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ABSTRACT

In an era of information explosion, people are inundated with vast amounts of text data.

Every day, there are thousands of scientific papers, tens of thousands of news articles, cor-

porate reports, and millions of social media posts produced and shared worldwide. Turning

those massive text data into actionable knowledge is an essential research issue in data

science and lays the foundation for realizing machine intelligence.

The goal of my research is to unleash hidden knowledge buried in unstructured text. To

bring this vision to reality, I propose to first structure raw text using taxonomies and then

analyze structured text in a more fine-grained and semantic way. Due to the diversity of ap-

plication scenarios, different corpora or different use cases may call for different taxonomies.

For example, one analyst aiming to find experts in different scientific areas may want a

field-of-study taxonomy, while another analyst who studies the technology readiness may

call for a taxonomy capturing technology dependencies. Moreover, even within one taxon-

omy, we also enable users to organize concepts at their will, such as with different levels

containing concepts of different categories. For instance, in a computer science taxonomy,

top levels could be about field of studies, intermediate levels may discuss research tasks, and

the bottom levels can cover evaluation metrics. Asking human experts to manually curate

those taxonomies, one for every possible application, is time-consuming, costly, and unscal-

able. Therefore, we propose to automatically discover and explore taxonomies based on the

datasets and applications, with critical but minimal human guidance.

This thesis outlines a data-driven approach that automatically constructs, enriches, and

applies taxonomies for unleashing knowledge from massive unstructured text. Particularly,

we investigate four areas of research, including:

1. Identifying Concept Sets. To obtain concept nodes in the taxonomy, we first

develop a collection of concept set expansion methods [1, 2] to extract concepts from

text corpora by expanding a small set of seed concepts into a complete list of concepts

that belong to the same semantic class.

2. Recognizing Taxonomic Relations. To organize above identified concepts into

hierarchical structure, we propose a set of taxonomy construction methods [3, 4] to

discover taxonomic relations among concepts by analyzing example relation instances

(i.e., concept pairs indicating the target relation semantics) and utilizing distant su-

pervision from existing, open-domain knowledge bases.

ii



3. Enriching Existing Taxonomies. As human knowledge is constantly growing, a

static taxonomy may fail to capture emerging user needs. Thus, a taxonomy enrich-

ment step would be essential to keep our taxonomies up-to-date in real-world appli-

cations. We facilitate this process by expanding the taxonomy to incorporate new

concepts [5, 6, 7].

4. Empowering Knowledge-centric Applications. After an up-to-date taxonomy

is obtained, we develop principled methods to distill knowledge from taxonomies for

downstream applications such as text categorization [8, 9] and intelligent literature

search [10, 11].

Finally, we explore how to incorporate event knowledge into the taxonomy by automatically

detecting event types from a given corpus. Together, these pieces constitute an integrated

framework for leveraging taxonomies to convert massive text data into actionable knowledge.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Born in an era of information explosion, we are inevitably inundated with vast amounts

of text data. Every day, there are thousands of scientific papers, tens of thousands of

corporate reports, product reviews, and millions of social media posts produced and shared

worldwide. Their volume itself is massive, and more importantly, it keeps growing. When

properly analyzed, these text data can be game-changing for science, engineering, business

intelligence, policy design, e-commerce, and more. Consequently, turning those massive text

data into actionable knowledge is an essential research issue in data science and lays the

foundation for realizing machine intelligence.

With massive unstructured text stored or streaming in dynamically, we realize an impor-

tant methodology for turning them into knowledge is to first ‘structure’ them. Instead of

working on unstructured raw text directly, we can first utilize a taxonomy to structure them

and then analyze structured text corpora in a more fine-grained and semantic way. This

strategy can significantly accelerate the knowledge discovery process and enable machines

to digest the knowledge in an efficient and effective way.
Taxonomy Structures Text Data and
Accelerates Knowledge Discovery

5

Knowledge
& Insights

Structured Text Data
Unstructured

Text Data

Taxonomy

Figure 1.1: Turning unstructured text data to knowledge and insights by utiliz-
ing a taxonomy to structure raw text.

There are many existing taxonomies in different domains (e.g., MeSH [12], ACM CCS [13],

Pinterest Taxonomy [14], etc.). Most of these taxonomies, however, are curated by human

exports, which is costly, time-consuming, and non-scalable. More importantly, even with

massive human labeling efforts, we could eventually only obtain one taxonomy but a single
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taxonomy cannot fit all applications. For example, given the same set of computer science

literature, one user may want to identify experts in different fields, and thus calls for a field-

of-studies taxonomy, while another person may want to analyze the readiness of different

technologies, and thus needs a taxonomy capturing technology dependencies. Naturally, we

need to build taxonomies based on the corpora to be analyzed and the applications to be

explored. Sometimes, even for the same application, different domain experts may have their

own points of view and thus we should ideally enable them to organize concepts at their

will, such as with different levels including concepts of different categories. For example, in

the computer science domain, top levels could be about field of studies (e.g., data mining,

natural language processing, etc.), immediate levels may discuss research tasks (e.g., outlier

detection, machine translation, etc.), and the bottom levels cover evaluation metrics (e.g.,

F1 score, NDCG, BLUE, etc.). As a result, it is unrealistic to ask humans to create a

taxonomy for each application.

In this thesis, our goal is to develop principled methods to automatically construct, enrich,

and explore taxonomies for knowledge discovery from text data. Our methods alleviate

the need for heavy human annotations by utilizing distant supervision from existing, open

knowledge bases, weak supervision from a few user-provided examples, and self supervision

from signals in massive unlabeled data. Particularly, we investigate four areas of studies,

My Research:
Automated Taxonomy Discovery & Exploration

8

Knowledge
& Insights

Structured Text Data

Unstructured
Text Data Taxonomy

Public
Knowledge Bases

Figure 1.2: Utilizing automatically constructed taxonomy for converting text
data into actionable knowledge and insights.

including: (1) Identifying Concept Sets. To obtain concept nodes in the taxonomy, we

first develop a collection of concept set expansion methods [1, 2, 15] to extract concepts

from text corpora by expanding a small set of seed concepts into a complete list of concepts

that belong to the same semantic class; (2) Recognizing Taxonomic Relations. To
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organize above identified concepts into hierarchical structure, we propose a set of taxonomy

construction methods [3, 4] to discover taxonomic relations among concepts by analyzing

example relation instances (i.e., concept pairs indicating the target relation semantics) and

utilizing distant supervision from existing, open-domain knowledge bases; (3) Enriching

Existing Taxonomies. As human knowledge is constantly growing, a static taxonomy

may fail to capture emerging user needs. Thus, a taxonomy enrichment step would be

essential to keep our taxonomies up-to-date in real-world applications. We facilitate this

process by expanding the taxonomy to incorporate new concepts [5, 6]. (4) Empowering

Knowledge-centric Applications. When an up-to-date taxonomy is obtained, we develop

methods to distill knowledge from taxonomies for downstream applications such as text

categorization [8, 9] and intelligent literature search [10, 11]. Besides, we also explore how

to incorporate event knowledge into the taxonomy by automatically identifying event types

from a given corpus. Together, these pieces constitute an integrated framework for leveraging

taxonomies to convert massive text data into actionable knowledge, as shown in Figure 1.3.My Research: Detailed Roadmap
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Taxonomic Relations
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Concept Sets Taxonomy

Empowering 
Knowledge-centric 

Applications

Up-to-date TaxonomyApplications

Enriching
Existing

Taxonomy

Figure 1.3: An integrated framework for leveraging the taxonomy to unleash
hidden knowledge buried in massive unstructured text.

Finally, we want to emphasize that although the taxonomy structure discussed in this

thesis shares some commonalities with knowledge graph [16], these two structured data for-

mats have different focuses. Taxonomies capture more abstract concept-level ideas (e.g., one

research area, one type of diseases, etc.) while knowledge graphs contain more information

about concrete entity-level things (e.g., a celebrity, a famous institution, etc.). In many

cases, taxonomies and knowledge graphs contain complementary world knowledge and they

have the potentials to mutually enhance each other.
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1.2 TECHNICAL CONTRIBUTIONS

1.2.1 Concept Set Expansion

The first step towards building a corpus- and application-specific concept taxonomy is to

identify a set of user-interested concepts from the given corpus. We accomplish this goal by

proposing SetExpan [1], a concept set expansion method that automatically expands a small

set of seed concepts into a completed list of concepts belong to the same user-interested

category. SetExpan is an iterative algorithm and includes two core techniques. The first

one is a context feature selection method that chooses clean context features for calculating

concept-concept distributional similarity, and The second technique is a ranking-based unsu-

pervised ensemble method for expanding the concept set based on selected context features.

Experiments have shown that SetExpan can select high-quality and interpretable context

features and outperforms previous best methods by more than 32.6% for concept identi-

fication accuracy. Recently, together with my group members, we have further enhanced

SetExpan in two ways: (1) leveraging multiple negative sets to guard each other and avoid

semantic drifting [17], and (2) incorporating information from pre-trained language models

to compensate for the weak supervision signals from the seed set [2].

Contributions.

• We propose SetExpan, a novel iterative algorithm for concept set expansion.

• We develop an unsupervised ranking-based ensemble approach for selecting high quality

concepts in a robust way.

• We demonstrate the effectiveness and efficiency of our methods and show improvements

over prior methods on multiple real-world datasets in different domains (news articles,

Wikipedia articles, and scientific papers).

1.2.2 Taxonomy Construction

After obtaining user-interested concept sets, we continue to organize them into a taxonomy

structure. Most of previous taxonomy construction work [18, 19, 20] build taxonomies based

on “is-A” relations (e.g., a “panda” is a “mammal” and a “mammal” is an “animal”) by first

leveraging pattern-based or distributional methods to extract hypernym-hyponym term pairs

and then organizing them into a tree-structured hierarchy. However, such hierarchies cannot

satisfy many real-world needs due to its (1) inflexible semantics : many applications may

need hierarchies carrying more flexible semantics such as “city-state-country” in a location

taxonomy; and (2) limited applicability: the “universal” taxonomy so constructed is unlikely
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to fit diverse and user-specific application tasks.

We propose HiExpan [3], the first task-guided concept taxonomy construction method

which takes a user-provided “seed” taxonomy tree (as task guidance) along with a domain-

specific corpus and generates a desired taxonomy automatically. For example, a user may

provide a seed taxonomy containing only two countries and two states along with a large cor-

pus, and HiExpan will output a taxonomy which covers all the countries and states mentioned

in the corpus. HiExpan captures weak supervision signals in the seed taxonomy and itera-

tively expands the seed taxonomy into a fully-fledged taxonomy in a top-down hierarchical

way. Specifically, HiExpan views all children under each taxonomy node forming a coherent

set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan

incorporates a weakly-supervised relation extraction module to extract the initial children

of a newly-expanded node and adjusts the taxonomy tree by optimizing its global struc-

ture. Experiments have demonstrated the effectiveness of HiExpan for building meaningful

taxonomies in various domains, including news, computer science, and life science.

Contributions.

• We study and formulate a new research problem task-guided taxonomy construction, which

takes a user-provided seed taxonomy along with a domain-specific corpus as input and

aims to output a desired taxonomy that satisfies user-specific application tasks.

• We propose HiExpan, a novel expansion-based weakly-supervised framework for task-

guided taxonomy construction.

• We conduct extensive experiments to verify the effectiveness of HiExpan on three real-world

datasets from different domains.

1.2.3 Taxonomy Enrichment

As human knowledge is constantly growing, it is necessary to expand or enrich an existing

concept taxonomy to incorporate new knowledge and be adapted to real-world applications.

One naive solution is to re-run the entire taxonomy construction process from scratch. Al-

though being intuitive, this approach has several limitations. First, many taxonomies have

a top-level design provided by domain experts and such design shall be preserved. Second,

a newly constructed taxonomy may not be consistent with the old one, which can lead to

instabilities of its dependent downstream applications. Finally, as targeting the scenario

of building taxonomy from scratch, most previous methods are unsupervised and cannot

leverage signals from the existing taxonomy to construct a new one.

We propose TaxoExpan [5] to tackles taxonomy expansion problem — the process of au-

tomatically incorporating new concepts into an existing taxonomy. A key challenge for
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concept taxonomy expansion is the lack of labeled data. TaxoExpan addresses this problem

by generating a set of 〈query concept, anchor concept〉 pairs from the existing taxonomy

as self-supervision data. TaxoExpan first uses a position-enhanced graph neural network to

encode each anchor concept’s local structure in the existing taxonomy. Then, it learns to pre-

dict whether a query concept is the direct child of an anchor concept in the taxonomy using

a noise-robust training objective. TaxoExpan can successfully expand a large field-of-study

taxonomy with hundreds of thousands of concepts and outperforms the winning solution of

SemEval 2016 taxonomy expansion task by 6.8% while running orders of magnitude faster.

Together with my collaborators, we further improved TaxoExpan by: (1) deriving concept

mini-paths from the existing taxonomy as self-supervision data while learning the model

using multi-view co-training [21], and (2) identifying both the parent and children for each

new emerging concept in the existing taxonomy [6, 7].

Contributions.

• We propose TaxoExpan, a novel self-supervised framework that automatically expands

existing taxonomies without manually labeled data.

• We present an effective method for enhancing graph neural network by incorporating

hierarchical positional information and a new training objective that enables the learned

model to be robust to label noises in self-supervision data.

• We conduct extensive experiments to verify the effectiveness and efficiency of TaxoExpan

framework on three real-world datasets from different domains.

1.2.4 Taxonomy Application

With a concept taxonomy constructed and enriched on a domain-specific document col-

lection, we can explore a lot of downstream applications. For example, we have utilized

taxonomies to facilitate semantic literature search [10, 11, 22] or to empower job post rec-

ommendation [4]. One important prerequisite of all those applications is that the text unit

(either an entire document or an in-context text span) need to be tagged with a set of classes

in the corresponding taxonomy. This can be formulated as a hierarchical multi-label text

classification (HMTC) problem. Most existing HMTC methods are supervised and require

massive human labeled training data that are not available in many real world scenarios.

To fully exploit the power of taxonomy, we propose TaxoClass [23], a weakly-supervised

framework using only class surface names for hierarchical multi-label text classification.

TaxoClass alleviates heavy human-labeling burdens and thus has a broader application scope.

Specifically, TaxoClass leverages the explicit class relations in the given class taxonomy and

pinpoints a few most essential classes for each document as its “core” classes. Based on those

6



core classes, TaxoClass first trains a taxonomy-enhanced classifier and then generalizes this

classifier via multi-label self-training. Our experiments have shown TaxoClass can achieve

around 0.71 Example-F1 using only class names, outperforming the state-of-the-art weakly-

supervised methods by 25%.

Contributions.

• We propose the first weakly-supervised framework TaxoClass that only requires class sur-

face names to perform hierarchical multi-label text classification.

• We develop an unsupervised method to identify document core classes based on which a

text classifier can be learned.

• We conduct extensive experiments to verify the effectiveness of TaxoClass on two real-world

datasets and show it can significantly reduce human annotation efforts.

1.2.5 Incorporating Event Knowledge in Taxonomy

In this thesis, we also explore how to incorporate event knowledge into the taxonomy so

that we may organize text documents based on their internally described world events. A

cornerstone step of achieving this goal is to identify a set of important event types and their

associated event mentions, ideally without massive human annotations.

We propose ETypeClus, a corpus-based open-domain event type induction method that

automatically discovers a set of event types from a given corpus. As events of the same type

could be expressed in multiple ways, we propose to represent each event type as a cluster of

〈predicate sense, object head〉 pairs. Specifically, ETypeClus (1) selects salient predicates and

object heads, (2) disambiguates predicate senses using only a verb sense dictionary, and (3)

obtains event types by jointly embedding and clustering 〈predicate sense, object head〉 pairs

in a latent spherical space. Our experiments, on three datasets from different domains, show

our method can discover salient and high-quality event types, according to both automatic

and human evaluations.

Contributions

• We present a new event type representation based on a cluster of 〈predicate sense, object

head〉 tuples.

• We propose ETypeClus, a novel event type induction framework that automatically disam-

biguates predicate senses and learns a latent space with desired event cluster structures.

• We conduct extensive experiments on three datasets verify the effectiveness of ETypeClus

in terms of both automatic and human evaluations.
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1.3 AWARDS AND OVERALL IMPACT

This thesis focuses on developing principled methods to automatically construct, enrich,

and apply taxonomy for converting unstructured text data into structured knowledge and

insights. Our methods have led to over than 25 research papers published in top data min-

ing and natural language processing conferences (e.g., KDD, WWW, SIGIR, ACL, EMNLP,

NAACL, AAAI, CIKM, ECMLPKDD) and have a broad impact on numerous downstream

applications. Our concept set expansion and taxonomy construction techniques (SetExpan [1]

and HiExpan [3]) have been transferred to U.S. Army Research Lab and the MITRE Corpo-

ration for further study and deployment. Our taxonomy enrichment method TaxoExpan [5]

has been used to improve Microsoft Academia Graph [24]. Those methods are being taught

in graduate-level courses (e.g., CS 512: Data Mining Principles at the University of Illinois

at Urbana-Champaign), and are introduced as major parts of tutorials in the top conferences

of data mining (e.g., KDD 2018, 2019, 2021, and ICDM 2021). The software tools developed

in this thesis have received over 400 stars (i.e., likes) on GitHub as of Sept. 2021.

Organizations. The remainder of this thesis is organized as follows. The remainder of

this thesis is organized as follows. We first discuss how to mine concept sets in Chapter 2

and how to construct a concept taxonomy from raw text corpora in Chapter 3. Then, we

present our taxonomy enrichment technique in Chapter 4 and taxonomy application methods

in Chapter 5. After that, we describe our open-domain event type induction method in

Chapter 6. Finally, in Chapter 7, we conclude this thesis and describe our future work.
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CHAPTER 2: CONCEPT SET EXPANSION

2.1 OVERVIEW AND MOTIVATIONS

Concept set expansion refers to the problem of expanding a small set of seed concepts

into a complete set of concepts that belong to the same semantic class [25]. For example, if

a given seed set is {Oregon, Texas, Iowa}, concept set expansion should return a hopefully

complete set of concepts in the same semantic class, “U.S. states”. Concept set expansion

can benefit various downstream applications, such as knowledge extraction [26], taxonomy

induction [19], and web search [27].

One line of work (e.g., Google Set [28] and SEAL [25]) solves this task by submitting

a query consisting of seed concepts to a search engine and mining top-ranked webpages.

While this approach can achieve relatively good quality, the required seed-oriented online

data extraction is costly. Therefore, more studies [29, 30, 31, 32, 33] are proposed in a corpus-

based setting where sets are expanded by offline processing based on a specific corpus.

There are two general approaches for corpus-based set expansion—one-time concept rank-

ing and iterative pattern-based bootstrapping. Based on the assumption that similar concepts

appear in similar contexts, the first approach [29, 30, 31] makes a one-time ranking of can-

didate concepts based on their distributional similarity with seed concepts. A variety of

“contexts” are used, including Web table, Wikipedia list, or just free-text patterns, and

concept-concept distributional similarity is calculated based on all context features. How-

ever, blindly using all such features can lead to concept intrusion errors. Namely, some

undesired concepts are wrongly introduced into the expanded set because many context

features are not representative for defining the target semantic class although they do have

connections with some of the seed concepts.

The second approach, iterative pattern-based bootstrapping [34, 26, 35], starts from seed

concepts to extract quality patterns, based on a predefined pattern scoring mechanism,

and it then applies extracted patterns to obtain even higher quality concepts using another

concept scoring method. This process iterates and the high-quality patterns from all previous

iterations are accumulated into a pattern pool which will be used for the next round of

concept extraction. This approach works only when patterns/concepts extracted at each

iteration are highly accurate, otherwise, it may cause severe semantic shift problem. Suppose

in the previous example, “located in ” is taken as a good pattern from the seed set {Oregon,

Texas, Iowa}, and this pattern brings in USA and Ontario. These undesired concepts may

bring in even lower quality patterns and iteratively cause the set shifting farther away. Thus,

9



Quebec 5 (1/3)
4 (1/2+1/3)Baja California

3 (1/1)California
2 (1/1+1/2)Florida

Arizona 1 (1/2+1/3+1/1)
Rank (Score)Concepts

3 (1/3)Quebec
2 (1/2)Arizona

California 1 (1/1)
Rank (Score)Concepts

3 (1/3)Arizona
2 (1/2)Baja California

Florida 1 (1/1)
Rank (Score)Concepts

3 (1/3)Baja California
2 (1/2)Florida

Arizona 1 (1/1)
Rank (Score)Concepts

Pre-ranked concept list 1

Pre-ranked concept list 2

Pre-ranked concept list 3

Final ranked list of concepts

Denoised context sets

City , __ , USA
US state of __ ,
Texas and __ ,

City , __ , USA
US state of __ ,

City , __ , USA
Texas and __ ,

US state of __ ,
Texas and __ ,

the former __ governor

city , __ , USA

US state of __ .

Texas and __ 

county , __ , on

Context features

Georgia

Illinois

Currently 
expanded 

concept set

Virginia

. ����������

Context Feature Selection step Concept selection step

Rank ensemble

Figure 2.1: An example showing two steps in one iteration of SetExpan.

the pattern and concept scoring methods are crucial but sensitive in iterative bootstrapping

methods. If they are not defined perfectly, the semantic shift can cause big problems.

However, it is hard to have a perfect scoring mechanism due to the diversity and noisiness

of unstructured text data.

To address these challenges, we propose a novel set expansion framework SetExpan in

this Chapter. SetExpan carefully and conservatively extracts each candidate concept and

iteratively improves the results. First, to overcome the concept intrusion problem, instead

of using all context features, context features are carefully selected by calculating distri-

butional similarity. Second, to overcome the semantic drift problem, different from other

bootstrapped approaches, our high-quality feature pool will be reset at the beginning of

each iteration. Finally, our carefully designed unsupervised ranking-based ensemble method

is used at each iteration to further refine concepts and make our system robust to noisy or

wrongly extracted pattern features. Figure 2.1 shows the pipeline at each iteration. SetExpan

iteratively expands a concept set through a context feature selection step and a concept se-

lection step. At the context feature selection, each context feature is scored based on its

strength with currently expanded concepts and top-ranked context features are selected. At

the concept selection step, multiple subsets of the selected representative context features

are sampled and each subset is used to obtain a ranked concept list. Finally, all the ranked

lists are collected to compute the final ranking list of each candidate concept for expansion.

The major contributions of this chapter are highlighted as follows:

• We propose an iterative set expansion framework with a novel context feature selection

approach, to handle the issues of concept intrusion and semantic drift.

• We develop an unsupervised ranking-based ensemble algorithm for concept selection to

make our system robust and further reduce the impact of semantic drift.
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• We demonstrate the effectiveness and efficiency of our methods and show improvements

over prior methods on multiple real-world datasets in different domains (news, Wikipedia

articles, and scientific papers).

The rest of this chapter is organized as follows. We first discuss some related work in

Section 2.2. Then, we propose our SetExpan framework in Section 2.3 and present experiment

results in Section 2.4. After that, we briefly discuss how to extend SetExpan in Section 2.5.

Finally, we conclude this chapter in Section 2.6.

2.2 RELATED WORK

The problem of completing a concept set given several seed concepts has attracted exten-

sive research efforts due to its practical importance. Google Sets [28] was among the earliest

work dealing with this problem. It used proprietary algorithms and is no longer publicly

accessible. Later, Wang and Cohen proposed SEAL system [25], which first submits a query

consisting of all seed concepts into a general search engine and then mines the top-ranked

webpages. Recently, Chen et al. [27] improved this approach by leveraging a “page-specific”

extractor built in a supervised manner and showed good performance on long-tail (i.e., rare)

term expansion. All these methods need an external search engine and require seed-oriented

data extraction. In comparison, our approach conducts corpus-based set expansion without

resorting to online data extraction from specific webpages.

To tackle the corpus-based set expansion problem, Ghahramani and Heller [36] used a

Bayesian method to model the probability that a candidate concept belongs to some unknown

cluster that contains the input seeds. Pantel et al. [29] developed a web-scale set expansion

pipeline by exploiting distributional similarity on context words for each candidate concept.

He et al. [31] proposed the SEISA system that uses query logs along with web lists as external

evidence besides free text, and designed an iterative similarity aggregation function for set

expansion. Recently, Wang et al. [32] leveraged web tables and showed very competitive

results when not only seed concepts but also intended class name were given. While these

semi-structured lists and tables are helpful, they are not always available for some specific

domain corpus such as PubMed articles or DBLP papers. Perhaps the most relevant work to

ours is by Rong [33]. In that paper, the authors used the skip-pattern feature combined with

additional user-generated ontologies (i.e., Wikipedia list) for set expansion. However, they

targeted the multifaceted expansion and exploited all skip-pattern features for calculating

the similarity because two concepts. In our work, we keep the core idea of distributional

similarity but calculate such similarity using only carefully selected denoised context features.

In a broader sense, our work is also related to information extraction and named con-
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cept recognition. Without given enough training data, bootstrapped concept extraction

system [37, 26] is the most popular and effective choice. At each bootstrap iteration, the

system will first create patterns around concepts; score patterns based on their ability to

extract more positive concepts and less negative concepts (if provided), and use top-ranked

patterns to extract more candidate concepts. Multiple pattern scoring and concept scoring

functions are proposed. For example, Riloff et al. [38] scored each pattern by calculating

the ratio of positive concepts among all concepts extracted by it, and scored each candidate

concept by the number and quality of its matched patterns. Gupta et al. [37] scored patterns

using the ratio of scaled frequencies of positive concepts among all concepts extracted by it.

All these methods are heuristic and sensitive to different model parameters.

More generally, our work is also related to class label acquisition [39, 40] which aims to

propagate class labels to data instances based on labeled training examples, and concept

clustering [41, 42] where the goal is to find clusters of concepts. However, the class label

acquisition methods require a much larger number of training examples than the typical

size of user input seed set, and the concept clustering algorithms can only find semantically

related concepts instead of concepts strictly in the same semantic class.

