient—is described in this section. The validation of the hypoth-

esis was performed after estimating attenuation coefficients using data from

computer simulated phantoms, and physical phantoms. The data acquisition

procedure is also detailed in this section.

3.2.1 Spectral log difference

Assuming linear acoustic propagation, the power spectra of two gated win-

dows (proximal and distal relative to the transducer surface) in a sample can

be written as

S(f, zp) = P (f)D(f, zp)σ(f, zp)e
−4αS(f)(zp),

S(f, zd) = P (f)D(f, zd)σ(f, zd)e
−4αS(f)(zd),

where zp and zd stand for the depths of proximal window and distal window,

respectively. D(f, zp) and D(f, zd) correct for the beam diffraction at the lo-

cations of the gated windows, P(f) includes the frequency-dependent effects

of the system acquisition and transducer, σ(f, zp) and σ(f, zd) correspond to

the BSCs of the gated windows, and αS(f) is the attenuation coefficient of the

sample. Assuming a region with uniformly distributed scatterers spatially,

σ(f, zp) ∝ σ(f, zd), then only the diffraction effects need to be compensated

for estimation of αS(f). For this purpose, additional backscattered signals

are acquired from a well-characterized reference phantom using the same

acquisition settings and transducer. The power spectra from two gated win-

dows in the reference phantom located at the same axial positions as those

used in the sample are

SR(f, zp) = P (f)DR(f, zp)σR(f, zp)e
−4αR(f)(zp),
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SR(f, zd) = P (f)DR(f, zd)σR(f, zd)e
−4αR(f)(zd),

where the subscript R stands for the reference phantom. If the speed of sound

of the reference phantom matches the speed of sound of the sample then

D(f, zp) ≈ DR(f, zp) and D(f, zd) ≈ DR(f, zd). Therefore, the attenuation

coefficient can be computed as

αS(f) = αR(f) +
1

4(zd − zp)
log

[
S(f, zp)SR(f, zd)

S(f, zd)SR(f, zp)

]
. (3.1)

A parameter derived from αS(f) that is commonly used is the attenuation

coefficient slope, i.e., the slope of the linear fit of αS(f) with respect to f ∈
(fL, fH), where fL and fH correspond to the lower and upper frequencies of an

analysis frequency band around the center frequency of the transducer. This

analysis band defines the band of frequencies of the power spectra involved

in Eq. (3.1). The analysis band ranged from 3.2 to 6.6 MHz in the numerical

simulations and from 4.1 to 6.5 MHz in the physical phantom studies. The

lower bandwidth was used in the physical phantoms because of low signal-

to-noise ratio in the experimentally acquired signals.

3.2.2 Computer simulation

We intended to quantify bias and variance of estimates of the attenuation

coefficient due to the distortion caused by nonlinear acoustic propagation.

In experiments with physical phantoms, the transducer behaves as a pass-

band filter of the backscattered signals. Therefore, observation of nonlinear

distortion through 2nd harmonic generation in the backscattered signals is

diminished because it is filtered in the passband operation. However, it

is illustrative to use computer simulations with settings similar to those of

the experiment to observe the 2nd harmonic band generated without the

aforementioned filtering effect. Nevertheless, computing the attenuation co-

efficient by Eq. (3.1) required only the fundamental frequency band around

the excitation nominal frequency.

Computer simulated RF data were generated with the k-Wave toolbox

[47]. Three numerical phantoms were used in the studies: one sample and

two references (high and low attenuating), labelled S′, RHA
′, and RLA

′ to

resemble the names of the physical phantoms (the prime superscript is used
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when referring to numerical simulated data) having the same attenuation

and nonlinearity parameter as in Table 3.1. Random spatial variations in the

density (2% standard deviation) were defined generating media with spatially

random impedance values such that backscattered signals mimicking those

observed from physical phantoms could be generated. The simulated focused

transducer acted as both a source and a receiver with a diameter of 0.5” and

a 1” focal length and was configured in a three-dimensional (3D) grid such

that a maximum frequency of 12.8 MHz was supported in the three axes

using a spatial grid increments of 0.06 mm (this limitation of supported

frequencies was set by the available computational resources). Figure 3.1

depicts the source/receiver used to simulate the data. k-Wave allowed the

attenuation coefficient to be set with a uniform power law attenuation coeffi-

cient across the medium with values from Table 3.1. Likewise, in k-Wave it is

possible to set a nonlinearity parameter B/A to include nonlinear distortion

and generation of harmonics.

Figure 3.1: Source/sensor in numerical simulations depicted as a spherically
focused geometry in 3D discrete media. The focal length 1” is smaller than the
largest axial depth.

A limitation of k-Wave is that it cannot set arbitrarily small grid sizes

without rapidly exceeding the computational resources, especially when the

simulation was in 3D. To validate that our simulations were correctly captur-

ing the nonlinear distortion in the fundamental band we used the Khokhlov-

Zabolotskaya-Kuznetzov (KZK) model and its solver by [41] as the gold stan-
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Table 3.1: Speed of sound, attenuation coefficient, B/A, glass bead size ranges
and concentrations of glass beads in physical phantoms: S (sample), RHA (high
attenuating reference), and RLA (low attenuating reference).

Phantom S Phantom RHA Phantom RLA

Sound speed (m/s) ∼1540 ∼1540 ∼1540
α(f) (dB/cm) 0.27f 1.32 0.7f 1.1 0.028f 1.75

B/A 6.8 6.9 6.0
Diameters (µm) 75–90 9–43 41 ± 2
Concentration 5/mm3 800/mm3 No info.

dard (because this software can generate several harmonics). We compared

KZK waveforms to the waveforms generated in k-Wave. We simulated a

forward broadband pulse propagation in a medium with square attenuation

dependence on frequency (assumed by KZK model) with lower attenuation

than the used phantoms, i.e., more likely to develop nonlinearities. The dis-

crepancy between waveforms at the geometrical focus was less than 3.3% of

the peak-to-peak pressure. Therefore, it was assumed that the k-Wave sim-

ulations at the chosen grid size correctly predicted the nonlinear behaviors

in the phantoms.

A broadband pulse with a 5 MHz center frequency and 60% fractional

bandwidth (−6 dB) was used as an input signal. The pulse was intended

to mimic the waveform from the physical transducer, which was experimen-

tally measured close to the transducer surface (4 mm from the surface) using

a needle hydrophone (Precision Acoustics Ltd., Dorchester, UK). The nor-

malized pressure and frequency components of this input signal are shown

in Figure 3.2. At 4 mm from the transducer surface, negligible nonlinear

distortion of the pulse had occurred resulting in harmonics that were more

than 20 dB below the fundamental frequency. The source was excited using

three different source peak pressures: 340, 570, 870 kPa from the values used

experimentally; and additionally two source peak pressures used solely in

simulations: 1100 and 1330 kPa to assess the effects of nonlinear distortion

over a range of pressures that might be encountered in practice. Echoes re-

ceived at the sensor were recorded for each of the six source pressures. Fifteen

independent RF lines for each random media were generated. Power spectra

estimated from the independent realizations were ensemble averaged in order

to smooth out the power spectra for the SLD method using the full fifteen

power spectra for the reference power spectrum and groups of five for the
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sample power spectrum in order to obtain three attenuation coefficient slope

values per source pressure. Similar to the attenuation estimation used in the

physical experiments, the attenuation coefficient of sample S′ was determined

using the SLD method in two scenarios: (1) medium RHA
′ (more attenuat-

ing) as the reference phantom and (2) medium RLA
′ (less attenuating) as the

reference phantom. The B/A values for the three simulated media were set

to 6.8, 6.9 and 6.0 for numerical phantoms S′, RHA
′ and RLA

′, respectively,

to match the B/A estimated for the corresponding physical phantoms. For

calculation of the power spectra from the backscattered scan lines, the length

of the gated windows were set at 20 wavelengths, i.e., roughly 8 pulse lengths

axially for both proximal and distal windows.
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Figure 3.2: Normalized pressure (top) and power spectrum (bottom) of the input
excitation source used in the simulations. The time-domain waveform was chosen
to mimic the waveform observed in the experiments when measured with a needle
hydrophone at 4 mm from the surface of the transducer.

3.2.3 Experimental phantoms

For the physical phantom experiment, three agar-based tissue-mimicking

phantoms containing glass bead scatterers were used and labeled S, RHA

or RLA. Physical phantoms of these types are often used to assess image

quality performance of ultrasonic imaging techniques because the speckle

features can be controlled by the glass bead concentration and attenuation
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by mixtures of bovine milk, agar, and degassed water. Each phantom had

cylindrical shape with 3” diameter and 1.5” height and an agar-based ma-

trix. The physical properties in Table 3.1 of the phantoms S and RHA are

described in [38] as phantoms A and B; whereas the properties of phantom

RLA is described in the second column of Table 1 in [48].

Sound speeds were calculated using Eq. (4) in [38], i.e., measuring arrival

times of received broadband pulses with and without the sample in a water

path. Ground truth attenuation coefficients of Table 3.1 were estimated

using standard insertion loss methods [49], i.e., immersing the phantoms in

a water tank, accounting for mismatches between the speed of sound for

water and the phantoms [50] and performing a least-square method to fit

the attenuation coefficient to a power law with respect to frequency [51]

over the range from 2 MHz to 7 MHz. To reduce the impact of nonlinear

effects in determination of the ground truth attenuation coefficients, both

sound speed and attenuation were calculated with RF data acquired using

a low power level pulser/receiver (5800PR, Panametrics Olympus, USA) in

which the second harmonic signals recorded with a needle hydrophone for

the water-only path were below 20 dB. The nonlinearity parameter, B/A,

was estimated using the through-transmission method by Dong et al. [40].

Using this method, the estimated values of B/A for our phantoms (presented

in Table 3.1) were in agreement with results for phantoms of the similar type

found in [40]. In order to compare attenuation coefficient slope estimates

using the SLD technique against the ground truth estimates, it was necessary

to estimate the slope values from the ground truth values of attenuation

coefficient in Table 3.1 by fitting a straight line to the function over the

analysis frequency band of 4.1 to 6.5 MHz. The ground truth attenuation

coefficient slope values for phantoms S, RHA, and RLA were 0.61, 0.91, and

0.17 dB/cm/MHz, respectively. For the simulations, because the analysis

frequency range spanned from the 3.2 to 6.6 MHz, the ground truth values

were slightly different at 0.59, 0.9, and 0.16 dB/cm/MHz for S′, RHA
′, and

RLA
′, respectively.
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3.2.4 Ultrasonic scanning procedures

The attenuation coefficients were estimated from the phantoms using the

SLD method at different source pressure levels to quantify the effects of the

nonlinear distortion of the ultrasonic wave propagation on the accuracy of

the attenuation coefficient estimates. Each phantom was immersed in a tank

filled with degassed water and scanned using a single-element spherically

focused transducer (ISR054, NdtXducer LLC, USA) having a 0.5” diameter

and 1” focal length (see Figure 3.3). The nominal frequency of the transducer

was 5 MHz and was excited with a high-power pulsing apparatus (RAM-5000,

Ritec, USA). The input signal applied to the transducer was a 1-cycle sinusoid

at 5 MHz. Backscattered RF data were acquired by the same transducer for

six excitation levels generated by the pulsing apparatus. The six excitation

levels resulted in peak pressures of 340, 450, 570, 690, 780, and 870 kPa

measured independently in water by a needle hydrophone at 4 mm from the

transducer surface (see Figure 3.2). The pressure levels of the signals from

the transducer at each excitation level were also measured at the geometrical

focus (see Table 3.2) providing a strong nonlinear distortion as observed in

Figure 3.4.

Further power spectral smoothing occurred by averaging power spectra

from RF data acquired by moving the transducer in a plane (grid of 14 mm

× 14 mm) parallel to the surface of the transducer with 1 mm steps. This re-

sulted in a backscattered power spectrum estimate from an ensemble average

of 225 independent power spectra. The mean and standard deviation were

calculated for three estimate values obtained at each excitation level by using

a third (75 averaging of the 225 power spectra) of the sample power spectra.

Nonlinear distortion of the ultrasound in the phantoms was expected to be

less than in water because while the B/A is slightly lower in water than in

the phantoms (e.g., B/A of 5 versus 6), the attenuation of water is more than

an order of magnitude lower than the phantoms at 5 MHz.

Attenuation coefficient estimates were obtained for the phantom S, which

was used as the sample, whereas phantoms RHA and RLA were used inde-

pendently as references (high attenuating and low attenuating). In the esti-

mation, the distal window was placed just before the focus (centered around

24 mm) and the proximal window 20 wavelengths closer to the transducer,

with axial length of data blocks about 20 wavelengths as well. Phantoms
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S, RHA and RLA had similar B/A values but different attenuation coefficient

values. Reference phantom RHA had higher attenuation than phantom RLA

suggesting that nonlinear distortion in the reference was more likely to de-

velop in phantom RLA. Once αS(f) was obtained following Eq. (3.1), a linear

fit was performed to obtain the attenuation coefficient slope (in dB/cm/MHz)

and compared with the corresponding ground truth value derived using the

α(f) from Table 3.1. Finally the difference in the attenuation slope estimates

between the lowest and highest excitation pressure levels was computed as

∆slope = slope870kPa − slope340kPa. (3.2)

Figure 3.3: (Top) Depiction of the experimental setup when measuring from the
sample and (bottom) depiction of the experimental setup when measuring from
the reference phantom. Note that the experimental setup was the same between
the sample and reference and only the sample was replaced with the reference
phantom.

3.3 Results

In this section, we present the power spectra—utilized calculate the atten-

uation coefficient— and the attenuation coefficient estimates for both data
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Table 3.2: Summary of peak positive pressure and peak negative pressure values
associated with the settings used in the experiments, measured using a needle hy-
drophone at the geometrical focus F=1” of the transducer. The MI at the nominal
frequency f0=5 MHz was calculated using MI = PNPexp (−0.0345f0F )/

√
f0 and

found to be within the FDA regulated limits for diagnostic ultrasound (MI < 1.9).

Peak positive
pressure (MPa)

Peak negative
pressure (MPa)

MI

Excitation level 1 7.57 2.76 0.80
Excitation level 2 8.87 3.33 0.96
Excitation level 3 9.76 3.77 1.09
Excitation level 4 10.53 4.14 1.19
Excitation level 5 11.53 4.42 1.27
Excitation level 6 12.04 4.63 1.34
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Figure 3.4: Waveforms measured at the geometrical focus of the transducer using
a needle hydrophone when exciting the transducer with the six excitation levels
(ELs). The nonlinear distortion is observable from the hydrophone measurements
that were performed in water.

acquisition cases: computer simulated phantoms, and physical phantoms.

