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ABSTRACT 

 

 K-Wave is a versatile and powerful acoustic simulator that has gained popularity in the 

Medical Ultrasound research community. In this work, k-Wave was used to model two quantitative 

ultrasound (QUS) applications.  

In Part 1, detailed in Chapter 3, acoustic planar reflection and transmission were simulated 

to validate a new phantom attenuation measurement method. Attenuation coefficient (AC) 

measurements of reference phantoms, a key step in quantitative ultrasound, are complicated by 

transmission loss of laminate membranes. Conventional through-transmission methods overcome 

this issue by characterizing separately membrane and phantom material specimens. A simpler 

alternative that uses a single phantom to simultaneously measure the membrane transmission loss 

and phantom material AC is proposed. The proposed method was validated in simulation using 

the k-Wave toolbox. The acquired AC, between 0.5-1 dB/cm-MHz, had a maximum error of 0.06 

dB/cm-MHz. The method was also experimentally validated wherein AC measurements were 

performed by two operators on five distinct phantoms, across five transducers, using the 

conventional method and the proposed method. The acquired AC, between 0.28-1.48 dB/cm-MHz, 

had a maximum error of 0.045 dB/cm-MHz across all phantoms.  

In Part 2, detailed in Chapters 4-6, acoustic scattering was simulated in k-Wave to extract 

backscattering parameters. This exercise was intended to be a precursor to a simulation of tissue 

histology-based computational phantoms known as 3D impedance maps (3DZMs) in k-Wave. In 

the past, 3DZM simulations have either used the spatial FFT approach or semi-analytical tools 

such as Field-II. However, both methods assume plane wave incidence, weak scattering, and the 

absence of multiple scattering in their analysis which is a limitation. A simulation in k-Wave 

transcends these assumptions and hence fulfills the full potential of a 3DZM. First, three schemes–

focused transducer, near-field, and far-field were implemented in k-Wave to extract the 

differential backscatter cross-section of a 1-mm single fluid spherical scatterer. Planar reference 

method [1] with a single element spherically focused transducer was implemented in the focused 

transducer scheme. In the near-field scheme, the single scatterer was placed in the near-field of a 
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wide planar transmitter and a point receiver was placed in the far-field. In the far-field scheme, the 

single scatterer was placed in the far-field of a piston transmitter and a point receiver was placed 

in the far-field. For a spatial resolution of 25 µm and within a frequency bandwidth of 1 to 3.5 

MHz, the extracted differential backscatter cross-section’s root mean square (RMS) error was 

within 12.2%, 3.2%, and 3.4% of the peak value for the focused transducer, the near-field, and the 

far-field schemes respectively. Next, the backscatter coefficient (BSC) of a sparsely distributed 

collection of identical 20 µm fluid spherical scatterers was extracted in a radially averaged manner 

from a 192 µm wide spherical scattering volume.  The extracted BSC was found to be a product 

of the single scatterer BSC and the number of scatterers in the same volume, thus matching the 

incoherent scattering theory. Finally, a staircase-free representation of the non-rectangular sources 

from the literature was successfully extended to heterogeneous simulation media, both for the 

single scatterer and the scatterer collection. For a spatial resolution of 100 µm and within a 

frequency bandwidth of 1 to 3.5 MHz, the extracted differential backscatter cross-section of a 

single 1 mm fluid spherical scatterer had an RMS error of 90.1% of the peak value. In contrast, 

the staircase-free version had an RMS error of 10.8% of the peak value. Overall, this work 

successfully set up a simulation flow to model backscattering in k-Wave, which can be extended 

to 3DZMs.  
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CHAPTER 1 

AN OVERVIEW OF ACOUSTIC WAVE SIMULATORS 

 

Acoustic wave simulators play an important role in medical ultrasound research. Common 

applications are: 1) Visualization of beam patterns in the design of new transducers, which is 

essential in iterative and fast design cycles [2], [3].  2) Design and validation of new excitation and 

post-processing schemes. Since the medium properties can be controlled in the simulators, such 

schemes can be validated by comparing the acquired qualitative images and quantitative 

parameters with the ground truth. 3) Real-time clinical applications such as treatment planning in 

high intensity focused ultrasound (HIFU) [4], [5], and ultrasonic brain therapy [6]. 4) In 

quantitative ultrasound (QUS) to simulate scattering intensity [7], scattering statistics [8], and 

attenuation [9], [10]. Such simulations help choose appropriate statistical models, better post-

processing strategies, and in incorporating complexities such as transducer diffraction and medium 

attenuation. In the future, these simulations can also help in the design of tissue-specific transducer 

and excitation schemes, and in generating training data for QUS-specific neural networks. In 

addition, this work focuses on acoustic simulations in QUS applications. 

Over the years, many simulators have been used such as Field II, FOCUS, INCS, and k-

Wave for different applications [11]. However, Field II and k-Wave are the most popular based on 

an analysis of the citations in academic journals [12].  Between the two, k-Wave is the more 

versatile and complete tool. Hence, k-Wave was used in this work to validate a novel phantom 

attenuation measurement method, and to model the acoustic backscatter from single scatterers and 

a collection of scatterers. A systematic procedure to model and extract acoustic backscatter in k-

Wave does not exist in the literature. Hence the backscatter modeling exercise in k-Wave would 

be a valuable addition to the literature.  

Field II was developed in the 1990s by Jensen [13]–[15]. It supports linear longitudinal 

wave propagation in a homogenous medium with point scatterers and no multiple scattering. Then, 

the overall field pattern and the received echoes are calculated using the spatial impulse response 

method of Tupholme [11] and Stepanishen [12]. The tool was written in C for the MATLAB 
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platform. It has built-in functions for implementing various transducer types (single element and 

arrays) and functions (focusing and apodization), and example codes to implement computational 

phantoms. However, Field II does not support many important acoustic phenomena such as 

reflection, transmission, and scattering from arbitrary shapes, nonlinear wave propagation, and 

elastic wave propagation, among others. This limits its use in key medical ultrasound modalities 

such as harmonic imaging, quantitative ultrasound (QUS), and elastography, Besides, only an 

attenuation model linear with frequency is supported. Furthermore, while the code is free, it is not 

open source. However, it is easy to use and has fast simulation times. Hence, despite its limitations, 

it is a popular tool to simulate B-mode imaging and blood flow imaging. 

Introduced by Treeby et al. in 2010 [18], k-Wave is one of the most versatile acoustic 

simulators. Built for MATLAB, it supports medium heterogeneity, power-law absorption, 

nonlinear wave propagation [19], and elastic wave propagation [20]. Unlike Field II, it is a full-

wave method since it directly solves the underlying acoustic equations without any analytical 

approximations. This, however, increases the computational complexity in terms of memory 

requirement and simulation time. But recent advances in computing power have made such large 

and complex simulations feasible. Moreover, k-Wave uses a computationally efficient pseudo-

spectral method for solving acoustic equations. In addition, each simulation involves several FFTs 

that can be parallelized. Indeed, the GPU-based and cluster-based parallel implementations of k-

Wave are extremely fast [21], [22]. Furthermore, with functions to simulate thermal diffusion, 

perform photoacoustic reconstruction and implement the angular spectrum method, it is the most 

complete package compared to its competition. Finally, it is free, has an open-source code, and 

possesses a vibrant user community that makes it a compelling choice for medical ultrasound 

research.  
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CHAPTER 2 

INTRODUCTION TO K-WAVE 

 

This work utilized k-Wave for simulating longitudinal linear acoustic wave propagation in 

a heterogeneous and attenuative medium. This chapter will first introduce the governing 

differential equations for such a wave and its implementation in k-Wave. Next, it will discuss the 

design of the simulation setup. Finally, it will conclude with the finer aspects of k-Wave such as 

stability, accuracy, numerical dispersion, and aliasing. In summary, portions from the k-Wave user 

manual [23] relevant to this work are discussed in this chapter. 

2.1 Acoustic wave equations and their implementation in k-Wave 

The generalized discrete Westerwelt wave equation is implemented in k-Wave [19]. For 

linear wave propagation in an attenuative medium, this equation is expressed as given in Equations 

(2.1) – (2.3). The equations for momentum conservation, mass conservation, and pressure-density 

relation are given by, respectively,  

!𝒖
!#
= − $

%!
∇𝑝 + 𝑺𝑭 ,      (2.1) 

!%
!#
= −𝜌'∇ ∙ 𝒖 + 𝑆( ,      (2.2) 

𝑝 = 𝑐')(𝜌 − L𝜌) ,      (2.3) 

where 𝒖 is the particle velocity vector, 𝑝 is the acoustic pressure, and	𝜌 is the acoustic density. 

Next, 𝜌' is the ambient density and 𝑐' is the sound speed, both of which are defined by the user 

for the heterogeneous computational domain. 𝑺𝑭 is the force source vector and represents the input 

of body forces per unit mass. 𝑆( is the mass source term and represents the time rate of the input 

of the mass per unit volume. The transducer elements can be either defined as a mass source or a 

force source. Then, the user-defined time-domain excitation signal will be proportional to either 

𝑆( or 𝑺𝑭. In this study, however, the transducer elements were always defined as mass sources. 
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Operator L is linear integrodifferential and accounts for acoustic absorption and dispersion that 

supports a frequency power law.  

Now, a spatially and temporally discretized version of Equations (2.1) – (2.3) is 

implemented. Then, starting from the initial conditions set by the user, the state of the entire 

domain is calculated for each time step. For illustration, in a linear non-attenuative 3D domain, the 

discrete equations for the x-axis are given by   

!
!*
𝑝+ = ℱ,$1𝑖𝑘*𝜅𝑒-."/*/)ℱ{𝑝+}	8 ,     (2.4) 

𝑢*
+1$/) = 𝑢*

+,$/) − /#
%!

!
!*
𝑝+ + Δ𝑡	𝑆2"

+  ,    (2.5) 

!
!*
𝑢*
+1$/) = ℱ,$1𝑖𝑘*𝜅𝑒,-."/*/)ℱ{𝑢*

+1$/)}	8 ,    (2.6) 

𝜌*+1$ = 𝜌*+ −
/#
%!

!
!*
𝑢*
+1$/) + Δ𝑡	𝑆("

+1$/) ,    (2.7) 

where ℱ is the Fourier operator, ℱ,$ is the inverse Fourier operator, Δ𝑡 is the user-defined time 

step, and Δ𝑥 is the user-defined grid spacing. The superscript 𝑛 indicates 𝑛th time step for state 

variables 𝑝 and ∇𝑝, and the fractional time steps such as 𝑛 + 1/2 indicate a staggered temporal 

representation for the state variables 𝒖 and ∇ ∙ 𝒖. Additionally, compared to the state variables 𝑝 

and ∇ ∙ 𝒖, the state variables 𝒖 and ∇𝑝 are also spatially staggered by half a step in all dimensions. 

This spatial shift in the x-direction is realized by multiplying 𝑒-."/*/) or 𝑒,-."/*/) terms with the 

state variables represented in the spatial frequency domain. Finally, 𝒌 is the spatial frequency (or 

wavenumber) and 𝜅 is the k-space correction factor to counteract the finite difference 

approximation of the temporal derivative given as  

𝜅 = 𝑠𝑖𝑛𝑐(𝑐345𝑘Δ𝑡/2) ,          (2.8) 

where 𝑐345 is a reference sound speed that should be suitably chosen as discussed later in this 

chapter. The state variables (𝑝, 𝒖, ∇𝑝, 𝜌, and ∇. 𝒖) are defined for the entire domain (a 3D grid in 

this case). Then, Equations (2.4) and (2.6) calculate spatial gradient using the FFT and IFFT (3D-

FFT and 3D-IFFT in this case) to the state variables. This use of discrete spectral points for 

modeling and analysis of objects is known as Fourier collocation. Next, Equations (2.5) and (2.6) 
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update the state variables based on the first-order forward difference method. Thus, a spectral 

approach is adopted for spatial stepping and a finite-difference approach is adopted for temporal 

stepping in the wave equation.  

2.2 Simulation setup in k-Wave  

A simulation setup in k-Wave will need three fundamental components—medium, source, 

and sensor. The user can define a heterogenous distribution of acoustic properties (sound speed, 

ambient density, attenuation coefficient, B/A non-linear parameter) over the entire computational 

domain by defining the medium object. The medium object also encapsulates common simulation 

parameters such as the grid step (𝑑𝑥), time step (𝑑𝑡), and simulation end time. For non-attenuative 

media, the attenuation coefficient must be set to 0. For linear wave propagation, the B/A parameter 

must be left undefined. Although the grid spacing in each dimension can be different, in this study, 

they were set to be the same. 

Next, the source object is the input or excitation that generates acoustic waves in the 

domain. Any arbitrary and discontinuous shape in the domain can be defined as the source. 

Subsequently, independent excitation signals can also be defined for each point on the source map. 

The excitation can either be a pressure scalar corresponding to a mass source, or a particle velocity 

vector corresponding to a force source. Also, the excitation can either be additive or set as a 

Dirichlet boundary condition. In this study, however, additive mass sources were used. Then, for 

a pressure excitation signal 𝑝-+(𝑡), the mass source term for x-dimension was internally defined 

by k-Wave as  

𝑆(" =
6#$(#)
9:!

)
;*

 ,      (2.9) 

where 𝑁 is the number of dimensions of the domain. Although 𝑆( is a scalar, it is split along the 

x, y, and z dimensions (for a 3D case) for numerical implementation. Then, by combining 

Equations (2.1) – (2.3), the continuous wave equation for the simulation is given by 

∇)𝑝 − $
:!%

!%6
!#%

= − !
!#
𝑆( .       (2.10) 
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The pressure excitation in the simulation was chosen to be a sinusoid with a Gaussian 

envelope. The Gaussian excitation was intended to mimic the electro-mechanical transfer 

functions of commonly available single-element transducers. Additionally, the Gaussian envelope 

ensured that the excitation signal was compact in the time domain and the frequency domain. 

