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ABSTRACT

Emergent computer systems in transportation, healthcare, and enterprise systems are
increasingly adopting data-driven techniques using machine learning and artificial intel-
ligence to automate their operation, management, and control. Their widespread use in
mission-critical services that involve humans means that it is of paramount importance
to provide an ever-increasing level of runtime system dependability. Dependability is a
cross-cutting issue spanning the system stack, including hardware, software, and algo-
rithms that compose the system. In addition to existing challenges, such as issues of fail-
ures, load balancing, and scalability, a significant challenge arises from the fact that these
systems must make decisions in the presence of uncertainties stemming from the sys-
tem (e.g., transient failures), environment/data (e.g., out-of-training distribution data),
and computational models (e.g., inadequate training). An erroneous decision by the sys-
tem, if not detected, will lead to silent failures and degradation that will propagate to
all layers of the system, ultimately leading to catastrophic outcomes. Therefore, data-
driven automation combined with the ever-increasing scale and complexity has exposed
these systems to emerging failures, attacks, and performance degradation modes that are
difficult to deal with using existing techniques in a dynamically evolving, multi-tenant
environment. The phenomenon is exemplified by several newsworthy headlines, such as
an Uber self-driving car colliding with and killing a pedestrian.

This thesis develops novel data-driven methods and techniques for assuring depend-
ability by (i) understanding the fundamental challenges to achieving system dependabil-
ity that emerge due to the use of data-driven automation techniques, (ii) rigorously vali-
dating the system, including its runtime operational characteristics, and (iii) developing
runtime monitoring techniques to detect, identify, and isolate events that threaten sys-
tem dependability. The methods proposed in this thesis have been demonstrated on sig-
nificant and broad user-inspired cases of societal importance with significantly different
dependability requirements: (i) autonomous vehicles (AVs), and (ii) large-scale high-per-

formance computing (HPC) systems.
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CHAPTER 1: INTRODUCTION

Emergent computer systems in transportation, healthcare, and enterprise systems are
increasingly adopting data-driven techniques using machine learning and artificial intel-
ligence to automate their operation, management, and control. Their widespread use in
mission-critical services that involve humans means that it is of paramount importance
to provide an ever-increasing level of runtime system dependability’. In addition to ex-
isting challenges, such as issues of failures, load balancing, and scalability, a significant
challenge arises from the fact that these systems must make decisions in the presence of
uncertainties stemming from the system (e.g., transient failures), environment/data (e.g.,
out-of-training distribution data), and computational models (e.g., inadequate training)
(see Fig. 1.1). An erroneous decision taken by the system, if not detected, will lead to
silent failures and degradation that will propagate to all layers of the system, ultimately
leading to catastrophic outcomes. Therefore, data-driven automation combined with the
ever-increasing scale and complexity has exposed these systems to emerging failures, at-
tacks, and performance degradation modes that are difficult to deal with using existing
techniques in a dynamically evolving, multi-tenant environment, as exemplified by sev-

eral newsworthy headlines [2-5].
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Figure 1.1: Threats & Challenges in achieving dependability in mission-critical systems.

! Avizienis et al. define dependability, in [1], as an integrating concept that encompasses the following
attributes: availability, reliability, safety, integrity, and maintainability. We extend this definition to include
performance and latency, as these attributes have significant impact on safety of a control-driven system.



1.1 GOALS AND USE-CASES

Dependability is a cross-cutting issue spanning the system stack, including hardware,
software, and algorithms that compose the system. The goal of this thesis is to assure
dependability by (i) understanding the fundamental challenges to achieving system de-
pendability that emerge due to the use of data-driven automation techniques, (ii) rigor-
ously validating the system, including its runtime operational characteristics, and (iii)
developing runtime monitoring techniques to detect, identify, and isolate events that
threaten system dependability.

This thesis uses significant and broad user-inspired cases of societal importance with
significantly different dependability requirements: (i) autonomous vehicles (AVs), and
(i) large-scale high-performance computing (HPC) systems. We use AVs as a use case
because (i) they are highly heterogeneous and fully autonomous systems and (ii) they
showcase the difficulties in assessing ML-driven systems [6]. We use HPCs because (i)
they are fundamental to scientific computing and (ii) they serve as a bedrock for enabling
latency-sensitive and computationally demanding autonomous applications, such as self-
driving cars. Autonomous systems such as self-driving cars generate petabytes of data
and use that data for training and inference in real time. The ability to process such
large amounts of data while meeting latency deadlines can only be enabled via high-

performance computing.

1.2 RESEARCH CHALLENGES AND SUMMARY OF CONTRIBUTIONS

This section first provides a summary of technical contributions across different appli-
cation domains and then describes the innovations in each application domain.

Empirical assessment: An empirical assessment of field datasets from real-world pro-
duction systems enables (i) discovery of failure modes and operational characteristics
encountered in the field; (ii) quantification of failure statistics, the relative contribution
of each failure mode, and failure propagation paths; and (iii) development and identifi-
cation of assertions to guide verification, validation, and runtime monitoring. However,
using field-failure datasets is challenging, as the internal details of the system may not be
available or interpretable (e.g., in the case of DNNs). Moreover, these datasets are inher-
ently noisy and incomplete, forcing the user to make assumptions about the system that
may not be true. This thesis addresses these challenge by designing data analysis tech-
niques that overlay field-failure datasets with an abstract representation of the control

system, enabling us to pose factual and counterfactual questions (use causal reasoning)



to examine the observed safety hazards. Using empirical techniques, we have uncov-
ered insights and results that highlight the need to fundamentally redesign and reinvent
dependability techniques. For example, our empirical results show that adversarial at-
tacks [7] and random transient faults [8] have almost negligible impact on the vehicle’s
safety due to temporal and spatial resiliency. Therefore, the attacker or robust depend-
ability techniques must focus on end-to-end system dependability. Recent techniques
that focus only on ML/AI dependability significantly mischaracterize the problem as
these techniques suffer from over-simplification of equating ML models to autonomous
systems.

Design-time assessment and validation: The evolutionary, context-sensitive behavior
of such systems can cause unexpected emergent behavior or unforeseen interactions that
were not necessarily envisioned at the architectural stage of the system design. More-
over, as these systems are expected to work without human oversight, these data-driven,
mission-critical systems must be rigorously validated and tested in the pre-deployment
phase to ensure their dependability in the field. However, it is difficult to assess and
validate such systems for several reasons, including: (i) Although conducting real-world
validation tests in the field is valuable, it is not viable to test mission-critical systems with
real workloads. For example, testing approaches like chaos engineering with real user
traffic [9] would be extremely dangerous for humans in the case of self-driving cars and
could lead to significant loss of money and value in case of bank transactions, in both
cases posing significant ethical risks. (ii) Enumerating over fault/attack space and in-
puts, which is combinatorially large, is infeasible. This thesis addresses those challenges
in two ways: (i) Testing the end-to-end system properties, with both hardware and soft-
ware in the loop, in a controlled environment. Such a testing approach avoids real-world
human subjects but is realistic at the same time. (ii) Modeling the problem of identifying
critical adverse events (such as high load, faults, rare and invalid inputs, attacks) that
threaten dependability as a machine-learning problem under the causal framework. Not
only do these techniques help validate the system, they also enable curation of standard
benchmarks for comparison and testing of systems in a scalable way. We are the first
to use causal and counterfactual analysis, especially do-calculus, for testing large-scale
autonomous systems.

Runtime assessment: Due to monetary cost and design difficulties, it is infeasible
and often impossible to identify all adverse events that threaten the system properties;
thereby, leaving the system with a significant number of defects. Hence, these systems
are bound to experience failures leading to catastrophic outcomes in the field, as exem-

plified by several newsworthy headlines [2-5]. In this thesis, we address issues related
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to both (i) the software and hardware and (ii) algorithms. Traditionally, system designers
have relied on designing assertions (e.g., heartbeats) and redundancy techniques (e.g.,
checksum and voting) for runtime monitoring and handling of adverse events. How-
evet, such techniques do not scale well for large-scale systems, as there are hundreds of
thousands of components. Moreover, heartbeat-based techniques are misleading because
they hide partial failures and are subject to system noise [10]. Similarly, designing test-
(or probe)-based assertion techniques for every single component on a case-by-case basis
is infeasible. Redundancy techniques, such as duplication, do not remove defects present
in the models and heuristics used by these systems. N-version programming or ensem-
ble of models is appealing for these systems. However, these solutions are costly and, in
some cases, exacerbate the problem due to the high uncertainty and low accuracy of these
models [11]. To address those challenges, this thesis develops end-to-end online testing
techniques that use causal models not only to evaluate the dependability of the system
but also to assess the risk associated with taking action so as to proactively reduce risk
and avoid catastrophes.

Next, we describe the detailed contributions in each of the two use-case application

domains.

1.3 AUTONOMOUS VEHICLES

Autonomous vehicles (AVs), such as self-driving cars and unmanned aerial vehicles,
are complex systems that use artificial intelligence (AI) and machine learning (ML) to
integrate mechanical, electronic, and computing technologies to make real-time driving
decisions. Al enables AVs to navigate complex environments while maintaining a safety
envelope [12, 13] that is continuously measured and quantified by onboard sensors (e.g.,
camera, LIDAR, RADAR) [14-16].

Industry-grade AVs are equipped with detection and mitigation techniques to handle
dependability challenges; however, a significant number of failures silently escape de-
tection. Such silent failures, if not dealt with, lead to erratic driving behavior and safety
hazards, thereby reducing the trust we place on them, as exemplified by several headline-
making AV crashes [3, 2]. Moreover, an adversary can masquerade an attack as a silent
failure by intelligently perturbing the environment or models to evade detection and suc-
cessfully cause a safety hazard [17]. Hence, there is a compelling need for a comprehen-
sive assessment of AV technology to identify and handle those silent failures.

Characterizing production dataset. We analyzed the field-failure dataset on disen-



gagements and accidents of self-driving cars (Chapter 2). There are several challenges in
analyzing field dataset on self-driving cars across different car manufacturers: (i) manu-
facturers have not disclosed the architectures of their autonomous vehicles, and (ii) these
datasets are inherently noisy and incomplete. To address these challenges, we developed
LogDriver [6], which uses a system theoretic process analysis (STPA)-based causal model
to construct a hypothesized control structure of a model self-driving car based on tech-
nical documentation [18-22]. We used LogDriver to identify multidimensional causes of
AV disengagements/accidents from field datasets and show several results.

The California Department of Motor Vehicles (CA DMV) mandates that all manufac-
turers testing AVs on public roads file annual reports detailing disengagements (a failure
that causes the control of the vehicle to switch from the software to the human driver)
and accidents (an actual collision with other vehicles, pedestrians, or property) [23]. We
analyzed field data collected over a 26-month period from September 2014 to November
2016 (part of the DMV’s 2016 and 2017 data releases), containing data from 12 AV man-
ufacturers for 144 vehicles that drove a cumulative 1, 116, 605 autonomous miles. Across
all manufacturers, we observed a total of 5, 328 disengagements, 42 of which led to ac-
cidents. The analysis shows the following: (i) For the same number of miles driven, for
the manufacturers that reported accidents, human-driven non-AVs were 15 — 4000x less
likely than AV’s to have an accident. (ii) 64% of disengagements were the result of prob-
lems in, or untimely decisions made by, the machine learning system. (iii) In terms of
reliability per mission, AVs are 4.22x worse than airplanes, and 2.5x better than surgical
robots. (iv) Trend analysis of disengagements and accidents per mile reveal that while in-
dividual components of AV technology (e.g., vision systems, control systems) may have
matured, entire AV systems are still in a “burn-in” phase. The analysis presented in this
thesis shows a distinct improvement in the performance of AVs over time. However, it
also demonstrates the need for continued improvement in the dependability of this tech-
nology.

Scaling validation techniques. A vital issue for self-driving cars is that of rigorously
demonstrating and validating their safety. The evolutionary, context-sensitive behavior
of autonomous systems can cause unexpected emergent behavior or unforeseen interac-
tions that were not necessarily envisioned at the architectural stage of the system design.
The causes of “unexpected” behaviors include unforeseen interactions between auton-
omy and vehicle, various notions of failure and hazard scenarios, faults (design and
physical), and security threats. However, it is difficult to assess and validate such sys-
tems for several reasons, including: (i) Although conducting real-world validation tests

in the field is valuable, it is not viable to test mission-critical systems with real-workloads.
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For example, testing approaches like chaos engineering with real user traffic [9] would be
exteremely dangerous for humans in case of self-driving cars and could lead to signifi-
cant loss money and value in case of bank transactions, thereby, posing significant ethical
risks. (ii) Enumerating over fault/attack space and inputs, which is combinatorially large,
is infeasible.

We demonstrated the use of causality-driven models, which we implemented using
probabilistic graph models, to assess the safety of autonomous vehicles (AVs) with re-
spect to reliability and security vulnerabilities (Chapter 3). We developed the Bayesian
Fault Injector (BFI) [24], an intelligent resiliency assessment tool that can identify situa-
tions and faults that will likely lead to violations of safety and resiliency requirements.
The BFI relies on (i) a fault injection (FI) engine, (ii) an ML-based fault selection engine,
and (iii) safety models (e.g., collision avoidance in AVs) and reliability models (e.g., of the
ability to tolerate up to £ failures). Fault injection is the process of deliberately introducing
taults in the system by corrupting values of variables or corrupting software or hardware
components to analyze the system behavior in the presence of faults. It is difficult and of-
ten unnecessary to simulate all possible faults in the system. We developed an ML-based
fault selection engine for causal and counterfactual reasoning about the system state in
terms of safety and reliability under a fault scenario. The functional relationship among
the system software (represented by a control-flow graph), the system state (safety and re-
liability), and safety/reliability is modeled using Temporal Bayesian Networks (TBNs), a
probabilistic graphical model (PGM)-based ML approach, thus bridging the gap between
model-based techniques [25] and data-driven techniques [9]. TBNs are trained using sys-
tem execution traces. TBNs significantly reduce the need to gather training data (system
traces), which in turn reduces the computational overhead and training time.

BFI is highly effective and scalable (1600x faster than traditional methods) in finding
bugs (5 unique bugs) and failure patterns (500 unique failure patterns) that can lead fatal
vehicle collisions.

Exposing security vulnerabilities. The above-mentioned techniques are also used by
the attackers to identify runtime vulnerabilities in the system. However, a challenge for
an attacker is to hide the footprint and evade detection. One approach to evade detec-
tion is to masquerade the attack as a naturally occurring random fault in the system.
However, it is challenging to masquerade attacks as faults in AVs because of the inbuilt
compensation in the system and environment. For example, state tracking algorithms
such as Kalman and particle filters tolerate random noise. Similarly, an attack launched
on an AV on an empty road will not result in a collision. Moreover, the intrusion detec-

tion system can detect the attack if the attacker maintains its presence for too long in the
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system.

The goal of our work is to identify the steps that an adversary must follow to success-
fully mount the attack so we can build preventive security measures. Using BFI as a core,
we created RoboTack, an intelligent malware that helps assess a system’s security and re-
liability (Chapter 4). Contrary to current techniques to counter adversarial attacks, our
approach focuses on evaluating the end-to-end dependability of AVs instead of focusing
only on ML/AI models (e.g., stop-sign attacks). A key feature of RoboTack is its ability
to disguise attacks as accidental/random to evade detection yet cause serious safety/re-
liability incidents (e.g., an accident of an autonomous vehicle). RoboTack does this by
answering the questions of what, how, and when to attack the system being tested by us-
ing a runtime decision framework whose goal is to decrease the safety potential within
some threshold duration. The neural network uses the telemetry data to identify the most
vulnerable system state (answering when) and the corresponding faults (answering what)
that will minimally perturb the system (i.e., without being detected) while still leading
to safety/reliability incidents (answering how). RoboTack demonstrates the steps of an
attack that can be used by an adversary to leverage known faults and failure modes.

A RoboTack-generated attack is highly fatal (15-25x more likely to be fatal than state-
of-the-art adversarial attacks [26]), and it evades known detection techniques.

Reducing runtime overhead of detecting hardware failures. Computational elements,
such as CPUs, GPUs, and ASICs, used in autonomous vehicles (AVs) are susceptible to
transient or permanent hardware faults. Faults may lead to a detectable, uncorrectable er-
ror (DUE) that degrades system availability. Practical implementation autonomous driv-
ing systems include a fail-back system that maintains the safety of the system in the case
of a DUE. In contrast, an undetected error, such as a silent data corruption (SDC), may
cause faulty vehicle behavior that may lead to significant safety hazards, resulting in loss
of human life and serious damage to vehicles [27, 6, 24]. Future trends of increasing code
complexity and shrinking feature sizes will only contribute to increasing the failure rate,
thereby exacerbating the problem. Thus, detecting and mitigating SDCs caused by hard-
ware faults is important.

We developed, DiverseAV, a novel alternative to full duplication to detect transient
and permanent hardware faults that offers high error detection coverage with low per-
formance overheads (<25%), along with corresponding power savings (Chapter 5). Our
approach requires no additional hardware and minimal modification of the AV software.
DiverseAV is a lightweight, software-based redundancy technique that exploits the tem-
poral data diversity present in the sensor data for detecting hardware faults. DiverseAV

creates two redundant data-diverse agents by distributing the sensor data between the
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two agents in round-robin. The sensor data obtained between the two consecutive se-
quential time steps is semantically similar in terms of worldview but significantly dif-
ferent at the bit-level, ensuring state and data diversity between the two agents. The
data-diverse agents use the same underlying agent models (and software code) and are
together responsible for driving the AV. The outputs produced by the two agents are close
to each other in the fault-free case. However, in presence of a safety-critical fault, the out-
puts diverge significantly; thereby, enabling safety-critical fault detection. Since much
of the data processing in each agent depends on the input data rate, each agent receives
half the data and requires roughly half the compute resources. Thus, in DiverseAV, we
time-multiplex the two agents on the shared computational fabric.

DiverseAV detected safety-critical errors caused by the transient and permanent faults
injected into the computational elements with a precision of 0.87 and a recall (which
is equivalent of the detection coverage) of 0.87. DiverseAV outperformed both a fully-
duplicated system and a single agent system (which uses temporal outlier detection tech-
niques) in terms of accuracy.

Assessing and managing risk at runtime. Driving in a dynamic environment with
other actors is inherently a risky task, as each actor influences driving decisions and may
significantly limit the number of choices in terms of navigation and safety plan. The
risk encountered by the Ego actor (i.e., Al-agent under the test) depends on the driv-
ing scenario and the uncertainty associated with predicting the future trajectories of the
other actors (NPCs) in the driving scenario. However, not all NPCs pose a similar risk.
Depending on the NPC'’s type, trajectory, position, and the uncertainty associated with
these quantities, some NPCs pose a much higher risk than others. The higher the risk
associated with an NPC, the more attention must be directed towards that NPC in terms
of resources and safety planning.

In Chapter 6, we propose a metric that captures the importance of each NPC in the
world with respect to their potential to create a safety hazard. In particular, the importance
metric characterizes the decrease in Ego actor’s driving flexibility with respect to a given
NPC or driving scenario. The more constrained the Ego actor, the higher the chance
of a safety hazard, and therefore, the higher is the risk. By characterizing a real-world
dataset using our metric, we find that <0.1% of NPCs in the environment constrain the
Ego actor. We propose a novel neural-network-based model to estimate the importance
metric at runtime with significantly less overhead in terms of compute and memory while
meeting the deadline requirements for runtime monitoring. Moreover, we show that
integrating the importance metric with offline assessment techniques eliminates the need
to test the adverse effect of faults or attacks for all NPCs, as only few NPCs are important
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at any given time.In this way we reduce the test set and provide up to 24x acceleration

over the current state-of-the-art assessment techniques.

1.4 AUTOMATED HIGH-PERFORMANCE COMPUTING SYSTEMS

Driven by the needs of exponentially increasing computation demands for emerging
scientific and commercial applications [28], large-scale computing systems such as HPC
and cloud computing systems are increasing becoming large, complex, and heteroge-
neous by incorporating innovations in hardware architecture, operating systems, net-
work interconnects, and storage. This increase in complexity, heterogeneity, and scale
necessitates the use of automation techniques across the system stack using heuristic-
based and ML/AI methods, as is evident from recent work [29-32, 30, 33-35]. Computer
systems experience a wide range of failure modes [1], such as fail-stop [36, 37], partial-
tailure [38], fail-slow [39, 40], and intermittent failure [41], including resource overload
and congestion [42-45]. Such failures lead to service-level incidents [46, 47], local and
system-wide outages [36], or application failures [37] and slowdown [44, 48] However,
current automation techniques are tuned to handle average-case performance and fail-
stop failures on a per-component/subsystem basis rather than end-to-end system per-
formance and reliability; thus, leading to scaling issues and loss of useful computational
hours. Moreover, these automation techniques work independently of one another and
misdiagnose the root-cause, leading to incorrect mitigation techniques that often worsen
the overall performance and reliability of systems and applications.

Characterizing production datasets. Empirical field-failure and performance charac-
terizations to date have typically been gross breakdowns of occurrence by identified com-
ponent type (memory, voltage regulator, CPU, etc.) and/or by failure type (hardware,
software, network, human, etc.), system wide over a time period. Frequently, the stud-
ies result in presenting failure rate statistics. This type of characterization, while useful,
does not provide sufficient fidelity or understanding to enable continuous assessment
and mitigation of dependability problems. This problem exists because of several chal-
lenges, which include: (i) dealing with the volume, velocity, and veracity of data and
(ii) developing models that enable holistic understanding of the impact of local failures
on end-to-end system dependability.

To address these challenges, we develop domain-driven models using data to capture
the relationship between the end-to-end system dependability and various failure modes.
We collected monitoring datasets from Blue Waters [49-51], which is situated at the Na-



tional Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign. Blue Waters is one of the largest supercomputers at an academic in-
stitution in terms of node count, network, and storage size. This thesis specially focused
on network- and storage-related failures and their impact on application and system per-
formance, which are outlined in Chapter 7 and Chapter 8, respectively.

These studies highlight the issue of misdiagnosis of failure modes. Especially, we find
that issues related to reliability failures and performance anomalies are hard to disam-
biguate, leading to significant performance loss and scaling problems. For example, I/O
requests during reliability failures increase the average completion time of I/O requests
by up to 52.7xcompared to the average I/O completion time in failure- free scenarios (ap-
proximately 200ms). Such issues exist because failure monitors and automated mitigation
techniques operate independently from one another and often cannot address problems
that cut across the system stack.

Detecting, isolating and diagnosing failures at runtime. Using the insights from fail-
ure data, we developed Kaleidoscope [48] to detect various failure modes at runtime
proactively (Chapter 8). In addition to targeting good failure detector properties, such
as completeness and accuracy, we target (i) localization, which pinpoints the location of the
failure at the lowest possible failure containment boundary and (ii) differentiability, which
enables identification of the failure mode.

Kaleidoscope leverages existing hierarchical monitors and uses ensembles of domain-
guided ML models for detection and disambiguation of failure modes. Kaleidoscope uses
probabilistic graphical model (PGM) formalism to jointly analyze and fuse the telemetry
dataset from across the monitors. In this model, the state of the entire system is rep-
resented by a joint distribution over the health state of each component. An inference
on this model using the observations from the monitoring data is used to estimate the
health of each component while accounting for the noise and related uncertainties in
the data. This determination of the failure state localizes failed components in the sys-
tem. Once the failed component(s) is determined, Kaleideoscope uses an unsupervised
machine-learning method, the local outlier factor [52], to identify the anomalous feature
(and hence, the failure mode) that best distinguishes the failed component(s) from the
healthy ones.

Kaleidoscope is a scalable approach (tested on Blue Waters with 25K+ nodes) that is
highly accurate in detecting (99.3% accurate) and disambiguating (95.3% accurate) fail-
ure modes, with low overhead (impact is <0.01% of peak 1/O bandwidth). Moreover,

Kaleidoscope can be used as a long-term characterization tool to inform design decisions.

10



1.5 PRACTICAL DEPLOYMENT & INDUSTRY ADOPTION

Adoption of assessment tools. Our work on assessing autonomous vehicles, using
Bayesian Fault Injector (BFI) [24] to identify vulnerabilities, grabbed worldwide atten-
tion, especially in the USA and China as evident from worldwide press coverage: Sci-
ence Daily [53], Daily Illini [54], Guancha.cn [55], and Space Daily, among others. BFI
was used to evaluate two production-grade, self-driving autonomous driving systems:
(i) NVIDIA’s DriveAV and (ii) Baidu’s Apollo. It also gained attention from other indus-
try members such as LG, Qualcomm, Samsung, and Intel.

Similar to BFI, we developed HPCArrow [56] for assessing high-performance network-
ing interconnects. HPCArrow has been used on two large-scale, high-performance com-
puters (commonly referred to as supercomputers): Edsion (> 5000 nodes) at National
Energy Research Scientific Computing Center (NERSC) and Cielo (> 10000 nodes) at Los
Alamos National Lab (LANL). To date, our fault injection campaign remains one of the
largest efforts to assess the network interconnect of production systems. HPCArrow was
also used to evaluate other high-performance computing systems at Sandia National Lab-
oratories and National Center for Supercomputing Applications.

Adoption of online monitoring and diagnostic tools. We developed Kaleidoscope [48],
an ML-driven monitoring and diagnostic tool, which uses probabilistic graph models and
causal principles. Ideas from Kaleidoscope are being used in production at NCSA Blue
Waters for monitoring and diagnosing file system failures. We also tested our ideas on
IBM Cloud for monitoring and diagnosing customer incidents.

The proposed techniques also serve as a basis on which we developed techniques for
mitigating service-level objective (SLO) violations for microservices [57], networks [42],
and storage [48]. Additionally, the developed technique was combined with reinforce-
ment learning for designing an ML-driven scheduler. Across these domains, we im-
proved the system dependability by up to 100x and reduced performance anomalies by
2 —20x.

1.6 BROADER IMPACTS

Society as a whole is going to witness exponential growth in the adoption of AI/ML-
driven systems in critical application domains such as healthcare, transportation, agricul-
ture, and manufacturing. The availability and deployment of dependable Al-driven sys-
tems are valuable because they (i) increase efficiency of tasks carried out by humans (e.g.,
search and rescue missions, package delivery, and healthcare) and (ii) enable execution
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of tasks that are nearly impossible or dangerous for humans (e.g., mineral mining and
deep-sea exploration). The widespread adoption of such systems in a human-centric en-
vironment necessitates the understanding of Al-engineered systems and their capabilities
in the presence of a wide range of uncertainties from specification to real-time operations.
These next-generation Al-driven systems demand an ever-increasing level of system de-
pendability (i.e., performance, robustness, security, maintainability, and ease of use) not
available today. The classical approach to dependability (availability, fault tolerance, in-
tegrity, security, etc.) is based upon component reliability views and fault/error/attack
management at the architecture level. While necessary, the classical approaches are not
sufficient, and new methods must be developed to account for autonomy and safety re-
quirements.

This thesis is a step in that direction. We develop novel causality-driven techniques
that meet those demands and provide the theory and foundation for designing depend-
able automated and autonomous systems. Methods proposed in this thesis will allow de-
signers to assess and ensure the dependability of such systems. We showcased these tech-
niques on complex mission-critical automated and autonomous systems: (i) autonomous
vehicles (particularly, self-driving cars) and (ii) management of large-scale computing in-
frastructures (HPC and Cloud). Techniques proposed in this work will pave the path
to ensuring the dependability of other autonomous systems, such as unmanned aerial

vehicles, agricultural robots, and kitchen bots, among others.
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CHAPTER 2: AV: FIELD MEASUREMENTS

Autonomous vehicle (AV) technology is rapidly becoming a reality on U.S. roads, of-
fering the promise of improvements in traffic management, safety, and the comfort and
efficiency of vehicular travel. The California Department of Motor Vehicles (DMV) re-
ports that between 2014 and 2017, manufacturers tested 144 AVs, driving a cumulative
1,116,605 autonomous miles, and reported 5,328 disengagements and 42 accidents involv-
ing AVs on public roads. This chapter investigates the causes, dynamics, and impacts of
such AV failures by analyzing disengagement and accident reports obtained from public
DMV databases. We draw several conclusions. For example, we find that autonomous
vehicles are 15 — 4000x worse than human drivers for accidents per cumulative mile
driven; that drivers of AVs need to be as alert as drivers of non-AVs; and that the AVs’
machine-learning-based systems for perception and decision-and-control are the primary

cause of 64% of all disengagements.

2.1 INTRODUCTION

Autonomous vehicle (AV) technologies are advertised to be transformative, with a
potential to improve traffic congestion, safety, productivity, and comfort [58]. Several
states in the U.S. (e.g., California, Texas, Nevada, Pennsylvania, and Florida) have al-
ready started testing AVs on public roads. Prior research into AVs has focused predom-
inantly on the design of automation technology [59-64], its adoption [65], the impact of
AVs on congestion[66], and the legal [67, 68] and regulatory barriers [69-72] for AV im-
plementation. With the increasing popularity and ubiquitous deployment of semi- and
fully-automated vehicles on public roads, safety and reliability have increasingly become
critical requirements for public acceptance and adoption. This chapter assesses, in broad
terms, the reliability of AVs by evaluating the cause, dynamics, and impact of failures
across a wide range of AV manufacturers utilizing publicly available field data from tests
on California public roads, including urban streets, freeways, and highways.

Dataset. The California Department of Motor Vehicles (CA DMV) mandates that all
manufacturers testing AVs on public roads file annual reports detailing disengagements
(a failure that causes the control of the vehicle to switch from the software to the hu-
man driver) and accidents (an actual collision with other vehicles, pedestrians, or prop-
erty) [23]. The focus of the testing program, and of this chapter, is on semi-autonomous
vehicles that require a human driver to serve as a fall-back in the case of failure. In partic-
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ular, we are interested in studying failures that pertain to sensing (e.g., cameras, LIDAR)

and computing systems (e.g., hardware and software systems that enable environment

perception and vehicle control) that enable the “self-driving” features of the vehicles. We
analyze field data collected over a 26-month period from September 2014 to November

2016 (part of the DMV’s 2016 and 2017 data releases), containing data from 12 AV manu-

facturers for 144 vehicles that drove a cumulative 1, 116, 605 autonomous miles. Across all

manufacturers, we observe a total of 5, 328 disengagements, 42 of which led to accidents.

Results. This chapter presents 1. an end-to-end workflow for analyzing AV failure
data, and 2. several insights about failure modes in AVs (across a single manufacturer’s
fleet, across different manufacturers, and in time) by executing the proposed workflow
on the available data. Our study shows:

1. Drivers of AVs need to be as alert as drivers of non-AV vehicles. Further, the small size
of the overall action window (detection time + reaction time) would make reaction-
time-based accidents a frequent failure mode with the widespread deployment of AVs.

2. For the same number of miles driven, for the manufacturers that reported accidents,
human-driven non-AVs were 15 — 4000 x less likely than AV’s to have an accident.

3. 64% of disengagements were the result of problems in, or untimely decisions made by,
the machine learning system.

4. In terms of reliability per mission, AVs are 4.22x worse than airplanes, and 2.5x better
than surgical robots.

These findings demonstrate that while individual components of AV technology (e.g.,

vision systems, control systems) may have matured, entire AV systems are still in a “burn-

in” phase.

The analysis presented in this chapter shows a distinct improvement in the perfor-
mance of AVs over time. However, it also demonstrates the need for continued improve-
ment in the dependability of this technology. It is conceivable (moreover, expected) that
AV manufacturers are performing a similar analysis of data coming from their testing
fleets, but to the best of our knowledge, information on such analysis is not available pub-
licly. Our goal is to support resilience research by characterizing failures of autonomous
vehicles, rather than to further the operational perspective of the manufacturer. Our re-
sults can better inform the design of future AVs.

Organization. Fig. 2.1 shows the end-to-end pipeline for processing failure data from
autonomous vehicles. §2.2 describes two real examples of AV-related accidents on Cali-
fornia roads. §2.3 describes the AVs and the data collection methodology (Stage I of the
pipeline). §2.4 describes the preprocessing, filtering, and natural language processing
(NLP) steps required to convert the data to a format suitable for analysis (Stages II & 111 of
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Figure 2.1: The end-to-end data collection, processing, and analysis pipeline that forms
the basis of this study.

the pipeline). §2.5 describes the statistical analysis of the failure data and summarizes the
insights derived from the analysis (Stage IV of the pipeline). Finally, §2.6-§2.8 describe
the threats to validity, related work and conclusions, respectively.

2.2 CASE STUDIES

In this section, we present two representative case studies based on real events that
occurred in the streets of Mountain View, CA. These case studies illustrate how problems

in the perception, learning, and control systems of an AV can manifest as an accident.

2.2.1 Case Study I: Real-Time Decisions

Example @ in Fig. 2.2 shows a case in which the human driver of the AV proactively
took over the control of the vehicle from the autonomous agent (to prevent an accident)
but was unable to rectify decisions made by the autonomous agent in time to prevent
an accident. The disengagement report (i.e., error logs from the AV combined with post-
mortem analysis performed by the manufacturer) logs the error as either “Disengage
for a recklessly behaving road user”or”“wrong behavior prediction.”
Specifically, a Waymo prototype vehicle was in autonomous mode at a street intersection
when a pedestrian started to cross the street. From the accident report, we find that the
AV decided to yield to the pedestrian but did not stop. The test driver proactively took
control of the car as a precaution. At the same time, there was a car in front of the AV that
was also yielding to the pedestrian, and another vehicle to the rear in the adjacent lane
that was making a lane change. In this complex scenario, the driver did not have many
options other than to brake, and the rear vehicle collided with the back of the AV.
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2.2.2 Case Study II: Anticipating AV Behavior

Example @ in Fig. 2.2 shows a case in which a Waymo prototype vehicle was running
in autonomous mode and was hit by a manual vehicle from the rear at a street intersec-
tion. The disengagement report logs the cause as “Disengage for a recklessly
behaving road user.” In this case, the AV had signaled a right turn and had started
to decelerate for the turn. It came to a complete stop before it started moving again to-
wards the intersection to gauge the traffic coming from the other side in order to make a
safe turn. The movement towards the intersection was required to allow the recognition
system to analyze the scene and produce a movement plan for the car. The driver of the
rear vehicle was confused and interpreted this movement to mean that the AV was conit-
inuing on its path (i.e., making the turn). The driver first stopped (as the AV stopped) and
then started moving (as the AV started to move again). This resulted in a rear collision on
the AV, as the driver could not anticipate the actions of the AV.

2.2.3 Summary

By law, both of those accidents were caused by the drivers in the non-AV; however,
close inspection of the accident reports shows that the AV had a significant share of the
responsibility. The above examples showcase the poor AV decision-making that eventu-

ally leads to accidents.
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Figure 2.2: Accident scenarios.
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1. The street intersections represent complex scenarios in which the AV needs to analyze
multiple traffic flows and make decisions in a constrained environment. Based on our
analysis we attribute the failures to the learning-based perception system, which did
not infer in time the evolving environment dynamics from the onboard sensor systems
(e.g.,, RADAR, LIDAR), leading the learning-based control system to make inadequate
decisions.

2. In both cases, drivers either voluntarily took or were forced to take control from the
autonomous system in complex and dynamic traffic scenarios that frequently gives
them very little time to react and undo the AV’s actions. The perception and reaction
time is crucial in accident avoidance.

3. Drivers in other non-AVs often cannot anticipate decisions made by AVs, which fre-
quently also leads to accidents.

Using the limited publicly available information about the design of the AV systems (e.g.,

[73-76]), we draw our conclusions by analyzing human-entered textual logs that contain

information about accidents and disengagements. Our method localizes failures to the

learning, perception, and decision-and-control subsystems of an AV to understand the

causes of disengagements and accidents.

2.3 AV SYSTEM DESCRIPTION AND DATA COLLECTION

2.3.1 Preliminaries

Autonomous Vehicles

An AV is any vehicle that uses an autonomous driving system (ADS) technology ca-
pable of supporting and assisting a human driver in the tasks of 1. controlling! the main
functions of steering and acceleration, and 2. monitoring the surrounding environment
(e.g., other vehicles/pedestrians, traffic signals, and road markings) [77].

The Society of Automotive Engineers (SAE) defines six levels of autonomy that are
based on the extent to which the technology is capable of supporting and assisting the
driving tasks [77]. The levels of autonomy go from 0 (no automation) to 5 (full, unre-
stricted automation). Levels 0-2 (e.g., anti-lock braking, cruise control) require a human
driver to be responsible for monitoring the environment of the vehicle, with different lev-
els of automation available to support vehicle control tasks. Levels 3-5 are thought of

Here, “control” incorporates both decision and control.
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as truly automated driving systems where the AV both monitors the environment and
controls the vehicle. The subject of this chapter is the Level 3 vehicles.

Disengagements

Level 3 requires the presence (and attention) of a human driver to serve as a fall-back
when the autonomous system fails. A transfer of control from the autonomous system to
the human driver in the case of a failure is called a disengagement. Disengagements can be
initiated either manually by the driver or autonomously by the car. Manual disengage-
ments initiated by the driver are cautionary (e.g., if one feels uncomfortable, or wants to
adopt a proactive approach to prevent a potential accident). Automated disengagements
are indicative of a design limitation of the AV.

Accidents

An accident is an actual collision with other vehicles, pedestrians, or property. Note
that not all disengagements lead to collisions. As we show later in this chapter, most
disengagements are handled safely by the human operators, with only a small fraction
leading to accidents. For example, in some reported collisions, the test driver initiated
a manual disengagement before the collision (an artifact of the training program that all
test drivers acting as AV safety-pilots have to undergo before they are allowed on public
roads [23]).

2.3.2 AV Hierarchical Control Structure

Manufacturers have not disclosed the architectures of their autonomous vehicles. How-
ever, to identify multidimensional causes of AV disengagements/accidents, we built a hi-
erarchical control structure for AVs by using the systems-theoretic hazard modeling and
analysis abstraction STPA (Systems-Theoretic Process Analysis) [78]. Fig. 2.3 shows an
AV hierarchical control structure derived based on technical documentation [18-22]. We
assert that these information sources are representative and provide a conceptual view
of AV systems that is sufficiently detailed to enable creation of an STPA model. We refer
to this system as the “Autonomous Driving System” (ADS). The major components of
the ADS are 1. “sensors” (e.g., GPS, RADAR, LIDAR, and cameras) that are responsible

for collecting environment-related data, 2. a “recognition system”? that uses sensor data

2The “recognition system” is also referred to as the “perception system.”

18



Human Drivers

Insufficient Time to
React to Disengagement Inability to Predict Driver

Behavior of Non-AV

Unexpected Driver Action, Non-AV i

Mechanical Components of the

. Di t,
Autonomous Vehicle isengagemen

i Autonomous Software Error, |
i Control Incorrect/Untimely |
| ~ Inference i
E Software Error, r Planner & R — | i
i Incorrect/Untimely < ecognition |
: Inference Controller . |
s = oo | |
i Network ‘ | . : Sensor Malfundtion, i
i Failure y I ' ' Data Corruption ;
! ' ' i
i - c—) ' ] i
: , L . i
Control Sofeware |+~ Follower Sensors
| Malfunction ' GPS !
! ' RADAR ;
RRRRRRRRR NUSU (R - LDAR | M. !
e It LRRRRRE Camera | |- !
! Mechanical System ! . SONAR |
i Actuators ' |
E ' ' i
! Mechanical tecedoccanaax ! :
i Failures v | E

 Accident

e T EEE Db Sources
Control Loop Legend cL-1 | a2 _i . oeL3 !
> coaoms o coe o [ K R R )

Figure 2.3: Autonomous vehicle hierarchical control structure drawn based on [18]. Ex-
amples of control loops are highlighted as CL-1, CL-2, and CL-3.

to identify the objects and changes in the environment around the AV, 3. a “planner and
controller” system that is responsible for planning the next motion of the car based on the
current parameters of the AV and the environment (e.g., speed, location, and other vehi-
cles), and 4. a “follower” system that signals the “actuators” to drive the vehicle along
the path chosen by the “planner and controller.”

STPA employs concepts from systems and control theories to model hierarchical con-
trol structures in which the components at each level of the hierarchy impose safety con-

straints on the activity of the levels below and communicate their conditions and behavior
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to the levels above them. Accidents and disengagements are complex dynamic processes
resulting from inadequate perception control and decision-making at different layers of
the system control structure. Accidents and disengagements seen in the data were over-
laid on this structure.

In every control loop, the planner and controller system uses an algorithm to generate
the control actions based on a model of the current state of the process that it is control-
ling. The control actions (e.g., “decelerate”) taken by the planner and controller system
(i.e., the autonomous driving system) change the state of the controlled process (e.g., me-
chanical components of the autonomous vehicle). The feedback message (e.g., the state
of the traffic lights) sent back from the controlled process (e.g., the AV control software)
updates the process model used (e.g., the mental model the driver has of the AV status)
by the controller. Analysis of dependencies along those control loops allows for the iden-
tification of inadequate controls and the potential causes of those unsafe control actions
through examination of the operation of components and their interactions in each loop
of the control structure. Any flaws or inadequacies in the algorithm, the process model,
or the feedback used by a controller are considered potential causal factors leading to
unsafe control actions and resultant disengagements/accidents.

In Fig. 2.3 we highlight three control loops (CL-1, CL-2, and CL-3, indicated with dif-
ferent types of dashed lines) to illustrate details of the interactions among the driver (both
AV and Non-AV), AV control, and AV hardware/software components. Our analysis cou-
ples that STPA approach with manufacturers’ reports. The most complex control loop,
CL-1, involves interaction among the autonomous control (including sensors, recognition
system, planner, and controller), mechanical system (actuators and mechanical components
of the vehicle), and human drivers (drivers of non-AVs). The Non-AV Driver module rep-
resents the AV system’s ability to 1. collect the data on Non-AV driver behavior through
the sensors, and 2. provide information (e.g., on brake signals, turn indicators, or horn)
to Non-AV drivers. Examples of failures in this control loop were discussed in the two
case studies presented earlier.
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2.3.3 Data Sources

The CA DMV is the state agency that registers motor vehicles, issues regulations and
permits, and monitors the testing and field operation of autonomous vehicles. Califor-
nia driving conditions are representative of urban situations and the DMV has a strong
mandate for data collection and public availability. California law requires the manufac-
turers operating and testing AVs to file reports on disengagements (reported annually)
and accidents (reported within ten business days of the incident) [23, 79]; these reports
are eventually made public. The reports are available as a part of two databases:

1. AV Disengagement Reports: These reports contain aggregated information about fleet
size, monthly autonomous miles traveled, and the number of disengagements ob-
served. Each manufacturer provides its own data format, resulting in a fragmented set
of data. Some manufacturers provide additional information, including timestamps,
road type (e.g., urban streets, highway, freeway), weather conditions (e.g., sunny, rain-
ing, overcast), driver reaction times (time taken for the driver to disengage from au-
tonomous mode), and other factors contributing to the disengagements. We use the
additional data whenever it is available.

2. AV Accident Reports: These reports contain timestamped information about the au-
tonomous vehicle involved, the location of the accident, descriptions of other vehicles
involved (e.g., class of vehicle, speed), and human-written textual description of the
incident and its severity.

Both datasets consist of scanned documents containing both tabulated data and natural-
language text. Unlike previous analyses [80, 81], which are based solely on the data pro-
vided, we focus on building an analysis workflow that processes substantive amounts of
human-generated disengagement and accident reports by using NLP.

Summary of Datasets. The datasets cover 12 AV manufacturers (Bosch, Delphi Auto-
motive, Google, Nissan, Mercedes-Benz, Tesla Motors, BMW, GM, Ford, Honda, Uber,
and Volkswagen). With 144 AVs that drove a cumulative 1,116,605 autonomous miles
across 9 distinct road types (31.7% on city streets, 29.26% on highways, 14.63% on inter-
states, 9.75% on freeways, and the remaining 14.6% in parking lots, suburban, and rural
roads). Uber, BMW, Ford, and Honda reported too few disengagements for us to draw
statistically significant conclusions, so are left out of the analysis in this chapter. Across
all manufacturers, we observe a total of 5, 328 disengagements® and 42 accidents (includ-

ing the two case studies in §2.2). Aggregating per car and per manufacturer, we observe

3Two of the manufacturers (Bosch and GMCruise) reported all their disengagement data as planned
tests. Our understanding, based on all the DMV reports, is that the tests were planned, but the disengage-
ments occurred naturally. Together the two manufacturers have 14 accidents during “tests”.
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Table 2.2: Sample of disengagement reports from the CA DMV dataset.

Manufacturer Raw Disengagement Report Category Tags
(Log)

Nissan 1/4/16 — 1:25 PM — Software System Software
module froze. As a result driver
safely disengaged and resumed

manual control. — City and
highway — Sunny/Dry
Nissan 5/25/16 — 11:20 AM — Leaf #1 ML/Design Recognition System

(Alfa) — The AV didn’t see the
lead vehicle, driver safely dis-
engaged and resumed manual
control.
Waymo May-16 — Highway — Safe Op- ML/Design Environment
eration — Disengage for a reck-
lessly behaving road user

Volkswagen  11/12/14 — 18:24:03 — System Computer System
Takeover-Request — watch-
dog error

We use the “—” to denote field separators.

Note that log formats vary across manufacturers and time.
Bold-face text represents phrases analyzed by the NLP engine to categorize log lines.

an average of 262 autonomous miles driven per disengagement, and one accident event
for every 127 disengagements.

Across manufacturers in the dataset, we observe a significant skew in the number of
autonomous miles driven (see Table 2.1). For example, Waymo tested their AV proto-
types more extensively than the others (over 1,000,000 miles compared to 15,000 miles for
the next highest testing manufacturer). This suggests that Waymo’s AVs might perform
better than those of its competitors because of the extensive testing of the ADS platform.
Note that not all manufacturers provide all the data needed to compute the summary
statistics; those omissions are indicated by dashes in Table 2.1.

24 DATA-ANALYSIS WORKFLOW: PARSING, FILTERING, NORMALIZATION
AND NLP

Fig. 2.1 describes our methodology (workflow) for converting raw disengagement and
accident reports into a consolidated form that lends itself to further analysis. Below, we

describe the key steps involved in Stages II and III of the workflow.
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Table 2.3: Definition of fault tags and categories that are assigned to disengagements.

Tag Category Definition

Environment ML/Design ~ Sudden change in external factors (e.g., con-
struction zones, emergency vehicles, acci-
dents)

Computer System  System Computer-system-related problem (e.g., pro-

cessor overload)
Recognition System ML /Design Failure to recognize outside environment cor-

rectly

Planner ML /Design Planner failed to anticipate the other driver’s
behavior

Sensor System Sensor failed to localize in time

Network System Data rate too high to be handled by the net-
work

Design Bug ML/Design AV was not designed to handle an unforeseen
situation

Software System Software-related problems such as hang or
crash

AV Controller i/}lfit/e[l?e sign sszfsr:; cc‘)/vn?lilnanAd\S/ coniroller does not e
“ML/Design” when AV controller makes
wrong decisions/predictions

Hang/Crash System Watchdog timer error

Digitization of the Accident and Disengagement Reports. The aforementioned logs
are provided in the form of scanned images of digital documents (for disengagement
reports) and hand written reports (for accident reports). The first task is to pre process
and convert these scanned reports into a machine-encoded format. Examples of such
machine-encoded disengagement reports are shown in Table 2.2. Hence, our analysis
proceeds with optical character recognition (OCR; labeled as @ in Fig. 2.1) by using
Google Tesseract [82] on the scanned documents. In certain cases, where the Teserract
OCR failed (because of low-resolution scans or inability to recognize some table formats),
we manually converted the documents to machine-encoded text.

Data Normalization. CA DMV regulations require that each manufacturer report cru-
cial information about disengagements, e.g., the number of miles driven in autonomous
mode and the number of disengagements observed. However, it does not enforce any

data format specification for these reports, leading to disparities (across manufacturers
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and across time) in the data schema and granularity of the information available through
these reports. Hence, we need to filter, parse, and normalize (labeled as @) in Fig. 2.1) the
data into machine-encoded text to produce structured datasets that have uniform schema
across manufacturers and time (i.e., across reports made by the same manufacturer at dif-
ferent times). Taken together, steps @) and @) correspond to preprocessing of the datasets
to make them ready for further analysis.

Labeling and Tagging of the Reported Disengagement and Accident Causes. The
pipeline uses an NLP-based technique (labeled as @ in Fig. 2.1) to map a given disen-
gagement event in a corresponding fault tag and a failure category. First we make several
passes over the dataset to construct a “Failure Dictionary” that contains a sequence of
phrases (keywords) extracted from the raw disengagement reports (logs). This dictionary
is used to design a voting scheme (which is based on the maximum number of shared key-
words) to assign a disengagement cause to a fault tag. In the event that this procedure is
unsuccessful and we cannot associate any of the known tags to textual description, the
disengagement cause is marked with the “Unknown-T” tag.