3.3.1 Computer simulation

Figure 3.5 shows the power spectra from the numerical phantoms with prox-

imal and distal windows for each excitation level used. The five different

excitation peak pressures set in k-Wave at the source were 340 kPa (blue),

570 kPa (orange), 870 kPa (yellow), 1100 kPa (purple), and 1330 kPa (green).

The numerical phantoms were simulated with nonlinearity parameters de-
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scribed in the Table 3.1 to mimic the acoustic properties of the physical

phantoms.

In Figure 3.5 the 2nd harmonic components, roughly starting at 8 MHz,

can be observed because energy is transferred from the fundamental band

to higher harmonics. From Figure 3.5, the rate at which energy is trans-

ferred from the fundamental to harmonics depends on the source pressure

level used and the acoustic properties of the phantoms such as the value

of B/A and attenuation coefficient. Figure 3.6 and 3.7 provide estimates

of the attenuation coefficient slopes for phantom S′ when using phantom

RHA
′ (Figure 3.6a) as a reference and phantom RLA

′ (Figure 3.7a) as a ref-

erence. For example, when the more attenuating numerical phantom RHA
′

was used as a reference, the attenuation coefficient slope of the sample var-

ied from 0.66 ± 0.12 dB/cm/MHz for the smaller source pressure to 0.86

± 0.13 dB/cm/MHz for the largest source pressure. The increase in the es-

timate of attenuation slope from the source pressure level 340 kPa to the

source pressure level 870 kPa was ∆slope=0.083 dB/cm/MHz. On the other

hand, when the less attenuating numerical phantom RLA
′ was used as a

reference, the attenuation coefficient slope of the sample varied from 0.64 ±
0.13 dB/cm/MHz for the smaller source pressure to 0.43 ± 0.13 dB/cm/MHz

for the largest source pressure. The decrease in the estimate of the atten-

uation slope from the source pressure level 340 kPa to the source pressure

level 870 kPa was ∆slope=−0.118 dB/cm/MHz. Using either the high or low

attenuating phantoms, at the lowest source pressure level the ground truth

value 0.61 dB/cm/MHz remained within one standard deviation of the esti-

mated mean value but larger bias is observed at the largest source pressure

level.

The deviation in the estimates of the attenuation coefficient slope with in-

creasing pressure indicated that nonlinear distortion could introduce changes

in attenuation coefficient slope estimates with increasing source pressure.

Furthermore, due to the attenuation of the different simulated phantoms,

nonlinear distortion of power spectra from reference phantom RHA
′ was slightly

lower than for phantom S′, resulting in monotonically increasing estimates

of attenuation coefficient slope and vice versa when using phantom RLA
′ as

the reference.
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Figure 3.5: Power spectra from gated proximal and distal windows using five
increasing source pressures in the numerical phantoms S′ (top), RHA

′ (middle), and
RLA

′ (bottom). The proximal window was located before the geometrical focus
and the distal window was located close to the geometrical focus. In computer
simulations it is clear that larger levels of 2nd harmonic are generated at the distal
windows. Moreover, the low attenuating reference phantom (RLA

′) power spectra
had larger 2nd harmonic generation for the larger acoustic pressures than S′ and
RHA

′.
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(b) Physical phantom slope vs. source pressure

Figure 3.6: Mean (square markers) of attenuation coefficient slope estimates
of medium S for the numerical phantom (top) and physical phantom (bottom)
when the reference was the high attenuating reference medium RHA. Shadowed
area corresponds to the standard deviation (one above and one below) of slope
estimated mean values. The dashed red line was the ground truth slope.

3.3.2 Experimental phantoms

The power spectra from proximal and distal regions used to estimate atten-

uation coefficient slope in the physical phantoms are presented in Figure 3.8.

In experiments, the 2nd harmonic was mostly filtered out by the transducer.

Similar to the power spectra in numerical phantoms, the fundamental band

shifted to lower frequency especially at the distal window (closer to focus)

with this shift more pronounced in the low attenuating phantom RLA, Figure

3.8(c), as pressure levels increased.

The attenuation coefficient slope values were estimated for phantom S

and are shown in Figures 3.6(b) and 3.7(b) when using phantoms RHA and

RLA as references, respectively. Experimentally, it was observed that more
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Figure 3.7: Mean (square markers) of attenuation coefficient slope estimates
of medium S for the numerical phantom (top) and physical phantom (bottom)
when the reference was the low attenuating reference medium RLA. Shadowed
area corresponds to the standard deviation (one above and one below) of slope
estimated mean values. The dashed red line was the ground truth slope.

consistent attenuation coefficient estimates were obtained when using refer-

ences with higher attenuation coefficients, i.e., phantoms S and RHA, in which

case ∆slope = −0.038 dB/cm/MHz; whereas more inconsistency was observed

when using phantom RLA as the reference, i.e., ∆slope = −0.148 dB/cm/MHz.

In the latter case, the ground truth value was outside of one standard de-

viation of the estimated slopes when using the largest source pressure level.

However, unlike in the computer simulated phantoms, the values of the at-

tenuation slopes did not change monotonically versus excitation level and

the standard deviation were more variable across the excitation levels, which

might be explained by lower signal-to-noise ratio of experimental backscat-

tered data.
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Figure 3.8: Power spectra from gated proximal and distal windows using six
increasing source pressures in the physical phantoms S (top), RHA (middle), and
RLA (bottom). The proximal window was located 1 cm before the geometrical
focus and the distal window was located just after the geometrical focus. No 2nd
harmonic was clearly observable unlike the numerical simulations (Figure 3.5) due
to the filtering effect of the transducer.
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3.4 Discussion

In the present chapter, we evaluated the SLD method for attenuation coeffi-

cient estimation when using increasingly higher acoustic pressures to assess

if nonlinear distortion of ultrasound due to the nonlinearity of the medium

would introduce biases in the attenuation coefficient estimates. We confirmed

in numerical simulations, that 2nd harmonic generation was likely to occur

depending on several factors. The cases associated with the highest 2nd har-

monic generation included when larger input acoustic pressures at the source

were applied, when the location of the gated window was closer to the geo-

metrical focus, i.e., where larger pressures are expected due to focusing, and

when less attenuating media were used that led to more rapid develop of

nonlinear distortion.

The presence of nonlinear distortion in lossy media can be quantified

through the Gol’dberg number, which is proportional to the ratio of the

nonlinearity coefficient and attenuation coefficient. In computer simulations

we confirmed that both the nonlinearity parameter and the acoustic attenua-

tion of the medium affect the generation of the 2nd harmonic. Moreover, the

power spectra generated in the numerical simulations were consistent with

the definition of Gol’dberg number. Therefore, acoustic nonlinearities result

in energy in the fundamental band being transferred to higher harmonics

(2nd harmonic presented in the numerical simulation). Thus, spectral meth-

ods for attenuation coefficient slope estimation that use the fundamental

band produce biased attenuation coefficient estimates when non-negligible

energy is transferred out of the fundamental band.

From the numerical simulations and experiments with physical phantoms

we observed that attenuation coefficient estimates varied with different source

pressures. These changes are associated with the nonlinear distortion of ul-

trasound in the sample and reference, which is observed in the power spectra

at the fundamental band. Typically, distortions were observed to change

more in the higher frequencies of the fundamental band than in the lower

frequencies. This can be explained by the shock distance l = 1
βkM

that

suggests that generation of harmonics will occur over a shorter distance for

higher frequencies components. In other words, higher frequencies are more

rapidly transferred to higher harmonics resulting in a change in the slope

over distance in the fundamental band of the backscattered power spectra in
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all cases. This distortion of the fundamental band is further enhanced in less

attenuating media where the energy in the higher harmonics is not attenu-

ated out as quickly resulting in more nonlinear distortion of the propagating

pulse.

Although the Gol’dberg number is commonly defined for mono-frequency

plane wave rather than a focused transducer, we utilized the Gol’dberg num-

ber to predict the presence of nonlinear distortion of the ultrasound. For the

transducer geometry used in this chapter, the Focal gain was G=πa2

λF
≈ 16.2

(a is the radius of the source, F=1” and λ the wavelength correspond-

ing to the nominal frequency 5 MHz); therefore, the maximum Gol’dberg

numbers, considering linear gain peak pressures at the focus, were between

ΓS ∈ [8, 20.5], ΓRHA
∈ [4.5, 11.4], and ΓR

LA
∈ [35.2, 90], over the source pres-

sures range from 340–870 kPa. Therefore, a stronger 2nd harmonic devel-

opment in the lower attenuating numerical phantom RLA was expected from

the Gol’dberg number calculation and larger nonlinear distortion effects were

predicted when using this phantom. It should be noted that because of non-

linear propagation effects, the actual linear focal gains, G, were not attained,

i.e., positive peak pressure gains were larger than G whereas negative peak

pressure gains were smaller than G, [52].

Similar results were observed when quantifying nonlinear distortion of ul-

trasound on the estimate of the BSC in Chapter 2 and [46]. The BSC esti-

mation process was analyzed using the reference phantom method and the

traditional planar reflector technique in a water medium. The findings were

that a spectral-based method that used a nonlinear medium with low attenu-

ation (i.e., water) produced large biases in the BSC estimates. In that paper,

the nonlinear distortion of ultrasound resulted in changes in the magnitude

and slope of the BSC because the references had different levels of nonlinear

distortion. Specifically, using the water path for the reference (in the de-

nominator of Eq. (2.1)) resulted in much larger nonlinear distortion at high

pressures when compared to using an attenuating reference phantom. Similar

to attenuation coefficient estimation with the SLD, in the BSC estimation,

the sample and reference power spectra are used. Similarly, when using only

a pair of power spectra (calibration / sample), the calibration signal is in the

numerator for AC estimation (see Sec. (2) in D’hooge et al. [22]), hence an

overestimation of the attenuation can be predicted.

However, for the attenuation approach used in this chapter, the analysis
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was more complex, because up to four power spectra (see Eq. (3.1)) are in-

volved in the estimation of the attenuation coefficient. It can be thought as

three calibration signals involved (from the reference phantom proximal and

distal windows and one from the sample phantom proximal window). One

of the reasons for locating the distal window closer to the geometrical focus

was to make the nonlinear distortion much larger than the nonlinear distor-

tion in the proximal window located out of the focal region. Therefore, the

attenuation coefficient estimates depend mainly on S(f, zd) and SR(f, zd). If

the attenuation values of the sample and reference are known, we can predict

whether the fundamental band will be distorted more in the sample or refer-

ence and predict a positive or negative biases in the attenuation coefficient

estimates. For example, when the reference had lower attenuation than the

sample, an apparent decrease in attenuation coefficients was observed. The

opposite (increasing attenuation coefficients at higher excitation levels) oc-

curred when the reference phantom had higher attenuation than the sample.

It should be also noted that the separation between proximal and distal

windows was 20 wavelengths. Cumulative nonlinear distortion from the prox-

imal window to distal window is further enhanced by the selected location of

the distal window much closer to the focal region. An alternative to minimize

such nonlinear distortion would be take both windows outside the focal re-

gion but typically in practice, the ROI to be diagnosed is where the operator

tries to position the focal length of the beam to improve the SNR. Another

alternative could be to decrease the axial separation of the the proximal and

distal windows. However, to reduce this separation, the data blocks would

need to be even smaller as well. The current ROI (joining proximal and

distal windows) is 40 wavelengths length which corresponds roughly to 16

pulse lengths. Errors from small axial lengths has been analyzed by Labyed

and Bigelow [45] and, for example, halving the ROI to 8 wavelengths would

only increase the AC error bias (not due to nonlinear distortion but due the

stochastic nature of scattering).

From the results in the numerical phantoms, the attenuation coefficient

slope values obtained using the smallest pressure level and the largest pres-

sure level had a mismatch that changed depending on the reference phantom

used. This mismatch, ∆
slope

, computed as in Eq. (3.2) can be correlated to

the Gol’dberg number of the phantoms involved in the estimation (sample

and reference) by comparing the results to the ratio of Gol’dberg number:
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ΓSample
ΓReference

. From the acoustic properties of the phantoms described in Ta-

ble 3.1, at f0=5 MHz, Gol’dberg number ratios for the different phantoms

were:
ΓS′

ΓRLA
′
= 0.23 and

ΓRHA
′

ΓS′
= 0.56. In addition, we calculated the atten-

uation coefficient slope of phantom R’HA using the reference R’LA resulting

in an attenuation slope mismatch of ∆slope = −0.20 dB/cm/MHz with a

Gol’dberg ratio of
ΓR’HA

ΓR’LA

= 0.127. Figure 3.9 shows the attenuation coeffi-

cient slope values at different pressure levels using the aforementioned pairs

of samples/references where the increase or decrease of the ∆slope depended

on the ratio of Gol’dberg numbers.

Figure 3.10(a) shows a plot of values of ∆slope versus Gol’dberg number

while 3.10(b) shows a plot of the ∆slope values versus the log of the Gol’dberg

number ratios. Computing the coefficient of determination between ∆slope vs

log10
ΓSample

ΓReference
results in R2 = 0.979. Similar calculation with the physical

phantoms resulted in R2 = 0.734. Empirically, one can observe that the mis-

match of attenuation coefficient slope estimates from the different excitation

levels due to acoustic nonlinearity is highly correlated to log10
ΓSample

ΓReference
.

