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Abstract

Chapter 2: In learning environments, understanding the longitudinal path of learning is one

of the main goals. Cognitive diagnostic models (CDMs) for measurement combined with a

transition model for mastery may be beneficial for providing fine-grained information about

students’ knowledge profiles over time. An efficient algorithm to estimate model parame-

ters would augment the practicality of this combination. In this study, the Expectation-

Maximization (EM) algorithm is presented for the estimation of student learning trajecto-

ries with the GDINA (generalized deterministic inputs, noisy, “and” gate) and some of its

submodels for the measurement component, and a first-order Markov model for learning

transitions are implemented. A simulation study is conducted to investigate the efficiency

of the algorithm in estimation accuracy of student and model parameters under several fac-

tors—sample size, number of attributes, number of time points in a test, and complexity

of the measurement model. Attribute- and vector-level agreement rates as well as the root

mean square error rates of the model parameters are investigated. In addition, the computer

run times for converging are recorded. The result shows that for a majority of the conditions,

the accuracy rates of the parameters are quite promising in conjunction with relatively short

computation times. Only for the conditions with relatively low sample sizes and high num-

bers of attributes, the computation time increases with a reduction parameter recovery rate.

An application using spatial reasoning data is given. Based on the Bayesian information

criterion (BIC), the model fit analysis shows that the DINA (deterministic inputs, noisy,

“and” gate) model is preferable to the GDINA with these data.

Chapter 3: The rise of online learning platforms requires new approaches for developing
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formative assessments that provide accurate, fine-grained information on student learning

profiles. Restricted latent classification models (RLCMs) serve a central role in the devel-

opment and implementation of formative assessments. The latent structure for RLCMs is

defined by the Q matrix, which is a binary matrix that specifies the relationship between

underlying attributes and observed responses. Recent research developed fully exploratory

approaches for inferring the RLCM Q matrix. Although exploratory methods exist for un-

covering the latent structure educational researchers are also interested in understanding the

role of intervention effects and student covariates on item performance and skill mastery.

Consequently, the purpose of our project is to extend the exploratory RLCM framework to

jointly uncover the latent structure and assess the role of student covariates on item per-

formance and attribute mastery. We consider a general modeling framework for including

covariates and consider two special cases which correspond to different research settings. Our

models provide researchers with tools for evaluating intervention effects aimed at enhancing

learning outcomes and documenting the extent to which the relationship between the latent

structure and responses is invariant to student background characteristics. We develop a

new Bayesian formulation to estimate model parameters and report Monte Carlo evidence

pertaining to accurate recovery of Q and other model parameters. We apply the methods

to a dataset including 516 students’ performance on a spatial rotation test (Culpepper &

Balamuta, 2017). In addition, including covariates also benefits us by providing insights

about the relationships between the covariates and the item success and attribute mastery

probabilities.

Chapter 4: In educational environments and online learning platforms, formative as-

sessments can yield valuable information about students’ knowledge profiles. Knowing which

attribute a student has been mastered versus has not been yet will help educators provide

well-targeted instructions. In this respect, exploratory restricted latent class models have

significantly been used to estimate students learning profiles from their response patterns.

Although students’ response patterns are the primary source for estimating students’ item
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performance and skill mastery profiles, students’ covariates may also provide beneficial infor-

mation in the process. However, one main challenge is to decide which covariates to include

in the model when many covariates are available. Thus, this chapter applies a “spike-slab”

variable selection algorithm on covariates in an exploratory RCLM, which simultaneously

estimates a mapping between items and the attributes. We develop a Bayesian formulation

to estimate model parameters while imposing a variable selection algorithm on covariates.

We report Monte Carlo evidence pertaining to accurate recovery of Q and other model

parameters while correctly identifying the active covariates from inactive ones.
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Chapter 1

Introduction

With the increasing emphasis on formative assessment in education, the value of fine-grained

feedback on student learning and understanding the longitudinal path of these learning

are becoming crucial for traditional classroom assignments. In fact, learning technology

algorithms leverage the formative assessments by tailoring learning interventions to adapt

to individual students’ capabilities and needs (e.g., Chen, Li, Liu, & Ying, 2018; Han, Chen,

& Tan, 2020; Huang et al., 2019; X. Li, Xu, Zhang, & Chang, 2021; Tan, Han, Ye, & Chen,

2020) and to track skill development (e.g., F. Li, Cohen, Bottge, & Templin, 2015; Madison

& Bradshaw, 2018; Studer, 2012; S. Wang, Yang, Culpepper, & A., 2018; S. Wang, Zhang,

Douglas, & Culpepper, 2018; Ye, Fellouris, Culpepper, & Douglas, 2016a; Ye et al., 2016a;

S. Zhang & Chang, 2020).

In this respect, diagnostic models, which are also known as restricted latent classifi-

cation models (RLCMs), cognitive diagnostic models, or diagnostic classification models,

provide a statistical framework for designing formative assessments by classifying student

knowledge profiles according to a collection of fine-grained attributes (de la Torre & Douglas,

2004; Rupp, Templin, & Henson, 2010; Templin, 2020; von Davier, 2008). One of the main

component of RCLMs is a domain-specific item-skill map (i.e., the Q matrix). Based on

the construction of the Q matrix, RCLMs can be built in two different ways: confirmatory

and exploratory. In this regard, there have been many studies conducted on confirmatory

RLCMs which need practitioners to establish the Q matrix and assume that it is a known

structure prior to the estimation of the models (e.g. de la Torre, 2011; Haertel, 1989; Henson,

Templin, & Willse, 2009; Junker & Sijtsma, 2001; Tatsuoka, 1985). However, in the case
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of the misspecification of this structure, model-fit issues may arise alongside potential mis-

classifications of examinees into latent classes Chen, Liu, Xu, and Ying (2015a). Recently, a

significant amount of research has been developed on exploratory RLCMs which infers the

underlying structure of Q matrix with the rest of the model parameters (e.g. Chen, Culpep-

per, Chen, & Douglas, 2018; Chen, Culpepper, & Liang, 2020; Chen, Liu, Xu, & Ying, 2015b;

Culpepper, 2019b; Culpepper & Chen, 2019; G. Xu & Shang, 2018).

As previously indicated, RLCMs are beneficial to estimate a student learning profile,

and can only provide static information at a given time. However, by combining with

a learning model, they can also provide a longitudinal perspective for student’s learning

profiles and information for attributes’ transition probabilities from non-mastery to mastery

states. In this respect, there have been conducted several studies to investigate the RCLMs

combined with a learning model (e.g. F. Li et al., 2015; Madison & Bradshaw, 2018; Studer,

2012; S. Wang, Yang, et al., 2018; S. Wang, Zhang, et al., 2018; Ye et al., 2016a; S. Zhang

& Chang, 2020). In these studies, Markov chain Monte Carlo (MCMC) algorithm has

been commonly used for estimation of the model parameters. The common reasons for

using MCMC are a difficulty in formulating a tractable form of the marginal likelihood

function for model parameters, and the burden of high dimensionality. In high dimensional

parameter spaces, MCMC adopts a sampling process to explore the posterior distribution of

parameters after many iterations. Although MCMC is a feasible estimation method in high

dimensional scenarios, determining convergence is never certain with finite sample size, and

it can require carefully chosen starting values and often a tremendous number of iterations.

Thus, a more computationally efficient algorithm may make this process more accessible in

classroom settings. As an alternative to MCMC, marginal maximum likelihood estimation

with the Expectation-Maximization (EM) can be applied since in many cases it requires

shorter computation time and also can better guarantee convergence.

Besides the eminence in the longitudinal perspectives of learning, student covariate is

another important component in educational settings. Covariates can be incorporated into
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RCLMs from two different angles: as a part of the measurement model possibly affecting

students’ item performance probabilities, and/or as a component affecting the mastery of the

attributes. There is a long-standing tradition and interest in incorporating covariates into

psychometric measurement models (Meredith & Millsap, 1992). In fact, including covariates

in the measurement models is closely connected with evaluating differential item functioning

(DIF), which is important for ensuring the validity of test scores and subsequent diagnostic

classifications. Concretely, the presence of DIF means that when two students have the same

knowledge and skills, their test results may differ because of irrelevant variables such as race,

gender, national origin, or test-taking ability. The implications of DIF are that teachers may

incorrectly infer students skills. For example, in artificial intelligence based online learning

system, unfamiliarity with the technological interfaces or tools (e.g., calculators, dictionaries,

spell-check, etc.) may create differential performance that could be interpreted as target

content skill deficits rather than differences in construct irrelevant variables. Furthermore, if

online learning systems, that rely upon RCLMs, assume items are DIF-free then the assigned

learning modules may target attributes that have already been mastered thereby making the

intervention ineffective. We can evaluate the extent to which there is DIF by incorporating

covariates into the measurement model. This enables researchers to disentangle the effects

of construct-irrelevant covariates from the true underlying latent structure.

Moreover, incorporating covariates effects on the attribute mastery can identify the

relevance of the covariates and reveal the association of covariates (if any) with the attribute

mastery probabilities. Using possible relevance of the covariates with the attribute mastery

may yield more accurate class membership probability estimates. In classroom settings,

recognizing the possible associations between the covariates and attributes mastery proba-

bilities may help identify at-risk students and benefit educators to design student-tailored

interventions that accelerate skill development. Beyond the educational settings, these in-

sights about the association between covariates and attribute possession probabilities may

have a valuable application in clinical studies. Covariates may carry important information
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about the subjects’ susceptibility to disease and provide as much information as the patient’s

answers to diagnostic tests.

When including covariates into a model, one challenge is to distinguish active covariates,

which relate to the outcome variable, from inactive ones. To address this issue, one can apply

a regularization technique to the loss function or incorporate a variable selection mechanism

into the priors. In this regard, Iaconangelo (2017) used a regularization technique (i.e., the

L1 penalty) to select the active covariates in the structural part of the three-step diagnostic

regression approach. In this thesis, we use a “spike-slab” variable selection procedure on both

item- and attribute-level covariates. The spike-slab variable selection procedure assumes that

the priors of each covariate coefficient follows a mixture of two normal distributions. The

variance of the prior distribution is governed by the activeness of the coefficients.

Given the light of the information above, the purpose of this thesis is to improve RCLMs

from two different points. In particular, Chapter 2 applies an EM algorithm to increase

the efficiency in estimating model parameters of RCLMs combined with a learning model.

Chapter 3 develops an exploratory RCLMs model in which the effect of students covariates on

item performance and attribute mastery are investigated while simultaneously uncovering

the latent structure. Moreover, instead of assuming the independence assumption among

attributes, which is difficult to satisfy when fine-grained attributes are measured, the Chapter

3 proposed a structural parameter (i.e., ψ) to govern the relationships among the attributes.

Chapter 4 extends the methodology in Chapter 3 by incorporating a “spike-slab” variable

selection procedure on item- and attribute-level covariates to distinguish active covariates

from inactivates one, and yield more parsimony models in the existence of inactive covariates.
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Chapter 2

First-Order Learning Models With
the GDINA: Estimation With the EM
Algorithm and Applications

2.1 Introduction

With the increasing emphasis on formative assessment in education, the value of fine-grained

feedback on student learning is becoming crucial for classroom assignments. Moreover, with

the great growth in online learning systems, embedded assignments - which can lead stu-

dents to individualized learning practice - are in great need. To estimate student learning

skills, cognitive diagnosis models can be effective. Several studies on CDMs in educational

settings, such as English language proficiency (Chiu & Köhn, 2015; Templin & Hoffman,

2013), proportional reasoning (Tjoe & de la Torre, 2014), fraction subtraction (de la Torre

& Douglas, 2004), and a few in psychology, such as pathological gambling (Templin & Hen-

son, 2006), social anxiety disorders (Chen, Liu, Xu, & Ying, 2015c), mental disorders (de la

Torre, van der Ark, & Rossi, 2018) have been conducted. Although all these studies gave

the fine-grained information about the examinees’ current status, they can only provide a

static picture at a given time-point. However, especially in education, progress in learning

material is the entire goal, and assuming that it is a static quantity ignores the purpose of

education. Although applying traditional CDMs sequentially at several time-points appears

to be a possible solution, this cannot capture the longitudinal perspective of learning directly.

Thus, the traditional CDMs should be combined with some methods that can consider the

change of skills over time. In this respect, several studies (e.g., Chen, Culpepper, Wang, &

Douglas, 2018; Kaya & Leite, 2017; F. Li et al., 2015; Studer, 2012; S. Wang, Yang, et al.,

2018; Ye, Fellouris, Culpepper, & Douglas, 2016b) have considered CDMs from a dynamic
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perspective. Studer (2012) proposed two models as dynamic CDMs by incorporating CDMs

into the knowledge tracing framework (Colbett, Anderson, & OB́rien, 1995) and the param-

eter driven process for change methods. The former one traces the changes at the skill-level

and is contrasted with knowledge tracing by considering more than one skill for each item

at once and gives more flexibility in choosing a CDM. The latter one traces the change

on the level of latent classes rather than the skill levels which is more parsimonious than

the previous method. Moreover, while Kaya and Leite (2017) and F. Li et al. (2015) per-

formed the latent transition analysis with CDMs as a measurement model, S. Wang, Yang,

et al. (2018) modeled students’ learning trajectories with a higher-order Markov model by

incorporating several latent and observed covariates, and Chen, Culpepper, Wang, and Dou-

glas (2018) gave a first-order hidden Markov model and applied it to a spatial reasoning

training module. Taking another approach, Corbett and Anderson (1994) performed the

method of Knowledge Tracing to track students’ skill transitions dynamically in intelligent

tutoring systems. By integrating assessment items into the learning materials, they tried to

monitor and enhance students’ skill transitions from unlearned states to the learned states

using a probabilistic framework. Although initially Corbett and Anderson (1994) set up

the measurement design in a way that every item can only check one skill at a time and

were restricted to having identical item parameters, later several studies were designed to

remove these limitations (Gonzalez-Brenes, Huang, & Brusilovsky, 2014; Gonzalez-Brenes &

Mostow, 2013; Pardos & Heffernan, 2010; Y. Xu & Mostow, 2012). In spite of the different

methodologies having been used to model learning trajectories, Markov chain Monte Carlo

(MCMC) has been commonly used for estimation of the model parameters. Common rea-

sons are a difficulty in formulating a tractable form of the marginal likelihood function for

model parameters, and the burden of high dimensionality which complicates this. In high

dimensional parameter spaces, MCMC adopts a sampling process to explore the posterior

distribution of parameters after many iterations. Although MCMC is a feasible estimation

method in high dimensional scenarios, determining convergence is never certain, and it can
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require carefully chosen starting values and often a tremendous number of iterations. An

alternative is marginal maximum likelihood estimation with the Expectation-Maximization

(EM) algorithm. By treating the latent parameters as “missing values”, the objective is to

maximize the marginal likelihood of the complete data which includes the observed data and

the current estimates of the latent variables based on the observed data and some provisional

model parameters. The purpose of this article is to study the EM algorithm in a longitudinal

framework with saturated and restricted CDMs as measurement models, and a first-order

Markov model for learning transitions. The contribution of this study is to offer a different

estimation procedure for the model parameters which can better guarantee convergence and

in many cases require shorter computation time. The effectiveness of estimation with the

EM-algorithm is investigated by considering different scenarios such as model complexity,

number of attributes, and sample size. Moreover, a data example of a module designed to

train students in spatial rotation skills is conducted to see the practical outcomes. The rest

of paper is organized into five sections. First a brief review of CDM and learning models is

given, then a section is devoted to the details of parameter estimation. Later a section on

the effectiveness of the procedure with simulated data is given, followed by the results of a

data analysis. Finally a discussion section is provided to summarize our findings and discuss

possible future directions.

2.2 Model Description

The proposed model can be considered the combination of two submodels: the measurement

model and the learning model. The cognitive diagnosis measurement model is used to

estimate the examinees’ latent skill classes by using observed responses, which is the static

part of the model, and the learning model is used for modeling skill acquisitions over time.

Following is a brief review of CDMs with learning.
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2.2.1 Cognitive Diagnosis Models

Many CDMs with different assumptions and constraints have been proposed to investigate

the mastery status of student knowledge on a fine-grained basis. These models can be

categorized based on their constraints in several ways. One way is to categorize a CDM as

compensatory or noncompensatory. Noncompensatory models require an examinee to master

all the attributes required by an item in order to correctly answer it, whereas compensatory

models allow some compensation for missing attributes by use of the others. Moreover,

based on how heavily the model is parameterized, they can be anywhere from very restrictive

to saturated. Saturated models naturally give better fit by requiring more parameters to

estimate than the restricted models, which are usually easier to interpret and often more

practical.

Let a binary response vector denote an examinee’s answer to items, with 1 indicating

a correct answer and 0 otherwise. In CDMs with binary attributes there are 2K possible

latent classes which can be denoted by αi = {αik} for k = 1, 2, . . . , K , with K being the

number of attributes assessed. The entries in the latent classes specify the mastery status

for an examinee on the K skills, with 1 indicating mastery and 0 nonmastery. Let Q denote

a matrix with J x K dimensions in order to map the items with the attributes. Each

row represents an item and includes 1s and 0s depending on whether the item requires the

attribute or not, respectively. A number of CDMs with different assumptions and constraints

on the data such as the deterministic inputs, noisy “and” gate model (DINA; Junker &

Sijtsma, 2001), the deterministic inputs, noisy “or” gate model (DINO; Templin & Henson,

2006), and the generalized DINA model (G-DINA; de la Torre, 2011) have been proposed.

In the present study the saturated GDINA and a restricted version of it, the DINA model,

are used as the measurement models.

The DINA model is one of the most commonly used CDMs because of its easy interpre-

tation and practicality. In this model, each examinee has an ideal response vector, ηi = {ηij}

for j = 1, . . . , J , where each entry is either ηij = 1 or ηij = 0 depending on whether the ex-
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aminee has all the attributes required by the item or lacks at least one of them, respectively.

The entries of the ideal response vector can be calculated for item j and examinee i:

ηij =
K∏
k=1

α
qjk
ik .

Moreover, each item has two item parameters referring to either guessing or slipping. The

guessing parameter is the probability of giving a correct answer to the item when the ideal

response of an examinee is ηij = 0, gj = P (Xij = 1|ηij = 0), and the slipping parameter is

the probability of giving an incorrect answer to the item when the examinee’s ideal response

is ηij = 1, sj = P (Xij = 0|ηij = 1). The item response function for examinee i and item j is

P (Xij = 1|αi, sj, gj, qj) = (1− sj)ηijg
(1−ηij)
j . (2.1)

The DINA model cannot distinguish among examinees who have the ideal response ηij = 0

because it assigns the same probability regardless of how many attributes the examinee

has not mastered (Rupp & Templin, 2008). A generalized version of the DINA overcomes

this limitation by including many more item parameters. In the GDINA, examinees are

partitioned into 2K
∗
j reduced latent groups by an item j where K∗j is the number of attributes

that the item j requires. The response function of GDINA is,

P (Xij = 1|α∗ij, δ) = δj0 +

K∗j∑
k=1

δjkαlk +

K∗j∑
k′=k+1

K∗j−1∑
k=1

δjkk′αlkαlk′ + ...+ δj12...K∗j

K∗j∏
k=1

αlk. (2.2)

where δj0 is the baseline effect which can be interpreted as the probability of correctly

answering an item for those who have mastered none of the attributes required by the item.

Parameter δjk is the main effect for the kth attribute on item j, which is the change of the

probability of giving a correct answer to an item once the examinee has achieved mastery

on the single attribute. δjkk′ has the same interpretation as δjk except that it is a change

due to having mastery on both attributes, and delta δj12...K∗j
is the interaction effect due to
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having multiple attributes at once.

2.2.2 Learning models

Cognitive diagnosis models provide a clear picture about the examinees’ learning profiles

on a fine-grained level, but they can only provide this information at a specific time-point.

However, during practice or a learning intervention, it is likely that some changes in students’

attribute profiles take place at each point in time from t to t + 1 where t = 1, 2, 3, ..., T .

Learning models may be used to capture changes between any two discrete recorded time-

points during a longitudinal learning assessment. Under this framework, examinee i, i =

1, 2, ..., I has a latent class vector (i.e., will be referred to as learning trajectory after this

point) which includes the latent classes that the examinee is classified for each time-point

αi = (αi1,αi2,αi3, ...,αiT ) where αit = (αit1, αit2, αit3, ..., αitK)>, and K is the number of

attributes. Moreover, each examinee also has an observed response vector which includes

the response vectors at each time-point X i = (X i1,X i2,X i3, ...,X iT ) with the tth entry

X it = (Xit1, Xit2, Xit3, ..., XitJ(t)))
>. At each time- point, there might be multiple items

administered to the examinees. Thus, J(t) represents the number of items in each time-

point, and J denotes the total number of items in the entire assessment, J =
∑T

t=1 J(t). The

number of items to be administered might be different from time-point to time-point but in

the present study, it will be the same at all time-points. Moreover, under learning models,

Qt denotes a Q matrix with the J(t) x K dimension at each time-point, which possesses the

same interpretation under measurement models. Under the current study, βt stands for the

item parameter vector for the items administered at time-point t, and they are assumed to

be time invariant. Specifically, it is assumed that the item parameters do not vary depending

on which time-points they are administered.

To model the attribute transitions between the learning states (i.e., mastery or non-

mastery), a Markov model with a monotonicity constraint is used. The monotonic trend

under this frameworks assumes that the probability of transition from a non-mastery to
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mastery state of a skill does not depend on which states any other skill has been. Moreover,

another constraint has been imposed: Once a transition occurs on a skill from a non-mastery

state to a mastery state, the probability of transitioning back to non-mastery state is zero

for an examinee i and an attribute k ∃t, t′, and t, t′ ≥ 1, ∀k,

P (αit′k = 1|αitk = 1) = 1 ∀t′ > t, and P (αit′k = 0|αitk = 1) = 0 ∀t′ > t.

In addition, the transition probabilities are time invariant, ∀t, t′, and t, t′ ≥ 1,

τk = P (αi(t+1)k = 1|αitk = 0) = P (αi(t′+1)k = 1|αit′k = 0).