We then build an ontology (based on Fig. 2.3) of failure categories on top of the tags
(which were derived from [83]). Specifically, we apply our understanding of the ADS sys-
tem (described in §2.3.2) to select keywords and phrases that differentiate fault tags from
each other. The tags are chosen to localize faults in the computing system (e.g., software
and hardware systems) and in the machine learning algorithms/design (e.g., perception
and control algorithms), thereby identifying potential targets for improving the safety
and reliability of the AV. Table 2.3 lists the fault tags used in this study. Table 2.2 provides
examples of the raw log to tag and category mapping. We consider the following failure
categories: 1. faults in the design of the machine learning system responsible for “percep-
tion” tasks (dealing with data from sensors) and “planning and control” tasks (dealing
with control of steering and acceleration); 2. faults in the computing system (dealing with
hardware and software problems); and 3. an “Unknown-C” category consisting of tags
we cannot classify into any of the above categories.

These tags and categories allow us to classify the types of failure causes into machine-
learning vs. computer-system-related issues. Table 2.3 provides a mapping between the
categories and tags used in our analysis. In the final step (labeled as @ in Fig. 2.1), the pre-
processed data from the disengagement dataset and accident dataset are merged together,

along with extracted categories and tags, to create a consolidated AV failure database.

2.5 STATISTICAL ANALYSIS OF FAILURES IN AVS

Traditional approaches to evaluating the resilience of a system [1] require computation
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of availability, reliability, and safety. These metrics require information about operational
periods of the AV (e.g., the active time of the vehicle). As this information is not available
in the CA DMV dataset, we use the 5,324 disengagements (across eight manufacturers)
and 42 accidents as the basis for deriving statistics on fault classes, failure modes of AVs,
and their evolution over time. These statistics allow us to draw conclusions and answer
the following questions:

Question 1. How do we assess the stability /maturity of the AV technology?

Question 2. What is the primary cause of disengagements (and potentially accidents)
observed in AVs?

Question 3. Are manufacturers indeed building better and more reliable AVs over time?
Question 4. What level of alertness* of the human driver of an AV guarantees safety?

Question 5. How well do AVs compare with human drivers?
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Figure 2.4: Comparison of the distributions of DPM per car across manufacturers. The
boxes show quartiles; the notches show medians; and the whiskers show max/mins.

2.5.1 Analysis of AV Disengagement Reports

Question 1: Assessment of AV Technology

Based on the available data, we computed the following metrics from the disengage-

ment reports to assess AVs: 1. number of disengagements observed per autonomous mile

*Measured here as reaction times of human drivers in case of disengagements.
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driven (DPM, shown in Fig. 2.4), and 2. total number of disengagements observed (shown
in Fig. 2.5).

Comparing DPMs across Manufacturers. Most manufacturers have a median DPM €
[0.1,0.01] m~! per car with the 99" percentile DPM around 1 m~! (see Fig. 2.4). There
is a significant disparity (nearly 100x) between median DPMs across all manufacturers.
This substantiates our initial hypothesis (from §2.3.3) that the cumulative miles driven by
a manufacturer (see Table 2.1) is indicative of better performance. For example, Waymo
(Google) does ~ 100x better than its competitors in terms of both the median and 99™
percentile DPMs; at the same time, it is responsible for > 90% of the total miles driven in
the dataset.

] Manufacturer
103 4 Benz
] Volkswagen
Waymo
Delph
Nissan
| Bosch
10! 4 GMCruise

1 Tesla

102 4

Cumulative Disengagements

100 T T T T T T
10t 102 108 104 10° 106
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Figure 2.5: Disengagements reported per cumulative miles driven across manufacturers
represented in a log-log plot. Lines represent linear regression fits.

Maturity of AV Technology. Fig. 2.5 demonstrates a strong linear correlation (based
on the linear regression fits) between the number of disengagements observed and the
number of cumulative autonomous miles driven. We expect that in an ideal case mature
AV technology will show a decrease in DPM (i.e., the slopes of the lines in Fig. 2.5) that
asymptotically reaches towards a horizontal line (or close to it, i.e., zero DPM or a very
low DPM). The reason is that the data collected from the planned testing of AVs validates
the computing system (e.g., by identifying software bugs) and also trains the machine
learning algorithms that monitor the environment and control the steering and accelera-
tion of the AV. Thereby eventually enabling the AVs to handle more fault scenarios, thus
contributing to a decreasing DPM. This is true for most manufacturers to varying degrees
with the exception of Volkswagen, Bosch, and GMCruise. An important conclusion is that
despite the million miles driven, Waymo is still not quite approaching the target asymptote. This
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Table 2.4: Disengagements across manufacturers (as percentages) categorized by root fail-
ure categories.

Fault Type

Manufacturer ML/Design System Unknown-C
Planner/ Controller Perception/

Recognition
Delphi 37.59 50.17 12.24 0
Nissan 36.3 49.63 14.07 0
Tesla 0 0 1.65 98.35
Volkswagen 0 3.08 83.08 13.85
Waymo 10.13 53.45 36.42 0

ML/Design is divided into Planner/Controller- and Perception-related problems.

indicates that Waymo and other manufacturers are still in the “burn-in” phase.

Question 2: Causes of AV Disengagements

We present a categorization of the sources of faults that cause disengagements from
two different perspectives: 1. cause of occurrence, and 2. modality of occurrence.

Machine-Learning-Related Faults. First, we consider disengagements by cause of oc-
currence, i.e., categorization of the cause of a disengagement. In the following text, we ig-
nore the numbers for Tesla, as most of their categorical label are marked “Unknown-C.”
We observe that machine-learning-related faults, mainly ones pertaining to the percep-
tion system (e.g., improper detection of traffic lights, lane markings, holes, and bumps),
are the dominant cause of disengagements across most manufacturers. They account for
~ 44% of all reported disengagements (see Table 2.4).> The second major contributor
to reported disengagements is the machine learning related to the control and decision
framework (e.g., improper motion planning), which accounts for ~ 20% of the total disen-
gagements. The computing system, i.e., hardware issues (e.g., problems with the sensor
and processor) and software issues (e.g., hangs, crashes, bugs), accounts for ~ 33.6% of
the total disengagements reported. Further, we observe that the perception-based ma-
chine learning faults are responsible for DPM measurements in the upper three quartiles.
Therefore we conclude that the faults in the perception system are directly responsible for higher

DPMs across manufacturers.

5We consider external fault sources such as undetected construction zones, cyclists, pedestrians, emer-
gency vehicles, and weather phenomena (e.g., rain or sun glare) as perception-related-machine-learning
related disengagements as they deal with interpretation of the environment from sensor data.
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Figure 2.6: Categorization (in terms of fault tags) of faults that led to disengagements
across manufacturers.

Comparing Waymo to Others Using Fault Categorization. As stated earlier, we ob-
serve that AV prototypes from Waymo perform significantly better than those of its com-
petitors. Our fault categorization allows us to speculate on reasons for this behavior.
We observe (see Fig. 2.6) that Waymo reports significantly higher percentages of disen-
gagements related to system faults (i.e., software or hardware issues) than machine learn-
ing/design issues, unlike other manufacturers. Extensive on-road testing (over 1,060,200
cumulative autonomous miles, which is ~ 70 x more than any other manufacturer) has al-
lowed Waymo to eliminate many fault scenarios relating to perception and control. Even
though Waymo has resolved key control and decision-making issues in the machine learning sys-
tem, perception and system issues still dominate. We observe that most accidents are the result of
poor decisions made by the machine learning system in complex traffic scenarios, as shown in the
two case studies (in §2.2). Faults in the perception systems often propagate to the decision system,
leading to complex failure scenarios.

Last, we consider disengagements by modality of occurrence, i.e., whether the disen-
gagement was initiated automatically by the AV, or manually by the driver, or as part
of a planned fault injection campaign. Table 2.5 lists the distribution of these modalities
across multiple manufacturers. We observe that an average of 48% of all disengagements
are initiated automatically by the system. Note that this measurement is biased by manu-
facturers like Mercedes-Benz and Waymo that report a larger number of disengagements.

Question 3: Dynamics of AV Disengagements

As suggested by Fig. 2.5, we expect that AV technology (including perception, decision,
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Table 2.5: Distribution of disengagements across manufacturers (as percentages) catego-
rized by modality.

Manufacturer Automatic Manual Planned

Benz 47.11 52.89 0
Bosch 0 0 100
GMCruise 0 0 100
Nissan 54.2 45.8 0
Tesla 98.35 1.65 0
Volkswagen 100 0 0
Waymo 50.32 49.67 0

and control) gets tuned over time, resulting in decreasing DPMs. This hypothesis is true
to varying degrees across manufacturers. In this section, we further assess its validity. In
particular we look at 1. the temporal dynamics of DPMs (i.e., does DPM decrease with
time?), and 2. the dynamics of DPM with the cumulative number of miles driven (i.e.,

does DPM decrease with more extensive testing?).
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Figure 2.7: Time evolution (aggregated by year) of the distributions of DPMs per car
across all manufacturers. The boxes show quartiles, notches show medians, and whiskers
show max/mins.

Temporal Trends. Fig. 2.7 illustrates the temporal dynamics of the distribution of DPM
per car across manufacturers aggregated per year. First, we observe that there is a distinct
decreasing trend for the median DPM across most manufacturers. Some manufacturers,
like Bosch that show an increase in median DPM per year claim that their disengagements
result from planned fault injection experiments (see Table 2.5). In fact, some manufactur-

30



log(Disengagements / Mile)

pearsonr =-0.87; p = 7e—.56

|
= | | | |
o oo o H N o N
I I I I I I 1
°
°
°
[}
I

0 5 10
log(Cumulative Distance)

Figure 2.8: Linear statistical relationship between DPM per car and the cumulative num-
ber of autonomous miles.

ers show a decrease of as much as 10x in median DPM across the three-year analysis
window. Second, we see a significant increase in the variance of the DPM across cars
over the period of interest. This increase suggests that the median performance improves over
time. However, the worst-case performance does not, since the variance relative to the median is
large. In fact, for some manufacturers, like Delphi, the 75" percentile DPM across years
changes by less than 50%. Waymo is an exception to this trend, demonstrating a nearly 8 x
decrease in median DPM with a significant decrease in variance across the three years of
measurement. Recall from Question 1 that Waymao is still not approaching the asymptote.

Trend with Cumulative Miles Driven. While the temporal trends are important, an
alternative approach is to look at disengagements per mile as a function of miles driven.
Since manufacturers do not all drive the same number of autonomous miles each month,
this measure is a more equitable analysis of the AVs across manufacturers. Aggregating
across all manufacturers, we observe that there is a strong negative correlation between
DPM and cumulative miles driven (as shown in Fig. 2.8). We observe that the log(DPM)
and log(cumulative autonomous miles) are correlated with a Pearson coefficient of —0.87
(at a p-value of 7 x 107%). Fig. 2.9 shows this relationship across different manufactur-
ers, with linear regression fit lines describing the trends mentioned above. That suggests
that the manufacturers are continuously improving their ADSs, with some manufactur-
ers making more headway than others (as represented by the slope of the fitted lines).
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Figure 2.9: Evolution of DPM (per car) with the number of cumulative autonomous miles
driven across all cars of that manufacturer. Lines represent a linear regression fit of each
manufacturer’s data.

Further, we observe that manufacturers with larger DPMs seem to make more signifi-
cant improvements over the same number of miles driven; this suggests that some of the
faults/problems fixed as a result of this testing represent the “low-hanging fruit.”

While the temporal trends maybe more indicative of how actual users will drive these cars (i.e.,
the AVs will be used with a mix of idle and driving times), the trends with cumulative miles
provide a more robust alternative for comparisons, wherein the miles driven are the only basis for
comparison. Both show a decreasing trend the first shows an increasing variance; neither shows
that any of the cars have approached a very low or zero DPM regime.

Question 4: Driver Alertness Level

The CA DMV defines reaction time as “the period of time elapsed from when the au-
tonomous vehicle test driver was alerted of the technology failure, and the driver as-
sumed manual control of the vehicle”.® The case studies we presented in §2.2 highlight
the need for the human driver in the AV to be alert and cognizant of the environment.
The reaction times provide an understanding of how quickly an individual would react
to a fault, and hence are essential for accident avoidance. Fig. 2.10 gives the distribution
of test drivers’ reaction times across all manufacturers. We observe an average 0.85 s
reaction time across all test vehicle drivers and all manufacturers. This observation is

consistent with a similar observation made in [84]. Further, the distribution of reaction

®We assume the reaction times to be upper bounded where they are listed as ranges.
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times is long-tailed. For example, Volkswagen reported at least one case with a near 4 hr
reaction time for a disengagement; we suspect that this is an incorrect measurement, but
cannot confirm. Fig. 2.11 shows this long-tailed behavior with an Exponential-Weibull fit
for the reported data for manufacturers other than Volkswagen.

Comparison to Human Alertness Levels. To understand whether that behavior is in-
deed representative of human alertness levels when driving, we compare those results
with those presented in [85] for non-AVs. [85] found the reaction time for braking in test
vehicles to be 0.82 s. This observation is consistent with our study. Further, [85] report
that a driver’s ownership of a vehicle (i.e., it is his or her own property) increased reac-
tion time by approximately 0.27 s. Hence we assume 1.09 s to be the average time for a
human driver in a non-AV to respond any situation on the road. The observation implies
that semi-AVs which are the most commonly deployed AVs on public streets) would re-
quire continued human supervision and alertness similar to human controlled non-AVs.
Echoing the results of Question 3, that in turn suggests that the technology may not be
mature enough to allow human drivers to be engaged in other activities, contrary to what
is advertised.

Temporal Behavior of Reaction Time. We find that a driver’s alertness decreases (i.e.,

101 _
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Figure 2.10: Distribution of reaction times for drivers in case of a disengagement across
all manufacturers. The boxes show quartiles, notches show medians, and whiskers show
max/mins.
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Figure 2.11: Distribution of reaction times for the Mercedes-Benz and Waymo.

reaction time increases) with the number of cumulative miles driven. At a 99% confi-
dence level, we observe a positive correlation between the cumulative miles driven and
the reaction times across manufacturers. For example, Waymo and Mercedes-Benz show
a Pearson’s correlation coefficient of 0.19 (at p-value = 0.01) and 0.11 (at p-value = 0.007),
respectively. Taken together, that observation and the previous observation about de-
creasing DPM (described in §2.5.1) suggest that a driver’s alertness decreases as the sys-
tem’s performance improves (i.e., DPM decreases).

Fault Detection Latency and Reaction Time. By definition, the reaction time does
not include fault detection time. However, as our case studies show, the detection time
is indeed part of the end-to-end time window in which the driver reacts to an adverse
situation. For example, in both case studies presented in §2.2, the primary cause of the
accident was the insufficient time left for the driver to make a decision after the fault was
detected.

The drivers of AV's have to maintain the same level of alertness as when driving non-AVs. This
suggests that the small size of the overall action window (detection time + reaction time) can make
the reaction-time-based accidents a frequent failure mode with the widespread deployment of AVs.
We also note that in planned test scenarios for AVs, drivers are required, trained, and
paid to remain continuously attentive to the activities of the AV. Data for them might not

generalize to regular users.

2.5.2 Analysis of AV Accident Reports

Question 5: Comparison to Human Drivers
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Table 2.6: Summary of accidents reported by manufacturers.

Manufacturer Accidents Fraction of Total DPA

Waymo 25 59.52 18
Delphi 1 2.38 572
Nissan 1 2.38 135
GMCruise 14 33.33 20
Uber ATC 1 2.38 -

DPA = Disengagements per accident.

To address this question, we define two additional measures: 1. accidents per mile
(APM), and 2. disengagements per accident (DPA). We calculate the DPAs as shown in
Table 2.6. As some of the accident reports were partially redacted by the CA DMV to
obfuscate AV identification (e.g., the registration number or VIN number were removed),
we cannot compute the APM per vehicle directly. We instead compute accidents per mile
using the equation APM = DPM/ppa. Even though the number of accidents is small
compared to the number of disengagements, we use [86] to test the statistical significance
of our results. Our calculations for two out of the 4 manufacturers (i.e., Waymo and
GMCruise) were made at > 90% significance.

Comparison of APMs across Manufacturers. We observe that there is great variability
(~ 100x) in APMs across manufacturers (see Table 2.7). For example, Waymo is responsi-
ble for 59.52% of accidents reported (see Table 2.6), but has the lowest DPM (7.45 x 107%),
the lowest DPA (18), and the lowest APM (4.14 x 107°). In contrast, GMCruise has a
similar DPA (20) but performs 238 x worse in terms of DPM, and 214x worse in terms of
APM, as compared to Waymo (see Table 2.7). This suggests that there is significant vari-
ability across manufacturers in classifying the severity of disengagements, which again
indicates the immaturity of the current AV technology. Also, the observed APM metric
variability can be partially attributed to test drivers’ proactive disengagement of the ADS
(i.e., manual disengagement as presented in §2.5.1) to prevent accidents. We compare the
accident rate of AVs with that of manual vehicles using data for [87, 88], which report
that one accident is expected every 500,000 miles (i.e., APM = 2 x 107%). We find that
compared to human drivers, AVs perform 15-22x worse (see Table 2.7) in terms of APM.”

When they are calculated using first principles (i.e., not using DPA as done before),
for vehicles that can be identified in the accident reports, we observe a strong positive

correlation between the number of accidents observed per mile and the number of au-

"Note that [87, 88] report only crashes on highways and freeways. However, AVs are required to report
any crash on all types of roads.
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Table 2.7: Reliability of AVs compared to human drivers.

Manufacturer Median DPM Median APM Rel. to HAPM

(mile* b (mile* b

Mercedes-Benz 0.565 - -
Volkswagen 0.0181 - -

Waymo 0.000745 4.140 x 107° 20.7x
Delphi 0.0263 4.599 x 10~° 22.99x
Nissan 0.0413 3.057 x 1074 15.285 %
Bosch 0.811 - -
GMCruise 0.177 8.843 x 1073 4421.5%
Tesla 0.250 - -

HAPM - Human APM.
Human APM = 2 x 10~ %mile ! [87, 88].
Column 4 = AV APM/ Human APM.

tonomous miles driven (with a Pearson correlation coefficient of 0.98 at p-value < 0.01).
Comparing that number to the trends in the DPM seen in Fig. 2.8, we see that there is a
much stronger correlation of the APM with cumulative miles. This behavior might be in-
dicative of the manufacturers’ priority on fixing problems in their ADSs (i.e., they identify
problems relating to accidents and fix them quickly).

Our analysis shows that for the same number of miles driven, for manufacturers that reported
accidents, human-driven cars (non-AVs) are 15 — 4000 less likely to have an accident than AVs.

Collision Speeds and Locations. All the accidents reported in the dataset occurred at
low speeds and in the vicinity of intersections on urban streets. Fig. 2.12 shows that more
than 80% of the accidents occurred when the relative speed® of the colliding vehicles was
less than 10 mph. In most of the cases in which the non-AV vehicle was determined to
be at fault, the underlying cause can be attributed to the failure of the vehicle’s driver
to anticipate AV behavior. This observation points to the need for better understanding
of the driving interactions and behaviors that drivers expect from other on-road vehicles.
Most of the accidents were minor (either rear-end or side-swipe collisions), and no serious
injuries were reported.

Our data show that better situational awareness needs to be provided by the ADSs (in particular
the machine learning algorithms) to preemptively avoid accidents in a timely fashion.

2.5.3 Discussion

Comparison to Other Safety-critical Autonomous Systems

8The absolute difference between the speeds of the vehicles at the collision.
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Figure 2.12: Distribution of vehicular speeds for all reported accidents.

Airplanes [89] and surgical robots [90] are safety-critical semi-autonomous systems that
have seen ubiquitous deployment, as well as a significant body of work characterizing
and improving their resilience. We compare AVs to both of these systems in terms of the
accidents per mission (APMi), to gauge the maturity of AVs vis-a-vis these systems. We
define a mission as the continuous operation of the system of interest from the time of
commencement to the end of the activity. For airplanes and cars, a mission is equivalent
to one departure (i.e., trip), and for the surgical robot, a mission is equivalent to a surgical
procedure.

We use data presented in [91] (9.8 accidents per 100, 000 departures for airplanes) and [92]
(1043 accidents per 100,000 procedures for surgical robots) as the baseline for compari-
son. We estimate the APMi of an AV by using data (pertaining to the average length
of a vehicle ride on U.S. public roads for which there is a median of 10 miles per trip)
presented in [93]. Using the APM metric computed earlier as shown in Table 2.8, we
compute APMi as APM x length of the average trip. Our analysis shows that AVs do
surprisingly well per mission. Compared to airplanes (which utilize sophisticated resilience
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Table 2.8: Reliability of AVs compared to other safety-critical autonomous systems.

Manufacturer =~ APMi Aviation Industry Surgical Robotics
APMi/Airline APM [91] APMi/sR APM [92]

Waymo 4.140 x 107% 4.22 0.0398

Delphi 4.599 x 10~* 4.69 0.0442

Nissan 3.057 x 1073 31.19 0.293

GMCruise 8.843 x 1072 902.34 8.502

APMi = Accidents per mission for an AV
Airline APM = 9.8 x 1077
Surgical Robot (SR) APM = 1.04 x 102

models and techniques), AV's are merely 4.22x worse, and are 2.5x better than surgical robots
(see Table 2.8).

However, if all cars are replaced by AVs in the future, the AVs will make ~ 96 billion
trips per year [94], compared to the 9.6 million trips for airlines. This means that AVs
will make 10, 000x more trips than airlines, leading to a higher number of accidents per
year than for airplanes. Further, the average length of a mission in terms of time and
miles covered is significantly different for airplanes and AVs. Hence a holistic comparison
across these systems would need to consider operational time per mission, as well as

account for competing failures across concurrent deployments of these systems.

Traditional Reliability Metrics

While we have made an approximate comparison above, the more traditional and ac-
curate method for comparing the resilience of AVs with that of airplanes (which are also
highly automated systems) is via operational hours to failure. That metric, however, is
unavailable for cars, since we do not have information about the idle time for these ve-
hicles or its distribution. We propose an alternative metric based on the number of miles
driven to disengagement/accident. This metric will be available across transportation
systems.

To directly obtain this measure, there needs to be a small change in the data collection
by the DMV: manufacturers and the DMV should collect data on miles between disen-
gagements per vehicle to enable the computation of the metrics.

2.6 THREATS TO VALIDITY

An empirical study like ours is subject to vagaries arising from heterogeneous data

collection systems (e.g., the inclusion or exclusion of data points, or the disparate in-
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formation content across data formats), thus hampering the ability to draw generalized

conclusions. Dealing with such issues is not uncommon in the realm of system reliability

assessment. We assert the need for replication studies to verify our conclusions across
other datasets. We now discuss potential threats to validity that are specifically related to
our study.

Construct Validity implies that variables associated with the study are measured cor-
rectly, i.e., that the measurements are constructed in accordance with the theoretical foun-
dations of the area. We have discussed construct validity in §2.5.3.

Internal Validity implies that there are no systematic errors and biases. We studied the
datasets available from 12 different manufacturers and only reported generalized trends
in order to eliminate any biases and micro-observations (observations with low statistical
significance) that might be artifacts of bad logging or biases from the manufactures in
reporting the disengagements and accidents. For example:

* Data underreporting: In order to obtain an AV testing permit, companies are legally
required to catalogue and submit to the DMV reports of all disengagements and ac-
cidents that 1. pertained to technology failures and safe operation of the AVs, and
2. required the AV test driver to disengage the autonomous mode and take immedi-
ate manual control of the vehicle. The interpretation of “safe” operation and tech-
nology “failure” can vary across manufacturers, leading to underreporting. Further,
regulatory oversight and enforcement of regulations are difficult and may result in
underreporting. Given the available data, we cannot accurately estimate the scale of
underreporting, and hence refrain from drawing any such conclusions.

* Not all miles are equivalent: One manufacturer may hold the tests of its AVs in more
challenging environments than others do, e.g., at night or during bad weather. Not
all manufacturers report environmental conditions during tests. Where available, we
report the testing conditions and disengagements caused by environmental factors (see
“Environment” in Fig. 2.6 ).

 Validity of fault tags and failure categories: There is no consistent data format for the
provided disengagement/accident reports across manufacturers. Our NLP framework
for tagging and categorization may lead to systematic errors; therefore, the dictionaries
were verified manually by the authors to ensure their correctness. We explicitly labeled
data points as “Unknown-T/C” when there was uncertainty in the tags and categories
given by the NLP framework.

External validity concerns the extent to which a study can be generalized to other sys-
tems or datasets. To the best of our knowledge, the CA DMV dataset is the only publicly

available dataset pertaining to AV failures. Until we work with manufacturers on propri-
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etary data (which might not be disclosed publicly), we cannot comment on the general
external validity of the techniques presented here.

2.7 RELATED WORK

The majority of the prior research into AV systems focuses on the functionality of ve-
hicle guidance systems. Numerous demonstrations of end-to-end computing systems for
autonomous vehicles have recently been done (e.g., [59-61, 95, 96, 62—64]). The currently
accepted practice for vehicular safety, based on the ISO 26262 safety standard [97], is to
consider human drivers to have ultimate responsibility for safety. That is the basis for
most AV testing programs on public roads, which require a safety driver to be in the ve-
hicle to monitor the vehicle. This driver is expected to intervene if a system failure occurs
that leads to a disengagement or accident; indeed, we observe several such incidents in
the CA DMV datatsets. In such a scenario, safety considerations for the AV are driven by
1. the AV’s ability to alert the driver in case of failure, 2. the driver’s ability to recognize
the abilities of the AV and the limits of the system, 3. the AV’s ability to anticipate the
behavior of other road users who might not always conform to the rules, and 4. the other
road user’s ability to anticipate the behavior of the AV [98, 99]. How this will be handled
in autonomous vehicles remains an open question [100]. Safety is also emphasized in a
number of publications, including [101, 102]. Waymo has published a report on the safety
precautions considered for their AVs [20].

[86] provides a model to estimate the number of miles AVs have to be driven to demon-
strate their reliability with statistical confidence. [81, 84] provide summary statistics (e.g.,
driver reaction times and AV speed in accident scenarios) from tabulated data in the DMV
dataset. Our approach uses an STPA based ontology and NLP techniques (which in itself
are novel contributions of this work) to parse a significant amount of unstructured data
presented as natural text.

[75] use fault injection to evaluate the fault tolerance of deep neural networks (DNN:
used primarily in the Sensor Fusion & Environmental Information Processing step shown in
Fig. 2.3), analyze the DNN's results, and propose techniques to safeguard DNNs from
single-event upsets. In contrast, we present an analysis of the entire control system of the
AV, of which DNNs are a small part.

Other related work has focused on safety and reliability of AVs as they apply to legal

9For their trained drivers, Waymo claimed there was 1 accident for 2.3 million miles; we cannot substan-
tiate that.
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(e.g., [67, 68]) and regulatory barriers (e.g., [69-72]) for AV deployment and implementa-
tion.

Security and privacy measures to encompass system-level attacks and failures of AVs
have also been studied [103, 104].

2.8 CONCLUSIONS AND FUTURE WORK

A steady march toward the use of AVs is clearly under way. The reliability and safety
challenges of fully-autonomous vehicles (Level 4 & 5, currently under development) and
today’s semi-AVs are significant and underestimated. We therefore draw the following
conclusions to frame our future research and draw the attention of other reliability re-
searchers.

* There is ongoing research on the verification and validation of the safety properties
of individual system components (e.g., the control, communication, and mechanical
system components) using the STAMP framework [101]. However, our study shows
there is a need for rigorous theoretical models (like STPA models) for evaluating AV
technologies.

* The machine learning systems responsible for perception and control need further re-
search and assessment under fault conditions via stochastic modeling and fault injec-
tion to augment data collection.

* In reality, there is a strong possibility that both AVs and semi-AVs will co-exist with
non-AVs (with human drivers completely in charge) within several years. Therefore
the urgency of joint study driven by data and models needs to be emphasized.
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CHAPTER 3: AV: DOMAIN-GUIDED ML FOR RAPID ASSESSMENT

The safety and resilience of fully autonomous vehicles (AVs) are of significant concern,
as exemplified by several headline-making accidents. While AV development today in-
volves verification, validation, and testing, end-to-end assessment of AV systems under
accidental faults in realistic driving scenarios has been largely unexplored. This chapter
presents DriveFI, a machine learning-based fault injection engine, which can mine situa-
tions and faults that maximally impact AV safety, as demonstrated on two industry-grade
AV technology stacks (from NVIDIA and Baidu). For example, DriveFI found 561 safety-
critical faults in less than 4 hours. In comparison, random injection experiments executed

over several weeks could not find any safety-critical faults.

3.1 INTRODUCTION

Autonomous vehicles (AVs) are complex systems that use artificial intelligence (AI)
and machine learning (ML) to integrate mechanical, electronic, and computing technolo-
gies to make real-time driving decisions. Al enables AVs to navigate through complex
environments while maintaining a safety envelope [12, 13] that is continuously measured
and quantified by onboard sensors (e.g., camera, LiDAR, RADAR) [14-16]. Clearly, the
safety and resilience of AVs are of significant concern, as exemplified by several headline-
making AV crashes [3, 2], as well as prior work characterizing AV resilience during road
tests [6]. Hence there is a compelling need for a comprehensive assessment of AV tech-
nology.

AV development today involves verification [102, 105-107], validation [108], and test-
ing [109, 110] as well as other forms of assessment throughout the life cycle. However,
assessment of these systems in realistic execution environments, especially because of
the occurrence of random faults, has been challenging. Fault injection (FI) is a well-
established method for testing the resilience and error-handling capabilities of comput-
ing and cyber-physical systems [111] under faults. Fl-based assessment of AVs presents
a unique challenge not only because of AV’s complexity but also because of the centrality
of Alin a free-flowing operational environment [112]. Also, AVs represent a complex in-
tegration of software [113] and hardware technologies [114] that have been shown to be
vulnerable to hardware and software errors (e.g., SEUs [115, 116], Heisenbugs [117]). Fu-
ture trends of increasing code complexity and shrinking feature sizes will only exacerbate

the problem.
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This chapter presents DriveFI, an intelligent FI framework for AVs that addresses the
above challenge by identifying hazardous situations that can lead to collisions and acci-
dents. DriveFI includes (a) an FI engine that can modify the software and hardware states
of an autonomous driving system (ADS) to simulate the occurrence of faults, and (b) an
ML-based fault selection engine, which we call Bayesian fault injection, that can find the
situations and faults that are most likely to lead to violations of safety conditions. In con-
trast, traditional FI techniques [111] often do not focus on safety violations, and in practice
have low manifestation rates and require enormous amounts of time under test [118, 75].
Note that given a fault model, DriveFI can also perform random FI to obtain a baseline.

Contributions. DriveFI’s Bayesian FI framework is able to find safety-critical situations
and faults through causal and counter-factual reasoning about the behavior of the ADS
under a fault. It does so by (a) integrating domain knowledge in the form of vehicle kine-
matics and AV architecture, (b) modeling safety based on lateral and longitudinal stopping
distance, and (c) using realistic fault models to mimic soft errors and software errors. Items
(a), (b), and (c) are integrated into a Bayesian network (BN). BNs provide a favorable for-
malism in which to model the propagation of faults across AV system components with
an interpretable model. The model, together with fault injection results, can be used to
design and assess the safety of AVs. Further, BNs enable rapid probabilistic inference,
which allows DriveFI to quickly find safety-critical faults. The Bayesian FI framework
can be extended to other safety-critical systems (e.g., surgical robots). The framework
requires specification of the safety constraints and the system software architecture to
model causal relationship between the system sub-components. We demonstrate the
capabilities and generality of this approach on two industry-grade, level-4 ADSs [119]:
DriveAV [14] (a proprietary ADS from NVIDIA) and Apollo 3.0 [15] (an open-source ADS
from Baidu).

Results. We use three fault models: (a) random and uniform faults in non-ECC-pro-
tected processor structures, (b) random and uniform faults in ADS software module out-
puts (corrupted with min or max values), and (c) faults in which ADS module outputs
are corrupted with Bayesian FI. The major results of our injection campaigns include:
¢ Using fault model (b) we compiled a list of 98,400 faults. An exhaustive evaluation

of all 98,400 faults in our simulated driving scenarios would have taken 615 days. In

comparison, our Bayesian FI was able to find 561 faults that maximally impact AV
safety in less than 4 hours. Thus, Bayesian FI achieves 3690 x acceleration. Two cases
found by Bayesian FI are described in §3.2.4; one, in particular, mimics the Tesla vehicle

crash [3].

* Bayesian FI is able to find critical faults and scenes that led to safety hazards. (a) Out
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of the 561 identified faults, 460 manifested as safety hazards. (b) These 460 faults were

found to be associated with 68 safety-critical scenes' (out of 7200 scenes).

* In comparison, several weeks of 5000 random FI experiments did not result in discov-
ery of a single safety hazard. Only 1.93% of the single-bit injections led to silent-data
corruption (SDC) that caused actuation errors. The ADS recovered from all of these
errors without any safety violations. In 7.35% of the FIs, kernel panics and hangs oc-
curred. It is expected that recovery from such faults can be done with the backup/re-
dundant systems that are present in AVs today.

We believe that the mining of critical situations by Bayesian FI will have wider applica-

bility beyond our fault injections here. Combining results from a range of fault injection

experiments to create a library of situations will help manufacturers to develop rules and
conditions for AV testing and safe driving.

Putting DriveFI in Perspective. Early work studied the safety of AVs using system-
theoretic approaches [19, 101]. More recent studies have focused on the resilience of
constituent modules of an ADS (described in §3.4), e.g., [75, 120-122]. Another line of
work [8, 123] has used FI to study sensor-related resilience in AVs. In contrast to DriveFI,
none of the prior approaches have considered the resilience of modern end-to-end Al-
driven systems that use industry-grade ADSs to mine faults that lead to safety hazards.

3.2 APPROACH OVERVIEW

This section provides an overview of the Al-driven Bayesian FI approach advocated in
this chapter. We now introduce the formalism that is used in the remainder of the chapter.

3.2.1 Autonomous Driving System

Fig. 3.1 illustrates the basic control architecture of an AV (henceforth also referred to as
Ego Vehicle, EV). It consists of mechanical components and actuators that are controlled by
an ADS, which represents the computational (hardware and software) component of the
AV. At every instant in time, ¢, the ADS system takes input from sensors I (e.g., cameras,
LiDAR, GPS), takes inertial measurements M, from the mechanical components (e.g.,
velocity v, acceleration a,), and infers actuation commands A; (e.g., throttle ¢, brake b,
steering angle ¢). For clarity, we further subdivide the ADS into two components: (a) an
ML module (responsible for perception and planning) that takes as inputs Iy and M and
produces raw-actuation commands U ¢, and (b) a PID controller [124] that is responsible
for smoothing the output U, ¢ to produce A¢. The PID controller ensures that the AV does

LA scene is represented by one camera frame.
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Figure 3.1: A high-level overview of the AV’s autonomous and mechanical systems, and
its interaction with DriveFL

Longitudinal‘

Lateral

Figure 3.2: Definition of dqop, dsate, and ¢ for lateral and longitudinal movement of the car.
Non-AV vehicles are labeled as target vehicles (TV).

not make any sudden changes in A;. The ADS ML module has an instantaneous state
S¢ that consists of configuration parameters C (e.g., neural network weights to perceive
input camera data) and a world model W,, which maintains and tracks the trajectories of
all static objects (e.g., lane markings) and dynamic objects (e.g., other vehicles) perceived
by the ADS.

3.2.2 Safety

We define the instantaneous safety criteria of an AV in terms of the longitudinal (i.e.,

direction of motion of the vehicle) and lateral (i.e., perpendicular to the direction of the
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vehicle motion) Cartesian-distance travelled by the AV (see Fig. 3.2). Those criteria form
a “primal” definition of safety based on collision avoidance, which can be extended with
other notions of safety, e.g., using traffic rules. The extended notions of safety are not
considered in this chapter, as they can be nuanced based on the laws of the geographic
regions in which they are applied.

Definition 3.1. The stopping distance dg.p is defined as the maximum distance the vehicle
will travel before coming to a complete stop while the maximum comfortable deceleration

amax 1S being applied.

Definition 3.2. The safety envelope dsase [12, 13] of an AV is defined as the maximum dis-
tance an AV can travel without colliding with any static or dynamic object.

A safety envelope is used to ensure (through constraints on Uy ¢) that the vehicle tra-
jectory is collision-free. Production ADSs use techniques such as those in [125, 126] to
estimate vehicle and object trajectories, thereby computing ds.;e whenever an actuation
command is sent to the mechanical components of the vehicle. These ADSs generally set
a minimum value of ds,fe (i-€., dsafe min) to ensure that a human passenger is never uncom-

fortable about approaching obstacles.

Definition 3.3. The safety potential § is defined as § = dsage — dstop- An AV is defined to be
in a safe state when § > 0 in both lateral and longitudinal directions.?

3.2.3 Fault Injection

The goal of DriveFI is to test ADSs in the presence of faults to identify hazardous sit-
uations that can lead to accidents (e.g., loss of property or life). To accomplish that goal,
DriveFl includes (a) an FI engine that can modify the software and hardware states of the
ADS to simulate the occurrence of faults, and (b) an ML-based fault selection engine that
can find the faults and scenes that are most likely to lead to violations of safety conditions
and, hence, can be used to guide the fault injection. Taken together, these components of
DriveFI can identify hazardous situations that lead to accidents similar to the Tesla crash
described later in this section.

Fault Model. We assume that faults injected in DriveFI can corrupt GPU architectural
state. Memory and caches (of both the CPUs and GPUs) are assumed to be protected
with SECDED codes. Each injected fault is characterized by its location (in this case, its

2We use the shorthand 6 > 0 to mean both lateral and longitudinal ds.
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Figure 3.3: Example scenarios: (1) Targeted FI leads to hazardous conditions; (2) Real-
world example with Tesla Autopilot that is similar to injected faults.

dynamic instruction count) and the injected value. The faults injected into the architec-
tural states of these processors can manifest as errors in the inputs, outputs, and internal
state of the ADS modules described above (i.e., I, M, St, Uat and Ag). DriveFI can
directly inject errors into ADS outputs by corrupting the variables that store ADS out-
puts. ADS software input/output variables are ultimately stored in different levels of
storage hierarchies, e.g., registers or caches. Single- or multiple-bit faults cause corrup-
tion of variables when not masked in hardware [1]. Hence, faults are being injected into
these memory units, but the variables are corrupted to emulate the faults. Therefore, our
fault injectors target each element in the internal ADS software state (S_t), sensor inputs
(I;), vehicle inertial measurements (M), and actuation commands (U;, A4;), as shown in
Fig. Fig. 3.10. We define any error that causes safety issues for the AV as hazardous. For
simplicity and clarity, in the remainder of the chapter, we refer to both injected faults and
errors as faults.

To build a baseline for the ML-based targeted injections, we used DriveFI to perform
random injections into the GPU architectural state and ADS module outputs for two pro-
duction ADS systems from NVIDIA and Baidu. In contrast to prior work [75, 122], which
has reported significant SDC rates (as high as 20%) for the constituent deep-learning mod-
els (ConvNets that deal with perception: object recognition and tracking) of the ADS sys-
tem, we observed that random injections rarely cause hazardous errors. These faults are
masked because of the natural resilience of the ADS stack, i.e., (a) for production ADS
systems that make real-time inferences at 60-100 Hz, transient faults have little chance
to propagate to actuators before a new system state is recalculated; (b) the ADS sys-
tem architecture is inherently resilient, as it uses algorithms like extended Kalman fil-
tering [127] (for sensor fusion) and PID control (for output smoothing); and (c) not all

driving scenes/frames are hazardous even under faults. Environmental conditions, such

47



as the presence of other objects on the streets, are fundamental in defining the safety
envelope.

Bayesian Fault Injection. Consider a fault f that changes the value of one of the afore-
mentioned variables. The goal of the ML-based fault injector is to find a critical situa-
tion that is inherently safe (i.e., § > 0) and becomes unsafe after injection of fault f (i.e.,
dao(r) < 0). The set of all faults F;; in which that condition holds is defined as

Foit = {f L8> 0 A daorp) < o} . (3.1)

The solution to that problem requires causal and counter-factual reasoning about the
behavior of the ADS under a fault. DriveFI performs that reasoning by modeling the
ADS system using a Bayesian network (BN; shown in Fig. 3.4), which can capture causal
relationships [128].

The BN describes statistical relationships shown Calculate by
by black arrows between the variables W,, My, Wi =W, inference
Uay, and Ag at a time ¢, as well as relationships M1\ M, \Y, P
shown by red arrows between the variables over A A
time. The topology of the BN is derived from the ar-
chitecture of the ADS system. For example, Fig. 3.4 Uait—1 o’
has the same graphical structure as Fig. 3.1. DriveFI

uses the BN to calculate the maximum likelihood

estimate (MLE)® of the value Mt+1 and then uses A e
the MLE value to calculate 5d0( ) based on the kine- A 1—p Ay
matic model of the AV described later in §3.3. We

use probabilistic inference over the posterior distri-

bution of the BN to calculate Figure 3.4: Bayesian FI.

M1 = argrlrrlnax Pr M1 = m | do(f)]. (3.2)
The do(+) notation is based on the do-calculus defined in [128]. It marks an FI action as
an intervention in the BN model. It replaces certain probabilities with constants and
removes statistical conditional dependencies that are a target of the intervention (i.e.,
dashed lines in Fig. 3.4), but preserves all other statistical dependencies. We call this
notion of counterfactual reasoning about the importance of a fault in performing targeted

injections Bayesian Fault Injection.

3The estimated value of x is denoted by 7.
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3.2.4 Case Studies

To explain the need for a high-efficiency FI mechanism (such as our ML-based fault
injector), we discuss two examples of car accidents due to faults.

Example 1: Hazardous Error. Fig. 3.3 shows an example driving scenario in which a
fault was injected into an ADS through corruption of the throttle command (which was
changed from 0.2 to 0.6). The injected error led to an accident. We assume that (a) the
ADS is running perception, planning, and control inference at 30 Hz, and (b) all vehicles
are running on a highway with a velocity of 33.5 m/s, which is roughly the speed limit
on U.S. freeways. In Scene 1A, the Ego vehicle (EV) was accelerating; however, target
vehicle TV#1, operated by a human, initiated a lane change procedure, which decreased
the safety potential delta from 20 m to 2 m as shown in “Scene 1B.” At that point, the
Bayesian fault injector injects a fault into the throttle command, causing the vehicle to
accelerate. The increase in acceleration caused the EV to become unsafe (§ < 0), as shown
in “Scene 1C.” The EV velocity is high enough that braking, even with anay, is not able to
prevent an accident. This example shows that one needs a smart FI mechanism (such as
our Bayesian-based injector) that is able to inject a fault at a precise time instant based on
a run-time measurement of the safety potential to maximize the stress on the ADS and
cause the EV to crash. As we argue in later sections, it is impractical (or highly difficult)
to achieve the same objective using random FI.

Example 2: Real-World Crash. Fig. Fig. 3.3 shows a real-world example of a fatal
accident that was shown to have been caused by a problem in Tesla Autopilot [3]. In
Scene 2A, the EV followed the lead vehicle (TV#1). A few seconds later, TV#1 changed
lanes (shown as Scene 2B); at that point, Autopilot decided to accelerate in order to match
the allowed highway speed. However, TV#1 was behind another vehicle (TV#2), and the
EV had no knowledge of TV#2; it was too late for the EV to recognize TV#2 and slow
down in time to avoid an accident. While this crash was attributed to a design problem
(i.e., delayed recognition) in the perception subsystem of the ADS, one can imagine that
a runtime fault (that delays perception of an object) could lead to the same fatal outcome.

As we show later, our Bayesian-based fault injector is able to recreate such scenarios.

3.3 BAYESIAN FAULT INJECTION

Here we describe in detail the formulation of the Bayesian Fault Injection approach.

3.3.1 Kinematics-Based Model of Safety

Consider an EV moving in two-dimensional space as shown in Fig. 3.5. The vehicle at
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time ¢ has an instantaneous position (z¢, y:), speed v;, heading 6,, and steering angle ¢;.
The equations of motion for the vehicle are

dre/qr = vy cos Oy; Wt /dar = vy Sin Oy; dt/ar = (vetande) /1, (3.3)

where L is the distance between the wheels of the EV [129]. Here v; and ¢, are determined
by the control model for the EV. In our case, v, is defined based on the output of the ADS

At, i.e., Vs = f(gta bty ¢t)
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Figure 3.5: Orientation of the EV when in motion.

Note that a more complete model of the EV motion might include other dynamics, e.g.,
sliding and skidding of the EV’s wheels. We do not add these complications to our model,
as that would require us to make additional assumptions that are beyond the scope of this
chapter, e.g., about the EV’s tires, road conditions, road banking, and weather. Similarly,
we do not consider the 3-D motion of the EV, as doing so would require further assump-
tions about the topology of the maps (e.g., elevation) in the FI campaign. Our approach
can be extended to consider those additional factors.

We can compute the maximum stopping distance dq,p, from eq. (3.3) by first computing
the time ¢, taken to bring the vehicle to a complete halt, i.e.,

dz d

Gt i, =0and - o =0 (3.4)
dstop is then calculated as [z, — To, Yt — Yo]”, Where (z0,0) is the position of the EV
at the beginning of the maneuver. Closed-form solutions to the system of differential
equations egs. (3.3) and (3.4) are intractable for arbitrary control procedures (i.e., v; and
¢:) and have to be solved by iterative numerical solution methods like the Runge-Kutta
methods [130].
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The Emergency Stop Maneuver. To simplify our analysis, we assume that the EV
executes a special maneuver we call an emergency stop to bring the vehicle to a halt. This
procedure is characterized by
der _

dvt
o = Omax and e 0. (3.5)

That corresponds to the deceleration of the EV with the maximum deceleration to come
to a halt. eq. (3.5) reduces eq. (3.3) to

Poefq? = —pmax Sin Oy (40¢/ar) (3.6a)

Pye /a2 = —amax COS Oy (10:/dt) (3.6b)
dxt 2 dy 2

% = VG ;— (fae)?) tan ¢y, (3.6¢)

where ¢, is the steering angle of the car at the beginning of the maneuver. DriveFI uses
the system of equations defined in egs. (3.4) and (3.6) to find dg.p. We use the shorthand
P to denote the procedure (iterative numerical integration) used to compute

dstop = P<amax> Vo, 907 ¢07 Lo, yO) (37)

from the above equations and the initial kinematic state of the EV (i.e., vy, 0y, ¢o, 20, yo) at
the start of the maneuver.

Recall from §3.2 that 0 = dgage — dstop and that § > 0 defines the safety of the EV. The dsae
value is assumed to be computed directly from the sensors of the EV. It is the distance
to the closest object (static or dynamic) in the longitudinal or lateral path of the EV. As
a result, ds.fe changes with time, and it is updated at the sensor’s (e.g., LIDAR’s or cam-
era’s) refresh rate. We include the boundaries of the lane in which the EV is travelling
(henceforth referred to as the Ego lane) as a static object to be used in dsf computations
to ensure that we capture lane violations as a safety hazard.

Discretization. We convert the problem of solving eq. (3.7) from one that uses contin-
uous time to one that uses a discrete notion of time. Discrete time is a natural fit for the
ADS, as the control decisions are made at discrete steps that correspond to the sensors’
sampling frequencies. Hence we convert time ¢ to a discrete number k£ € N such that
t = kAt, where At is the period of the sensor with the smallest sampling frequency. In
the case of the DriveFI injector in DriveWorks and Apollo, that is 7.5 Hz. However, our

methodology is frequency-agnostic.
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Figure 3.6: 3-Temporal Bayesian Network modeling the ADS.

3.3.2 ML Model

The goal of a targeted fault injector is to find situations in which § > 0, but under the
injection of a fault f (which manifests as changes in the kinematic state of the EV) into the
ADS stack, d40(r) < 0. A solution to that problem involves speculating forward in time to
after the fault has been injected, recomputing d,, under the fault, and then reevaluating
the safety criteria for the EV. We apply an ML algorithm, which has been trained as a
predictor of the EV’s kinematic state, as the mechanism for speculation. We now describe
the design of the model and its training and inference.