3.5 Conclusion

The results suggest that attenuation coefficient estimation in pulse-echo mode

using established methods, such as the SLD, can be biased due to the inherent

acoustic properties of the sample medium and reference. The mismatch be-

tween the estimated attenuation slope values from the true value during the

ultrasonic acquisition of backscattered signals will increase when larger pres-

sure levels are used. Moreover, the observed biases of attenuation coefficient

slope estimates in both simulation and physical nonlinear media were more

likely to occur in low attenuating media. Therefore, tradeoffs between the at-

tenuation of the reference material, B/A and the need for strong SNR should

be considered when using methods like the SLD to estimate attenuation co-

efficients. After observing the pattern of increasing or decreasing attenuation

coefficient slope estimates when using larger pressure levels, it was concluded

that the attenuation values of the sample and reference should be close in

order to reduce the effects of nonlinearity on the estimates and, therefore, the

Gol’dberg number ratio between the sample and reference should be close to

unity to optimally mitigate nonlinear effects on attenuation slope estimation.
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Figure 3.9: Attenuation coefficient slope values versus source pressure level for
three pairs of sample and reference. Large Gol’dberg ratios are correlated with in-
creasing deviation of estimated attenuation slopes from baseline when using larger
pressures.
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CHAPTER 4

IN SITU CALIBRATION OF THE
BACKSCATTER COEFFICIENT IN
ACOUSTIC NONLINEAR REGIME

4.1 Introduction

The goal of quantitative ultrasound (QUS) is to complement traditional

B-mode ultrasonic imaging by providing operator-independent and system-

independent quantitative parameters related to tissue state. In particular,

spectral-based QUS techniques have been evaluated for tissue characteriza-

tion, with recent examples including studies in breast [53], calcaneus bone

[54], and liver [55], among others [4, 56]. One advantage of QUS over tradi-

tional B-mode imaging is the potential to make the assessment independent

of the acquisition system. This is possible because an additional calibrated

signal from well-characterized media is collected. For example, the BSC can

be made system independent by using calibration signals from a planar re-

flective surface with known coefficient of reflectivity [16] or from a reference

phantom [17].

However, spectral-based QUS parameters can be degraded by acoustic non-

linearity. In [46] and Chapter 2, we demonstrated that BSC estimates were

observed to degrade more because of acoustic nonlinear distortion using a

planar reflector calibration. The reason for this distortion is that the path

between the transducer and the planar reflector is water, which has higher

Gol’dberg number [36, p. 483] (mainly due to the low attenuation coeffi-

cient of water), than a reference phantom. In [57] and Chapter 3, another

spectral-based QUS parameter, the attenuation coefficient, had a similar pat-

tern. Accuracy of attenuation coefficient estimates degraded when using

higher power levels. Moreover, in Chapter 3, it was observed that biases

introduced by acoustic nonlinearity in the attenuation coefficient estimates

were correlated with the ratio of the Gol’dberg numbers from sample and

reference phantoms. From that finding it could be inferred that QUS esti-
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mates would be less affected by acoustic nonlinear distortion when Gol’dberg

numbers of the interrogated medium and the reference material were close

to each other. Ideally, finding a calibration from within the sample to be

interrogated would allow better accounting for acoustic nonlinear distortion

because the calibration signal would undergo the same distortion as signals

from the sample.

Radiological markers or clips are an essential diagnostic and surgical tool

[58]. For example, patients with breast cancer undergoing neoadjuvant chemo-

therapy have clips placed in the tumors to improve preoperative localization

[59]. Radiological clips made of titanium are widely used, are compatible

with MRI, and have proven safe for use in human patients [60]. These clips

come in many shapes and sizes and are visible with both X-ray and ultra-

sound. The clips provide large ultrasonic scattering signals because they are

made of titanium or gold, which have large impedance mismatch with tissue.

Inspired by the use of radiological clips, in [61], another source of BSC dis-

tortion, i.e., transmission losses in the propagation path between ultrasonic

transducer and the ROI, was compensated using an in situ calibration target.

In that work, the reference phantom method resulted in less accurate BSC

estimates because the reference phantom could not account for the possible

transmission losses that occur, e.g, in clinical scenarios when layers of skin,

muscle, or fat are in between the transducer and the ROI in an organ.

Therefore, we hypothesize that the in situ calibration approach could also

be used to compensate acoustic nonlinear distortion effects in the estimation

of BSCs. The in situ calibration target could provide a reference within the

medium being interrogated and the cumulative nonlinear distortion up to

the depth of the ROI would already be contained in the in situ calibration

target signal. For this purpose, we focused our attention on how the power

spectra from samples changed versus increasing ultrasonic power levels when

the calibration spectra came from an in situ calibration target located at

the same depth as the sample spectra. We then compared these results to

results using a calibration spectra from an external reference phantom from

a region located at the same depth. To acquire good BSC estimates requires

good SNR, which can be achieved by increasing the output ultrasonic power.

The objective was to determine if the in situ calibration approach provided

a more robust BSC estimation in the presence of nonlinear distortion as the

ultrasonic output power increased.
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4.2 Methods

In this section, we describe the BSC estimation methods using a calibration

signal and the metric used for comparison of the BSC estimation strategies—

defined as the mismatch of the BSC frequency dependence. In addition, more

detail of the selection of the in situ target is presented, and finally, the data

acquisition procedure from computer simulated phantoms, ex vivo, and in

vivo is detailed.

4.2.1 BSC estimation methods

The reference phantom method used as the baseline estimation method for

BSC and the proposed in situ calibration approach are derived in this section.

BSC estimation using a reference phantom

The power spectrum, S(f,z), estimated from ultrasonic backscattered signals

from an interrogated ROI located at depth z is a function of frequency (f)

and the result of several effects: the BSC of the ROI, σ(f, z), the total

attenuation up to the ROI, A(f,z), the acoustic-electric and electric-acoustic

response of the system acquisition, V(f), and the diffraction effects D(f, z),

S(f, z) = V (f)σ(f, z)A(f, z)D(f, z). (4.1)

In the reference phantom method both D(f,z) and V(f) can be compen-

sated by collecting the power spectrum of a well-characterized phantom. The

BSC is thus

σ(f) = σref(f)
S(f, z)

Sref(f, z)

Aref(f, z)

A(f, z)
, (4.2)

where the subscript ‘ref’ stands for reference. Both σref(f) and Aref(f, z) are

assumed to be known and A(f, z) can be estimated with attenuation estima-

tion methods like the spectral log difference or the regularized spectral log

difference [62]. If a higher power (HP) were used during ultrasonic acquisition

the power spectrum from the ROI can be written as

SHP(f, z) = G(f)V (f)σHP(f, z)A(f, z)D(f, z), (4.3)
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where G(f) is the gain function at the source for the HP settings with respect

to the baseline settings. Then, using the reference phantom approach, the

BSC at the HP level would be

σHP(f) = σref(f)
SHP(f, z)

Sref,HP(f, z)

Aref(f, z)

A(f, z)
. (4.4)

However, due to acoustic nonlinear distortion of the power spectra, σHP(f)

might differ from the quasi-linear estimate σ(f). Dividing (4.4) by (4.2), we

get the error of the BSC estimates, eref(f, z), due to nonlinear distortion in

the reference phantom approach

eref(f, z) =
σHP(f, z)

σ(f, z)
=

(
SHP(f, z)

S(f, z)

)/(
Sref-HP(f)

Sref(f)

)
. (4.5)

BSC estimation with calibration in situ

Using an in situ target for calibration, e.g., a well characterized tissue-

compatible bead, embedded within the sample in a location as close as pos-

sible to the ROI and at the same depth, the power spectrum from the echoes

that arrive from the location of the bead can be written as

Sbead(f, z) = V (f)σbead(f, z)A(f, z)D(f, z). (4.6)

Following a similar procedure, the sample BSC could be computed as

σ(f, z) = σbead(f, z)
S(f, z)

Sbead(f, z)
, (4.7)

and unlike Eq. (4.2), the BSC estimation does not involve an extra compu-

tation of total attenuation because both S(f, z) and Sbead(f, z) are expected

to undergo similar total attenuation because both the signals from the bead

and the signals from the ROI propagated through approximately the same

media. At the HP acquisition settings, the BSC is

σHP(f, z) = σbead(f, z)
SHP(f, z)

Sbead-HP(f, z)
. (4.8)

Then, the error in BSC, ebead(f, z), estimated at the HP settings using the
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in situ calibration approach can be estimated by

ebead(f, z) =
σHP(f, z)

σ(f, z)
=

(
SHP(f, z)

S(f, z)

)/(
Sbead-HP(f)

Sbead(f)

)
. (4.9)

Discrepancy of BSC frequency dependence

If the increment of power level were small, i.e., only quasi-linear regime

SHP(f, z)

S(f, z)
≈ Sref-HP(f)

Sref(f)
≈ Sbead-HP(f)

Sbead(f)
, (4.10)

which leads to eref(f, z) ≈ ebead(f, z) ≈ 1, almost no error in the BSC esti-

mates from acoustic nonlinear distortion would occur either using a reference

phantom calibration or the in situ calibration approach. However, when the

increment of power level creates acoustic nonlinear distortion, the BSC esti-

mated at the HP level can vary from the BSC calculated at the baseline power

level. Furthermore, other QUS parameters derived from the BSC could be

distorted as well. For example, the BSC is often modeled as a power law

with respect to frequency. In particular, the exponent n of the power law

function of the BSC,

σ(f, z) = bfn, (4.11)

might be incorrectly estimated at the HP level where

σHP(f, z) = bHPf
nHP , (4.12)

and the error in the estimate can be quantified by |nHP − n|. The discrepancy
observed from acoustic nonlinear distortion can be computed as well from the

power law function of their respective error functions, eref(f, z) or ebead(f, z),

versus frequency, in (4.5) and (4.9), respectively. A first-order approximation

of the Taylor series expansion of the error results in

log (e(f, z)) = log

(
b

bHP

)
+ (nHP − n)(f0) +

nHP − n

f0
f, (4.13)

where f0 is the midpoint frequency of the analysis bandwidth. Therefore, the

value of |nHP − n| can be estimated as the slope of log (e(f, z)) vs. f, scaled

by f0.
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4.2.2 Bead selection

Marker clips in sonography-guided surgery are produced in many shapes

from bio-compatible materials. The median size of radiological clips utilized

in guided ultrasonography is about 2 mm [63]. Hence, the experimental

part of the current chapter utilized a 2 mm diameter spherical titanium

bead. Titanium (Ti) is known to be a bio-compatible element. A spherical

shape is chosen because the ultrasonic backscatter is the same no matter the

orientation of the bead with the transducer.

4.2.3 Computer simulations

Before experiments, computer simulation of beads embedded in media were

generated using the k-Wave package [47]. Pulse-echo acquisition with a lin-

ear array was performed in a 3D discrete medium (speed of sound: 1540

m/s, density: 1000 ± 20 kg/m3) to generate 128 RF lines. Four simu-

lated 2 mm diameter beads, with density of 6000 kg/m3, were placed in

the medium at different depths. The ultrasonic elements in the medium

used for transmit and receive were excited with a 5 MHz Gaussian pulse of

60% bandwidth. In the simulation, the medium was set with attenuation co-

efficient of 0.5 dB/cm/MHz and nonlinearity parameter, B/A, of 6.6. Beads

were located at several depths (as shown in Figure 4.1(a)). Only the first

echo of the bead was utilized rather than echoes from multiple reverbera-

tions. Changes in the power spectra of the echoes coming from the beads

and coming from regions close to the bead depths, produced by four input

pressure levels: baseline (100 kPa) and successive increments (200, 500, and

1000 kPa), were calculated. For the reference phantom approach, an addi-

tional 128 RF lines were simulated using the same ultrasonic settings from

uniform reference phantoms having higher attenuation (0.9 dB/cm/MHz) or

lower attenuation (0.1 dB/cm/MHz), shown in Figure 4.1(b) and 4.1(c), re-

spectively. The distinct attenuation coefficient in nonlinear media (despite

setting all media with the same B/A=6) causes different degree of acous-

tic nonlinear distortion in each medium depending on the input pressure.

Data blocks were outlined from the B-mode images (see Figure 4.1) and a

power spectrum was calculated for each data block by averaging the individ-

ual power spectra from scan lines in the data blocks. The power spectrum
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from ultrasonic backscatter from the bead was calculated from a gated region

covering only the first echo (approximately 6 wavelengths long) and laterally

from the scan lines that captured the backscatter from the bead up to ampli-

tudes no smaller than 6 dB below the local maximum. The power spectrum

of the sample comes from a gated region at the same depth as the bead, de-

picted for example by the red box in Figure 4.1(a), which is approximately 6

wavelengths axially and approximately 15 wavelengths laterally. The power

spectra from reference phantoms assume the same depth as in the sample

but all lateral lines are available for averaging as depicted with the red boxes

in Figure 4.1(b) and 4.1(c).

The error in the estimate of BSC frequency dependence due to nonlinear

distortion was calculated using (4.13) with the error functions given by (4.5)

and (4.9) when using the reference phantom approach and the in situ cali-

bration approach. The analysis bandwidth had a frequency range from 4 to

8 MHz. Four bead locations were used so that the exponent estimation error

was assessed versus depth of the bead location.

4.2.4 Experimental validation

The errors in the estimates of the BSC frequency dependence due to nonlinear

distortion were also assessed experimentally using a physical phantom sample

and a tumor in vivo from a rabbit model.

Phantom sample

A sample phantom was prepared using a mixture of 400 mL deionized/degassed

water, 80 g of gelatin (J.T. Baker, Phillipsburg, NJ), and 12 g of graphite

powder (John Deere, Moline, IL). Its speed of sound and attenuation coef-

ficient were estimated to be 1541.5 m/s and αsample(f) = 0.33f 1.17 dB/cm,

respectively (estimated with insertion loss techniques). A 2 mm diameter

titanium spherical bead (BalTec, Los Angeles, CA) was embedded in the

sample during phantom preparation and before the gelatin congealed, such

that the bead ended up at a depth of around 21 mm. In addition to the in

situ calibration, the BSC estimation was also performed using two different

agar-based reference phantoms having uniformly spatially distributed glass

bead scatterers and similar sound speed as the sample (around 1540 m/s).
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(b) B-mode image of the 
high attenuating

 reference phantom

(c) B-mode image of the 
low attenuating

 reference phantom

(a) B-mode image of the simulation of a 
medium with several embedded beads

Figure 4.1: (a) B-mode image of the sample phantom simulated with four em-
bedded 2 mm diameter spherical beads located at depths 17.5, 22.5, 27.5, and
32.5 mm. The red rectangles correspond to the regions of interest used for power
spectra calculations within the sample and references for the case of the bead
located at depth 27.5 mm. (b) B-mode image of the high attenuating reference
phantom. (c) B-mode image of the low attenuating reference phantom. Despite
the comet tail artifact of the bead, only the first echo of the bead was used for
power spectrum corresponding to the in situ calibration target. The dynamic
range is 50 dB for each image B-mode image.

The attenuation of the reference phantoms were 0.7f 1.1 and 0.028f 1.75 to

test two cases where the reference phantom had higher and lower attenua-

tion coefficients than the sample. At HP levels, power spectra might undergo

different nonlinear distortion depending on attenuation but also the nonlin-
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earity parameter, B/A, of the phantoms. The B/A is relatively high for oil

substances but for non-oil substances used in phantom preparation of the

phantoms, the B/A is expected to be in the lower range of liquids (between

5 and 7) and different nonlinear distortion in the phantoms was mainly due

to the mismatch of their attenuation coefficients.