Based on the assumptions above, the probability that examinee i hasαl(t+1) at time t+1 given

examinee i hasαl′ (t) at time t, and the skill transition probabilities τ where τ = (τ1, τ2, ..., τK)

is

P (αi(t+1) = αl(t+1)|αit = αl′ t, τ ) =
K∏
k=1

P (αi(t+1)k = αl(t+1)k|αitk = αl′ tk, τk). (2.3)

2.3 Parameter Estimation

To estimate the model and examinees’ parameters the expectation-maximization algorithm is

used. The initial estimates of the unknown population probabilities of the possible learning

trajectories are obtained by using random starting values for transition probabilities and

attribute prevalence. Once the probabilities of learning trajectories are determined, the log

marginalized likelihood is calculated across response data and initial item parameters. Later,

the item parameters and the skill transition probabilities are updated based on maximization

of the log-likelihood and updated probabilities of the learning trajectories respectively. After

several iterations on the skill transition probabilities and model parameters, the algorithm

stops if the difference of the marginalized log-likelihood between two consecutive iterations
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is under a certain cut point. The E- and M- steps of the algorithm will be discuss in detail

as follows.

E-Step: The likelihood of examinee i’s responses to items J(t) at time t given the αit = αlt

and item parameters βt is,

P (X it|αlt,βt) =

J(t)∏
j=1

P (Xijt = 1|αit = αlt,βt)
Xijt(1− P (Xijt = 1|αit = αlt,βt))

1−Xijt .

where P (Xijt = 1|αit = αlt,βt) is calculated depending on which measurement model

is used. Assuming item responses are independent over time and independent given the

learning trajectory, the likelihood of the response data of examinee i with the attribute

trajectory αl is,

P (X i|αl,β) =
T∏
t=1

J(t)∏
j=1

P (Xijt = 1|αit = αlt,βt)
Xijt(1− P (Xijt = 1|αit = αlt,βt))

1−Xijt .

The likelihood of the response data of all examinees is,

L(α,β;X) =
I∏
i=1

P (X i|αl,β)

The marginalized likelihood of the response data is,

L(β;X) =
I∏
i=1

2KT∑
l=1

P (X i|αl,β)
[ K∏
k=1

P (α1k)
T∏
t=2

P (αltk|αl(t−1)k)
]
,

and the log-marginalized likelihood of the response data is,

l(β;X) =
I∑
i=1

log
[ 2KT∑
l=1

P (X i|αl,β)
[ K∏
k=1

P (α1k)
T∏
t=2

P (αltk|αl(t−1)k)
]]
.

M-Step: The solution to partial derivatives of the log-marginalized likelihood with respect to

item parameters produces the intermediate item parameters’ estimates. Currently, the mod-
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els under consideration have closed-form solutions to the derivatives of the log-marginalized

likelihood. In the case of adopting a CDM model which does not have closed-form solution

(e.g., additive model), any standard optimization algorithm may be used. For example,

Gradient Descent (GD; Cauchy, 1847) can be performed to find the item parameter esti-

mates that can maximize the the log-marginalized likelihood. With a standard optimization

algorithm, the extension is straightforward because the item parameters are assumed not

to vary depending on which time-points they are administered. In the present study, the

item parameters are updated by using the closed-form solutions with the aid of intermediate

estimates for examinees’ probability distributions over all the learning trajectories from the

E-step. First, the estimate of having a correct answer to item j given the reduced attribute

group α∗ij is P̂ (α∗ij) =
Rα∗

lj

Iαlj
, where Iαlj is the expected number of examinees to be in the

reduced latent group αlj ,and Rαlj is the expected number of examinees to answer item

j correctly in the reduced latent group αlj. By denoting the set of examinees who are

administered item j at timepoint t as {N̄ijt}, Iαlj and Rαlj can be given by,

Iαlj =
T∑
t=1

[∑
i′∈{N̄ijt}

P (α∗ltj|Xi′ t)

]
,

Rαlj =
T∑
t=1

[∑
i′∈{N̄ijt}

[
P (α∗ltj|Xi′ t) Xi′ tj

]]
.

After updating P̂ (α∗ij), one can find the δj coefficients of the GDINA model by using

an appropriate design matrix explained in de la Torre (2011). Moreover, by applying the

appropriate design matrices and after some algebraic manipulations, the item parameters of

the DINA model, can be derived from GDINA parameters.

The next step is to recalculate the prevalence of the learning trajectories. First, the
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expected number, nl, of students in learning trajectory αl is calculated as,

nl =
I∑
i=1

P (αl|Xi;β).

Then the learning trajectory distribution is updated by,

P (αl|β) =
nl
I
, l = 1, 2, ..., L.

With the updated learning trajectory distribution, the attributes’ prevalence at the initial

time-point and the transition probabilities for each attribute can be estimated respectively

as it follows.

The probabilities of having and not having attribute k at initial time-point t = 1 are updated

by,

Πk1 =
2KT∑
l=1

1[αl1k = 1] P (αl|β),

Πk0 =
2KT∑
l=1

1[αl1k = 0] P (αl|β).

The probability of transitioning from non-mastery to non-mastery on attribute k at any

timepoint is,

τk00 =

∑T−1
t=1

[∑2KT

l=1 1[αl(t+1)k = 0|αltk = 0] P (αl|β)

]
∑1

r=0

∑T−1
t=1

[∑2KT

l=1 1[αl(t+1)k = r|αltk = 0] P (αl|β)

] .

The probability of transitioning from non-mastery to mastery on attribute k at any time-
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point is,

τk01 = 1− τk01 =

∑T−1
t=1

[∑2KT

l=1 1[αl(t+1)k = 1|αltk = 0] P (αl|β)

]
∑1

r=0

∑T−1
t=1

[∑2KT

l=1 1[αl(t+1)k = r|αltk = 0] P (αl|β)

] .

2.4 Simulation Study

A Monte Carlo simulation study with 50 independent replications is performed to investigate

the efficiency of the algorithm on the recovery rate of student and model parameters. Overall,

the sample size, number of attributes, length of test blocks, and the true model under which

the data are generated are treated as factors. In detail, to investigate the effect of sample

size on the accuracy of parameter estimation, three different sample sizes — 250, 500 and

1000 - are considered. Due to the negative effect of increasing the number of attributes,

the conditions are explored with four and six attributes to study the effects on computation

time and estimation accuracy. Two different time-points T = 3 and T = 5 which result in

different total numbers of items and item parameters are considered. Thus, the study has

four different Q matrices as they are presented in Table 2.1.

The fist 30 items (i.e., 10 items per time point) are the common items in theQ matrices.

Thus, the Q matrix for T = 3 is nested in the Q matrix for T = 5. Two different CDMs

are fitted, DINA and GDINA, and their response functions can be found in Equation 1

and Equation 2, respectively. Under the DINA model, guessing and slipping parameters are

drawn from U(0.05, 0.15). For the GDINA model, we categorize the item parameters under

three groups: guessing, slipping, and others. The guessing item parameters are sampled from

U(0.05, 0.15) for the latent group lacking all required attributes, the slipping item parameters

are drawn from U(0.05, 0.15) to cover the latent group with all required attributes, and, lastly,

the others group that includes the remaining latent groups have their item parameters picked

from U(0, 1) to represent the range of the values in real applications.
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Table 2.1: Q matrix

Item
K = 4 K = 6

K1 K2 K3 K4 K1 K2 K3 K4 K5 K6
Item1 1 0 0 0 1 0 0 0 0 0
Item2 0 1 0 0 0 1 0 0 0 0
Item3 0 0 1 0 0 0 1 0 0 0
Item4 0 0 0 1 0 0 0 1 0 0
Item5 1 0 0 0 0 0 0 0 1 0
Item6 0 1 0 0 0 0 0 0 0 1
Item7 0 0 1 0 1 1 0 0 0 0
Item8 0 0 0 1 1 0 1 0 0 0
Item9 1 1 0 0 1 0 0 1 0 0

Item10 1 0 1 0 1 0 0 0 1 0
Item11 1 0 0 1 1 0 0 0 0 1
Item12 0 1 1 0 0 1 1 0 0 0
Item13 0 1 0 1 0 1 0 1 0 0
Item14 0 0 1 1 0 1 0 0 1 0
Item15 1 1 0 0 0 1 0 0 0 1
Item16 1 0 1 0 0 0 1 1 0 0
Item17 1 0 0 1 0 0 1 0 1 0
Item18 0 1 1 0 0 0 1 0 0 1
Item19 0 1 0 1 0 0 0 1 1 0
Item20 0 0 1 1 0 0 0 1 0 1
Item21 1 1 1 0 0 0 0 0 1 1
Item22 1 1 0 1 1 1 1 0 0 0
Item23 1 0 1 1 1 1 0 1 0 0
Item24 0 1 1 1 1 0 1 1 0 0
Item25 1 1 1 0 1 0 0 1 0 1
Item26 1 1 0 1 0 1 1 1 0 0
Item27 1 0 1 1 0 1 1 0 1 0
Item28 0 1 1 1 0 1 0 0 1 1
Item29 1 0 0 0 0 0 1 1 1 0
Item30 0 1 0 0 0 0 0 1 1 1
Item31 0 1 0 1 1 1 0 0 0 1
Item32 0 0 1 1 1 0 1 1 0 0
Item33 1 1 0 0 1 0 1 0 1 0
Item34 1 0 1 0 1 0 1 0 0 1
Item35 1 0 0 1 1 0 0 1 1 0
Item36 0 1 1 0 1 0 0 1 0 1
Item37 0 1 0 1 1 0 0 0 1 1
Item38 0 0 1 1 0 1 1 1 0 0
Item39 1 1 1 0 0 1 1 0 1 0
Item40 1 1 0 1 0 1 1 0 0 1
Item41 1 0 1 1 0 1 0 1 1 0
Item42 0 1 1 1 0 1 0 1 0 1
Item43 1 1 1 0 0 1 0 0 1 1
Item44 1 1 0 1 0 0 1 1 1 0
Item45 1 0 1 1 0 0 1 1 0 1
Item46 0 1 1 1 0 0 1 0 1 1
Item47 1 1 1 0 0 0 0 1 1 1
Item48 1 1 0 1 0 0 1 1 0 0
Item49 1 0 1 1 1 1 0 0 0 0
Item50 0 1 1 1 0 0 0 1 1 1
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A first-order hidden Markov model is assumed for learning transitions with a constraint

that the transition probability from mastery to non-mastery at each stage is 0. The preva-

lence of each attribute is set to 0.5 at the initial time point. In addition, the attribute

transition probability from non-mastery to mastery for all attributes is 0.25. For each exam-

inee, there is a learning transition profile generated under the following procedure. First, the

probabilities for every possible trajectory on the attribute level are calculated based on the

transition and the initial prevalence probabilities. With these attribute level trajectory prob-

abilities, K attribute level trajectories are randomly sampled for each examinee. To obtain

each examinee’s learning trajectory, the K attribute level trajectories are rearranged. To

evaluate the efficiency of the model, attribute agreement rate (AAR),
∑N

i=1

∑K
k=1

α̂ikt=αikt

NK
,

and attribute pattern agreement rate (PAR),
∑N

i=1
I|α̂it=αit|

N
, are chosen as criteria to inves-

tigate person parameters in addition to the root mean squared error (RMSE) for the model

parameters. The average time that the algorithm takes to converge on each Monte Carlo

sample is reported for different conditions on the minute time unit. Due to space constraints,

we present GDINA item parameters along with their RMSE across three different categories

previously defined as: guessing, slipping, and others. Within the others category, RMSE is

taken to be to the averaged RMSE values for the rest of the item parameters associated with

the remaining latent groups.
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Table 2.2: Attribute pattern agreement rates

Model N K
T = 3 T = 5

1 2 3 1 2 3 4 5

GDINA

250
4

0.823
(0.004)

0.877
(0.003)

0.871
(0.003)

0.833
(0.004)

0.893
(0.003)

0.924
(0.002)

0.939
(0.003)

0.931
(0.002)

6
0.570

(0.007)
0.668

(0.006)
0.667

(0.005)
0.584

(0.006)
0.710

(0.004)
0.782

(0.004)
0.822

(0.004)
0.812

(0.005)

500
4

0.832
(0.003)

0.890
(0.003)

0.877
(0.003)

0.840
(0.003)

0.902
(0.002)

0.933
(0.002)

0.946
(0.002)

0.937
(0.002)

6
0.589

(0.005)
0.681

(0.004)
0.677

(0.005)
0.601

(0.005)
0.723

(0.003)
0.792

(0.003)
0.832

(0.003)
0.819

(0.003)

1000
4

0.835
(0.003)

0.893
(0.002)

0.881
(0.002)

0.843
(0.002)

0.906
(0.001)

0.933
(0.001)

0.945
(0.001)

0.937
(0.001)

6
0.592

(0.004)
0.687

(0.003)
0.684

(0.003)
0.616

(0.003)
0.737

(0.003)
0.799

(0.002)
0.836

(0.002)
0.824

(0.002)

DINA

250
4

0.794
(0.005)

0.897
(0.002)

0.909
(0.003)

0.781
(0.004)

0.893
(0.003)

0.944
(0.002)

0.966
(0.001)

0.966
(0.002)

6
0.609

(0.005)
0.759

(0.004)
0.803

(0.003)
0.602

(0.004)
0.771

(0.004)
0.854

(0.003)
0.906

(0.003)
0.914

(0.002)

500
4

0.794
(0.003)

0.896
(0.002)

0.911
(0.002)

0.786
(0.002)

0.893
(0.002)

0.941
(0.001)

0.964
(0.001)

0.967
(0.001)

6
0.619

(0.003)
0.764

(0.002)
0.806

(0.002)
0.609

(0.003)
0.776

(0.003)
0.866

(0.002)
0.915

(0.002)
0.919

(0.002)

1000
4

0.794
(0.002)

0.893
(0.002)

0.912
(0.002)

0.784
(0.002)

0.894
(0.001)

0.945
(0.001)

0.966
(0.001)

0.968
(0.001)

6
0.627

(0.003)
0.766

(0.002)
0.806

(0.002)
0.605

(0.003)
0.772

(0.002)
0.869

(0.002)
0.916

(0.001)
0.922

(0.001)

As shown in Table 2.2, the EM algorithm can provide accurate attribute pattern agree-

ment rates. As the model complexity increases, the classification rates decrease slightly.

Also the correct classification rates decline as the number of attributes increases from 4 at-

tributes to 6 attributes. The increase in the number of the time points, which involves an

increase in the total number of items, results in a rise in accuracy, especially in the 6-attribute

conditions.
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Table 2.3: Averaged attribute agreement rates

Model N K
T = 3 T = 5

1 2 3 1 2 3 4 5

GDINA

250
4

0.947
(0.001)

0.966
(0.001)

0.963
(0.001)

0.950
(0.001)

0.970
(0.001)

0.979
(0.001)

0.984
(0.001)

0.981
(0.001)

6
0.899

(0.002)
0.928

(0.001)
0.928

(0.001)
0.899

(0.001)
0.937

(0.001)
0.956

(0.000)
0.965

(0.000)
0.963

(0.000)

500
4

0.951
(0.001)

0.969
(0.001)

0.965
(0.001)

0.953
(0.006)

0.973
(0.004)

0.982
(0.003)

0.986
(0.003)

0.983
(0.003)

6
0.905

(0.001)
0.932

(0.001)
0.931

(0.001)
0.906

(0.001)
0.941

(0.001)
0.959

(0.001)
0.967

(0.001)
0.965

(0.001)

1000
4

0.951
(0.001)

0.970
(0.001)

0.967
(0.001)

0.953
(0.001)

0.974
(0.000)

0.982
(0.000)

0.985
(0.000)

0.983
(0.000)

6
0.906

(0.001)
0.933

(0.001)
0.932

(0.001)
0.910

(0.001)
0.944

(0.001)
0.960

(0.000)
0.968

(0.000)
0.966

(0.001)

DINA

250
4

0.930
(0.002)

0.969
(0.001)

0.973
(0.001)

0.919
(0.002)

0.964
(0.001)

0.983
(0.001)

0.990
(0.000)

0.991
(0.000)

6
0.898

(0.001)
0.943

(0.001)
0.956

(0.001)
0.892

(0.001)
0.944

(0.001)
0.968

(0.001)
0.981

(0.001)
0.983

(0.001)

500
4

0.931
(0.001)

0.968
(0.001)

0.974
(0.001)

0.922
(0.001)

0.964
(0.001)

0.982
(0.000)

0.990
(0.000)

0.991
(0.000)

6
0.901

(0.001)
0.944

(0.001)
0.956

(0.001)
0.893

(0.001)
0.945

(0.001)
0.971

(0.001)
0.983

(0.000)
0.984

(0.000)

1000
4

0.931
(0.001)

0.967
(0.001)

0.974
(0.001)

0.921
(0.001)

0.964
(0.000)

0.983
(0.000)

0.990
(0.000)

0.991
(0.000)

6
0.903

(0.001)
0.945

(0.001)
0.957

(0.001)
0.892

(0.001)
0.945

(0.001)
0.971

(0.000)
0.983

(0.000)
0.985

(0.000)

Table 2.3 presents the attribute agreement rates which are averaged over the attributes

and the Monte Carlo standard deviations of the replications. The patterns are quite simi-

lar to vector-wise classification rates. As the model complexity increases the classification

rates slightly decrease in the 6-attribute conditions, but in the 4-attribute conditions the

classification rates are mostly the same.
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Table 2.4: Root mean square error (RMSE) transition probabilities from 0 to 1

Model N K T = 3 T = 5

GDINA

250
4

0.033
(0.002)

0.023
(0.001)

6
0.042

(0.002)
0.028

(0.001)

500
4

0.022
(0.001)

0.016
(0.001)

6
0.031

(0.001)
0.019

(0.001)

1000
4

0.017
(0.001)

0.012
(0.001)

6
0.020

(0.001)
0.012

(0.001)

DINA

250
4

0.031
(0.002)

0.024
(0.001)

6
0.037

(0.001)
0.027

(0.001)

500
4

0.021
(0.001)

0.018
(0.001)

6
0.026

(0.001)
0.017

(0.001)

1000
4

0.016
(0.001)

0.013
(0.001)

6
0.017

(0.001)
0.013

(0.001)

In Table 2.4, the RMSE of probabilities from the non-mastery state to mastery state are

presented. As the number of time points increases, the RMSEs decrease slightly. The change

in the sample size does have a decreasing effect on the RMSEs. Moreover, the increase in

the number of attributes does not cause any change in the RMSEs. Model complexity does

not affect the RMSEs of transition probabilities. The computer run times per iteration for

converging to the maximum likelihood estimate under different conditions are recorded and

presented in Table 2.5.
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Table 2.5: Average time (minutes) to until the chain converges

Model N K T = 3 T = 5

GDINA

250
4

0.060
(0.002)

0.232
(0.009)

6
1.110

(0.074)
15.231
(0.654)

500
4

0.093
(0.004)

0.439
(0.017)

6
1.823

(0.052)
28.121
(0.906)

1000
4

0.153
(0.008)

0.776
(0.032)

6
3.519

(0.098)
48.804
(1.330)

DINA

250
4

0.017
(0.001)

0.062
(0.004)

6
0.294

(0.018)
3.863

(0.216)

500
4

0.030
(0.000)

0.118
(0.002)

6
0.428

(0.013)
5.408

(0.116)

1000
4

0.058
(0.001)

0.239
(0.003)

6
0.866

(0.011)
11.172
(0.143)

Overall, the algorithm seems quite efficient with respect to the computational run time.

The longest time the algorithm takes is on the 6-attribute conditions with 1000 sample size

(48.80 minutes). This is because more iterations are needed to converge in this condition.

Table 2.6 presents the RMSE of the guessing and slipping parameters for both DINA and

GDINA, and averaged RMSE values for the rest of the item parameters associated with

the remaining latent groups in GDINA, other. As expected, the RMSEs decrease as the

sample size increases, and this decreasing pattern is clearer in the conditions with GDINA.

The increase in the number of attributes usually causes a decrease on the accuracy of the

parameter estimates, especially with the GDINA with the small sample size. The reason that

RMSEs are relatively high in the GDINA model might be due to the number of parameters
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to be estimated in GDINA are higher than the DINA model.

Table 2.6: Root mean square error (RMSE) of guessing and slipping

Model N K
T = 3 T = 5

Guessing Slipping Other Guessing Slipping Other

GDINA

250
4

0.061
(0.002)

0.036
(0.001)

0.085
(0.001)

0.075
(0.002)

0.028
(0.000)

0.094
(0.001)

6
0.089

(0.003)
0.043

(0.001)
0.104

(0.002)
0.111

(0.003)
0.032

(0.000)
0.113

(0.002)

500
4

0.044
(0.001)

0.025
(0.000)

0.057
(0.001)

0.052
(0.001)

0.020
(0.000)

0.062
(0.001)

6
0.057

(0.002)
0.029

(0.001)
0.070

(0.001)
0.073

(0.001)
0.023

(0.000)
0.074

(0.001)

1000
4

0.031
(0.001)

0.017
(0.000)

0.040
(0.001)

0.037
(0.001)

0.014
(0.000)

0.044
(0.001)

6
0.042

(0.001)
0.021

(0.000)
0.049

(0.001)
0.053

(0.001)
0.016

(0.000)
0.052

(0.001)

DINA

250
4

0.029
(0.001)

0.034
(0.001)

N/A
0.031

(0.000)
0.028

(0.000)
N/A

6
0.030

(0.001)
0.038

(0.001)
N/A

0.032
(0.001)

0.030
(0.001)

N/A

500
4

0.020
(0.000)

0.023
(0.000)

N/A
0.022

(0.000)
0.020

(0.000)
N/A

6
0.020

(0.000)
0.270

(0.000)
N/A

0.022
(0.000)

0.021
(0.000)

N/A

1000
4

0.014
(0.000)

0.017
(0.000)

N/A
0.015

(0.000)
0.014

(0.000)
N/A

6
0.014

(0.000)
0.018

(0.000)
N/A

0.015
(0.000)

0.015
(0.000)

N/A

2.5 Analysis of Spatial Rotation Data

This section is devoted to a real data application of the proposed model on the data collected

by S. Wang, Yang, et al. (2018). By extending and embedding a revised version of the Purdue

Spatial Visualization Test (PSVT-R; Yoon, 2011) into an online learning platform, S. Wang,

Yang, et al. (2018) created an interactive learning tool for the students’ rotation skills.