The Model. Consider a situation in which a fault is injected into the EV’s ADS at time
point k. We want to estimate the value of dg.p at time £ + 1 when the (corrupted) actu-
ation commands of the previous time step have been acted upon. As we showed in the
previous section, we can do so using eq. (3.7). However, that would require knowing the
values i11, Yr+1, Vk+1, Ok+1, and @i as the initial conditions to start the emergency stop
maneuver. DriveFI estimates those values based on a maximum likelihood estimation
over the posterior distribution of a probabilistic model that captures the components of
the ADS.

DriveFI uses a Dynamic Bayesian Network (DBN) [131], specifically a 3-Temporal Bayesian
Network (TBN), i.e., a DBN unfolded thrice, to model xy.1, Yx11, Vii1, Oxi1, and ¢ 1. This
model is illustrated in Fig. 3.6. The core idea of DBNs is to model each point in time with
a static BN and to add temporal links from one time-slice to the next (as shown by red
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arrows in Fig. 3.6). Usually all the time-points have identical BN topologies and hyper-
parameter settings. BNs are directed acyclic graphs in which nodes represent random
variables and arcs represent the causal connections among the variables [132]. Hence-
forthm we will refer to each random variable in the BN is henceforth referred to as a node
to avoid confusion with the ADS variables. Each node z is associated with a probability
table that provides conditional probability distributions (CPDs; Pr(z | 7(z)) of a node’s
possible value given the value of its parent nodes 7 (x).

The 3-TBN model (see Fig. 3.6) is constructed based on the topological structure shown
in Fig. 3.1. A detailed version of this figure for the Apollo and DriveFI ADSs is described
in §3.4 and shown in Fig. 3.8. The variables in each of the ADS modules are connected
in a parent-child fashion that reflects the data-flow in Fig. 3.8. For example, the edges
between u¢ and ¢ (in Fig. 3.6) represent the CPD Pr(( | u¢). This is an approximation of
the PID control for ¢. Similarly, other components of the ADS are modeled based on their
input and output variables. We assume that the nodes in the 3-TBN are described by a
CPD that has the functional form given by eq. (3.8).

Pr(z | m(2)) = N(pg (@), 00) (3.8)

In eq. (3.8), \V is the normal distribution with parameters jx and o, (for each node x in
the network). That particular form of Pr(z | 7(x)) is chosen because (a) it has numerical
stability at small probability values, which are common when dealing with rare events
like faults, and (b) it simplifies the algorithm required to train the 3-TBN.

The use of the 3-TBN-based-modeling formalism is based on the implicit assumptions
that (a) the EV state can be completely determined by its previous state and the observed
software variables, and (b) the transition parameters from one time step to another do not
change with time, i.e., the Markovian dynamic system is assumed to be homogeneous.

Probabilistic Inference. The maximum likelihood estimate value v;,; under a mani-

fested fault f (which corresponds to setting the value of a variable in the model) is
Up41 = argmax Pr (vkﬂ = v | do(f), Ol((f)> : (3.9)

Given that we can execute a simulation of the EV under non-fault conditions, all vari-
ables that are not children of the injected variable can be observed to have values from
the correct run. These “golden” observations are labeled Ol((f). eq. (3.9) is solved by first
estimating the posterior distribution of vy, by using Markov Chain Monte Carlo meth-

ods [131] and then estimating the most likely value of vj;,. A similar procedure can be
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used to compute ék+1 and QAS]C_FI. The values of 2, and ;1 can then be computed using

time-discretized versions of eq. (3.3). Finally, from eq. (3.7), we get

dstop =P <amaXa jk-{-lv gk‘-ﬁ-la {}k—i-la ek—i-la ¢k+1> (310)

Training. The 3-TBN described above defines a probability distribution Pr(X_;, X, X411),
where X, = My U S, U Uy x U Ay. Via the BN formalism, P(Xj_1, X, X;41) is defined as

1
Pr(Xp-1, Xp, Xi1) = - 11 Pr(z|m(z)) (3.11)
T€X) 1 UXpUX 41

In eq. (3.11), Z is the partition function that normalizes P to be a probability distribu-
tion. We use the Expectation-Maximization algorithm [133] to compute

fi,6 = argmax Ex |p . [log P(X | i, 0)] (3.12)
o

where D refers to a training dataset that contains values of X;_;, X, and X, under
normal operation as well as during FIs. Here, computation of 7 is intractable because of
the combinatorially large size of X;,_; x X}, x Xj.11. However, eq. (3.9) does not require the
computation of Z, as it is a common multiplicand to all values of the objective function.

Training Data. The variables in X, are measured by executing the ADS in several
driving scenarios in a simulator. We describe the setup of this simulator in §3.4. Sim-
ply capturing the data under normal operation is not sufficient to capture abnormalities
created in the ADS state because of faults. Therefore, in addition to running driving sce-
narios without faults, we run the driving scenarios while injecting random faults (i.e., the
baseline described in §3.2) one at a time. The FI campaign that corresponds to the train-
ing data is described in §3.5. We recreate the process of injecting a fault into a uniformly
randomly selected scene 20 to 50 times for each fault. The reason for varying the num-
ber of faults is that some variables (such as ¢, b, and ¢) exhibit all possible values during
simulated runs with no injections, while others, such as stateful variables, simply do not
vary naturally.

Fault Injection. The computation of F;; (from eq. (3.1)) is done offline for every frame
in every driving scene. The FI procedure executes as follows (see Fig. 3.7):
* For each driving scenario, a non-fault-injected “golden” execution of the simulation is

performed. At each instant %, the variables in X, are measured and stored.
(k)

* These “golden” values of X, are stepped through with eq. (3.10) to build F_;, for every

scene/frame, based on eq. (3.1).
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Figure 3.7: BN MLE inference is executed offline for every simulated time point to find
the set of critical faults.

(k)

e An FI campaign is carried out on the simulated EV to execute faults in |J, F;; one

frame and one fault at a time.

3.4 THE ADS ARCHITECTURE & SIMULATION

3.4.1 Al Platform

An AV uses ADS technology to support and replace a human driver for the tasks of
controlling the vehicle’s steering, acceleration, and monitoring of the surrounding en-
vironment (e.g., other vehicles/pedestrians) [77]. The ADS architecture consists of five
basic layers [15], discussed below:

Sensor Abstraction Layer (@) in Fig. 3.8): The sensor abstraction layer is responsible for
preprocessing of input data, noise filtering, gains control [134], tone-mapping [135], de-
mosaicking [136], and extraction of regions of interest, depending on the sensor type. An
ADS supports a wide range of sensors, such as Global Positioning System (GPS), Inertial
measurement unit (IMU), sonar, RADAR, LiDAR, and camera sensors. Our experiments
only use two cameras (fitted at the top and front of the vehicle) and one LiDAR.

Perception Layer (@) in Fig. 3.8): The sensor abstraction layer feeds data into the per-
ception layer, which uses computer vision techniques (including deep learning [137]) to
detect static objects (e.g., lanes, traffic signs, barriers) and dynamic objects (e.g., passenger
vehicles, trucks, cyclists, pedestrians) present in a driving scenario.

The object detection algorithm performs several tasks (e.g., segmentation, classifica-
tion, and clustering). It uses all the sensor data separately and then merges the data

using sensor fusion algorithms (e.g., extended Kalman filtering [138, 127]). The fusion
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Figure 3.8: ADS architecture.

algorithm provides software-level data redundancy for object detection. Use of HD maps
and the localization module enables the ADS to predetermine the location of specific
static objects, such as traffic lights, further improving the confidence in obstacle-detection
tasks.

The perception layer is also responsible for temporal tracking of objects and lanes.
Tracking is necessary to ensure that an object does not suddenly disappear from a frame
because of misclassification or a failure to detect anything. Thus, sensor fusion and track-
ing provide spatial and temporal redundancy in the perception layer of the software.
After accurate determination and tracking of objects and lanes are completed, the per-
ception layer calculates various useful metrics such as “closest in path obstacle” (CIPO)
and “tailgating distance” for each object. Such association of an object with measured or
inferred metrics (e.g., CIPO and tailgating distance) is defined as the world model.

Localization Layer (@ in Fig. 3.8): The localization module is responsible for aggre-
gating data from various sources to locate the autonomous vehicle in the world model.
Localization in the world model can be done using a GPS sensor or by using camera/L-
iDAR inputs. The work described in this chapter uses only camera/LiDAR along with
maps to enable localization (i.e., it does not use GPS).

Prediction Layer (@) in Fig. 3.8): The prediction layer is responsible for generating tra-
jectories for detected objects by using information from the world model (e.g., positions,
headings, velocities, accelerations). As a result, it can probabilistically identify obstacles
in an AV’s path [139].
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Planning & Control Layer (@ in Fig. 3.8): The planning and control layer is responsi-
ble for generating navigation plans based on the origin and destination of the EV and for
sending control signals (actuation, brake, steer) to the AV. The “Routing module” gener-
ates high-level navigation information based on requests. The Routing module needs to
know the routing start point and routing end point, in order to compute the passage lanes
and roads. The “Planning module” plans a safe and collision-free trajectory by using lo-
calization output, prediction output, and routing output. The “Control module” takes the
planned trajectory as input and generates the control command to pass to the CAN Bus,
which passes the information to the AV’s mechanical components. The surveillance sys-
tem monitors all the modules in the vehicle, including hardware. The “Monitor module”
receives data from different modules and passes them on to a human-machine interface
for the human driver to view to ensure that all the modules are operating normally. In
the event of a module or hardware failure, the monitor triggers an alert in the “Guardian
module,” which then chooses an action to be taken to prevent an accident.

3.4.2 Simulation Platform
This chapter uses Unreal Engine (UE) based simulation platforms (Carla [140] and

DriveSim [141]) that are capable of simulating complex urban and freeway driving sce-
narios by using a library of urban layouts, buildings, pedestrians, vehicles, and weather
conditions (e.g., sunny, rainy, and foggy). The simulation platforms are capable of gener-
ating sensor data at regular intervals (from cameras and LiDARs) that can be fed to the
ADS platform. A driving scenario consists of 500 scenes in DriveAV or 2400 scenes in
Apollo in which the EV travels from a fixed starting point on the road to a fixed destina-
tion point. A scene in a driving scenario is a representation of the physical world at the
simulation epoch and corresponds to a camera frame. Fig. Fig. 3.9 illustrates scenes from
three freeway (DS1-DS3) and three urban (DS4-DS6) driving scenarios used in this study.
DS1-3 are controlled by DriveAV in DriveSim, and DS4-6 by Apollo in Carla. In these
scenarios an EV and a few UE-controlled TVs/pedestrians are placed in urban and free-
way roads, driving at different velocities/accelerations and separated by some distance.
The EV is expected to execute driving maneuvers in each of these settings. The scenarios
represent the most common driving cases encountered by humans on a daily basis. In
DS1-DS6, the Ego vehicle does not switch lanes, there is no other vehicle trailing the Ego
vehicle, and the Ego vehicle is in a safe state.

3.4.3 Hardware Platform
The NVIDIA DriveAV ADS was designed for the NVIDIA AGX Pegasus platform [142],
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Figure 3.9: Driving scenarios supported by simulation engine.

which consists of two Xavier SoCs and two discrete GPUs, but is also supported on a
development platform based on an x86 CPU and a GPU. For our experiments, we used
the development platform and its utilities to facilitate the creation of the DriveFI tool. The
Apollo ADS is supported on the Nuvo-6108GC [143], which consists of Intel Xeon CPUs
and NVIDIA GPUs. We use Apollo on an x86 workstation with two NVIDIA Titan Xp
GPUs.

3.5 DRIVEFI ARCHITECTURE

The software architecture of DriveFI is shown in Fig. 3.10. DriveFI leverages the exist-
ing tools to simulate driving scenarios and control the EV in simulation by using an Al
agent (which is provided by Apollo or DriveAV). The scenario manager coordinates the
simulator and AI agent to run a driving scenario and monitor the state of the software
as well as the safety of the EV. DriveFI is bundled with a campaign manager that takes
an XML configuration file as input to select a fault model, software or hardware module
sites for FI, the number of faults, and a driving scenario. The campaign manager uses the
specified configuration to (a) profile the ADS workload, (b) generate a fault plan?, and (c)
inject one or more transient faults per run into the ADS system. Based on the values in
the configuration file, the campaign manager runs a specified number of golden simula-

tions, profiles the ADS while running a driving scenario, and runs a specified number of

A fault plan specifies which instruction/variable to corrupt, the corruption time, and the corruption
value.
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Figure 3.10: DriveFI architecture.

experiments that inject one or more faults at a time based on the generated fault plan. The
“Event-driven synchronization” module helps coordinate among all the toolkits (the UE-
based driving scenario simulator, monitoring agents, campaign manager, fault injectors,
and Al agent).

We built DriveFI to characterize error propagation and masking (a) in computational
elements, (b) in the ADS, and (c) in vehicle dynamics and traffic. Low-level circuit, micro-
architectural, and RTL faults manifest as architectural-state faults in computational ele-
ments. The architectural-state faults that do not get masked manifest as errors in the
internal state of the ADS modules, and the errors that do not get masked in the mod-
ule propagate to the output of the module. Finally, errors that are not masked in any
of the modules manifest as actuation command errors that are sent to the AV. Therefore,
to mimic faults and errors, we built two fault injectors: (a) a GPU fault injector (GI; see
Section §3.5.1) capable of injecting faults into the GPU architecture state to reveal the
propagation of GPU faults to the ADS state, and (b) a source-level fault injector (SLI, see
Section §3.5.2) capable of injecting faults to corrupt ADS software variables. Corruption
of the final output (actuation values (, b, f) of the ADS helps us to measure the resilience
associated with vehicle dynamics and traffic. Thus, our approach aids in the measure-
ment of fault and error masking/propagation at different levels and the corresponding
impact on the safety of the AV.

DriveFI is bundled with a campaign manager that takes an XML configuration file as
input to select a fault model, software or hardware module sites for FI, the number of
faults, and a driving scenario. The campaign manager uses the specified configuration
(a) to profile the ADS workload, (b) to generate a fault plan, and (c) to inject one or more

transient faults per run into the ADS system. For this work, we developed an “event-
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driven synchronization” module that coordinates among all the toolkits (the UE-based
driving scenario simulator, monitoring agents, campaign manager, fault injectors, and Al

agent).

3.5.1 Injecting into Computational Elements: GPU Fault Models

We consider transient faults in the functional units (e.g., arithmetic and logic units, and
load store units), latches, and unprotected SRAM structures of the GPU processor. Such
transient faults are modeled by injecting bit-flips (single and double) in the outputs of
executing instructions. If the destination register is a general-purpose register or a con-
dition code, one or two bits are randomly selected to be flipped. For store instructions,
we flip a randomly selected bit (or bits) in the stored value. Since we inject faults directly
into the live state (destination registers), our fault model does not account for various
masking factors in the lower layers of the hardware stack, such as circuit-, gate-, and
micro-architecture-level masking, as well as masking due to faults in architecturally un-
touched values. The GI employs an approach similar to that of SASSIFI [118] and includes
a profiling pass and fault-injection plan generation. We do not consider faults in cache,

memory, and register files, as they are protected by ECC.

Table 3.1: Examples of SLI-supported ADS module outputs.

FI Target (Output Variables)

Path Perception Module
lane type, lane_width

Object Perception Module
camera_object_distance, camera object_class, lidar object_distance,
lidar_object_class, sensor_fused.obstacle_distance,
sensor_fused_obstacle_class

Planning & Control Module
vehicle state measurements (pos,v,a), obstacle_state measurements
(pos,v,a), actuator_values ((,b,¢), pidmeasured.value, pid_output

3.5.2 Injecting Faults into ADS Module Output Variables

The goal of SLI (Source-Level Injection) is to corrupt the internal state of the ADS by
modifying ADS module output variables (hence, the input variables of another module)
of the ADS components. SLI is implemented as a library that is statically linked to the

ADS software; however, its use requires source-code modification and recompilation of
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the ADS software. We did not observe any noticeable runtime difference between SLI-
linked ADS and non-SLI ADS. In this work, we manually identified the software variables
that store the outputs of ADS modules that play a critical role in inferring the actuation
commands of the EV. Source-code modification is required in order to mark the output
variable and invoke the corresponding module injector to get a corrupted value by using
the fault model provided in the XML config file. In Table 3.1, we show some of the
variables from each of the ADS modules (see Fig. Fig. 3.8) that were targeted using SLI.

The fault models supported by SLI that corrupt one or more software output variables
in the k™ scene (chosen uniformly and randomly over all scenes of a driving scenario) are
specified by (a) a number of faults (i.e., a number of consecutive scenes to be injected), and
(b) the fault location. A single fault in SLI-based experiments is the corruption of a single
output variable of an ADS module. In the following, we define these SLI-supported fault
models.

1-Fixed. A single fault is injected at the k™ scene of a given ADS software module
output. Across experiments, a constant value is used to corrupt the given ADS software
module output. There are a total of 41 “1-Fixed” fault types, each defined by (a) the ADS
module output, and (b) the corruption value. The bounded continuous outputs are cor-
rupted to maximum or minimum possible value for those outputs, For example, to inject
into brake actuation output, SLI uses a maximum brake value of 1.0 or a minimum brake
value of 0.0. Unbounded continuous output values (e.g., v, a, and pos) are corrupted to
double or half of the current output value®. For categorical output variables the output

value is corrupted to one of the categorical values; e.g., the object/obstacle class can be

i s

corrupted to “do not care/disappear,” “pedestrian,” “vehicle,” and “cyclist.”

M-Fixed. m faults are injected into a given set of ADS software module output starting
at scene k, and continues to inject faults into the ADS software module output until scene
K + m. m is chosen uniformly and randomly between 10 and 100. The range selected
for m is large enough to support study of a threshold value for a number of consecutive
frames/scenes that must be injected to cause a hazardous situation. Again, there are 41
“M-Fixed” fault types.

1-Random. A single fault is injected at the & scene in a uniformly and randomly
chosen set of ADS module output. The injected fault value is also chosen uniformly and
randomly from the range of values of the selected ADS module output.

M-Random. m faults are injected in a set of randomly chosen ADS software module

output starting at scene k, and continues to inject faults in the ADS software module

>We limit ourselves to corruption of the outputs to double or half, as otherwise the ADS may detect the
injected faults as errors.
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Table 3.2: Fault injection experiments.

Campaign Target module #Faults/Experiment
1-GPU-all All GPU kernels 1
1-RANDOM All software module outputs 1
1-Fixed _throttle_ max  Actuator - throttle 1
1-Fixed_brake_max Actuator - brake 1
1-Fixed _Steer_max Actuator - steer 1
1-Fixed_obstaclerem  Perception - obstacle disappear 1
1-Fixed_obstacle_dist =~ Perception - obstacle distance 1
1-Fixed_lane_rem Perception - lane disappear 1
M-Random All software module outputs 10-100
M-Fixed_throttlemax Actuator - throttle 10-100
M-Fixed _brake_max Actuator - brake 10-100
M-Fixed Steer max Actuator - steer 10-100

M-Fixed_obstacle_rem Perception - obstacle disappear 10-100
M-Fixed_obstacle_dist Perception - obstacle distance =~ 10-100
M-Fixed_lane_rem Perception - lane disappear 10-100
1-PGM All software modules 1

output until scene K + M. m is chosen uniformly and randomly between 10 and 100.
In this case, both the ADS module and the corruption value are selected uniformly and

randomly.

3.6 RESULTS

In this section, we characterize the impact of fault and error injection on the safety
of the EV. In our work, we use a UE-based simulator to study three freeway driving
scenarios (DS1-DS3) and three urban driving scenarios (DS4-DS6). DS1-DS3 were con-
trolled by DriveAV, whereas DS4-DS6 were controlled by Apollo. The safety of the EV
at any given scene is verified by calculating the CIPO (the closest in path obstacle) and
LK distance(lateral distance from the center of the lane). A safety hazard occurs when
dymin < 1.0 m in the longitudinal direction, which corresponds to less than 1.0 m of min-
imum distance from CIPO, or when the EV crosses the Ego lane, which corresponds to
a 0.80 m displacement from the center of the lane. Hence, the minimum CIPO distance
(min-CIPO) and maximum LK distance (max-LK) across all scenes characterize the safety
hazard for the entire simulation.

Because of space restrictions, without any loss of generality, we limit our discussion to
DS1, in which the EV was controlled by DriveAV, and DS6, in which the EV was con-
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trolled by Apollo. Figs. 3.11a-3.11d show the boxplots of min-CIPO and max-LK for
Apollo (DS6) and DriveAV (DS1), respectively, across all fault injection experiments and
golden runs. These experiments are summarized in Table 3.2. A boxplot shows the dis-
tribution of quantitative data in a way that facilitates comparisons between variables or
across levels of a categorical variable. The boxplot shows the quartiles of the dataset,
while the whiskers extend to show the rest of the distribution (maximum and minimum
samples), except for points that are determined to be outliers. To understand the simula-
tion and safety characteristics of the driving scenarios, we ran 50 end-to-end simulations
for each scenario without any injection. These runs are called golden runs. The golden
runs serve as a reference against which we compare injected simulation runs in the rest
of the chapter. The median min-CIPO and max-LK distances are 16 m (see “golden”
in Fig. 3.11c) and 0.019 m (see “golden” in Fig. 3.11d) for DriveAV, and 11.19 m (see
“golden” in Fig. 3.11a) and 0.31 m (see “golden” in Fig. 3.11b) for Apollo. None of the
golden runs resulted in safety hazards.

3.6.1 GPU-level Fault Injection

We conducted 800 GPU-level FI experiments for each driving scenario (DS1, DS2,
DS3) in DriveAV. The min-CIPO and max-LK of DS1 simulated in DriveAV are labelled
as “1-GPU” in Fig. 3.11c and Fig. 3.11d, respectively. We conducted only 800 GPU-level
FI experiments per scenario because we did not observe any safety violations during the
runs, and running more experiments would have been prohibitively expensive (2.7 days
per driving scenario, 800*5 minutes/FI). In FI experiments labelled “1-GPU_all”, faults
were chosen uniformly randomly from across all dynamic instructions in the ADS. We
did not conduct any GPU FI experiments on Apollo because of a CUDA driver version
mismatch between GI and Apollo. Resolving the issue would have required vendor sup-
port and fixes. From Fig. 3.11c and Fig. 3.11d, we can observe that the EV is always safe,
even after FI, and that the distribution is similar to the one in the golden case.

Fault propagation and masking in GPUs. Across all GPU-FI experiments on the DS1-
DS3 driving scenarios, representing a total of 2400 FI experiments, 1.9% of injected faults
led to silent data corruption (i.e., caused corruption of actuation outputs which are the
final outputs of the ADS module), and 0.02% led to object misclassification errors®. None
of the object misclassification errors resulted in actuation output corruption. Our results

indicate that the perception module (which is responsible for object detection and clas-

8Object misclassification refers to incorrect classification of an object, e.g., a pedestrian may be recognized
as a vehicle.
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Figure 3.11: Fault/error impact characterization using FI campaigns. (a) & (b) use DS6;
(¢c) & (d) use DSI1.

sification) is more resilient than other ADS modules. The reason is that the perception
software takes advantage of sensor fusion (i.e., redundancy in sensing devices can com-
pensate for a fault of a single sensor). Across all driving scenarios, the SDCs did not result

in any EV safety breach.
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7.35% of faults resulted in detectable uncorrectable errors (DUEs) that led to ADS soft-
ware crashes (61%) or hangs (39%). The ADS is equipped to handle detectable errors and
take corresponding corrective or safety measures. Although DUEs are more common
than SDCs, it is expected that systems can recover from such faults via the backup/re-
dundant systems.

Errors persist for multiple frames. In 2% of the misclassification error cases (recall that
0.02% of GPU-level FIs led to misclassification errors), ADS perception module outputs
were incorrectly classified for more than one frame, i.e., the impact of the injected fault
persisted for more than one frame. In our data, we observed misclassification of objects
for up to eight continuous frames. In those cases, errors did get masked eventually be-
cause of the temporal nature of the ADS platform. For example, ADS is fed with new
sensor data at regular intervals, e.g., 7.5 times per second in our study. This observation
suggests the need for more thorough study of fault masking and propagation in ADSs at
the software level to handle cases in which faults persist for more than one frame.

3.6.2 Source-level Fault Injections

We observed in the previous section that the ADS was able to compensate for injected
transient faults. To further understand the ADS platform’s susceptibility to faults and its
robustness in the case of persistent errors, we conducted targeted FI with SLI to inject
one or more faults directly into the ADS module outputs. We conducted 84 SLI-based FI
campaigns for each driving scenario (scenarios 1-3 in DriveAV and 4-6 in Apollo). Of
the 43 campaigns, 1 corresponded to “1-Random,” 1 corresponded to “M-Random,” 41
corresponded to 41 fault types under “M-Fixed,” and 41 corresponded to 41 fault types
under “M-Random.” Labels are shown in Fig. 3.11.

Robustness of the ADS to single and multiple faults. The ADS platform was found
to be robust to injection of a single fault (“1-Random” campaign). To understand the
robustness to persistence of fault-generating multiple random errors, we conducted FI
campaigns on driving scenarios by using “1-Random” and “M-Random” fault models.
The distributions of min-CIPO and max-LK for “M-Random” were found to be statisti-
cally different from those in the golden runs for Apollo (see “M-Random” in Fig. 3.11a
and Fig. 3.11b) and DriveAV (see “M-Random” in Fig. 3.11c and Fig. 3.11d). For both
“1-Random” and “M-Random” campaigns, none of the injected faults led to a hazardous

driving situation; however, the ADS safety was found to be more vulnerable ” to the “M-

"The AV came closer to the other vehicle/pedestrian compared to when no fault was injected.
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Random” fault model (especially for lane keep functionality). For example, the minimum
min-CIPO observed across all injections decreased from 8.7 m to 8.0 m, and max-LK in-
creased from 0.34 m to 0.7 m for Apollo. Similarly in DriveAV, min-CIPO increased from
15.2 m to 12.6 m, and max-LK decreased from 0.024 m to 0.43 m.

Robustness of the ADS modules to single and multiple faults. A persistent fault
within the component of the ADS module continuously generates errors for the corre-
sponding module. We tested the robustness of the ADS to a faulty module by subjecting
one of the chosen module outputs to multiple faults. In these campaigns, we used “1-
Fixed” and “M-Fixed” fault models. There are a total of 41 fault types for “M-Fixed” and

aws

“1-Fixed” fault types (e.g., “throttle max,” “obstacle removal,” and “lane removal”). We
discuss the results of only select campaigns because of lack of space. The selected cam-
paigns (shown in Fig. 3.11) included (a) actuation module output corruption (in which
the brake, throttle, and steering were all changed to the “max” allowed value); (b) sensor
fusion output corruption (in which the obstacle class was changed to “disappear” and
the distance that could be considered in trajectory planning was changed to “max”); and
(c) lane output corruption (in which the lane type was changed to “disappear”). The
FI experiments that led to safety breaches appear as data points below the red line for
min-CIPO and above the red line for max-LK. Clearly, none of the FI campaigns con-
ducted under the “1-Fixed” fault model led to safety hazards, but few were observed for
“M-random” FI campaigns. We rank ADS modules by their module vulnerability factor
(MVE), which we calculate by finding the percent of simulations that resulted in either (a)
a min-CIPO distance less than the minimum min-CIPO distance across the golden runs,
or (b) a max-LK distance maximum more than the max-LK distance across golden sim-
ulation runs. Using that method, we find that the “steer angle” (MVF=46%), “lane clas-
sification” (MVF=43%), “obstacle classification” (MVF=10%), and “throttle” (MVF=7%)
are most vulnerable for Apollo, whereas for DriveAV we find the same components to be
vulnerable except for “lane classification” and “obstacle removal”.

The higher resilience of “lane classification” and “obstacle removal” in DriveAV can
be attributed to the free-space detection module (not present in Apollo) and the scene at-
tributes. The free-space detection module helps the DriveAV EV to detect drivable space
(using a dedicated DNN network tasked with finding drivable space) even if the object is
misclassified or its attributes (such as distance and velocity etc.) are corrupted. The free-
space detection module ensures safety without requiring complete replication of obstacle
detection and classification modules. The masking of faults in both modules can also be
attributed to obstacle registration and tracking in the world model that helps track the
obstacle over time.
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Compensation in ADS: An ADS automatically compensates for any change in EV state
(i.e., 8,v,a, s) that leads to an unsafe state caused by one or more faults/errors. It does so
by issuing actuation commands that bring the EV to a safe state. For example, the EV may
compensate for an increased v by braking (b), a decreased v by throttling (¢), or a change
in heading angle by steering (¢). Fig. 3.12 shows throttle (¢) values for golden and injected
runs (in the left subfigure) and compensation achieved by braking (in the right subfigure)
for an FI experiment in which ¢ was corrupted in 30 consecutive frames/scenes. Com-
pensation at time step K is calculated as the difference between the cumulative sums of
“brake” values observed at time step K in the injected run and in the golden runs. The
injection leads to an increase in the velocity of the vehicle, which is compensated for by
braking. In the right subfigure in Fig. 3.12, we show that the compensation increases un-
til time step K = 232 to undo the effects of multiple faults, and then flattens out as the
brake values in the golden run and faulty run (i.e., run with fault injection) become equal.
We observed similar compensation behavior for the faults injected into brake and steer
values.

The ability of an ADS to compensate for injected faults depends on the number of
faults and the time of injection. The outlier data point below the red line in Fig. 3.11a
for “M-Fixed_throttle_max” corresponds to 30 consecutive frames/scenes injected with
faults into ¢ values. In this FI experiment (not shown in Fig. 3.12), the vehicle was not
able to compensate for the injected faults, as the faults were injected at X = 400 and there
was not sufficient time for the vehicle to stop, i.e., the EV reached an unsafe state at the
end of the injections. In Apollo, only 20 injected faults into ¢ values led to unsafe states.
Persistent errors have significant impact on the EV'’s state, and the ADS’s ability to compensate

for the impact of errors depends on the time and location of Fls.

3.6.3 Results of Bayesian Fl-based injections

In our FI campaigns thus far, hazardous driving conditions (accidents and lane viola-
tions) were created only when multiple faults had been injected into the ADS (i.e., multi-
ple consecutive frames/scenes had been injected). However, in the real world, it is more
likely that a single fault will occur, and therefore it is important to find conditions un-
der which a single fault can lead to hazardous driving conditions. One way to approach
the problem of finding all such single faults (i.e., critical faults) is to inject every single
fault while running a driving scenario in a simulator. That approach, however, would
be prohibitively costly and is infeasible in practice. For example, an exhaustive search
to find which of the 41 fault types under the “1-Fixed” fault model will lead to safety
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simulation (in black) and an injected simulation (in red). Right subfigure shows compensation c.

hazards would have taken 272 days® ° in our simulation platform . Another way to find
critical faults is to inject faults uniformly and randomly. However, the results from GPU
hardware-level FI (see §3.6.1) and ADS software module-level FI (see §3.6.2) suggest that
we need a smart FI method capable of identifying hazardous situations in driving sce-
narios and using them to guide FI experiments. A fault injector based on such a method
would inject a fault when the ADS is most vulnerable (i.e., the fault is likely to propa-
gate to actuators) and in such a way that the ADS cannot compensate for the fault. The
Bayesian fault injector is able to find a critical situation that was inherently safe (i.e., § > 0)
but became unsafe after injection of fault f (i.e., d4o(s) < 0). We have shown the effec-
tiveness of Bayesian FI by injecting faults into driving scenarios DS4-DS6 controlled by
Apollo.

Effectiveness of Bayesian FI. When we used Bayesian FI, 82% of injected faults re-
sulted in hazards. (95% of the hazards were accidents involving a pedestrian, and 5%
were lane violations.) Bayesian FI selects one of the 41 fault types of the “1-Fixed” fault
model, and uses SLI to inject a single fault into an ADS module output variable. Recall
that in the”1-Fixed” fault model, the fault location (i.e., the ADS module output vari-
able) and corruption value are defined by the fault type. In comparison, none of the
random single FIs led to safety hazards. The Bayesian FI results are marked as “1-PGM”
in Fig. 3.11a and Fig. 3.11b. All data points below the red line in Fig. 3.11a correspond to
collisions, and all data points above the red line in Fig. 3.11b correspond to lane violations.

8615 days/pg = 9min/pg x 41 fault types x 2400 scenes.
Note that traditional FI is sampling-based, so 615 days represents the worst case of enumeration of all
faults.
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The median min-CIPO distance was 0.32 m, which is significantly less than the 11.19 m
median value for golden runs. Although the median max-LK value did not change for
the “1-PGM” campaign compared to golden runs, 5% of the hazards were due to lane
violations.

Mining critical faults and critical scenes. As discussed before, injection of all fault
types under the “1-Fixed” fault model of SLI would be prohibitively expensive. Bayesian
FI helped us find all critical faults |F,,;;| for every scene and mine driving scenes that are
more susceptible to faults. The critical faults mined by Bayesian FI can help designers
understand the weaknesses of the system and corner cases under which a fault may lead
to hazards, whereas the critical scenes can be used by designers to inject random faults
(using GI or SLI) only in those scenes to help them understand the architecture vulnera-
bility factor (AVF). We believe that the mining of critical scenes by Bayesian FI will have
wider applicability beyond our FIs here. Combination of results from a range of FI exper-
iments to create a library of scenes will help manufacturers develop rules and conditions
for AV testing and safe driving. Table 3.3 gives summary statistics of mined critical faults
and scenes in the driving scenarios (DS4-6). A total of 561 faults were found to be critical
across DS4-6. Upon inspecting the mined critical faults, we found that the top 3 most
susceptible ADS module outputs for vehicle collision are the throttle value (24% of 561
critical faults), the PID controller input (18%), and the sensor-fusion obstacle class value
(15% of 561 critical faults). ADS module outputs targeted by Bayesian FI for creating lane
violations are the (a) lane type value (2% of 561), (b) throttle (1.4%), and (c) steer (1.4%).
56% of the fault types were never used by Bayesian FI; for example, Bayesian FI never
injected into the output of camera-sensor object classification module.

For DS4, we did not find any critical scene or error. That was expected, as there was
no trailing or leading vehicle around the EV in our driving scenarios. All the vehicles
were in the other lane following a completely different trajectory, and one fault in this
case would not be sufficient to make the EV cross into the adjacent lane. For DS5, 0.88%
of the scenes and 0.20% of the faults were found to be critical. The critical scenes in this
case correspond to a scene in which (a) the object (i.e., pedestrian) is first registered into
the world model and (b) the EV then starts braking. In case of (a), the Bayesian FI chooses
to remove the obstacle (e.g., by removing the obstacle, or misclassifying the object), and
in the case of (b), the Bayesian FI chooses to accelerate the vehicle (e.g., by corrupting PID
outputs or planner outputs). For DS6, we observed that 1.96% of the scenes and 0.36% of
the faults were critical. We made a similar observation for DS5. However, in addition, we
found the EV to be susceptible to faults around turns. Bayesian FI in those cases chooses
faults that correspond to a disappearing lane or steering value corruptions. The EV tends
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Table 3.3: Summary of PGM-based fault injection.

Driving scenario Critical scenes % Crit. faults % Hazard rate

DS4 (2400 scenes) 0 0.0 0.0
DS5 (2400 scenes) 0.88 0.20 0.36
DS6 (2400 scenes) 1.96 0.36 0.20

! Total faults (TF) in the “FIXED” fault model = #scenes/DS * #error
types = 98400/DS

2 Critical scenes % = #scenes in which critical faults were found by
#scenes/DS

3 Critical faults % = (Critical faults mined by Bayesian FI)/TF

to follow the lead vehicle when the lane markings are missing. However, in turns for
which there is no lead vehicle to follow, such errors become critical. It is worthwhile to note
that Bayesian FI was able to mine critical faults and scenes in 4 hours, and took approximately 54

hours to simulate all the extracted faults in the simulator.

3.7 RELATED WORK

AV research has traditionally focused on improvement ML/AI techniques. However,
as models are deployed at large scale on computing platforms, the focus changes to as-
sessment of the resilience and safety features of the compute stack that drives the AV.
Assessment of the safety and resilience of AVs requires robust testing techniques that
are scalable and directly applicable in real-world driving scenarios. It is not scalable or
practical to base a safety argument solely on statistical measures such as a billion miles
on roads, or on simulations done on platforms such as CARLA [140] or Open Pilot [16],
[69, 86]. Testing the robustness of an ADS has proven to be challenging and mostly ad hoc
or experience-based [112]. In particular, to test the functionality and design of the hard-
ware and software components of an ADS, current methods rely on injection of invalid
or perturbed inputs [120, 123, 8] or faults and errors [8, 75, 144] into an ADS in simulation
or ADS components, and accrual of millions of miles on roads [20].

However, these methods are not scalable because (a) they lack simulated or real datasets
that would represent all kinds of driving scenarios [69]; (b) it would take billions of miles
of driving to add functionality or do a bug fix, in order to drive statistical measures [145];
(c) they are restricted to DNNs[146, 147, 86, 148, 75] and sensors [8, 123], even when
DNNs form only a small part of the whole ecosystem; and (d) once the easy bugs have
been fixed, finding rare hazardous events would be exponentially more expensive, as
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faults might manifest only under specific conditions (e.g., a certain software state).

3.8 CONCLUSION

In this work we present DriveF], a fault injection tool, along with methodologies to em-
pirically assess the fault propagation, resilience, and safety characteristics of the ADS, as
well as to generate and test corner-case failure conditions. DriveFI incorporates Bayesian
and traditional FI frameworks which work in tandem to accelerate finding of the safety-
critical faults.
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CHAPTER 4: AV: CRAFTING DOMAIN-GUIDED ML-DRIVEN MALWARE

Ensuring the safety of autonomous vehicles (AVs) is critical for their mass deployment
and public adoption. However, security attacks that violate safety constraints and cause
accidents are a significant deterrent to achieving public trust in AVs, which hinders a ven-
dors’ ability to deploy the AVs. Creating a security hazard that results in a severe safety
compromise (for example, an accident) is compelling from an attacker’s perspective. In
this chapter, we introduce an attack model, a method to deploy the attack in the form
of a smart malware, and an experimental evaluation of its impact on production-grade
autonomous driving software. We find that determining the time interval during which
to launch the attack is critically important for causing safety hazards (such as collision)
with a high degree of success. For example, the smart malware caused 33 x more forced
emergency braking compared to random attacks, and accidents in 52.6% of the driving

simulations.

4.1 INTRODUCTION

Autonomous vehicle (AV) technologies are advertised to be transformative, with a po-
tential for bringing greater convenience, improved productivity, and safer roads [58]. En-
suring the safety of AVs is critical for their mass deployment and public adoption. How-
ever, security attacks that violate safety constraints and cause accidents are a significant
deterrent to achieving public trust in AVs, which also hinders a vendors” ability to deploy
the AVs. Creating a security hazard that results in a serious safety compromise (for exam-
ple, an accident) is attractive from an attacker’s perspective. For example, smart malware
can modify sensor data at an opportune time to interfere with the inference logic of an
AV’s perception module. The intention is to miscalculate the trajectories of other vehicles
and pedestrians, leading to unsafe driving decisions and consequences. Such malware
can fool an AV into inferring that an in-path vehicle is moving out of the lane, while in
reality, the vehicle is slowing down, which can lead to a serious accident.

This chapter introduce i) the foregoing attack model, ii) a method to deploy the attack
in the form of a smart malware (RoboTack), and iii) an experimental evaluation of its im-
pact on production grade autonomous driving software. Specifically, the proposed attack
model answers the questions of what, how, and when to attack. The proposed malware has
a small footprint, i.e., less than 500 lines of Python/C++ code, and 4% additional GPU uti-
lization with negligible CPU utilization in comparison to the autonomous driving stack.
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This makes it difficult to detect an attack using methods that monitor the usage of system
resources. The key questions addressed by RoboTack and the main contributions of this
chapter are:

What to attack? RoboTack modifies sensor data of the AV to miscalculate the trajecto-
ries of other vehicles and pedestrians.

How to attack? RoboTack minimally modifies the pixels of one of the AV’s camera
sensors to alter the trajectory of pedestrians and other vehicles while maintaining it for
a short time interval. The change in the sensor image and perceived trajectory is small
enough to be considered as noise. Moreover, RoboTack overcomes compensation from
other sensors (e.g., LIDAR) and temporal models (e.g., Kalman Filters).

When to attack? RoboTack employs a shallow 3-hidden layered neural network (NN)
decision model to identify the most opportune time with the intent of causing a safety
hazard (e.g., collisions) with a high probability of success. In contrast, adversarial learn-
ing methods [149-151, 7] focus only on perception (specifically, object misdetection and
misclassification). We show that without strategically timing the attack, the success rate is
negligible.

Assessment on production software. We deploy RoboTack on Apollo [15], a production-
grade AV system from Baidu, to quantify the effectiveness of the proposed safety-hijacking
attack by simulating ~ 2000 runs of experiments for five of the representative driving sce-
narios using the LGSVL simulator [152].

The key findings of this chapter include:

* RoboTack is significantly more successful in creating safety hazards than random at-
tacks (our baseline). Here random attacks correspond to miscalculating the trajectory
(i.e., trajectory hijacking) of a randomly chosen non-AV vehicle or pedestrian, at a ran-
dom time, for a random duration. This is the most general condition for comparison,
although we also show results for a much more restrictive set of experiments. Rob-
oTack caused 33 x more forced emergency braking compared to random attacks, i.e.,
RoboTack caused forced emergency braking in 75.2% of the runs (640 out of 851). In
comparison, random attacks caused forced emergency braking in 2.3% (3 out of 131
driving simulations).!

e Random attacks caused 0 accidents, where as RoboTack caused accidents in 52.6% of
the runs (299 out of 568).

* RoboTack had higher success rate in attacking pedestrians (84.1% of the runs which
involved pedestrians) than vehicles (31.7% of the runs which involved vehicles).

'These numbers while seemingly different are consistent as we will show in §4.6.
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* Apollo’s perception system is less robust towards detecting pedestrians compared to
other vehicles. RoboTack automatically discerns this difference, hence it needs only 14
consecutive camera frames involving pedestrians to cause accidents, while needing 48
consecutive camera frames involving other vehicles.

Comparing RoboTack with adversarial learning. Past work has targeted deep neu-
ral networks (DNNs) used in the perception systems of the AVs to create adversarial
machine-learning-based attacks [149-151, 7] and has shown adversarial results (such as
misclassifying and/or misdetecting a stop sign as a yield sign). The goal of this line of
research is to create adversarial objects on the road that fool the AV’s perception system.
However, these attacks 1. are limited because DNNs represent only a small portion of
the production autonomous driving system (ADS) [15], and 2. have low safety impact
due to built-in compensation provided by temporal state-models (redundancy in time)
and sensor fusion (redundancy in space) in ADS, which can mask consequences of such
perturbations and preserve AV safety (as shown in this chapter, and by others [146]). To
summarize adversarial learning only tells one what to attack. In contrast, as we discussed
in detail in §4.3.4, RoboTack tells you what, when and how to attack.

4.2 BACKGROUND
42.1 Autonomous Driving Software

We first discuss the terminologies associated with the autonomous driving system
(ADS) that is used in the remainder of the chapter. Fig. 4.1 illustrates the basic control
architecture of an AV (henceforth also referred to as the Ego vehicle, EV). The EV consists
of mechanical components (e.g., throttle, brake, and steering) and actuators (e.g., electric
motors) that are controlled by an ADS, which represent the computational (hardware and
software) components of the EV. At every instant in time, ¢, the ADS system takes input
from sensors I; (e.g., cameras, LIDAR, GPS, IMU) and infers W, a model of the world,
which consists of the positions and velocities of objects around the EV. Using W and
destination as an input, the ADS planning, routing, and control module generates actu-
ation commands (e.g., throttle, brake, steering angle). These commands are smoothed
out using a PID controller [124] to generate final actuation values A for mechanical com-
ponents of the EV. The PID controller ensures that the AV does not make any sudden
changes in A;.

422 Perception System

Definition 4.1. Object tracking is defined as the process of identifying an object (e.g., vehi-

cle, pedestrian) and estimating its state s; at time ¢ using a series of sensor measurements
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(e.g., camera frames, LIDAR pointcloud) observed over time. The state of the object is
represented by the coordinates and the size of a “bounding box” (bbox) that contains the
object. This estimated state at time ¢ is used to estimate the trajectory (i.e., the velocity,
acceleration, and heading) for the object.

Definition 4.2. Multiple object tracking (MOT) is defined as the process of estimating the
state of the world denoted by S, = (!,52, ..., 5), where N, represents the number of

objects in the world at time ¢, and §! is the state of the i™ object.?
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Figure 4.1: Overview of the ADS perception system and the proposed attack in RoboTack.

The MOT problem is most commonly solved by the tracking-by-detection paradigm [153].
An overview of this paradigm is shown in Fig. 4.1. Here, a sensor (or group of sensors)
continuously collects the measurement data at every instant of time ¢ (I;). These sensor
inputs are sent to a corresponding DNN-based object detector, such as YoloNet [154] or
FasterRCNN [155] (labeled as “D” in Fig. 4.1). Such an object detector estimates the ob-
ject’s class and its bbox at every time instant. The collection of these bbox measurements
for all objects is denoted by O; = {0}, 02, ...,0;"}, where o} denotes the observations for
the i object at time ¢.

2In this chapter, the boldface math symbols represent tensors and regular-face symbols represent scalar
values in tensors.
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An object tracker (or tracker) tracks the changes in the position of the bboxes over suc-
cessive sensor measurements. Each detected object is associated with a unique tracker,
where a tracker is a Kalman filter [156] (KF) that maintains the state s’ for the i object.
Each object detected at time ¢ is either associated with an existing object tracker or a new
object tracker, initialized for that object. Such association of a detected object with ex-
isting trackers (from time ¢ — 1) is formulated as a bipartite matching problem, which
is solved using the Hungarian matching algorithm [157] (shown as “M” in the figure).
“M” uses the overlap, in terms of IoU?, between the detected bboxes at time ¢ (i.e., the
output of “D”) and the predicted bboxes by the trackers (Kalman Filter) of the existing
objects to find the matching. A KF is used to maintain the temporal state model of each
object (shown as “F” in the figure), which operates in a recursive predict-update loop:
the predict step estimates the current object state according to a motion model, and the
update step takes the detection results (0}) as the measurement to update ! state. That is,
the KF uses a series of noisy measurements observed over time and produces estimates
of an object state that tend to be more accurate than those based on a single measurement
alone. KFs solve two real-world challenges associated with the perception system:

* Sensor inputs are captured at discrete times (i.e., ¢, t +1,...). Depending on the speed
and acceleration, the object may have moved between those discrete time intervals.
Motion models associated with KFs predict the new state of tracked objects from time-
stept —1tot.

* State-of-the-art object detectors are inherently noisy [154, 155] (i.e., bounding box esti-
mates are approximate measurement of the ground-truth), which can corrupt the ob-
ject trajectory estimation (i.e., velocity, acceleration, heading). Hence, the perception
system uses KFs to compensate for the noise using Gaussian noise models [157].
Finally, a transformation operation (shown as “T” in the figure) calculates the position,

velocity, and acceleration for each detected object using S;. These measurements are then

fused with other sensor measurements (e.g., LIDAR) in the “sensor fusion” step in Fig. 4.1

to get world state W,.

423 Safety Model

In this chapter, we use the AV safety model provided by Jha et al. [24]. [24] defines the
instantaneous safety criteria of an AV in terms of the longitudinal (i.e., direction of the

3Intersection over Union (IoU) is a metric to characterize the accuracy of predicted bounding boxes. It is
defined as (area of overlap)/(area of union) between the ground-truth label of the bounding box and the predicted
bounding box.
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Figure 4.2: Definition of dqop, dsate, and ¢ for lateral and longitudinal movement of the car.
Non-AV vehicles are labeled as target vehicles (TV).

vehicle’s motion) and lateral (i.e., perpendicular to the direction of the vehicle’s motion)
Cartesian distance travelled by the AV (see Fig. 4.2). In this chapter, we only use the lon-
gitudinal definition of the safety model as our attacks are geared towards those driving
scenarios. Below we reproduce the definitions of their safety model for completeness.

Definition 4.3. The stopping distance dp, is defined as the maximum distance the vehicle
will travel before coming to a complete stop, given the maximum comfortable decelera-

tion.

Definition 4.4. The safety envelope dsfe [12, 13] of an AV is defined as the maximum dis-
tance an AV can travel without colliding with any static or dynamic object.

In this safety model, we compute ds,e Whenever an actuation command is sent to the
mechanical components of the vehicle. These ADSs generally set a minimum value of dgage
(i-e., dsafe,min) to ensure that a human passenger is never uncomfortable about approaching
obstacles.