Pulse-echo imaging was implemented in this work and hence temporal compactness was necessary 

to resolve echoes from different surfaces or objects. Since k-Wave followed an FFT-based 

approach to compute spatial gradients, the spectral support was finite. Hence, spectral compactness 

was also desirable. However, any excitation that is compact in time and frequency was sufficient 

for this work. The Gaussian excitation was chosen due to its simplicity and familiarity. 

Consequently, the excitation term in the wave equation, !
!#
𝑆(, was set to be a Gaussian sinusoid.  

Next, the sensor object defines the positions for sensing and acoustic state variables (𝑝 or 

𝒖) to be recorded in the domain. Like the source object, any arbitrary and discontinuous shape in 

the domain can be defined as a sensor. In this study, the pressure state variables were recorded. In 

k-Wave, the output measured on the sensor is temporally staggered by half time step compared to 

the input state variable. However, there was no spatial staggering between the input and output.  

The complete transmit-receive signal chain is shown in Fig. 2.1 where an impulse electrical 

input to the transmitter generated a Gaussian sinusoidal acoustical excitation signal. The center 

frequency of the excitation was 𝑓: and 𝜎 was related to the -3 dB bandwidth 𝐵𝑊 as 𝜎 =

𝐵𝑊/2√ln 2. 𝐺#* was the transmit gain in Pa/V and 𝐺3* is the receive gain in V/Pa. An integral 

operator was placed in the signal chain to counteract the time-differentiation as outlined in Eq. 

(2.10). The receiver impulse response was also defined to be a Gaussian sinusoid to mimic 

commonly available single-element transducers.  
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Fig. 2.1. Transmit-receive signal chain used in the k-Wave simulations 

  

To illustrate transmit-receive operation, the signals marked in Fig. 2.1 are plotted in Figs. 

2.2 and 2.3 for the following settings: 𝑓: = 2.25 MHz, -3 dB bandwidth = 50%, 𝐺#* = 104 Pa/V, 

and 𝐺3* = 10-6 V/Pa.  

 

Fig. 2.2. Signals in the transmit signal chain. The excitation signal is directly applied on all the source 
points along the surface of the transmitter.  
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Integral operator
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Fig. 2.3. Signals in the receive signal chain for a single sensor point. If the receiver has more than one 
point, a summation of the RF signals from all the points along receiver surface is considered.  

 

2.3 Miscellaneous simulation settings 

Spatial and temporal discretization in k-Wave, respectively, induces spatial and temporal 

aliasing that must be minimized to ensure simulation accuracy. Between the two, spatial aliasing 

is the more dominant effect in k-Wave. For a grid spacing of 𝑑𝑥, the spatial Nyquist is given by 

𝑘9<=>-?#,?6A#-AB = 0.5/𝑑𝑥. Similarly, the temporal Nyquist frequency is given by 

𝑓9<=>-?#,#4C6D3AB = 0.5/𝑑𝑡. By default, k-Wave spatially smoothens the medium with a -3 dB cut-

off spatial frequency of 0.67𝑘9<=>-?#,?6A#-AB. In this study, the pressure excitation signal was also 

filtered with a -3 dB cut-off frequency 𝑓:># = 0.67min{𝑐'} 𝑘9<=>-?#,?6A#-AB, as recommended by 

the k-Wave manual [23].  

Alternatively, points per wavelength (PPW) and points per period (PPP), are also used to 

quantify the spatial and temporal aliasing respectively. For a wavelength of 𝜆, 𝑃𝑃𝑊 = 𝜆/𝑑𝑥 and 

𝑃𝑃𝑃 = 𝜆/𝑐'/𝑑𝑡. Then, the spatial Nyquist and temporal Nyquist can also be represented as 

2	𝑃𝑃𝑊 and 2	𝑃𝑃𝑃 respectively. Next, the ratio PPW/PPP is known as the Courant-Friedrichs-

Lewy (CFL) number. To ensure simulation stability of a heterogeneous medium, the CFL given 

as  

𝐶𝐹𝐿 = EEF
EEE

= ;#
;*
max{𝑐'} ,     (2.11) 
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must be lower than 0.3. In this study, a CFL of 0.25 was used unless specified otherwise. In 

addition, the k-space operator 𝜅 introduces some additional stability constraints on 𝑐' (sound speed 

map) and 𝑐345 (reference sound speed) for heterogeneous media given by 

𝑐345 < 𝑐' , and        (2.12) 

𝐶𝐹𝐿 < )
G
\ :!
:&'(

] sin,$ _:&'(
:!
` .      (2.13) 

The reference speed in this work was set to be the sound speed of background water which was 

1480 m/s.  

Due to the use of Fourier spectral collocation, k-Wave is best suited for smooth variations 

in the medium properties. Modeling steep spatial steps is challenging and requires high spatial 

sampling (or low 𝑑𝑥), resulting in large domains. Often, memory requirements for such domains 

can be prohibitively large and result in long simulation run times. For a given frequency 

bandwidth, this necessitates a trade-off between spatial resolution and computational resources. 

Right grid spacing for an abrupt spatial step depends on the step magnitude, bandwidth of interest, 

and application. Consequently, a preliminary iterative process must be followed to decide the grid 

spacing for a given application discussed in more detail in Chapter 3.  

To carry out free-space simulations in a finite domain, k-Wave offers a feature known as a 

perfectly matched layer (PML). The use of spatial FFTs in k-Wave implies that the wave field is 

spatially periodic. This implication causes waves leaving from one edge of the domain to reappear 

at the opposite edge. This effect is minimized by placing a hypothetical perfectly matched layer 

on the edges of the domain that attenuates outward going waves while minimizing reflections. A 

PML width of 20 grid points was used in this study. For perpendicular incidence, a 20-grid-point 

PML provided a transmission coefficient of -70 dB and a reflection coefficient of -100 dB in the 

bandwidth of interest (PPW > 3) [24]. 

Finally, single (4 bytes) precision was used for simulations and for recording output 

waveforms. This precision gave a signal to quantization noise ratio of -140 dBc/Hz, which was 

adequate in this work. Version 1.1 of k-Wave was used for the work presented in Chapter 3 

whereas Version 1.3 was used for the work discussed in Chapters 4-6. For the 3D simulations, 
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CPU-based C++ code was used for Chapter 3 and GPU-based C++ code was used for simulations 

in Chapters 4-6. The axisymmetric simulations presented in Chapter 4 were performed in 

MATLAB.  
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CHAPTER 3 

DESIGN OF A NEW PULSE-ECHO TECHNIQUE TO MEASURE 

PHANTOM ULTRASONIC ATTENUATION COEFFICIENT, AND 

VALIDATION IN K-WAVE AND EXPERIMENTS 

 

3.1 Introduction 

Phantoms are widely used in clinical ultrasound research for testing and validation. They 

are even more important in quantitative ultrasound (QUS) applications requiring calibrated 

reference phantoms to correct transducer diffraction [1]. To standardize QUS methods, it is critical 

to characterize the phantom material sound speed, AC, and BSC accurately and precisely. A 

phantom is composed of tissue-mimicking materials that acoustically mimic biological media. The 

phantom material is housed in a supportive casing, and the outer surfaces are lined with protective 

membranes for ease of use in clinical settings. Typical use has the phantom immersed in water 

(Fig. 3.1). The phantom material is housed in a cylindrical polyvinyl chloride (PVC) casing and is 

lined with protective membranes on the top and bottom surfaces. The top and bottom membranes 

are assumed to have the same properties. While the membranes perform the crucial task of isolating 

the phantom material from external media, they also result in ultrasonic transmission loss for the 

waves passing through them. Consequently, measurements of phantom material AC (hereafter 

referred to as phantom AC) must be corrected for membrane transmission loss. 

Traditionally, through-transmission techniques have been employed to characterize 

phantom AC with reasonable accuracy [25], [26]. These techniques measure the insertion loss that 

represents the combined effects of phantom AC and membrane transmission loss. The techniques 

require knowledge of membrane transmission loss to derive phantom AC from the insertion-loss 

measurement. Conventionally, the membrane transmission loss was approximated by elaborate 

measurements [25]. First, the transmission loss at the water-membrane-water interface was 

measured using a separate membrane specimen. Second, the mass density, sound speed, and 

thickness of a typical membrane sample were physically measured over multiple specimens. Third, 
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the density of the phantom material was physically measured. Additionally, the sound speed and 

thickness of the phantom material were acoustically measured using a pulse-echo setup. Finally, 

these measured ultrasonic parameters were combined to estimate the water-membrane-phantom 

material transmission loss. These methods are cumbersome as they require standalone specimens 

of membrane and phantom material and additional measurements. Moreover, stand-alone 

membrane and phantom material may not be available. To address these issues, a method was 

recently proposed [27] to directly estimate the membrane transmission loss for a given phantom 

using a single-element transducer in a pulse-echo configuration. 

 

Fig. 3.1. Typical QUS reference phantom (side view). Membrane thickness (𝐿) is much less than phantom 
thickness (𝐻). For each medium, 𝑍! indicates acoustic impedance, 𝜌! indicates density, 𝑐! indicates sound 
speed, and 𝑘! indicates wavenumber. Further, 𝐴𝐶"(𝑓), 𝐴𝐶(𝑓), and 𝐴𝐶#(𝑓) represent AC in dB/cm-MHz 
of the membrane material, phantom material, and water, respectively. 

 

The proposed technique estimates the phantom AC without requiring additional membrane 

samples or prior knowledge of the phantom material and membrane properties. While the 

conventional method estimates the membrane loss of a typical membrane specimen, the proposed 

method estimates the membrane loss for the given phantom. Thus, any variation in membrane loss 

across specimens or within an individual specimen over time can be factored out of phantom AC 

measurements. Furthermore, this method can be adopted by phantom manufacturers or third-party 

calibrators as part of their reference phantom calibration strategy that would be necessary for 

widespread clinical adoption of reference phantom-based QUS applications. 

In this chapter, a simulation-based validation of the proposed technique was conducted 

using k-Wave. Additionally, the technique was experimentally evaluated using different phantoms 
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and transducers over a range of frequencies (0.7-16 MHz). The chosen frequency range was 

relevant in typical QUS applications such as in the characterization of the liver (1-6 MHz) [28]–

[30], kidney (5-15 MHz) [31], prostate (4-8 MHz) [32], eyes (5-15 MHz) [33], and blood (9-28 

MHz) [34]. Finally, the technique's robustness and limitations were analyzed. 

3.2. Theory 

This section will first introduce the theory of acoustic reflection and transmission for 

membranes. Then the steps followed to estimate the membrane transmission loss and phantom AC 

are explained.  

3.2.1. Membrane reflection and transmission coefficients 

The ultrasonic pressure reflection and transmission coefficients of a thin membrane at 

normal incidence (Fig. 3.1) are well understood [35]. Let the pressure reflection coefficient for the 

water-membrane-phantom (WMP) and phantom-membrane-water (PMW) interfaces be 𝑅$ and 

𝑅), respectively. Similarly, let the pressure transmission coefficients for the WMP and PMW 

interfaces be 𝑇$	and 𝑇), respectively. Then, 

𝑅$(𝑓) =
(H),H*)H% IJK(.%L)1MNH%%,H)H*O KPQ(.%L)
(H)1H*)H% IJK(.%L)1MNH%%1H)H*O KPQ(.%L)

    (3.1) 

𝑅)(𝑓) =
(H*,H))H% IJK(.%L)1MNH%%,H*H)O KPQ(.%L)
(H*1H))H% IJK(.%L)1MNH%%1H*H)O KPQ(.%L)

    (3.2) 

𝑇$(𝑓) =
)	H)H%

(H)1H*)H% IJK(.%L)1MNH%%1H)H*O KPQ(.%L)
    (3.3) 

𝑇)(𝑓) =
)	H*H%

(H*1H))H% IJK(.%L)1MNH%%1H*H)O KPQ(.%L)
    (3.4) 

𝑘) =
)S5
:%

      (3.5) 

The membrane is reasonably assumed to be nonattenuative (𝐴𝐶((𝑓) = 0) for which the 

wavenumber (𝑘)) is a real number. To compensate for the membrane transmission loss in the 

phantom AC measurements, all the parameters listed in Eq. (3.1) – (3.5) must be known or 
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estimated. Water’s acoustic impedance (𝑍$) can be calculated using the water temperature [36]. 

But other parameters are unknown and must be estimated. 

3.2.2. Measurement steps 

 The measurement setup employs a single-element transducer arranged in a pulse-echo 

configuration (Fig. 3.2). The surface of interest is placed at the planar focus at a distance, 𝐷, from 

the transducer, for all setups. The planar focus is determined by moving the planar reference 

surface (i.e., Plexiglas) to maximize the echo amplitude. 

 

Fig. 3.2. Proposed technique pulse-echo setups for measuring phantom AC. 