The dataset with 50 items was collected from the 351 subjects studied in the Department
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of Psychology at the University of Illinois at Urbana-Champaign. The assessment with

intervention is to administer to a block of cognitively-based questions to students and later

provide relevant interactive learning materials in order to boost learning. A total of 5 different

item blocks each containing 10 spatial reasoning items were administered at 5 different

time-points. In order to eliminate the effect of time on the item parameter estimates (i.e.,

effect of mastering the attributes over time), each test block was administered to examinees

randomly at different time-points so that they were distributed evenly over item positions.

The questions were constructed to check the presence of four attributes related to the rotation

skills: (a) 90 ◦ x axis, (b) 90◦ y axis, (c) 180 ◦ x axis, and (d) 180 ◦ y axis. The complexity of

the questions was varied depending on how many skills were being checked simultaneously. In

present data set, the maximum number of skills an item can possibly include is up to 3. Each

item is comprised of an object with two different rotations, and students are expected to figure

out which rotation is applied. The latent classes of students at each time-point are estimated

under the GDINA and DINA models. With the same monotonicity constraint constraints

on the attribute transitions, the transition parameters of 4 attributes are estimated with a

first-order hidden Markov model. Figure 2.1 presents the estimated guessing and 1−slipping

parameters under the DINA and GDINA models. Although the item parameters are not

identical in the two models, they are considerably close to each other. The slipping parameter

estimates appear to be reasonable whereas the guessing parameters are relatively high with

some of them exceeding 0.5. This problem likely resulted from the multiple choice format in

which some of the wrong asnwers could easily be eliminated from consideration. Table 2.7

shows the initial state probabilities for the mastery state, it can be seen that over half of the

students have mastered all four attributes at time-point one. Furthermore, Table 2.8 reflects

that the transition probabilities from the non-mastery state to mastery state are quite low.

Particularly, the possibility that learning attribute three during the intervention is zero.
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Figure 2.1: Real data estimated slipping and guessing parameters under the DINA and
GDINA model
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Table 2.7: Estimated initial probabilities for the mastery state

Model Attribute

1 2 3 4

GDINA 0.588 0.628 0.564 0.522

DINA 0.698 0.634 0.630 0.569

Table 2.8: Estimated transition probabilities from non-mastery to mastery state

Model Attribute

1 2 3 4

GDINA 0.0002 0.0413 0.0000 0.1478

DINA 0.0002 0.0711 0.0000 0.1805

For a further analysis on real data, we define a couple discrepancy measures to in-

vestigate the model fit versus actual observations that span various important aspects of

the model, one corresponding to the measurement model and the other corresponding to

learning transitions. The behavior of the model for item parameters is investigated by the

discrepancy between the proportion of people who answered items correctly under the real

data and the proportion expected under the fitted model, and do so over time for the learn-

ing aspect. Later, we use the parametric bootstrap method to approximate an observed

significance level using these discrepancy measures (for an overview of parametric bootstrap,

see; Cheng, Holland, & Hughes, 1996). After various analyses, the results show that un-

der both the DINA and GDINA models the discrepancy between the proportion of people

who answered items correctly under the real data and the proportion expected under the

fitted model are 66 percent of the time less than the discrepancy between the proportion of

people who answered items correctly under the bootstrap samples and the proportion ex-

pected under the fitted model on the bootstrap samples, which indicates 33 out of 50 items

gives an acceptable model fit results under 10 percent significance level. Furthermore, the

misfitting items were generally the same ones under both models. The results of the discrep-

ancy measure analysis for the transition probabilities showed that the GDINA model yields
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a discrepancy on the real data 88 percent of the times less than the parametric bootstrap

simulations, which means the parametric bootstrap p-value is 0.88, indicating no reason to

believe misfit. By comparison, the parametric bootstrap p-value for transition probabilities

when using the DINA measurement model was a smaller but still insignificant 0.33. Thus,

it can be concluded that both methods explain the Spatial Rotation data well in terms of

describing the transition probabilities. Alongside the approximate p values for discrepancy

measures, we also investigate the Bayesian information criterion (BIC) for model selection

between the DINA and GDINA models. The DINA model results lower BIC value (i.e.,

14392.41) then the GDINA model (i.e., 14480.88). Thus, the DINA model is preferable to

GDINA on Spatial Rotation data.

2.6 Discussion

In education, the importance of formative assessment has been emphasized more and more.

Tracking what students have learned in detail during learning interventions could be very

helpful for designing individualized learning environments and accelerating productivity.

CDMs can be seen as the models answering this need efficiently. However, traditional CDMs

cannot provide any information on the transitions of attributes or on factors that have clear

effects on learning practices. Under this instance, modeling the transitions and possible

co-variates can be beneficial. However, the parameter estimation process can be quite chal-

lenging because of the increase on the number of parameters to be estimated.

In the current literature of modeling transition probabilities (e.g., Chen, Culpepper,

Wang, & Douglas, 2018; Kaya & Leite, 2017; S. Wang, Yang, et al., 2018), MCMC is widely

used because of the complexity of the marginal likelihood, and the relative simplicity of

the complete likelihood. However, MCMC can require long run times, and there is never

complete certainty that it has reached equilibrium so that parameter estimates converge

to the true posterior mean. The Expectation-Maximization algorithm can be seen as an
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alternative to MCMC for parameter estimation, that more directly targets a point estimate.

In the present study, we examine the EM algorithm by varying several factors which

are complexity of measurement model, number of attributes, sample size, and number of

time points. The computation run times are studied. Results show that estimation accuracy

for the patternwise and attribute wise classification rates are promising for a majority of

the conditions. For the condition with the relatively low sample size and high number of

attributes, the correct classification rate drops significantly, and the RMSE of parameter

estimates increases, which is expected. In conjunction with the accurate results, the com-

putation run time is also quite short. Except for only three conditions, all others are under

5 minutes, even some taking as little as a few seconds. One reason for the relatively high

computation time of the three conditions is the greater number of iterations required to

converge to the maximum likelihood estimate.
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Chapter 3

Extending Exploratory Diagnostic
Classification Models: Inferring the
Effect of Covariates

3.1 Introduction

Formative assessments have been considered as a foremost component of the traditional

classroom setting. Diagnostic models provide a statistical framework for designing formative

assessments by classifying student knowledge profiles according to a collection of fine-grained

attributes (de la Torre & Douglas, 2004; Rupp et al., 2010; Templin, 2020; von Davier,

2008). In fact, learning technology algorithms leverage the diagnostic modeling framework

by tailoring learning interventions to adapt to individual students’ capabilities and needs

(e.g., Chen, Li, et al., 2018; Han et al., 2020; Huang et al., 2019; X. Li et al., 2021; Tan et

al., 2020) and to track skill development (e.g. F. Li et al., 2015; Madison & Bradshaw, 2018;

Studer, 2012; S. Wang, Yang, et al., 2018; S. Wang, Zhang, et al., 2018; Ye et al., 2016a;

S. Zhang & Chang, 2020).

The context by which students learn may be important to understand when making

diagnostic decisions. For instance, students may receive distinct interventions that target

specific learning objections or students may be multiskilled with prior knowledge and expe-

riences that inform mastery on the target attributes. It is therefore important to understand

how a broader collection of student characteristics, which we refer to as covariates, shape

performance and attribute mastery. The existing research demonstrates the value of using

covariates to shape formative assessments in education. The advantages of including the

students’ covariates into diagnostic models can be clustered around three primary purposes.

Covariates can detect the possible differential item functioning (DIF) to provide fair test
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designs across diverse populations (e.g. F. Li, 2008; X. Li & Wang, 2015; Z. Wang, Guo, &

Bian, 2014; W. Zhang, 2006). Covariates are also used to explain individual differences or

serve as indicators to evaluate educational intervention effects (e.g. Ayers, Rabe-Hesketh,

& Nugent, 2013; Iaconangelo, 2017; Minchen, de la Torre, & Liu, 2017; S. Wang, Yang, et

al., 2018; Zhan, Jiao, & Liao, 2018). Thus, exploring covariates might help to identify at-

risk students and benefit educators to design student-tailored interventions that accelerate

skill development. Moreover,using covariates, like response times (RTs) or other student

experiences associated with the target attributes, might improve the accuracy of the model

parameter estimates and attribute classification rates (e.g. S. Wang, Zhang, et al., 2018;

S. Wang, Zhang, & Shen, 2020).

All the existing studies above analyze covariates using the restricted latent class mod-

els (i.e., RLCMs) in a confirmatory fashion. The application of confirmatory methods is

appropriate in cases where the underlying structure in terms of how attributes relate to

observed performance is precisely known (i.e., the Q matrix). However, using an incorrect

latent structure can adversely impact classification decisions (Henson & Templin, 2007), so

exploratory methods that infer the latent structure from student responses may be preferred.

Recently, a significant amount of research has also developed exploratory RLCMs which in-

fer the underlying structure of the Q-matrix (e.g. Chen, Culpepper, Chen, & Douglas, 2018;

Chen et al., 2020, 2015b; Culpepper, 2019b; Culpepper & Chen, 2019; G. Xu & Shang, 2018).

However, one short-coming of existing exploratory RLCMs is that current methods are not

designed to incorporate covariates, which may limit the types of inferences and insights that

are available to applied researchers and educators.

In this paper, we offer new methods for including covariates in exploratory RLCMs.

Specifically, we develop three general strategies for including covariates in exploratory RL-

CMs. For instance, we consider models that include covariates at the item level (i.e., the

Γ model), the attribute level (i.e., the ζ model), or both item and attribute levels (i.e., the

saturated model) simultaneously. For the Γ model, we investigate the effect of the covari-
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ates on the probability of correctly answering an item. Similarly, the ζ model considers the

relationship between the covariates and the probability that a student possesses a particular

attribute. We present a Markov chain Monte Carlo (MCMC) algorithm using a Metropolis-

within-Gibbs algorithm for approximating the model parameter posterior distribution.

The layout of the rest of the paper is as follows. First, we introduce our novel framework

for incorporating covariates into exploratory RLCMs. Second, we present a Bayesian model

specification and discuss details related to posterior inference. Third, we report a Monte

Carlo simulation study design and discuss its results concerning the accuracy of model pa-

rameter recovery. Fourth, we apply our method to a spatial rotation test and demonstrate

the types of inferences that are available with our modeling framework. Finally, we provide

a discussion section with the final remarks and future research directions.

3.2 Model Specification

We denote an individual with i; i = 1, . . . , N , an item with j; j = 1, . . . , J , and an attribute

with k; k = 1, . . . , K. We let Y = (Y1, . . . ,YN)> denote the N×J response matrix of random

binary responses with the ith row defined as Yi = (Yi1, Yi2, . . . , YiJ)> and we let the observed

value be y = (y1, . . . ,yN)> where yi = (yi1, yi2, . . . , yiJ)> and yij ∈ {0, 1}. We consider the

case where observed responses are described by an underlying set of attributes. That is,

each individual respondent has a latent binary attribute pattern αi = (αi1, αi2, . . . , αiK)> in

which each entry will be 1 if the individual has mastered that attribute and 0 otherwise.

The purpose of this section is to introduce our general modeling framework for in-

corporating covariates into the exploratory RLCM framework. We consider two types of

covariates, which are covariates that relate to: 1) item responses; and 2) attributes. More-

over, X is an item-related matrix of covariates with the dimension N × V where V is the

number of covariates, and the ith row for an individual i is xi = (xi1, xi2, . . . , xiV )>. Simi-

larly, Z is an attribute-related covariate matrix with the dimension N × L where L is the
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number of covariates included in Z, and the ith row is denoted by zi = (zi1, zi2, . . . , ziL)>.

It is important to note that xi and zi are free to include the same covariates.

3.2.1 Model for Item-Related Covariates

To simplify the formulation, we introduce a design matrix such that A = (a1, . . . ,aN)> is

a matrix with the dimension N × 2K , where ai is a design vector for individual i based

on the αi. As an example, let’s assume K = 3. The attribute pattern for an indi-

vidual i will be in the format αi = (αi1, αi2, αi3)>. Thus, the design matrix will be

ai = (1, αi1, αi2, αi3, αi1αi2, αi1αi3, αi2αi3, αi1αi2αi3)> where the first element (i.e., “1”) stands

for the intercept and the remaining elements correspond with main-effects and interaction

terms. We consider the following item response for the probability that individual i correctly

respond to item j,

θij = P (Yij = 1|αi,γj,βj) = Φ
(
a>i βj + x>i γj). (3.1)

where Φ is the cumulative distribution function of the standard normal distribution. In

Equation 3.1, the relationship between attributes and item responses is denoted by the

vector of regression coefficients, βj. βj is the 2K vector of regression coefficients indexed

by {βjp}2K−1
p=0 . The relationship between the item-level covariates for individual i, xi, and

response probabilities is γj, which is a V vector of coefficients for item j.

3.2.2 Model for Attribute-Related Covariates

Previous research modeled dependence among the attributes using a variety of strategies.

The most common approach is to use an unstructured π vector, and other options include

using a more parsimonious structure (e.g. Chen & Culpepper, 2020; de la Torre & Douglas,

2004; Henson et al., 2009; Templin, Henson, Templin, & Roussos, 2008). We do not assume

the attributes are independent when constructing the latent class probabilities. Thus, the
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joint distribution for the attribute profile for individual i can be factored as

p(αi) = p(αi1)p(αi2|αi1) . . . p(αiK |αi1, . . . , αi,K−1). (3.2)

We use the factored representation of the joint distribution for attributes to model the effect

student covariates have on the probability of latent class membership. We define a parameter

ψ = (ψ1, . . . ,ψK)> as a K × 2K−1 matrix that describes the structure of the relationship

among the attributes. In addition, we incorporate the covariates at the attribute level. Thus,

the probability examinee i belongs to an attribute class αi is influenced by both examinee’s

covariates as well as the relations among attributes. Specifically, we use the following probit

link to model the joint distribution for the probability of class membership for individual i,

p(αi|ψ, ζ) =
K∏
k=1

Φ
(
a>i,K−1ψk + z>i ζk

)αik
(
1− Φ

(
a>i,K−1ψk + z>i ζk

))1−αik (3.3)

where ai,K−1 is a design vector defined by a subset of αi pattern (i.e., (αi1, . . . , αi,K−1)).

For example, for K = 3, the design matrix will be ai,K−1 = (1, αi1, αi2, αi1αi2)> where the

first element (i.e., 1) stands for the intercept. The rows of ψ include a fixed pattern of

zeros based upon the order the attribute distribution is factored (e.g., see Equation 3.2).

Thus, the number of non-zero elements in ψ equals to 2K − 1. For example, for K = 3,

ψ1 = (ψ11, 0, 0, 0)>, ψ2 = (ψ21, ψ22, 0, 0)>, and ψ3 = (ψ31, ψ32, ψ33, ψ34)>. The relationship

between the covariates and attributes are denoted by the K × L matrix of coefficients ζ =

(ζ1, . . . , ζK)> where for individual i, ζk is the relationship between zi and the conditional

attribute mastery probabilities.

3.2.3 Likelihood for the Saturated Model

We next describe the likelihood for the saturated model. Note we discuss several important

special cases of our model in the next subsection. The conditional likelihood of observing yi
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under the local independence given the item-level and attribute-level covariates is

p(yi|αi,Γ,B) =
J∏
j=1

θ
yij
ij (1− θij)1−yij (3.4)

where Γ = (γ1, . . . ,γJ)> is the J × V item-level regression coefficients matrix and B =

(β1, . . . ,βJ)> denotes the J × 2K matrix of the regression coefficients.

Thus, the likelihood for individual i is

p(yi|B,Γ,ψ, ζ) =
2K−1∑
c=0

πicp(yi|α>i v = c,B,Γ) (3.5)

where we define πic = P (α>i v = c|ψ, ζ) to be the conditional probability that individual i

belongs to class c and we note the use of the vector v = (2{K−1}, 2{K−2}, . . . , 1)> to create a

bijection between the binary attribute pattern and a integer c, such that c = 0, . . . , 2K − 1.

The likelihood function for a sample of N independent observations can be formulated as

the product of N respondents’ likelihoods,

p(y|B,Γ,ψ, ζ) =
N∏
i=1

2K−1∑
c=0

πicp(yi|α>i v = c,B,Γ) (3.6)

where y = (y1, . . . ,yN)> is a N × J matrix of responses.

3.2.4 Special Cases

From the saturated model, we derived two different parsimonious models. One model (i.e.,

the Γ model) associates covariates with the probability of correctly answering an item, but

not the attributes, and the other model (i.e., the ζ model) associates covariates with the

probability of mastering an attribute, but not the item responses. Moreover, in order to

investigate the benefit of the covariates on uncovering the latent structure, we also consider

the base model, which excludes attributes. The connection between the saturated model
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and the special cases are presented below:

• Saturated model where both Γ and ζ are estimated.

• Base model where Γ = 0 and ζ = 0.

• Γ model where Γ is estimated and ζ = 0.

• ζ model where Γ = 0 and ζ is estimated.

The various special cases may be relevant for different researchers. For instance, re-

searchers interested assessing DIF may be more interested in the Γ model to assess whether

covariates relate to item responses. In contrast, intervention studies may focus on the ζ

model given the goal is to test hypotheses about how experimental conditions or student

characteristics relate to attribute mastery. Additionally, researchers would deploy the base

model in the absence of covariates.

3.3 Bayesian Inference of the Saturated Model

We next discuss a Bayesian model for inferring the model parameters. We first discuss

the prior specifications. Then introduce the full conditional distributions and describe a

Metropolis-within-Gibbs sampling algorithm for approximating the posterior distribution.

3.3.1 Bayesian Formulation

The following subsection introduces our novel Bayesian formulation. The following five

subsections discuss: 1) data augmentation for item responses; 2) priors for the effects of

covariates for item responses; 3) data augmentation for attributes; 4) priors for the effects of

covariates for attribute mastery probabilities; and 5) priors for inferring the latent structure

related parameters.
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Item Augmented Data

We use the classic probit data augmentation approach (Albert & Chib, 1993). That is, we

define a deterministic relationship between the observed binary responses and a continuous

augmented random variable as Yij = 1(Y ∗ij > 0). Next, in order to augment our model we

specify the following normal distribution for the augmented data,

Y ∗ij |αi,βj,xi,γj ∼ N (a>i βj + x>i γj, 1). (3.7)

Item-Level Covariate Coefficients

We adopt a Zellner (1986) g-prior for the covariate regression coefficients, γj. That is, the

prior for γj is the following multivariate normal distribution,

γj|vγ ∼ NV (0, (v−1
γ )(X>X)−1) (3.8)

where the mean is a vector of zeros and the prior variance-covariance matrix is a function of

the predictor cross-products (i.e., X>X) and a scalar precision, vγ. Further note we choose

a gamma prior for the hyper-parameter vγ, vγ ∼ gamma(aγ0, bγ0).

Attributes and Augmented Data

We use the probit data augmentation for attributes, as well. Specifically, we use the following

formation for αik,

αik = 1(α∗ik > 0)

α∗ik|αi1, αi2, . . . , αi,k−1, ζk,ψk ∼ N (a>i,K−1ψk + z>i ζk, 1) (3.9)

where α∗ik is a continuous, augmented version of αik that has a normal distribution condi-

tioned on the first k − 1 attributes, (αi1, . . . , αi,k−1), and the coefficients ζk and ψk.
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Attribute-Level Covariate Coefficients

The ζ parameter reveals the relationship between the attribute-level covariates and attribute

mastery probabilities. We specify a g-prior for ζk in the following multivariate normal

distribution with a vector of zeros for the mean and a variance-covariance matrix, which is

a function of the covariate cross-products and a scalar precision vζ ,

ζk|vζ ∼ NL(0, (v−1
ζ )(Z>Z)−1) (3.10)

where vζ is sampled from the gamma distribution, vζ ∼ gamma(aζ0, bζ0), and Z is an

attribute-related covariate matrix as described in the model selection section.

We specified a multivariate normal prior for the 2K − 1 non-zero elements of ψk’s to model

the relationships among the attributes,

ψk|vψ ∼ N2k−1(02k−1 , (v−1
ψ )I2k−1) (3.11)

where the variance-covariance matrix assumes attributes are a priori independent with vψ

as a hyper parameter sampled from the gamma distribution vψ ∼ gamma(aψ0, bψ0).

Latent structure related parameters

In exploratory RLCMs, researchers need to infer an underlying structure between attributes

and the binary, domain-specific item-skill map— i.e., the Q matrix. Assuming that the

elements of Q are conditionally independent and follow Bernoulli distributions—as qjk|ν ∼

Bernoulli(ν) where ν has a beta prior ν ∼ beta(aν , bν), the joint prior distribution for Q is,

p(Q|ν) ∝
( J∏
j=1

K∏
k=1

νqjk(1− ν)1−qjk
)
1(Q ∈ Q) (3.12)

where Q denotes the identifiable space of theQmatrix. Culpepper (2019a) introduced a fully

Bayesian model for inferring Q while applying a “spike-slab” prior for the βj, but one limita-
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tion of the approach is that the formulation imposed a more restrictive monotonicity condi-

tion. They introduced a structure, q̃j = (1, qj1, . . . , qjK , qj1qj2, . . . , qj(K−1)qjK , . . . ,
∏K

k=1 qjk)
′,

to define the activeness of each βjp. Later, Chen et al. (2020) introduced a sparse latent

class model with the latent structure defined by a ∆ = (δ1, . . . , δJ) matrix rather than

a Q matrix. In this setting, the elements of δj denote the activeness of each βjp param-

eter, δj = (1, δj1, . . . , δjK , δj12, . . . , δj(K−1)K , . . . , δj1...K)′ ∈ {0, 1}2K . Thus, δj and βj are

connected in a way that a δjp is 1 if the corresponding parameter βjp is active, and zero

otherwise. Chen et al. (2020) relaxed the restrictive monotonicity condition of Culpepper

(2019a), but the approach does not provide a mechanism for specifying expert knowledge

about the Q matrix. In addition, a method proposed by Balamuta and Culpepper (2021)

allows the inclusion of expert knowledge about Q links βj to qj through the structure of

δj as p(β|Q) =
∑

all∆ p(β|∆) × p(∆|Q). To establish a stochastic relationship between δj

and qj, Balamuta and Culpepper (2021) used a confirmatory DINA model with common

guessing, g, and slipping, s, parameters across all qj.

