
© 2022 Philip Renkert

COMPONENT-BASED DESIGN OPTIMIZATION OF MULTIROTOR AIRCRAFT

BY

PHILIP RENKERT

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Adviser:

Dr. Andrew Alleyne

Abstract

Rising complexity of engineered systems, coupled with increasing specialization of companies

and their design engineers, requires increasing degrees of coordination to ensure local design

decisions are made in service of the system-level objective. Simultaneously, component-based

design has become common practice in complex system design, and the problem of selecting

components to optimize a system has gained traction in the literature. Existing approaches

typically solve the discrete problem directly or parameterize the components and solve the

problem in the continuous domain. This thesis develops a hybrid methodology for component-

based design optimization that leverages continuous-domain information to efficiently search

the discrete design space. For demonstration, the process is applied in two case studies: the

maximization of a quadrotor’s endurance per system price and the minimization of the time

required for a planar quadrotor to complete a dynamic mission.

ii

To Mr. John Tinnin, who revealed to me the pleasure of figuring things out.

iii

Acknowledgments

Part of my job as an advisor is helping find the path and then opening doors

along the path for the student.

(Dr. Andrew Alleyne)

When I read this line in the first email I received from Dr. Alleyne, I was oblivious to the

impact it was to have on my graduate experience. Dr. Alleyne’s guidance is invaluable: it

combines razor-sharp technical instruction with career and life advice backed by a sincere

desire to see his students thrive. And he does not merely point students down paths like a

trail sign, he clears the path and trailblazes new ones when necessary. When you give Dr.

Alleyne an inch of directed enthusiasm, he opens miles of opportunity. Without Dr. Alleyne

and the supportive, brilliant research group he has fostered, this thesis would not have been

possible.

The Alleyne Research Group includes senior members Christopher Aksland and Cary

Laird, and alumni Spencer Igram and Mindy Wagenmaker. They exemplify servant leadership

and research excellence, and they gave generous amounts of advice and their valuable time to

help me learn the ropes. My own cohort includes Reid Smith, Kayla Russel, Chris Urbansky,

Frank Andujar Lugo, Kurtis Kuipers, and Dylan Charter. These friends and coworkers added

a healthy amount of joy, energy, and laughter to the research grind. Figuring things out

together is much more fun than figuring things out alone.

The National Science Foundation Engineering Research Center for Power Optimization of

Electro-Thermal Systems (POETS) supported my work financially and in countless other

ways. The POETS community generates a contagious excitement as they lay the technical

foundation for electric mobility; its expertise and inspiration was invaluable to my research.

No organization such as POETS could exist without an excellent administrative team. I’d

specifically like to thank Jodi Gritten and Owen Doyle for their personal support and

contribution to the center.

iv

I’m grateful for my friends, family, and church family who carried me through the ups

and downs of graduate school. And last but certainly not least,

I lift up my eyes to the mountains –

where does my help come from?

My help comes from the Lord,

the Maker of of heaven and earth.

(Psalms 121:1-2)

v

Table of contents

List of Abbreviations . vii

List of Symbols . ix

1 Introduction . 1

2 Modeling . 14

3 CBDO Problem Formulation . 26

4 Hybrid Optimization . 29

5 Case Study: Multirotor Design Optimization . 40

6 Conclusion .113

References .116

Appendix A Park Transform . 1

Appendix B Powertrain System Model Details . 4

Appendix C AGILe Exported Model: Planar Quadrotor Powertrain 7

Appendix D Component Databases . 10

vi

List of Abbreviations

MDO Multidisciplinary Design Optimization

CBD Component-Based Design

COTS Commercial off-the-shelf

CBDO Component-Based Design Optimization

UAV Unmanned Aerial Vehicle

GA Genetic Algorithm

ESC Electronic Speed Controller

LQR Linear-Quadratic Regulator

SQP Sequential Quadratic Programming

FEA Finite Element Analysis

ODE Ordinary Differential Equation

DAE Differential-Algebraic Equation

AE Algebraic Equation

CCD Control Co-Design

DT Direct Transcription

NLP Nonlinear program

DSS Distance-Sorted Search

eVTOL Electric Vertical Take-Off and Landing

LiPo Lithium Polymer

OCV Open-Circuit Voltage

SOC State of Charge

vii

RC Resistor-Capacitor

DC Direct Current

FOC Field-Oriented Control

PMSM Permanent-Magnet Synchronous Machine

RPM Revolutions per Minute

CAD Computer-Aided Design

KKT Karush-Kuhn-Tucker

SLSQP Sequential Least Squares Programming

viii

List of Symbols

Common Symbols

G Oriented graph

V Set of vertices

Nv Number of vertices in a graph

v Graph vertex, voltage, or linear velocity

E Set of edges

Ne Number of edges in a graph

e Graph edge or unit vector

P Graph edge flow, set of design parameters, or number of poles

p Centroid of design parameters or price

C Capacitance, component database, or C-rating

c Component

M Incidence matrix defining graph structure, number of design parameters, or moment

D Incidence matrix defining graph structure or diameter

x State variable

ξ State variable (optimization context)

Ξ Discretized state trajectory

a Algebraic state variable

u Input variable

d Disturbance variable or distance

ix

y Output variable

Φ Parameter variable

ϕ Single parameter or roll angle

Φd Design parameter variable

Φp Performance parameter variable

Φc Parameter value corresponding to component c

NΦ Number of parameters

f ODE function

h Residual function or equality constraint function

g Output function, inequality constraint function, or gravity

gP Physical or static constraint function

gD Dynamic constraint function

i Selection index or current

J Cost function or inertial tensor

T Set of component types, transformation function, or thrust

t Component type

NT Number of component types

NC Number of components

xc Control design variables

Xc Discretized control design variables

K Matrix of feedback control gains or scaling matrix

B Convex hull of design parameters or friction factor

Bs Smoothed convex hull of design parameters

gB Boundary constraint function

ζ Defect constraint function

S Parameter surrogate function or set of all possible configurations

NS Number of possible configurations

x

s Component configuration

dc Component distance metric

ds Configuration distance metric

w Parameter weighting

Ns Series cells

Np Parallel cells

q Battery state of charge

R Resistance

R Rotation matrix

Q Battery cell capacity

L Inductance or angular momentum

λ Flux Linkage

ω Angular velocity

τ Torque

Ga Gyroscopic torque

Kτ Motor torque constant

kV Motor speed constant

kT Propeller thrust coefficient

kP Propeller power coefficient

kQ Propeller torque coefficient

ρ Density

ψ Yaw angle

θ Pitch angle

Θ Attitude

m Mass

r Displacement vector

I Moment of inertia

xi

Σ Sensitivity

Z+ Set of positive integers

R Set of real numbers

Notation and Operators

O(·) Order of Accuracy

x Bold type indicates vector-valued variables or functions

x̃ Tilde indicates transformed variable or a low-fidelity approximator

x∗ Optimal variable value or sorted set

ϕt
x Parameter x corresponding to component type t

Rb
a Rotation of frame a relative to fixed frame b

St
ϕ Surrogate for parameter ϕ corresponding to component type t

ΣJ
t Sensitivity of J with respect to component type t

[·]× Skew symmetric operator

∥·∥ Euclidian norm

|·| Absolute value

⊗ Outer product

xii

Chapter 1

Introduction

In 1919, Samuel Northrup Castle placed an order for a Duesenberg Model A [1]. Castle was a

large man with deep pockets to match; he had a love for automobiles and the means to acquire

the very best. His quest for such a motorcar led him to brothers Fred and Augie Duesenberg,

two self-taught engineers with a booming reputation for superior engines and race cars. The

Model A was to be the first production vehicle from the Duesenberg Automobile and Motors

Company. Fred would accept nothing short of perfection; he designed the vehicle to, in his

words, “outclass, outrun, and outlast any car on the road” [2]. His meticulous tuning of the

A’s 88 horsepower single-overhead-cam eight-cylinder engine delayed production for nearly

two years [3]. As with other luxury automobiles of the era, the Model A was only available

as a rolling chassis; the buyer would hire a coachbuilder to fashion the vehicle’s cabin. Mr.

Castle requisitioned the Bender Body Company of Cleveland to produce a body that could

accomodate his 7-foot 300-pound frame. By the time Castle took delivery of his Model A in

Hawaii in 1921, the car had commanded a princely sum of around $7,000 for the chassis and

up to an additional $6,000 for the coachwork [3].

An equally impressive vehicle was received under vastly different circumstances in 1918.

It arrived not on a ship but on a railroad, packed into five or six wooden crates. A horse and

wagon carried the crates to buyer Carl Maute’s home in Wolford, North Dakota, where he

assembled the car himself. The vehicle’s price was $450, or around 3% that of Castle’s ‘Duesy’

[3]. Maute’s new car was a Ford Model T, the realization of Henry Ford’s dream to make

automobiles for the multitudes. Though Duesenberg’s Model A was unquestionably superior

to the Model T in refined elegance, both vehicles were created with the same meticulous

standards and attention to detail. The difference was in objectives: Duesenberg’s to build

the best motorcar in the world and Ford’s to build the best motorcar for the world, a vehicle

both extremely sturdy and extremely cheap. Pursuit of this goal led Ford to introduce the

moving assembly line, which reduced production time from over twelve hours to 93 minutes

1

[4]. Ford designed the tools and equipment so they could be used by unskilled labor and

ruthlessly simplified the vehicle and its production process. At a time when coachbuilders

like Bender Body Company gave buyers full control over the form of their automobile, Ford

refused to offer even a choice of color [5]. But from this austere simplicity of design sprung,

paradoxically, a near limitless ability to modify the car to fit one’s needs. In the New Yorker

article ‘Fairwell, My Lovely!’, E.B. White recalls a time when the Sears Roebuck catalog

contained a Ford gadget section larger than men’s clothing and nearly as large as household

furnishings [6]. He poetically describes the Model T’s adaptability:

the purchaser never regarded his purchase as a complete, finished product. When

you bought a Ford, you figured you had a start—a vibrant, spirited framework to

which could be screwed an almost limitless assortment of decorative and functional

hardware. Driving away from the agency, hugging the new wheel between your

knees, you were already full of creative worry. A Ford was born naked as a baby,

and a flourishing industry grew up out of correcting its rare deficiencies and

combatting its fascinating diseases. Those were the great days of lily-painting. [6]

2

Figure 1.1: 1922 advertisement for Model T Ford parts and accessories [7].

12 years after his purchase, this ‘creative worry’ struck Carl Maute. He used a hacksaw

to remove the back seats and built a wooden bed to accomodate his needs as a farmer and

carpenter [8]. It was now his Model T, capable of assisting Maute in his unique pursuits

better than any vehicle rigidly designed for the general population. And should those pursuits

change, his Model T could adapt in response.

3

1.1 Motivation

The species of car owner willing and able to modify their vehicle to suit their needs is not

quite extinct, but is increasingly rare. The modern Tin Lizzy is made up of more silicon than

tin. As many as 50 computers whir away in today’s cars, and they only obey commands given

by the subset of mechanics with the right electronic key. Where the Model T had around

1,481 individual parts [9], the modern automobile has upwards of 30,000 [10]. This increase

in complexity is not unwarranted, as modern vehicles are far safer, better performing, and

more efficient than vehicles of the previous century. But improvements gained by increasing

complexity come at a cost of clarity, robustness, and flexibility. The more a system exceeds the

limits of human understanding, the more difficult it is for humans to adapt it. A prospective

car modder may have a clear objective in mind, increasing fuel economy, for instance, but

determining which components can be modified or replaced in service of that goal without

compromising the system’s integrity is a mind-boggling challenge indeed. If Maute sought

to modify a Ford from this decade, where would he start when wading through the modern

equivalents of Sears Roebuck catalogs?

In designing systems for the modern Ford, or any sufficiently complex engineering product,

the engineer faces a similar challenge. In response to increasing system complexity, the

modern engineer has become a highly specialized member of a larger design team. Each

engineer, or even subteam, has a myopic focus on a small piece of the complex system. With

such necessarily limited perspectives, the efforts an engineer makes toward a sub-goal may not

complement work of other engineers in achieving the system goal. The antidote to complexity

is coordination: alignment of individuals’ effort through formalized design processes. The

most common and straightforward approach to system design is a sequential process whereby

specialized departments work independently and consecutively toward a final design. As a

design moves from one step of the process to the next, disciplinary designers work inside

constraints handed down from the previous step, generate a subsystem optimized for their

respective discipline, and hand down a new set of constraints more limiting than before. As

a result, disciplines toward the end of the design process work within a severely constrained

design space and the system that results may not be optimal. This standard practice has

been disrupted by the emergence of multidisciplinary design optimization (MDO). MDO

takes a larger perspective and considers the interaction between disciplines in a system-level

optimization framework, maintaining a broader design space throughout the design process

and coordinating the efforts of individual disciplines to optimize a system-level objective.

Not only has the engineer become more specialized in his work; engineering companies

have become more specialized within their industries in response to pressures from the

4

economic Invisible Hand. Motivations for specializing include the ability of a business to

focus on a small set of core, profit-generating operations; to more easily scale production

and amortize production costs over a larger number of units; and to simplify regulation

compliance tasks [11]. In the automotive world, OEMs like Ford purchase from Tier 1

suppliers like Bosch, Contintental, and Delphi, who in turn purchase from Tier 2 suppliers

including chip manufacturers like Intel or NVIDIA. The specificity and complexity of a system

snowballs as it is passed from one supplier to the next. For the engineer, this means that

clean-sheet component design is a shrinking sub-task in the design of an engineered system.

The remaining sub-tasks are component selection problems: choosing from supplier catalogs

the parts which, when integrated into a system, best serve the design objective.

1.1.1 Component-Based Design (CBD)

In this thesis, we will refer to the practice of designing systems primarily by integrating

ready-made components as “Component Based Design” (CBD). In [12], Lee and Sangiovanni-

Vincentelli provide a working definition of CBD: designs “obtained by assembling strongly

encapsulated entities called ‘components’ equipped with concise and rigorous interface specifi-

cations.” CBD practices both increase a company’s ability to efficiently bring new systems to

market and lends new capabilities to the systems themselves. One benefit on the production

side is the ability to incorporate standard or commercial off-the-shelf (COTS) components

into the system. When production quantities are low and the market demands a short

development time, COTS components become quite appealing [13]. For small production

runs, the fixed cost of developing a component are amortized over fewer units. These fixed

costs are driven by design activities as well as testing, qualification, and the setup and tooling

charges for manufacturing. Big vendors can typically amortize these development costs over

a large number of units since their products can be used in a variety of systems. Another

motivation for the use of COTS parts is the need for faster development times, a major goal

for companies in competitive markets [14]. Unless a COTS component requires extensive

modification to integrate, it is far faster to purchase the component than to build it in house.

Finally, use of COTS components can reduce a business’ knowledge capital since they can

lean on vendors’ specialized expertise. Benefits similar to those of COTS component use

can be realized through internal component reuse. This is particularly applicable to large

companies with the resources to produce components that can be integrated into multiple

systems. The fundamental principle remains the same: once the development costs for a

component have been incurred, by either a vendor or the system manufacturer, it is most

efficient to incorporate that component in as many systems as possible.

5

The benefits of component-based design are not restricted to production; they can

also be seen in the functionality of the resulting system. One such benefit is improved

repairability, as COTS or high production volume components can be more easily aquired for

replacement. CBD also opens the door to modular systems that can be rapidly reconfigured

in reponse to changing missions. In manufacturing, trends toward mass customization and

shorter product lifecycles prioritize the ability of factories to 1) quickly respond to changing

customer requirements, 2) resiliently retool or adjust processes in response to unforseen

system failures or quality issues and 3) retrofit new technologies onto existing systems [15].

Manufacturing systems, therefore, must be reconfigurable and versatile. Another application

for reconfigurable systems is found in mobile robotics. Systems designed to assist in uncertain

events, emergency situations or military countermeasures, for example, must be able to adapt

to changing job requirements on the fly. CBD does pose its own challenges like the necessity

of rigorous interface specifications [12], but its widespread adoption indicates companies are

willing to overcome these hurdles.

1.2 Background

1.2.1 Component-Based Design Optimization (CBDO)

The previous two sections illustrated two trends in engineering system design: 1) increasing

system complexity requiring higher degrees of specialization and coordination and 2) an

adoption of component-based system design to reduce development cost, respond more

quickly to dynamic markets, and create more adaptable systems. Current MDO tools have

greatly assisted in the design of complex systems but are ill-suited for component-based

design modalities. Automating CBD with optimization algorithms, referred to in this thesis

as component-based design optimization (CBDO), is challenging because the component

selection problem is fundamentally discrete. The problem of discrete optimization is not new;

academia and industry alike have invested significant effort in the development of algorithms

for such problems. The simplest and most straightforward of the discrete optimization

algorithms is the exhaustive search. Though gauranteed to find the global optimum at

some point, to enumerate and test all possibilities is computationally intractable for all but

the simplest of problems. Instead of searching the entire design space, one could use a

greedy algorithm that makes sequential, locally-optimal decisions one variable at a time.

This approach is scalable but does not generally find the global optimum since it ignores

coupling among decision variables. Branch-and-bound algorithms are commonly used to solve

integer programming problems due to their robustness and general applicability, but they are

6

typically inefficient and most suitable for linear problems [16]. The most efficient algorithms

typically take advantage of specific problem structures. One very elegant solution to certain

discrete optimization problems is dynamic programming, which is used frequently in fields

such as optimal control. Dynamic programming can be applied to evolutionary problems

where a future state can be predicted from the current state without any dependence on past

states; that is, the process can be posed as a Markov chain. When this property holds, the

problem can be solved recursively with smaller sub-problems being solved first followed by

larger problems that use past solution information. Unfortunately, this class of algorithms

cannot be applied to the general component selection problem because the decisions cannot

be decomposed into smaller independent sub-problems [16]. We are left with stochastic

methods such as simulated annealing and binary genetic algorithms. These are well-suited

for nonconvex problems but struggle as problem dimensionality increases, especially when

purely random processes are used to drive the algorithm’s evolution [16].

In addition to discrete CBDO’s clear computational challenges, its practical application is

hindered by a lack of transparency. When design decisions are reduced to a set of selection

indices, the algorithm can no longer convey information that helps explain why a particular

design was chosen. The desire for humans to understand the decisions made by complex

algorithms can be seen in the explainable artificial intelligence movement [17]. An intuitive

explanation of why an algorithm arrived at a particular solution can be just as, if not more,

valuable than the solution itself. For the designers, such knowledge could lead to a deeper

understanding of the trade-offs between design decisions or help them catch errors in models

or datasets. Just as the modeling process can lead to insights about a particular design, a

transparent design optimization process can expose unforeseen possibilities.

Figure 1.2 compares a traditional continuous MDO development process with a discrete

CBDO development process. In the design phase, the system model (A.2 and 1.3 in the

figure) requires component parameters and performance specifications as inputs and outputs

performance data required to evaluate objectives and constraints. In a traditional continuous

design process, these parameters are the design variables and are fed directly into the system

model. In the component-based design modality where discrete components are the design

variables, the system model (block 1.3) is augmented by component catalog (block 1.2) that

converts selection indices into the parameters required by the model. In a manual system

design approach, blocks A.1 and 1.1 would be replaced by an individual designer or design

team that selects parameters or components based on experience, intuition, heuristics, or

other more advanced analysis. MDO (block A.1) and CBDO (block 1.1) automate the design

processes with algorithms to select parameters values (MDO) or components (CBDO) that

optimize an objective.

7

Figure 1.2: MDO and CBDO Design Processes

The production benefits of CBDO are realized in the “Build” stage. In the traditional

MDO process, new system components must be designed and produced to match the optimal

parameter set resulting from design block A. In CBDO, by contrast, the optimal components

suggested by design block 1 are simply purchased from suppliers. Once the components

have been made or acquired, both processes require the integration of the components into

the final system. The system resulting from the traditional continuous MDO approach is

typically fixed, as it was built from the ground up with components designed specifically for

the system. The CBDO process typically results in a more flexible, modular system: different

components with compatible interfaces can be substituted into the system to achieve different

goals.

1.3 CBDO State of the Art

Though the majority of academic work on engineering design optimization focuses on

continuous-domain problems, there are a few recent examples of CBDO in the literature.

8

Component-based software design is a large contributor to this body of work, as the approach

has been noted to create higher quality software with a significant reduction in development

time and costs [18]. In [18], the authors use integer programming techniques to select software

components which maximize pliability, “a flexible measure that assesses software quality

across different quality attributes in terms of the quality of its components.” Other approaches

to optimal software component selection can be found in [19] and [20]. In the mechanical

realm, CBDO has been applied in drivetrain design ([21], [22]); industrial robotics ([23],

[24], and [25]); electronic devices and systems ([26], [27], and [28]); and electrohydraulic

servosystems ([29]).

For the CBDO case studies in this thesis, we chose a specific platform of interest: the

multirotor unmanned aerial vehicle (UAV). The multirotor’s rise in popularity and relative

simplicity have led to a significant body of work on multirotor component selection. Multirotor

CBDO approaches typically fall into two camps: solving the discrete component selection

problem directly or parameterizing the components and solving the problem in the continuous

domain.

The work of Ng and Leng [30] falls in the former category: they design small-scale

quadrotor UAVs using a genetic algorithm (GA) to optimize component selection and layout.

Their objective is to minimize size without violating physical constraints. Arellano-Quintana

et. al. also employ a GA to optimize a multirotor design [31]. Their optimization includes

rod length and diameter as continuous variables and motor, propeller, and battery selection

as discrete-integer variables. These parameters are optimized for two cases: maximum

thrust-to-weight ratio and maximum flight time. In “Multicopter UAV Design Optimization,”

Magnussen formulates a mixed-integer linear program to select components from a set of

low-cost, off-the-shelf parts [32]. The design variables include battery, motor, and propeller

selection indices, the number of rotors, and the frame size; flight time, dynamic performance,

and system cost are considered in his objectives and constraints. See [33], [34], and [35] for

further examples of this approach.

The indirect, component parameterization approach is taken by Rothfus in [36]. In this

work, the authors use a GA to optimize a set of continuous and discrete parameters that

represent the battery, motor, propeller, electronic speed controller (ESC), and number of

rotors. The design objective is to achieve user-specified targets on cost, payload, and flight

time. Parameteric fitting functions generated from manufacturer data are used to map

parameter values to mass and cost. The user is then left to select components which best

match the optimized parameter values. In “Electric Multirotor Propulsion System Sizing for

Performance Prediction and Design Optimization,” Bershadsky et. al. attempt to provide

more rigorous methods for propulsion-system component selection [37]. The authors draw

9

from component databases to construct simple parametric relationships to predict mass from

several key characteristics of the drive components. These parameterizations allow sensitivity

analyses as well as range and endurance optimization in the continuous domain. Again, the

user is responsible for translating continuous parameter values into discrete components.

Ampatis and Papadopoulos take a similar approach in [38], where they express component

functional parameters as a function of ‘equivalent length,’ defined as the cubic root of the

components volume. Gradient-based algorithms then tune the equivalent lengths to optimize

energy consumption or vehicle diameter with requirements on the payload, flight time, and

thrust ratio. Further examples of the continuous parameterization approach can be found in

[33] and [39].

Current multirotor CBDO practice is limited in a number of areas. First, authors have not

yet drawn from the best of both continuous and discrete optimization techniques to efficiently

solve the selection problem. Studies that parameterize components and employ gradient-based

optimization fail to take the additional step of selecting real component combinations from the

catalog; they leave this step to the user. Unless the catalog contains components that exactly

match the continuous solution, a great deal of optimality could be sacrificed in manually

translating continuous-domain solutions to discrete-domain configurations. This is especially

true if component datasets are limited, the components are tightly coupled, or the fitting

models used to parameterize the components are inaccurate. On the other hand, purely

discrete strategies, as noted above, are less efficient and transparent than their continuous

counterparts.

Another limitation is the size of the component databases used in many of the studies. For

example, the dataset in [32] contains 6 propellers, 5 motors, and 5 batteries resulting in 150

discrete combinations. The dataset in [31] contains 7 motors, 8 propellers, 7 batteries, and

3 choices for the number of rotors resulting in 1,176 possibilities. In reality, these datasets

could become much larger should a designer wish to incorporate multiple manufacturers or

product lines into the catalog. As the discrete decision space grows combinatorially with the

number of components in the catalog, it is critical that proposed solutions to the CBDO

problem are proven to perform well in realistic situations where brute-force enumeration

is infeasible. For parameterization-based approaches, larger datasets also help to create

more dependable fitting models. Another limitation is the highly simplified steady-state

models used in these optimization studies. Such models only allow for static estimations of

endurance, range, or dynamic performance. This dramatically limits a study’s usefulness,

especially for systems as intrinsically dynamic as multirotor aircraft. A notable exception is

found in [34], where the authors use more advanced models and consider system dynamics.

They enforce a controllability constraint when optimizing a multirotor’s configuration and

10

implement a linear-quadratic regulator (LQR) for feedback control. Tian and Voskuijl further

integrate system dynamics by generating multiphysics simulation models and associated

analysis functions for each candidate design [35]. Then, for each representation, a dedicated

control system is automatically developed using model inversion.

Typical objectives are also highly engineering focused. In industrial applications, the

true objective of a system design optimization problem is to maximize profit, a function

of cost and performance. Studies occasionally consider system price as an objective or

constraint, but none, to the author’s knowledge, have taken the additional step of formulating

a business-focused objective like profit or return on investment. Figure 1.3 characterizes

several contributions to multirotor CBDO literature along five axes.

Figure 1.3: Current work in Multirotor Design Optimization

The first axis is the degree to which the author considers system dynamics in the model,

objective function, or constraints. As previously mentioned, most studies only consider static

problems or use static indicators of dynamic performance. The second axis describes the

nature of the optimization problems formulated in the study, ranging from continuous to

discrete. Studies that include both discrete and continuous variables lie on the interior of this

axis, with the relative proportion of discrete to continuous variables dictating its position

along the axis. The studies that are not purely continuous use gradient-free algorithms. The

next axis indicates whether the underlying problem of the study is one of component selection

or component design. For example, many studies include a continuous variable describing

the size of the frame. Since the intent is to design a frame with this optimal length instead

of selecting from a discrete set of frames, component design is an aspect of the underlying

problem. The nature of the studies’ objectives are mapped to the final axis. The few that

11

are not purely engineering-oriented consider system cost as one of several objectives.

1.4 Scope of Thesis

In this thesis, a CBDO methodology is developed that leverages continuous-domain infor-

mation to efficiently search the discrete space of possible components and find an optimal

configuration. Underpinning the optimization is the use of graph-based modeling techniques,

which are well-suited to CBDO for their computational efficiency, their applicability to

multiple energy domains, and the ability to build system-level graph models out of component

graph models. A generalized CBDO problem is formulated in the discrete domain and then

translated into the continuous domain by parameterizing the components with physically

meaningful design variables. Then, various solution methods are discussed. These include

common purely discrete approaches like the GA and continuous approaches like sequential

quadratic programming (SQP). The core of this work is the development of a hybrid strategy

that uses the solution to the continuous problem to inform a discrete search of the design

space via a distance-sorted search algorithm

The hybrid CBDO process is then applied to select a battery, motor, and propeller for a

quadrotor system. The system model is developed using the aforementioned graph-based

modeling techniques, and is experimentally validated against a commercial UAV platform.

The discrete selection problem and corresponding continuous problems are formulated, and

the continuous component parameterization is used to conduct sensitivity analyses and better

understand the system. Two cases for the objective are considered: a static case and a

dynamic case. In the static case, the optimization seeks to maximize the endurance of the

system in steady-state hover per system price. In the dynamic case, the optimization seeks to

minimize the time required to complete a dynamic mission. The performance of the algorithm

is discussed, along with comparisons of the optimized design to the initial design.

1.5 Thesis Organization

Chapter 2 discusses modeling for design optimization and presents an efficient and modular

graph-based modeling framework. It also overviews the tools used to automatically compose

a system graph model from component graph models. In Chapter 3, general CBDO problem

formulations are presented. In Chapter 4, the hybrid optimization approach for solving

CBDO problems is developed. It outlines the process of parameterizing components with

physically-meaningful design parameters and obtaining a continuous-domain representation

of the problem and its solution. It also specifies the distance-sorted search algorithm used to

12

obtain a discrete solution using continuous-domain information, and it contains a comparison

of the hybrid approach with direct approaches such as the GA. In Chapter 5, the hybrid

approach is applied in two case studies: optimizing a quadrotor system to maximize endurance

per system price, and optimizing a planar quadrotor system for minimal mission duration.