2.3 THE SETEXPAN FRAMEWORK

We first introduce our context features and data model used by SetExpan in Section 2.3.1

and then present our context-dependent similarity measure in Section 2.3.2. After that, we

discuss how to select context features in Section 2.3.3 and present our novel unsupervised

ranking-based ensemble method for concept selection in Section 2.3.4.

2.3.1 Data Model and Context Features

We explore two types of context features obtained from the plain text: (1) skip-patterns [33]

and (2) coarse-grained types [26]. As shown in Figure 2.2(a), data is modeled as a bipartite

graph, with candidate concepts on one side and their context features on the other. Each

type of context features are described as follows.

Skip-pattern: Given a target concept ei in a sentence, one of its skip-pattern is “w−1

w1” where w−1 and w1 are two context words and ei is replaced with a placeholder. For

example, one skip-pattern of concept “Illinois” in sentence “We need to pay Illinois sales

tax.” is “pay sales”. As suggested in [33], we extract up to six skip-patterns of different

lengths for one target concept ei in each sentence. One advantage of using skip-patterns is

that it imposes strong positional constraints.
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Figure 2.2: (a) A simplified bipartite graph data model. (b) Similarity with seed
concept conditioned on two different sets of context features.

Coarse-grained type: Besides the unstructured skip-pattern features, we use coarse-

grained types to filter those obviously-wrong concepts. For examples, when we expand

the “U.S. states” class, we will not consider any concept that is typed as a person. After

this process, we can obtain a cleaner subset of candidate concepts. Such a mechanism is also

adopted in [26].

After obtaining the “nodes” in bipartite graph data model, we need to model the edges

in the graph. In this work, we assign the weight between each pair of concept e and context

feature c using the TF-IDF transformation [33], which is calculated as follows:

fe,c = log(1 +Xe,c)

[
log |E| − log

(∑
e′

Xe′,c

)]
, (2.1)

where Xe,c is the raw co-occurrence count between concept e and context feature c, |E| is the

total number of candidate concepts. We refer to such scaling as the TF-IDF transformation

since it resembles the tf-idf scoring in information retrieval if we treat each concept e as

a “document” and each of its context feature c as a “term”. Empirically, we find such

weight scaling outperforms some other alternatives such as point-wise mutual information

(PMI) [31], truncated PMI [43], and BM25 scoring [44].

2.3.2 Context-dependent Similarity

With the bipartite graph data model constructed, the task of expanding a concept set

at each iteration can be viewed as finding a set of concepts that are most “similar” to the

currently expanded set. In this study, we use the weighted Jaccard similarity measure.

Specifically, given a set of context features F , we calculate the context-dependent similarity
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as follows:

Sim(e1, e2|F ) =

∑
c∈F min(fe1,c, fe2,c)∑
c∈F max(fe1,c, fe2,c)

. (2.2)

Notice that if we change context feature set F , the similarity between concept pair is likely to

change, as demonstrated in Figure 2.2(b). Finally, we want to emphasize that our proposed

method is general in the sense that other common similarity metrics (e.g., cosine similarity)

can also be used. In practice, we find the performance of a set expansion method depends

less on the exact choice of base similarity metrics, but more on which contexts are selected

for calculating context-dependent similarity. Similar results were also reported in [31].

2.3.3 Context Feature Selection

As shown in Figure 2.2(b), the similarity between two concepts really depends on the

selected feature set F . The motivation of context feature selection is to find a feature subset

F ∗ of fixed size Q that best “profiles” the target semantic class. In other words, we want

to select a feature set F ∗ based on which concepts within target class are most “similar” to

each other. Given such F ∗, the concept-concept similarity conditioned on it can best reflect

their distributional similarity with regard to the target class. In some sense, such F ∗ best

profiles the target semantic class. Unfortunately, to find such F ∗ of fixed size Q, we need to

solve the following optimization problem which turns out to be NP-Hard, as shown in [45].

F ∗ = arg max
|F |=Q

|X|∑
i=1

|X|∑
j>i

Sim(ei, ej |F ), (2.3)

where X is the set of currently expanded concepts. Initially, we treat the user input seed

set S as X. As iterations proceed, more concepts will be added into X.

Given the NP-hardness of finding the optimal context feature set, we resort to a heuristic

method that first scores each context feature based on its accumulated strength with concepts

in X and then selects top Q features with maximum scores. Take Figure 2.2(a) as an

example, we assume all edge weights in the bipartite graph are equal to 1 and let the

currently expanded concept set X be {“Florida”, “Texas”}. Suppose we want to select two

“denoised” context features, we will first score each context feature based on its associated

concepts in X. The top 4 contexts will obtain a score 1 since they match only one concept

in X with strength 1, and the 2 contexts below will get a score 2 because they match both

concepts in X. Then, we rank context features based on their scores and select 2 contexts

with highest scores: “city , , USA”, “US state of .” into F .

Finally, we want to emphasize two major differences of our context feature selection

method from other heuristic “pattern selection” methods. First, most pattern selection
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Figure 2.3: A toy example to show concept selection via rank ensemble.

methods require either users to explicitly provide the “negative” examples for the target

semantic class [46, 26, 34], or implicitly expand multiple mutually exclusive classes in which

instances in one class serve as negative examples for all the other classes [47, 43]. Our method

requires only a small number of “positive” examples. In most cases, it is hard for humans to

find good discriminative negative examples for one class, or to provide both mutually exclu-

sive and somehow related comparative classes. Second, the bootstrapping method will add

its selected “quality patterns” during each iteration into a quality pattern pool, while our

method will select high quality context features at each iteration from scratch. If one noisy

pattern is selected and added into the pool, it will continue to introduce more irrelevant

concepts at all the following iterations. Our method can avoid such noise accumulation.

2.3.4 Concept Selection via Rank Ensemble

Intuitively, the concept selection problem can be viewed as finding those concepts that are

most similar to the currently expanded set X conditioned on the selected context feature

set F . To achieve this, we can rank each candidate concept based on its score in Eq. (2.4)

and then add top-ranked ones into the expanded set:

score(e|X,F ) =
1

|X|
∑
e′∈X

Sim(e, e′|F ). (2.4)

However, due to the ambiguity of natural language in free-text corpora, the selected context

feature set F may still be noisy in the sense that an irrelevant concept is ranked higher than

a relevant one. To further reduce such errors, we propose a novel ranking-based ensemble

method for concept selection.
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The key insight of our method is that an inferior concept will not appear frequently

in multiple pre-ranked concept lists at top positions. Given a selected context set F , we

first use sampling without replacement method to generate T subsets of context features

Ft, t = 1, 2, . . . , T . Each subset is of size α|F | where α is a model parameter within range

[0, 1]. For each Ft, we can obtain a pre-ranked list of candidate concepts Lt based on

score(e|X,Ft) defined in Eq. (2.4). We use rit to denote the rank of concept ei in list Lt. If

concept ei does not appear in Lt, we let rit = ∞. Finally, we collect T pre-ranked lists and

score each concept based on its mean reciprocal rank (mrr). All concepts with average rank

above r, namely mrr(e) ≤ T/r, will be added into concept set X.

mrr(ei) =

T∑
t=1

1

rit
, rit =

∑
ej∈E

I (score(ei|X,Ft) ≤ score(ej |X,Ft)) , (2.5)

where I(·) is the indicator function. Naturally, a relevant concept will rank at top position in

multiple pre-ranked lists and thus accumulate a high mrr score, while an irrelevant concept

will not consistently appear in multiple lists at high position which leads to low mrr score.

We use the following example to demonstrate the whole process of concept selection. In

Figure 2.3, we want to expand the “US states” semantic class given a selected context feature

set F with 4 features. We first sample a subset of 3 context features F1 = {“city , , USA”,

“US state of ,”, “pay sales tax .”}, and then use F1 to obtain a pre-ranked concept

list L1 = 〈“California”, “Arizona”, “Quebec”〉. By repeating this process three times, we get

three pre-ranked lists and ensemble them into a final ranked list in which concept “Arizona”

is scored 1.5 because it is ranked in the 2nd position in L1 and 1st position in L3. Finally,

we add those concepts with mrr score larger than 1, meaning this concept is ranked at 3rd

position on average, into the expanded set X. In this simple example, the model parameters

T = 3, α = |F1|
|F | = 0.75, and r = 3.

Summary. Algorithm 2.1 summarizes the whole SetExpan framework. The candidate con-

cept set E and bipartite graph data model G are pre-calculated and stored. A user needs

only to specify the seed set S as the task guidance and the expected size of output set K.

There is a total of 4 model parameters: the number of top quality context features selected

in each iteration Q, the number of pre-ranked concept lists T , the relative size of feature

subset 0 < α < 1, and final mrr threshold r. The tuning and sensitivity of these parameters

will be discussed in the experiment section.

2.4 EXPERIMENTS

In this section, we will evaluate SetExpan on three massive text corpora across different

domains. We first compare the propose method with many other methods to demonstrate
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Algorithm 2.1: SetExpan

Input: Candidate concept set E, initial seed set S, concept-context graph G,
expected size of output set K, model parameters {Q, T, α, r}.

Output: The expanded set X.
1 X = S;
2 while |X| ≤ K do
3 Set F = ∅ // Select denoised contexts from scratch;
4 Score context features based on X and add top Q denoised contexts into F ;
5 // concept-selection via rank ensemble;
6 for t = 1, 2, . . . , T do
7 Uniformly sample αQ contexts and construct feature subset Ft;
8 Score concepts based on Eq. (2.4) given Ft and obtain the pre-ranked list Lt;
9 Update the mrr score of each concept based on Eq. (2.5);

10 X = X ∪ {e|mrr(e) ≥ T
r
} // Add concepts into expanded set X;

11 Return X;

its high performance. Then, we explore the robustness of our method by varying different

hyper-parameters. In this end, we present some interesting case studies.

2.4.1 Datasets

We use three corpora to evaluate the performance of SetExpan. Table 2.1 lists 3 datasets

we used in experiments: (1) APR is constructed by crawling all 2015 news articles from

AP and Reuters; (2) Wiki is a subset of English Wikipedia used in [48], and (3) PubMed-

CVD is a collection of research paper abstracts about cardiovascular disease retrieved from

PubMed. For APR and PubMed-CVD datasets, we adopt a data-driven phrase mining

tool [49] to obtain concept mentions and type them using ClusType [50]. Each concept

mention is mapped heuristically to a concept based on its lemmatized surface name. We

then extract variable-length skip-patterns for all concept mentions as features for their cor-

responding concepts, and construct the bipartite graph data model as introduced in the

previous section. For Wiki dataset, the concepts have already been extracted and typed us-

ing distant supervision. For the type information in each dataset, there are 16 coarse-grained

types in APR and 4 coarse-grained types in PubMed-CVD. For Wiki, since it originally has

about 50 fine-grained types, which may reveal too much information, we manually mapped

them to 11 more coarse-grained types.

A query is a set of seed concepts of the same semantic class in a dataset, serving as the

input for each system to expand the set. The process of query generation is as follows. For

each dataset, we first extract 2000 most frequent concepts in it and construct a concept list.
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Table 2.1: Datasets statistics and query descriptions.

Dataset FileSize #Sentences #Concepts #Test queries

APR 775MB 1.01M 122K 40
Wiki 1.02GB 1.50M 710K 20

PubMed-CVD 9.3GB 23M 179K 5

Then, we ask three volunteers to manually scan the concept lists and propose a few semantic

classes for each list. The proposed class should be interesting, relatively unambiguous and

has a reasonable coverage in its corresponding corpus. These semantic classes cover a wide

variety of topics, including locations, companies as well as political parties, and have different

degrees of difficulty for set expansion. After finalizing the semantic classes for each dataset,

the volunteers randomly select concepts of each semantic class from the frequent concept list

to form 5 queries of size 3. To select the queries for PubMed-CVD, we seek help from two

additional volunteers with biomedical expertise, following the same previous approach. Due

to the large size of PubMed-CVD dataset and runtime limitation, we only select 1 semantic

class (hormones) with 5 queries.

With all queries selected, we have humans to label all the classes and instances returned by

each of the following compared methods. For APR and Wiki datasets, the inter-rater agree-

ments (kappa-value) over three students are 0.7608 and 0.7746, respectively. For PubMed-

CVD dataset, the kappa-value is 0.9236. All concepts with conflicting label results are

further resolved after discussions among all human labelers.

2.4.2 Compared Methods

Since the focus on this work is the corpus-based set expansion, we do not compare with

other methods that require online data extractions. Also, to further analyze the effectiveness

of each module in SetExpan framework. We implement 3 variations of our framework.

• word2vec [51]: We use the SkipGram model in word2vec to learn concept embeddings and

return k nearest neighbors around seed concepts as the expanded set.

• PTE [52]: We first construct a heterogeneous information network including concepts,

skip-pattern features, and type features. Then, we apply PTE model to learn concept

embeddings and determine the k nearest neighbors around seed concepts.

• SEISA [31]: A concept set expansion algorithm based on iterative similarity aggregation.

It uses the occurrence of concepts in web list and query log as concept features. In our

experiments, we replace the web list and query log with our skip-pattern and coarse-

grained context features.
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• EgoSet [33]: A multifaceted set expansion system based on skip-patterns, word2vec em-

beddings and WikiList. The original system expands a seed set to multiple concept sets,

considering the ambiguities in seed set. To achieve this, they use a community detection

method to separate extracted concepts into several groups. However, in order to better

compare with EgoSet, we carefully select queries that have little ambiguity or at least the

seed set in the query is dominating in one semantic class. Thus, we discard the community

detection part in EgoSet and treat all extracted concepts as in one semantic class.

• SetExpan-cs: Disable the context feature selection module in SetExpan, and use all context

features to calculate distributional similarity.

• SetExpan-re: Disable the rank ensemble module in SetExpan. Instead, we use all selected

context feature to rank candidate concepts at one time and add top-ranked ones into the

expanded set.

• SetExpan-full: The full version of our proposed method, with both context feature selection

and rank ensemble components enabled.

For fair comparison, we try different combinations of parameters and report the best per-

formance for each baseline method.

2.4.3 Evaluation Metrics

For each test case, the input is a query, which is a set of 3 seed concepts of the same

semantic class. The output will be a ranked list of concepts. For each query, we use the

conventional average precision APk(c, r) at k (k = 10, 20, 50) for evaluation, given a ranked

list of concepts c and an unordered ground-truth set r. For all queries under a semantic

class, we calculate the mean average precision (MAP) at k as 1
N

∑
iAPk(ci, r), where N is

the number of queries. To evaluate the performance of each approach on a specific dataset,

we calculate the mean-MAP (MMAP) at k over all queried semantic classes as MMAPk =
1
T

∑T
t=1[(

1
Nt

)
∑

iAPk(cti, rt)], where T is the number of semantic classes, Nt is the number of

queries of t-th semantic class, cti is the extracted concept list for i-th query for t-th semantic

class, and rt is the ground truth set for t-th semantic class.

2.4.4 Overall Performance

Table 2.2 shows the MMAP scores of all methods on 3 datasets1. We can see that SetExpan

outperforms all four baselines in terms of the MMAP score. We further look at their per-

formances on each concept class, as shown in Figure 2.4. We can see that the performance

1Results of SEISA on PubMed-CVD are omitted due to the scalability issue.
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Table 2.2: Set expansion performance on 3 datasets over all queries.

Methods
APR Wiki PubMed-CVD

MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

EgoSet 0.3949 0.3942 0.3706 0.5899 0.5754 0.5622 0.0511 0.0410 0.0441
SEISA 0.7423 0.6090 0.3892 0.7643 0.6606 0.4998 — — —

word2vec 0.6054 0.5385 0.4180 0.7193 0.6289 0.4510 0.8427 0.7701 0.6895
PTE 0.3144 0.2777 0.1996 0.6817 0.5596 0.3839 0.9071 0.7654 0.5641

SetExpan-cs 0.8240 0.7997 0.7674 0.9540 0.8955 0.7439 1.000 1.000 0.5991
SetExpan-re 0.8509 0.7792 0.7681 0.9392 0.8680 0.7291 1.000 0.9605 0.7371
SetExpan-full 0.8967 0.8621 0.7885 0.9571 0.9010 0.7457 1.000 1.000 0.7454

of these baseline methods varies a lot on different semantic classes, while our SetExpan can

consistently beat them. One reason is that none of these methods applies context feature

selection or rank ensemble, and a single set of unpruned features can lead to various levels

of noise in the results. Another reason is the lack of an iterative mechanism in some of

those approaches. For example, even if EgoSet includes the results from word2vec to help it

boost the performance, it still achieves low MAP scores in some semantic classes. Finding

the nearest neighbors in only one iteration can be a key reason. And although SEISA is

applying the iterative technique, instead of adding a small number of new concepts in each

iteration, it expands a full set in each iteration based on the coherence score of each candi-

date concept with the previously expanded set. It pre-calculates the size of the expanded set

with the assumption that the feature similarities follow a certain distribution, which does

not always hold to all datasets or semantic classes. Thus, if the size is far different from the

actual size or is too big to extract a confident set at once, each iteration will introduce a lot

of noise and cause semantic drift.

2.4.5 Ablation Studies

Comparison with SetExpan-re and SetExpan-cs. At the dataset level, the MMAP scores of

SetExpan-full outperforms its two variation approaches. In the semantic class level, we can see

that SetExpan-re and SetExpan-cs sometimes have their MAP much lower than SetExpan-full

while sometimes they almost achieve the same performance with SetExpan-full. This means

they fail to stably extract concepts with good quality. The main reason is still that a single

set of features or ensembles over unpruned features can lead to various levels of noise in

the results. Only under the circumstances that the single set of features or the unpruned

features happen to be nicely selected without too much noise, which tends to happen when

the query is relatively “easy”, these variation approaches can achieve good results.

Effects of Context Feature Selection. We already see that adding the context feature
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Figure 2.4: Set expansion performance for each semantic class.
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Figure 2.5: Set expansion performance for individual queries in different classes.

selection component helps improve the performance. What’s also noticeable is that the

addition of context selection process becomes more obvious as the size of the corpus increases.

The difference between MMAP scores of SetExpan-cs and SetExpan-full is much larger in
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PubMed-CVD compared with APR and Wiki datasets. This is because that as the corpus

size increases, we will have more noisy features and more candidate concepts while the good

features to define the target concept set may be limited. Thus, without context selection,

noise can damage the performance much more. The evidence can also be found from the

performance of EgoSet across the three datasets. It can achieve reasonably good results in

APR and Wiki, however, it performs much worse in PubMed-CVD.

Effect of Rank Ensemble. From the above experiments, we can see that the effect of

rank ensemble may vary across different semantic classes. However, the contribution of

rank ensemble seems to be more stable across datasets, compared with the effect of context

selection. This is because we apply the default set of hyper-parameter values in each test case

above. In the below hyper-parameter analysis, we will show that the number of ensemble

batches and the percentage of features to be randomly sampled can affect the contribution

of rank ensemble to the concept set expansion performance.

Hyper-parameter Analysis. There are totally 4 hyper-parameters in SetExpan: Q (the

number of selected context features), α (the percentage of features to be sampled), T (the

number of ensemble batches), and r (the threshold of a candidate concept’s average rank).

We study the influence of each hyper-parameter by fixing all other hyper-parameters to

default values, and present one graph showing the MMAP scores of SetExpan on APR dataset

versus the changes of that hyper-parameter.

• α: From the graph, the performance increases sharply as α increases until it reaches about

0.6. Then, it starts to stay stable and decreases after 0.7.

• T : The performance first increases as we increase the ensemble batches and then becomes

stable after 60 batches.

• Q: In the range of 50 - 150, the performance increases sharply as Q increases, which means

the majority of top 150 context features can provide rich information to identify concepts

belonging to the target semantic class. The available information gets more and more

saturated after Q reaches 150 and start to introduce noises and hamper the performance

after around 300.

• r: Our experiments show that the performance is not very sensitive to the threshold of a

candidate concept’s average rank.

2.4.6 Case Studies.

Figure 2.7 presents three case studies for SetExpan. We show one query for each dataset.

In each case, we show top 3 ranked concepts and top/bottom 3 skip-pattern features after
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Figure 2.6: Hyper-parameter sensitivity of SetExpan on two datasets.
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Figure 2.7: Three case studies of SetExpan on each dataset.

context feature selection for the first 3 iterations as well as the coarse-grained type. In all

cases, our algorithm successfully extracts correct concepts in each iteration, and the top-

ranked skip-patterns are representative in defining the target semantic class. On the other

hand, we notice that most of the bottom 3 skip-patterns selected are very general or not

representative at all. These context features could potentially introduce noisy concepts and

thus the rank ensemble can play a rival role in improving the results.
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2.5 EXTENSIONS OF SETEXPAN

SetExpan demonstrates an effective iterative framework for concept set expansion. To-

gether with collaborators in our group, we further extend SetExpan by exploiting automati-

cally discovered negative sets [17] and incorporating pre-trained language models [2].

2.5.1 SetCoExpan: Guiding SetExpan via Auxiliary Sets Generation and Co-Expansion

We observe that a typical source of SetExpan error comes from the concepts from different

semantic classes that share some common relations to the target class. For example, when

expanding the Country class, we may wrongly introduce those erroneous concepts in the City

class. If we can capture such subtle relationships between concepts belonging to different

semantic classes, we can use them to separate concepts from different classes and conduct set

co-expansion. Such co-expansion may incorporate signals from all the related, participating

classes, keep warning the target class not to cross over the boundaries of its possible rivals,

and guide the expanding direction of each set by avoiding to bump into each other’s territory.

The co-expansion of such multiple rival sets benefits each other from mutually exclusive

signals, and the quality of multiple sets expansion can be improved simultaneously. Some

previous studies [53, 54, 46] also found that using mutual exclusive signals from other related

“auxiliary” classes could help. However, they often require users to explicitly provide those

auxiliary classes, which was not applicable in many real-world scenarios.
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Figure 2.8: Overview of SetCoExpan. For user-input country names, we first
retrieve related terms such as provinces and cities and then cluster them into
auxiliary sets. Multiple sets are then co-expanded by extracting discriminative
context features.

We propose SetCoExpan, a fully automated approach to improve SetExpan without human-

provided auxiliary sets. As shown in Figure 2.8, SetCoExpan consists of two modules that

are operated iteratively: (1) an auxiliary sets generation module that finds auxiliary sets

holding certain relations with the target set in an unsupervised way, and (2) a multiple sets

co-expansion module that takes multiple sets as input and extracts the most discriminative
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features to tell the target class from auxiliary sets. The auxiliary sets generation module

first retrieves semantically related terms to each seed element in an embedding space that

captures topical similarity. These related terms are then grouped by their semantic types,

captured by intra-seed clustering and inter-seed merging in an unsupervised way. The multi-

ple sets co-expansion modules takes the target seed set as well as auxiliary sets as input. By

incorporating knowledge from both seed set and auxiliary sets, we can control the expanding

directions of multiple sets. Specifically, context features are scored by how well they can tell

different sets apart, and the algorithm drives the expanding direction away from ambiguous

areas. We demonstrate the effectiveness of SetCoExpan in below Section 2.5.3.

2.5.2 CGExpan: Empowering SetExpan via Language Model Probing

Besides using auxiliary sets to guide the set expansion process, we also explore how to

leverage the target class name to enhance SetExpan. Intuitively, knowing the class name

is “country”, instead of “state” or “city”, can help us identify unambiguous patterns and

eliminate erroneous concepts like “Europe” and “New York”. Moreover, we can acquire such

knowledge (i.e., positive and negative class names) by probing a language model automati-

cally without relying on human annotated data.

{Illinois, Georgia, Virginia}
Seed Set Template

[NP0] such as [NP1], [NP2], and [NP3]

……
Delaware

Florida
Texas

Candidate Class Names

[MASK] such as Illinois, Georgia, Virginia
Class-probing Query

states
Class Name Template

[NP0], [NP1], or other [NP2]

Virginia, [MASK], or other states
Concept-probing Query

Virginia
Concept Candidate Concepts

……
large states
U.S. states

states
Masked 

Language 
Models 

Masked 
Language 

Models 

Figure 2.9: Examples of class-probing and concept-probing queries in CGExpan.

Motivated by the above intuition, we propose CGExpan, an iterative framework that em-

powers concept set expansion with class names automatically generated from pre-trained

language models (PLMs) [55, 56]. CGExpan consists of three modules: (1) The first, class

name generation module, constructs and submits class-probing queries (e.g., “[Mask] such

as Illinois, Georgia, and Virginia.” as shown in Figure 2.9) to a language model for retriev-

ing a set of candidate class names. (2) The second, class name ranking module, builds a
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Table 2.3: Mean average precision on Wiki and APR. “∇” means the number is
directly from the original paper.

Methods
Wiki APR

MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

EgoSet [33] 0.904 0.877 0.745 0.758 0.710 0.570
SetExpan [1] 0.944 0.921 0.720 0.789 0.763 0.639
SetExpander [57] 0.499 0.439 0.321 0.287 0.208 0.120
CaSE [58] 0.897 0.806 0.588 0.619 0.494 0.330
MCTS [59] 0.980∇ 0.930∇ 0.790∇ 0.960∇ 0.900∇ 0.810∇

SetCoExpan 0.976 0.964 0.905 0.933 0.915 0.830
CGExpan 0.995 0.978 0.902 0.992 0.990 0.955

concept-probing query for each candidate class name and retrieves a set of concepts. The

similarity between this retrieved set and the current concept set serves as a proxy for the

class name quality, based on which we rank all candidate class names. (3) The third, class-

guided concept selection module, scores each concept conditioned on the above selected class

names and add top-ranked concepts into the currently expanded set. As better class names

may emerge in later iterations, we score and rank all concepts (including those already in

the expanded set) at each iteration, which helps alleviate the semantic drift issue.

2.5.3 Experiments

We evaluate the performance of SetCoExpan and CGExpan on Wiki and APR datasets

used in previous SetExpan experiments. Besides the previous EgoSet baseline, we further

compare SetCoExpan and CGExpan with the following methods:

• SetExpander [57]: This method trains different embeddings based on different types of

context features and leverages additional human-annotated sets to build a classifier on top

of learned embeddings to predict whether a concept belongs to the set.