Definition 4.5. The safety potential § is defined as § = dsae — dstop- An AV is defined to be
in a safe state when 6 > 0.

Unlike [24] which uses § > 0 as the safe operation state, we choose § > 4m because of
a limitation in the simulation environment provided by LGSVL [152] for Apollo [15] that
halts simulations for distances closer than 4m.

43 ATTACK OVERVIEW & THREAT MODEL

This section describes the attacker goals, target system, and defender capabilities.
4.3.1 Attacker Goals

The ultimate goal of the attacker is to hijack object trajectories as perceived by AV to
cause a safety hazard.

To be successful, the attack must:
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¢ Stay stealthy by masquerading attacks as noise. To evade detection of the malicious
intent, an attacker may want to hide malicious actions as events that occur naturally
while driving. In our attack, we hide the data perturbation initiated by the malware/at-
tacker as sensor noise. As we show in §4.6.1, modern object detectors naturally mis-
classify (i.e., identify the object class incorrectly) and misdetect (i.e., bounding boxes
have zero or < 60% loU) objects for multiple time-steps (discussed in §4.6.1). Taking
advantage of this small error margin in hiding data perturbations, the attacker initi-
ates the attack 1) at the most opportune time such that even if the malicious activity is
detected it is too late for the defender to mitigate the attack consequences and 2) for a
short duration of time to evade detection from the intrusion-detection systems (IDS) that
monitors for spurious activities [158].

* Situational awareness. Hijacking the object trajectory in itself is not sufficient to cause
safety violations or hazardous driving situations. An attacker must be aware of the
surrounding environment to initiate the attack at the most opportune time to cause
safety hazards (e.g., collision).

* Attack automation. An attacker can automate the process of monitoring and identify-
ing the opportune time for an attack. This way the adversary only needs to install the
malware instead of manually following all the steps of the attack.

4.3.2 Threat Model

In this section we discuss the target system, the existing defenses, and the attacker’s
capabilities.

Target system. The target is the perception system of an AV, specifically the object
detection, tracking, and sensor fusion modules. To compensate for the noise in the out-
puts of the object detectors, the AV perception system uses temporal tracking and sensor
fusion (i.e., fusion data from multiple sensors such as LIDAR, RADAR, and cameras).
Temporal tracking and sensor fusion provide an inherent defense against most if not all
existing adversarial attacks on detectors [146].

The critical vulnerable component of the perception system is a Kalman Filter (KF) (see
“F” in §4.2 and Fig. 4.1). KFs generally assume that measurement noise follows a zero-
mean Gaussian distribution, which is the case for the locations and sizes of bboxes pro-
duced by the object detectors (described later in §4.6.1). However, this assumption in-
troduces a vulnerability. The KF becomes ineffective in compensating the adversarially
added noise. We show in this chapter that an attacker can alter the trajectory of a per-
ceived object by adding noise within one standard deviation of the modeled Gaussian
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noise.

The challenge in attacking a KF is to maintain a small attack window (i.e., the number
of contiguous time epochs for which the data is perturbed). When injecting a malicious
noise pattern, the attack window must be sufficiently small (1-60 time-steps) such that the
defender cannot estimate the distribution of the injected noise and hence cannot detect
the attack.

What can attackers do? In this chapter we intentionally and explicitly skirt the problem
of defining the threat model. Instead we focus on what an attacker could do to an AV if
she has access to the ADS source code and live camera feeds.

Gain knowledge of internal ADS system. We assume the attacker has a knowledge of the
internal ADS system, by analyzing the architecture and source code of open-source ADSs,
e.g., Apollo [15, 159]. Attacker can also gain access to the source code through a rogue
employee.

Gain access to and modify live camera feed. Recently, Argus [160] showed the steps to
hijack a standalone automotive-grade Ethernet camera and spoof the camera traffic. The
attack follows a “man-in-the-middle” (MITM) strategy in which an adversary gains phys-
ical access to the camera sensor data and modifies it (when certain conditions are met).
The hack relied on the fact that the camera traffic is transmitted using standard (i.e., IEEE
802.1 Audio Video Bridging [161]) but simple protocols, which is not encrypted due to
size of the data as well as performance and latency constraints associated with the trans-
mission. As the camera feed is not encrypted, the attacker can reassemble packages of a
video frame and decode the JFIF (JPEG File Interchange Format) payload into an image.
Most importantly, since there is no hash or digital signature checks on the transmitted
images, to prepare for our attack, the attacker can apply a number of filters to modify
the images in-line without being noticed. The MITM attack works by using an Ethernet
tap device to capture UDP packets in the Ethernet/RCA link between the camera and
the ADS software. The Ethernet tap captures images and provides them as the input for
attacker-controlled hardware with purpose-built accelerators, such as NVIDIA EGX, that
are operating outside the domain of the ADS hardware/software.

Optionally compromise ADS software using secret hardware implant. To further hide mal-
ware and evade detection, an attacker can install backdoors in the hardware. Injecting
malicious code in hardware-software stack has been realized in existing hardware back-
doors embedded in CPUs, networking routers, and other consumer devices [162, 159]. As
an AV is assembled from components supplied by hundred of vendors through a sophis-
ticated supply chain, it is reasonable that individual components such as infotainment

systems and other existing electronic component units (ECUs) can be modified to enable
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secret backdoors [163, 159].

What attackers cannot do? In this work, we assume that the CAN bus transmitting
the control command is protected /encrypted. Therefore we cannot launch a man-in-the-
middle attack to perturb the control/actuation commands sent to the mechanical compo-
nents of the EV.

Defender capabilities. In this chapter, we assume that the CAN bus transmitting the
controller/actuation commands are encrypted. This is acceptable because many com-
mercial products utilize such encryption[164]. Moreover, there are well known IDSs for
monitoring CAN bus activity [158, 165]. Therefore, we do not leverage CAN bus vul-
nerabilities as an attack vector, instead our attack exploits vulnerabilities on the camera’s
Ethernet/RCA cable link.

4.3.3 Attack Vectors and Injected Attacks

We describe a taxonomy of attack vectors (shown in Fig. 4.1) that the attacker can lever-
age to maximize the impact, such as an emergency stop or crash. The attack vectors are:
a) Move_Out. In this attack, the attacker hijacks the target object (TO) trajectories to fool

the EV into believing that the TO is moving out of the EV’s lane. A close variant of

this attack is fooling the EV into believing that the target object is maintaining its lane
whereas in reality the target object is moving into the EV’s lane. Due to this attack, EV
will start to accelerate or maintain its speed, causing it to collide with the target object.

b) Move_In. In this attack, the attacker hijacks the target object (TO) trajectories to fool
the EV into believing that the TO is moving into the EV’s lane. Due to this attack,
the EV will initiate emergency braking. The emergency braking maneuver is highly
discomforting for the passengers of the EV and may lead to injuries in some cases.

¢) Disappear. In this attack, the attacker hijacks the target object (TO) trajectories to fool
the EV into believing that the TO has disappeared. The effects of this attack will be

similar to the move-out attack model.

4.3.4 Attack Phases.

The attack progresses in three key phases as follows.

Phase 1. Preparing and deploying the malware. Here the attacker does the following:
1. gains access to the ADS source code,
2. defines the mapping between the attack vectors (see §4.3.3) and the world state (W),
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Figure 4.3: Steps followed by RoboTack to mount a successful attack, i.e., collision be-
tween the EV (blue) with the target object (red). SM: Scenario matching, SH: Safety Hi-
jacking, TH: Trajectory Hijacking.

3. trains the ‘safety hijacker” and tunes the ‘trajectory hijacker’ (e.g., weights of the neural
network) and trajectory hijacker (e.g., learns about the maximum perturbation that can
be injected to evade detection) for the given ADS,

4. gains access to the target EV camera feeds, and

5. installs RoboTack on the target EV.

Phase 2. Monitoring the environment. Once our intelligent malware is deployed, it
does:

1. approximately reconstructs the world (W,) using the hacked camera sensor data () in
Fig. 4.1). For simplicity, we assume that the world state estimated using sensor fusion
is not significantly different from the state determined using only one camera sensors.
In our implementation we only use S; to carry the attack instead of relying on data
from all sensors.

2. identifies the victim target object : (i.e., one of the other vehicle or pedestrian) for which
the trajectory is hijacked. The target object is the one closest to the EV. This is done
using the safety model as defined in §4.2.3 (line 9 in algorithm 4.1).

3. invokes the “scenario matcher” (SM) module (@) in Fig. 4.1), which uses the world
state (W;) to determine whether identified object is vulnerable to one of the the attack
vectors (shown in @ and discussed in §4.3.3).

4. uses the “safety hijacker” (SH) (shown as @ in Fig. 4.1) to decide when to launch the
attack (¢), and for how long (¢ + K). The SH estimates the impact of the attack using a
shallow 3-layered NN in terms of reduced safety potential (§). The malware launches
the attack only if the reduced safety potential drops below a predefined threshold
(10m). We determine this threshold through simulation of driving scenarios leading
to emergency braking by the EV. To evade detection, malware ensures that K does not
exceed a pre-defined threshold (line 15 in algorithm 4.1). K is obtained by character-
izing the continuous misdetection of an object associated with the “object detector” in
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the normal (i.e., without attacks) driving scenarios executed in the simulator.
Phase 3. Triggering the attack. RoboTack:

1. uses the “trajectory hijacker” (@ in Fig. 4.1) to corrupt the camera feed. The trajectory
hijacker perturbs the camera sensor data such that i) the trajectory of the object (e.g.,
a school bus) is altered to match the selected attack vector (e.g., move-out) and ii) the
trajectory of the object does not change significantly, thus evading detection.

2. attacks the trajectory of the victim object for next K time-steps, as decided by the safety
hijacker.

4.3.5 Anexample of a real attack

Fig. 4.3 shows an example of a ‘move-out” attack. Here we show two different views, i)
simulation view, which is generated using a driving scenario simulator, and ii) ADS view,
which is rendered using world-state visualizer.

RoboTack continuously monitors every camera frame using “scenario matching” (SM)
to identify a target object for which the perceived trajectory by the EV can be hijacked. If
SM does not identify any target object of interest, it skips the rest of the step and waits for
the next camera frame. As shown in Fig. 4.3 (a) and (b), at time-step ¢, SM identified SUV
(i.e., target vehicle) as a target object of interest, and returned ‘move-out” as a matched
attack-vector as the SUV is already in the Ego lane. Next, RoboTack launches ‘safety
hijacker” to determine the reduced safety potential of the attack, and number of time-
steps the attack needs to be maintained. As it turns out the safety hijacker determined that
the reduced safety potential can cause accident, and hence RoboTack launches ‘trajectory
hijacker” to perturb the camera sensor data as shown in Fig. 4.3 (c), and its impact on
trajectory in Fig. 4.3(d). Camera sensor data is perturbed by modifying individual pixels
as shown in white (within the bounding box (red square) the target object), for illustration
purposes. Originally, these pixels are modified in a way that it is invisible to the human
eye. Due to this attack, EV collides with the target object as shown in Fig. 4.3(e) and (f).

44 ALGORITHMS AND METHODOLOGY

In this section, we outline the three key steps taken by the malware: 1. in monitor-
ing phase, selecting the candidate attack vector using the scenario matcher (§4.4.1), 2. in
monitoring phase, deciding when to attack using the safety hijacker (§4.4.2), and 3. in
trigger phase, perturbing camera sensor feeds using the trajectory hijacker. These steps
are described in algorithm 4.1.
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Algorithm 4.1 Attack procedure at each time-step.

Input: gt—l:t—Z > Past object states
Input: I} > Camera feed
Global: attack > Flag indicating if the attack active
Global: K > Number of continuous attacks
Global: ¢ > Index of the target object
Output: I} > Perturbed image with adversarial patch
1. o< O
2: Oy, S; Perception(1y)
3: if attack = False then
4: i, 5t «— SafetyModel(S;) > From definition 4.5
5: Telt + calcVelcoity(st, ;)
6 @y  calcAcceleration (s, )
7: a < ScenarioMatcher(s!)
8: end if
9: if a # @ then
10: attack, K < SafetyHijacker(a
11: end if
12: if attack = True N K >0 then
13: IV « TrajectoryHijacker(i, I, 0}, 5 _,, )
14: K+ K-1
15: if K = 0 then

6157 O{)

Qe N2 rel N2

16: attack <+ False
17: end if
18: end if

4.4.1 Scenario Matcher: Selecting Target Trajectory

The goal of the scenario matcher is to check whether the closest object (referred as
the target object) to the EV is vulnerable to any of the candidate attack vectors (i.e.,
‘Move_Out’, ‘Move_In’, and ‘Disappear’). This is a critical step for the malware to avoid
launching 1) any attack if there are no objects next or in front of the EV or 2) an attack (say
‘Move_Out’) when the object is actually executing the would-be bogus (i.e, the selected
attack vector o) driving maneuver (e.g., moving out of the Ego lane anyway). The sce-
nario matching algorithm is intentionally designed as a rule based system (rules listed in
Table 4.1), to minimize its execution time, and hence evade detection.

Note that ‘Scenario Matcher” can interchangeably choose between ‘Move_Out’ or ‘Dis-
appear’ attack vector. However in our work, we found that ‘Disappear’, which requires
large perturbation in trajectory, is more suited for pedestrians because the attack window
is small. In contrast, the attack window for vehicles is large. Therefore, in those cases
RoboTack prefers to use ‘Move_Out’. This is described later in detail in §4.6.
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Table 4.1: Scenario Matching Map

TO trajectory | TO in EV-lane TO not in EV-lane
Moving In — Move_Out/Disappear
Keep Move_Out/Disappear Move_In

Moving Out | Move_In —

1TO: Target object

4.4.2 Safety Hijacker: Deciding When to Attack

To cause a safety violation (i.e., a crash or emergency brake), malware will optimally
attack the vehicle when the attack results in § < 4m. Malware incorporates this insight
into the safety hijacker to decide the start and stop time of the attack by executing the
safety hijacker at every time-step. The safety hijacker at time-step ¢ takes (7. ;, @.. ), 01,
and « as inputs. It outputs the attack decision (i.e., attack or no-attack) and the number of
time-steps K for which the attack must continue to be successful (line 16 in algorithm 4.1).

Let us assume that the malware has access to an oracle function f, for a given attack
vector « that predicts the future safety potential of the EV when subjected to the attack

type « for k continuous time-steps,
5t+k = foc (ﬁf‘el,t? C_if"el,t’ 5157 k) (4'1)

Later in this section, we will describe a machine-learning formulation to approximate
fo using a neural network, and integrate it with the malware. The malware decides to
attack only when the safety potential d, is less than some threshold . Ideally, the mal-
ware should attack when v = 4 (i.e., 6 corresponding to the crash), which causes extreme
discomfort to the passengers.

In order to evade detection and masquerade the attack as noise, the installed malware
should choose the ‘optimal k’, which we referred as K, (i.e., minimal number of con-
secutive camera sensor frame perturbations) using the information available at time-step
t. The malware can use the oracle function f,(.) to decide the optimal number of time-
steps (K) for which the attack should be active. The malware decides to attack only if
k < Kpaw, Where K,,,, is the maximal number of time-steps during which a corruption

of measurements cannot be detected. This is formalized in eq. (4.2).

K =argmink - (I(6;0r <) =1) (4.2)

k
Finally, the malware must take minimal time to arrive at the attack decision. However,
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in the current formulation, calculating K can be very costly, as it needs to evaluate eq. (4.2)
using f, (whichisaNN) forall £ < K,,,,. We accelerate the evaluation of K by leveraging
the fact that for our scenarios (§4.5.3) f, is non-increasing with increasing £ when a,.;, <
0. Hence, we can do a binary search between k € [0, K,,,] to find K in O(log K,,4.) steps.

Estimating f, using a NN. In this work, we approximate the oracle function f, using a
feed-forward NN. We use a NN to approximate f, to model the uncertainty in the ADS
because of use of non-deterministic algorithms. Hence, the malware uses a uniquely
trained NN for each attack vector. The input to the NN is a vector [0, Uyel,, Grei,, k. The
model predicts 6, after k consecutive frames given the input. Intuitively, the NN learns
the behavior of the ADS (e.g., conditions for emergency braking) and kinematics under
the particular attack vector that we specified, and it infers the safety potential 6,, to
the targeted object from the input. We train the network using a cost function (£) that
minimizes the average L2 distance between the predicted 8,4 and the ground-truth §< ,
for the training dataset Dy, iy,

L=mm— 3 W dll 43)
i€Dyrain

We use a fully-connected NN with 3 hidden layers (100, 100, 50 neurons), ReLU activa-
tion function and dropout layers with a dropout rate of 0.1 to estimate f,. The specific
architecture of the NN was chosen to reduce the computational time for the inference
with sufficient learning capacity for high accuracy. The NN predicts the safety potential
after the attack within 1m and 5m for pedestrian and vehicles, respectively.

The NN was trained with a dataset D collected from a set of driving simulations run on
Baidu’s Apollo ADS. To collect training data, we run several simulation, where each sim-
ulation has a predefined d;,;. and a k, i.e. an attack starts as soon as the d; = d;pjcct, and
continues for k consecutive time-steps. Such dataset characterizes the ADS’s responses to
attacks. The network is trained using Adam optimizer with 60%-40% split of the dataset

between the training and validation.

4.4.3 Hijacking Trajectory: Perturbing Camera Sensor Feeds

In this section, we describe the mechanism through which the malware can perturb
the camera sensor feeds to successfully mount the attack (i.e., execute one of the attack
vectors) once it has decided to attack the EV. The malware achieves this objective using a
trajectory hijacker.

The attack vectors used in this chapter require that the malware perturb the camera
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sensor data (by changing pixels) in a way that the bounding box (8;) estimated by the

multiple-object tracker (used in the perception module) at time ¢ moves in a given direc-

tion (left or right) at max by w4

The objective of moving the bounding box & in a given direction (left or right) can be
formulated as an optimization problem. To solve this optimization problem, we modify
the model provided Jia et al.[26] to evade attack detection. We find the translation vec-

tor &, at time ¢ that maximizes the cost M of Hungarian matching (recall from Fig. 4.1)

between the detected bounding box, o}, and the existing tracker state $;_; such that the

following conditions hold:

e Threshold M < ) ensures that o, must still be associated with its original tracker state
§_,, 1.e, M < A. X can be found experimentally for a given perception system and
depends on Kalman parameters. This condition is relaxed when the selected attack
a = ‘Disappear’.

* &; € [u— o, p+ o] is within the Kalman noise parameters (u, o) of the selected candidate
object. This condition ensures that the perturbation ensures that the perturbation is
within the noise.

e Threshold IoU(o} + é,+, patch) > 7 ensures that the adversarial patch patch should
intersect with the detected bounding box, o, to restrict the search space.

mazx M (o, + &, §;_;)
wt

s.t. M < A,
IoU (0! + &, patch) > 7,

(4.4)

G € [u— o, p+ 0]

Finally, the malware should stop maximizing the distance between the o} and §,_, once
the total accumulated w from start time of the attack, say ¢ — K’, to current time-step ¢ is
less than €,,,,., i.e., Zi_ o Ot < Qg

Once the object tracker is moved in a direction by (2,,,,,, the malware should perturb the
camera sensor data to maintain the object tracker at the new location by setting &, = 0.
Note that the trajectory hijacker maximizes the w for only K’ << K time-steps to shift
the object position at max by (2, and maintains the position of the object for next K — K’
time-steps, where K is the number of time-steps for which the attack must be active from
start to end. In our experiments, we find K’ to be generally around 4-20 frames, whereas
K (which is determined by safety hijacker) is generally 10-65 frames. Since K’ is small,
the chances of detection significantly decreases.

Perturbing Camera Sensor Data. Here the goal of the perturbation is to shift the po-
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sition of the object detected by the object detector (e.g., YOLO). To achieve this objective,
we formulate the problem of generating perturbed camera sensor data using Eq (2) given
in [26]. We omit the details due lack of space.

4.5 EXPERIMENTAL SETUP

45.1 Al Platform

In this work, we use Apollo [15] as an Al agent for driving the AV. Apollo is built
by Baidu and is openly available on GitHub [166]. However, we use LGSVL’s version
of Apollo 5.0 [167] as it provides features to support integration of the LGSVL simula-
tor [152] with the Apollo. Apollo uses multiple sensors: Global Positioning System (GPS),
Inertial measurement unit (IMU), RADAR, LIDAR, and camera sensors. Our experiments

use only two cameras (fitted at the top and front of the vehicle) and one LiDAR.

4.5.2 Simulation Platform

In this work, we use a LGSVL simulator [152] that uses Unity [168], a gaming en-
gine [169], for simulating driving scenarios. Note that a driving scenario is characterized
by the number of actors (i.e., objects) in the world, their initial trajectories (i.e., position,
velocity, acceleration, and heading), and their waypoints (i.e., their route from source to
destination). In our setup, LGSVL simulates the virtual environment and posts virtual
sensor data to the ADS for consumption. These sensors are LIDAR, a front-mounted
main camera, a top-mounted telescope camera, continental RADAR, IMU, and GPS. The
measurements for different sensors are posted at different frequencies [170]. In our ex-
periments, RADAR is producing data at 13.5 Hz, cameras at 15Hz (of size 1920x1080),
and GPS at 12.5 Hz. In simulation, LIDAR is rotation at 10 Hz and producing 360 mea-
surements per rotation. At the time of submission of this manuscript, LGSVL does not
provide integration of RADAR for Apollo. Additionally, LGSVL provides Python APIs
for creating driving scenarios, which we leverage to develop the driving scenarios de-

scribed next.

4.5.3 Driving Scenarios

Here we describe the driving scenarios shown in Fig. 4.4 that are used in our exper-
iments. All our driving scenarios are generated using LGSVL on “Borregeas Avenue”
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Figure 4.4: Driving scenarios. EV: Ego Vehicle, TV: Target Vehicle, NPC: Other Vehicles
with no interaction with EV.

(located in Sunnyvale, California, USA), which has a speed limit of 50kph. Unless other-
wise specified, in all cases EV is cruising at 45kph.

Driving scenario-1 or ‘DS-1" consists of the Ego vehicle (EV) following a target vehicle
(TV) in the Ego lane at a constant speed (25kph), shown in Fig. 4.4. The TV starts 60m
ahead of the EV. In the golden (i.e., non-attacked) run, the EV would accelerate to 40kph
and come closer to the TV at the beginning and then gradually decelerate to 25kph to
match the speed of the TV. Thereafter, the EV maintains a longitudinal distance of 20m
behind the TV for the rest of the scenario. We use this scenario to evaluate ‘Disappear’
and ‘Move_Out’ attack vectors on a vehicle.

Driving scenario-2 or ‘DS-2" consists of a pedestrian illegally crossing the street as
shown in Fig. 4.4. In the golden run, the EV brakes to avoid collision and stops more
than 10m away from the pedestrian, if possible. The EV starts travelling again when
the pedestrian moves off the road. We use this scenario to evaluate ‘Disappear’ and
‘Move_Out’ attack vectors on a pedestrian.

Driving scenario-3 or ‘DS-3’ consists of a parked target vehicle on the side of the street
in the parking lane. In the golden run, the EV maintains its trajectory (lane keep). We use
this scenario to evaluate ‘Move_In" attack vector on a vehicle.

Driving scenario-4 or ‘DS-4’ consists of a pedestrian walking longitudinally towards
the EV in the parking lane (next to EV lane) for 5m then standing-still for the rest of
the scenario. In the golden run, EV recognizes the pedestrian, at which point it reduces
its speed to 35kph. However, once it ensures that the pedestrian is safe (by evaluating
its trajectory), it resumes its original speed. We use this scenario to evaluate ‘Move_In’
attack vector on a pedestrian.

Driving scenario-5 or ‘DS-5" consists of multiple objects with random waypoints and
trajectories as shown in Fig. 4.4. Throughout the scenario, the EV is set to follow a target
vehicle same as ‘DS-1’, with multiple non-AV vehicles traveling on the other lane of the
road as well as in front or behind (not shown). Apart from the target vehicle, these ve-
hicles are traveling at random speeds starting from random positions in their lanes. We

use this scenario as the baseline scenario for random attack to evaluate the effectiveness
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of our attack end-to-end.

454 Hardware Platform

Production version of the Apollo ADS is supported on the Nuvo-6108GC [143], which
consists of Intel Xeon CPUs and NVIDIA GPUs. In this work, we deploy Apollo on an
x86 workstation with a Xeon CPU, ECC Memory, and two NVIDIA Titan Xp GPUs.

4.6 EVALUATION & DISCUSSION

4.6.1 Characterizing Perception System on Pretrained YOLOvV3 in Simulation

We characterize the performance of YOLOvV3 (used in the Apollo perception system)
in detecting objects on the road, while the AV is driving, to measure: 1. the distribution
of successive frames from an AV camera feed in which a vehicle or a pedestrian is con-
tinuously undetected and 2. the distribution of error in the center positions of the predicted
bounding boxes compared to the ground-truth bounding boxes. We characterize those
quantities to show that an attack mounted by RoboTack and the natural noise associated
with the detector are from the same distribution. In particular, we show that the con-
tinuous misdetection caused by RoboTack is within the 99th percentile of the continuous
characterized misdetection distribution of the YOLOv3 detector, see Fig. 4.5. This is im-
portant because if our attack fails, the object will reappear and be flagged by the IDS as an
attack attempt. Similarly, we characterize the error in the predicted bounding box to en-
sure our injected noise is within the estimated Gaussian distribution parameters shown
in Fig. 4.5. RoboTack changes the position at time-step ¢t by at max p — o < w < p + o of
the Gaussian distribution. For this characterization, we generated a sequence of images
and labels (consisting of object bounding boxes and their classes) by manually driving
the vehicle on the San Francisco map for 10 minutes in simulation.

Continuous misdetections. Fig. 4.5 (a) and (b) show the distribution of the number of
frames in which pedestrians and vehicles are continuously misdetected. Here we con-
sider an object as misdetected if the IoU between the predicted and ground-truth bound-
ing box is less than 60%. The data follows an exponential distribution.

Bounding box prediction error. To characterize the noise in the position of the bound-
ing boxes predicted by YOLOv3, we compute the difference between the center of the
predicted bounding box and the ground-truth bounding box and normalize it with re-
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Figure 4.5: YOLOvV3 object detection characterization on driving video generated using
LGSVL. (a-b) show continuous misdetections with IoU=60%. (c-f) show the distribution
of normalized errors in the bounding box center predictions along the x and y coordinates
of the image for vehicles and pedestrians
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Table 4.2: Smart malware attack summary compared with random (highlighted in bold).
EB stands for emergency braking. In our experiments, the AV tried emergency braking in
all runs resulting in accidents. K* means K was randomly picked between 15 and 85 for
each run of the experiment.

ID K #runs #EB (%) #crashes (%)

DS-1-Disappear-TH+SH 48 101 54 (53.5%) 32 (31.7%)
DS-2-Disappear-TH+SH 14 144 136 (94.4%) 119 (82.6%)
DS-1-Move_ Out-TH+SH 65 185 69 (37.3%) 32 (17.3%)
DS-2-Move Out-TH+SH 32 138 135 (97.8%) 116 (84.1%)
DS-3-Move_In-TH+SH 48 148 140 (94.6%) —
DS-4-Move In-TH+SH 24 135 106 (78.5%) —
DS-5-Baseline-Random K* 131 3 (2.3%) 0

spect to the size of the ground-truth bounding box. Only predicted bounding boxes that
overlap with the ground-truth boxes are considered. Fig. 4.5(c), (d), (e), and (f) show the
distribution of normalized errors for the x (horizontal) and y (vertical) coordinates in the
image of the bounding box centers for pedestrians and vehicles separately. The coordi-
nates of the centers of the YOLOV3 predicted bounding boxes follow a Gaussian noise
model.

4.6.2 Quantifying Baseline Attack Success

In the baseline attack, we perturb the camera sensor data by 1. randomly initiating
the attack at time-step ¢ of the driving scenario, 2. continuing the attack for (randomly
chosen) K time-steps, 3. randomly choosing the attack vector for a simulation run, and
4. randomly choosing a vehicle or a pedestrian for which the trajectory will be changed.
In other words, our baseline attack uses neither scenario matching nor the safety hijacking
to mount the attack on the AV. We use 131 experimental runs of ‘DS-5" in which the AV
is randomly driving around the city to characterize the success of the baseline attack.
Across all 131 experimental runs (see “DS-5-Baseline-Random’ Table 4.2), the AV executes

an emergency braking maneuver in only 3 runs (2.3%) and crashes 0 times.

4.6.3 Quantifying RoboTack Attack Success

In Table 4.2, ID stands for the unique identifier for experimental campaigns, which is a
concatenation of ‘driving scenario id” and “attack vector’. Here campaigns refer to a set of

simulation runs executed with the same driving scenario and the attack vector. We also
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append TH and SH to the ID to inform the reader that both trajectory hijacking and safety
hijacking are enabled in these attacks. Other fields are K (median number of continuous
perturbations), #runs (number of experimental runs), #EB (number of runs leading to AV
emergency braking), and #crashes (number of runs leading to AV accidents). For each
jdriving scenario, attack vector; pair, we ran 150 to 200 experiments depending on the
total simulation time, however some of our experimental runs were invalid due to crash
of simulator or the ADS. These experiments are discarded, and only valid experiments
are used for the calculations.

Across all scenarios and all attacks, we find that RoboTack is significantly more success-
ful in creating safety hazards than are random attacks. RoboTack caused 33 x more forced
emergency braking compared to random attacks, i.e., RoboTack caused forced emergency
braking in in 75.2% of the runs (640 out of 851), in comparison, random attacks caused
forced emergency braking in 2.3% (3 out of 131 driving simulations). Similarly, random
attacks caused 0 accidents, where as RoboTack caused accidents in 52.6% of the runs
(299 out of 568, excluding ‘Move_In" attacks). Across all our experiments, RoboTack had
higher success rate in attacking pedestrians (84.1% of the runs which involved pedestri-
ans) than vehicles (31.7% of the runs which involved vehicles).

Safety hazards with pedestrians. We observe that RoboTack is highly effective in cre-
ating safety hazards in driving scenarios ‘DS-2” and ‘DS-4’, which involve pedestrians.
Here we observe that in ‘DS-2” with ‘Move_Out’ attacks, the EV collides with the pedes-
trian in 84.1% of the runs. Also, these attacks lead to EV emergency braking in 97.8% of
the runs. In ‘DS-2" with ‘Disappear” attacks, the EV collides with the pedestrian in 82.6%
of the runs and leads to emergency braking in 94.4% of the runs. Finally, in ‘DS-4” with
‘Move_In" attacks, we do not see any accidents with the pedestrian as there is no actual
pedestrian on the EV lane; however, the ‘Move_In" attacks lead to emergency braking in
78.5% of the runs. Note that emergency braking can be life-threatening and injurious to
passengers of the EV, so it is a valid safety hazard. Interestingly, our malware needs to
modify only 14 camera frames for ‘DS-2” with ‘Disappear” attacks and 24 frames for ‘DS-4
with ‘Move_In" attacks to achieve such a high success rate in creating safety hazards.

Safety hazards with vehicles. We observe that RoboTack is less successful in creating
hazards involving vehicles (‘DS-1” and ‘DS-3") compared to creating hazards involving
pedestrians. This is because LIDAR-based object detection fails to register pedestrians at
a higher longitudinal distance while recognising vehicles at the same distance. Although
the pedestrian is recognized in the camera, the sensor fusion delays the object registra-
tion in the EV world model due to disagreement between LIDAR and camera detections.
For the same reason, RoboTack needs to perturb significantly more camera frames con-
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tiguously in the case of vehicles than in the case of pedestrians. However, our injections
are still within the bounds of the observed noise in object detectors for vehicles. Overall,
‘Move_Out’ attacks in ‘DS-1" cause emergency braking and accidents in 37.3% and 17.3%
of the runs, respectively, whereas for the same driving scenario, ‘Disappear” attacks cause
emergency braking and accidents in 53.5% and 31.7% of the runs, respectively. RoboTack
was able to cause emergency braking in 94.6% of the runs using ‘Move_In" attacks in the

‘DS-3’ driving scenario.

4.6.4 Quantifying Impact on Safety Potential

In this section, we characterize the impact of attacks mounted by RoboTack on the
safety potential of the EV with and without the safety hijacker (SH). Our results indi-
cate that the timing of the attack decided by the SH is critical for causing safety hazards
with high probability of success. In particular, with SH the number of successful attacks,
i.e., forced emergency braking and crashes, when hijacking the vehicle trajectories, in-
crease by up to 5.1 x and 7.2 x respectively, when compared to attacks induced at random
time using only trajectory hijacking. The corresponding increase, when the attack hijacks
pedestrian trajectories are 14.8 x and 24 x, respectively. Fig. 4.6 shows the boxplot of the
minimum safety potential of the EV measured from start time of the attack to the end of
the driving scenario. Recall that in our chapter, driving scenario experiencing a safety
potential of less than 4m from start of the attack to the end of the attack is labelled as
an accident. We determine the presence of forced emergency braking by directly read-
ing the values from Apollo ADS. In this Fig. 4.6, TH stands for trajectory hijacking, and
SH stands for safety hijacking. Boxplot labeled as “TH’ indicates RoboTack launches a
trajectory-hijacking attack on EV without the safety hijacker, whereas “TH+SH’ indicates
that RoboTack uses the safety hijacker to launch a trajectory-hijacking attack. Here, we
omit the figures of the ‘Move_In" attack vector due to space restrictions, as this does not
reduce the ¢ but causes emergency braking.

DS-1-Disappear. RoboTack causes 7.2x more crashes (31.7% vs 4.4%). Additionally,
we observe RoboTack 4.6 x more emergency braking (53.5% vs 11.6%).

DS-1-Move_Out. RoboTack causes 6.2x more crashes (17.3% vs 2.8%). Additionally,
we observe RoboTack 5.1x more emergency braking (37.3% vs 7.3%).

DS-2-Disappear. RoboTack causes 7.9x more crashes (82.6% vs 10.4%). Additionally,
we observe RoboTack 2.4x more emergency braking (94.4% vs 39.4%).

DS-2-Move_Out. RoboTack causes 24x more crashes (84.1% vs 3.5%). Additionally,
we observe RoboTack 14.8 x more emergency braking (97.8% vs 6.6%).
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TH+SH: Trajectory Hijacking+Safety Hijacking. Red dash line indicates Min. § = 4.

DS-3-Move_In. RoboTack causes 1.9x more emergency braking (94.6% vs 50%). Com-
parison in number of crashes does not apply as there is no real obstacle to crash into.

DS-4-Move_In. RoboTack causes 1.6x more emergency braking (78.5% vs 48.1%).
Comparison in number of crashes does not apply as there is no real obstacle to crash
into.

Summary. In 1702 experiments (851 TH, 851 TH+SH) across all the combinations of
scenarios and attack vectors, RoboTack (TH+SH) results in 640 EBs (75.2%) out of the
851 TH+SH experiments. In comparison, TH only results in 230 EBs (27.0%) out of the
851 TH experiments. RoboTack (TH+SH) results in 299 Crashes (52.6%) out of 568 TH+SH
experiments excluding ‘DS-3,4” with ‘Move_In" attacks, while TH only results in 29 (5.1%)
crashes out of the 568 TH experiments excluding ‘DS-3,4” with ‘Move_In” attacks.

4.6.5 Evading Attack Detection

Recall that the trajectory hijacker maximizes the w for only K’ << K time-steps to shift
the object position laterally at most by 2, and it maintains the trajectory of the object
for the next K — K’ time-steps, where K is the total number of time-steps for which the
attack must be active from start to end. Note that RoboTack is perturbing images for all
K time-steps. However for K’ time-steps, RoboTack is modifying the image to change

94



)] [}
£24 £:%7
=18 o 12
£12 - £ 8-
===
Fs]T == 5 - + -
a4

& 0 T
Move Out Move Out
Disappear Move In Disappear ~ Move In
(a) on Vehicle DS-1,3 (b) on Ped. DS-2,4
Median: 13, 6, 10 Median: 4, 5, 3

Figure 4.7: Time-steps K’ required to move object in/out by 2 (a) on vehicle, (b) on pedes-
trian.

the trajectory, whereas for K — K’ time-steps it is maintaining the faked trajectory.

Fig. 4.7-(a) and Fig. 4.7-(b) characterizes K’ for different scenarios and attack vectors.
We observe that ‘Move_Out’ and ‘Move_In" scenarios require small K’ to change the object
position to the desired location compared to the ‘Disappear” attack vector. Furthermore,
changing a pedestrian’s location requires a lower number of time-steps compared to ve-
hicles. When the number of time-steps K’ for which the disparity between the Kalman
Filter’s and object detector’s output is within one std. deviation of its mean, such a situ-
ation is not flagged as an attack.

4.6.6 Characterizing Safety Hijacker Performance

Here we characterize the performance of Neural Network and its impact on malware’s
ability to cause a safety hazard. Due to lack of space, we discuss results only for ‘Move_Out’.

Fig. 4.8(b) shows a plot of the predicted value of the safety potential (using NN) and
the ground-truth value of the safety potential after the attack, as obtained from our exper-
iments. From the figure, we observe that the predicted value is close to the ground-truth
value of the safety potential after the attack. On average across all driving scenarios,
NN'’s prediction of the safety potential after the attack was within 5m and 1.5m of the
ground-truth value for vehicles and pedestrians, respectively.

Fig. 4.8(a) shows a plot of successful probability (i.e., malware’s ability to cause a safety
hazard) on y-axis with increasing NN prediction error probability on x-axis. As expected,
we find that the success probability decreases as the prediction error of the safety poten-
tial (using NN) increases. However, prediction errors are generally small.

4.7 RELATED WORK

Security attacks. AVs are notoriously easy to hack into due to i) easy physical and
software access, ii) large attack vectors available to the adversary due to the complexity
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and heterogeneity of the software and hardware, and iii) lack of robust methods for attack
detection. Hence, the insecurity of autonomous vehicles poses one of the biggest threats
to their safety and thus to their successful deployment on the roads.

Gaining access to AVs. Hackers can gain access to the ADS by hacking existing soft-
ware and hardware vulnerabilities. For example, research [162, 159] has shown that an
adversary can gain access to the ADS and launch cyber attacks by hacking vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communication channels [171], over-
the-air software update mechanisms used by manufacturers [172], electronic component
units (ECUs) [159], infotainment systems [163], and CAN buses [173]. Another possible
way of hacking ADS is to use hardware-based malware, which can be implanted during
the supply chain of AVs or simply by gaining physical access to the vehicle [159]. In this
work, we show an attack approach that can masquerade as noise or faults and that can
be implanted as a malware in either software or hardware.

Adversarial machine learning and sensor attacks in AVs. Past work has targeted the
deep neural networks used in the perception systems of the AVs to create adversarial
attacks [149-151, 7, 149] and has shown adversarial results (such as misclassifying and /or
misdetecting a stop sign as a yield sign). A closely related work [26] targets object tracking
algorithm on one camera sensor without considering i) the sensor fusion module, and
ii) the control loop of the AV (i.e., they consider only statically captured video frames
without running a real ADS).

The goal of research mentioned above is to create adversarial objects on the road that
fool the autonomous vehicle’s perception system. However, these attacks 1. are limited
because deep neural networks represent only a small fraction of the overall code base of a
production autonomous driving system (ADS) [15], 2. do not attempt to evade detection,
and 3. have low safety impact due to built-in compensation provided by temporal state—
models (redundancy in time) and sensor fusion (redundancy in space) in ADS, which
can mask consequences of such perturbations and preserve AV safety (as shown in this
chapter, and by others [146]).

Recently, Rubaiyat et al. [123] presented a Systems-Theoretic Process Analysis (STPA)
based fault injection framework that attacks visual and RADAR modules in an open
source driving agent, Openpilot [16]. However, STPA requires the developer to define
hazardous situations manually in order to test the AV.

Our attack. We find that none of the above mentioned attacks is geared toward 1)
evading detection by an IDS or 2) explicitly targeting the safety of the vehicles. In con-
trast, RoboTack is the first attack approach that has been demonstrated on production
ADS software with multiple sensors (GPS, IMU, cameras, LIDAR) to achieve both ob-
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jectives by digitally attacking on only one sensor (camera). RoboTack overcomes both

temporal and spatial compensation by modeling the environment and safety.

4.8 CONCLUSION

In this work, we present RoboTack, a smart malware that strategically attacks au-
tonomous vehicle perception systems to put the safety of people and property at risk.
Our attack vector and malware implementation shows the ease with which smart mal-
ware can significantly impact AV safety and therefore highlights the need to develop
secure AV systems.
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CHAPTER 5: AV: DETECTING SAFETY-CRITICAL HARDWARE FAULTS

This chapter proposes a low-cost redundancy technique, DiverseAV, for detecting safety-
critical faults in autonomous vehicles (AVs) caused by transient and permanent hardware
faults. DiverseAV creates two redundant data-diverse agents by distributing the sensor
data between the two agents in round-robin. The sensor data obtained between the two
consecutive sequential time steps is semantically similar in terms of their worldview but
significantly different at the bit-level. Thus, ensuring state and data diversity between
the two agents. The data-diverse agents use the same underlying agent models (and
software code) and are together responsible for driving the AV. The outputs produced
by the two agents are close to each other in the fault-free case. However, in presence
of a safety-critical fault, the outputs diverge significantly; thereby, enabling safety-critical
fault detection. Since much of the data processing in each agent depends on the input data
rate, each agent receives half the data and requires roughly half the compute resources.
This allows our DiverseAV-enabled autonomous system to incur much less than 100%
computational overhead compared to a fully duplicated system. Thus, in DiverseAV, we
time-multiplex the two agents on the shared computational fabric.

51 INTRODUCTION

Autonomous vehicle (AV) technologies are advertised to be transformative, with a po-
tential for bringing greater convenience, improved productivity, and safer roads [58]. En-
suring the safety of AVs is critical for their mass deployment and public adoption. Hard-
ware faults caused by power-supply spikes, electrostatic discharge and external radiation
strikes in the computational elements, such as CPUs, GPUs and ASICs, used in AVs pose
significant threat to the safety of the vehicle. Faults may lead to a detectable uncorrectable
error (DUE) that degrades system availability. Practical implementations of autonomous
driving systems include a fail-back system that maintains the safety of the system in the
case of a DUE. In contrast, an undetected error, i.e., a silent data corruption (SDC), may
cause faulty vehicle behavior that may lead to significant safety hazards, resulting in loss
of human life and serious damage to vehicles [27, 6, 24]. Future trends of increasing code
complexity and shrinking feature sizes will only contribute to increasing failure rates,
thereby exacerbating the problem. Thus, detecting and mitigating SDCs caused by hard-
ware faults is important.

Current strategies for error mitigation include fault avoidance and error detection mech-
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anisms such as checksums [174, 175], assertions [176-179], duplication [180-182, 181, 183—
187], and data and design diversity techniques [188-190] which can be employed at the
hardware or software-level. Although these strategies are largely effective, associated
costs often prevent system-wide implementation. For example, hardened circuits can in-
cur significant area and power overheads. Large SRAM arrays are often protected by
ECC [191], but smaller arrays, flip-flops, and computational units are challenging to pro-
tect without significant area and power overheads. Similarly, duplication, such as at the
system, module, chip, or board level, can provide high error detection coverage but also
incurs significant resource and power costs.

Our Approach. We propose, DiverseAV, a novel alternative to full duplication to de-
tect transient and permanent hardware faults that offers high error detection coverage
with low performance overheads (<25%), along with corresponding power savings. Our
approach requires no additional hardware and minimal modification of the AV software.
DiverseAV is a lightweight, software-based redundancy technique that exploits the tem-
poral data diversity present in the sensor data for detecting hardware faults. DiverseAV
incorporates the following key ideas.

Independent and data-diverse agents. DiverseAV instantiates two independent software
processes that use the same autonomous vehicle software code (referred to as Al-agent).
However, unlike fully duplicated system in which agents use the exact same sensor data,
DiverseAV introduces data diversity between the two agents in which the two agents
use diverse data. DiverseAV leverages a key insight about the temporal semantics of
the autonomous vehicle workload to introduce data diversity. In automotive workload,
the sensor data obtained between the two consecutive sequential time steps is seman-
tically similar (i.e., objects bounding box and objects do not change significantly from
one time-step to another). However, the bit representation of the two dataset is signifi-
cantly different: thereby, introducing data diversity between two consecutive time-steps
at the instruction-level. Thus, in DiverseAV-enabled ADS, the sensor-data is distributed
in round robin between the two redundant agents, thereby creating data-diverse agents.
The data-diverse agents produce similar but not necessarily the same output and the
divergence between the two outputs in a fault-free execution is bounded due to the simi-
larity of the inputs in adjacent frames.

Because much of the data processing in each agent depends on the input data rate, each
agent receives half the data and requires roughly half the compute resources. This allows
our two-agent system to incur much less than 100% performance overhead. Thus, in
DiverseAV-enabled ADS, we execute the two processes on the same computational fab-
ric, which are together responsible for driving the AV. Since the agents are independent
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processes, faults within a process propagate independently and depends on the internal
process state.

Fault propagation and error detection. Since the divergence between the outputs of the
two data-diverse agent is bounded in the fault-free case, DiverseAV is able to detect the
error by comparing the actuator outputs (brake, throttle, and steering angle commands)
of the agents. In the presence of a fault the outputs of the two agents may diverge de-
pending on the fault type, propagation and masking in each of the individual processes
(that represent software agents in execution). (i) A transient fault affects only one process
enabling DiverseAV to detect the fault because of the independence between the agents.
The fault-free agent produces fault-free outputs whereas the other agent (impacted by the
fault) produces the corrupted outputs. (ii) A permanent fault that affects both processes
is detectable because in the presence of a fault the two agents produce significantly dif-
ferent corrupted outputs as the corruption depends on the internal (private) state of and
inputs to each agent, which are diverse by design.

Detecting safety-critical faults. Finally, DiverseAV aims to detect only those faults that
lead to safety hazards, and also aims to detect those faults sufficiently in advance to bring
the system to a safe state by using existing AV’s fail-safe mechanism/support. Diverse AV
uses a statistical sliding-window-based anomaly-detection algorithm to learn acceptable
(bounded) divergence between the outputs of the two agents and its potential to cause a
safety hazard (see §5.3).

Overall, DiverseAV is a black-box technique that offers a plug-and-play solution, re-
quiring little to no modification to the agent itself, for achieving high coverage of tran-
sient and permanent hardware faults. It is commercially viable because it avoids software
modifications to agents that are costly in terms of development and testing time. It is ad-
vantageous as it provides the state diversity needed to detect transient and permanent
hardware faults at a significantly lower cost, thereby eliminating the need to fully dupli-
cate the system.

Contributions. Our contributions include the following;:

(i) We propose a novel design called DiverseAV for detecting transient and permanent
errors in an AV. It has high fault detection coverage and low overhead. A key com-
ponent of our design is a statistical technique for comparing the control /actuation
outputs of software agents.

(i) We have implemented the proposed design using an open-source agent [192] and

an open-source simulation platform [140].
(iii) We provide an empirical characterization of temporal data diversity in onboard

Sensors.
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(iv)

v)

Using fault injection, we have performed an experimental assessment of the func-
tional safety of DiverseAV in fault-free operation and in the presence of faults. We
also characterize the performance overhead of the proposed design.

Finally, we compare the fault detection capabilities of DiverseAV-enabled ADS with
a fully-duplicated system and a single-agent system.

Results. Key results include the following:

(i)

(iii)

High safety. The trajectory of the vehicle when using DiverseAV closely follows
the trajectory of a single-agent-driven system. We found the maximum difference
between the vehicle positions for two trajectories (i.e., those of a single agent versus
the two-agent system configuration) to be <50cm, which is significantly less than
the safety distance (5m) that must be maintained by the agent while driving.
Highly accurate. DiverseAV detected safety-critical errors caused by the transient
and permanent faults injected into the computational elements with a precision
of 0.87 and a recall (which is equivalent of the detection coverage) of 0.87. Di-
verseAV outperforms both fully-duplicated system and single agent system (which
uses temporal outlier detection techniques) in terms of accuracy. Across all our
driving scenarios, neither DiverseAV nor a fully-duplicated system raised an alarm
(i.e., detected an error) for fault-free experimental runs of a driving scenario. We
assume availability of fail-back system that can be invoked on error to brings the
vehicle to a safe state.

Low performance overhead. Compared to a fully duplicated system, which will incur
100% overhead, DiverseAV incurs <25% overhead.