Graph-based powertrain models and rigid-body dynamic models are developed for the systems,

and the quadrotor stead-state model is validated against an experimental test platform. The

component databases and parameterizations used in both of the case studies are provided.

Sensitivity analyses and optimization results are presented for both case studies, along with

discussions of the optimized design and algorithm performance. Finally, Chapter 6 concludes

the thesis with a summary of contributions and identifies potential directions for future

research.

13

Chapter 2

Modeling

The purpose of design optimization is to optimize, or at least improve, the performance

of a given system of interest. The system to be optimized performs some function and

results in some output, and some function of this output can be used to evaluate the

system’s performance. Various system properties influence the resulting output. Some

of these properties are fixed quantities, say gravitational acceleration, while others are

directly or indirectly influenced by design decisions, aspects of the system that its designers

have direct control of like dimensions or materials. It is these design decisions which the

design optimization process seeks to inform, guiding the designer toward a design with good

performance. Essential to this process is the ability to predict, with a system model, what the

system’s performance will be given a set of design choices. A model is an abstract description

of the real world that approximately represents a system’s complex functions, making it

feasible to predict performance before building and testing the system. To begin, the system

of interest must be fully defined. All systems that could ever be designed exist within an

environment or another larger system. One must choose an appropriate system boundary

that aligns with the purpose of the analysis. Anything that crosses the boundary is a link

between the system and its environment, representing an input or output of the system. Even

after defining a system boundary, one much choose a particular level of fidelity to describe the

system. At the most fundamental level, the system is a collection of atomic particles bound

by electromagnetic forces. One could also view the system as a collection of components,

each playing a specific role, or as the interaction of various energy domains each governed by

the conservation of energy. In all cases the system is the same, only the perspective differs.

It is from the chosen perspective that the model is constructed, as a photographer flattens a

3-dimensional world into a 2-dimensional, viewpoint-dependent depiction of a scene. The

perspective informs the app roach used to create the model. These include purely symbolic

techiques, graphical techniques like bond graph modeling, or simulation-based techniques like

14

finite element analysis (FEA) or time-domain simulations.

2.1 Modeling for Design Optimization

Though functionally similar, it is important to distinguish between models created for design

and those created for analysis. Design models are predictive in nature: we desire to study

how a design performs and how we can influence its performance. In design models, design

decisions, at least those under consideration, must be treated as input or ‘tunable’ parameters.

The mathematical relationships underlying design models must be sufficiently robust to

handle wide-ranging values for these input parameters to avoid artificially constraining the

design space [16]. Design models must also include the decision-making criteria, or objective,

as an output. In models constructed for analysis, it is common for designers to intuitively

or implicitly account for system constraints when assigning values to parameters. In design

models, requirements and constraints must be explicitly accounted for. For example, consider

a system that includes a beam with the cross section shown in Figure 2.1.

Figure 2.1: Beam cross section

The area of the beam’s cross section is calculated with Equation 2.1.

Ab = (wbhb − (wb − 2tb) (hb − 2tb)) (2.1)

If either the beam width or beam height is less than twice the beam thickness, then the

geometry is infeasible and a negative area could result. A designer understands this intuitively

15

and would assign dimensions that align with his or her existing notions of rectangular beam

profiles. A design optimization algorithm has no such foreknowledge. It would happily

choose a beam with a negative cross sectional area should the design result in a lower

objective function value. To enforce a feasible geometry, the model must explicitly include

the constraints given in 2.2.

wb ≥ 2tb

hb ≥ 2tb
(2.2)

In his Principles of Optimal Design, Papalambros notes three desirable properties of

mathematical models for use in design optimization [40]: 1) low computational cost, 2)

continuity, and 3) differentiability.

Low Computational Cost

An optimization study usually requires several iterations performed in the computer, where

for each iteration the model functions are evaluated once or multiple times. For complicated

system models, the computational cost of evaluation may become prohibitive, resulting in

early termination of the optimization process. There exists a trade-off between realism and

feasibility. On one hand, the designer must be able to trust the results, or at least the

relationships, predicted by the model. On the other hand, the model must not be so unwieldy

that meaningful results are impractical to obtain. ‘An answer’ is better than ‘no answer,’

and ‘no answer’ is often preferable to a misleading answer. The best approach to develop

models for optimization is to start with the simplest meaningful model [40]. Such a model

captures interesting trade-offs to be explored by an optimization study, but does so with the

simplest possible mathematical relations. Complexity should only be added as required by

the study of more complicated or extensive trade-offs.

Furthermore, some modeling strategies are inherently ‘lighter’ than others for a given level

of accuracy. General-purpose modeling tools like FEA, so frequently employed in engineering

analysis, require a significant amount of computational effort to achieve reasonable results.

Though they excel in applications where a high degree of realism is required, they are less

suitable for studies that seek only to understand the basic relationships between parametric

inputs and performance outputs. To maximize an optimization’s utility and efficiency, one

must select appropriate modeling tools for the job, exploiting system structure whenever

possible.

It is also desirable to construct a model with variable fidelity or several models with

different levels of fidelity. With this capability, low-fidelity implementations can be utilized

early in the design process to facilitate rapid exploration of a large design space. As the

16

design converges, the level of fidelity can be increased to improve the accuracy of the solution.

Continuity

To use efficient gradient-based optimization algorithms, the model functions must be C2

smooth. Algorithms can often tolerate the occasional discontinuity, provided they occur away

from an optimal point [16]. In some engineering problems, discontinuities are inherent in the

underlying model. Examples are gear backlash or coulomb friction models. So long as such

discontinuities are infrequent and exist away from an optimal point, they will not preclude

the use of a gradient-based algorithm. A more troublesome cause for discontinuities are

truncation and numerical noise. Optimization algorithms generally require tighter tolerances

than are used for analysis [16]. Including fewer significant digits in the model functions

can limit the type of optimization algorithm that can be used effectively. Noisy outputs

can severely mislead or prematurely terminate an optimization. Such noise can result from

converging a system of equations within a model function, simulations run within a model

function, or loss of precision resulting from the evaluation process. Input and output files

are a common culprit, since significant digits are often lost when data is exported to an

external file [16]. It is important, then, to maintain a moderately high degree of numerical

precision when constructing the model functions. Whenever possible, numerical operations

like simulations are replaced with explicit relationships.

Differentiability

As previously mentioned, gradient-based optimization algorithms require C2 model functions.

But they also require values for the first, and sometimes second, derivatives of the outputs

with respect to the design variables. These inform the step size and direction. The best-case

scenario is model functions paired with analytical expressions for the derivatives. Access to

analytical derivatives is often taken for granted in optimization pedagogy or the theoretical

development of optimization algorithms, but they are often quite difficult or impossible to

obtain in practice. The difficulty is that many important engineering problems are based on

implicit, numerical models for function evaluation, or the process of obtaining an expression

for the derivatives is simply too complicated and time-consuming to justify [40]. When

this is the case, more implementable but less efficient alternatives can be employed. One

increasingly viable option is automatic differentiation techniques that use the chain rule

to construct total derivatives from the sequence of elementary arithmetic operations and

functions executed in a computer program. Another is to simply replace a complicated model

function with an easily-differentiable surrogate model. Though these models take time to

17

construct and verify, they can dramatically improve the efficiency and robustness of the

optimization algorithm. In addition to providing access to analytical derivatives, they help

to smooth noisy functions and reduce the cost of a function evaluation. Care must be taken

in the construction of these models, however, to avoid limiting the valid region of the design

space. Some implementations build the surrogate model as the optimization progresses,

extending the domain of the surrogates as needed. Finally, an expensive but effective method

is finite differencing, in which the derivative of function f taken with respect to variable x is

approximated numerically as

df

dx
=
f(x+∆x)− f(x)

∆x
+O(∆x) (2.3)

where ∆x is the step size. Error of the approximation scales linearly with the step size,

encouraging the use of small steps. Unfortunately, the numerical challenge of subtractive

cancellation arises small steps are used [41]. Small step sizes also amplify any numerical

noise present in the model function. When a model function permits complex arithmetic, the

complex step method (2.4) may be employed to achieve better accuracy.

df

dx
=

Im[f(x+ ih)]

h
+O(h2) (2.4)

In 2.4, the step h is taken in the complex plane. In addition to quadratic scaling of error

with step size, complex step manages to avoid the subtractive cancellation issue so that the

step h can be chosen arbitrarily small. Also, complex arithmetic is roughly 2.5 times more

expensive than real arithmetic [41].

Often, a design model sequentially evaluates multiple model functions in computing the

outputs. When this is the case, one can leverage partial derivative information of each model

function to construct the total derivative. This grants the flexibility to choose different

differentiation techniques for each of the model functions, taking advantage of more efficient

techniques whenever possible. This ‘derivative synthesis’ is the computational backbone of

the popular OpenMDAO software package [42]. For more information on derivative synthesis

algorithms, refer to [43].

Again, we see a need for care in selecting and implementing a modeling strategy. Methods

that permit the computation of analytical derivatives, automatic differentiation, or complex

arithmetic are preferable.

18

2.2 Graph-Based Modeling

In this work, a graph-based framework was selected to model the vehicle’s powertrain,

as it exhibits many of an optimization model’s desirable qualities. This framework was

initially developed for model-based control, and it is especially suited for hierarchical control,

decentralized control, distributed control, and other applications that require system model

decomposition [44], [45]. In the graph-based modeling framework, graph models are physics-

based models derived from conservation laws, typically those of mass or energy. The models

are energy domain independent; they inherently capture the exchange of power among

different energy domains. This facilitates system-wide design, analysis, and control.

In graph models, capacitive storage elements are represented as graph vertices, and graph

edges represent transfer between storage elements. When the model is based on energy

conservation, vertices represent energy storage and edges represent the transfer of power. The

majority of system-specific behaviors are captured by the power flow equations corresponding

to each edge. Expressions describing these power flows are, most generally, nonlinear functions

of the corresponding edge’s head and tail vertex. Therefore, a wide variety of interactions

between elements can be captured in a single framework.

Figure 2.2: Notional system graph depicting source flows, internal edges and vertices, and
sink vertices

Figure 2.2 depicts a notional oriented graph G = (V,E) containing the set of Nv vertices

V = {vi} , i ∈ [1, Nv] and the set of Ne edges E = {ej} , j ∈ [1, Ne] [44]. The edge ej

has an associated flow Pj, and it represents the direction of positive flow from tail vertex

vtailj to head vertex vheadj . For each vertex vi, the set of edges directed into the vertex is

Ein
i =

{
ej|vheadj = vi

}
and the set of edges directed from the vertex is Eout

i =
{
ej|vtailj = vi

}
.

Each vertex is also associated with a state xi. In the framework, flows Pj are constrained to

be function of an associated input uj and the states of the head and tail vertices.

Pj = fj(x
tail
j , xheadj , uj) (2.5)

Applying the conservation law to vertex vi yields 2.6.

19

Ciẋi =
∑

ej∈Ein
i

Pj −
∑

ej∈Eout
i

Pj (2.6)

In 2.6, Ci is the storage capacitance of the vertex vi. When the capacitance is zero, the

state value is determined by an algebraic relationship. These algebraic vertices are depicted

with an additional outer ring as shown by vertex v5 in Figure 2.2. Vertices with a dashed

ring, vertex v6 in Figure 2.2 for example, are external vertices whose states are not part of the

system under consideration. Instead, they belong to neighboring systems or the surrounding

environment. Edges with a dashed line, P in
1 in Figure 2.2 for example, represent external

flows from neighboring systems or the surrounding environment.

The structure of the system is defined by incidence matrices M and D, defined in 2.7

and 2.8 respectively.

M = [mij] =

+1 vi is the tail of ej

−1 vi is the head of ej

0 else

 (2.7)

D = [dij] =

{
1 vi is the head of P in

j

0 else

}
(2.8)

In 2.8, P in
j is the jth element of P in, the source power flows entering the system.

With these incidence matrices defined, the dynamic equation 2.6 can be written in the

linear form 2.9.

Cẋ = −MP +DP in (2.9)

In 2.9, C = diag ([Ci]) is a diagonal matrix of capacitance coefficients, x = [xi] is the state

vector, and P = [Pj] is the vector of flows along the edges in G. Refer to [44] for a detailed

formulation of graph-based models.

2.2.1 Graph-Based Models for Design Optimization

Though initially developed for model-based control applications, graph-based models are well-

suited for design optimization. Primarily, they are quite computationally efficient, allowing for

fast exploration of the design space. This property is demonstrated in [46]. In this work, the

authors developed a graph model for an aircraft power system and compared its simulation

performance to a nonlinear model of the same system built using individual toolboxes for

the electrical, air cycle machine, and single-phase thermal-fluid systems. After executing an

8000-second simulation 25 times, the graph model completed the simulation with an average

20

time of 25.9s, a full order of magnitude faster than the 277-second average simulation time of

the nonlinear model. Another benefit of the graph model framework is its modularity [44].

Alternative system configurations can be evaluated through the rearrangement, addition, or

removal of component models. Though not utilized in the present work, this functionality

could be leveraged in future work to explore various system topologies alongside the CBDO

analysis.

In [47], the authors expand the model framework for topology and component sizing

optimization by augmenting the dynamic equation 2.9 with design matrices. These matrices

capture how continuous sizing and discrete configuration variables impact the graph’s vertices

and edges. They then utilized this augmented model in the optimization of a cooling

subsystem and electric vehicle powertrain design, seeking to optimize thermal and electrical

component sizes in addition to discrete system topology decisions. The augmented model

framework is also utilized in [48]. In this work, a GA is used to optimize plant sizing variables

and control gains in a closed-loop battery-ultra-capacitor hybrid energy storage system.

2.2.2 Automated System Model Composition and the AGILe Tool-

box

Previously, graph models used in design optimization studies were assembled by hand. Though

the process is straightforward, it becomes arduous as the complexity of the system increases.

Furthermore, errors can easily occur in translating a system graph into its corresponding

dynamic equations. The AGILe toolbox, written in MATLAB, was developed to automate

the process of generating symbolic models, useful for control and design optimization tasks,

for complicated systems comprising multiple components. It takes advantage of the graph-

based modeling framework’s modular nature in an automatic system composition algorithm

that combines component graph models into a system graph model. An extension of the

AGILe toolbox, written in Python, was developed to import the symbolic system models into

OpenMDAO and Dymos for optimization. OpenMDAO is an open-source MDO framework

that excels in solving problems with coupled models [42]. Key to its success is the ability to

efficiently calculate total derivatives across complex model hierarchies. This enables the use of

gradient-based, Newton-type algorithms without having to numerically differentiate across the

entire model. Built on the OpenMDAO framework, Dymos is a library for optimizing control

schedules for dynamic systems [49]. Together, these tools facilitate the design optimization

and optimal control of a graph-based model generated in AGILe. Figure 2.3 provides an

overview of the AGILe design optimization workflow.

21

Figure 2.3: AGILe design optimization workflow

In the toolbox, users specify individual component models by defining component pa-

rameters; graph vertices and their associated capacitance functions; graph edges and their

associated power flow functions, inputs, and head and tail vertices; and ports that expose

a graph edge to coincide with the edge of a port of the connecting graph. Once all of the

required component models have been defined, system graphs are automatically generated in

a ‘Combine’ function. Arguments to this function are 1) a list of components to be connected

and 2) a list of connecting ports.

After synthesizing component graphs into a system graph, the user has the option to

export it to one one of several symbolic model types:

22

1. An ordinary differential equation (ODE) model of the form:

ẋ = f(x,u,d,Φ)

y = g(x,u,d,Φ)
(2.10)

2. A differential-algebraic equation (DAE) model of the form:

ẋ = f(x, a,u,d,Φ)

0 = h(x, a,u,d,Φ)

y = g(x, a,u,d,Φ)

(2.11)

3. An algebraic equation (AE) model of the form:

0 = h(a,u,d,Φ)

y = g(a,u,d,Φ)
(2.12)

In the above equations, x is the dynamic state vector, a is the algebraic state vector, u is the

input vector, d is the disturbance input vector, and Φ is a vector of constant parameters.

Though all of the states in a graph model are dynamic in general, algebraic states arise when

the capacitance associated with a state is zero; that is, there exists an algebraic relationship

between inputs and outputs. For the ODE model, if algebraic states are present, then these

are solved for explicitly and substituted into the dynamic equations. When exporting to

a DAE model, the algebraic states are represented implicitly in the residual function h.

Finally, if all the states in the graph are algebraic, an AE model is exported. Furthermore,

if the user desires, the Jacobians of each model function can be calculated. For evaluation,

the model functions and their Jacobians can be exported to memory as an anonymous

MATLAB function, to an external MATLAB function, or converted to Python syntax and

saved externally as a .py file.

When importing an AGILe model into OpenMDAO, the user can choose to import a

static model or a dynamic model. The static model may be used to solve a purely algebraic

system or to find the steady-state solution of a dynamic system. In solving a static model, any

dynamic states are made algebraic and combined with the model’s other algebraic states. In a

dynamic model, the system dynamics are handled by the Dymos library. The implementation

for an ODE model is shown in 2.4a. As mentioned previously, exporting an ODE model that

contains algebraic relationships requires the symbolic solution of the algebraic states and

substitution of those states into the dynamic equations. One problem with this approach

23

is that it makes the exported models difficult to interpret, since explicit expressions for the

algebraic states can be quite unwieldy. Another issue has to do with solution efficiency: the

solve-and-substitute approach can lead to dense Jacobians that slow system convergence. An

alternative is the DAE framework shown in 2.4b. In the DAE approach, the algebraic states

are numerically solved for by driving the residual function h to zero. Though this creates

an additional numerical step in the solution process, it results in a much simpler, sparser

Jacobian of the dynamic equations ẋ = f(·). Once the algebraic states are converged, they

are fed into the dynamic equations to calculate the state derivatives. Appendix C provides

an example of a DAE model exported to Python functions.

(a) ODE Model (b) DAE Model

Figure 2.4: DynamicModel architectures

For maximum flexibility, the toolbox allows one to integrate multiple AGILe models and

additional OpenMDAO components into the OpenMDAO system model. For example, a

simplified static AGILe model and a full dynamic AGILe model can be evaluated simulta-

neously to provide steady-state values along with system dynamics. When some system

dynamics are modeled outside the graph framework, these can be represented by standard

OpenMDAO components and coupled to the graph-based model within the OpenMDAO

system. For example, a system’s rigid-body dynamics could be modeled by manually defining

OpenMDAO components while the system’s powertrain is modeled as a graph-based AGILe

model. In the OpenMDAO system, the outputs of the powertrain model could be fed as

inputs to the rigid-body model for a complete system representation. Additionally, the ability

to integrate OpenMDAO components from outside of AGILe is useful for defining objective

or constraint functions of signals within the AGILe model.

In previous design optimization studies of graph-based models, the system was augmented

with design matrices to be tuned by the optimizer. In AGILe, design variables are represented

symbolically in the system equations and can therefore be modified directly. This is made

possible with the ‘Params’ framework. ‘Params’ arranges system parameters in a directed

24

dependency graph. Each node of the graph is a parameter, and each edge represents a

functional dependence of the child parameter at the edge’s head on a parent parameter edge’s

tail. The user specifies the function that maps parent parameter values to child parameter

values. When exporting an AGILe model, the user has control over which parameters are

‘Tunable’ and which are not. Tunable parameters become symbols in the exported model, and

their dependency function, parents, and other properties are stored in an external metadata

file. Non-tunable parameters are converted to numeric values at export. This functionality

allows a user to minimize the complexity of the exported model by only including parameters

that will be of interest in future design studies.

The directed dependency graph structure of parameters is maintained when an AGILe

model is imported into OpenMDAO. In OpenMDAO, the user has control over which

parameters become design variables in an optimization study. They also have control over

the parameter’s dependency state. In a dependent state, a parameter’s value is the output of

its dependency function. In an independent state, its value is manually assigned by the user

and held constant. A parameter’s dependency state can be easily toggled on an off without

having to rebuild the model. This feature is critical for the hybrid optimization process

described in forthcoming chapters.

25

Chapter 3

CBDO Problem Formulation

3.1 General CBDO Formulation

A general CBDO problem formulation is presented in Equation 3.1.

minimize
i

J(C(i))

subject to 1 ≤ it ≤ N t
C ∀ t ∈ T,

0 ≥ gP (C(i))

(3.1)

In the formulation, the design decisions are selection indices i =
[
i1 i2 . . . iNT

]⊤
. Each

entry in i belongs to the set of positive integers and represents a selection for each component

type t ∈ T , where T is the set of all component types and contains NT elements. A component

type can be thought of as an individual decision for which there are several alternatives.

For example, if the CBDO problem includes the selection of a battery, then the battery

would be a component type. Each type t is also associated with an ordered component

database Ct containing N
t
C components. Ct maps the type’s selection index to the parameter

vector Φc corresponding to a specific component. That is, Ct : Z+ → RNt
Φ , where N t

Φ is

the length of the parameter vector associated with type t. Component parameters include

both design parameters Φd
c , such as dimensions, as well as performance parameters Φp

c , such

as mass. Thinking of a component as an individual system, design parameters are inputs

while performance parameters are outputs. The combined component database C maps

the selection index vector i to a complete parameter vector Φ =
[
Φ⊤

c,1 Φ⊤
c,2 . . . Φ⊤

c,NT

]⊤
.

26

Specifically, C : Z+
NT → RNΦ , where

NΦ =

NT∑
t=1

N t
Φ

To evaluate system performance, the combined parameter vector must include all the pa-

rameters required by the system model. The component databases, therefore, must specify

the parameters’ values for each component. Herein lies a key condition for effective CBDO:

components must be sourced from suppliers that provide thorough specifications and, when

necessary for calculating performance parameters, test data. One typically pays a premium for

well-documented components, though superior quality of service and product often justifies

the expense.

The cost function J is the metric by which system performance is evaluated, typically

a function of system model outputs. The steps to evaluate J as a function of selection

indices includes 1) calculating the stacked parameter vector with the component databases,

2) evaluating the system model for the resulting parameter values, and 3) calculating the

cost function from the model outputs.

Each selection index it can be no larger than the number of components in the correspond-

ing database, as required by the first constraint in 3.1. The physical constraint function gP (·)
is a vector-valued function that captures any engineering constraints or physical limitations

of the system and is typically a function of model outputs.

3.2 Dynamic CBDO Formulation

Many modern engineering systems are inherently dynamic, and their dynamic behavior

constitutes a large part of their value [50]. Such systems can be divided into two categories:

passive systems and active systems. Passive systems require no external energy and rely

solely on intrinsic dynamical behavior. A classic example of a passive system is a vehicle

suspension that uses only well-tuned springs and dampers to provide a comfortable ride.

Active systems, on the other hand, include a control mechanism that actively influences the

system’s dynamics. A building’s HVAC system is active because it includes a thermostat

that controls the level of heating or cooling. When designing a dynamic system, a common

approach is to optimize a proxy objective like mass or thrust ratio that doesn’t require

the evaluation of system dynamics within the optimization model. Though practical, this

approach can only yield an approximate solution. To optimize a system’s performance for

a given mission, the system dynamics must be integrated into the formulation. In 3.2, the

27

CBDO formulation in 3.1 is extended to include system dynamics.

minimize
i,u(t), ξ(t)

Jd(C(i),u(t), ξ(t))

subject to ξ̇(t) = f(ξ(t),u(t),C(i)),

it ≤ N t
C ∀ t ∈ T,

0 ≥ gP (C(i)),

0 ≥ gD(u(t), ξ(t),C(i))

(3.2)

The dynamic cost function Jd replaces the static cost function J in 3.1. Two additional

design variables are added in 3.2: the control input trajectory u(t) and the system state

trajectories ξ(t). When solving an open-loop dynamic CBDO problem, the time-varying

input trajectory u(t) is solved for directly. If the system includes a parameterized feedback

controller, then the controller parameters would replace the input trajectory as optimization

variables. The state trajectories ξ(t) capture the evolution of the dynamic system over time

and are governed by the dynamic equation ξ̇ = f(·). The dynamic equation is presented in

its most general form in 3.2, depending on the system state, control decisions, and system

parameters. Constraints not dependent on time comprise the static constraint function gP ,

while constraints on time-varying signals comprise the dynamic constraint function gD.

28

Chapter 4

Hybrid Optimization

Formulations 3.1 and 3.2 are nonlinear integer and nonlinear mixed-integer programs, respec-

tively. As mentioned in Section 1.2.1, solving these discrete formulations is computationally

challenging and limits the transparency of the solution process. The fundamental contribution

of this work is a hybrid approach to solve CBDO problems; an overview of the solution

process is given in Figure 4.1.

Figure 4.1: Overview of hybrid optimization process

The hybrid approach is an indirect solution strategy: the problem is first converted to a

continuous-domain nonlinear program (NLP) via component parameterization and regression

models. A solution to the continuous-domain representation of the problem is then found

using gradient-based optimization methods. Finally, a search algorithm is employed to obtain

a discrete solution, a solution of the original problem, from the continuous solution. As noted

in 1.3, obtaining a continuous representation with parameterization and regression models is

common practice in optimization. In our hybrid approach, we go a step further and search

for the true discrete solution instead of returning the continuous solution.

29

4.1 Component Parameterization

4.1.1 Continuous Parameterization

In the discrete formulations, components are identified by selection indices that locate a

component within the component databases. To convert the problem to the continuous

domain, the mapping from discrete selection index to a component must be replaced with a

mapping from a continuous variable, or variables, to a component. That is, the components

must be parameterized by continuous variables. A component’s design parameters, those

which the component designer directly controls, provide a natural parameterization. Unlike

selection indices, which contain no information about the component itself, design parameters

provide a physically meaningful identity. In the hybrid approach, performance parameters are

modeled as functions of design parameters. Therefore, the design parameters must provide

a one-to-one mapping to a component; each component must have a unique design. When

several components in a supplier’s catalog have the same design parameter values, it is likely

that the distinguishing parameter(s) were unidentified or unspecified. This often occurs

when manufacturers differentiate components with product lines, encapsulating groups of

design parameters and concealing their numerical values. Some design parameters may also

be discrete, for example, the number of cells in a battery pack. In the hybrid optimization

approach, discrete parameters must be relaxed to allow for continuous values and categorical

parameters like product lines must be eliminated or replaced with numerical parameters.

4.1.2 Parameter Surrogate Models

In the hybrid approach, a parameter surrogate model is used to predict performance parameter

values as a function of design parameter values. The component database serves as the

foundation for the surrogate models, and any regression modeling technique can be used to

generate them. When the relationship between design parameters and performance parameters

is governed by a physical law, it is often advantageous to use parametric regression to fit

the data to a specific functional form. For a concrete example, suppose a motor’s design

parameters include height h and radius r. To predict the mass m, a performance parameter,

one might reasonably fit the data to

m = κh(πr2) (4.1)

where κ is a parameter of the regression model. This model assumes the motor is a solid

cylinder and uses κ as an effective density to be determined by the data. When an underlying

30

relationship between design and performance is unknown, nonparametric regression techniques

may be employed. Locally estimated scatterplot smoothing (LOESS), for instance, constructs

a smooth model by fitting simple functions to local subsets of the data [51].

Selecting an appropriate surrogate model is a core responsibility of the designer in

the hybrid approach. The model must be smooth for compatibility with gradient-based

optimization, and analytic partial derivatives are desirable to improve computational efficiency.

Also, the designer must balance smoothness with accuracy in selecting a surrogate model.

Smoothing improves problem convexity, helping to prevent the solver from converging to

local minima, but overly smooth models may fail to align with component data. When the

data is nonconvex, it may be appropriate to select a model with controllable smoothness.

The continuous optimization formation can then be solved by starting with very smooth

surrogate models to capture general trends and iteratively decreasing model smoothness to

improve solution accuracy as in [52].

Figure 4.2: Parameter surrogate models used to calculate performance parameters

4.1.3 Boundary Constraint Functions

In an optimization analysis with the hybrid approach, it is important that the surrogate

models do not extrapolate into regions of the design space where components do not exist.