Figure 4.2 shows the location of the bead and the gated windows used for

estimation of the power spectra from the bead, the sample, and the refer-

ence phantoms (following the same criterion as in the computer simulations).

Similar to the simulations, only the first echo of the bead was utilized rather

than echoes from multiple reverberations. The ultrasonic system used for

data collection for experiments was a SonixOne (BK Ultrasound, Peabody,

MA) with an L9-4/38 transducer. The analysis bandwidth used for the power

spectra was from 4.5 to 7.4 MHz. Data were acquired at three power levels

increments: 6, 10, and 13 dB with respect to a baseline power level, where

the 13 dB increment is the largest power level available in the system.

Rabbit tumor in vivo

For the in vivo assessment of the in situ calibration bead approach, a rab-

bit breast cancer model was used. The procedure was performed according

to a protocol approved by the University of Illinois at Urbana-Champaign

Institutional Animal Care and Use Committee (IACUC protocol 20087). A

breast tumor was induced in a New Zealand White rabbit (Charles River

Laboratories, Wilmington, MA) after implantation of VX2 cells around the

mammary pad (while the rabbit was anesthetized with 2% isoflurane). After

monitoring the tumor growth for 2–3 weeks and when the tumor reached a

diameter of about 3 cm, the hair on top of the tumor location was shaved and

a sterilized, 2-mm diameter, spherical titanium bead was embedded within

the tumor using a custom metallic syringe. The bleeding in the injection site

was minimum at the time of the bead implantation. Three days later, data

acquisition was performed with the same ultrasonic system and parameters

described in section 4.2.4. A layer of pork belly (thickness ≈ 15 mm) bought

the same morning in a local supermarket was put on top of the tumor so

that the bead was at a depth of roughly 25 mm (similar depth as in the

physical phantom experiment or in a potential human organ). The rabbit

was euthanized under anesthesia with concentrated CO2 after ultrasonic data
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(a) B-mode image of the physical 
phantom used as sample.

(b) B-mode image of the
 high attenuating 

reference phantom

(c) B-mode image of the
 low attenuating 

reference phantom

Figure 4.2: (a) B-mode image of the sample phantom with an embedded 2 mm
diameter titanium spherical bead pointed by a red arrow. In the red boxes are
depicted the gated windows used for power spectra calculation of the ROI located
at depth 21 mm within the sample and the high attenuating (b) or low attenuating
(c) reference phantoms used for calibration. Notice that the location of the bead
(depth 21 mm) determined the location of the selected regions of interest for power
spectra calculation.

acquisition was completed. Figure 4.3 shows a B-mode image of the in vivo

tumor with the bead clearly embedded as well as a data block within the

tumor outlined in the red box and at the same depth as the bead. The refer-

ence phantom calibration was performed using the same reference phantoms

from the previous physical phantom experiments (Section 4.2.4).
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B-mode image of the tumor in vivo

Figure 4.3: B-mode image of the tumor phantom with an embedded 2 mm
diameter titanium spherical bead designated by the red arrow. The red rectangle
depicts the gated window used for power spectra calculation of the ROI located
at a depth of approximately 25 mm.

4.3 Results

In this section, the errors in the estimates of the BSC frequency dependence

caused by acoustic nonlinear distortion are reported for the computer simu-

lations, physical phantoms, and rabbit tumor in vivo when a power law fit

versus frequency is performed.

4.3.1 Computer simulated phantom

Figures 4.4(a) and 4.4(b) show the power spectra corresponding to a ROI

in the sample and from a bead within the sample, respectively, at 27.5 mm

depth. Figures 4.4(c) and 4.4(d) show the power spectra from the reference

phantoms with higher and lower attenuation coefficients (relative to the sam-

ple attenuation coefficient), respectively. From the figures, it should be noted

that the values of power spectra at different frequencies increased at different

rates compared to the nominal selected power increments (6, 14, and 20 dB).

For example, for Figure 4.4(a), such increments are listed in Table 4.1 for

three frequencies: 4, 6, and 8 MHz. A moderate nominal increment of 6 dB

produced similar increments of 6.05, 6.00, and 5.98 dB for 4, 6, and 8 MHz,

respectively. At more aggressive power increments, i.e., 20 dB, the actual
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increments were 20.05, 19.20, and 18.42 dB for 4, 6, and 8 MHz, respectively.

Because the power spectra in the range 4 to 8 MHz were used to calculate

the changes in the BSC frequency dependence versus power level, it is rea-

sonable to expect more differences at HP level increments. For regions of

interest at 27.5 mm depth, the error in the estimate of the power law expo-

nent is shown in Figure 4.5(c) for the different calibration approaches. An

increasing trend of the mismatch versus power level increments was observed

regardless of reference phantom calibration or in situ calibration. However,

the mismatch was larger when the reference phantom method was used. At

the 20 dB power level increment, the mismatch was 0.08 with the in situ cali-

bration bead, whereas the mismatch was 0.20 when reference phantoms were

used. The in situ calibration was more accurate than the reference phantom

approach because at larger input power levels, the nonlinearity effects from

the sample are taken into account better using calibration with the power

spectra originating from the bead in situ.

Table 4.1: Nominal increment in the power settings and actual increments (in
dB) in the power spectra at frequencies 4, 6, and 8 MHz, for the power spectra
from the sample at a depth of 27.5 mm as shown in Figure 4.4(a).

Power increment at 4 MHz at 6 MHz at 8 MHz
6 dB 6.055 6.003 5.983
14 dB 14.063 13.798 13.617
20 dB 20.051 19.206 18.426

Figures 4.5(a), 4.5(b), and 4.5(d) show the errors in BSC frequency de-

pendence due to the nonlinearity effects at depths 17.5, 22.5, and 32.5 mm,

respectively. Similar to the effects observed at a depth of 27.5 mm, in most

cases the in situ calibration with the bead produced smaller errors in esti-

mates of the power law exponent than the reference phantom calibrations.

In addition, the amount of mismatch also depended on other factors, like the

depth. For example, at the shallowest depth of 17.5 mm, the nonlinearity

effect was below 0.1, regardless of the 20 dB power level increment or the

calibration approach.
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(a) Power spectra from the sample
 at depth 27.5 mm

(b) Power spectra from the bead

(c) Power spectra from the high 
attenuating reference phantom

(d) Power spectra from the low
attenuating reference phantom

Figure 4.4: Change in power spectra caused by increment of power level settings
for regions of interest at a depth of 27.5 mm within the sample (a), from the
first echo off of the bead (b), and from two reference phantoms (high attenuating
phantom (c), and low attenuating phantom (d)). There are clear excess increments
of the power spectra at larger frequencies like 11 MHz, and subtle changes from
nominal power level increments at lower frequencies around 6 MHz (shown in Table
4.1 for the power spectra of the sample).

4.3.2 Physical phantom

Figure 4.6 shows the nonlinear distortion of the power spectra corresponding

to the ROI depicted in Figure 4.2, for different power level increments: 6,

10, and 13 dB. The average power spectra from the ROI within the sample

at the baseline power level and at successive power increments is shown in

Figure 4.6(a). Overall, the increments of power spectra appeared to increase

by the same factor as the nominal power level increments, however, Table

4.2 indicates that the actual increments at frequencies 5, 6, and 7 MHz were

different.

Figure 4.7 shows the error in the power law exponent estimate using the

HP settings versus a quasi-linear power level. The mismatch observed using
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(c) ROI depth: 27.5 mm (d) ROI depth: 32.5 mm

(a) ROI depth: 17.5 mm (b) ROI depth: 22.5 mm

Figure 4.5: Error in the estimate of the exponent in the power law fit of the BSC
versus frequency, at several power level increments (6, 14, and 20 dB) calculated
from ROIs located at several depths. The in situ calibration approach estimated
more accurate values compared to the reference phantom approach especially at
the largest power level increment, 20 dB.

Table 4.2: Nominal increment in the power settings and actual increments (in
dB) in the power spectra at frequencies 5, 6, and 7 MHz as shown in Figure 4.6(a),
from the red box ROI depicted in Figure 4.2(a).

Power increment at 5 MHz at 6 MHz at 7 MHz
6 dB 6.722 6.335 6.069
10 dB 11.236 10.578 10.122
13 dB 13.589 12.667 11.918

the in situ calibration target was smaller (below 0.4 at 13 dB power level

increment) than the mismatch using any of the reference phantoms (above

0.8 at 13 dB power level increment).
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(a) Power spectra from the region
of interest in the sample (b) Power spectra from the bead

(c) Power spectra from the region
of interest in the high 

attenuating reference phantom

(d) Power spectra from the region
of interest in the low

attenuating reference phantom

Figure 4.6: Change in power spectra from the ROI caused by nonlinear distortion
when acquisition settings are increased in power: the power spectra within the
sample (a), the first echo of the bead located at the same depth (b), and the
reference power spectra from two reference phantoms (c-d).

4.3.3 In vivo sample

Figure 4.8 shows the nonlinear distortion of the power spectra corresponding

to the ROI depicted in Figure 4.3, for different power level increments: 6,

10, and 13 dB. Like the phantom experiments, it can be observed that the

nominal increments of power level are different from actual increments de-

pending on the frequency. In Table 4.3, the actual increments of the power

spectrum at frequencies 5, 6, and 7 MHz show a similar trend as observed

previously in Table 4.2, i.e., at the largest increment of power 13 dB, the

actual increment at 7 MHz are smaller than the increment observed at a low

frequency of 5 MHz.

Figure 4.9 shows the error in the estimate of the power law exponent using

HP settings versus a quasi-linear power level. The error was below 0.25
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Figure 4.7: Error in the estimate of the exponent for the power law function of
the BSC versus frequency at several power level increments (6, 10, and 13 dB)
calculated from regions of interest depicted in the Figure 4.2. The in situ cali-
bration approach resulted in estimates with small error compared to the reference
phantom calibration approach at every power level increment.

(a) Power spectra from the region
of interest in the tumor (b) Power spectra from the bead

Figure 4.8: Change in power spectra from the ROI in the tumor in vivo caused
by nonlinear distortion when output settings are increased in power (a), the first
echo of the bead located at the same depth (b), and the reference power spectra
from two reference phantoms (c-d).

for the in situ calibration; however, as increasingly higher power levels were

used, the errors using the reference phantoms were larger than 1 at the largest

power level increment, 13 dB.
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Table 4.3: Nominal increment in the power settings and actual increments (in
dB) in the power spectra at frequencies 5, 6, and 7 MHz, for the power spectra
from the ROI within the tumor depicted in Figure 4.3.

Power increment at 5 MHz at 6 MHz at 7 MHz
6 dB 6.576 6.149 4.632
10 dB 10.620 9.601 7.411
13 dB 11.943 10.733 7.067

Figure 4.9: Error in the estimate of the exponent of the power law function of
the BSC versus frequency at several power level increments (6, 10, and 13 dB)
calculated from regions of interest depicted in the tumor in vivo in Figure 4.3
and reference phantoms from 4.2(b-c). The in situ calibration approach resulted
in estimates with small errors compared to the reference phantom calibration ap-
proach.

4.4 Discussion

In this chapter, an alternative to the reference phantom method for BSC

estimation was evaluated in the presence of non-negligible acoustic nonlin-

earities, i.e., at power levels leading to acoustic nonlinear distortion. The

results of the computer simulations and experiments with physical phantoms

resulted in less error in the estimate of the power law exponent function of

the BSC versus frequency when using the in situ calibration approach. In

order to understand why the in situ calibration approach is less affected by

nonlinear distortion, we can look at the variables in the Gol’dberg number in

an attenuating medium: source pressure, frequency range, attenuation coef-

ficient, and B/A. In simulations, all these parameters were the same between

70



the reference media and sample except the attenuation coefficient. Hence, the

mismatch in attenuation coefficients caused a mismatch in Gol’dberg num-

ber between sample and reference, and this then caused a mismatch in power

spectra resulting in a change in the BSC frequency dependence. In fact, a

similar observation was noted in the Chapter 3 (and [57]), where another

spectral-based QUS parameter, the attenuation coefficient, was estimated

using a reference phantom approach resulting in errors that were correlated

with the mismatch between the Gol’dberg numbers from the sample and

reference. In other words, the closer the Gol’dberg number between sample

and reference the lower the error in the attenuation coefficient estimates.

However, when the power spectrum of an unknown sample is calibrated with

the power spectra coming from a bead located in situ, the nonlinear distor-

tion at high power levels from both regions should be similar. Therefore,

the smaller nonlinear distortion of BSC estimates observed for the in situ

approach is consistent with the observations in [57]. This requires, however,

that nonlinearity effects are negligible in the backwards propagation.

Theoretically, signals from the bead or from the gated windows in the sam-

ple at the same depth as the bead should undergo exactly the same nonlinear

distortion in the forward propagation because the in situ bead calibration

signal propagated through a medium with the same Gol’dberg number as

the interrogated ROI. However, the errors quantified for the BSC were not

exactly zero for the in situ calibration as shown in Figure 4.5 (although it

was smaller than the errors produced using the reference phantom). One

explanation for this non-zero error is that the nonlinear distortion generated

in the backward propagation might not be completely negligible especially

for the larger backscattered pressure from the beads located at depths close

to the focal length of the aperture (set at 27.5 mm depth).

Regarding the magnitudes of the error of the BSC exponent that were

observed in this chapter, it would be reasonable quantify the magnitude of

this error in relative terms. Rayleigh scattering corresponds to an exponent

of 4 but in actual phantoms made with graphite used for the scattering and

attenuating component, the exponent should be smaller. In a previous study

that used similar graphite powder for scattering [64], the BSCs had power

law exponents around n=3.3 (obtained from the ground truth curves of Fig-

ure 2 of Ref. [64] and the frequency range 4.5–7.4 MHz used in this chapter).

Hence, errors found in our results of up to 1 for reference phantoms would
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imply a mismatch of about 30%, in comparison with a mismatch below 11%

obtained with the in situ calibration approach. In addition, other metrics like

the ESD could also be degraded by nonlinear distortions, which is related to

the BSC exponent (see Figures 2.9 and 2.11 in the Chapter 2). Among the

two BSC methods assessed, the reference phantom and the planar reflector,

a small error in BSC exponent and ESD was found for the planar reflector

approach. However, it is reasonable to believe that the in situ calibration ap-

proach could lead to further improved QUS tissue characterization compared

to the reference phantom.