 

3.2.2.1. Measuring phantom insertion loss 

The phantom insertion loss is measured using setups 1 and 2 (Fig. 3.2). First, the reference 

echo, 𝐸3, is acquired from the Plexiglas surface placed at the transducer focus, without phantom 

insertion (Setup 1; Fig. 3.2(a)). Next, the phantom specimen is inserted between Plexiglas and 

transducer (Setup 2; Fig. 3.2(b)) to acquire echoes 𝐸$, 𝐸), and 𝐸T from the phantom top, bottom, 

and Plexiglas surfaces, respectively. Echo 𝐸T, denoted the attenuation echo, is used along with 𝐸3 

to calculate the phantom insertion loss from 

𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛	𝐿𝑜𝑠𝑠(𝑓) = 20 log$' _
U&(5)
U)(5)

`           (3.6a) 
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The phantom insertion loss is expressed in terms of the phantom AC and membrane 

transmission coefficients using  

20 log$' _
U&(5)
U)(5)

` = 2𝑓𝐻[𝐴𝐶(𝑓) − 𝐴𝐶V(𝑓)] − 20 log$'|𝑇$(𝑓)𝑇)(𝑓)|),      (3.6b) 

where 𝐴𝐶(𝑓) is the frequency-dependent AC (in dB/cm-MHz) of the phantom material, 𝑓 is the 

frequency (in MHz) and 𝐻 is the phantom thickness (in cm). 𝐴𝐶F(𝑓) is the frequency-dependent 

AC (in dB/cm-MHz) of the water determined using the temperature (𝜏, in degree Celsius) [37] as  

𝐴𝐶F(𝑓) = (1 − 3.84 × 10,W) ∙ (55.9 − 2.37𝜏 + 4.77 × 10,)𝜏) − 3.48 × 10,W𝜏T) ∙ 10,X	 

∙ (20 log$' 𝑒) ∙ 𝑓).                 (3.7) 

[𝑇$(𝑓)𝑇)(𝑓)]) is the round-trip pressure transmission coefficient caused by the membrane 

expressed as 

𝑇3D>+;#3-6(𝑓) = [𝑇$(𝑓)𝑇)(𝑓)]) .     (3.8) 

𝐴𝐶(𝑓) can be obtained from Eq. (3.6b) if |𝑇3D>+;#3-6(𝑓)| and 𝐻 are known, which are estimated 

in the subsequent steps.  

3.2.2.2. Estimating round-trip membrane transmission coefficient 

Membrane echo, 𝐸C, is recorded by placing the phantom top surface with the membrane 

at the planar focus (Setup 3; Fig. 3.2(c)). The magnitude of the WMP reflection coefficient 𝑅$(𝑓) 

is estimated by 

|𝑅$(𝑓)| = |𝑅6B4*-| ∙
|U+(5)|
|U&(5)|

,    (3.9) 

where the water-Plexiglas reflection coefficient, 𝑅6B4*-, is 0.375 based on the Plexiglas sound 

speed of 2758 m/s and density of 1180 (kg/m3) [38], [39]. |𝑇3D>+;#3-6(𝑓)| is then estimated from 

|𝑅$(𝑓)| using the procedure shown in Fig. 3.3. Specifically, Eq. (3.1) is fitted to the membrane 

reflection coefficient, |𝑅$(𝑓)|, to estimate the unknown parameters 𝑍), 𝑍T, and 𝐿/𝑐). Prior 

knowledge of the phantom that the acoustic impedance of the membrane and the phantom material 
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are greater than those of the water is used during the least square fit. Finally, the estimated 

unknown parameters are substituted in Eq. (3.3) and (3.4) to estimate |𝑇$(𝑓)𝑇)(𝑓)|, leading to 

|𝑇3D>+;#3-6| as shown in Fig. 3.3. 

In this analysis, ultrasonic waves at the planar focus are assumed to be planar, a good 

approximation for weakly focused single-element transducers commonly used in QUS 

applications [40]. During estimation, it was assumed that 𝑍) and 𝑍T lie between 0.75 and 15 

MRayl. It was also assumed that the ratio 𝐿/𝑐) ranged between 0.2 ns and 1 µs. 

 

Fig. 3.3. Procedure for estimating the magnitude of round-trip transmission coefficient (|𝑇$%&'()$!*(𝑓)|). 

 

3.2.2.3. Estimating phantom thickness 

The phantom thickness 𝐻 is estimated by using the echoes obtained from setups 1 and 2. 

A time of flight analysis yields 

𝐻 = :*
)
∙ ((𝑡3 − 𝑡T) − (𝑡3 − 𝑡)) + (𝑡3 − 𝑡$)),   (3.10) 

where the sound speed in water, 𝑐$, is known, and the time differences 𝑡3 − 𝑡T, 𝑡3 − 𝑡), and 𝑡3 −

𝑡$ are obtained from the echoes using cross-correlation. 

3.2.2.4. Processing phantom attenuation coefficient 

Finally, the estimated round-trip membrane transmission loss and measured phantom 

thickness are resubstituted into Eq. (3.6a) and (3.6b) to estimate the phantom attenuation 

coefficient, 𝐴𝐶(𝑓), by 
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𝐴𝐶(𝑓) = 𝐴𝐶V(𝑓) +
$

)5Z
𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛	𝐿𝑜𝑠𝑠 + $

)5Z
20 log$' |𝑇3D>+;#3-6(𝑓)| (3.11) 

 

3.3. Simulation-based validation in k-Wave 

The proposed phantom attenuation measurement technique was applied on a simulated 

phantom in k-Wave. The simulation-acquired AC results were compared with the predefined 

attenuation profile of the phantom to validate the technique.  

3.3.1 Setup  

Implementation of the proposed technique was split across three setups. Each of the three 

setups included the transducer, phantom, and Plexiglas (Fig. 3.4). A 3D simulation was 

implemented in k-Wave to simulate linear ultrasonic wave propagation. Nonlinearity in the media 

was ignored to simplify the analysis. 

Fig. 3.4. Setups 1, 2, and 3 in k-Wave for simulating the proposed AC measurement technique (axial 
cross-section) replicate setups 1, 2, and 3 (in Fig. 3.2), respectively. The transducer position and domain 
size remained the same for the three setups. The planar focus, at a distance D from the transducer, was 
determined by maximizing the amplitude of the reference echo. 
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The grid spacing was chosen as low as possible based on available computational resources 

while satisfying the Nyquist criterion. k-Wave requires the attenuation exponent to be homogenous 

across the computational domain [19], whereas the attenuation exponent is different between 

phantom and water in practice. To address this issue, the same attenuation exponent of the phantom 

material was assigned to the entire domain. Consequently, a best-fit analysis was performed on the 

desired attenuation coefficients of water (Eq. (3.8)) and membrane over 2-30 MHz frequency range 

to match the attenuation exponent of the phantom. The transducer was simulated by defining points 

in the 3D medium along the contour of the spherically focused transducer. The transmit and receive 

electromechanical responses were each defined as Gaussian with a fractional bandwidth (-3 dB) 

of 50%.   

3.3.2. Test Conditions  

Simulations were performed to validate the proposed technique for two phantom-

transducer combinations. The acoustic properties of all the materials (Table 3.1) were kept constant 

for both simulations. The transducer and phantom properties (Table 3.2) were chosen to represent 

typical use scenarios. Accordingly, the properties of the computational domain were chosen to 

make the simulation computationally tractable while ensuring reasonable accuracy as discussed in 

the following subsection. Finally, the methodological steps enumerated in section 3.2.3 were 

applied in k-Wave for both simulations. 

 

Table 3.1. Material acoustic properties in simulation 

Property Phantom material Membrane Plexiglas Water 

Density (kg/m3) 1040 1690 1180 1000 
Sound speed (m/s) 1540 2400 2758 1480 

Attenuation 
(dB/cm) 0.400 f1.3 0.788 f1.3 0 0.016 f1.3 
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3.2. Transducer, phantom, and domain properties across simulations 
Property Simulation 1 Simulation 2 

Transducer 
Center frequency (MHz) 10 20 

Diameter (mm) 9.0 6.4 
F# 4 4 

Phantom 
Phantom thickness (mm) 25.0 12.0 

Membrane thickness (µm) 63.9 64.0 

Computational 
domain 

Spatial resolution (µm) 21.3 16.0 

Time step (ns) 1.93 1.45 

 

3.3.3. Quantifying the accuracy of k-Wave simulations 

For a given grid spacing, the accuracy of k-Wave simulations with heterogeneous media 

reduces with an increase in ultrasonic frequency [24]. To quantify this effect, additional 

simulations were run while keeping the grid spacing constant. In these simulations, a broadband 

plane wave was normally incident onto the Plexiglas and membrane surfaces. The corresponding 

frequency-dependent pressure reflection and transmission coefficients were computed by 

recording the resulting ultrasonic waves. The simulated coefficients were compared with their true 

values, as programmed in the simulation, to yield an error estimate. Frequency-dependent 

simulated error estimates of |𝑅$(𝑓)| and |𝑇3D>+;#3-6(𝑓)| are expressed in points per wavelength 

(PPW) (Fig. 3.5(a) and 3.5(b), respectively). 
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Fig. 3.5.  Error in modeling water-Plexiglas and water-membrane-phantom surfaces for grid spacings of 
16.0 µm and 21.3 µm across frequency (expressed in PPW). (a) Pressure reflection coefficient error, and 
(b) pressure transmission coefficient error. 

 

Based on the memory available for the simulation, a reasonable error threshold of +10% 

on the reflection coefficient and –3% on the transmission coefficient were adopted for both 

surfaces leading to a frequency threshold of 5 PPW. This frequency threshold corresponds to an 

upper threshold of 18.5 MHz for a spatial resolution of 16.0 µm (used with the 20 MHz transducer) 

and 13.9 MHz for 21.3 µm (used with the 10 MHz transducer). Moreover, the inaccuracies arising 

from the discretization of the 64 µm membrane with a spatial resolution of 16.0 µm or 21.3 µm 

are also accounted for in this test. 

3.3.4. Performance metrics 

The accuracy of each simulation was quantified as  

Δ[\(𝑓) = 𝜇[\,E(𝑓) − 𝜇[\,](𝑓),    (3.12) 

where 𝜇[\,E is the acquired AC value and 𝜇[\,] is the pre-defined phantom AC profile in the code. 

Furthermore, root-mean-square values were computed for Δ[\(𝑓) for both simulations in their 

respective bandwidths.  



 
21 

3.4. Experimental validation 

AC measurements were performed using conventional methods and methods proposed 

herein on five phantoms with diverse attenuation profiles. The AC results from both methods were 

compared to validate the proposed method. Furthermore, multiple individual measurements were 

performed by two different operators to assess the repeatability and cross-operator reproducibility 

of the measurements [41].  

3.4.1. Setup 

Single-element transducers in a pulse-echo configuration were used for measuring the 

phantom AC. Plexiglas was used as the planar reference surface. The transducer, phantom, and 

Plexiglas were immersed in degassed water (Fig. 3.1). The transducer was connected to a pulser-

receiver (UT340, UTEX Scientific Instruments Inc., Mississauga, ON, Canada) followed by a 

digitizer (PDA14-200 A/D converter, Signatec Inc, Lockport, IL), with a sampling frequency of 

200 MHz, to digitize the received analog echoes. 

3.4.2. Test conditions 

AC measurements were performed on five phantoms, named Phantom 1 to Phantom 5 

(CIRS, Inc., Norfolk, VA, USA). The phantoms were made of different tissue-mimicking materials 

but were laminated with the same 25 µm-thick Saran membrane with well-studied properties [25]. 

While the conventional method incorporated this prior knowledge of the Saran membrane in the 

AC measurement, the proposed technique estimated the membrane properties for each phantom-

transducer combination. Five weakly focused transducers (Table 3.3), spanning a frequency range 

of 0.7-16 MHz, were used in the validation. Two operators performed three AC measurements 

each for all the transducer-phantom combinations. When characterizing with the 12.7 MHz 

transducer (Transducer 5), the attenuation echoes (𝐸T) from Phantom 1 and Phantom 5 were below 

the receiver noise floor due to the two phantoms’ high attenuation above 10 MHz. Hence, these 

two transducer-phantom combinations were dropped from the experiment. For each of the 

remaining transducer-phantom combinations, the intersection of the -20-dB bandwidths of the 

reference echo and the attenuation echo was chosen as the bandwidth for AC analysis. 
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Table 3.3. Properties of transducers used in the phantom AC measurements 

Transducer 
ID Part number 

Center 
frequency 

(MHz) 

Diameter 
(mm) F# 

Planar 
focus (D) 

(mm) 

1 IL1506HR (Valpey Fisher 
Inc., Hopkinton, MA) 1.6 19.1 4 72.4 

2 V382 (Panametrics Inc., 
Waltham, MA) 3.8 12.7 4 73.8 

3 IL0506HR (Valpey Fisher 
Inc., Hopkinton, MA) 5.4 19.1 3 56.9 

4 V321 (Panametrics Inc., 
Waltham, MA) 8.1 19.1 4 75.0 

5 IS1004HR (Valpey Fisher 
Inc., Hopkinton, MA) 12.7 12.7 4 54.4 

 

3.4.3. Performance metrics for the proposed method 

The conventional method was used as a reference to quantify the accuracy of the proposed 

method. Consequently, Δ[\  was calculated for each transducer-phantom combination using Eq. 

(3.12) where 𝜇[\,E and 𝜇[\,] were AC averaged across iterations and operators for the proposed 

and reference methods, respectively. Repeatability and cross-operator reproducibility were 

quantified by calculating the sample standard deviation (𝑠[\(𝑓)) across six measurements (three 

iterations x two operators) for each transducer-phantom combination. Furthermore, root-mean-

square (RMS) Δ[\(𝑓) and 𝑠[\(𝑓) were calculated for each phantom, for all transducers. Also, 

𝑠[\(𝑓) was normalized by 𝜇[\,E to calculate the coefficient of variation as 

𝑐𝑜𝑣[\(𝑓) =
?,-(5)
^,-,/(5)

     (3.13) 

3.5. Results  

The results of a simulation-based and an experimental implementation of the proposed 

phantom AC measurement method are detailed in this section.  
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3.5.1. Simulation results  

The acquired AC and corresponding accuracy metric, Δ[\ , are shown for both simulations 

in Fig. 3.6(a) and 3.6(b), respectively. The acquired |𝑅$(𝑓)| and the estimated |𝑇3D>+;#3-6(𝑓)| are 

shown for both simulations in Fig. 3.7(a) and 3.7(b), respectively. The RMS Δ[\  were 0.029 

dB/cm-MHz and 0.049 dB/cm-MHz for the 25 mm and 12 mm phantoms, respectively. 

|𝑇3D>+;#3-6(𝑓)| varied between 0 to -14.5 dB within a frequency range of 3.5-18.5 MHz and was 

estimated within 0 to 2 dB error. The maximum error occurred at the peaks and nulls of the 

membrane transmission coefficient. 