• CaSE [58]: This method combines skip-pattern features and embedding features to score

and rank concepts once from the corpus. The original paper has three variants and we

use the CaSE-W2V variant since it is the best model claimed in the paper.

• MCTS [59]: This method bootstraps the initial seed set by combing the Monte Carlo Tree

Search algorithm with a deep similarity network to estimate delayed feedback for pattern

evaluation and to score concepts given selected patterns.

Table 2.3 shows the overall performance of different methods. We can see that SetCoExpan

and CGExpan in general outperform all the baselines by a large margin. On the Wiki dataset,

both SetCoExpan and CGExpan achieve over 24% improvements over SetExpan in MAP@50,.
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On the APR dataset, CGExpan obtains over 49% improvements over SetExpan in terms of

MAP@50. These results verify the effectiveness of parallel expansion of auxiliary sets (in

SetCoExpan) and PLM-guided expansion model (in CGExpan).

2.6 SUMMARY

In this chapter, we present an iterative concept set expansion framework SetExpan with a

ranking-based unsupervised ensemble technique for robust concept selection. Our extensive

experiments show SetExpan is domain-independent, outperforms many other set expansion

methods, and derives high-quality concept sets with minimal human efforts. Furthermore,

we introduce a few ways to extend SetExpan by incorporating pre-trained language models

and exploiting automatically discovered auxiliary sets.

For future work, it is interesting to (1) extend SetExpan to multiple languages, (2) develop

interactive methods to allow users to directly control the expansion process and/or to provide

valuable feedbacks after the iterative expansion process ends, and (3) enable the downstream

applications of set expansion to provide explicit or implicit feedbacks to guide the concept

set expansion model learning.
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CHAPTER 3: TAXONOMY CONSTRUCTION

3.1 OVERVIEW AND MOTIVATIONS

Concept taxonomy is the backbone of many knowledge-rich applications such as question

answering [60], query understanding [61], and personalized recommendation [62]. Most ex-

isting concept taxonomies (e.g., MeSH [12], ACM CCS [13], Pinterest Taxonomy [14], etc.)

are constructed by human experts or in a crowd-sourcing manner. However, such man-

ual constructions are labor-intensive, time-consuming, unadaptable to changes, and rarely

complete. As a result, automated concept taxonomy construction is in great demand.

Existing methods mostly build concept taxonomies based on the “is-A” relation (e.g.,

a “panda” is a “mammal”) [18, 19, 20] or cluster terms into hierarchically organized top-

ics [63, 64, 65]. However, such hierarchies cannot satisfy many real-world needs due to its (1)

inflexible semantics : many applications may need hierarchies carrying more flexible seman-

tics such as “city-state-country” in a location taxonomy; and (2) limited applicability: the

“universal” taxonomy so constructed is unlikely to fit diverse and user-specific application

tasks. This motivates us to work on the task-guided taxonomy construction, which takes a

user-provided “seed” taxonomy tree (as task guidance) along with a domain-specific corpus

and generates a desired taxonomy automatically. For example, as shown in Figure 3.1, a

user may provide a seed taxonomy containing only two countries and two states along with

a large corpus, and our method will output a taxonomy which covers all the countries and

states mentioned in the corpus.

In this chapter, we propose HiExpan, a novel framework for task-guided concept taxonomy

construction. HiExpan can automatically generates a key term list1 from the input corpus

and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each

taxonomy node forming a coherent set and builds the taxonomy by recursively expanding

all these sets using SetExpan. While such an approach is intuitive, there are two major

challenges by utilizing SetExpan to generating high-quality taxonomies: (1) modeling global

taxonomy information: a concept that appears in multiple expanded sets may need conflict

resolution and hierarchy adjustment accordingly, and (2) cold-start with empty initial seed

set: as an example, initial seed set {“Ontario”, “Quebec”} will need to be found once we

add “Canada” at the country level as shown in Figure 3.1.

HiExpan consists of two novel modules for dealing with the above two challenges. First,

whenever we observe a conflict (i.e., the same concept appearing in multiple positions on the

1In this chapter, we use the word “term” and “concept” interchangeably.
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Figure 3.1: An example of task-guided taxonomy construction.

taxonomy) during the tree expansion process, we measure a “confidence score” for putting

the term in each position and select the most confident position for it. Furthermore, at the

end of our hierarchical tree expansion process, we will do a global optimization of the whole

tree structure. Second, we incorporate a weakly-supervised relation extraction method to

infer parent-child relation information and to find seed children concepts under a specific

parent concept. Equipped with these two modules, HiExpan constructs the task-guided

taxonomy by iteratively growing the initial seed taxonomy tree. At each iteration, it views

all children under a non-leaf taxonomy node as a coherent set and builds the taxonomy by

recursively expanding these sets. Whenever a node with no initial children nodes found,

it will first conduct seeds hunting. At the end of each iteration, HiExpan detects all the

conflicts and resolves them based on their confidence scores.

We summarize our major contributions as follows:

• We introduce a new research problem task-guided taxonomy construction, which takes a

user-provided seed taxonomy along with a domain-specific corpus as input and aims to

output a desired taxonomy that satisfies user-specific application tasks.

• We propose HiExpan, a novel expansion-based framework for task-guided taxonomy con-

struction. HiExpan requires minimum human annotations and generates the taxonomy by

growing the seed taxonomy iteratively. Special mechanisms are also taken by HiExpan to

leverage global tree structure information.

• We conduct extensive experiments to verify the effectiveness of HiExpan on three real-world

datasets from different domains.

The remaining of this chapter is organized as follows. Section 3.2 discusses the related

work. Section 3.3 defines our problem and presents our HiExpan framework. Then, In

Section 3.4, we report and analyze the experiment results. Finally, we conclude this chapter

and discuss some future directions in Section 3.5.
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3.2 RELATED WORK

There are three major lines of previous studies relevant to the current work.

Concept Taxonomy Construction. Most existing approaches to taxonomy construction

focus on building hypernym-hyponym taxonomies wherein each parent-child pair expresses

the “is-a” relation. Typically, they consist of two key steps: (1) hypernymy relation acquisi-

tion (i.e., obtaining hypernym-hyponym pairs), and (2) structured taxonomy induction (i.e.,

organizing all hypernymy relations into a tree structure).

Methods for hypernymy relation acquisition fall into two classes: pattern-based and dis-

tributional. One pioneering pattern-based method is Hearst patterns [66] in which lexical

syntactic patterns (e.g., “NPx such as NPy”) are leveraged to match hypernymy relations.

Later studies extend this method by incorporating more linguistic rules [67, 68, 69] or design-

ing generalized patterns such as “star-pattern” [70], “SOL pattern” [71], and “meta-pattern”

[72]. These methods could achieve high precision in the result pairs but often suffer low

recalls (i.e., many hypernym-hyponym pairs do not match the pre-defined patterns). Along

another line, distributional methods predict whether a pair of terms 〈x, y〉 holds a hypernymy

relation based on their distributional representations. Early studies first extract statistical

features (e.g., the context words of a term), calculate pairwise term similarity using symmet-

ric metrics (e.g., cosine, Jaccard) [73] or asymmetric metrics (e.g., WeedsPrec [74], SLQS

[75]), and predict if 〈x, y〉 holds a hypernymy relation. More recently, a collections of super-

vised methods [76, 77, 78, 79, 80] are proposed to leverage pre-trained word embeddings and

curated training data to directly learn a relation classification/prediction model. However,

neither pattern-based nor distributional techniques can be applied to our problem because

they are designed exclusively for acquiring hypernym-hyponym pairs, whereas we aim to con-

struct a task-guided taxonomy where the parent-child relations are task-specific and subject

to user guidance.

For the structured taxonomy induction step, most methods first build a graph where

edges represent noisy hypernymy relations, extracted in the former step, and then derive a

tree-like taxonomy from this graph. Kozareva and Hovy [81] iteratively retain the longest

paths between root and leaf terms and remove other conflicting edges. Velardi et al. [19]

use the same longest-path idea to weigh edges and then find the largest-weight taxonomy

as a Maximum Spanning Tree. Bansal et al. [82] build a factor graph to model hypernymy

relations and regard taxonomy induction as a structured learning problem, which can be

inferred with loop belief propagation. Recently, Gupta et al. [83] propose to build the initial

graph using hypernym subsequence (instead of single hypernym pair) and model taxonomy

induction as a minimum-cost flow problem. Comparing with these methods, our approach
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leverages the weak supervision in “seed” taxonomy and builds a task-specific taxonomy in

which two terms can hold a non-hypernymy relation. Further, our taxonomy construction

framework jointly acquires task-specific relations and induces taxonomy structure, instead

of performing the two tasks separately.

Topic Hierarchy Construction. There are a number of methods proposed for automatic

topic hierarchy construction from text corpora. In pioneer studies, hierarchical topic mod-

eling [84, 63, 65, 85] and bottom-up agglomerative clustering [86, 87] are two most popular

frameworks. More recently, after word embedding technique [51] becomes mature, more

top-down hierarchical clustering methods [88, 64] are proposed and achieve the new state-

of-the-art. All these methods construct a topic hierarchy where each node is represented by

a cluster of terms. However, finding a single concept term to summarize the term cluster is

proved to be a non-trivial task [89]. In comparison, our HiExpan framework tries to construct

a concept taxonomy where each node is naturally represented by a single term.

Weakly-supervised Relation Extraction. There have been studies on weakly supervised

relation extraction, which aims at extracting a set of relation instances containing certain

semantic relationships. Our method is related to corpus-level relation extraction that identi-

fies relation instances from the entire text corpora [90, 91, 92, 93]. In the weakly supervised

setting, there are generally two approaches for corpus-level relation extraction. The first

is pattern-based [72, 71], which usually uses bootstrapping to iteratively extract textual

patterns and new relation instances. The second approach [51, 94, 95] tries to learn low-

dimensional representations of concepts such that concepts with similar semantic meanings

have similar representations. Unfortunately, all these existing methods require a consider-

able amount of relation instances to train an effective relation classifier, which is infeasible

in our setting as we only have a limited number seeds specified by users. Furthermore, these

studies do not consider organizing the relation pairs into a taxonomy structure.

3.3 THE HIEXPAN FRAMEWORK

The input for our concept taxonomy construction framework includes two parts: (1) a

text corpus D; and (2) a “seed” taxonomy T 0. The “seed” taxonomy T 0, given by a user, is

a tree-structured hierarchy and serves as the task guidance. Given the corpus D, we aim to

expand this seed taxonomy T 0 into a more complete taxonomy T for the task. Each node

e ∈ T represents a concept extracted from corpus D and each edge 〈e1, e2〉 denotes a pair

of concepts that satisfies the task-specific relation. We use E and R to denote all the nodes

and edges in T and thus T def
= (E ,R).
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Figure 3.2: An overview of our hierarchical tree expansion algorithm in HiExpan.

Figure 3.1 shows an example of our problem. Given a collection of Wikipedia articles

(i.e., D) and a “seed” taxonomy containing two countries and two states in the “U.S.” (i.e.,

T 0 = (E0,R0)), we aim to output a taxonomy T which covers all countries and states

mentioned in corpus D and connects them based on the task-specific relation “located in”,

indicated by R0.

3.3.1 Framework Overview

In short, HiExpan views all children under each taxonomy node forming a coherent set,

and builds the taxonomy by recursively expanding all these sets. As shown in Figure 3.2,

two first-level nodes (i.e., “U.S.” and “China”) form a set representing the semantic class

“Country” and by expanding it, we can obtain all the other countries. Similarly, we can

expand the set {“California”, “Illinois”} to find all the other states in the U.S.

Given a corpus, HiExpan first extracts all key terms using a phrase mining tool followed by

part-of-speech filtering (Section 3.3.2). As the generated term list contains many irrelevant

terms (e.g., people’s names are totally irrelevant to a location taxonomy), we use a set

expansion technique to carefully select best terms. We refer this process as width expansion as

it increases the width of taxonomy tree (Section 3.3.3). Furthermore, to address the challenge

that some nodes do not have an initial child (e.g., the node “Mexico” in Figure 3.2), we find

the “seed” children by applying a weakly-supervised relation extraction method, which we

refer as depth expansion (Section 3.3.4). By iteratively applying these two expansion modules

and resolving possible conflicts (Section 3.3.5), our hierarchical tree expansion algorithm will

first grow the taxonomy to its full size. Finally, we adjust the taxonomy tree by optimizing

its global structure (Section 3.3.6).
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3.3.2 Key Term Extraction

We use AutoPhrase, a state-of-the-art phrase mining algorithm [96], to extract all key

terms in the given corpus. After that, we apply a Part-of-Speech (POS) tagger to the corpus

and obtain the POS tag sequence of each key term occurrence. Then, we retain the key term

occurrence whose corresponding POS tag sequence contains a noun POS tag (e.g., “NN ”,

“NNS”, “NNP”). Finally, we aggregate the key terms that have at least one remaining

occurrence in the corpus into the key term list.

3.3.3 Width Expansion

Width expansion aims to find the sibling nodes of a given set of children nodes which

share the same parent. This naturally forms a set expansion problem and thus we adapt the

SetExpan algorithm for addressing it.

Features. We use three types of concept features during the width expansion process:

• skip-pattern: Given a target concept ei in a sentence, one of its skip-pattern features is

“w−1 w1” where w−1 and w1 are two context words and ei is replaced with a placeholder.

One advantage of skip-pattern feature is that it imposes strong positional constraints.

Following [1, 33], we extract up to six skip-patterns of different lengths for one target

concept ei in each sentence.

• concept embedding : We use the SkipGram model in word2vec [51] to learn the concept

embeddings. For a multi-gram term (e.g., “Baja California”), we first use “ ” to con-

catenate tokens and then learn the embedding of this concept. The advantage of concept

embedding feature is that it captures the semantics of each concept.

• concept type: We obtain each concept type information by linking it to Probase [18]. The

return types serve as the features of that concept. For concepts that are not linkable, they

simply do not have this concept’s type feature.

Similarity Measures. With above defined concept features, we can compute the sibling

similarity of two concepts e1 and e2, denoted as simsib(e1, e2). We first assign the weight be-

tween each pair of concept and skip-pattern as: fe,sk = log(1+Xe,sk) [log |V | − log(
∑

e′ Xe′,sk)],

where Xe,sk is the raw co-occurrence count between concept e and skip-pattern sk, and |V |
is the total number of candidate concepts. Similarly, we can define the association weight

between a concept and a type as: fe,ty = log(1 +Ce,ty) [log |V | − log(
∑

e′ Ce′,ty)], where Ce,ty

is the confidence score returned by Probase and indicates how confident it believes that

concept e has a type ty.

After that, we calculate the similarity of two sibling concepts using skip-pattern features
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as follows:

simsk
sib(e1, e2|SK) =

∑
sk∈SK min(fe1,sk, fe2,sk)∑
sk∈SK max(fe1,sk, fe2,sk)

, (3.1)

where SK denotes a selected set of “discriminative” skip-pattern features (see below for

details). Similarly, we can calculate simtp
sib(e1, e2) using all the type features. Finally, we

use the cosine similarity to compute the similarity between two concepts based on their

embedding features simemb
sib (e1, e2). To combine the above three similarities, we notice that

a good pair of sibling concepts should appear in similar contexts, share similar embeddings,

and have similar types. Therefore, we use a multiplicative measure to calculate the final

sibling similarity as follows:

simsib(e1, e2|SK) =
√

(1 + simsk
sib(e1, e2|SK)) · simemb

sib (e1, e2) ·
√

1 + simtp
sib(e1, e2). (3.2)

The Width Expansion process. Given a seed concept set S and a candidate concept list

V , a straightforward idea to compute each candidate concept’s average similarity with all

concepts in the seed set S using all the features. However, this approach can be problematic

because (1) the feature space is huge (i.e., there are millions of possible skip-pattern features)

and noisy, and (2) the candidate concept list V is also noisy in the sense that many concepts

in V are completely irrelevant to S. Therefore, we take a more conservative approach by

first selecting a set of quality skip-pattern features and then scoring a concept only if it is

associated with at least one quality skip-pattern feature.

Starting with the seed set S, we first score each skip-pattern feature based on its accu-

mulated strength with concepts in S (i.e., score(sk) =
∑

e∈S fe,sk), and then select top 200

skip-pattern features with maximum scores. After that, we use sampling without replace-

ment method to generate 10 subsets of skip-pattern features SKt, t = 1, 2, . . . , 10. Each

subset SKt has 120 skip-pattern features. Given an SKt, we will consider a candidate con-

cept in V only if it has association will at least one skip-pattern feature in SKt. The score

of a considered concept is calculated as follows:

score(e|S, SKt) =
1

|S|
∑
e′∈S

simsib(e, e
′|SKt). (3.3)

For each SKt, we can obtain a rank list of candidate concepts Lt based on their scores.

We use rit to denote the rank of concept ei in Lt and if ei does not appear in Lt, we set

rit = ∞. Finally, we calculate the mean reciprocal rank (mrr) of each concept ei and add

those concepts with average rank above r into the set S as follows:

mrr(ei) =
1

10

10∑
t=1

1

rit
, S = S ∪ {ei|mrr(ei) >

1

r
}. (3.4)
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The key insight of above aggregation mechanism is that an irrelevant concept will not appear

frequently in multiple Lt at top positions and thus likely has a low mrr score. The same

idea in proved effective in SetExpan and we set r = 5 in HiExpan.

3.3.4 Depth Expansion

The width expansion algorithm requires an initial seed concept set to start with. This

requirement is satisfied for nodes in the initial seed taxonomy T 0 as their children nodes can

naturally form such a set. However, for those newly-added nodes in taxonomy tree (e.g., the

node “Canada” in Figure 3.2), they do not have any child node and thus we cannot directly

apply the width expansion algorithm. To address this problem, we use depth expansion

algorithm to acquire a target node’s initial children by considering the relations between its

sibling nodes and its niece/nephew nodes.

Example 3.1 (Depth Expansion) Consider the node “ Canada” in Figure 3.2 as an ex-

ample. This node is generated by the previous width expansion algorithm and thus does not

have any child node. We aim to find its initial children (i.e., “ Ontario” and “ Quebec”)

by modeling the relation between the siblings of node “ Canada” (e.g., “ U.S.”) and its

niece/nephew node (e.g., “ California”, “ Illinois”). Similarly, given the target node “ Mexico”,

we want to find its initial children such as node “ Sonora”.

Our depth expansion algorithm relies on concept embeddings, which encode the concept

semantics in a fix-length dense vector. We use v(t) to denote the embedding vector of

concept t. As shown in [51, 77, 79], the offset of two concepts’ embeddings can represent

the relationship between them, which leads to the following observation that v(“U.S”) −
v(“California”) ≈ v(“Canada”) − v(“Ontario”). Therefore, given a target parent node

et, a set of reference edges E = {〈ep, ec〉} where ep is the parent node of ec, we calculate the

“goodness” of putting node ex under parent node et as follows:

simpar(〈et, ex〉) = cos

v(et)− v(ex),
1

|E|
∑
〈ep,ec〉

v(ep)− v(ec)

 , (3.5)

where cos(v(x),v(y)) denotes the cosine similarity between vector v(x) and v(y). Finally,

we score each candidate concept ei based on simpar(〈et, ei〉) and select top-3 concepts with

maximum score as the initial children nodes under node et.

The concept embedding is learned from REPEL [90], a model for weakly-supervised re-

lation extraction using pattern-enhanced embedding learning. It takes a few seed relation

mentions (e.g. “US-Illinois” and “US-California”) and outputs concept embeddings as well
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as reliable relational phrases for target relation type(s). REPEL consists of a pattern module

which learns a set of reliable textual patterns, and a distributional module, which learns a

relation classifier on concept representations for prediction. As both modules provide extra

supervision for each other, the distributional module learns concept embeddings supervised

by more reliable patterns from the pattern module. By doing so, the learned concept em-

beddings carry more useful information than those obtained from other embedding models

like word2vec [51], specifically for finding relation tuples of the target relation type(s).

3.3.5 Conflict Resolution

We can iteratively apply width expansion and depth expansion to grow the taxonomy tree

to its full size. As the supervision signal from the user-specified seed taxonomy T 0 is very

weak, we need to make sure those nodes introduced in the first several iterations are of high

quality and will not mislead the expansion process in later iterations to a wrong direction. In

HiExpan, for each task-related concept, we aim to find its single best position on our output

task-guided taxonomy T . Therefore, when finding a concept appears in multiple positions

during our tree expansion process, we say a “conflict” happens and aim to resolve such

conflict by finding the best position that concept should reside in. Given a set of conflicting

nodes C which corresponds to different positions of a same concept, we apply the following

three rules to select the best node out of this set. First, if any node is in the seed taxonomy

T 0, we directly select this node and skip the following two steps. Otherwise, for each pair

of nodes in C, we check whether one of them is the ancestor of the other and retain only

the ancestor node. After that, we calculate the “confidence score” of each remaining node

e ∈ C as follows:

conf(e) =
1

|sib(e)|
∑

e′∈sib(e)

simsib(e, e
′|SK) · simpar(〈par(e), e〉), (3.6)

where sib(e) denotes the set of all sibling nodes of e and par(e) represents its parent node.

The skip-pattern feature in SK is selected based on its accumulated strength with concepts

in sib(e). The node with highest confidence score will be selected. Finally, for each node in

C that is not selected, we will delete the whole subtree rooted by it, cut all the sibling nodes

added after it, and put it in its parent node’s “children backlist”.

Example 3.2 (Conflict Resolution) In Figure 3.2, we can see there are two “ Texas”

nodes, one under “ U.S.” and the other under “ Mexico”. As none of them is from ini-

tial “seed” taxonomy and they do not hold an ancestor-descendant relationship, we need to
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calculate each node’s confidence score based on Eq. (3.6). Since “ Texas” has a stronger re-

lation with other states in U.S., comparing with those in Mexico, we will select the “ Texas”

node under “ U.S.”. Then, for the other node under “ Mexico”, we will delete it and cut

“ Coahuila”, a sibling node added after “ Texas”. Finally, we let the node “ Mexico” to re-

member that “ Texas” is not one of its children, which prevents the “ Texas” node being added

back later. Notice that although the “ Coahuila” node is cut here, it may be added back in a

later iteration by our tree expansion algorithm.

3.3.6 Taxonomy Global Optimization

In the above hierarchical tree expansion algorithm, a node will be selected and attached

onto the taxonomy based on its “local” similarities with other sibling nodes and its parent

node. While modeling only the “local” similarity can simplify the tree expansion process, we

find the resulting taxonomy may not be the best from a “global” point of view. For example,

when expanding the France regions, we find that “Molise”, an Italy region, will be mistakenly

added under the “France” node, likely because it shares many similar contexts with some

other regions of France. However, when we take a global view of the taxonomy and ask the

following question—which country is Molise located in?, we can easily put “Molise” under

“Italy” as it shares more similarities with those in Italy than in France.

Motivated by the above example, we propose a taxonomy global optimization module in

HiExpan. The key idea is to adjust each two contiguous levels of the taxonomy tree and to

find the best “parent” node at the upper level for each “child” node at the lower level. Our

taxonomy global optimization makes the following two hypotheses: (1) concepts that have

the same parent are similar to each other and form a coherent set, and (2) each concept is

more similar to its correct parent compared with other siblings of its correct parent.

Formally, suppose there are m “parent” nodes at the upper level and n “child” nodes at

the lower level, we use W ∈ Rn×n to model the concept-concept sibling similarity and use

Yc ∈ Rn×p to capture the two concepts’s parenthood similarity. We let Wij = simsib(ei, ej)

if i 6= j, otherwise we set Wii = 0. We set Yc
ij = simpar(〈ej, ei〉). Furthermore, we define

another n× p matrix Ys with Ys
ij = 1 if a child node ei is under parent node ej and Ys

ij = 0

otherwise. This matrix captures the current parent assignment of each child node. We use

F ∈ Rn×p to represent the child nodes’ parent assignment we intend to learn. Given a F, we

can assign each “child” node ei to a “parent” node ej = arg maxj Fij. Finally, we propose

the following optimization problem to reflect the previous two hypotheses:

min
F

n∑
i,j

Wij

∥∥∥∥∥ Fi√
Dii
− Fj√

Djj

∥∥∥∥∥
2

2

+ µ1

n∑
i=1

∥∥∥∥Fi −
Yc

i

‖Yc
i ‖1

∥∥∥∥2
2

+ µ2

n∑
i=1

‖Fi −Ys
i ‖22 , (3.7)
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where Dii is the sum of i-th row of W, and µ1, µ2 are two nonnegative model hyper-

parameters. The first term in Eq. (3.7) corresponds to our first hypothesis and models

two concepts’ sibling similarity. The second term in Eq. (3.7) follows our second hypothesis

to model the parenthood similarity. The last term in Eq. (3.7) serves as the smoothness

constraints and captures the taxonomy structure information before the global adjustment.

To solve the above optimization problem, we take the derivative of its objective function

with respect to F and can obtain the following closed form solution:

F∗ = (I− αS)−1 · (β1Yc + β2Y
s), S = D−1/2WD−1/2, (3.8)

where α1 = 1
1+µ1+µ2

, β1 = µ1
1+µ1+µ2

and β2 = µ2
1+µ1+µ2

. The calculation procedure is similar

to the one in [97].

3.4 EXPERIMENTS

3.4.1 Datasets

We use two corpora from different domains to evaluate the performance of HiExpan. The

first one is DBLP which contains about 156 thousand paper abstracts (1.1 million sentences)

and a vocabulary of over 17 thousand concepts in the computer science field. The second

one is Wiki which includes a subset of English Wikipedia pages (1.5 million sentences) used

in [48, 1] and a vocabulary of more than 41 thousand concepts.

3.4.2 Compared Methods

To the best of our knowledge, we are the first to study the problem of task-guided taxon-

omy construction problem, and thus there is no suitable baseline to compare with directly.

Therefore, here we evaluate the effectiveness of HiExpan by comparing it with a heuristic

set-expansion based method and its own variations as follows:

• HSetExpan is a baseline method which iteratively applies SetExpan algorithm [1] at each

level of taxonomy. For each lower level node, this method finds its best parent node to

attach according to the children-parent similarity measure defined in Eq. (3.5).

