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Abstract

A gradient of a quantity-of-interest J with respect to problem parameters can augment the utility of a

predictive simulation. By itself, the gradient provides sensitivity information to parameters, which can

aid uncertainty quantification. Gradient-based optimization can be used in both scientific and engineering

applications, including design optimization, data-assimilated modeling and nonmodal stability analysis.

However, obtaining useful gradients for chaotic systems is challenging. The extreme sensitivity to per-

turbations that defines chaos amplifies the gradient exponentially in time, which impedes both sensitivity

analysis and gradient-based optimization. Fundamentally, any J defined in a chaotic system becomes highly

non-convex in time. For such non-convex J , Taylor expansions are useful only in small neighborhoods, which

restricts the utility of the gradients, even if computed exactly. Thus they do not indicate a useful parametric

sensitivity or guidance toward a useful optimum.

We examine this challenge and investigate routes to circumvent these challenges in two applications.

The first is sensitivity computation in particle-in-cell (PIC) simulations involving plasma kinetics. PIC

is attractive for representing non-equilibrium plasma distributions in the six-dimensional velocity–position

phase-space. To do this, Lagrangian simulation particles represent the position and velocity distribution

in a statistical sense. However, computing sensitivity for PIC methods is challenging due to the chaotic

dynamics of these particles, and sensitivity techniques remain underdeveloped compared to those for Eulerian

discretizations. This challenge is examined from a dual particle–continuum perspective that motivates a new

sensitivity discretization. Two routes to sensitivity computation are presented and compared: a direct fully-

Lagrangian particle-exact approach provides sensitivities of each particle trajectory, and a new particle-pdf

discretization. The new formulation involves a continuum perspective but it is discretized by particles

to take the advantages of the same type of Lagrangian particle description leveraged by PIC methods.

Since the sensitivity particles in this approach are only indirectly linked to the plasma-PIC particles, they

can be positioned and weighted independently for efficiency and accuracy. The corresponding numerical

algorithms are presented in mathematical detail. The advantage of the particle-pdf approach in avoiding the

spurious chaotic sensitivity of the particle-exact approach is demonstrated for Debye shielding and sheath
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configurations. In essence, the continuum perspective makes implicit the distinctness of the particles, which

is irrelevant to most prediction goals. In this way it circumvents the Lyapunov instability of the N-body

PIC system. The cost of the particle-pdf approach is comparable to the baseline PIC simulation.

The other case considered is optimal control of turbulent flow. Evidence supports the possibility of

control of turbulence in some applications, in that there seem to be useful, larger-scale components of the

flow, which are less chaotic, in the midst of smaller-scale chaotic turbulence fluctuations. While there have

been many attempts to extract model descriptions of such components from the full dynamics, such models

are often limited in their applicability or accounting for nonlinearity of turbulence. Thus the full dynamics of

turbulent flow is needed to be accurately predictive in simulations. However, in this case the sensitivity of the

more chaotic turbulent fluctuations masks that of the useful component of the flow control. This challenge

is illustrated with a model control problem of the Lorenz system and analyzed in two aspects: the growth of

gradients and non-convexity of J . The horseshoe mapping of chaotic dynamical systems is identified as the

root-cause mechanism for both aspects of the challenge, and its impact is quantitatively evaluated in various

chaotic flow systems, ranging from the Kuramoto–Sivashinsky Equation to a three-dimensional turbulent

Kolmogorov flow. A new optimization framework is proposed based on a penalty-based method. In essence,

the simulation time is split into multiple intervals and auxiliary states are introduced at intermediate time

points, at which the governing equation is not strictly constrained, thus introducing discontinuities in time.

These discontinuities allows J to be more convex, thus enlarging search scale in the optimization space.

They are exploited in this sense then gradually suppressed with increasingly stronger penalty. This multi-

step penalty-based optimization is first demonstrated with a one-dimensional logistic map and the Lorenz

example. Then its effectiveness is further demonstrated for more complex chaotic systems and ultimately

for turbulent Kolmogorov flow. The proposed method finds a solution that suppresses large-scale pressure

fluctuations without laminarization, which suggests its ability to target useful components of the flow in

the midst of chaotic turbulence, thereby showing its potential for practical turbulent flow controls. It far

outperforms a simple gradient-based search.
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Isaiah 55:8-9

For My thoughts are not your thoughts,

And your ways are not My ways, declares Jehovah.

For as the heavens are higher than the earth,

So My ways are higher than your ways,

And My thoughts higher than your thoughts.
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Chapter 1

Introduction

In plasmas, where charged species interactions are important, velocity distributions often deviate from ther-

modynamic equilibrium, so thermal effects are incompletely described by, for example, a simple pressure [1].

Instead, such a non-equilibrium plasma is often well-described by a six-dimensional velocity–position phase-

space distribution governed by the Boltzmann–Vlasov equation. However, representing six-dimensional

phase-space with mesh-based discretizations is expensive, both in terms of memory and operation count

[2]. Lagrangian particle discretizations, now commonly called particle-in-cell (PIC) methods since mesh-

cell-based methods are typically used to accelerate their evaluation, facilitate statistical representation of

distributions [3]. Although this introduces statistical fluctuations such that many quantities of interest

converge only as O(N−1/2) for N particles [4], PIC methods can often represent phase-space distributions

efficiently, while retaining essential nonlinear and non-equilibrium plasma mechanisms [5].

Such PIC methods are well-established; our goal is to augment them with computation of sensitivity.

A common need is the calculation of the sensitivity of some Quantity of Interest (QoI) to parameters of

the model, which is potentially informative in many circumstances, though we envision two particular uses.

For uncertainty quantification, sensitivity quantifies how uncertain model parameters affect the predicted

QoI. These can be physical model parameters, boundary condition parameters, or other parameters of the

overall PIC models. An example we consider in Chapter 8 is how sensitive the sheath potential drop near

the electrode is to the electron–ion charge ratio. This sensitivity could then be used to estimate the impact

of uncertainty in this ratio on uncertainty of a corresponding prediction of the charge ratio. Similarly, if

a parameter of the PIC model is uncertain, such as the width of the ionization source in the specific PIC

model we use in this same example, the uncertainty of the result could likewise be quantified. In such

cases, establishing insensitivity to some parameters can focus subsequent effort on the most consequential

parametric uncertainties. Similarly, design optimization can be accelerated by sensitivity information when

it is interpreted as a gradient. For example, if we wish to optimize the ion current based on an electrode

shape, sensitivity to the geometric parameters of the shape can guide this optimization. These are the types

of problems that motivate the proposed sensitivity formulation.
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The challenge of computing sensitivity in conjunction with a PIC discretization stems from the chaotic

dynamics of particles. Even for short simulation times, which are sufficient to converge a QoI prediction,

deterministic chaos can produce effectively non-differentiable noise-like fluctuations in the QoI with respect

to the parameters [6]. For ergodic dynamical systems, t → ∞ averages of the system converge to the

equilibrium distribution, which is differentiable based on linear response theory [7, 8]. However, due to

exponential instability to small perturbations, differentiation with respect to parameters does not commute

with the t→∞ limit operation [9, 10], so a naive time-average of sensitivity often fails [6, 11]. Algorithms

that have been proposed to circumvent this non-commutability carry certain limitations [6, 9–13]. For

example, their computational cost can be exponential in the dimension of the state variables [9], or a large-

system optimization is required [10, 13], which renders them impractical for many PIC simulations, where

the number of particles often exceeds millions. A more fundamental limitation is that the base assumption of

ergodicity requires a well-defined and time-stable equilibrium, which is not always available. Indeed, PIC can

be particularly attractive for computing transient responses of non-equilibrium plasmas. Our examples will

be cases where a naive finite-difference estimate using PIC simulations with nominally acceptable accuracy

leads to spuriously inaccurate sensitivity.

In this paper, the continuum limit (with N →∞) is presented as an alternative stable limit for sensitivity

calculation. Even though specific particle trajectories are highly sensitive to perturbation, the collective

distribution can remain Lyapunov stable [14]. In essence, since particles are nominally indistinguishable, an

unstably deviated trajectory of one particle can be exchanged with another nearby particle, mollifying their

collective deviation. Such a description is common. This phenomenologically is well-recognized in physics,

such as Brownian motion [15], Lagrangian turbulence [16], and chaotic mixing [17, p. 185][18].

Of course, as in the time limit t → ∞, a naive averaging over sensitivities of particles to approximate

N → ∞ leads a similar challenge of the non-commutability of the limit and differentiation operations.

Starting in Chapter 2 we develop a method to avoid this by considering the particle description as a dis-

cretization operator applied to the continuum Vlasov–Poisson equation. From this continuum starting point,

the sensitivity calculation entails differentiation. There is a choice regarding which is applied first: particle

discretization or differentiation. This is a common question in the formulation of sensitivity or adjoint meth-

ods [19], though in the context of chaotic sensitivity challenge it introduces a way to obviate the commutation

challenge. In essence, we solve the differentiated Vlasov equation for a continuum sensitivity rather than

pursue an unobtainably accurate sensitivity of particles. However, direct discretization of the formulation,

say on a fixed mesh, would be prohibitive due to the high phase-space dimensionality. Instead, following

the original motivation for the PIC discretization, we introduce a particle discretization that is a consistent

3



approximation to continuum sensitivity with an important new flexibility: particle locations and associated

weights can be selected independently of the plasma particle trajectories. This is the key to efficiency and

accuracy. In this paper we develop the mathematical details for a specific PIC formulation, though it should

be clear that the approach is more general.

In Chapter 2, the basic PIC formulation and sensitivity computation are introduced in the necessary

context for formulating numerical schemes. In Chapter 3, we introduce two numerical formulations for

computing sensitivities. The first is the direct particle-exact approach, which provides the exact (machine

precision) sensitivity of Lagrangian particle trajectories in the PIC discretization and serves as a benchmark

for illustrating the chaos challenge. The alternative particle-pdf approach discretizes the differentiated Vlasov

equation with sensitivity particles. A Debye-shielding model configuration is introduced in Chapter 4 and

is used to demonstrate the method. The advantage of the new approach is assessed in Chapter 5. The

sensitivity in the continuum limit and its limit–differentiation non-commutability is analyzed and quantified

in Chapter 6. In Chapter 7, the computational cost of the particle-pdf approach is shown to be superior to

a reference finite-volume mesh-based sensitivity method and comparable to a typical PIC plasma method.

In Chapter 8, sensitivity analysis of a sheath-edge configuration is demonstrated as a more challenging

application of particle-pdf approach, illustrating adaptivity opportunities. The flexibility and additional

advantage of the new particle-pdf approach are discussed in Chapter 9.
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Chapter 2

Preliminaries

2.1 PIC as a discretization of the Vlasov equation

Particle-in-cell (PIC) methods are well-documented [5, 20–23]. A common approach is to start from the

particle equations of motion and a regularized electromagnetic or electrostatic force interaction [5, 20–22].

For our purposes, PIC is introduced as a discretization of the Vlasov equation, following most directly the

formulation of Lapenta [23].

The Vlasov–Poisson equation,

~V[Ξ] = 0





V1[Ξ] =
∂f

∂t
+ v · ∇xf +

q

m
E · ∇vf = 0 (2.1a)

V2[Ξ] = ∇2φ+
ρ

ε0
= 0 (2.1b)

V3[Ξ] = E +∇φ = 0, (2.1c)

with

ρ = q

∫
f d3v + ρext, (2.2)

governs the time-dependent position–velocity (x–v) phase-space population distribution f(x,v, t) for a colli-

sionless electrostatic plasma. Here, q and m are the particle charge and mass, φ is the electrostatic potential,

E is the electric field, ρext is a configuration-specific nominally external charge density, and ε0 is permittivity.

For compactness, we collect the dependent variables as Ξ = {f, φ,E}. Generalization to multiple species

with different q and m is straightforward.

The continuous distribution f in (2.1) is approximated by N computational particles [23],

f ≈ fN =

N∑

p=1

fp(x,v, t) =

N∑

p=1

WpSx(x− xp)Sv(v − vp), (2.3)

where each fp is a fixed nominal particle shape, making up the full f distribution. Each fp has a weight

factor Wp and distributed support SxSv in the phase-space, with the shape functions Sx and Sv designed so

that f can be approximated on a mesh with smooth forces between corresponding fp. A tensor-product of
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B-splines of order l Sx = bl(x) is a common choice for space, and a Dirac function Sv = δ(v) for velocity [23].

Appendix A summarizes details of the current shape functions, none of which are fundamental to the goals

of this paper.

The governing equation for any particle fp, with position xp and velocity vp, is obtained from moments

of (2.1a),
∫
V1[Ξ] dx dv =

N∑

p=1

Ẇp = 0

∫
xV1[Ξ] dx dv =

N∑

p=1

Wp [ẋp − vp] +

N∑

p=1

Ẇpxp = 0

∫
vV1[Ξ] dx dv =

N∑

p=1

Wp

[
v̇p −

q

m
Ep

]
+

N∑

p=1

Ẇpvp = 0,

(2.4a)

(2.4b)

(2.4c)

which yield

Ẇp = 0

ẋp = vp

v̇p =
q

m
Ep =

q

m

∫
ESx(x− xp) dx.

(2.5a)

(2.5b)

(2.5c)

With this description, f can be considered to be discretized by particles {xp,vp,Wp}Np=1.

The field variables in (2.1) are approximated as mesh-cell averages:

φ =
∑

i∈mesh

φib0(ξi) (2.6a)

E =
∑

i∈mesh

Eib0(ξi) (2.6b)

ρ =
∑

i∈mesh

ρib0(ξi) , (2.6c)

where ξi =
(
x−xi

∆x ,
y−yi
∆y ,

z−zi
∆z

)
with mesh multi-index i = (i, j, k). With this description (2.1b) and (2.1c)

are discretized as

∇2
i φi = − ρi

ε0
= − 1

ε0

[
q

∆x

∫

R3

∫ xi+
∆x
2

xi−∆x
2

fN dxdv + ρext,i

]
(2.7a)

Ei = −∇iφi. (2.7b)

In our particular implementation, the discretized x-gradient ∇i and Laplace operator ∇2
i are based on
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standard second-order centered finite differences. For a uniform grid and B-spline shape functions, the

integrals in (2.7a) are evaluated as [23]

ρi =
q

∆x

∫

R3

∫ xi+
∆x
2

xi−∆x
2

fN dxdv + ρext,i

=
q

∆x

∫ xi+
∆x
2

xi−∆x
2

N∑

p=1

Wpbl

(
x− xp

∆x

)
dx + ρext,i

=
q

∆x

N∑

p=1

Wpbl+1

(
ξp,i
)

+ ρext,i,

(2.8)

where

ξp,i =

(
xp − xi

∆x
,
yp − yi

∆y
,
zp − zi

∆z

)
. (2.9)

A reversible time integration scheme, which is often used for (2.5b) and (2.5c), is also used here [20]:

xkp − xk−1
p

∆t
= v

k− 1
2

p (2.10a)

v
k+ 1

2
p − v

k− 1
2

p

∆t
=

q

m
Ek
p, (2.10b)

where ∆t is the numerical time step. In summary, for discrete state variables ΞD = {xp,vp,Wp, φg,Eg},

the following are evaluated sequentially for each particle p and each time step n,

~VD[ΞD] = 0





Particle Motion : VD1 [ΞD] =
xkp − xk−1

p

∆t
− v

k− 1
2

p = 0 (2.11a)

Charge Assignment : VD2 [ΞD] = ρki −
q

∆x

N∑

p=1

Wpbl+1

(
ξp,i
)
− ρext,i = 0 (2.11b)

Electrostatic Potential : VD3 [ΞD] = ∇2
i φ
k
i +

ρki
ε0

= 0 (2.11c)

E-field Evaluation : VD4 [ΞD] = Ek
i +∇iφ

k
i = 0 (2.11d)

Force Assignment : VD5 [ΞD] = Ek
p −

∑

i∈mesh

Ek
i bl+1

(
ξp,i
)

= 0 (2.11e)

Particle Acceleration : VD6 [ΞD] =
v
k+ 1

2
p − v

k− 1
2

p

∆t
− q

m
Ek
p = 0. (2.11f)

The formulation from (2.1) to (2.5) defines a discretization of f by particles, and (2.11) is a corresponding

discretization of the particle dynamics in time and the electrostatic field in space. For an electromagnetic

plasma, (2.1b) would be replaced with Maxwell’s equations, and it could likewise be augmented with colli-

sional models [5, 23, 24].
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2.2 Sensitivity formulation

The goal is to quantify how a quantity-of-interest (QoI) J (Θ) is sensitive to parameter-of-interest Θ =

{θ1, θ2, · · · }. For plasma kinetics, a common QoI would be the electric field energy or emission rate of

electrons on an electrode. We assume that it can be expressed as an integral,

J (Θ) =

∫∫∫
J(Ξ; Θ) dx dv dt. (2.12)

For any θ ∈ Θ, the sensitivity is then

∂J
∂θ

=

∫∫∫ [
∇ΞJ · ∂bΞc+

∂J

∂θ

]
dx dv dt, (2.13)

where derivative with respect to θ is denoted as ∂b·c ≡ ∂
∂θ (·). For the two perspectives we develop, this ∂b·c

notation will represent either a sensitivity variable to be discretized or a derivative of a discretized variable.

In general, (2.13) shows that the QoI sensitivity depends on the time-dependent plasma-state sensitivity,

∂bΞc ≡ ∂Ξ
∂θ . A governing equation for ∂bΞc can be developed by differentiating (2.1), the Vlasov–Poisson

equation ~V[Ξ; Θ] = 0, where we now express θ ∈ Θ explicitly:

d

dθ

(
~V[Ξ; Θ]

)
=
∂~V
∂Ξ
· ∂bΞc+

∂~V
∂θ

= 0. (2.14)

The second term ∂θ~V represents the explicit dependence of ~V on θ and is a problem-specific source term.

The first factor ∂Ξ
~V is the linearized dependence about the solution Ξ, which would be the same in any

such sensitivity analysis.