52 BACKGROUND

521

Autonomous Driving Systems

Autonomous driving systems (ADS) are feedback-based control systems. Examples

include self-driving cars, drones, and unmanned aerial vehicles. Fig. 5.1(a) shows the

architecture of a typical ADS. An ADS continuously uses measurements from the “sen-

sors” to infer the state of the world (“world model”), plans its trajectory (“planning”), and

makes “actuation” decisions to drive the vehicle towards a set goal, all while ensuring the

comfort, safety, and integrity of the passenger/vehicle and its surroundings. The control

loop can be implemented as an end-to-end deep neural network (DNN) agent with a

proportional-integral-derivative (PID) controller (e.g., Dave2 [193]) or as an ensemble of

101



“parqeus uondafur yney jusuewrrod N IO YIM O11eusds SUTALIP 93 JO UOHNIIXa Y3 0} Surpuodsariod ader oy
syuasardar f3ney "orreuads JuraLIp oy} Jo 3unndaxa da1g-ney o3 Jurpuodsariod adery ndino uorrenidoe S[330IY} S} SYUISAI
-dax uaproo "aprIYaA ULALIP-TY 9y Sur[orpuod wsAs urarp snowouojne ur uoryededord jmey jo uonordaq :1°g a3y

K19yes U0 Jney sindjno uonenjoe uo J[nej SV oy ur uonesedoid jne.q (&)
NdoO usuewrad jo joedwy (0) NdO usueuad jo 1oedwy (q) sdejs-owm ¥ 10§
uonesedoid jney rerodwa,
(s) swiy (s) swiy O <« (¢ .
0T 3 9 i4 14 0 ) 8 01 g 0 o IempIeH H_AI_ SIosudg | g
et [ 00 =3 UONBZI[Eo0] = =
00T~ Q UopIOE = — | Sz 2 uondoorog 0—O0 ERE
S| e — €0 g2 §| [1opow pHom <~ |=2
§L°0— : | ! 2 Sutuue[g o g’
o \ — el . [T
2| A\ I oz S E uonend -] siopenpy | | 52
[ \ I 3 =X nenoy 1enoy m&m
- I = @ OLIBUQOS SUIALI(]
000 /M\ 1 “ 8°0 (] — _WN./V/”_\\_M_H\_ {—
€0 ___ = Cae Cee)

102



models (EM) agent (e.g., Baidu’s Apollo [166]) in which each model is responsible for
individual sub-tasks (such as perception, planning, and control). The agent must be able
to execute the control loop at a very high frequency (~ 30 — 100 Hz) to dynamically infer
changes in the environment and react to those changes in real time. The algorithms used
by the agent are computationally expensive, thereby requiring the use of a heterogeneous
computational fabric consisting of CPUs, GPUs, and ASICs/FPGAs [182, 194].

5.2.2 Fault Models

ADSes can experience a range of hardware faults in the computational elements due to
power-supply spikes, electrostatic discharge, external radiation strikes, and circuit degra-
dation among others. In this chapter, we only consider transient and permanent hardware
fault models, emulated via instruction-level bit-flip models, in the computational fabrics
used by the ADS (such as CPUs and GPUs). We do not consider sensor fault models
(caused by sensor failures or poor weather conditions) or machine-learning inference fail-
ures (caused by out-of-distribution data).

In the transient fault model, we assume that a fault corrupts the destination register of
only one dynamic instruction!. In contrast, in the permanent fault model, we assume that
a fault corrupts the destination register of a selected opcode for all dynamic instances of
that opcode. The destination register is corrupted by XOR-ing the original contents of the
destination register with a selected mask. In this work, we aim to detect faults (transient
or permanent) that lead to safety-hazard, and do not aim to identify the fault type (i.e.,
differentiate between the transient or permanent fault) at runtime.

5.2.3 Impact of Faults on Safety

Hardware faults can alter the actuation decision outputs, thereby impacting the safety
of the vehicle. A typical hardware fault propagation path is shown in Fig. 5.1(a). Hard-
ware faults may corrupt the output of the hardware instruction (e.g., output of the add in-
struction), which in turn can corrupt the output of the software module (e.g., perception
outputs). The corrupted values are then consumed by other software modules; which
may ultimately taint the actuation outputs. The fault propagation in the software may
also corrupt the internal state of the software (until the next reset/restart), which may re-

sult in subsequent corruption of actuation outputs in the future time-steps. The corrupted

!Dynamic instances of an opcode are the actual instructions of that opcode that are fetched and executed
by the processor.
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actuation outputs for one or more time-steps may change vehicle kinematics sufficiently
enough to cause an accident.

Not all faults are hazardous to the system. Faults may result in a silent data corruption
(SDC), hang, or crash. Hangs and crashes are detected by the system via exceptions and
heartbeats, whereas SDCs may potentially propagate to cause safety violations. Detect-
ing SDC-causing faults is challenging in a feedback-based control system as the errors
accumulate over time (e.g., due to the PID controller). Full duplication of software and
hardware ensures robust detection of both transient and permanent faults; however, they
result in high resource and power overheads [182].

Fig. 5.1(b) and Fig. 5.1(c) respectively show the impact of a GPU permanent fault on
the “actuation outputs” and the “safety” of the vehicle using an Al-agent (discussed in
§5.4) for the driving scenario shown in Fig. 5.1(a). Fig. 5.1(b) shows that the throttle ac-
tuation outputs of the faulty run (depicted as a solid red line) is significantly different in
the presence of a permanent fault from what it is in the golden (non-faulty) run (depicted
as a dashed blue line). The change impacts the vehicle dynamics (velocity and accelera-
tion), and that, in turn, reduces the safety distance between the vehicles. In this chapter,
we characterize the safety distance of the Al-controlled vehicle using the closest-vehicle
in-path (CVIP) distance. Fig. 5.1(c) shows the difference in CVIP distance between the
golden run and the faulty run. The fault in this case leads to decrease in CVIP distance.
Hence, it is of the utmost importance that we detect such faults at runtime and far enough
in advance to preemptively mitigate the adverse effects of the failures (e.g., trigger fail-
back system).

53 METHODOLOGY AND APPROACH

This section presents the DiverseAV design requirements, principles, and overall de-

sign.

5.3.1 Design Requirements

The DiverseAV design allows us to address the following design requirements.

Detection of transient and permanent faults. DiverseAV must detect transient and
permanent faults that are safety-critical with high probability sufficiently far in advance.
Not all faults are safety-critical (i.e., impact the software state and autonomous vehicle
safety), so detecting all faults, including the faults that are masked by hardware or soft-
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ware, may reduce overall system availability.

Model parameters of the error detector must be driving scenario-independent. The
error detector in DiverseAV must be able to detect errors for all possible driving scenarios,
and should not be limited to only those driving scenarios that were used to train the error
detector model parameters.

Workload independence of the autonomous system. DiverseAV must: (i) be indepen-
dent of the workload (i.e., Al agents), (ii) apply to a large class of autonomous vehicles
(such as cars and trucks), and (iii) handle frequent incremental updates to software /hard-
ware.

Plug and play design. DiverseAV must implement a plug-and-play design, thereby
reducing the engineering and deployment effort.

Low cost. DiverseAV must achieve all the above properties with minimal computa-
tional and area cost overhead. For example, complete duplication of a system would
incur 100% computational and area cost overhead, making the technology too costly for

the end consumers.

5.3.2 Design Principles

In this work, we propose and describe our implementation of DiverseAV, which ex-
ploits the principle of temporal data diversity and redundancy. DiverseAV is an inno-
vative redundant design for autonomous vehicles, which uses two independent soft-
ware agents that are dynamic instances of the same underlying agent models (software)
and are time-multiplexed on the shared computational fabric to actuate the vehicle. Time-
multiplexing allows the following;:

Semantic consistency. Each agent consumes semantically similar data. The sensing
data used by the time-multiplexed redundant agents are semantically similar because the
sensing frequency is typically very high, ranging from 30 Hz to 100 Hz among different
sensors, and the world view (world semantics) does not change significantly between
subsequent sensing time-steps.

Temporal data diversity. Temporal data diversity is enforced between the agents at
the bit level (bit-level diversity). Sensor data obtained at consecutive time-steps are se-
mantically similar but differ significantly at the bit-level. For example, a vehicle in front
continues to exist at time ¢ and ¢+ 1, however, the pixel values (and hence the data bits rep-
resenting the car may change significantly) between the subsequent time-steps; thereby,

enforcing temporal data diversity.
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Error detection via time-multiplexing. Time-multiplexing enables detection of hard-
ware errors that propagate from hardware to the software state and subsequently im-
pact the AV dynamics and safety. Time-multiplexing of the sensor data between the
DiverseAV-enabled agents detect a wide range of silent data corruptions, since faults
either impact a single agent or impact individual agents differently. A fault manifestation
in each agent may be different because each agent consumes diverse (though semantically

similar) data inputs and maintains its own private state.

Model formulation.

Using above mentioned design principles, here we present the mathematical abstrac-
tion of our system. ADS can be abstracted using eq. (5.1). w,; is the actuation output
(expressed as f) at time t using sensor data input /; on a processing element (expressed
as h).

ug = h(f°, 1) (5.1)
Since ADSes are fitted with PID-based low-level controllers, the average difference be-
tween adjacent actuation values over a sliding window are small and bounded, i.e.,
STk luesa—well/sw < 6 as seen in Fig. 5.1(b). It is plausible to develop a monitor to find
anomalies in the timeseries data measuring ¢ to detect errors but such a monitor is noisy
leading to high false positive rates as discussed in §5.6.3.

In comparison, DiverseAV-enabled ADS can be modeled by eq. (5.2), in which the data
is distributed to the agents 0 and 1, each of which execute function f, in round-robin
fashion using ‘sensor data distributor’. Here, 15, and 1, are indicator functions that

are indicative of even and odd time steps.

uy = Loph(f° Ik) + Lopr h(F Topsr) 5.2)

It is easy to see that eq. (5.1) and eq. (5.2) are equivalent iff the composite function
h(f) is stateless. However, in practice, i(f) is not stateless. However, eq. (5.2) approxi-
mates eq. (5.1) when the operating frequency of the ADS tends to infinity. This is because
semantically /; and I;;; are similar even though I; and I, are not similar at the bit-
representation level, i.e., ||w(l;41) — w(l;)|| — €, where w is a function that extracts the
semantic meaning from the image (e.g., bounding box of the objects or position of the ob-
ject in the world), and € is bounded and small. This is a fair assumption because practical
implementation of ADSes operate at high frequencies (30-60Hz). However, this assump-
tion is violated when the hardware is faulty. Under a faulty hardware (expressed as h"),
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DiverseAV-enabled ADS can be represented by eq. (5.3).

up = Loph™ (%, Lok) + Lok BT (f1, Torsn) (5.3)
Previous research [190, 195] as well as our own empirical demonstration of Diverse AV
have shown that A7 (f°) produces significantly different outputs even when using seman-
tically similar inputs when the input data is diverse. In our case, the input data is diverse
at the bit-level which is quantified in §5.5.1. Because of this diversity, the average error
between adjacent actuation outputs produced by the two agents over a sliding window
is neither small nor bounded, i.e., ZiZk ™ [lvfy1—u{|l/sw > J; thereby, enabling us to detect
the error using a statistics-driven ‘Error Detection” engine.
In §5.5, we empirically demonstrate that the design decisions taken in DiverseAV does

not impact safety.

5.3.3 Design Overview & Implementation

Fig. 5.2 shows the overall design of DiverseAV (). The modifications to the orig-
inal ADS system are highlighted in boxes with dashed blue outlines. To enable time-
multiplexing between the agents, we introduce a “sensor data distributor” and an “error
detection and control fusion engine.”

Sensor data distributor takes the sensor data as inputs (I;) and round-robins the input
data among the two agents, thereby reducing the sensing frequency for each agent by
50%. For example, it splits the input data I, such that agent 0 receives the input data I
and agent 1 receives the input data I5;;, where ¢t € IN. Such a data distribution strategy
has several advantages; it ensures that each agent uses semantically similar sensor data
to compute the actuation decision while providing significant data diversity at the bit
level for the two agents. As can be seen from Fig. 5.2 (@), the subsequent camera frames
captured at times 2¢ and 2¢+1 are semantically very similar; however, when they are com-
pared at the bit level, their data are significantly different. For example, when the 24-bit
RGB color value (8-bit per color) for a given pixel at location X changes from 95 (for each
color at time t) to 96 (at time ¢ + 1), the data at the bit-level changes by 18 bits. We evaluate
this temporal data diversity in detail in §5.5.1 and show that on average, there are 8 bits
of difference per pixel between successive camera frames. Thus, the sensor data distrib-
utor provides the much-needed data diversity to enable error detection. However, it also
introduces several complications, such as ones related to synchronization and selection
of the actuation decisions produced by each agent.
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Control fusion engine is responsible for synchronization of actuation decisions be-
tween the two agents. Recall from §5.2 that ADS fuses the sensor data spatially and
temporally to produce actuation decisions and drive the vehicle in the real world. De-
pending on the ADS design, sensing and actuation can be (i) a lockstep process (i.e., an
actuation decision is produced only after all inputs have been received, leading to the
same sensing and actuating frequency as the original single agent system), as in the case
of the Sensorimotor agent (described later in §5.4); or (ii) an asynchronous process, as in
the case of Baidu’s Apollo agent [166]. The Apollo agent uses an array of sensors, each
operating at a different frequency (30 Hz camera, 77 Hz radar, 100 Hz GPS and IMU (In-
ertial Measurement Unit), and 10 Hz LIDAR) to create an internal model of the real world
and continuously update the internal world model. The planning and actuation model
asynchronously uses the internal world model to produce the actuation decision at 100
Hz. Implementation of DiverseAV for the above-mentioned lockstep design is straight-
forward: DiverseAV can use the actuation decision of the agent that received the sensor
data. However, implementing DiverseAV for an asynchronous design can be challeng-
ing: with two agents, DiverseAV doubles the number of actuation decisions produced by
the ADS. Furthermore, enforcing an ordering of the actuation decisions across the agents
is not trivial. Therefore, for an asynchronous system, DiverseAV can either (i) use an ac-
tuation decision from only one of the agents and use the actuation decision of the other
agent solely for the purposes of error detection, or (ii) use the actuation decisions of both
agents by averaging the actuation decisions produced by the replicas.

Fig. 5.2(@) shows the vehicle “throttle” actuation command value and CVIP distance
(“closest-vehicle-in-path,” described in §5.2) for the original system when it is using a
single agent and DiverseAV-enabled ADS for the lead-slowdown driving scenario in
which the lead vehicle is slowing down. Although the actuation decisions produced by
DiverseAV-enabled ADS diverge from those of the original ADS by a small amount, the
CVIP distance shows negligible divergence. These results are described in §5.5.2 in more
detail.

Error detection engine. In a redundant system in which agents are consuming the
same input data, the outputs can be compared directly using algebraic subtraction, and
an alarm is raised if the subtraction yields a nonzero value. However, such systems are
hard to design and implement, especially for an Al-driven system that is highly non-
deterministic. Designing a redundant system that can support such subtraction-based
error detection requires implementation of lockstep redundancy in both hardware and
software, and that would make the system prohibitively costly. In contrast, our time-
multiplexed redundant design leverages data diversity to detect a broader class of faults
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and bugs with only marginal increase in computational and resource requirements. How-
ever, it also increases the difficulty in detecting safety-critical faults (i.e., faults that lead to
accidents or significant divergence in vehicle kinematics) because the inputs, outputs, and
internal software state is not a bit-by-bit match. Thus, the challenge is to design a robust
error detector that provides high detection accuracy and lead detection time. The detection
accuracy is measured in terms of precision (¥Irue Positives/uTrye Positives + #False Positives) and recall
(#True Positives /ypositives). An error detector with higher precision and recall produces a lower
number of false positives (false alarms) and misdetections. The lead detection time is the
difference between the alarm generation time and the collision time. An error detector
with a higher lead detection time allows the ADS to switch over to fail-safe mode earlier.

The outputs from the two agents may differ due to the inherent input diversity of
a DiverseAV-enabled ADS and hence, we use statistical techniques for error detection,
while ensuring high precision and recall. Fig. 5.2(@)) depicts the impact of a perma-
nent GPU fault on the original ADS and DiverseAV-enabled ADS for the lead-slowdown
driving scenario. One can observe that the throttle values are different in the faulty run
(Fig. 5.2(@)(a)) and a non-faulty run (shown in Fig. 5.2(@)(a)). Since the impact of the
fault is smoothed by the PID controller, there are no visible anomalies in the throttle
values for the original single-agent system (Fig. 5.2(@)(a)). However, one can see vis-
ible divergence between the outputs of the two agents in the DiverseAV-enabled ADS
(Fig. 5.2(@)()).

Training error detection engine. In this work, we use a sliding-window-based error
detection algorithm to learn the maximum divergence between the actuation outputs of
the two agents, and use that divergence as a threshold to detect errors at run time. We
ensure that DiverseAV is not tuned to any specific scenarios or faults by training the
error detection engine (i) using the long training scenarios, described in §5.4, which is sig-
nificantly different from our evaluation scenarios, and (ii) by executing these scenarios
under fault-free conditions.

At runtime, the DiverseAV uses the learned divergence parameters to detect an error.
Upon detection of an error, an alarm is raised, and DiverseAV triggers a fail-back system
with sufficient capabilities to handle the driving situation, e.g., safely park the vehicle.
The sliding-window-based error detector used in DiverseAV uses the following parame-
ters:

(1) Oihrottic(S), Obrake(s), and Osieer(s): DiverseAV raises an alarm if the difference between
the actuation command values of the two agents exceeds a certain threshold at a given
vehicle state s (given by tuple (v, a,w, o), where v is speed, a is acceleration, w is an-

gular velocity, and « is angular acceleration). We use (v, a) to represent the state for
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Oihrottie (S), Obrake(s), since the throttle and brake depend on linear speed and accelera-
tion. Similarly, we use (w, @) to represent the state for Oy, (s).

We discretize each of the variables (i.e., (v,a,w,a)) of the vehicle state s into small
intervals and learn the thresholds for each of these intervals. The thresholds are learned
by calculating the maximum difference between the actuation command values for the
two agents across all executions of reference driving scenarios for a given vehicle state
(5). The thresholds learned are stored in a lookup table (LUT), which is used at runtime
for detection.

(ii) rw: The two agents in DiverseAV naturally produce slightly different actuation com-
mand values because they are consuming diverse data, and the divergence is highest
when the planning decision changes between two time-steps (e.g., from slowing down
to accelerating). However, such high divergence in actuation is transient. Therefore, to
avoid identifying occasional blips as errors, we use a rolling window (rw-rolling win-
dow size) to smooth out the difference in actuation command values produced by the
two agents. The rw parameter may impact the lead detection time. We vary the rolling
window from 3 all the way to 40 recently received sensor data, as 40 Hz is the sensor
frequency of our simulator, and pick the parameters for which the F1-score (harmonic

mean of precision and recall) is maximum.

5.4 EXPERIMENTAL SETUP

This section describes the autonomous agent, simulation platform, driving scenarios,
data collection methods, and fault injection methods used in our experiments. Hereafter,
we refer to the agent-controlled vehicle as “the vehicle” and the other vehicle in a scenario
as “NPC vehicle”.

541 Autonomous Agent

This work uses the state-of-the-art convolutional neural network (CNN)-based end-to-
end autonomous agent proposed and pretrained by Chen et al. [192], referred to as the
Sensorimotor agent. The main components of the agent are the High-level Route Planner,
CNN, Waypoints Tracker, and Control Unit. High-level Route Planner is responsible for
finding the next “destination-to-go” navigation direction. Convolutional Neural Network
(CNN) is a vision-based local planner, and is the core of the Sensorimotor agent. The
CNN predicts the path that the vehicle should follow by outputting four local-waypoints
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Figure 5.3: Simulation platform.

for each time-step. Waypoints Tracker along with the Control Unit uses the local waypoints
and PID controller to produce actuation outputs at each time-step.

5.4.2 Simulation Platform

We cannot use real-world data (such as KITTI dataset [196]) to evaluate DiverseAV as
the fault may impact the vehicle trajectory, and therefore, the subsequent data captured
via the sensors. Thus, in this work, we use a world-simulator to simulate the driving
scenarios. An overview of our world-simulation platform is shown in Fig. 5.3. We use
CARLA 0.9.10 [140], an Unreal Engine-based simulator, to simulate complex and realistic
3D environments for autonomous driving. We ran the CARLA simulator in synchronous
mode with all sensor data (from 3 front-facing cameras (facing left, center, and right) and
GPS and IMU) posted at 40 Hz.

The DiverseAV-enabled ADS consists of two Sensorimotor agents, a sensor interface
for communication with the simulator, and a scenario manager that manages the driving
scenario. The two agents can be configured to run in round-robin mode (i.e., agents re-
ceive sensor data at alternating time-steps) , duplicate mode (i.e., both agents receive all
sensor data), or single mode, in which only agent 0 is active.

Before the simulation is started, the Scenario Manager sends to the driving scenario to
CARLA simulator. The Campaign Manager reads experiment configurations and launches
the Injection Plan Generator that selects the injection site (CPU vs GPU), the fault model
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Figure 5.4: Driving scenarios. Left: lead slowdown. Middle: ghost cut in. Right: front accident.
Red car: Al-vehicle, Blue Car: NPC-vehicle.

(transient vs permanent) and agent mode (single, duplicated or DiverseAV) for an exper-
iment. The Driver invokes the simulator with the selected agent mode, and the selected

fault injector.

5.4.3 Driving Scenarios

Safety-critical (Test) Scenarios

We created three safety-critical test scenarios, shown in Fig. 5.4. Scenarios of these
kinds are considered high-risk by the National Highway Traffic Safety Administration
(NHTSA), as stated in their pre-collision scenario topology report [197]. The safety-
critical scenarios are about 30 seconds to 1 minute long and capture the most critical
moments of autonomous driving. We used these scenarios in fault injection experiments
to evaluate the effectiveness of error detection capabilities of DiverseAV.

Lead Slowdown: As shown in Fig. 5.4 (left), the vehicle (red), follows a leading NPC
vehicle (blue), maintaining a distance of 25 meters. The NPC vehicle then performs emer-
gency braking to slow down. The vehicle needs to recognize the situation and brake in
time to avoid a collision. This is both a common and a high-risk scenario. Lead slow-
down scenario is dangerous because it gives the follower vehicle little time to react, often
resulting in a rear-end collision with the leading vehicle.

Ghost Cut in: As shown in Fig. 5.4 (middle), the vehicle (red) is driving on the road
while maintaining speed, and an NPC vehicle (blue) approaches from the left adjacent
lane. The NPC vehicle then cuts in front of the vehicle with a small longitudinal margin.
The vehicle needs to reduce the throttle, slow down, and brake if necessary to avoid
colliding with the side of the NPC vehicle. In this driving scenario, there is little to no
warning prior to the cut-in maneuver of the NPC vehicle. This is especially dangerous
for the vehicle as our agent does not use rear-end camera giving it less time to see the
NPC vehicle and react to avoid collision.
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Front Accident: As shown in Fig. 5.4 (right), the vehicle (red) is following a leading
NPC vehicle (gray) in the same lane, and another NPC vehicle (blue) in the adjacent
lane tries to merge but crashes into the leading NPC vehicle. Both vehicles’ trajectories
suddenly change because of the collision, and both vehicles stop. The vehicle needs to
recognize this situation and stop in time to avoid an accident. Although this accident is
rare, it is a high-risk situation because the vehicle might not recognize the abrupt change

in positions and trajectories of the leading vehicle and outputs the wrong decision.

Long (Training) Scenarios

We constructed three long scenarios for training the error detector of the DiverseAV-
enabled ADS. Our results, described in §5.5, show that the error detector parameters can
be learned from these long driving scenarios with high precision and recall in detect-
ing safety-critical faults. The long scenarios are based on selected routes from the 2020
CARLA Autonomous Driving Challenge, simulating normal, everyday driving tasks,
such as vehicle following, lane keeping, turning, lane changing, and handling of inter-
sections. We also enabled pseudo-random background traffic with a fixed random seed
for each run. Each driving scenario simulation time is approximately 10-15 minutes long.
The three long scenarios are based on Route02, Routel5, and Route42, which are set in
CARLA Town01, Town03, and Town06, respectively. These long scenarios require the AV
to navigate in city and highway with dense traffic consisting of turns, intersections and
traffic lights.

5.4.4 Fault Injection

We inject hardware faults by injecting architectural-level GPU or CPU errors that em-
ulate consequences of underlying transient or permanent faults. In particular, we use
PinF1I[198,199]) to inject faults into the CPUs, and NVB1itFI[200]) to inject faults into the
GPUs. Table 5.1 summarizes the results of the fault injection experiments on DiverseAV-
enabled ADS.

GPU fault injections. We conduct following GPU FI experiments. (i) Transient FI: It is
prohibitively expensive to inject all possible transient faults as the possible space of tran-
sient faults is extremely large (and equals to the number of dynamic instructions executed
by the ADS). Therefore, we uniformly randomly selected 500 candidate dynamic instruc-
tions to transiently corrupt the destination register. (ii) Permanent FI: The ISA (Instruction
Set Architecture) of the Titan Xp GPU includes 171 opcodes, and for each of the three
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driving scenarios we perform fault injection for all 171 opcodes, with three repeated runs
per opcode to capture any non-deterministic effects. Thus, resulting in 513 experimental
runs per driving scenario.

CPU fault injections. We conduct following GPU FI experiments. (i) Transient FI: Sim-
ilar to the GPU FI experiments, we uniformly randomly select 500 candidate dynamic
instructions to transiently corrupt the destination register. (ii) Permanent FI: The Sen-
sorimotor agent uses 131 Intel opcodes, and for each of the three driving scenarios we
perform fault injection for all 131 opcodes, with three repeated runs per per opcode to
capture any non-deterministic effects. We also perform injection of CPU faults using a
modified version of PINFI to support a permanent fault model that is similar to the per-
manent fault model for NVBitFI, where all dynamic instances of a specified opcode are
corrupted. Thus, resulting in 393 experimental runs per driving scenario.

In addition we run 50 experiments per scenario without fault as “golden” baseline runs.
The golden runs serve as control experiments as the error-detector must not classify any
of these runs as faulty. An error detector which falsely classifies a golden run as error-free
will trigger frequent alarms and thereby, decrease the overall system availability.

5.4.5 Hardware Platform

Our experimental setup uses XEON E5-2699v4 CPU with 64 GB of RAM and two Titan
Xp GPU cards.

5.5 RESULTS

5.5.1 Characterizing Input Data Diversity

We characterize the diversity in sensor data between consecutive time-steps of au-
tonomous driving on both simulated sensor data generated using the CARLA Simulator
for our test driving scenarios [140] and KITTI dataset [196].

Fig. 5.5a shows the bit diversity—the number of bits difference in the 24-bit RGB color
representation (8-bit per color), calculated per corresponding pixel location between two
consecutive RGB camera frames. The distribution of bit diversity at the 50th percentile
is 5 bits, and at the 90th percentile is 9 bits, out of the 24 bits of an RGB pixel. We also
characterized the bit-diversity in camera images of a real-world dataset, KITTI, as shown
in Fig. 5.5b. We found that the distribution of bit diversity for camera image data at the
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Figure 5.5: Image pixel bit diversity.

50th percentile is 8 bits, and at the 90th percentile is 13 bits, out of the 24 bits of an RGB
pixel. Our characterization shows that even though the semantics of the world does not
change significantly from one time-step to another, the bit-representation of the world
(captured via the cameras) changes significantly. The characterization holds for other

sensors such as LIDAR, GPS and IMU, which we omit due to space constraints.

5.5.2 Characterizing the Impact of DiverseAV on Safety

Here we characterize the impact of the DiverseAV-enabled ADS on the vehicle’s safety
by evaluating the maximum divergence between the trace of the vehicle trajectory (¢raj)
of an experimental run of a driving scenario generated using the DiverseAV-enabled
ADS, and the baseline trajectory generated using the original ADS. The vehicle trajectory
of an experimental run of a driving scenario is the trace of the path followed by the ve-
hicle. Formally, it is a timestamped list containing the global position of the vehicle at
any time ¢ during the execution of that driving scenario, i.e., traj = [pos;|Vt]. We express
the maximum divergence between a given trajectory (¢traj”) and the baseline trajectory

O0EB where 6%:8

(traj®) as s 1 s = max(traj? — trajP).

Fig. 5.6 shows the boxplot of 4" across three driving scenarios, calculated using 50 ex-
perimental runs (golden runs) of the scenarios. We characterize the divergence among the
vehicle trajectories generated using the original ADS as well as the DiverseAV-enabled
ADS. The baseline trajectory traj” used for calculating 6.7 for a given driving scenario
was chosen as the mean of all the trajectories generated using the original ADS. Thus,
the boxplots labeled “orig” show the distribution of the maximum divergence for the ve-

hicle position across the experimental runs of a driving scenario when the vehicle was
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Figure 5.6: Impact on vehicle trajectory due to DiverseAV.

using the original ADS. Similarly, the boxplots labeled “ours” show the maximum di-
vergence for the vehicle position among experimental runs when the vehicle was using
the DiverseAV-enabled ADS with respect to the mean of the trajectories generated by the
original ADS. Our characterization shows that the vehicle trajectories did not change sig-
nificantly (<50 cm across all scenarios) when we used the DiverseAV-enabled system in-
stead of the original ADS. Moreover, the DiverseAV-enabled vehicle neither experienced
a collision nor broke any traffic laws in any of our experimental runs across the driving
scenarios. Based on those observation, we conclude that our proposed design is safe and
mimics the vehicle trajectory closely compared with the original ADS.

5.5.3 Characterizing Fault Propagation

Table 5.1 provides an overall summary of the experiments. Each row in the table shows
the statistics for one fault injection (FI) campaign, which is characterized by a fault injec-
tion target and the driving scenario. In total, we executed twelve FI campaigns in which
we injected faults into two targets (CPU and GPU) in three driving scenarios (LeadSlow-
Down, GhostCutin, and FrontAccident). We also used three additional training driving
scenarios (TownO1-Route02, Town03-Routel5, and Town06-Route46) to train our error
detector (not mentioned in the table). For each of the campaigns, we ran 50 golden runs
(i.e., experimental runs without fault injections) to (i) characterize the simulation’s non-
determinism, (ii) understand the impact of faults on the vehicle’s safety, and (iii) test the
error detector. Across all the FI campaigns, we quantify the safety of the vehicle in terms
of accidents and trajectory violations. We marked an experimental run (E) as “trajectory
violated” if 6255 > 2.0 (the maximum divergence between the trajectory of the experi-

pos

mental run (£) and the baseline run (B) is more than 2.0 meters). However, we varied the
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Table 5.1: Summary of experimental runs in DUAL agent mode. DS: Driving scenarios
(LSD - Lead Slowdown, GC - Ghost Cut in, FA - Front Accident scenarios); #active: # of FI
experiments in which fault was successfully injected; #Iraj Violations*: # of experiments
with trajectory violation but without accident. #Acc.: # of experiments with accident.

FI Target DS  #Active, #Accidents #Trajectory-
Hang/Crash, Violations*
Total FI
GPU-permanent LSD 513, 83,513 3 9
GPU-permanent GC 513,83, 513 14 2
GPU-permanent FA 513,81, 513 0 3
CPU-permanent LSD 393,287,393 0 0
CPU-permanent GC 393, 286, 393 0 0
CPU-permanent FA 393,287, 393 0 0
GPU-transient LSD 500, 40, 500 0 2
GPU-transient GC 500, 46, 500 0 2
GPU-transient FA 500, 39, 500 2 0
CPU-transient LSD 413,171,500 0 0
CPU-transient GC 203,70,500 0 0
CPU-transient FA 452,199, 500 0 0

E,B
5pos

of the baseline run is assumed to be the mean trajectory of all the golden runs.

parameter to reveal the detection capabilities of our proposed design. The trajectory

Transient faults. Across all transient faults, CPU FI resulted in (i) highest percentage
of hangs and crashes (41.2%; 440 out of 1068 runs?), and (ii) zero accidents and trajec-
tory violations. A high percentage of hangs and crashes are expected for CPU FI cam-
paigns because FI into CPU instructions is very likely to corrupt the program control
flow or memory addresses, resulting in segmentation faults and broken pipes, among
other problems. Hangs and crashes are automatically detected by the platform, thereby
triggering the fail-back system which can bring the vehicle to a safe state. CPU FIs do
not cause silent data corruption (SDC) because the Sensorimotor agent used in our work
uses the GPU mostly for computations, whereas it uses the CPU for loading and setting
the Pytorch program. Consequently, we observed a relatively low percentage of hangs
and crashes for GPU transient faults (8.3%; 125 of 1500 runs). However, transient faults
into GPU did lead to accidents and trajectory violations (0.4%; 6 out 1500 runs).

Permanent faults. We observe similar trends for permanent faults for CPUs and GPUs

except for the fact that permanent fault resulted in significantly more hangs/crashes and

2The statistics is calculated by dividing total number of hangs and crashes in Table 5.1 in column 2 for
CPU-transient faults and total number of fault activated experiments.
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accidents/trajectory violations. CPU Fl resulted in (i) the highest percentage of hangs and
crashes (72.9%; 860 out of 1,179 runs), and (ii) zero trajectory violations and accidents.
Similar to transient FI, we observed a relatively low percentage of hangs and crashes
(16%; 247 out of 1,539 runs) in the case of GPU FI as compared with CPU FI, and a high
percentage of accidents (1.1%; 17 out of 1,539 runs) and trajectory violations (with no
accident) (0.9%; 14 out of 1,539 runs).

5.5.4 Characterizing Error Detection Capabilities

DiverseAV must be able to detect all safety-critical errors, i.e., faults that lead to a col-
lision or significant trajectory divergence. In addition, it should not raise false alarms,
especially for the golden runs (experimental runs of driving scenarios without fault in-
jection). We evaluate error detection capabilities in terms of precision, recall, and lead
detection time. Moreover, we parameterize the trajectory divergence using the param-
eter td. We mark an experiment as “trajectory violated” if §)>7 > td, i.e., if the max
difference between the experimental run of a driving scenario and the baseline trajectory
exceeds td. This parameter impacts the number of cases that need to be detected by the
DiverseAV. We evaluated DiverseAV’s detection capabilities for td = 1,2, 3, 4,5 meters.
The simulations of the driving scenarios have inbuilt non-determinism, and, as shown in
Fig. 5.6, the natural variation in trajectory can be as high as 0.5 m; therefore, we chose
td > 0.5m.

We evaluated the error detection capabilities of DiverseAV only for GPU faults, as all
CPU faults either were detected by the platform (as hangs or crashes) or did not result in
accidents or trajectory violations. We trained and tested DiverseAV on different scenarios
to understand the generality of the proposed design. DiverseAV was trained using “long
driving” scenarios and tested on safety-critical scenarios.

Fig. 5.7a and Fig. 5.7b show heat maps of the precision and recall values for our er-
ror detector across different parameters of td and rw (rolling window size). Overall, we
found that the detector robustly detected the safety-critical faults and produced a low
false positives rate across a range of parameters (td > 2 and rw < 30). The best perfor-
mance (i.e., precision = 0.87 and recall = 0.87) was achieved with td = 2 and rw = 3.
For these parameters, DiverseAV did not raise an alarm for any of the golden runs of the
driving scenarios. Fig. 5.8 shows the lead detection time for the detector using the param-
eters td = 2 and rw = 3. The lead detection time is significantly higher than 1.0 second,
allowing the fail-safe system ample time to take control and react to the driving situation
at hand.
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Figure 5.7: Detecting safety-critical GPU faults.
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Figure 5.8: GPU FI lead detection time.

The above results indicate that our approach achieves high recall and precision in de-
tecting runtime errors. In the context of an ADS, high recall and a corresponding low
false-negative rate are important because they indicate that most faults are being detected
or they do not affect the vehicle behavior. When an error is detected, the vehicle fails over
to a backup system that brings the vehicle to the safe state.

5.5.,5 Performance Overhead

The performance overhead characterization shows that DiverseAV increased compute
utilization marginally and significantly increased (by 1.26x) memory utilization. That is
expected because of the two agents employed in DiverseAV maintains their own internal
(private) state. The GPU memory usage increased by 26% from 757 MB to 955 MB because

of the additional agent instance, and the CPU memory usage increased by 19% from
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Table 5.2: Average system resources used by single-agent, DiverseAV-enabled and fully
duplicated (FD) ADS.

CPU GPU RAM VRAM

Single Agent 4% 14% 2,258 MB 757 MB
DiverseAV 5% 15% 2,689 MB 955 MB
Full duplication (FD) 8% 28% 4516 MB 1514 MB

2,258 MB to 2,689 MB because of the additional agent and sensor interface. However,
DiverseAV significantly reduced the computational overhead compared to a completely
duplicated system; 37.5% for CPU, 46.4% for GPU, and memory overhead by 39.5%; with
no additional hardware requirements. A summary of performance overhead is shown
in Table 5.2. The additional agent did not double GPU memory usage because part of
the memory (about 559 MB) is reserved for Pytorch CUDA context. An additional agent
increases memory usage by 200 MB because of additional weights and input/output
tensors.

Although the compute resource utilization is low for the Sensorimotor agent used in
this chapter, we know from our experience that compute utilization for a real-world AV
is high, requiring multiple CPUs, GPUs, and FPGAs [194].

5.6 DISCUSSION

5.6.1 Errors missed by DiverseAV

DiverseAV can detect failures only when a fault impacts the redundant agents differ-
ently, thereby producing different actuation commands. However, there is a nonzero
chance that the diverse agents will produce similar actuation outputs even in the pres-
ence of an error. However, in our experiments, we find the probability that a fault will
result in similar actuation outputs in both agents and also result in a safety hazard to be
small (0.001 for GPU faults; which is estimated using eq. (5.4)).

missed safety hazard cases/ total fault injection experiments = 4/ 3189 (54)

5.6.2 Comparison with Fully Duplicated ADS

We compared the accuracy of error detection capabilities of DiverseAV with the fully
duplicated ADS (FD-ADS) (e.g., [182]). In this setup, the two redundant agents are ex-
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ecuting on its own dedicated hardware. Similar to DiverseAV-enabled ADS, the two
agents share the sensor; however, each agent receives the exact same data. Due to the
limitation of the simulator we cannot run two agents concurrently in lock-step without
significantly modifying the simulator (as well as the communication interface between
the agent and the simulator). Therefore, we emulated the FD-ADS setup by executing
single-agent setup twice for a given driving scenario; the first execution is injected with
a transient or a permanent fault (thereby, emulating a fault-injected agent), and the sec-
ond execution is used as a reference for comparison of actuation commands (thereby,
emulating a non-faulty agent). The emulated setup is reasonable because the simulator
is discrete, and therefore, each simulation of a driving scenario with the same driving
scenario configuration parameter produces similar trace (i.e., trajectories and actuation
outputs). Since, the trace of the experimental runs are not bit-by-bit match (even for the
golden runs), we use a statistical model to detect errors. The error detector is trained
using sliding-window-based approach discussed in §5.3.

Compared to DiverseAV, FD-ADS achieved precision of 0.18, recall of 0.84, and FPR
(false positive rate) of 0.07 across 500 runs of each scenario (1500 total runs). FD-ADS
correctly identified most cases of true positives (accidents and trajectory violations) but
falsely identified significant number of fault-injected runs which did not lead to safety
hazards as errors. Thus, resulting in lower precision (and lower availability) compared
to DiverseAV-enabled ADS. The FD-ADS setup has low precision because (i) fully dupli-
cated system is overly sensitive to mismatches between the control outputs, and (ii) we
emulate the FD-ADS setup using single-agent system. Similar to the DiverseAV-enable

ADS, none of the golden runs were marked in error in the FD-ADS setup.

5.6.3 Comparison with Single Agent ADS

We compared our model with the single agent system, in which the ADS is using only a
single-agent to control the Ego vehicle. Both in the FD-ADS and DiverseAV-enabled ADS,
the system is using two agents and hence, there is a reference available to us for compar-
ing the outputs. However, in the single agent system, there is no reference available for
comparison except for identifying temporal anomalies in the timeseries data.

It is difficult to identify errors using temporal outlier or range-based detectors [201]
as occasional blips (that are within the acceptable output range) frequently occur in the
actuation outputs (see Fig. 5.1(b)). Increasing the sliding-window size to smooth the out-
puts in order to remove blips reduces the overall recall of the error detector model, while
decreasing the sliding-window size results in too many false positives. To illustrate the
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difficulty in designing a temporal outlier-based error detector using a single agent, we
developed a sliding window-based anomaly technique similar to the one used in this
chapter. The best performance, in terms of Fl-score, achieved by the single-agent sys-
tem yields in precision and recall of 0.17 and 0.52 respectively; which is significantly
smaller compared to both FD-ADS and DiverseAV-enabled ADS. We must note that it
might be possible to detect safety-critical faults in a single-agent ADS; however, that ap-
proach will require large amount of data and complex machine-learning models such as
LSTM/RNN [202] to train the detector. Our future work will explore such models. In
contrast, DiverseAV is simple requiring black-box comparison of actuation commands

with interpretable statistical model using few model parameters.

5.6.4 Impact on safety

Although our evaluation shows that DiverseAV does not impact the vehicle’s safety, it
is plausible that the proposed design may have safety implications in some critical driv-
ing scenarios. This is because the sensing frequency of each agent is reduced by half (and
hence the available history also reduced by half) which may lead to higher uncertainty
or delayed response. We do not quantify the increased uncertainty but empirically show
that safety of the system is maintained across several driving scenarios. This is expected
as commercial ADS have been shown to be safe even with an input data rate that is much
lower than the nominal rate [203]. This robustness to the input data rate exists because
commercial ADS include a significant engineering margin. For an ADS with lower engi-
neering margins, the sensor data distribution can be adjusted so that some input data is
sent to both agents, thus resulting in a input data rate reduction less than 50%, albeit at
the expense of greater performance overhead. Our future work will include investigation
of efficacy of DiverseAV on these critical driving scenarios with other data distribution
strategies.

5.7 RELATED WORK

Safety-critical systems employ one or more of the following techniques to protect against
faults.

Circuit hardening, which includes techniques for reducing the incidence rates by man-
ufacturing process improvements or modifications of operational parameters, such as

clock frequencies or voltages. However, because random hardware fault sources are often

123



external (e.g., high-energy neutrons, alpha particles, electromagnetic interference, voltage
drops, or excessive heat), mitigation of the incidence rate is often a partial solution [204].
Hardware design modifications, which include error detection and correction at the
circuit, micro-architecture, and architecture levels (e.g., instruction retry [205-207], ECC [208—
210], checkers [211], and parity codes [175]). Significant effort has been devoted to hardware-
level redundancy such as lockstep duplication [180-182], thread redundancy inside a
single core [181, 183], or across cores [184-187], including partial redundancy tech-
niques [212, 213]. However, those solutions require hardware support for thread syn-
chronization, and incur significant area and power overheads. Furthermore, because of
those overheads, applications of these techniques tend to be associated with larger ar-
rays of circuit elements for which the overheads can be amortized. Thus, in typical chips,
a significant portion of vulnerable elements are not protected (e.g., small SRAM arrays,
flip-flops, compute units and pipelines) leading to silent-data corruptions [214, 36].
Software algorithms or enhancements, which include error detection and correction
at the software level with negligible dedicated hardware support. Techniques include (i)
algorithm-based error detection [215, 216], (ii) assertions [178, 179] (ii) monitoring [217-
220]), and software-based redundancy. Software-based redundancy techniques includes
instruction duplication and checking via compilation techniques [221-224], process-level
duplication, and building on transactional memory [225], among other solutions [226].
Software enhancements usually incur lower overhead than hardware methods. How-
ever, the applicability of software techniques tends to be dependent on the specific target
software, so significant portions of the software are often left unprotected. Moreover,
identifying algorithms and methods that provide high-coverage is challenging and re-
quires an in-depth understanding of the fault-propagation in the application [227].
Enforcing diversity helps to tackle common cause failures (CCF) such as design bugs
and software implementation defects. Diversity can be enforced at the instruction and
program-level [189], temporal-level (e.g., instruction-retry), design-level [188] and the
data-level [190]. The assumption is that the diverse designs are susceptible to different
faults and therefore, the outputs of the two diverse designs will significantly differ on
encountering a systematic fault. However, design diversity is too costly (in terms of man-
hours required to develop N-versions or data transformation techniques), and arguably
challenging to enforce in practice.
Putting DiverseAV into perspective. DiverseAV is a lightweight, software-based re-
dundancy technique that exploits the temporal data diversity present in the sensor data
of dynamical autonomous systems to achieve high-coverage error detection for transient

and permanent hardware faults without incurring significant computational overhead
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(in terms of performance and hardware/software resources). Thus, enabling detection of
safety-critical faults in the computational hardware elements of the entire ADS. In con-
trast to full hardware or software duplication, DiverseAV ensures data and (internal) state
diversity between the two agents. Moreover, DiverseAV is a plug and play solution, and
the engineering and development effort for enabling DiverseAV is small (unlike above-
mentioned diversity techniques). To the best of our knowledge, there is no existing work

on achieving ADS redundancy by leveraging temporal data diversity in sensors.

5.8 CONCLUSION

In this chapter, we proposed DiverseAV, a low-cost redundancy technique for autonomous
driving agents that leverages temporal diversity for safety-critical error detection. Our re-
sults show that DiverseAV is highly accurate (in terms of precision and recall), and detects
tailures sufficiently far in advance.

In future, we plan to quantify the uncertainty introduced by our DiverseAV design as
well as extend the model to other autonomous systems such as unmanned aerial vehicles.
We also plan to extend the framework to help localize the faults to enable more fine-

grained mitigation instead of handling of all faults using a fail-back system.
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CHAPTER 6: AV: WATCH OUT FOR THE RISKY ACTORS: IDENTIFYING
IMPORTANT ACTORS IN DYNAMIC ENVIRONMENTS FOR SAFE DRIVING

Driving in a dynamic environment with other actors is inherently a risky task, as each
actor influences the driving decision and may significantly limit the number of choices in
terms of navigation and safety plan. The risk encountered by the Ego actor depends on
the driving scenario and the uncertainty associated with predicting the future trajectories
of the other actors (NPCs) in the driving scenario. However, not all NPCs pose a similar
risk. Depending on the NPC’s type, trajectory, position, and the uncertainty associated
with these quantities, some NPCs pose a much higher risk than others. The higher the
risk associated with an NPC, the more attention must be directed towards that NPC in
terms of resources and safety planning. In this chapter, we propose a safety importance
metric (SIM) that captures the importance of each NPC in the world with respect to their
ability to create a safety hazard. In particular, the SIM characterizes the decrease in the
Ego actor’s driving flexibility with respect to a given NPC or a driving scenario. The
more constrained the Ego actor the higher the chance of a safety hazard, and therefore,
the higher the risk. By characterizing a real-world dataset using our metric, we find that
<0.1% of NPCs in the environment constrain the Ego actor. We propose a novel neural-
network-based model to estimate the importance metric at runtime with significantly less
overhead in terms of computation and memory, while meeting the deadline requirements
for runtime monitoring. Moreover, we show that integrating SIM with the offline assess-
ment techniques eliminates the need to test the adverse effect of faults or attacks for all
NPCs, as only few NPCs are important at any given time; thus, we reduce the test set and

provide up to 24x acceleration over the current state-of-the-art assessment techniques.

6.1 INTRODUCTION

Driving in a real-world environment with ever-changing dynamics and among other
actors is inherently a risky task. Each actor in the environment can significantly influence
the driving decisions and limit the number of choices available in terms of navigation and
safety plans. In extreme cases, any of these actors can, willingly or unwillingly, thwart
the driver in safely completing the driving task. Thus, it is critical to quantify the risk
posed by each actor in terms of their ability to create a safety hazard.

Human drivers using their perception and prior knowledge implicitly and contin-
uously assess the risk associated with both the driving scenario and the other actors.

Through this assessment, human drivers identify the most important actors in the envi-
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ronment and focus their attention on those actors to prevent safety hazards. However,
a significant number of accidents occurs due to human negligence or inability of the hu-
man drivers to accurately assess the importance of each actor. This can happen when
(i) driving under the influence or otherwise distracted, (ii) the driver is less than fully
skilled, and (iii) expectations mismatch because an actor violated the traffic rule or made
a sudden action (e.g., braking) [228]. Artificial intelligence (Al)-based self-driving ve-
hicles promise to eliminate these causes of accidents by (i) removing humans from the
driving loop and (ii) making driving decisions by being cognizant of all the actors in the
environment. However, Al-driven autonomous systems, despite their successful demon-
strations, have failed to deliver on this promise [3, 2], as is evident from the significant
deployment delays. The strategy of paying equal attention and taking preventive actions
with respect to all actors works well for most driving scenarios. However, in rare sit-
uations, when there is a need to rapidly respond to an adverse event (such as an actor
behaving erratically and closely cutting into the Ego lane'), the Ego actor cannot afford to
spend its resources in identifying, tracking, and mitigating the risk associated with every
actor on the road. Instead, it must identify and track the most important actor(s) and take
a mitigating action that minimizes the risk and, therefore, the probability of hazardous
outcomes. Hence, it is critical for designers to learn from humans and develop techniques
for assessing the importance of each actor in terms of their ability to create a safety hazard
and then mitigating those hazards at runtime.