• NoREPEL is a variation of HiExpan without the REPEL [90] module which jointly leverages

pattern-based and distributional methods for concept embedding learning. Instead, we use

the SkipGram model [51] for learning concept embeddings.

• NoGTO is a variation of HiExpan without the taxonomy global optimization module. It

directly outputs the taxonomy generated by hierarchical tree expansion algorithm.
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• HiExpan is the full version of our proposed framework, with both REPEL embedding

learning module and taxonomy global optimization module enabled.

We use the above methods to generate two taxonomies, one for each corpus. When

extracting the key term list using AutoPhrase [96], we treat phrases that occur over 15 times

in the corpus to be frequent. The embedding dimension is set to 100 in both REPEL [90]

and SkipGram model [51]. The maximum expansion iteration number max iter is set to 5

for all above methods. Finally, we set the two hyper-parameters used in taxonomy global

optimization module as µ1 = 0.1 and µ2 = 0.01.

3.4.3 Evaluation Metrics

Evaluating the quality of an entire taxonomy is challenging due to the existence of mul-

tiple aspects that should be considered and the difficulty of obtaining gold standard [20].

Following [98, 99], we use Ancestor-F1 and Edge-F1 for taxonomy evaluation in this

study. Ancestor-F1 measures correctly predicted ancestral relations. It enumerates all the

pairs on the predicted taxonomy and compares these pairs with those in the gold standard

taxonomy as follows:

Pa =
|is-ancestorpred ∩ is-ancestorgold|

|is-ancestorpred|
, (3.9)

Ra =
|is-ancestorpred ∩ is-ancestorgold|

|is-ancestorgold|
. (3.10)

F1a =
2Pa ∗Ra
Pa +Ra

(3.11)

We denote Pa, Ra, F1a as the ancestor precision, ancestor recall, and ancestor F1-score, re-

spectively. Edge-F1 compares edges predicted by different taxonomy construction methods

with edges in the gold standard taxonomy. Similarly, we denote edge-based metrics as Pe,

Re, and F1e, respectively.

To construct the gold standard, we extract all the parent-child edges in taxonomies gener-

ated by all compared methods. Then we pool all the edges together and ask five people, to

judge these pairs independently. We show them seed parent-child pairs as well as the gener-

ated parent-child pairs, and ask them to evaluate whether the generated parent-child pairs

have the same relation as the given seed parent-child pairs. After collecting these answers

from the annotators, we simply use majority voting to label the pairs. We then use these

annotated data as the gold standard.
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Table 3.1: Qualifications of the taxonomies constructed by HSetExpan, NoREPEL,
NoGTO, and HiExpan.

Methods
Wiki DBLP

Pa Ra F1a Pe Re F1e Pa Ra F1a Pe Re F1e

HSetExpan 0.740 0.444 0.555 0.759 0.471 0.581 0.743 0.448 0.559 0.739 0.448 0.558

NoREPEL 0.696 0.596 0.642 0.697 0.576 0.631 0.722 0.384 0.502 0.705 0.464 0.560
NoGTO 0.827 0.708 0.763 0.810 0.671 0.734 0.821 0.366 0.506 0.779 0.433 0.556
HiExpan 0.847 0.725 0.781 0.848 0.702 0.768 0.843 0.376 0.520 0.829 0.460 0.592

3.4.4 Quantitative Results

Table 3.1 shows both the ancestor-based and edge-based precision/recalls as well as F1-

scores of different methods. We can see that HiExpan achieves the best overall performance,

and outperforms other methods, especially in terms of the precision. By comparing the per-

formance of HiExpan, NoREPEL, and NoGTO, we can see that both the REPEL module and

the taxonomy global optimization algorithm in HiExpan play important roles in improving

the quality of the generated taxonomy. Specifically, REPEL learns more discriminative rep-

resentations by iteratively letting the distributional module and pattern module mutually

enhance each other, and the taxonomy global optimization module leverages the global infor-

mation from the entire taxonomy tree structure. In addition, HiExpan resolves the “conflicts”

at the end of each tree expansion iteration by cutting many nodes on a currently expanded

taxonomy. This leads HiExpan to generate a smaller tree comparing with the one generated

by HSetExpan, given that both methods running the same number of iterations. However,

we can see that HiExpan still beats HSetExpan on Wiki dataset, in terms of the recall, which

further demonstrates the effectiveness of HiExpan.

3.4.5 Case Studies

In Figure 3.3, we show the taxonomy trees generated by HiExpan in two domains. First,

given a “seed” taxonomy containing two countries and six states/provinces. we can expand

it to a full location taxonomy which covers all countries and state/provinces mentioned

in the corpus and connects them based the “country-state/province” relation. Similarly,

we can expand a seed computer science area taxonomy to automatically discover many

other CS subareas. We can also zoom in to look at the taxonomy at a more granular

level. Taking the node “natural language processing” as an example, HiExpan successfully

finds major subtopics in natural language processing such as “question answering”, “text

summarization”, and “word sense disambiguation” even without any initial seed concepts.
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Figure 3.3: The taxonomy trees generated by HiExpan in two different domains.

Table 3.2 shows the effect of taxonomy global optimization module in HiExpan. From the

experiment on the Wiki dataset, we observe that the node “London” was originally attached

to “Australia”, but after applying the taxonomy global optimization module, this node is

correctly moved under “England”. Similarly, in the DBLP dataset, the term “unsupervised

learning” was initially located under “data mining” but later being moved under the par-

ent node “machine learning”. This demonstrates the effectiveness of our taxonomy global

optimization module.

3.5 SUMMARY

In this chapter, we explore how to construct a task-guided concept taxonomy based on

the initial user-provided seed taxonomy. We propose HiExpan, an effective expansion-based

concept taxonomy construction framework that grows the seed taxonomy by recursive ex-

pansions. In addition, we discuss how to incorporate a weakly-supervised relation extraction
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Table 3.2: NoGTO shows the parent of a concept before applying taxonomy struc-
ture optimization. HiExpan shows the parent node of this concept after optimizing
the taxonomy structure.

Dataset Concept NoGTO HiExpan

Wiki

London Australia England
Chiba China Japan
Molise Frances Italy

New South Wales England Australia
Shropshire Scotland England

DBLP

unsupervised learning data mining machine learning
social network analysis natural language processing data mining
multi-label classification information retrieval machine learning

pseudo-relevance feedback computational biology information retrieval
function approximate data analysis machine learning

module to infer parent-child concept relations and adjust the taxonomy tree by optimizing

its global structure.

In the future, we plan to extend HiExpan by incorporating new concept set expansion

methods (including our own studies SetCoExpan and CGExpan), embedding learning meth-

ods [100, 101], and more supervision signals from either existing knowledge bases [4] or pre-

trained language models [2]. Furthermore, the current taxonomy construction process as well

as the evaluation metrics are task-agnostic. Therefore, separate modules need to be designed

to apply this taxonomy for different applications. We plan to study an application-guided

taxonomy construction method that leverages the performance of a downstream application

to guide the upstream taxonomy construction process. Moreover, the current HiExpan takes

in user guidances (from the seed taxonomy) only at the initial stage. We plan to extend

this framework to allow users provide feedbacks within the whole iterative expansion pro-

cess. Finally, another interesting direction is to study how the topic taxonomy (where each

node contains a set of terms) could be integrated with HiExpan’s output single term based

taxonomy, which allows for a more flexible and interpretable taxonomy structure.
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CHAPTER 4: TAXONOMY ENRICHMENT

4.1 OVERVIEW AND MOTIVATIONS

Taxonomies have been fundamental to organizing knowledge for centuries. In today’s

Web, taxonomies provide valuable knowledge to support many applications such as query

understanding [61], content browsing [102], personalized recommendation [62, 103], and

web search [18, 104]. For example, many online retailers (e.g., eBay and Amazon) organize

products into categories of different granularities, so that customers can easily search and

navigate this category taxonomy to find the items they want to purchase. In addition,

web search engines (e.g., Google and Bing) leverage a taxonomy to better understand user

queries and improve the search quality.

As the web contents and human knowledge are constantly growing, people need to expand

an existing taxonomy to include new emerging concepts. Most of previous methods, however,

construct a taxonomy entirely from scratch and thus when we add new concepts, we have

to re-run the entire taxonomy construction process. Although being intuitive, this approach

has several limitations. First, many taxonomies have a top-level design provided by domain

experts and such design shall be preserved. Second, a newly constructed taxonomy may not

be consistent with the old one, which can lead to instabilities of its dependent downstream

applications. Finally, as targeting the scenario of building taxonomy from scratch, most

previous methods are unsupervised and cannot leverage signals from the existing taxonomy

to construct a new one.

In this chapter, we study the taxonomy expansion task: given an existing taxonomy and

a set of new emerging concepts, we aim to automatically expand the taxonomy to incorpo-

rate these new concepts (without changing the existing relations in the given taxonomy).

Figure 4.1 shows an example where a taxonomy in computer science domain is expanded to

include new subfields (e.g., “Quantum Computing”) and new techniques (e.g., “Meta Learn-

ing” and “UDA”). Some previous studies [105, 106, 107, 108] attempt this task by using an

additional set of labeled concepts with their true insertion positions in the existing taxon-

omy. However, such labeled data are usually small and thus forbid us from learning a more

powerful model that captures the subsumption semantics in the existing taxonomy.

We propose a novel framework named TaxoExpan to tackle the lack-of-supervision chal-

lenge. TaxoExpan formulates a taxonomy as a directed acyclic graph (DAG), automatically

generates pseudo-training data from the existing taxonomy, and uses them to learn a match-

ing model for expanding a given taxonomy. Specifically, we view each concept in the existing
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Figure 4.1: An example of expanding one computer science field-of-studies tax-
onomy to include new concepts.

taxonomy as a query and one of its parent concepts as an anchor. This gives us a set of pos-

itive 〈query concept, anchor concept〉 pairs. Then, we generate negative pairs by sampling

those concepts that are neither the descendants nor the direct parents of the query concept

in the existing taxonomy. In Figure 4.1, for example, the 〈“GPU ”, “Integrated Circuit”〉
is a positive pair and 〈“GPU ”, “Label Propagation”〉 is a negative pair. We refer to these

training pairs as self-supervision data, because they are procedurally generated from the

existing taxonomy and no human curation is involved.

To make the best use of above self-supervision data, we develop two novel techniques in

TaxoExpan. The first one is a position-enhanced graph neural network (GNN) which encodes

the local structure of an anchor concept using its ego network (egonet) in the existing taxon-

omy. If we view this anchor concept as the “parent” of the query concept, this ego network

includes the potential “siblings” and “grand parents” of the query concept. We apply graph

neural networks (GNNs) to model this ego network. However, regular GNNs fail to distin-

guish nodes with different relative positions to the query (i.e., some nodes are grand parents

of the query while the others are siblings of the query). To address this limitation, we present

a simple but effective enhancement to inject such position information into GNNs using po-

sition embedding. We show that such embedding can be easily integrated with existing GNN

architectures (e.g., GCN [109] and GAT [110]) and significantly boosts the prediction perfor-

mance. The second technique is a new noise-robust training scheme based on the InfoNCE

loss [111]. Instead of predicting whether each individual 〈query concept, anchor concept〉
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pair is positive or not, we first group all pairs sharing the same query concept into a single

training instance and learn a model to select the positive pair among other negative ones

from the group. We show that such training scheme is robust to the label noise and leads

to performance gains.

We test the effectiveness of TaxoExpan framework on three real-world taxonomies from

different domains. Our results show that TaxoExpan can generate high-quality concept tax-

onomies in scientific domains and achieves state-of-the-art performance on the WordNet

taxonomy expansion challenge [106].

To summarize, our major contributions include:

• We propose a self-supervised framework TaxoExpan that automatically expands existing

taxonomies without manually labeled data.

• We develop an effective method for enhancing graph neural network by incorporating

hierarchical positional information.

• We design a new training objective that enables the learned model to be robust to label

noises in self-supervision data.

• We conduct extensive experiments that verify both the effectiveness and the efficiency of

TaxoExpan framework on three real-world taxonomies from different domains.

The rest of this chapter is organized as follows. Section 4.2 discusses the related work. Sec-

tion 4.3 formalizes our problem. Then, we present our TaxoExpan framework in Section 4.4

and conduct experiments in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 RELATED WORK

In many real-world applications, some existing taxonomies may have already been labori-

ously curated by experts or via crowdsourcing, and are deployed in online systems. Instead

of constructing the entire taxonomy from scratch, these applications demand the feature

of expanding an existing taxonomy dynamically. There exists some studies on expanding

WordNet with named entities from Wikipedia [112] or domain-specific concepts from differ-

ent corpora [113, 114, 105, 115]. Task 14 of SemEval 2016 challenge [106] is specifically setup

to enrich WordNet with concepts from domains like health, sport, and finance. One limi-

tation of these approaches is that they depend on the synset structure unique to WordNet

and thus cannot be easily generalized to other taxonomies.

To address the above limitation, more recent works try to develop methodologies for

expanding a generic taxonomy. Wang et al. [116] design a hierarchical Dirichlet model to

extend the category taxonomy in search engines using query logs. Plachouras et al. [117]

learn paraphrase models on external PPDB datasets and apply learned models to directly

45



find paraphrases of concepts in the existing taxonomy. Vedula et al. [118] combine multiple

features, some of which are retrieved from an external Bing Search API, into a ranking

model to score candidate positions in terms of their matching scores with the query concept.

Aly et al. [119] first learn term embeddings in a hyperbolic space and then attach each

new concept to its most similar node in the existing taxonomy based on the hyperbolic

embeddings. Comparing with these methods, our proposed framework (details in the next

section) has two advantages. First, it requires no additional resource and makes full use

of the existing taxonomy as the self supervision, which leads to a border application scope.

Second, it explicitly models the local structure around each candidate position, which boosts

the quality of expanded taxonomy.

Our work is also related to Graph Neural Network (GNN) which is a generic method of

learning on graph-structure data. Many GNN architectures have been proposed to either

learn individual node embeddings [109, 120, 121, 110] for the node classification and the

link prediction tasks or learn an entire graph representation [122, 123, 124] for the graph

classification task. In this work, we tackle the taxonomy expansion task with a fundamentally

different formulation from previous tasks. We leverage some existing GNN architectures and

enrich them with additional relative position information. Recently, You et al. [125] propose

a method to add position information into GNN. Our methods are different from You et al..

They model the absolute position of a node in a full graph without any particular reference

points; while our technique captures the relative position of a node with respect to the query

node. Finally, some work on graph generation [126, 127, 128] involves a module to add a new

node into a partially generated graph, which shares the similar goal as our model. However,

such graph generation model typically requires fully labeled training data to learn from. To

the best of our knowledge, this is the first study on how to expand an existing directed

acyclic graph (as we model a taxonomy as a DAG) using self-supervised learning.

4.3 PROBLEM FORMULATION

In this section, we first define a taxonomy, then formulate our problem, and finally discuss

the scope of our study.

Taxonomy. A taxonomy T = (N , E) is a directed acyclic graph where each node n ∈ N
represents a concept (i.e., a word or a phrase) and each directed edge 〈np, nc〉 ∈ E indicates

a relation expressing that concept np is the most specific concept that is more general than

concept nc. In other words, we refer to np as the “parent” of nc and nc as the “child” of np.

Problem Definition. The input of the taxonomy expansion task includes two parts: (1)
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an existing taxonomy T 0 = (N 0, E0), and (2) a set of new concepts C. This new concept set

can be either manually specified by users or automatically extracted from text corpora. Our

goal is to expand the existing taxonomy T 0 into a larger taxonomy T = (N 0 ∪ C, E0 ∪ R),

where R is a set of newly discovered relations each including one new concept c ∈ C.

Example 4.1 (Taxonomy Expansion) Figure 4.1 shows an example of our problem. Given

a field-of-study taxonomy T 0 in the computer science domain and a set of new concepts

C = {“UDA”, “Meta Learning”, . . . }, we find each new concept’s best position in T 0 (e.g.,

“UDA” under “Semi-supervised Learning” as well as “GPU” under “Integrated Circuit”)

and expand T 0 to include those new concepts.

Simplified Problem. A simplified version of the above problem is that we assume the

input set of new concepts contains only one element (i.e., |C| = 1), and we aim to find one

single parent node of this new concept (i.e., |R| = 1). We discuss the connection between

these two problem settings at the end of Section 4.4.1.

Discussion. In this work, we follow previous studies [106, 118, 119] and assume each concept

in N 0 ∪ C has an initial embedding vector learned from this concept’s surface name, or if

available, its definition sentences [107] and associated web pages [116]. We also note that our

problem formulation assumes those relations in the existing taxonomy are not modified. We

acknowledge that such modification is necessary in some cases, but it is much less frequent

and requires high cautiousness from human curators. Therefore, we leave it out of the scope

of automation in this study.

4.4 THE TAXOEXPAN FRAMEWORK

In this section, we first introduce our taxonomy model and expansion goal. Then, we

elaborate how to represent a query concept and an insertion position (i.e., an anchor concept),

based on which we present our query-concept matching model. Finally, we discuss how

to generate self-supervision data from the existing taxonomy and use them to train the

TaxoExpan framework.

4.4.1 Taxonomy Model and Expansion Goal

A taxonomy T describes a hierarchical organization of concepts. These concepts form the

node set N in T . Mathematically, we model each node n ∈ N as a categorical random

variable and the entire taxonomy T as a Bayesian network. We define the probability of a
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taxonomy T as the joint probability of node set N which can be further factorized into a

set of conditional probabilities as follows:

P(T |Θ) = P(N|T ,Θ) =

|N |∏
i=1

P(ni|parentT (ni),Θ), (4.1)

where Θ is the set of model parameters and parentT (ni) is the set of ni’s parent node(s) in

taxonomy T . Given learned model parameters Θ, an existing taxonomy T 0 = (N 0, E0), and

a set of new concepts C, we can ideally find the best taxonomy T ∗ by solving the following

optimization problem:

T ∗ = arg max
T

P(T |Θ) = arg max
T

|N 0∪C|∑
i=1

logP(ni|parentT (ni),Θ). (4.2)

This näıve approach has two limitations. First, the search space of all possible taxonomies

over the concept set |N 0∪C| is prohibitively large. Second, we cannot guarantee the structure

of existing taxonomy T 0 remains unchanged, which can be undesirable from the application

point of view. We address the above limitations by restricting the search space of our output

taxonomy to be the exact expansion of the existing taxonomy T 0. Specifically, we keep the

parents of each existing taxonomy node n ∈ N 0 unchanged and only try to find a single

parent node of each new concept in C. As a result, we divide the above computationally

intractable problem into the following set of |C| tractable optimization problems:

a∗i = arg max
ai∈N 0

logP(ni|ai,Θ), ∀i ∈ {1, 2, . . . , |C|}, (4.3)

where ai is the parent of a new concept ni ∈ C and we refer to it as the “anchor concept”.

Discussion. The above equation defines |C| independent optimization problems and each

problem aims to find one single parent of a new concept ni. Therefore, we essentially reduce

the more generic taxonomy expansion problem into |C| independent simplified problems (c.f.

Section 4.3) and tackle it by inserting new concepts one-by-one into the existing taxonomy.

As a result of the above reduction, possible interactions among new concepts are ignored

and we leave it to the future work. In the following sections, we continue to answer two keys

questions: (1) how to model the conditional probability P(ni|ai,Θ), and (2) how to learn

model parameters Θ.

4.4.2 Query-Anchor Matching: Overview

We model the matching score between a query concept ni and an anchor concept ai by

projecting them into a vector space and calculating matching scores using their vectorized

representations. We show the entire model architecture of TaxoExpan in Figure 4.2.
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4.4.3 Query-Anchor Matching: Query Concept Representation

In this study, we assume each query concept has an initial feature vector learned based

on some text associated with this concept. Such text can be as simple as the concept

surface name, or in some prior studies [106, 116], the definition sentences and clicked web

pages about the concept. We represent each query concept ni using its initial feature vector

denoted as ni. We will discuss how to obtain such initial feature vectors using embedding

learning methods in the experiment section.

4.4.4 Query-Anchor Matching: Anchor Concept Representation

Each anchor concept corresponds to one node in the existing taxonomy T 0 that could

be the “parent” of a query concept. One näıve way to represent an anchor concept is to

directly use its initial feature vector. A key limitation of this approach is that it captures

only the “parent” node information and loses other surrounding nodes’ signals, which could

be crucial for determining whether the query concept should be put in this position. We

illustrate this limitation below:

Example 4.2 Suppose we are given a query concept “ high dependency unit” to predict

whether it should be under the “ hospital room” node (i.e., an anchor concept) in an existing

taxonomy. As these two concepts have dissimilar embeddings based on their surface names,

we may believe this query concept shouldn’t be placed underneath this anchor concept. How-

ever, if we know that this anchor concept has two children nodes, i.e., “ intensive care unit”
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and “ low dependency unit”, that are closely related to the query concept, we are more likely

to put the query concept under this anchor concept, correctly.

The above example demonstrates the importance of capturing local structure information

in the anchor concept representation. Thus, we model the anchor concept using its ego

network. Specifically, we consider the anchor concept to be the “parent” node of a query

concept. The ego network of the anchor concept consists of the “sibling” nodes and “grand

parent” nodes of the query concept, as shown in Figure 4.3. We represent the anchor concept

based on its ego network using a graph neural network.

“hospital room”
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“room”
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care unit” 

“low dependency unit”

“operating room”

The ego nodes

“hospital room”

“classroom”
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“gallery”
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grandparent
parent
sibling

Figure 4.3: Two egonets correspond to two anchor concepts.

Graph Neural Network Architectures. Given an anchor concept ai with its correspond-

ing ego network Gai and its initial representation ai, we use a graph neural network (GNN)

to generate its final representation ai. This GNN contains two components: (1) a graph

propagation module that transforms and propagates node features over the graph structure

to compute individual node embeddings in Gai , and (2) a graph readout module that com-

bines node embeddings into a vector representing the full ego network Gai . The final graph

embedding encodes all local structure information centered around the anchor concept and

we use it as the final anchor representation ai.

A graph propagation module uses a neighborhood aggregation strategy to iteratively up-

date the representation of a node u by aggregating representations of its neighbors N(u) and

itself. We denote N(u) ∪ {u} as Ñ(u). After K iterations, a node’s representation captures

the structural information within its K-hop neighborhood. Formally, we define a GNN with

K-layers as follows:

h(k)u = AGG(k)
(
{h(k−1)v |v ∈ Ñ(u)}

)
, k ∈ {1, . . . ,K}, (4.4)

where h
(k)
u is node u’s feature in the k-th layer; h

(0)
u is node u’s initial feature vector, and

AGG(k) is an aggregation function in the k-th layer. We instantiate AGG(k) using two
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popular architectures: Graph Convolutional Network (GCN) [109] and Graph Attention

Network (GAT) [110]. GCN defines the AGG function as follows:

AGG(k)
(
{h(k−1)v |v ∈ Ñ(u)}

)
= ρ

 ∑
v∈Ñ(u)

α(k−1)
uv W(k−1)h(k−1)v

 , (4.5)

where α
(k−1)
uv = 1/

√
|Ñ(u)||Ñ(v)| is a normalization constant (same for all layers); ρ is a

non-linear function (e.g., ReLU), and W(k−1) is the learnable weight matrix. If we interpret

α
(k−1)
uv as the importance of node v’s feature to node u, GCN calculates it using only the

graph structure without leveraging the node features. GAT addresses this limitation by

defining α
(k−1)
uv as follows:

α(k−1)
uv =

exp
(
γ
(
z(k−1) [̇W(k−1)h

(k−1)
u ‖W(k−1)h

(k−1)
v ]

))
∑

v′∈Ñ(u)
exp

(
γ
(
z(k−1) [̇W(k−1)h

(k−1)
u ‖W(k−1)h

(k−1)
v′ ]

)) , (4.6)

where both z(k−1) and W(k−1) are learnable parameters; γ(·) is another non-linear function

(e.g., LeakyReLU), and “‖” represents the concatenation operation. Plugging the above

α
(k−1)
uv into Eq. (4.5) we obtain the aggregation function in a single-head GAT. Finally, We

execute M independent transformations of Eq. (4.5) and concatenate their output features

to compose the final output embedding of node u. This defines the aggregation function in

a multi-head GAT (with M heads) as follows:

AGG(k)
(
{h(k−1)v |v ∈ Ñ(u)}

)
=

M

‖
m=1

ρ

 ∑
v∈Ñ(u)

α(k−1)
uv W(k−1)

m h(k−1)v

 , (4.7)

where W
(k−1)
m is the m-th weight matrix in the m-th attention head.

After obtaining each node’s final representation h
(K)
u , we generate the ego network’s rep-

resentation hG using a graph readout module as follows:

hG = READOUT({h(K)
u |u ∈ G}), (4.8)

where READOUT is a permutation invariant function [129] such as element-wise average,

maximum, or summation.

Position-enhanced Graph Neural Networks. One key limitation of the above GNN

model is that they fail to capture each node’s position information relative to the query

concept. For example, in Figure 4.3, the “hospital room” node in the left ego network is the

anchor node itself while in the right ego network it is the child of the anchor node. Such
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position information will influence how node feature propagates within the ego network and

how the final graph embedding is aggregated.

An important innovation in TaxoExpan is the design of position-enhanced graph neural

networks. The key idea is to learn a set of “position embeddings” and enrich each node

feature with its corresponding position embedding. We denote node u’s position as pu and

its position embedding at k-th layer as p
(k)
u . We replace each node feature h

(k−1)
u with its

position-enhanced version h
(k−1)
u ‖p(k−1)

u in Eqs. (4.5-4.7) and adjust the dimensionality of

W(k−1) accordingly. Such position embeddings help us to learn better node representations

from two aspects. First, we can capture more neighborhood information. Take W(k−1)h
(k−1)
v

in the right hand side of Eq. (4.5) as an example, we enhance it to the following:[
W(k−1)‖O(k−1)

] [
h(k−1)v ‖p(k−1)

v

]
= W(k−1)h(k−1)v + O(k−1)p(k−1)

v , (4.9)

where O(k−1) is another weight matrix used to transform position embeddings. The above

equation shows that a node’s new representation is jointly determined by its neighborhoods’

contents (i.e., h
(k−1)
v ) and relative positions in the ego network (i.e., p

(k−1)
v ). Second, for

GAT architecture, we can better model neighbor importance as the term α
(k−1)
uv in Eq. (4.5)

currently depends on both p
(k−1)
u and p

(k−1)
v .