Fig. 3.6. (a) Acquired AC (with and without membrane 𝑇$%&'()$!* compensation) compared with ground 
truth for simulations 1 and 2. (b) Difference between acquired AC and the ground truth for simulations 1 
and 2. 
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Fig. 3.7. (a) Membrane reflection coefficient (magnitude), acquired from both simulations, compared with 
ground truth. (b) Estimated membrane round-trip transmission coefficient (magnitude) compared with 
ground truth. 

 

3.5.2. Experimental results  

The measured AC, measured |𝑅$(𝑓)|, and estimated |𝑇3D>+;#3-6(𝑓)| for all the phantom-

transducer combinations, averaged across operators and individual iterations, are shown in Figs. 

3.8, 9(a) and 9(b), respectively. The performance metrics for the proposed method, Δ[\(𝑓) and 

s[\(𝑓), are shown in Figs. 3.10(a) and 3.10(b), respectively. Finally, for each phantom, Table 3.4 

listed the RMS Δ[\(𝑓), the RMS s[\(𝑓), and the mean coefficient of variation, and compared with 

their respective ACs. 

Across all the five phantoms, RMS Δ[\  was 0.025 dB/cm-MHz and RMS s[\  was 0.018 

dB/cm-MHz. |𝑇3D>+;#3-6(𝑓)| varied between 0 to -–11.8 dB within a frequency range of 0.7-16 

MHz and was estimated within 0 to 3.5 dB error. The maximum error occurred at the null of the 

membrane transmission coefficient. 
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Fig. 3.8. Measured AC across phantoms and transducers (averaged across operators and individual 
iterations). For each phantom, multiple curves are present in each frequency range due to measurements 
from multiple transducers with overlapping bandwidths. 

 

Fig. 3.9. Membrane characterization results averaged across operators and individual iterations and 
compared with the theoretical value [20]. (a) Measured membrane reflection coefficient (magnitude). (b) 
Estimated membrane round-trip transmission coefficient (magnitude). 
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Fig. 3.10. Performance metrics calculated for the proposed method. AC is averaged within a bandwidth of 
0.5 MHz, computed across operators and individual iterations (a) AC difference compared to the 
conventional method. (b) Sample standard deviation of the AC results. 

 

Table 3.4. Performance metrics of the proposed method across phantoms 

Phantom 𝐴𝐶(𝑓) Range 
(dB/cm-MHz) 

RMS Δ[\  
(dB/cm-MHz) 

RMS s[\  
(dB/cm-MHz) Mean 𝑐𝑜𝑣[\  

1 1.021 – 1.475 0.022 0.016 0.013 
2 0.728 – 1.011 0.015 0.014 0.015 
3 0.734 – 0.976 0.027 0.014 0.015 
4 0.281 – 0.388 0.032 0.021 0.054 
5 0.557 – 1.160 0.022 0.023 0.030 

 

3.6. Discussion  

This section discusses the conclusions that can be drawn from the simulation-based and 

the experimental validation of the proposed AC measurement method. It also details possible 

improvements to the method that can be pursued in the future.  

3.6.1. Validation in k-Wave 

The proposed method was successfully evaluated by k-Wave simulations by implementing 

two hypothetical transducer-phantom combinations. In Simulation 1, a 12 mm phantom’s AC 

ranging from 0.5-0.9 dB/cm-MHz over 4.6-18.5 MHz was successfully measured with a maximum 
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error of 0.060 dB/cm-MHz. In Simulation 2, a 25 mm phantom’s AC ranging from 0.6-1.0 dB/cm-

MHz over 3.5-13.9 MHz range was successfully measured with a maximum error of 0.045 dB/cm-

MHz. AC acquired without membrane transmission loss compensation was plotted (Fig. 3.6(a)) 

for both simulations to illustrate the importance of accounting for membrane effects in the AC 

measurement. Without membrane loss compensation, Simulations 1 and 2 had a maximum Δ[\  of 

0.76 and 0.36 dB/cm-MHz, respectively, which is significant compared to ground truth AC in the 

same bandwidth. Also, the phantom insertion could have changed the diffraction pattern between 

Setup 1 and Setup 2 of Fig. 3.2, potentially introducing diffraction artifacts while calculating the 

insertion loss. However, this change was found to be negligible in simulations by an analysis of 

the beam patterns with and without phantom insertion. This is expected since the sound speed of 

the reference phantom material is close to that of water. 

 3.6.2. Experimental validation  

The proposed method successfully measured phantom ACs with diverse attenuation 

profiles. The laboratory experiments compared the proposed AC measurement technique with the 

conventional technique and evaluated its accuracy across transducers and phantom attenuation 

profiles. While the phantoms’ AC varied between 0.28 to 1.48 dB/cm-MHz over 0.7-16 MHz, the 

proposed AC method had a maximum error of only 0.045 dB/cm-MHz (see Fig. 3.10(a)) relative 

to the conventional method. For a given phantom, there was continuity in the measured 𝐴𝐶(𝑓) for 

two transducers with overlapping bandwidths. Also, the method was accurate for weakly focused 

transducers, typically used in QUS applications, with F# between 3 and 4. Finally, the proposed 

method showed good repeatability and cross-operator reproducibility, with a mean coefficient for 

variation between 0.013 and 0.054. 

3.6.3. Possible improvements to the membrane estimation algorithm 

The membrane transmission coefficient’s accuracy was estimated in simulation and 

experimentally (Fig. 3.7(b) and 3.9(b), respectively). The error in the estimated |𝑇3D>+;#3-6(𝑓)| 

emerged from the acquired |𝑅$(𝑓)| that showed a discrepancy in the amplitude and position of 

nulls and peaks. This discrepancy is possibly due to the nonplanar wavefronts at the focus of 

transducers used in this study, thus violating the planar wave assumption. Diffraction correction 

can be applied to compensate for the error in estimated |𝑇3D>+;#3-6(𝑓)|. Currently, the main source 
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of error in determining AC is the membrane estimation step. For instance, an error of 2 dB in 

estimated 20 log$' |𝑇3D>+;#3-6| at 10 MHz would lead to a Δ[\  of 0.04 dB/cm-MHz for a 25 mm 

phantom (Eq. (3.11)). These values closely match the observed error in estimated |𝑇3D>+;#3-6| and 

Δ[\  for Simulation 1 at 10 MHz (Fig. 3.6(b) and 3.7(b), respectively). For the same reason, Δ[\  

for the thinner phantoms (e.g., 12 mm phantom) is greater than the Δ[\  of the thicker phantoms 

(e.g., 25 mm phantom). Hence, the improvement in membrane estimation will further improve the 

AC measurement technique. Since an analytical model for diffraction correction will be 

complicated, a simulation study in k-Wave can be useful instead and perhaps can even lead to an 

empirical correction factor. Alternatively, as the phantom thickness increases, the accuracy 

increases for the proposed AC measurement technique.  

The membrane is assumed to be nonattenuative in the estimation procedure. This 

assumption is reasonable in typical scenarios since the cumulative attenuation offered by a thin 

membrane, 𝐴𝐶((𝑓)𝑓𝐿, is much less than 20 log$' |𝑇3D>+;#3-6(𝑓)|. However, this assumption can 

fail if the membrane is thick, or highly attenuative, or both. In such cases, membrane attenuation 

can be incorporated in the reflection and transmission coefficients by representing the membrane 

wavenumber (𝑘)) as a complex number 

𝑘) =
)S5
:%
− 𝑗α_(𝑓),     (3.14) 

where 𝛼((𝑓) is the frequency-dependent attenuation coefficient (in Np/m) of the membrane [25]. 

Then, the estimation procedure would also estimate α_(𝑓) along with 𝑍), 𝑍T, and 𝐿/𝑐). 
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CHAPTER 4 

SIMULATING AND VALIDATING ACOUSTIC BACKSCATTER 

FOR A SINGLE SCATTERER IN K-WAVE 

 

4.1 Motivation to simulate backscatter in k-Wave 

Acoustic backscatter is quantified by the backscatter coefficient (BSC). For a given tissue, 

BSC is a fundamental property independent of operator and equipment and has been shown to 

enhance contrast in ultrasonic imaging of the eye [33], prostate [32], kidney [31], blood [42] [43], 

breast [44]–[46], and liver [29]. Crucially, BSC is directly related to the acoustic properties of the 

tissue microstructure. So, numerous studies have attempted to build a forward model linking tissue 

histology to the observed BSC [47]–[49]. The inverse problem was then solved to obtain 

quantitative estimates of tissue properties such as scatterer size and scatterer concentration.  

Mamou et al. built acoustic 3D impedance maps (3DZM) of soft tissues from histology. 

The BSC was analytically computed by applying spatial FFT to the 3D impedance map. The 

computed BSC was then used to choose appropriate scattering models to fit the observed BSC. 

This method yielded more accurate estimates of acoustic scatterer size and consequently in better 

classification of mammary tumors. However, Mamou et al. made some assumptions in their work 

that can be improved upon due to recent advances in acoustic simulation software and computing 

power. First, the incident acoustic waves are assumed to be planar, and the scattered acoustic waves 

are assumed to be spherical in the far-field. Second, they assumed weak scattering or weak medium 

heterogeneity wherein the impedance contrast between the background and the scatterer was low 

(less than 10%). Third, multiple scattering was assumed to be absent. Finally, the transducer was 

not simulated, and the medium attenuation was ignored.  

Kemmerer [7] implemented the 3DZM in Field-II acoustic simulation software to include 

the transducer in the backscatter modeling while retaining the rest of the assumptions from Mamou 

et al. Specifically, the assumption of weak scattering in soft tissues can be a limitation for 

impedance contrasts higher than 7% as shown in Fig. 4.1. In this figure, the exact BSC of a 
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spherical scatterer from Anderson's theory [50] is normalized and plotted. While the normalized-

BSC is similar in shape for low impedance contrasts, there is a marked change for the higher 

impedance contrasts. Hence the spatial FFT approach for calculating BSC is inaccurate for 

impedance contrasts higher than 7%. Such contrasts are realistic in many clinical ultrasound 

applications as highlighted in Table 4.1. Furthermore, even the tumor 3DZMs used by Mamou et 

al. had impedance contrasts up to 16%, as shown in Table 4.2. 

 

Fig. 4.1. Theoretical Anderson BSC (normalized by the peak value within the bandwidth) of a spherical 
scatterer (1 mm diameter) across impedance contrast. 
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Table 4.1. Acoustic impedance values of selected media [51] 
(Reference impedance (𝑍') = 1.54 MRayl) 

Medium 𝑍 (MRayl) Δ𝑍/𝑍'	(%) 
Water (20° C) 1.48 -3.90 

Fat 1.38 -10.39 
Kidney 1.65 7.14 

Skin 1.99 29.22 
Brain 1.60 3.90 

Muscle 1.71 11.04 
Blood 1.66 7.79 

Liver, Muscle 1.69 9.74 
Eye (lens) 1.72 11.69 

Eye (vitreous humor) 1.54 0.00 

 

Table 4.2. Acoustic impedance values used for the 3DZMs by Mamou et al. [48] 
Tumor Medium 𝑍 (MRayl) Δ𝑍/𝑍' (%) 

Rat  
fibroadenoma 

Connective tissue (𝑍') 1.80 0.00 

Epithelial cells 1.58 -12.22 

Mammary duct 1.54 -14.44 

4T1 mouse 
mammary 
carcinoma 

Background (𝑍') 1.55 0.00 

Connective tissue 1.80 16.13 

Cytoplasm 1.58 1.94 

Nuclei 1.60 3.23 

Red blood cells 1.60 3.23 

 

Furthermore, the region of interest often lies beneath other strongly heterogeneous tissue 

layers such as skin, fat, and muscle which might violate assumptions of plane wave incidence and 

necessitate the incorporation of acoustic reflection and transmission in BSC extraction methods. 

K-Wave is well suited to address these gaps in 3DZM modeling since it implements full-wave 

simulation [52] for heterogeneous and nonlinear media while supporting acoustic reflection, 

transmission, and scattering. By modeling the full range of acoustic phenomena, such a model can 

also aid in the design of better transducers and excitation schemes for tissue BSC extraction. In 
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addition, k-Wave supports shear waves in solid media. Therefore, the 3DZM-BSC modeling can 

potentially be extended to calcaneal quantitative ultrasound, harmonic imaging, and transcranial 

applications. The 3DZM-BSC model can also be useful in training neural networks that have been 

shown to improve specificity in QUS applications [53]. In such contexts, the backscatter generated 

from synthetic or histological 3DZM models can be used as training data. Since the ground truth 

BSC is known, the neural network can be made more accurate, interpretable, and robust.  

There have been a few simulation studies in k-Wave examining acoustic scattering. Parker 

et al. [8] simulated acoustic backscatter from randomly placed cylinders in a 3D medium to 

examine the dependence of B-mode speckle on number density. Song et al. [9] simulated acoustic 

through-transmission for a collection of spherical scatterers in a 3D medium to examine the effect 

of multiple scattering on fine dust number density estimation. Santos [10] simulated acoustic 

through-transmission for a spherical scatterer collection in a 3D medium to examine the 

dependence of iron nodule number density on ultrasonic scattering attenuation. However, no 

simulation study in k-Wave has addressed the acoustic backscatter and extraction of spectral BSC. 