There are also other limitations of the in situ calibration versus the ref-

erence phantom method especially for estimations in vivo. For example, as

of now, the BSC of the sample needed to be estimated from a region near

the same depth as the bead to minimize the diffraction effects like focusing.

Therefore, if large changes in the bead position occur so that it is outside

the target area, errors in the calibration may be introduced.

4.5 Conclusion

In conclusion, results observed in simulations and experiments in phantoms

and in tissues in vivo suggest that nonlinear distortion can affect the QUS

estimates. To mitigate these effects, an in situ calibration approach was as-

sessed as an alternative to the reference phantom method, i.e., the in situ

calibration with a titanium bead could result in more accurate BSC esti-

mates. The results indicate that an in situ calibration approach provided

some mitigation of nonlinear effects when estimating BSCs compared to the

reference phantom approach.

72



CHAPTER 5

B/A ESTIMATION BASED ON
QUANTIFYING EXCESS ULTRASONIC

ATTENUATION

5.1 Introduction

The attenuation coefficient is a QUS parameter that has potential in tissue

characterization and is required to more accurately estimate other acoustic

parameters like the BSC. Particularly, attenuation estimation methods in

pulse-echo mode include spectral-based approaches, i.e., in the frequency do-

main, because of the power law form that attenuation coefficient has versus

frequency [9, p. 74]. Moreover, it has been observed in [46] and [57] that

estimates of QUS parameters degrade when using spectral-based approaches

in nonlinear acoustic regime, i.e., when large excitation pressure levels still

within the range of diagnostic imaging are used to insonify a tissue with in-

herent nonlinear nature (characterized by the nonlinearity parameter B/A).

In [57] it was observed that inaccuracies in the attenuation coefficient slopes

estimates, either positive or negative errors, called excess attenuation, main-

tained a strong linear correlation with the logarithm of the Gol’dberg ratio

which is the ratio of plane wave Gol’dberg numbers [36, p. 483] of an un-

known sample and reference phantom used for calibration. In this chapter,

we aim to verify if such correlation still holds for a much larger set of phan-

toms. We tested 16 numerical phantoms with broader ranges of attenuation

coefficient and nonlinearity parameter B/A (while in [57] only excess atten-

uation was estimated from three phantoms).

Furthermore, an heuristic estimation method for estimation of the nonlin-

earity parameter of unknown media is presented based on the excess atten-

uation values. Hence, providing a potential method for estimating B/A in

pulse-echo mode that can be used as a complementary metric in tissue char-

acterization in vivo or complementing other B/A estimation methods for tis-

sue mimicking phantoms such as the finite amplitude through-transmission
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method (measurements of second harmonic) [40] that cannot be performed

in a pulse-echo setup.

5.2 Methods

In this section, the spectral log difference method used to estimate the at-

tenuation coefficient is described. The detail of the data from sixteen com-

puter simulated phantoms used to calculate excess attenuation coefficients

estimates at a low and high power levels were described. Finally, the deriva-

tion of the B/A estimation approach—based on the excess attenuation—is

provided.

5.2.1 Spectral log difference

The attenuation coefficient vs frequency αS(f) for a sample can be obtained

using power spectra from two windows of an ROI located at different depths

zp and zd, proximal and distal, respectively, with zd > zp, as [45]

α(f) = αref(f) +
1

4(zd − zp)
log

[
S(f, zp)Sref(f, zd)

S(f, zd)Sref(f, zp)

]
, (5.1)

where S(f, zp) and S(f, zd) are the power spectra from the sample at depths

zp and zd, respectively. The terms αref(f), Sref(f, zp) and Sref(f, zd) are the

attenuation coefficient of a well characterized reference phantom and power

spectra from windows located at same depths as in the sample. The reference

phantom is used to compensate for beam diffraction effects of the source (e.g.,

focusing) and the transducer impulse response. The SLD method assumes

that acoustic nonlinearities are negligible; therefore, if a pressure level at

the source was scaled, no change should be observed in the backscattered

RF data received except for the scaling. The attenuation coefficient slope

(ACS) is the slope of a linear fit of α(f) estimated in (5.1) over the analysis

frequency range typically around the nominal frequency of the transducer.
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5.2.2 Numerical simulations of RF data

RF data were obtained using the k-Wave toolbox [47]. Phantom media were

simulated with 3D grids of 236×236×412 elements (20.3×20.3×35.5 mm)

with uniform B/A and attenuation coefficient values but spatially random

distributions of acoustic density (Gaussian distribution with mean 1000 kg/m3

and 2% standard deviation) to generate scattering. Four B/A∈{6, 8, 10, 12}
and four ACS∈{0.3, 0.7, 1.1, 1.5} dB/cm/MHz were used to generate a total

16 numerical phantoms. A focused transducer (f/2) with 1” focal length was

configured in the 3D grid to transmit a 3.5 MHz short Gaussian pulse with

50% fractional bandwidth (−6 dB). The second harmonic distortion was ex-

pected to be well described because 2nd harmonic (around 7 MHz) was under

the 8.7 MHz limit set by the simulation grid size. 100 RF lines (for spectral

averaging) for each phantom were simulated at two different source pressure

levels: 100 kPa and 1.3 MPa. Figure 5.1 shows B-mode images after filtering

out the 2nd harmonic (which occurs for realistic band-limited transducers).

Only minor differences in the images versus pressure level can be observed.

5.2.3 Excess attenuation and B/A estimation

Although, increasing pressure levels apparently will not change B-mode im-

ages significantly, distortions in the frequency domain did occur and can be

captured through the variations in the ACS estimated with the SLD method.

Excess attenuation

Comparison of attenuation coefficient slope estimates of an unknown sample

from acquisitions at pressure levels 100 kPa and 1.3 MPa was computed as

∆sample = ACSsample,1.3MPa − ACSsample,100kPa. (5.2)

Given that 16 phantoms were simulated, we chose one as sample and an-

other as reference. Hence, up to 240 distinct pairs can be obtained. For each

pair, it will estimated the excess attenuation to verify the linear correlation

between excess attenuation and logarithm of Gol’dberg ratio.
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Figure 5.1: B-mode images of the computer simulated RF lines at two different
pressure levels: 100 kPa and 1.3 MPa (normalization with respect to the respective
maxima is performed). The bottom row shows the case of the highest attenuation
phantoms (ACS = 1.5 dB/cm/MHz) with stronger shadowed regions at larger
depths. Visual changes between different pressure levels seem to be generally
unnoticeable except in the case with smaller attenuation ACS=0.3 dB/cm/MHz
and the largest nonlinearity parameter B/A=12 (top right phantom) which is the
phantom expected to have the largest Gol’dberg number values.

B/A estimation

The Gol’dberg number for mono-frequency plane waves is by definition [36,

p. 483]

Γ =
kβM

α
=

ω0P0

ρ0c30

(
1 + B

2A

α0

)
, (5.3)

where k is the wave number, β = 1 + B
2A
, M is the Mach number, α0 is

the attenuation coefficient at the fundamental frequency, P0 is the source

pressure, ρ0 and c0 are the equilibrium density and sound speed, and ω0 is

the angular frequency. Therefore the Gol’dberg ratio would be

Γsample

Γreference

=
1 + 1

2
B
A sample

1 + 1
2
B
A reference

ACSreference

ACSsample

(5.4)

Then, due to the expected quasi-linear relation between the excess atten-
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uation and the logarithm of Gol’dberg ratio, we approximated

∆sample

∆reference2

≈
log10

(
Γsample
Γreference

)
log10

(
Γreference2
Γreference

) , (5.5)

where the “reference2” corresponds to a second reference phantom with

known acoustic properties. Then,

Γsample ≈ Γreference

(
Γreference2

Γreference

) ∆sample
∆reference2

, (5.6)

which can be rewritten as

1 +
1

2

B

A sample
≈
(
1 +

1

2

B

A reference

)(
ACSsample

ACSreference

)
(
1 + 1

2
B
A reference2

1 + 1
2
B
A reference

ACSreference

ACSreference2

) ∆sample
∆reference2

,

(5.7)

from which the B/A of the unknown sample can be computed using true

values of the phantoms (set in the k-Wave toolbox or obtained with through-

transmission methods in experiments [40]). Using any of the 14 remaining

phantoms as “reference2” we can set up to 2260 groups of three distinct

phantoms {sample, reference, reference2} whose RF data can be used in

(5.7). Finally the fractional error (%error) of the B/A estimated with (5.7)

with respect to the B/A true value set in k-Wave was be computed as

%error =

∣∣∣∣∣
B
A sample, estimated

− B
A sample,true

B
A sample,true

∣∣∣∣∣× 100%. (5.8)

The fractional errors are presented for two scenarios. Either the group of

three phantoms—sample, reference, reference2—have different attenuation

coefficient, or the same attenuation coefficient.

5.3 Results

Figure 5.2 shows the excess attenuation estimated by using a source peak

pressure 1.3 MPa instead of 100 kPa in nonlinear media. For 240 pairs of
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sample and reference, the excess attenuation is highly correlated (r=0.96)

with the logarithm of the Gol’dberg ratio between sample and reference,

independently of the specific pair of sample/reference used as long as the

low and high pressure levels remain the same. The largest deviation was

1.39 dB/cm/MHz for the case when the Gol’dberg ratio was 8.7. Symmetry

is observed due to duplication of the phantoms used (when switching a sample

and a reference pair) as the minimum deviation was −1.39 dB/cm/MHz for

the case when the Gol’dberg ratio was 0.11. The results indicate that a larger

mismatch of Gol’dberg numbers between sample and reference resulted in

larger excess ACS estimate. Therefore, whenever a large excess attenuation

was observed, the Γ mismatch was also large.
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Figure 5.2: Excess attenuation estimated by using a source peak pressure
1.3 MPa instead of 100 kPa in nonlinear media. For 240 pairs of sample and
reference the excess attenuation is highly correlated (r=0.92) with the logarithm
of Gol’dberg numbers between sample and reference.

The percent error of estimated B/A were small (≤10%) and high (≥50%)

for 31% and 22% of 1536 cases when the group {sample, reference, and

reference2} had different preset ACS values, as can be observed in the left

boxplot of Figure 5.3. However, when the ACS was the same between the

phantoms and only had mismatches from B/A, the errors estimated were

relatively small (≤10%) and high (≥50%) for 46% and 6% of 96 cases as

78



shown in the right boxplot of Figure 5.3. Figure 5.4 correspond to excess

attenuation measured with pairs sample-reference that share ACS and it was

observed that excess attenuation still is linearly correlated with the logarithm

of Gol’dberg ratio but the assumption of linearity used in (5.5) holds more

strongly when the ACS is shared between the sample and the reference, which

might explain why the errors on the right boxplot of Figure 5.3 are lower.
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Figure 5.3: Boxplot of the estimated fractional error of the B/A estimates. Left
boxplot show the error when phantoms involved in the estimation of Eq. (5.7) are
different whereas right boxplot show the case when phantoms only had distinct
nonlinearity parameters. Errors were potentially larger when the phantoms do not
share the same attenuation coefficient.

5.4 Discussion

This chapter presents a B/A estimation approach that uses the backscattered

signals acquired in pulse-echo ultrasound and a common method for attenu-

ation estimation (SLD) in the frequency domain. The method assumed that

excess attenuation of ACS values at different pressure levels: low (quasi-

linear) and high (nonlinear) was caused by the acoustic nonlinear distortion.

This method used available RF data to compute excess attenuation using
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Fixed ACS = 0.3 dB/cm/MHz

Fixed ACS = 0.7 dB/cm/MHz

Fixed ACS = 1.1 dB/cm/MHz

Fixed ACS = 1.5 dB/cm/MHz

Figure 5.4: Excess attenuation estimated by using a source peak pressure
1.3 MPa instead of 100 kPa in nonlinear media. For pairs sample-reference that
share the attenuation coefficient (either one of the four values available) and only
has different B/A. For these subset with same ACS, the correlation was larger than
0.98, i.e, better than in Figure 5.2 except for ACS=1.5 dB/cm/MHz with r=0.93
probably because excess values were too small and close to zero.

two excitation pressure levels (one low and another high) with an ultrasonic

scanning system.

However, it was observed that to improve the accuracy of this method the

phantoms involved in the estimation should have the same attenuation co-

efficients as the sample. Although for an in vivo application, the phantoms

could have sound speed very close to that of soft tissues, the attenuation

coefficient can be much different than the target tissue. Hence, this method

requires the construction of up to two ad hoc phantoms with similar at-

tenuating properties as the sample tissue and with B/A characterized by a

through-transmission method. Furthermore, even if the attenuation coeffi-

cient was exactly the same, only for about half of these cases the error of B/A

estimated was below 10%. Future work could be to conduct an analysis to

compensate for the non-perfect linear trend evidenced in Figure 5.4 and for

the largest ACS where excess attenuation tend to zero and might be more

sensitive to errors. Also, it should be mentioned that a limitation of this
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approach would be the use of up to two reference phantoms instead of only

one used in other spectral-based QUS methods.

In summary, in this chapter, the findings suggest that excess attenuation

could be used for estimation of B/A in pulse-echo ultrasound providing that

attenuation of media involved have similar attenuation coefficients. Further

research is required to analyze fractional errors when mismatches of atten-

uation coefficient are not zero but still very small and to compensate for

non-perfect linear correlation between excess attenuation and Gol’dberg ra-

tio.
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CHAPTER 6

NONLINEARITY PARAMETER MAPPING
IN PULSE-ECHO USING A REFERENCE

PHANTOM

6.1 Introduction

Estimation of the nonlinearity parameter (B/A) of fluid-like media can be

useful to assess the state of a medium, e.g., for identifying tissue state. Cur-

rent methods to estimate B/A include the thermodynamic approach, the

pump wave method, or the finite amplitude method [29]. In the later, non-

negligible acoustic pressures are applied to a medium and the B/A is esti-

mated by measuring the 2nd harmonic generated at a receiver on the opposite

side of the unknown sample. This separation of transducers makes the ap-

proach not feasible for most clinical applications using ultrasound. Recent

studies have attempted to map B/A in pulse-echo, with efforts focused on

the acquisition of the generated 2nd harmonic signal using dual transduc-

ers [30] or variations of the pump wave method with setups that used two

well-separated frequencies [31]. Unfortunately, none of these methods use

only the fundamental band signal making the translation towards clinical

setups more complicated. The requirement of ad hoc transducers might be

a limiting factor to the expansion of B/A estimation methods in pulse-echo.