Furthermore, we propose two schemes to inject position information in the graph readout

module. The first one, called weighted mean readout (WMR), is defined as follows:

READOUT({h(K)
u |u ∈ G}) =

∑
u∈G

log(1 + exp(αpu))∑
u′∈G log(1 + exp(αp′u))

h(K)
u , (4.10)

where αpu is the parameter indicating the importance of position pu. The second scheme is

called concatenation readout (CR) which combines the average embeddings of nodes with

the same position as follows:

READOUT({h(K)
u |u ∈ G}) = ‖

p∈P

I(pu = p)h
(K)
u∑

u′∈G I(pu′ = p)
, (4.11)

where P is the set of all positions we are modeling and I(·) is an indicator function which

returns 1 if its internal statement is true and returns 0 otherwise.

4.4.5 Query-Anchor Matching: Matching Model

Based on the learned query concept representation ni ∈ RD1 and anchor concept represen-

tation ai ∈ RD2 , we calculate their match score using a matching module f(·) : RD2×RD1 →
R. We study two architectures. The first one is a multi-layer perceptron with one hidden
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layer, defined as follows:

fMLP(ai,ni) = σ (W2γ(W1(ai‖ni) + B1) + B2) , (4.12)

where {W1,B1,W2,B2} are parameters; σ(·) is the sigmoid function, and γ(·) is the LeakyReLU

activation function. The second architecture is a log-bilinear model defined as follows:

fLBM(ai,ni) = exp
(
aTi Wni

)
, (4.13)

where W is a learnable interaction matrix. We choose these MLP and LBM as they are

representative architectures in linear and bilinear interaction models, respectively.

4.4.6 Model Learning and Inference

The above sections discuss how to model query-anchor matching using a parameterized

function f(·|Θ). Here, we introduce how to learn those parameters using self-supervision

from the existing taxonomy and establish the connection between the matching score with

the conditional probability P(ni|ai). Finally, we discuss how to conduct model inference.

Self-supervision Generation. Figure 4.4 shows the generation process of self supervision

data. Given one edge 〈np, nc〉 in the existing taxonomy T 0 = (N 0, E0), we first construct

a positive 〈anchor, query〉 pair by using child node nc as the “query” and parent node np

as the “anchor”. Then, we construct N negative pairs by fixing the query node nc and

randomly selecting N nodes {nlr|Nl=1} ⊂ N 0 that are neither parents nor descendants of nc.

These N+1 pairs (one positive and N negatives) collectively consist of one training instance

X = {〈np, nc〉, 〈n1
r, nc〉, . . . , 〈nNr , nc〉}. By repeating the above process for each edge in T 0,

we obtain the full self-supervision dataset X = {X1, . . . ,X|E0|}. Notice that a node with C

parents in T 0 will derive C training instances in X.
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Figure 4.4: Self-supervision generation in TaxoExpan framework.
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Model Training. We learn our model on X using the InfoNCE loss [111] as follows:

L(Θ) = − 1

|X|
∑
Xi∈X

[
log

f(np, nc)∑
〈nj ,nc〉∈Xi

f(nj , nc)

]
, (4.14)

where the subscript j ∈ [1, 2, . . . , N + 1]. If j = 1, 〈nj, nc〉 is a positive pair, otherwise,

〈nj, nc〉 is a negative pair. In other words, X contains query nc’s one positive anchor (i.e., its

true parent np) sampled from the true distribution P(ai|nc) and N negative anchors {nlr|Nl=1}
sampled from a uniform distribution P(ai). If we merge these N + 1 anchors into a small

set and consider the task of selecting true anchor np’s position j∗ in [1, 2, . . . , N + 1], we

can view Eq. (4.14) as the cross entropy of position distribution P̂ from model prediction

relative to the true distribution P∗. Specifically, the model predicted position distribution

P̂j =
f(aj ,nc)∑N+1

k=1 f(ak,nc)
where one of {ak|N+1

k=1 } is the true anchor and all the others are negative

anchors. Meanwhile, in the true position distribution:

P∗j =
P(aj |nc)

∏
l 6=j P(al)∑N+1

k=1

(
P(ak|nc)

∏
l 6=kP(al)

) =

P(aj |nc)
P(aj)∑N+1

k=1
P(ak|nc)
P(ak)

. (4.15)

From above, we can see that the optimal value for f(aj, nc) is proportional to
P(aj |nc)

P(aj)
.

Therefore, optimizing the loss in Eq. (4.14) results in f(ai, ni) estimating the following

probability density (up to a multiplicative constant):

f(ai, ni) ∝
P(ai|ni)
P(ai)

. (4.16)

We establish the connection between matching score f(ai, ni) with the probability P(ni|ai)
in Eq. (4.3) as follows:

P(ni|ai) =
P(ai|ni)
P(ai)

·P(ni) ∝ f(ai, ni) ·P(ni). (4.17)

We elaborate the implication of the above equation below and summarize our self-learning

procedure in Algorithm 4.1.

Model Inference. At the inference stage, we are given a new query concept ni and apply

the learned model f(·|Θ) to predict its parent node in the existing taxonomy T 0. Mathe-

matically, we aim to find the anchor position ai that maximizes P(ni|ai), which is equivalent

to maximizing f(ai, ni) because of Eq. (4.17) and the fact that P (ni) is the same across

all positions. Therefore, we rank all candidate positions ai based on their matching scores

with ni and select the top ranked one as the predicted parent node of this query concept.

Although we currently select only the top one as query’s single parent, we can also choose

top-k ones as query’s parents, if needed.
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Algorithm 4.1: Self-supervised learning of TaxoExpan

Input: A taxonomy T 0; negative size N , batch size B; model f(·|Θ).
Output: Learned model parameters Θ.

1 Randomly initialize Θ;
2 while L(Θ) in Eq. (4.14) not converge do
3 Enumerate edges in T 0 and sample B edges without replacement;
4 X = {} # current batch of training instances;
5 for each sampled edge 〈np, nc〉 do
6 Generate N negative pairs {〈nlr, nc〉|Nl=1};
7 X← X ∪ {〈np, nc〉, 〈n1

r, nc〉, . . . , 〈nNr , nc〉};
8 Update Θ based on X.

9 Return Θ;

Summary. Given an existing taxonomy and a set of new concepts, our TaxoExpan frame-

work first generates a set of self-supervision data and learns its internal model parameters

using Algorithm 4.1. For each new concept, we run the inference procedure and find its

best parent node in the existing taxonomy. Finally, we place these new concepts underneath

their predicted parents one at a time, and output the expanded taxonomy.

Computational Complexity Analysis. At the training stage, our model uses |E (0)|
training instances every epoch and thus scales linearly to the number of edges in the existing

taxonomy. At the inference stage, for each query concept, we calculate |N (0)| matching

scores, one for every existing node in T 0. Although such O(|N (0)|) cost per query is expen-

sive, we can significantly reduce it using two strategies. First, most computation efforts of

TaxoExpan are matrix multiplications and thus we use GPU for acceleration. Second, as the

graph propagation and graph readout modules are query-independent (c.f. Figure 4.4), we

pre-compute and cache all anchor representations. When a set of queries are given, we only

run the matching module. In practice, it takes less than 30 seconds to calculate all matching

scores between 2,450 queries with over 24,000 anchor positions on a single K80 GPU.

4.5 EXPERIMENTS

We conduct two sets of experiments to verify the effectiveness of TaxoExpan framework.

Sections (4.5.1—4.5.2) present our results on the Field-of-Study (FoS) Taxonomy1 in Mi-

crosoft Academia Graph (MAG) [24]. Sections (4.5.3—4.5.4) present the results on the

SemEval 2016 Task 14 benchmark dataset2 [106]. Table 4.1 lists the dataset statistics.

1https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema
2http://alt.qcri.org/semeval2016/task14/.
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Table 4.1: Dataset statistics. |N | and |E| are the number of nodes and edges in
the existing taxonomy. |D| indicates the taxonomy depth and |C| is the number
of new concepts.

Dataset |N | |E| |D| |C|
MAG-CS 24,754 42,329 6 2,450
MAG-Full 355,808 638,674 6 37,804
SemEval 95,882 89,089 20 600

4.5.1 Experiment Settings on MAG Datasets

Datasets. We evaluate TaxoExpan on the public Field-of-Study (FoS) Taxonomy in Mi-

crosoft Academic Graph (MAG). This FoS taxonomy contains over 660 thousand scientific

concepts and more than 700 thousand taxonomic relations. Although being constructed

semi-automatically, this taxonomy is of high quality, as shown in the previous study [130].

Thus we treat each concept’s original parent nodes as its correct anchor positions. We remove

all concepts that have no relation in the original FoS taxonomy and then randomly mask

20% of leaf concepts (along with their relations) for validation and testing3. The remaining

FoS taxonomy is then treated as the input existing taxonomy. We refer to this dataset as

MAG-Full. Based on MAG-Full, we construct another dataset focusing on the computer

science domain. Specifically, we first select a subgraph consisting of all descendants of “com-

puter science” node and then mask 10% of leaf concepts in this subgraph for validation and

another 10% of leaf nodes for testing. We name this dataset as MAG-CS.

Compared Methods. We compare the following methods:

• Closest-Parent: A rule-based method which first scores each candidate position in the

existing taxonomy based on its cosine distance to the query concept between their initial

embedding, and then ranks all positions using this score. The position with the smallest

distance is chosen to be query concept’s parent.

• Closest-Neighbor: Another rule-based method that scores each position based on its

distance to the query concept plus the average distance between its children and the query.

• dist-XGBoost: A self-supervised boosting method that works directly on 39 manually-

designed features generated using initial node embeddings without any embedding trans-

formation. We input these features into XGBoost [131], a tree-based boosting model, to

predict the matching score between a query concept and a candidate position.

• ParentMLP: A self-supervised method that first concatenates the query concept em-

3Here we mask only leaves because if we remove intermediate nodes, we have to remove their
descendants from the candidate parent pool, which causes different masked nodes (as testing query
concepts) having different candidate pools.
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bedding with the candidate position embedding and then feeds them into a Multi-Layer

Perceptron (MLP) for prediction.

• DeepSetMLP: Another self-supervised method that extends ParentMLP by adding in-

formation of candidate position’s children nodes. Specifically, we first use DeepSet archi-

tecture [129] to generate the representation of the children node set and then concatenate

it with query & candidate position representations before the final MLP module.

• TaxoExpan: Our proposed framework using position-enhanced GAT (PGAT) as graph

propagation module and weighted mean readout (WMR) for graph readout. We learn

this model using our proposed InfoNCE loss.

Evaluation Metrics. As our model returns a rank list of all candidate parents for each

input query concept, we evaluate its performance using three ranking-based metrics.

• Mean Rank (MR) measures the average rank position of a query concept’s true parent

among all candidates. For queries with multiple parents, we first calculate the rank po-

sition of each individual parent and then take the average of all rank positions. Smaller

MR value indicates better model performance.

• Hit@k is the number of query concepts whose parent is ranked in the top k positions,

divided by the total number of queries.

• Mean Reciprocal Rank (MRR) calculates the reciprocal rank of a query concept’s

true parent. We follow [132] and use a scaled version of MRR in the below equation:

MRR =
1

|C|
∑
c∈C

1

|parent(c)|
∑

i∈parent(c)

1

dRi,c/10e , (4.18)

where parent(c) represents the parent node set of the query concept c, and Ri,c is the rank

position of query concept c’s true parent i. We scale the original MRR by a factor 10 in

order to amplify the performance gap between different methods.

Implementation Details. For a fair comparison, we use the same 250-dimension embed-

dings across all compared methods. We use Google’s original word2vec implementation4 for

learning embeddings and employ gensim5 to load trained embeddings for calculating term

distances in Closest-Parent, Closest-Neighbor, and dist-XGBoost methods. For the other

three methods, we implement them using PyTorch and DGL framework6. We tune hyper-

parameters in all self-supervised methods on the masked validation set. For TaxoExpan, we

use a two-layer position-enhanced GAT where the first layer has four attention heads (of

size 250) and the second layer has one attention head (of size 500). For both layers, we

4https://github.com/tmikolov/word2vec
5https://github.com/RaRe-Technologies/gensim
6https://github.com/dmlc/dgl
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Table 4.2: Overall results on MAG-CS and MAG-Full datasets. We run all
methods three times and report the averaged result with the the best two models
highlighted under each metric.

Method
MAG-CS MAG-Full

MR Hit@1 Hit@3 MRR MR Hit@1 Hit@3 MRR

Closest-Parent 1327.16 0.0531 0.0986 0.2691 14355.5 0.0360 0.0728 0.1897
Closest-Neighbor 382.07 0.1085 0.2000 0.3987 4160.8 0.0221 0.0419 0.1405

dist-XGBoost 136.86 0.1903 0.3483 0.6618 426.70 0.1498 0.3046 0.5621
ParentMLP 114.79 0.0729 0.2656 0.6454 457.14 0.098 0.1928 0.4950

DeepSetMLP 115.26 0.1988 0.3581 0.6653 444.83 0.1461 0.2971 0.6392

TaxoExpan 80.33 0.2121 0.3823 0.6929 341.31 0.1523 0.3087 0.6453

use 50-dimension position embeddings and apply dropout with rate 0.1 on the input feature

vectors. We use Adam optimizer with initial learning rate 0.001 and ReduceLROnPlateau

scheduler7 with three patience epochs. We discuss the influence of these hyper-parameters

in the next subsection.

4.5.2 Experiment Results on MAG Datasets

We present the experiment results in the following aspects.

Overall Performance. Table 4.2 presents the results of all compared methods. First, we

find that Closest-Neighbor method clearly outperforms Closest-Parent method. Also, the

DeepSetMLP method is much better than ParentMLP. This demonstrates the effectiveness

of modeling local structure information. Second, we compare dist-XGBoost method with

Closest-Neighbor and show that self-supervision indeed helps us to learn an effective way to

combine various neighbor distance information. All four self-supervised methods outperform

rule-based methods. Finally, our proposed TaxoExpan has the overall best performance across

all the metrics and defeats the second best method by a large margin.

Ablation Analysis of Model Architectures. TaxoExpan contains three key components:

a graph propagation module, a graph readout module, and a matching model. Here, we study

how different choices of these components affect the performance of TaxoExpan. Table 4.3

lists the results and the first column contains the index of each model invariant.

First, we analyze graph propagation module by using simple average scheme for graph

readout and MLP for matching. By comparing model 1 to model 3 and model 2 to model

7https://pytorch.org/docs/stable/optim.html\#torch.optim.lr\_scheduler.

ReduceLROnPlateau

58



Table 4.3: Ablation analysis of model architectures on MAG-CS dataset. We
assign an index to each model variant (shown in the first column). All models
are run three times with their averaged scores reported.

Ind
Graph Graph

Matching MR Hit@1 Hit@3 MRR
Propagate Readout

1 GCN Mean MLP 167.82 0.1581 0.2964 0.6002
2 GAT Mean MLP 131.46 0.1584 0.3192 0.6409
3 PGCN Mean MLP 148.54 0.1809 0.3015 0.6255
4 PGAT Mean MLP 100.80 0.1896 0.3304 0.6525

5 PGCN WMR MLP 144.81 0.1798 0.3014 0.6309
6 PGCN CR MLP 135.89 0.1902 0.3118 0.6348
7 PGAT WMR MLP 92.62 0.1945 0.3584 0.6619
8 PGAT CR MLP 95.84 0.1897 0.3512 0.6596

9 PGCN WMR LBM 139.41 0.1829 0.3370 0.6642
10 PGCN CR LBM 130.12 0.1934 0.3462 0.6776
11 PGAT WMR LBM 80.33 0.2121 0.3823 0.6929
12 PGAT CR LBM 84.40 0.2089 0.3813 0.6894

4, we can see that graph attention architecture (GAT) is better than graph convolution

architecture (GCN). Furthermore, the position-enhanced variants clearly outperform their

non-position counterparts (model 3 versus model 1 and model 4 versus model 2). This

illustrates the efficacy of the position embeddings in the graph propagation module.

Second, we study graph readout module by fixing the graph propagation module to be

the best two variants among models 1-4. We can see both model 5 & 6 outperform model

3 and model 7 & 8 outperform model 4. This signifies that the position information also

helps in the graph readout module. However, the best strategy of incorporating position

information depends on the graph propagation module. The concatenation readout scheme

works better for PGCN while the weighted mean readout is better for PGAT. One possible

explanation is that the concatenation readout leads to more parameters in matching model

and as PGAT itself has more parameters than PGCN, further introducing more parameters

in PGAT may cause the model to be overfitted.

Finally, we examine the effectiveness of different matching models. We replace the MLP

in models 5-8 with LBM to create model variants 9-12. We can clearly see that LBM works

better than MLP. It could be that LBM better captures the interaction between the query

representation and the final anchor representation.

Ablation Analysis of Training Schemes. In this subsection, we evaluate the effectiveness

of our proposed training scheme. In this study, we first group a set of positive and negative

〈query, anchor〉 pairs into one single training instance and learn the model using InfoNCE

loss (c.f. Eq. (4.14)). An alternative is to treat these pairs as different instances and train
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Figure 4.5: Ablation analysis of training schemes on MAG-CS dataset. We
compare models trained using Binary Cross Entropy (BCE) loss with those
trained using InfoNCE loss.

the model using standard binary cross entropy (BCE) loss. Under this training scheme,

we formulate our problem as a binary classification task. We compare these two training

schemes for the top 4 best models in Table 4.3 (i.e., model 7, 8, 11, and 12). Results are

shown in Figure 4.5. Our proposed training scheme with InfoNCE loss is overall much better,

it beats the BCE loss scheme on 14 out of total 16 cases. One reason is that BCE loss is

very sensitive to the noises in the generated self-supervision data while InfoNCE loss is more

robust to such label noise. Furthermore, we find that LBM matching can benefit more from

our training scheme with InfoNCE loss – with larger margin on all 8 cases, compared with

the simple MLP matching.

Hyper-parameter Sensitivity Analysis. We analyze how some hyper-parameters in

TaxoExpan affect the performance in Figure 4.6. First, we find that choosing an approxi-

mate position embedding dimension is important. The model performance increases as this

dimensionality increases until it reaches about 50. When we further increase position em-

bedding dimension, the model will overfit and the performance decreases. Second, we study

the effect of negative sampling ratio N . As shown in Figure 4.6, the model performance

first increases as N increases until it reaches about 30 and then becomes stable. Finally, we

examine two hyper-parameters controlling the model complexity: the number of heads in

PGAT and the final graph embedding dimension. We observe that the best model perfor-

mance is reached when the number of attention heads falls in range 3 to 5 and the graph

embedding dimension is set to 500. Too many attention heads or too large graph embedding

dimension will lead to overfit and performance degradation.
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Figure 4.6: Hyper-parameter sensitivity analysis on MAG-CS dataset. We use
PGAT for graph propagation, WMR for graph readout, and LBM for query-
graph matching. Model is trained using InfoNCE loss.

20% 40% 60% 80% 100%

Tr
ai

ni
ng

 ti
m

e 
(s

ec
on

ds
)

% of sampled nodes (as self supervision)

500

600

400

700

800

900

1000

1100

1200

1300

1400

PGAT_WMR_LBM

PGAT_CR_LBM

PGCN_CR_LBM

PGCN_WMR_LBM

In
fe

re
nc

e 
tim

e 
(s

ec
on

ds
) 

10

Closet
Parent

CPU Time

64

Compared Methods

Closet
Neighbor

dist
XGBoost

Parent-
MLP

DeepSet-
MLP

TaxoExpan
(PGAT_WMR)

TaxoExpan
(PGAT_CR)

TaxoExpan
(PGCN_WMR)

TaxoExpan
(PGCN_CR)

20

40

80

160

320

640

1280

2560

5120

100

5080

GPU Time

107

376

21
27 25 28

Figure 4.7: (Left) Training time of 20 epochs on GPU with respect to % of
sampled nodes in the existing taxonomy. (Right) Inference time of all 2450
queries in MAG-CS dataset. Note here y-axis is in logarithm scale.

Efficiency and Scalability. We further analyze the scalability of TaxoExpan and its effi-

ciency during model inference stage. Figure 4.7 (left) tests the model scalability by running

on MAG-CS dataset sampled using different ratios. The training time (of 20 epochs) are

measured on one single K80 GPU. TaxoExpan demonstrates a linear runtime trend, which

validates our complexity analysis in Section 4.4.6. Second, Figure 4.7 (right) shows that

TaxoExpan is very efficient during model inference stage. Using GPU, TaxoExpan takes less

than 30 seconds to predict the anchor positions for all 2450 new query concepts.
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Figure 4.8: Example output of TaxoExpan on MAG-CS and MAG-Full datasets.

Case Studies. Figure 4.8 shows some outputs of TaxoExpan on both MAG-CS and MAG-

Full datasets. On MAG-CS dataset, we can see that over 20% of queries have their true

parents correctly ranked at the first position and less than 1.5% queries have their “true”

parents ranked outside of top 1000 positions. Among these 1.5% significantly wrong queries,

we find some of them actually have incorrect existing parents. For example, the concept “boils

and carbuncles”, which is a disease entity, is mistakenly put under parent node “dataset”.

We also observe two common mistake patterns. The first type of mistakes is caused by

term ambiguity. For instance, the term “java” in concept “java apple” refers to an island

in Indonesia where fruit apple is produced, rather than a programming language used in

Apple company. The second type of mistakes results from term granularity. For example,

TaxoExpan outputs the two most likely parent nodes of concept “captcha” are “artificial

intelligence” and “computer security”. Although these two concepts are certainly relevant to

“captcha”, they are too general compared to its true parent node “internet privacy”. Finally,

we observe that TaxoExpan can return very sensible anchor positions of query concepts, even

though they are not exactly the current “true” parents. For example, the concept “medline

plus” refers to a large online medical library and thus is related to both “world wide web”

and “library science”. Also, the concept “email hacking” is clearly relevant to both “internet

privacy” and “hacker”.

TaxoExpan for Taxonomy Self-Cleaning. From the above case studies, we find another

interesting application of TaxoExpan is to use it for cleaning the existing taxonomy. Specifi-

cally, we partition all leaf nodes of the existing taxonomy into 5 groups and randomly mask

one group of nodes. Then, we train a TaxoExpan model on the remaining nodes and predict

on the masked leaf nodes. Next, we select those entities whose true parents appear at the

bottom of the rank lists returned by TaxoExpan (i.e., the long-tail part of two histograms
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in Figure 4.8). The parents of those selected entities are highly questionable and calls for

further manual inspections. In fact, we invite three human annotators to inspect those se-

lected entities on the MAG-CS taxonomy and find that about 30% of these entities have

existing parent nodes which are less appropriate than the parents inferred by TaxoExpan. In

the future, we plan to study how to equip human taxonomists with our TaxoExpan-based

models to enable them identify potentially flawed relations in the existing taxonomies faster.

4.5.3 Experiment Settings on SemEval Dataset

Datasets. Besides using the MAG datasets, we also evaluate TaxoExpan using SemEval

Task 14 Benchmark dataset8 [106] which includes WordNet 3.0 as the existing taxonomy

and additional 1,000 domain-specific concepts with manual labels, split into 400 training

concepts and 600 testing concepts. Each concept is either a verb or a noun and has a

textual definition of a few sentences. The original task goal is to enrich the taxonomy by

performing two actions for each new concept: (1) attach, where a new concept is treated

as a new synset and is attached as a hyponym of one existing synset in WordNet, and (2)

merge, where a new concept is merged into an existing synset. However, previous state-

of-the-art methods [106, 107, 118], including the winning solution, are only performing the

attach operation. In this work, we also follow this convention and attach each new concept

to the top-ranked synset in the WordNet. Finally, we obtain the initial feature vectors (for

both new concepts and existing words in the WordNet) using pre-trained subword-aware

fasttext embeddings9. For each concept, we generate its definition embedding and name

embedding by averaging the embedding of each token in its textual definition and name

string, correspondingly. Then, we sum the definition and name embeddings of a concept

and use them as the initial embeddings for the TaxoExpan model.

Compared Methods. We compare TaxoExpan with the following methods:

• FWFS [106]: The original baseline in Task 14. Given a concept c with its definition dc,

this method picks the first word w in dc that has the same part of speech as c and treats

this word as the parent node of c.

• MSejrKU [107]: The winning solution of Task 14. This method leverages distributional

and syntactic features to train a SVM classifier which is then used to predict the goodness

of fit for a new concept with an existing synset in WordNet.

• ETF [118]: The current state-of-the-art method that learns a LambdaMART model with

15 manually designed features, including topological features from the taxonomy’s graph

8http://alt.qcri.org/semeval2016/task14/.
9We use the wiki-news-300d-1M-subword.vec.zip version on fastText official website.
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structure and semantic features from corpus and Bing search results.

• ETF-FWFS [118]: The ensemble model of FWFS and ETF, which adds the FWFS

property as a binary feature into the LambdaMART model in ETF.

• dist-XGBoost: The same tree boosting model described in the previous subsection.

• TaxoExpan: Our proposed taxonomy expansion framework.

• TaxoExpan-FWFS: Similar to ETF-FWFS, this is the ensemble model of FWFS and

TaxoExpan. We treat the FWFS heuristic as a binary feature and add it into the final

matching module.

For all previous methods, we directly report their best performance in the literature. For

the remaining methods, we tune them following the same procedure as described before.

Evaluation Metrics. We use the three official metrics defined in original SemEval Task

14 for evaluation:

• Accuracy (Wu&P) is the semantic similarity between a predicted parent node xp and

the true parent xt, calculated as Wu&P(xp, xt) =
2·depthLCA(xp,xt)

depthxp+depthxt
, where depthx is the

depth of node x is the WordNet taxonomy and LCA(xp, xt) represents the Least Common

Ancestor of xp and xt.