The work presented in Chapters 4-6 fills this gap and extends it to basic 3DZMs. As a first step in 

simulating 3DZMs in k-Wave, backscatter from a single spherical scatterer will be examined in 

this chapter.  

4.2 Acoustic scattering theory for single scatterers 

When acoustic plane waves are incident on a medium, the scattered waves in the far-field 

are spherical as shown in Fig. 4.2.  
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Fig. 4.2. Quantifying acoustic scattering from a medium. 

 

Then, the differential backscattering cross-section as a function of frequency 𝑓 is defined as [54] 

																				𝜎`(𝑓) =
;
;a
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 ,            (4.1) 

 

where 𝑟' is the distance between scattering volume 𝑉 and observational area 𝑑𝑆, 𝑑Ω is the 

differential angle subtended by 𝑑𝑆, 𝑝-+ is the pressure amplitude of the incident acoustic plane 

wave, and 𝑝?:A##434; is the pressure amplitude of the scattered acoustic wave. 

Similarly, the backscatter coefficient (BSC) as a function of frequency 𝑓 is defined as [54] 
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𝜎`?:(𝑓) =
h5(5)
i
	                               

= |601233'&'4(5,3!,deG)|%	;f
|6#$(5)|%	∙	;a	∙	j

= |601233'&'4(5,3!,deG)|%	3!%

|6#$(5)|%	∙	j
  .      (4.2) 

Analytical expressions for the differential backscattering cross-section can be derived from 

literature for simple shapes such as spheres [50], [55], cylinders [56], and concentric spheres [57]. 

This work will focus on 3DZMs constituted with fluid spheres. Consequently, the Anderson model 

was used in analyzing the differential backscattering cross-section which is given as  

𝜎′`,[+;43?D+(𝑓, 𝑟') = �∑ �(,-)
+()C1$)

($1-\+)
� [𝑗C(𝑘𝑟') + 𝑖𝑛C(𝑘𝑟')]k

Ce' �
)
𝑟') ,            (4.3) 

𝐶C =
lm6+7892:
6+(82) nm

$+(82)
=+7892:

n,o>+(82)
6+(82)pm

?919

?	1 nq

rm6+7892:
6+(82) nm

=+(82)
=+7892:

n,m?
919
?	1 ns

 ,              (4.4) 

𝛼C(𝑘𝑟) = 𝑚𝑗C,$(𝑘𝑟) − (𝑚 + 1)𝑗C1$(𝑘𝑟) ,            (4.5) 

𝛽C(𝑘𝑟) = 𝑚𝑛C,$(𝑘𝑟) − (𝑚 + 1)𝑛C1$(𝑘𝑟) ,            (4.6) 

where 𝜌, 𝑐 are respectively background density and sound speed, and 𝜌′, 𝑐′ are respectively 

scatterer density and sound speed. Variables 𝑘 and 𝑘′ are respectively, background-wavenumber 

and scatterer-wavenumber (𝑘 = 2𝜋𝑓/𝑐 and 𝑘′ = 2𝜋𝑓/𝑐′), and 𝑗C and 𝑛C are spherical Bessel 

function of the first kind and spherical Bessel function of the second kind, respectively. For 

observation points in the far-field (𝑘𝑟' ≫ 1), Eq. (4.3) reduces to  

𝜎`,[+;43?D+(𝑓) =
:%

WG%5%
�∑ �(,-)

+()C1$)
$1-\+

�k
Ce' �

)
 .              (4.7) 

In the subsequent sections, a single spherical scatterer will be acoustically examined by 

different transducers, and the differential backscatter cross-section will be extracted and compared 

with Anderson’s theory. The goal was to design, validate and compare different schemes for 

backscatter parameter extraction that can be eventually extended to 3DZMs.  
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4.3 Methodology  

Three schemes were examined for backscatter parameter extraction of a single spherical 

scatterer.  

4.3.1 Single element focused transducer (focused transducer scheme) 

In this scheme, the planar reference method of BSC extraction [1] was applied on a single 

spherical scatterer. A single element focused transducer was used as a pulse-echo transmitter-

receiver, and Plexiglas was used as the planar reference as shown in Fig. 4.3. In Setup 1, Plexiglas 

was placed along the focal plane that gave the reference pressure echo 𝑝3. In Setup 2, the scatterer’s 

geometric center overlapped with the focal point of the transducer that gave the scattered pressure 

echo 𝑝?. The received echoes in both cases were obtained by summation of the pressure signals 

received by the grid points on the transducer surface.  

 

Fig. 4.3. Setups for the planar reference method of backscatter parameter extraction for a single scatterer. 
𝑟+ is the radius of curvature of the focused transducer, 𝛼 is the radius of the aperture, and 𝑑 is the scatterer 
diameter. 
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Implementation of this scheme in k-Wave was inspired by Kemmerer et al.’s work [7] 

where the scheme was implemented in Field-II. Therefore, this work followed Kemmerer et al. in 

choosing the scatterer size and the transducer dimensions which in turn was chosen to mirror 

experimental conditions. In particular, the single scatterer had a diameter that was comparable to 

the transducer beamwidth (51% to 177% of the beamwidth).  

Next, the Chen method [1] of BSC extraction was modified for the single scatterer case. 

When applied to a random medium, the Chen equation to extract BSC for a planar reference 

method, assuming a unity receiver electro-mechanical transfer function, is given by (Eq. (31), [1]) 

𝜎`?:,3A+;DC(𝑓) =
t|60(3,5)|%u
|6&(3!,5)|%

∙ v
%	|w&'((3!,5)|%

B	∙	tw0(3,5)u
 ,           (4.8) 

where 𝑝?(𝑓) and 𝑝3(𝑓) are the spectrum of the scattered pressure wave and the spectrum of 

reference pressure wave, respectively. Additionally, 𝑝? is ensemble-averaged within the scattering 

region of interest (ROI) centered around the focus. Next, < 𝐷?(𝑟, 𝑓) > is the mean diffraction 

correction function, 𝑙 is the axial length of ROI, 𝛾 is the pressure reflection coefficient of the water-

reference interface, and 𝐷345 is the acoustic coupling function from the transducer surface to the 

reference plane and back to the transducer surface. 

To apply Eq. (4.8) to the single scatterer, the scatterer can be assumed to be contained 

within an ROI cube of volume 𝑑T. Hence, the ROI axial length 𝑙 is equal to the scatterer diameter 

𝑑. Next, the ensemble average of the scattered spectrum < |𝑝?(𝑟, 𝑓)|) > can be replaced with the 

scattered spectrum of the single scatterer at the focus |𝑝?(𝑟', 𝑓)|). Finally, the mean diffraction 

correction, < |𝐷?(𝑟, 𝑓)| > must be averaged only within the ROI cube. This is calculated using 

Equations (2) and (20) of [1] which are given by, respectively,  

𝐷(𝑟, 𝑓) = − -.
)G∬

x(𝒓3) z{|N-.	(𝒓,𝒓𝒕)O
𝒓,𝒓𝒕

	𝑑𝑆(𝒓𝒕)
fB
fB

 ,            (4.9) 

< |𝐷?(𝑟, 𝑓)| >=
$
B
∙ �_ )G

.fB
`
)
∭|𝐷(𝑟, 𝜔)|W𝑑𝑉� ,           (4.10) 
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where 𝜒 is the relative sensitivity of each point on the transducer, which is set to one in the 

simulation, 𝑘 is the background wavenumber (𝑘 = 2𝜋𝑓/𝑐), and 𝑆] is the active transducer area 

given by  

𝑆] = 2𝜋𝑟')�1 − �1 − (𝛼/𝑟'))� .             (4.11) 

Evaluating Eq. (4.9) at 𝑟', we get  

𝐷(𝑟', 𝑓) = − -.
)G
∙ z{|(-.3!)

3!
𝑆] .          (4.12) 

The mean diffraction inside the ROI cube is reasonably assumed to be constant since the 

scatterer dimension is comparable to the beamwidth, and the axial length of ROI is 𝑑. Then, Eq. 

(4.10) reduces to  

< |𝐷?(𝑟, 𝑓)| >	=
$
;
�_ )G
.fB
`
)
|𝐷(𝑟', 𝑓)|W𝑑T� = 𝑘)�1 − �1 − (𝛼/𝑟'))�𝑑) . (4.13) 

Next, the acoustic coupling function between the transducer and planar reference is given by Eq. 

(57) of [1] 

|𝐷345(𝑟', 𝜔)| = �1 − exp�−𝑖𝐺6� 1𝐽'�𝐺6� − 𝑖𝐽$�𝐺6�8�  ,           (4.14) 

where 𝐽' and 𝐽$ are Bessel functions of zeroth and first kind, respectively. 𝐺6 is the pressure gain 

factor given by  

𝐺6 =
.~%

)3!
 .      (4.15) 

Finally, by combining Equations (4.8), (4.13) – (4.15), the single scatterer BSC is extracted as 

𝜎`?:,?-+cB4(𝑓) =
|i0(3!,5)|%

|i&(3!,5)|%
∙ v

%	�$,z{|N,-�CO��!N�CO,-	�*N�CO��
%

.%�$,�$,(~/3!)%�∙;)
 .          (4.16) 

Next, the differential backscatter cross-section for the single scatterer can be derived from 

Equations (4.2) and (4.16) as  
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𝜎`,?-+cB4(𝑓) =
|i0(3!,5)|%

|i&(3!,5)|%
∙ v

%	�$,z{|N,-�CO��!N�CO,-�*N�CO��
%
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 .        (4.17) 

4.3.2 Wide planar transmitter and point receiver (near-field scheme) 

In this scheme, the simulation was set up to extract the exact differential backscatter cross-

section of the single scatterer. This scheme was realized by recreating the ideal assumptions for 

computing backscatter parameters wherein the incident waves are planar, and the receiver is placed 

in the far-field (relative to the scatterer). By placing the scatterer in the near field of a wide planar 

transmitter, as shown in Fig. 4.4, the incident waves were ensured to be planar. Next, a point 

receiver was placed above the planar transmitter in the backscatter direction (𝜃 = 𝜋) to record the 

backscattered pressure wave.  

 

Fig. 4.4. Setups for the near-field scheme of backscatter parameter extraction for a single scatterer. In the 
figure, 𝑤 is the width of the planar transducer, 𝑟) is the distance between transmitter and scatterer, 𝑟$ is 
the distance between scatterer and receiver, and 𝑑 is the scatterer diameter. 

 

Then, the differential backscatter cross-section for the single scatterer can be obtained from Eq. 

(4.1) as 

𝜎`(𝑓) =
|60(5)|%	3&%

|6&(5)|%
 ,          (4.18) 

where 𝑝3(𝑓) is the spectrum of the incident pressure pulse obtained from Setup 1 and 𝑝?(𝑓) is the 

spectrum of the backscattered pressure pulse obtained from Setup 2.  
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The envelope of the pressure wave across different time points for a configuration of Setup 

2 are plotted in Fig. 4.5 which will help visualize the wavefronts, and in choosing the setup 

parameters (𝑤, 𝑟#, and 𝑟3).  

 

Fig. 4.5. Envelope of the pressure field (normalized by the peak pressure across the entire simulation 
time) at four time points for a configuration of Setup 2 (𝑤 = 100 mm, 𝑑 = 1 mm, 𝑟) = 4 mm, and spatial 
pulse length (SPL) = 2 mm). Vertical cross-section of the 3D domain. (a) The wavefront is planar as it is 
incident on the scatterer. (b) Initial moments of wave incidence on the spherical scatterer. The planar 
transmitter’s edges, at the domain boundary, produce cylindrical waves which are undesirable. Setup 
parameters must be appropriately chosen such that the cylindrical waves do not overlap with the incident 
pulse 𝑝$, or the scattered pulse 𝑝, used for backscatter processing. (c) and (d) Show further evolution of 
the scattered spherical wave and the undesirable edge-generated cylindrical wave. 
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From Fig. 4.5, the following constraints were chosen to exclude cylindrical waves from the 

incident pulse 𝑝3 or the scattered pulse 𝑝? 

𝑟# > 𝑆𝑃𝐿/2 ,           (4.19) 

�(𝑟3 − 𝑟#)) + (𝑤/2)) > 𝑟# + 𝑟3 + 𝑆𝑃𝐿 .           (4.20) 

In this work, a -80dB threshold was applied to the envelope of the excitation signal to obtain the 

spatial pulse length (SPL).  

4.3.3 Piston transmitter and point receiver (far-field scheme)   

A second scheme was designed to extract the exact differential backscatter cross-section 

of a single scatterer. In this scheme, the scatterer was placed along the axis in the far-field region 

of a piston transmitter as shown in Fig. 4.6. Consequently, the incident acoustic waves were 

approximately planar. Next, a point receiver was placed at the center of the piston transmitter to 

record the backscattered spherical waves. Thus, the receiver is ensured to be in the far-field region 

relative to the spherical scatterer. The piston transmitter was chosen for this scheme because of its 

well-studied beam pattern.  

Given a scatterer diameter 𝑑 and frequency bandwidth of interest, the setup parameters 

were appropriately chosen. Firstly, 𝑟' were larger than the Rayleigh distance so that the scatterer 

is in the far-field region of the transmitter which gives a constraint  

𝑟' > 𝜋𝛼)/min{𝜆} ,     (4.21) 

where min{𝜆} is the minimum wavelength in the frequency bandwidth of interest. Next, the 

pressure variation inside the scatterer was constrained to be within ±10% (or ±1dB). To meet this 

constraint, the scatterer is located within the 1 dB beamwidth of the transverse plane which gives 

𝑑 < (−1	𝑑𝐵	𝑏𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ) = �PQ{�}	3!
T~

 .    (4.22) 

Now, the axial pressure in the far-field has a 1/𝑟 variation. So, 𝑟' is chosen such that  

𝑟' > 8𝑑 ,     (4.23) 
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which ensures that the pressure variation in the axial direction is within ±5% inside the scatterer.  