2.3 Commutability of particle discretization and sensitivity

differentiation

With the notation (·)D indicating a PIC-like discretization as used in (2.11) and d
dθ the usual derivative

(sensitivity) operator, either can be applied first: discretize-then-differentiate d
dθ (~VD) versus differentiate-

then-discretize ( ddθ
~V)D. These two routes are illustrated in figure 2.1. The first approach is particle-exact :

it provides the discrete-exact sensitivity for the computational particles. Its accuracy for the discrete model

is only limited by arithmetic precision. No further approximation is made after differentiation. The second

approach is a particle-pdf discretization: the sensitivity distribution is subsequently discretized.
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V[Ξ] = 0
Vlasov Eq.

VD[ΞD] = 0
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d

dθ
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Figure 2.1: Sensitivity governing equation formulation schematic.

As a particle discretization, the PIC method provides a consistent approximation to the N → ∞ (con-

tinuum) limit, with errors due to the use of finite N particles. The consequences of finite ∆x and ∆t

are standard and are addressed subsequently and in the appendix, after our key concern: the sensitivity

challenge of the particle discretization itself. When differentiated after discretization, the sensitivity is not

necessarily as accurate as the original particle discretization of the plasma model. This notion is understood

as dual-consistency for adjoint-based methods [19]. The particle-exact approach does not provide a sensi-

tivity estimate that is consistent with a continuum formulation. Rather it is exponentially unstable due to

deterministic chaos, which will be quantified in Chapter 5. This instability is not artificial: the particles used

in the discretization mimic physical particles, which interact chaotically. However, as discussed below, the

particle-pdf discretization provides a route to avoiding this, so long as sensitivity in the continuum limit is

stable, which is a standard case for PIC. To do this, a PIC discretization is formulated for the differentiated

continuum plasma model.
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Chapter 3

Sensitivity Formulations

We first develop the particle-exact formulation for illustrating the spurious effects of particle chaos in specific

cases, before introducing the particle-pdf method to avoid it.

3.1 Particle-exact sensitivity formulation

A discrete analog of the general QoI (2.12) is

JD =
∑

p,i,k

JD
(
xkp,v

k+ 1
2

p , φki ,E
k
i

)
∆x∆t. (3.1)

The corresponding sensitivity from (2.13) is

∂JD
∂θ

=
∑

p,i,k

(
∂JD
∂xkp

·
∂
bxkpc+

∂JD

∂v
k+ 1

2
p

· ∂bv
k+ 1

2
p c+

∂JD
∂φki

∂bφki c+
∂JD
∂Ek

i

· ∂bEk
i c
)
, (3.2)

and the sensitivities for the discrete variables

∂bΞDc =
{
∂
bxkpc, ∂bv

k+ 1
2

p c, ∂bφki c, ∂bEk
i c
}

(3.3)

in (3.2) are obtained by differentiation of (2.11),

d

dθ
~VD
(
∂bΞDc

)
=
∂~VD
∂ΞD

· ∂bΞDc+
∂~VD
∂θ

= 0. (3.4)

Including full details of ∂~VD

∂ΞD
· ∂bΞDc in (3.4), the particle-exact sensitivity is
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d

dθ

(
~VD[ΞD]

)
= 0





Particle Motion :
d

dθ
VD1 = ∂

bxkpc − ∂
bxk−1
p c

∆t
− ∂bv

k− 1
2

p c+
∂VD1
∂θ

= 0 (3.5a)

Charge Assignment :
d

dθ
VD2 = ∂bρic −

∑

p

qWp∇xbl+1

(
ξp,i
)
·
∂
bxkpc (3.5b)

+
∂VD2
∂θ

= 0 (3.5c)

Electrostatic Potential :
d

dθ
VD3 = ∇2

i ∂bφic+ ∂bρic
ε0

+
∂VD3
∂θ

= 0 (3.5d)

E-field Evaluation :
d

dθ
VD4 = ∂bEic+∇i ∂bφic+

∂VD4
∂θ

= 0 (3.5e)

Force Assignment :
d

dθ
VD5 = ∂bEpc −

∑

i∈mesh

∂bEicbl+1

(
ξp,i
)

(3.5f)

−
∑

i

Ei

(
∇xbl+1

(
ξp,i
)
·
∂
bxkpc

)
+
∂VD5
∂θ

= 0 (3.5g)

Particle Acceleration :
d

dθ
VD6 = ∂bv

k+ 1
2

p c − ∂bv
k− 1

2
p c

∆t
− q

m ∂bEpc+
∂VD6
∂θ

= 0. (3.5h)

3.2 Particle-pdf formulation

3.2.1 Overview

The particle-pdf formulation reverses the order of operations, first differentiating (2.12) with respect to θ,

∂J
∂θ

=

∫∫∫ (
∂J

∂f ∂bfc+
∂J

∂φ ∂bφc+
∂J

∂E
· ∂bEc

)
dx dv dt. (3.6)

Extension to an array of parameters Θ = {θ1, θ2, · · · } is straightforward. The sensitivity distribution ∂bfc

is then approximated discretely by M sensitivity particles

∂bfc ≈ ∂bfcM =

M∑

s=1

ŴsSx(x− x̂s)Sv(v − v̂s), (3.7)

where, similar to Wp in (2.3), Ŵs is the weight of sensitivity particle s, which contributes to the distribution

∂bfc. A key point is that the sensitivity particles {x̂s, v̂s, Ŵs} can be distinct from the plasma PIC particles,

which will be further discussed in Section 3.2.4. The particle-discretized sensitivity state variable

∂bΞcD = {x̂s, v̂s, Ŵs, ∂bφci, ∂bEci} (3.8)

includes all s = 1, . . . ,M sensitivity particles and all mesh points multi-indexed by i.
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Differentiation of the Vlasov–Poisson equation (2.1) yields

∂~V
∂Ξ
· ∂bΞc+

∂~V
∂θ

= 0





dV1

dθ
=

∂

∂t ∂
bfc+ v · ∇x ∂bfc+

q

m
E · ∇v ∂bfc

+
q

m ∂bEc · ∇vf +
∂V1

∂θ
= 0

(3.9a)

dV2

dθ
= ∇2

∂bφc+ ∂bρc
ε0

+
∂V2

∂θ
= 0 (3.9b)

dV3

dθ
= ∂bEc+∇ ∂bφc+

∂V3

∂θ
= 0, (3.9c)

with sensitivity density

∂bρc =

∫
q ∂bfc d3v + ∂bρextc. (3.10)

The sensitivity distribution ∂bfc evolves according to (3.9a), which is similar to the original Vlasov equation

(2.1a), though ∂bfc is not constant along the characteristics of (3.9a) because of its final two terms, which

we write compactly as a nominal source

H(x,v, t) ≡ q

m ∂bEc · ∇vf +
∂V1

∂θ
. (3.11)

So, unlike the original PIC discretization where the moments of the Vlasov equation (2.1a) lead to constant

weights of particles per (2.5), moments of (3.9a) with ∂bfcM yield evolving sensitivity-particle weights due

to H,
∫
dV1

dθ
dx dv =

∫ [
∂

∂t ∂
bfcM +H

]
dx dv = 0 (3.12a)

in addition to PIC-like expressions for particle position and velocity,

∫
x
dV1

dθ
dx dv =

M∑

s=1

Ŵs

[
dx̂s
dt
− v̂s

]
= 0 (3.12b)

∫
v
dV1

dθ
dx dv =

M∑

s=1

Ŵs

[
dv̂s
dt
− q

m
Es

]
= 0. (3.12c)

Advection of sensitivity particles thus is identical to PIC particles,

dx̂s
dt

= v̂s (3.13a)

dv̂s
dt

=
q

m
Es =

q

m

∑

i∈mesh

Eibl+1

(
ξ̂s,i

)
, (3.13b)
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with ξ̂s,i =
(

x̂s−xi

∆x

)
.

To evolve sensitivity-particle weights per (3.12a), H is also discretized by sensitivity particles {x̂s, v̂s}:

H(x,v, t) ≡ q

m ∂bEc · ∇vf +
∂V1

∂θ
≈

M∑

s=1

hsSx(x− x̂s)Sv(v − v̂s), (3.14)

though determining hs is complicated by the disparate discretizations used for ∂bEc and f and potentially

for ∂θV1. The needs are outlined here and the specific methods are detailed subsequently. The E-field

sensitivity ∂bEc is evaluated from (3.9c) on the mesh, with discretization most naturally matching that

for the E-field equation (2.7b). However, f is discretized by the plasma-PIC particles per (2.3), and ∂θV1

depends on the specific sensitivity goal and possibly can involve either mesh or particle discretization. These

are schematically represented in Figure 3.1. To evaluate H (and hs) at the sensitivity particles, we first

evaluate f(x,v, t) on a (x,v)-phase-space mesh by interpolating PIC particles to the phase-space mesh,

as shown in Figure 3.1. With f represented on the mesh, H can also be evaluated and interpolated onto

sensitivity particle positions, so particle-discretization of the sensitivity distribution ∂bfcM in (3.7) can be

integrated in time from (3.12a),

∂

∂t ∂
bfcM = −H. (3.15)

In summary, the overall implementation of (3.9a) entails four stages each numerical time step:

1. Particle advection by (3.13),

2. Evaluation of each contribution to H (3.11) on the phase-space mesh,

3. Interpolation of H from the mesh to the sensitivity particles by (3.14), and

4. Time-integration of (3.15).

The advection (3.13) matches the original PIC simulation, and thus will only be included in the formulation

summary of Section 3.2.5. The other procedures are formulated in detail in the following subsections.

3.2.2 Evaluation of H on the phase-space grid

The first task is to represent the source term H on the (x,v) phase-space mesh (xi,viv ),

H(x,v) =
∑

i,iv

Hi,ivb0 (ξi) b0
(
ζiv

)
, (3.16)
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distribution f

∂V1
∂θ in (Eq. 3.18)
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PIC particles to
evaluate ∇vf(xi,vi)

Interpolate sensitivity source

H (Eq. 3.11) to sensitivity particlesPIC particle (xp,vp)

Sensitivity particle (x̂s, v̂s)

Figure 3.1: Schematic evaluation of H in (3.11) for an one-dimensional x − v space-velocity model and its
interpolation onto sensitivity particles by (3.14). As in PIC, key operations involve interpolation between
the particles and mesh.

where ξi matches (2.6) and for v = (u, v, w) the corresponding velocity cell coordinate is

ζiv =

(
u− uiv

∆u
,
v − viv

∆v
,
w − wiv

∆w

)
, (3.17)

with multi-index iv = (iv, jv, kv). Of course, a six-dimensional phase-space mesh is potentially prohibitively

expensive for discretizing (2.1) as a PDE system. However, advection by (3.13) avoids the restrictive time

step for integrating the corresponding PDE on a mesh. An additional efficiency comes from storing and

reusing the interpolation coefficients bl+1(ξp,i) in (2.11). Though it uses the construct of a six-dimensional

mesh, operations are on a particle basis, and detailed algorithm analysis and profiling results in Section 7.1

show that despite using the full phase-space mesh in this way the procedures carry comparable expense to

the original PIC algorithm.

The mesh values Hi,iv are

Hi,iv =
( q
m ∂bEc · ∇vf

)
i,iv

+

(
∂V1

∂θ

)

i,iv

, (3.18)

where (∂θV1)i,iv
depends on the specific sensitivity objective. The E-field sensitivity ∂bEci from the electro-
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static system (3.9b) and (3.9c) is discretized on the mesh as

∇2
i ∂bφci + ∂bρci

ε0
+

(
∂V2

∂θ

)

i

= 0

∂bEci +∇i ∂bφci +

(
∂V3

∂θ

)

i

= 0,

(3.19a)

(3.19b)

with problem-specific source terms (∂θV2)i and (∂θV3)i, and from (3.10) the sensitivity charge density is

∂bρci =
1

∆x

∫

R3

∫ xi+
∆x
2

xi−∆x
2

q ∂bfcM dx dv + ∂bρextci

=
q

∆x

M∑

s=1

Ŵsbl+1(ξ̂s,i) + ∂bρextci.
(3.20)

The simplest choice is that the quadrature in (3.20) matches that for the charge density in (2.8). To compute

(∂bEc · ∇vf)i,iv
in (3.18), the v-gradient and the dot product with ∂bEc are first applied to the v-dependent

shape function,

(∂bEc · ∇vf)i,iv
=

1

∆x∆v

∫ viv+ ∆v
2

viv−∆v
2

∫ xi+
∆x
2

xi−∆x
2

∂bEc ·
N∑

p=1

WpSx(x− xp)∇vSv(v − vp) dx dv

=

N∑

p=1

Wp

∆x∆v

∫ xi+
∆x
2

xi−∆x
2

Sx(x− xp) dx

∫ viv+ ∆v
2

viv−∆v
2

∂bEci · ∇vSv(v − vp) dv,

(3.21)

where mesh-cell i values of ∂bEc from (3.19) are used. To match the interpolation order in both x and v,

we take Sx = bl and Sv = bl+1, though this is not a requirement so long as l ≥ 1. The result is

(∂bEc · ∇vf)i,iv
=

N∑

p=1

Wp

∆x∆v
bl+1

(
ξp,i
)
∂bEci · ∇vbl+2

(
ζp,iv

)
, (3.22)

with

ζp,iv =

(
up − uiv

∆u
,
vp − viv

∆v
,
wp − wiv

∆w

)
. (3.23)

In our implementation, Sx = b1 and Sv = b2, and the formula for ∇vb3(ζp,iv ) is (A.2) in Appendix A.

3.2.3 Interpolation of H from the mesh to the sensitivity particles

We start considering H(x,v, t) in a generic continuous form, which must be linked to the particle distribu-

tions. The discretization of H is considered subsequently. The irregular and evolving distribution of particles
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over the (x,v) phase-space is quantified by their number density,

n̂ =

M∑

s=1

n̂s =

M∑

s=1

Sx(x− x̂s)Sv(v − v̂s). (3.24)

This is equivalent to (3.7) with Ŵs = 1, and allows us to define a particle-specific source strength h = H/n̂,

such that H can be ascribed to the particles as

H(x,v) = h(x,v)n̂(x,v) =
∑

s

h(x,v)︸ ︷︷ ︸
source strength

Sx(x− x̂s)Sv(v − v̂s)︸ ︷︷ ︸
particle configuration

. (3.25)

To do this, we attempt to find a representation value at particle s, denoting as hs, considering its finite-sized

shape. This can be evaluated by convolution, as for the electric field for particles Ep in (2.5c),

hs = S ∗ h
∣∣
x̂s,v̂s

≡
∫∫

h(x,v)Sx(x− x̂s)Sv(v − v̂s) dxdv. (3.26)

Replacing h(x,v) in (3.25) with hs provides the discretization of H with sensitivity particles given in (3.14).

In order to calculate the convolution in (3.26), h = H/n̂ is evaluated on sensitivity particles. First, the

mesh values of H are evaluated via (3.18), and then n̂ is interpolated from sensitivity particles to the mesh

as in (3.22), using Sx = Sv = bl

n̂i,iv =
1

∆x∆v

∫ xi+
∆x
2

xi−∆x
2

∫ viv+ ∆v
2

viv−∆v
2

n̂(x,v) dx dv

=
1

∆x∆v

M∑

s=1

bl+1

(
ξ̂s,i

)
bl+1

(
ζ̂s,iv

)
,

(3.27)

with ξ̂s,i and ζ̂s,iv defined as ξp,i in (2.9) and ζp,iv in (3.23), now for (x̂s, v̂s). Evaluating hi,iv =
Hi,iv

n̂i,iv
with

(3.18) and (3.27), we obtain (3.26) in fully-discrete form

hs =
∑

i,iv

hi,ivbl+1

(
ξ̂s,i

)
bl+1

(
ζ̂s,iv

)
. (3.28)

Representation of H this way is predicated on there being sufficient particles in the necessary region to

support it. Thus n̂i,iv must be finite wherever H 6= 0:

n̂i,iv > 0 ∀(i, iv) ∈ {(i, iv) | Hi,iv 6= 0} . (3.29)
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(a) Collocated (b) Non-collocated (c) Particle addition

f(x,v, t)∂V1

∂θ
(x,v, t)

(xp,vp) ≡ (x̂s, v̂s)

Existing sensitivity particle (x̂s, v̂s)

PIC particle (xp,vp)

New sensitivity particle (x̂s, v̂s)

Distribute H to new sensitivity particles

Figure 3.2: The (a) collocated weight-evolution, (b) non-collocated weight-evolution, and (c) particle addition
schemes.

If this is not the case, the flexibility of the formulation can be leveraged to create new particles to represent

H. Of course, accuracy goals might indicate the addition of more particles too, as considered in subsequent

examples.

3.2.4 Time-integration of H

Three basis methods for representingH are illustrated in Figure 3.2. They differ primarily in the choice of the

particles with which H is discretized. In the first, sensitivity particles are collocated with PIC particles and

move synchronously with them. This is relatively simple, and it benefits from some redundancy of calculation,

but it does not expose all the available flexibility. The second method uses distinct sensitivity particles.

This independence is further exploited in the third method, which allows the addition and redistribution

of sensitivity particles each time step, opening opportunities for advantageous adaptation. In the first two

methods, only the weights in (3.7) of existing particles evolve in time. In the third method, the weights

are assigned to new particles to represent H. We refer these methods as collocated, non-collocated, and

particle addition. Collocated particles advect just as the PIC particles, so interpolation coefficients in (2.8)

can be reused. However, to be effective, it is necessary that the original PIC particles be arranged so that

the n̂ support condition (3.29) be satisfied. To satisfy this minimum necessity or to improve resolution,

non-collocated and particle addition methods provide additional flexibility. A combination of these two

schemes provides the greatest flexibility to represent sparse sensitivity distributions, which is demonstrated

in Chapter 8.

For both the collocated and non-collocated weight-evolution schemes, particle source strength hs (3.28)

is evaluated for existing sensitivity particles. Then with the discretization of H in (3.14), the zeroth moment
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of the differentiated Vlasov equation (3.12a) becomes

dŴs

dt
= −hs for s = 1, . . . ,M, (3.30)

which allows sensitivity weights Ŵs to evolve independently from the PIC particle weights.