Thus, the prior distribution of δjp is parameterized as follow

p(δjp|qj, g, s) ∼ g(1−q̃pj)(1− s)q̃pj (3.13)

where q̃jp is the pth entry of the q̃j in Culpepper (2019a).

Additionally, we deploy the following truncated, conditionally normal prior for

βjp|βj(p), δjp as follows,

p(βjp|δjp,βj(p)) ∼ v−1/2
p exp

(
− 1

2
β2
jp/vp

)
1(βjp > Ljp) (3.14)

where βj(p) excluded βjp from βj, Ljp is the lower bound for the βjp, and δjp is the activeness

parameter associated with p. Note this is a stochastic search variable selection (SSVS) prior

(Culpepper, 2019a; George & McCulloch, 1993) such that vjp = δjp/w1 + (1− δjp)/w0 where

the precisions for the spike and slab are w0 and w1, respectively.
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3.3.2 Posterior Inference

Next, we specify the full conditional distributions for the parameters under consideration

for our Metropolis-within-Gibbs sampling algorithm. Similar to the previous section, we

present the posterior specifications under five subsections:1) data augmentation for item

responses; 2) posterior for the effects of covariates for item responses; 3) data augmentation

for attributes; 4) posterior for the effects of covariates for attribute mastery probabilities; 5)

posterior for inferring the latent structure related parameters.

Item Augmented Data

The full conditional distribution of the augmented response data follows a truncated normal

distribution,

Y ∗ij |Yij = yij,αi,βj,γj ∼ N (a>i βj + x>i γj, 1)1(Y ∗ij > 0)yij1(Y ∗ij ≤ 0)1−yij . (3.15)

where βj denotes the relationship between attributes and item responses and ai is a design

vector for individual i based on the αi. xi is the ith student’s item-related covariate vector,

and γj is the item-related covariate coefficient vector associated item j.

Item-Level Covariate Coefficients

The full conditional distribution of γj is a multivariate normal distribution with a V -

dimensional covariate space,

γj|y∗1:N,j,α1:N ,βj ∼ NV (µγj,Σγ) (3.16)

where y∗1:N,j = (y∗1j, . . . , y
∗
Nj)
′, α1:N = (α1, . . . ,αN), Σγ = ((1 + vγ)X

>X)−1 and µγj =

ΣγX
> (y∗1:N,j −Aβj

)
. In addition, the full conditional distribution of the hyper-parameter

vγ is vγ|Γ ∼ gamma(aγ1, bγ1) where aγ1 = JV
2

+ aγ0 and bγ1 = 1
2
tr
(
ΓX>XΓ>

)
+ bγ0.
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Attributes and Augmented Data

The full conditional distribution for an individual’s alpha pattern αi is a categorical distri-

bution with the conditional posterior probability of membership in class c being proportional

to,

p(α>i v = c|yi,Γ,B, ζ,ψ) ∝ πic

J∏
j=1

p(yij|α>i v = c,γj,βj). (3.17)

The full conditional distribution for the augmented attribute data is a truncated normal

distribution,

α∗ik|αi1, αi2, . . . , αi,k−1, ζk,ψk ∼ N (a′i,K−1ψk + z>i ζk, 1)1(α∗ik > 0)αik1(α∗ik ≤ 0)1−αik . (3.18)

where ai,K−1 is a design vector defined by a subset of αi pattern (i.e., (αi1, . . . , αi,K−1)),

the non-zero elements of the ψk characterizes the structure of the relationship among the

attributes, and ζk is covariate coefficients between zi and the attribute mastery probabilities.

Attribute-Level Covariate Coefficients

We specify the full conditional distribution of the attribute-related parameters ζ as

ζk| α∗1:N,k,α1:N,1, . . . ,α1:N,k−1,ψk ∼ NL(µζk,Σζ) (3.19)

whereα∗1:N,k = (α∗1k, . . . , α
∗
Nk)

>, Σζ = ((1+vζ)Z
>Z)−1, and µζk = ΣζZ

>(α∗1:N,k−AK−1ψk
)
,

AK−1 = (a1,K−1 . . .aN,K−1)> is a design matrix with the dimension N×2K−1. Moreover, the

full conditional distribution of the hyper-parameter vζ is vζ |ζ ∼ gamma(aζ1, bζ1) where aζ1 =

NL
2

+ aζ0 and bζ1 = 1
2
tr
(
ζZ>Zζ>

)
+ bζ0. The posterior distribution of ψks for an attribute k

and a parameter s is specified to be normally distributed. As previously stated, we use the

parameter, ψks, to model the structural relationships among the attributes, which is used to

model the attribute structural probabilities. This yields the dimension of the ψ as K×2K−1

with fixed pattern of zeros based upon the order the attribute distribution is factored (e.g.,
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see subsection “Model for Attribute-Related Covariates”). Thus, the conditional posterior

distribution of each element is

ψks|α∗1:N,k, ζk,ψk(s) ∼ N (µks, σ
2
ks) (3.20)

where α∗1:N,k = (α∗1k, . . . , α
∗
Nk)

>, ψk(s) is ψk without element s, σ2
ks = (A>K−1,sAK−1,s+vψ)−1,

and µks = σ2
ks A

>
K−1,s

(
α∗1:N,k −AK−1,(s)ψk(s) −Zζk

)
. Also, AK−1 = (a1,K−1 . . .aN,K−1)> is

a design matrix with the dimension N × 2K−1, AK−1,s is column s of AK−1, and AK−1,(s)

excludes column s of AK−1. In addition, the full conditional distribution of the hyper-

parameter vψ is vψ|ψ ∼ gamma(aψ1, bψ1) where aψ1 = 2K−1
2

+aψ0 and bψ1 = 1
2
tr
(
ψψ>

)
+bψ0.

Latent structure related parameters

The full conditional distribution for βjp is

βjp| Y ∗j ,α,βj(p), δjp,γj, qj ∼


N (µjp, σ

2
jp)1(βjp > 0) 1 ≤ p ≤ K

N (µjp, σ
2
jp) otherwise

(3.21)

where σ2
jp = (A>pAp + v−1

jp )−1 and µjp = σ2
jp A

>
p

(
Y ∗j − A(p)βj(p) −Xγj

)
. Ap is the pth

column of the design matrix A, A(p) is a matrix with all of A, but the pth column, and βj(p)

is the 2K − 1 vector that omits βjp.

As in Balamuta and Culpepper (2021), the entries of the Q matrix are updated with

the Metropolis-Hastings (MH) algorithm. While updating an entry, we always propose a

change to its current state. Thus, if q
(t)
jk is the current value of the entry of Q, then the

proposed candidate value is q′ = 1− q(t)
jk . Let T (q′, q

(t)
jk ) be

T
(
q′, q

(t)
jk

)
=

(
p(δj|qj(k), q

′, s, g)p(q′|Q(j,k), ν)

p(δj|qj(k), q
(t)
jk , s, g)p(q

(t)
jk |Q(j,k), ν)

)
(3.22)

where Q(j,k) indicates all other elements of Q. The decision rule for the MH algorithm
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is

q
(t+1)
jk =


q′ min

(
1, T

(
q′, q

(t)
jk

))
> U

q
(t)
jk otherwise

(3.23)

where U is drawn from uniform(0, 1). The full conditional distribution of ν is

ν|Q ∼ Beta

(
J∑
j=1

K∑
k=1

qjk + aν , JK −
J∑
j=1

K∑
k=1

qjk + bν

)
. (3.24)

Another model parameter that is updated with the MH algorithm is the δj parameters.

Similar to the procedure for updating entries of qj, we use a MH sampler that always proposes

a change in the value at the current state of δjp. Let δ
(t)
jp be the current value of the δj p’th

entry, and δ′ be the proposed value such that δ′ = 1− δ(t)
jp . T (δ′, δ

(t)
jp ) is defined as

T
(
δ
>
, δ

(t)
jp

)
=

(
p(βjp|βj(p), δ′)p(δ′|qj, s, g)

p(βjp|βj(p), δ(t)
jp )p(δ

(t)
jp |qj, s, g)

)
. (3.25)

The decision rule for the MH algorithm is

δ
(t+1)
jp =


δ′ min

(
1, T

(
δ
′
, δ

(t)
jp

))
> U

δ
(t)
jp otherwise

. (3.26)

3.4 Monte Carlo Simulation Study

3.4.1 Overview

We conducted several Monte Carlo simulations to examine parameter recovery for our new

MCMC procedures for models with item- and attribute-level covariates. Three general data-

generating simulation conditions corresponding to the three ways to include covariates are

explored: 1) saturated model with item- and attribute-level covariates; 2) ζ model that only

includes attribute-level covariates; and 3) Γ model that only includes item-level covariates.
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For the simulation studies, we generate data from each of the three models and compare

parameter recovery with a base model that excludes the covariates in order to demonstrate

the implications of neglecting to incorporate relevant covariates in exploratory RLCMs.

In the simulation study design, the sample size is varied (i.e., N = 500, 1000, 2000 and

4000). In addition, to ensure our simulation is representative of real data, we generated

covariates effects (i.e., Γ and ζ) and attribute structural parameters (i.e., ψ) that are consis-

tent with our application (e.g., see the next section). Specifically, we sampled the elements

of Γ and ζ from uniform(−1, 1), and we set the hyper-parameters of the prior precision to

1 (i,e. aγ0 = bγ0 = 1 for the Γ parameter and aζ0 = bζ0 = 1 for the ζ parameter). More-

over, the non-zero elements of the attribute structural parameters (i.e., ψ) are sampled from

uniform(−0.4, 0.4), and the hyper-parameters of the prior precision is set to 1 (i.e. aψ0 =

bψ0 = 1). A single binary covariate for each respondent is sampled from a Bernoulli(0.5)

distribution. Moreover, we used the strictly identified Q matrix with J = 20 for K = 3 and

with J = 30 for K = 5 as presented below:

QK=3 =



0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0
0 1 1
0 1 1
1 0 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1


. QK=5 =



0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0



.

We generate B using the approach of G. Xu and Shang (2018) where the success

probabilities associated with the latent groups α = 0 and α = 1 are set to 0.2 and 0.8,

respectively. The remaining success probabilities are varied between 0.2 and 0.8 with values

defined by 0.2+(0.8−0.2)×K ′j/Kj where K ′j denotes the number of the required attributes in
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qj = (qj1, . . . qjK). Moreover, both prior hyper-parameters of ν are set to 1 (i.e. aν = bν = 1)

In each simulation, 100 Monte Carlo replications are generated. We varied the number

of attributes, K = 3, 5, and set the “spike” precision parameter to 100 and “slab” scale

parameter to 1. In each chain, we ran 50, 000 iterations, of which we discarded the first

20, 000 as the burn-in period. To assess the recovery rates of the model parameters, we

calculated the average mean absolute errors (MAE) of the B parameters using

MAE(B) =
1

RJP

R∑
r=1

J∑
j=1

P∑
p=1

|β̂(r)
jp − βjp| (3.27)

where P = 2K denotes the number of regression coefficients and β̂
(r)
jp is the posterior mean

from replication r. Similarly, the MAE for the Γ parameters is, 1
RJV

∑R
r=1

∑J
j=1

∑V
v=1|γ̂

(r)
jv −

γjv| where V is the number of item-related covariate coefficients and γ̂
(r)
jv is the posterior

mean from replication r.

For the ζ and ψ parameters, we reported the average mean absolute errors of the

attribute class distribution, πi = (πi0, . . . , πi,2K−1)′, of each examinee i. In Equation 3, πic is

denoted as the probability of an examinee i belonging to an latent class c. Thus, the average

mean absolute value for π1, . . . ,πN can be calculated as 1
RCN

∑R
r=1

∑C
c=0

∑N
i=1|π̂

(r)
ic − π

(r)
ic |

where π̂
(r)
ic and π

(r)
ic are the posterior mean and data generating valuing for replication r.

In addition, the average mean absolute errors of the probability of correctly answering an

item, which is a function of covariates for the saturated and Γ models, are reported as

follows. Recall that θij = P (Yij = 1|αi,γj,βj) is the item j mastery probability of examinee

i as in Equation 1. Then, the average mean absolute errors of θij can be calculated as

1
RJN

∑R
r=1

∑J
j=1

∑N
i=1|θ̂

(r)
ij − θ

(r)
ij |.

We evaluated the model performance on estimating the latent structure by reporting the

element-wise agreement rates for Q, which is defined as 1
R

∑R
r=1

1
JK

∑J
j=1

∑K
k=1 1(q̂

(r)
jk = qjk),

and matrix-wise agreement rates, 1
R

∑R
r=1 1

(
Q̂(r) = Q

)
. In the rth replication, Q̂(r) is

obtained after discretizing the element-wise mean of the sampled binaryQmatrices as 1 if the
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corresponding entry is greater than 0.5, and 0 otherwise, and q̂
(r)
jk represents the element in the

jth row and kth column of the Q̂(r). In addition, we evaluated the attribute- and pattern-wise

agreement rates of the examinee latent classes with 1
R

∑R
r=1

1
NK

∑N
N=1

∑K
k=1 1(α̂

(r)
ik = αik),

and 1
R

∑R
r=1

1
N

∑N
N=1 1(α̂

(r)
i = αik), respectively.

3.4.2 Results

For the case with a saturated data-generating model, Table 3.1 presents the average mean

absolute errors of the parameters B, Γ, θij, and πi which denotes the probability of latent

class membership for individual i, the matrix- and element-wise recovery rates of the Q

matrix and attribute- and pattern-wise recovery rates of examinees’ latent classes. Table 3.1

shows that the parameters are recovered with low error rates in the saturated model, and

these errors become smaller as the sample size increases. Including the covariates in the

attribute level in addition to the item level provides leverage by yielding lower error rates in

the πi parameter and yields higher latent class recovery rates than in the base model (i.e.,

the misspecified model that incorrectly excludes covariates). For example, in recovering the

pattern- and attribute-wise attribute classes, the saturated model yields over 75% and 90%

accuracy rates, respectively. In addition, the Q matrix is recovered better when we fit the

data with the saturated model than the base model. For instance, the saturated model

recoveries the Q matrix exactly in over 85% of the replications compared to 18% for the

base model when the sample size was N = 2000 and K = 3. The relative performance of

the saturated and base model are consistent in the case with K = 5 attributes. However, in

both models, as the number of attributes increases, the majority of the parameter recovery

rates decrease slightly. In addition, the matrix-wise recovery rates of Q equaled 0 for almost

all the conditions when the number of attributes increases, which may be expected given it

will be difficult to recover the entire matrix out of the 2KJ possible Q matrices.
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Table 3.1: Summary of the Monte Carlo replications for saturated model

Fitted
Model

K
Sample

size

Average MAE Q Accuracy Class Acccuracy

B Γ θij πi Element Matrix Element Pattern

Saturated
Model

3

500 0.1395 0.1143 0.0499 0.0216 0.9590 0.08 0.9066 0.7602

1000 0.1012 0.0770 0.0362 0.0164 0.9865 0.46 0.9123 0.7752

2000 0.0743 0.0569 0.0270 0.0125 0.9977 0.86 0.9140 0.7797

4000 0.0551 0.0386 0.0202 0.0097 1.0000 1.00 0.9154 0.7823

Base
Model

500 0.1657 NA 0.0947 0.0826 0.9308 0.01 0.8864 0.7118

1000 0.1290 NA 0.0885 0.0783 0.9612 0.08 0.8926 0.7273

2000 0.1039 NA 0.0850 0.0817 0.9738 0.18 0.8935 0.7305

4000 0.0867 NA 0.0829 0.0816 0.9882 0.49 0.8957 0.7350

Saturated
Model

5

500 0.0834 0.1107 0.0862 0.0143 0.8921 0.00 0.8642 0.4824

1000 0.0708 0.0809 0.0704 0.0128 0.9282 0.00 0.8717 0.5067

2000 0.0600 0.0561 0.0580 0.0113 0.9638 0.00 0.8791 0.5319

4000 0.0511 0.0388 0.0493 0.0100 0.9909 0.21 0.8831 0.5471

Base
Model

500 0.1095 NA 0.1427 0.0284 0.8027 0 0.7742 0.2990

1000 0.1077 NA 0.1430 0.0295 0.8136 0 0.7626 0.2752

2000 0.1070 NA 0.1446 0.0306 0.8295 0 0.7585 0.2639

4000 0.1101 NA 0.1480 0.0308 0.8216 0 0.7485 0.2491

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; Class Accuracy
Element = element-wise accuracy for examinee’ s latent class profile; Class Accuracy Pattern
= pattern-wise accuracy for examinee’s latent class profile; Γ parameter is not applicable in
base model; Results are based upon 100 replications

Table 3.2 reports the parameter recovery rates when the data-generating model includes

the covariates only on the attribute level (i.e., ζ model). Similar to the saturated model, the

model performance becomes better as the sample size increases. The ζ model performs well

on recovering the model and examinee parameters as well as the underlying latent structure.

For example, the Q matrix element-wise recovery rate is quite high even with the small

sample size (i.e., N = 500). And when N = 2000, the Q matrix is recovered exactly in 83%

of the 100 replications in the K = 3. Compared to the base model, which ignores covariates

in the setting with a data generating ζ model, the ζ model produces much lower mean

absolute errors for the estimates of the probability of latent class membership (i.e., πi). In
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addition, the base model yields almost equivalent pattern- and attribute-wise latent class

accuracy rates to the ζ model. Overall, increasing the number of attributes yields slightly

lower accuracy rates in many parameters; however, as in the saturated model case, the

matrix-wise Q matrix accuracy rates significantly drop in both the ζ and base models. Note

that the pattern-and element-wise recovery rates of the Q matrix is comparable between the

ζ and base models, which provides evidence that in this simulation setting that excluding

covariates when the truth is a ζ model does not affect the recovery of the latent structure.

Table 3.2: Summary of the Monte Carlo replications for ζ model

Fitted
Model

K
Sample

size

Average MAE Q Accuracy Class Acccuracy

B Γ θij πi Element Matrix Element Pattern

Zeta
Model

3

500 0.1282 NA 0.0473 0.0207 0.9583 0.10 0.9183 0.7880

1000 0.0958 NA 0.0344 0.0151 0.9862 0.40 0.9218 0.7968

2000 0.0705 NA 0.0257 0.0119 0.9968 0.83 0.9238 0.8018

4000 0.0519 NA 0.0193 0.0088 1.0000 1.00 0.9249 0.8042

Base
Model

500 0.1305 NA 0.0481 0.0806 0.9605 0.11 0.9142 0.7793

1000 0.0973 NA 0.0348 0.0748 0.9855 0.40 0.9185 0.7900

2000 0.0713 NA 0.0261 0.0801 0.9965 0.83 0.9209 0.7961

4000 0.0526 NA 0.0196 0.0785 1.0000 1.00 0.9218 0.7979

Zeta
Model

5

500 0.0820 NA 0.0885 0.0144 0.8962 0.00 0.8710 0.5015

1000 0.0681 NA 0.0707 0.0122 0.9322 0.00 0.8822 0.5373

2000 0.0580 NA 0.0588 0.0110 0.9677 0.01 0.8874 0.5566

4000 0.0500 NA 0.0508 0.0099 0.9916 0.31 0.8902 0.5673

Base
Model

500 0.0788 NA 0.0820 0.0287 0.8905 0.00 0.8685 0.4999

1000 0.0677 NA 0.0688 0.0294 0.9299 0.00 0.8782 0.5279

2000 0.0584 NA 0.0587 0.0288 0.9661 0.02 0.8832 0.5449

4000 0.0518 NA 0.0530 0.0292 0.9887 0.30 0.8837 0.5494

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; Class Accuracy
Element = element-wise accuracy for examinee’ s latent class profile; Class Accuracy Pattern
= pattern-wise accuracy for examinee’s latent class profile; Γ parameter is not applicable in
ζ and base models; Results are based upon 100 replications

For the Γ model, Table 3.3 shows the mean absolute errors and the accuracy rates of
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the same parameters we consider in saturated and ζ models. The results suggest that larger

sample sizes improve the accuracy rates for all of the model parameters. The recovery rates

of the parameter estimates resulting from the Γ model are always better than those in the

base model. Especially, the error rates in B and θij are significantly lower when we fit the

data with the Γ model versus the misspecified base model. Moreover, the Γ model is superior

to the base model on recovering the matrix- and element-wise Q matrix. For example, while

the base model recovers the Q matrix exactly in only 28% the replications, the Γ model

can recover the Q matrix exactly in around 98% times when N = 2000. The pattern- and

attribute-wise recovery rates of the latent classes are higher in the Γ model than in the base

model, and the difference becomes more evident when the number of attributes increases. In

addition, in majority conditions, increasing the number of attributes yields lower accuracy

rates in parameter estimation in both Γ and base models. Once again, the matrix-wise Q

matrix accuracy rates significantly drop with the higher number of attributes.
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Table 3.3: Summary of the Monte Carlo replications for Γ model

Fitted
Model

K
Sample

size

Average MAE Q Accuracy Class Acccuracy

B Γ θij πi Element Matrix Element Pattern

Gamma
Model

3

500 0.1315 0.1148 0.0488 0.0197 0.9630 0.12 0.8989 0.7426

1000 0.0950 0.0785 0.0355 0.0147 0.9887 0.57 0.9041 0.7569

2000 0.0719 0.0562 0.0265 0.0126 0.9987 0.92 0.9070 0.7631

4000 0.0540 0.0387 0.0200 0.0101 0.9997 0.98 0.9078 0.7659

Base
Model

500 0.1569 NA 0.0929 0.0392 0.9325 0.01 0.8812 0.6997

1000 0.1227 NA 0.0877 0.0354 0.9612 0.08 0.8866 0.7137

2000 0.1010 NA 0.0846 0.0330 0.9785 0.28 0.8902 0.7216

4000 0.0853 NA 0.0827 0.0341 0.9865 0.44 0.8912 0.7242

Gamma
Model

5

500 0.0864 0.1112 0.0907 0.0149 0.8970 0.00 0.8507 0.4439

1000 0.0708 0.0811 0.0721 0.0130 0.9347 0.00 0.8625 0.4804

2000 0.0589 0.0550 0.0597 0.0117 0.9750 0.04 0.8691 0.4999

4000 0.0499 0.0396 0.0496 0.0103 0.9938 0.45 0.8739 0.5197

Base
Model

500 0.1066 NA 0.1381 0.0224 0.8204 0 0.7850 0.3110

1000 0.1046 NA 0.1374 0.0234 0.8379 0 0.7831 0.3059

2000 0.1018 NA 0.1397 0.0239 0.8461 0 0.7692 0.2813

4000 0.1071 NA 0.1456 0.0245 0.8262 0 0.7586 0.2587

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; Class Accuracy
Element = element-wise accuracy for examinee’ s latent class profile; Class Accuracy Pattern
= pattern-wise accuracy for examinee’s latent class profile; Γ parameter is not applicable in
base model; Results are based upon 100 replications.