• Recall is the percentage of concepts for which an attached parent is predicted10.

• F1 is the harmonic mean of Wu&P accuracy and recall.

4.5.4 Experiment Results on SemEval Datasets

Table 4.4: Model performance on SemEval dataset. TaxoExpan versus all pre-
vious state-of-the-art methods. We report the best performance of all existing
methods in the literature.

Method Wu&P Recall F1

MSejrKU [107] 0.523 0.973 0.680
FWFS [106] 0.514 1.000 0.679
ETF [118] 0.473 1.000 0.642

ETF-FWFS [118] 0.562 1.000 0.720

dist-XGBoost 0.528 1.000 0.691
TaxoExpan 0.543 1.000 0.704

TaxoExpan-FWFS 0.566 1.000 0.723

Table 4.4 shows the experiment results on SemEval dataset. We can see that both dist-

10This metric is used because the original task allows a model to decline to place new concepts
in order to avoid making placements with low confidence.
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XGBoost and TaxoExpan methods can outperform the previous winning system of this task

(i.e., MSejrKU) and the baseline ETF. In addition, we can see the FWFS heuristic is indeed

very powerful for this dataset and incorporating it as a strong feature can significantly boost

the performance. However, this feature requires human-labeled definition sentences and

thus can not be easily generalized to taxonomies other than WordNet. Finally, we show that

TaxoExpan-FWFS can achieve the new state-of-the-art performance on this dataset.

4.6 SUMMARY

This chapter studies the problem of concept taxonomy expansion when no human labeled

supervision data are given. We propose a novel TaxoExpan framework which generates self-

supervision data from the existing taxonomy and learns a position-enhanced GNN model

for expansion. To make the best use of self-supervision data, we design a noise-robust

objective for effective model training. Extensive experiments demonstrate the effectiveness

and efficiency of TaxoExpan on three taxonomies from different domains.

Interesting future work includes modeling inter-dependency among new concepts, lever-

aging current method to cleaning the input existing taxonomy, and incorporating feedbacks

from downstream applications (e.g., search & recommendation) to generate more diverse

supervision signals for expanding the taxonomy.

65



CHAPTER 5: TAXONOMY APPLICATION

5.1 OVERVIEW AND MOTIVATIONS

With taxonomy constructed and enriched on a domain-specific document collection, we

can leverage it to enhance lots of downstream knowledge-centric applications. For example,

we can use taxonomies to organize scientific literatures and support semantic literature

retrieval. Similarly, we can categorize products based on a product category taxonomy and

build a better search and recommender system. Within all those applications, we assume the

text unit (either an entire document or an in-context text span) has already been associated

with a set of classes in the corresponding taxonomy. Such assumption, however, may not

hold in many real-world applications for which the taxonomy powered methods can not be

applied. Therefore, to fully exploit the power of taxonomy, we need to study the hierarchical

multi-label text classification (HMTC) problem which aims to assign each text document to

a set of relevant classes from a class taxonomy.

Most existing methods address HMTC in a supervised fashion — they first ask humans

to provide many labeled documents and then train a text classifier for prediction. Many

classifiers have been developed with different deep learning architectures such as CNN [133],

RNN [134], Attention Network [135], and achieved decent performance when trained on

massive human-labeled documents. Despite such a success, people find that applying these

methods to many real-world scenarios remains challenging as the human labeling process is

often too time-consuming and expensive.

Recently, more studies have been developed to address text classification using smaller

amount of labeled data. First, several semi-supervised methods [136, 137] propose to use

abundant unlabeled documents to assist model training on labeled dataset. Although mit-

igating the human annotation burden, these methods still require a labeled dataset that

covers all classes, which could be too expensive to obtain when we have a large number

of classes in HMTC. Second, some weakly-supervised models exploit class indicative key-

words [8, 138, 139] or class surface names [140, 141] to derive pseudo-labeled data for model

training. Nevertheless, these models all assume each document has only one class and all

class surface names (or class indicative keywords) must appear in the corpus, which are too

restrictive for HMTC.

In this chapter, we study the problem of weakly-supervised hierarchical multi-label text

classification where only class surface names, a class taxonomy, and an unlabeled corpus are

available for model training. This setting is closer to how humans resolve the HMTC problem
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Document: When our son was 
about 4 months old, our doctor 
said we could give him crafted 

cereal. We bought this product and 
put it in his bottle. He loved this 

stuff! This cereal digests well and 
didn’t lock up his bowels at all. We 

highly recommend this cereal.
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Figure 5.1: An exemplar document tagged with five classes. Here, if we are
able to pinpoint this document’s most essential classes, crafted cereal and baby
cereal, as core classes, we can check their ancestor classes in the taxonomy and
recover all the true classes.

— we perform classification by understanding each class from its surface name rather than

learning from labeled documents. We observe that when asked to assign multiple classes

to a document, humans will first pinpoint most essential “core classes” and then check

whether their ancestor classes in the taxonomy should also be tagged. Taking the document

in Figure 5.1 as an example, humans can quickly identify this review text is clearly about

“baby cereal” and “crafted cereal”, which are the core classes. After assigning these two most

essential classes to the document, people continue to check the core classes’ ancestor classes

and find “feeding” as well as “baby food” should be tagged.

Motivated by the above human labeling process, we propose TaxoClass, a weakly-supervised

HMTC framework including four major steps. First, we calculate the document-class similar-

ity using a pre-trained textual entailment model [142]. Second, we identify each document’s

core classes by (1) selecting candidate core classes that are most similar to the document at

each level in a top-down fashion, and (2) choosing 〈document, candidate core class〉 pairs

that are salient across the whole unlabeled corpus. Third, we derive training data from doc-

ument core classes and use them to train a text classifier. This classifier includes a document

encoder based on pre-trained BERT [55], a class encoder capturing class taxonomy struc-

ture, and a text matching network computing the probability of a document being tagged

with each class. Finally, we generalize this text classifier using multi-label self-training on

all unlabeled documents.

To summarize, our major contributions are as follows:

• We propose a weakly-supervised framework TaxoClass that only requires class surface

names to perform hierarchical multi-label text classification. To the best of our knowledge,

67



TaxoClass is the first weakly-supervised HMTC method.

• We develop an unsupervised method to identify document core classes based on which a

text classifier can be learned.

• We conduct extensive experiments on two real-world datasets to verify the effectiveness

of TaxoClass.

We organize the rest of this chapter as follows. Section 5.2 discusses the related work.

Section 5.3 formalizes our problem. Section 5.4 presents our TaxoClass framework in and we

conduct experiments in Section 5.5. Finally, we conclude this chapter in Section 5.6.

5.2 RELATED WORK

There are three major lines of work related to our study.

Weakly-supervised Text Classification. There exist some previous studies that lever-

age a few labeled documents or class-indicative keywords as weak supervision signals for

text classification. A pioneering method is dataless classification [143, 144] which embeds

documents and classes into the same semantic space of Wikipedia concepts and performs

classification using the embedding similarity. After that, researchers extend this idea by min-

ing concepts directly from the corpus rather than using the external Wikipedia [145, 146] .

Along another line, Chen et al. and Li et al. propose to apply a seed-guided topic model

to infer class-specific topics from class-indicative keywords and to predict document classes

from posterior class-topic assignments. Compared with these methods, our TaxoClass frame-

work neither restricts document and class embeddings to live in the same semantic space

nor imposes strong statistical assumptions.

Recently, neural models are applied to weakly-supervised text classification. Researchers

propose a pretrain-and-refine paradigm which first generates pseudo documents to pretrain

a neural classifier and then refine this classifier via self-training [8, 9] . More studies [139,

140, 141] improve the above methods by introducing contextualized weak supervision and

using a pre-trained language model to obtain better text representations. While achieving

inspiring performance, these methods all assume each document has only one class and all

class names (or class-indicative keywords) must appear in the corpus for pseudo training

data generation. In this work, we relax these assumptions and develop a new method for

weakly-supervised hierarchical multi-label text classification task.

Zero-shot Text Classification. Zero-shot text classification learns a text classifier based

on training documents belonging to seen classes and applies the learned classifier to predict

testing documents belonging to unseen classes. Nam et al. [147] jointly embed documents and
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classes into a shared semantic space where knowledge from seen classes can be transferred to

unseen classes. Such an idea is further developed in [148, 149, 142] where external resources

(e.g., knowledge graphs, natural language explanations of unseen classes, and open domain

data) are introduced to help learn a better shared semantic space. Comparing with these

methods, our TaxoClass framework does not require labeled data for a set of seen classes.

Hierarchical Text Classification. Hierarchical text classification leverages a class hi-

erarchy to improve the standard text classification performance. Typical methods can be

divided into two categories: (1) local approaches which learn a text classifier per class [150],

per parent class [151], or per level [152], and (2) global approaches which incorporate taxon-

omy structure information into one single classifier through recursive regularization [153] or

graph neural network (GNN) based encoder [154, 135, 155]. Our TaxoClass framework adopts

the global approach and uses a GNN-based encoder to obtain each class’s representation.

5.3 PROBLEM FORMULATION

In this section, we introduce the notations and present our task definition.

Notations. A corpus D = {D1, . . . , DN} is a text collection where each document Di ∈ D
is a sequence of words. A class taxonomy T = (C,R) is a directed acyclic graph where each

node represents a class cj and each directed edge 〈cm, cn〉 ∈ R indicates that parent class cm

is more general than the child class cn. In this work, we assume each class cj has a surface

name sj (either a word or a phrase) that serves as the weak supervision signal.

Task Definition. Given an unlabeled corpus D, a class hierarchy T = (C,R), and class

surface names S = {sj}|C|j=1, our task is to learn a text classifier f(·) that maps a new

document Dnew to its target y = [y1, . . . , y|C|] ∈ Y = {0, 1}|C| where yj equals to 1 if this

document is categorized with class cj and 0 otherwise.

Discussion. When the number of classes |C| is large (as it is in many HMTC applications),

we can no longer assume all class surface names in S will explicitly appear in the given

corpus D as done in most previous studies [9, 146, 141]. This is because many class names

are actually summarizing phrases provided by humans (e.g., “grocery & gourmet food” in

Figure 5.1). As a result, we need to design a method that works under such a scenario.

5.4 THE TAXOCLASS FRAMEWORK

Our TaxoClass framework consists of four major steps: (1) document-class similarity cal-

culation, (2) document core class mining, (3) core class guided classifier training, and (4)
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Figure 5.2: Our TaxoClass framework overview. We first calculate document-
class similarities using a textual entailment model (Section 5.4.1). Then, we
identify document core classes (Section 5.4.2) and train a taxonomy-enhanced
text classifier (Section 5.4.3). Finally, we generalize the classifier via multi-label
self-training (Section 5.4.4). The “shared model parameters” indicates that we
do self-training on the same model learned using our identified core classes.

multi-label self-training. Figure 5.2 shows our framework overview and below sections discuss

each step in more details.

5.4.1 Document-Class Similarity Calculation

We take a textual entailment approach [142] to calculate the semantic similarity between

each 〈document, class〉 pair. This approach imitates how humans determine whether a

document is similar to a class or not — we read this document, create a hypothesis by filling

the class name into a template (e.g., “this document is about ”), and ask ourselves to what

extent this hypothesis is correct, given the context document.

In this work, we adopt a pre-trained textual entailment model that inputs a document Di

as the “premise”, a template filled with a class name sj as the “hypothesis”, and outputs

a probability of how likely this premise can entail the hypothesis. We treat this prob-

ability P(Di → cj) as the document-class similarity sim(Di, cj). More specifically, we

use Roberta-Large-MNLI1 as our textual entailment model which utilizes the pre-trained

Roberta-Large as its backbone and is fine-tuned on the MNLI dataset.

1https://huggingface.co/roberta-large-mnli
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5.4.2 Document Core Class Mining

When asked to tag a document with a set of classes from a class taxonomy, humans will

first pinpoint a few classes that are most essential to this document. We refer to those most

essential classes as the “core classes” and identify them in below two steps.

Core Class Candidate Selection. We observe that on average each document is tagged

with a small set of classes from the entire class taxonomy. Therefore, we first reduce the

search space of core classes using a top-down approach (c.f. Figure 5.3). Given a document

D, we start with the “Root” class at level l = 0, find its two children classes that have the

highest similarity with D, and add them into a queue. Then, for each class at level l in the

queue, we select l + 2 classes from its children classes that are most similar to D. After all

level l classes are processed, we aggregate all selected children classes and choose (l + 1)2

classes (at level l + 1) with the highest path score (ps) defined below:

ps(Root) = 1, ps(cj) = max
ck∈Par(cj)

{ps(ck) · sim(cj , D)}, (5.1)

where Par(cj) is class cj’s parent class set. All chosen classes (at level l+ 1) will be pushed

into the queue and we stop this process when no class in the queue has further children.

Finally, all classes that have entered the queue, except for the “Root” class, consist of the

core class candidate set, denoted as Ccand
i for document Di.

Confident Core Class Identification. For each document, we identify its core classes

from the above selected candidate set based on two observations. First, a document usually

has higher similarity with its core class c than with the parent and sibling classes of c. Take

the document D2 in Figure 5.2 as an example, the similarity between D2 and its core class

“crib” is 0.95, much higher than the similarity between D2 and core class’s parent class

“nursery” (0.6) as well as core class’s sibling classes. Based on this observation, we define

the “confidence score” of a candidate core class c for a document D as below:

conf(D, c) = sim(D, c)− max
c′∈Par(c)∪Sib(c)

{sim(D, c′)}, (5.2)

where Sib(c) represents the sibling class set of c.

Our second observation is that the similarity between a document D and its core class c

is salient from a corpus-wise perspective. Namely, if a class c is a document D’s core class,

the confidence score conf(D, c) is higher than the median confidence score2 between class c

and all documents tagged with c (denoted as D(c)). Formally, we have:

conf(D, c) ≥ median{conf(D′, c)|D′ ∈ D(c)}. (5.3)

2We have also tried using ”average” but empirically found that using “median” is better and
more robust to outliers.
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Figure 5.3: Top-down core class candidate selection.

According to this observation, we check each class in document Di’s candidate core set Ccand
i

and add classes that satisfy the above criteria into the final core class set Ci. Note here this

core class set Ci could be empty when document Di does not have any confident core class.

5.4.3 Core Class Guided Classifier Training

Based on identified document core classes, we train one classifier for hierarchical multi-

label text classification. Below we first introduce our classifier architecture and then present

our training method.

Text Classifier Architecture. We design our classifier to have a dual-encoder architecture:

one document encoder maps document Di to its representation Di, one class encoder learns

class cj’s representation cj, and one matching network returns the probability of document

Di being tagged with class cj.

We instantiate our document encoder gdoc(·) to be a pre-trained BERT-base-uncased

model [55] and follow previous work [140] to use the [CLS] token representation as the

document representation. For class encoder gclass(·), we follow [5] and use a graph neural

network (GNN) [109] to model the class taxonomy structure. This taxonomy-enhanced class

encoder can capture both the textual information from class surface names and structural

information from the class taxonomy.

Given a class cj, we first obtain its ego network that includes its parent and children

classes in the class taxonomy, as shown in Figure 5.4. Then, we input this ego network to

a GNN that propagates node features over the network structure. The node features are

initialized with the pre-trained word embeddings of class surface names3. The propagation

mechanism updates the feature of a node u by iteratively aggregating representations of its

3For multi-gram class names, we use their averaged word embeddings.
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Figure 5.4: Taxonomy-enhanced class encoder in TaxoClass.

neighbors and itself. Formally, we define a GNN with L-layers as follows:

h(l)u = ReLU

 ∑
v∈N(u)

α(l−1)
uv W(l−1)h(l−1)v

 , (5.4)

where l ∈ {1, . . . , L}, N(u) includes node u’s neighbors and itself, α
(l−1)
uv = 1√

|N(u)||N(v)|
is a

normalization constant (same for all layers), and W(l−1) are learnable parameters.

After obtaining individual node features, we combine them into a vector representing the

whole ego network G as follows:

hG =
1

|G|
∑
u∈G

h(L)u . (5.5)

As this ego network is centered on class cj and encodes its both textual and structural

information, we treat this final graph representation as the class representation cj.

Based on the document representation Di and the class representation cj, we use a log-

bilinear text matching model to compute the probability of document Di being tagged with

class cj as follows:

pij = P(yj = 1|Di) = σ(exp(cTj BDi)), (5.6)

where σ(·) is the sigmoid function and B is a learnable interaction matrix.

Text Classifier Training. We use our discovered document core classes to train a text

classifier. One strategy is to treat each document’s core classes as positive classes and all

the remaining classes as negative classes. However, this strategy has a high false negative

rate because some non-core classes could still be relevant to the document (c.f. Figure 5.1).

We observe a document’s multiple labeled classes usually have some ancestor-descendent

relations in the class hierarchy T = (C,R). This implies that given a document’s core

class, its parent class and some of its children classes are also likely to be tagged with this

document. Therefore, we introduce all core classes’ parent classes into the positive class set
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and exclude their children classes from the negative class set. Formally, given a document

Di with its core class set Ci, we define its positive and negative class set as follows:

Cposi =

 ⋃
cj∈Ci

Par(cj)

 ∪ Ci, Cnegi = C − Cposi −
⋃
cj∈Ci

Chd(cj), (5.7)

where Chd(cj) is class cj’s children class set. Finally, we train our classification model using

the below binary cross entropy (BCE) loss:

L = −
|D|∑
i=1
Ci 6=∅

(
∑

cj∈Cpos
i

log pij +
∑

cj∈Cneg
i

log(1− pij)), (5.8)

where “∅” indicates an empty set and we exclude the documents without any confident core

class from the loss calculation.

5.4.4 Multi-label Self-Training

After training the text classifier based on document core classes, we propose to further

refine the model via self-training on the entire unlabeled corpus D for better generalization.

The idea of self-training (ST) [156] is to iteratively use the model’s current prediction P to

compute a target distribution Q which guides the model for refinement. In general, the ST

objective is expressed with the KL divergence loss as below:

LST = KL(Q||P ) =

|D|∑
i=1

|C|∑
j=1

qij log
qij
pij
. (5.9)

The target distribution Q is constructed by enhancing high-confidence predictions while

down-weighting low-confidence ones:

qij =
p2ij/(

∑
i pij)

p2ij/(
∑

i pij) + (1− pij)2/(
∑

i(1− pij))
. (5.10)

Different from the previous studies [8], our target distribution Q can be applied to multi-label

classification problem as it normalizes the current predictions P for each individual class.

Intuitively, this equation can enhance high-confidence predictions while down-weighting low-

confidence predictions. This is because if example i is more confidently labeled with class j

than other examples, we will have a large pij that dominates the
∑

i pij term. Consequently,

Eq. (5.10) computes a large qij, which pushes the model to predict class j for example i.
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Algorithm 5.1: TaxoClass Framework.

Input: An unlabeled corpus D, a class taxonomy T with class names S, an
entailment model M, total number of batches B.

Output: A trained classifier f(·).
1 Use model M to compute document-class similarity (c.f. Sect. 5.4.1);
2 Obtain document core classes {(Di,Ci) — Di ∈ D } (c.f. Sect. 5.4.2);
3 Train classifier f(·) with Eq. (5.8);
4 for i from 1 to B do
5 if i mod 25 = 0 then
6 Update Q with Eq. (5.10);

7 Train classifier f(·) with Eq. (5.9);

8 Return f(·);

In practice, instead of updating the target distribution Q for every training example, we

update it every 25 batches4 and train the model with Eq. (5.9), which makes the self-training

process more efficient and robust. We summarize our TaxoClass framework in Algorithm 5.1.

5.5 EXPERIMENTS

5.5.1 Datasets

We use two public datasets from different domains to evaluate our method: (1) Amazon-

531 [157] contains 49,145 product reviews and a three-level class taxonomy consisting of 531

classes; and (2) DBPedia-298 [158] includes 245,832 Wikipedia articles and a three-level

class taxonomy with 298 classes. Documents in both datasets are lower-cased and truncated

to has maximum 500 tokens. We list the data statistics in Table 5.1.

Table 5.1: Dataset statistics. Supervised methods are trained on the entire
training set. Weakly-supervised methods are trained by treating the training
set as unlabeled data. All methods are evaluated on the test set.

Dataset # Train # Test # Classes

Amazon-531 29,487 19,685 531
DBPedia-298 196,665 49,167 298

4This hyper-parameter controls the update frequency. Empirically, we find our model is insen-
sitive to this hyper-parameter (in the typical value range of 10-100).
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5.5.2 Compared Methods

To the best of our knowledge, we are the first to study weakly-supervised HMTC problem

and there is no directly comparable baseline under the exact same setting as ours. Therefore,

we choose a wide range of representative methods that are most related to TaxoClass and

adapt them to our problem setting, described as follows.

• Hier-doc2vec [159]5: This weakly-supervised method first embeds documents and classes

into a shared semantic space, and then recursively selects the class of the highest em-

bedding similarity with the document in a top-down fashion. We set the embedding

dimensionality to be 100 and use the default value for all other hyper-parameters.6

• WeSHClass [9]7: Another weakly-supervised method that generates pseudo documents to

pre-train a text classifier and bootstraps the pre-trained classifier on unlabeled documents

with self-training. The class surface names are treated as the “class-related keywords”

in this method. For the pseudo document generation step, we use its internal LSTM

language model. We treat all classes in its returned class path as the output classes.

• SS-PCEM [160]8: This semi-supervised method uses a generative model to generate

documents based on a class path sampled from the class taxonomy. Both labeled and

unlabeled documents are used to fit this generative model via the EM algorithm. Finally,

it uses the posterior probability of a test document to predict its labeled classes. Among

different base classifiers, we choose their author reported best variant PCEM in this study.

We use 30% of labeled training documents for this method.

• Hier-0Shot-TC [142]9: This zero-shot method uses a pre-trained textual entailment

model to predict to what extent a document (as the premise text) can entail a tem-

plate filled with the class name (as the hypothesis text). Similar to Hier-doc2vec,

we select the class with the highest entailment score at each level in a top-down re-

cursive fashion. For fair comparison, we change its internal BERT-base-uncased model to

RoBERTa-large-mnli model as is used in our method.

• TaxoClass10: Our proposed weakly-supervised framework that identifies document core

classes, leverages core classes to train a taxonomy-enhanced text classifier, and generalizes

the classifier using multi-label self-training. We also evaluate two ablations: TaxoClass-

5https://radimrehurek.com/gensim/models/doc2vec.html
6We also test the Flat-doc2vec variant which directly ranks all classes in the taxonomy and

returns top ranked classes. Its performance is significantly worse than Hier-doc2vec and thus we
only report Hier-doc2vec results.

7https://github.com/yumeng5/WeSHClass
8https://github.com/HKUST-KnowComp/PathPredictionForTextClassification
9https://github.com/yinwenpeng/BenchmarkingZeroShot

10https://github.com/mickeystroller/TaxoClass
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NoST which removes the multi-label self-training step, and TaxoClass-NoGNN which

replaces the GNN-based class encoder with a simple embedding layer initialized with pre-

trained word embeddings.

5.5.3 Evaluation Metrics

We follow previous studies [161, 134] and evaluate the multi-label classification results from

different aspects using various metrics. The first metric is Example-F111 which calculates

the average F1 scores for all documents as follows:

Example-F1 =
1

N

N∑
i=1

2|Ctruei ∩ Cpredi |
|Ctruei |+ |Cpredi |

, (5.11)

where Ctrue
i (Cpred

i ) is the true (model predicted) class set of document Di.

Moreover, as many applications formalize the HMTC as a class ranking problem [161, 162],

we convert predicted class set Cpred
i into a rank list Rpred

i based on each class’s model predicted

probability and calculate Precision at k (P@k) as follows:

P@k =
1

N

N∑
i=1

|Ctruei ∩ Rpredi,1:k|
min(k, |Ctruei |) , (5.12)

where Rpred
i,1:k is each method predicted top k most likely classes for Di. Finally, for methods

able to return the probability of a document being tagged with each class in the taxonomy,

we calculate their Mean Reciprocal Rank (MRR) as follows:

MRR =
1

N

N∑
i=1

1

|Ctruei |
∑

cj∈Ctrue
i

1

Rij
, (5.13)

where Rij is the “rank” of document Dj’s true class cj in model predicted rank list.

5.5.4 Implementation Details

For all baseline methods except Hier-doc2vec, we use the public implementations from

their authors and leave the hyper-parameters unchanged. For both Hier-0Shot-TC and our

method, we adopt the same public Roberta-Large-MNLI model as the textual entailment

model and use the same hypothesis template: “this product is about .” for Amazon-531

dataset and “this example is .” for DBPedia-298 dataset. We use AdamW optimizer to

train our model with batch size 64, learning rate 5e-5 for all parameters in BERT document

11This metric is also called “micro-Dice coefficient”.
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Table 5.2: Evaluation of all compared text classification methods on two datasets.
For some methods predicting a class path in a top-down fashion rather than
returning all classes’ probabilities, we cannot compute their MRR scores and
indicate this using “N/A”.

Method
Amazon-531 DBPedia-298

Example-F1 P@1 P@3 MRR Example-F1 P@1 P@3 MRR

Hier-doc2vec [159] 0.3157 0.5805 0.3115 N/A 0.1443 0.2635 0.1443 N/A
WeSHClass [9] 0.2458 0.5773 0.2517 N/A 0.3047 0.5359 0.3048 N/A

TaxoClass-NoST 0.5431 0.7918 0.5414 0.5911 0.7712 0.8621 0.7712 0.8221
TaxoClass-NoGNN 0.5271 0.7642 0.5213 0.5621 0.7241 0.8154 0.7241 0.7692

TaxoClass 0.5934 0.8120 0.5894 0.6332 0.8156 0.8942 0.8156 0.8762

SS-PCEM [160] 0.2921 0.5369 0.2948 0.3004 0.3845 0.7424 0.3845 0.4032

Hier-0Shot-TC [142] 0.4742 0.7144 0.4610 N/A 0.6765 0.7871 0.6765 N/A

encoder and learning rate 4e-3 for all remaining parameters. During the multi-label self-

training stage, we use learning rate 1e-6 for all parameters in the BERT document encoder

and 5e-4 for all remaining parameters. We run all experiments on a single cluster with 80

CPU cores and a Quadro RTX 8000 GPU. All deep learning models are moved to the GPU

for faster inference speed. With batch size 64, the TaxoClass framework consumes about

10GB GPU memory. In principle, all methods should be runnable on CPU.