For the particle-addition scheme, Nnew particles (x̂i, v̂i) are created, potentially in each time step, which

must be done such that

n̂new =

Nnew∑

i=1

Sx(x− x̂i)Sv(v − v̂i) (3.31)

satisfies (3.29). As presented, the new particles assume the full burden of representing the source H, though

this can be generalized. In this simplest form, the source term H is represented just by these new particles

as in (3.25)

H(x,v) ≈
Nnew∑

i=1

hiSx(x− x̂i)Sv(v − v̂i), (3.32)

where the weight factor hi is evaluated via (3.28) using only the new particles, so mesh values of n̂new are

pre-computed and do not need to be updated each time step. The time-integration of (3.12a) is realized

through the addition of these new particles,

∂bfcM ′ = ∂bfcM +

Nnew∑

i=1

ŴiSx(x− x̂i)Sv(v − v̂i), (3.33)

with their weights Ŵi set to match integral of hi during ∆t,

Ŵi = −
∫ t∗+∆t

t∗
hi dt for i = 1, . . . , Nnew, (3.34)

which replaces the weight evolution (3.30). The exact time-integration of the entire governing equation

is achieved only when ∆t → 0, when particles are added continuously in time. For a finite ∆t, (3.34) is

evaluated with a numerical quadrature rule, that will be illustrated in section 3.2.5.

Flexibility can be augmented by periodically replacing particles, which requires redistribution of ∂bfc to

a new set of Mnew particles,

∂bfcredistributed =

Mnew∑

r=1

ŴrSx(x− x̂r)Sv(v − v̂r). (3.35)

Similar procedures are used in vortex methods [25, 26], smooth-particle hydrodynamics [27], and PIC meth-
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ods [28, 29]. The new-particle weights in (3.35) are

Ŵr =

M∑

s=1

Ŵs

∆x∆v
b̃l

(
ξ̂s,r

)
b̃l

(
ζ̂s,r

)
, (3.36)

with (ξ̂s,r, ζ̂s,r) =
(

x̂s−x̂r

∆x , v̂s−v̂r

∆v

)
and b̃l is the modified B-spline function of order l, which is more accu-

rate than standard B-spline of same order in (2.8), and keeps the redistribution error below that of other

procedures in the particle-pdf method [29, 30].

3.2.5 Summary

The particle-pdf approach has several steps common with PIC,

Particle Motion :
dx̂s
dt

= v̂s

Sensitivity Charge : ∂bρci =
q

∆x

Mk∑

s

Ŵsbl+1(ξ̂s,i) + ∂bρextcg

Sensitivity Potential : ∇2
i ∂bφci = −∂bρci

ε0

Sensitivity E-field : ∂bEci = −∇i ∂bφci

Force Assignment : Es =
∑

i∈mesh

Eibl+1(ξ̂s,i)

Particle Acceleration :
dv̂s
dt

=
q

m
Es.

(3.37a)

(3.37b)

(3.37c)

(3.37d)

(3.37e)

(3.37f)

In addition, the sensitivity source term H is evaluated as

Source Evaluation : (∂bEc · ∇vf)i,iv
=

N∑

p=1

Wp

∆x∆v
bl+1 (ξp,i) ∂bEci · ∇vbl+2 (ζp,iv ) , (3.38)

then H is discretized by sensitivity particles with weights hs,

n̂ Evaluation : n̂i,iv =
1

∆x∆v

∑

s

bl+1

(
ξ̂s,i

)
bl+1

(
ζ̂s,iv

)

Source weights : hs =
∑

i,iv

Hi,iv

n̂i,iv

bl+1

(
ξ̂s,i

)
bl+1

(
ζ̂s,iv

)
,

(3.39a)

(3.39b)

where the particles are either existing particles for collocated or non-collocated methods, or new particles

for the particle-addition method. For collocated or non-collocated methods, the weight is integrated in time
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for existing particles,

Weight Evolution :
dŴexist

dt
= −hexist. (3.40a)

For the particle addition method, a new set of particles are added with their weights,

Addition : Ŵnew = −
∫ t∗+∆t

t∗
hnew dt, (3.40b)

with replacement and redistribution of ∂bfcM as deemed advantageous:

Redistribution : ∂bfcredistribution(x,v) =

Mnew∑

r=1

ŴrSx(x− x̂r)Sv(v − v̂r). (3.41)

Redistributed weights are calculated as

Ŵr =

M∑

s=1

Ŵs

∆x∆v
b̃l+1

(
ξ̂s,r

)
b̃l+1

(
ζ̂s,r

)
. (3.42)

There is considerable flexibility for time-integrating (3.37a), (3.37f) and (3.40). A Liouville formula-

tion [15], similar to standard PIC methods, is illustrated in Figure 3.3. It provides a second-order time-

reversible integration. As presented, since sensitivity particle weights do not affect the electrostatic field on

particle s (Ek
s), it does not need to be re-evaluated each time step. For collocated particles, the advection

stages (3.37a), (3.37e), and (3.37f) are unneeded, and interpolation coefficients bl+1(ξp,i) in (2.8) can be

reused for ξ̂s,i in (3.37b) and (3.39b).
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x̂k
s − x̂k−1

s

∆t
= v̂

k− 1
2

s
(3.37a)

v̂k
s − v̂

k− 1
2

s

∆t/2
=

q

m
Ek

s
(3.37f)

Method?Ŵ
k+ 1

2
s − Ŵ

k− 1
2

s

∆t
= −hk

s (3.40a)

Ŵ
k+ 1

2
new = −hk

new∆t
(3.40b)

Mk > Mmax?

∂bfcM =⇒ ∂bfcnew
(3.41-42)

v̂
k+ 1

2
s − v̂k

s

∆t/2
=

q

m
Ek

s
(3.37f)

Collocated/
Non-collocated

Particle addition

Mk = Mk−1 + Nnew

yes

no

next time step: k ← k + 1

Figure 3.3: Flow diagram for second-order time-reversible integration, including references to equations in
the formulation.
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Chapter 4

Demonstration model: Debye
shielding

Any local charge in a plasma is shielded by the plasma charges distributed on the Debye length scale [1]. We

consider the sensitivity of the Debye length to temperature for a quasi-neutral plasma with singly-charged

ions: ni0 = ne0. Following a common approximation [1, 31], the ions are assumed to be uniformly distributed

and stationary, so ni(x, t) = ne0 for this demonstration, and the electrons are initially in thermal equilibrium,

f(x, v, t = 0) =
ne0√
2πvT

exp

(
− v2

2v2
T

)
, (4.1)

with vT =
√
kBTe/me, where me and Te are the electron mass and temperature, and kB is the Boltzmann

constant. For (4.1) particle velocities are initialized statistically,

vp(t = 0) = vT γp p = 1, . . . , N, (4.2)

where γp are pseudorandom numbers with standard normal distribution. The plasma is assumed to be

homogeneous in y and z and in an x-periodic domain of length L, so

f(x+ L) = f(L), φ(x+ L) = φ(x), and E(x+ L) = E(x). (4.3)

The length is set L = 20λD, where λD =
√

ε0kBT0

ne0q2
e

is the Debye length at reference temperature T0, with qe

the electron charge. The nominal external charge distribution is

ρext(x) = −2qe
L

+
2qe√
2πwq

exp

[
− (x− xc)2

2w2
q

]
, (4.4)

with wq = 0.1L and xc = L/2, which will attract electrons to a Debye-length-scale neighborhood of xc.

The PIC simulation uses N = 105 particles, Nm = 64 spatial mesh points, and time step ∆t = 0.05/ωp,

where ωp =
√

neq2
e

meε0
is the electron plasma frequency. Figures 4.1 (a) and (b) visualize the electron distribution

and show the shielded potential for vT = 1.5v0, where v0 = λDωp is the electron thermal velocity at the
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Figure 4.1: (a) Electron distribution histrogram for Debye-shielding configuration (see text), (b) the applied
φext and shielded φ potential, and (c) time-dependent integrand of the quantity-of-interest (4.5).

reference temperature.

The QoI is based on the mean electron distribution for time tf ,

J =
1

tf

∫ tf

0

J(t) dt, (4.5a)

with

J(t) =

∫ ∞

−∞

∫ L

0

(x− xc)2f(x, v, t) dxdv, (4.5b)

which provides a measure of the shielding length scale. It is discretized as

JD =
1

Nt

Nt∑

k=1

N∑

p=1

Wp(x
k
p − xc)2. (4.6)

The QoI depends on the temperature of the electrons. In the high temperature (T →∞) limit, the effect of

fixed charge is neglected and the electron number density remains uniform in space, which yields maximum

QoI 1
12L

3. For T → 0, the electron number density tracks (per our assumptions) the background fixed

charge distribution, and the QoI is minimized 1
12L

3 − 1
6L

2 + 2w2
q . The time history of J(t) is shown in

Figure 4.1 (c), where it oscillates about the equilibrium value as expected due to the statistical character of

the PIC approximation. The parameter-of-interest is the initial thermal velocity of the electrons θ = vT /v0.

For the particle-pdf approach

∂J
∂θ

=
1

tf

∫ tf

0

∫ ∞

−∞

∫ L

0

(x− xc)2
∂bfc dx dv dτ

≈
(
∂J
∂θ

)

D

=
1

Nt

Nt∑

k=1

Mk∑

s=1

Ŵs(x̂
k
s − xc)2,

(4.7)
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and for the particle-exact approach

∂JD
∂θ

=
1

Nt

Nt∑

k=1

N∑

p=1

2Wp(x
k
p − xc) ∂bx

k
pc. (4.8)

The source (3.9) for the particle-pdf approach is

∂V1

∂θ
=

(
v2

v2
T

− 1

)
ne0√
2πv2

T

exp

(
− v2

2v2
T

)
δ(t), (4.9)

which provides a t = 0 initial condition for the sensitivity distribution ∂bfc. The discrete source for particle-

exact approach (3.4) is

∂VD1
∂θ

=





γp at k = 1

0 at k > 1

for p = 1, . . . , N, (4.10)

which is the differentiation of (4.2) with θ = vT . Particle exactness depends on the exact initial condition

so the pseudorandom numbers γp are kept for the sensitivity calculation.

24



Chapter 5

Demonstrations

5.1 Accuracy and regularity

The accuracy of the computed sensitivity (4.8) is assessed against a finite difference of (4.6)

∆JD
∆θ

=
JD[θ0 + ∆θ]− JD[θ0]

∆θ
, (5.1)

which yields a nominal error

ε =

∣∣∣∣∣
∆JD

∆θ − ∂JD

∂θ
∂JD

∂θ

∣∣∣∣∣ = O(∆θ) +O
( εr

∆θ

)
, (5.2)

which is used to assess accuracy. It is deemed accurate when in agreement with the O(∆θ) truncation error

of the first-order finite difference. This will fail as O
(
εr
∆θ

)
due to accumulation of error from finite-precision

arithmetic, where εr quantifies precision [32].

For applications it is also important to assess the size of the neighborhood of θ for which the approximation

∆JD = ∂JD

∂θ ∆θ +O(∆θ2) is accurate, since this limits the utility of any ∂JD

∂θ estimate, and can be reduced

by chaos. For a relative error threshold εp, this size is quantified by a nominal prediction range

∆θp = max
∆θ>0

{∆θ | ε(∆θ) ≤ εp}. (5.3)

5.2 Sensitivity calculations

Figure 5.1 shows the increasing error and decreasing prediction range with increasing simulation times and

confirms that the accuracy is indeed precision limited. In Figure 5.1 (a), the truncation error curve O(∆θ)

shifts toward smaller ∆θ with increasing simulation time, corresponding to the precipitous decrease in the

prediction range in Figure 5.1 (b). In essence, the perturbation needs to be machine precision after about

100 plasma periods.

To further evaluate methods, we first construct QoI J (θ) in (4.5) by brute-force simulating 1000 cases
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Figure 5.1: (a) Sensitivity error convergence (5.2) for tωp = 0.1 to tωp = 150.0, for 64- and 128-bit IEEE
floating point. (b) Prediction range (5.3) for εp = 10−6.

for uniformly distributed θk ∈ [0.5, 3.5], all with the same initial particle distribution. This is done with both

the PIC scheme of Section 2.1 and a second-order finite-volume discretization of (2.1) using flux limiters [33].

For the finite-volume discretization, the grid sizes are ∆x = 0.02λD and ∆v = 0.018v0, and the time step

for a standard Strang-splitting scheme [33] is set such that

min

(
∆x

max(v)∆t
,

∆v
q
m max(E)∆t

)
= 0.5. (5.4)

The corresponding J (θ) are plotted in Figure 5.2. As expected, PIC solutions approximate the brute-force

J consistently with finite-volume solutions, though with variation due to the chaotic particle dynamics.

Sensitivity for θ = 1.5v0 is computed using the particle-exact approach of Section 3.1, particle-pdf ap-

proaches of Section 3.2, and the same finite-volume discretization for (3.9a). For the particle-pdf approach,

the same PIC simulation is used to compute Ei and ∇vfi,iv , and for our initial comparisons, the non-

collocated weight-updating scheme from Section 3.2.4 is used. To evaluate H in (3.16), Nm = 64 uniform

mesh cells discretize the velocity domain v ∈ [−9v0, 9v0]. The ∆t and ∆x match the baseline PIC discretiza-

tion, and M = 2× 105 sensitivity particles are used, initialized uniformly in x and v, for this demonstration

to ensure the support condition (3.29) at all times. The same finite-volume discretization parameters are

used for the corresponding sensitivity finite-volume discretization of (3.9a).

In Figure 5.2, the particle-exact approach provides accurate but local sensitivity, inconsistent with the

sensitivity of the continuum limit. In contrast, the particle-pdf approach, still with the advantages of the

particle discretization, matches the smooth sensitivity of the finite-volume results. The local sensitivity

distribution in Figure 5.3 shows how the particle-pdf approach provides a coarse (PIC-like) representation
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consistent with the finite-volume solution.

5.3 Evaluation of statistical consistency

Consistency of particle methods is typically assessed in a statistical sense [34–36], with computational parti-

cles considered as a sample of a continuum distribution [20, 21, 37]. This approach is useful here to quantify

the statistical behavior of the sensitivity, relative to that of the QoI itself. If the sensitivity has significantly

more statistical variance than JD, it will not be useful. Standard deviations of JD in (4.6), ∂JD

∂θ in (4.8),
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Figure 5.3: The sensitivity distribution ∂bfc using (a) the particle-pdf approach, and (b) finite-volume
discretization of (3.9a).
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Figure 5.4: Statistical stability for methods applied to the Debye-shielding example: (a) quantity-of-interest
and its sensitivity standard deviations, averaged over 104 solutions with different random seeds, and (b)
sensitivity standard deviations for the particle-pdf variations of Section 3.2, averaged over 103 solutions. For
the particle-addition scheme, 0.05N particles are injected per time step.

and
(
∂J
∂θ

)
D

in (4.7) are evaluated from ensembles of many realizations and shown in Figure 5.4 (a). The

particle-exact sensitivity, despite its accuracy for a single PIC realization, has an exponentially unstable

variance. In contrast, the statistical error of the particle-pdf approach tracks the PIC variance for JD. Fig-

ure 5.4 (b) confirms that errors of all three particle-pdf variants decrease as N−1/2, as they should, matching

PIC behavior.

The chaotic sensitivity of particles is not due to the finite mesh size, time step, or insufficient (or excessive)

number of particles, such as discrete-particle noise [20, 21, 38]. It is an intrinsic property of N -body particle

dynamics [39]. The numerical parameters (e.g., number of particles and mesh shape functions Sx and Sv)

are confirmed not to fundamentally change the maximum Lyapunov exponent [40–42]. Appendix B shows

how the present conclusions are insensitive to the numerical parameters.
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Chapter 6

Assessment of the non-commutability

The non-commutability between the sensitivity derivative and the continuum limit motivated the particle-

pdf method developed in Section 2.3, particularly Figure 2.1. This underlying challenge is now evaluated

quantitatively for the Debye shielding configuration of Chapter 4.

6.1 Error metrics

The metrics we use are motivated by the assertion to be investigated, which is considered first. A particle

distribution nN (x; θ) is discretized by N particles,

nN (x; θ) =

N∑

p=1

1

N
δ(x− xp), (6.1)

where θ is the usual parameter-of-interest as introduced in (2.13) and xp(t; θ) are the particle positions

governed by (2.5). The nN (x; θ) distribution approximates a corresponding continuum number density

n(x; θ) with an error εN due to finite N ,

nN (x; θ) = n(x; θ) + εN , (6.2)

where εN → 0 for N →∞ [43]. This limit is useful for analysis even though a continuum is in truth only a

model for a huge but finite-N system, one which is far too large to simulate in most cases. In this section,

intuitively, it is equivalent to considering the number of particles required for a stable finite-difference-

approximation of sensitivity with a parameter perturbation ∆θ.

∆θ is introduced to quantify the effect of commutation between the ∆θ → 0 limit of differentiation and

the N → ∞ limit that defines a continuum. The perturbation ∆θ alters the original particle trajectories

xp(t; θ) to new trajectories,

x′p(t; θ + ∆θ) = xp(t; θ) + ∆xp(t), (6.3)
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which leads to a new particle distribution,

n′N (x; θ + ∆θ) =

N∑

p=1

1

N
δ(x− x′p), (6.4)

which, from the same viewpoint of (6.2), approximates a continuum density n′(x; θ+∆θ) with corresponding

error ε′N ,

n′N (x; θ + ∆θ) = n′(x; θ + ∆θ) + ε′N . (6.5)

As for εN , ε′N → 0 for N →∞. While ∆xp would lead to standard Lyapunov exponent analysis of N -body

dynamics [40–42], our sensitivity objectives involve ∆nN ,

∆nN (x) = n′N (x; θ + ∆θ)− nN (x; θ) = ∆n(x) + ∆εN , (6.6)

where ∆n(x) ≡ n′(x; θ + ∆θ)− n(x; θ) and ∆εN ≡ ε′N − εN .