An alternative to the measuring of the 2nd harmonic is related to the de-

pletion in the fundamental band signal when comparing backscattered signals

from two different excitation pressure levels: low (quasi-linear propagation)

and high (nonlinear regime). For example, Fatemi and Greenleaf [34] devel-

oped a connection between B/A and the ratio of the backscattered signal

envelopes reflected off wire targets embedded in an assessed medium. The

reflected signals at two excitation pressure levels allowed them to localize re-

gions of high nonlinearity relative to distortion in a known baseline material

(such as water).

In this chapter, similar to Fatemi and Greenleaf [34], we used envelopes
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of RF signals. Examination of the envelopes means that we are looking

mainly at the energy in the fundamental band of the pulse-echo transducer.

However, instead of echoes from wire targets, we used the envelope of full

backscattered RF data from our samples. We developed a method, based on

considering the conservation of energy principle, that related the generation

of the 2nd harmonic to the loss of power at the fundamental band when using

two excitation levels. The energy in the 2nd harmonic in the instantaneous

signal is related to the fundamental through theoretical expressions derived

in Gong et al. [30] for dual transducers. The method presented in this

chapter was performed in time-domain, in contrast to the frequency domain

method developed in Chapter 5. Unlike Chapter 5, in this chapter we were

able also to test the estimation technique in numerical phantoms that have

non-uniform B/A distribution with the aim to reconstruct parametric images

of B/A. An additional set of ex vivo and in vivo samples were also evaluated.

6.2 Time-domain B/A estimation

In this section, a detailed derivation of the time-domain B/A estimation

strategy is presented. We also explain few assumptions regarding the ultra-

sonic backscattered signals—that were followed during validation with data

from computer simulations phantoms, ex vivo, and in vivo—to derive the

proposed technique.

6.2.1 Assumptions of nonlinear propagation in attenuating
tissues

In the presented approach, a number of assumptions on the propagation are

made:

1. The operation of transducer is in the linear regime, e.g., doubling the

voltage input (V0) of the transducer means the output pressure (P0)

of the transducer will double as well: 2 × V0 → 2 × P0. We tested

this assumption in physical experiments by measuring the ultrasonic

output of a transducer at different power levels near the surface of the

transducer before nonlinear distortion would occur.
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2. Most of the energy would be in the fundamental band and 2nd harmonic

due to tissue attenuation of harmonics 3rd, 4th, etc. This assumption

was tested by quantifying the energy in the higher harmonics in media

having realistic values of attenuation and B/A via simulation.

3. The lowest excitation results mainly in generation of fundamental linear

response. This assumption was tested in multiple works throughout

this thesis. Our low signal values did not result in significant nonlinear

distortion.

4. Transducers filter out the second harmonic to have a backscattered

envelope primarily at the fundamental. This assumption was validated

by examining the impulse response of the transducers used in the work.

5. Scattering is weak so the path back to the transducer does not result

in additional nonlinear distortion but only attenuation of the signal.

Backscatter from speckle is usually more than 40 dB down from the

main forward propagating wave making the backscattered signal less

than the low power signal used as a reference.

6. Plane wave on transmit can be conducted using the fundamental band-

width. As will be observed later, the wave propagation from the trans-

ducers is only approximately planar. Variations from the plane wave is

a source of error in the estimates of B/A using the proposed technique.

6.2.2 Derivation of the B/A with a reference phantom

An ultrasonic transducer operating in pulse-echo mode receives RF backscat-

tered signals. These signals, according to (4), are measured at the fundamen-

tal band for an excitation level i, P
′
1i. If we measure at a low excitation level

1,

P
′

11(z) =
γ1(z)

z
P11(z) exp

(
−
∫

α1(z)dz

)
, (6.1)

where P11 is the incident pressure at depth z. Then the pressure measured at

the transducer can be related to the pressure associated with the fundamen-

tal at the depth z, with estimated attenuation α1(f0, z) and with reflection

coefficient of γ1 associated with the fundamental band. Likewise, at higher
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excitation level 2,

P
′

12(z) =
γ1(z)

z
P12(z) exp

(
−
∫

α1(z)dz

)
. (6.2)

At depth z, the total energy is related to P 2, and using the assumption

(2),

P 2
Tot,i =

∞∑
n=1

P 2
ni ≈ P 2

1i + P 2
2i (6.3)

where P 2
ni represents the pressure squared of the n-th band. In this equation,

only the fundamental and second harmonic are assumed to contribute to

the total energy in the backscattered signal. In subsequent derivations, we

‘remove’ the depth dependence of some variables to keep the descriptions

tidy.

For a low excitation level, i=1, the total pressure at some depth z is

P 2
Tot,1 ≈ P 2

11 + P 2
21 ≈ P 2

11. (6.4)

For a higher excitation level, i=2, which has a higher voltage excitation by

a dimensionless factor υ,

P 2
Tot,2 ≈ P 2

12 + P 2
22 ≈ υ2P 2

Tot,1. (6.5)

This approximation is not exact due to attenuation of the second harmonic

leading up to this depth but is approximately true. This yields the equality,

P 2
12 + P 2

22 ≈ υ2P 2
11. (6.6)

Rearranging,

P 2
22 ≈ υ2P 2

11 − P 2
12. (6.7)

Plugging in (6.1) and (6.2),

P 2
22 ≈

(
υ2P

′2
11 − P

′2
12

)( z

γ1

)2

exp

(
2

∫
α1dz

)
. (6.8)

At a distance z from the source, the reflected echo signal for the second

harmonic for excitation level 2 satisfies (according to Eq. (11) from Gong et
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al. [30]),
dP22

dz
= K(z)P 2

12 − α2(f2, z)P22 (6.9)

or in terms of the pressure measured at the transducer,

dP22

dz
= K(z)P

′2
12

(
z

γ1
exp

(∫
α1dz

))2

− α2(f2, z)P22, (6.10)

where K(z) = πf0
ρ0c30

β and αm(fm, z) is the attenuation coefficient at the fun-

damental or second harmonic at depth z with m ∈ {1, 2}, respectively. The
modified nonlinearity parameter β, i.e., the Beyer parameter, is related to

the nonlinearity parameter B/A as β = 1 + B
2A
. Plugging (6.8) into (6.10)

yields

d

dz

((
υ2P

′2
11 − P

′2
12

) 1
2 z

γ1
exp

(∫
α1z

))
=

ω

4ρ0c30
βP

′2
12

(
z

γ1

)2

exp

(
2

∫
α1z

)
−

α2(f2, z)

((
υ2P

′2
11 − P

′2
12

) 1
2 z

γ1
exp

(∫
α1z

))
.

And solving for β

β =
4ρ0c

3
0

(
d
dz

+ α2

) ((
υ2P

′2
11 − P

′2
12

) 1
2 z

γ1
exp

(∫
α1dz

))
ωP

′2
12

(
z
γ1

)2
exp

(
2
∫
α1dz

) .

To compensate for the γ1 terms, a similar expression can be obtained using

a reference phantom with approximate similar density and sound speed.

β

βref

=

(
d
dz

+ α2

) ((
υ2P

′2
11 − P

′2
12

) 1
2 z

γ1
exp

(∫
α1z
))

(
d
dz

+ α2,ref

)((
υ2P ′2

11,ref
− P ′2

12,ref

) 1
2 z

γ1,ref
exp

(∫
α1,refdz

))

·
P

′2
12,ref

(
z

γ1,ref

)2
exp

(
2
∫
α1,refdz

)
P

′2
12

(
z
γ1

)2
exp

(
2
∫
α1dz

) .
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Furthermore, assuming γ1,ref, i.e., for the reference phantom is independent

of the depth, then

β

βref

=

(
d
dz

+ α2

) ((
υ2P

′2
11 − P

′2
12

) 1
2

γ1,ref
γ1

z exp
(∫

α1z
))

(
d
dz

+ α2,ref

)((
υ2P ′2

11,ref
− P ′2

12,ref

) 1
2
z exp

(∫
α1,refdz

))
·
P

′2
12,ref

P
′2
12

·
(

γ1
γ1,ref

)2

·
exp

(
2
∫
α1,refdz

)
exp

(
2
∫
α1dz

) ,

(6.11)

i.e., β from an interrogated medium can be estimated from echo signals in

the time-domain. The only remaining term is γ1/γ1,ref. For the reference, at

excitation level 1,

P
′

11,ref
=

γ1,ref

z
P 11,ref exp

(
−
∫

α1,refdz

)
. (6.12)

Noting that P 11,ref ≈ P11 exp
(∫

(α1 − α1,ref)dz
)
gives

P
′

11,ref
=

γ1,ref

z
P 11 exp

(∫
(α1 − 2α1,ref)dz

)
. (6.13)

Dividing (6.13) by (6.1), and rearranging to solve for γ1/γ1,ref gives,

γ1
γ1,ref

=
P

′

11

P ′

11,ref

exp

(
2

∫
(α1 − α1,ref)dz

)
. (6.14)

Replacing (6.14) in (6.11) will finally provide an estimate of β, from which

we can derive the B/A of the unknown sample.

6.3 Analysis in computer simulations

The B/A estimation method was tested using the nonlinear acoustics sim-

ulation MATLAB package k-Wave [47]. RF data from numerical phantoms

were computed using a linear array source/receiver of 128 elements with di-

mensions of 6 mm by 38.4 mm. In transmission, all elements simultaneously

send a broadband pulse to mimic the plane wave acquisition approach [65].

The dimensions chosen for the linear array were based on a L9-4/38 trans-

ducer (BK Ultrasound, Peabody, MA) which also has a geometric focus at
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19 mm (elevation focusing). In general, the elevation focusing was included

in our simulations (unless otherwise stated). A 3D random scattering media

(random density values with mean 1000 kg/m3 and 2% standard deviation)

was excited with a broadband, 50% bandwidth Gaussian pulse centered at

5 MHz. Two peak pressures of the pulse were tested: low pressure (100 kPa)

and high pressure (1 MPa). Hence, the scaling factor was υ = 10. The values

of B/A and attenuation were selected for the simulations for either sample

or reference and these were varied to test the algorithm.

6.3.1 Third harmonic vs second harmonic

To verify that most of acoustic energy is in the fundamental band and 2nd

harmonic, assumption (2), we located receivers in the simulated nonlinear

and attenuating medium with B/A=6 and attenuation 0.5 dB/cm/MHz. Fig-

ure 6.1 shows waveforms valid up to the third harmonic at the high pressure

level 1 MPa at several depths. There is a clear distortion of the waveform at

20 and deeper even in an fairly attenuating medium.

The power spectra of these waveforms, normalized to their fundamental

maxima, is shown in Fig. 6.2. There are non-negligible 2nd and 3rd har-

monics at depths 20, 30, and 40 mm. At these depths, the 2nd and 3rd

harmonic are roughly −13 dB and −22 dB, respectively, below the funda-

mental maximum. Hence the 3rd harmonic is roughly −9 dB below the 2nd

harmonic. In the propagation back to the source, the 3rd harmonic will be

further attenuated by about 2.5 dB/cm more than the 2nd harmonic. There-

fore, the signals received by transducer were mainly in the fundamental band

and the 2nd harmonic (>14 dB above the 3rd harmonic). At the low pressure

level, 100 kPa, the 2nd and 3rd harmonics were negligible in the same media

(>40 dB below the fundamental band), hence, the assumption (3) can be

considered appropriate.

6.3.2 Elevation focusing vs non-elevation focusing

The geometrical properties of the elements of a linear array transducer de-

termine the elevation focusing. This implies a deviation from the plane wave

assumption (6). We assessed the impact of the 19 mm elevation focusing
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(a) 10 mm (b) 20 mm (c) 30 mm (d) 40 mm

Figure 6.1: Waveform of the simulated pulse at different depths for a nonlinear
(B/A=6) and attenuating medium (0.5 dB/cm/MHz). Notice that the maximum
distortion occurs around the elevation focusing 19 mm.

Figure 6.2: Power spectra of the incident waveforms from Fig. 6.1 normalized at
their maxima of the fundamental band. At 10 mm, the 2nd harmonic is about −25
dB from the fundamental. At further depths, there is non-negligible 2nd and 3rd
harmonic. However, it is expected the 3rd harmonic received by backscattering
will be −14 dB or even smaller than the 2nd harmonic.

versus non-elevation focusing case. The sample media was a heterogeneous

phantom with a background B/A=6 and an 18 mm diameter circle inclusion

(B/A=9) to simulate an abnormal fatty region. In the reference, the B/A=6,

which is a typical value for most reference phantom materials. Both sample

and reference were set to be attenuating media with the same attenuation co-

efficient 0.5 dB/cm/MHz. The excitation levels were set at pressures 100 kPa

and 1 MPa, hence, a scaling factor υ = 10. In reception, beamforming was

performed with a dynamic aperture given by a constant f-number that, in

our case, was chosen to be 3 [65]. Preprocessing by filtering-out the second

harmonic signal was also performed for each RF line with a passband filter in
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the range 4–6 MHz to mimic the filtering effect of the harmonics of backscat-

tered signals that occur in reception by real transducer. Figure 6.3 shows

the B-mode images of the numerical phantom and their inclusion location is

depicted in a yellow circle (centered at depth 22.5 mm). The conventional B-

mode imaging does not capture the fact that the circular inclusion (B/A=9)

had 50% larger nonlinearity parameter than the background (B/A=6).

(b) B-mode image 
(elevation focusing).

(a) B-mode image
(no elevation focusing)

Figure 6.3: B-mode images from a numerical phantom with non-uniform B/A.
The inclusion depicted in yellow had B/A=9, whereas the background had B/A=6.
The B-mode images do not capture changes of higher nonlinearity parameter
within the inclusion despite being 50% larger nonlinearity parameter. (a) No
elevation focusing was assumed. (b) Including 19 mm elevation focusing.

On the other hand, Figure 6.4 shows the parametric image of B/A obtained

with the proposed method. In the region before the inclusion (depth<13 mm),

the map is relatively uniform with values close to the expected B/A=6. In

the lateral region of the phantom outside the inclusion there were no mean-

ingful changes and a uniform B/A≈6 remained until the bottom of the im-

age. However, in the inclusion region, we observed changes of the B/A map.