 

Fig. 4.6. Setups for the far-field scheme of BSC extraction for a single scatterer. In the figure, 𝛼 is the 
radius of the piston transducer, 𝑟+ is the distance between transmitter and scatterer, and 𝑑 is the scatterer 
diameter. 

 

4.3.4 Implementation and validation of backscatter parameter extraction schemes in k-Wave  

We will examine a 1 mm scatterer in a frequency bandwidth of 1.5-3.5 MHz, following the 

parameters used by Kemmerer et al. to facilitate comparison. In all the simulations, the background 

is water with a sound speed of 1480 m/s and a density of 1000 kg/m3. Two scatterers with different 

acoustic impedances were simulated: 1) weak scatterer (sound speed of 1495 m/s and density of 

1010 kg/m3) with an acoustic impedance 2% higher than the background and 2) strong scatterer 

(sound speed of 1628 m/s and density of 1100 kg/m3) with an acoustic impedance 21% higher than 
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the background. As the names suggest, the weak scatterer showed weak impedance contrast 

whereas the strong scatterer showed strong impedance contrast.  

The excitation signal for all the schemes was a 2.25 MHz sinusoid with a Gaussian 

envelope. As highlighted in Chapter 2, the accuracy of the simulation depends on the degree of 

spatial discretization. Where possible, the spatial resolution was varied between 12.5 µm to 52.6 

µm to observe this effect. The time step was chosen such that CFL is 0.25. For the focused 

transducer scheme, 3D simulations could not be conducted due to large memory requirements. 

Instead, 2D axisymmetric simulations were conducted leveraging the cylindrical symmetry of 

setups around the axis. The simulation and setup parameters used to validate all the backscatter 

parameter extraction schemes are summarized in Tables 4.3 – 4.5.  

For validation, the differential backscatter cross-section (𝜎`(𝑓)) was extracted for each of 

the schemes and compared with the reference Anderson theory (𝜎`,345434+:4(𝑓) from Eq. (4.3) or 

Eq. (4.7), as applicable). To quantify the accuracy, root mean square error (RMSE) was computed 

over the frequency bandwidth as 

𝜎`,](fU = �$
9
∑ |𝜎`(𝑓) − 𝜎`,345434+:4(𝑓)|)
5D
5*

 .   (4.24) 
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Table 4.3. Setup parameters for the validation of focused-transducer scheme (2D axisymmetric 
simulation) 

Parameters Simulation 1 Simulation 2 Simulation 3 

Transducer 

Aperture (2𝛼) 19.1 mm 
The radius of curvature 
(𝑟') 25.4 mm 

Center frequency (𝑓') 2.25 MHz 
3-dB Bandwidth 50% 

Scatterer 

Diameter (𝑑) 1000.008 µm 999.999 µm 999.982 µm 

Sound speed 1495 m/s (weak scatterer) 
1628 m/s (strong scatterer) 

Density 1010 kg/m3 (weak scatterer) 
1100 kg/m3 (strong scatterer) 

Background Sound speed 1480 m/s 
Density 1000 kg/m3 

Reference 
(Plexiglas) 

Sound speed 2758 m/s 
Density 1180 kg/m3 

Computational 
domain 

Spatial resolution (dx) 52.632 µm 25.641 µm 12.658 µm 
Time step (dt) 4.771 ns 2.324 ns 1.147 ns 

 

Table 4.4. Setup parameters for the validation of near-field scheme (3D simulation) 
Parameters Simulation 1 Simulation 2 

Transducer 
Width (𝑤) 36 mm 25 mm 

Center frequency (𝑓') 2.25 MHz 
3-dB Bandwidth 30% 

Scatterer 

Diameter (𝑑) 1 mm 

Sound speed 1495 m/s (weak scatterer) 
1628 m/s (strong scatterer) 

Density 1010 kg/m3 (weak scatterer) 
1100 kg/m3 (strong scatterer) 

Background 
Sound speed 1480 m/s 

Density 1000 kg/m3 

Other 

Distance between transmitter 
and scatterer (𝑟#) 

4 mm 

Distance between receiver and 
scatterer (𝑟3) 3 mm 

Computational 
domain 

Spatial resolution (dx) 50 µm 25 µm 
Time step (dt) 7.7 ns 3.8 ns 
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Table 4.5. Setup parameters for the validation of far-field scheme (3D simulation) 
Parameters Simulation 1 Simulation 2 Simulation3 

Transducer 
Radius of aperture (𝛼) 500 µm 
Center frequency (𝑓') 2.25 MHz 

3-dB Bandwidth 30% 

Scatterer 

Diameter (𝑑) 1 mm 

Sound speed 1495 m/s (weak scatterer) 
1628 m/s (strong scatterer) 

Density 1010 kg/m3 (weak scatterer) 
1100 kg/m3 (strong scatterer) 

Background Sound speed 1480 m/s 
Density 1000 kg/m3 

Other Transmitter-scatterer 
distance (𝑟') 8 mm 

Computational 
domain 

Spatial resolution (dx) 50 µm 25 µm 12.5 µm 

Time step (dt) 7.7 ns 3.8 ns 1.9 ns 

 

4.4 Results 

The differential backscatter cross-section (𝜎`) extracted from focused-transducer, near-

field, and far-field simulations are plotted in Figs. 4.7, 4.8, and 4.9, respectively. In these figures, 

the extracted differential backscatter cross-section results are compared with Anderson's theory. 

Additionally, root mean square error values were calculated for the differential backscatter cross-

section results and tabulated in Table 4.6.  

Fig. 4.7. Extracted differential backscatter cross-section for the focused-transducer scheme for (a) weak 
scatterer with 2% impedance contrast and (b) strong scatterer with 21% impedance contrast. 
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Fig. 4.8. Extracted differential backscatter cross-section for the near-field scheme for (a) weak scatterer 
with 2% impedance contrast and (b) strong scatterer with 21% impedance contrast.  

 

Fig. 4.9. Extracted differential backscatter cross-section for the far-field scheme for (a) Weak scatterer 
with 2% impedance contrast and (b) Strong scatterer with 21% impedance contrast. 
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Table 4.6. Extracted differential backscatter cross-section RMSE compared with Anderson 
theory 

Scatterer 
Backscatter 

parameter extraction 
schemes 

dx ≈ 50 
µm 

(cm2/sr) 

dx ≈ 25 
µm 

(cm2/sr) 

dx ≈ 12.5 
µm 

(cm2/sr) 

Anderson 
theory peak 

value 
(cm2/sr) 

Weak 
Focused transducer 7.85E-08 3.06E-08 2.90E-08 2.64E-07 

Near-field 4.28E-08 8.43E-09 - 2.66E-07 
Far-field 4.30E-08 9.05E-09 4.49E-09 2.64E-07 

Strong 
Focused transducer 6.96E-06 3.50E-06 3.75E-06 2.86E-05 

Near-field 2.85E-06 5.07E-07 - 2.88E-05 
Far-field 2.78E-06 4.83E-07 3.53E-07 2.86E-05 

 

4.5 Discussion  

The focused-transducer scheme extended Kemmerer’s work by modeling an experimental 

BSC extraction in k-Wave. Additionally, Chen’s planar reference method was repurposed to 

extract the backscatter parameter of a single scatterer. While Kemmerer only extracted the 

normalized BSC, this work extracted the magnitude of the BSC. The extracted backscatter 

parameters from the focused-transducer scheme appeared to be less accurate than those extracted 

from other schemes, as observed in Figs. 4.7 – 4.9 and Table 4.6. This is because of the multiple 

sources of error in the focused-transducer scheme such as 1) finite transducer beamwidth 

comparable to scatterer, 2) non-planarity of the incident acoustic waves, 3) spatial discretization 

of the focused transducer, 4) averaging of the backscattered pressure over a wide solid angle 

instead of a small differential solid angle at 𝜃 = 𝜋, and 5) spatial discretization of the scatterer. In 

contrast, the error in the near-field scheme could only be due to the scatterer spatial discretization. 

The sources of error in the far-field scheme are the non-planarity of the incident acoustic waves, 

the spatial discretization of the piston transmitter, and the scatterer spatial discretization. 

Generally, an increase in spatial resolution (or decrease in grid spacing) leads to better k-Wave 

simulation accuracy, as shown in Chapter 3. In Table 4.6, with decreasing grid spacing from 50 

µm to 12.5 µm, the RMSE reduction was lesser for the focused-transducer scheme compared to 

the other two schemes. This observation indicates that transducer-related errors were the dominant 

sources of error in the focused-transducer scheme at lower grid spacings. Also, while the focused 



 
47 

transducer had a real-world counterpart, it was impractical from a simulation standpoint due to 

memory constraints. Hence, only a 2D axisymmetric simulation was performed for validation 

instead of the more generic 3D simulation.  

To more directly evaluate the accuracy of k-Wave for scattering simulation, the near-field 

and far-field schemes were designed to eliminate the potential errors mentioned in the last 

paragraph. The near-field and far-field schemes implemented hypothetical transmitters and 

receivers. Additionally, they are free of diffraction and hence simplify the backscatter parameter 

extraction methodology. Among the two, the near-field scheme was the most precise, which can 

be concluded by a visual inspection of Figs. 4.8 and 4.9. This is because the wide planar transducer 

generated perfect plane waves in the near-field scheme. However, this scheme was not memory-

efficient since it required planar transducers many times wider than the scatterer and, consequently, 

large computational domains. This is also the reason why dx = 12.5 µm was not simulated for the 

near-field scheme. Furthermore, at each relevant grid spacings, both schemes had similar RMS 

error values for the weak scatterer and the strong scatterer. So, the non-planarity of incident waves 

and the discretization of the piston transducer that was present in the far-field scheme but absent 

in the near-field scheme had minimal effect on the backscatter modeling. This observation also 

validates the design rules for the far-field scheme as given in Equations (4.21)-(4.23).    

Ideally, a computational domain must not be too large compared to the single scatterer (or 

a 3DZM) while still satisfying the assumptions required to extract the backscatter parameters 

(plane wave incidence and far-field receiver). A large computational domain requires large (and 

often unrealistic) memory requirements in addition to a long run time. So, developing memory-

efficient schemes for backscatter extraction is crucial, especially in iterative applications. The far-

field scheme balances these conflicting requirements while providing good accuracy, as shown in 

Fig. 4.9. The extracted differential backscatter cross-section tracked the peaks and nulls of the 

theoretical Anderson curve. Also, the RMS error was less than 2% of the peak Anderson 

differential backscatter cross-section for both scatterers. This result shows that despite having 

approximate plane wave incidence, the far-field scheme extracted backscatter parameters 

accurately and efficiently. Hence, this method was also used for extracting the BSC of a collection 

of scatterers in Chapter 5. Furthermore, this scheme can be used in other acoustic simulation 

software and in more complicated scenarios such as with acoustic non-linearity, acoustic 
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attenuation, and shear waves to extract the exact backscatter parameters. Finally, in all these 

schemes, higher spatial resolution leads to higher accuracy as shown in Fig. 4.9. Hence, for a 

collection of scatterers, a preliminary simulation study must be conducted for the constituent 

single-scatterers. Such a study would find an optimum spatial resolution based on the bandwidth 

and accuracy requirements.   
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CHAPTER 5 

SIMULATING ACOUSTIC BACKSCATTER FOR A COLLECTION 

OF SCATTERERS IN K-WAVE 

 

5.1 Introduction 

This chapter builds on the single scatterer simulation setup to simulate a collection of 

randomly and sparsely distributed scatterers. Such a 3DZM is simple and has a well-defined BSC 

that can be obtained by the incoherent scattering theory. The incoherent scattering BSC is a product 

of the single scatterer BSC in the same scattering volume and the number of scatterers. Hence it 

will be straightforward to validate the backscatter modeling and extraction in k-Wave and extend 

them to histology-based tissue 3DZMs. This chapter will also simulate backscatter from a 

collection of densely distributed scatterers in k-Wave. Due to dense packing, the positions of the 

scatterers are correlated that is captured by a quantity called structure function (SF). Consequently, 

the dense 3DZM displays coherent scattering and the BSC is a product of the single scatterer BSC 

in the same scattering volume, the number of scatterers, and the SF. Structure function has been 

shown to have a significant effect on scattering in aggregated red blood cells [43], [58], 

concentrated tissue-mimicking phantoms [42], concentrated cell pellet biophantoms [59], and 

many solid tumors [60], [61]. In the past, the SF simulations assumed a plane wave incidence in 

the entire medium, weak scattering, and absence of multiple scattering. Then, the structure function 

was calculated numerically by considering the scatterer position. In this study, however, the 

structure function of a collection of scatterers was modeled using full-wave simulations in k-Wave. 

The objective was to apply the k-Wave based backscatter modeling proposed in Chapter 4 in QUS 

simulations.   

5.2 Acoustic scattering theory for a collection of spheres 

Consider a medium of volume 𝑉 composed of 𝑁 identical scatterers irradiated with a plane 

wave of unit amplitude as shown in Fig. 5.1. Let the density and sound speed of the scatters be 𝜌 

and 𝑐, respectively. Let the density and sound speed of the background be 𝜌' and 𝑐', respectively. 
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By ignoring multiple scattering, the scattered pressure wave in the far-field can be expressed as 

(Eq. (4) of [62]) 

 

Fig. 5.1. Geometry illustrating the acoustic scattering from a single scatterer in the far-field.  