This is because we seek only to use the surrogate models as a continuous approximation of

the component database. Moving too far away from the discrete components in a continuous

analysis will make the search for the discrete solution more difficult. Also, because the

surrogate models are generated from data in the component databases, extrapolating beyond

the component data can lead to invalid results. Drawing a bounding box about all the

components in a component database would be a natural choice, but, depending on the shape

of the data, it can still contain large areas without components. To constrain the design

parameter values further, boundary constraint functions are developed. Let Pt be the set

31

of points in the design variable space from data in the component database Ct. That is,

elements of Pt are the design parameters Φd
c of each component c in Ct. Construction of

the boundary constraint function starts by taking the convex hull B of Pt. That is, B is

the minimum convex set containing Pt, and it serves as a tighter boundary than a bounding

box. The design variable space is then shifted so that the centroid of Pt lies at the origin

and scaled by the range of Pt. That is, for any point Φd
c in Pt, the point Φ̃d

c ∈ P̃t under

transformation Tt is

Φ̃d
c = Tt(Φ

d
c) = Kt

(
Φd

c − pC

)
(4.2)

where pC is the centroid of the set Pt and Kt is a scaling matrix defined below.

Kt = diag
[

1
pmax
1 −pmin

1

1
pmax
2 −pmin

2
· · · 1

pmax
M −pmin

M

]
(4.3)

Above, pmin
k and pmax

k is the minimum and maximum, respectively, of Pt along dimension

k, and M = N t
d is the number of design parameters associated with type t. This scaling of

the design space maintains good problem conditioning when design variables have dissimilar

magnitudes. Without scaling, the boundary constraint function is dominated by the variable

with the larger magnitude. Let B̃ be the result of applying transformation T to the convex

hull B. Next, the scaled convex hull B̃ is smoothed to avoid discontinuities in the boundary

constraint function. This smoothing is achieved using the buffer function in Python’s Shapely

package [53], which returns an approximate representation of the set of points a given distance

from a polygon. B̃ is shrunk using the buffer function, resulting in B̃′. Then, the Haussdorff

metric between B̃ and B̃′ is calculated. The Haussdorff distance is the maximum of all

the distances from a point in one set to the closest point in another set as defined in [54].

Expanding B̃′ by the Haussdorff distance results in a smooth boundary Bs that tightly

includes each vertex of B. The scaled boundary constraint function g̃tB(·), corresponding to

type t, is defined as the minimum distance from any point in the scaled design space to Bs,

with points inside Bs taking a negative value. Because the formulation works with unscaled

design parameters, it is useful to define the boundary constraint function as the composition

of the transformation Tt and the scaled boundary constraint function 4.4.

gtB(·) := g̃tB(Tt(·)) (4.4)

Therefore, any point Φd
t , which represents the design variable values in the continuous domain

for a component of type t, is valid if it satisfies 4.5.

gtB(Φ
d
t) ≤ 0 (4.5)

32

4.2 Continuous-Domain Representations and Solution

Substituting the surrogate models for the component databases, replacing the selection indices

with the continuous design parameters, and adding the boundary constraint functions results

in a continuous-domain representation of the problem.

4.2.1 CBDO Formulation

The continuous-domain representation for the CBDO problem is given in 4.6.

minimize
Φd

J(Φd,S(Φd))

subject to 0 ≥ gtB(Φ
d
t)∀ t ∈ T,

0 ≥ gP (Φ
d,S(Φd))

(4.6)

In 4.6, Φd is a vector combining the design parameters of each component type, and

Φd
t is a vector of type t’s design parameters. The parameter surrogate function S uses the

parameter surrogates to calculate the performance parameters from the design parameters.

That is, Φp = S(Φd). The boundary constraint functions gtB, defined in the previous section,

ensure the design parameters remain in the valid region of the design space. Cost function J

and physical constraints gP are identical to that in 3.1.

Because 4.6 has continuous design variables and smooth objective and constraint functions,

it can be solved using efficient, gradient-based optimization algorithms. These include SQP

and related algorithms, which are generally considered the most efficient class of general-

purpose nonlinear programming solvers [40]. Solution of the continuous-domain representation

with SQP is a key contributor to the efficiency gains realized by the hybrid approach.

4.2.2 Dynamic CBDO Formulation

The continuous-domain representation for the dynamic CBDO problem is given in 4.7.

minimize
Φd,u(t), ξ(t)

Jd(Φ
d,S(Φd),u(t), ξ(t))

subject to ξ̇(t) = f(ξ(t),u(t),Φd,S(Φd)),

0 ≥ gtB(Φ
d
t)∀ t ∈ T,

0 ≥ gP (Φ
d,S(Φd)),

0 ≥ gD(u(t), ξ(t),Φ
d,S(Φd))

(4.7)

In 4.7, the dynamic cost function Jd, control trajectory u(t), static constraint functions

33

gP , dynamic constraint function gD, state vector ξ(t), and dynamics f are identical to those

in 3.2. Other notation is defined above for 4.6. Solving 4.7 is somewhat more difficult because

the addition of system dynamics results in an infinite-dimensional optimization problem. One

approach is to use direct transcription (DT) to discretize the system dynamics, resulting in

a finite-dimensional NLP [50]. In DT, a numerical integration method is used to convert

the dynamic equations into a system of algebraic equations. The resulting equations, known

as defect constraints, are posed as equality constraints in the optimization problem. The

discretized state trajectory and any control variables are treated as optimization variables.

Because DT results in a standard NLP, it can be combined directly with the system design

problem. The optimization algorithm searches for the optimal system design and control

values while simultaneously converging the dynamic equations.

Applying a DT approach to 4.7 results in the following formulation 4.8.

minimize
Φd,U,Ξ, t

Jd(Φ
d,S(Φd),U,Ξ, t)

subject to 0 = ζ(Ξ,U, t,Φd,S(Φd)),

0 ≥ gtB(Φ
d
t)∀ t ∈ T,

0 ≥ gP (Φ
d,S(Φd)),

0 ≥ gD(U,Ξ, t,Φ
d,S(Φd))

(4.8)

In 4.8, Ξ is the discretized state trajectory, U is the discretized control trajectory, and t

is the time vector of the discretization. Additionally, ζ is a vector-valued defect constraint

function that ensures the system dynamic equations are satisfied.

The DT approach presents a number of benefits over alternative formulations. First,

the system dynamics are represented directly in the optimization formulation; dynamics are

an integral part of the formulation. This eliminates the need for any forward simulation

within the analysis, as would be the case in a single or multiple-shooting approach. Another

benefit is flexibility. DT imposes no assumption on the controller architecture, which is

especially helpful during early stage design. Solving the open-loop optimal control problem

provides insights into the performance limitations of the system; then, once a control

architecture is specified, the controller and plant can be tuned with minimal modifications

to the formulation. Additionally, DT provides the ability to impose both inequality and

equality constraints on trajectories, which is not generally possible with classical optimal

control methods such as Pontryagin’s Maximum Principle [50]. Finally, DT promotes efficient

computation. Because the optimization variables appear explicitly in the defect constraint

functions, it is straightforward to obtain analytic derivatives. If electing not to use analytical

34

derivatives, the Jacobian sparsity pattern enables the efficient application of finite differences

[50]. Finally, for linear systems, DT formulations often reduce to quadratic or linear programs

[50]. Historically, DT has been challenging to implement for system design problems due to a

lack of software packages that accomodate plant design variables. Most software DT packages

are specific to optimal control. Further, because it is a fully-integrated approach requiring

implementation at the equation level, DT does not easily mesh with popular modeling

environments like Simulink. The aforementioned Dymos software package, however, flexibly

accomodates system design variables via Dymos parameters. In Dymos, the user specifies

the state variables, control input variables, and parameters; any of which can be considered

optimization variables. The continuous-domain system dynamic equations, along with their

Jacobians, must be specified as an explicit OpenMDAO component. Path and boundary

constraints can be added to any state or timeseries output. Finally, a dynamic objective

such as the final time of the trajectory must be specified. Once the problem is fully defined,

Dymos transcribes the system dynamics via implicit collocation, also known as pseudospectral

methods, to produce the defect constraints and their Jacobians. The final result is a standard

OpenMDAO optimization problem that can be converged with any OpenMDAO-compatible

solver. If additional OpenMDAO components are contained within the system model, their

design variables and constraints are considered as well.

4.3 Discrete Search Algorithms

Solving problems 4.6 or 4.7 results in an optimal continuous-domain value for the system

design parameters, Φd∗. Most parameterization-based approaches to the CBDO problem treat

these parameter values as the solution, and require the designer to select components with

similar parameter values. Two situations limit the accuracy of a solution obtained by manual

selection: sparse component datasets and imperfect parameter surrogate models. If the

continuous solution falls in a sparse region, the designer is forced to select a component some

distance away. When components are coupled, as in most realistic CBDO problems, then one

component’s deviation from the continuous solution will influence the optimal design of the

other components. Put another way, the answer to the problem can change when translating

the solution back to the discrete domain. A similar effect occurs when the parameter surrogate

model contains imperfections. Misalignment between the surrogate models’ predictions and

the components’ true parameter values lead to some deviation between the continuous and

discrete solution. A more systematic approach to obtain a discrete solution is necessary under

these conditions.

35

4.3.1 Sorted Search Algorithms

The hybrid approach utilizes a class of algorithms referred to as ’sorted search algorithms’ to

obtain a discrete solution to the component selection problem. These algorithms iteratively

narrow the discrete design space while increasing the fidelity of the objective function

calculation. Let S be a set containing all possible designs. The algorithm first uses a

low-fidelity predictor J̃1 of the true objective function J to sort S. The sorted set S∗
1 is in

ascending order of predictor value such that, if the predictor is reasonable, good designs

appear early in the list and bad designs late in the list. At this point, the sorting process

can be repeated with predictors of increasing fidelity up to J̃K , resulting in a final sorted set

S∗
K . As the predictor J̃k increases in computational expense, it evaluates fewer designs in the

previous set S∗
k−1. That is, the sorted set gets shorter with each iteration as poor designs

relegated to the end of the list are ignored. This results in a narrowing of the design space

such that the most expensive analyses are only applied to good designs. Also, at any iteration,

infeasible designs may be removed from the set by predicting or evaluating constraint function

values. After the iterative sorting procedure, the true objective J is evaluated sequentially for

each element in S∗
K until the search terminates. Termination criteria include 1) the algorithm

evaluates each configuration in S∗
K or reaches a maximum number of search iterations 2) the

algorithm finds a configuration with an objective function value lower than some specified

threshold value, or 3) the algorithm ’stalls,’ that is, the best objective function value stops

changing over a specified number of stall iterations. Like any discrete optimization algorithm,

sorted-search approaches cannot gaurantee the optimal design is found unless each of the

configurations in S are evaluated. No predictor is perfect, so it is indeed possible that some

good designs are missed in the filtering process. The user has a good deal of flexibility,

however, in determining an appropriate balance between computational effort and solution

accuracy by specifying how many configurations to evaluate at each sort iteration.

4.3.2 Distance-Sorted Search (DSS) Algorithm

The sorted search algorithm we developed for use in this thesis is the distance-sorted search

(DSS) algorithm. In this method, the predictor J̃1 is the “distance” in the design space

between a configuration and a target design. In this application, the target design is taken to

be the solution to the continuous representation, Φd∗. An approximation of the solution is

found by solving the continuous problem, and the distance-sorted search algorithm searches

for designs near that point. A flowchart of the distance-sorted search algorithm is presented

in Figure 4.3.

36

Figure 4.3: Distance-sorted search algorithm flowchart

First, a component distance metric dc, defined in 4.9, is evaluated for each of the

components in the component databases. To prevent parameters with a larger magnitude

from being prioritized, the distance is scaled by the corresponding value of the target.

dc =

√√√√ M∑
i=1

(
Φd

c,i

Φd∗
t,i

− 1

)2

(4.9)

In 4.9, M is the number of design parameters associated with the component’s type, Φd
c,i

is the ith element of the component’s design parameter vector, and Φd∗
t,i is the corresponding

element of the target parameters vector. Each component database is then sorted in ascending

dc, and components with large dc may be rejected to reduce the size of the design space.

Then, all possible combinations are enumerated to create the set S. Each element in S is a

37

configuration s that contains one component of each type. From the multiplication principle

in combinatorics, the length of S is the product of the number of components in each catalog,

or

NS =

NT∏
t=1

N t
C (4.10)

For each configuration in S, a configuration distance ds is calculated as defined in 4.11.

It is simply the norm of the component distances associated with the configuration. This

metric serves as the predictor for the distance-sorted search algorithm.

ds =
√(

d2c,1 + d2c,2 + . . .+ d2c,NT

)
(4.11)

Then, the sorted configuration set S∗
1 is obtained by sorting S in ascending order of ds.

For each configuration s in S∗
1 , the parameters of each of the components in s are substituted

into the system model. The constraint function gP is then evaluated, and s is rejected if the

constraints are not satisfied. If s is feasible, then the objective function is evaluated. This

process continues until any of the sorted-search termination criteria are met.

Note that there is some flexibility in selecting appropriate component and configuration

distance metrics. For example, if some parameters are known to have a higher priority than

others, then the component distance metric can be weighted as in 4.12.

dc =

√√√√ M∑
i=1

(
wi

(
Φd

c,i

Φd∗
t,i

− 1

))2

(4.12)

Above, wi is a weight associated with the ith parameter, possibly determined by the

gradient of the objective function with respect to that parameter at the target point. If certain

component types are prioritized, then the configuration distance metric can be weighted

similarly.

4.4 Comparison to Direct Approaches

As previously menioned, approaches to the CBDO problem typically fall into two camps:

solving the discrete selection problem directly or by parameterizing the components and

solving the continuous-domain representation of the problem. In multirotor CBDO literature,

the most commonly employed algorithm used to solve discrete and mixed-integer problems

is the GA. Popularity of the GA is largely attributable to its global search properties,

compatibility with discrete variables, and ease of implementation [16]. The GA is a natural,

‘plug and play’ solution to the CBDO problem, but it has a few fundamental drawbacks. First,

38

it scales poorly as the complexity of the problem increases. In the hybrid approach, the highly

scalable gradient-based optimization in the continuous domain helps to mitigate the poor

scalability of the discrete search. The user also has a high degree of control over the objective

function predictors and iteration limits used to narrow the design space. The GA is stochastic:

it randomly selects an initial population and makes random mutations for each generation.

These random decisions make it difficult to intuitively understand the optimization process,

to repeat or test an analysis, and to locate software bugs. To benchmark a GA’s typical

performance, the problem must be solved repeatedly until a statistically significant sample

is obtained. The hybrid approach, on the other hand, is deterministic. If the model and

algorithm parameters remain fixed, the outcome of the analysis will always be the same.

Performance differences between the hybrid approach and the GA are discussed further in

the following chapter.

In practice, it is important to consider an algorithm’s ease of implementation in addition

to its performance. The GA is quite easy to implement, requiring only the specificationob

of objective and constraint functions to get up and running. However, should the user

wish to tune the algorithm to modify its performance, they face a plethora of decisions.

In MATLAB’s GA implementation, custom functions can be specified for a population’s

“creation,” “crossover,” “distance measure,” “fitness scaling,” “mutation,” and “selection” [55].

Further decisions include the population and generation size along with numerous tolerances.

Appropriate values for these settings are typically determined by trial and error. The hybrid

approach requires significant up-front effort to parameterize the components and, if desired,

to calculate analytical gradients for the objective and constraint functions. The regression

models used to generate the parameter surrogates are selected and tuned by the user. This

process is transparent, however. The development of fitting models is well understood, and a

fit can be visually and quantitatively verified. Tuning of the hybrid approach occurs in two

independent steps: 1) selecting and tuning the gradient-based optimization algorithm and

2) tuning the DSS algorithm. The field of gradient-based NLP algorithms is mature, and

textbooks such as Papalambros’ Principles of Optimal Design [40] or Martins and Ning’s

Engineering Design Optimization [16] provide background on these algorithms as well as

their practical implementation. Parameters for the DSS algorithm are straightforward. The

user must specify termination parameters like iterations limits, and may specify custom

component or configuration distance metrics if they desire.

39

Chapter 5

Case Study: Multirotor Design

Optimization

5.1 Background

To demonstrate the CBDO process and other concepts discussed above, a design optimization

case study is conducted. Two priorities guided the selection of application area and candidate

system. First, the application needed to be realistic and align with potential applications of

CBDO in the real world. Second, to perform physical model validation tests and verify design

improvements under time and budget constraints, the system needed to be relatively simple

and inexpensive. Electric vertical take-off and landing (eVTOL) and multirotor aircraft

provide an exciting application area for CBDO. These systems have a vast design space

afforded by distributed-electric powertrains. This design space includes component sizing

and/or selection as well as system configuration decisions. Where the design of large jet

aircraft has largely converged to the familiar airplane shape, no one eVTOL design has

emerged as the most desirable. This is partly due to the strong trade-offs among range,

performance, and carrying capacity present when designing aircraft. No single configuration

accommodates every need; the best designs are mission specific. Mission-specific CBDO tools,

therefore, could play a large role in the design of such systems.

Though a full-scale eVTOL aircraft is the ideal application for CBDO, it was not feasible

to build and test such a vehicle given the scope and resources required relative to the time

frame for this thesis. Quadrotor UAVs share many powertrain components with today’s

eVTOL aircraft, but on a far smaller scale. Their ubiquity has made them inexpensive and

easily accessible. Though the quadrotor has an established configuration, the selection of

powertrain components for these vehicles is largely based on heuristics, designer experience,

40

and low-fidelity tools. For these reasons, the quadrotor UAV was selected as the system of

interest for the CBDO case study.

5.2 Quadrotor System

Specifically, the candidate quadrotor UAV is the HolyBro S500 V2 platform shown in Figure 5.1

[56]. The system comes as a kit which includes a frame, Pixhawk flight controller with GPS

Figure 5.1: HolyBro S500 V2 quadrotor platform

sensor, power management board, and telemetry along with easily interchangeable electronic

speed controllers (ESCs), motors, and propellers. Though there are many commercially-

available multirotor aircraft, the S500’s low cost, open-source Pixhawk flight controller, and

modular design made it an ideal test platform for component-based design. The Pixhawk

flight controller and autopilot is supported by a large community of hobbyists and researchers.

Though the software is largely plug-and-play, it is highly customizable and can flexibly

accommodate various system configurations. It is compatible with a wide variety of sensors

for state estimation and safety, as well as power monitors for accurate measurement of battery

41

voltage, current, and state of charge. The included GPS module and autopilot features allow

the operator to pre-program a desired mission, which is useful for running the same mission

in multiple experiments or trials.

The S500’s use of industry-standard component interfaces makes it easy to integrate other

off-the-shelf multirotor components. Increasing interest in customized multirotors among

hobbyist, semi-professional, and research communities have created a large and varied supply

of multirotor parts. In this CBDO case study, different batteries, motors, and propellers

from third-party suppliers will be integrated with the S500’s chassis, flight controller, power

management, and sensors.

5.2.1 Component Compatibility

In CBD, the decision space is limited not only by component availability but by compatibility

with the system of interest. Each component must satisfy compatibility constraints of

two types: physical compatibility and operational compatibility. Physically compatible

components have interfaces that are designed to fit together. For example, if a power

distribution board contains a female XT-60 connector, then a physically compatible battery

must include a male XT-60 connector. Operational compatibility, on the other hand, ensures

that the sets of safe operating conditions for each component overlap. For example, a battery

with six series cells is not operationally compatible with a speed controller that is rated

for an input voltage of two to four series cells. Compatibility with the fixed system, the

aspects of the design that are constant throughout the optimization, can be used to trim

the component catalogs so that only feasible components are considered. Compatibility

with mutable aspects of the system, however, must be enforced as optimization constraints.

For example, in the following work, the system’s steady-state bus current is limited by the

battery, a mutable component. This operational compatibility constraint is enforced by the

optimizer since the maximum current depends on the battery selection. In this section, the

fixed compatibility constraints for the S500 quadrotor platform are defined. The fixed chassis

and power management components are quite accommodating, but they do narrow the space

of feasible batteries, motors, and propellers.

Battery and Electronic Speed Controller

The choice of battery that can be integrated into the system is limited by the S500’s power

module and the configuration’s electronic speed controller (ESC). The system ships with a

HolyBro PM02 power module [57]. Its current sensor can handle a maximum input voltage

of 60V, limiting the battery to 12 series cells, and a maximum current of 120A. The system

42

also ships with BLHeli ESCs rated for a continuous current of 20A and burst current of

30A [58]. These ESCs are only compatible with batteries having no more than 4 series cells.

To accommodate batteries with 2 to 6 series cells, the ESCs were later upgraded to the

KDEXF-UAS20LV from KDE Direct [59]. In addition to the higher peak voltage, these ESCs

have a faster refresh rate and higher peak current of 35A.

Specification Compatibility Requirement

Series Cells 2-6

Connector XT-60

Table 5.1: Battery compatibility requirements

Motor

The choice of motor is constrained by the mounting pattern on the S500’s chassis, maximum

system voltage, and maximum system current. The mounting hold pattern on the S500

chassis’ arm is shown in Figure 5.2. It allows for motors with 18mm or 25mm-diameter

hole patterns. System voltage and current depend on the battery and ESC selection, which

requires enforcement of compatibility within the design optimization process.

Figure 5.2: Motor mounting pattern on S500 chassis arm

Specification Compatibility Requirement

Hole Pattern 16mm or 25mm

Table 5.2: Motor compatibility requirements

43

Propeller

Lastly, the choice of propeller is limited by the chassis geometry and the motor’s propeller

coupling. Figure 5.3 provides a top view of the chassis and the maximum feasible propeller

diameter. Any propeller with a diameter larger than 0.356m will mechanically interfere with

the other propellers.

Figure 5.3: Top view of S500 chassis

Specification Compatibility Requirement

Maximum Diameter 0.356m

Table 5.3: Propeller compatibility requirements

5.3 System Model

To create a design model of the quadrotor system, the system was first split into two

subsystems: the powertrain and the rigid-body dynamics. The powertrain was modeled using

graph-based techniques and translated to a symbolic model using the AGILe toolbox (See

Appendix C). The rigid-body dynamic model was developed from Newton’s second law and

Euler’s rotation equation. Figure 5.4 provides an overview of the model architecture.

44

Figure 5.4: Quadrotor model architecture

5.3.1 Powertrain Model

Battery

The powertrain’s battery is a lithium polymer (LiPo) battery pack with Ns series cells and

Np parallel cells. Each cell is modeled as a second-order electrical circuit, shown in Figure 5.5

[60]. In the figure, vOCV(q) is the open-circuit cell voltage, i is the battery current, Rs is the

cell series resistance, and R1,2, C1,2, v1,2 are the resistance, capacitance, and voltage across

the first and second RC pair, respectively.

45

Figure 5.5: Battery second-order equivalent circuit model

Individual cell parameters can be converted to effective pack parameters using the familiar

formulas for series and parallel connections of resistors and capacitors. The effective pack

resistance is RP
s = Ns

Np
Rs, effective RC pair capacitance is CP

1,2 =
Np

Ns
C1,2, and effective RC

pair resistance is RP
1,2 =

Ns

Np
R1,2.

Applying Kirchoff’s Voltage Law around the loop gives,

NsvOCV(q) =
Ns

Np

Rsi+ v1 + v2 (5.1)

The voltage dynamics for the two RC pairs are given in 5.2

Np

Ns

C1,2v̇1,2 = i− Np

Ns

v1
R1

(5.2)

Finally, the state of charge dynamics are given in 5.3, where q is the battery state of

charge (SOC) and Q is the battery cell capacity.

NpQq̇ = −i (5.3)

Note that, in 5.1, the open-circuit voltage vOCV is a function of q. This relationship

was captured by fitting an eighth-order polynomial to experimental data from [61]. The

relationship is shown in Figure 5.6.

46

Figure 5.6: Relationship between battery cell SOC and open-circuit voltage

Batteries are frequently specified with a C-rating that is used to calculate the maximum

allowable discharge current imax. This relationship is given in Equation 5.4.

i ≤ imax =
CNpQ

1000
(5.4)

Above, C is the C-Rating in units of A/(Ah) and Q is specified in units of mAh. The battery

current saturation is posed as a constraint in the optimization formulation.

Equations 5.1 - 5.3 lead to the graph model representation shown in Figure 5.7.

Figure 5.7: Battery graph model

The battery’s RC dynamics were later omitted in the optimization study, as dynamic

response data was not available for batteries in the database and the effects of the second-order

dynamics were negligible.

47

Electrical Bus

The model of the direct current (DC) electrical bus is similar to that given in [62]. It includes a

single input for the battery and an output for each of the four ESCs. An electrical component

diagram is shown in Figure 5.8.

Figure 5.8: DC electrical bus component model

Applying Kirchoff’s voltage law, the voltage across the inductor is given in 5.5.

Li̇1 = −Ri1 − v (5.5)

Summing the current into the capacitor gives 5.6.

Cv̇ = i1 −
5∑

k=2

ik (5.6)

The graph representation of the electrical bus is presented in Figure 5.9.

Figure 5.9: DC electrical bus graph model

48

Inverter (ESC)

In this work, a simplified model of an inverter is utilized. It assumes the inverter losses are

captured through an effective resistance, and that the maximum amplitude of the inverter’s

three-phase output voltage is equivalent to the DC input voltage. The power-invariant Park

transformation, detailed in Appendix A, is used to represent the output voltage and current

waveforms in a rotating frame. Under this transformation, A.10 leads to the relationship

between peak q-axis voltage and DC bus voltage given in 5.7.

vDC =

√
2

3
v̄q (5.7)

Above, vDC is the DC input voltage and v̄q is the peak q-axis output voltage. Let u be the

inverter’s control input such that u = 1 corresponds to maximum voltage output and u = 0

corresponds to zero voltage output. The resulting relationship between input and output

voltage is given in 5.8.

uvdc =

√
2

3
vq +RiDC (5.8)

In 5.8, vq is the q-axis output voltage, R is an effective resistance used to capture inverter

losses, and iDC is the DC input current. Inverters are typically rated for a maximum current.

That is, iDC ≤ imax
DC , where imax

DC is the maximum allowable current. This current saturation is

posed as a constraint in the optimization formulation. The power balance across the inverter

is given in 5.9

uvDCiDC = i2DCR + vqiq (5.9)

where iq is the q-axis output current. The power contribution from the d-axis is omitted

because the motor is assumed to be controlled using a field-oriented control (FOC) scheme

that drives the d-axis current to zero [63].

The inverter model has the graph representation given in Figure 5.10.

Figure 5.10: Inverter graph model

49

Motor

The system’s brushless DC motor is modeled as a permanent-magnet synchronous machine

(PMSM) with the following assumptions:

• Stator currents and voltages are sinusoidal and balanced with the same angular velocity

as the rotor speed [64].

• Stator windings are balanced and sinusoidally distributed [64].

• The number of rotor and stator poles are equal [64].

• Cogging torque between permanent magnet and stator teeth is neglected (smooth air

gap model) [65].

• A linear magnetics model is used that neglects magnetic saturation [65].

• Core losses in magnetic materials of the machine are neglected [65].

• Frequency and temperature dependence of stator resistance is neglected [65].

Under these assumptions Chapman [66] and Kraus [64] give the qd0 phase voltages in

Equation 5.10, flux linkages in 5.11, and electrical torque in 5.12.

vq = riq + ωrλd +
d
dt
λq

vd = rid − ωrλq +
d
dt
λd

v0 = ri0 +
d
dt
λ0

(5.10)

λq = Lqiq

λd = Ldid + λm

λ0 = L0i0

(5.11)

τe =
3

2

P

2
λmiq + (Ld − Lq)idiq (5.12)

In the above equations, subscripts q, d, and 0 represent the q, d, and 0-axis of the variable

transformed by the Park transformation given in A.1. Ld, Lq, and L0 are constant inductances

derived from motor geometry, λm is the peak strength of the flux linkage due to the magnets

[66], P is the number of poles, τe is the torque due to the magnetic field acting on the rotor,

and ωr is the angular velocity of the rotating electrical frame. The model can be further

simplified by making the following additional assumptions:

• The machine is surface-mounted so that stator inductances are independent of rotor

position and Lq = Ld = L0 = L [66].

50

• Motor phases are wye-connected such that i0 = λ0 = v0 = 0 [66].