3.5 Application to Spatial Rotation Dataset

This section reports results from an application of our developed methods to a real data

set collected by Culpepper and Balamuta (2017). In this data set, 516 student-participants

were administered 30 spatial rotation items (i.e., the Purdue Spatial Visualization Test:

Rotations (PSVT-R; Yoon, 2011)) and a survey to collect the participants’ covariates such

as demographic information and background information that may be associated with spa-

tial reasoning skills. Two categorical items from the Survey of Spatial Representation and

Activities (Terlecki & Newcombe, 2005) were collected and included as covariates of the spa-
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tial rotation latent structure: 1) “How proficient or skilled do you believe you are at using

maps?” (i.e., “not skilled”, “not very skilled”, “moderately skilled”, “very skilled”); and 2)

“How often do you use maps?” (i.e., “once every few years to not much at all”, “one to two

times a year”, “one to two times in six months”, “one to two times a month”, “weekly”,

“daily”). Table 3.4 reports the frequency distribution for the covariates. Note for the map

skill variable that we combined the “not skilled” and “not very skilled” levels into a “not

skilled/not very skilled” category for our analysis as only twelve respondents reported “not

skilled”. The covariates were collected as categorical variables and yield seven distinct main-

effect variables in a dummy-coded design matrix (note the references levels are “not skill/not

very skilled” and “once every few years to not much at all”). In order to demonstrate our

models we set the number of attributes to K = 3. Similar to simulation study design, we

set the hyper-parameters of the prior precision to 1. (i,e. aζ0 = bζ0 = 1 for the ζ parameters

and aψ0 = bψ0 = 1 for the ψ parameters). Moreover, we set the prior hyper-parameters of ν

as 1 (i.e. aν = bν = 1).

Table 3.4: Descriptive statistics of covariates for spatial rotation dataset.

Covariate Category Frequency

Map skill

not skilled 13

not very skilled 98

moderately skilled 297

very skilled 108

Map usage

Once every few years to not much at all 66

1 to 2 times a year 49

1 to 2 times in six months 62

1 to 2 times in a month 152

weekly 159

daily 28

Note we consider the same set of covariates at both the item level and attribute level.

We compared the four models (i.e., the saturated, Γ, ζ and base models) using the relative

model fit index by calculating leave-one-out cross-validation (LOO; Geisser & Eddy, 1979;
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Vehtari, Gelman, & Gabry, 2017). The estimated LOO values were 16776.56, 16763.78,

16810.5, and 16815.69 for the saturated, ζ, Γ and base models, respectively. The LOO index

favors the ζ model (i.e., the model embeds the covariates only at the attribute level).

In Table 3.5, we present element-wise means for the inferred Q matrix as well as latent

class response probabilities. Table 3.5 provides evidence that the ζ model yields a dense Q

matrix estimate as most of the element-wise probabilities exceed 0.50. Chen et al. (2020)

noted that dense Q matrices, which are generically identified, are indicative of a general

unstructured mixture model. Therefore, the estimated Q matrix suggests that the data sup-

port an unstructured mixture where most items require all eight classes to describe response

patterns. In addition, Table 3.5 shows that the item response probabilities associated with

the latent groups α = 0 equal values between 0.076 and 0.687 with most values falling below

0.4. The majority of the θj,111 parameters associated with the latent groups α = 1 are

around 0.95.
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Table 3.5: Estimated posterior means of the Q matrix and item parameters for spatial
rotation data.

Items
Q θ̄j

Q1 Q2 Q3 “000” “001” “010” “011” “100” “101” “110” “111”

1 0.687 0.651 0.612 0.641 0.746 0.805 0.935 0.846 0.949 0.959 0.997

2 0.680 0.624 0.470 0.687 0.734 0.833 0.882 0.892 0.932 0.987 0.997

3 0.687 0.694 0.637 0.613 0.802 0.886 0.958 0.902 0.967 0.989 0.999

4 0.574 0.550 0.465 0.646 0.733 0.789 0.860 0.819 0.879 0.917 0.953

5 0.695 0.698 0.700 0.443 0.801 0.766 0.950 0.762 0.957 0.949 0.998

6 0.682 0.644 0.696 0.455 0.798 0.683 0.934 0.739 0.950 0.898 0.997

7 0.667 0.663 0.667 0.374 0.706 0.707 0.903 0.738 0.920 0.940 0.991

8 0.526 0.543 0.614 0.540 0.640 0.621 0.809 0.601 0.834 0.742 0.981

9 0.672 0.620 0.681 0.252 0.556 0.525 0.798 0.673 0.879 0.900 0.995

10 0.687 0.648 0.706 0.454 0.706 0.630 0.892 0.662 0.918 0.859 0.995

11 0.656 0.582 0.665 0.414 0.695 0.607 0.860 0.705 0.904 0.888 0.990

12 0.717 0.712 0.728 0.233 0.770 0.502 0.958 0.498 0.960 0.866 0.999

13 0.686 0.686 0.692 0.374 0.591 0.635 0.903 0.650 0.893 0.853 0.992

14 0.707 0.692 0.673 0.215 0.391 0.555 0.835 0.663 0.892 0.920 0.998

15 0.563 0.603 0.687 0.290 0.630 0.443 0.792 0.401 0.787 0.694 0.979

16 0.704 0.697 0.705 0.249 0.654 0.522 0.912 0.537 0.913 0.865 0.996

17 0.670 0.670 0.661 0.335 0.527 0.566 0.861 0.616 0.823 0.846 0.980

18 0.598 0.527 0.530 0.316 0.438 0.481 0.637 0.585 0.721 0.773 0.896

19 0.714 0.710 0.739 0.255 0.724 0.555 0.943 0.566 0.936 0.801 0.997

20 0.657 0.672 0.719 0.343 0.693 0.533 0.914 0.532 0.883 0.795 0.995

21 0.695 0.700 0.724 0.215 0.581 0.496 0.892 0.473 0.872 0.756 0.993

22 0.685 0.650 0.691 0.311 0.509 0.446 0.778 0.480 0.791 0.753 0.980

23 0.568 0.633 0.713 0.361 0.611 0.532 0.871 0.482 0.804 0.763 0.977

24 0.556 0.580 0.625 0.358 0.604 0.536 0.781 0.515 0.758 0.694 0.879

25 0.607 0.627 0.710 0.267 0.584 0.420 0.805 0.399 0.787 0.602 0.979

26 0.561 0.633 0.728 0.262 0.463 0.394 0.814 0.355 0.717 0.566 0.984

27 0.598 0.645 0.669 0.415 0.530 0.526 0.846 0.501 0.784 0.756 0.992

28 0.671 0.670 0.662 0.204 0.319 0.360 0.701 0.334 0.745 0.573 0.988

29 0.577 0.574 0.633 0.190 0.301 0.277 0.556 0.278 0.530 0.417 0.787

30 0.581 0.629 0.645 0.076 0.165 0.175 0.421 0.140 0.381 0.332 0.691
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Table 3.6 includes attribute-level covariate coefficient estimates associated with the 90%

credible intervals. The credible intervals of the attribute-level coefficients suggest that there

is a high probability that two of the “map skill” coefficients are positively associated with

underlying latent class membership. More specifically, students that report themselves as

“very skilled” in using the maps are more likely to master the second and third attributes

than the students who reports themselves in the “not skilled/not very skilled” category.

Table 3.6: ζ coefficient estimates and credible intervals for spatial rotation data application
for the ζ model.

Coefficients
Estimates Credible Interval

α1 α2 α3 α1 α2 α3

Moderately skilled 0.248 0.187 0.358
-0.073
0.560

-0.170
0.541

-0.019
0.729

5%
95%

Very skilled 0.425 0.572 0.721
-0.088
1.044

0.008
1.148

0.229
1.218

5%
95%

1 to 2 times a year map usage -0.024 0.054 -0.089
-0.463
0.447

-0.427
0.585

-0.570
0.412

5%
95%

1 to 2 times in six months map usages -0.173 -0.200 -0.426
-0.628
0.257

-0.675
0.259

-0.913
0.073

5%
95%

1 to 2 times in a month map usage -0.221 -0.212 -0.193
-0.554
0.109

-0.561
0.141

-0.534
0.151

5%
95%

Weekly map usage -0.096 -0.097 -0.329
-0.454
0.259

-0.476
0.290

-0.721
0.073

5%
95%

Daily map usage -0.045 0.109 -0.057
-0.655
0.635

-0.571
0.841

-0.680
0.593

5%
95%

Table 3.7 reports the averaged probability of belonging to each latent class α for all

students, in addition to disaggregated averages for students in the “very skilled” and “not

skilled/not very skilled” levels of the map skill covariate. In doing so, we first calculated the

probability of belonging to the latent class c for each examinee i as in Equation 3, and then

we took the average over the students in the corresponding group. The results indicate that

the students in the reference group “not skilled/not very skilled” are more likely to belong

to the class α = 0. Meanwhile, the students who report themselves as “very skilled” are

more likely to be classified into a skill profile with two or more attributes.
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Table 3.7: Estimated latent class membership distribution for spatial rotation data applica-
tion for the ζ model.

πc

‘000” “001” “010” “011” “100” “101” “110” “111”

Total sample 0.170 0.105 0.114 0.102 0.174 0.099 0.154 0.081

“Very skilled” group 0.080 0.092 0.096 0.147 0.119 0.117 0.191 0.158

Reference group 0.256 0.105 0.135 0.075 0.196 0.070 0.125 0.037

πc denotes the average latent class membership probability of students in the corresponding
groups; “Reference group” is formed by students who report themselves as “not skilled/not
very skilled”.

3.6 Discussion

Formative assessments are important for providing fine-grained information for students’

learning and progress. Exploratory RLCMs remain important tools for broadening the ap-

plicability of diagnostic models for developing formative assessments. We considered new

methods for including covariates into exploratory RLCMs. Collateral information—here,

covariates—about students might benefit educators in several ways. First, covariates may

be a source of undesirable interactions between students and items such as DIF; thus, in-

vestigating the covariates can uncover and help prevent these undesirable interactions and

construct irrelevant variance. Second, covariates might affect the difficulty level of accruing

attributes for students. Knowing these effects can help educators to identify and support

at-risk students. Covariates can also be used to evaluate educational intervention effects.

Third, significant covariates can reduce the uncertainty in the model parameters by providing

additional information about students.

Fine-grained information about a student’s knowledge profile is another important com-

ponent in educational environments. Recently, a significant amount of research has been con-

ducted on exploratory RLCMs that can infer the underlying structure between attributes

and a binary domain-specific item-skill map. Despite the common interest in exploratory

RLCMs and covariates, no study has been conducted on incorporating the covariates in RL-

CMs. Thus, we proposed three models to include covariates in the exploratory RLCMs—a
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saturated model and two of its constrained versions. In the saturated model, we explore the

covariates’ effects on the probability of correctly answering an item and the probability of

mastering an attribute. The ζ model, one of the constrained models, links covariates with

the probability of mastering an attribute, while the Γ model links the covariates with the

probability of correctly answering an item.

The findings suggest that all three models were able to recover the model parame-

ters well. In addition, the latent structure recovery rates in all three models were quite

promising—all proposed models recover the entire Q matrix accurately when N = 4000.

We also investigate the condition when covariates are ignored in the model, the base model,

even though the true data generating model included a covariate. Ignoring the covariates

increases the mean absolute errors in almost all conditions. Moreover, it yields significantly

lower latent structure recovery rates in the base model than in the saturated and gamma

models. In the ζ model, the findings suggest that including the attribute-level covariates

in the model improves the recovery of π, which may be used in practice to classify stu-

dents. However, we did not find evidence in the current simulation design that omitting

attribute-level covariates impacts inference about the latent structure (e.g., Q and B). In

general, including covariates benefits us not only by providing insights about the relation-

ships between the covariates and the item success and attribute mastery probabilities, but

also significantly increases the parameter recovery rates. In the real data application, the ζ

model yields the best model fit on the spatial rotation data. The findings suggest that two

of the attribute-level covariates are significant.

In addition to incorporating covariates into RLCMs, we also introduce a novel way to

describe the structure of the relationship among the attributes (see subsection “Model for

Attribute-Related covariates”). This approach provides great flexibility in structuring the

relationships among attributes. In the present study, we assume an unstructured relation-

ship among attributes and estimate the intercept, main-effects, and interaction terms. In the

future, researchers may consider employing a regularization technique to infer structure re-
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lated to relationships among attributes to possibly reveal underlying higher-order structures.

Moreover, with the innovation in learning systems, an increasing number of covariates, such

as process information from log files or response times, can be recorded during assessments.

However, without a regularization technique, deciding which covariates will reveal significant

information about students can present challenges. For example, Iaconangelo (2017) inves-

tigated the relationship between covariates and attribute mastery under the confirmatory

RLCM setting, and applied the L1 penalty to the attribute-level regression log-likelihood

to shrink the non-informative covariate coefficients to zero. Thus, another future direction

might include a variable selection algorithm in the proposed models under the exploratory

RLCM setting.

In conclusion, exploratory RLCMs are important tools for developing and refining for-

mative assessments to accelerate student learning. We addressed the problem of incor-

porating information about students’ context in the form of covariates to strengthen the

applicability of these methods for applied research.
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Chapter 4

Variable Selection for Exploratory
Restricted Latent Class Models with
Covariates

4.1 Introduction

Formative assessments have been considered as a foremost component of the traditional

classroom setting. Diagnostic models provide a statistical framework for designing formative

assessments by classifying student knowledge profiles according to a collection of fine-grained

attributes (de la Torre & Douglas, 2004; Rupp et al., 2010; von Davier, 2008). In fact, learn-

ing technology algorithms leverage the diagnostic modeling framework by tailoring learning

interventions to adapt to individual students’ capabilities and needs (e.g. Chen, Li, et al.,

2018; Han et al., 2020; Huang et al., 2019; X. Li et al., 2021; Tan et al., 2020; S. Zhang &

Chang, 2016) and to track skill development (e.g. F. Li et al., 2015; Madison & Bradshaw,

2018; Studer, 2012; S. Wang, Yang, et al., 2018; S. Wang, Zhang, et al., 2018; Ye et al.,

2016a; Yigit & Douglas, 2021; S. Zhang & Chang, 2020).

The restricted latent class models can be formulated into two main frameworks— con-

firmatory and exploratory RLCMs. The application of confirmatory methods is appropriate

in cases where the underlying structure in terms of how attributes relate to observed per-

formance is precisely known (i.e., the Q matrix). However, using an incorrect latent struc-

ture can adversely impact classification decisions (Henson & Templin, 2007), so exploratory

methods that infer the latent structure from student responses may be preferred. Recently,

a significant amount of research has also developed exploratory RLCMs which infer the un-

derlying structure of the Q matrix (e.g. Chen, Culpepper, Chen, & Douglas, 2018; Chen et

al., 2020, 2015b; Culpepper, 2019b; Culpepper & Chen, 2019; G. Xu & Shang, 2018).
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The context by which students learn may be important to understand when making

diagnostic decisions. For instance, students may receive distinct interventions that target

specific learning objections or students may be multiskilled with prior knowledge and expe-

riences that inform mastery on the target attributes. It is therefore important to understand

how a broader collection of student characteristics, which we refer to as covariates, shape

performance and attribute mastery. The existing research demonstrates the value of using

covariates to shape formative assessments in education. The advantages of including the

students’ covariates into diagnostic models can be clustered around three primary purposes.

First, covariates can detect the possibility of differential item functioning (DIF) to provide

fair test designs across diverse populations (e.g. F. Li, 2008; X. Li & Wang, 2015; Z. Wang et

al., 2014; W. Zhang, 2006). Second, covariates are also used to explain individual differences

or serve as indicators to evaluate educational intervention effects (e.g. Ayers et al., 2013; Ia-

conangelo, 2017; Minchen et al., 2017; S. Wang, Yang, et al., 2018; Zhan et al., 2018). Thus,

exploring covariates might help to identify at-risk students and benefit educators to design

student-tailored interventions that accelerate skill development. Third, using covariates, like

response times (RTs) or other student experiences associated with the target attributes,

might improve the accuracy of the model parameter estimates and attribute classification

rates (e.g. S. Wang, Zhang, et al., 2018; S. Wang et al., 2020). When including covariates

into a model, one challenge is to distinguish active covariates, which relate to the outcome

variable, from inactive ones. To address this issue, one can apply a regularization technique

to the loss function or incorporate a variable selection mechanism into the priors. In this

regard, Iaconangelo (2017) used a regularization technique (i.e., the L1 penalty) to select

the active covariates in the structural part of the three-step diagnostic regression approach.

Despite the common interest in exploratory RLCMs and covariates, no study has been

conducted on incorporating covariates and a variable selection mechanism in RLCMs, which

may limit the types of inferences and insights available to applied researchers and educators.

Thus, in this paper, we offer new methods for including covariates in exploratory RLCMs.
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Specifically, three general strategies are developed for including covariates—at the item level,

attribute level, or both item and attribute levels. In the rest of the paper, these models are

referred to as Γ, ζ, and saturated models, respectively. For the Γ model, we investigate

the effect of the covariates on the probability of correctly answering an item. Similarly,

the ζ model considers the relationship between the covariates and the probability that a

student possesses a particular attribute. In order to approximate the model parameter

posterior distribution, we present a Markov chain Monte Carlo (MCMC) algorithm using a

Metropolis-within-Gibbs algorithm. Moreover, we apply a variable selection mechanism on

both item- and attribute-level covariates to infer the active covariates in the model.

Note that including covariates at the item level explicitly assumes that both attributes

and covariates may impact observed responses. One consequence of active item-level covari-

ates is that the the assumption of conditional independence of responses given attributes no

longer holds. There is a long-standing tradition and interest in incorporating covariates into

psychometric measurement models (Meredith & Millsap, 1992). In fact, including covariates

in the measurement models is closely connected with evaluating differential item functioning

(DIF), which is important for ensuring the validity of test scores and subsequent diagnostic

classifications. The Equal Educational Opportunities Act of 1974 requires equal access to

education regardless of students’ race, gender, ethnicity, national origin, or other protected

identity. Moreover, AERA/APA/NCME Standard 3.2 (AERA, APA, & NCME, 2014) em-

phasizes that “Test developers are responsible for developing tests that measure the intended

construct and for minimizing the potential for tests’ being affected by construct-irrelevant

characteristics, such as linguistic, communicative, cognitive, cultural, physical, or other char-

acteristics.” Thus, eliminating construct-irrelevant variance that contributes to DIF is an

essential task to guarantee a bias-free assessment. Whereas covariates may be unnecessary

in some applications, there are diagnostic testing circumstances where including item-level

covariates is advantageous. For instance, in an artificial intelligent based online learning

system, unfamiliarity with the technological interfaces can create differential performance
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that could be interpreted as target content skill deficits rather than differences in construct

irrelevant variables. Thus, considering covariates in the measurement model can be a solu-

tion for disentangling the effects of construct-irrelevant covariates from the true underlying

latent structure.

The layout of the rest of the paper is as follows. First, we introduce our novel framework

for incorporating covariates into exploratory RLCMs. Second, a Bayesian model specification

is presented along with details about posterior inference. Third, we report results from two

Monte Carlo simulation studies concerning the accuracy of model parameter recovery. The

first simulation examines recovery in the case where there is a single active covariate. One

concern is that researchers may have many irrelevant covariates, and it would be necessary

to identify predictor variables that actively relate to both item responses and attributes.

In order to address this issue, we extend our framework and incorporate variable selection

procedures for covariates at the item and attribute levels and assess recovery in a second

simulation study. Fourth, we apply our method to a spatial rotation test and demonstrate

the types of inferences that are available with our modeling framework. Finally, we provide

a discussion section with the final remarks and future research directions.

4.2 Model Specification

We denote an individual with i; i = 1, . . . , N , an item with j; j = 1, . . . , J , and an attribute

with k; k = 1, . . . , K. Let Y = (Y1, . . . ,YN)> denote the N × J response matrix of random

binary responses with the ith row defined as Yi = (Yi1, Yi2, . . . , YiJ)> and let the observed

value be y = (y1, . . . ,yN)> where yi = (yi1, yi2, . . . , yiJ) and yij ∈ {0, 1}. We consider the

case where observed responses are described by an underlying set of attributes. That is,

each individual respondent has a latent binary attribute pattern αi = (αi1, αi2, . . . , αiK)> in

which each entry will be 1 if the individual has mastered that attribute and 0 otherwise.