Based on (6.6), the sensitivity of particle distribution nN to θ has two contributions:

∆nN
∆θ

=
∆n

∆θ
+

∆εN
∆θ

. (6.7)

The non-commutability between ∆θ → 0 and N → ∞ is manifest in the second: ∆εN/∆θ. Since ∆εN will

reflect the divergent trajectories of the particles due to ∆θ, we have

∆εN ∼ ∆θ exp(λt), (6.8)

where λ is the maximum Lyapunov exponent of the N -body PIC dynamics (2.5). This is true even though

lim
N→∞

∆εN = 0, (6.9)

since both εN → 0 and ε′N → 0 for N →∞. For the particle-exact method, the continuum limit distributions

are approximated withN particles, so ∆εN > 0 and ∆θ → 0 yields the spurious sensitivity seen in Section 5.2.

Whereas, the particle-pdf approach of Section 3.2 introduces particle discretization after differentiation. The

discrete gradient
(
∂n
∂θ

)
N

still has error ε̂N ,

(
∂n

∂θ

)

N

=
∂n

∂θ
+ ε̂N , (6.10)
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however, there is no subsequent differentiation of this error term as for ∆εN/∆θ in (6.7). In this way,

the particle-pdf method can stably compute the sensitivity so long as the continuum-limit sensitivity itself

∆n/∆θ remains Lyapunov stable, requiring

∆n ∼ ∆θ. (6.11)

In this case, (6.10) is well-behaved with ε̂N → 0 as N →∞.

The Lyapunov instability (6.8) and ∆εN convergence (6.9), which express the consequence of non-

commutability, are now quantified for the model system. Direct calculation of ∆εN is, in general, not

possible since n(x) and n′(x) are unavailable. Instead, we estimate ∆εN via ∆nN , assuming (6.11) so that

∆εN dominates ∆nN in (6.7). This assumption will be confirmed via the finite-volume solution of the Debye

shielding configuration of Chapter 4. The behavior of (6.8), with ∆εN diverging in time, and (6.9) with

∆εN converging with N correspond to different temporal regimes of its evolution. For λt . 1, ∆εN diverges

exponentially along with particle trajectories ∆xp; for λt � 1, it saturates in time at a value that itself

converges for N →∞.

To assess this in computations, we introduce metrics for quantifying ∆nN and ∆n. For this purpose, it

is sufficient to consider a generic linear functional QoI (3.1),

J [n; θ] =

∫
J(x)n(x) dx, (6.12)

where J is assumed smooth, consistent with limiting J(x) : X → R as a generic Lipschitz function with

unity Lipschitz constant [44]. This property, which enables firmer conclusions, is justified when ∂θJ is more

sensitive to ∂θnN (x) than J(x), as expected for chaotic dynamics. The perturbation of JD ≡ J [nN ; θ] is

estimated from the particle perturbations ∆xp,

∆JD =

∫
J(x)∆nN (x) dx =

1

N

N∑

p=1

∫
J(x)

[
δ(x− x′p)− δ(x− xp)

]
dx

=
1

N

N∑

p=1

[
J(x′p)− J(xp)

]
=

1

N

N∑

p=1

J(x′p)− J(xp)

∆xp
∆xp

≤ 1

N

N∑

p=1

|∆xp| ≡ ∆xp,

(6.13)

where the ≤ bound derives from the Lipschitz-1 property of J(x). This leads to a mean particle perturbation

∆xp [40–42], which grows in time and saturates at the scale of the system L. For long times, ∆JD/∆θ ∼

L/∆θ independent of N , which is an over-estimate and does not necessarily support (6.9).

31



To provide a better estimate of QoI sensitivity we introduce bounded-Lipschitz distance [43], which

quantifies ∆J without distinguishing particles,

Lb(∆nN ) = sup
J∈D

∣∣∣∣
∫
J(x)n′N (x) dx−

∫
J(x)nN (x) dx

∣∣∣∣ , (6.14)

and is equivalent to Wasserstein-1 distance [43, 45],

W1(∆nN ) = inf
σ∈Σ

∫∫
|x− x′|σ(x,x′) dxdx′, (6.15)

where σ : x × x′ → [0, 1] is any joint distribution with marginals nN (x) and n′N (x′). For the purpose of

this analysis, the argument of Lb and W1 is simplified from Lb(n
′
N , nN ) and W1(n′N , nN ) in their standard

definitions [43, 45]. In essence, the W1-distance is independent of the particle labels; the difference |x− x′|

is based on the closest perturbed particle x′q to the original trajectory xp for all p and q.

Using (6.15) enables analysis of the relationship between ∆n and ∆nN , thus the assertion of (6.8) and

(6.9) in terms of ∆xp as it grows in time. This is possible since ∆xp corresponds to the integral in (6.15)

with a specific joint distribution σP that does not reflect the indistinguishability of particles:

σP (x,x′) =

N∑

p=1

1

N
δ(x− xp)δ(x

′ − x′p) (6.16a)

∫∫
|x− x′|σP (x,x′) dxdx′ =

N∑

p=1

1

N
|∆xp| ≡ ∆xp. (6.16b)

For ∆xp � L/N , σP is the minimizer of the integral in (6.15), meaning (6.13) is equivalent to (6.14).

Therefore, as the particle perturbation ∆xp grows exponentially, W1(∆nN ) is anticipated to also grow at

the same rate as asserted in (6.8),

W1(∆nN ) ∼ ∆xp ∼ ∆θ exp(λt) when ∆xp .
L

N
. (6.17)

This changes when x′p is no longer the perturbed particle closest to xp, which is anticipated for ∆xp &

L/N . Then σP is no longer the minimizer, and ∆xp > W1(∆nN ). The bound of W1(∆nN ) can be found
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N (x)
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W1(ε′N )

∼ N−1/2

W1(εN )

∼ N−1/2

W1(∆nN )

n′(x) n(x)

n′
N (x)

nN (x)
W1(ε′N )

W1(εN )

∆εN
∼ N−1/2

W1(∆n)

W1(∆nN )

(a) ∆xp ∼ ∆θ (b) ∆xp � L

N

Figure 6.1: Relation between 4 distributions n′(x), n(x), n′N (x) and nN (x) in a W1-metric space. (a) At
early times, when particle perturbation ∆xp ∼ ∆θ, the corresponding perturbation in particle distribution,
W1(∆nN ), is similar to continuum-limit perturbation W1(∆n). (b) At long times, when ∆xp � L/N , finite-
N error perturbation ∆εN (the red dashed line) exceeds the continuum-limit perturbation W1(∆n) (green
dashed line).

via triangle inequality for Wasserstein distance [46],

W1(∆nN ) ≡W1 [(n′N − n′)− (nN − n) + (n′ − n)]

≤W1(εN ) +W1(ε′N ) +W1(∆n),

(6.18)

where W1(εN ) and W1(ε′N ) are the Wasserstein distance between an empirical sample and true distribution,

for which convergence follows a central-limit theorem [47, 48],

W1(εN ) ∼W1(ε′N ) ∼ N− 1
2 , (6.19)

as seen in Figure 5.4 (b) for our PIC discretization.

This bound corresponds to the saturation limit of W1(∆nN ). For example consider n′(x), n(x), n′N (x)

and nN (x) on an W1-metric space, as shown in Figure 6.1. In Figure 6.1 (a), when ∆xp is small for

λt . 1, n′N (x) and nN (x) are well aligned, so W1(∆nN ) ∼ W1(∆n) ∼ ∆θ. As ∆xp grows, W1(∆nN )

also grows so the alignment breaks down, though n′N (x) and nN (x) still well-approximate n(x) and n′(x)

with W1 ∼ N−1/2 as in (6.19). If W1(∆n) is small enough, we also have W1(∆nN ) ∼ N−1/2, as shown in
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Figure 6.1 (b). For long times, λt� 1, the limit of these perturbation metrics yield

W1(∆nN ) = W1(∆n) +O[N−1/2] when ∆xp ∼ L, (6.20)

which shows the N -dependent ∆εN , confirming (6.9). In essence, (6.17) and (6.20) are re-statements of (6.8)

and (6.9) for W1, for increasing ∆xp rather than t.

Dividing (6.20) by ∆θ for computing sensitivity,

W1(∆nN )

∆θ
=
W1(∆n)

∆θ
+
O
[
N−1/2

]

∆θ
. (6.21)

The challenge of particle-exact sensitivity, is explicit in O[N−1/2]/∆θ in (6.21). The particle-pdf sensitivity

is useful so long as the continuum-limit sensitivity is stable, with

W1(∆n) = lim
N→∞

W1(∆nN ) ∼ ∆θ, (6.22)

which is a re-statement of the assertion (6.11). Assuming (6.22) that ∆εN dominates W1(∆nN ), the Lya-

punov instability of ∆εN (6.8) and its saturation limit (6.9) can be now assessed numerically with (6.17)

and (6.20) for W1(∆nN ).

6.2 Application to the Debye shielding model

The Lyapunov instability of W1(∆nN ) (6.17) and its saturation (6.20) are assessed quantitatively. For

θ = 1.5v0 and ∆θ = 10−9v0, ∆xp in (6.13) and W1-distance (6.15) are calculated and compared for different

N . The Wasserstein-1 distance [43, 45], was calculated with dual-simplex algorithm in MATLAB [49].

Figure 6.2 shows the growth and the satuation of W1(∆nN ) that confirms (6.17) and (6.20). In Fig-

ure 6.2 (a), ∆xp grows to the same ∆xp ∼ L limit regardless of N , though at an N -dependent rate. In

contrast, W1(∆nN ) growth deviates from ∆xp starting when it exceeds inter-particle scale L/N , reaching

different limits depending on N . Figure 6.2 (b) shows the O[N−1/2] scaling of the W1(∆nN ) saturation

limit, which is consistent with (6.20). The continuum-limit perturbation W1(∆n), if it grows at all, does

not dominate the N -scaling of W1(∆nN ) in Figure 6.2 (b). For comparison, W1 is calculated for the finite-

volume simulation of Section 5.2, to assess (6.22). Due to the dissipative upwind scheme and TVD flux

limiter [33], this provides a lower bound for W1(∆n). In Figure 6.2 (c), W1(∆nFV) converges to ' 2∆θ with
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Figure 6.2: (a) Parameter perturbation ∆θ impact on ∆xp and W1(∆nN ) in the Debye shielding model
for N = {102, 103, 104, 105} particles (from red to blue), and (b) W1(∆nN ) versus the number of par-
ticles at ωpt = 450; (c) the corresponding ∆θ impact on W1(∆nFV) in finite-volume simulation for
Ng = {26, 27, 28, 29, 210} grid points (from black to brown); and (d) the corresponding ∆θ impact on
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mesh refinement. Together, we see

W1(∆nFV) ∼ ∆θ .W1(∆n) < W1(∆nN ) ∼ N−1/2 � ∆xp ∼ L, (6.23)

which confirms (6.20) and indicates (6.22) for Debye shielding configuration.

Our focus has been on N → ∞ behavior. However PIC involves additional mesh discretizations. To

confirm that this does not alter conclusions, two perturbation metrics are calculated. First, an L1-norm of

mesh-based number density is computed,

L1(∆nN,i) ≡
Ni∑

i∈mesh

∣∣n′N,i − nN,i
∣∣ ∆x, (6.24)

which is a standard metric for Lyapunov exponent of Eulerian fields [50]. Also the same W1 distance (6.15)

for ∆nN,i is computed to estimate the QoI sensitivity. Figure 6.2 (d) shows the growth of L1(∆nN,i) and

W1(∆nN,i) for different N and constant ∆x, comparing with W1(∆nN ) from particle distributions. Once

∆xp exceeds the mesh size ∆x, W1(∆nN,i) saturates near the same limit of its particle counterpartW1(∆nN ).

This indicates that mesh interpolation may affect the perturbation growth for short times, but for long times

the saturation limit remains subject to the density of the finite-N particle representation. L1(∆nN,i) also

grows similarly to W1(∆nN ).
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Chapter 7

Computational intensity

7.1 Empirical cost of particle-pdf approaches compared to PIC

Computation costs for the Debye shielding configuration of Chapter 4 are measured for all three particle-pdf

variants on an Intel Xeon E5-2695 2.1GHz CPU with 128GB of main memory. Operations match those of the

corresponding PIC simulation except for computing sensitivity, which correspond to (3.38) through (3.41).

As discussed in Section 3.2.2, these stages involve (x,v) phase-space interpolation, though the actual cost

to evaluate interpolation coefficients is comparable to the original PIC algorithm, since the coefficients for x

interpolation are re-used from the previous stages and that scales linearly with N , not the size of the phase-

space mesh. In Figure 7.1, the total time costs were 2.96 times that of the corresponding PIC simulation

for the non-collocated scheme, 2.10 times for the collocated scheme, and 1.89 times for the particle-addition

scheme. The collocated scheme does not require the advection stages (3.37a), (3.37f), and (3.37e), and

also computation cost in charge assignment (3.37b) is reduced since interpolation coefficients can be reused.

For the particle addition scheme, new particles and their interpolation coefficients are pre-computed and

stored in a pre-processing stage, the number density evaluation (3.39a) is omitted, and the cost in particle

source strength evaluation (3.39b) is reduced. This difference is independent of the number of particles, as

confirmed in Figure 7.2. The operation counts in each numerical scheme are listed in detail in Table 7.1.

7.2 Computational cost scaling

Table 7.2 shows the operations per time step of the particle-pdf approach and compares it to the finite-

volume method [20]. While the major cost of the finite-volume method comes from advection and f velocity

gradient, which scales with the mesh size, for the particle methods it is the interpolation between particle and

mesh, which scales with the number of particles. Since a large number of particles per cell are typically used

in PIC simulation (N/Nd
m� 1), the mesh dependence of the Poisson solver (3.37c) and E-field evaluation

(3.37d) are not expected to be significant for applications. As a result, the operation count scales with the
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Figure 7.1: Computational time per function in particle-pdf schemes for the Debye shielding model and
N = 105. Operations shared with the original PIC are indicated.

Stage Collocated Non-collocated Particle addition
Particle advection (3.37a), (3.37f) 0 O[dN ]

Charge assignment (3.37b) O
[
dldN

]
O
[
(C1l + ld)dN

]

Poisson solver (3.37c) 27Nd
m

E-field evaluation (3.37d) 2Nd
m

Force assignment (3.37e) 0 O
[
(l + 1)ddN

]

Source evaluation (3.38) O
[
(C2ld+ l2dd2)N

]

Number density (3.39a) O
[
(C3l + l2d)dN

]

Source strength (3.39b) O
[
(l + 1)2dN

]

Evolution/Addition (3.40) O[N ]

Redistribution (periodic) (3.41–3.42) 0 O
[
(C4ld+ l2dd2)N

]

Table 7.1: Operation count scaling with (average) number of particles N , mesh size (per coordinate direction)
Nm, B-spline order l, and space dimensionality d. The C’s are constants for particle-mesh interpolation.
Conjugate Gradient method for Poisson solver and centered finite-difference stencils for E-field gradient
are provided, although both PIC and finite-volume methods use the same algorithms for them so it is less
important for comparison.
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number of particles N . However, a naive implementation of the phase-space mesh will introduce memory

challenges. While we do not consider this point in detail, we anticipate that this memory issue could be

addressed by standard parallelization techniques for PIC [51]. Additionally, a sparse representation of the

phase-space mesh might significantly reduce the memory footprint.

Stage Particle-pdf (weight-evolution) Finite-volume
Particle advection O[dN ] 2C1N

2d
m

Charge assignment O
[
dldN

]
C2N

2d
m

Poisson solver 27Nd
m 27Nd

m

E-field evaluation 2Nd
m 2Nd

m

Force assignment O
[
lddN

]
0

Source evaluation O
[
l2dd2N

]
O
[
(3d+ C1)N2d

m

]

Number density O
[
l2ddN

]
0

Particle source O
[
l2dN

]
0

Source integration 2N N2d
m

Overall ∼ (Cl + l2d)dN ∼ (d+ C)N2d
m

Table 7.2: Operation count scaling per time step with (average) number of particles N , mesh size (per
coordinate direction) Nm, B-spline order l, and space dimensionality d. The C’s are constants. A conjugate
gradient method is assumed for the Poisson solver and centered finite-difference stencils assumed for E-field
gradient are provided, although both PIC and finite-volume methods use the same algorithms for them so
these details are unimportant.

Figure 7.2 (a) confirms the scaling per time step estimates in Table 7.2. Since typical plasma simulations

are implemented in higher dimensions (d > 1), and that the particles in general efficiently represent the

distribution while most of the grid points lie in empty phase-space of plasma, this scaling points to the

advantage of the particle-pdf approach over a mesh-based method (finite-volume) for the same cases for

which PIC would be advantageous. Using a mesh twice as large as in Chapter 4 does not affect the cost

of PIC and particle-pdf approach shown in Figure 7.2. Moreover, the time-step restriction (5.4) is only

associated with the finite-volume scheme. For this reason, the total simulation time the finite-volume

method increases faster than for particle-pdf methods, as shown in Figure 7.2 (b).
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Chapter 8

Adaptive example: a sheath edge

This common configuration includes several additional components: non-periodic boundary conditions, non-

uniform ion distribution, and a model for ionization. An adaptive variant of the weight-updating method

and the particle-addition method can be used advantageously.

8.1 Baseline configuration

The mobility difference between electrons and ions disrupts quasi-neutrality within a few Debye lengths of

an electrode (Figure 8.1). Following a standard PIC implementation [31], we consider the sensitivity of the

potential drop in the resulting non-equilibrium sheath region [1, 31, 52] to the temperature ratio between

ions Ti and electrons Te far from the electrode for a neutral plasma with singly-charged ions: ni0 = ne0 = n0.