In this chapter, we design and develop a novel safety importance metric (SIM) to charac-
terize the threat posed by an actor by estimating its influence on the Ego actor’s decision
process in a given environment, which in turn is estimated in terms of reduction in driv-
ing flexibility. SIM depends on: (i) the environment (i.e., driving scenario) and (ii) the
uncertainty associated with determining the driver’s future trajectories.

Driving scenario. Driving scenario is the specification of the initial location of the Ego
actor, the map, and the trajectories of NPCs. With each additional NPC on the road,
diverse safe trajectories that can be followed by the Ego actor may be significantly re-
duced. This decrease in safe trajectories constrains the Ego actor in its decision making
process, and it significantly reduces the failback options available to the Ego agent in case
of unforeseen situations. Hence, decrease in diverse safe trajectories is analogous to the
importance of an actor because it requires more attentive driving. This is illustrated in
Fig. 6.1.

Uncertainty. Importance of an actor also increases if the future trajectory of the NPCs

'Ego actor is the actor that is being tested and is under the control of the tester. Ego lane is the lane on
which the Ego actor is driving.
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cannot be predicted accurately by the Ego actor. The accuracy of prediction decreases
due to unclear intention or sudden change in intention of other participants in the driv-
ing environment (e.g., pedestrian decides to suddenly stop or run, emergency braking or
breakdown of other vehicles), measurement noise (e.g., due to a bad weather), or imper-
fections in ML/ Al models (e.g., pedestrian is not detected). This is illustrated in Fig. 6.2.

Possible trajectories: Possible trajectories: Possible trajectories:
* Follow vehicle * Follow vehicle * Follow vehicle

* Move to left lane ~Move-toleftlane s—Move-to-leftlane
* Brake * Brake *+ Brake

Figure 6.1: Driving scenario complexity increases from left to right as number of possible
future paths/actions decreases. Each scenario is safe if all actors follow ”“duty of care.”
However, there is inherent risk that one or more can behave erratically; hence the decrease
in number of actions/choices is analogous to increase in importance of an actor. Yellow
circle denotes Ego actor and white rectangular boxes represent other actors.

Figure 6.2: Ego actor is more constrained from left to right as there is higher uncertainty
in trajectory estimates of one or more actors’ states. Increase in uncertainty decreases the
possible future choices/action that can be taken, thereby increasing the risk. Thus, actors
that constrain the Ego actor the most are the most important actors in the environment.
However, increase in uncertainty of an actor that is far away may not have any conse-
quence with respect to the driving decision; hence, increase in uncertainty only matters if
it influences the Ego actor’s driving decision.

The contributions of this chapter are as follows:

(a) Safety importance metric formalization: We define a new metric, safety impor-
tance metric (or SIM), to quantify the importance of each actor in the environment

as well as the environment itself. The SIM score for each actor and driving scene
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is normalized between zero and one. Thus, the higher the SIM, the higher the
risk. Our importance metric is motivated from Barlow’s importance metric [229].
Barlow’s importance metric measures the conditional probability that the system
tailure is caused by (i.e., coincides with) the failure of a given component; thus, en-
abling system designers to calculate the relative importance of each component for
a static system. Barlow’s importance metric requires fault-tree specification of the
system and serves as a useful guide during the system development phase as to
which components should receive more urgent attention in achieving system relia-

bility growth.

In contrast, SIM is designed for online importance assessment for a dynamically
evolving system consisting of an Ego actor and other actors in the environment.
Fault trees for such systems do not exist. Hence, SIM uses path-planning algo-
rithms [230] to capture the relationship between the Ego actor’s driving decision
and other actors’ states. Path-planning algorithms find one or more collision-free
driving trajectories from the current location to the goal location. Conceptually, we
use these path-planning algorithms to calculate SIM as the ratio between (i) de-
crease in the number of drivable trajectories (i.e., decrease in driving flexibility) in
the presence of an actor and (ii) total number of drivable trajectories. SIM allows us
to identify the relative importance of each actor. The calculation of SIM depends on
both the state of the Ego actor and the state of the other actors in the environment.
Therefore, we model the uncertainty in SIM by modeling the uncertainty associated
with the state of the actors in the environment, including the Ego actor. We report

both mean and variance associated with this metric.

(b) NN-based SIM evaluation for rapid monitoring. Evaluating importance at run-
time, which meets latency deadlines, is difficult because the evaluation depends on
the monitoring system’s ability to find all future possible driving trajectories, which
is computationally intractable. To address this challenge, instead of identifying all
future drivable trajectories from current location to the goal location, we identify all
reachable locations in the vicinity of the Ego actor’s current location.? SIM can use
the above-mentioned path-planning algorithms to find a path from current location
to a vicinity location. We assume that the Ego actor uses a hierarchical planner con-
sisting of a high-level planner (which makes the routing decisions from source to

destination) and a low-level planner (which makes the local decisions such as steer-

>We can divide the map into a grid of fixed-size cells. In this abstraction, the driving flexibility can be
quantified as the total number of reachable cells from the current location in a given fixed time interval.
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ing, braking, and throttling). Calculating reachability using above-mentioned path-
planning algorithms is still prohibitively expensive for online assessment. Hence,
we use a neural network (NN) that takes bird’s eye view as the input and outputs a
binary image in which all reachable vicinity locations along the route that are reach-
able in a given fixed time interval are marked as one, and non-reachable locations
are marked as zero. NN-based implementation can be executed at runtime with low
overhead while meeting deadline constraints. NN-based implementation is 14.5x faster
when compared with RRT*-based [230] implementation. Overall execution time is signifi-
cantly less compared to the 180 ms threshold set by ISO 26262 [97] for monitoring of adverse
events (such as fault detection and adversarial actors, among others).

TestScenarios benchmark consisting of important scenarios and actors: We eval-
uated the proposed metric on nuScenes driving dataset [231]. The nuScenes dataset
consists of 1000 annotated driving scenes, each 20 seconds long, that are taken from
busy local roads in Boston and Singapore. It consists of 1.4M camera images. We
use this dataset because (i) it is openly available, (ii) it provides APIs to extract map
and bird’s eye views for the camera images, and (iii) most importantly, it has signif-
icantly more labels than any other dataset. For example, it contains 7xmore object
labels than KITTI dataset [196]. Our evaluation shows that <1% of actors are impor-
tant (i.e., importance score of >0.9). Similarly, our evaluation shows than only 1.4% of the
driving scenes are important. Using nuScenes dataset, we curated a new benchmark,
TestScenarios, which consists of inherently hard-to-navigate driving scenarios and
important actors. We assert that developers can use the TestScenario benchmark to
significantly boost development, testing, and deployment of autonomous vehicles
on the road.

Proactively mitigating safety hazards. The proposed importance metric allows us
to mitigate safety hazards proactively. We develop a safety engine that (i) monitors
the importance of each actor at runtime and (ii) disengages the Ego agent suffi-
ciently in advance to mitigate the potential safety hazard safely. The safety engine
uses a threshold-based intervention strategy in which the Ego-agent is disengaged
when the sum of predicted importance of all actors in a driving scenario increases
significantly. The safety engine prevented an accident by disengaging the Ego agent
in four out of five driving scenarios. In these scenarios, without the safety engine,

the Ego agent’s driving decisions lead to accidents.

Accelerating offline testing and assessment. The proposed importance metric al-
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lows us to further accelerate the assessment techniques such as Bayesian Fault In-
jection (BFI) that was proposed in Chapter 3. BFI gives equal importance all actors
in the scene when estimating the probability of collision under the influence of a
tault. However, as discussed above, only a few actors (~ 0.7%) are important while
driving. Hence, we integrated the importance analysis with BFI. Importance-driven
BFI accelerates the fault assessment by 24x when compared to vanilla BFI. Note that
this is an additional 24x acceleration over 3690x acceleration that BFI provides com-
pared to existing fault injection techniques.

Although, in this chapter, we focus only on self-driving cars as a use case, our frame-
work is general and can be applied to other navigation-based autonomous systems such
as unmanned aerial vehicles and drones.

Related work. There are mainly two lines of research associated with defensive driv-
ing: (i) identifying safe distance from other actors assuming everyone follows the “duty-
of-care” policies, (ii) identifying out-of-training-distribution (OOD) scenarios so as to
plan for the worst case for avoiding collisions. Duty-of-care approaches such as Safety Force
Field (SFF) [232] and Responsibility-Sensitive Safety (RSS) [233] are geared towards esti-
mating the safe distance from other actors assuming that everyone follows rules of the
road. Additionally, the goal is to identify the culprit in case of a safety hazard. OOD
models such as [234] are geared towards identifying driving scenarios in which the Ego
actor’s future trajectory (i.e., plan) has significant variance. Such variance can be charac-
terized by using an ensemble of models or diverse data. Under high variance, the Ego
actor chooses to use the most pessimistic plan in order to avoid collisions. For example, in
[234], the Ego actor’s plan is generated using Bayesian imitative model, and the variance
of the imitation prior with respect to the model posterior is used as a proxy for identify-
ing distribution shifts. On detecting a distribution shift, the Ego actor can either plan for
the worst-case model or the average model. Finally, in another line of research [235], au-
thors quantify the impact of uncertainty in driving performance, but do not quantify the
quality of the generated plan in terms of its safety. In contrast, our goals are to (i) iden-
tify the most important actors by characterizing their negative influence on the degree of
freedom of the Ego actor’s navigational choices, (ii) quantify the SIM of the current plan
and proactively mitigate safety hazards.

6.2 FORMALIZING AND QUANTIFYING SAFETY IMPORTANCE METRIC

The current approaches in identifying safety-critical actors on the road rely only on
forward-simulating techniques to identify collision sets/trajectories. However, these tech-
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niques do not account for the attention required for driving in strenuous driving scenarios
where the Ego actor has limited number of choices/plans.

The goal of our work is to quantify the importance of each actor for a given driving sce-
nario. To that end, we propose a novel metric that resembles a human driver’s intuition
and reasoning in safe driving. In this section, we formalize the importance metric under
the following assumptions:

Assumption 6.1. Autonomous driving system design — In keeping with the industry
standards, we assume that the overall system must consists of sensors, object detection,
trajectory prediction, planner, and controller. We also assume that the system consists of

enough computational resources to perform all computations within the specified time.

Assumption 6.2. Perception system — We assume that the perception system is able to
detect all actors that are within some distance threshold d. However, the measured state
of the object such as bounding boxes or positions are noisy. We do not consider issues of:
(i) fragmentation caused by model’s inability to match the detected actor to its trajectory,
and (ii) false detection that lead to appearance of ghost objects in the world as perceived
by the Ego actor.

Assumption 6.3. Global routing system — We assume access to a global navigation sys-
tem that we can be used to specify high- level goal locations and the availability of routes
to reach to that goal location.

Assumption 6.4. Inverse dynamics — We assume access to an inverse dynamics model
(PID controller, I) that performs the low-level control — inverse planning — a, (i.e., steering,
braking and throttling) provided the current and next states (i.e., positions) s;, and s,

respectively.

6.2.1 Determining the importance of an actor

In our abstract model, importance is characterized in terms of decrease in driving flexi-
bility. Driving flexibility is characterized by the number of unique driving trajectories (or
actions) that are available to the driver at runtime. The higher the driving flexibility, the
lower the importance (and risk) because the Ego actor’s decision depends less on another
actor’s decisions. We estimate the importance for all the neighboring actors individually.

In this section, we first formalize the importance metric for the oracle setting in which
the current and future states of the actors are known with no uncertainty. We can extract

these states from benchmark datasets where ground truth labels are available. Finally, we
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extend the definition of importance to incorporate noise to enable real-world monitoring
of actors. In the real world, the current and future states of the actors are estimated at

runtime and therefore may have significant uncertainty.

6.2.2 Determining importance with ground truth data

Let us assume that there are NV actors in the world including the Ego actor. Let us
denote the state of an actor 7 at time ¢ by 2! € R?, and the trajectory (i.e., trace of the
actor’s state) from time ¢ to ¢ + k given by Xt(’,g Let us denote the trajectory of all actors
except the Ego actor from time ¢t to ¢t + k by X, = Xf,?: . Xt(f,j_l). We can now describe
the driving scenario (S) from time ¢t = 0 to ¢t = 7 as a tuple consisting of a map (M),
trajectories of all the actors except the Ego actor, and the initial position of the Ego actor
(x29):

S =< M, Xo, 2% > 6.1)

For now, let us assume that we have access to an oracle local planner (f,) that uses the

trajectories of all the other actors from time ¢ to ¢ + k (X;;) and the position of the Ego

ego

actor at time ¢ (7;°°) to generate a set of future trajectories (Z;7) that the Ego actor can
follow safely from time ¢ to ¢ 4 k while following all the rules of the road. The design and

implementation of the local planner f, is discussed later in §6.3.

Zyp = [o(M, Xy, 277°) (6.2)

The set consisting of all the navigable future trajectories in the absence of all actors is
given by eq. (6.3).
Z0 = f,(M, 0, %) (6.3)

Similarly, the set consisting of all navigable future trajectories in the absence of i*" actor

is given by eq. (6.4). Here, X/}, ; contains trajectory of all actors except the i** actor.
Z[i = f,(ML X[}, 25%) (6.4)

We can now define the importance of a specific actor i from time ¢ to ¢ + £ as:
(6.5)

The normalization constant ZE . enables us to compare the importance across different
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driving scenarios.
We can similarly define the total importance (p, ;) of a driving scenario as the normal-

ized reduction in future trajectories due to presence of all actors on the road.

g = (6.6)

6.2.3 Determining importance with noisy measurements

Now we can consider the case of noisy measurements. In this setting, the Ego actor
measures the current state of an actor using its sensors denoted by 0" and uses past and

current measurements to estimate the current state jgi). jgi) is different from xgi) (defined

in previous subsection), as z captures the uncertainty /noise associated with the state.
The horizontal bar on the top of the symbols used here is to distinguish between the
noisy data and ground data. Typically, o is the bounding box that is detected using
object-detection algorithms, such as YOLO [154]. The future trajectory of an actor ¢ from

time ¢ to ¢ + k can then be modeled by the joint distribution as given by eq. (6.7).

S (i (i () . N
Xt(lz = p(:cg ), ...,x§£k|og ), ...,og )) (6.7)

Let Q; , denote the set consisting of sample of future trajectories for all actors, i.e., Q; =
{qt(lk) ~ )_(t(}g), o t(]:) ~ )_(t(’],:[)}. As earlier, let us assume that we have access to an oracle
planner f, that generates all possible future trajectories that the Ego actor can follow
safely given Q; x, M, and z;%° as given in eq. (6.8).

Zt,k = fp(Ma Qt,ka $§gg) (6.8)

However, for different samples of )_(t,k ZM will be different. Using those samples, we
can estimate the uncertainty in importance of an actor (pgf,l) and driving scenario (p ;) as

discussed in the previous section.

6.3 DESIGN AND IMPLEMENTATION

Estimating importance as outlined above is difficult at runtime, as path-planning is
PSPACE-hard, which is an indication of the computational intractability in the degrees of
freedom of the agent [236, 237]. To address this challenge, we develop a novel domain-
and data-driven approximation technique that meets the stringent latency and compute
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requirements for runtime monitoring. The approximation is based on following design

principles:

(i)

(ii)

6.3.1

Exploring local routing decisions given the global route. The proposed technique lim-
its the exploration of alternate actions/driving trajectories within a fixed threshold
distance d from the current Ego location. In other words, we assume that there is a
global routing system (see Assumption 4) and the Ego actor can choose to deviate
from the global route locally. Humans tend to drive in a similar fashion where they
approximately follow the navigation system (such as Google maps) to reach the des-
tination; however, several choices such as using a particular lane or vehicular speed
is left to the driver’s own discretion.

Calculating reachability instead of driving trajectories. The goal of our work is to cal-
culate the importance of an actor or a driving scenario. In our abstraction, we es-
timate this by estimating the extent of decrease in choice of flexibility of driving,
which in turn, is calculated by estimating total number of possible driving trajec-
tories. However, the set of future trajectories is countably infinite and calculating
future trajectories is computationally intractable. Therefore, instead of calculating
the aforementioned set of driving trajectories, we calculate reachability of the Ego
actor from its current location to several goal locations within the threshold distance
d. These goal locations are the individual cells within the threshold distance d in the
grid view of the map® as shown in Fig. 6.3. The reachability of the Ego actor from
current location in the map to several goal locations is computed using a local plan-
ner. Thus, in our implementation, f, is the reachability model and its outputs are
used to compute the importance. We assert that total reachable destination locations
(i.e., cells in the map) from the current Ego location serve as an approximate proxy
for evaluating flexibility of driving; thereby, allowing us to approximate importance
of each actor and the driving scenario.

Designing planner f,

We use above insights to design f,. The proposed f, first discretizes the map into a grid

of predefined, fixed size cells as shown in Fig. 6.3. Then it calculates the reachability of

the Ego actor from the current location (src) in the grid to all destination cells (dst). The

dst cells are all the cells within some threshold distance d. Each reachable cell in the grid

3We discretize the map into a grid of cells
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contributes to the total degree of freedom; the higher the degree of freedom, the lower
the importance. Fig. 6.4 conceptualizes this idea.

—
Ol=

Bird's eye view of current Discretized bird's eye view of
state current state

Figure 6.3: Discretization of the map into a grid of predefined fixed-sized cells.

= =
CI= =

T T+1

Current state Reachable cells at a future state <t+1>

Figure 6.4: Using f,,, Ego actor can calculate all the safely reachable cells in the grid at
time <t+1>. These reachable cells are shaded in green.

Though it is possible to compute reachable destination cells from the current loca-
tion using graph search algorithms such as depth-first or breadth-first search algorithms.
However, such an implementation will ignore temporal dynamics such as kinematics.
Therefore, our implementation f, uses RRT* [230] to find all reachable cells.

6.3.2 Approximating f, using a neural network

Reachability calculation using RRT* is still not favorable due to its computational com-
plexity and tail runtime behavior. Therefore, we further approximate the reachability
computation by approximating f, using a neural network. The inputs to the neural net-
work consist of the bird’s eye views (BEVs) of the camera data for 6 epochs, i.e.,, BEV
camera data from time ¢ — 6 to t. The output of the model is an indicator vector indicating
all the reachable cells from time ¢ to ¢ + &k . The indicator vector is of fixed size. Each cell
in the grid corresponds to a particular index in the indicator vector. We formulate the
reachability problem as a classification problem, where the goal of the neural network is
to classify each cell in the grid (or the indicator vector) as reachable vs not reachable.

Remark 6.1. Note that the size of the grid up to distance d from the Ego actor depends

on the map. For example, a single-lane road versus a four-lane road will have a different
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number of cells within distance threshold d. However, such variability is not favorable
because the output of the neural network must of be fixed size. Thus, in our implemen-
tation we always assume that the Ego actor is traveling on a three-lane road allowing it
move left, right, or straight. This assumption is reasonable as the chance that the Ego

actor crosses more than one lane in k time epochs is negligible if % is reasonably small.

Remark 6.2. Note that reachability datasets do not exist. Thus, we must create such a
dataset using RRT* as described above. The goal of the neural network is to mimic the
output of RRT*-based reachability model by classifying each cell in the grid as reachable
versus not reachable. The neural network uses cross-entropy loss for this classification
problem. Cross-entropy loss measures the performance of a classification model whose
output is a probability value between 0 and 1. Cross-entropy loss increases as the pre-
dicted probability diverges from the actual label. Moreover, we use a Bayesian Neural
Network (BNN) [238] to model the uncertainty in trajectories of actors.

Finally, we estimate the importance using eq. (6.5) and the trained NN-driven f,. Fig. 6.5
showcases the calculation of importance without considering the uncertainty. Yellow cir-
cle is the Ego actor and white rectangles are the other actors on the road. Arrows indicate
the moving direction of the actors. Left figures show the state of the actors at time step ¢,
and right figures show the reachable destination cells. Fig. 6.5a shows the bird’s eye view
of the driving scenario. Fig. 6.5b shows the reachable destination cells without deleting
any actors in green and with deleting all actors in blue. Fig. 6.5c and Fig. 6.5d show reach-
able destination cells when deleting the bottom and the top actor, respectively. Clearly,
the bottom actor reduces the flexibility of driving more than the top actor. Hence, the
bottom actor is more important than the top actor. Here the reachable cells are calculated
using the NN-based reachability model.

6.3.3 Alternate design choices

In our proposed formalism, we use reachable cells as a proxy for flexibility in driving
in a driving scenario and use that to calculate importance. However, it is possible to use

other proxies for capturing flexibility of driving;:

(a) Extent of change in the behavioral options: Instead of defining choices in terms of reach-
able cells, one can also formulate choices in terms of behavioral choices, such as
‘move to left lane’, ‘move to right lane’, ‘cruise’, ‘accelerate” and ‘brake’. We can

calculate the total number of choices with and without an actor to estimate relative
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(a) Original driving scenario
and reachable cells

T
(b) Deleting all actors adds ==L=
three extra reachable cells -

(c) Deleting bottom actor adds
only one extra reachable cell

(d) Deleting top actor adds

two extra reachable cells a
=
T

T+1

T+1

T+1

Figure 6.5: Depicting reachability and importance calculation. Green cells are the reach-
able cells before deleting any actor, and blue cells are additional reachable cells after delet-
ing one or more actors. Deleting all actors allows us to calculate the total importance for
a driving scenario, as shown is shown in (b). The total importance of the showcased
driving scenario is 0.5 (estimated using eq. (6.6)). Using eq. (6.5), we can estimate the
importance of each actor. Here the bottom actor is more important than the top actor be-
cause the number of reachable cells decreases more with respect to the bottom actor than
with respect to the top actor.

(b)

importance. However, these behavioral choices can only be computed after esti-
mating all the reachable cells. Hence, it is more computationally expensive than our

proposed technique and therefore not suitable for online monitoring.

Extent of change in the planned trajectory: Planning algorithms such as RRT*, as im-
plemented in Pylot [239], find only one usable future trajectory. In this setting, im-
portance can be approximated by calculating the difference between the planned
trajectory with and without an actor. However, such approximation only calculates
the influence of the actor on the driving decision without characterizing overall
importance. For example, the difference between the planned trajectory with and
without actor can be significant if there is only one non-player character (NPC) ac-
tor and that NPC is in front of the Ego actor. However, on a three-lane highway,
despite the presence of the NPC, the Ego actor has several other choices, hence the
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driving scenario/actor is less important (see Fig. 6.1 for illustration).

6.4 RESULTS

Datasets. We validate our proposed evaluation metric on the nuScenes dataset [231].
nuScenes consists of 1000 annotated driving scenes each of length 20 seconds, that are
taken from busy local roads in Boston and Singapore. Ground truth 3D object labels are
provided at 2 hz for objects that fall into 10 object classes including cars, trucks, pedestri-
ans, and road barriers. The dataset contains 1.4M camera images, 390k LIDAR sweeps,
1.4M RADAR sweeps, and 7xmore object labels than KITTI [196].

Performance Overhead. We characterize the overhead of our proposed technique both
in terms of latency and memory requirements. Time to calculate importance for all actors
within some threshold distance d depends on the number of actors that are present on
the road. Thus, calculation of importance metric can exhibit significant tail behavior. The
calculation of importance metric also depends on the underlying implementation of the
reachability model. Table 6.1 shows the latency and memory overhead for calculating
importance using RRT*-based and NN-based reachability model. NN-based reachability
model 14.5xfaster than RRT*-based reachability model in terms of latency. The time taken
by NN-based implementation is significantly less compared to 180 ms threshold set by
ISO 26262 [97] for detecting adverse events.

Table 6.1: Resource overhead.

Reachability model Latency (mean =+ std. dev) Memory overhead

RRT*-based 1000 £ 320 ms 180 MB
NN-based 69 4+ 46 ms 300 MB

Accuracy. We evaluate the accuracy of the NN-based reachability model using the
nuScenes dataset. Precision and recall of the NN-model in imitating RRT*-based reacha-
bility model is 0.91 and 0.8 respectively. We also estimate the downstream effect of using
NN-based reachability model on estimating the relative importance of actors by calcu-
lating the percent of entries that are differently ordered from RRT*-based importance
estimation model. Our results show that only in 8% of the driving scenes* the relative

importance ordering of actors is different from RRT*-based importance estimation model.

A driving scene at time ¢ is state of the world at any time step ¢. In our analysis, a driving scene is
simply the camera image at time ¢.
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Figure 6.6: Characterizing safety importance metric on nuScenes dataset.

Evaluating importance metric on nuScenes dataset. We estimate the importance of (i)
each actor in a driving scenarios and (ii) relative importance of driving scenarios across
the nuScenes dataset. In this evaluation, we only characterize the mean importance.
Though there is uncertainty in importance calculation, it does not change our key con-
clusions. Fig. 6.6a and Fig. 6.6b characterizes the importance of actors and driving scenes
across the nuScenes datasets using CDF plots. From Fig. 6.6a, we find that importance
is low (<0.25) for approximately 85% of actors and only 0.7% of the actors have impor-
tance >0.9. Similarly, the overall importance of a driving scene is low for 65% of driving
scenes. However, only 1.4% of the driving scenes have overall importance of >0.9. A
driving scene can be important even when importance of individual actor is low because

multiple actors together can significantly reduce the driving flexibility of the Ego actor.

6.5 EXAMPLE DRIVING SCENE

Fig. 6.7 shows the importance of a driving scene from nuScnenes dataset. The level
of importance for an actor is depicted by a heat map; red being the most important and
white being least important. Visually, it make sense for the actors that are nearby to have
higher importance value. However, note that not all actors that are closer to the Ego
actor (circular object) are equally important. For example, an actor that is moving in the
opposite direction despite being closer is less important than the actor that is father away

but merging on the same lane.
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Figure 6.7: Case study driving scene from nuScenes dataset

6.6 MITIGATING SAFETY HAZARDS

The proposed importance metric allows us to mitigate safety hazards proactively. We
develop a safety engine that (i) monitors the importance of each actor at runtime and
(ii) disengages the Ego agent sufficiently in advance to mitigate the potential safety haz-
ard safely. The safety engine uses a threshold-based intervention strategy in which the
Ego-agent is disengaged when the sum of predicted importance of all actors in a driving
scenario increases significantly. In our experiments, the threshold is set to 0.8. We evalu-
ated the safety engine on five driving scenarios shown in Fig. 6.8. Four of these scenarios
are from nuScenes dataset and one is a custom cut-in scenario. The custom scenario was
created to inject significant uncertainty in the future prediction of one of the actors. We
only replicated 4 nuScenes scenarios as replicating each scenario in a simulator involves
significant human effort.

The safety engine prevented an accident by disengaging the Ego agent in four out of
five driving scenarios. In these scenarios, without the safety engine, the Ego agent’s driv-
ing decisions lead to accidents. In all cases, the safety engine disengaged the Ego actor
at least one second prior to the accident’. Our experiments show that the importance
metric can be used for mitigating safety hazards proactively. However, a thorough inte-
gration with a real vehicle and field evaluations are needed to identify the usability of the

proposed metric in the wild.

>The time of the accident is identified by running the Ego agent without the safety engine.
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6.7 ACCELERATING ASSESSMENT

Importance assessment can further accelerate the fault injection-based assessment tech-
niques such as Bayesian Fault Injection (BFI) that was proposed in Chapter 3. BFI gives
equal importance to all actors in the scene when estimating the probability of collision
under the influence of a fault. However, as discussed above, only few actors (~ 0.7%)
are important while driving. Hence, we integrate the importance assessment technique
with BFI to significantly reduce the number of fault injections (i.e., reduce the number of
what-if analysis on the model) as shown in Fig. 6.9. Importance-driven BFI accelerates the
assessment by 24x when compared to vanilla BFI. Note that this is an additional 24x ac-
celeration over 3690x acceleration that BFI provides compared to existing fault injection
techniques.

nuScenes-1

nuScenes-4 Custom-cut-in

Figure 6.8: Test driving scenarios for evaluating the safety engine.

6.8 FUTURE WORK
In future, we plan to use this metric in the following ways:

(a) Safety hazard mitigation: We will use Partially Observable Markov Decision Pro-
cess (POMDP) instead of threshold-based heuristics to develop a safety engine that
uses importance metric to identify the most important actors and mitigates any risk

posed by those actors.

(b) Importance-aware planning: We plan to develop methods that will importance di-
rectly with the planner to plan a driving trajectory with the highest driving flexibil-

ity while maximizing reward (i.e., reaching the destination).
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Figure 6.9: Accelerating fault injection-based fault assessment using importance analysis.

(c) Importance-aware compute resource utilization: Since at any given point in time, only
some actors are important, we plan to use our metric for deciding on how to allocate
compute resources so as to generate robust predictions and plans.

We also plan to demonstrate our metric on more realistic agents whose planners not
only consider obstacles but rules of the road and maps for navigation.

6.9 CONCLUSION

Driving in a dynamic environment that consists of other actors is inherently a risky
task as each actor influences the driving decision and may significantly limit the number
of choices in terms of navigation and safety plan. However, not all objects pose a similar
risk. Depending on the object’s type, trajectory, position, and the associated uncertainty
with these quantities; some objects pose a much higher risk than others. In this chapter,
we propose a metric that captures the importance of each actor in the world with respect
to their ability to create safety hazard. In particular, the importance metric characterizes
the decrease in Ego actor’s driving flexibility with respect to a given NPC or a driving
scenario. The more constrained the Ego actor higher is the chance of a safety hazard, and
therefore, higher is the risk.
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CHAPTER 7: HPC: FIELD MEASUREMENTS ON NETWORK

While it is widely acknowledged that network congestion in High Performance Com-
puting (HPC) systems can signifi- cantly degrade application performance, there has
been little to no quantification of congestion on credit-based intercon- nect networks. We
present a methodology for detecting, ex- tracting, and characterizing regions of conges-
tion in networks. We have implemented the methodology in a deployable tool, Monet,
which can provide such analysis and feedback at run- time. Using Monet, we character-
ize and diagnose congestion in the world’s largest 3D torus network of Blue Waters, a
13.3- petaflop supercomputer at the National Center for Supercomputing Applications.
Our study deepens the understanding of production congestion at a scale that has never
been evaluated before.

7.1 INTRODUCTION

High-speed interconnect networks (HSN), e.g., Infiniband [240] and Cray Aries [241]),
which uses credit-based flow control algorithms [242, 243], are increasingly being used
in high-performance datacenters (HPC [244] and clouds [245-248]) to support the low-
latency communication primitives required by extreme-scale applications (e.g., scientific
and deep-learning applications). Despite the network support for low-latency communi-
cation primitives and advanced congestion mitigation and protection mechanisms, signif-
icant performance variation has been observed in production systems running real-world
workloads. While it is widely acknowledged that network congestion can significantly
degrade application performance [249-253], there has been little to no quantification of
congestion on such interconnect networks to understand, diagnose and mitigate conges-
tion problems at the application or system-level. In particular, tools and techniques to
perform runtime measurement and characterization and provide runtime feedback to
system software (e.g., schedulers) or users (e.g., application developers or system man-
agers) are generally not available on production systems. This would require continuous
system-wide, data collection on the state of network performance and associated complex
analysis which may be difficult to perform at runtime.

The core contributions of this chapter are (a) a methodology, including algorithms, for
quantitative characterization of congestion of high-speed interconnect networks; (b) in-
troduction of a deployable toolset, Monet [254], that employs our congestion characteri-
zation methodology; and (c) use of the the methodology for characterization of conges-
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tion using 5 months of operational data from a 3D torus-based interconnect network of
Blue Waters [49-51], a 13.3-petaflop Cray supercomputer at the National Center for Su-
percomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign.
The novelty of our approach is its ability to use percent time stalled (Prs)' metric to detect
and quantitatively characterize congestion hotspots, also referred to as congestion regions

(CRs), which are group of links with similar levels of congestion.
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Figure 7.1: Characterization and diagnosis workflow for interconnection-networks.
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Figure 7.2: Cray Gemini 48-port switch.

The Monet tool has been experimentally used on NCSA’s Blue Waters. Blue Waters uses
a Cray Gemini [255] 3D torus interconnect, the largest known 3D torus in existence, that
connects 27,648 compute nodes, henceforth referred to as nodes. The proposed tool is not
specific to Cray Gemini and Blue Waters; it can be deployed on other k-dimensional mesh
or toroidal networks, such as TPU clouds [256], Fujitsu TOFU network-based [257, 258] K
supercomputer [259] and upcoming post-K supercomputer [260]>. The key components
of our methodology and the Monet toolset are as follows:

Data collection tools: On Blue Waters, we use vendor-provided tools (e.g., gpcdr [261]),

1Pr,, defined formally in Section §7.2, approximately represents the intensity of congestion on a link,
quantified between 0% and 100%.
2The first post-K supercomputer is scheduled to be deployed in 2021.
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along with the Lightweight Distributed Metric Service (LDMS) monitoring framework [262].

Together these tools collect data on (a) the network (e.g., transferred /received bytes, con-

gestion metrics, and link failure events); (b) the file system traffic (e.g., read /write bytes);

and (c) the applications (e.g., start/end time). We released raw network data obtained

from Blue Waters [263] as well as the associated code for generating CRs as artifacts [254].

To the best of our knowledge, this is the first such large-scale network data release for an

HPC high-speed interconnect network that uses credit-based flow control.

A network hotspot extraction and characterization tool, which extracts CRs at run-
time; it does so by using an unsupervised region-growth clustering algorithm. The clus-
tering method requires specification of congestion metrics (e.g., percent time stalled (Pr;)
or stall-to-flit ratios) and a network topology graph to extract regions of congestion that
can be used for runtime or long-term network congestion characterization.

A diagnosis tool, which determines the cause of congestion (e.g., link failures or exces-
sive file system traffic from applications) by combining system and application execution
information with the CR characterizations. This tool leverages outlier-detection algo-
rithms combined with domain-driven knowledge to flag anomalies in the data that can
be correlated with the occurrence of CRs.

To produce the findings discussed in this chapter, we used 5 months of operational
data on Blue Waters representing more than 815,006 unique application runs that injected
more than 70 PB of data into the network. Our key findings are as follows:

» While it is rare for the system to be globally congested, there is a continuous presence of highly
congested regions (CRs) in the network, and they are severe enough to affect application perfor-
mance. Measurements show that (a) for more than 56% of system uptime, there exists
at least one highly congested CR (i.e., a CR with a Pr, > 25%), and that these CRs have
a median size of 32 links and a maximum size of 2,324 links (5.6% of total links); and
(b) highly congested regions may persist for more than 23 hours, with a median dura-
tion time of 9 hours®. With respect to impact on applications, we observed 1000-node
production runs of the NAMD [264] application * slowing down by as much as 1.89x
in the presence of high congestion compared to median runtime of 282 minutes.

* Once congestion occurs in the network, it is likely to persist rather than decrease, leading to
long-lived congestion in the network. Measurements show that once the network has en-
tered a state of high congestion (Pr, > 25%), it will persist in high congestion state with
a probability of 0.87 in the next measurement window.

* Quick propagation of congestion can be caused by network component failures. Network com-

*Note that Blue Waters allows applications to run for a maximum of 48 hours.
“NAMD is the top application running on Blue Waters consuming 18% of total node-hours [265].
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ponent failures (e.g., network router failures) that occur in the vicinity of a large-scale
application can lead to high network congestion within minutes of the failure event.
Measurements show that 88% of directional link failures ® caused the formation of CRs
with an average Pr, > 15%.

Default congestion mitigation mechanisms have limited efficacy. Our measurements show
that (a) 29.8% of the 261 triggers of vendor-provided congestion mitigation mecha-
nisms failed to alleviate long-lasting congestion (i.e., congestion driven by continuous
oversubscription, as opposed to isolated traffic bursts), as they did not address the
root causes of congestion; and (b) vendor-provided mitigation mechanisms were trig-
gered in 8% (261) of the 3,390 high-congestion events identified by our framework. Of
these 3,390 events, 25% lasted for more than 30 minutes. This analysis suggests that
augmentation of the vendor-supplied solution could be an effective way to improve
overall congestion management.

In this chapter, we highlight the utility of congestion regions in the following ways:
We showcase the effectiveness of CRs in detecting long-lived congestion. Based on
this characterization, we propose that CR detection could be used to trigger congestion
mitigation responses that could augment the current vendor-provided mechanisms.
We illustrate how CRs, in conjunction with network traffic assessment, enable conges-
tion diagnosis. Our diagnosis tool attributes congestion cause to one of the following:
(a) system issues (such as launch/exit of application), (b) failure issues (such as net-
work link failures), and (c) intra-application issues (such as changes in communica-
tion patterns within an application). Such a diagnosis allows system managers to take
cause-specific mitigating actions.

7.2 CRAY GEMINI NETWORK AND BLUE WATERS

A variety of network technologies and topologies have been utilized in HPC systems
(e.g., [255, 241, 266, 267, 257, 268-270]). Depending on the technology, routing within
these networks may be statically defined for the duration of a system boot cycle, or may
dynamically change because of congestion and/or failure conditions. The focus of this
chapter is on NCSA’s Cray XE/XK Blue Waters [50] system, which is composed of 27,648
nodes and has a large-scale (13,824 x 48 port switches) Gemini [255] 3D torus (dimension
24x24x24) interconnect. It is a good platform for development and validation of conges-

tion analysis/ characterization methods as:

Ssee Section §7.5.4 for the definition of directional link.
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e It uses directional-order routing, which is predominantly static®. From a traffic and
congestion characterization perspective, statically routed environments are easier to
validate than dynamic and adaptive networks.

* Blue Waters is the best case torus to study since it uses topology-aware scheduling
(TAS) [271, 272], discussed later in this section, which has eliminated many congestion
issues compared to random scheduling.

* Blue Waters performs continuous system-wide collection and storage of network per-

formance counters.

7.2.1 Gemini Network

In Cray XE/XK systems, four nodes are packaged on a blade. Each blade is equipped
with a mezzanine card. This card contains a pair of Gemini [255] ASICs, which serve as
network switches. The Gemini switch design is shown in Fig. 7.2. Each Gemini ASIC
consists of 48 tiles, each of which provide a duplex link. The switches are connected with
one another in 6 directions, X+/-, Y+/- and Z+/-, via multiple links that form a 3D torus.
The number of links in a direction, depends on the direction as shown in the figure; there
are 8 each in X+/- and, Z+/- and 4 each in Y+/-. It is convenient to consider all links
in a given direction as a directionally aggregated link, which we will henceforth call a link.
The available bandwidth on a particular link is dependent on the link type, i.e., whether
the link connects compute cabinets or blades, in addition to the number of tiles in the
link [273]. X, Y links have aggregate bandwidths of 9.4 GB/s and 4.7 GB/s, respectively,
whereas Z links are predominantly 15 GB/s, with 1/8 of them at 9.4 GB/s. Traffic routing
in the Gemini network is largely static and changes only when failures occur that need
to be routed around. Traffic is directionally routed in the X, Y, and Z dimensions, with
the shortest path in terms of hops in + or - chosen for each direction. A deterministic rule
handles tie-breaking.

To avoid data loss in the network 7, the Gemini HSN uses a credit-based flow control
mechanism [242], and routing is done on a per-packet basis. In credit-based flow control
networks, a source is allowed to send a quantum of data, e.g., a flit, to a next hop desti-
nation only if it has a sufficient number of credits. If the source does not have sufficient

credits, it must stall (wait) until enough credits are available. Stalls can occur in two dif-

®When network-link failures occur, network routes are recomputed; that changes the route while the
system is up.

"The probability of loss of a quantum of data in credit-flow networks is negligible and mostly occurs
due to network-related failures.
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ferent places: within the switch (resulting in a ing stall) or between switches (resulting in
an credit stall).

Definition 7.1. : A Credit stall is the wait time associated with sending of a flit from an

output buffer of one switch to an input buffer of another across a link.

Definition 7.2. : An Inq stall is the wait time associated with sending of a flit from the
output buffer of one switch port to an input buffer of another between tiles within the

same network switch ASIC.

Congestion in a Gemini-based network can be characterized using both credit and ing
stall metrics. Specifically, we consider the Percent Time Stalled as a metric for quantifying
congestion, which we generically refer to as the stall value.

Definition 7.3. : Percent Time Stalled (Pr,) is the average time spent stalled (7;;) over
all tiles of a directional network link or individual intra-Gemini switch link over the same
time interval (T;): Prs = 100 x T} /T;.

Depending on the network topology and routing rules, (a) an application’s traffic can
pass through switches not directly associated with its allocated nodes, and multiple ap-
plications can be in competition for bandwidth on the same network links; (b) stalls on a
link can lead to back pressure on prior switches in communication routes, causing conges-
tion to spread; and (c) the initial manifestation location of congestion cannot be directly
associated with the cause of congestion. Differences in available bandwidth along direc-
tions, combined with the directional-order routing, can also cause back pressure, leading

to varying levels of congestion along the three directions.

7.2.2  Congestion Mitigation

Run-time evaluations that identify localized areas of congestion and assess congestion
duration can be used to trigger Congestion Effect Mitigating Responses (CEMRs), such as re-
source scheduling, placement decisions, and dynamic application reconfiguration. While
we have defined a CEMR as a response that can be used to minimize the negative effects
of network congestion, Cray provides a software mechanism [274] to directly alleviate
the congestion itself. When a variety of network components (e.g., tiles, NICs) exceeds
a high-watermark threshold with respect to the ratio of stalls to forwarded flits, the soft-
ware instigates a Congestion Protection Event (CPE), which is a throttling of injection of
traffic from all NICs. The CPE mechanism limits the aggregate traffic injection bandwidth
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over all compute nodes to less than what can be ejected to a single node. While this ensures
that the congestion is at least temporarily alleviated, the network as a whole is drastically
under-subscribed for the duration of the throttling. As a result, the performance of all ap-
plications running on the system can be significantly impacted. Throttling remains active
until associated monitored values and ratios drop below their low-watermark thresholds.
Applications with sustained high traffic injection rates may induce many CPEs, leading
to significant time spent in globally throttling. Bursts of high traffic injection rates may
thus trigger CPEs, due to localized congestion, that could have been alleviated without
the global negative impact of throttling. There is an option to enable the software to ter-
minate the application that it determines is the top congestion candidate, though this
feature is not enabled on the Blue Waters system. The option to terminate application
in a production environment is not acceptable to most developers and system managers
as it will lead to loss of computational node-hours used by the application after the last
checkpoint.

While some of this congestion may be alleviated by CEMRs such as feedback of con-
gestion information to applications to trigger rebalancing [275] or to scheduling/resource
managers to preferentially allocate nodes (e.g., via mechanisms such as slurm’s [276]
node weight), some may be unavoidable since all networks have finite bandwidth.

On Blue Waters a topology-aware scheduling (TAS) [271, 272] scheme is used to de-
crease the possibility of application communication interference by assigning, by de-
fault [277], node allocations that are constrained within small-convex prisms with respect
to the HSN topology. Jobs that exceed half a torus will still route outside the allocation
and possibly interfere with other jobs and vice versa; a non-default option can be used to
avoid placement next to such jobs. The I/O routers represent fixed, and roughly evenly
distributed, proportional portions of the storage subsystem. Since the storage subsys-
tem components, including I/O routers, are allocated (for writes) in a round robin (by
request order) manner independent of TAS allocations, storage I/O communications will
generally use network links both within and outside the geometry of the application’s

allocation and can also be a cause of interference between applications.

7.3 DATA SOURCES AND DATA COLLECTION TOOLS

This section describes the datasets and tools used to collect data at scale to enable both
runtime and long-term characterization of network congestion. We leverage vendor-

provided and specialized tools to enable collection and real-time streaming of data to
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a remote compute node for analysis and characterization. Data provided or exposed on
all Cray Gemini systems includes: OS and network performance counter data, network
resilience-related logs, and workload placement and status logs. In this study, we used
tive months (Jan 01 to May 31, 2017) of production network performance-related data
(15 TB), network resilience-related logs (100 GB), and application placement logs (7 GB).
Note that the methodologies addressed in this work rely only on the availability of the

data, independent of the specific tools used to collect the data.

Network Performance Counters: Network performance-related information on links is
exposed via Cray’s gpcdr [261] kernel module. Lustre file system and RDMA traffic
information is exposed on the nodes via /proc/fs and /proc/kgnilnd. It is neither
collected nor made available for analysis via vendor-provided collection mechanisms. On
Blue Waters, these data are collected and transported off the system for storage and anal-
ysis via the Lightweight Distributed Metric Service (LDMS) monitoring framework [262].
In this work, we use the following information: directionally aggregated network traf-
fic (bytes and packets) and length of stalls due to credit depletion; Lustre file system
read and write bytes; and RDMA bytes transmitted and received. LDMS samplers col-
lect those data at 60-second intervals and calculate derived metrics, such as the percent
of time spent in stalls (Prs) and percent of total bandwidth used over the last interval.
LDMS daemons synchronize their sampling to within a few ms (neglecting clock skew)

in order to provide coherent snapshots of network state across the whole system.

Network Monitoring Logs: Network failures and congestion levels are monitored and
mitigated by Cray’s xtnlrd software. This software further logs certain network events in
a well-known format in the netwatch log file. Significant example log lines are provided in
Cray documents [278, 274]. Regular expression matching for these lines is implemented
in LogDiver [279], a log-processing tool, which we use to extract the occurrences, times,

and locations of link failures and CPEs.

Workload Data: Blue Waters utilizes the Moab scheduler, from which application queue
time, start time, end time, exit status, and allocation of nodes can be obtained. The work-
load dataset contains information about 815,006 application runs that were executed dur-
ing our study period.

Note that we will only be releasing network data. Worload data and network monitor-

ing logs will not be released due to privacy and other concerns.
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7.4 CR EXTRACTION AND CHARACTERIZATION TOOL

This section first describes our motivation for choosing congestion regions (CRs) as a
driver for characterizing network congestion, and then describes our methodology (im-
plemented as the Monet tool) for extracting CRs over each data collection interval and the
classification of those CRs based on severity.

74.1 Why Congestion Regions?

We seek to motivate our choice to characterize congestion regions (CRs) and the need
for estimates for severity in terms of the stall values. We first show that the characteri-
zation of hotspot links individually do not reveal the spatial and growth characteristics
which is needed for diagnosis. Then, we show how characterizing CRs is meaningful.

Characterizing hotspot links individually do not reveal regions of congestion. Fig-
ure Fig. 7.3 characterizes the median, 99%ile and 99.9%ile duration of the hotspot links
by generating the distribution of the duration for which a link persists to be in conges-
tion at Prs > PpsThreshold value. For example, 99.9%ile duration for hotspot links with
Pry > 30 is 400 minutes (6.67 hours). The measurements show that the median duration
of hotspot link at different Pr, thresholds is constantly at ~ 0, however, 99.9%ile duration
of hotspot links linearly decreases with increasing Py, threshold value. Although such
characterizations are useful to understand congestion at link-level, they hide the spatial
characteristics of congestion such as the existence of multiple pockets of congestion and
their spread and growth over time. The lack of such information makes it difficult to

understand congestion characteristics and their root cause.
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Figure 7.3: Duration of congestion on links at different Pr, thresholds
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Figure 7.4: Correlating congestion with NAMD application runtime

CRs captures relationship between congestion-level and application slowdown effi-
ciently. In order to determine possible severity values and show effectiveness of CRs
in determining application slowdown, we extracted from the production Blue Waters
dataset a set of NAMD [264]® runs each of which ran on 1000 nodes with the same input
parameters. We chose NAMD because it consumes approximately 18% of total node-

hours available on Blue Waters’

. Fig. 7.4a shows the execution time of each individual
run with respect to the average Pr, over all links within the allocated application topol-
ogy. (Here we leverage TAS to determine severity value estimates based on the values
within the allocation; that is not a condition for the rest of this work.) Fig. 7.4a shows
that execution time is perhaps only loosely related to the average Pr,; with correlation of
0.33 . In contrast, Fig. 7.4b shows the relationship of the application execution time with
the maximum average Pr, over all CRs (defined in §7.4.2) within the allocated topology;
with correlation of 0.89. In this case, execution time increases with increasing maximum
of average Pr, over all regions. We found this relationship to hold for other scientific ap-
plications. This is a motivating factor for the extraction of such congestion regions (CRs) as
indicators of ‘hot-spots” in the network. We describe the methodology for CR extraction
in the next section.