The purpose of this section is to introduce our general modeling framework for in-
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corporating covariates into the exploratory RLCM framework. We consider two types of

covariates, which are covariates that relate to: 1) item responses; and 2) attributes. More-

over, X is an item-related matrix of covariates with the dimension N × V where V is the

number of covariates, and the ith row for an individual i is xi = (xi1, xi2, . . . , xiV )>. Simi-

larly, Z is an attribute-related covariate matrix with the dimension N × L where L is the

number of covariates included in Z, and the ith row is denoted by zi = (zi1, zi2, . . . , ziL)>.

It is important to note that xi and zi are free to include the same covariates.

4.2.1 Model for Item-Related Covariates

To simplify the formulation, we introduce a design matrix such that A = (a1, . . . ,aN)>

is a matrix with the dimension N × 2K , where ai is a design vector for individual i

based on the αi. As an example, if K = 3, the attribute pattern for an individ-

ual i will be in the format αi = (αi1, αi2, αi3)> and the design vector will be ai =

(1, αi1, αi2, αi3, αi1αi2, αi1αi3, αi2αi3, αi1αi2αi3)> where the first element (i.e., “1”) stands for

the intercept and the remaining elements correspond with main-effects and interaction terms.

We consider the following item response for the probability that individual i correctly re-

spond to item j,

θij = P (Yij = 1|αi,γj,βj) = Φ
(
a>i βj + x>i γj) (4.1)

where Φ is the cumulative distribution function of the standard normal distribution. In

Equation 4.1, the relationship between attributes and item responses is denoted by the

vector of regression coefficients, βj. βj is the 2K vector of regression coefficients indexed by

{βjp}2K−1
p=0 . In addition, the relationship between the item-level covariates for individual i,

xi, and response probabilities is γj, which is a V -dimensional vector of coefficients for item

j.
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4.2.2 Model for Attribute-Related Covariates

Previous research modeled dependence among the attributes using a variety of strategies.

The most common approach is to use an unstructured π vector, and other options include

using a more parsimonious structure (e.g. Chen & Culpepper, 2020; de la Torre & Douglas,

2004; Henson et al., 2009; Templin et al., 2008). In the present study, we do not assume the

attributes are independent when constructing the latent class probabilities. Thus, the joint

distribution for the attribute profile for individual i can be factored as

p(αi) = p(αi1)p(αi2|αi1) . . . p(αiK |αi1, . . . , αi,K−1). (4.2)

We use this factored representation of the joint distribution for attributes to model the effect

student covariates have on the probability of latent class membership. A parameter ψ =

(ψ1, . . . ,ψK)> as a K × 2K−1 matrix is defined to describe the structure of the relationship

among the attributes. In addition, the covariates are incorporated at the attribute level.

Thus, the probability examinee i belongs to an attribute class αi is influenced by both

examinee’s covariates as well as the relations among attributes. Specifically, we use the

following probit link to model the joint distribution for the probability of class membership

for individual i,

p(αi|ψ, ζ) =
K∏
k=1

Φ
(
a>i,K−1ψk + z>i ζk

)αik
(
1− Φ

(
a>i,K−1ψk + z>i ζk

))1−αik (4.3)

where ai,K−1 is a design vector defined by a subset of αi pattern (i.e., (αi1, . . . , αi,K−1)).

For example, for K = 3, the design vector will be ai,K−1 = (1, αi1, αi2, αi1αi2)> where the

first element (i.e., 1) stands for the intercept. The rows of ψ include a fixed pattern of

zeros based upon the order the attribute distribution is factored (e.g., see Equation 4.2).

Thus, the number of non-zero elements in ψ equals to 2K − 1. For example, for K = 3,

ψ1 = (ψ11, 0, 0, 0)>, ψ2 = (ψ21, ψ22, 0, 0)>, and ψ3 = (ψ31, ψ32, ψ33, ψ34)>. The relationship
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between the covariates and attributes are denoted by the K × L matrix of coefficients ζ =

(ζ1, . . . , ζK)> where for individual i, ζk is the relationship between zi and the conditional

attribute mastery probabilities.

4.2.3 Likelihood for the Saturated Model

We next describe the likelihood for the saturated model and discuss several important special

cases of our model in the next subsection. The conditional likelihood of observing yi given

the attributes and item-level covariates is

p(yi|αi,Γ,B) =
J∏
j=1

θ
yij
ij (1− θij)1−yij (4.4)

where Γ = (γ1, . . . ,γJ)> is the J × V item-level regression coefficients matrix, and B =

(β1, . . . ,βJ)> denotes the J × 2K matrix of the regression coefficients.

Thus, the likelihood for individual i is

p(yi|B,Γ,ψ, ζ) =
2K−1∑
c=0

πicp(yi|α>i v = c,B,Γ) (4.5)

where πic = P (α>i v = c|ψ, ζ) is defined to be the conditional probability that individual i

belongs to class c. We note the use of the vector v = (2{K−1}, 2{K−2}, . . . , 1)> to create a

bijection between the binary attribute pattern and a integer c, such that c = 0, . . . , 2K − 1.

The likelihood function for a sample of N independent observations can be formulated as

the product of N respondents’ likelihoods,

p(y|B,Γ,ψ, ζ) =
N∏
i=1

2K−1∑
c=0

πicp(yi|α>i v = c,B,Γ) (4.6)

where y = (y1, . . . ,yN)> is a N × J matrix of responses.
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4.2.4 Special Cases

From the saturated model, we derived two different parsimonious models. One model (i.e.,

the Γ model) associates covariates with the probability of correctly answering an item, but

not the attributes, and the other model (i.e., the ζ model) associates covariates with the

probability of mastering an attribute, but not the item responses. Moreover, in order to

investigate the benefit of the covariates on uncovering the latent structure, we also consider

the base model, which excludes attributes. The connection between the saturated model

and the special cases are presented below:

• Saturated model where both Γ and ζ are estimated.

• Base model where Γ = 0 and ζ = 0.

• Γ model where Γ is estimated and ζ = 0.

• ζ model where Γ = 0 and ζ is estimated.

The various special cases may be relevant for different researchers. For instance, re-

searchers interested assessing DIF may be more interested in the Γ model to assess whether

covariates relate to item responses. In contrast, intervention studies may focus on the ζ

model given the goal is to test hypotheses about how experimental conditions or student

characteristics relate to attribute mastery. Additionally, researchers would deploy the base

model in the absence of covariates.

4.3 Bayesian Inference of the Saturated Model

This section discusses A Bayesian model for inferring the model parameters. First, we

discuss the prior specifications, and then introduce the full conditional distributions. Later

we describe a Metropolis-within-Gibbs sampling algorithm for approximating the posterior

distribution.
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4.3.1 Bayesian Formulation

The following subsection introduces our novel Bayesian formulation. The following five

subsections discuss: 1) data augmentation for item responses; 2) priors for the effects of

covariates for item responses; 3) data augmentation for attributes; 4) priors for the effects of

covariates for attribute mastery probabilities; and 5) priors for inferring the latent structure

related parameters.

Item Augmented Data

We use the classic probit data augmentation approach (Albert & Chib, 1993). That is, we

define a deterministic relationship between the observed binary responses and a continuous

augmented random variable as Yij = 1(Y ∗ij > 0). Next, in order to augment our model we

specify the following normal distribution for the augmented data,

Y ∗ij |αi,βj,γj ∼ N (a>i βj + x>i γj, 1). (4.7)

Item-Level Covariate Coefficients

To apply a variable selection algorithm on item-level covariates, we use the “spike-slab”

hierarchical formulation (George & McCulloch, 1993) on the prior of the γj parameters.

George and McCulloch (1993) noted that under the hierarchical modeling framework, the

prior distribution becomes equivalent to a generalized version of a Zellner (1986) g-prior.

In detail, each parameter in γj is assumed to follow a “spike-slab” mixture of two normal

distributions, which γjv ∼ (1 − ξγjv) N
(

0, s−2
γjvτ

−1
γj

(x>v xv)
−1
)

+ ξγjv N
(

0, τ−1
γj

(x>v xv)
−1
)

,

and P (ξγjv = 1) = 1− P (ξγjv = 0) = pγj. Here, ξγjv is a binary latent variable defining the

activeness of the parameter. That is, the prior for γjv for ξγjv = 0 is a normal distribution

concentrated near zero (i.e., Xiv is unrelated to Yij) and the prior for ξγjv = 1 corresponds

with a normal with a larger variance (i.e., Xiv relates to Yij). Thus, the conditional prior for
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γj is the following multivariate normal distribution,

γj|ξγj ∼ NV (0, τ−1
γj (KγjX

>XKγj)
−1) (4.8)

where we set ξγj = (ξγj1 . . . ξγjV )> as the binary latent vector, and Kγj = diag[s1, . . . , sV ]

where sv = m,m > 1 if ξγjv = 0, and sv = 1 if ξγjv = 1. Note that m is chosen as a large

constant that shrinks the variance for inactive predictors 1 The mean is a vector of zeros

and the prior variance-covariance matrix is a function of the predictor cross-products (i.e.,

X>X) and a Kγj. Moreover, ξγjv follows a Bernoulli distribution with a probability pγj

for item j, ξγjv|pγj ∼ Bernoulli(pγj), and pγj follows a Beta(aγ, bγ) distribution. We choose

a gamma prior for the precision hyper-parameter τγj, τγj ∼ gamma(aγ0, bγ0). Further note

setting Kγj to an identity matrix (i.e., setting all the latent binary variables to one), one can

make the prior distribution to be equivalent to a Zellner (1986) g-prior without a variable

selection mechanism.

Attributes and Augmented Data

We use the probit data augmentation for attributes, as well. Specifically, we use the following

formulation for αik,

αik = 1(α∗ik > 0)

α∗ik|αi1, αi2, . . . , αi,k−1, ζk,ψk ∼ N (a>i,K−1ψk + z>i ζk, 1) (4.9)

where α∗ik is a continuous, augmented version of αik that has a normal distribution condi-

tioned on the first k − 1 attributes, (αi1, . . . , αi,k−1), and the coefficients ζk and ψk.

1We follow the recommendation of O’Hara and Sillanpää (2009) and set m =
√

1000, which indicates
that the prior variance for an inactive predictor v is 1000 times smaller than the prior variance for the active
predictor.
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Attribute-Level Covariate Coefficients

The ζ parameter reveals the relationship between the attribute-level covariates and attribute

mastery probabilities. Similar to the item-level covariates, we specify a generalized g-prior

for ζk such that we can apply a variable selection algorithm on the attribute-level covariate

coefficients. With a binary activeness latent variable, we assume that each parameter in ζk

follows a mixture of two normal distributions, where ζkl ∼ (1−ξζkl) N
(
0, s−2

ζklτ
−1
ζk (z>l zl)

−1
)
+

ξζkl N
(
0, τ−1

ζk (z>l zl)
−1
)
, and P (ξζkl = 1) = 1 − P (ξζkl = 0) = pζk. Moreover, we set the

prior of the hyper-parameter, ξζkl, to follow a Bernoulli distribution with a probability pζk,

ξζkv|pζk ∼ Bernoulli(pζk), and pζk follows a Beta(aζ , bζ) distribution. Thus, the prior of ζk

follows a multivariate normal distribution as,

ζk|vζk ∼ NV (0, τ−1
ζk (KζkZ

>ZKζk)
−1) (4.10)

where ξζk = (ξζk1 . . . ξζkL)> is the binary latent vector with an entry being 1 if the corre-

sponding parameter is active, and 0 otherwise. In addition, a hyper-parameter, τζk , denotes

the prior’ precision of the parameter ζkl. Kζk = diag[s1, . . . , sL] where we set sl = n, n > 1

if ξζkl = 0, and sv = 1 if ξζkl = 1. Moreover, the prior for τζk is a gamma distribution for

each k, τζk ∼ Gamma(aζ0 , bζ0). Note that setting Kζk to an identity matrix (i.e., setting all

the latent binary variables to one), one can exclude the variable selection algorithm from the

procedure.

Latent structure related parameters

In exploratory RLCMs, researchers need to infer an underlying structure between attributes

and the binary, domain-specific item-skill map— i.e., the Q matrix. Assuming that the

elements of Q are conditionally independent and follow Bernoulli distributions—as qjk|ν ∼
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Bernoulli(ν) where ν has a beta prior ν ∼ beta(aν , bν), the joint prior distribution for Q is,

p(Q|ν) ∝
( J∏
j=1

K∏
k=1

νqjk(1− ν)1−qjk
)
1(Q ∈ Q) (4.11)

where Q denotes the identifiable space of the Q matrix. Culpepper (2019a) in-

troduced a fully Bayesian model for inferring Q while applying a “spike-slab” prior

for the βj, but one limitation of the approach is that the formulation imposed

a more restrictive monotonicity condition. They introduced a structure, q̃j =

(1, qj1, . . . , qjK , qj1qj2, . . . , qj(K−1)qjK , . . . ,
∏K

k=1 qjk)
>, to define the activeness of each βjp.

Later, Chen et al. (2020) introduced a sparse latent class model with the latent

structure defined by a ∆ = (δ1, . . . , δJ) matrix rather than a Q matrix. In

this setting, the elements of δj denote the activeness of each βjp parameter, δj =

(1, δj1, . . . , δjK , δj12, . . . , δj(K−1)K , . . . , δj1...K)> ∈ {0, 1}2K . Thus, δj and βj are connected

in a way that a δjp is 1 if the corresponding parameter βjp is active, and zero otherwise.

Chen et al. (2020) relaxed the restrictive monotonicity condition of Culpepper (2019a),

but the approach does not provide a mechanism for specifying expert knowledge about

the Q matrix. In addition, a method proposed by Balamuta and Culpepper (2021) allows

the inclusion of expert knowledge about Q links βj to qj through the structure of δj as

p(β|Q) =
∑

all∆ p(β|∆)×p(∆|Q). To establish a stochastic relationship between δj and qj,

Balamuta and Culpepper (2021) used a confirmatory DINA model with common guessing,

g, and slipping, s, parameters across all qj.

Thus, the prior distribution of δjp is parameterized as follow

p(δjp|qj, g, s) ∝ g(1−q̃pj)(1− s)q̃pj (4.12)

where q̃jp is the pth entry of the q̃j in Culpepper (2019a). Additionally, we deploy the
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following truncated, conditionally normal prior for βjp|βj(p), δjp as follows,

p(βjp|δjp,βj(p)) ∝ v
−1/2
jp exp

(
− 1

2
β2
jp/vjp

)
1(βjp > Ljp) (4.13)

where βj(p) excludes βjp from βj, Ljp is the lower bound for the βjp, and δjp is the active-

ness parameter associated with p. Note this is a stochastic search variable selection prior

(Culpepper, 2019a; George & McCulloch, 1993) such that vjp = δjp/w1 + (1− δjp)/w0 where

the precisions for the spike and slab are w0 and w1, respectively.

4.3.2 Posterior Inference

Next, we specify the full conditional distributions for the parameters under consideration

for our Metropolis-within-Gibbs sampling algorithm. Similar to the previous section, we

present the posterior specifications under five subsections:1) data augmentation for item

responses; 2) posterior for the effects of covariates for item responses; 3) data augmentation

for attributes; 4) posterior for the effects of covariates for attribute mastery probabilities; 5)

posterior for inferring the latent structure related parameters.

Item Augmented Data

The full conditional distribution of the augmented response data follows a truncated normal

distribution,

Y ∗ij |Yij = yij,αi,βj,γj ∼ N (a>i βj + x>i γj, 1)1(Y ∗ij > 0)yij1(Y ∗ij ≤ 0)1−yij . (4.14)
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Item-Level Covariate Coefficients

The full conditional distribution of γj is a multivariate normal distribution with a V -

dimensional covariate space,

γj|y∗1:N,j,α1:N ,βj,vγj ∼ NV (µγj,Σγj) (4.15)

where y∗1:N,j = (y∗1j, . . . , y
∗
Nj)
>, α1:N = (α1, . . . ,αN), Σγj = (X>X + τγjKγj(X

>X)Kγj)
−1

and µγj = ΣγjX
> (y∗1:N,j −Aβj

)
where Kγj = diag[s1, . . . , sV ] where sv = m, m > 1

if ξγjv = 0, and sv = 1 if ξγjv = 1. Moreover, the full conditional distribution of the

precision parameter, τγj, follows a gamma distribution such that τγj ∼ gamma(aγ1, bγ1)

where aγ1 = V
2

+ aγ0, and bγ1 = 1
2
(γ>j KγjX

>XKγjγj) + bγ0.

Similar to the procedure for updating entries of qj and δj, we use a MH sampler always

proposing a change in the value at the current state of ξγjv. Let ξ
(t)
γjv be the current value of

the ξγjv v’th entry, and ξ′γjv be the proposed value such that ξ′γjv = 1− ξ(t)
γjv. T (ξ′γjv, ξ

(t)
γjv) is

defined as

T
(
ξ′γjv, ξ

(t)
γjv

)
=

(
p(γj|ξ′γj)p(ξ′γj|pγj)
p(γj|ξ(t)

γj )p(ξ
(t)
γj |pγj)

)
. (4.16)

where ξ
(t)
γj and ξ

′
γj are the same on all entries but the vth entry, and the decision rule for the

MH algorithm is

ξ
(t+1)
γjp =


ξ′γjv min

(
1, T

(
ξ′γjv, ξ

(t)
γjv

))
> U

ξ
(t)
γjv otherwise

. (4.17)

Moreover, the full conditional posterior distribution of pγj can be denoted as pγj|ξγj ∼

Beta(
∑V

v=1 ξγjv + aγ, V −
∑V

v=1 ξγjv + bγ).

Attributes and Augmented Data

The full conditional distribution for an individual’s alpha pattern αi is a categorical distri-

bution with the conditional posterior probability of membership in class c being proportional
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to,

p(α>i v = c|yi,Γ,B, ζ,ψ) ∝ πic

J∏
j=1

p(yij|α>i v = c,γj,βj). (4.18)

The full conditional distribution for the augmented attribute data is a truncated normal

distribution,

α∗ik|αi1, αi2, . . . , αi,k−1, ζk,ψk ∼ N (a>i,K−1ψk + z>i ζk, 1)1(α∗ik > 0)αik1(α∗ik ≤ 0)1−αik . (4.19)

where ai,K−1 is a design vector defined by a subset of αi pattern (i.e., (αi1, . . . , αi,K−1)),

the non-zero elements of the ψk characterizes the structure of the relationship among the

attributes, and ζk is covariate coefficients between zi and the attribute mastery probabilities.

Attribute-Level Covariate Coefficients

The full conditional distribution for the attribute-related parameters, ζk, is

ζk| α∗1:N,k,α1:N,1, . . . ,α1:N,k−1,ψk,vζk ∼ NL(µζk,Σζk) (4.20)

where α∗1:N,k = (α∗1k, . . . , α
∗
Nk)

>, Σζk = (Z>Z + τζkKζk(Z
>Z)Kζk)

−1 and µζk =

ΣζkZ
>(α∗1:N,k − AK−1ψk

)
, AK−1 = (a1,K−1 . . .aN,K−1)> is a design matrix with the di-

mension N × 2K−1, and Kζk = diag[s1, . . . , sL] where sl = m, m > 1 if ξζkl = 0, and sl = 1

if ξζkl = 1.

In addition, the hyper-parameter ξζkl is updated with the MH algorithm. We always

propose a change in the value at the current state of ξζkl. Define ξ
(t)
ζkl as the current value of

the lth entry of the latent binary variable, and let the proposed value be ξ′ζkl = 1− ξ(t)
ζkl. We

can define a function T
(
ξ′ζkl, ξ

(t)
ζkl

)
defined as

T
(
ξ′ζkl, ξ

(t)
ζkl

)
=

(
p(ζk|ξ′ζk)p(ξ′ζk|pζk)
p(ζk|ξ(t)

ζk )p(ξ
(t)
ζk |pζk)

)
. (4.21)
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where ξ
(t)
ζk and ξ′ζk are the same on all entries but the lth entry. The decision rule for the

MH algorithm is

ξ
(t+1)
ζkp =


ξ′ζkl min

(
1, T

(
ξ′ζkl, ξ

(t)
ζkl

))
> U

ξ
(t)
ζkl otherwise

. (4.22)

The full conditional distribution of the precision parameter τζk follows a gamma distri-

bution, τζk ∼ Gamma(aζ1, bζ1) where aζ1 = L
2

+ aζ0 and bζ1 = 1
2
(ζ>k KζkZ

>ZKζkζk) + bζ0,

Kζk = diag[s1, . . . , sL] where sl = m, m > 1 if ξζkl = 0. Moreover, pζk’s full conditional

posterior distribution can be denoted as pζk|ξζk ∼ Beta(
∑L

l=1 ξζkl + a, L−
∑L

l=1 ξζkl + b).

The posterior distribution of ψks for an attribute k and a parameter s is specified

to be normally distributed. As previously stated, we use the parameter, ψks, to model the

structural relationships among the attributes, which is used to model the attribute structural

probabilities. This yields the dimension of the ψ as K × 2K−1 with fixed pattern of zeros

based upon the order the attribute distribution is factored (e.g., see subsection “Model for

Attribute-Related Covariates”). Thus, the conditional posterior distribution of each element

is

ψks|α∗1:N,k, ζk,ψk(s) ∼ N (µks, σ
2
ks) (4.23)

where α∗1:N,k = (α∗1k, . . . , α
∗
Nk)

>, ψk(s) is ψk without element s, σ2
ks = (A>K−1,sAK−1,s+vψ)−1,

and µks = σ2
ks A

>
K−1,s

(
α∗1:N,k −AK−1,(s)ψk(s) −Zζk

)
. Also, AK−1 = (a1,K−1 . . .aN,K−1)> is

a design matrix with the dimension N × 2K−1, AK−1,s is column s of AK−1, and AK−1,(s)

excludes column s of AK−1. In addition, the full conditional distribution of the hyper-

parameter vψ is vψ|ψ ∼ gamma(aψ1, bψ1) where aψ1 = 2K−1
2

+aψ0 and bψ1 = 1
2
tr
(
ψψ>

)
+bψ0.
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Latent structure related parameters

The full conditional distribution for βjp is

βjp| Y ∗j ,α,βj(p), δjp,γj, qj ∼


N (µjp, σ

2
jp)1(βjp > 0) 1 ≤ p ≤ K

N (µjp, σ
2
jp) otherwise

(4.24)

where σ2
jp = (A>pAp + v−1

jp )−1 and µjp = σ2
jp A

>
p

(
Y ∗j − A(p)βj(p) −Xγj

)
. Ap is the pth

column of the design matrix A, A(p) is a matrix with all of A, but the pth column, and βj(p)

is the 2K − 1 vector that omits βjp.