Both ions and electrons are initially uniformly distributed in thermal equilibrium, so

fz(x, v, t = 0) =
n0√

2πvT,z
exp

(
− v2

2v2
T,z

)
for z = i or e, (8.1)

with vT,z =
√
kBTz/mz. Equilibrium is maintained far from the wall with an ionization source [31], which

appears in the Vlasov equation (2.1a) as

∂fz
∂t

+ v · ∇xfz +
qz
mz

E · ∇vfz = Sz for z = i or e. (8.2)

The velocity distribution of each species’ source is the flux for the corresponding Maxwellian,

Sz =
1

Ls

|v|
2v2
T,z

exp

(
− v2

2v2
T,z

)∫
fiv
∣∣
x=0

dv for z = i or e, (8.3)
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Figure 8.1: Diagram of one-dimensional sheath edge formation

which is constructed such that the rate matches the uptake of ions at the x = 0 wall. At x = −L both ions

and electrons are reflected (often termed refluxed) at the equilibrium temperature:

fz
∣∣
x=−L,v>0

=
1

v2
T,z

exp

(
− v2

2v2
T,z

)∫

v<0

fzv
∣∣
x=−L dv for z = i or e. (8.4)

All ions and electrons are perfectly absorbed at x = 0 on the electrode, which changes its surface charge as

dσs
dt

= qe

∫
fe
∣∣
x=0

v dv + qi

∫
fiv
∣∣
x=0

dv. (8.5)

The surface charge σs provides a boundary condition at x = 0 for the Poisson equation (2.1b), and the

potential at x = −L is set zero

∂φ

∂x

∣∣∣∣
x=0

=
σs
ε0

and φ
∣∣
x=−L = 0. (8.6)

The distributions of electrons and ions in Figure 8.2 shows their significantly different thermal velocities.

8.2 Sensitivity calculation

Procassini et al. [31] discussed the dependence of the potential drop to the temperature ratio θτ = Te/Ti,

which motivates our QoI

J =
1

tf − ti

∫ tf

ti

[φ(0)− φ(L; t)] dt, (8.7)
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with ti = 600/ωp,e and tf = 1200/ωp,e. Its dependency on the temperature ratio θτ is shown in Figure 8.3

for exhaustive evaluation of J (θτ ) for 1000 values of θτ . The sensitivity to θτ we seek is

∂J
∂θτ

= − 1

tf − ti

∫ tf

ti
∂bφc(L; t) dt. (8.8)

The corresponding sensitivity source term in (3.11) is

Hz =
qz
mz

∂bEc · ∇vfz −
∂Sz
∂θτ

for z = e or i, (8.9)
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where the sensitivity of ionization source terms are

∂Se
∂θτ

=
|ṽ|
2Ls

exp

(
− ṽ

2

2

)∫
∂bficṽ

∣∣∣
x=L

dṽ

∂Si
∂θτ

=
µθτ |ṽ|
2Ls

exp

(
−µθτ ṽ

2

2

)∫
∂bficṽ

∣∣∣
x=L

dṽ

+

[
µ|ṽ|
2Ls
− µ2θτ |ṽ|3

4Ls

]
exp

(
−µθτ ṽ

2

2

)∫
fiṽ
∣∣∣
x=L

dṽ,

(8.10a)

(8.10b)

with ṽ = v/vT,e, µ = mi/me and θτ = Te/Ti. The heat bath condition at x = −L provides a sensitivity

boundary condition,

∂bfec
∣∣
x=0,v>0

= exp

(
− ṽ

2

2

)∫

v<0
∂bfec

∣∣
x=0

ṽ dṽ,

∂bfic
∣∣
x=0,v>0

= µθτ exp

(
−µθτ ṽ

2

2

)∫

v<0
∂bfic

∣∣
x=0

ṽ dṽ

+

[
µ− µ2θτ ṽ

2

2

]
exp

(
−µθτ ṽ

2

2

)∫

v<0

fi
∣∣
x=0

ṽ dṽ.

(8.11a)

(8.11b)

Compared to the boundary flux (8.4) for PIC, numerical implementation of (8.11b) is complicated by the

flux source term, which cannot be represented by statistical distribution of particles. Following the same

procedure as for (3.14) in Section 3.2.3, we introduce a numerical population of Ninflux particles entering

from x = −L over a time step,

n̂influx

∣∣
x=−L =

Ninflux∑

s=1

Sx(x− x̂s)Sv(v − v̂s). (8.12)

Particle position and velocity (x̂s, v̂s) ∈ [−L,−L + v̂s∆t] × [0,∞) are sampled from a probabilistic density

function p(x, v), which satisfies a condition similar to (3.29),

p(x, v) 6= 0 ∀(x, v) ∈
{

(x, v)

∣∣∣∣
∫ tk+1

tk
∂bfic

∣∣
x=0,v>0

v dt 6= 0

}
, (8.13)

so that n̂influx ≈ Ninflux p(x, v) ensures sufficient particles in the necessary region to support it. The influx

of ∂bfic during a time step is then represented with the influx particles,

∫ tk+1

tk
∂bfic

∣∣
x=0,v>0

v dt ≈
Ninflux∑

s=1

Ŵ ′sSx(x− x̂s)Sv(v − v̂s), (8.14)
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with the weights

Ŵ ′s =
1

Ninflux p(x̂s, v̂s)

[∫ tk+1

tk
∂bfic

∣∣
x=0,v>0

v dt

]

x̂s,v̂s

. (8.15)

This way any generic flux (even negative) can be represented with statistical distribution of particles, so

long as n̂influx satisfies (8.13). For demonstration we choose the uniform p(x, v),

p(x, v) =
2

(5vT,i)2∆t
=

2µθτ
25∆t

, (8.16)

for −L ≤ x ≤ −L+ v∆t and 0 ≤ v ≤ 5vT,i. The weight of an influx sensitivity ion is then

Ŵ ′s =
2µτ

25∆tNinflux

[
µθτ exp

(
−µθτ ṽ

2
s

2

)
F1

+

(
µ− µ2θτ ṽ

2
s

2

)
exp

(
−µθτ ṽ

2
s

2

)
F2

]
,

(8.17)

with F fluxes represented by Moutflux sensitivity ions leaving the domain at x = −L and Noutflux ions from

PIC simuation,

F1 =

∫ tk+1

tk

∫

v<0
∂bfic

∣∣
x=0

ṽ dṽdt ≈
Moutflux∑

s=1

Ŵs (8.18a)

F2 =

∫ tk+1

tk

∫

v<0

fi
∣∣
x=0

ṽ dṽdt ≈
Noutflux∑

p=1

Wp. (8.18b)

8.3 Sheath results

The non-collocated scheme introduced in Section 3.2 is demonstrated first. Based on Figure 8.2, uniform

mesh spacing is tailored to the different particles, with ∆ve = 0.078 vT,e and ∆vi = 0.078 vT,i = 0.1∆ve.

Compared to the baseline potential, Figure 8.4 (a) shows that the potential sensitivity drops significantly at

the source boundary x = −L+Ls, rather than in the sheath region, which indicates that changing θτ mainly

shifts the ion Bohm velocity [53]. This is consistent with the sensitivity distributions in Figure 8.4 (b) and

(c), where the electron sensitivity indicates variation in Boltzmann distribution due to the potential, while

the strong sensitivity to the ions near the Bohm velocity indicates a shift of the ion Bohm velocity. The time

history of the integrand J(t) = φ(0)− φ(L; t) from (8.7) and its sensitivity in Figure 8.4 (d) indicates that

the sensitivity fluctuates as in the PIC simulations. The sensitivity-pdf method also compares well with the

brute-force computed J curve in Figure 8.4 (e), despite the irregular parametric dependence.
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8.4 Adaptive scheme

Particle-based methods can be particularly attractive when the convection velocity varies significantly more

than the thermal velocity. In such a case, mesh-based discretizations require dense velocity meshes to both

resolve velocity distributions and span a wide velocity domain. The CFL constraint (5.4) can accentuate

consequences of this. The particle-pdf method is relatively insensitive to this and can be further enhanced

to be adaptive.

To illustrate this, the ion source term in (8.3) is augmented with a convection velocity vc,

Si =
1

Ls

1√
2πvT,i

exp

(
− (v − vc)2

2v2
T,i

)∫
fi
∣∣
x=0

v dv, (8.19)

where vc oscillates

vc =





v0

2

(
1− cos[ωc(t− t1)]

)
t ≥ t1

0 otherwise,

(8.20)

with t1 = 1230/ωp,e and ωc = 120ωp,e. The parameter-of-interest is the amplitude v0. We compute the

sensitivity of same QoI (8.7) though with shorter time period,

J = − 1

t3 − t2

∫ t3

t2

[φ(0)− φ(L; t)] dt, (8.21)

where t2 = 1336/ωp,e and t3 = 1360/ωp,e.

The non-collocated method used for the steady case and particle addition method are adaptively com-

bined, so that sensitivity particles mostly sample important regions. Algorithm 1 shows the simple heuristics

used to do this while satisfying the constraint (3.29).

The sensitivity is computed with Hmin = 10−10n0ωp,ev
−1
T,e and n̂min = 1.0∆x−1∆v−1. Figure 8.5 (a)

and (b) show the ion sensitivity particles distributed and supporting the necessary region, satisfying (3.29).

The velocity mesh in this simulation is as dense as in Section 8.3, but spans about 8 times larger velocity

space domain. Yet, as shown in Figure 8.5 (c), only about twice the adaptive scheme sensitivity particles

are needed as for PIC simulation. Figure 8.6 (a) shows the time history of the QoI integrand (8.21) and its

sensitivity, for one period of convection velocity oscillation ωc. The sensitivities computed by this adaptive

scheme, as shown in Figure 8.6 (b), provide a good estimate of variation in J .
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Algorithm 1 Adaptive scheme

. the support constraint (3.29)

Require: n̂i,iv 6= 0 ∀(i, iv) ∈
{

(i, iv)
∣∣∣|Hi,iv | 6= 0

}

Ensure: n̂i,iv ≥ n̂min ∀(i, iv) ∈
{

(i, iv)
∣∣∣|Hi,iv | ≥ Hmin

}

Compute n̂i,iv by (3.39a)
for every s ∈ [1,M ] do

for every (i, iv) ∈ [1, l + 1]2d do
while |Hi,iv | ≥ Hmin and n̂i,iv ≤ n̂min do

Add particle by (3.31): (x̂s, v̂s) ∈
[
xi −

∆x

2
,xi +

∆x

2

]
×
[
viv −

∆v

2
,viv +

∆v

2

]

Update n̂i,iv by (3.39a)
M ←M +Nnew

Evaluate hs by (3.39b)

Update weights by (3.40a)
if M > Mmax then

Redistribute particles by (3.41)
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Chapter 9

Additional discussion and summary

The sensitivity-pdf approach we introduce is shown to meet the main challenge presented by the chaotic dy-

namics of the particles. It consistently and efficiently provides sensitivities for QoIs despite chaotic particle

dynamics. Rather than invoking the ergodicity assumption, which can be limiting, this method computes

sensitivities by discretizing the differentiated Vlasov–Poisson equation with particles. This avoids the conse-

quences of non-commutability between the derivative and the continuum limit, at comparable computational

cost to the original PIC method.

The key assumption of the proposed sensitivity-pdf approach is the property of the N →∞ continuum

limit described in (6.22), where a large number of interacting particles under chaotic dynamics macroscopi-

cally constitutes a state that is Lyapunov stable. Although this seems true for many cases [15–17], its specific

criterion remains unknown. When this assumption is not applicable, computing sensitivities is possible only

under the ergodicity assumption. Nonetheless, this continuum limit assumption grants us a valuable oppor-

tunity to compute sensitivity of transient responses through particle methods, without requiring ergodicity.

The non-commutability introduced in Section 2.3 is analogous to the concept of dual-consistency for

adjoint-based methods [19]: for dual-consistent methods, the adjoint of the discretization is not only discrete-

exact but also a consistent discretization of the continuous adjoint. However, the particle-pdf method

provides a sensitivity consistent with the continuum limit, but it is not particle-exact: it suffers from similar

statistical limitations and possible sensitivity to mesh sizes and time steps as the PIC scheme on which it

is based. Whether or not a dual-consistent discretization exist is unclear, since it seems that computational

particles should not actually imitate the actual (chaotic) dynamics of physical particles. Wang et al. [29]

show that periodic redistribution of particles can suppress errors coming from diverging particle trajectories,

though it is unclear that the redistribution would obviate the non-commutability challenge, especially upon

considering the effect of interpolation shown in Figure 6.2 (d).

In this paper, the accuracy of particle-pdf sensitivity is assessed by comparison with a QoI curve con-

structed by brute force. This is emblematic of a well-known difficulty for sensitivity of chaotic dynamical

systems [10, 13, 54], since the exact sensitivity value is unavailable. Taking more particles or longer time-
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averaging may decrease the variation, but it remains effectively non-differentiable, which frustrates error

analysis. Finite-volume solutions provide an estimate of the continuum limit sensitivity, up to the accuracy

of the finite-volume discretization.

For cases with many parameters-of-interest, joining these methods with adjoint-based methods would be

valuable. Since the adjoint equation is similar to its original governing equation, the particle discretization

of the adjoint is expected to be similarly effective. Péraud et al. [55] report a similar case, where an adjoint-

based deviational Monte Carlo method is formulated for the linearized Boltzmann equation. Also, extension

to PIC methods augmented with short-range interaction or stochastic collisional components, would appear

to be straightforward, though this too would need further investigation.
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Part II

A Gradient-based Optimization

Framework for Chaotic Turbulent

Flows
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Chapter 10

Introduction

10.1 Optimization in flow computations

Recent advances in numerical simulation methods and computer resources have enabled predictions of fluid

dynamics in realistic and complex flow conditions and geometries. Predictions, however, do not themselves

lead to better scientific understanding or engineering design. They often require tools to harness the full

space–time data they provide, in order to augment their utility. One such tools is optimization, which

seeks to find the optimal characteristics of a system for a specific goal. Mathematically, it refers to finding

the optimal variables Θ that minimize (or maximize) a quantity J that represents the goal, which is the

quantity-of-interest (QoI) or objective functional. We refer to minimization of J throughout this study;

maximization problem can be easily accommodated as minimization of −J .

We consider optimization problems in flow computations that have two main characteristics. First, they

involve large numbers of optimization variables, generally exceeding hundreds. Optimization in such a high-

dimension can benefit from the gradient of the J to find a local optimum in its neighborhood [56]. We

do not pursue the global optimization, which would be hard to assert. Second, we consider flow dynamics

governed by known governing equations without any model closures, though it does seem that the methods

introduced could be extended to such cases. This naturally leads us to use techniques for equality-constrained

optimization [57–59]. Adjoint methods provide powerful tools for the gradient-based, equality-constrained

optimization. For the governing equations of fluid dynamics, adjoint solutions provide the gradient in high-

dimensional space with a similar computational cost of baseline predictive simulation.

Adjoint gradient-based optimization has been used for various applications, within which we envision two

broad objectives. First, the optimization can accelerate engineering designs by avoiding extensive parametric

investigation. Both passive and active flow controls can be designed [60, 61], such as airfoil geometry [56,

62], jet nozzle shape [63], and acoustic dampers [64]. Such applications also include error estimation and

control of the predictive simulations themselves, ranging from grid adaptation [65, 66] to data-assimilated

modeling [67–71]. The other application is investigation of poorly understood flow mechanisms. For example,
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Figure 10.1: Baseline trajectory of the Lorenz equation starting from the initial condition x0 (black circle).
Black filled dots indicate fixed points of the system. Color shows the magnitude of the instantaneous
objective functional for optimal control, which favors the rotation around U1 over U2. The details of the
optimal control problem will be introduced in Chapter 14.

various flow instabilities beyond the linear regime can be revealed and analyzed by optimization, such as

thermoacoustic instability [72], bypass transition to turbulence [73–75], and Rayleigh–Taylor instability [76].

Another example is sound generation mechanisms and control [77]. Even when the mechanism is not well

understood and its controllability is obscure, the optimization can guide a pathway to control [78, 79].

10.2 Challenge of optimization for turbulent flows

Optimizing turbulent flows can be challenging in various aspects. We focus particularly on challenges due

to their chaotic dynamics.

The impact of chaotic dynamics on optimization can be illustrated with the simple Lorenz equation [80],

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz + f(t),

(10.1)

whose state (x, y, z) orbits around two unstable fixed points, as visualized in Figure 10.1. A J can be defined

to favor the neighborhood of one of the fixed points, and a time-varying controller f(t) is sought to control

the state to minimize J . The full details of this optimal control problem are introduced in Chapter 12, where

a standard gradient-based optimization is developed to optimize f(t) to minimize J . This is done using

the gradient ∇fJ to inform search directions. However, chaos hinders this approach in two ways. First,

the gradient ∇fJ exhibits extreme sensitivity to f(t ≈ 0), which is manifest as the exponential growth of
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the gradient in reverse time seen in Figure 10.2 (a). Such amplification causes the entire optimization to

be biased toward control to f(t ≈ 0). In addition to this challenge, J becomes highly non-convex with

irregular variations in the optimization space, as shown in Figure 10.2 (b). These create a large number of

local minima, each with tiny neighborhoods, many of which do not reduce J significantly [61]. A standard

gradient-based optimization thus stalls, as shown in Figure 10.3. These impacts of chaos on optimization

will be further demonstrated for chaotic advective systems in Chapter 13.

These two characteristics of chaos defy the underlying strategy of gradient-based optimization that seeks

a nearby local optimum. Even if an optimization problem has an effective optimum, it is nearly impossible

to avoid pitfalls of many poor local optima and find an effective one. In this regard, the challenge of chaos is

confounding: when a J cannot be optimized significantly, is it because J is inherently bounded, or simply

that we did not yet find a good optimum?

This challenge is recognized in standard gradient-based optimizations for unsteady turbulent flows. The

divergence of the adjoint sensitivity field—the so-called butterfly effect—is observed no matter what J

is defined [76, 81]. The error amplification due to this effect is often thought to degrade optimization

performance [76, 79, 82]. Likewise, non-convexity of J has also been invoked in regard to turbulent flows [61,

83]. Because of non-convexity, the optimization is either limited in its time horizon or attempts can be made

with multiple initial guesses to obtain a better local optimum [76, 83]. Kim et al. [79] attempted to reduce

the far-field sound of a turbulent jet using an adjoint method. The optimized control ended up being

concentrated in the early period of the time horizon. Also, it was not clear whether or not the optimization

55



0 100 200 300 400 500
0

1

2

3

4

5

6

7

Line searches

J

Figure 10.3: Optimization result from the standard gradient-based method.

was limited by an inherent lack of controllability or the chaotic dynamics of turbulent flows. Pérez et al. [84]

attempted to optimize a control for a three-dimensional compressible backward-facing step flow, however an

inefficient time-dependent control is obtained due to the diverging adjoint-field associated with chaos.