• Field-oriented control (FOC) techniques are used so that id ≈ 0 [63].

With FOC, torque control is achieved by controlling iq and driving id to zero. The simplified

equations are given in 5.13-5.15. Note that, with FOC control, the model dynamics are

similar to that of a DC motor.

vq = riq + ωrλd +
d
dt
λq

vd = −ωrλq
(5.13)

λq = Liq

λd = λm
(5.14)

τe =
3

2

P

2
λmiq (5.15)

The relationship between electrical and mechanical angular velocity is given in 5.16.

ωr =
P

2
ωm (5.16)

To derive a graph model representation from the above equations, a change of variables

to the power-invariant form of the Park transformation A.7 is required. This transformation

is given in A.11. Making this change of variables and replacing electrical angular velocity

with mechanical angular velocity using 5.16 gives 5.17 and 5.18.

ṽq = rĩq +
P
2

√
3
2
λmωm + d

dt

(
Lĩq
)

ṽd = −P
2
ωm

(
Lĩq
) (5.17)

τ̃e =
P

2

√
3

2
λmĩq (5.18)

Above, the˜overscript denotes the variables under the power-invariant Park transformation.

The mechanical dynamics are given in 5.19.

Jω̇m = τe − τl −Bνωm − sgn (ωm) τc (5.19)

Where J is motor inertia, τl is a load torque with an orientation opposing τe, Bv is a viscous

friction factor, τc is a constant opposing torque from Coulomb or “dry” friction, and ωm is

the mechanical speed of the rotor. Note that the sign function sgn(·) is discontinuous, which
reduces the model’s compatibility with gradient-based optimization solvers [16]. To ensure a

51

smooth derivative, the sign function can be replaced with the sigmoid function given in 5.20

as suggested in [62].

sig(ω) =
2

1 + exp(−αω)
− 1 (5.20)

where α is a smoothing constant. In the specific application of the quadrotor system, the

motor’s angular velocity has a constant sign. This allows us to omit the step or sigmoid

function in the present formulation.

Suppliers often characterize motors with speed and torque constants. Equations 5.21

relate the motor’s torque constant to its flux linkage and number of poles.

Kτ =
P

2
λm (5.21)

where Kτ is the torque constant. Equation 5.22 relates the torque constant to the speed

constant.

kV =
30

π

1

Kτ

(5.22)

where kV is the speed constant in RPM/V and Kτ is the torque constant in Nm/A.

The graph model of the motor is presented in Figure 5.11.

Figure 5.11: Motor graph model

Propeller

The propeller model assumes a constant thrust and torque coefficient as defined in [67]. These

coefficients are generally functions of the propeller design, Reynolds number, and advance

ratio [68]. The thrust generated by the propeller is presented in 5.23, and the shaft torque

generated by the propeller is given in 5.24.

T = kTρD
4ω2 (5.23)

τ = kQρD
5ω2 (5.24)

Above, T is propeller thrust, kT is the thrust coefficient, ρ is air density, D is propeller

diameter, ω is the propeller’s rotational speed, τ is shaft torque, and kQ is the torque

52

coefficient. Often, a power coefficient is specified instead of the torque coefficient. These are

related by 5.25 [69].

kQ =
kP
2π

(5.25)

Applying Newton’s Second Law for rotation, we have

Jω̇ = τm − τ (5.26)

where J is rotor inertia and τm is shaft input torque from the motor. Re-writing 5.26 in

terms of power and substituting the torque value, we have

Jωω̇ = τmω − kQρD
5ω3 (5.27)

Figure 5.12 shows the graph form of this equation.

Figure 5.12: Propeller graph model

Powertrain System Model

The component models defined above were combined into a powertrain system graph model

using the AGILe toolbox. Figure 5.13 shows the complete system graph, and model details

are provided in Appendix B.

53

Figure 5.13: Powertrain system graph model

Simplified Powertrain System Model

The powertrain system model can be simplified by assuming that the system is balanced,

that is, corresponding states and inputs in each of the rotors are equivalent. Equation 5.28

54

states this explicitly.

I2...4 = I1

ω2...4 = ω1

V4...6 = V3

I7...9 = I6

u2...4 = u1

(5.28)

This assumption is useful for evaluating purely vertical dynamics or when calculating the

steady-state hover condition. Applying these assumptions yields the dynamic state equa-

tions 5.29 and the algebraic state equations 5.30.

ẋ =

(
−1/

(
ϕB
Np
ϕB
Q

))
I5(

1/
(
ϕM
L

)) (
V3 − ϕM

R I1 − ϕM
Kt

√
3/2ω1

)
(
1/
(
ϕM
J + ϕP

J

)) (
ϕM
Kt

√
3/2I1 − τ1

)
 (5.29)

0 =

ϕB
Ns
ϕB
vOCV

(V1)−
(
ϕB
Ns
/ϕB

Np

)
ϕB
Rs
I5 − V2

I5 − u14I6

u1V2 −
√

2/3V3 − ϕI
RI6√

2/3I6 − I1

τ1 − ϕP
kq
ϕP
ρ

(
ϕP
D

)5
ω2
1

(5.30)

Above, the notation ϕt
x is used to denote parameter x corresponding to component type t,

where B is the battery, I is the inverter, M is the motor, and P is the propeller.

5.3.2 Quadrotor Body Dynamic Model

The following derivation of the quadrotor’s rigid-body dynamic model follows that of [70].

It includes the development of the coordinate systems and attitude representation used to

describe the vehicle’s pose, a rigid-body kinematic model to relate angular velocity in the

body frame to attitude rates, and a dynamic model to determine the vehicle’s acceleration.

Coordinate System and Attitude Representation

Two coordinate frames are employed to describe the state of the quadrotor:

• Earth Coordinate Frame (oexeyeze): The initial position of the quadrotor defines the

origin oe of this coordinate frame. The oexe axis points in a given fixed direction in the

horizontal plane, the oeze axis points downward toward the earth’s center, and the oeye

55

axis is determined according to the right hand rule.

• Body Coordinate Frame (obxbybzb): This coordinate frame is attached to the quadrotor,

and the quadrotor’s center of gravity is chosen as its origin ob. The obxb axis points

in the nose direction as indicated in Figure 5.15. The obzb axis points downward

perpendicular to the obxb axis. The obyb axis is determined from the right hand rule.

The relationship between the two coordinate systems is depicted in Figure 5.14. A left

superscript is used to indicate the frame to which a vector is relative, i.e. ex is a vector

relative to the earth frame and bx is a vector relative to the body frame. We must also define

a standard basis with unit vectors e1 := [1, 0, 0]⊤, e2 := [0, 1, 0]⊤, and e3 := [0, 0, 1]⊤. In

the earth frame, the axes oexe, oeye, and oeze are expressed with e1, e2, and e3 respectively.

Body unit vectors b1 := obxb, b2 := obyb, and b3 := obzb can be expressed relative to the

body frame as bbi = ei and relative to the earth frame as ebi for all i ∈ {1, 2, 3}.

Figure 5.14: Coordinate system representa-
tion

Figure 5.15: Body coordinate system, top-
down view

Euler angles ψ (yaw angle), θ (pitch angle), and ϕ (roll angle) express the aircraft’s

attitude. The body orientation is achieved by three successive rotations about the z, y, and

x axes around a fixed point. Let the frame resulting from the first elemental rotation be

k with unit vectors ki and that of the second elemental rotation be n with unit vectors ni.

Frame k is achieved by a yaw rotation about the e3 axis by ψ. Frame n is achieved by a pitch

rotation about the k2 axis by θ. The final body frame is achieved by a roll rotation about

the n1 axis by ϕ. The combined rotation can be expressed as the product of three rotation

56

matrices. Denote a rotation matrix that performs a change of basis from frame a to frame b

(rotation of frame a relative to fixed frame b) as Rb
a. The elemental rotation matrices are,

Rz(ψ) =

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

Ry(θ) =

 cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

Rx(ϕ) =

 1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

(5.31)

The combined rotation matrix that transforms a vector x expressed in the earth frame ex

into a vector expressed in the body frame bx is then,

bx = Rb
nR

n
kR

k
e (

ex) = Rb
e (

ex) (5.32)

Where Rb
n = Rx(ϕ), R

n
k = Ry(θ), and Rk

e = Rz(ψ). Performing the matrix multiplication

gives,

Rb
e =

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)

s(θ)c(ψ)s(ϕ)− s(ψ)c(ϕ) s(θ)s(ψ)s(ϕ) + c(ψ)c(ϕ) c(θ)s(ϕ)

s(θ)c(ψ)c(ϕ) + s(ψ)s(ϕ) s(θ)s(ψ)c(ϕ)− c(ψ)s(ϕ) c(θ)c(ϕ)

 (5.33)

Where c(·) is an abbreviation of cos(·) and s(·) is an abbreviation of sin(·).

Rigid-body Kinematic Model

In order to analyze the kinetics of the aircraft, we must first understand the relationship

between the angular velocity of the body bω = [p, q, r]⊤ and the attitude rate Θ̇ =
[
ϕ̇, θ̇, ψ̇

]⊤
.

To do so, we employ the theorem involving the time derivative of rotation matrices from

Zhao in [71] given in Equation 5.34,

d

dt
Re

b = Re
b

[
bω
]
× (5.34)

57

where [·]× is the skew symmetric operator used to convert a cross product of two vectors into

a matrix-vector product. Rearranging 5.34 gives,

[
bω
]
× = Re

b
⊤ d

dt
Re

b = Rb
e

d

dt
Re

b (5.35)

Employing the chain rule to expand the derivative yields,

[
bω
]
× = Re

b
⊤ d

dt
Re

b = Rb
e

(
dRe

b

dϕ
ϕ̇+

dRe
b

dθ
θ̇ +

dRe
b

dψ
ψ̇

)
(5.36)

Simplifying the expression achieves a linear relationship between bω and Θ̇.

bω =

 1 0 − sin(θ)

0 cos(ϕ) cos(θ) sin(ϕ)

0 − sin(ϕ) cos(θ) cos(ϕ)

 Θ̇ =: W−1Θ̇ (5.37)

Taking the inverse provides an explicit expression for the attitude rates.

Θ̇ = W · bω =

 1 tan(θ) sin(ϕ) tan(θ) cos(ϕ)

0 cos(ϕ) − sin(ϕ)

0 sinϕ/ cos θ cos(ϕ)/ cos(θ)

 bω (5.38)

Kinematic equations for the quadrotor body can finally be written. Let p represent the

position of the quadrotor’s center of gravity (i.e. ob) and v represent the linear velocity.

eṗ = ev

Θ̇ = W · bω
(5.39)

Rigid-body Dynamic Model

Position Dynamic Model : With level propellers producing thrust parallel to b3, the position

dynamics are described by Newton’s second law,

ev̇ = ge3 −
T

m
eb3 (5.40)

where g is the gravitational acceleration, T is the combined thrust produced by the four

propellers, and m is the mass of the aircraft. The rotation matrix Re
b is used to write

Equation 5.40 in the body frame. This yields,

ev̇ = ge3 +
1

m
Re

b · bT3 (5.41)

58

where bT3 := −Te3.

Attitude Dynamic Model : The attitude dynamic model begins with Euler’s equation describing

the rotation of a rigid body [72],

J · bω̇ + bω× J · bω = M (5.42)

where J is the inertia tensor relative to the body frame, bω is the angular velocity defined

above, and M is the sum of the moments acting on the craft in the body frame. For a simple

quadrotor model, M comes from two primary sources: moments generated by the propellers

τ = [τx, τy, τz]
⊤ and the gyroscopic torques associated with the rotors Ga = [Ga,x, Ga,y, Ga,z].

M = τ +Ga (5.43)

The gyroscopic torque of the kth rotor is found by looking at the torque acting on the rotor

in the rotating body frame,

Ga,k = −
(

d

dt

(
bLk

)
+ bω× bLk

)
(5.44)

where bLk is the angular momentum contributed by rotor k relative to the body frame.

The quantity in parenthesis in the right-hand side of Equation 5.44 represents the external

moments in the body frame acting on rotor k given the body’s angular velocity bω. Ga,k

is therefore the torque exerted on the body by rotor k. bLk is the rotor’s inertia about its

central axis Jr times its angular velocity vector in the body frame bωk,

bLk = Jr · bωk = Jr
(
−1k

)
|ωk|e3 (5.45)

where |ωk| is the unsigned angular speed of rotor k. Note that d
dt

(
bLk

)
is zero if we assume

|ωk| is constant. This allows us to write,

Ga,k = −
(
bω× bLk

)
= bLk × bω (5.46)

Substituting 5.45 into 5.46 gives,

Ga,k = Jr
(
−1k

)
|ωk|e3 × bω (5.47)

59

The total gyroscopic torque is then,

Ga =
Nr∑
k=1

Ga,k = Jr
(
e3 × bω

) Nr∑
k=1

(
−1k

)
|ωk| = Jr

(
Nr∑
k=1

(
−1k

)
|ωk|

)
[e3]×

bω (5.48)

Parametric Inertia Tensor

A dynamic model for design optimization must be parametrized by the design variables.

Because the inertial properties of the quadrotor will change depending on the motor, propeller,

and battery design, the inertial tensor must be expressed as a function of these elements.

Most examples of quadrotor dynamics and simulation in the literature determine the inertia

tensor by 1) conducting physical experiments such as a bifilar pendulum [70] or 2) building a

detailed CAD model of the system. Though accurate, neither of these approaches can account

for changes in the physical design and therefore are not compatible with design optimization.

We can, however, use a combined numerical and analytical approach. First, the inertial

tensor Jf of the ‘fixed’ system (i.e. excluding the battery, motors, and propellers) is calculated

via CAD or physical experiments. Then, the inertia matrix for each of the optimization

components J′
c,i is calculated analytically about the component’s center of mass. Then, the

generalized parallel axis theorem is used to calculate each components’ inertia about the

system’s center of mass Jc,i. The formula for the generalized parallel axis theorem is given in

[73] as Equation 5.49.

Jc,i = J′
c,i +mc,i

(
∥rc,i∥2I3 − rc,i ⊗ rc,i

)
(5.49)

Above, mc,i is the component mass and rc,i is the displacement vector from the system center

of mass to the component center of mass. Finally, the system inertia tensor J is found by

summing each individual inertia tensor:

J = Jf +
∑
c,i

Jc,i (5.50)

Equations 5.49 and 5.50 are simplified by assuming the motor and propeller are point

masses at the end of each arm and the battery is a point mass at the system’s center of

gravity. Though these assumptions make for a very rough approximation, they capture the

general trend of how design changes impact the real system’s inertial properties. Applying

Equation 5.49 to the rotors r gives

Jr,k = (mP +mM)
(
∥rr,k∥2I3 − rr,k ⊗ rr,k

)
(5.51)

where mP is the mass of the propeller and mM is the mass of the motor. The displacement

60

from the system’s center of mass to the rotors’ center of mass rr,k is approximately

rr,1 = d

√
2

2

[
−1 1 0

]⊤
rr,2 = d

√
2

2

[
1 1 0

]⊤
rr,3 = d

√
2

2

[
1 −1 0

]⊤
rr,4 = d

√
2

2

[
−1 −1 0

]⊤
(5.52)

where d is the distance from the system’s center of mass to that of the rotor as shown in

Figure 5.15. Applying Equation 5.51 and summing over all four rotors gives the moments of

inertia contributed by the rotors.

Jr =
4∑

k=1

Jr,k = (mP +mM) d2

2 0 0

0 2 0

0 0 4

 (5.53)

By assuming the battery is a point mass at the system’s center of mass, the battery’s

contribution to inertia is zero. Therefore, we can write a simplified version of the system’s

inertia tensor in Equation 5.50 as,

J = Jf + Jr (5.54)

5.3.3 S500 CAD Model and Inertia Estimate

A CAD model was constructed to estimate the inertial tensor of the ‘fixed’ system Jf ,

the inertia contributed by the frame and other static components. The model, shown in

Figure 5.16, was constructed using Velimir’s ‘S500 Frame’ model on GrabCad [74], HolyBro’s

reference designs [75], and Harvick Tang’s propeller model [76]. To improve the accuracy

of the inertia estimate, material properties were assigned to each of the components and

component masses were manually adjusted to reflect measured values.

61

Figure 5.16: HolyBro S500 CAD Model

Using the CAD model, the inertia of the frame Jf was calculated to be:

Jf =

4.70e−3 6.00e−8 3.20e−5

6.00e−8 4.50e−3 −5.30e−7

3.20e−5 −5.30e−7 4.70e−3

 kgm2 (5.55)

Evaluating Equations 5.54 and 5.53 gives,

J =

1.30e−2 6.00e−8 3.20e−5

6.00e−8 1.27e−2 −5.30e−7

3.20e−5 −5.30e−7 2.12e−2

 kgm2 (5.56)

The more accurate system inertia matrix calculated with the CAD Model is:

JCAD,Battery =

1.62e−2 7.00e−8 3.62e−5

7.00e−8 1.66e−2 −3.30e−7

3.62e−5 −3.30e−7 2.25e−2

 kgm2 (5.57)

including the battery and

JCAD,No Battery =

1.47e−2 6.00e−8 4.41e−5

6.00e−8 1.45e−2 4.00e−8

4.41e−5 4.00e−8 2.16e−2

 kgm2 (5.58)

excluding the battery. The parametric inertia estimate (Equation 5.56) underestimates the

62

moments of inertia, but is sufficiently accurate for design optimization purposes.

Combined Dynamic Model

Equations 5.39, 5.41, and 5.42 can be combined to give a nonlinear model for the system’s

dynamics:
eṗ
ev̇

Θ̇
bω̇

 =

ev

ge3 +
1
m
Re

b · bT3

W · bω
J−1

(
−bω× J · bω + τ +Ga

)

 (5.59)

Recall that the inputs to the dynamic model are T and τ .

Control Effectiveness Model (Thrusts/Torques)

It remains to calculate T and τ as a function of the propeller speeds. Let CT = kTρD
4 be

the lumped thrust coefficient and CQ = kQρD
5 be the lumped drag coefficient such that, for

each propeller k, the thrust Tk and torque τk produced by each propeller is

Tk = CTω
2
k

τk = CQω
2
k

(5.60)

The combined thrust T is simply the sum of the thrusts generated by each propeller

T = CT

Nr∑
k=1

ω2
k (5.61)

Similarly, the combined moment τz, taken about the bb3 axis, is the sum of the torques

generated by each propeller.

τz = CQ

Nr∑
k=1

(−1)k−1 ω2
k (5.62)

Where the alternating sign comes from the rotors’ alternating directions. To calculate τx and

τy, note from Figure 5.15 that the moment arm of each propeller about the bb1 and bb2 axis

is,

l = d sin 45◦ =

√
2

2
d (5.63)

63

Therefore,

τx = lCT

(
ω2
1 − ω2

2 − ω2
3 + ω2

4

)
τy = lCT

(
ω2
1 + ω2

2 − ω2
3 − ω2

4

) (5.64)

Equations 5.61 - 5.64 can be written in matrix form as,
T

τx

τy

τz

 =

CT CT CT CT

lCT −lCT −lCT lCT

lCT lCT −lCT −lCT

CQ −CQ CQ −CQ

ω2
1

ω2
2

ω2
3

ω2
4

 (5.65)

Simplified Body Dynamic Model

When the system is assumed to be balanced (see Equation 5.28), then only the body’s

vertical dynamics need to be considered. This is achieved with the force balance given in

Equation 5.66.

mv̇ = T −mg (5.66)

where v is vertical velocity, T is the combined thrust of the four rotors, m is system mass,

and g is gravitational acceleration.

5.3.4 The Planar Quadrotor

Evaluating the full 3D dynamic model of the quadrotor system is quite computationally

intensive. To feasibly analyze dynamic optimization objectives, the full 3D quadrotor model

was replaced with a 2D “planar quadrotor” model. This system captures the nonlinearities,

differential flatness, and underactuated properties of the full system without the complications

of 3D rigid-body dynamics. A diagram of the planar quadrotor system is given in Figure 5.17.

64

Figure 5.17: Planar quadrotor system

The equations of motion are given in 5.67 [77].

mẍ = −(T1 + T2) sin(θ)

mÿ = (T1 + T2) cos(θ)−mg

Iθ̈ = r(T1 − T2)

(5.67)

Above, m is the system mass, I is the moment of inertia about the center of mass, and r

is the distance from the center of mass to the base of the rotor. Inputs T1 and T2 are the

thrusts generated from the right and left rotors, respectively. The moment of inertia, as

before, is calculated by combining the inertia contribution from the frame with the inertia

contribution from the rotor.

I = If + Ir (5.68)

where If is the frame’s inertia and Ir is the inertia of the rotors, both taken about the

system’s center of mass. The frame’s contribution is found by assuming the frame is a rod of

mass mf with length 2r.

If =
1

12
mf (2r)

2 (5.69)

The rotor’s contribution is calculated with the parallel axis theorem

Ir = 2 (mP +mM) r2 (5.70)

where mP and mM are propeller and motor mass, respectively. The powertrain dynamics for

the planar quadrotor system are identical to that of the full quadrotor system, though with

two rotors instead of four. Also, for dynamic objectives, the battery open-circuit voltage was

assumed constant since the change in state of charge is negligible over a dynamic mission.

65

5.4 Model Tuning and Validation

5.4.1 Experimental Setup

The quadrotor system model, simplified using the ‘balanced’ assumptions in 5.28, was

experimentally validated against a test platform. During the tests, the craft was launched

and made to hover until the battery reached approximately 50% SOC. The flight controller

recorded various signals including battery voltage, bus current, and inverter input. For

accurate measurement of the vehicle’s bus voltage and current, the supplied power meter was

replaced with a Mauch HS-200-LV [78]. Later, the recorded inverter input signal was fed into

the dynamic model, and the resulting simulation data was compared to the data captured by

the flight controller. Three configurations were selected to test the model at different points

in the design space.

5.4.2 Configuration 1

The system was first configured with the 880kV motors and 10x4.5in propellers included

with the S500 platform, as well as a Turnigy Graphene 4S 4000mAh battery purchased

separately. After conducting the hover experiment, the final SOC was measured to be 54%.

After feeding the recorded input signal into the simulation model, the simulated final SOC

was 66.4%. Two primary source attribute to this error: 1) external disturbances from wind

and noisy sensor readings and 2) model error. To determine the possible contribution of

disturbances to the error, a disturbance model was created and integrated into the simulation

model. Disturbances were found to have a negligible effect on final state-of-charge, as shown

in Figure 5.18. Note that, in the figures, the measured SOC is calculated as a function of

bus voltage. Because the bus voltage drops when the system is active, SOC is accurately

measured when the system is at rest.

66

Figure 5.18: Measured vs simulated battery SOC, with and without disturbance model

Because disturbances were not a significant contributor to the discrepancy between the

experiment and the simulation, the model parameters were tuned to align with the recorded

data. The primary source of model error was underestimated powertrain losses, though

the motor speed constant also required a small adjustment. After the necessary tuning,

the experimental and simulation were in agreement. Figure 5.19 shows the measured and

simulated battery SOC after the tuning process. The final SOC value of the tuned model

agrees with the measured value.

Figure 5.19: Measured vs. simulated battery SOC after model tuning process

67

Figure 5.20a compares measured and simulated bus voltage, and Figure 5.20b compares

measured and simulated bus current.

(a) Bus Voltage (b) Bus Current

Figure 5.20: Measured vs. simulated signals, Configuration 1

5.4.3 Configuration 2

The second configuration consisted of KDE2814XF-515 515kV motors and KDEXF-UAS20LV

20A speed controllers, both sourced from KDE Direct, the LP12038SF 12x3.8 propeller

from APC, and the 4s 4000mAh LiPo battery pack used in the previous configuration.

Tests of Configuration 2 revealed a discrepency between predicted and actual thrust and

torque coefficients, likely attributable to the dependence of these values on rotor speed and

aerodynamic interference between propellers [79]. Figure 5.21a compares measured and

simulated bus voltage, and Figure 5.21b compares measured and simulated bus current, after

tuning the propeller aerodynamic coefficients in the model. First, the power coefficient was

tuned so that the current vs. throttle relationship aligned. Then, the thrust coefficient was

tuned so that the measured and simulated throttle values aligned.

68

(a) Bus Voltage (b) Bus Current

Figure 5.21: Measured vs. simulated signals, Configuration 2

5.4.4 Configuration 3

The third configuration substituted a 6s 5000mAh Turnigy Graphene battery into Configura-

tion 2. The tuned results from this test are given in Figure 5.22.

(a) Bus Voltage (b) Bus Current

Figure 5.22: Measured vs. simulated signals, Configuration 3

Considerable manual tuning of manufacturer aerodynamic coefficients was required to

achieve good alignment between the model and experimental data in the above tests. To

account for this discrepancy in the design optimization studies, the aerodynamic coefficients

reported by the manufacturer were modified with correction factors specified in Table 5.4.

These values were found by computing the average of the correction factors used to tune

the coefficients in each of the tests. Note that these corrections did not impact the design

69

optimized for the endurance-per-price objective, detailed below. The optimal configuration

found with the correction factors was the same as that found without them.

Variable Description Correction Factor

kP Power Coefficient 1.25

kT Thrust Coefficient 0.85

Table 5.4: Aerodynamic coefficient correction factors

5.5 Optimization Preliminaries

In this work, we desire to select a battery, motor, and propeller for the quadrotor system in

two optimization studies. In the first ‘static’ study, the quadrotor’s endurance per system

price is maximized. In the second ‘dynamic’ study, the planar quadrotor’s time to complete

a dynamic mission is minimized. Both of these studies draw from the same component

databases, use the same parameter surrogate models, and use the same boundary constraint

functions detailed in this section. Also, each of the studies are initialized from a common

initial configuration.

5.5.1 Component Databases

Components are selected from three component databases: the battery is selected from a

database of 33 Turnigy Graphene battery packs [80], the motor is selected from a database of

27 brushless motors from KDE Direct [81], and the propeller is selected from a database of

90 propellers from APC’s “Electric” line. Tabular data for each of the component databases

can be found in Appendix D. Using Equation 4.10, the design space includes 80,190 possible

system configurations. The aforementioned suppliers were selected for having ample catalogs,

high-quality products, and well-documented specifications and test data. It is worth noting

that, originally, the entire APC catalog was considered. This includes their “Electric” (E),

“Folding” (F), “Multi-Rotor” (MR), and “Slow Flyer” (SF) product lines. Unfortunately, these

product lines are categorical design parameters that conceal any quantifiable difference in

the physical design. Propellers with similar pitch and diameter, their design variable values,

have significantly different performance parameter values across product lines. This violates

the one-to-one mapping requirement for effective component parameterization. Figure 5.23

illustrates this by plotting the torque and power coefficients as a function of pitch and

diameter for each of the product lines.

70

Figure 5.23: APC propeller database consisting of “Electric” (E), “Folding” (F), “Multi-Rotor”
(MR), and “Slow Flyer” (SF) product lines

The SF line has significantly higher torque and power constants for a given pitch and

diameter, as they are designed to reduce required rotor speed. The MR line occupies a region

between the SF line and the remaining data. There is no clear distinction between the E and

F lines, which together constitute most of the data. To eliminate the categorical variable, the

propeller database was limited to the E line since it contains the most components. Also note

that APC specified experimentally determined thrust and power coefficients over a range

of RPM values. The effective values were taken to be the mean of the data between 1,000

RPM and 10,000 RPM. The quadratic relationship between thrust/power and propeller speed

began to break down for speeds larger than 10,000 RPM, which rendered the aerodynamic

coefficients unusable at high speeds.

5.5.2 Component Parameterization and Surrogate Models

Battery

The battery’s design and performance parameters are given in Table 5.5

71

Design Parameters

Ns Series Cells

Q Pack Capacity (mAh)

Performance Parameters

Rs Cell Resistance (Ω)

m Mass (kg)

p Price (USD)

Table 5.5: Battery design and performance parameters

Cell Resistance Surrogate

The parameter surrogate for estimating the cell resistance was created using nonlinear least-

squares regression to fit the parametric model 5.71 to the component data. This model was

chosen to reflect features observed in the data, including the inverse relationship between Q

and Rs and the approximately linear relationship between Ns and Rs.

SB
Rs(Ns, Q) =

a

Q+ b
+ cNs

d/Q + k (5.71)

The employed model parameter values are given in Table 5.6.