In addition, we selected approximate ranges of Pr, values, corresponding to increasing

SNAMD has two different implementations: (a) uGNI shared memory parallel (SMP)-based, and (b)
MPI-based. In this work, unstated NAMD refers to uGNI SMP-based implementation. uGNI is user level
Generic Network Interface [280].

This was best effort extraction and the NAMD application runs may not be exactly executing the same
binary or processing the same data, as user may have recompiled the code with a different library or used
the same name for dataset while changing the data. There is limited information to extract suitable compa-
rable runs from historical data that are also subject to allocation and performance variation.
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run times, to use as estimates for the severity levels as these can be easily calculated,
understood and compared. These levels are indicated as symbols in the figure. Explicitly,
we assign 0-5% average Pr; in a CR as Negligible or ‘Neg’, 5-15% as ‘Low’, 15-25% as
‘Medium’, and > 25% as ‘High’. These are meant to be qualitative assignments and not
to be rigorously associated with a definitive performance variation for all applications in
all cases, as the network communication patterns and traffic volumes vary among HPC
applications. We will use these ranges in characterizations in the rest of this work. More
accurate determinations of impact could be used in place of these in the future, without
changing the validity of the CR extraction technique.
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Figure 7.5: CR size, duration, evolution characterization. # of CRs across ‘Low’, ‘Medium’,
and ‘High’ are 9.4e05, 7.3e05, and 4.2e05 respectively.

7.4.2 Extracting Congestion Regions

We have developed an unsupervised clustering approach for extracting and localizing
regions of congestion in the network by segmenting the network into groups of links with
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similar congestion values. The clustering approach requires the following parameters: (a)
network graph (G), (b) congestion measures (v, for each vertex v in (), (c) neighborhood
distance metric (ds), and (d) stall similarity metric (d,). The network is represented as a
graph G. Each link in the network is represented as a vertex v in G, and two vertices are
connected if the corresponding network links are both connected to the same switch (i.e.,
the switch is an edge in the graphs). For each vertex v, the congestion measures(s) are
denoted by the vector v,, which is composed of credit stalls and inq stalls, which we use
independently. Distance metrics ds and d, are also required, the former for calculating
distances between two vertices and the latter for calculating differences among the stalls
vs. We assign each vertex the coordinate halfway between the logical coordinates of the
two switches to which that vertex is immediately connected, and we set d; to be the
L1 norm between the coordinates. Since the Blue Waters data consists of directionally
aggregated information as opposed to counters on a per-tile-link (or buffer) basis, then,
in our case, d, is simply the absolute difference between the two credit-stall or the two
ing-stall values of the links, depending on what kinds of regions are being segmented.
We consider credit and inq stalls separately to extract CRs, as the relationship between
the two types of stalls is not immediately apparent from the measurements, and thus

require two segmentation passes. Next, we outline the segmentation algorithm.

Segmentation Algorithm The segmentation algorithm has four stages which are exe-

cuted in order, as follows.

* Nearby links with similar stall values are grouped together. Specifically, they are
grouped into the equivalence classes of the reflexive and transitive closure of the re-
lation ~, defined by = ~, y < ds(x,y) < J Ady(zs — ys) < 0,, where z,y are vertices in
G, and 6, 6, are thresholds for distance between vertices and stall values, respectively.

* Nearby regions with similar average stall values, are grouped together through rep-
etition of the previous step, but with regions in place of individual links. Instead of
using the link values v, we use the average value of v, over all links in the region, and
instead of using 0, we use a separate threshold value 6,.

* CRs that are below the size threshold o are merged into the nearest region within the
distance threshold .

* Remaining CRs with < ¢ links are discarded, so that regions that are too small to be
significant are eliminated.

The optimum values for the parameters used in segmentation algorithms, except for J,
were estimated empirically by knee-curve [281] method, based on the number of regions
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produced. Using that method, the obtained parameter values '° are: (a) 6, = 4, (b) 6, = 4,
and (c) o = 20. In [281], the authors conclude that the optimum sliding window time is
the knee of the curve drawn between the sliding window time and the number of clusters
obtained using a clustering algorithm. This decreases truncation errors (in which a clus-
ter is split into multiple clusters because of a small sliding window time) and collision
errors (in which two events not related to each other merge into a single cluster because
of a large sliding window time). We fixed § to be 2 in order to consider only links that are
two hops away, to capture the local nature of congestion [282]. It should be noted that the
region clustering algorithm may discard small isolated regions (size < o) of high conges-
tion. If such CRs do cause high interference, they will grow over time and eventually be
captured.

Our algorithm works under several assumptions: (a) congestion spreads locally, and
(b) within a CR, the stall values of the links do not vary significantly. These assump-
tions are reasonable for k-dimensional toroids that use directional-order routing algo-
rithm. The methodology used to derive CRs is not dependent on the resource allocation
policy (such as TAS). The proposed extraction and its use for characterization is partic-
ularly suitable for analysis of network topologies that use directional- or dimensional-
order routing. In principle, the algorithm can be applied to other topologies (such as
mesh and high-order torus networks) with other metrics (such as stall-to-flit ratio). Fur-
thermore, the region extraction algorithm does not force any shape constraints; thus CRs
can be of any arbitrary shape requiring us to store each vertex associated with the CR. In
this work, we have configured the tool to store and display bounding boxes over CRs, as
doing so vastly reduces the storage requirements (from TBs of raw data to 4 MB in this
case), provides a succinct summary of the network congestion state, and eases visualiza-
tion.

We validate the methodology for determining the parameters of the region-based seg-

mentation algorithm and its applicability for CR extraction by using a synthetic dataset.

7.4.3 Implementation and Performance

We have implemented the region-extraction algorithm as a modified version of the re-
gion growth segmentation algorithm [283] found in the open-source PointCloud Library
(PCL) [284] [285]. The tool is capable of performing run-time extraction of CRs even for
large-scale topologies. Using the Blue Waters dataset, Monet mined CRs from each 60-

10stall thresholds are scaled by 2.55x to represent the color range (0-255) for visualization purposes
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second snapshot of data for 41,472 links in ~ 7 seconds; Monet was running on a single
thread of a 2.0 GHz Intel Xeon E5-2683 v3 CPU with 512 GB of RAM. Thus, on Blue Waters
Monet can be run at run-time, as the collection interval is much greater than CR extraction
time. Since Monet operates on the database, it works the same way whether the data are

being streamed into the database or it is operating on historical data.

7.5 CHARACTERIZATION RESULTS

In this section, we present results of the application of our analysis methodology to
tive months of data from a large-scale production HPC system (Blue Waters) to provide
characterizations of CRs. Readers interested in understanding traffic characteristics at the

link and datacenter-level may refer to a related work [286].

7.5.1 Congestion Region Characterization

Here we assess and characterize the congestion severity.

CR-level Size and Severity Characterizations: Fig. 7.5a shows a histogram!! of CR

sizes in terms of the number of links for each congested state (i.e., not including ‘Neg’).

Fig. 7.5b show a histogram of the durations of CRs across ‘Low’, ‘Medium’ and ‘High’

congestion levels. These measurements show that unchecked congestion in credit-based

interconnects leads to:

* High growth and spread of congestion leading to large CRs. The max size of CRs in
terms of number of links was found to be 41,168 (99.99% of total links), 6,904 (16.6% of
total links), and 2,324 (5.6% of total links) across ‘Low’, ‘Medium” and ‘High" congestion
levels respectively, whereas the 99th percentile of the'? CR size was found to be 299,
448, and 214 respectively.

* Localized congestion hotspots, i.e., pockets of congestion. CRs rarely spread to cover
all of the network. The number of CRs decreases (see Fig. 7.5a) with increasing size
across all severity states except for ‘Low’ for which we observe increase at the tail. For
example, there are ~ 16, 000 CRs in the ‘High” which comprise 128 links but only ~ 141
CRs of size ~600.

* Long-lived congestion. The CR count decreases with increasing duration, however

there are many long-lived CRs. The 50%ile, 99%ile and max duration of CRs across all

Hplotted as lines and every tenth point marked on the line using a shape for clarity.
12We will use %ile to denote percentile in the rest of the chapter.
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Figure 7.6: Network congestion evolution captures transition probabilities from one sever-
ity state to another. Percentage numbers in boxes indicates percentage of total system wall
clock time spent in that state.

states were found to be 579 minutes (9.7 hours), 1421 minutes (23.6 hours), and 1439
minutes (24 hours) respectively, whereas the 50%ile, 99%ile and max Pr, of CRs was
found to be 14%, 46%, and 92%, respectively. CR duration did not change significantly
across ‘Low’, ‘Medium’, and "High'.

CR Evolution and State Probability: Fig. 7.5c shows the transition probabilities of the

CR states. The percentage in the box next to each state shows the percentage of total

link-hours' spent in that state. It can be interpreted as the probability that a link will be

congested at a severity state at a given time. For example, there is a probability of 0.10%

that a link will be in the ‘High’. These measurements show that:

* The vast majority of link-hours (99.3% of total link-hours) on Blue Waters are spent in
‘Neg’ congestion. Consideration of a grosser congestion metric, such as the average
stall time across the entire network, will not reveal the presence of significant CRs.

* Once a CR of ‘Low’, "Medium’ or "High” congestion is formed, it is likely to persist (with
a probability of more than 0.5) rather than decrease or vanish from the network.

7.5.2 Network-level Congestion Evolution and Transition Probabilities

In this section, we assess and characterize the overall network congestion severity state.
The overall network congestion severity state is the state into which the highest CR falls.
That assignment is independent of the overall distribution of links in each state. Fig-

ure Fig. 7.6 shows the probabilities that transitions between network states will occur

13Link-hours are calculated by 3 (#links in Region) x (measurement time-window) for each state.

158



between one measurement interval and the next. The rectangular boxes in the figure in-

dicate the fraction of time that the network resides in each state. These measurements

show the following;:

* While each individual link of the entire network is most often in a state of ‘Neg” conges-
tion, there exists at least one ‘High” CR for 56% of the time. However, ‘High” CRs are
small; in Section §7.5.1, we found that 99th percentile size of ‘High’ is 214 links. Thus,
the Blue Waters network state is nearly always non-negligible (95%), with the “High”
state occurring for the majority of the time.

* There is a significant chance that the current network state will persist or increase in
severity in the next measurement period. For example, there is an 87% chance that it
will stay in a ‘High’ state.

* A network state is more likely to drop to the next lower state than to drop to ‘Neg’.

* Together these factors indicate that congestion builds and subsides slowly, suggest-
ing that it is possible to forecast (within bounds) congestion levels. Combined with
proactive localized congestion mitigation techniques and CEMRs, such forecasts could
significantly improve overall system performance and application throughput.

7.5.3 Application Impact of CR

The potential impact of congestion on applications can be significant, even when the
percentage of link-hours spent in non-'Neg” congested regions is small. While we cannot
quantify congestion’s impact on all of the applications running on Blue Waters (as we lack
ground truth information on particular application runtimes without congestion), we can
quantify the impact of congestion on the following;:

* Production runs of the NAMD application [264]. The worst-case NAMD execution
runtime was 3.4x slower in the presence of high CRs relative to baseline runs (i.e.,
negligible congestion). The median runtime was found be 282 minutes, and hence
worst-case runtime was 1.86x slower than the median runtime. This is discussed in
more detail in Section §7.4.1.

e In [286], authors show that benchmark runs of PSDNS [287] and AMR [288] on 256
nodes slowed down by as much as 1.6 x even at low-levels of congestion (5% < Prs <
15%).

To find a upper bound on the number of potentially impacted applications, we consider
the applications whose allocations are directly associated with a router in a CR. Out of
815,006 total application runs on Blue Waters, over 16.6%, 12.3%, and 6.5% of the unique
application runs were impacted by ‘Low’, ‘Medium’, and ‘"High” CRs, respectively.
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7.54 Congestion Scenarios

In this section, we show how CRs manifest under different congestion scenarios: (a)
system issues (e.g. changes in system load), (b) network-component failures (e.g. link
failures), and (c) intra-application contention. in conjunction with applications” place-
ments at runtime on the torus. CRs of ‘Neg” congestion are not shown in the figures.
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Figure 7.7: Case studies: network congestion is shown due to (i) system issues (such as introduc-

tion of new applications), (ii) failures (such as network link failure), and (iii) change in communi-
cation pattern within the application.
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Congestion due to System Issues: Network congestion may result from contention be-
tween different applications for the same network resources. That can occur because of a
change in system load (e.g. launches of new applications) or change in application traffic
that increases contention on shared links between applications.

Fig. 7.7(i) shows four snapshots, read clockwise, of extracted CRs, including size and
severity state, for different time intervals during a changing workload. Fig. 7.7(i)(a)
shows that ‘Low” (blue) CRs when most of the workload consists of multiple instances of
MPI-based NAMD [264]. The overall network state was thus ‘Low’. The CRs remained
relatively unchanged for 40 minutes, after which two instances of NAMD completed and
Variant Calling[289] was launched. Three minutes after the launch, new CRs of increased
severity occurred ( Fig. 7.7(i)(b,c)). The ‘High’ (red) '* and ‘Medium’ (orange) severity CRs
overlapped with the applications.

The increase in the severity of congestion was due to high I/O bandwidth utilization
by the Variant Calling application. The overall network state remained ‘High’ for ~ 143
minutes until the Variant Calling application completed. At that time, the congestion sub-
sided, as shown in Fig. 7.7(i)(d).

Congestion Due to Network-component Failures: Network-related failures are fre-
quent [38, 290] and may lead to network congestion, depending on the traffic on the
network and the type of failure. In [38], the mean time between failures (MTBF) for di-
rectional links in Blue Waters was found to be approximately 2.46e06 link-hours (or 280
link-years). Given the large number of links (41,472 links) on Blue Waters, the expected
mean time between failure of a link across the system is about 59.2 hours; i.e., Blue Waters
admins can expect one directional-link failure every 59.2 hours.

Failures of directional links or routers generally lead to occurrences of ‘High” CRs, while
isolated failures of a few switch links (which are much more frequent) generally do not
lead to occurrences of significant CRs. In this work we found that 88% of directional
link failures led to congestion; however, isolated failures of switch links did not lead to
significant CRs (i.e., had ‘Neg” CRs).

Fig. 7.7(ii) shows the impact of a network blade failure that caused the loss of two
network routers and about 96 links (x,y,z location of failure at coordinates (12,3,4) and
(12,3,3)). Fig.7.7(ii)(a) shows the congestion CRs before the failure incident and Fig. 7.7(ii)(b)
shows the CRs just after the completion of the network recovery. Immediately after fail-

ure, the stalls increased because of the unavailability of links, requiring the packets to

ot visible and hidden by other regions.
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be buffered on the network nodes. The congestion quickly spread into the geometry of
nearby applications in the torus. Failure of a blade increased the overall size (in number
of links) of “Low” CRs by a factor of 2, and of ‘Medium’ CRs by a factor of 4.2, and created

previously non existent ‘High” CRs with more than 200 links.

Congestion Due to Intra-Application Issues: Congestion within an application’s ge-
ometry (intra-application contention) can occur even with TAS. Fig. 7.7(iii) shows con-
gestion CRs while the uGNI-based shared memory parallel (SMP) NAMD application on
more than 2,000 nodes. The application is geometrically mapped on the torus starting at
coordinates (15, 18, 0) and ending at coordinates (1, 21, 23) (wrapping around). The con-
gestion CRs alternate between the two states shown (state 1 shown in Fig. 7.7(iii)(a), and
state 2, shown in Fig. 7.7(iii)(b)) throughout the application run-time because of changes
in communication patterns corresponding to the different segments of the NAMD code.
Intra-application contention is less likely to elevate to cause global network issue, un-
less the links are involved in global (e.g., I/O) routes, or if the resulting congestion is
heavy enough to trigger the system-wide mitigation mechanism (see Section §7.2.2).

Importance of diagnosis: In this section, we have identified three high-level causes of
congestion, which we categorize as (a) system issues, (b) network-component failures,
and (c) intra-application contention. For each cause, system managers could trigger one
of the following actions to reduce/manage congestion. In the case of intra-application
congestion, an automated MPI rank remapping tool such as TopoMapping [291], could
be used to change traffic flow bandwidth on links to reduce congestion on them. In
the case of inter-application congestion (caused by system issues or network failures),
a node-allocation policy (e.g., TAS) could use knowledge of congested regions to reduce
the impact of congestion on applications. Finally, if execution of an application frequently
causes inter-application congestion, then the application should be re-engineered to limit

chances of congestion.

7.6 USING CHARACTERIZATIONS: CONGESTION RESPONSE

In this section, we first discuss efficacy of Cray CPEs and then show how our CR-based
characterizations can be used to inform effective responses to performance-degrading
levels of congestion.

Characterizing Cray CPEs: Recall from Section §7.2 that the vendor-provided conges-
tion mitigation mechanism throttles all NIC traffic injection into the network irrespective
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Figure 7.8: Characterizing Cray Gemini congestion mitigation events.

of the location and size of the triggering congestion region. This mitigation mechanism
is triggered infrequently by design and hence may miss detections and opportunities to
trigger more targeted congestion avoidance mechanisms. On Blue Waters, congestion
mitigation events are generally active for small durations (typically less than a minute),
however, in extreme cases, we have seen them active for as long as 100 minutes. Each
throttling event is logged in netwatch log files.

We define a congestion mitigation event (CME) as a collection of one or more throttling
events that were coalesced together based on a sliding window algorithm [281] with a
sliding window of 210 seconds, and we use this to estimate the duration of the vendor-
provided congestion mitigation mechanisms. Fig.7.8a and Fig. 7.8b shows a box plot of
duration of and time between CMEs respectively. The analysis of CMEs shows that :

* CMEs were triggered 261 times; 29.8% of which did not alleviate congestion in the
system. Fig.7.9 shows a case where the size and severity of CRs increases after a series
of throttling events.

¢ The median time between triggers of CMEs was found to be 7 hours. The distribution
of time between events is given in Fig. 7.8b.

* CMEs are generally active for small durations (typically less than a minute), however,
in extreme cases, we have seen them active for as long as 100 minutes.

* 8% of the application runs were impacted with over 700 of those utilizing > 100 nodes.
These observations motivate the utility of augmenting the vendor supplied solution

of global traffic suppression to manage exceptionally high congestion bursts with our

more localized approach of taking action on CRs at a higher system-level of granularity

to alleviate sources of network congestion.

CR-based congestion detection to increase mitigation effectiveness: CR based char-
acterizations can potentially improve congestion mitigation and CEMR effectiveness by
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Figure 7.9: A case in which a congestion protection event (CPE) failed to mitigate the congestion
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Figure 7.10: Characterization of Regions Congestion Events (RCE).

more accurately determining which scenarios should be addressed by which mechanisms
and by using the identified CRs to trigger localized responses more frequently than Cray
CMEs. That approach is motivated by our discovery (see Section §7.5.2) that the network
is in a “High’ congestion state the majority of the time, primarily because of CRs of small

size but significant congestion severity.

We define a Regions Congestion Event (RCE) as a time-window for which each time in-



stance has at least one region of ‘High’ congestion. We calculate it by combining the CR
evaluations across 5-minute sliding windows. Fig. 7.10 shows boxplots of (a) average
credit Prg across all extracted CRs during RCEs’, (b) average inq Prg across all RCEs’, (c)
times between RCE, and (d) durations of the RCEs’. These measurements show
* Relative to the vendor-provided congestion mitigation mechanisms, our characteriza-
tion results in 13x more events (3390 RCEs) upon which we could potentially act.
* Vendor provided congestion mitigation mechanisms trigger on 8% (261 of 3390) of
RCEs.
* The average Prg of maximum ing- and credit-stall across all extracted regions present
in RCEs is quite high, at 33.8% and 27.4%, respectively.
* 25% of 3390 RCEs lasted for more than 30 minutes, and the average duration was found
to be approximately an hour.
CRs discovery could also be used for informing congestion aware scheduling decisions.
Communication-intensive applications could be preferentially placed to not contend for
bandwidth in significantly congested regions or be delayed from launching until conges-

tion has subsided.

7.7 USING CHARACTERIZATIONS: DIAGNOSING CAUSES OF CONGESTION

Section §7.5.4 identifies the root causes of congestion and discusses the the importance
of diagnosis. Here we explore that idea to create tools to enable diagnosis at runtime.

7.7.1 Diagnosis Methodology and Tool

We present a methodology that can provide results to help draw a system manager’s
attention to anomalous scenarios and potential offenders for further analysis. We can
combine system information with the CR-characterizations to help diagnose causes of
significant congestion. Factors include applications that inject more traffic than can be
ejected into the targets or than the traversed links can transfer, either via communica-
tion patterns (e.g., all-to-all or many-to-one) or I/O traffic, and link failures. These can

typically be identified by observation(s) of anomalies in the data.
Mining Candidate Congestion-Causing Factors For each congestion Region, C'R;, iden-

tified at time 7', we create two tables /g, (T') and Z¢g,(T'), as described below.
or,(T) table: Each row in @/c g, (T') corresponds to an application that is within Ny,,s <
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3 hops away from the bounding box of the congestion region CR;. </cr,(1) contains in-
formation about the application and its traffic characteristics across seven traffic features:
(a) application name, (b) maximum read bytes per minute, (c) maximum write bytes per
minute, (d) maximum RDMA read bytes per minute, (e) maximum RDMA write bytes
per minute, (f) maximum all-to-all communication traffic bytes per minute, and (g) max-
imum many-to-one communication traffic bytes per minute, where the maximums are
taken over the past 30 minutes, i.e., the most recent 30 measurement windows. The list
of applications that are within V,,,,; away from congestion region C'R; are extracted from
the workload data. The measurements for features (a) to (e) are extracted by querying
network performance counter data, whereas we estimate the features (f) and (g) are esti-
mated from Network performance counter data by taking several bisection cuts over the
application geometry and comparing node traffic ingestion and ejection bytes among the
two partitions of the bisection cut.

For,(T) table: Each row in .#¢ g, (T) corresponds to an application that is within Ny, <
3 away from the congestion boundary of CR,. Z¢g,(T") contains information about failure
events across three failure features: (a) failure timestamp, (b) failure location (i.e., coordi-
nates in the torus), and (c) failure type (i.e., switch link, network link, and router failures).
Lists of failure events that are within N,,,; away from congestion region C'R; are extracted
from network failure data.

Identifying Anomalous or Extreme Factors: The next step is to identify extreme appli-
cation traffic characteristics or network-related failures over the past 30 minutes that have
led to the occurrence of CRs. For each traffic feature in <7, (1), we use an outlier detec-
tion method to identify the top k£ applications that are exhibiting anomalous behavior.
The method uses the numerical values of the features listed in table </, (T"). Our anal-
ysis framework uses a median-based outlier detection algorithm proposed by Donoho
[292] for each C'R;. According to [292], the median-based method is more robust than
mean-based methods for skewed datasets. Because CRs due to network-related failure
events ° are rare relative to congestion caused by other factors, all failure events that
occur within Nj,,s of CR; in the most recent 30 measurement windows are marked as

anomalous.

Generating Evidence: The last step is to generate evidence for determining whether
anomalous factors identified in the previous step are truly responsible for the observed

5n this chapter, we do not consider the effect of lane failures on congestion.
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congestion in the CR. The evidence is provided in the form of a statistical correlation taken
over the most recent 30 measurement time-windows between the moving average stall
value of the links and the numerical traffic feature(s) obtained from the data (e.g., RDMA
read bytes per minute of the application) associated with the anomalous factor(s). For
failure-related anomalous factors, we calculate the correlation taken over the most recent
30 measurement time-windows between the moving average of observed traffic summed
across the links that are within Nj,,,; away from the failed link(s) and the stall values'.
A high correlation produces the desired evidence. We order the anomalous factors us-
ing the calculated correlation value regardless of the congestion cause. Additionally, we
show a plot of stall values and the feature associated with the anomalous factor(s) to help
understand the impact of the anomalous factor(s) on congestion.

The steps in this section were only tested on a dataset consisting of the case studies
discussed in Section §7.5.4 and §7.7 because of lack of ground truth labels on root causes.
Creation of labels on congestion causes requires significant human effort and is prone to
errors. However, we have been able to generate labels by using the proposed unsuper-
vised methodology, which provides a good starting point for diagnosis.

7.7.2  Comprehensive Congestion Analysis

In this section, we describe an example use case in which our analysis methodologies
were used to detect and diagnose the congestion in a scenario obtained from real data for
which the ground truth of the cause was available. The overall steps involved in using
our methodologies, included in our Monet implementation, for congestion detection and
diagnosis are summarized in Fig. 7.11 and described in Section §7.7. Not all of the steps
discussed below are currently automated, but we are working on automating an end-to-
end pipeline.

Step 1. Extraction of CR. Fig. 7.11(a) shows that our analysis indicated wide spread
high-level congestion across the system (see the left graph in Fig. 7.11(a)). An in-depth
analysis of the raw data resulted in identification/detection of congestion regions (see the
top-right graph in Fig. 7.11(a)).

Step 2. Congestion diagnosis. There are 3 steps associated with diagnosing the cause of
the congestion.

Step 2.1. Mining candidate factors. To determine the cause of the congestion, we corre-
lated the CR-data with application-related network traffic (for all applications that over-

®Increase in traffic near a failed link leads to congestion as shown in Section §7.5.4.
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lapped with or were near the congestion regions) and network information to generate
candidate factors that may have led to congestion. In this example, there were no failures;
hence, this analysis generated only application-related candidate factors #7g,, as shown
in Fig. 7.11.

Step 2.2. Identifying anomalous factors. Next, we utilized the application traffic charac-
teristics from candidate factors observed over the last 30 minutes (i.e., many-to-one or
all-to-all traffic communication, and file system statistics such as read or write bytes) to
identify anomalous factors by using a median-based outlier detection algorithm. In our
example, as indicated in Fig. 7.11(b), the offending application was “Enzo” which was
running on 32 nodes allocated along the “Z” direction at location (X,Y,Z) = (0,16,16) (indi-
cated by a black circle in Fig.7.11(a)). At the time of detection, “Enzo” was reading from
the file system at an average rate of 4 GB/min (averaged over past 30 minutes and with a
peak rate of 70 GB/min), which was 16x greater than the next-highest rate of read traffic
by any other application in that time-window. The @/-g, (1) for RDMA read bytes/min
was 70 GB/min. The tool identified the RDMA read bytes/min of the “Enzo” application
as the outlier feature. Hence, “Enzo” was marked as the anomalous factor that led to the
congestion.

Step 2.3. Generating evidence. Once the potential cause had been established, further
analysis produced additional evidence (e.g., distribution and correlation coefficient asso-
ciated with link stalls in the congestion time window) to validate/verify the diagnosis
results produced in Step 2.2. Fig. 7.11(c), in the top graph, shows a plot of the sum of
stall rates on all links for all the Gemini routers local to the compute nodes used by the
offending application, (i.e., Enzo) (normalized to the total stall rate throughout the dura-
tion of the application run). The two peaks (marked) in this top plot correspond to the
increase in read bytes (normalized to total read bytes during the application run) shown
in the bottom plot. Note that abnormal activity (an excessive amount of traffic to the file
system) occurred around 10:10 AM (as shown Fig. 7.11(c)), which was about 20 minutes
before the severe congestion developed in the system (seen in Fig. 7.11(a)). A “Medium”
level of congestion was detected in the system spanning a few links (i.e., the congestion
region size was small) at the time of the increased read traffic. Thus the cause was diag-
nosed to be “Enzo”. Although, in this example scenario, the Cray congestion mitigation
mechanism was triggered, it was not successful in alleviating the network congestion.
Instead, the CR size grew over time, impacting several applications. “Enzo” was respon-
sible for another triggering of the congestion mitigation mechanism at 3:20 PM (see the
top graph in Fig. 7.11(c)). Monet detected and diagnosed it correctly.
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7.8 RELATED WORK

There is great interest in assessing performance anomalies in HPC systems with the
goal of understanding and minimizing application performance variation [293-295]. Mon-
itoring frameworks such as Darshan [296], Beacon [297] and Kaleidoscope [48] focuses
on I/0O profiling and performance anomaly diagnosis. Whereas, our work focuses on
assessing network congestion in credit-flow based interconnection networks. Typically
congestion studies are based on measurements of performance variation of benchmark
applications in production settings [293, 295] and /or modeling that assumes steady state
utilization/congestion behavior [298-301], and thus do not address full production work-
loads.

There are research efforts on identifying hotspots and mitigating the effects of conges-
tion at the application or system-layer (e.g., schedulers). These approaches include (a)
use of application’s own indirect measures, such as messaging rates [293], or network
counters from switch that are accessible only from within an allocation [273, 302, 303],
and therefore miss measurements of congestion along routes involving switches outside
of the allocation; and (b) use of global network counter data [262, 304, 305, 249], how-
ever, these have presented only representative examples of congestion through time or
executed a single application on the system [249].

In contrast, this work is the first long-term characterization of high-speed intercon-
nect network congestion of a large-scale production system, where network resources
are shared by nodes across disparate job allocations, using global network counters. The
characterizations and diagnosis enabled by our work can be used to inform application-
level [275] or system-level CEMRs (e.g., use of localized throttling instead of network-
wide throttling). Perhaps, the closest work to ours is [306] which is an empirical study
of cloud data center networks with a focus on network utilization and traffic patterns,
and Beacon [297] which was used on TaihuLight [307] to monitor interconnection net-
work inter-node traffic bandwidth. Like others, these works did not involve generation
and characterization of congestion regions, diagnosis of congestion causes, nor a gener-
alized implementation of a methodology for such, however, we did observe some com-
plimentary results in our system (e.g., the existence of hot-spot links, the full bisection
bandwidth was not always used, assessment of persistence of congestion in links).

Finally, for datacenter networks, efforts such as ExpressPass [243], DCQCN [308],
TIMELY [309] focus on preventing and mitigating congestion at the network layer whereas
efforts such as PathDump [310], SwitchPointer [311], PathQuery [312], EverFlow [313],
NetSight [314], LDMS [262] and TPP [315] focus on network monitoring. These ap-
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proaches are tuned for TCP/IP networks and are orthogonal to the work presented here.
Our approach is complementary to these efforts as it enables characterization of conges-
tion regions (hotspots) and identification of congestion causing events.

7.9 CONCLUSIONS AND FUTURE WORK

We present novel methodologies for detecting, characterizing, and diagnosing network
congestion. We implemented these capabilities and demonstrated them using production
data from NCSA’s 27,648 node, Cray Gemini based, Blue Waters system. While we uti-
lized the scale and data availability of the Blue Waters system to validate our approach,
the methodologies presented are generally applicable to other credit-based k-dimensional
meshes or toroidal networks. Our future work will involve extending the presented tech-

niques to other network technologies and topologies.
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CHAPTER 8: HPC: DOMAIN-GUIDED ML-DRIVEN FAILURE DETECTION &
DIAGNOSIS FOR STORAGE SYSTEMS

Large-scale high-performance computing systems frequently experience a wide range
of failure modes, such as reliability failures (e.g., hang or crash), and resource overload-
related failures (e.g., congestion collapse), impacting systems and applications. Despite
the adverse effects of these failures, current systems do not provide methodologies for
proactively detecting, localizing, and diagnosing failures. We present Kaleidoscope, a
near real-time failure detection and diagnosis framework, consisting of of hierarchical
domain-guided machine learning models that identify the failing components, the corre-
sponding failure mode, and point to the most likely cause indicative of the failure in near
real-time (within one minute of failure occurrence). Kaleidoscope has been deployed
on Blue Waters supercomputer and evaluated with more than two years of production
telemetry data. Our evaluation shows that Kaleidoscope successfully localized 99.3%
and pinpointed the root causes of 95.8% of 843 real-world production issues, with less

than 0.01% runtime overhead.

8.1 INTRODUCTION

Large-scale high-performance storage systems frequently experience a wide range of
failure modes [1, 36, 39, 316], including reliability failures (e.g., hang or crash) and resource
overload-related failures (e.g., congestion collapse [317]). The net effects of these failures
on systems and applications are often indistinguishable in terms of impact, and their mit-
igation strategies can vary significantly (e.g., throttling for congestion, or restart for a
hung process). The inability to mitigate failures early enough can impact a single compo-
nent (e.g., a data server), enable propagation of the failure across multiple interconnected
components, or even cause a whole system outage, thereby adversely impacting applica-
tion performance and resilience [44, 318, 251, 295, 37, 316, 319]. Thus, there is an need for
not only detecting the failure, but also identification of the failure mode in real-time. As
we show using a real-world failure scenario from the Blue Waters supercomputer’s stor-
age system (refer §8.2.1), a reliability failure can be construed as a performance problem
and vice versa.

To address above problems, we propose Kaleidoscope, a system that uses machine
learning (ML) to detect a failure, identify the failure mode, and diagnose the failure cause
by using existing monitoring data in near real-time. Moreover, we have demonstrated

Kaleidoscope and its scalability on Blue Waters, which is the largest university-based
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high-performance computing (HPC) system in the world, in terms of both compute and
storage nodes. We focus on high-performance storage systems because they have the
most failures and lost compute hours!. For example, in 2018, NCSA reported that storage-
related failures have accounted for 64.4% (i.e., >32 million core hours) of total lost core
hours on a yearly basis. Further, the problem is expected to be worse in emerging and
future exascale systems, with even lower mean time between failures and higher-impact
service outages, because of increasing system scale, heterogeneity, and complexity [320,
321].

Why Machine Learning? Kaleidoscope uses multi-modal telemetry data from nu-
merous monitors that provide system-wide temporal and spatial information on perfor-
mance and reliability. The monitors either actively poll the system components [322, 323]
(e.g., with pings/heartbeats), or passively aggregate performance and reliability mea-
surements [297, 322, 262, 297, 324] (e.g., based on server load). The problem with teleme-
try data is that they are often noisy due to asynchronous collection [262, 324], failure
propagation [37, 316, 325], and non-determinism in the system (e.g., in adaptive routing
and load balancing) [326, 255, 327]. Therefore, when analyzed in isolation, telemetry data
of a single modality may lead to misdiagnoses, i.e., false positives (e.g., in the case of
failure propagation) and false negatives (e.g., in the case of partial failures). Moreover,
the vast amounts of available telemetry data (on the order of TBs per day [328]) lead to
cognitive overload of system managers [329]. They cannot keep up with the incoming
data for identifying and debugging failure issues, significantly delaying the identifica-
tion and mitigation of the failure.> To address those problems, Kaleidoscope uses ML
methods that use domain-guided methods to accurately estimate the system state in the
presence of noisy data, thereby detecting failures and identifying the failure mode and
failure cause.

While existing approaches are useful [330-334, 297, 335-338, 40, 339, 294], they have
significant drawbacks because they do not (i) jointly address reliability failures and re-
source-overload-related failures; (ii) focus on detecting and identifying failures and their
failure mode in storage systems (except [334], which focuses on distinguishing network
vs storage failures, and [322, 297], which mostly focuses on offline diagnosis); and (iii) deal
with the difficulty of collecting/labeling training data, especially for rare failure scenarios
in production settings [335, 336].

!In this chapter, we identify the failures at granularity of storage clients, network path to storage, storage
servers, and RAID devices.

2For example, as we will show in §8.7.3, a partial failure of an I/O load balancer on Blue Waters, which
was impacting application performance by as much as 25%, remained undetected for several weeks.
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Our Approach. Kaleidoscope is a near real-time failure detection and diagnosis frame-
work. It consists of hierarchical domain-guided interpretable ML models: (i) a failure
localization model for identifying component failures (e.g., failures of compute nodes, load
balancers, the network, storage servers, and RAID devices), and (ii) a failure diagnosis
model for identifying the failure mode of a system component as either a resource-over-
load-related failure or a reliability failure.

The failure localization model uses ML and I/O path-tracing data to estimate the failure
state of the storage components. I/O path-tracing data provide information on the route
taken by the request (from the storage client on the compute node to the disk on the stor-
age server) and the availability of the components on the route. The model incorporates
the insight that the success of multiple I/O probes (e.g., a write I/O request) indicates
that the components on the request path are healthy with a high probability. Each mea-
surement in the I/O path-tracing data provides information on only a subset of storage
components. Hence, the model jointly analyzes the I/O path-tracing data from multiple
probes, and infers the probability of component failures.

To address the problem of noisy and multi-modal telemetry data and their joint analy-
sis, our ML model uses the probabilistic graphical model (PGM) formalism to express the
statistical dependence between the system components and the path-tracing data. Here,
the failure state of each component is modeled as a hidden random variable; the path avail-
ability (i.e., the probability that an I/O request will complete successfully) is modeled as
observed random variables; and the statistical dependence among random variables is de-
rived using the design and implementation details of path-tracing monitors, the storage
system, and the system topology. The proposed ML model is based on the insight that
(i) even though individual path-tracing measurements might be noisy, (ii) groups of dif-
ferent measurements that are related to one another can be jointly considered to reduce
the noise and estimate the failure state of the components, and (iii) the underlying statis-
tical relationships between the storage components and the telemetry data can be used to
correct for noise. We derive those statistical relationships by using the system topology
and the paths taken by the I/O requests.

Although PGMs require less data for training and inference (compared to current ap-
proaches [336, 335]), dynamic collection of path-tracing data can be expensive due to
intrusive instrumentation and data collection, which can interfere with application per-
formance. To address that problem, Kaleidoscope uses Store Pings, a set of low-cost and
low-latency probing monitors that not only probe a disk from a client by using an I/O
request and record the response time (similar to ioping [340]), but also, unlike ioping,
provide a mechanism for pinning (i.e., enforcing the use) of specific components on the
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I/O request path (e.g., a disk, or data servers).

It is hard to distinguish between different failure modes because of limited observabil-
ity, measurement noise, and failure propagation effects (described in §8.2.2). Notwith-
standing, we have demonstrated that the proposed failure diagnosis model, which is a
domain-informed statistical model, is able to accurately identify the failure mode and the
likely causes (as discussed in §8.5.2) by using (i) components’ telemetry data, which in-
clude performance metrics and RAS logs, and (ii) the failure state estimated using the fail-
ure localization model. The failure diagnosis model uses the Local Outlier Factor [52], an
unsupervised anomaly detection method, which answers the question, “Which modality
of the telemetry data (among RAS logs and performance metrics) best explains why one
component is flagged as failed, while others are marked as healthy by the failure local-
ization model?” The proposed model indicates the failure mode of the failed component
as either a reliability failure (i.e., an error logs), or a resource-overload-related failure (i.e.,
a performance metric).

Results. We have implemented and deployed Kaleidoscope on the Cray Sonexion [341]
high-performance distributed storage system of Blue Waters, a petascale supercomputer
at the National Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign. Cray Sonexion uses the Lustre file system [342], which is used by
more than 70 of the top 100 supercomputers [343] and is offered by cloud service vendors.
The key results are as follows.

1. High accuracy: We used 843 production issues that were identified and resolved by
the Blue Waters operators as the ground truth. Kaleidoscope correctly localized the
component failures across all failure modes and resource overloads for 99.3% of the
cases and accurately diagnosed the failure cause for 95.8% of the cases by pointing
to the most likely failure cause and it distinguished between reliability failures and
resource overloads/contention within 5-10 minutes of the failure incident. Moreover,
Kaleidoscope found additional failures that were not present in the ground truth data,
i.e., had not previously been identified.

2. Low rate of false positives: With respect to false positives, Kaleidoscope outperforms by
100x the state of the art regression-based failure localization model, NetBouncer [330]
customized for cloud networks, which focuses only on identifying partial and fail-stop
failures and not on resource-overload-related failures and diagnosis.

3. Low overhead: The overhead introduced by Kaleidoscope is less than 0.01% of the sys-
tem’s peak I/O throughput.

4. Long-term characterization: Kaleidoscope was used to improve our understanding of

storage-related failures by characterizing two years of production data.
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8.2 BACKGROUND AND MOTIVATION

8.2.1 Blue Waters Storage Design

We describe the Cray Sonexion storage subsystem of Blue Waters and introduce our ter-
minologies. Cray Sonexion is designed for large-scale HPC systems with I/O-intensive
workloads, such as machine learning and large simulations. It’s deployment on Blue Wa-
ters consists of 6 management servers, 6 metadata servers (MS), 420 data servers (DS),
and 582 I/0 load-balancers (LNET nodes). The storage servers in Cray Sonexion are
connected via an internal Infiniband network (storage network). LNET nodes connect
28,000+ computing nodes (i.e., clients) on Cray Gemini interconnection network (com-
pute network) to storage network. Cray Sonexion uses the Lustre parallel distributed
file system to manage 36 PB of disk space across 17,280 HDD disk devices. The disks
are arranged in a grid RAID [344] and are referred to as object storage devices (OSDs).
Each storage server is attached to one or more OSDs. Lustre offers high-availability and
tailover features. In Lustre, data servers are arranged as active-active pair to achieve load
balancing and high availability for connected OSDs, whereas metadata servers are ar-
ranged as active-passive pair for connected OSDs. The computing nodes are diskless: all
I/0 operations go by RPC to the LNET nodes, and the LNET nodes forward the request
to the storage servers.

8.2.2 Motivating Failure Scenario

We describe a real-world failure scenario (see Fig. 8.1) which frequently occurs in the
distributed storage system the of Blue Waters supercomputer to illustrate the difficulty of
identifying the root cause of an application failure/slowdown using telemetry data. The
telemetry data obtained during this failure scenario capture the following partial views:
1. Storage view. In this failure scenario, the telemetry data indicated high load and in-

creasing service time on a pair of data servers. These data servers eventually hang and
lead to unavailability of the files stored in these data servers. At the same time, other
data servers (not shown in the figure) do not show symptoms of high load.

2. Application view. In this failure scenario, the NAMD [264] application issues open and
write 1/O requests. They are handled via FS clients (kernel modules) on each compute
node. To write to the file, the FS client first opens the file and gets the file handler by
accessing the metadata server, and then uses this file handler to directly write to the file

on disk via the corresponding data servers. However, in this case, the write request fails
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because of the FS client request timeout, despite the successful completion of the open

request. The request failure causes the applications to fail. From the point of view of

the application, the FS clients were partially failing.
Both views hint at a problem in the system, they are not sufficient for detecting and diag-
nosing the failure. The real cause of the failure was deeply hidden in the server logs. The
analysis of the server logs revealed that a disk failure in the storage device (OSD in Lus-
tre) was the real cause of the storage server and application failure. The failure of the disk
triggers a RAID disk rebuild, which in turn decreases the effective I/O bandwidth avail-
able to two data servers (DS-1 and DS-2). The decrease in bandwidth causes an increase
in the service time of I/O requests, which, in turn increases the load on data servers DS-1
and DS-2, which, in turn leads to server hang and unavailability of the files, ultimately
causing application to fail. Intuitively, it can be seen from the failure scenario example
that the failure mitigation will depend on both the failure location and mode. Overall, we
find that the telemetry data, when analyzed in isolation and as illustrated in Fig. 8.1, pro-
vide outcomes and results that in general seem conflicting, even to experts. For example,
the telemetry data on the application hint at high memory utilization, whereas telemetry

data on the data server can hint at high load.

8.2.3 Challenges

The failure scenario above highlights multiple challenges: Dataset heterogeneity & Fu-
sion. Large-scale HPC systems produce vast amounts of telemetry data (at application,
network, and storage layers) by using multiple monitors across the system stack. These
datasets are highly heterogeneous in nature (e.g., sampling frequency of monitors), and
provides only partial observability into the system (i.e., storage and application levels).
Thus, highlighting the need to jointly analyze datasets to avoid conflicting outcomes.

Data labelling and rare failures. There are challenges in both labeling the failure data, and
acquiring them. This problem exacerbates due to a long tail of one-off, unique failures
that are previously unknown and hard to anticipate based on historical data (discussed
in §8.7.3).

Measurement uncertainty, noise, & propagation effects, emanated from (i) timing issues
in asynchronous measurement and data collection intervals, (ii) non-determinism due
to path redundancy and randomness in routing, and (iii) failure propagation leading to
variability and noise in measurements.

Timeliness of analytics. Minimal number of monitors must be placed strategically across
the system (i) to provide spatial and temporal observability, and (ii) to reduce data and
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time required to perform analytics.

Those challenges make it difficult (i) to identify the failing component, and (ii) to dis-
cern the failure modes. That leaves system operators with no option but to comb through
multiple monitoring dashboards to form their conclusions about failures based on their
experience, and that significantly increases the response time for mitigating the impact
of failure (upto 4-8 hours), leading to unexpected outages and impact. This is untenable
for future exascale systems that would require realtime failure detection, diagnosis and

mitigation.

8.3 KALEIDOSCOPE OVERVIEW

Fig. 8.2 shows the design of Kaleidoscope. The “Infrastructure” part (upper left) shows

a simplified diagram of Blue Waters storage system (described in §8.7). The “Monitor-

ing” part (lower left) shows the telemetry data collected from the system across the stack

(described in §8.4). The “Hierarchical ML” part (upper right, described in §8.5) shows

the interconnected ML models that provide failure localization (i.e., identifying the failed

component), and diagnosis capabilities (i.e., identifying the failure mode and pointing to
the anomalous telemetry data indicative of the failure). The “Outputs” part (lower right)
provides an interpretable set of results and dashboards that can be used by the system

managers (described in §8.6).

Kaleidoscope addresses the challenges of identifying failing components and discern-
ing the failure modes described in §8.2.3 via the following approaches:

1. Fusing heterogeneous telemetry data for increased observability. Kaleidoscope uses teleme-
try data from across the system, capturing both the system and application views, to
increase spatial and temporal observability. The fusion and comprehensive analysis of
the data enable accurate detection of both resource overload and reliability failures.

2. Hierarchical probabilistic ML models for dealing with data uncertainty and noises. Kaleido-
scope uses hierarchical probabilistic ML models that use domain knowledge to model
measurement noises and failure propagation effects. The hierarchical ML models en-
able data analysis at different granularities and time scales.

3. Unsupervised ML models for dealing with insufficient samples and rare failures. Kaleido-
scope uses unsupervised ML models and leverages domain knowledge on the system
design and architecture to alleviate the challenges of (i) labeling the failures, and (ii) ac-
quiring training data on rare failures, especially on rare one-off failures.

4. Low-cost automation for timely analytics. The use of unsupervised methods alleviates
the need for costly training and re-training of models. Store Pings (refer to §8.4.1) are

179



‘uoneyuawaduwr pue u3sap adodSOPIa[EY JO MIIAIDAO UY :7'§ 9INJI]

aindwoy --------t

|||||||||||||||||||||||||||||| e m e e e e
| ®'yep doueuLofad Kouo d @
1e 0qoid p100oy
O MH% omprey | LANT | PUE SN0 ° =
AIO sropono| 1onog ol | usby Bunoyuop E
0S¢ BO[IOAO |  JOAT £, g
< 3aepeo]| 2010saI| eyepeioy| [ 1 W E E E QM
sonssI 2l .
: ouapiag | asney [uoneso
JOAI3S BIBPBIDIN pird ) ponmul | s3I 91015 AINOAXH G NAURHD
||||||||||||||||||||||||||||||| I ,|‘W‘|:|4,|||I||||||||”.|..|.| .d.ll
sisougeI( UOBZI[BO0] = , iy , zZc. —
oImrey < anyreg S\ . ” T, |2
. ) \ 21 |siso @) @)@ . )N [ SR
L\ 4/. He = (SQ) s10A198 B1EQ agei0lg _H_ Lo |3
o | pea— =l oA : g3 |2
SOLIOIA J12d s3o] 1o1rg 1R 9901 <! - &2 |5
=1 (SIN) SI2AIDS BIBPRIDIN ! E v 5 le
@ | 1015N]) 95RI01g (1D 1anT (N PN . i
I

180



low-cost monitor to provide observability into storage.