Nonetheless, there are few, if any, alternatives to the gradient-based optimization methods. There exist

many non-convex optimization techniques [85], such as Lipschitz optimization [86, 87], statistical-model-

based global optimization [88, 89], and the random search method [90, 91]. However, the non-convexity

caused by the chaotic dynamics is often too challenging [86, 87]. Also, they either utilize some assumed

statistical models for J [88, 89], or resort to extensive parametric search [90, 91], which is prohibitive for

costly simulations. The many techniques for non-convex optimization are not easily applied to turbulent

flows, which are both high dimensional and significantly non-convex and, in addition, expensive to compute.

10.3 Hope for optimization of turbulent flows

While Figure 10.2 makes the optimal control of the Lorenz equation seem impossible, this system is control-

lable. Figure 10.4 shows such a controlled trajectory. This implies that it is only the chaos of the system

that obscures gradient-based methods from finding such an effective optimum. Furthermore, even with its

susceptibility to small errors, this optimal solution can still be used to craft a robust closed-loop feedback

control law, and thereby provide valuable data that would be inaccessible without optimization. The details

of finding this solution and further investigation of its usefulness is in Chapter 14 to provide context for the

corresponding turbulence problem.

There is a reason to believe that there can be similar utility for turbulent flows as well. Our starting-point

conjecture supporting this is that some turbulent flows have a relatively chaotic part that obscures gradient-

56



−15 −10 −5 0 5 10 15 −20

0

20

0

20

40 x0

U1

U2

S

x
y

z

−100

0

100

200

300

f
(t
)

Figure 10.4: A controlled trajectory of the Lorenz equation. Color shows the magnitude of the instantaneous
control forcing. It will be explained in Chapter 14 how this control is designed.

based methods from finding the part that is less chaotic but crucial for optimization. It might be expected

that this chaotic part is associated with small-scale turbulent fluctuations, while the less chaotic, crucial

part is associated with relatively large-scale coherent structures of the flow. The same idea underlies efforts

to average or filter turbulence fluctuations to extract a reduced model for turbulent flows. In Chapter 13,

we introduce a one-dimensional model based on the Kuramoto–Sivashinsky (K–S) equation to show this

property and how it might also be at play in turbulent flows. For such cases, if understanding and methods

permit, it might be possible to extract the dynamics of large-scale flow structures, or apply averaging/filtering

techniques to avoid the chaotic part that obscures the optimization. Unfortunately, in many cases, this has

not been possible.

It is unlikely that there will be a proof of this conjecture in the case of turbulence. However, there is

evidence supporting it. One example is the linear response theory for dissipative chaos [8]. It proved that

ensemble/time-averages based on ergodic state distributions are differentiable, which supports the possibility

of optimization for some chaotic dynamical systems. J with these averages are not necessarily highly non-

convex, so gradient-based methods will remain effective as long as their gradients can be computed. Based

on this theory, many algorithms have been proposed for computing gradients of ergodic quantities: ensemble-

averaging of adjoint sensitivities [6, 11], using the fluctuation–dissipation theorem [12], a pdf-based approach

[9, 92], least-square shadowing [13, 93, 94], cumulant-truncation [54], and space-splitting [95]. However, most

of them are not yet applicable for optimization: they can suffer from poor convergence due to diverging

sensitivity [6, 11]; they require prohibitive computational costs, comparable to the original optimization

problem itself [9, 13, 92–94]; and they may not be accurate when the system differs significantly from the

formal assumption of being ergodic or uniformly hyperbolic [12, 54, 92, 94]. Chandramoorthy and Wang

[95] recently proposed a promising gradient computation method that requires computation of all covariant
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Lyapunov vectors, however this too is not yet feasible for large-scale turbulent flows. In Part I of the

dissertation, we successfully compute the gradient of statistical distribution from chaotic particle dynamics

in continuum limit [96], however the method relies on the particular properties of the particle dynamics, so

direct extension to turbulent flows is not possible.

Support also comes from experience with particular flow systems. One example is a series of attempts

to understand and control turbulent jet noise. While the interplay between the jet turbulence and radiated

sound is intricate, the success of coherent wave-packet structures to describe some characteristics suggests

that these orderly large-scale structures may be controllable [77, 97, 98]. Low-frequency, low-wavenumber

eigenmodes from stability analysis show reasonable agreement with time-averaged statistics [99, 100]. Also,

successful passive control of low-frequency, aft-angle jet noise with nozzle modification further supports

controllability of these large-scale flow structures [101–105]. However, extracting the real-time dynamics of

such coherent structures into a reduced-order model remains challenging. The underlying nonlinearity of

the turbulence seems to manifest as intermittency of the large-scale coherent structure, making a complete

separation of their dynamics difficult [98]. This necessitates a large number of wave-packet modes to resolve

data [106], or the resulting reduced-order model can be fragile, or even unstable. Many ansatz are suggested

for useful bases to extract these structures [98, 107], however none of them can rival the predictive capability

of a well-resolved simulation of the full dynamics.

The last example we present, though there are many more, is passive control and optimization for

thermoacoustic oscillation of rocket engines and gas turbines [64, 72, 108, 109]. Although their operation

involves intense turbulence [64, 109], sensitivity analyses and optimization focus on the key mechanism

of the thermoacoustic instability [64, 72, 108]. From this viewpoint, turbulence only induces fluctuations

around the mean flow, which provides the seed that excites thermoacoustic instability. However, to obtain

further prognostic information to prevent the instability, analysis of fluctuations in turbulent combustors

is required, which leads to the study of their chaotic behavior [109]. Intermittency and multi-dimensional

chaos in turbulent combustion dynamics has been extensively studied and measured [110–113], but a design

optimization harnessing this understanding in the form of a predictive model remains a goal.

10.4 An overview of this study

We develop an optimization framework for chaotic turbulent flows. This might be of questionable utility,

but various examples introduced in Section 10.3 implicitly support the conjecture that there may be a less-

chaotic part of flow that is sufficiently independent from more strongly chaotic turbulent fluctuations. In
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such cases it is natural to modify (or simplify) the description of the flow dynamics, either by averaging

or filtering out unnecessary chaotic dynamics or by extracting only the useful part for the optimization.

However, a complete separation between these components is not always possible or clearly known, and

inability to do so renders the modified dynamics inaccurate. Hence, if possible, a regularization procedure

that circumvents non-convex features at the optimization level is attractive. An advantage is that such an

approach leaves the exact governing equation intact.

A subsidiary goal of this study is to quantify the impact of chaos on the optimization, such as illustrated

for the Lorenz equation in Section 10.2. The error amplification in the gradient computation has been

believed to be the main degrading factor for optimization [76, 79, 81, 82], for which the Lyapunov exponent

is a well-established metric [114, 115]. However, the gradient error evaluated in Part I of the dissertation

suggests that the error amplification may not be the main hindrance. Rather, the range for which the

gradient predicts J decays exponentially in time [96]. While it is related to the non-convexity of J , this

aspect is less recognized [61, 83]. There are some quantities which are related to the non-convexity of J ,

such as entropy and fractal dimension [116–120], however they do not directly inform how much and how

fast an objective functional becomes non-convex.

Therefore, to support the primary goal, we develop an indicator for non-convexity to assess the challenge.

For this goal, it would be best to define an invariant quantity of the dynamical system, such as the previ-

ously mentioned Lyapunov exponent, entropy and fractal dimension, which are invariant under coordinate

transformation and thus the representative properties of the dynamical system. This by itself requires an

in-depth theoretical investigation, which is beyond the scope of this study and likely not possible for turbu-

lence. Instead, we suggest a practical measure of the decay rate (or time scale) of the linear range presented

in Part I of the dissertation. While in Part I it is evaluated for a specific J and parameter, we generalize it

to be applicable for generic J and optimization parameters.

The method overall is an extension of the standard adjoint gradient-based method for equality-constrained

optimization formulated in Chapter 11 for governing equation for a generic dynamical state. The governing

compressible flow equation is also introduced for the specific application. These are done in the context of

the subsequent development.

Chapter 12 uses the Lorenz system to quantify the multiple ways that chaos impedes gradient-based

optimization. This is connected with horseshoe mapping. Quantitative indicators are used to illustrate

opportunities that can potentially be exploited in the less analytically tractable case of turbulence.

Specific examples are introduced in Chapter 13. First, standard adjoint-based control is demonstrated

on two simple chaotic advective systems, for which the impact of chaos on optimization is clear: a one-
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dimensional Kuramoto–Sivashinsky (K–S) Equation [121, 122] and a two-dimensional Kolmogorov flow [123–

125]. This is further illustrated and confirmed for turbulent flows. A one-dimensional model problem, based

on advection plus K–S equation (Adv+KS), is developed to reflect the multiple scales of turbulence, relatively

deterministic large scales and relatively chaotic small scales. The same behavior is confirmed for a three-

dimensional turbulent Kolmogorov flow.

In Chapter 14, a penalty-based optimization framework is proposed to circumvent non-convex feature.

It is demonstrated with the Lorenz equation example, and the usefulness of the (unstable) optimum solution

is further discussed. Then, in Chapter 15, the framework is demonstrated effective on the model systems

introduced in Chapter 13. It is further demonstrated and confirmed that its effectiveness can extend to

turbulent flows.
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Chapter 11

Optimal control formulation

In this chapter we formulate the constrained optimization problem from a bird’s-eye view, starting from its

origin, and including the adjoint formulation that will provide gradients. Analyzing this with model problems

and applications to turbulent flows in Chapters 12 and 13 leads to the formulation of the algorithm developed

in Chapter 14.

11.1 Equality-constrained optimization

We focus on systems whose physics are governed by a few deterministic principles, usually conservation laws.

As such, we denote the governing equation as

N [q; Θ] = 0, N ∈ N, (11.1)

where q ∈ Q is the state of the system and Θ ∈ T is a control input. In our examples, N will be the Lorenz

equation in Chapter 12, the Kuramoto–Sivashinsky equation in Chapter 13, and the compressible-fluid flow

equation, which will be introduced in Section 11.4 and used for demonstration in Chapter 13. We use N, Q,

and T to denote the spaces on which (11.1), q, and Θ are respectively defined. For example, if (11.1) is the

ideal gas law,

p = ρRT, (11.2)

then N = R+ (positive reals) with q a vector (ρ, p, T )T ∈ Q = (R+)
3

composed of density, pressure and

temperature. In general N ≡ Q, so that the state q is determined completely by the governing equation N .

The control space T in general can be defined independently of Q. Here we state that Q and T are Hilbert

spaces and defer further mathematical definitions.

Optimization seeks to minimize a scalar objective functional J : Q× T→ R:

minimize J [q,Θ] ∈ R such that N [q; Θ] = 0. (11.3)
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The objective functional can be defined to reflect many aspects of interest, typically progress of the control

toward a target state and expense of control input. Thus, (11.3) is a generic statement of the objective we

pursue.

Finding the global minimum over all feasible pairs of (q,Θ) is difficult at best and typically infeasible,

though this is unnecessary since substantially improving J is often useful enough. Hence, we are satisfied

with a (q,Θ) approaching a local minimum in a reasonable size of neighborhood [57, Chap 2.1].

Definition 11.1 (local minimum). Let Q and T be Hilbert spaces, and let a functional be J : Q× T→ R.

Suppose a non-empty subset dom(N ) ≡ {(q,Θ)|N [q,Θ] = 0,q ∈ Q,Θ ∈ T} exists. Then (q∗,Θ∗) ∈

dom(N ) is a local minimizer of the functional J if ∃ε > 0 such that

J [q∗,Θ∗] ≤ J [q,Θ] ∀(q,Θ) ∈ dom(N ) s.t. ‖Θ−Θ∗‖T < ε, (11.4)

where ‖ · ‖T is the norm defined on T. J [q∗,Θ∗] is called a local minimum, and ε is called the size of

neighborhood of the local minimum.

For identifying a local minimum, convexity is an important property [126].

Definition 11.2 (convexity). A subset C of a Hilbert space is convex if for ∀x,y ∈ C and ∀α ∈ [0, 1],

αx + (1− α)y ∈ C. (11.5)

Given a convex subset C, a functional J : C → R is convex if for ∀x,y ∈ C and ∀α ∈ [0, 1],

J [αx + (1− α)y] ≤ αJ [x] + (1− α)J [y]. (11.6)

If the equality does not hold for ∀x 6= y ∈ C and ∀α ∈ [0, 1], J is strictly convex.

For a convex functional, Theorem 11.1 is useful to identify a local minimizer [57, 126].

Theorem 11.1 (global minimizer of a convex function). If a functional J : C → R is convex, then any local

minimizer x∗ ∈ C is a global minimizer of J in C. In addition, if J is differentiable, then any stationary

point is a global minimizer of J in C.

Proof. See Nocedal and Wright [57, Theorem 2.5].
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For certain readily identifiable convex functionals, the search for a global solution reduces to the hunt

for a local one [126]. While dom(N ) in Definition 11.1 may not be convex by itself, it may include many

convex subsets with a reasonable size. Then identifying a local minimizer in one of them is sufficient for our

purpose.

Another important consequence of Theorem 11.1 is that a local minimum can be characterized as a

stationary point, without investigating every point in a neighborhood. For equality-constrained optimization,

an attractive strategy to identify a stationary point is based on Lagrange multipliers, as conceived by

Lagrange and later generalized as the Karuch–Kuhn–Tucker (KKT) condition, which includes inequality

constraints [57].

11.2 The method of Lagrange multipliers for a real vector space

The method of Lagrange multipliers is well-established [57–59]. Our purpose here is only to illustrate our

use of the adjoint method, as it is typically understood. In order to avoid tedious mathematical definitions,

in this section we limit ourselves to real vector spaces,

Q = Rm N = Rn T = Rc, (11.7)

where n = m and c are positive integers.

We define a Lagrangian function for the optimization problem (11.3),

L[q,q†,Θ] = J [q,Θ]−
〈
q†,N [q; Θ]

〉

= J [q,Θ]− q†TN [q; Θ],

(11.8)

where q† ∈ Rn is the Lagrange multiplier vector, and 〈·, ·〉 is the inner product associated with the Hilbert

space on which (11.1) is defined, which in this section it is taken to be the inner product for Rn. A local

solution of (11.3) then satisfies the important condition of Theorem 11.2 related to this Lagrangian.

Theorem 11.2 (First-order optimality condition). Suppose that (q∗,Θ∗) is a local solution of (11.3) on the

space defined in (11.7). We denote as Nl the l-th component of the vector N , and suppose that the gradients

∇qNl with l = 1, . . . , n are linearly independent. Then there is a Lagrange multiplier vector q†∗, such that

the following conditions are satisfied with (q∗,Θ∗),

∇qL ≡ ∇qJ − (∇qN )
T

q† = 0 (11.9a)
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∇ΘL ≡ ∇ΘJ − (∇ΘN )
T

q† = 0 (11.9b)

∇q†L ≡ N [q; Θ] = 0. (11.9c)

And (q∗,q†∗,Θ) corresponds to a stationary point of the Lagrangian L[q,q†,Θ].

Proof. See Nocedal and Wright [57].

Many numerical optimization algorithms are founded explicitly or implicitly on Theorem 11.2, and pursue

a solution that satisfies its condition. We mainly envision two kinds. The first kind of algorithms pursues a

solution of the nonlinear equation (11.9) for q, q†, and Θ. For example, sequential quadratic programming

(SQP) methods applies Newton’s method to solve (11.9) iteratively [57, 127]. However, these methods require

the Hessian (Rm×Rm matrix) of the governing equation. For turbulent flow simulations, m typically exceeds

millions, so its computation is prohibitive in both memory and operation counts. The other kind of algorithms

is the focus of this study, which is typically implemented as direct adjoint looping (DAL) [72, 73, 75–79].

This framework is centered on the gradient information, which the Lagrangian L provides, and utilizes it

iteratively within gradient-based algorithms. We consider the first-order variation of L,

δL = ∇q†LT δq† +∇qLT δq +∇ΘLT δΘ

= N [q; Θ]T δq† — Governing equation

+
{
∇qJ − (∇qN )

T
q†
}T

δq — Adjoint equation

+
{
∇ΘJ − (∇ΘN )

T
q†
}T

δΘ. — Gradient

(11.10)

For a feasible state q and control Θ the governing equation (11.1) is satisfied so the first term in (11.10) is

zero. With a choice of Lagrange multiplier q† that satisfies (11.9a), the second term in (11.10) also becomes

zero, and the first-order variation in the Lagrangian is explicitly dependent only on control δΘ,

δL = ∇ΘLT δΘ ≡
{
∇ΘJ − (∇ΘN )

T
q†
}T

δΘ, (11.11a)

where

N [q; Θ] = 0 (11.11b)

∇qJ − (∇qN )
T

q† = 0. (11.11c)

64



Equation (11.11a) provides δL with respect to δΘ in a linear sense, thus the gradient of L to Θ. Note that

with the governing equation constraint (11.11b) L ≡ J in (11.8) and the gradient (11.11a) is independent

of δq. Therefore, (11.11a) also indicates the gradient of J to Θ, with the equality constraint N [q; Θ] = 0.

The gradient typically provides input for either line search method and trust-region method [57, 126].

Trust-region methods set up a predictive model for J using a local gradient and approximate Hessian

information. We focus on line searches, which seem more compatible with the cost of evaluations of J for

turbulence, although our methods should be broadly adaptable to gradient-informed searches. Details and

comparison between line search method and trust-region method are available [57, 126, 128].