Parameter Value Confidence Bounds (95%)

a 7.67 (5.42, 9.93)

b −1.07e2 (−2.43e2, 2.98e1)

c −8.12 (−6.30e3, 6.28e3)

d 5.97e−1 (−4.62e2, 4.63e2)

k 8.12 (−6.28e3, 6.30e3)

Table 5.6: Regression model parameters for battery cell resistance surrogate

Figure 5.24 provides a plot of the surrogate model, and 5.25 plots the surrogate model’s

relative error for each component in the database. The relative error is defined in Equa-

tion 5.72.

eSϕ,c =
Sϕ

(
Φd

c

)
− ϕc

ϕc

(5.72)

Above, eSϕ,c is the relative error of the surrogate for parameter ϕ evaluated at component c. Sϕ

is the surrogate model that estimates ϕ as a function of the component’s design parameters

Φd
c . The true parameter value obtained from the component database is ϕc.

72

Figure 5.24: Battery cell series resistance surrogate

Figure 5.25: Relative error of surrogate model compared to component data

Mass Surrogate

The parameter surrogate for estimating battery pack mass was created using nonlinear

least-squares regression to fit the parametric model given in 5.73 to the component data. This

model was chosen to reflect the positive relationship between pack size and mass, accounting

for a small offset from packaging materials.

SB
m(Ns, Q) = aNsQ+ b (5.73)

The employed model parameter values are given in Table 5.7.

73

Parameter Value Confidence Bounds (95%)

a 3.13e−5 (3.08e−5, 3.18e−5)

b 1.94e−2 (1.30e−2, 2.57e−2)

Table 5.7: Regression model parameters for battery pack mass surrogate

Figure 5.26 provides a plot of the surrogate model, and 5.27 plots the surrogate model’s

relative error for each component in the database.

Figure 5.26: Battery pack mass surrogate

Figure 5.27: Relative error of surrogate model compared to component data

Price Surrogate

74

The parameter surrogate for estimating battery pack price was created using linear least-

squares regression to fit the third-order polynomial surface given in 5.74 to the component

data.
SB
p (Ns, Q) = p00 + p10Ns + p01Q+ p20N

2
s + p11NsQ

+ p02Q
2 + p30N

3
s + p21N

2
sQ+ p12NsQ

2 + p03Q
3

(5.74)

The employed model parameter values are given in Table 5.8.

Parameter Value Confidence Bounds (95%)

p00 4.25e1 (4.01e1, 4.49e1)

p10 1.47e1 (1.09e1, 1.85e1)

p01 2.96e1 (2.65e1, 3.26e1)

p20 −7.49e−1 (−2.36, 8.61e−1)

p11 9.93 (6.78, 1.31e1)

p02 1.38 (−1.73, 4.50)

p30 −1.02e−1 (−1.51, 1.30)

p21 3.57e−1 (−1.78, 2.49)

p12 −2.79 (−4.75, −8.32e−1)

p03 −1.93 (−3.84, −1.12e−2)

Table 5.8: Regression model parameters for battery pack price surrogate

Figure 5.28 provides a plot of the surrogate model, and 5.29 plots the surrogate model’s

relative error for each component in the database.

Figure 5.28: Battery pack price surrogate

75

Figure 5.29: Relative error of surrogate model compared to component data

Motor

The motor’s design and performance parameters are given in Table 5.9. Note that the

design parameters chosen below, the speed constant and winding resistance, are not design

parameters in the typical sense; the designer does not have direct control over them. However,

these are the numeric quantities that most clearly differentiate components in the catalog,

and they serve as good predictors of the other motor parameters.

Design Parameters

kV Speed Constant (RPM/V)

Rm Winding Resistance (Ω)

Performance Parameters

D Diameter (m)

m Mass (kg)

p Price (USD)

Table 5.9: Motor design and performance parameters

Diameter Surrogate

The parameter surrogate for estimating motor diameter was created using nonlinear least-

squares regression to fit the parametric model given in 5.75 to the component data. This model

reflects the inverse relationship between a motor’s speed constant and winding resistance and

its size.

76

SM
D (kV,Rm) =

(
a

kV + f

)d

+

(
b

Rm+ g

)e

+ c (5.75)

Model parameter values are given in Table 5.10.

Parameter Value Confidence Bounds (95%)

a 1.22e2 (−5.01e2, 7.44e2)

b 1.25e−3 (−1.01e−2, 1.26e−2)

c 1.65e−2 (−4.35e−3, 3.73e−2)

d 2.02 (−2.11, 6.15)

e 1.22 (−1.92, 4.37)

f 3.72e2 (−7.82e2, 1.53e3)

g 5.28e−5 (−4.19e−2, 4.21e−2)

Table 5.10: Regression model parameters for motor diameter surrogate

Figure 5.30 provides a plot of the surrogate model, and 5.31 plots the surrogate model’s

relative error for each component in the database.

Figure 5.30: Motor diameter surrogate

77

Figure 5.31: Relative error of surrogate model compared to component data

Mass Surrogate

The parameter surrogate for estimating motor mass was created using nonlinear least-squares

regression to fit the parametric model given in 5.76 to the component data. This model

reflects the inverse relationship between a motor’s speed constant and winding resistance and

its size.

SM
m (kV,Rm) =

(
a

kV + f

)d

+

(
b

Rm+ g

)e

+ c (5.76)

The employed model parameter values are given in Table 5.11.

Parameter Value Confidence Bounds (95%)

a 7.33e1 (−1.69e2, 3.16e2)

b 2.25e−2 (−5.16e−2, 9.66e−2)

c 6.62e−6 (−1.56e−1, 1.56e−1)

d 1.16 (−1.09, 3.40)

e 3.00 (−5.26, 1.13e1)

f 9.99e−2 (−3.05e2, 3.05e2)

g 7.35e−3 (−6.51e−2, 7.98e−2)

Table 5.11: Regression model parameters for motor mass surrogate

Figure 5.32 provides a plot of the surrogate model, and 5.33 plots the surrogate model’s

relative error for each component in the database.

78

Figure 5.32: Motor mass surrogate

Figure 5.33: Relative error of surrogate model compared to component data

Price Surrogate

The parameter surrogate for estimating motor price was created using nonlinear least-squares

regression to fit the parametric model given in 5.77 to the component data. This model

reflects the inverse relationship between a motor’s speed constant and winding resistance and

its price.

SM
p (kV,Rm) =

(
a

kV + f

)d

+

(
b

Rm+ g

)e

+ c (5.77)

79

The employed model parameter values are given in Table 5.12.

Parameter Value Confidence Bounds (95%)

a 4.85e3 (−1.71e4, 2.67e4)

b 5.01e−1 (−2.36, 3.37)

c 1.02e−5 (−1.22e2, 1.22e2)

d 1.94 (−2.67, 6.54)

e 1.87 (−2.81, 6.55)

f 9.82e1 (−5.59e2, 7.55e2)

g 3.65e−4 (−4.51e−2, 4.58e−2)

Table 5.12: Regression model parameters for motor price surrogate

Figure 5.34 provides a plot of the surrogate model, and 5.35 plots the surrogate model’s

relative error for each component in the database.

Figure 5.34: Motor price surrogate

80

Figure 5.35: Relative error of surrogate model compared to component data

Propeller

The propeller’s design and performance parameters are given in Table 5.13.

Design Parameters

D Diameter (m)

P Pitch (m)

Performance Parameters

kP Power Coefficient

kT Thrust Coefficient

m Mass (kg)

p Price (USD)

Table 5.13: Propeller design and performance parameters

Each of the propeller’s parameter surrogates were created using the “Locally Weighted

Smoothing Quadratic Regression” model in MATLAB’s Curve Fitting Toolbox [82]. The

‘Normalize’ option was set to ‘on,’ the ‘Method’ option was set to ‘LowessFit,’ the ‘Robust’

option was set to ‘Bisquare,’ and the ‘Span’ option was set to 0.8.

Power Coefficient Surrogate

Figure 5.36 provides a plot of the power coefficient surrogate model, and 5.37 plots the

surrogate model’s relative error for each component in the database.

81

Figure 5.36: Propeller power coefficient surrogate

Figure 5.37: Relative error of surrogate model compared to component data

Thrust Coefficient Surrogate

Figure 5.38 provides a plot of the thrust coefficient surrogate model, and 5.39 plots the

surrogate model’s relative error for each component in the database.

82

Figure 5.38: Propeller thrust coefficient surrogate

Figure 5.39: Relative error of surrogate model compared to component data

Mass Surrogate

Figure 5.40 provides a plot of the mass surrogate model, and 5.41 plots the surrogate model’s

relative error for each component in the database.

83

Figure 5.40: Propeller mass surrogate

Figure 5.41: Relative error of surrogate model compared to component data

Price Surrogate

Figure 5.42 provides a plot of the price surrogate model, and 5.43 plots the surrogate model’s

relative error for each component in the database.

84

Figure 5.42: Propeller price surrogate

Figure 5.43: Relative error of surrogate model compared to component data

Figure 5.44 plots the distribution of relative errors for each component, and Table 5.14

provides the minimum, maximum, and standard deviation of relative errors for each of the

surrogate models. The largest errors are seen in the motor mass and price surrogates, where

two motors with a high speed constant and low winding resistance are significantly less heavy

and costly than predicted by the surrogates.

85

Figure 5.44: Distribution of relative errors

Surrogate Min Rel. Error Max Rel. Error Standard Deviation

Battery Cell Resistance ϕB
Rs

−3.65e−1 4.20e−1 1.81e−1

Battery Mass ϕB
m −2.52e−1 1.43e−1 6.39e−2

Battery Price ϕB
p −3.27e−1 4.23e−1 1.43e−1

Motor Diameter ϕM
d −1.64e−1 2.89e−1 8.27e−2

Motor Mass ϕM
m −3.23e−1 2.49 6.10e−1

Motor Price ϕM
p −4.55e−1 2.32 5.61e−1

Propeller Power Coefficient ϕP
kP

−3.78e−1 2.14e−1 9.50e−2

Propeller Thrust Coefficient ϕP
kT

−3.06e−1 1.72e−1 6.57e−2

Propeller Mass ϕP
m −2.15e−1 4.71e−1 1.14e−1

Propeller Price ϕP
p −8.03e−2 8.56e−2 2.94e−2

Table 5.14: Minimum, maximum, and standard deviation of relative errors for each surrogate
model

When the optimization objective is sensitive to a parameter, then error in the parameter

86

surrogate can significantly impact the solution to the problem’s continuous-representation.

The designer must keep this in mind when tuning the surrogate model to balance smoothness

and accuracy. When significant inaccuracies cannot be avoided, then the scope of the discrete

search should be increased to compensate for less reliable sorting.

5.5.3 Boundary Constraint Functions

The process presented in Section 4.1.3 was used to generate boundary constraint functions

for the battery, motor, and propeller. These are shown in Figures 5.45-5.47. Any point in

the design space where the component’s boundary constraint function evaluates to zero or a

negative value is valid.

Figure 5.45: Battery boundary constraint function

87

Figure 5.46: Motor boundary constraint function

Figure 5.47: Propeller boundary constraint function

In the following optimization study, the boundary constraint function for the motor and the

88

propeller have a significant impact on the continuous-representation solution, helping to keep

the design variables close to regions of the design space populated by discrete components.

5.5.4 Initial Configuration

Both optimization studies are initiated from the same point in the design space. Components

in the initial configuration were manually selected from the component databases, and they

have design variable values that are similar to those that ship with the HolyBro S500 V2

platform. The components in the initial configuration are specified in Table 5.15

Component Make Model

Battery Turnigy Graphene Panther 4S 4000mAh

Motor KDE KDE2315XF-965 (965kV)

Propeller APC 9x4.5E

Table 5.15: Components in initial configuration

5.6 Optimization Study 1: Endurance per System Price

5.6.1 Discrete-Domain Formulation

The CBDO problem formulation for the first study is given in Problem 5.78

minimize
i = [iB, iM , iP]

JE/P (C(i))

subject to 1 ≤ iB ≤ 33,

1 ≤ iM ≤ 27,

1 ≤ iP ≤ 90,

ϕP
D(iP) ≤ ϕP

D,max,

0 ≤ uss(C(i)) ≤ 1,

iBss(C(i)) ≤ iBmax(iB),

iIss(C(i)) ≤ iImax

(5.78)

In 5.78, iB, iM , and iP refer to the battery, motor, and propeller indices, respectively, and the

combined component database C maps the selection indices to the corresponding parameter

values. The cost function JE/P calculates the endurance, or maximum flight time in steady-

state hover, divided by the system price. It is defined in Equation 5.79. Note that, to pose

89

problem as a minimization, the endurance-per-price calculation is negated in the objective.

JE/P = −

(
ϕB
Q (iB)

iss (i)

)
1

ϕS
p (i)

(5.79)

Above, the notation ϕt
x is used to refer to the x parameter of component type t, and ϕS

x refers

to the system parameter x. The system price ϕS
p is the sum of the battery price, motor price,

propeller price, and price of the fixed system. Any additional components not selected in

the optimization are included in the fixed-system price, including the power management

system, flight controller, GPS, telemetry radio, and nominal ESC. The steady-state bus

current iss, steady-state inverter input uss and other states are calculated by numerically

solving the simplified powertrain model (Equations 5.29 and 5.30) and the simplified body

dynamic model (Equation 5.66) for steady-state. The quadrotor frame dimensions restrict the

propeller diameter ϕP
D to a maximum propeller diameter ϕP

D,max. Because the inverter input is

a PWM signal, it is constrained to range between zero and one. The battery and inverter have

maximum current ratings, requiring additional constraints. The battery’s steady-state current

iBss must remain below its maximum current iBmax, calculated with Equation 5.4. Similarly,

the inverter steady-state current iIss must not exceed its limiting value iImax. In these studies,

the maximum inverter current is taken to be 80A, since it is assumed that an inverter up to

this size can be purchased depending on the power requirements of the optimized system.

5.6.2 Continuous-Domain Representation

The continuous-domain representation of Problem 5.78 is presented in Problem 5.80.

minimize
Φd = [ϕB

Ns
, ϕB

Q, ϕ
M
kV , ϕ

M
R , ϕ

P
P , ϕ

P
D]

JE/P (Φ
d,S(Φd))

subject to 0 ≥ gBB(ϕ
B
Ns
, ϕB

Q),

0 ≥ gMB (ϕM
kV , ϕ

M
R),

0 ≥ gPB(ϕ
P
P , ϕ

P
D),

0 ≤ uss(Φ
d,S(Φd)) ≤ 1,

iBss(Φ
d,S(Φd)) ≤ iBmax(ϕ

B
Ns
, ϕB

Q),

iIss(Φ
d,S(Φd)) ≤ iImax,

ϕP
D ≤ ϕP

D,max

(5.80)

In 5.80, the design parameter vector Φd contains the design parameters for the battery,

motor, and propeller respectively. The parameter surrogate function S uses the surrogates

90

specified in 5.5.2 to calculate each component’s performance parameters. Functions gBB ,

gMB , and gPB are the boundary constraint functions for the battery, motor, and propeller,

respectively.

5.6.3 Continuous-Domain Analysis and Solution

The continuous-domain representation of the problem permits further analysis to gain deeper

insight into the problem. A sensitivity analysis of the objective function to the design

parameters was conducted about the initial design point. First, finite differencing, as defined

in Equation 2.3, was used to determine the gradient of the objective function with respect

to each design variable. The gradient was then scaled to determine the objective’s relative

sensitivity to each parameter. A scaled gradient value y of function f taken with respect

to parameter x can be interpreted as follows: “Increasing x by 1% would increase f by y%

assuming f stays sufficiently linear.” This scaling is given in Equation 5.81.

∂J̃

∂Φ̃d
=

∂J

∂Φd

∣∣∣∣∣ K

J
(
Φd

0

)∣∣∣∣∣ (5.81)

Above, J is the cost function, ∂J̃/∂Φ̃d is the scaled gradient, ∂J/∂Φd is the unscaled gradient,

Φd
0 are the design variable values at the analysis point, and K is a scaling matrix defined as:

K = diag
(
Φd

0

)
(5.82)

The results of the parameter sensitivity analysis are presented in Table 5.16.

Parameter Value (units) Gradient Scaled Gradient

Propeller Diameter ϕP
D 2.29e−1 (m) −4.00 −7.35e−1

Propeller Pitch ϕP
P 1.14e−1 (m) 1.27 1.20e−1

Battery Series Cells ϕB
Ns

4 −1.08e−1 −3.48e−1

Battery Capacity ϕB
Q 4.00e3 (mAh) −1.00e−4 −3.25e−1

Motor Speed Constant ϕM
kV 9.65e2 (RPM/V) −2.00e−4 −1.90e−1

Motor Winding Resistance ϕM
Rm 1.02e−1 (Ω) −4.25 −3.48e−1

Table 5.16: Objective’s sensitivity to parameters

To understand the sensitivity of the objective to a component type, the sum of the absolute

value of the scaled gradient, taken with respect to each of the type’s design parameters, was

91

considered. That is,

ΣJ
t =

M∑
i=1

∣∣∣∣∣ ∂J∂Φd
t,i

∣∣∣∣∣ (5.83)

where ΣJ
t is the sensitivity of J to component type t, and Φd

t,i is the i
th design variable of t.

These values are given in Table 5.17.

Component Sensitivity

Propeller 8.51e−1

Battery 6.74e−1

Motor 5.39e−1

Table 5.17: Objective’s sensitivity to components

For this objective, the problem is most sensitive to the propeller design, followed by the

battery and motor. The scaled sensitivities indicate that the objective favors large, efficient

propellers with a relatively low pitch.

Takeaway

The endurance-per-price objective is most sensitive to the propeller, and it favors large,

efficient propellers with low pitch.

Problem 5.80 was then solved with the SQP algorithm in MATLAB’s ‘fmincon’ function.

The gradient information required by the algorithm was calculated with finite differencing,

though analytical derivatives could have been specified to improve solution efficiency. The

algorithm required 15 iterations to converge to the location in the design space indicated in

Figure 5.48.

Figure 5.48: Continuous solution in the design variable space

92

Figure 5.49 plots the objective function value and first-order optimality at each of the

solver iterations. For constrained optimization problems, first-order optimality measures how

well a point satisfies the Karush-Kuhn-Tucker (KKT) conditions; the reader is referred to

[83] for more details. At the final iteration, the first order optimality is near zero with a value

of 1.66e−6, indicating that the solver successfully converged to a stationary point.

Figure 5.49: Objective function value and first-order optimality measure vs. solver iterations.

The final Lagrange multiplier values indicate which constraints are active and quantify

how much the corresponding constraints influence the solution [16]. Three constraints are

active at the solution: the battery capacity constraint with a Lagrange multiplier of 0.14, the

propeller boundary constraint with a Lagrange multiplier value of 1.40, and the upper bound

on propeller diameter with a Lagrange multiplier value of 0.45.

Finally, Table 5.18 specifies the optimal design parameter values and their deviation from

the initial design. These values serve as the target in the next phase of the hybrid approach,

the distance-sorted search algorithm.

93

Parameter Unit Optimal Value Initial Value % Change

Propeller Diameter ϕP
D m 3.56e−1 2.29e−1 55.73 %

Propeller Pitch ϕP
P m 9.70e−2 1.14e−1 -15.12 %

Battery Series Cells ϕB
Ns

unit 5.93 4 48.19 %

Battery Capacity ϕB
Q mAh 6.00e3 4.00e3 50.00 %

Motor Speed Constant ϕM
kV RPM/V 7.65e2 9.65e2 -20.75 %

Motor Winding Resistance ϕM
Rm Ω 1.54e−1 1.02e−1 50.88 %

Table 5.18: Optimal design parameter values

5.6.4 Discrete Problem Solution

The DSS algorithm was run using the solution to the continuous-domain representation as

the target. First, the propeller database was filtered to remove all components exceeding

the maximum propeller diameter. The set of configurations was then enumerated and sorted

by the configuration distance metric. For each configuration evaluated, the configuration’s

parameters were substituted into the simplified quadrotor model, and the model was solved

for its steady-state condition. Constraint functions were calculated to determine the feasibility

of the configuration before calculating the objective function. Five-hundred configurations

were evaluated in the search, as shown in Figure 5.50. In the figure, each iteration represents

a unique configuration. The lower axes show the configuration distance metric ds increasing

monotonically, as this was the metric used to sort the list of configurations, along with

the component distance metric values. The upper axes show the objective function value

corresponding to the configuration. Infeasible configurations are not assigned an objective

function value and create a gap in the plot. This data follows an increasing trend, indicating

that the configuration’s distance from the continuous-domain solution effectively predicts

the objective. If the predictor were perfect, however, no noise would exist and the objective

function values would rise monotonically. One source of this noise is the error in the

parameter surrogate models. Another source is the topography of the objective function, as

nonconvexities and ill-conditioning of the Hessian matrix near the optimal point muddle the

relationship between distance and objective function value.

94

Figure 5.50: First 500 iterations of the DSS algorithm

The best component configuration was identified on the third search iteration, and is

provided below in Table 5.19.

Make Model SKU Mass (kg) Price (USD)

Turnigy Graphene Panther 9067000420-0 1.14 $129.99
KDE KDE2814XF-515 N/A 9.50e−2 $74.95
APC 13x4E LP13040E 3.01e−2 $5.06

Table 5.19: Discrete solution to Problem 5.78

Table 5.20 provides the design parameter values of the discrete solution in comparison

with those of the initial configuration.

95

Parameter Unit Continuous Sol. Discrete Sol. Initial % Change

Propeller Diameter ϕP
D m 3.56e−1 3.30e−1 2.29e−1 44.44 %

Propeller Pitch ϕP
P m 9.70e−2 1.02e−1 1.14e−1 -11.11 %

Battery Series Cells ϕB
Ns

unit 5.93 6 4 50.00 %

Battery Capacity ϕB
Q mAh 6.00e3 6.00e3 4.00e3 50.00 %

Motor Speed Constant ϕM
kV RPM/V 7.65e2 5.15e2 9.65e2 -46.63 %

Motor Winding Resistance ϕM
Rm Ω 1.54e−1 1.30e−1 1.02e−1 27.45 %

Table 5.20: Optimal design parameter values

The optimized design has a larger propeller with a less aggressive pitch than the initial

configuration. The optimal battery is the largest available in the catalog, and the motor has

a lower speed constant and larger winding resistance.

5.6.5 Discussion of Optimized Design

The optimal design improves the objective by 76.19% from 1.15 seconds per dollar to 2.03

seconds per dollar, as presented in Table 5.21.

Mission Duration

Initial 1.15

Final 2.03

Change 76.19%

Table 5.21: Endurance per price objective for inital and final designs

The estimated system endurance increased from 575.16 seconds to 1,372.1 seconds, while

the price increased from $563.65 to $676.53. The larger components increase the mass

of the system substantially, from 1.54 kg to 2.32 kg. The powertrain is more efficient,

largely attributable to increased system voltage. The combined efficiency of the powertrain

components increased from 81.26% to 87.51%. Furthermore, the large-diameter propeller

leads to a lower steady-state rotor speed. The initial configuration operated at 724.7 rad/s

with 0.0877 Newton-meters of torque, while the optimized configuration operates at 513.6

rad/s with 0.126 Newton-meters of torque. Despite the increase in mass, the optimized

system has a larger thrust ratio, the ratio of maximum thrust to weight. The thrust ratio

increased from 2.590 to 3.424.

96

5.6.6 Algorithm Performance

In this study, the metric used to quantify a CBDO algorithm’s performance is the number of

objective function evaluations required to find the global optimum. Because this objective

function is computationally inexpensive, it was feasible to evaluate each of the configurations

to identify the true globally optimal solution. The hybrid algorithm required a total of 123

function evaluations to identify this solution: 120 evaluations in optimizing the continuous

representation and an additional three in the DSS algorithm.

Two other direct approaches were employed as performance comparisons: the DSS

algorithm with the initial design as the target and a genetic algorithm. In the former

approach, the DSS algorithm evaluates configurations closest to the initial point in the design

space. This direct approach required a total of 8,116 function evaluations to identify the

optimal configuration, illustrating the value in guiding the discrete search with continuous-

domain information.

The second contending algorithm, the genetic algorithm, is the most popular algorithm

used to solve discrete and mixed-integer optimization problems in multirotor literature. It

therefore provides a relevant performance baseline. In this study, MATLAB’s “ga” function

with default settings was used to solve Problem 5.78 for 50 trials. Because the GA is stochastic,

each trial exhibited different performance. Of the 50 trials, 29 successfully found the globally

optimal configuration within 300 generations, as shown in Figure 5.51.

97

Figure 5.51: Histogram of best objective function values found by GA within 300 generations

Of the successful trials, the median number of function evaluations required to find

the optimal configuration was 651, the minimum was 272, and the maximum was 1,259.

Figure 5.52 provides this distribution in comparison with the number of function evaluations

required in the hybrid approach.

98

Figure 5.52: Distribution of function evaluations required to find the optimal confiuration in
each successful GA trial

These results indicate that the hybrid approach is a computationally-efficient approach for

solving CBDO problems: the process reduced the number of function evaluations by 81.1%

over the GA and 98.5% over the purely discrete DSS approach. Work remains, however, to

verify that the hybrid approach’s performance benefits generalize beyond this case study.

5.7 Optimization Study 2: Minimum Mission Time

In the second optimization study, the planar quadrotor’s components are selected to minimize

the time to complete a dynamic mission. An overview of the mission is provided in Figure 5.53.

It consists of five phases A through E. In the first phase, the planar quadrotor moves from

rest at point 0 to the opening at point 1. In phase B, it continues through the opening to

come to a complete stop at point 2. In phase C, the planar quadrotor moves from point 2 to

pass through point 3. In phase D, it continues through the opening at point 4. Finally, in

phase E, the planar quadrotor continues through the opening and comes to a complete stop

at point 5.

99

Figure 5.53: Planar quadrotor dynamic mission

This mission is defined by applying mission or continuity constraints to the beginning

or end of each phase. Mission constraints ensure the planar quadrotor’s states satisfy the

mission criteria, while continuity constraints ensure that transitions between phases remain

smooth. Table 5.22 specifies the constraints applied to the beginning and end of each phase.

100

Phase Initial Final

A ξBA,i = 0 ξBA,f = ξBB,i

B
xB,i = 5

5 ≤ yB,i ≤ 7
ξBB,f = ξBC,i

C

xC,i = 15

yC,i = 2

θC,i = ẋC,i = ẏC,i = θ̇C,i = 0

ξBC,f = ξBD,i

D
xD,i = 10

yD,i = 2
ξBD,f = ξBE,i

E
9 ≤ xE,i ≤ 11

yE,i = 10

xE,i = 10

yE,i = 12

θC,i = ẋC,i = ẏC,i = θ̇C,i = 0

Table 5.22: Planar quadrotor mission constraints

In Table 5.22, ξB =
[
x y θ ẋ ẏ θ̇

]⊤
is a vector of the planar quadrotor’s body states.

States x and ẋ are displacement and velocity, respectively, along the x-axis; y and ẏ are

displacement and velocity, respectively, along the y-axis; and θ and θ̇ are angular displacement

and velocity, respectively. Subscripts denote the phase followed by i for the beginning of the

phase and f for the end of the phase.

101

5.7.1 Discrete-Domain Formulation

The discrete formulation of this dynamic CBDO problem is given in Problem 5.84.

minimize
i = [iB, iM , iP],u(t), ξ(t)

tE,f

subject to 1 ≤ iB ≤ 33,

1 ≤ iM ≤ 27,

1 ≤ iP ≤ 90,

ϕP
D(iP) ≤ ϕP

D,max,

0 ≤ u(t) ≤ 1∀ t,

iI(t) ≤ iImax ∀ t,

−π/2 ≤ θ(t) ≤ π/2,

0 ≥ gM(ξ(t)),

0 = hM(ξ(t))

(5.84)

The inverter input u(t) is optimized directly in this study, representing a system in the

early design stages before a control architecture has been specified. The state vector ξ(t)

contains the dynamic states of the planar quadrotor’s powertrain and body model. The

objective is to minimize tE,f , the final time of phase E and the time at which the mission is

complete. Static constraints on the selection indices and propeller diameter are retained from

Problem 5.78, but the constraints on the inverter input and inverter current now apply to

time-varying signals. The planar quadrotor’s angular displacement is constrained such that

|θ| ≤ π/2 rad. Finally, gM and hM contain the mission and continuity constraints defined

in Table 5.22. Note that the battery current constraint is omitted in this formulation. In a

dynamic mission, quick accelerations produce large current spikes over short time durations.