8.4 MONITORS & TELEMETRY DATA

8.4.1 End-to-end Probing Monitors

Kaleidoscope uses end-to-end I/O probing monitors (see €) & @ in Fig. 8.2), to collect
path-tracing telemetry data. that provide observability into the health of each component
on the path. For example, a successful probe from A to B through C and D reveals that
all the components (A, B, C and D) are healthy; if the probe fails, it means that at least
one component on the path is experiencing a failure. A probe is marked as successful when
it completes within a pre-specified time limit (i.e., meets its service-level objective); otherwise it
is marked as failed. Although distributed path-tracing tools exist (e.g., Zipkin [345] and
Uber Jaeger [346] for microservices, and Darshan [347] for HPC I/O, dynamic collection
of tracing data can be hugely costly. Moreover, the available tools only provide applica-
tion views and fail to provide observability into the storage infrastructure view, which is
critical, as we show in §8.2.2. Hence, we created Store Pings, which are low-cost probing
monitors that not only probe a disk from a client by means of I/O requests (similar to
ioping [340]) and record the response time, but also provide a mechanism for pinning
the path of the I/O requests to a disk through specific load balancers and servers. The
pinning of the path eliminates the need for tracing of the request, and thereby reduces
the overhead of data collection on path availability. While Store Pings are analogous to
the ICMP-based network ping (which provides visibility only into the network), the two
are significantly different. Specifically, Store Pings are designed for storage systems and
provide visibility across the entire system stack, which includes compute, network/in-
terconnect, and storage subsystems. Since, Store Pings generate an I/O probing request
of fixed size, an I/O failure occurs when the I/O completion time is higher than or equal
to one second. We use one second as SLO because 99% of the Store Ping probes on Blue
Waters completes within one second.

Path Pinning. Store Pings provide path-pinning capabilities by leveraging Lustre’s file
system support for pinning of a file on a specific object storage device (and hence the data
server),’ thereby eliminating the need to modify Lustre to support path pinning. Since the
metadata server has all the data chunk information, an I/O request to the file uniquely
identifies both the OSD and the data server. It also prunes the number of possible paths

3Store Pings executes independently of other applications. It creates and operates on its own set of files
to achieve the monitoring goals.
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that can be taken by the I/O request (from the client to the OSD). For example, a Store
Ping executing on a compute node (which is a storage client) and accessing data on an
OSD can use only 4 load balancers (LNETs) instead of all the LNETs (of which there are
more than 500) in the system. Although pinning of all the components (e.g., pinning of
I/0 requests to a particular LNET) on the path is desirable, it is unnecessary and would
require changes in the proprietary software and hardware in the compute and storage
system to support deterministic routing. We leverage probabilistic models to handle non
deterministic paths (§8.5).

Increased Observability. The API of a Store Ping is: store_ping(ost, xio_op,
kwargs), where xio_op is a function pointer to an I/O operation, and kwargs is the
argument of xio_op. Store Pings use direct I/O requests to avoid any caching effect,
which ensures that each I/O request traverses all the way from the clients to the disks on
the data servers. We designed three types of Store Pings, CrWr, WrEx, and RmEx, which
correspond to three different I/O requests: (i) CrWr, which creates and writes a new
tile; (ii) WrEx, which writes to an existing file; and (iii) RmEx, which removes an existing
tile. Criwr and RmEx test the functionality of the metadata servers, whereas WrEx tests the
functionality of the data servers (and, correspondingly, RAID disks). For example, a CxriWr
requires two different back-end operations to complete: (i) creation of a file by a metadata
server on a random data server (and the corresponding RAID disks) and addition of the
tile entry to the metadata index, and (ii) opening and writing of a file on the data server
(and the corresponding RAID disks). The payload of a write request is only 64 bytes.
Together, the three types of Store Pings test all the storage subsystems (which include
storage clients located on compute nodes, network interconnections, storage servers, and
RAID devices) that are involved in ensuring successful 1/O operations.

Placement. Store Pings are strategically placed in the system to provide both spatial
and temporal differential observability in near real-time. Store Pings generate probing
requests continuously at regular intervals to measure the availability and performance of
storage components. Note that Store Pings should be enabled only on a subset of clients
to reduce the overhead of the Store Pings and their impact on existing I/ O requests, while
providing complete spatial observability.

Selecting the number of Store Pings and their placement can be formulated as a con-
straint optimization problem. The subsets of components that can be tested together are
limited by the set of I/O paths, which are in turn limited by the topology, probing mech-
anism, and I/O request routing protocols. We use Boolean network tomography principle to

solve the constraint optimization problem of selecting the number of Store Ping monitors
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and their placement [348]. Specifically, the placement of monitors* in Kaleidoscope is
guided by the sufficient identifiability condition (discussed in [348, 349]), which states that
in a topology graph G of a system (in this case the Lustre storage system) consisting of
both monitor and non-monitor nodes, any set of up to £ failed components is identifiable
if for any non-monitor v € G and failure set F with |F| < k such that v ¢ F, there is a
measurement path going through v but no node in F. In other words, there must exist
a set of I/O paths that can be used by Store Pings to uniquely identify the failure-state
of each component and detect up to k£ concurrent failures. This is also referred as spatial
differential observability and allows us to handle redundancies as long as the condition is
met. [348] provides set of rules and algorithms to meet sufficient identifiability condition
to identify number of monitoring nodes and their placement for any arbitrary storage
system. We omit the detailed discussion because of lack of space. Blue Waters’s system
managers not only want to identify failures of storage components but also failures of
service nodes and login nodes. We place Store Ping monitors on storage clients that (i)
have different system stacks (e.g., kernel versions), (ii) are physically located on different
networks, and (iii) execute different services (e.g., scheduling, user login, and data mov-
ing). Specifically, we place monitors on all the service nodes that provide scheduling and
other capabilities (64 nodes); import/export (I/E) nodes (25 nodes) that move bulk data
into and out of the storage system; and login nodes (4 nodes), which launch applications.
The I/E nodes and login nodes are on the storage network, whereas the service nodes
are on the proprietary compute network fabric. This placement scheme meets both the
production requirements (given by system managers) and theoretical requirements (from
network tomography principle).

Probing Plan. At any given time, Store Pings are executed from (i) all login nodes, (ii) 1
out of 64 service nodes chosen randomly, and (iii) 1 out of 25 I/E nodes chosen randomly.
That probing plan satisfies our minimal probing plan for inferring storage system health,
while providing reliability for the monitoring infrastructure; if a client failure occurs,
another client can be chosen as a monitor. Store Pings are executed every minute for
each OSD, data server, and metadata server. That results in 72 CrWr and 72 RmEx (from
6 clients to 6 metadata servers and 6 OSDs) and 5,184 WrEx (from 6 clients to 432 data
servers and 432 OSDs) requests per minute.

8.4.2 Component Logs

Kaleidoscope uses a comprehensive monitoring system (similar to the monitoring

“In the network tomography formalism, both the ends of the probing path is referred as monitors. A
Store Ping path starts at a storage client and ends at an object storage device (OSD).
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system described in [350, 297]) to collect performance measurements and RAS (relia-
bility, availability, and serviceability) logs for each system component (including com-
pute nodes, load balancers, network switches, and storage servers) in real-time (see @
in Fig. 8.2). We use the Light-weight Distributed Metric Service (LDMS) [262], a data-
aggregation tool, to collect performance measurements (e.g., loadavg, memory utiliza-
tion, disk latency) for compute nodes, load-balancers (LNETs) and switches. We use ISC
(the Integrated System Console) [351] to collect performance measurements on storage
components (e.g., disks, and servers), LDMS data, and RAS logs on a centralized server.

8.5 HIERARCHICAL MACHINE LEARNING MODELS

Kaleidoscope uses hierarchical domain-guided unsupervised ML models to provide
live forensics capabilities. These hierarchical ML-models include: (i) failure localization
model (for identifying the failed nodes), and (ii) failure diagnosis model (for identifying
the failure mode of the failed node).

85.1 Failure Localization Model

Kaleidoscope uses a failure localization model (see @ in Fig. 8.2) for identifying com-
ponent(s) that are failed or overloaded, and thus are leading to I/O failures. Kaleido-
scope uses telemetry data obtained from Store Ping monitors for that purpose. How-
ever, Store Ping measurements are noisy (due to asynchronous data collection, adaptive
routing/load-balancing, and failure propagation among others) and provide partial view
(i.e., the measurements only provide information on a subset of the system components).
These challenges are hard to deal with traditional threshold or voting-based methods
which often lead to over-counting and misdiagnosis [330]. Therefore, we model these
noise/uncertainties in the telemetry data as well as provide a formalism to fuse these
partial views.

We use probabilistic graphical model (PGM) formalism, in particular the factor graph
(FG) model [352], to jointly analyze and fuse the telemetry dataset from all the Store
Pings monitors placed on the system, while accounting for the noise and related uncer-
tainties. PGMs specify the relationships between the random variables using a graphical
structure, where a node represents a random variable, and an edge represents the sta-
tistical relationship between random variables. This graphical structure allows PGMs to
capture complex conditional independence between the random variables (i.e., domain
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knowledge), specified in a human interpretable manner. Using such domain knowledge
in turn reduces both the data requirements (compared to supervised machine learning
methods [334, 330, 336]) as well as inference time. The proposed PGM model is based on
the insight that even though individual Store Ping measurements might be noisy, groups
of different Store Ping measurements that are related to one another can be jointly consid-
ered to reduce the measurement errors, all while estimating the failure state of the com-
ponents. Kaleidoscope uses the most general form of PGMs called factor graphs (FGs),
which is a generalized formalism for specifying and computing inference on PGMs. In
our FG model, the failure state of each component (which is hidden) on a path and its
corresponding path availability (which is observed using Store Ping telemetry data) are
specified as random variables, and the functional as well as statistical relationship be-
tween hidden and observed variables as (in terms of path) factor functions. An inference
on the FG model allows Kaleidoscope to estimate failure state of each component, and ex-
plain the observed telemetry data. This determination of the failure state localizes failed
components in the system.

Formalism. We define the health, and hence the failure state, of a component as as

(t

random variable, X", whose value captures the probability of a component ¢ successfully

serving an I/O request at time ¢. We use the shorthand X for Xi(t), as the variable changes
at every time step.” In the absence of measurements, X; is derived from a prior beta
distribution®, i.e., X; ~ Beta(c, 3), where o and 3 determine the shape of the distribution.
At any time step, o and [ are updated based on the inference at the previous time step
(described later in the ‘inference’ paragraph).

Store Ping-based monitoring provides reachability measurements between a client C;
and an OSD OSD;. We use a random variable Y/, osp,) to denote the number of success-
ful Store Pings between C; and OSD; in the interval (¢t — 1,¢]. We model Y(¢, osp,)’s prior
using a binomial distribution, Y/, osp,) ~ Binomial(Ac;, 0sp,), N), where Ac, osp,) de-
notes the reachability from the C; to OSD,, and N denotes the total number of Store Pings
issued from the C; to OSD;. We use binomial distribution because it allows us to com-
pute the probability of observing a specified number of “successes” (in this case, number
of successful Store pings between C; and OSD;), which we observe through our telemetry
data.

>All the variables defined below are time variant, however we use the same shorthand to simplify the
description.

®Beta distributions are: (1) continuous distribution which models the success of an event (here an I/0O
request) and (2) commonly used as a conjugate prior for Bernoulli and Binomial random variables (which
we use in our model). Moreover, use of conjugate priors drastically reduces the computation time for
inference [353].
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We use the domain knowledge of underlying statistical relationships between the teleme-
try data and the components” health to calculate A, osp,). These statistical relationships
are based on the understanding of system topology and I/O request path. For exam-
ple, lets consider the case when the exact routing information of an I/O request is avail-
able using a path tracing tool. Using the route information, we could have determined
Ac, 0sp;) solely by the product of individual component’s health (i.e., all components
on the path must work for the request to be successful): Ac,.0sp;) = ILier(c;.05p,y) Xi-
Where P((C;, OSD;)) denotes the path between C; and OSD;.

Recall from §8.4.1, that collecting path-tracing data is expensive. Hence, we must
model the redundancies (e.g., high availability pairs and failover) and non-determinism
to calculate A, os p;)- In our system, a Store Ping destined for an OSD may take a differ-
ent path among several possible paths depending on the load and routing policies. For
the sake of clarity, we illustrate the procedure to model redundancies by modeling the
path of I/O request through a high-availability data server. We use the same method-
ology to model other redundancies (e.g., load-balancers and network paths). An I/O
request to an OSD can be routed through one of the two data servers connected to it.
Hence, a destination OSD is not reachable if both data servers (DS-1 and DS-2) connected
to it are unavailable or the OSD itself is not available. Rosp,, the probability of an I/O

request completing successfully from a load balancer to an OSD;, is given by eq. (8.1).
Rosp, = (1= (1= Xps,) - (1 = Xps,)) - Xosp, (8.1)

In eq. (8.1), Xps, and Xpg, denote the health of data servers in the HA pair associated
with the OSD (denoted by OSD;). In the equation, 1 — Xpg, and 1 — Xpg, determine the
probability distributions of the D.S; and DS, to be failed respectively, and their product
determines the probability distribution that both will be in a failed state. That probability
distribution, when multiplied by the probability distribution of the OSD’s health, gives
the reachability of the OSD from one of the data servers. As shown in Fig. 8.3 (bottom
half), the A(c, osp,) between client C; and OSD; is given in eq. (8.2).

A, 08D, = Xo, - X1, - Xon, - Xsn, - Xus, - Rosp, (8.2)

In eq. 8.2), ¢}, L., CN,, SN,, MS,, and OSD; stand for client, LNET, compute network,
storage network, metadata Server, and object storage device respectively, as shown in Fig. 8.3.
Here, the path availability A, osp,) only models the non-determinism associated with
load balancing on the data server. We follow a similar approach to derive A(Ci,OSD]) for
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our system. Moreover, Kaleidoscope models the temporal evolution by using estimated
component health parameters from previous inferences and uses the uncertainty to quan-
tify the confidence in the inference results.

The model described above can be represented using a factor graph (FG) that models
the relationship between different random variables (shown as circles in Fig. 8.3) and
functional relationships known as factor functions (shown as dark boxes). The relationships
between random variables are extracted from the system topology diagram, which can
be derived from the reference manuals or mined using tracing tools.

Fig. 8.3 shows a part of the FG that models (i) the health of components that lie on the
path of (Cy,0S8D,) and (Cy, OSD,), and the path availability for these components. The
components OSD,, OSD,, DSy, and DS, form a high-availability (HA) pair (i.e., a1I/O
request to a particular OSD in the pair can be served by either of the data servers). The
circles in the FG represent random variables (e.g., a component’s health). The factor func-
tions, represented by squares, encapsulate the relationships among the random variables.
The singleton factor functions f; encapsulate the prior belief on the health of the compo-

nent (which is known from a previous time step or from training time), which is given by

’Only paths from (C;,0SD;) and (Ca, OSD5) are shown, for clarity. Redundancies and network com-
ponents have also been removed for clarity.
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the beta distribution (described above). The multivariate factor function A, os D;) mod-
els the number of successful Store Pings on a path, given by the binomial distribution
(described above).

Inference. With the factor graph model, we can calculate the health of each com-
ponent X; in the system. The expected health of a component i can be estimated as
E[X1, X2, X3, ...|Y,,, Yy, Yo, ...]. Observations (Y),,Y,,,Y,,,...) and the prior belief on the
health of components (o« and /5 for each X;) are needed at time step 7}. Y), is measured
as the number of observed successful Store Pings during a specified interval, and o and
B are obtained from the inference result at the previous time step, and at time zero ini-
tialized to 0.5 (i.e., there is no prior information of the components being either healthy
or failed.). Intuitively, the inference procedure biases the prior belief of the model on the
failure states of the components using the telemetry data (i.e., Store Ping probing data)
obtained in the current time step. Kaleidoscope solves the inference task by using the
Monte Carlo Markov Chain algorithm [354], a technique for estimating the expectation
of a statistic from a complex distribution (in this case, E[X;, X5, X3, ...|Yp,, Yp,, Yp,, ...]) by
generating a large number of samples from the model and directly estimating the statis-
tic. We also quantify the confidence in the inference results and use it to reduce the false
positives. Our model declares a component to be failed only when the confidence in the
inference is more than 75%. Failure localization model is implemented using PyMC3, a
Python-based probabilistic programming language [355]. It uses samples collected over
five minutes, i.e., the results of 26,640 1/O requests, for inference.

Training. Note that training is not explicitly required for the proposed model. How-
ever, it can help bootstrap the model before deployment. One key advantage of using
probabilistic models like FGs is that training of such models can be reduced to inference
on the model parameters (i.e., estimating the parameters of the used probabilistic distri-
butions). In the case of a parametric FG that parameterizes certain statistical relationships
(as in our model), we set up the training problem just like the inference problem to pick
the set of parameters that can explain a data trace generated by the system.

8.5.2 Failure Diagnosis Model

The failure diagnosis model (see @) in Fig. 8.2) leverages (i) components’ telemetry data,
which include performance metrics and RAS logs, and (ii) the failure state estimated with
the failure localization model, to understand the likely cause of the failure. It uses the
insight that a failed component behaves significantly differently from its healthy coun-
terparts. For example, telemetry data obtained from a failed data server may reveal high
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load (e.g., high memory utilization) or an error (e.g., process crash), whereas the teleme-
try data of the healthy data servers will not reveal any such failures.

We use that insight to formulate the failure-diagnosing problem as an explainability
problem that can be phrased as a conditional question: “Which modality of the telemetry
data (amongst RAS logs and performance metrics) best explain the reason why one com-
ponent is flagged as failed while others to be marked as healthy by the failure localization
model?”

The failure diagnosis model answers that conditional question by statistically compar-
ing the measurements of the failed component and the healthy components by using
an unsupervised ML-based anomaly detection method that selects a measurement that
best distinguishes the failed components from the healthy ones. If there has been a re-
liability failure (e.g., kernel crash), it will point to error logs, and if there has been
a resource-overload-related failure, it will point to a performance metric, such as high
server load. Note that the conditional question is fundamentally different from the
non-conditional question “Which modality of the telemetry data are anomalous across
all components?” The non-conditional question usually suffers from noises (e.g., each
component produces hundreds if not thousands of error logs that may not be relevant
to diagnosing the failure [339]), making it challenging to precisely distinguish anomaly
from normal behavior. In other words, the conditional question eliminates the noise in
the first place. For example, we should not flag a data server as failed just because its uti-
lization is higher than the other servers. However, if the failure localization model identifies
the server as failed and high load is the only factor that differs the failed data server from
the other healthy data servers, then the failure of the failed data server is most likely due
to high load.

Diagnosing Reliability Failures. Kaleidoscope attributes and diagnoses reliability fail-
ures based on log analysis. Working with the vendor and national labs, we have curated
a library of regular-expression patterns to filter error logs that are indicative of reliability
failures (e.g., kernel dump). Currently, our library consists of 184 regular expression
patterns. In the absence of such a library, we could use existing log pattern mining tools
(e.g., Baler [356]) to automatically create a library of regular-expression patterns from ex-
isting logs, and then filter the patterns based on their severity level, i.e., by using patterns
of a severity level of 4 (warning) and above.

Kaleidoscope filters RAS logs of storage components by using the library of aforemen-
tioned regular-expression patterns (§8.4.2). The error logs generated by the failed /failing

components are compared to the error logs of healthy components, 6 = Lyo — %{Jo L;,
S
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where L represents the log set, and UO and HO represent failed/failing and healthy
components, respectively. If § # @, then § is provided as evidence, and the failed status
is attributed to component failures.

Diagnosing Resource Overload and Contention. Kaleidoscope attributes and diag-
noses resource overload/contention based on the following telemetry data: (i) the server
performance metrics (e.g., Loadavg), which captures the load of a server at 5-minute in-
tervals; (ii) the RAID device performance metrics (e.g., await time, which captures the
average disk service time (in milliseconds)), and taken by a disk device to serve an I/O
request; and (iii) the network performance counters (e.g., stall).

Kaleidoscope compares the performances of storage components of similar types (e.g.,
data servers) by using the local outlier factor (LOF) algorithm [52]. The LOF is based on
the concept of local density, where locality is given by k-nearest neighbors and the density
is estimated by the distance to the neighbors. By comparing the local density of a tar-
get with the local densities of its neighbors, Kaleidoscope identifies regions with similar
densities, and pinpoints outliers that have a substantially lower density than their neigh-
bors in terms of performance metric values. Using the LOF algorithm, we calculate LOF
score using the aforementioned telemetry data for each component indicating the simi-
larity /dissimilarity of the component to other components in terms of its performance.
Using that score, we can ask the aforementioned conditional question. If we find that
the failed component has a score of 1.0 (i.e., the performance is similar to that of other
components), then there is no reason to believe that the component failure was caused by
a resource overload/contention problem.

We chose LOF because storage components within a homogeneous group could have
different modes of operations that are not indicative of anomalies. For example, we found
normal states in which £ data servers had a low 1oadavg (less than 10) and N — k data
servers had a high 1loadavg (larger than 64). However, if there is one data server with
a loadavg significantly higher than that of the rest, it indicates an anomaly, and such
behavior is effectively captured by LOF. In Kaleidoscope, we use a configuration named
LOF, and declare a component to have “resource overload/contention” if the LOF value
of the failed component is LOF, times larger than the max LOF value of a healthy com-
ponent. (The default value of LOF, is 1.5.)

We use the outlier-based method to ask the conditional question for their simplic-
ity and effectiveness. Our approach is very similar to that of, and inspired by, Dist-
alyzer [339]. However, Distalyzer is only suited to offline diagnostics as it does not pro-
vide a methodology for identifying/labeling failed components because it assumes that

such a label is already available. Thanks to Kaleidoscope’s hierarchical approach, it is
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Table 8.1: Effectiveness (measured by true positives) of Kaleidoscope’s triage and root-
cause analysis.

Localization True Positive False Negative Total

837 (99.3%) 6(0.7%) 843
Diagnosis Correct Diagnosis Misdiagnosis Total
Reliability Failure 340 (98.3%) 6 (1.7%) 346
Overload/Contention 468 (94.2%) 29 (5.8%) 497

possible to integrate more sophisticated statistical methods and log analysis methodolo-
gies [339, 297, 357, 40].

Training and Inference. Failure diagnosis is completely unsupervised, and there-
fore does not require any training. However, the method requires a library of regular-
expression patterns that is created in the offline mode through manual methods (using
vendor support) or automatic methods (using statistical learning techniques such as clus-

tering [356, 358]). Failure diagnosis is implemented in Python.

8.6 EVALUATION

We have deployed Store Ping monitors on Cray Sonexion for two years and Kaleido-
scope’s live forensics on Cray Sonexion for more than three months. However, to com-
prehensively evaluate the effectiveness of Kaleidoscope’s live forensics, we fed the two
years of monitoring data collected by Store Ping monitors retrospectively. The evaluation
is based on 843 production issues resolved by the Cray Sonexion operators over the two-
year span. Each of the 843 issues has a corresponding report after manual investigation.
We use the dataset as the ground truth to measure the true positives and false negatives.
We also quantify the false positives by inspecting 100 randomly selected issues from the
issues reported by Kaleidoscope.

8.6.1 Effectiveness

Kaleidoscope observed 26,596 1/0O failure events in total (25,427 resource overloads
and 1,169 reliability failures). The number is significantly higher than the 843 production
issues. This is because many of the I/O failure events are transient and short-cycled and
thus does not lead to production issues. In Cray Sonexion, operators use the following
two policies to identify important I/O failure events for manual investigation:
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1. certain class of failures are auto-fixed by the system within one minute of occurrence
(e.g., network recovery to route out bad links). Kaleidoscope finds out these cases and
stops alarms by monitoring recovery events.

2. resource overload/contention events are often transient in nature and a mitigation ac-
tion is triggered only when the condition continues for more than 30 minutes. Fig. 8.4
shows the histogram of the duration of these I/O failures.

Applying the above two policies on the results generated by Kaleidoscope reduces 1/0O
failure events from 26,596 to 1,525. We evaluated the effectiveness of Kaleidoscope re-
garding its accuracy of both localizing the failed components and diagnosing their root
causes. Table 8.1 summarizes the results.
Localization accuracy. Kaleidoscope was able to localize the failed components (caused
by either reliability failures or resource overload/contention) for 99.3% of the production
issues (837 out of 843). Only six out of 843 production issues were not detected by Kalei-
doscope. We read the report and found that none of the six issues had any impact on
the I/O completion time. All six issues belonged to disk drive failures. Those failures
were recorded and flagged for repairs to avoid RAID failures. Kaleidoscope additionally
detected 688 events. We refrained from labeling these additional events as false positives
because there was no evidence supporting that these were not actual issues. On the con-
trary, we found that many of the performance issues either went unnoticed because the
system was not monitored adequately (such as no dedicated monitoring for disk load),
or were ignored because there was no automatic alerting mechanism to take remediation
action on the events in time.

Diagnosis accuracy. Among the 843 production issues, 346 were caused by reliability

failures and 497 were caused by resource overload. Applying the same heuristic on Kalei-

doscope output as used by the operators (described above), we found that Kaleidoscope
reported 340 reliability failures and 468 overloads, which accounts for 98.3% of reliability
tailures and 94.2% of the resource overload/contention issues from the list of produc-
tion issues (see Table Table 8.1). Kaleidoscope additionally detected 22 reliability failures
and 558 resource overload issues. We had managed to manually validate 100 of those
resource overload issues detected by Kaleidoscope and they were indeed true. Kaleido-
scope presented error logs or performance metric to the operator for further investigation.

Kaleidoscope diagnosis module missed 35 production issues: (i) 6 issues were missed by

localization module, and (ii) 29 resource overload issues coincidentally had random noise

in the logs, which confused Kaleidoscope.

False Alarms & Misdiagnosis. It was challenging to measure false positives (FP) due to

the lack of ground truth dataset—an I/O failure detected by Kaleidoscope but not being
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Figure 8.4: Histogram of failure dura- Figure 8.5: WrEx measured latency on
tion. three file partitions.

resolved could come from non-technical reasons (e.g., low priority jobs).

To statistically estimate the FP rate, we randomly selected 100 failures identified by
Kaleidoscope (referred as Kaleidoscope events): 50 tagged with “reliability failures” and
50 tagged with “resource overload/contention.” Kaleidoscope’s failure localization model
was able to localize all true cases of failures correctly. However, Kaleidoscope’s failure di-

agnosis model misdiagnosed the root cause of four (out of 100) cases.

8.6.2 Baseline Comparison

Kaleidoscope is the first (to our knowledge) system that supports real-time forensics
for peta-scale storage systems. In our work, we compare Kaleidoscope with NetBouc-
ner [330]. We choose NetBouncer because it significantly outperformed existing failure
localization methods designed for large-scale networks [359-361] and was tested on a real
deployment.

Table 8.2 shows the localization accuracy of Kaleidoscope and NetBouncer [330], the
state-of-the-art failure localization method. Our implementation was reviewed by the
author(s) of NetBouncer. NetBouncer has 110 true positives (out of 186 true positive
cases found in 6 months of our retrospective data), i.e., it misses 76 true cases that were
captured by Kaleidoscope. NetBouncer’s missing those issues because it is incapable
of modeling 1) non-determinism due to path redundancy and 2) temporal evolution of
the component state, which is modeled by Kaleidoscope as discussed in §§8.5.1. Fur-
thermore, Kaleidoscope reports a total number of 4,892 events, far less than the number
reported by NetBouncer. Given that self-recovered failures and overload condition less
than 30 minutes can be filtered out, we can reduce the alarms to 412 (instead of 4,892) and
92,000 (instead of 116,072) respectively. The significant difference in the results of Net-
Bouncer and Kaleidoscope is due to NetBouncer’s inability of distinguishing I/O failure

events as reliability failures or overload/contention.
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Table 8.2: Comparing failure localization in Kaleidoscope and NetBouncer using 6
months of production data consisting of 186 issues.

True Positive False Negative Alarms

Kaleidoscope 184 2 4892
NetBouncer 110 76 116,072

Table 8.3: Impact of 100 Store Ping monitors running at 30 second interval on IOR bench-
mark [362]. The mean value of I/O throughput without Kaleidoscope is normalized to
100. The off configuration is shared across both 100 and 6 montiors.

100 monitors 6 monitors

Kaleidoscope

Mean Std  Mean  Std
Off 100 0.15 100 0.15
On 9758  0.32 9999 0.12

8.6.3 Monitoring Overhead

We used the IOR benchmark [362] to measure the monitoring overhead in a worst-case
scenario. The measurement used stress testing to max out the throughput offered by Cray
Sonexion. IOR was running on 4,320 compute nodes during this measurement. Table 8.3
shows the monitoring overhead introduced by Store Pings when (i) 100 monitors were
running at 30 second interval and (ii) 6 monitors were running at one-minute interval.
Recall from §8.4.1, we need 6 monitors for our probing plan to provide sufficient mea-
surements, and we show result for 100 monitors to show the scalability of our solution.
Store Pings decreased mean throughput only by less than 0.01% in Cray Sonexion. How-
ever, scaling to 100 monitors and increasing the frequency by 2x would decreases the
throughput by less than 2.42%. Note that the average throughput in production is sig-
nificantly below the peak throughput under the stress test. We also measured the time
difference between the launch of Store Pings for a given interval and found that all Store
Pings were launched within 10 seconds and 98.4% were launched within 3 seconds.

8.7 OPERATIONAL EXPERIENCE

Our interaction with Cray Sonexion’s operators shows that Kaleidoscope help them
understand the tail latency and performance variation in near real time. Operators can
detect performance regression by comparing the measurements from different points of
time. Fig. 8.5 shows the latency measurement histogram for the WrEx Store Pings (RmEx
and CrWr are omitted for clarity). We can see that 99% of WrEx completed within one
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and no failures (“Normal”). overload is frequent in Cray Sonexion.

second (Service Level Objectives or SLO), and only 0.14% failed with timeout.
Furthermore, the operators use Kaleidoscope to characterize storage-related failures in
Blue Waters. Such fine-grained characterization is not possible before the deployment of
Kaleidoscope as previously deployed methods lacked joint analysis methods for identifi-
cation, and disambiguation of failures.
While previous work [322] has characterized I/O failures, to the best of our knowledge,
this is the first study which considers the impact of both reliability and resource-overload

failures on I/O request completion time.

8.7.1 1/0O Failures Caused by Reliability Failures

Kaleidoscope finds that the most common symptom of reliability failures is perfor-
mance degradation that leads to I/O failures; only a very small percentage (0.057% of
346 failures (Table 8.1)) of reliability failures caused system-wide outages. For example,
disk failure is tolerated by the RAID array which uses RAID resync on hot-spare disks
to protect the RAID array from future failures. Such a resync or periodic scrubbing of a
RAID array takes away a certain amount of bandwidth for an extended period of time,
ranging from 4-12 hours, which increases completion time of I/O requests. As shown in
Fig. 8.6, I/O requests during reliability failures increase the average completion time of
I/0O requests by up to 52.7x compared to the average I/O completion time in failure-free

scenarios; the 99th percentile of I/O request completion times is 31 seconds.

8.7.2  1/0 Failures Caused by Resource Overloads

Kaleidoscope reveals that resource overloads frequently lead to I/O failures. We used
disk service time (await), returned by iostat, as a metric of the load on disk devices.
await measures the average end-to-end time for a request including device queuing
and the time to service the I/O request on the disk device. await is different from I/O

completion time, which includes the traversal time between the client and the disk.
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Figure 8.9: Correlation between load (i.e., loadavg) and latency. (“Comp. T.” is the completion
time of I/O requests.)

Fig. 8.7 shows a histogram of disk service time (await) returned by iostat using an
event-driven measurement (triggered only when loadavg exceeds 50). Such anomalies
occur frequently. We found 14,081 such unique events by clustering the per-disk contin-

uous data points in time with service times longer than one second.

Excessive 1/0O. Excessive I/O requests create high load on the server and lead to disk-
level contention, causing performance and stability issues. Fig. 8.8 shows a histogram
of the duration of excessive I/O requests by applications to the metadata server. The
duration of high I/O requests are generally small (lasting less than 10 seconds); however,
there is a long tail of applications that send high I/O requests for hours. In one case,
an application caused high load on the metadata server by opening and closing 75,000+
million files in 4 hours, leading to 20,000+ I/O requests per second. During that event,
loadavg increased from 60 to 350 with the 50th and 99th percentile duration being 12
and 227 minutes, respectively.

High load. The increase of I/O request completion time has a strong correlation with
the load on storage servers. High load conditions are caused by a flood of I/O requests
on a storage server by either one application (e.g., extreme I/0), or multiple applications

competing for resources. Fig. 8.9 shows the histogram of load across all servers. It shows
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the average and 99th percentile completion time of 1/O requests at different load values
of the storage servers. Overall, we can see a strong correlation between an increase in load
and the completion time of I/O requests. At high load (1ocadavg of 350), the average and
99th percentile I/O request completion time increases to one second and ten seconds,

respectively.

8.7.3 Identifying One-off Failures

Kaleidoscope found many one-off, unique failures that do not have a common pattern
and are previously unknown. Such failures can hardly be anticipated based on historical
datasets. Kaleidoscope found four such failures per month on average. The following
describes one of such failures.

LNET nodes serve as bridge between computing nodes and storage servers. A request
from a client to an OSD (a RAID disk device) can be served by any of 4 LNET nodes.
For any pair of (client, OSD), the group of 4 LNET nodes are fixed and chosen in round
robin when routing a request. In a rare failure incident, LNET had partially failed, but the
failure was not detected as Cray Sonexion uses heartbeats to detect failures. The partial
failure caused LNET to drop requests passing through it, causing I/O failures. The I/O
bandwidth (in MB/sec) for the applications served by the failed LNET node decreased by
25+% for multiple hours. Upon investigation, it was found that the LNET had suffered
a software error that caused it to drop I/0O requests for weeks. Using Kaleidoscope, we

detected the failure in <5 minutes.

8.8 DISCUSSION AND LIMITATIONS

8.8.1 Interpretability of ML models

Researchers provide diverse and sometimes non-overlapping motivations for inter-
pretability, and offer myriad notions of what attributes render models and results in-
terpretable [363]. Below, we discuss two aspects of this general interpretability problem
in the context of Kaleidoscope.

Model Interpretability. The proposed hierarchical unsupervised ML models will sig-
nificantly enhance interpretability, and hence wide-spread adoption/deployment of Kalei-
doscope.

1. We use models that inherently capture all the system modeling assumptions. For
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example, Kaleidoscope through Factor Graphs (FG), a probabilistic graphical model

(PGM) formalism, encodes that an I/O request failure occurs only if one or more com-

ponents on the I/O request path fail.

2. Our model incorporates aspects of the storage system, i.e., topology and storage sys-
tem architecture details directly into the graphical structure of the PGM. This allows
the overall hierarchical model to be constructed directly from domain knowledge with-
out requiring any pre-labeled training data (in contrast to supervised methods like
deep neural networks).

Kaleidoscope can be extended to different system topologies and storage system archi-

tectures (described later in §8.8.2). Kaleidoscope automatically creates/changes the ML

models with appropriate parameters using the system topology and file system I/O pro-

tocols (encoded through I/O request paths), which can be provided as an input. For
example, Kaleidoscope will automatically add additional node(s) to the FG model to cap-

ture the failure state of newly added component(s) in the system. Similarly, if the I/O

protocols change (i.e., the path taken by an I/O operations change), Kaleidoscope will

automatically change the the factor functions to reflect new I/O paths.

Result Interpretability. System managers of Blue Waters have created several moni-
toring dashboards [350] to visualize live data in multiple ways. As we highlight in the
§8.1, these analyses process vast amounts of telemetry data leading to cognitive over-
load of the system managers. Kaleidoscope strives to reduce this cognitive overload by
providing intuitive charts and summaries of the telemetry data to quickly identify and
understand the failure location and the failure mode (i.e., reasoning behind the ML out-
put). An example of such a chart providing evidence of failure localization inference is
shown in Fig. 8.10. The inference pointed to the existence of two concurrent failures: (i)
a load issue on scratch data server 208 and (ii) an outage of projects file system metadata
server. Fig. 8.10 uses a heatmap to depict a failure impact on clients (as an evidence).
Each cell in the heatmap shows the ratio of operations that took longer than 1 second
to the total number of operations issued during 5 minutes interval by a given client (y-
axis) to each data server from Scratch, Home, and Projects Lustre partitions (x-axis), with
darker color means higher ratio. Clients 0, 1, and 2 are the login nodes on Ethernet net-
work, client 3 gives an aggregated view of all 25 Import/Export nodes on Infiniband
network, and client 4 provides an aggregated view of all 64 service nodes on compute
network. As seen from the figure, scratch data server 208 and project metadata server are
behaving anomalously compared to rest of the cluster. Thus, Kaleidoscope, in addition to
detecting and diagnosing failures, provides significant value in directly summarizing and

visualizing the relevant evidence for a detected failure. Without Kaleidoscope the system
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Figure 8.10: Issue on Scratch OSD 208 and Projects MDS.

managers will have to monitor a large number of failures-modes and failed-components

across every instant of time.

8.8.2 Generalizing Kaleidoscope to other systems.

Kaleidoscope is not tied to a specific storage architecture. Kaleidoscope uses (i) Store
Ping monitoring data for failure localization, and (ii) performance metrics and RAS logs
for failure diagnosis. Performance metrics and RAS logs are already available on all stor-
age systems. However, Store Pings must be deployed on the storage system for running
Kaleidoscope. The goal of Store Ping is to test all components of the storage system such
as load balancers, network, metadata servers, and object storage servers/devices (OSDs)
using native storage-system operations (such as read, write, remove, etc.). Store Ping
achieves this goal by pinning the files strategically (discussed in §8.4.1) onto OSDs such
that the health of each of these components can be inferred. Fortunately, such support
is available for all popular POSIX-compliant HPC storage systems such as Ceph [364],
Gluster [365] and GPFS [366]. Let us consider Ceph. Storage cluster clients in Ceph use
the CRUSH (controlled replication under scalable hashing [367]) algorithm to efficiently
compute information about data location, instead of having to depend on a central lookup
table (e.g., in the case of Lustre clients use MDS for file lookup). We can use CRUSH (via
crushtool) to get the mapping rules, and use those to place the files to specific OSDs
(and in doing so invoke MDS operations). Finally, recall from above that the ML models

used by Kaleidoscope are not tied to specific system topology and storage protocols.

8.8.3 Dealing with large number of alarms
There is a trade-off between detecting failures quickly and generating too many alarms

(due to transient failures and micro-bursts). This is a fundamental limitation of any fail-
ure detection algorithm (and it is not tied to ML). Hence, to reduce the overhead (§8.6.3),
Kaleidoscope on Blue Waters is configured to collect datasets at 60s intervals. Therefore,
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Kaleidoscope cannot detect micro-burst performance anomalies [368] and transient fail-
ures that are shorter than dataset collection interval (60s). Detecting transient failures/
micro-bursts is an active area of research as it allows designers to craft load-balancing
and quality-of-service techniques.

In this work, we report all failures irrespective of their duration (except for the failures
that are shorter than dataset collection interval and cannot be detected by Kaleidoscope).
Hence, Kaleidoscope reported >26,000 failures, which is much greater than production
issues. We observe more alarms than production issues because many of the I/O failure
events are transient and short-lived and thus does not lead to production issues. In partic-
ular, most of the short-lived issues are related to resource overload problems (caused by
one or more applications), which are filtered using heuristics discussed in §8.6.1. More-
over, as we show in §8.7, Kaleidoscope caught many failures that went unnoticed in the

production for several weeks despite all the existing monitoring tools.

8.9 RELATED WORK

Kaleidoscope is built upon the wealth literature on failure detection and localization [369-
375, 334, 323, 330, 333, 297, 40]. Kaleidoscope is more than a failure detector. It not only
detects and localizes the failing component, but also reveals the probable causes by pin-
pointing the error logs or performance metrics. As discussed in §§8.1, the capability of
jointly localizing and discerning the failure mode is critically important to devise the right
recovery strategies. To the best of our knowledge, no existing solution provides such ca-
pability.

Kaleidoscope is the first effort for designing a hierarchical domain-driven ML-based re-
altime failure detection and diagnosis framework that leverages vast amounts of hetero-
geneous telemetry data for large-scale high-performance storage systems. Kaleidoscope’s
failure detection and diagnosis capabilities are fundamentally different from prior work
that applies statistical or machine learning using system telemetry data: (i) prior solutions
are data hungry requiring big data for training (e.g., [335, 336]), (ii) prior work supports
either (a) anomaly detection [337, 338, 40], (b) failure localization [330, 331, 333, 334, 297],
or (c) failure diagnosis only [339]. (iii) no prior solution handles uncertainty in telemetry
data and in the system.

Kaleidoscope proactively detects, localizes, and diagnoses I/O timeout and slowness
before the applications being affected. It uses active measurements from Store Ping mon-
itors to support ML-based failure detection and diagnosis. It is different from passive

200



or reactive approaches [372, 376, 334, 40]. This requires very low monitoring overhead,
i.e., Kaleidoscope has to run on a small subset of client nodes and cannot probe every
single path deterministically. While active probing is a well-established technique for
tailure detection [323, 330], Kaleidoscope solves those key challenge by effectively mod-
eling non-determinism and uncertainty in the distributed systems as discussed in §§8.3.
As a result, Kaleidoscope reduces the number of probes by orders of magnitude com-
pared with existing methods [323, 330, 333, 334]. In fact, active measurements are applied
in limited context for storage subsystems (e.g., TOKIO [377, 322]). However, these probes

have high overhead, and hence are executed once in a day.

8.10 CONCLUSION

This chapter advocates the need for identifying and diagnosing resource overload and
reliability failures jointly to effectively coordinate recovery strategy. We build Kaleido-
scope and deploy it on a petascale production system to disambiguate component fail-

ures from resource overload /contention issues.
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CHAPTER 9: CONCLUSION

Society as a whole is going to witness exponential growth in the use of data-driven au-
tomation techniques in critical application domains such as scientific and cloud comput-
ing, healthcare, transportation, agriculture, and manufacturing. The widespread adop-
tion of such systems in a human-centric environments necessitates our understanding of
their decision-making processes in the presence of a wide range of uncertainties, from
specification to real-time operations. These next-generation data-driven systems, espe-
cially ML/ Al-driven systems, demand an ever-increasing level of system dependability
not available today. The classical approach to dependability is based upon component
reliability views and fault/error/attack management at the architectural level. While
necessary, the classical approaches are not sufficient: novel methods must be developed
to account for autonomy and safety requirements.

This thesis is a step in that direction. We develop novel causality-driven assessment
techniques that meet those demands and provide the theory and foundation for design-
ing dependable data-driven systems. Methods proposed in this work will allow design-
ers to assess and ensure the dependability of such systems.

We then showcase these techniques on two complex, mission-critical, data-driven sys-
tems: (i) autonomous vehicles (particularly, self-driving cars) and (ii) large-scale comput-
ing infrastructures (HPC and Cloud). Furthermore, the techniques proposed in this work
will pave the way to ensuring the dependability and performance of other autonomous
systems, such as unmanned aerial vehicles, agricultural robots, and kitchen bots, among
others.
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APPENDIX A: OTHER WORK

In this section, I briefly describe other research work that was conducted in parallel to
this thesis.

A.1 AUTONOMOUS VEHICLES

Scalable Fuzzing of Driving Scenarios for AV Testing. We propose AV-FUZZER [378],
a testing framework, to find the safety violations of an autonomous vehicle (AV) in the
presence of an evolving traffic environment. We perturb the driving maneuvers of traffic
participants to create situations in which an AV can run into safety violations. To op-
timally search for the perturbations to be introduced, we leverage domain knowledge
of vehicle dynamics and a genetic algorithm to minimize the safety potential of an AV
over its projected trajectory. The values of the perturbation determined by this process
provide parameters that define the participants’ trajectories. To improve the efficiency
of the search, we design a local fuzzer that increases the exploitation of local optima
in the areas where highly likely safety- hazardous situations are observed. By repeat-
ing the optimization with significantly different starting points in the search space, AV-
FUZZER determines several diverse AV safety violations. We demonstrate AV-FUZZER
on an industrial-grade AV platform, Baidu Apollo, and find five distinct types of safety
violations in a short period of time. In comparison, other existing techniques can find at
most two. We analyze the safety violations found in Apollo and discuss their overarching

causes.

A.2 HIGH-PERFORMANCE COMPUTING (HPC) AND CLOUD

Characterizing Application Job Failures in HPC. Node downtime and failed jobs in
a computing cluster translate into wasted resources and user dissatisfaction. Therefore,
understanding why nodes and jobs fail in HPC clusters is essential. In this work [45],
we provide analyses of node and job failures in two university-wide computing clusters
at two Tier I US research universities. We analyzed approximately 3.0M job execution
data of System A and 2.2M of System B with data sources coming from accounting logs,
resource usage for all primary local and remote resources (memory, IO, network), and
node failure data. We observe different kinds of correlations of failures with resource us-

age and propose a job failure prediction model to trigger event-driven checkpointing and
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avoid wasted work. Additionally, we present user history based resource usage and run-
time prediction models. These models have the potential to avoid system-related issues,
such as contention, and to improve quality of service, such as lower mean queue time, if
their predictions are used to make a more informed scheduling decision. As a proof of
concept, we simulate an easy backfill scheduler to use predictions of one of these models,
i.e., runtime, and show the improvements in terms of lower mean queue time. Arising
out of these observations, we provide generalizable insights for cluster management to
improve reliability, such as, for some execution environments local contention dominates,
while for others system-wide contention dominates.

Application-oriented Reliability Models for HPC. Reliability analysis and performance
evaluation are complementary methods to quantify nonfunctional aspects of a system.
However, a range of factors such as concurrency and heterogeneity quickly exacerbate
the state-space explosion problem when attempting detailed system-level modeling and
simulation of HPC systems. To overcome these impediments to modeling and analysis,
our work [379] develops a hierarchical model of an application that implements check-
pointing running in an HPC environment subject to application, network, and system-
wide outages. The modeling approach ensures that the number of states is linear in the
number of checkpoints and possesses a low constant factor for the number of recovery
states most relevant to the external influences contributing to degraded application per-
formance. We illustrate the types of analysis enabled by the model through a series of
examples, with parameters determined empirically from data logs of the Blue Waters
supercomputer located at the University of Illinois at Urbana—Champaign. A compre-
hensive comparative analysis of the model parameters indicates that lowering the failure
rate of network nodes would most significantly reduce application downtime. We also
discuss how the modeling approach can be used to objectively assess both current and
hypothetical future systems to identify competitive designs and enhancements.

Fault Injection-driven HPC Assessment. In this work [56], we present a set of fault in-
jection experiments performed on the ACES (LANL/SNL) Cray XE supercomputer Cielo.
We use this experimental campaign to improve the understanding of failure causes and
propagation that we observed in the field failure data analysis of NCSA’s Blue Waters.
We use the data collected from the logs and from network performance counter data (i)
to characterize the fault-error-failure sequence and recovery mechanisms in the Gemini
network and in the Cray compute nodes, (ii) to understand the impact of failures on the
system and the user applications at different scale, and (iii) to identify and recreate fault
scenarios that induce unrecoverable failures, in order to create new tests for system and

application design. The faults were injected through special input commands to bring
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down network links, directional connections, nodes, and blades. We present the exten-
sions that will be needed to apply our methodologies of injection and analysis to the Cray
XC (Aries) systems.

Congestion Mitigation. Modern HPC systems concurrently execute multiple distributed
applications that contend for the high-speed network leading to congestion. Conse-
quently, application runtime variability and suboptimal system utilization are observed
in production systems. To address these problems, we propose Netscope [42], a conges-
tion mitigation framework based on a novel delay sensitivity metric that quantifies the
impact of congestion on application runtime. Netscope uses delay sensitivity estimates to
drive a congestion mitigation mechanism to selectively throttle applications that are less
susceptible to congestion. We evaluate Netscope on two Cray Aries systems, including
a production super- computer, on common scientific applications. Our evaluation shows
that Netscope has a low training cost and accurately estimates the impact of congestion
on application runtime with a correlation between 0.7 and 0.9. Moreover, Netscope re-
duces application tail runtime increase by up to 16.3xwhile improving the median system
utility by 12%

Mitigating SLO Violations in Microservices. User-facing latency-sensitive web ser-
vices include numerous distributed, intercommunicating microservices that promise to
simplify software development and operation. However, multiplexing of compute re-
sources across microservices is still challenging in production because contention for
shared resources can cause latency spikes that violate the service- level objectives (SLOs)
of user requests. FIRM [47] is an intelligent fine-grained resource management frame-
work for predictable sharing of resources across microservices to drive up overall uti-
lization. FIRM leverages online telemetry data and machine-learning methods to adap-
tively (a) detect/localize microservices that cause SLO violations, (b) identify low-level
resources in contention, and (c) take actions to mitigate SLO violations via dynamic re-
provisioning. Experiments across four microservice benchmarks demon- strate that FIRM
reduces SLO violations by up to 16xwhile reducing the overall requested CPU limit by up
to 62%. More- over, FIRM improves performance predictability by reducing tail latencies

by up to 11x.
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