5.5.5 Overall Performance Comparison

Table 5.2 presents the overall results of all compared methods. First, we find most weakly-

supervised (i.e., WeSHClass, TaxoClass and its variants) and zero-shot method (i.e., Hier-

0Shot-TC) can outperform the semi-supervised method SS-PCEM even the later has access

to 30% of labeled documents. Second, we can see that TaxoClass has the overall best per-

formance across all the metrics and defeats the second best method by a large margin.

Comparing TaxoClass with TaxoClass-NoGNN, we show the importance of incorporating

taxonomy structure into the class encoder. Moreover, the improvement of TaxoClass over

TaxoClass-NoST demonstrates the effectiveness of our multi-label self-training.

5.5.6 Effectiveness of Core Class Mining

We evaluate the effectiveness of our core class mining method as follows. First, we define a

set of rival methods and use them to generate various sets of “core classes”. Then, we derive

pseudo-training data for each generated core class set and use it to learn a text classifier with

the same architecture as the one in TaxoClass. Finally, we report each model’s performance
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Table 5.3: Evaluation of core class mining algorithms on Amazon-531 dataset.
We train the classifier using different training sets derived from different core
class mining algorithm outputs.

Core Class
Example-F1 P@1 P@3 MRR

Mining Method

Explicit Mention 0.1611 0.2168 0.1564 0.2045
0Shot 0.4793 0.7361 0.4782 N/A

Ours 0.5431 0.7918 0.5414 0.5911
Ours-NoCS 0.3812 0.6254 0.3831 0.4366

Ours-NoConf 0.2603 0.4431 0.2521 0.3014

on the test set. Note here we skip the self-training step to ensure the “core class based

pseudo-training data” is the only variable.

Table 5.3 lists all the results. First, we find that the “Explicit Mention” method, which

treats all classes with names explicitly appear in the corpus as the core classes, does not per-

form well for our HMTC problem. One reason could be many class names are human-curated

summarizing phrases that do not appear in the corpus naturally. Second, the “0Shot”

method views the output classes of baseline method Hier-0Shot-TC as the core classes and

trains a new classifier. Interestingly, this new classifier performs better than the original

Hier-0Shot-TC classifier, which shows that transferring knowledge from a general zero-shot

classifier to a domain-specific classifier is a possible and promising direction. Finally, we

compare variants of our own methods. The “Ours-NoCS” method removes the candidate

core class selection step and treats all classes with high confidence scores as core classes.

The “Ours-NoConf” method skips the confident core class identification step and views all

candidate core classes as the final output core classes. We can see a significant performance

drop on both ablations, which shows the importance of our two core class mining steps.

5.5.7 Analysis of Classifier Architecture

We study whether we can use the identified document core classes to train other text

classifiers with different architectures such as fastText [163] and TextCNN [133]. As shown

in Table 5.4, both methods achieve reasonable performance. We can also see that TaxoClass

with and without GNN-enhanced class encoder can outperform both methods. This shows

the effectiveness of our dual-encoder style classifier architecture.
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Table 5.4: Performance of different classifiers on Amazon-531 dataset. All meth-
ods use the same training set derived from our identified document core classes.

Method Example-F1 P@1 P@3 MRR

fastText 0.4472 0.7515 0.4521 0.4587
TextCNN 0.4787 0.7694 0.4771 0.4827

TaxoClass-NoGNN 0.5271 0.7642 0.5213 0.5621
TaxoClass 0.5934 0.8120 0.5894 0.6332

5.5.8 Supervision Signals in Class Names

We vary the percentage of labeled documents on Amazon-531 dataset for training a super-

vised fastText classifier and present its corresponding performance in Figure 5.5. We can see

the performance of our TaxoClass framework is equivalent to that of a supervised fastText

model learned using roughly 70% of labeled documents in the training set (i.e., about 20,000

labeled documents).

Ex
am

pl
e-

F1

0.15

0.0

0.30

0.60

0.75

0 40 60 80 100
Percentage of Labeled Documents

20

0.45

FastText
        TaxoClass

(60, 0.581)
(80, 0.619)

M
R

R

0.15

0.0

0.30

0.60

0.75

0 40 60 80 10020

0.45
(60, 0.602)

Percentage of Labeled Documents

(80, 0.644)

0.593
0.633

FastText
        TaxoClass

Figure 5.5: Comparison between TaxoClass and supervised fastText method on
Amazon-531 dataset. We train the fastText model using on different percentages
of labeled training documents.

5.6 SUMMARY

In this chapter, we study the hierarchical multi-label text classification problem when only

class surface names, instead of massive labeled documents, are given. We propose a novel

TaxoClass framework which leverages the class taxonomy to derive document core classes and

learns taxonomy-enhanced text classifier for prediction. Extensive experiments demonstrate

the effectiveness of TaxoClass on two real-world datasets from different domains.
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In the future, we plan to explore how TaxoClass framework can be integrated with semi-

supervised methods and data augmentation methods, when some class surface names are

too ambiguous to indicate class semantics. Another another line, we may also interpret

the document structuring task as a weakly-supervised hierarchical clustering problem where

taxonomy nodes are viewed as seed guidances and potential cluster centers. Then, we can

simultaneously cluster both documents and keywords to construct a document-allocated

topic taxonomy. Finally, we consider extending our multi-label self-training method to other

related NLP tasks such as fine-grained entity typing.
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CHAPTER 6: INCORPORATING EVENT KNOWLEDGE IN TAXONOMY

6.1 OVERVIEW AND MOTIVATIONS

In the previous chapters, we have discussed how to construct, enrich, and apply a tax-

onomy to facilitate knowledge discovery from text data. Each node in this taxonomy is a

concept represented by a single term. While being useful, this single term representation falls

short of describing verbal and event-related concepts. For example, a single term “vaccine”

cannot distinguish the events “conduct research on vaccine” versus “distribute manufactured

vaccines”. Therefore, if we can incorporate event knowledge into the taxonomy, we may

significantly enlarge the application scope of taxonomy and unleash its full potentials.

To achieve the above goal, we need to first identify a set of salient events based on our given

application-specific corpus. Most of traditional event extraction methods [164, 165, 166, 167]

assume a set of predefined event types and their corresponding annotations are curated by

human experts. This annotation process is expensive and time-consuming. Besides, those

manually-defined event types often fail to generalize to new domains. For example, the

widely used ACE 2005 event schemas1 do not contain any event type about Transmit Virus

or Treat Disease and thus cannot be readily applied to extract pandemic events. These

prerequisites are often hard to be satisfied in real-world applications.

To automatically induce event types from raw text, researchers have studied ad-hoc

clustering-based algorithms [168, 169] and probabilistic generative methods [170, 171, 172]

to discover a set of event types and argument roles. These methods typically utilize bag-of-

word text representations and impose strong statistical assumptions. Follow up work [173]

relax those restrictions using a pipelined approach that leverages extensive lexical and se-

mantic resources (e.g., FrameNet [174], VerbNet [175], and PropBank [176]) to discover event

schemas. While being effective, this method is limited by the scope of external resources and

accuracies of its preprocessing tools. Recently, some studies [177, 178] have used transfer

learning to extend traditional event extraction models to new types without explicitly deriv-

ing schemas of new event types. Nevertheless, these methods still require many annotations

for a set of seen types.

In this chapter, we study the problem of event type induction which aims to discover a

set of salient event types based on a given corpus. We observe that about 90% of event

types can be frequently triggered by predicate verbs (c.f. Table 6.1) and thus propose to

take a verb-centric view toward inducing event types. We use the five sentences (S1-S5) in

1https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Table 6.1: Statistics of verb triggered event types in three popular event extrac-
tion datasets. Event types triggered by verbs more than 5 times are considered
as “Verb Frequently Triggered Event Types”.

Datasets ACE ERE RAMS

# of All Event Types 33 38 138
# of Verb Triggered Event Types 33 38 133
# of Verb Frequently Triggered Event Types 28 36 124

detain_1 people
arrest_1 people

arrest_2 spread
stop_1 transmission stop_1 planning

“Arrest-Jail” “Stop-Spread” “Stop-Plan”

Sentences

Hundreds of people are detained for distributing purported 
false information online.

Researchers say that vaccinating 46 percent of Haitians 
could arrest the cholera spread.

The Zimbabwe CTU said 69 people were arrested during 
Wednesday's demonstrations.

More censorship of social media posts are enforced to stop 
protest planning online.

Collective efforts are needed by all nations to stop the 
COVID-19 transmission.

ID

S5

S4

S3

S2

S1

Figure 6.1: Motivating example sentences and induced event types. Predicates
are in bold. Objects are underlined and object heads are in italics. Colors
indicate event types. The suffix number followed by each predicate verb lemma
indicates the predicate verb sense.

Figure 6.1 to motivate our design of event type representation. First, we observe that verb

lemma itself might be ambiguous. For example, the two mentions of lemma “arrest” in S2

and S3 have different senses and indicate different event types. Second, even for predicates

with the same sense, their different associated object heads2 could lead them to express

different event types. Taking S4 and S5 as examples, two “stop” mentions have the same

sense but belong to different types because of their corresponding object heads. Finally,

we can see that people have multiple ways to communicate the same event type due to the

language variability.

2Intuitively, the object head is the most essential word in the object such as “people” in object
“hundreds of people”.
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From the above observations, we propose to represent an event type as a cluster of

〈predicate sense, object head〉 pairs (P-O pairs for short)3. We present a new event type

induction framework ETypeClus [180] to automatically discover event types, customized for

a specific input corpus. ETypeClus requires no human-labeled data other than an existing

general-domain verb sense dictionary such as VerbNet [175] and OntoNotes Sense Group-

ings [181]. ETypeClus contains four major steps. First, it extracts 〈predicate, object head〉
pairs from the input corpus based on sentence dependency tree structures. As some extracted

pairs could be too general (e.g., 〈say, it〉) or too specific (e.g., 〈document, microcephaly〉),
the second step of ETypeClus will identify salient predicates and object heads in the corpus.

After that, we disambiguate the sense of each predicate verb by comparing its usage with

those example sentences in a given verb sense dictionary. Finally, ETypeClus clusters the

remaining salient P-O pairs into event types using a latent space generative model. This

model jointly embeds P-O pairs into a latent spherical space and performs clustering within

this space. Thus, we can guide the latent space learning with the clustering objective and

enable the clustering process to benefit from the well-separated structure of the latent space.

We show our ETypeClus framework can save annotation cost and output corpus-specific

event types on three datasets. The first two are benchmark datasets ACE 2005 and ERE

(Entity Relation Event) [182]. ETypeClus can successfully recover predefined types and

identify new event types such as Build in ACE and Bombing in ERE. Furthermore, to test

the performance of ETypeClus in new domains, we collect a corpus about the disease outbreak

scenario. Results show that ETypeClus can identify many interesting fine-grained event types

(e.g., Vaccinate, Test) that align well with human annotations.

The major contributions of this chapter are summarized as follows:

• We present a new event type representation as a 〈predicate sense, object head〉 cluster.

• We propose a novel event type induction framework ETypeClus that automatically disam-

biguates predicate senses and learns a latent space with desired event cluster structures.

• We conduct extensive experiments on three datasets to verify the effectiveness of ETypeClus

in terms of both automatic and human evaluations.

The rest of this chapter is presented as follows. We first discuss the related work in

Section 6.2. Then, we formalize our task in Section 6.3 and present our ETypeClus framework

in Section 6.4. After that, we present the experiment results in Section 6.5 and finally

3Subjects are intentionally left here because [179] finds objects play a more important role in
determining predicate semantics. Also, many P-O pairs indicate the same event type but share
different subjects (e.g., “police capture X ” and “terrorists capture X ” are considered as two different
events but belong to the same event type Capture Person. Adding subjects may help divide
current event types into more fine-grained types and we leave this for future work.
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conclude this chapter in Section 6.6.

6.2 RELATED WORK

There are two major lines of work related to our study.

Event Schema Induction. Early studies on event schema induction adopt rule-based ap-

proaches [183] and classification-based methods [184, 185] to induce templates from labeled

corpus. Later, unsupervised methods are proposed to leverage relation patterns [168] and

coreference chains [169] for event schema induction. Typical approaches use probabilistic

generative models [170, 171, 172, 186, 167] or ad-hoc clustering algorithms [173, 187] to in-

duce predicate and argument clusters. In particular, [188] takes an entity-centric view toward

event schema induction. It clusters entities into semantic slots and finds predicates for en-

tity clusters in a post-processing step. [189] studies the event profiling task and includes one

module that leverages a Bayesian generative model to cluster 〈predicate:role:label〉 triplets

into event types. These methods typically rely on discrete hand-crafted features derived

from bag-of-word text representations and impose strong statistics assumptions; whereas

our method uses pre-trained language models to reduce the feature generation complexity

and relaxes stringent statistics assumptions via latent space clustering.

Weakly-Supervised Event Extraction. Some studies on event extraction [190, 191, 192]

propose to leverage annotations for a few seen event types to help extract mentions of new

event types specified with just a few keywords. These methods reduce the annotation efforts

but still require all target new types to be given. Recently, some studies [177, 178] use transfer

learning techniques to extend traditional event extraction models to new types without

explicitly deriving schemas of new event types. Compared to our study, these methods

still require many annotations for a set of seen types and their resulting vector-based event

type representations are less human interpretable. Another related work by [193] uses GAN

to extract events from an open domain corpus. It clusters 〈entity:location:keyword:date〉
quadruples related to the same event rather than finds event types.

6.3 PROBLEM FORMULATION

In this section, we first introduce some important concepts and then formalize our task.

Notations. A corpus S = {S1, . . . , SN} is a set of sentences where each sentence Si ∈ S
is a word sequence [wi,1, . . . , wi,n]. A predicate is a verb mention in a sentence and can

optionally have an associated object in the same sentence. We follow previous studies [194,
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Arrest; 3 senses

Sense 1: Catch and take into custody
Example 1: He was arrested when customs officers found drugs in his bag.
Example 2: The police arrested her for drinking and driving.
Example 3: Airport officials were arrested after a major heist.

Sense 2: Stop or interrupt something
Example 1: The treatment has so far done little to arrest the spread of the 
cancer. 
Example 2: The look in his eyes arrested him on the spot.
Example 3: The mechanism will arrest the motion of the flywheel.

Sense 3: Take a hold and capture suddenly
Example 1: An astonishing sight arrested our attention.
Example 2: The musician had arrested his interest at first glance. 

Figure 6.2: One example in verb sense dictionary V.

195] and refer to the most important word in the object as the object head. For example,

one predicate from the first sentence in Figure 6.1 is “detain” and its corresponding object

is “hundreds of people” with the word “people” being the object head.

As predicates with the same lemma may have different senses, we disambiguate each

predicate verb based on a verb sense dictionary V wherein each verb lemma has a list of

candidate senses with example usage sentences. One illustrative example of our verb sense

dictionary is shown in Figure 6.2. We refer to the sense of predicate verb lemma as the

predicate sense.

Task Definition. Given a corpus S and a verb sense dictionary V , our task of event type

induction is to identify a set of K event types where each type Tj is represented by a cluster

of 〈predicate sense, object head〉 pairs.

6.4 THE ETYPECLUS FRAMEWORK

Our proposed ETypeClus framework (outlined in Figure 6.3) induces event types in four

major steps: (1) predicate and object head extraction, (2) salient predicate lemma and object

head selection, (3) predicate sense disambiguation, and (4) latent space joint predicate sense

and object head clustering.

6.4.1 Predicate and Object Head Extraction

We propose a lightweight method to extract predicates and object heads in sentences

without relying on manually-labeled training data. Specifically, given a sentence Si, we first
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Figure 6.3: Our ETypeClus framework overview.

use a dependency parser4 to obtain its dependency parse tree and select all non-auxiliary

verb tokens5 as our candidate predicates. Then, for each candidate predicate, we check

its dependent words and if any of them has a dependency label auxpass, we believe this

predicate verb is in passive voice and find its object heads within its syntactic children that

occur before it and have a dependency label in SUBJECT label set6. Otherwise, we consider

this predicate is in active voice and identify its object heads within its dependents that

occur after it and have a dependency label in OBJECT label set7. Finally, we aggregate all

〈predicate, object head〉 pairs along with their frequencies in the corpus.

6.4.2 Salient Predicate Lemma and Object Head Selection

The above extracted 〈predicate, object head〉 pairs have different qualities. Some are too

general and contain little information, while others are too specific and hard to generalize.

Thus, this step of ETypeClus tries to select those salient predicate lemmas and object heads

from our input corpus.

We compute the salience of a word (either a predicate lemma or an object head) based

on two criteria. First, it should appear frequently in our corpus. Second, it should not be

too frequent in a large general-domain background corpus8. Computationally, we follow the

TF-IDF idea and define the word salience as follows:

Salience(w) =
(
1 + log(freq(w))2

)
log(

N bs

bsf(w)
), (6.1)

where freq(w) is the frequency of word w, N bs is the number of background sentences, and

4We use the Spacy en core web lg model.
5A token with part-of-speech tag VERB and dependency label not equal to aux and auxpass.
6{nsubj(pass), csubj(pass), agent, expl}
7{dobj, dative, attr, oprd}
8We use the English Wikipedia 20171201 dump as our background corpus.
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Table 6.2: Top 5 salient predicate lemmas (PredL) and object heads (ObjH) in
three datasets.

ACE ERE Pandemic
PredL ObjH PredL ObjH PredL ObjH

kill weapon pay money infect virus
pay iraqis kill people suspect outbreak

guess nations rape kid sicken vaccine
convict states send weapon test case

fire marines attack cadre circulate infection

bsf(w) is the background sentence frequency of word w. Finally, we select those terms with

salience scores ranked in top 80% as our salient predicate lemmas and object heads. Table 6.2

lists the top 5 most salient predicate lemmas and object heads in three datasets. The first

two datasets contain news articles about wars and thus terms like “kill” and “weapon” are

ranked top. The third dataset includes articles about disease outbreaks and thus most salient

terms include “infect”, “virus”, and “outbreak”.

6.4.3 Predicate Sense Disambiguation

As verbs typically exhibit large sense ambiguities, we disambiguate each predicate’s sense

in the sentence. Huang et al. [173] achieves this goal by utilizing a supervised word sense

disambiguation tool [196] to link each predicate to a WordNet sense [197] and then mapping

that sense back to an OntoNotes sense grouping [181]. In this work, we propose to remove

such extra complexity and present a lightweight sense disambiguation method that requires

only a verb sense dictionary.

The key idea of our method is to compare the usage of a predicate with each verb sense’s

example sentences in the dictionary. Given a predicate verb v in sentence Si, we compute

two types of features to capture both its content and context information. The first one,

denoted as vemb, is obtained by feeding the sentence Si into the BERT-Large model [55]

and retrieving the predicate’s corresponding contextualized embedding. The second feature

vmwp is a rank list of 10 alternative words that can be used to replace v in sentence Si.

Specifically, we replace the original word v in Si with a special [MASK] token and feed the

masked sentence Smaski into BERT-Large for masked word prediction. From the prediction

results, we select the top 10 most likely words and sort them into vmwp.

After obtaining the predicate representation, we compute the representations of its candi-

date senses in the dictionary. Suppose the lemma of this predicate v has Nv candidate senses

in the dictionary and each sense Ej, j ∈ [1, . . . , Nv] has Nj example sentences {Sj,k}Nj

k=1 in
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the dictionary. Then, within each example sentence Sj,k, we locate where the predicate

lemma v occurs and compute its corresponding feature vembj,k and vmwpj,k similarly as discussed

before. After that, we obtain two types of features for each sense Ej as follows:

Eembj =
1

Nj

Nj∑
k=1

vembj,k , Emwpj = RA({vmwpj,k }|
Nj

k=1), (6.2)

where RA(·) stands for the rank aggregation operation based on mean reciprocal rank. This

method is widely used in previous literature [1, 198, 2, 17] for fusing ranked lists. Finally,

we choose the sense that is most similar to the predicate v as follows:

j∗ = arg max
j∈[1,...,Nv ]

cos(vemb,Eembj ) · rbo(vmwp,Emwpj ), (6.3)

where cos(x,y) is the cosine similarity between two vectors x and y, and rbo(a, b) is the

rank-biased overlap similarity [199] between two ranked lists.

We evaluate our method on the verb subset of standard word sense disambiguation bench-

marks [200]. Our method achieves 55.7% F1 score. In comparison, the supervised IMS

method in [173] gets a 56.9% F1 score. Thus, we think our method is comparable to super-

vised IMS but being more lightweight and requires no training data.

6.4.4 Latent Space Joint Predicate Sense and Object Head Clustering

After obtaining salient 〈predicate sense, object head〉 pairs (P-O pairs for short), we aim

to cluster them into event types. Below, we first discuss how to obtain the initial features

for predicate senses and object heads. As those predicate senses and object heads are living

in two separate spaces, we aim to fuse them into one joint feature space wherein the event

cluster structures are better preserved. We achieve this goal by proposing a latent space

generative method that jointly embeds P-O pairs into a unified spherical space and performs

clustering in this space. Finally, we discuss how to train this generative model.

Initial Feature Acquisition. We obtain two types of features for each term w (either a

predicate sense wp or an object head wo) by first locating its mentions in the corpus and

then aggregating mention-level representations into term-level features. Suppose term w

appears Mw times, for each of its mentions mw,l, l ∈ [1, . . . ,Mw], we extract this mention’s

content feature memb
w,l and context feature mmwp

w,l , following the same process discussed in

Section 6.4.3. Then, we average all mentions’ content features into this term’s content

feature memb
w = 1

Mw

∑Mw

l=1 memb
w,l .

The aggregation of mention context features is more difficult as each mmwp
w,l is not a nu-

merical vector but instead a set of words predicted by BERT to replace mw,l. In this work,
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we propose the following aggregation scheme. For each term w, we first construct a pseudo

document Dw using the bag union operation9. Then, we obtain the vector representations of

pseudo documents based on TF-IDF transformation and apply Principal Component Anal-

ysis (PCA) to reduce the dimensionality of document vectors. The resulting vector will be

considered as the term’s context feature vector mmwp
w . Finally, we concatenate memb

w with

mmwp
w to obtain the initial feature vector of predicate senses (denoted as hp) and object

heads (denoted as ho).

Latent Space Generative Model. To cluster P-O pairs into K event types based on two

separate feature spaces (Hp for predicate sense and Ho for object head), one straightforward

approach is to represent each P-O pair x = (p, o) as x = [hp,ho] and directly applying

clustering algorithms to all pairs. However, this approach cannot guarantee the concatenated

space H = [Hp,Ho] will be naturally suited for clustering. Therefore, we propose to jointly

embed and cluster P-O pairs in latent space Z. By doing so, we can unify two feature

spaces Hp and Ho. More importantly, the latent space learning is guided by the clustering

objective, and the clustering process can benefit from the well-separated structure of the

latent space, which achieves a mutually-enhanced effect.

We design the latent space to have a spherical topology because cosine similarity more

naturally captures word/event semantic similarities than Euclidean/L2 distance. Previous

studies [100, 201] also show that learning spherical embeddings directly is better than first

learning Euclidean embeddings and normalizing them later. Thus, we assume there is a

spherical latent space Z with K clusters10. Each cluster in this space corresponds to one

event type and is associated with a von Mises-Fisher (vMF) distribution [202] from which

event type representative P-O pairs are generated. The vMF distribution of an event type c

is parameterized by a mean vector c and a concentration parameter κ. A unit-norm vector

z is generated from vMFd(c, κ) with the probability as follows:

p(z|c, κ) = nd(κ) exp(κ · cos(z, c)), (6.4)

where d is the dimensionality of latent space Z and nd(κ) is a normalization constant.

Each P-O pair (pi, oi) with the initial feature [hpi ,hoi ] ∈ Hp × Ho is assumed to be

generated as follows: (1) An event type ck is sampled from a uniform distribution over K

types; (2) a latent embedding zi is generated from the vMF distribution associated with ck;

and (3) a function gp (go) maps the latent embedding zi to the original embedding hpi (hoi)

9Namely, Dw contains a word T times if this word appears in T different mmwp
w,l , l ∈ [1, . . . ,Mw].

10K is a hyper-parameter. We can either set K to the true number of event types (if it is known)
or directly set K based on application-specific knowledge or adopt statistical methods to estimate
K. In practice, we can set it to a large number and the resulting event types are still useful.
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Figure 6.4: Overview of joint predicate sense and object head latent spherical
space clustering. Detailed descriptions in Section 6.4.4.

corresponding to the predicate sense pi (object head oi). Namely, we have:

ck ∼ Uniform(K), zi ∼ vMFd(ck, κ),

hpi = gp(zi), hoi = go(zi).
(6.5)

We parameterize gp and go as two deep neural networks and jointly learn the mapping

function fp : Hp → Z as well as fo : Ho → Z from the original space to the latent space.

Such a setup closely follows the autoencoder architecture [203] which is shown to be effective

for preserving input information.

Model Training. We learn our generative model by jointly optimizing two objectives. The

first one is a reconstruction objective defined as follows:

Orec =
N∑
i=1

(
cos(hpi , gp(fp(hpi))) + cos(hoi , go(fo(hoi)))

)
(6.6)

This objective encourages our model to preserve input space semantics and generate the

original data faithfully.

The second clustering-promoting objective enforces our model to learn a latent space with

K well-separated cluster structures. Specifically, we use an expectation-maximization (EM)

algorithm to sharpen the posterior event type distribution of each input P-O pair. In the

expectation step, we first compute the posterior distribution based on current model param-
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Algorithm 6.1: Latent Space Generative Model Training.

Input: A set of P-O pairs {xi}Ni=1; Initial feature spaces Hp and Ho; Number of
discovered event types K.