A battery’s continuous current rating and maximum current rating can differ substantially.

The Turnigy Graphene series, for instance, has a constant discharge rating of 75C and a peak

discharge rating of 150C for up to three seconds. If the battery current trajectory contains

spikes that exceed the continuous current limit, it may well remain within safe operating

conditions. There is, however, a well-known trade-off between discharge rate and battery

reliability. Frequent discharges at high rates can reduce the battery’s lifetime. Instead of

attempting to formulate these soft limits and trade-offs as constraints, we leave it to the

designer to verify that the battery current profile falls within appropriate limits to balance

safety, reliability, and performance.

102

5.7.2 Continuous-Domain Analysis and Solution

Problem 5.84 was first translated into a continuous-domain representation as in Optimiza-

tion Study 1. The same design parameters, parameter surrogates, and boundary functions

were employed. The continuous-domain representation was then implemented in the Dy-

mos/OpenMDAO framework for analysis. Dymos’ ‘GaussLobatto’ transcription method

with 25 segments per phase was used to transcribe the infinite-dimensional problem into

an NLP. The optimization algorithm chosen for this study was Scipy’s Sequential Least

Squares Programming (SLSQP) algorithm, originally implemented by Dieter Kraft [84]. To

improve solution efficiency, analytical derivatives were specified via Dymos and OpenMDAO’s

derivative framework.

A sensitivity analysis was performed for the minimum mission time objective using

finite differencing. In this analysis, the continuous representation was first solved with

design parameter values fixed at the initial design point. With fixed design parameters, the

problem becomes an optimal control problem. Solution of the optimal control problem at

the initial design point resulted in the nominal optimal control signal, state trajectories,

and objective function value. Then, for each element in the design parameter vector, the

parameter’s value was increased by 1% and the optimal control problem was solved to obtain

the perturbed objective function value. Equation 2.3 was applied to estimate the derivative,

and Equation 5.81 was applied to determine the scaled gradient values. These results are

given in Table 5.23.

Parameter Value (units) Gradient Scaled Gradient

Propeller Diameter ϕP
D 2.29e−1 (m) −2.78e1 −1.02

Propeller Pitch ϕP
P 1.14e−1 (m) −5.85 −1.08e−1

Battery Series Cells ϕB
Ns

4 −9.76e−1 −6.28e−1

Battery Capacity ϕB
Q 4.00e3 (mAh) 4.93e−4 3.17e−1

Motor Speed Constant ϕM
kV 9.65e2 (RPM/V) −3.33e−3 −5.18e−1

Motor Winding Resistance ϕM
Rm 1.02e−1 (Ω) 3.20 5.25e−2

Table 5.23: Sensitivity analysis for minimum mission time objective

As before, the objective is most sensitive to propeller diameter. The analysis indicates

that a larger, more aggressive propeller with a higher pitch will decrease the minimum

mission time. Also, a higher voltage but lower capacity battery is favored to achieve high

thrust with minimal additional mass. At this point in the design space, increasing the motor

speed constant while decreasing the winding resistance would better match the motor to the

propeller and reduce winding losses.

103

Equation 5.83 was then used to calculate the component-level sensitivities, provided in

Table 5.24. As in the previous optimization study, the objective is most sensitive to the

propeller, followed by the battery and the motor.

Component Sensitivity

Propeller 1.13

Battery 9.45e−1

Motor 5.70e−1

Table 5.24: Objective’s sensitivity to components

Following the sensitivity analysis, the continuous representation was solved with all six of

the design parameters included as optimization variables. For computational efficiency, state

and control trajectories were initialized to the values found from solving the optimal control

problem. Over 437 iterations, the SLSQP algorithm converged to the point indicated by the

green marker in Figures 5.54 - 5.56. In the figures, the blue marker represents the continuous

solution to the endurance-per-price objective, for reference.

Figure 5.54: Solution of continuous-representation - battery design space

104

Figure 5.55: Solution of continuous-representation - motor design space

Figure 5.56: Solution of continuous-representation - propeller design space

105

In this optimization, the route from the initial design to final design is more circuitous,

reflecting the increased complexity of the problem and the impact of component coupling.

This coupling is made clear in the motor and propeller design space plots. In practice,

high-torque motors with a low speed constant are paired with large, aggressive propellers,

and motors with a high speed constant are paired with smaller propellers. This relationship

can be seen in their paths through the design space. When the optimization evaluates a

propeller with low diameter and pitch, the motor’s speed constant increases.

Though the SLSQP algorithm does not return a first-order optimality metric, the ter-

mination message indicated that it converged successfully. Specifically, it met the function

tolerance value of 1.00e−6 [85]. The upper limit on the number of battery series cells is

active at the solution, though Lagrange multiplier values are not returned by this algorithm.

Table 5.25 provides the optimal design parameter values in comparison with the initial design.

Parameter Unit Optimal Value Initial Value % Change

Propeller Diameter ϕP
D m 2.94e−1 2.29e−1 28.79 %

Propeller Pitch ϕP
P m 1.60e−1 1.14e−1 39.56 %

Battery Series Cells ϕB
Ns

unit 6 4 50.00 %

Battery Capacity ϕB
Q mAh 2.32e3 4.00e3 -42.06 %

Motor Speed Constant ϕM
kV RPM/V 8.21e2 9.65e2 -14.90 %

Motor Winding Resistance ϕM
Rm Ω 7.86e−2 1.02e−1 -22.97 %

Table 5.25: Design parameter values that minimize the continuous representation of Prob-
lem 5.84

5.7.3 Discrete Problem Solution

Using the design parameter values in Table 5.25 as the target, the DSS algorithm was run

for 100 iterations. Compared to the previous case study, the fewer search iterations reflect

the increased computational expense of evaluating the dynamic objective. Though there

is no guarantee of locating the globally optimal design in the first 100 configurations, the

hybrid approach focuses the search on a region of the design space with high-potential

configurations. The process of evaluating a configuration for the dynamic objective was as

follows. First, parameters from the configuration were substituted into the system model,

and dynamic trajectories were initialized to the solution of the optimal control problem.

Then, the model’s steady-state condition was evaluated to calculate the thrust ratio. If the

calculated thrust ratio was less than one, then the configuration was rejected as infeasible.

Otherwise, then the optimal control problem was solved with the new parameter values and

106

Component Make Model SKU Mass (kg) Price (USD)
Battery Turnigy Graphene Panther 9067000513-0 2.49e−1 $30.99
PMSMMotor KDE KDE2814XF-775 N/A 9.50e−2 $74.95
Propeller APC 10x7E LP10070E 2.00e−2 $3.21

Table 5.26: Best configuration found for mission duration objective

the objective function value corresponding to the configuration was recorded. Figure 5.57

plots the objective function value and distance metrics for the 100 configurations evaluated.

An increasing trend in the objective function value is less apparent than in the previous case

study, indicating that distance from the continuous solution is a less effective predictor for

this objective. The variation in objective function values, however, increases considerably as

worse designs are found further from the target.

Figure 5.57: First 100 iterations of DSS algorithm

The best configuration was found on the 69th search iteration. It is specified in Table 5.26,

along with corresponding design parameter values in Table 5.27.

107

Parameter Unit Continuous Sol. Discrete Sol. Initial % Change

Propeller Diameter ϕP
D m 2.94e−1 2.54e−1 2.29e−1 11.11 %

Propeller Pitch ϕP
P m 1.60e−1 1.78e−1 1.14e−1 55.56 %

Battery Series Cells ϕB
Ns

unit 6 6 4 50.00 %

Battery Capacity ϕB
Q mAh 2.32e3 1.30e3 4.00e3 -67.50 %

Motor Speed Constant ϕM
kV RPM/V 8.21e2 7.75e2 9.65e2 -19.69 %

Motor Winding Resistance ϕM
Rm Ω 7.86e−2 6.90e−2 1.02e−1 -32.35 %

Table 5.27: Design parameter values of best configuration for mission duration objective

Figures 5.58-5.60 plot the best configuration and target design in the design space.

The green ‘Opt. Config’ marker indicates the optimal configuration for the mission time

objective, while the blue ‘Endurance’ marker indicates the optimal configuration for the

endurance-per-price objective. Finally, the fill color of the ‘Components’ markers indicates

the component distance metric, with dark values corresponding to a small distance. Note

the design differences between the two objectives. Compared with the static objective, the

dynamic objective benefits from a battery with a lower capacity, a motor with a higher speed

constant and a lower winding resistance, and a propeller with a smaller diameter and a larger

pitch.

Figure 5.58: Optimal battery for mission duration objective

108

Figure 5.59: Optimal motor for mission time objective

Figure 5.60: Optimal propeller for mission time objective

109

5.7.4 Discussion of Optimized Design

The selected configuration reduces the mission duration by 25.64%, as summarized in

Table 5.28.

Mission Duration

Initial 6.275

Final 4.666

Change -25.64%

Table 5.28: Mission duration objective for inital and final designs

Figure 5.61 compares the horizontal displacement x, vertical displacement y, and angular

displacement θ trajectories of the initial design with that of the optimized design. In the

figure, the vertical dashed lines represent phase boundaries. The optimized design is capable

of far more aggressive accelerations, which are especially apparent in the initial takeoff phase.

Figure 5.61: Body state trajectories of initial and optimal configurations

Figure 5.62 compares the battery SOC, DC bus voltage, and DC bus current trajectories

110

of the initial and optimized designs. Increasing the number of battery series cells from four

to six considerably increases the bus voltage. This increased voltage, along with the more

aggressive maneuvers, create larger spikes in the current profile of the optimized design. Many

of these spikes exceed the battery’s continuous discharge limit of 97.5A, though they are

safely within the peak discharge limit of 195A sustainable for three seconds. Increased power

consumption and less battery pack energy results in a steeper SOC decline.

Figure 5.62: Powertrain state trajectories of initial and optimal configurations

The performance differences are largely attributable to an increase in thrust ratio from

1.85 to 5.31. The mass and maximum thrust of the initial design is 0.92 kg and 16.73 N,

respectively, while that of the optimized design is 0.73 kg and 38.06 N, respectively. Key to

achieving a high thrust ratio is a high effective system voltage. First, a battery with the

maximum of six series cells was selected. Battery capacity was selected to balance mass with

series resistance. Low-capacity packs have higher series resistance, leading to a decrease in

battery terminal voltage under load. Additional mass was also incurred in selecting a motor

with low winding resistance, which allows more current through the motor windings. Overall,

the minimization of mass is less critical than intuition would suggest.

111

Takeaway

For dynamic performance, minimization of mass was less critical than increasing

powertrain voltage to achieve a high thrust ratio.

The reader may wonder why, if the best motor is near the target, the best propeller is

relatively far from the target. This can be explained by errors in the propeller surrogate

model, shown in Figures 5.37 and 5.39. At the point selected in the discrete search, the

parameter surrogates over-predict the power coefficient by 11.3% and under-predict the torque

coefficient by 6.1%. Effectively, the search discovered a propeller that required less torque

and produces more thrust for a given speed. This highlights the value of the discrete search

step in the hybrid approach, since the configuration closest to the target is sub-optimal.

5.7.5 Algorithm Performance

The solution of the optimal control problem, used in the sensitivity analysis and to initialize

subsequent optimizations, required 551 function evaluations. The continuous representation

of Problem 5.84 required 477 function evaluations. Finally, the discrete search required a total

of 29,519 function evaluations to evaluate 100 configurations. The best configuration was

found on the 69th iteration, with 20,980 function evaluations accumulated up to that point.

Therefore, the total cost of this hybrid optimization process was 30,547 function evaluations.

112

Chapter 6

Conclusion

6.1 Summary of Contributions

Engineered systems have become far more complex in the pursuit of performance and efficiency.

Companies and their engineers have responded to increased system complexity by becoming

more specialized, with many different actors contributing small parts to the design of the

larger system. A high degree of coordination is required to ensure each design decision is

made in service of the high-level system objective. Simultaneously, engineering companies

have embraced component-based design practices to efficiently bring more flexible systems to

market. These trends create a need for component-based design optimization tools that assist

designers in selecting appropriate components for integration into systems and subsystems.

When the system’s dynamic performance is of value, then the design optimization tool must

also be able to accommodate system dynamics within the formulation.

Two solution paths for CBDO problems currently exist in the literature: direct approaches

and parameterization-based approaches. Direct approaches solve the discrete selection

problem using discrete optimization algorithms such as the genetic algorithm. Though

this is a natural solution path, general-purpose discrete algorithms scale poorly and are

less efficient than gradient-based algorithms. Furthermore, discrete approaches limit design

insight and intuition that can be gained via sensitivity studies and other continuous-domain

analyses. The alternative is parameterization-based approaches that transform the discrete

problem into a continuous problem. Practitioners of this approach, however, often stop

once they have obtained a solution to the continuous-representation of the problem. Due to

component coupling, sparsity in the component databases, and errors in the fitting models,

manually selecting components based on the continuous solution may produce a sub-optimal

configuration.

This thesis presents an indirect hybrid approach that integrates ideas from both paths. It

113

transforms the discrete problem into a continuous representation via component parameteriza-

tion and regression models, solves the continuous representation using efficient, gradient-based

algorithms, and uses the continuous-domain information to search for a discrete solution

to the original problem. To facilitate the final step, a distance-sorted search algorithm was

developed that focuses the search on components most similar to the continuous solution.

Two case studies were conducted to demonstrate the hybrid approach. The first was

a ‘static’ study of a quadrotor system, and the second was a ‘dynamic’ study of a planar

quadrotor system. Component models were developed using graph-based techniques, which

are especially well-suited for optimization applications, and assembled into the system models

using automated algorithms. Accuracy of the quadrotor’s steady-state model was verified

with an experimental test platform. In both case studies, batteries, motors, and propellers

were selected from a database of commercially available components. To facilitate the hybrid

approach, components in the databases were parameterized and parameter surrogates were

created with regression analysis.

The objective of the ‘static’ study was to maximize endurance per system price. A

sensitivity analysis of the objective determined that the propeller had the largest impact

and indicated ways in which the design could be improved. The hybrid approach was then

applied to the problem. It identified a design with a large-diameter, small-pitch propeller;

a high-capacity, high-voltage battery; and a motor with a lower speed constant and higher

winding resistance than that of the initial design. These design changes improved the

endurance-per-price objective by 76.5%. To obtain a baseline for algorithm performance, the

CBDO problem was solved directly using a genetic algorithm. The hybrid approach was

found to outperform the GA for this case study, requiring 81.1% fewer function evaluations

to find the globally optimal configuration.

The objective of the second ‘dynamic’ study was to minimize the time required to complete

a dynamic mission. Like in the previous case study, a sensitivity analysis indicated that

the dynamic objective was most sensitive to propeller design. The hybrid optimization

process identified a propeller with a smaller pitch; a low-capacity, high-voltage battery; and a

motor with a lower speed constant and lower winding resistance than the initial design. The

selected configuration improved the mission duration objective by 25.64%. This case study

demonstrated in the significance of the discrete search step, as the best configuration was

somewhat far from the solution to the continuous representation.

114

6.2 Future Work

Much work remains to improve the performance of the hybrid approach and verify that it

scales to more complex systems and optimization problems. First, additional component

and configuration distance metrics should be explored to best leverage the results of the

continuous analysis. One possibility is to weight the component-distance metric with sensi-

tivity information obtained at the target design. In this approach, parameters to which the

objective is most sensitive would be prioritized. Entirely different sorted-search algorithms

should be considered as well. In an objective-sorted search, for instance, components could be

evaluated by substituting its parameters into the target design and evaluating the objective

function. Configurations would then be sorted by the average of the objective function values

associated with its components. Therefore, the first configuration in the list would contain

the individually optimal components. If no coupling between components existed, then it

would be the optimal configuration.

In addition to improving the algorithms themselves, future work could focus on optimizing

their implementation for better performance. All of the software tools developed for this thesis

are single threaded. Significant performance benefits could be realized with parallel processing,

especially when evaluating the list of configurations in the discrete search. Different NLP

optimization algorithms could also be explored, especially if the structure of the continuous

representation can be exploited.

Another direction for future work is dynamic CBDO problems that incorporate closed-

loop controller design. Though open-loop optimal control provides insight in early design

stages, it is rarely used directly in real-world systems. Most dynamic systems incorporate

feedback controllers that are tuned to balance performance with robustness. When the

physical elements and control system are designed in parallel, a process referred to as Control

Co-Design (CCD), synergies between the two can be exploited to achieve superior dynamics

and controllability. This often leads to lower system cost and improved reliability [86].

Finally, additional case studies are required to demonstrate that the hybrid approach can

scale to meet the real-world design challenges faced by modern engineers. Analyses of larger

eVTOL systems with 3D dynamics and more decision variables should be conducted.

115

References

[1] Hagerty Drivers Foundation, director, The Castle Duesenberg: Luxury Legend - A

History of the First Passenger Duesenberg, Nov. 11, 2020. [Online]. Available: https:

//www.youtube.com/watch?v=5KH_V0FJkPQ (visited on 01/24/2022).

[2] K. V. Shaw. “1921 Duesenberg Model A Belonged to the Same Family for Almost a

Century,” The Drive. (Feb. 13, 2021), [Online]. Available: https://www.thedrive.

com/news/39252/1921-duesenberg-model-a-belonged-to-the-same-family-

for-almost-a-century (visited on 01/26/2022).

[3] J. Peek. “The Castle Duesenberg: One historic car that elevated two family lega-

cies,” Hagerty Media. (Nov. 11, 2020), [Online]. Available: https://www.hagerty.

com/media/car-profiles/the-castle-duesenberg-one-historic-car-that-

elevated-two-family-legacies/ (visited on 01/26/2022).

[4] History.com Editors. “Ford’s assembly line starts rolling,” HISTORY. (Nov. 30, 2021),

[Online]. Available: https://www.history.com/this-day-in-history/fords-

assembly-line-starts-rolling (visited on 02/03/2022).

[5] M. International. “A History of the Automotive Assembly Line,” Mayco Interna-

tional - Automotive tier 1 supplier. (Apr. 23, 2021), [Online]. Available: https://

maycointernational.com/blog/a-history-of-the-automotive-assembly-line/

(visited on 01/25/2022).

[6] E. B. White, “Farewell, My Lovely!” The New Yorker, May 8, 1936, issn: 0028-792X.

[Online]. Available: https://www.newyorker.com/magazine/1936/05/16/farewell-

my-lovely (visited on 01/26/2022).

[7] 1922 Model T Ford Car Parts Accessories, 1922. [Online]. Available: https://www.

ebay.com/itm/153317884228 (visited on 02/15/2022).

[8] A. J. Baime, “Grandson Restores the 1918 Ford Model T His Grandfather Assembled by

Hand a Century Ago,” Wall Street JournalLife, Sep. 11, 2021, issn: 0099-9660. [Online].

Available: https://www.wsj.com/articles/grandson-restores-the-1918-ford-

116

https://www.youtube.com/watch?v=5KH_V0FJkPQ
https://www.youtube.com/watch?v=5KH_V0FJkPQ
https://www.thedrive.com/news/39252/1921-duesenberg-model-a-belonged-to-the-same-family-for-almost-a-century
https://www.thedrive.com/news/39252/1921-duesenberg-model-a-belonged-to-the-same-family-for-almost-a-century
https://www.thedrive.com/news/39252/1921-duesenberg-model-a-belonged-to-the-same-family-for-almost-a-century
https://www.hagerty.com/media/car-profiles/the-castle-duesenberg-one-historic-car-that-elevated-two-family-legacies/
https://www.hagerty.com/media/car-profiles/the-castle-duesenberg-one-historic-car-that-elevated-two-family-legacies/
https://www.hagerty.com/media/car-profiles/the-castle-duesenberg-one-historic-car-that-elevated-two-family-legacies/
https://www.history.com/this-day-in-history/fords-assembly-line-starts-rolling
https://www.history.com/this-day-in-history/fords-assembly-line-starts-rolling
https://maycointernational.com/blog/a-history-of-the-automotive-assembly-line/
https://maycointernational.com/blog/a-history-of-the-automotive-assembly-line/
https://www.newyorker.com/magazine/1936/05/16/farewell-my-lovely
https://www.newyorker.com/magazine/1936/05/16/farewell-my-lovely
https://www.ebay.com/itm/153317884228
https://www.ebay.com/itm/153317884228
https://www.wsj.com/articles/grandson-restores-the-1918-ford-model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802
https://www.wsj.com/articles/grandson-restores-the-1918-ford-model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802

model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802

(visited on 01/26/2022).

[9] Boy Scouts of America, Boys’ Life. Boy Scouts of America, Inc., Mar. 1956, 80 pp.

Google Books: 2RWgSgxSs34C.

[10] N. Wakelin. “How Many Parts are in a Car?” NAPA Know How Blog. (Jul. 2, 2021),

[Online]. Available: https://knowhow.napaonline.com/how-many-parts-are-in-a-

car/ (visited on 02/04/2022).

[11] D. Silver. “The Automotive Supply Chain, Explained,” Self-Driving Cars. (May 31,

2016), [Online]. Available: https://medium.com/self-driving-cars/the-automotive-

supply-chain-explained-d4e74250106f (visited on 02/03/2022).

[12] E. A. Lee and A. L. Sangiovanni-Vincentelli, “Component-based design for the future,”

in 2011 Design, Automation Test in Europe, Mar. 2011, pp. 1–5. doi: 10.1109/DATE.

2011.5763168.

[13] K. Fowler, “Build versus Buy,” IEEE Instrumentation Measurement Magazine, vol. 7,

no. 3, pp. 67–73, Sep. 2004, issn: 1941-0123. doi: 10.1109/MIM.2004.1337916.

[14] Y. Sered and Y. Reich, “Standardization and modularization driven by minimizing

overall process effort,” Computer-Aided Design, vol. 38, no. 5, pp. 405–416, May 1,

2006, issn: 0010-4485. doi: 10.1016/j.cad.2005.11.005. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0010448505001910 (visited on

09/07/2021).

[15] D.-Y. Kim, J.-W. Park, S. Baek, et al., “A modular factory testbed for the rapid

reconfiguration of manufacturing systems,” Journal of Intelligent Manufacturing, vol. 31,

no. 3, pp. 661–680, Mar. 1, 2020, issn: 1572-8145. doi: 10.1007/s10845-019-01471-2.

[Online]. Available: https://doi.org/10.1007/s10845-019-01471-2 (visited on

02/08/2022).

[16] J. R. R. A. Martins and S. A. Ning, Engineering Design Optimization. Cambridge ;

New York, NY: Cambridge University Press, 2021, 1 p., isbn: 978-1-108-83341-7.

[17] V. Belle and I. Papantonis, “Principles and Practice of Explainable Machine Learning,”

Frontiers in Big Data, vol. 4, 2021, issn: 2624-909X. [Online]. Available: https://www.

frontiersin.org/article/10.3389/fdata.2021.688969 (visited on 02/12/2022).

117

https://www.wsj.com/articles/grandson-restores-the-1918-ford-model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802
https://www.wsj.com/articles/grandson-restores-the-1918-ford-model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802
https://www.wsj.com/articles/grandson-restores-the-1918-ford-model-t-his-grandfather-assembled-by-hand-a-century-ago-11631368802
http://books.google.com/books?id=2RWgSgxSs34C
https://knowhow.napaonline.com/how-many-parts-are-in-a-car/
https://knowhow.napaonline.com/how-many-parts-are-in-a-car/
https://medium.com/self-driving-cars/the-automotive-supply-chain-explained-d4e74250106f
https://medium.com/self-driving-cars/the-automotive-supply-chain-explained-d4e74250106f
https://doi.org/10.1109/DATE.2011.5763168
https://doi.org/10.1109/DATE.2011.5763168
https://doi.org/10.1109/MIM.2004.1337916
https://doi.org/10.1016/j.cad.2005.11.005
https://www.sciencedirect.com/science/article/pii/S0010448505001910
https://www.sciencedirect.com/science/article/pii/S0010448505001910
https://doi.org/10.1007/s10845-019-01471-2
https://doi.org/10.1007/s10845-019-01471-2
https://www.frontiersin.org/article/10.3389/fdata.2021.688969
https://www.frontiersin.org/article/10.3389/fdata.2021.688969

[18] J. Pande, C. J. Garcia, and D. Pant, “Optimal component selection for component based

software development using pliability metric,” ACM SIGSOFT Software Engineering

Notes, vol. 38, no. 1, pp. 1–6, Jan. 23, 2013, issn: 0163-5948. doi: 10.1145/2413038.

2413044. [Online]. Available: https://doi.org/10.1145/2413038.2413044 (visited

on 09/06/2021).

[19] L. Gesellensetter and S. Glesner, “Only the Best Can Make It: Optimal Compo-

nent Selection,” Electronic Notes in Theoretical Computer Science, Proceedings of

the Workshop on Formal Foundations of Embedded Software and Component-Based

Software Architectures (FESCA 2006), vol. 176, no. 2, pp. 105–124, May 31, 2007,

issn: 1571-0661. doi: 10.1016/j.entcs.2006.02.034. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1571066107002071 (visited on

09/06/2021).

[20] P. C. Jha, V. Bali, S. Narula, and M. Kalra, “Optimal component selection based

on cohesion & coupling for component based software system under build-or-buy

scheme,” Journal of Computational Science, Empowering Science through Computing +

BioInspired Computing, vol. 5, no. 2, pp. 233–242, Mar. 1, 2014, issn: 1877-7503. doi:

10.1016/j.jocs.2013.07.003. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1877750313000835 (visited on 09/06/2021).

[21] W. Pawlus, G. Hovland, M. Choux, D. Frick, and M. Morari, “Drivetrain design

optimization for electrically actuated systems via mixed integer programing,” in IECON

2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Nov. 2015,

pp. 001 465–001 470. doi: 10.1109/IECON.2015.7392307.

[22] H. van de Straete, P. Degezelle, J. De Schutter, and R. Belmans, “Servo motor selection

criterion for mechatronic applications,” IEEE/ASME Transactions on Mechatronics,

vol. 3, no. 1, pp. 43–50, Mar. 1998, issn: 1941-014X. doi: 10.1109/3516.662867.

[23] P. Chedmail and M. Gautier, “Optimum Choice of Robot Actuators,” Journal of

Engineering for Industry, vol. 112, no. 4, pp. 361–367, Nov. 1, 1990, issn: 0022-0817.

doi: 10.1115/1.2899600. [Online]. Available: https://doi.org/10.1115/1.2899600

(visited on 09/06/2021).

[24] M. Pettersson, “Design Optimization in Industrial Robotics,” p. 81,

[25] M. Tarkian, J. Persson, J. O¨lvander, and X. Feng, “Multidisciplinary Design Opti-

mization of Modular Industrial Robots,” presented at the ASME 2011 International

Design Engineering Technical Conferences and Computers and Information in En-

gineering Conference, American Society of Mechanical Engineers Digital Collection,

118

https://doi.org/10.1145/2413038.2413044
https://doi.org/10.1145/2413038.2413044
https://doi.org/10.1145/2413038.2413044
https://doi.org/10.1016/j.entcs.2006.02.034
https://www.sciencedirect.com/science/article/pii/S1571066107002071
https://www.sciencedirect.com/science/article/pii/S1571066107002071
https://doi.org/10.1016/j.jocs.2013.07.003
https://www.sciencedirect.com/science/article/pii/S1877750313000835
https://www.sciencedirect.com/science/article/pii/S1877750313000835
https://doi.org/10.1109/IECON.2015.7392307
https://doi.org/10.1109/3516.662867
https://doi.org/10.1115/1.2899600
https://doi.org/10.1115/1.2899600

Jun. 12, 2012, pp. 867–876. doi: 10.1115/DETC2011- 48196. [Online]. Available:

https://asmedigitalcollection.asme.org/IDETC- CIE/proceedings/IDETC-

CIE2011/54822/867/353947 (visited on 09/03/2021).

[26] E. P. Zafiropoulos and E. N. Dialynas, “Methodology for the optimal component

selection of electronic devices under reliability and cost constraints,” Quality and

Reliability Engineering International, vol. 23, no. 8, pp. 885–897, 2007, issn: 1099-1638.

doi: 10.1002/qre.850. [Online]. Available: https://onlinelibrary.wiley.com/

doi/abs/10.1002/qre.850 (visited on 09/03/2021).