 

𝑝?(𝒓) =
4#8&

3
∑ Φ+(𝐊)𝑒-𝐊	∙	𝐫𝐧9
+e$  ,                (5.1) 

where 𝐫 is the observation point, 𝑟 = |𝐫|, 𝑘 is the wavenumber (𝑘 = 2𝜋𝑓/𝑐, where 𝑓 is the wave 

frequency and 𝑐 is the medium sound speed), 𝐫Q is the scatterer position of the 𝑛th scatterer, Φ+(𝐊) 

is the complex scattering amplitude of the 𝑛th scatterer for a scattering vector 𝐊 given by 𝐊 =

2𝑘𝑠𝑖𝑛(𝜃/2)(𝐨£ − ¤̂) for a scattering angle 𝜃 (𝜃 for backscattering is 𝜋). The scattering amplitude 

Φ+ is a function of the scatterer size, shape, and acoustic properties. Now, the backscatter 

coefficient (BSC) for the scattering volume can be expressed from Eq. (4.2) as   

 𝜎`?:(𝑓) =
$
i
| ∑ ΦQ(−2𝑘	¤̂)	𝑒,-	).	(�̂∙	𝐫𝐧)|)9

+e$  .   (5.2) 

For identical fluid spheres, Φ+ is same as Φ, the scattering amplitude for a constituent spherical 

scatterer which can be related to Anderson theory as highlighted in Chapter 4. Then, the BSC 

expression reduces to  

𝜎`?:(𝑓) =
$
i
|Φ(−2𝑘	¤̂)|)�∑ 𝑒,-	).	(�̂∙	𝐫𝐧)9
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Interestingly, for a continuous scattering volume, the BSC has real physical significance. 

With weak scattering and absence of multiple scattering, the BSC can be expressed as the squared 

magnitude of the 3D spatial Fourier transform of the underlying acoustic impedance variation (𝛾 =

−2(𝜌𝑐 − 𝜌'𝑐')/𝜌𝑐) along the backscattering vector (−2𝑘	¤̂) as (which is equivalent to Eq. (62) of 

[63]) 

𝜎`?:(𝑓) =
.F

$�G%	i
|∭𝛾(𝐫)	𝑒,-	).	(�̂∙	𝐫)	�) .   (5.4) 

Hence, previous work used a spatial FFT approach for extracting the 3DZM BSC. Now, if the 

scatterers are spatially randomly distributed, then the phase terms in the summation in an infinitely 

large volume can be assumed to be uncorrelated. Then, the resulting incoherent BSC is 

𝜎`?:,-+:D�434+#(𝑓) =
9
i
|Φ(−2𝑘	¤̂)|) .                      (5.5) 

Hypothetically, if the 3DZM had only one spherical scatterer, then the resulting BSC is  

𝜎`?:,?-+cB4(𝑓) =
$
i
|Φ(−2𝑘	¤̂)|) ,              (5.6) 

and the incoherent BSC can be expressed as a function of the single scatterer BSC as  

𝜎`?:,-+:D�434+#(𝑓) = 𝑁	𝜎`?:,?-+cB4(𝑓) .    (5.7) 

While spatial randomness is a good assumption for media with low scatterer concentration 

(volume concentration < 10%), it breaks down for media with dense scatterer concentration [64]. 

This is because the scatterer positions and consequently the phase terms are correlated. This spatial 

correlation in the BSC expression is captured by the structure function as [64] 

  𝑆(𝐊) = $
9
�∑ 𝑒-𝐊	∙	𝐫𝐧9

+e$ �) .              (5.8) 

Combining, Equations (5.3), (5.6), and (5.8), the generalized expression for BSC is given by 

𝜎`?:(𝑓) = 𝑁	𝜎`?:,?-+cB4(𝑓)	𝑆(𝑓) .              (5.9) 

The expected value of structure function for a sparse medium is unity from Eq. (5.7) and Eq. (5.9). 

Equations (5.1) – (5.9) assume plane wave incidence, weak scattering, and the absence of multiple 
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scattering in the medium. In contrast, the method proposed in this chapter transcends the scattering 

assumptions by using full-wave simulations. However, for validation purposes, the scatterers in 

the 3DZM were set to have weak to moderate impedance contrasts (Δ𝑧/𝑧' ≤ 21%) compared to 

the background. Consequently, weak to moderate scattering was assumed in the medium, and 

hence Equations (5.1) – (5.10) are assumed to be approximately correct for the k-Wave 

simulations.  

5.3 Methodology 

The 3DZMs had a 192 µm (𝐿) wide spherical volume wherein identical 20-µm (𝑑) fluid 

spheres were suspended in water. The ratio 𝑑/2𝐿 was kept low (~0.1) to minimize container effects 

on the extracted BSC and structure function [65]. The frequency bandwidth for analysis was 

chosen to be 10-80 MHz. The scatterer diameter (𝑑) and frequency bandwidth were chosen to 

approximately mimic the BSC extraction of tumors in [64] wherein the mean radius of the 

scatterers ranged between 6.7-8.9 µm and the BSC was examined in 10-105 MHz. To observe the 

variation of BSC with impedance contrast, two sets of 3DZMs were simulated: 1) Set 1 had 

3DZMs populated with weak scatterer with an acoustic impedance 2% higher than the background 

water and 2) Set 2 had 3DZMs populated with strong scatterer with an acoustic impedance 21% 

higher than the background water. Next, for a given volume concentration (ℎ), the random 

positions of the scatterers were generated from a hard-sphere distribution which assumed no 

overlap between the spheres. One realization each was generated for a sparse medium (5% volume 

concentration) and a dense medium (50% volume concentration). The number of scatterers (𝑁) in 

the sparse medium and the dense medium was 49 and 444 respectively. Overall, four 3DZMs of 

two impedance contrasts and two volume concentrations were simulated. Then, the goal of this 

section was to extract each 3DZM’s radially averaged BSC using k-Wave.  

First, single scatterer BSC was extracted for the weak scatterer and the strong scatterer 

using the far-field scheme as shown in Fig. 4.6. A spatial resolution (𝑑𝑥) of 2.5 µm produced 

reasonably accurate BSC in 10-80 MHz bandwidth while having a low run time and was adopted 

for the 3DZM simulations. The 3DZMs are assumed to be isotropic which is a common assumption 

in the study of homogenous tissues in QUS. Hence, the radially averaged BSC was calculated from 

multiple simulations of the given 3DZM. Each 3DZM was rotated with eight (𝑀) equally spaced 
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angles from 0 to 180° along both X-axis and Y-axis. For the resulting 64 (𝑀)) 3DZM copies, the 

far-field scheme of backscatter extraction was applied along Z-axis as shown in Fig. 5.2. The setup 

was suitably designed to meet the rules in Equations (4.21)-(4.23). Equation (4.2) was applied to 

compute the BSC of each 3DZM copy. To be consistent with chapter 4, the scattering volume was 

assumed to be a cube with a width 𝐿 (𝑉 = 𝐿T). Finally, the acquired BSC was averaged across all 

the 𝑀) 3DZM copies to generate the radially averaged BSC. The simulation and setup parameters 

for the single scatterer and a single 3DZM are summarized in Table 5.1 and Table 5.2, respectively. 

Next, for the sparse 3DZMs, the theoretical BSC is calculated using Eq. (5.7) by assuming 

incoherent scattering. For the dense 3DZMs, the structure function was numerically calculated 

(𝑆𝐹+>C43-:AB) by applying Eq. (5.8), also in a radially averaged manner. Note that the dense 

3DZMs had the same spatial distribution across impedance contrasts. Then, their corresponding 

theoretical BSC was calculated by applying Eq. (5.9).  

 

Fig. 5.2. Vertical cross-section of the far-field scheme to extract the exact BSC of a 3DZM. 
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Table 5.1. Simulation and setup parameters for extracting the BSC of a single scatterer 
Parameters Simulation 

Transducer 
Radius (𝛼) 10 µm 

Center frequency 20 MHz, 60 MHz 
3-dB Bandwidth 30% 

Scatterer 

Scatterer diameter (𝑑) 20 µm 

Scatterer Sound speed 1495 m/s (weak scatterer), 
1628 m/s (strong scatterer) 

Scatterer Density 1010 kg/m3 (weak scatterer), 
1100 kg/m3 (strong scatterer) 

Background 
Sound speed 1480 m/s 

Density 1000 kg/m3 

Other 𝑟' (Distance between transmitter 
and scatterer) 400 µm 

Computational 
domain 

Grid spacing (𝑑𝑥) 2.5 µm 1 µm 
Time step (𝑑𝑡) 0.38 ns 0.12 ns 

 

Table 5.2 Simulation and setup parameters for extracting the BSC of a rotated 3DZM copy 
Parameters Simulation 

Transducer 
Radius (𝛼) 50 µm 

Center frequency 20 MHz, 60 MHz 
3-dB Bandwidth 30% 

3DZM 

Width (𝐿) 192 µm 
Scatterer diameter (𝑑) 20 µm 

Scatterer Sound speed 1495 m/s (weak scatterer), 
1628 m/s (strong scatterer) 

Scatterer Density 1010 kg/m3 (weak scatterer), 
1100 kg/m3 (strong scatterer) 

Volume concentration 5%, 10%, 50% 

Background 
Sound speed 1480 m/s 

Density 1000 kg/m3 

Other 𝑟' (Distance between transmitter 
and scatterer) 1.6 mm 

Computational 
domain 

Grid spacing (𝑑𝑥) 2.5 µm 
Time step (𝑑𝑡) 0.38 ns 
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5.4 Results 

The extracted differential backscatter cross-section for the single scatterer simulations are 

plotted in Fig. 5.3. The extracted and averaged BSC for the rotated copies of the sparse 3DZM and 

the dense 3DZM are plotted in Fig. 5.4 and Fig. 5.5, respectively. In Figs. 5.4 and 5.5, the radially 

averaged BSC is compared with the Anderson BSC from the incoherent scattering theory. In Fig. 

5.6, the radially averaged BSC of the dense 3DZM is compared with Anderson BSC from both 

incoherent and coherent scattering theory.   

 

Fig. 5.3. Extracted differential backscatter cross-section for the single scatterer for (a) weak scatterer with 
2% impedance contrast and (b) strong scatterer with 21% impedance contrast. 

 

Fig. 5.4. Extracted and averaged BSC for 3DZMs with 5% volume concentration and 49 scatterers for (a) 
weak scatterer with 2% impedance contrast and (b) strong scatterer with 21% impedance contrast. The 
extracted BSC is compared with Anderson's theory for incoherent scattering (Eq. (5.7)). Spatial resolution 
(𝑑𝑥) = 2.5 µm. 
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Fig. 5.5. Extracted and averaged BSC for 3DZMs with 50% volume concentration and 444 scatterers for 
(a) weak scatterer with 2% impedance contrast and (b) strong scatterer with 21% impedance contrast. 
The extracted BSC is compared with Anderson's theory for incoherent scattering (Eq. (5.7)). Spatial 
resolution (𝑑𝑥) = 2.5 µm.  

 

Fig. 5.6. Radially averaged BSC for 3DZMs with 50% volume concentration and 444 scatterers for (a) 
weak scatterer with 2% impedance contrast and (b) strong scatterer with 21% impedance contrast. The 
extracted BSC is compared with Anderson's theory for incoherent scattering (Eq. (5.7)) and coherent 
scattering (Eq. (5.9)). Spatial resolution (𝑑𝑥) = 2.5 µm.  

 

5.5 Discussion 

The radially averaged BSC for the sparse 3DZMs approximately matched the Anderson 

theory for incoherent scattering, as shown in Fig. 5.4. The small mismatch observed for the strong 
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scatterer at higher frequencies, as shown in Fig. 5.4(b), is due to insufficient spatial resolution. 

This mismatch is also observed in the single scatterer differential backscattering cross-section 

results for the strong scatterer in Fig.5.3(b). This result shows that the k-Wave modeling was 

accurate in simulating and extracting the BSC from a collection of spheres and in capturing the 

incoherent scattering from the sparse medium. In the future, this modeling and BSC extraction 

exercise can be implemented for the full-fledged 3DZM prepared from tissue histology.  

Next, the radially averaged BSC for the dense 3DZMs did not match the Anderson BSC 

for incoherent scattering (Fig. 5.5) as expected. In contrast, the radially averaged BSC was closer 

to the Anderson BSC for coherent scattering (Fig. 5.6) albeit with a notable exception. Specifically, 

while there was good matching in 10-50 MHz between the acquired and theoretical BSC, there 

was a significant mismatch in 50-65 MHz for both the weak scatterer and the strong scatterer. 

This was because the dense 3DZM’s BSC deviated from the coherent scattering theory at the nulls 

while the sparse 3DZM’s BSC had good matching with the incoherent scattering theory at the nulls 

of the single scatterer BSC. Interestingly, this mismatch was observed for both impedance 

contrasts. So, the mismatch is possibly due to one of the following reasons: 1) It is an artifact of 

the setup, or the ‘rotate and average’ function applied on the 3DZM. 2) The scattering assumptions 

of plane wave incidence and the absence of multiple scattering were violated due to dense 

heterogeneity. Since the mismatch was present for both impedance contrasts, it was likely not 

caused by a violation of the weak scattering assumption.  

In the future, the same 3DZM copies and the setup can be simulated using the Kemmerer 

method [7] in Field-II. Since Field-II uses the spatial impulse response method, assumptions of 

plane wave incidence and the absence of multiple scattering are built into the simulation method. 