As in Balamuta and Culpepper (2021), the entries of the Q matrix are updated with

the Metropolis-Hastings (MH) algorithm. While updating an entry, we always propose a

change to its current state. Thus, if q
(t)
jk is the current value of the entry of Q, then the

proposed candidate value is q′ = 1− q(t)
jk . Let T (q′, q

(t)
jk ) be

T
(
q′, q

(t)
jk

)
=

(
p(δj|qj(k), q

′, s, g)p(q′|Q(j,k), ν)

p(δj|qj(k), q
(t)
jk , s, g)p(q

(t)
jk |Q(j,k), ν)

)
(4.25)

where Q(j,k) indicates all other elements of Q. The decision rule for the MH algorithm is

q
(t+1)
jk =


q′ min

(
1, T

(
q′, q

(t)
jk

))
> U

q
(t)
jk otherwise

(4.26)

where U is drawn from uniform(0, 1). The full conditional distribution of ν is

ν|Q ∼ Beta

(
J∑
j=1

K∑
k=1

qjk + aν , JK −
J∑
j=1

K∑
k=1

qjk + bν

)
. (4.27)

Another model parameter that is updated with the MH algorithm is the δj parameters.

Similar to the procedure for updating entries of qj, we use a MH sampler that always proposes

a change in the value at the current state of δjp. Let δ
(t)
jp be the current value of the δj p’th
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entry, and δ′ be the proposed value such that δ′ = 1− δ(t)
jp . T (δ′, δ

(t)
jp ) is defined as

T
(
δ′, δ

(t)
jp

)
=

(
p(βjp|βj(p), δ′)p(δ′|qj, s, g)

p(βjp|βj(p), δ(t)
jp )p(δ

(t)
jp |qj, s, g)

)
. (4.28)

The decision rule for the MH algorithm is

δ
(t+1)
jp =


δ′ min

(
1, T

(
δ′, δ

(t)
jp

))
> U

δ
(t)
jp otherwise

. (4.29)

4.4 Monte Carlo Simulation Study

4.4.1 Overview

A hundred Monte Carlo simulations are conducted to assess the performance of the parameter

selection algorithms on the Γ and ζ parameters and examine its effects on the parameter

recovery rates. Three general data-generating simulation conditions corresponding to the

three ways to include covariates are explored: 1) saturated model with item- and attribute-

level covariates; 2) ζ model that only includes attribute-level covariates; and 3) Γ model

that only includes item-level covariates. For the simulation studies, we generate data by

incorporating the covariate effect on the measurement and/or structural part of the model.

We estimate three models with each generated dataset. The first model is the base model

that excludes the covariates to demonstrate the implications of neglecting to incorporate

relevant covariates in exploratory RLCMs. The second and third models are designed to

quantify the role covariates (e.g., the ζ, Γ, or saturated models) with or with the variable

selection framework. Note we estimate either the ζ, Γ, or saturated model based on which

part of the model we incorporate the covariates in the data-generation process.

In the simulation study design, the sample size is varied (i.e., N = 1000 and 4000),

and the number of attributes is set to K = 3. In addition, to ensure our simulation is

representative of real data, we generated covariates effects (i.e., Γ and ζ) and attribute
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structural parameters (i.e., ψ) that are consistent with our application (e.g., see the next

section). Specifically, we sampled the elements of Γ and ζ from uniform(−1, 1), and

we set the hyper-parameters of the prior precision to 1 (i,e. aγ0 = bγ0 = 1 for the Γ

parameter and aζ0 = bζ0 = 1 for the ζ parameter). Moreover, the non-zero elements of

the attribute structural parameters (i.e., ψ) are sampled from uniform(−0.4, 0.4), and the

hyper-parameters of the prior precision is set to 1 (i.e. aψ0 = bψ0 = 1). We compared the

performance of two different “spike” parameters (i.e., m = 10 and
√

1000) for the prior

variance of irrelevant coefficients. However, the results only differ in the third decimal;

thus, we only presented the results from the m =
√

1000 condition. We generated 10

binary item- and attribute-level covariates for each respondent from a Bernoulli(0.5)

distribution. To evaluate the performance of the variable selection algorithm, we set 20%

of the true Γ and ζ coefficients to a non-zero value (i.e., 0.75 or -0.75)—representing the

relevant covariates—and the remaining 80% to 0—representing the irrelevant covariates.

Moreover, we used the strictly identifiedQ matrix with J = 20 for K = 3 as presented below:

QK=3 =



0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0
0 1 1
0 1 1
1 0 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1


.

B are generated using the approach of G. Xu and Shang (2018) where the success

probabilities associated with the latent groups α = 0 and α = 1 are set to 0.2 and 0.8,

respectively. The remaining success probabilities are varied between 0.2 and 0.8 with values

defined by 0.2+(0.8−0.2)×K>j /Kj where K>j denotes the number of the required attributes

in qj = (qj1, . . . qjK). Moreover, both prior hyper-parameters of ν are set to 1 (i.e. aν = bν =

1)
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In each simulation, 100 Monte Carlo replications are generated. In each chain, we ran

50, 000 iterations, of which we discarded the first 20, 000 as the burn-in period. To assess

the recovery rates of the model parameters, we calculated the average mean absolute errors

(MAE) of the B parameters using

MAE(B) =
1

RJP

R∑
r=1

J∑
j=1

P∑
p=1

|β̂(r)
jp − βjp| (4.30)

where P = 2K denotes the number of regression coefficients and β̂
(r)
jp is the posterior mean

from replication r. Similarly, the MAE for the Γ parameters is, 1
RJV

∑R
r=1

∑J
j=1

∑V
v=1|γ̂

(r)
jv −

γjv| where V is the number of item-related covariate coefficients and γ̂
(r)
jv is the posterior

mean from replication r. Moreover, we reported the element-wise agreement rate of the

binary activeness parameters of Γ and ζ coefficients as 1
R

∑R
r=1

1
JV

∑J
j=1

∑V
v=1 1(ξ̂

(r)
γjv = ξγjv)

and 1
R

∑R
r=1

1
KL

∑K
k=1

∑L
l=1 1(ξ̂

(r)
ζkl = ξζkl).

For the ζ and ψ parameters, we reported the average mean absolute errors of the

attribute class distribution, πi = (πi0, . . . , πi,2K−1)>, of each examinee i. In Equation 3, πic

is denoted as the probability of an examinee i belonging to an latent class c. Thus, the average

mean absolute value for π1, . . . ,πN can be calculated as 1
RCN

∑R
r=1

∑C
c=0

∑N
i=1|π̂

(r)
ic − π

(r)
ic |

where π̂
(r)
ic and π

(r)
ic are the posterior mean and data generating valuing for replication r.

In addition, the average mean absolute errors of the probability of correctly answering an

item, which is a function of covariates for the saturated and Γ models, are reported as

follows. Recall that θij = P (Yij = 1|αi,γj,βj) is the item j mastery probability of examinee

i as in Equation 1. Then, the average mean absolute errors of θij can be calculated as

1
RJN

∑R
r=1

∑J
j=1

∑N
i=1|θ̂

(r)
ij − θ

(r)
ij |.

We evaluated the model performance on estimating the latent structure by reporting the

element-wise agreement rates for Q, which is defined as 1
R

∑R
r=1

1
JK

∑J
j=1

∑K
k=1 1(q̂

(r)
jk = qjk),

and matrix-wise agreement rates, 1
R

∑R
r=1 1

(
Q̂(r) = Q

)
. In the rth replication, Q̂(r) is

obtained after discretizing the element-wise mean of the sampled binaryQmatrices as 1 if the
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corresponding entry is greater than 0.5, and 0 otherwise, and q̂
(r)
jk represents the element in the

jth row and kth column of the Q̂(r). In addition, we evaluated the attribute- and pattern-wise

agreement rates of the examinee latent classes with 1
R

∑R
r=1

1
NK

∑N
N=1

∑K
k=1 1(α̂

(r)
ik = αik),

and 1
R

∑R
r=1

1
N

∑N
N=1 1(α̂

(r)
i = αik), respectively.

4.4.2 Results

In this section, we presented the results to report the performance of the variable selection

mechanism on the item- and attribute-level covariates. For the case with a saturated data-

generating model, Table 4.1 presents the results when we fit the data to the models with

and without a variable selection algorithm on the Γ and ζ parameters as well as the base

model (i.e., the misspecified model that incorrectly excludes covariates). The results show

that when many irrelevant covariates are introduced to the model (i.e., 80% of our covariates

are irrelevant), for the majority of the parameters, the saturated model with the variable se-

lection mechanisms provides slightly better accuracy rates than the one without the variable

selection mechanism. In addition, the Γ parameter recovery rates are significantly better in

the saturated model with the variable selection mechanism than the saturated model with-

out one. Moreover, the model with the parameter selection algorithm correctly recovers the

Γ parameters’ activeness indicator over 95% of the time and the ζ parameters’ activeness

indicator over 90% of the time. Compared to the base model, the saturated model, regardless

of including the parameter selection mechanism, is superior to the base model on recovering

all the parameters in interest. In detail, the base model performs very poorly on recovering

the underlying latent structure when the true generating data includes covariates on both

item and attribute levels.
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Table 4.1: Summary of the Monte Carlo replications for saturated model

Fitted
Model

Sample
size

Average MAE Q Accuracy Class Accuracy ξ Accuracy

B Γ θij πi Element Matrix Element Pattern ξγ ξζ

W/O variable
selection

1000 0.1431 0.0878 0.0597 0.0261 0.9807 0.32 0.9138 0.7713 NA NA

4000 0.0713 0.0421 0.0301 0.0140 0.9995 0.97 0.9205 0.7884 NA NA

W/ variable
1000 0.1236 0.0385 0.0494 0.0201 0.9790 0.24 0.9162 0.7777 0.9611 0.9033

4000 0.0652 0.0170 0.0254 0.0111 0.9993 0.96 0.9210 0.7897 0.9934 0.9873

Base
model

1000 0.2514 NA 0.1544 0.1043 0.7773 0 0.7830 0.52 NA NA

4000 0.2646 NA 0.1508 0.1046 0.7830 0 0.7811 0.52 NA NA

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; ξγ, ξζ Accuracy
= average accuracy rate of latent binary activeness of the Γ and ζ parameters,respectively;
Γ parameter is not applicable in base model; ξγ and ξζ are not applicable in saturated
model without a variable selection mechanism and base model. Results are based upon 100
replications.

To investigate the variable selection mechanism only on the Γ parameters, we first

generate the data by introducing covariates only on the item level. Later, we fit the data

to the models with and without a variable selection algorithm on the Γ parameters and the

base model. Finally, we presented the results in Table 4.2. The model with the variable

selection mechanism performs slightly better than the one without the mechanism for all

the parameters but Γ. For the Γ, the model with the variable selection mechanism performs

significantly better than the one without the mechanism. In addition, the Γ parameters’

activeness indicators are restored almost perfectly (i.e., over 97 percent). On the other

hand, the base model shows significantly low recovery rates of underlying latent structure

and only mild recovery rates of the examinee-related parameters compared to the Γ models

regardless of the selection mechanism.
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Table 4.2: Summary of the Monte Carlo replications for Γ model

Fitted
Model

Sample
size

Average MAE Q Accuracy Class Accuracy ξ Accuracy

B Γ θij πi Element Matrix Element Pattern ξγ ξζ

W/O variable
selection

1000 0.1189 0.0865 0.0500 0.0187 0.9852 0.40 0.8827 0.7030 NA NA

4000 0.0625 0.0418 0.0255 0.0119 0.9997 0.98 0.8905 0.7214 NA NA

W/ variable
selection

1000 0.1021 0.0369 0.0392 0.0185 0.9857 0.44 0.8853 0.7095 0.9676 NA

4000 0.0570 0.0167 0.0205 0.0119 0.9997 0.98 0.8911 0.7228 0.9942 NA

Base
model

1000 0.2000 NA 0.1386 0.0416 0.8797 0 0.8215 0.5866 NA NA

4000 0.1786 NA 0.1335 0.0380 0.8892 0 0.8266 0.6006 NA NA

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; ξγ, ξζ Accuracy
= average accuracy rate of latent binary activeness of the Γ and ζ parameters,respectively;
Γ parameter is not applicable in base model; ξγ is not applicable in saturated model without
a variable selection mechanism and base model, and ξζ is not applicable for none of the
models. Results are based upon 100 replications.

Finally, we apply the variable selection mechanism on only the ζ parameter. We first

generate the data by including the covariate’s effects on the attribute level. Similar to the

first two models, only 20% of the variables have non-zero coefficients. Table 4.3 shows that

the ζ model, regardless of including variable selection mechanism, performs similarly to the

base model on recovering the underlying latent structure. With respect to recovering the

latent class membership probabilities, similar to the first study, the ζ model shows promising

results over the base model. Moreover, the ζ model with a variable selection mechanism

results in the highest recovery rates for the examinees’ latent class profiles with around 2%

more in pattern-wise recovery rates than the base model. In distinguishing the relevant

covariates from the irrelevant ones on the attribute level, the variable selection mechanism

can correctly recover the parameters’ activeness indicators more than 95% of the time. Thus,

we can conclude that in the case of incorporating any irrelevant covariates on the attribute-

level covariates, the selection mechanism on the ζ parameter can correctly identify those

covariates.
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Table 4.3: Summary of the Monte Carlo replications for ζ model

Fitted
Model

Sample
size

Average MAE Q Accuracy Class Accuracy ξ Accuracy

B Γ θij πi Element Matrix Element Pattern ξγ ξζ

W/O variable
selection

1000 0.1067 NA 0.0432 0.0238 0.9858 0.40 0.9367 0.8294 NA NA

4000 0.0581 NA 0.0240 0.0125 0.9995 0.97 0.9405 0.8383 NA NA

W/ variable
selection

1000 0.1058 NA 0.0429 0.0178 0.9858 0.41 0.9372 0.8308 NA 0.9533

4000 0.0580 NA 0.0239 0.0095 0.9995 0.97 0.9406 0.8388 NA 0.9907

Base
model

1000 0.1111 NA 0.0446 0.1012 0.9868 0.43 0.9302 0.8119 NA NA

4000 0.0610 NA 0.0251 0.1046 0.9995 0.97 0.9340 0.8211 NA NA

Average MAE = Average mean absolute errors for parameters B, Γ, mastery probability of
an item θij and latent class membership probability πi; Q Accuracy Matrix = matrix-wise
accuracy rate for Q; Q Accuracy Element = element-wise accuracy for Q; ξγ, ξζ Accuracy =
average accuracy rate of latent binary activeness of the Γ and ζ parameters,respectively; Γ
and ξγ parameter are not applicable in any models; ξζ is not applicable for ζ model without
a variable selection mechanism and base model. Results are based upon 100 replications.

4.5 Application to Spatial Rotation Dataset

This section reports results from an application of our developed methods to a real data

set collected by Culpepper and Balamuta (2017). In this data set, 516 student-participants

were administered 30 spatial rotation items (i.e., the Purdue Spatial Visualization Test: Ro-

tations (PSVT-R; Yoon, 2011)) and a survey to collect the participants’ covariates such as

demographic information and background information that may be associated with spatial

reasoning skills. Two categorical items from the Survey of Spatial Representation and Ac-

tivities (Terlecki & Newcombe, 2005) were collected and included as covariates of the spatial

rotation latent structure: 1) “How proficient or skilled do you believe you are at using maps?”

(i.e., “not skilled”, “not very skilled”, “moderately skilled”, “very skilled”); and 2) “How

often do you use maps?” (i.e., “once every few years to not much at all”, “one to two times a

year”, “one to two times in six months”, “one to two times a month”, “weekly”, “daily”). In

addition, we include gender as a covariate in our application. Table 4.4 reports the frequency

distribution for the covariates. Note for the map skill variable that we combined the “not

skilled” and “not very skilled” levels into a “not skilled/not very skilled” category for our
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analysis as only twelve respondents reported “not skilled”. The covariates were collected as

categorical variables and yield eight distinct main-effect variables in a dummy-coded design

matrix (note the references levels are “not skill/not very skilled”, “once every few years to not

much at all” and “Female”). Similar to simulation study design, we set the hyper-parameters

of the prior precision to 1. (i,e. aζ0 = bζ0 = 1 for the ζ parameters and aψ0 = bψ0 = 1 for the

ψ parameters). Moreover, we set the prior hyper-parameters of ν as 1 (i.e. aν = bν = 1).

Table 4.4: Descriptive statistics of covariates for spatial rotation dataset.

Covariate Category Frequency

Map skill

not skilled 13

not very skilled 98

moderately skilled 297

very skilled 108

Map usage

Once every few years to not much at all 66

1 to 2 times a year 49

1 to 2 times in six months 62

1 to 2 times in a month 152

weekly 159

daily 28

Gender
Male 179

Female 337

Note we consider the same set of covariates at both the item level and attribute level.

To decide the number of attributes in the model, we fit the data to the saturated model

with a variable selection mechanism on item- and attribute-level covariates for K = 3 and

K = 5. Later, we use the relative model fit index by calculating 13-fold cross-validation

(LOO; Geisser & Eddy, 1979; Vehtari et al., 2017). The LOO index favors the saturated

model with the K = 3 condition (LOO for K = 3 1474.754 and for K = 5 1486.894). Thus,

we presented the results for only the K = 3 condition in this section.
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Table 4.5: Estimated posterior means of the Q matrix and item regression coefficients for
spatial rotation data.

Items
Q β̄j

Q1 Q2 Q3 β0 β3 β2 β23 β1 β13 β12 β123

1 0.6203 0.7130 0.6423 0.3555 0.3736 0.7320 0.5099 0.4090 0.4213 0.2604 0.3586

2 0.5328 0.7111 0.5120 0.4552 0.2264 0.9487 0.5336 0.3789 0.1647 0.4556 0.2826

3 0.6516 0.7005 0.6472 0.2570 0.6619 1.1591 0.1868 0.8113 0.1047 0.2248 0.4025

4 0.4693 0.6132 0.4876 0.3488 0.3120 0.6797 0.0020 0.3165 0.0592 0.0213 -0.0229

5 0.6819 0.7184 0.7143 -0.1717 1.0502 0.9630 0.3846 0.8027 0.0390 0.1408 0.3602

6 0.6072 0.7142 0.6965 -0.1704 0.9948 0.9355 0.3788 0.4994 0.1864 0.1756 0.4326

7 0.6555 0.6776 0.6659 -0.3411 0.8096 1.0511 0.0585 0.7862 -0.0074 0.1489 0.1149

8 0.5694 0.5229 0.5996 0.1021 0.2186 0.1468 0.6548 0.2135 0.3471 0.2536 0.4629

9 0.5284 0.7159 0.6868 -0.7306 0.8288 1.4152 0.4588 0.4498 0.1330 0.2300 0.3669

10 0.6465 0.7195 0.7077 -0.1137 0.6256 0.5884 0.6052 0.4435 0.3468 0.2955 0.4153

11 0.5410 0.6999 0.6697 -0.2441 0.7185 0.9354 0.2942 0.3728 0.1750 0.1887 0.2966

12 0.7109 0.7336 0.7324 -0.7315 1.5039 0.8530 0.6085 0.8114 0.4161 0.4717 0.2334

13 0.6852 0.7002 0.6730 -0.3501 0.5064 0.7750 0.3401 0.6139 0.6304 0.0947 0.3160

14 0.6363 0.7386 0.7259 -0.8391 0.6468 1.3244 0.8224 0.5734 0.5489 0.2505 0.2590

15 0.6270 0.5163 0.6655 -0.5450 0.8086 0.2859 0.1966 0.4941 0.1049 0.3816 0.5022

16 0.7014 0.7156 0.7102 -0.6930 1.0048 0.8320 0.2965 0.7821 0.3114 0.3475 0.3483

17 0.6846 0.6765 0.5949 -0.4364 0.4127 0.7808 0.0606 0.7013 0.6462 0.1901 0.0795

18 0.4832 0.6527 0.5365 -0.5084 0.3373 0.8143 0.0736 0.2999 0.1135 0.0903 0.0360

19 0.7126 0.7150 0.7329 -0.6869 1.2263 0.9125 0.3618 0.7962 0.5280 0.0467 0.3964

20 0.7038 0.6577 0.7107 -0.4181 0.8209 0.5067 0.1814 0.6140 0.6731 0.3375 0.3904

21 0.7000 0.6884 0.7210 -0.8051 0.9789 0.7430 0.1752 0.7551 0.4663 0.0949 0.4989

22 0.6678 0.6960 0.6835 -0.5669 0.4516 0.4374 0.3784 0.3722 0.4845 0.4770 0.3657

23 0.6742 0.5218 0.6580 -0.3179 0.4972 0.2284 0.3324 0.7159 0.4999 0.3435 0.0018

24 0.5811 0.5516 0.6104 -0.3445 0.5914 0.3822 0.0335 0.4655 0.0852 0.0692 -0.0846

25 0.6691 0.5985 0.7082 -0.6264 0.7533 0.3863 0.2680 0.4718 0.4990 0.1765 0.5875

26 0.6965 0.5228 0.7095 -0.6263 0.4498 0.2017 0.3448 0.4683 0.9758 0.2886 0.4517

27 0.6922 0.5647 0.6478 -0.2403 0.2621 0.1720 0.4641 0.4136 0.8561 0.4176 0.4082

28 0.6166 0.7021 0.6868 -0.8569 0.3675 0.4201 1.0416 0.3420 0.6083 0.2876 0.5200

29 0.6046 0.5490 0.6112 -0.8638 0.2963 0.2732 0.2409 0.3024 0.4650 0.1238 -0.0153

30 0.6477 0.5481 0.6407 -1.4380 0.4371 0.2565 0.4336 0.5160 0.2543 0.1650 -0.1524
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In Table 4.5, we present element-wise means for the inferred Q matrix as well as re-

gression coefficients, βj,—denoting the relationship between attributes and item responses.