Qualitatively, in both elevation focusing cases (with or without), the highly

nonlinear region is followed by a shadowing effect even at depths past the

inclusion location where estimated B/A values were larger than the expected

B/A=6. From this finding, it should be noted that the obtained parametric

images have a cumulative averaged B/A nature versus depth. Nevertheless,

it was also found that including elevation focusing created just slightly larger

estimates but is able to capture nonlinear regions reasonably well. Hence,

we continue with the rest of this chapter using simulations that included
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elevation focusing because it more closely mimics the realistic scanning con-

figuration.

(a) B/A map estimated
(no elevation focusing)

(b) B/A map estimated
(elevation focusing)

Figure 6.4: B/A parametric images constructed with our time-domain reference
phantom approach (note: for actual reconstruction smoothing with a 30 wave-
length moving average filter in the axial direction) was often used). The para-
metric image is able distinguish the inclusion with larger B/A. Notice that the
obtained parametric images have a cumulative averaged B/A form. (a) Without
elevation focusing. (b) Including elevation focusing.

(a) B/A pro�le
(no elevation focusing)

(b) B/A pro�le
(elevation focusing)

Figure 6.5: B/A vs depth at lateral positions 0 (red), and −12 mm (black) in
Fig. 6.4. In dashed are the cumulative averaged B/A at each depth obtained after
averaging the local values of the ground truth B/A map. (a) Without elevation
focusing. (b) Including elevation focusing.

91



6.3.3 Uniform B/A sample

Next, we tested a sample that had uniform B/A much larger than the B/A

of the reference phantom. In the simulations, the sample media was a homo-

geneous phantom with B/A=11 to represent a large fatty region across all of

the field of view. In the reference, the B/A=6. Both sample and reference

were set to have same attenuation coefficient 0.5 dB/cm/MHz. Figure 6.6

shows the parametric image obtained with the presented approach. It should

be noted that the edge effects from a finite aperture source are perceived in

the reconstructed B/A image. Figure 6.7 shows a profile of B/A versus depth.

The B/A follows the ground truth value (B/A=11) with less than 10% error

until 35 mm depth. At 40 mm and deeper depths, the values of B/A were

slightly overestimated up to errors of about 20%.

Homogeneous sample 
B/A=11

Figure 6.6: B/A parametric images of an homogeneous sample with large
B/A=11. The parametric image obtained is fairly uniform except towards the
lateral regions. The plane wave assumption is less in the lateral regions due to
edge artifacts.

6.3.4 Incorrect assumptions of attenuation coefficients

In Eq. (6.11), we require values of α1 (attenuation coefficient at the fun-

damental band) and α2 (attenuation coefficient at the 2nd harmonic). In

section 6.3.2, we used the actual values of attenuation coefficients set in k-
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B/A pro�le

Figure 6.7: B/A vs depth at lateral positions 0 (middle of the image in Fig. 6.6).
Notice that for a homogeneous sample, the cumulative averaged values and the
local values should be constant and equal to B/A=11.

Wave with frequencies of 5 and 10 MHz for α1 and α2, respectively. However,

in clinical setups the values of α1 or α2 estimated through spectral methods

could be biased due to the stochastic nature of backscattering signals (see

[45]) or biased due to nonlinear effects (as shown in Chapter 3). Therefore,

we tested cases where the values of α1 or α2 used in Eq. (6.11) were inac-

curate by ±10% or ±20%, and assessed the impact of such incorrect values

on the estimated B/A maps. For this section, we used the simulated data

from section 6.3.2 that included elevation focusing. Figure 6.8 shows the es-

timated B/A maps using erroneous values of α1 or α2 in Eq. (6.11) either by

underestimation (b-e) or overestimation (f-i). There is a positive correlation

between B/A bias in the parametric maps and biases of α1 or α2. Also, it

can be observed that bias of α2 could bring more errors than bias of α1 in

the B/A maps reconstructed.

6.3.5 B/A local maps

In our derivation of B/A, the values apparently include a nonlinear effect ac-

cumulated and averaged versus depth in the propagation path to and certain

depth. Assuming the effective B/A estimated is a cumulative average of the

local B/A values, then a possible mapping of the the local ACS maps to an

averaged cumulative B/A as the ones we obtained can be written as
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(e) 2nd harmonic ACS:
-20%

(c) 2nd harmonic ACS:
-10%

(i) 2nd harmonic ACS:
+20%

(g) 2nd harmonic ACS:
+10%

(d) Fundamental band ACS:
-20%

(b) Fundamental band ACS:
-10%

(h) Fundamental band ACS:
+20%

(f ) Fundamental band ACS:
+10%

(a) No bias in ACS

Figure 6.8: B/A estimated using erroneous values of α1 or α2 in Eq. (6.11)
either by underestimation (b-e) or overestimation (f-i). The importance of accurate
values of α1 or α2 is observed in the bias of the resultingB/A maps. There is a
positive correlation between B/A bias in the parametric maps and biases of α1 or
α2. The same percentage of bias in α2 more error in the B/A estimates than bias
in α1.
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(6.15)

where H is the length of a B/A column vector (i.e., in the axial direction).

The expression in (6.15) can be repeated sequentially to obtain all B/A

columns and then a 2D map. To solve (6.15) we can use the linear least

squares solution. For ill-conditioned inverse problems, a regularization ap-

proach such as Tikhonov regularization is a fast way to smooth the linear

least squares solution if needed [66, Chapter 4].

Figure 6.9 shows the B/A parametric images estimated after solving the

inverse problem in Eq. (6.15). The least squares solution and Tikhonov regu-

larization results with regularization parameters 0.0002, 0.01, and 0.05 show

parametric images without the shadowing effect observed before in Fig. 6.4.

Therefore, including a degree of smoothing in the solution of the linear map-

pings is critical. Figure 6.10 show the B/A vs depth from two lateral positions

(one of them crossing the large B/A inclusion). The Tikhonov regularization

with regularization parameter 0.01 better balanced the trade-off between ac-

curacy and precision. We added a moving average of about 30 wavelengths

axially in the the ground truth local B/A values to match the smoothing

performed in the envelopes utilized in Eq. (6.11).

6.4 Experiments ex vivo and in vivo

To complement the validation of the proposed B/A estimation method, two

experimental data sets were used: first, data from a physical phantom with

non-uniform distribution of B/A having an ex vivo highly nonlinear fatty

tissue embedded in an agar and graphite matrix; and second, data acquired

in vivo from a “uniform” region of an animal liver.
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(a) Linear least squares 
solution

(b) Tikhonov regularization
Reg. parameter: 0.002

(c) Tikhonov regularization
Reg. parameter: 0.01

(d) Tikhonov regularization
Reg. parameter: 0.05

Figure 6.9: Local values of B/A estimated after further solving an inverse prob-
lem in Eq. (6.15). (a) The linear least squares solution. (b-d) Tikhonov regular-
ization with regularization parameters 0.0002, 0.01 and 0.05. The local B/A maps
does not present the shadowing effect observed in Fig. 6.4

6.4.1 Physical phantom with inclusion

A reference phantom was prepared using a mixture of 400 mL deionized/degassed

water, 12 g of bacteriological agar (Sigma-Aldritch, St. Louis, MO), and

15 g of graphite powder (John Deere, Moline, IL). The speed of sound

and attenuation coefficient were estimated to be 1490.2 m/s and α(f) =
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(a) B/A pro�le : Linear least 
squares solution

(b) Tikhonov regularization
Reg. parameter: 0.002

(c) Tikhonov regularization
Reg. parameter: 0.01

(d) Tikhonov regularization
Reg. parameter: 0.05

Figure 6.10: B/A vs depth at lateral positions 0 (red), and −12 mm (black)
in Fig. 6.9. In dashed are the local B/A. (a) The least squares solution. (b-d)
Tikhonov regularization with regularization parameters 0.0002, 0.01 and 0.05.

0.28f 1.34 dB/cm, respectively (estimated with insertion loss techniques in the

range 4-11 MHz at room temperature). The B/A of similar graphite/agar

mixture has been found in the literature to be 5.4±0.4 measured at 22 ◦C.

These acoustic parameters were used in Eq. (6.11). In the sample phan-

tom, a fatty porcine tissue (pork belly) was used as an inclusion with larger

B/A than the background material (the same mixture used in the reference

phantom preparation). The porcine tissue speed of sound and attenuation

coefficient were estimated at 1532.7 m/s and α(f) = 1.95f 1.16 dB/cm, respec-

tively (estimated with insertion loss techniques in the range 1.5-6 MHz at

room temperature). This speed of sound is in agreement with the value 1530

m/s reported for porcine back fat in Niñoles et al. [67] measured at room

temperature. The attenuation values of porcine were larger than reported in
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the literature in Koch et al. [68] for subcutaneous fat tissue. However, in [68]

the temperature was 38 ◦C and an inverse correlation between attenuation

coefficient and temperature in fatty tissues [69] can explain this mismatch.

For porcine fat the B/A has been found in the literature to be 9.6 measured

at 24 ◦C [70].

The RF acquisition procedure was performed with an L9-4/38 transducer

(BK Ultrasound, Peabody, MA) driven by a Vantage 256 system (Verason-

ics Inc., Kirkland, WA). RF data frames were acquired using a plane wave

approach without angular compounding [65]. Two power levels were trans-

mitted with a broadband excitation signal to the transducer having an input

voltage of amplitude 4 V (low energy level) followed by an input voltage of

amplitude 40 V (high energy level). Although the nominal scaling factor

(required in Eq. (6.11)) was ν=10, the actual scaling factor was measured

using a needle hydrophone (Precision Acoustics Ltd., UK) very close to the

surface of the center of the transducer and was found to be ν=10.98.

Figure 6.11(a) shows the B-mode image from a phantom embedded with

an ex vivo fatty sample. Figure 6.11(b) shows a picture from the actual fatty

chunk embedded in the agar/graphite background. Figure 6.12 shows the

B/A map estimated from the phantom embedded with the ex vivo sample.

Two cases were tested: unknown attenuation of the inclusion, therefore,

assigning it the same attenuation coefficient as the background; or by using

the calculated value from the fatty piece using an insertion-loss method.

In the first case, an underestimation of B/A in the inclusion region was

observed. For the second case an overestimation of the B/A in the fatty

chunk was observed. We found in section 6.3.4 that large errors in the B/A

maps could be observed when the values of attenuation coefficient used in the

estimate of B/A deviated 10-20% from the actual values. Therefore, these

results suggest that the values used for α1 and α2 in Eq. (6.11) might be

too large. Additionally, the center frequency of the broadband pulse used

in the experiments will downshift due to frequency-dependent attenuation.

The attenuation values used in Eq. (6.11) are assumed to be the values at

the center frequency of the pulse. Therefore, the change in instantaneous

center frequency versus depth is not taken into account with Eq. (6.11) and

could result in the overestimation of B/A of the fatty chunk in Fig. 6.12.
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(a) B-mode image of the 
sample ex vivo

(b) Picture of the fatty 
sample ex vivo

Figure 6.11: (a) B-mode image from a phantom embedded with a fatty pork
belly sample. (b) A picture scaled to (a) of the actual fatty pork sample to be
embedded in the phantom (made of graphite/agar mixture).

6.4.2 In vivo assessment

In vivo soft tissue data were acquired according to a protocol approved by the

University of Illinois at Urbana-Champaign Institutional Animal Care and

Use Committee (IACUC protocol 20087). Data were taken from a healthy

liver in a New Zealand White rabbit (Charles River Laboratories, Wilming-

ton, MA) while the rabbit was anesthetized with 2% isoflurane. The hair on

top of the base of the rib cage was shaved and ultrasonic gel was applied to

have better contact between skin and transducer to perform the ultrasonic

data acquisition. Once the data acquisition was completed, the rabbit was

euthanized with concentrated CO2 while under anesthesia.

RF data acquisition was performed using the same setup as in section 6.4.1.

The movement artifacts between acquisitions at the two different power lev-

els was minimized by doing a sequential acquisition sequence in the Vantage

system (time between acquisitions was on the order of milliseconds). We used

a reference phantom with sound speed close to that of soft tissues. Specifi-

cally, the reference phantom used for the in vivo assessment were made from

agarose, n-propanol, condensed milk, and water with glass bead scatterers

uniformly placed in the phantom spatially at random. The speed of sound

of this phantom was around 1540 m/s, which is close to the speed of sound

99



(a) B/A map estimated ex vivo.  
Porcine attenuation coe�cient was 

set equal to the background, 0.28f1.34.

(b) B/A map estimated ex vivo.  
Porcine attenuation coe�cient was 

set to the estimated 1.95f1.16.

(c) Same as (b) but using a larger 
dynamic range.

Figure 6.12: B/A map of the fatty sample ex vivo. (a) When the attenuation
of the inclusion was “unknown” and set to the same attenuation coefficient as the
background, 0.28f1.34. (b) When the attenuation coefficient of the inclusion was
set to the value 1.95f1.16. (c) B/A map similar as (b) but using a larger dynamic
range still show a strong overcompensation.

in soft tissues in vivo [3], whereas the speed of sound of rabbit liver is 1575

m/s at 26 ◦C according to literature values [71]. The attenuation of this

phantom was α(f) = 0.79f 1.05 (in the range of 4.8-8 MHz) and B/A=6.8,

measured in the laboratory using the through-transmission method [40]. The

attenuation coefficient of rabbit liver has been found in the literature to be

0.71 dB/cm/MHz [72] at 37 ◦C. This value was used to estimate α1 and α2

needed in Eq. (6.11).

Figure 6.13 shows the B-mode image of the rabbit liver in vivo. Fig-

ure 6.13(b) shows some anatomical parts of the liver like the diaphragm

or the portal vein and the fairly uniform region selected to calculate B/A
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statistics (mean and standard deviation). We tried to exclude the portal

vein because of its small SNR.

(a) B-mode of the rabbit liver. (b) B-mode of the rabbit liver. 
Region of analysis for statistics. 

Figure 6.13: (a) B-mode image of the rabbit liver in vivo (50 dB dynamic range).
(b) Same as (a) but depicting the portal vein (red), diaphragm (yellow), and the
region of analysis used for statistics calculations of the B/A of the rabbit liver in
white dashed.