Output: Event-pair distributions p(xi|ck).
1 fo, fp, go, gp ← max Orec in Eq. (6) // Pretraining;
2 Initialize C = {ck}Kk=1;
3 while not converaged do
4 // Update cluster assignment estimation;
5 q(ck|zi)← Eq. (8);
6 // Update model parameteres;
7 fo, fp, go, gp,C← max Orec + λOclus;

8 Return p(xi|ck) = p(zi|ck);

eters as follows:

p(ck|zi) =
p(zi|ck)p(ck)∑K

k′=1 p(zi|ck′)p(ck′)
=

exp(κ · cos(zi, ck))∑K
k′=1 exp(κ · cos(zi, ck′))

. (6.7)

We then compute a new estimate of each P-O pair’s cluster assignment q(ck|zi) and use it to

update the model in the maximization step. Instead of making hard cluster assignments like

K-means which directly assigns each zi to its closest cluster, we compute a soft assignment

q(ck|zi) as follows:

q(ck|zi) =
p(ck|zi)2/sk∑K

k′=1 p(ck′ |zi)2/sk′
, (6.8)

where sk =
∑N

i=1 p(ck|zi). This squaring-then-normalizing formulation has a sharpening

effect that skews the distribution towards its most confident cluster assignment, as shown

in [156, 8, 9]. The formulation encourages unambiguous assignment of P-O pairs to event

types so that the learned latent space will have gradually well-separated cluster structures.

Finally, in the maximization step, we update the model parameters to maximize the expected

log-probability of the current cluster assignments under the new cluster assignment estimates

as follows:

Oclus =

N∑
i=1

K∑
k=1

q(ck|zi) log p(ck|zi), (6.9)

where p is updated to approximate fixed target q.

We summarize our training procedure in Algorithm 6.1. We first pretrain the model using

only the reconstruction objective, which provides a stable initialization of all parameterized

mapping functions. Then, we apply the EM algorithm to iteratively update all mapping

functions and event type parameters C with a joint objective Orec +λOclus where the hyper-

parameter λ balances two objectives. The algorithm is considered converged if less than 5%
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of the P-O pairs change cluster assignment between two iterations or a maximum iteration

number is reached11. Finally, we output each P-O pair’s distribution over K event types.

6.5 EXPERIMENTS

We conduct two sets of experiments to verify the effectiveness of ETypeClus framework.

Section 6.5.1 presents our results on two widely used benchmark datasets, ACE 2005 and

ERE (Entity Relation Event) [182]. Section 6.5.2 presents the results on our newly created

Pandemic dataset.

6.5.1 Experiments on ACE/ERE Datasets

Datasets. We first evaluate ETypeClus on two widely used event extraction datasets: ACE

(Automatic Content Extraction) 200512 and ERE (Entity Relation Event) [182]. For both

datasets, we follow the same preprocessing steps from [204, 167] and use sentences in the

training split as our input corpus. The ACE dataset contains 17,172 sentences with 33 event

types and the ERE dataset has 14,695 sentences with 38 types. We test the performance of

ETypeClus on event type discovery and event mention clustering.

Event Type Discovery. We apply ETypeClus on each input corpus to discover 100 can-

didate event clusters and follow [173] to manually check whether discovered clusters can

reconstruct ground truth event types. On ACE, we recover 24 out of 33 event types (19

out of 20 most frequent types) and 7 out of 9 missing types have a frequency less than 10.

On ERE, we recover 28 out of 38 event types (18 out of 20 most frequent types). We show

some example clusters in Table 6.3 which includes top ranked P-O pairs and their occurring

sentences. We observe that ETypeClus successfully identifies human defined event types (e.g.,

Arrest-Jail in ACE and Transfer-Money in ERE). It can also identify finer-grained types

compared with the original ground truth types (e.g., the 4th row of Table 6.3 shows one

discovered event type Bombing in ERE which is in finer scale than “Conflict:Attack”, the

closest human-annotated type in ERE). Further, ETypeClus is able to identify new salient

event types (e.g., finding new event type Build in ACE). Finally, ETypeClus not only induces

event types but also provides their example sentences, which serve as the corpus-specific an-

notation guidance.

Event Mention Clustering. We evaluate the effectiveness of our latent space generative

11In practice, this will certainly happen because our learning rate is gradually decreasing.
12https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Table 6.3: Example outputs of ETypeClus discovered event types with their as-
sociated sentences in ACE and ERE datasets. The first two types come from
ACE and the remaining two are from ERE. The event types with superscript “∇”
originally do not exist in human-labeled schemas and are discovered by ETypeClus
framework. Predicates are in bold and object heads are underlined and in ital-
ics.

Event Type
Top Ranked P-O
Pairs

Example Sentences in Corpus

Arrest-Jail
〈arrest 0, protester〉
〈arrest 0, militant〉
〈arrest 0, suspect〉

• For the most part the marches went off peacefully, but in New York a small
group of protesters were arrested after they refused to go home at the end
of their rally, police sources said.

• On Tuesday, Saudi security officials said three suspected al-Qaida militants
were arrested in Jiddah, Saudi Arabia, in sweeps following the near-
simultaneous suicide attacks on three residential compounds on the outskirts
of Riyadh on May 12.

• can owe tell us exactly the details, the precise details of how you arrested
the suspect?

Build∇
〈build 0, facility〉
〈build 0, center〉
〈build 0, housing〉

• Plans were underway to build destruction facilities at all other locations but
now the Bush junta has removed from its proposed defense budget for fiscal
year 2006 all but the minimum funding for these destruction projects.

• Virginia is apparently going to be build a data center in Richmond, a back-
up data center , and a help desk/call center as a follow-on to the creation of
VITA, the Virginia Information Technology Agency.

• The Habitat for Humanity might be a good one to consider, since their
expertise is in building housing, which of course is so beadly needed over
there at this time.

Transfer-Money
〈fund 0, activity〉
〈fund 0, operation〉
〈fund 0, people〉

• The grants will fund advisory activities, including local capacity building,
infrastructure development, product development, and development of local
insurance companies’ capacity to provide index-based insurance products.

• The White House had hoped to hold off asking for more money to fund
military operations in Iraq and Afghanistan until after the election, but with
costs rising faster than expected, it sent a request for an early installment of
$25 billion to Congress this week.

• Watch ’Secret Pakistan’ on the BBC iPlayer , it’s an awesome two part
documentary about how Pakistan has been supporting and funding these
people for years.

Bombing∇

〈bomb 0, factory〉
〈bomb 0,
checkpoint〉
〈bomb 0, base〉

• He bombed the Aspirin factory in 1998 (which turned out to have nothing
to do with Bin Laden) the week he revealed he had been lying to us for eight
months about Lewinsky.

• Prosecutors then also pointed to the men’s suicide bomber training in 2011
in Somalia and association with Beledi, who prosecutors said bombed a
government checkpoint in Mogadishu that year.

• Once the war breaks out, Iran will immediately use all kinds of missiles to
bomb the military bases of the United States in the Gulf and Israel to pieces.

model via the event mention clustering task. We first match each event mention with one

extracted P-O pair if possible, and select 15 event types with the most matched results.

Then, for each selected type, we collect its associated mentions and add them into a candidate

pool. We represent each mention using the feature of its corresponding P-O pair. Finally,

we cluster all mentions in the candidate pool into 15 groups and evaluate whether they
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align well with the original 15 types. The event mention clustering quality also serves as a

good proxy of the event type quality. This is because if a method can discover good event

types from a corpus, it should also be able to generate good event mention clusters when

the ground truth number of clusters is given.

Compared Methods. We compare the following methods:

• Kmeans: A standard clustering algorithm that works in the Euclidean feature space. We

run this algorithm with the ground truth number of clusters.

• sp-Kmeans: A variant of Kmeans that clusters event mentions in a spherical space based

on the cosine similarity.

• AggClus: A hierarchical agglomerative clustering algorithm with Euclidean distance

function and Ward linkage. A stop criterion is set to be reaching the target number

of clusters.

• Triframes [205]: A graph-based clustering algorithm that constructs a k-NN event men-

tion graph and uses a fuzzy graph clustering algorithm WATSET to generate the clusters.

• JCSC [173]: A joint constrained spectral clustering method that iteratively refines the

clustering result with a constraint function to enforce inter-dependent predicates and

objects to have coherent clusters.

• ETypeClus: Our proposed latent space joint embedding and clustering algorithm. For

fair comparison, all methods start with the same [hp,ho] embeddings.

We implement Kmeans and AggClus based on the Scikit-learn codebase [206]. We use L2

distance for both methods. For Kmeans, we use k-means++ strategy for model initialization,

and each time the result with the best inertia is used within 10 initializations. We use ward

linkage for AggClus and set the stop criterion to be reaching the target number of clusters.

For spherical Kmeans, we use an open source implementation13. Similar to Kmeans, we use

k-means++ to initialize the model and select the best results among 10 initializations. For

Triframes [205], we use its authors’ original implementation14, and tune the parameter k in

the k-NN graph construction step for different tasks and datasets to get a reasonable number

of clusters. Specifically, we use k = 30 for the event mention clustering task, which gives

us the overall best evaluation results on both ACE and ERE. On the Pandemic corpus, we

take k = 100, which generates 35 clusters that contain at least 40 tuples. For JCSC, we

implement the clustering algorithm based on Algorithm 1 in [173]. The spectral clustering

used in JCSC is based on Scikit-learn’s implementation, and the label assigning strategy is

K-means with 30 random initializations each time.

13https://github.com/jasonlaska/spherecluster
14https://github.com/uhh-lt/triframes
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Evaluation Metrics. We evaluate clustering results with the following several standard met-

rics. We denote the ground truth clusters as C∗, the predicted clusters as C, and the total

number of event mentions as N .

• ARI measures the similarity between two cluster assignments. Let TP (TN) denote the

number of element pairs in the same (different) cluster(s) in both C∗ and C. Then, ARI

is calculated as follows:

ARI =
RI− E(RI)

max RI− E(RI)
, RI =

TP + TN

N
, (6.10)

where E(RI) is the expected RI of random assignments.

• NMI denotes the normalized mutual information between two cluster assignments and

is widely used in previous studies. Let MI(·; ·) be the Mutual Information between two

cluster assignments, and H(·) denote the Entropy. Then the NMI is formulated as follows:

NMI =
2×MI(C∗;C)

H(C∗) + H(C)
. (6.11)

• BCubed estimates the quality of the generated cluster assignment by aggregating the

precision and recall of each element. Specifically, we have:

BCubed-P =
1

N

N∑
i=0

|C(ei) ∩ C∗(ei)|
|C(ei)|

, BCubed-R =
1

N

N∑
i=0

|C(ei) ∩ C∗(ei)|
|C∗(ei)|

, (6.12)

where C∗(·) (C(·)) is the mapping function from an element to its ground truth (predicted)

cluster. BCubed-F1 is the harmonic mean of BCubed-P and BCubed-R.

• ACC measures the clustering quality by finding the permutation function from predicted

cluster IDs to ground truth IDs that gives the highest accuracy. Let yi (y∗i ) denote the

i-th element’s predicted (ground truth) cluster ID, the ACC is formulated as follows:

ACC = max
σ∈Perm(k)

1

N

N∑
i=1

1(y∗i = σ(yi)) (6.13)

where k is the number of clusters for both C∗ and C, Perm(k) is the set of all permutation

functions on the set {1, 2, . . . , k}, and 1(·) is the indicator function.

Experiment Results. Table 6.4 shows ETypeClus outperforms all the baselines on both

datasets in terms of all metrics. The major advantage of ETypeClus is the latent event

space: different types of information can be projected into the same space for effective clus-

tering. We also observe that JCSC is the strongest among all baselines. We think the
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Table 6.4: Event mention clustering results. All values are in percentage. We
run each method 10 times and report its averaged result for each metric with
the standard deviation. Note that ACC is not applicable for Triframes because
it assumes the equal number of clusters in ground truth and generated results.

Methods
ACE ERE

ARI (std) NMI (std) ACC (std) BCubed-F1 (std) ARI (std) NMI (std) ACC (std) BCubed-F1 (std)

Kmeans 26.27 (1.60) 48.02 (1.55) 41.57 (3.07) 41.33 (1.75) 11.17 (1.83) 35.10 (2.36) 31.65 (1.82) 29.97 (1.79)
sp-Kmeans 26.06 (2.12) 47.30 (1.65) 40.41 (2.46) 39.52 (1.42) 13.62 (2.14) 37.33 (2.25) 33.28 (3.12) 30.73 (2.03)
AggClus 24.45 (0.00) 45.71 (0.00) 41.00 (0.00) 40.20 (0.00) 6.07 (0.00) 29.62 (0.00) 30.84 (0.00) 29.90 (0.00)

Triframes [205] 19.35 (6.60) 36.38 (4.91) — 38.91 (2.36) 10.89 (2.51) 34.94 (2.54) — 33.53 (4.47)
JCSC [173] 36.10 (4.96) 49.50 (2.70) 46.17 (3.64) 43.83 (3.17) 17.07 (4.40) 39.50 (3.97) 33.76 (2.43) 34.04 (2.23)
ETypeClus 40.78 (3.20) 57.57 (2.40) 48.35 (2.55) 51.58 (2.50) 24.09 (1.93) 49.40 (1.37) 41.19 (1.87) 39.78 (1.45)

reason is that it uses a joint clustering strategy where event types are defined as predicate

clusters and the constraint function enables objects to refine predicate clusters. Thus, a

predicate-centric clustering algorithm can outperform all other baselines, which supports

our verb-centric view of events.

6.5.2 Experiments on Pandemic Dataset

Dataset. To evaluate the portability of ETypeClus to a new open domain, we collect a new

dataset that includes 98,000 sentences about disease outbreak events. We follow a similar

approach in [167] to construct our Pandemic Dataset. First, we resort to Wikipedia lists to

get a set of Wikipedia articles related to disease outbreaks15. Then, we extract the news

article links from the “references” section of those Wikipedia article pages. Finally, we crawl

these news articles based on their above extracted links16 and construct a corpus related to

disease outbreaks.

Intrusion Test. We run the top-3 performing baselines (in ACE/ERE datasets) and

ETypeClus to generate 30 candidate event types and evaluate their quality using intrusion

test. Specifically, given the top-5 tuples of each detected type, we inject a randomly sampled

tuple from the top results of other types to serve as a negative sample. For methods that

have cluster centers, we rank tuples within each cluster by their distances to the center.

Otherwise, we rank tuples according to their frequencies in the corpus. Then, the intrusion

questions from all compared methods are randomly shuffled to avoid bias. Three annota-

tors17 are asked to identify the injected tuples independently, and we take the average of

their labeling accuracy to show the quality of the generated event types. The intuition be-

15Specifically, we use the list https://en.wikipedia.org/wiki/List_of_epidemics
16We use the crawler tool at https://github.com/codelucas/newspaper.
17All three annotators are not in the author list of this paper and provide independent judgements

of the tuple quality.
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Table 6.5: ETypeClus discovered event types with their associated sentences in
the Pandemic corpus. Predicates are in bold and object heads are underlined
and in italics.

Event
Type

Top Ranked P-O
Pairs

Example Sentences in Corpus

Spread
Virus

〈spread 2, virus〉
〈spread 2, disease〉
〈spread 2,
coronavirus〉

• What is the best way to keep from spreading the virus through coughing or sneezing?
• Farmers quickly mobilized to fight the misperceptions that pigs could spread the disease.
• In the UK, Asians have been punched in the face, accused of spreading coronavirus.

Prevent
Spread

〈prevent 1, spread〉
〈mitigate 1, spread〉
〈mitigate 1,
transmission〉

• Infection prevention and control measures are critical to prevent the possible spread of
MERS-CoV in health care facilities .

• A vaccine can mitigate spread, but not fully prevent the virus circulating.
• Asymptomatic infection could also potentially be directly harnessed to mitigate

transmission.

Delay
Gathering

〈delay 1, gathering〉
〈postpone 1,
gathering〉
〈suspend 1,
gathering〉

• The 2020 edition of the Cannes Film Festival, was left in limbo following an announcement
from the festival’s organizers that the gathering could be delayed until late June or early
July.

• States with EVD should consider postponing mass gatherings until EVD transmission
is interrupted.

• On Thursday, leaders of The Church of Jesus Christ of Latter - day Saints told its 15
million members worldwide all public gatherings would be suspended until further notice
.

Provide
Testing

〈provide 1, testing〉
〈conduct 1, testing〉
〈perform 1, testing〉

• Governments are racing to buy medical equipment as a debate intensifies over providing
adequate testing, when it ’s advisable to wear masks, and whether stricter lockdowns
should be imposed.

• Additional testing is being conducted to confirm that the family members had H1N1
and to try to verify that the flu was transmitted from human to cat.

• Additional laboratories perform antiviral testing and report their results to CDC .

Warn
Country

〈warn 1, country〉
〈warn 1, authority〉
〈warn 1,
government〉

• WHO uses six phases of alert to communicate the seriousness of infectious threats and to
warn countries of the need to prepare and respond to outbreaks.

• The message showed a photo of a letter, written by the operators of the hospital’s oxygen
supply plant, warning the authorities that the supply was running dangerously low .

• WHO staff concluded there was a high risk of further spread, and issued a global alert
to warn all member governments of the existence of a new and highly infectious form of
“atypical pneumonia” on March 12th .

Vaccinate
People

〈vaccinate 0, person〉
〈immunize 0, people〉
〈vaccinate 0, family〉

• All persons in a recommended vaccination target group should be vaccinated with the
2009 H1N1 monovalent vaccine and the seasonal influenza vaccine.

• U.K. Will Start Immunizing People Against COVID-19 On Tuesday, Officials Say.
• “In the Samoan language there is no word for bacteria or virus” says Henrietta Aviga, a

nurse travelling around villages to vaccinate and educate families.

Table 6.6: Intrusion test results in percentage.

Methods K-Menas AggClus JCSC ETypeClus

Accuracy 86.7 64.4 54.4 91.1

hind this test is that the annotators will be easier to identify the intruders if the clustering

results are clean and tuples are semantically coherent. As shown in Table 6.6, ETypeClus

achieves the highest accuracy among all the baseline methods, indicating that it generates

semantically coherent types in each cluster.
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Case Studies. Table 6.5 shows some discovered event types of ETypeClus. Interesting ex-

amples include tuples with the same predicate sense but object heads with different granular-

ities (e.g., 〈spread 2, virus〉 and 〈spread 2, coronavirus〉 for Spread-Virus type), tuples with

same object head but different predicate senses (e.g., 〈prevent 1, spread〉, and 〈mitigate 1,

spread〉 for Prevent-Spread type), and event types with predicate verb lemmas that are

not directly linkable to OntoNotes Senses grouping (e.g., “immunize” and “vaccinate” for

Vaccinate type).

6.6 SUMMARY

In this chapter, we study the event type induction problem that aims to automatically

generate salient event types for a given corpus. We define a novel event type representation

as a 〈predicate sense, object head〉 cluster, and propose ETypeClus that can extract and

select salient predicates and object heads, disambiguate predicate senses, and jointly embed

and cluster P-O pairs in a latent space. Experiments on three datasets show that ETypeClus

can recover human curated types and identify new salient event types.

In the future, we propose to explore the following directions: (1) improve predicate and

object extraction quality with tools of higher semantic richness (e.g., a SRL labeler or an

AMR parser); (2) leverage more information from lexical resources to enhance event repre-

sentation; and (3) cluster objects into argument roles for each discovered event type.
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CHAPTER 7: CONCLUSIONS

7.1 SUMMARY

In this thesis, we have proposed a principled framework that automatically constructs, en-

riches, and applies taxonomies for unleashing hidden knowledge in unstructured text. The

whole automated framework requires minimum human labeled data and obtains good per-

formances by (1) leveraging user-provided seed information as weak supervision, (2) utilizing

salient statistical signals in unlabeled data as self supervision, and (3) resorting to existing

knowledge repositories as distant supervision. Those obtained taxonomies, either a concept

taxonomy or an event taxonomy, not only contain useful knowledge in themselves but also

can be used to organize and index knowledge, help users search and comprehend knowl-

edge stored in a large corpus, and provide structured guidance in many other knowledge

engineering tasks.

7.2 FUTURE WORK

With the mounting big data and diverse applications in today’s information-based society,

my proposed taxonomy-centric framework will play an increasingly important role in orga-

nizing concepts, data, and knowledge. My long-term research goal is to create data-driven

methods that ingest massive heterogeneous data, organize machine-actionable knowledge

into taxonomies, and utilize taxonomies to facilitate human decision-making. Many unique

challenges arise in this context and call for collaborative research efforts from multiple ar-

eas, including data mining, machine learning, natural language processing, computer vision,

human-computer interaction, computer security, and much more. Below are some specific

directions that I am excited to explore in the near future:

7.2.1 Integrate heterogeneous modalities and sources

While my current research primarily focuses on text data, recent years have witnessed a

trend in the confluence of multiple data modalities (e.g., graphs, image, time series) gath-

ered from heterogeneous sources. On one hand, introducing multi-modal data opens the

gate to more labeled datasets for training models. On the other hand, human’s understand-

ing is often grounded on multiple data modalities. A multi-modal multi-task system can

reflect a better understanding of the world. Some study [4] has already shown that more
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meaningful taxonomic relations can be recovered from text-rich networks (e.g., a citation

network with paper abstracts, a social network with user posts, etc.) from their correspond-

ing corpora without metadata. Furthermore, people find that leveraging the information in

taxonomy can help learn better representations of knowledge graph (modeled as a heteroge-

neous information network) [207]. My proposed framework, if properly extended, could well

accommodate such heterogeneity. I plan to develop novel embedding methods that organize

heterogeneous data into a shared latent space for bridging different modalities.

7.2.2 Engage with human behaviors and interactions

For many complex analytical tasks, humans and machines need to collaborate to acquire

necessary task-specific knowledge. There is great potential to adopt my proposed taxonomy-

centric framework to facilitate such a human-in-the-loop process: (1) machines input user-

provided seed data as weak supervision and task guidance, perform data analysis by learning

task-specific models, and return interpretable patterns and visualizations; and (2) humans

make sense of the resultant patterns and visual cues, adjust or provide additional seed data,

and give feedback to guide the machines to extract more useful knowledge. I am interested in

working with researchers in HCI, visualization, and machine learning to address fundamental

challenges for realizing this goal. Example research problems include: How to design intuitive

interfaces to help users provide seed data for various applications? How to train a predictive

and interpretable model using limited labeled data from the user input? How to develop

taxonomy-tailored visualization techniques to help users more easily gain useful knowledge?

How to update a machine learning model continuously based on user feedback to better

satisfy users’ information needs? To answer some of the above questions, I plan to leverage

the prompt-based few-shot learning techniques to incorporate sparse example-based user

feedbacks into our current models.

7.2.3 Preserve data privacy and model security

While the knowledge discovery process from multiple data sources through collective learn-

ing is powerful, the uncensored information extraction and exchanging of multi-party data

may be prone to adversarial attacks and threaten users’ privacy. For example, an online

retailer may provide false or exaggerated product descriptions to fool a category-guided rec-

ommender system to rank their products in top positions. An identity thief may conduct

differential privacy attacks to infer sensitive user information, which is extremely danger-

ous and concerning. My future work on taxonomy will also study privacy-preserving data
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mining methods and federated learning techniques to prevent such attacks. Several research

directions include: (1) enforcing the differential privacy principle to select and anonymize

personal identifiable features for achieving the optimal trade-off between model utility and

data privacy, and (2) leverage the multi-party computation techniques to achieve secure data

and knowledge exchange and prevent information leakage propagation.
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“Deep sets,” in Proceedings of 31st Conference on Neural Information Processing Sys-
tems, 2017.

[130] Z. Shen, H. Ma, and K. Wang, “A web-scale system for scientific knowledge explo-
ration,” in Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, 2018.

113



[131] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016.

[132] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
convolutional neural networks for web-scale recommender systems,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2018.

[133] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, 2014.

[134] R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu, “Attentionxml: Extreme multi-
label text classification with multi-label attention based recurrent neural networks,” in
Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019.

[135] W. Huang, E. Chen, Q. Liu, Y. Chen, Z. Huang, Y. Liu, Z. Zhao, D. Zhang, and
S. Wang, “Hierarchical multi-label text classification: An attention-based recurrent
network approach,” in Proceedings of the 28th ACM International Conference on In-
formation and Knowledge Management, 2019.

[136] S. Gururangan, T. Dang, D. Card, and N. A. Smith, “Variational pretraining for
semi-supervised text classification,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[137] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. Raffel, “Mix-
match: A holistic approach to semi-supervised learning,” in Proceedings of the 33rd
Conference on Neural Information Processing Systems, 2019.

[138] Z. Zeng, W. Zhou, X. Liu, and Y. Song, “A variational approach to weakly super-
vised document-level multi-aspect sentiment classification,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, 2019.

[139] D. Mekala and J. Shang, “Contextualized weak supervision for text classification,” in
Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, 2020.

[140] Y. Meng, Y. Zhang, J. Huang, C. Xiong, H. Ji, C. Zhang, and J. Han, “Text classifica-
tion using label names only: A language model self-training approach,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020.

[141] Z. Wang, D. Mekala, and J. Shang, “X-class: Text classification with extremely weak
supervision,” in Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2021.

[142] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach,” in Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing, 2019.

114



[143] M.-W. Chang, L.-A. Ratinov, D. Roth, and V. Srikumar, “Importance of semantic
representation: Dataless classification,” in Proceedings of the 2008 AAAI Conference
on Artificial Intelligence, 2008.

[144] Y. Song and D. Roth, “On dataless hierarchical text classification,” in Proceedings of
the 2014 AAAI Conference on Artificial Intelligence, 2014.

[145] K. Li, H. Zha, Y. Su, and X. Yan, “Unsupervised neural categorization for scientific
publications,” in Proceedings of the 2018 SIAM International Conference on Data
Mining, 2018.

[146] K. Li, S. Li, S. Yavuz, H. Zha, Y. Su, and X. Yan, “Hiercon: Hierarchical organi-
zation of technical documents based on concepts,” in Proceedings of the 19th IEEE
International Conference on Data Mining, 2019.
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