[27] M. Sauppe, T. Horn, E. Markert, U. Heinkel, H.-W. Sahm, and K.-H. Otto, “Optimal

component selection for energy-efficient systems,” in Proceedings of the 2013 Forum on

Specification and Design Languages (FDL), Sep. 2013, pp. 1–8.

[28] A. M. Patel and S. K. Singal, “Optimal component selection of integrated renewable

energy system for power generation in stand-alone applications,” Energy, vol. 175,

pp. 481–504, May 15, 2019, issn: 0360-5442. doi: 10.1016/j.energy.2019.03.055.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0360544219304591 (visited on 09/06/2021).

[29] E. Papadopoulos and L. Davliakos, “A Systematic Methodology for Optimal Component

Selection of Electrohydraulic Servosystems,” International Journal of Fluid Power,

vol. 5, no. 3, pp. 15–24, Jan. 1, 2004, issn: 1439-9776. doi: 10.1080/14399776.2004.

10781198. [Online]. Available: https://doi.org/10.1080/14399776.2004.10781198

(visited on 09/03/2021).

[30] T. T. H. Ng and G. S. B. Leng, “Design of small-scale quadrotor unmanned air vehicles

using genetic algorithms,” Proceedings of the Institution of Mechanical Engineers, Part

G: Journal of Aerospace Engineering, vol. 221, no. 5, pp. 893–905, May 1, 2007, issn:

0954-4100. doi: 10.1243/09544100JAERO113. [Online]. Available: https://doi.org/

10.1243/09544100JAERO113 (visited on 07/17/2021).

[31] V. M. Arellano-Quintana, E. A. Portilla-Flores, E. A. Merchan-Cruz, and P. A. Niño-

Suarez, “Multirotor design optimization using a genetic algorithm,” in 2016 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), Jun. 2016, pp. 1313–1318.

doi: 10.1109/ICUAS.2016.7502564.

[32] Ø. Magnussen, G. Hovland, and M. Ottestad, “Multicopter UAV design optimization,”

in 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded

Systems and Applications (MESA), Sep. 2014, pp. 1–6. doi: 10.1109/MESA.2014.

6935598.

119

https://doi.org/10.1115/DETC2011-48196
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2011/54822/867/353947
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2011/54822/867/353947
https://doi.org/10.1002/qre.850
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.850
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.850
https://doi.org/10.1016/j.energy.2019.03.055
https://www.sciencedirect.com/science/article/pii/S0360544219304591
https://www.sciencedirect.com/science/article/pii/S0360544219304591
https://doi.org/10.1080/14399776.2004.10781198
https://doi.org/10.1080/14399776.2004.10781198
https://doi.org/10.1080/14399776.2004.10781198
https://doi.org/10.1243/09544100JAERO113
https://doi.org/10.1243/09544100JAERO113
https://doi.org/10.1243/09544100JAERO113
https://doi.org/10.1109/ICUAS.2016.7502564
https://doi.org/10.1109/MESA.2014.6935598
https://doi.org/10.1109/MESA.2014.6935598

[33] X. Dai, Q. Quan, J. Ren, and K. Cai, “An Analytical Design-Optimization Method for

Electric Propulsion Systems of Multicopter UAVs With Desired Hovering Endurance,”

IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 228–239, Feb. 2019,

issn: 1941-014X. doi: 10.1109/TMECH.2019.2890901.

[34] T. Du, A. Schulz, B. Zhu, B. Bickel, and W. Matusik, “Computational multicopter

design,” MIT Web Domain, Nov. 2016, issn: 0730-0301. [Online]. Available: https:

//dspace.mit.edu/handle/1721.1/111061 (visited on 02/17/2021).

[35] F. Tian and M. Voskuijl, “Mechatronic Design and Optimization Using Knowledge-

Based Engineering Applied to an Inherently Unstable and Unmanned Aerial Vehicle,”

IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 542–554, Feb. 2016,

issn: 1941-014X. doi: 10.1109/TMECH.2015.2441832.

[36] K. Rothfus, “Multirotor Aircraft Genetic Design Algorithm (MAGDA),” M.S. Northern

Arizona University, United States – Arizona, May 2020, 153 pp., isbn: 9798672104089.

[Online]. Available: https://www.proquest.com/docview/2448297018/abstract/

E928DF9B116D4688PQ/1 (visited on 07/13/2021).

[37] D. Bershadsky, S. Haviland, and E. N. Johnson, “Electric Multirotor UAV Propul-

sion System Sizing for Performance Prediction and Design Optimization,” in 57th

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

ser. AIAA SciTech Forum, 0 vols., American Institute of Aeronautics and Astronautics,

Jan. 1, 2016. doi: 10.2514/6.2016-0581. [Online]. Available: http://arc.aiaa.org/

doi/10.2514/6.2016-0581 (visited on 01/23/2021).

[38] C. Ampatis and E. Papadopoulos, “Parametric design and optimization of multi-rotor

aerial vehicles,” in 2014 IEEE International Conference on Robotics and Automation

(ICRA), May 2014, pp. 6266–6271. doi: 10.1109/ICRA.2014.6907783.

[39] O. Gur and A. Rosen, “Optimizing Electric Propulsion Systems for Unmanned Aerial

Vehicles,” Journal of Aircraft, vol. 46, no. 4, pp. 1340–1353, Jul. 2009, issn: 0021-8669,

1533-3868. doi: 10.2514/1.41027. [Online]. Available: https://arc.aiaa.org/doi/

10.2514/1.41027 (visited on 07/13/2021).

[40] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design: Modeling and

Computation, 3rd. Cambridge: Cambridge University Press, Jan. 8, 2017, isbn: 978-1-

316-45103-8. doi: 10.1017/9781316451038.

[41] O. D. Team. “How Total Derivatives are Computed,” OpenMDAO Documentation.

(2021), [Online]. Available: https://openmdao.org/newdocs/versions/latest/

theory_manual/total_derivs_theory.html (visited on 04/15/2022).

120

https://doi.org/10.1109/TMECH.2019.2890901
https://dspace.mit.edu/handle/1721.1/111061
https://dspace.mit.edu/handle/1721.1/111061
https://doi.org/10.1109/TMECH.2015.2441832
https://www.proquest.com/docview/2448297018/abstract/E928DF9B116D4688PQ/1
https://www.proquest.com/docview/2448297018/abstract/E928DF9B116D4688PQ/1
https://doi.org/10.2514/6.2016-0581
http://arc.aiaa.org/doi/10.2514/6.2016-0581
http://arc.aiaa.org/doi/10.2514/6.2016-0581
https://doi.org/10.1109/ICRA.2014.6907783
https://doi.org/10.2514/1.41027
https://arc.aiaa.org/doi/10.2514/1.41027
https://arc.aiaa.org/doi/10.2514/1.41027
https://doi.org/10.1017/9781316451038
https://openmdao.org/newdocs/versions/latest/theory_manual/total_derivs_theory.html
https://openmdao.org/newdocs/versions/latest/theory_manual/total_derivs_theory.html

[42] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor,

“OpenMDAO: An open-source framework for multidisciplinary design, analysis, and

optimization,” Structural and Multidisciplinary Optimization, vol. 59, no. 4, pp. 1075–

1104, Apr. 1, 2019, issn: 1615-1488. doi: 10.1007/s00158-019-02211-z. [Online].

Available: https://doi.org/10.1007/s00158-019-02211-z (visited on 05/24/2022).

[43] J. T. Hwang and J. R. Martins, “A Computational Architecture for Coupling Hetero-

geneous Numerical Models and Computing Coupled Derivatives,” ACM Transactions

on Mathematical Software, vol. 44, no. 4, pp. 1–39, Aug. 9, 2018, issn: 0098-3500,

1557-7295. doi: 10.1145/3182393. [Online]. Available: https://dl.acm.org/doi/10.

1145/3182393 (visited on 04/15/2022).

[44] J. P. Koeln, M. A. Williams, H. C. Pangborn, and A. G. Alleyne, “Experimental

Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems,” presented

at the ASME 2016 Dynamic Systems and Control Conference, American Society of

Mechanical Engineers Digital Collection, Feb. 15, 2017. doi: 10.1115/DSCC2016-9782.

[Online]. Available: http://asmedigitalcollection.asme.org/DSCC/proceedings/

DSCC2016/50701/V002T21A008/231046 (visited on 10/25/2020).

[45] J. P. Koeln, M. A. Williams, and A. G. Alleyne, “Hierarchical Control of Multi-Domain

Power Flow in Mobile Systems: Part I — Framework Development and Demonstration,”

presented at the ASME 2015 Dynamic Systems and Control Conference, American

Society of Mechanical Engineers Digital Collection, Jan. 12, 2016. doi: 10.1115/

DSCC2015-9908. [Online]. Available: http://asmedigitalcollection.asme.org/

DSCC/proceedings/DSCC2015/57243/V001T08A006/228090 (visited on 10/25/2020).

[46] M. A. Williams, J. P. Koeln, H. C. Pangborn, and A. G. Alleyne, “Dynamical

Graph Models of Aircraft Electrical, Thermal, and Turbomachinery Components,”

Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 4, Apr. 1,

2018, issn: 0022-0434. doi: 10.1115/1.4038341. [Online]. Available: https://

asmedigitalcollection.asme.org/dynamicsystems/article/140/4/041013/

384614/Dynamical-Graph-Models-of-Aircraft-Electrical (visited on 10/25/2020).

[47] D. J. Docimo, Z. Kang, K. A. James, and A. G. Alleyne, “A Novel Framework for

Simultaneous Topology and Sizing Optimization of Complex, Multi-Domain Systems-of-

Systems,” Journal of Mechanical Design, vol. 142, no. 9, Sep. 1, 2020, issn: 1050-0472.

doi: 10.1115/1.4046066. [Online]. Available: https://asmedigitalcollection-

asme-org.proxy2.library.illinois.edu/mechanicaldesign/article/142/9/

091701/1072722/A-Novel-Framework-for-Simultaneous-Topology-and (visited

on 08/26/2020).

121

https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1145/3182393
https://dl.acm.org/doi/10.1145/3182393
https://dl.acm.org/doi/10.1145/3182393
https://doi.org/10.1115/DSCC2016-9782
http://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2016/50701/V002T21A008/231046
http://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2016/50701/V002T21A008/231046
https://doi.org/10.1115/DSCC2015-9908
https://doi.org/10.1115/DSCC2015-9908
http://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2015/57243/V001T08A006/228090
http://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2015/57243/V001T08A006/228090
https://doi.org/10.1115/1.4038341
https://asmedigitalcollection.asme.org/dynamicsystems/article/140/4/041013/384614/Dynamical-Graph-Models-of-Aircraft-Electrical
https://asmedigitalcollection.asme.org/dynamicsystems/article/140/4/041013/384614/Dynamical-Graph-Models-of-Aircraft-Electrical
https://asmedigitalcollection.asme.org/dynamicsystems/article/140/4/041013/384614/Dynamical-Graph-Models-of-Aircraft-Electrical
https://doi.org/10.1115/1.4046066
https://asmedigitalcollection-asme-org.proxy2.library.illinois.edu/mechanicaldesign/article/142/9/091701/1072722/A-Novel-Framework-for-Simultaneous-Topology-and
https://asmedigitalcollection-asme-org.proxy2.library.illinois.edu/mechanicaldesign/article/142/9/091701/1072722/A-Novel-Framework-for-Simultaneous-Topology-and
https://asmedigitalcollection-asme-org.proxy2.library.illinois.edu/mechanicaldesign/article/142/9/091701/1072722/A-Novel-Framework-for-Simultaneous-Topology-and

[48] C. Laird, D. Docimo, C. T. Aksland, and A. G. Alleyne, “GRAPH-BASED DE-

SIGN AND CONTROL OPTIMIZATION OF A HYBRID ELECTRICAL ENERGY

STORAGE SYSTEM,” presented at the ASME 2020 Dynamic Systems and Control

Conference, Pittsburgh, PA, Oct. 4, 2020, p. 9.

[49] R. Falck, J. Gray, K. Ponnapalli, and T. Wright, “Dymos: A Python package for

optimal control of multidisciplinary systems,” Journal of Open Source Software, vol. 6,

no. 59, p. 2809, Mar. 31, 2021, issn: 2475-9066. doi: 10.21105/joss.02809. [Online].

Available: https://joss.theoj.org/papers/10.21105/joss.02809 (visited on

10/29/2021).

[50] J. Allison and D. R. Herber, “Multidisciplinary Design Optimization of Dynamic

Engineering Systems,” in 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, Boston, Massachusetts: American Institute of

Aeronautics and Astronautics, Apr. 8, 2013, isbn: 978-1-62410-223-3. doi: 10.2514/6.

2013-1462. [Online]. Available: http://arc.aiaa.org/doi/10.2514/6.2013-1462

(visited on 09/24/2020).

[51] W. Guthrie, J. Filliben, and A. Heckert, “Process Modeling,” in E-Handbook of Statistical

Methods, NIST/SEMATECH, Apr. 2012. [Online]. Available: https://www.itl.nist.

gov/div898/handbook/pmd/section1/pmd144.htm (visited on 06/25/2022).

[52] N. Dirkx, M. Bosselaar, and T. Oomen, “A Fast Smoothing-Based Algorithm to

Generate l-infinity-Norm Constrained Signals for Multivariable Experiment Design,”

IEEE Control Systems Letters, vol. 6, pp. 1784–1789, 2022, issn: 2475-1456. doi:

10.1109/LCSYS.2021.3133655.

[53] S. Gillies, Shapely, shapely, Jun. 26, 2022. [Online]. Available: https://github.com/

shapely/shapely (visited on 06/28/2022).

[54] N. Gregoire and M. Bouillot. “Hausdorff distance between convex polygons,” CS 507

Computational Geometry. (1998), [Online]. Available: http://cgm.cs.mcgill.ca/

~godfried/teaching/cg-projects/98/normand/main.html (visited on 06/28/2022).

[55] The MathWorks, Inc. “Find minimum of function using genetic algorithm - MATLAB

ga,” MathWorks Help Center. (2022), [Online]. Available: https://www.mathworks.

com/help/gads/ga.html#mw_4a8bfdb9-7c4c-4302-8f47-d260b7a43e26 (visited on

06/30/2022).

[56] HolyBro. “S500 V2 Kit,” Holybro. (), [Online]. Available: http://www.holybro.com/

product/pixhawk4-s500-v2-kit/ (visited on 09/10/2021).

122

https://doi.org/10.21105/joss.02809
https://joss.theoj.org/papers/10.21105/joss.02809
https://doi.org/10.2514/6.2013-1462
https://doi.org/10.2514/6.2013-1462
http://arc.aiaa.org/doi/10.2514/6.2013-1462
https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm
https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm
https://doi.org/10.1109/LCSYS.2021.3133655
https://github.com/shapely/shapely
https://github.com/shapely/shapely
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
https://www.mathworks.com/help/gads/ga.html#mw_4a8bfdb9-7c4c-4302-8f47-d260b7a43e26
https://www.mathworks.com/help/gads/ga.html#mw_4a8bfdb9-7c4c-4302-8f47-d260b7a43e26
http://www.holybro.com/product/pixhawk4-s500-v2-kit/
http://www.holybro.com/product/pixhawk4-s500-v2-kit/

[57] HolyBro. “PM02 Power Module,” Holybro Store. (), [Online]. Available: http://www.

holybro.com/product/power-modulepm02-v3/ (visited on 05/30/2022).

[58] HolyBro. “Spare Parts-S500 V2 Kit,” HolyBro Store. (), [Online]. Available: https:

//shop.holybro.com/spare-parts-s500-kit_p1251.html (visited on 05/30/2022).

[59] KDE Direct. “KDEXF-UAS20LV 20A+ Electronic Speed Controller (ESC) for Elec-

tric Multi-Rotor (UAS) Series,” KDE Direct. (), [Online]. Available: https://www.

kdedirect.com/products/kdexf-uas20lv (visited on 05/30/2022).

[60] X. Lin, H. E. Perez, S. Mohan, et al., “A lumped-parameter electro-thermal model

for cylindrical batteries,” Journal of Power Sources, vol. 257, pp. 1–11, Jul. 1, 2014,

issn: 0378-7753. doi: 10.1016/j.jpowsour.2014.01.097. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0378775314001244 (visited on

09/04/2020).

[61] C. T. Aksland, T. W. Bixel, L. C. Raymond, M. A. Rottmayer, and A. G. Alleyne,

“Graph-Based Electro-Mechanical Modeling of a Hybrid Unmanned Aerial Vehicle for

Real-Time Applications,” in 2019 American Control Conference (ACC), Jul. 2019,

pp. 4253–4259. doi: 10.23919/ACC.2019.8814930.

[62] C. T. Aksland, “Modular Modeling and Control of a Hybrid Unmanned Aerial Vehicle’s

Powertrain,” M.S. University of Illinois at Urbana-Champaign, 2019. [Online]. Available:

http://hdl.handle.net/2142/106283.

[63] V. M. Bida, D. V. Samokhvalov, and F. S. Al-Mahturi, “PMSM vector control techniques

— A survey,” in 2018 IEEE Conference of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus), Jan. 2018, pp. 577–581. doi: 10.1109/EIConRus.

2018.8317164.

[64] Paul Krause, Oleg Wasynczuk, Scott Sudhoff, and Steven Pekarek, Analysis of Electric

Machinery and Drive Systems, 1st ed. John Wiley & Sons, Ltd, 2013. doi: 10.1002/

9781118524336. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.

1002/9781118524336 (visited on 09/17/2020).

[65] Brad Hieb and Heath Hofmann. “Parameterizing and Verifying a Permanent Magnet

Synchronous Motor Model,” MathWorks Videos. (2012), [Online]. Available: https:

//www.mathworks.com/videos/parameterizing-and-verifying-a-permanent-

magnet-synchronous-motor-model-92982.html (visited on 09/22/2020).

[66] Patrick L. Chapman, “Permanent-Magnet Synchronous Machine Drives,” in The Power

Electronics Handbook, 1st ed., CRC Press, 2001, isbn: 978-1-315-22064-2.

123

http://www.holybro.com/product/power-modulepm02-v3/
http://www.holybro.com/product/power-modulepm02-v3/
https://shop.holybro.com/spare-parts-s500-kit_p1251.html
https://shop.holybro.com/spare-parts-s500-kit_p1251.html
https://www.kdedirect.com/products/kdexf-uas20lv
https://www.kdedirect.com/products/kdexf-uas20lv
https://doi.org/10.1016/j.jpowsour.2014.01.097
http://www.sciencedirect.com/science/article/pii/S0378775314001244
http://www.sciencedirect.com/science/article/pii/S0378775314001244
https://doi.org/10.23919/ACC.2019.8814930
http://hdl.handle.net/2142/106283
https://doi.org/10.1109/EIConRus.2018.8317164
https://doi.org/10.1109/EIConRus.2018.8317164
https://doi.org/10.1002/9781118524336
https://doi.org/10.1002/9781118524336
http://onlinelibrary.wiley.com/doi/10.1002/9781118524336
http://onlinelibrary.wiley.com/doi/10.1002/9781118524336
https://www.mathworks.com/videos/parameterizing-and-verifying-a-permanent-magnet-synchronous-motor-model-92982.html
https://www.mathworks.com/videos/parameterizing-and-verifying-a-permanent-magnet-synchronous-motor-model-92982.html
https://www.mathworks.com/videos/parameterizing-and-verifying-a-permanent-magnet-synchronous-motor-model-92982.html

[67] A. F. El-Sayed, “Piston Engines and Propellers,” in Fundamentals of Aircraft and

Rocket Propulsion, A. F. El-Sayed, Ed., London: Springer, 2016, pp. 219–314, isbn:

978-1-4471-6796-9. doi: 10.1007/978-1-4471-6796-9_4. [Online]. Available: https:

//doi.org/10.1007/978-1-4471-6796-9_4 (visited on 10/26/2020).

[68] Z. S. Spakovszky. “Performance of Propellers,” Thermodynamics and Propulsion. (2002),

[Online]. Available: https://web.mit.edu/16.unified/www/FALL/thermodynamics/

notes/node86.html (visited on 09/09/2020).

[69] J.B. Brandt, R.W. Deters, G.K. Ananda, O.D. Dantsker, and M.S. Selig. “UIUC

Propeller Database.” (), [Online]. Available: https://m-selig.ae.illinois.edu/

props/propDB.html (visited on 01/29/2021).

[70] Q. Quan, Introduction to Multicopter Design and Control. Singapore: Springer Singapore,

2017, isbn: 978-981-10-3381-0 978-981-10-3382-7. doi: 10.1007/978-981-10-3382-7.

[Online]. Available: http://link.springer.com/10.1007/978-981-10-3382-7

(visited on 02/17/2021).

[71] S. Zhao, “Time Derivative of Rotation Matrices: A Tutorial,” Sep. 20, 2016. arXiv:

1609.06088 [cs]. [Online]. Available: http://arxiv.org/abs/1609.06088 (visited

on 06/10/2021).

[72] Jerry B. Marion, Classical Dynamics of Particles and Systems. Elsevier, 1965, isbn:

978-1-4832-5676-4. doi: 10.1016/C2013- 0- 12598- 6. [Online]. Available: https:

//linkinghub.elsevier.com/retrieve/pii/C20130125986 (visited on 06/09/2021).

[73] Wikipedia contributors, Parallel axis theorem, in Wikipedia, Wikipedia, The Free

Encyclopedia., Jun. 9, 2021. [Online]. Available: https://en.wikipedia.org/w/index.

php?title=Parallel_axis_theorem&oldid=1027622731 (visited on 06/14/2021).

[74] Velimir. “S500 Frame,” 3D CAD Model Library — GrabCAD. (Jul. 7, 2020), [Online].

Available: https://grabcad.com/library/s500-frame-1 (visited on 06/16/2021).

[75] Holybro. “Reference Frames,” Wikifactory. (Feb. 8, 2021), [Online]. Available: https:

//wikifactory.com/+holybro/reference-frame-1 (visited on 06/16/2021).

[76] H. Tang. “APC 11x8 E Prop,” 3D CAD Model Library — GrabCAD. (May 29, 2017),

[Online]. Available: https://grabcad.com/library/apc-11x8-e-prop-1 (visited on

06/16/2021).

[77] R. Tedrake. “Ch. 3 - Acrobots, Cart-Poles, and Quadrotors,” Underactuated Robotics -

Algorithms for Walking, Running, Swimming, Flying, and Manipulation. (Oct. 19, 2021),

[Online]. Available: http://underactuated.mit.edu/acrobot.html#section3

(visited on 10/29/2021).

124

https://doi.org/10.1007/978-1-4471-6796-9_4
https://doi.org/10.1007/978-1-4471-6796-9_4
https://doi.org/10.1007/978-1-4471-6796-9_4
https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html
https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html
https://m-selig.ae.illinois.edu/props/propDB.html
https://m-selig.ae.illinois.edu/props/propDB.html
https://doi.org/10.1007/978-981-10-3382-7
http://link.springer.com/10.1007/978-981-10-3382-7
https://arxiv.org/abs/1609.06088
http://arxiv.org/abs/1609.06088
https://doi.org/10.1016/C2013-0-12598-6
https://linkinghub.elsevier.com/retrieve/pii/C20130125986
https://linkinghub.elsevier.com/retrieve/pii/C20130125986
https://en.wikipedia.org/w/index.php?title=Parallel_axis_theorem&oldid=1027622731
https://en.wikipedia.org/w/index.php?title=Parallel_axis_theorem&oldid=1027622731
https://grabcad.com/library/s500-frame-1
https://wikifactory.com/+holybro/reference-frame-1
https://wikifactory.com/+holybro/reference-frame-1
https://grabcad.com/library/apc-11x8-e-prop-1
http://underactuated.mit.edu/acrobot.html#section3

[78] Mauch Technology. “Mauch HS-200-LV,” Mauch Electronic. (2019), [Online]. Available:

https://www.mauch-electronic.com/ (visited on 06/06/2022).

[79] J. Y. Hwang, M. K. Jung, and O. J. Kwon, “Numerical Study of Aerodynamic Perfor-

mance of a Multirotor Unmanned-Aerial-Vehicle Configuration,” Journal of Aircraft,

vol. 52, no. 3, pp. 839–846, 2015. doi: 10.2514/1.C032828. [Online]. Available:

https://doi.org/10.2514/1.C032828 (visited on 08/30/2021).

[80] HobbyKing. “Turnigy Graphene Batteries,” Hobbyking. (), [Online]. Available: https:

//hobbyking.com/en_us/batteries-chargers/batteries/lipo.html (visited on

09/09/2021).

[81] KDE Direct. “UAS Multi-Rotor Brushless Motors,” KDE Direct. (), [Online]. Available:

https://www.kdedirect.com/collections/uas-multi-rotor-brushless-motors

(visited on 09/09/2021).

[82] The MathWorks, Inc. “Curve Fitting Toolbox,” Mathworks Products. (2022), [Online].

Available: https://www.mathworks.com/products/curvefitting.html (visited on

07/02/2022).

[83] MathWorks. “First-Order Optimality Measure,” Help Center. (2022), [Online]. Available:

https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.

html (visited on 09/10/2021).

[84] D. Kraft, A Software Package for Sequential Quadratic Programming (Forschungsbericht

/ Deutsche Forschungs- Und Versuchsanstalt Für Luft- Und Raumfahrt, DFVLR ;

1988:28). Köln, 1988.

[85] The SciPy community. “SciPy Minimize SLSQP Method,” SciPy API Reference. (2022),

[Online]. Available: https://docs.scipy.org/doc/scipy/reference/optimize.

minimize-slsqp.html (visited on 07/06/2022).

[86] M. Garcia-Sanz, “Control Co-Design: An engineering game changer,” Advanced Control

for Applications, vol. 1, no. 1, e18, 2019, issn: 2578-0727. doi: 10.1002/adc2.18.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adc2.18

(visited on 08/26/2020).

[87] MathWorks. “Implement abc to dq0 transform,” MATLAB Documentation. (), [Online].

Available: https://www.mathworks.com/help/physmod/sps/ref/parktransform.

html (visited on 04/13/2021).

[88] APC Propellers. “APC Propellers - Electric Motors,” APC Propellers. (), [Online].

Available: https : / / www . apcprop . com / product - category / electric - motors/

(visited on 09/09/2021).

125

https://www.mauch-electronic.com/
https://doi.org/10.2514/1.C032828
https://doi.org/10.2514/1.C032828
https://hobbyking.com/en_us/batteries-chargers/batteries/lipo.html
https://hobbyking.com/en_us/batteries-chargers/batteries/lipo.html
https://www.kdedirect.com/collections/uas-multi-rotor-brushless-motors
https://www.mathworks.com/products/curvefitting.html
https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://doi.org/10.1002/adc2.18
https://onlinelibrary.wiley.com/doi/abs/10.1002/adc2.18
https://www.mathworks.com/help/physmod/sps/ref/parktransform.html
https://www.mathworks.com/help/physmod/sps/ref/parktransform.html
https://www.apcprop.com/product-category/electric-motors/

Appendix A

Park Transform

A Park transform with initial a-phase to q-axis alignment, is shown in Figure A.1 [64].

Three-phase variables of stationary circuit elements are transformed to the dq reference frame

as expressed in A.1.

Figure A.1: DQ transformation with initial a-phase to q-axis alignment [64]

kqd0 = Ks (θ)kabc (A.1)

Above, k can represent either voltage, current, flux linkage, or electric charge. Ks is a

transformation matrix defined in A.2.

1

Ks =
2

3

 cos θ cos (θ − 2π/3) cos (θ + 2π/3)

sin θ sin (θ − 2π/3) sin (θ + 2π/3)

1/2 1/2 1/2

 (A.2)

In A.2, θ is the electrical angular displacement of the rotating frame. Under this trans-

formation, the total power expressed in the qd0 variables must equal the total power in

represented in the abc variables.