For line searches, with the gradient from (11.11), a local solution for the optimization problem (11.3) is

sought in the framework of fixed-point iteration. This is the basis of the adjoint-based optimization, which

will be introduced in the next section more specifically as direct adjoint looping (DAL). At k-th iteration, a

line search direction is determined as an unit vector,

δΘk = direction(∇ΘL1,∇ΘL2, . . . ,∇ΘLk), (11.12)

where ∇ΘLk denotes the gradient for the k-th iteration. Various algorithms can be used for this: steepest-

descent method uses the gradient direction δΘk = ∇ΘLk/ ‖∇ΘLk‖; and the conjugate-gradient method

projects out all previous directions.

Once the line search direction is determined, a one-dimensional minimization problem is set up,

αk = argmin
α
J [q,Θk−1 + αδΘk] (11.13a)

for a search step αk, such that

N [qk; Θk−1 + αkδΘk] = 0. (11.13b)

As for the overall optimization, finding the global line-search minimizer α ∈ (−∞,∞) is difficult. Various line

minimization algorithms seek an approximate local minimizer. One way is to estimate αk from a quadratic

approximation of J (α) [61],

J [q; Θk−1 + αδΘk] = J [q; Θk−1] + α(∇ΘJ )T δΘk +
α2

2
δΘT

kHδΘk +O(α3), (11.14)

where H = ∇Θ∇ΘJ is the Hessian of the cost functional. The closest local minimum estimated from (11.14)
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is

αest = − (∇ΘJ )T δΘk

δΘT
kHδΘk

, (11.15)

though, again, this requires the Hessian and thus it is discouraged to even approximate for turbulent flow

simulations. Inverse parabolic interpolation [128] estimates αest with three pairs of function evaluations,

instead of H. Given three pairs {α1,J (α1)}, {α2,J (α2)}, and {α3,J (α3)} with α1 < α2 < α3 and J (α2)

the minimum among them, the quadratic expansion (11.14) then provides the α estimated,

αest = α2 −
1

2

(α2 − α1)2[J (α2)− J (α3)]− (α2 − α3)2[J (α2)− J (α1)]

(α2 − α1)[J (α2)− J (α3)]− (α2 − α3)[J (α2)− J (α1)]
. (11.16)

Though (11.16) is not guaranteed stable on its own, convergence can be guaranteed by particular algorithms

to find the (α1, α2, α3), such as golden-section search [128]. More sophiscated approaches can provide better

accuracy with more evaluations of functions, gradients, and Hessians, however this basic approach is sufficient

for our goals [57, 128]. Algorithm 2 summarizes the overall procedure of gradient-based optimization.

Once the solution (qk,q
†
k,Θk) satisfies the terminal criterion in Algorithm 2, (11.9b) is satisfied under the

Algorithm 2 Nonlinear gradient-based line-search optimization

Given: initial guess Θ0, tolerance ε, maximum search limit Kmax

Result: (q∗,q†∗,Θ∗) = argminL[q,q†,Θ]
Solve the governing equation N [q; Θ0] = 0 for q0

L = J [q0,Θ0]

Solve the adjoint equation ∇qJ − (∇qN )
T

q† = 0 for q†0
∇ΘL1 = ∇ΘJ − (∇ΘN )

T
q†0

for k = 1, . . . ,Kmax do
δΘk = direction(∇ΘL1,∇ΘL2, . . . ,∇ΘLk) . Eq. (11.12)
(qk, αk) = argminJ [q,Θk−1 + αδΘk] such that N [qk; Θk−1 + αδΘk] = 0 . Eq. (11.13)
Θk = Θk−1 + αkδΘk . Determine (qk,Θk)
L = J [qk,Θk]

Solve ∇qJ − (∇qN )
T

q† = 0 for q†k . Determine q†k
∇ΘLk+1 = ∇ΘJ − (∇ΘN )

T
q†k

if ‖∇ΘLk+1‖ < ε then

(q∗,q†∗,Θ∗) = (qk,q
†
k,Θk)

Exit

threshold ε, with both (11.9a) and (11.9c) exactly satisfied, thus the solution is close to the first-order

optimality condition in Theorem 11.2.

Note that for the interleaved iterations between (q,Θ) and q†, the governing equation N [q; Θ] = 0

is enforced strictly, thus L ≡ J is preserved throughout the optimization. It will be shown in Chapter

12 how this strict constraint, combined with chaotic dynamical systems, will frustrate the search for a

meaningful local minimum by limiting the exploration. Its temporary relaxation will be a component of the
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new algorithm.

11.3 Optimal control: Pontryagin’s minimum principle

The method of Lagrange multipliers can be extended to optimal control of dynamical systems where (11.1)

is a differential equation in time, so the governing equation is

N [q; Θ] ≡ ∂q

∂t
−R[q; Θ] = 0, (11.17a)

with initial condition

q(ti) = q0. (11.17b)

Our formulation will be developed with turbulence applications in mind, though it can be extended to more

general optimization.

For the purpose of introduction we consider systems with finite degrees of freedom. This will provide a

foundation for formulation of our proposed algorithm in Chapter 14. We take q and N to be defined in a

continuous function space with m degrees of freedom and Θ with c ≤ m degrees of freedom,

Q ≡ N = Um T = U c, (11.18)

where U = H0(R+
0 ) is the space of L2-functions from [0,∞) to R. The inner product for Q ≡ Um is

〈p,q〉Q =

∫ tf

ti

〈p(t),q(t)〉Q+ dt, (11.19)

with ti, tf the initial and final times. For convenience, we define the subspace Q+ = Rm for the instantaneous

state q(t) at any time t, and its inner product

〈p(t),q(t)〉Q+ = pT (t)q(t). (11.20)

This notation 〈·, ·〉Q+ will be used throughout this study. Inner products for T ≡ U c can be defined in a

similar manner.

As for (11.3), optimal control seeks a trajectory of state q and control Θ that minimizes a scalar objective
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functional J ,

J [q,Θ] ≡ Φ[q(tf )] +

∫ tf

ti

I[q(t),Θ(t)] dt, such that
dq

dt
−R[q; Θ] = 0, (11.21)

where Φ is an objective functional for the final state q(tf ), and I is an instantaneous analog of J associated

with the state and the control at time t.

We define a Lagrangian per (11.8) as

L[q,q†,Θ] = J [q,Θ]−
〈

q†,
dq

dt
−R[q; Θ]

〉

Q

= Φ[q(tf )] +

∫ tf

ti

I[q(t),Θ(t)] dt−
∫ tf

ti

q†T
{
dq

dt
−R[q; Θ]

}
dt,

(11.22)

where we introduce the co-state or the adjoint variable q† ∈ Q, a generalization of the Lagrange multiplier

in section 11.2. In order to formulate an analog to Theorem 11.2 for optimal control Θ∗ and associated

adjoint q†∗, we first derive the first-order variation of the Lagrangian,

δL = L[q + δq,q† + δq†,Θ + δΘ]− L[q,q†,Θ]

=
∂Φ

∂q

T

δq(tf ) +

∫ tf

ti

{
∂I
∂q

T

δq(t) +
∂I
∂Θ

T

δΘ(t)

}
dt

−
∫ tf

ti

q†T
{
dδq

dt
− ∂R
∂q

δq− ∂R
∂Θ

δΘ

}
dt,

(11.23)

where ∂I
∂q ∈ Q, ∂I

∂Θ ∈ T and ∂R
∂q : Q → Q, ∂R

∂Θ : T → Q are defined in the sense of a Frechét derivative.

Recasting (11.23) as inner products,

δL =

〈
∂Φ

∂q
, δq(tf )

〉

Q+

+

〈
∂I
∂q

, δq

〉

Q
+

〈
∂I
∂Θ

, δΘ

〉

T

−
〈

q†,
dδq

dt
− ∂R
∂q

δq− ∂R
∂Θ

δΘ

〉

Q

−
〈
δq†,

dq

dt
−R[q; Θ]

〉

Q
,

(11.24)

we can now define the adjoint operator [19, 129].

Definition 11.3 (Adjoint operator). For a linear operator A : X → Y defined on Hilbert spaces X and Y ,

a linear operator A† : Y → X is called the adjoint of A if it satisfies

〈Ax, y〉Y =
〈
x,A†y

〉
X

∀(x, y) ∈ X × Y. (11.25)
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Assuming that the adjoint of ∂R
∂q exists, we reorganize (11.24),

δL = −
〈
δq†,

dq

dt
−R[q; Θ]

〉

Q
— Governing equation

+

〈
∂Φ

∂q
− q†(tf ), δq(tf )

〉

Q+

+

〈
dq†

dt
+
∂R
∂q

†
q† +

∂I
∂q

, δq

〉

Q

— Adjoint equation

+

〈
∂R
∂Θ

†
q† +

∂I
∂Θ

, δΘ

〉

T

+
〈
q†(ti), δq(ti)

〉
Q+ . — Gradient

(11.26)

Each inner product in (11.26) reveals first-order partial dependency of L on q, q†, and Θ: the first inner

product corresponding to q†, the second and third to q, and the fourth to Θ. For optimization of the initial

condition, as for nonlinear non-modal stability analysis [72–76], the final inner product provides the gradient

to the initial condition; if the initial condition is fixed, so δq(ti) = 0 and the final inner product is zero.

Analogous to Theorem 11.2, at the extrema of the Lagrangian all these dependencies must be zero, which

provides us a necessary condition for the optimal trajectory q∗ and control Θ∗ [130]. This is formalized in

Theorem 11.3.

Theorem 11.3 (Pontryagin’s minimum principle). If q∗ and Θ∗ are the optimal trajectory of the state and

control for (11.21), then there exists an adjoint trajectory q† such that

Governing equation





dq∗

dt
−R[q∗; Θ∗] = 0

q∗(ti) = q0

(11.27a)

(11.27b)

Adjoint equation





dq†

dt
+
∂R
∂q

†
q† +

∂I
∂q

= 0

q†(tf ) =
∂Φ

∂q

(11.27c)

(11.27d)

Optimality condition Θ∗ = argmin
Θ

L[q∗,q†,Θ]. (11.27e)

Proof. See Pontryagin [131, Chap 2].

Equations (11.27a) and (11.27b) are constraints for the state variable, (11.27c) and (11.27d) are corre-

sponding constraints for the associated adjoint variable, and (11.27e) is the condition for optimal control.

As for the real vector space in section 11.2, we pursue optimal control (11.27e) by utilizing the gradient
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information from the weak form (11.26),

Gradient δL =

〈
∂R
∂Θ

†
q† +

∂I
∂Θ

, δΘ

〉

T

+
〈
q†(ti), δq(ti)

〉
Q+ , (11.28a)

where

Governing equation





dq

dt
−R[q; Θ] = 0

q(ti) = q0

(11.28b)

(11.28c)

Adjoint equation





dq†

dt
+
∂R
∂q

†
q† +

∂I
∂q

= 0

q†(tf ) =
∂Φ

∂q
.

(11.28d)

(11.28e)

Algorithm 2 can be applied then to optimize.

11.4 Application to compressible flow

Adjoint-based optimization (direct adjoint looping) is in principle an extension of Theorem 11.3 to continua,

in our case a gas, where the state is a function in space. This involves additional equality constraints, such as

boundary conditions, which require additional formulation of the Lagrange multiplier. Here we specify the

flow state, control, and the governing equation for compressible flow dynamics, following Vishnampet [132],

though functionally the same as others [62, 76, 78, 79].

11.4.1 Equation governing a compressible fluid

For a domain D, a non-empty bounded open subset of three-dimensional Euclidean space R3, we denote

V = H0(D)×H0(R+
0 ) as the space of L2-functions from D×[0,∞) to R. We define the flow state q ∈ Q = V 5

as

q =

(
ρ ρu1 ρu2 ρu3 ρE

)T
, (11.29)

with ρ the density, u = (u1, u2, u3) ∈ V 3 the velocity, and ρE = ρCvT + 1
2ρuiui the total energy. The inner

product on Q ≡ V 5 is defined as

〈p,q〉Q =

∫ tf

ti

〈p(t),q(t)〉Q+ dt, (11.30)
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with the inner product of instantaneous flow states p(t),q(t) ∈ Q+ ≡ H0(D)5 at time t,

〈p(t),q(t)〉Q+ =

∫

D
pT (x, t)q(x, t) dx, (11.31)

where p(x, t),q(x, t) ∈ R5 are the flow states at position x and time t.

The governing equation without control is

∂q

∂t
+

∂

∂xi

(
FIi − FVi

)
= 0, (11.32)

where FIi ∈ Q and FVi ∈ Q are respectively advective and diffusive fluxes in the xi direction,

FIi =




ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

ui(ρE + p)




and FVi =




0

τ1i

τ2i

τ3i

ujτji − qi




. (11.33)

The gas is taken to be ideal,

p = ρRT, (11.34)

with p pressure, T temperature, R = (γ−1)Cv the gas constant, and the ratio of specific heats γ = Cp/Cv =

1.4. The stress–strain constitutive relation for a Newtonian fluid is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij , (11.35)

and Fourier’s law of heat conduction is

qi = −κ ∂T
∂xi

, (11.36)

with κ the thermal conductivity. The viscosity is modeled with power-law dependence on temperature,

µ

µ∞
=

(
T

T∞

)0.666

, (11.37)

as a model of air [133], and subscript ∞ represents a quiescent ambient flow state. In (11.35), λ = µB − 2
3µ

is the second coefficient of viscosity. For air, the bulk viscosity is taken to be µB = 0.6µ [79, 132, 133].
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The flow state q is further constrained by boundary conditions on the domain boundary ∂D,

B∂D [q] = 0, (11.38)

and various boundary condition are listed by Vishnampet [132, Table 4.1]. The specific boundary conditions

used in flow simulations are introduced in Chapter 13.

We assume a generic form of control f to be added to the governing equation (11.32),

∂q

∂t
+

∂

∂xi

(
FIi − FVi

)
−WΓ(x) ◦ f(x, t) = 0, (11.39)

where WΓ = (WΓ
ρ ,W

Γ
ρu1

,WΓ
ρu2

,WΓ
ρu3

,WΓ
ρE)T ∈ Q is a mollifying compact support that defines the actuator

and the control region Γ ⊆ D, and ◦ denotes element-wise multiplication,

WΓ ◦ f =

(
WΓ
ρ fρ WΓ

ρu1
fρu1

WΓ
ρu2

fρu2
WΓ
ρu3

fρu3
WΓ
ρEfρE

)T
. (11.40)

We recast (11.39) in the form of (11.17) as

∂q

∂t
= R[q, f ], (11.41)

with the right-hand side

R[q, f ] = − ∂

∂xi

(
FIi − FVi

)
+ WΓ(x) ◦ f(x, t).

Together, (11.41) and (11.38) governs compressible flow with control.

11.4.2 Numerical Discretization

Following Vishnampet [132], the spatial derivatives are discretized with flexible parameter r to be 2r-order

accurate centered-difference stencils at interior points of the domain and r-order accurate biased stencils

near boundaries. This produces a banded matrix operators with the summation-by-parts (SBP) property,

analogous to the intergration-by-parts of continuous derivative operators. For r = 2, 3, 4, these are referred

to as the SBP 2–4, 3–6, 4–8 schemes, respectively. Approximating spatial derivatives with SBP operators is

beneficial for computing the dual-consistent adjoint, which is exact to the arithmetic precision and at the

same time consistently converges to the adjoint of the continuous governing equation [19, 76, 132, 134].

Second and mixed derivatives are discretized using repeated first-derivative SBP operators. This neces-
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sitates the use of artificial dissipation [132, 135], since countered first derivative operators do not damp the

highest wavenumbers supported by the mesh. To do this, we add a right-hand side term in (11.41)

Rdiss = −σdiss

3∑

i=1

DIiq, (11.42)

with strength σdiss > 0. For the detail formulation of DIi, we refer to Vishnampet [132].

The governing equation (11.41) is integrated in time by a standard explicit Runge–Kutta fourth-order

(RK4) scheme. The inner product (11.30) is approximated with a quadrature norm,

〈~p, ~q〉Q =

Nt∑

n=1

Ns∑

s=1

〈~p n,s, ~q n,s〉Q+ β
n,s∆t, (11.43)

where the superscript (·)n,s indicates the variable at the s-th stage of n-th time step. For our RK4 scheme,

Ns = 4, βn,1 = βn,4 = 1/6 and βn,2 = βn,3 = 1/3. The inner product for the instantaneous flow state is

discretized as

〈~p n,s, ~q n,s〉Q+ = (~p n,s)TP ~q n,s, (11.44)

where the diagonal matrix P is the quadrature norm for space integral, with which SBP property of derivative

operators are satisfied. The discrete-exact, dual-consistent adjoint solver developed by Vishnampet [132] is

used, which, in the framework of (11.28), provides the gradient (11.28a) by solving the adjoint equation

(11.28d-e) corresponding to (11.41).
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Chapter 12

Chaos and gradient-based
optimization

Two main aspects of how chaos disrupts gradient-based optimization are demonstrated with the optimal

control problem of the Lorenz equation presented in Chapter 10. Standard results from the theory of

dynamical systems are used to anticipate what property of chaotic dynamical systems challenges turbulence

control, using simple mathematical models for illustration. As part of this analysis of simple cases, we

introduce quantitative indicators that can also be applied to turbulence to characterize these same features

in its less tractable setting.

12.1 Lorenz equation illustration

12.1.1 System definition

We recall the Lorenz equation (10.1) [80] for the state q = (x, y, z) ∈ Q = U3 with actuation Θ = f(t) ∈

T = U ,
dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz + f(t),

with σ = 10, β = 8/3, and ρ = 28. The initial condition for the example calculations is q0 = (1.49, 1.49, 37)T .

It is integrated with a standard explicit fourth-order Runge–Kutta (RK4) scheme, with time step ∆t = 0.01.

The two unstable fixed points U1 and U2 are

U1 = (−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1)T = (−6

√
2, −6

√
2, 27)T

U2 = (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1)T = (6

√
2, 6
√

2, 27)T ,

(12.1)

and the saddle point is S = (0, 0, 0)T . Figure 10.1 in the introduction shows the state trajectory for these

parameters.
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Figure 12.1: The observable O (12.2) and the instantaneous objective functional I (12.4) of the baseline
trajectory.