If the mismatch disappears in the radially averaged BSC, then it can be concluded that the BSC 

obtained from k-Wave is accurate and is the result of a full-wave simulation that transcends the 

scattering assumptions. Such a result would be valuable and would build a strong case for full-

wave simulations in studying acoustic structure function, especially in dense mediums. On the 

contrary, if the BSC mismatch persists in Field-II, then it is possibly an artifact of the setup or the 

rotation and averaging of 3DZMs. Then, techniques would have to be designed to eliminate these 

artifacts.  
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CHAPTER 6 

IMPROVING SIMULATION ACCURACY BY APPLYING 

STAIRCASE-FREE DISCRETIZATION OF HETEROGENEOUS 

MEDIA 

 

6.1 Motivation 

As explained in Chapter 2, k-Wave adopts a discrete spatial and discrete temporal scheme 

to model acoustic wave propagation. When discretizing continuous media, the simulation accuracy 

improves with a higher spatial resolution (or smaller grid spacing). This improvement was 

observed in Chapter 3 for acoustic reflection and transmission and in Chapter 4 for acoustic 

scattering. However, the high spatial resolution also leads to large grid sizes and hence high 

computational cost. To navigate this dilemma, this chapter extends a method proposed by Wise et 

al. [66] to improve simulation accuracy even at low spatial resolutions. K-Wave relies on spatial 

FFT to compute the gradients of pressure and particle velocity in the wave equation. Hence, the 

discrete and finite spatial frequencies supported by a simulation form the basis functions ℬ for 

expressing all spatial objects. Wise et al. showed that while discretizing a continuous source object, 

a projection onto ℬ produces a more accurate simulation as opposed to a simple rectangular grid 

sampling. They applied this staircase-free technique to discretize sources and sensors. This chapter 

builds on their work to show that for linear wave propagation, the staircase-free technique can be 

applied to the discretization of sound speed and density maps as well. Specifically, staircase-free 

discretization was applied to continuous 3DZMs to improve the accuracy of the simulated 

backscatter at low spatial resolutions.  

6.2 Theory  

The wave equations in k-Wave for linear wave propagation in an attenuative medium are 

given in Equations (2.1) – (2.3) [23]. However, for a non-attenuative medium assumed in Chapters 

4 and 5, pressure-density relation is given by 
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𝑝 = 𝑐')𝜌 .       (6.1) 

By combining Equations (2.1), (2.2), and (6.1), the wave equation is represented as  

∇)𝑝 − $
:!%

!%6
!#%

= 𝜌'∇ ∙ 𝑺𝑭 −
!
!#
𝑆( .     (6.2) 

In Equations (2.1), (2.2), and (6.2), the wave equation is linear with the source terms 𝑺𝑭 

and 𝑆(. This statement remains true for non-linear wave propagation and attenuative media. 

Hence, one interpretation of the staircase-free method is to perform spatial anti-alias filtering of 

continuous source objects before rectangular discretization. The continuous source objects would 

have infinite spatial frequency support, whereas the support of the filtered object would be ℬ. On 

the contrary, the linear wave equation cannot be considered linear with the density map (𝜌') and 

the sound speed map (𝑐') because of the 1/𝜌' term in Eq. (2.1) and the 𝑐') term in Eq. (6.1). 

However, for small variations in sound speed and density map, the linear wave equation can be 

considered to be linear with Δ𝜌'/𝜌' and Δ𝑐'/𝑐' akin to small-signal analysis in circuit theory. 

Hence, the staircase-free discretization can be extended to impedance maps with small variations 

for linear wave propagation. However, this assumption will break down for non-linear wave 

propagation and attenuative media due to a more complicated wave equation.  

Although Wise et al. discuss different ways of applying the staircase-free discretization, in 

this work, the spatial FFT-based anti-alias filtering approach will be used. This approach will be 

illustrated with the discretization of a continuous 2D object, a circle, with a spatial resolution of 

𝑑𝑥. The traditional k-Wave scheme discretizes the circle at the rectangular grid points as shown in 

Fig. 6.1. In other words, a continuous circle was spatially sampled at a rectangular spatial 

frequency (𝑘>, 𝑘b) = (1/𝑑𝑥, 1/𝑑𝑥) = (𝑘', 𝑘'), implying that the Nyquist spatial frequency is 

(𝑘'/2, 𝑘'/2). However, since there was no anti-alias filtering performed, the baseband signal (2D 

circle in this case) would be distorted by the aliased content from higher frequencies. This 

distortion in the baseband signal would lead to distortions in the acquired BSC results as well.   

 

 



 
60 

 

Fig. 6.1. Traditional rectangular discretization scheme in k-Wave. 

 

In staircase-free discretization, the circle was rectangularly pre-sampled at a 𝑀-times 

higher spatial frequency (𝑑𝑥/𝑀 spatial resolution) as shown in Fig. 6.2. Then, spatial FFT was 

applied to convert the pre-sampled circle to spatial-frequency domain. Next, this spatial-frequency 

representation was filtered within a square region such that |𝑘>|, |𝑘b| < 𝑘'/2. Finally, inverse 

spatial-FFT was applied and then rectangularly resampled with a spatial resolution of 𝑑𝑥. This 

process ensures that the following spatial frequency ranges (𝑘'/2 < |𝑘>|, |𝑘b| < 𝑀𝑘'/2) are not 

aliased into baseband.  

 

Fig. 6.2. Staircase-free discretization scheme with an up-sampling factor of 𝑀 in k-Wave. 
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6.3 Methodology 

To validate that the staircase-free discretization approach works for discretizing speed of 

sound and density maps, the approach was applied on a 1 mm single fluid scatterer for a spatial 

resolution (dx) of 100 µm. Three impedance contrasts (Δ𝑧/𝑧') of 2%, 21%, and 125% were 

staircase-free discretized and rectangularly discretized, and the differential backscatter cross-

section was extracted using the far-field scheme as shown in Fig. 4.6 in a 1.0-3.5 MHz frequency 

bandwidth. RMS error values were also calculated for these results by comparison with 

Anderson’s theory as per Eq. (4.24). The setup parameters (𝑑, 𝛼, and 𝑟') were the same as Chapter 

4, as summarized in Table 4.1. For a fluid scatterer, impedance contrast of 125% was unrealistic 

and typically would have to support shear waves. However, 3D elastic simulations in k-Wave also 

use the spatial FFT approach. Hence this test was intended to prove the efficacy of staircase-free 

discretization in any future linear elastic k-Wave simulations.  

Next, staircase-free discretization was applied on the 192 µm sparse 3DZM with a 5% 

volume concentration and populated with 20 µm scatterers from Chapter 5. A spatial resolution of 

2.5 µm was used in this test. Two impedance contrasts (Δ𝑧/𝑧') of 2% and 21% were staircase-free 

discretized and rectangularly discretized, and the radially averaged BSC were extracted using the 

far-field scheme as shown in Fig. 5.2 in a 10-80 MHz frequency bandwidth. The setup parameters 

(𝐿, 𝑑, 𝛼, and 𝑟') were the same as Chapter 5 and are summarized in Table 5.1. An 8x pre-sampling 

was followed in the discretization of both the single scatterer and the 3DZM.  

6.4 Results 

The differential backscatter cross-section results for the 1 mm single scatterer are plotted 

in Fig. 6.3 for the traditional and staircase-free discretization and compared with the theoretical 

Anderson differential backscatter cross-section. The corresponding RMS error values are tabulated 

in Table 6.1. Next, the radially averaged BSC results from the sparse 3DZMs are plotted in Fig. 

6.4 for the rectangular and the staircase-free discretization and compared with the Anderson BSC 

[50] for incoherent scattering. 
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Fig. 6.3. Extracted differential backscatter cross-section for rectangular and staircase-free discretization 
compared with Anderson theory for an impedance contrast of (a) 2% (b) 21% and (c) 125%. Spatial 
resolution (dx) = 100 µm, scatterer diameter = 1 mm.  
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Fig. 6.4. Radially averaged BSC of the sparse 3DZM (ℎ = 5%, 𝑁 = 49) for rectangular and staircase-free 
discretization compared with Anderson theory for an impedance contrast of (a) 2% and (b) 21%. Spatial 
resolution (dx) = 2.5 µm, scatterer diameter = 20 µm, and 3DZM width = 192 µm. 

 

Table 6.1. Extracted differential backscatter cross-section’s RMSE (𝜎`,](fU) compared with 
Anderson's theory for the single scatterer simulations 

Relative 
impedance 

contrast 

Anderson 
BSC (peak 

value) 
(cm2/sr) 

𝜎`,](fU (cm2/sr) 𝜎`,](fU/max 𝜎`,[+;43?D+ (%) 

Rectangular 
discretization 

Staircase-free 
discretization 

Rectangular 
discretization 

Staircase-free 
discretization 

2% 2.64E-07 2.38E-07 2.84E-08 90.1 10.8 
21% 2.86E-05 1.74E-05 3.53E-06 60.9 12.3 
125% 3.13E-04 4.51E-04 3.88E-05 143.9 12.4 

 

6.5 Discussion 

As shown in Fig. 6.3, staircase-free discretization was able to significantly improve the 

accuracy of backscatter results at a low spatial resolution of 100 µm. Additionally, the staircase-

free discretization was also shown to be effective for 3DZMs as shown in Fig. 6.4. These results 

show that for frequency bandwidths lower than spatial Nyquist, staircase-free discretization of 

continuous media can ensure accurate backscatter simulations. The staircase-free discretization 

can be especially useful when faced with simulation memory constraints. For instance, discrete 

histology-based tissue 3DZMs can be spatially down-sampled using the staircase-free approach if 
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the bandwidth of interest is much lower than the spatial Nyquist. The down-sampling can then lead 

to smaller grid sizes and consequently lower memory and run time.  

However, there are some limitations to the staircase-free approach. First, it will work well 

for low to moderate impedance contrasts (Δ𝑧/𝑧' < 20%, such as those observed in soft tissues) but 

may not work for high impedance contrasts (Δ𝑧/𝑧' > 100%) as explained in section 6.2. However, 

this limitation does not affect the simulation of scattering in soft tissues. Second, this technique 

may not work for non-linear wave propagation and in attenuative media, as highlighted in section 

6.2. Finally, the higher spatial sampling of continuous objects requires large grids, often leading 

to prohibitively large memory requirements and pre-processing time. For instance, say a 

rectangular grid has a simulation time of 𝑇 seconds/time-step and memory requirement of 𝑀𝐸𝑀 

in a computing system. Then, an 8x pre-sampling in the same system will roughly have a pre-

processing time of 8T𝑇 seconds for implementing the FFT-IFFT step in staircase correction. 

However, a more stringent limitation is the memory requirement which would approximately be 

8T𝑀𝐸𝑀/25 ≈ 20𝑀𝐸𝑀. Factor 25 in the denominator occurs due to the peculiarity of  the 

implementation of rectangular grids in k-Wave (see Eq. (4.1) in [23]). 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

In this work, k-Wave was successfully applied in two different QUS applications – to 

model planar acoustic reflection and transmission in Part 1, and to model acoustic backscatter from 

fluid scatterers in Part 2.  

In Part 1, a novel and simple method capable of simultaneously measuring phantom 

attenuation coefficient (AC) and surface membrane transmission loss was proposed. Then, it was 

validated to be accurate and precise, experimentally and in k-Wave simulation. In contrast to the 

experimental validation, k-Wave allowed programming of the phantom properties. Hence, the 

method's accuracy could be quantified by comparing acquired phantom AC with the ground truth.  

Part 2 accurately modeled linear acoustic scattering from a single fluid scatterer and a 

sparsely distributed collection of monodisperse fluid scatterers for plane wave incidence in k-

Wave. The exact, diffraction-free backscatter coefficient (BSC) was acquired for both cases and 

validated by comparing with the Anderson theory for the single scatterer and with the incoherent 

scattering theory for the scatterer collection. In the process, the Chen method [1] of extracting the 

BSC of a random medium using a planar reference was modified to suit a single scatterer. 

Additionally, the staircase-free representation of sources proposed by Wise et al. [66] was 

extended to the heterogeneous simulation medium, significantly reducing the computational 

requirements for simulating single scatterers and the scatterer collection. Finally, BSC was 

acquired for a densely distributed collection of monodisperse fluid spheres and compared with 

structure function (SF) theory. The acquired BSC matched structure function theory at lower 

frequencies but significantly diverged at nulls of the single scatterer BSC. Interestingly, this 

artifact was not observed for the sparse medium simulation and must be examined more closely in 

future research studies.   
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7.2 Future work 

As highlighted in Chapter 3, the incident acoustic waves for the weakly focused transducers 

are only approximately planar. Hence, the phantom AC measurement can be improved with 

diffraction correction. A closed-form analysis of this effect is complicated. Instead, a simulation 

in k-Wave is ideal for this exploration since it allows the user to visualize and quantify the incident 

and reflected waves. So, it would be possible to implement either an approximate or an empirical 

diffraction correction.  

The study of acoustic scattering in k-Wave can be first extended to non-linear and elastic 

wave propagation supported by the tool. Such an exercise will be valuable in QUS research related 

to bones, skull, harmonic imaging, contrast microbubble imaging, among others. Next, the BSC 

and structure function artifacts observed for the dense monodisperse medium in k-Wave must be 

further examined. Moving towards realistic cases, the full-wave scattering simulations in k-Wave 

can be extended to polydisperse distributions and tissue histology-based 3D impedance maps 

(3DZM). By leveraging the full-wave simulation results, such an exploration in k-Wave can lead 

to many innovations in QUS such as 1) development of better scattering models leading to better 

detection and estimation, 2) training of learning networks that implement model-free detection and 

estimation, and 3) experimentation and development of transducer architectures and excitation 

schemes specific to a given QUS application. Finally, the limits of staircase-free discretization 

must be explored across grid sizes, spatial resolution, pre-sampling factor, impedance contrast, 

and medium attenuation.  
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