Pqd0 = Pabc

= v⊤abciabc

= (Ks
−1 (θ) vqd0)

⊤(Ks
−1 (θ) iqd0)

= v⊤qd0
(
Ks

−1 (θ)
)⊤
Ks

−1 (θ) iqd0

= v⊤qd0

3
2

0 0

0 3
2

0

0 0 3

 iqd0
=

3

2
(vqiq + vdid + 2v0i0)

(A.3)

The 3
2
factor comes from the choice of constant used in the transformation. With this

choice of constant, the transformation is invariant to waveform amplitude. That is, letting A

be the amplitude of the three-phase signal kabc,

kabc = A

 cos(θ)

cos
(
θ − 2π

3

)
cos
(
2π
3
+ θ
)
 (A.4)

Taking the transformation gives,

kqd0 = Kskabc

= AKs

 cos(θ)

cos
(
θ − 2π

3

)
cos
(
2π
3
+ θ
)

=

A0
0

(A.5)

It is sometimes desirable to use a matrix K̃s such that the transformation is power P

2

invariant. That is,

P = v⊤
abciabc = ṽ⊤

qd0ĩqd0 (A.6)

where,

k̃qd0 = K̃skabc (A.7)

Equation A.6 is satisfied if we choose K̃s to be orthogonal, that is, K̃⊤
s K̃s = I.

ṽ⊤
qd0ĩqd0 = v⊤

abciabc

v⊤
abcK̃

⊤
s K̃siabc = v⊤

abciabc

v⊤
abciabc = v⊤

abciabc

(A.8)

Such an orthogonal transformation matrix is presented in [87].

K̃s =

√
2

3

cos(θ) cos

(
θ − 2π

3

)
cos
(
2π
3
+ θ
)

sin(θ) sin
(
θ − 2π

3

)
sin
(
2π
3
+ θ
)√

1
2

√
1
2

√
1
2

 (A.9)

When this power-invariant Park transform A.7 is applied to the three-phase waveform

kabc with amplitude A defined in A.4, then the transformed variables k̃qd0 are,

k̃qd0 = K̃skabc =

√

3
2
A

0

0

 =

√
3kRMS

0

0

 (A.10)

where kRMS is the root-mean-square value of kabc.

The transformation from standard Park transformation variables to power-invariant Park

transformation variables is given in A.11.

k̃qd0 = K̃sK
−1
s kqd0

=

√

3
2

0 0

0
√

3
2

0

0 0
√
3

kqd0

(A.11)

3

Appendix B

Powertrain System Model Details

Tables B.1 and B.2 provide a description of the vertices and edges, respectively, in the

powertrain system graph shown in Figure 5.13. In the tables and system model equations,

the notation ϕt
x is used to denote parameter x corresponding to component type t, where B

is the battery, Bus is the electrical bus, I is the inverter, M is the motor, P is the propeller,

and S is the quadrotor system.

4

Number Parent Description Symbol Capacitance

1 Battery State of Charge V1 ϕB
Np

ϕB
Ns

ϕB
Qϕ

B
vOCV

(V1)

2 Motor 1 Current (iq) I1 ϕM
L I1

3 Propeller 1 Angular Velocity (ωm) ω1 (ϕM
J + ϕP

J)ω1

4 Motor 2 Current (iq) I2 ϕM
L I2

5 Propeller 2 Angular Velocity (ωm) ω2 (ϕM
J + ϕP

J)ω2

6 Motor 3 Current (iq) I3 ϕM
L I3

7 Propeller 3 Angular Velocity (ωm) ω3 (ϕM
J + ϕP

J)ω3

8 Motor 4 Current (iq) I4 ϕM
L I4

9 Propeller 4 Angular Velocity (ωm) ω4 (ϕM
J + ϕP

J)ω4

10 DC Electrical Bus Voltage V2 0

11 DC Electrical Bus Current I5 0

12 Inverter 1 Current (iDC) I6 0

13 Inverter 1 Voltage (vq) V3 0

14 Inverter 2 Current (iDC) I7 0

15 Inverter 2 Voltage (vq) V4 0

16 Inverter 3 Current (iDC) I8 0

17 Inverter 3 Voltage (vq) V5 0

18 Inverter 4 Current (iDC) I9 0

19 Inverter 4 Voltage (vq) V6 0

20 Battery Temperature Sink T1 —

21 DC Electrical Bus Temperature Sink T2 —

22 Inverter 1 Temperature Sink T3 —

23 Inverter 2 Temperature Sink T4 —

24 Inverter 3 Temperature Sink T5 —

25 Inverter 4 Temperature Sink T6 —

26 Propeller 1 Torque Sink τ1 —

27 Motor 1 Temperature Sink T7 —

28 Propeller 2 Torque Sink τ2 —

29 Motor 1 Temperature Sink T8 —

30 Propeller 3 Torque Sink τ3 —

31 Motor 1 Temperature Sink T9 —

32 Propeller 4 Torque Sink τ4 —

33 Motor 1 Temperature Sink T10 —

Table B.1: Vertices of powertrain system graph model

5

Number Parent Power Flow Input

1 Battery ϕB
Ns

ϕB
vOCV

(xt) —

2 Battery (ϕB
Ns

/ϕB
Np

)ϕB
Rs
x2t —

3 DC Electrical Bus xhxt —

4 DC Electrical Bus ϕBus
R x2t —

5 Inverter 1 u1xhxt u1

6 Inverter 1
√

2/3xhxt) —

7 Inverter 1 xhxt —

8 Inverter 1 ϕI
Rx

2
t —

9 Inverter 2 u2xhxt u2

10 Inverter 2
√

2/3xhxt) —

11 Inverter 2 xhxt —

12 Inverter 2 ϕI
Rx

2
t —

13 Inverter 3 u3xhxt u3

14 Inverter 3
√

2/3xhxt) —

15 Inverter 3 xhxt —

16 Inverter 3 ϕI
Rx

2
t —

17 Inverter 4 u4xhxt u4

18 Inverter 4
√

2/3xhxt) —

19 Inverter 4 xhxt —

20 Inverter 4 ϕI
Rx

2
t —

21 Motor 1
√

3/2(30/(ϕM
kV π))xhxt —

22 Propeller 1 (ϕP
kP

/(2π))ρD5x3t —

23 Motor 1 ϕM
Rmx2t —

24 Motor 1 0 —

25 Motor 2
√

3/2(30/(ϕM
kV π))xhxt —

26 Propeller 2 (ϕP
kP

/(2π))ρD5x3t —

27 Motor 2 ϕM
Rmx2t —

28 Motor 2 0 —

29 Motor 3
√

3/2(30/(ϕM
kV π))xhxt —

30 Propeller 3 (ϕP
kP

/(2π))ρD5x3t —

31 Motor 3 ϕM
Rmx2t —

32 Motor 3 0 —

33 Motor 4
√

3/2(30/(ϕM
kV π))xhxt —

34 Propeller 4 (ϕP
kP

/(2π))ρD5x3t —

35 Motor 4 ϕM
Rmx2t —

36 Motor 4 0 —

Table B.2: Edges of powertrain system graph model

6

Appendix C

AGILe Exported Model: Planar

Quadrotor Powertrain

The Python functions f(x,a,u,d,theta), g(x,a,u,d,theta), and h(x,a,u,d,theta) de-

fined below are the state derivatives, model outputs, and algebraic-state residuals of the

planar quadrotor powertrain. They were automatically generated by the AGILe toolbox.

def f(x,a,u,d,theta):

auto-generated function from matlab

x2=x[1]

x3=x[2]

a2=a[1]

a7=a[6]

a8=a[7]

Capacity__Battery=theta[0]

J_r__MotorProp=theta[6]

K_Q__Propeller=theta[7]

K_t__Motor=theta[9]

out1 = -a2/Capacity__Battery

out2 = -(2*K_Q__Propeller*x2**2

- 2**(1/2)*3**(1/2)*K_t__Motor*a7)/(2*J_r__MotorProp)

out3 = -(2*K_Q__Propeller*x3**2

- 2**(1/2)*3**(1/2)*K_t__Motor*a8)/(2*J_r__MotorProp)

7

return out1, out2, out3

def g(x,a,u,d,theta):

auto-generated function from matlab

x2=x[1]

x3=x[2]

K_Q__Propeller=theta[7]

K_T__Propeller=theta[8]

out1 = K_T__Propeller*x2**2

out2 = K_Q__Propeller*x2**2

out3 = K_T__Propeller*x3**2

out4 = K_Q__Propeller*x3**2

return out1, out2, out3, out4

def h(x,a,u,d,theta):

auto-generated function from matlab

x2=x[1]

x3=x[2]

a1=a[0]

a2=a[1]

a3=a[2]

a4=a[3]

a5=a[4]

a6=a[5]

a7=a[6]

a8=a[7]

u1=u[0]

u2=u[1]

K_t__Motor=theta[9]

N_s__Battery=theta[17]

R__PMSMInverter_2=theta[25]

R_p__Battery=theta[26]

Rm__Motor=theta[28]

8

out1 = a2 - a3*u1 - a5*u2

out2 = (37*N_s__Battery)/10 - a1 - (3*a2)/1000 - R_p__Battery*a2

out3 = a1*u1 - R__PMSMInverter_2*a3 - (2**(1/2)*3**(1/2)*a4)/3

out4 = (2**(1/2)*3**(1/2)*a3)/3 - a7

out5 = a1*u2 - R__PMSMInverter_2*a5 - (2**(1/2)*3**(1/2)*a6)/3

out6 = (2**(1/2)*3**(1/2)*a5)/3 - a8

out7 = a4 - Rm__Motor*a7 - (2**(1/2)*3**(1/2)*K_t__Motor*x2)/2

out8 = a6 - Rm__Motor*a8 - (2**(1/2)*3**(1/2)*K_t__Motor*x3)/2

return out1, out2, out3, out4, out5, out6, out7, out8

9

Appendix D

Component Databases

D.1 Battery Component Database [80]

In the following table, Np is the number of parallel cells in the pack, Ns is the number of

series cells in the pack, Q is the pack capacity, and Rs is the cell series resistance.

10

Make Model SKU C Mass (kg) Np Ns Price (USD) Q (mAh) Rs (Ω)

Turnigy Graphene Panther 9067000422-0 75 0.405 1 4 56.99 3000 0.00375

Turnigy Graphene Panther 9067000421-0 75 0.32 1 3 42.97 3000 0.0043333

Turnigy Graphene Panther 9067000418-0 75 0.076 1 4 21.97 500 0.0075

Turnigy Graphene Panther 9067000417-0 75 0.196 1 4 27.87 1400 0.00425

Turnigy Graphene Panther 9067000416-0 75 0.156 1 3 23.99 1400 0.0043333

Turnigy Graphene Panther 9067000415-0 75 0.162 1 3 22.97 1500 0.0043333

Turnigy Graphene Panther 9067000412-0 75 0.529 1 4 69.99 4000 0.003

Turnigy Graphene Panther 9067000411-0 75 0.412 1 3 55.95 4000 0.0033333

Turnigy Graphene Panther 9067000410-0 75 0.212 1 6 26.99 1000 0.0031667

Turnigy Graphene Panther 9067000409-0 75 0.137 1 3 16.99 1300 0.0043333

Turnigy Graphene Panther 9067000408-0 75 0.12 1 4 18.99 850 0.0055

Turnigy Graphene Panther 9067000407-0 75 0.084 1 2 9.54 1000 0.0055

Turnigy Graphene Panther 9067000406-0 75 0.043 1 1 9.32 950 0.012

Turnigy Graphene Panther 9067000376-0 75 0.598 1 6 82.57 3000 0.003

Turnigy Graphene Panther 9067000375-0 75 0.92 1 6 116.95 5000 0.0025

Turnigy Graphene Panther 9067000374-0 75 0.49 1 3 65.97 5000 0.003

Turnigy Graphene Panther 9067000373-0 75 0.76 1 6 104.97 4000 0.0026667

Turnigy Graphene Panther 9067000366-0 75 0.212 1 4 24.99 1600 0.0035

Turnigy Graphene Panther 9067000363-0 75 0.173 1 4 23.99 1300 0.003

Turnigy Graphene Panther 9067000360-0 75 0.148 1 4 23.97 1000 0.00425

Turnigy Graphene Panther 9067000515-0 75 0.202 1 4 26.97 1500 0.00425

Turnigy Graphene Panther 9067000513-0 75 0.249 1 6 31.99 1300 0.0031667

Turnigy Graphene Panther 9067000420-0 75 1.14 1 6 129.99 6000 0.0021667

Turnigy Graphene Panther 9067000419-0 75 0.63 1 4 81.99 5000 0.00275

Turnigy Graphene Panther 9067000414-0 75 0.8 1 4 99.99 6000 0.00225

Turnigy Graphene Panther 9067000372-0 75 0.295 1 4 42.97 2200 0.00325

Turnigy Graphene Panther 9067000371-0 75 0.23 1 3 32.99 2200 0.0033333

Turnigy Graphene Panther 9067000370-0 75 0.094 1 4 14.19 650 0.01

Turnigy Graphene Panther 9067000369-0 75 0.051 1 1 5.57 600 0.02

Turnigy Graphene Panther 9067000368-0 75 0.063 1 3 14.99 500 0.011667

Turnigy Graphene Panther 9067000365-0 75 0.212 1 4 29.99 1600 0.0035

Turnigy Graphene Panther 9067000361-0 75 0.116 1 3 16.99 1000 0.0043333

Turnigy Graphene Panther 9067000413-0 75 0.63 1 3 75.97 6000 0.0023333

Table D.1: Battery component database

D.2 Motor Component Database [81]

In the following table, D is motor diameter, Imax is the motor’s maximum current, Io is the

no-load current at 10V, Rm is the winding resistance, and kV is the speed constant.

11

Make Model SKU D (m) Imax (A) Io (A) Mass (kg) Price (USD) Rm (Ω) kV (RPM/V)

KDE KDE13218XF-105 0.1502 150 3.1 2.015 1325.95 0.013 105

KDE KDE10218XF-105 0.1091 142 1 1.075 842.95 0.023 105

KDE KDE8218XF-120 0.089 110 0.8 0.76 615.95 0.037 120

KDE KDE7215XF-135 0.0808 85 0.5 0.555 383.95 0.057 135

KDE KDE7208XF-110 0.08 50 0.4 0.38 345.95 0.171 110

KDE KDE7208XF-135 0.08 58 0.4 0.38 360.95 0.113 135

KDE KDE6815XF-205 0.0772 57 1.9 0.55 350.95 0.048 205

KDE KDE6213XF-185 0.07 50 0.6 0.36 264.95 0.072 185

KDE KDE5215XF-220 0.06 44 0.5 0.305 205.95 0.078 220

KDE KDE5215XF-330 0.06 62 0.7 0.305 201.95 0.044 330

KDE KDE5215XF-435 0.06 72 1.4 0.305 201.95 0.031 435

KDE KDE4215XF-465 0.0482 62 0.7 0.195 153.95 0.052 465

KDE KDE4213XF-360 0.0482 38 0.4 0.175 138.95 0.081 360

KDE KDE4014XF-380 0.0465 36 0.5 0.16 123.95 0.075 380

KDE KDE4012XF-400 0.0465 32 0.5 0.145 118.95 0.08 400

KDE KDE3520XF-400 0.0422 45 0.3 0.19 116.95 0.078 400

KDE KDE3510XF-475 0.0422 30 0.2 0.12 95.95 0.105 475

KDE KDE3510XF-715 0.0422 45 0.5 0.12 95.95 0.054 715

KDE KDE2814XF-515 0.0355 24 0.3 0.095 74.95 0.13 515

KDE KDE2814XF-775 0.0355 36 0.5 0.095 74.95 0.069 775

KDE KDE2315XF-885 0.0283 24 0.5 0.064 63.95 0.127 885

KDE KDE2315XF-965 0.0283 26 0.5 0.064 63.95 0.102 965

KDE KDE2315XF-2050 0.0283 44 1.3 0.064 63.95 0.034 2050

KDE KDE2306XF-2050 0.0283 24 0.6 0.029 28.95 0.068 2050

KDE KDE2306XF-2550 0.0283 34 1.2 0.029 28.95 0.044 2550

KDE KDE2304XF-2350 0.0283 20 0.7 0.024 26.95 0.091 2350

KDE KDE1806XF-2350 0.023 18 0.4 0.018 28.95 0.117 2350

Table D.2: Motor component database

D.3 Propeller Component Database [88]

In the following table, D is propeller diameter, P is propeller pitch, kP is the propeller’s
power coefficient, and kT is the propeller’s torque coefficient.

Make Model SKU D (m) Mass (kg) P (m) Price (USD) kP kT

APC 4.1x4.1E LP04141E 0.10414 0.0031184 0.10414 2.25 0.09 0.13

APC 4.5x4.1E LP04541E 0.1143 0.0039689 0.10414 2.25 0.08 0.13

APC 4.7x4.2E LP04742E 0.11938 0.0031184 0.10668 2.25 0.07 0.12

APC 4.75x4.5E LP04745E 0.12065 0.0039689 0.1143 2.25 0.07 0.12

APC 4.75x4.75E LP04747E 0.12065 0.0039689 0.12065 2.25 0.07 0.12

APC 4.75x5.5E LP04755E 0.12065 0.0039689 0.1397 2.25 0.08 0.12

APC 5x3E LP05030E 0.127 0.0031184 0.0762 2.25 0.05 0.11

APC 5x5E LP05050E 0.127 0.0039689 0.127 2.25 0.07 0.12

12

APC 5x7.5E LP05075E 0.127 0.0051029 0.1905 2.35 0.1 0.15

APC 5.1x4.5E LP05145E 0.12954 0.0051029 0.1143 2.25 0.11 0.17833

APC 5.25x5.5E LP05355E 0.13335 0.0039689 0.1397 2.25 0.07 0.13

APC 5.5x4.5E LP05545E 0.1397 0.0039689 0.1143 2.25 0.06 0.12

APC 5.5x4.7E LP05547E 0.1397 0.0039689 0.11938 2.25 0.065 0.12

APC 5.5x6.5E LP05565E 0.1397 0.0039689 0.1651 2.25 0.08 0.12

APC 6x4E LP06040E 0.1524 0.0051029 0.1016 2.29 0.0575 0.12

APC 6x5.5E LP06055E 0.1524 0.0051029 0.1397 2.29 0.07 0.12

APC 6x6E LP06060E 0.1524 0.0051029 0.1524 2.29 0.07 0.12

APC 7x4E LP07040E 0.1778 0.0079379 0.1016 2.39 0.06 0.13

APC 7x5E LP07050E 0.1778 0.0079379 0.127 2.39 0.07 0.13

APC 7x6E LP07060E 0.1778 0.0079379 0.1524 2.39 0.0725 0.13

APC 7x7E LP07070E 0.1778 0.0079379 0.1778 2.39 0.08 0.13

APC 8x4E LP08040E 0.2032 0.013041 0.1016 2.57 0.05 0.12

APC 8x6E LP08060E 0.2032 0.013891 0.1524 2.57 0.06875 0.13

APC 8x8E LP08080E 0.2032 0.015025 0.2032 2.57 0.08 0.1375

APC 9x4.5E LP09045E 0.2286 0.01786 0.1143 2.84 0.05 0.12

APC 9x6E LP09060E 0.2286 0.01786 0.1524 2.84 0.06 0.13

APC 9x7.5E LP09075E 0.2286 0.01786 0.1905 2.84 0.06875 0.13

APC 9x9E LP09090E 0.2286 0.01786 0.2286 2.84 0.07625 0.13

APC 10x10E LP10010E 0.254 0.020128 0.254 3.21 0.06625 0.12

APC 10x5E LP10050E 0.254 0.020128 0.127 3.21 0.04 0.11

APC 10x6E LP10060E 0.254 0.020128 0.1524 3.21 0.05 0.11

APC 10x7E LP10070E 0.254 0.020128 0.1778 3.21 0.05 0.12

APC 10x8E LP10080E 0.254 0.020128 0.2032 3.21 0.0575 0.12

APC 11x10E LP11010E 0.2794 0.022963 0.254 3.68 0.0625 0.11

APC 11x12E LP11012E 0.2794 0.026082 0.3048 3.68 0.11125 0.115

APC 11x5.5E LP11055E 0.2794 0.022963 0.1397 3.68 0.04 0.1

APC 11x7E LP11070E 0.2794 0.022963 0.1778 3.68 0.05 0.11

APC 11x8E LP11080E 0.2794 0.022963 0.2032 3.68 0.0525 0.11

APC 11x8.5E LP11085E 0.2794 0.024097 0.2159 3.68 0.055 0.11

APC 12x10E LP12010E 0.3048 0.026082 0.254 4.3 0.06 0.11

APC 12x12E LP12012E 0.3048 0.026082 0.3048 4.3 0.07 0.11

APC 12x6E LP12060E 0.3048 0.026932 0.1524 4.3 0.04 0.1

APC 12x8E LP12080E 0.3048 0.026082 0.2032 4.3 0.05125 0.1025

APC 13x10E LP13010E 0.3302 0.03005 0.254 5.06 0.0625 0.1025

APC 13x4E LP13040E 0.3302 0.03005 0.1016 5.06 0.02 0.07

APC 13x5.5E LP13055E 0.3302 0.032035 0.1397 5.06 0.0325 0.09

APC 13x6.5E LP13065E 0.3302 0.03005 0.1651 5.06 0.03875 0.09625

APC 13x8E LP13080E 0.3302 0.030901 0.2032 5.06 0.04875 0.1

APC 14x10E LP14010E 0.3556 0.034019 0.254 5.99 0.06 0.1

APC 14x12E LP14012E 0.3556 0.03487 0.3048 5.99 0.075 0.10125

APC 14x14E LP14014E 0.3556 0.036004 0.3556 5.99 0.1025 0.0875

13

APC 14x6E LP14060E 0.3556 0.037138 0.1524 5.99 0.03125 0.08375

APC 14x7E LP14070E 0.3556 0.034019 0.1778 5.99 0.03625 0.09125

APC 14x8.5E LP14085E 0.3556 0.037138 0.2159 5.99 0.05 0.0925

APC 15x10E LP15010E 0.381 0.045076 0.254 7.1 0.065 0.1

APC 15x4E LP15040E 0.381 0.045076 0.1016 7.1 0.02 0.06

APC 15x6E LP15060E 0.381 0.045076 0.1524 7.1 0.03 0.08125

APC 15x7E LP15070E 0.381 0.045076 0.1778 7.1 0.035 0.09

APC 15x8E LP15080E 0.381 0.043942 0.2032 7.1 0.045 0.09375

APC 16x10E LP16010E 0.4064 0.05188 0.254 8.42 0.06625 0.0975

APC 16x12E LP16012E 0.4064 0.05188 0.3048 8.42 0.08875 0.1025

APC 16x4E LP16040E 0.4064 0.054998 0.1016 8.42 0.02 0.06

APC 16x6E LP16060E 0.4064 0.056132 0.1524 8.42 0.02625 0.08

APC 16x8E LP16080E 0.4064 0.05188 0.2032 8.42 0.0425 0.09375

APC 17x10E LP17010E 0.4318 0.06407 0.254 9.95 0.0625 0.09625

APC 17x12E LP17012E 0.4318 0.068039 0.3048 9.95 0.0825 0.0975

APC 17x6E LP17060E 0.4318 0.06407 0.1524 9.95 0.02375 0.07625

APC 17x7E LP17070E 0.4318 0.06407 0.1778 9.95 0.03125 0.08375

APC 17x8E LP17080E 0.4318 0.06407 0.2032 9.95 0.04 0.09125

APC 18x10E LP18010E 0.4572 0.072858 0.254 11.72 0.055 0.09625

APC 18x12E LP18012E 0.4572 0.073992 0.3048 11.72 0.075 0.0975

APC 18x8E LP18080E 0.4572 0.072858 0.2032 11.72 0.035 0.0875

APC 19x10E LP19010E 0.4826 0.083064 0.254 13.75 0.04625 0.095

APC 19x12E LP19012E 0.4826 0.083064 0.3048 13.75 0.06625 0.0975

APC 19x8E LP19080E 0.4826 0.083064 0.2032 13.75 0.03 0.085

APC 20x10E LP20010E 0.508 0.096105 0.254 16.05 0.03875 0.09

APC 20x11E LP20011E 0.508 0.09894 0.2794 16.05 0.04875 0.09375

APC 20x13E LP20013E 0.508 0.098089 0.3302 16.05 0.0625 0.095

APC 20x15E LP20015E 0.508 0.11793 0.381 16.05 0.0775 0.095

APC 20x8E LP20080E 0.508 0.096105 0.2032 16.05 0.03 0.0825

APC 20.5x14E LP20514E 0.5207 0.12304 0.3556 16.05 0.0675 0.09375

APC 21x13E LP21013E 0.5334 0.13012 0.3302 18.6 0.05875 0.09375

APC 22x10E LP22010E 0.5588 0.13409 0.254 21.45 0.03375 0.08875

APC 22x11E LP22011E 0.5588 0.11992 0.2794 21.45 0.03875 0.09

APC 22x12E LP22012E 0.5588 0.13608 0.3048 21.45 0.04625 0.09125

APC 24x12E LP24012E 0.6096 0.16386 0.3048 28.05 0.037143 0.09

APC 25x12.5E LP25125E 0.635 0.22311 0.3175 31.8 0.037143 0.092857

APC 26x13E LP26013E 0.6604 0.20894 0.3302 35.85 0.038333 0.09

APC 26x15E LP26015E 0.6604 0.21404 0.381 35.85 0.05 0.094

APC 27x13E LP27013E 0.6858 0.2319 0.3302 40.25 0.036667 0.09

Table D.3: Propeller component database

14

D.4 Animation of Optimized Planar Quadrotor System

Included with this thesis is a video file ‘planar quadrotor animation.avi’ that plots the

trajectory of the planar quadrotor as it completes the dynamic mission. In the video, the red

line represents the trajectory of the initial design and the green line represents the trajectory

of the optimized design. The animation is played at one-quarter speed.

15

	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Component-Based Design (CBD)

	Background
	Component-Based Design Optimization (CBDO)

	CBDO State of the Art
	Scope of Thesis
	Thesis Organization

	Modeling
	Modeling for Design Optimization
	Low Computational Cost
	Continuity
	Differentiability

	Graph-Based Modeling
	Graph-Based Models for Design Optimization
	Automated System Model Composition and the AGILe Toolbox

	CBDO Problem Formulation
	General CBDO Formulation
	Dynamic CBDO Formulation

	Hybrid Optimization
	Component Parameterization
	Continuous Parameterization
	Parameter Surrogate Models
	Boundary Constraint Functions

	Continuous-Domain Representations and Solution
	CBDO Formulation
	Dynamic CBDO Formulation

	Discrete Search Algorithms
	Sorted Search Algorithms
	Distance-Sorted Search (DSS) Algorithm

	Comparison to Direct Approaches

	Case Study: Multirotor Design Optimization
	Background
	Quadrotor System
	Component Compatibility
	Battery and Electronic Speed Controller
	Motor
	Propeller

	System Model
	Powertrain Model
	Battery
	Electrical Bus
	Inverter (ESC)
	Motor
	Propeller
	Powertrain System Model
	Simplified Powertrain System Model

	Quadrotor Body Dynamic Model
	S500 CAD Model and Inertia Estimate
	Simplified Body Dynamic Model

	The Planar Quadrotor

	Model Tuning and Validation
	Experimental Setup
	Configuration 1
	Configuration 2
	Configuration 3

	Optimization Preliminaries
	Component Databases
	Component Parameterization and Surrogate Models
	Battery
	Motor
	Propeller

	Boundary Constraint Functions
	Initial Configuration

	Optimization Study 1: Endurance per System Price
	Discrete-Domain Formulation
	Continuous-Domain Representation
	Continuous-Domain Analysis and Solution
	Discrete Problem Solution
	Discussion of Optimized Design
	Algorithm Performance

	Optimization Study 2: Minimum Mission Time
	Discrete-Domain Formulation
	Continuous-Domain Analysis and Solution
	Discrete Problem Solution
	Discussion of Optimized Design
	Algorithm Performance

	Conclusion
	Summary of Contributions
	Future Work

	References
	Park Transform
	Powertrain System Model Details
	AGILe Exported Model: Planar Quadrotor Powertrain
	Component Databases
	Battery Component Database hobbykingTurnigyGrapheneBatteries
	Motor Component Database kdedirectUASMultiRotorBrushless
	Propeller Component Database apcpropellersAPCPropellersElectric
	Animation of Optimized Planar Quadrotor System