Table 4.5 provides evidence that the saturated model yields a dense Q matrix estimate as

most of the element-wise probabilities exceed 0.50. Chen et al. (2020) noted that dense Q

matrices, which are generically identified, are indicative of a general unstructured mixture

model. Therefore, the estimated Q matrix suggests that the data support an unstructured

mixture where most items require all eight classes to describe response patterns. In addition,

Table 4.5 shows the estimated regression coefficients for the relationship between attributes

and item responses. The majority of β parameters have large estimated coefficients, which

suggests an unstructured latent class model, and only several coefficients have been estimated

closer to 0.

Table 4.6 includes the item-level coefficient estimates, and Table 4.7 shows the ac-

tiveness probabilities associated with each of the coefficients. In Table 4.6, we present the

estimated coefficients in bold, which are estimated as active based on a cutoff value 0.5 on

the probability of being active. The majority of the Γ coefficients are estimated close to

zero and inactive, and most of the active coefficients have around 0.5 probability of being

active. Under the current setting, an active coefficient on the item-level covariates can be

interpreted as the item shows a possible DIF. The majority of our real data application

items have one or two active coefficients, with the probability of being active is close to our

0.5 threshold. Thus, we can conclude that there is a sign of having a DIF for many items,

although the evidence is not overwhelming. However, we suggest practitioners be more cau-

tious about using item 12 since all the coefficients associated with it are estimated as active

with relatively higher probabilities.
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Table 4.6: Γ coefficient estimates for spatial rotation data application for the saturated
model.

Item

Map Usage Skill Level Gender

1 to 2
times in
a month

1 to 2
times a

year

1 to 2
times in

six months
Daily Weekly Moderately Very Male

1 -0.0579 -0.0294 0.0065 0.0048 0.0107 0.0128 0.0393 0.0055

2 -0.0032 0.0138 -0.0454 -0.0856 0.0801 0.0153 0.0173 0.0005

3 -0.0014 0.0501 0.0048 -0.0037 -0.0410 0.0379 0.0265 -0.0175

4 -0.0209 0.0726 0.0657 -0.0662 0.0133 -0.0343 -0.0757 0.0300

5 -0.0025 -0.0211 -0.0122 -0.0203 0.0046 0.0033 -0.0036 0.0185

6 0.0058 -0.0154 0.0235 -0.0001 -0.0087 0.0227 0.0187 0.0206

7 -0.0395 0.0742 0.0002 0.0391 -0.0213 0.0237 0.0332 -0.0175

8 0.0331 -0.0939 -0.0218 -0.0280 -0.0190 0.0134 0.0122 -0.0065

9 0.0022 -0.0052 -0.0404 0.0704 0.0163 -0.0133 0.0065 -0.0124

10 -0.0328 -0.0334 -0.0061 -0.0293 -0.0103 0.0267 0.0436 -0.0015

11 -0.0073 -0.0163 -0.0066 0.0025 -0.0017 0.0114 0.0001 -0.0067

12 -0.0150 -0.0952 -0.1374 -0.0073 -0.0863 0.0406 -0.0039 0.0589

13 0.0759 0.0038 -0.0295 0.0698 -0.0054 -0.0128 0.0010 -0.0363

14 -0.0141 0.0022 0.0547 0.0424 0.0291 0.0049 -0.0137 0.0188

15 -0.0212 -0.0384 -0.0282 0.0183 0.0098 0.0096 0.0688 0.0262

16 -0.0210 -0.0015 -0.0121 -0.0577 -0.0073 -0.0046 0.0416 0.0141

17 0.0138 0.0281 0.0444 -0.0963 0.0375 -0.0721 0.0003 0.0362

18 -0.0108 -0.0956 -0.0287 0.0165 -0.0298 0.0308 0.0085 -0.0060

19 0.0114 0.0378 0.0262 -0.0440 -0.1051 0.0222 0.0310 0.0154

20 0.0221 -0.1326 0.0320 0.0028 0.0005 0.0201 -0.0010 0.0134

21 -0.0096 0.0189 0.0091 0.0426 0.0235 -0.0068 -0.0041 -0.0086

22 0.0567 0.0018 0.0078 -0.0910 0.0301 0.1198 -0.0875 -0.0104

23 -0.0591 0.0857 -0.0325 0.0230 -0.0026 0.0040 0.0496 -0.0240

24 -0.0062 -0.0185 -0.1096 0.0296 0.0206 -0.0069 -0.0033 0.0113

25 -0.0126 0.0875 -0.0295 -0.0086 -0.0254 0.0092 0.0012 0.0002

26 -0.0002 0.0177 -0.0057 0.0482 0.0070 -0.0132 0.0281 -0.0267

27 -0.0048 -0.0324 -0.0195 0.0665 0.0276 0.0500 0.0118 -0.0251

28 -0.0057 0.0075 0.0244 0.0313 -0.0202 -0.0150 -0.0035 0.0286

29 -0.0120 0.0526 -0.0209 -0.0493 -0.0065 0.0055 -0.0290 -0.0188

30 0.0004 0.0124 0.0099 0.0521 0.0269 -0.0184 0.0475 -0.0248

The coefficients in bold are estimated as active based on a 0.5 cutoff value on the probability
of being an active parameter.
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Table 4.7: Γ binary activeness indicators estimates for spatial rotation data application for
the saturated model.

Item

Map Usage Skill Level Gender

1 to 2
times in
a month

1 to 2
times a

year

1 to 2
times in

six months
Daily Weekly Moderately Very Male

1 0.5221 0.4388 0.4332 0.4376 0.4402 0.4270 0.4741 0.4300

2 0.4473 0.4497 0.4743 0.4871 0.5558 0.4509 0.4529 0.4392

3 0.4234 0.4654 0.4282 0.4294 0.4727 0.4692 0.4411 0.4397

4 0.4814 0.5312 0.5249 0.4999 0.4742 0.4952 0.5488 0.4948

5 0.4056 0.4105 0.3959 0.4010 0.4027 0.3955 0.4008 0.4204

6 0.4002 0.4017 0.4116 0.3963 0.3971 0.4335 0.4195 0.4304

7 0.4797 0.5180 0.4358 0.4637 0.4473 0.4596 0.4652 0.4461

8 0.4788 0.5479 0.4309 0.4293 0.4401 0.4250 0.4218 0.4239

9 0.4162 0.4153 0.4532 0.4549 0.4289 0.4110 0.4217 0.4196

10 0.4357 0.4242 0.4011 0.4152 0.3975 0.4299 0.4517 0.4042

11 0.3692 0.3686 0.3625 0.3674 0.3639 0.3774 0.3736 0.3784

12 0.5062 0.5650 0.6230 0.5034 0.5798 0.5265 0.5017 0.5758

13 0.5762 0.4289 0.4616 0.4792 0.4389 0.4470 0.4415 0.4983

14 0.4235 0.4140 0.4728 0.4338 0.4447 0.4103 0.4169 0.4362

15 0.4259 0.4362 0.4261 0.4130 0.4126 0.4171 0.5324 0.4596

16 0.4088 0.3941 0.3884 0.4353 0.3934 0.3966 0.4447 0.4082

17 0.4644 0.4694 0.4918 0.5291 0.4921 0.5818 0.4745 0.5133

18 0.4297 0.5451 0.4391 0.4333 0.4481 0.4578 0.4297 0.4338

19 0.4570 0.4812 0.4702 0.4752 0.6425 0.4704 0.4730 0.4746

20 0.4553 0.6171 0.4586 0.4324 0.4474 0.4590 0.4427 0.4488

21 0.3915 0.3784 0.3670 0.3985 0.3961 0.3724 0.3692 0.3764

22 0.4838 0.4267 0.4179 0.4964 0.4429 0.6512 0.5221 0.4297

23 0.5517 0.5580 0.4845 0.4695 0.4592 0.4547 0.5183 0.4879

24 0.4197 0.4182 0.5969 0.4176 0.4315 0.4083 0.4049 0.4198

25 0.4235 0.5325 0.4320 0.4146 0.4322 0.4101 0.4029 0.4060

26 0.3942 0.4031 0.3944 0.4280 0.3979 0.4172 0.4345 0.4403

27 0.4246 0.4433 0.4263 0.4682 0.4586 0.5172 0.4461 0.4484

28 0.4030 0.4066 0.4187 0.4177 0.4277 0.4162 0.4103 0.4525

29 0.4102 0.4634 0.4154 0.4394 0.4070 0.4105 0.4402 0.4245

30 0.4224 0.4146 0.4139 0.4383 0.4401 0.4448 0.4895 0.4404
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Table 4.8 includes attribute-level covariate coefficient estimates, and Table 4.9 presents

the probability of being active for the corresponding attribute-level coefficients. Similar to the

item-level coefficients, the estimated coefficients in bold represent the active coefficients which

we decide based on a 0.5 cutoff value on the probability of being active. The binary activeness

probabilities suggest that five of the “map skill” coefficients are positively associated with

underlying latent attribute membership. More specifically, students who report themselves

as “very skilled” in using the maps are more likely to master all three attributes than the

students who report themselves in the “not skilled/not very skilled” category. Moreover,

students that report themselves as “moderately skilled” has a higher probability of mastering

the second and third attributes than those who are in the reference group. In addition, the

“gender” coefficient is estimated as an active parameter indicating that male students are

more likely to master all three attributes than their female counterparts. In the frequency

of using a map, “one to two times in six months” is the only active coefficient with a just

over 0.5 activeness probability (i.e., 0.5411). The students using maps “one to two times in

six months” are more likely to master the third attribute than the reference group.

Table 4.8: ζ coefficient estimates for spatial rotation data application for the saturated
model.

Attribute

Map Usage Skill Level Gender

1 to 2
times in
a month

1 to 2
times a

year

1 to 2
times in

six months
Daily Weekly Moderately Very Male

1 -0.0803 0.0560 -0.1180 0.0302 -0.0361 0.1350 0.8303 0.1510

2 -0.0444 0.0013 -0.0805 -0.0168 -0.0397 0.1383 0.2035 0.1397

3 -0.0601 0.0201 -0.2292 -0.0129 -0.1475 0.3465 0.5196 0.5189

The coefficients in bold are estimated as active based on a 0.5 cutoff value on the probability of
being an active parameter.

85



Table 4.9: ζ binary activeness indicators estimates for spatial rotation data application for
the saturated model.

Attribute

Map Usage Skill Level Gender

1 to 2
times in
a month

1 to 2
times a

year

1 to 2
times in

six months
Daily Weekly Moderately Very Male

1 0.3692 0.3649 0.4082 0.3083 0.2697 0.4898 0.8697 0.5380

2 0.4455 0.4302 0.4782 0.4170 0.4257 0.6019 0.5750 0.5778

3 0.3786 0.3998 0.5411 0.3475 0.4403 0.7466 0.7743 0.8555

4.6 Discussion

Formative assessments are important for providing fine-grained information for students’

learning and progress. Exploratory RLCMs remain important tools for broadening the ap-

plicability of diagnostic models for developing formative assessments. We considered new

methods for including covariates into exploratory RLCMs. Collateral information—here,

covariates—about students might benefit educators in several ways. First, covariates may

be a source of undesirable interactions between students and items such as DIF; thus, in-

vestigating the covariates can uncover and help prevent these undesirable interactions and

construct irrelevant variance. Second, covariates might affect the difficulty level of accruing

attributes for students. Knowing these effects can help educators to identify and support

at-risk students. Covariates can also be used to evaluate educational intervention effects.

Third, significant covariates can reduce the uncertainty in the model parameters by providing

additional information about students.

Fine-grained information about a student’s knowledge profile is another important com-

ponent in educational environments. Recently, a significant amount of research has been con-

ducted on exploratory RLCMs that can infer the underlying structure between attributes

and a binary domain-specific item-skill map. Despite the common interest in exploratory

RLCMs and covariates, no study has been conducted on incorporating the covariates in RL-

CMs. Thus, we proposed three models to include covariates in the exploratory RLCMs—a
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saturated model and two of its constrained versions. In the saturated model, we explore the

covariates’ effects on the probability of correctly answering an item and the probability of

mastering an attribute. The ζ model, one of the constrained models, links covariates with

the probability of mastering an attribute, while the Γ model links the covariates with the

probability of correctly answering an item. Moreover, it may be challenging to distinguish

active covariates from inactive ones. Thus, while incorporating covariates into RLCM, we

also introduced a variable selection mechanism on the Γ and ζ coefficients to decide the

activeness of the covariate coefficients.

The findings suggest that all three models were able to recover the model parame-

ters well. In addition, the latent structure recovery rates in all three models were quite

promising—all proposed models recover the entire Q matrix accurately when N = 4000.

We also investigate the condition when covariates are ignored in the model, the base model,

even though the true data generating model included a covariate. Ignoring the covariates

increases the mean absolute errors in almost all conditions. Moreover, it yields significantly

lower latent structure recovery rates in the base model than in the saturated and gamma

models. In the ζ model, the findings suggest that including the attribute-level covariates in

the model improves the recovery of π, which may be used in practice to classify students.

However, we did not find evidence in the current simulation design that omitting attribute-

level covariates impacts inference about the latent structure (e.g., Q and B). Moreover, in

the second simulation study, we found that the variable selection mechanism successfully

distinguished active item- and attribute-level covariates from the inactive ones and yields

similar promising recovery patterns to the first simulation study. In general, including covari-

ates benefits us not only by providing insights about the relationships between the covariates

and the item success and attribute mastery probabilities, but also significantly increases the

parameter recovery rates. We fit the saturated model in the real data application, includ-

ing a variable selection mechanism on item- and attribute-level covariates. The model fit

analysis suggests the K = 3 as the number of attributes. The findings show that all the
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coefficients associated with gender and many coefficients associated with map skill levels are

likely to increase a student’s master probability on the attributes. Moreover, the item-level

coefficients are estimated very close to zero, which suggests little evidence of possible DIF.

In addition to incorporating covariates into RLCMs, we also introduce a novel way to

describe the structure of the relationship among the attributes (see subsection “Model for

Attribute-Related covariates”). This approach provides great flexibility in structuring the

relationships among attributes. In the present study, we assume an unstructured relation-

ship among attributes and estimate the intercept, main-effects, and interaction terms. In the

future, researchers may consider employing a regularization technique to infer structure re-

lated to relationships among attributes to possibly reveal underlying higher-order structures.

Moreover, with the innovation in learning systems, an increasing number of covariates, such

as process information from log files or response times, can be recorded during assessments.

Lastly, to increase the availability of the developed method for practitioners, we provide

the algorithm throughout an “R” package hosted in GitHub (Yigit, Culpepper, & Balamuta,

2021). We present details on installing the package locally and demonstrating how to analyze

a real-life data application in the “Readme” section.

Currently, in this manuscript, we consider only manifest item- and attribute-level co-

variates. However, the proposed Bayesian framework is quite flexible, and one can easily

incorporate latent covariates on both item and attribute levels. For example, a factor model

could be used to model latent item-level covariates, Xi, such that p(xi|fi,κ) where κ de-

notes the factor model parameters—loading and thresholds. Then, the model for yi would

be p(yi|αi,γj,βj,fi) where γj now captures the relationship between fi and yi. Similarly,

one could model the latent attribute-level covariates, Zi as p(zi|fi,κ) where κ again stands

for the factor model parameters—loading and thresholds. Under this framework, the exam-

inee’s latent profile, αi, would be formulated as p(αi|ψ, ζ,fi), which the ζ parameters now

explain possible associations between fi and αi.

In conclusion, exploratory RLCMs are important tools for developing and refining for-
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mative assessments to accelerate student learning. We addressed the problem of incor-

porating information about students’ context in the form of covariates to strengthen the

applicability of these methods for applied research.
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Chapter 5

Conclusion

Diagnostic models provide a statistical framework for designing formative assessments by

classifying student knowledge profiles according to a collection of fine-grained attributes.

They can provide fine-grained information about students’ learning profiles to teachers and

AI-based learning systems to design student-tailored interventions that accelerate skill de-

velopment.

Combining a diagnostic model with a learning model will be beneficial to capture the

longitudinal perspective of students’ learning. A student’s learning progress over time can

provide valuable information to design the learning materials accordingly. Moreover, a di-

agnostic model combined with a learning model can project the transition probabilities of

attributes from a non-mastery state to a mastery state. A low attribute transition probabil-

ity may be linked to the difficulty of comprehension of that attribute. Thus, the transition

probability of an attribute may create a valuable opportunity for teachers and learning sys-

tems to determine which attributes students need to spend more time or practice more to

comprehend. For example, AI-based learning systems can keep administering exercises for

the attributes until a predefined transition probability is satisfied. Furthermore, teachers

can focus and design more practice materials for the attributes which are difficult to be

comprehended by students.

Given the benefit of longitudinally tracking students’ learning profiles, my second chap-

ter applies an EM-based formulation to estimate students’ learning profiles efficiently. Several

studies have proposed modeling learning from a longitudinal perspective and using MCMC-

based algorithms in the current literature. Although MCMC is a feasible estimation method
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in high-dimensional scenarios, it often needs a tremendous number of iterations. Thus, an

EM-based algorithm can make the estimation process more computationally efficient, which

will make the model more accessible in classroom settings and AI-based learning systems.

Currently, in this chapter, the probability of transitioning from mastery to non-mastery state

for an attribute is set to zero, which assumes that a student does not forget an attribute

once the student mastered the attribute. As a future direction, one can relax this assumption

by allowing the transition from the mastery status to the non-mastery status at least after

several time points since forgetting can occur after some time even though a student once

mastered it.

In addition to the importance of the longitudinal perspectives of learning, the context

and ecosystem in which students learn may play an important role in skill and item mas-

tery. Therefore, it is crucial to develop methods for incorporating student covariates into

diagnostic models. Existing research is designed to include covariates in confirmatory di-

agnostic models, which assumes the underlying latent structure (known as Q matrix) is a

known component in the model. Since creating a Q matrix is often a time-demanding and

challenging task, an alternative can be estimating it as a model parameter. Thus, in the

third chapter, several models were proposed for including covariates in exploratory RLCMs.

This allows one to both infer the latent structure (i.e., Q matrix) and evaluate the role of

covariates on performance and skill mastery. The model parameter posterior distribution

is approximated using a Markov chain Monte Carlo (MCMC) algorithm with a Metropolis-

within-Gibbs algorithm. Results show that the underlying latent structure and parameter

values can be accurately recovered. These models can reveal the possible associations be-

tween the covariates and item and attribute mastery probabilities. These associations can

be used to identify at-risk students based on students covariates and benefit educators to

design student-tailored interventions that accelerate skill development.

Moreover, we proposed a parameter, ψks, to model the structural relationships among

the attributes, which is used to model the structural attribute probabilities. Currently,
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we factorize the attributes so that the latter attributes are dependent on the preceding

attributes. However, other factorizations can be applied as well, as long as they are incorpo-

rated into the ψ structure by changing the locations of the fixed-zeros. The only restriction

is that the number of non-zero elements in the ψ structure has to be less than or equal to

2K − 1 due to the identifiability constraint. The ψ structure allows the flexibility to relax

the independence assumption among the attributes and make the model more aligned with

real-life conditions in educational environments.

Currently, we incorporate manifest covariates in our model. However, there can be many

latent covariates in the educational setting that may relate to the item and skill mastery

probabilities. Thus, a factor model could be used to model latent item-level covariates, Xi,

such that p(xi|fi,κ) where κ denotes the factor model parameters—loading and thresholds.

Then, the model for yi would be p(yi|αi,γj,βj,fi) where γj now captures the relationship

between fi and yi. Similarly, one could model the latent attribute-level covariates, Zi as

p(zi|fi,κ) where κ again denotes the factor model parameters—loading and thresholds. Un-

der this framework, the examinee’s latent profile, αi, would be formulated as p(αi|ψ, ζ,fi),

which the ζ parameters now explain possible associations between fi and αi.

After incorporating the covariates into the model, one challenge is distinguishing active

covariates, which relate to the outcome variable, from inactive ones. To address this issue,

in the fourth chapter, we adopt a hierarchical mixture model on the covariates’ prior—a

stochastic search variable selection prior (Culpepper, 2019a; George & McCulloch, 1993).

This prior is designed to reflect the covariate structure of the design matrix, which yields the

covariate’s prior distribution to become equivalent to a generalized version of a Zellner (1986)

g-prior. In this chapter, results show that the proposed models with the SSVS prior settings

result in favorable recovery rates on underlying latent structure and model and examinee

parameters. They can also successfully distinguish active covariates from inactive ones.

In real data applications, one common issue with covariates is that covariates can be

highly correlated, which yields unstable maximum likelihood coefficient estimates in regres-
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sion settings. Ročková and George (2014) conducted a study to address this issue while

applying a variable selection algorithm in a regression setting. Their results show that they

can mitigate the instability issue in parameter estimates influenced by multicollinearity. In

the current design, we investigate the variable selection method performance when the co-

variates are uncorrelated. One future direction is to examine the current setup with the

correlated covariates. We anticipate that the current stochastic search variable selection

prior will be robust up to a point when mild correlations are present in the covariates as

documented in (George & McCulloch, 1993).

Beyond educational settings, the insights about the association between covariates and

attribute possession probabilities may have a valuable application in clinical studies and

neuropsychology fields. Covariates may carry important information about the subjects’

susceptibility to disease. One possible issue that might arise in these areas is that is the

number of covariates is frequently larger than the number of observations. To address this

issue, some regularization technique needs to be incorporated into the models discussed in

Chapter 4. For a possible future direction, instead of using the SSVS variable selection

method, one can apply a regularization technique such as a MCMC based algorithms using

the horseshoe prior (Johndrow, Orenstein, & Bhattacharya, 2020).
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