Figure 6.14(a) shows the estimated B/A map with the cumulative aver-

aged form. Figure 6.14(b) shows the local B/A values obtained after solving

the inverse problem with a Tikhonov regularization parameter 0.01. The

mean and standard deviation of the B/A inside the dashed box regions were

B/A=7.1±1.6 and B/A=5.0±3.9 for Figs. 6.14(a) and (b), respectively. It

should be noted that solving the inverse problem to calculate the local values

of B/A might increase the noise of the cumulative averaged B/A map by the

nature of the derivative operation. We did not find in the literature the B/A

of rabbit liver, but the B/A of human liver is around 6.75 [26] measured

at 37 ◦C, and for bovine liver the value is 7.25 [73] measured at 30 ◦C. In

our case assuming the region in the liver is uniform, the local values of B/A

can be approximated to our estimations of B/A cumulative averaged. So we

could say the B/A of the liver was 7.1 which is in the range of the B/A of

other mammalian species.
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(a) Estimated B/A with our 
proposed method.

(b) Local values of B/A after 
solving the inverse problem.

Figure 6.14: (a) B/A map of the cumulative averaged map overlaid in a B-mode
image. (b) B/A map of local values after solving Eq. (6.15). The mean ± standard
deviation of the regions within the dashed boxes were 7.1±1.6, and 5.0±3.9, for
(a) and (b), respectively.

6.5 Discussion

In this chapter, we presented a time-domain method able to derive paramet-

ric images of the B/A in nonlinear, scattering, and lossy media using the

conservation of energy principle as a means to obtain an implicit value of

the 2nd harmonic. The approach also required a reference phantom. Our

approach differs from state-of-the-art methods in that we use only the funda-

mental band acquisition signals (no dual transducers, pump wave setups or

embedded wire targets). The technique provided a cumulative averaged B/A

rather than being a local representation of the B/A. For regions with large

B/A, a shadowing effect was observed similar to what attenuation causes in

B-mode images. In a previous work of Fatemi and Greenleaf [34], a similar

shadowing effect was observed. This was explained by the cumulative nature

of nonlinearity. The results in simulations showed that some assumptions,

like the plane-wave assumption, are flexible and including elevation focusing

still produce reasonable accurate results.

Accurate values of attenuation coefficients should be known a priori to be

used as input in Eq. (6.11). Errors of 10% in attenuation values utilized could

be significant and reduce the accuracy of the estimated B/A maps. Accurate

values of α2 may not be available for many interrogated tissues. While liter-

ature values can be used as a starting point for attenuation estimates, they

will often be inadequate. This is especially true when attempting to assess

102



a disease state of tissue where attenuation might be a marker for disease.

Therefore, when possible, it would be useful to estimate the attenuation of a

medium based on RF backscatter techniques like the spectral log difference

(SLD) method.

The theoretical framework developed here required the use of attenuation

coefficients at two frequencies: fundamental band (f0) and second harmonic

(f2 = 2f0) in Eq. (6.11). The frequencies used in the equations are assumed to

be the center frequencies of the ultrasonic pulse being propagated. However,

the pulses used in both simulation and experiment were broadband rather

than narrow-band. In a lossy media, the center frequency of the pulse shifts

to a lower value as the pulse propagates. Therefore, keeping an unadjusted

value of the center frequency in Eq. (6.11) may lead to errors in the estimate

of B/A. The fact that this center frequency would depend on depth needs to

be further evaluated especially for highly attenuating medium like the porcine

sample we used (αpork around 2 dB/cm/MHz). Using frequency values that

change with depth might explain why at deeper depths, it was common to

find overestimated values of B/A.

The change in the center frequency of the pulse can be estimated versus

depth, allowing a more correct estimate versus depth. For example, assum-

ing a Gaussian pulse with 50% bandwidth the center frequency downshift

versus depth (z) is f0,z = f0−0.18f 2
0α0z [74]. In Fig. 6.15 we reexamined the

data from the ideal case where sample and reference share the same atten-

uation and uniform media. Performing the correction did not substantially

change the estimated B/A map. However, the compensation of the downshift

is dramatic for the case of having mismatches in attenuation of the sample

and reference phantom. Without compensation, the B/A map is overcom-

pensated at larger depths similar to what we observed in the B/A map of

phantom with the fatty ex vivo tissue.

Next, we tried to do a similar compensation for the phantom containing

the ex vivo sample. In this case, f0,z = f0 − 0.26f 2
0α0z, which is slightly dif-

ferent than the correction from the simulation case because the bandwidth

in the waveform in the experiments was 60% instead of 50%. Moreover,

for a nonuniform attenuating medium (e.g., with an inclusion), it should be

noted that in the frequency correction expression the term α0z works only

when there is no change in attenuation axially; otherwise, an integral term

of the form
∫
α(z)dz should be considered. The frequency compensation is
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(c) Sample: B/A=11, AC=0.5 dB/cm/MHz.
Reference: B/A=6, AC=0.35 dB/cm/MHz
Frequency downshift NO compensated

(d) Sample: B/A=11, AC=0.5 dB/cm/MHz.
Reference: B/A=6, AC=0.35 dB/cm/MHz

Frequency downshift Compensated

(a) Sample: B/A=11, AC=0.5 dB/cm/MHz.
Reference: B/A=6, AC=0.5 dB/cm/MHz

Frequency downshift NO compensated

(b) Sample: B/A=11, AC=0.5 dB/cm/MHz.
Reference: B/A=6, AC=0.5 dB/cm/MHz

Frequency downshift Compensated

Figure 6.15: Analysis of downshift compensation in homogeneous media for
B/A map reconstruction. The downshift is critical when phantoms do not share
the attenuation coefficient (c-d) compared to when the sample and reference share
the attenuation coefficient (a-b).

required to have linear frequency dependence; thus, for this sample all the

attenuations were approximated with a linear frequency dependence result-

ing in 0.55 dB/cm/MHz for the background and 2.45 dB/cm/MHz for the

ex vivo sample. Figure 6.16(a) shows the reconstruction without frequency

compensation, which is basically the same as Fig. 6.12(b). Figure 6.16(b)

shows the reconstruction including the frequency correction compensation.

Figure 6.16(c) shows the B-mode image of the sample to note the location

of the actual inclusion. The frequency correction reduces the overestimation

noted in 6.16(a), until around 22 mm depth in the phantom. At much larger
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depths the B/A map underestimates the values of B/A. In Fig. 6.16(d) we

show the estimated downshift in the center frequency of the pulse corrected

vs location in the sample for the 2nd harmonic (note that this should be

around 10 MHz close to the surface). In the middle of the chunk of pork

the frequency downshifted to negative values (black zones in 6.16(d)). For

our purposes, that would mean that it is better not arrive at any conclu-

sions regarding the B/A map for those black regions. It would be possible to

truncate any negative frequency to zero, but still any conclusion regarding

that region should be questioned. If possible, we recommend avoiding media

with large attenuation coefficients. In the phantom with the ex vivo sample,

the attenuation of the fatty pork was very large at room temperature, but

in vivo fat tissue has a lower attenuation coefficient that would prevent the

extreme downshifting observed.

The results from the in vivo scans provided good agreement of B/A with

values of other mammalian species (human and bovine) if we use the cu-

mulative averaged B/A map. On the other hand, the standard deviation of

the local B/A map was almost 60% of the mean, making those statistics less

useful for tissue characterization. Therefore, it is better to use cumulative

values if a priori knowledge of uniformity of the B/A in fairly large tissues

like the liver is available, as was shown in the simulations results in section

6.3.3.
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(a) Ex vivo sample.
Frequency downshift 

NO compensated

(b) Ex vivo sample.
Frequency downshift 

Compensated

(d) 2nd harmonic 
corrected frequency

(M
H

z)

(c) B-mode image of the 
sample ex vivo

Figure 6.16: Frequency downshift compensation in the ex vivo sample for B/A
map reconstruction. (a) Without compensation there is a clear overestimation of
B/A values. (b) Including the compensation up to 22 mm depth works well. (c)
The B-mode of the sample to have an idea of the location of the fatty region in the
phantom. (d) Compensated frequency of the 2nd harmonic shows that midway
through the fatty region, theoretically, the 2nd harmonic component downshift to
negative frequencies. For our purposes, it would be convenient to exclude such
area of any analysis or conclusion.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary and contributions

In this dissertation, we explored connections between spectral-based quanti-

tative ultrasound (QUS) parameters and the nonlinearity parameter, B/A.

We began by quantifying adverse effects of acoustic nonlinearity on the ac-

curacy of estimation of two prevalent spectral-based QUS parameters: the

backscatter coefficient (BSC) and the attenuation coefficient (AC) in Chap-

ters 2 and 3, respectively. From Chapter 2, we found that nonlinear distortion

in the fundamental band can deteriorate the accuracy of the BSC estimates

when using a calibration medium like water that has very low attenuation

(planar reflector BSC method) compared to a more lossy calibration media

(reference phantom method). The results also indicated that parameters de-

rived from the BSC, e.g., the effective scatter diameter, could be inaccurate

due to the effects of nonlinear distortion. These results provide important

insight in that the assessed media and the media used for the calibration

should have Gol’dberg ratios of close to unity to provide estimates with min-

imal distortion due to nonlinear propagation. For this reason, one could use

the Gol’dberg number ratio between the sample and calibration medium as

a potential metric to determine accuracy of the QUS estimates. This finding

was also confirmed in Chapter 3 when estimating another QUS parameter,

the attenuation coefficient. The use of an in situ calibration approach using

a target embedded in the interrogated medium was presented in Chapter 4

with a theoretical Gol’dberg ratio equal to 1. The accuracy of the in situ

calibration was expected to be less affected by nonlinear distortion and was

observed to outperform even the reference phantom approach if the objective

was to minimize the acoustic nonlinear distortion. However, an in situ cali-

bration might not be possible in many clinical scenarios; therefore, a reference
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phantom providing the Gol’dberg ratio between sample and reference close

to unity would be a good alternative to obtain accurate spectral-based QUS

parameters when considering the effects of acoustic nonlinear distortion.

Based on the findings in Chapters 2 and 3, an heuristic approach to

estimating B/A was explored. The reasoning was the following: if mis-

matches in Gol’dberg numbers produced an excess attenuation when compar-

ing QUS estimates obtained at low source pressures (quasi-linear regime) and

high source pressures (nonlinear regime), measurements of excess attenuation

could reveal relevant information about the quantification of the Gol’dberg

ratio, and subsequently, the B/A of an unknown media could be estimated.

This approach was explored in Chapter 5, where the B/A was estimated but

still required calibration data from two additional reference phantoms. The

accuracy of B/A estimation was reasonably good (%error<10%) for about

half of the simulated sets of phantoms, when the phantoms had similar at-

tenuation coefficient values. However, the requirement that this method use

up to two reference phantoms is an obstacle to practical implementation and

also the variance of spectral-based approaches for AC estimation might limit

the construction of a parametric image. For these reasons, we developed an

alternative B/A estimation method in the time-domain in Chapter 6.

Our time-domain approach used the conservation of energy principle to

quantify implicitly the instantaneous energy of the 2nd harmonic in a non-

linear, attenuating, and scattering media. The fact that we used the en-

velopes of RF signals instead of deriving spectral-based parameters made it

possible to map the B/A and create a parametric image of the B/A. Cali-

bration with a reference phantom was still required but only one reference

phantom instead of two reference phantoms (i.e., the method described in

Chapter 5). The change in the energy of the RF signals versus depth was

calculated to derive B/A estimates versus depth. The B/A parametric image

was able to map uniform and nonuniform B/A media. The method provided

a cumulative depth averaged value of B/A, which in simulations of realis-

tic transducers (with elevation focusing) follow reasonably well the expected

cumulative averaged B/A. A method to convert the accumulated averaged

B/A and the local values of B/A was tested. However, it is important to

point out that our B/A estimated maps were highly sensitive to correct val-

ues of attenuation at the fundamental and 2nd harmonic bands. Ex vivo

experiments made this clear and also the inaccuracies that might occur if the
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inclusion and background have a large mismatch of attenuation. Finally, in

vivo results in fairly large region in healthy livers of rabbits were promising

and resulted in small bias of the B/A (%error<10%).

7.2 Future work

QUS parameters have potential for tissue characterization and a rule of

thumb found in this work is to choose a reference material with as close

as possible Gol’dberg ratio as the unknown material. To do this, one could

choose acoustic values found in literature to select a better calibration ma-

terial. The in situ approach for calibration has the potential to compensate

all the nonlinearity in the forward direction of the propagation. However,

a better understanding of the in situ target is needed. In our case, the ro-

bustness of a 2-mm diameter spherical titanium bead was tested in terms

of frequency dependence of the BSC versus increasing acoustic power levels,

but the absolute values of BSCs were not computed because that required an

absolute value of the bead BSC that can only be derived theoretically [44].

Regarding the heuristic approach, a unique pair of low power/high power

settings were tested, but it could be helpful to try several pairs of low

power/high power settings and confirm the strong correlation between Gol’dberg

ratio and excess attenuation. In addition, an analysis of the minimum dis-

tances between data blocks used in AC calculation that generate enough ex-

cess attenuation would be needed because, unlike the BSC, the propagation

path between proximal data block and distal data block is chosen arbitrarily

in the signal processing stage.

The time-domain approach still requires additional experimental valida-

tion in vivo. A additional question generated by this research is to better

understand how to select the instantaneous attenuation values versus depth

when imaging with broadband pulses because the pulse will shift toward lower

center frequencies versus depth for a broadband pulse. Considering a non-

fixed AC versus depth might improve the accuracy of B/A map estimation

and decrease the commonly observed overestimation of B/A toward deeper

regions. The improvement observed in simulations results when adding a

simple correction for center frequency of the pulse vs depth suggests that

estimation of an actual center frequency is critical in the computation of at-
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tenuation within our model. However, when the medium has heterogeneous

attenuation, the estimation of the frequency could be too aggressive towards

theoretically negative values of frequencies that make certain deeper regions

of the B/A map useless. Alternative methods of instantaneous center fre-

quency calculation might be evaluated in the future [75]. Looking towards

future work in the time-domain approach, alternatives to simple moving av-

erage filters could be used to smooth the envelopes such as speckle reducing

anisotropic diffusion [76]. Furthermore, the strong interaction of attenuation

effects and nonlinearity effects suggests the joint estimation of attenuation

coefficient and the B/A might be worth addressing in future studies. Finally,

other avenues of research include the identification of a nonlinear biologi-

cal systems (by Wiener Series [77]) or use of a trained neural networks that

could predict nonlinear distortion of predefined signals and learn physics pa-

rameters. Both cases require an important amount of input/output training

processes before fully be able to arrive to a full characterization of nonlinear

acoustic media.
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