12.1.2 Control

The control seeks orbits of U1, avoiding orbits of U2. The indicator

O[q] = 2x+ y, (12.2)

is positive for U2 and negative for U1. The objective functional J is defined to favor negative O,

J =
1

tf − ti

∫ tf

ti

I[q] dt, (12.3)

with

I[q] =





1

2

(O[q]

5

)2

O[q] ≥ 0

0 otherwise,

(12.4)

which is shown in Figure 12.1. The optimization period is set to be ti = 0 and tf = 20.

The standard gradient-based optimization introduced in Chapter 11 is implemented to seek the control

f(t) that minimizes J (12.3). As was shown in Figure 10.2, the gradient of J to f(t) grows exponentially

in reverse time, and J is highly non-convex with numerous local extrema. Starting from q with f = 0 in

Figure 10.1, the standard gradient-based method finds an f that reduces J by 44.6%, as shown in Figure 10.3.

We further investigate the found f and associated q(t) to characterize the control strategy pursued with the

baseline method.
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Figure 12.2: The standard gradient-based optimization for the Lorenz system (10.1). (a) The magnitude of
the control gradient ∇fJ and the optimized control f(t) in time. (b) The instantaneous objective functional
I(t) (12.4) for the baseline trajectory and the controlled trajectory.

12.1.3 Biased line search due to gradient growth

For gradient-based optimization in Chapter 11, a local minimum is sought in the gradient direction, which

is interpreted as potentially reducing J . However, the exponentially amplified gradients at early times in

turn dominate the overall gradient. Figure 12.2 (a) confirms that the control is indeed concentrated, just as

the gradient itself, in early times and therfore not expected to be maximally effective.

Such a distribution in time, however, masks the advantageous moments at which f can best minimize

J . Figure 12.2 (b) illustrates this by showing I(t) from (12.4) for the baseline trajectory, where the peaks

correspond to U2 orbits. Unlike f(t), which is concentrated at the initial time, I peaks are distributed

throughout the evolution. Moreover, I(t) for the controlled trajectory in Figure 12.2 (b) shows that the

optimized control mostly affects late times, leaving the I(t) peaks in t < 10 nearly unaffected, even though

they are closer in time to the strongest f(t).

It would be tempting to say that the system (10.1) is not controllable in the sense that J has a high

lower-bound. More specifically, it may seem that I events in the early time period are uncontrollable,

because there is a time delay for a control f(t) to influence on I(t). However, this is not the case. Since the

Lorenz equation is a fairly simple ODE, it is possible to prove the controllability of the system (10.1) and

design a nonlinear feedback control [136, 137], as summarized in Appendix C. Figure 12.3 (a) shows that

f(t) from this feedback control is synchronized with O, being activated instantaneously whenever O nears

0. Figure 12.3 (b) shows that this control suppressed all peaks of I(t) throughout the optimization time

period, hence the late-time peaks of I(t) do not need to exploit f(t) at early times. Similarly, the early-time

I peaks need not remain uncontrolled for the sake of late-time control.
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Figure 12.3: A nonlinear feedback control for the Lorenz system (10.1) designed in Appendix C. (a) The
control force f(t) and the corresponding observable O(t) (12.2) in time. (b) The instantaneous objective
functional I(t) (12.4) for the baseline trajectory and the controlled trajectory.

12.1.4 Non-convexity of J

It is also illuminating to compare the magnitude of f(t) from the standard gradient-based method to the

nonlinear feedback control. The nonlinear feedback control has the maximum magnitude |f(t)| = 4623

and oscillates in −713 < f(t) < 378 after t > 0.5, whereas the standard gradient-based method has peak

|f(t)| = 0.00141 at t = 0.76. While it is impressive that such a small control can achieve more than 40%

reduction, control amplitude is not penalized so there is no reason in this demonstration to pursue such an

extraordinary control with low amplitude. While the extreme gradient magnitude in Figure 12.2 (a) may

be interpreted as a potentially large J reduction, the realized f(t) is extremely limited, which in turn does

not match the J reduction of the nonlinear feedback control.

The non-convexity of J [Θ] limits the control magnitude. Figure 12.4 (a) shows that the line search steps

taken in the optimization are small. The step size is only ∼ 10−24 after 18 line searches, suggesting that

f(t) converges to a local minimum. Figure 12.4 (b) shows J [Θ] finely sampled along a line-search direction,

showing many local extrema of small scale. The shape of J in the entire dom(N ) is expected to be similar,

mainly in two ways: many local extrema as holes or hills are spread on the optimization space; or J has

many ridges and valleys connected in a ragged way. Either way, limited size of these features obscures the

gradient-based method from finding solutions far from the initial guess (f = 0 in this example).

Error amplification in computing gradients has been pointed out as the major cause of degrading opti-

mization [76, 79, 82]. However, with this non-convexity of J , the error involved in gradient computation is

not necessarily the key impediment. Rather, it is the utility of the gradient for optimization that fails. Even

the exact the gradient is valid only in the linear regime where the Taylor expansion of J [Θk−1 + αδΘk]
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Figure 12.4: (a) The step sizes of each line searches (11.13) using the standard gradient-based method. The
arrow indicates the line search step that achieve the most reduction of J . (b) The objective functional
J [Θk−1 + αδΘk] along the first line search direction (11.12).

in (11.14) remains useful. The linear regime becomes too small for useful nonlinear control (Figure 12.3)

to be discovered. This limitation is intrinsic, due to the characteristic of gradient-based optimization: the

gradients leads the search toward the closest local minimum in the linear regime.

While the standard gradient-based method uses the most basic optimization techniques, more sophis-

ticated algorithms do not seem to remedy the situation. One may attempt to achieve more J reduction

by taking an arbitrarily larger step size. In Figure 12.4 (b), for example, this might achieve the maximum

reduction with ‖αΘ‖T ≈ 0.5 × 10−4. There are established line search conditions that allow steps beyond

the closest local minimum, with an expected J reduction estimated from the gradient [57]. Considering

the pathologically large gradient in chaotic dynamical systems, such steps are still not expected to be suffi-

ciently large or in a useful direction for control. For finding a better α at larger scale, the gradient-based line

search becomes similar to a randomly chosen direction. The other gradient-based approaches introduced in

Chapter 11 likewise suffer.

12.1.5 Error amplification and Taylor expansion breakdown

The error amplification and the Taylor expansion breakdown discussed in the previous section can be quan-

tified. This will motivate the quantification of non-convexity of J introduced later in this chapter, with an

aim toward extending this analysis to the challenge of flow turbulence.

We consider the finite-difference approximation of the gradient ∇ΘJ ,

∆J
∆Θ

=
J [q; Θ0 + ∆Θeθ]− J [q; Θ0]

∆Θ
, (12.5)
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Figure 12.5: Utility of gradient in the Lorenz system. (a) The relative errors ε (12.6) of the finite-difference
∆J

∆f(ts) compared to ∂J
∂f(ts) , the gradient of J (12.3) to the instantaneous forcing Θ = f(ts) at different times

t = ts. (b) A schematic of ε[∆f(ts)] behavior in reverse time ts for chaotic dynamical systems. τφ (12.36) is
the time scale of these behaviors, which will be introduced in Section 12.3.

where eθ = ∇ΘJ /‖∇ΘJ ‖T is the unit vector in T along the gradient direction. This quantity has been

compared to the gradient for the verification of the adjoint solver [82]. We also recognize that the relative

difference between (12.5) and the adjoint gradient ∇ΘJ ,

ε[∆Θ] =

∣∣∣∣∣
∆J
∆Θ −

〈
∂J
∂Θ , eθ

〉
T〈

∂J
∂Θ , eθ

〉
T

∣∣∣∣∣ , (12.6)

quantifies how accurately the linearization with the gradient predicts the actual variation ∆J for finite ∆Θ.

For the Lorenz example, ε is evaluated for ∂J
∂f(ts) , with ∆Θ = ∆f(ts), at the specific times ts ∈ [ti, tf ]

shown in Figure 12.5 (a). The O[∆f ] and O[∆f−1] asymptotes of ε shows the typical error scaling of

a finite-difference, for truncation and finite-precision errors, respectively. Two impacts of chaos in Sec-

tion 12.1.3 and 12.1.4 are manifest here, as illustrated in Figure 12.5 (b). First, minimum error of ∆J
∆f(ts)

increases in reverse time of ts, due to finite-precision errors amplified for longer time (tf − ts). Furthermore,

as J becomes more non-convex, the gradient is accurate over a diminishing range of ∆f(ts). Appendix D

further illustrates this with simple model J ’s. This gradient accuracy ε in Figure 12.5 clearly shows the

decreasing utility of gradient due to chaos.

Figure 12.5 also confirms the expectation in Section 12.1.4, that the key impediment for optimization is

non-convexity of J rather than the amplified error in gradient. In Chapter 11, typical step size is estimated

79



with (11.15) along the gradient direction eθ,

∆Θest = |αest| =
〈
∂J
∂Θ , eθ

〉
T

〈eθ,Heθ〉T
, (12.7)

which, based on Tayler expansion (11.14), is expected to have a relative error

ε[∆Θest] =
1

2
+O(∆Θ2

est). (12.8)

In Figure 12.5 (a), these typical step sizes with ε = 1
2 are located at ∆Θ > 10−5. As illustrated in

Figure 12.5 (b), they are diminishing as J becomes non-convex. The error amplification mostly affects the

minimum error at ∆Θ < 10−5, much smaller than these estimated step sizes.

12.2 Signature of chaos: horseshoe mapping

The impacts on optimization observed in Section 12.1 can be connected more explicitly to the universal

properties of chaotic dynamical systems. For illustration, we appeal to some standard mathematical models

selected to reflect key dynamical properties of more complex systems.

12.2.1 Continuous dynamical system and discrete mapping

To facilitate the analysis we consider dynamical systems as discrete functions in time, mapping one instance

to a latter instance [17, 114, 115]. To motivate this, we recall the governing equation (11.17) for a time-

continuous dynamical system,

∂q

∂t
−R[q] = 0 (12.9a)

q(ti) = q0. (12.9b)

The control Θ, which was in (11.17), is omitted in order to focus on the dynamical system properties. We

represent the trajectory as q(q0, t), to explicitly denote that it is a continuous function of time t for initial

condition q0.

The analogous discrete mapping qn with a nominal time period ∆T is,

qn+1 = q(qn,∆T ) ≡ qn +

∫ ti+(n+1)∆T

ti+n∆T

R[q] dt. (12.10)
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Figure 12.6: (a) Logistics map (12.11), and (b) the stretching and folding motion involved in each step.

From this perspective, the evolution of any time-continuous dynamical systems can be considered a discrete

mapping. The concept of mapping is convenient for analysis with its causal relation between the initial and

subsequent states [17, 80, 114, 115].

12.2.2 Horseshoe mapping: illustrative example

As a specific example of (12.10), we use a variant of the one-dimensional logistics map [114],

qn+1 = q(qn) ≡ (2qn − 1)2 qn ∈ [0, 1]. (12.11)

This is interpreted in Figure 12.6 (a) to stretch and fold a distribution of possible qn to yield a qn+1

distribution. These stretching and folding features of this so-called horseshoe map are the two essential

aspects of chaotic dynamical systems [17, 115]. The stretching amplifies the gradient of the states, by up to
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Figure 12.7: (a) Subsequent states q1, q2 and q3 as functions of the initial state q0 for the logistics map
(12.11). (b) The objective function J (q0) (12.13).

a factor of 2 at each step for this mapping,

∣∣∣∣
∂qn+1

∂q0

∣∣∣∣ =

∣∣∣∣2(2qn − 1)
∂qn
∂q0

∣∣∣∣ ≤ 2

∣∣∣∣
∂qn
∂q0

∣∣∣∣ . (12.12)

The well-known exponential growth of the gradient discussed in Section 12.1 is a consequence of such recursive

stretching. The folding creates new local extrema in the next state qn+1(qn), such as at qn = 0.5 in Figure

12.6 (a). The number of local extrema also increases exponentially with increasing steps. Figure 12.7 (a)

shows subsequent states qn(q0), whose number of local extrema doubles at every mapping.

12.2.3 Non-convex J due to horseshoe mapping

The increasing number of local extrema in the state space of the dynamical system masks useful local minima

of Definition 11.1 outside a small neighborhood. The simple objective function

J = q2 +
1

2
q0 (12.13)

can illustrate this. The two mappings that generate q2 = q(q(q0)) give J the three extrema, shown in

Figure 12.7 (b). These are emblematic of the challenge introduced in Section 12.1. There is a distinct global

minimum J1, however the local maximum at q0 = 0.5 blocks the gradient optimization path to it: if an

optimization for J starts near J2, the global minimum J1 cannot be found by standard gradient search.

Of course, this is a risk of the gradient methods described in Chapter 11, yet in many applications local
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minima have large enough neighborhoods to be useful. However, for a chaotic dynamical system it poses a

challenge, as shown in Section 12.1. The space of subsequent states becomes so non-convex by horseshoe

mapping, that any objective functional dependent on them will also reflect this character. With many

local minima of limited neighborhood, including useful ones, there is no expectation that the search will

significantly improve the solution.

12.3 Quantification of the impact of chaos on optimization

We introduce two time scales that respectively quantify two characteristics of horseshoe mapping in the

context of optimization. One quantifies the growth rate of the gradient, related to the stretching motion of

the horseshoe mapping, and the other quantifies how fast (and how much) J becomes non-convex, related

to the folding motion. Both will be employed to quantify more complex scenarios in Chapter 13.

12.3.1 Gradient growth

The Lyapunov exponent is well understood to quantify sensitivity to initial condition [114, 115]. Its inverse,

the corresponding e-folding time scale [39], is used here as its quantitative indicator. We first introduce a

specific definition of a Lyapunov exponent following Kuptsov and Parlitz [138], and then we introduce a

procedure that can infer an approximate Lyapunov exponent in the context of optimization.

For a time-continuous dynamical system (11.17),

∂q

∂t
= R[q]

with initial condition

q(ti) = q0,

an infinitesimal trajectory deviation δq(t), starting from an initial perturbation δq(ti) = δq0, evolves ac-

cording to the linearized governing equation,

∂δq

∂t
=
∂R
∂q

δq, (12.15)

where ∂R
∂q : Q → Q is the Jacobian of the right-hand side R, as in Chapter 11. For the Lorenz equation
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(10.1),

∂R
∂q

=




−σ σ 0

ρ− z −1 −x

y x −β




∈ R3×3. (12.16)

With this, the differential equation can be recast with a forward-time propagator or resolvent F [ti, tf ],

δq(tf ) = F [ti, tf ]δq(ti) ≡ δq(ti) +

∫ tf

ti

∂R
∂q

δq(t) dt. (12.17)

This is the linearized counterpart of the full nonlinear forward-time propagator (12.10).

The growth of the deviation can be expressed in terms of F and δq(ti) as

‖δq(tf )‖2Q+

‖δq(ti)‖2Q+

=
〈δq(tf ), δq(tf )〉Q+

〈δq(ti), δq(ti)〉Q+

=
〈F δq(ti),F δq(ti)〉Q+

〈δq(ti), δq(ti)〉Q+

=

〈
δq(ti),F†F δq(ti)

〉
Q+

〈δq(ti), δq(ti)〉Q+

, (12.18)

where F† is the adjoint of F , so
〈
q†(tf ),Fq(ti)

〉
Q+ =

〈
F†q†(tf ),q(ti)

〉
Q+ , and

q†(ti) = F†[ti, tf ]q†(tf ), (12.19)

with the adjoint variables q†(ti),q†(tf ) ∈ Q+ at time ti and tf , respectively. The specific formulation of F†

will be introduced subsequently. Considering that F†F is a linear operator on Q+, (12.18) shows that the

growth of ‖δq‖2Q+ for t ∈ [ti, tf ] is characterized by the eigenvalues of F†F .

The Lyapunov exponents can be expressed in terms of these eigenvalues. Denoting the eigenvalues of

F†F as σ2
k(ti, tf ) during [ti, tf ], where σ1(ti, tf ) ≥ σ2(ti, tf ) ≥ · · · ≥ 0,

λ̃k(ti, tf ) =
log σk(ti, tf )

tf − ti
, (12.20)

This finite-time Lyapunov exponent [138–140] is trajectory-specific, not a property of the dynamical system,

unless the trajectory q(t) covers the entire state space, which is only possible for t→∞ or an ensemble of

infinitely many trajectories [138, 141].

A dynamical system has as many Lyapunov exponents as the state dimension dim(Q), and computing

all of them precisely is computationally prohibitive for large-scale dynamical systems [138, 142]. However,

for present purposes, it is sufficient to measure the fastest rate at which chaos impacts the optimization,

which corresponds the leading Lyapunov exponent λ1.
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We introduce a procedure to estimate λ1 in the context of optimization. For this, we introduce a final-

state objective functional in (11.21),

Φ[q(tf )] =
〈
q†(tf ),q(tf )

〉
Q+ , (12.21)

where the choice of q†(tf ) will be specified subsequently. This is a scalar analog of the discrete mapping

(12.10) in Section 12.2. The gradient of Φ to the initial condition q(ti) is the special case of the optimal

control problem in Section 11.3 with I ≡ 0 and Θ ≡ 0. In this case, the variation (11.28a) in the weak form

is then

δL ≡ δΦ =
〈
q†(ti), δq(ti)

〉
Q+ , (12.22a)

which provides the gradient ∂Φ
∂q(ti)

≡ q†(ti). q†(ti) is obtained by solving the adjoint equation (11.28d),

dq†

dt
+
∂R
∂q

†
q† = 0, (12.22b)

starting from q†(tf ) at t = tf . This gradient q†(ti) is equivalent to the adjoint propagator (12.19). Com-

paring the variation of Φ,

δΦ =
〈
q†(tf ), δq(tf )

〉
Q+ =

〈
q†(tf ),Fδq(ti)

〉
Q+ =

〈
F†q†(tf ), δq(ti)

〉
Q+ , (12.23)

where the second equality comes from (12.17) and the last from the definition of adjoint operator. Comparing

(12.23) and (12.22a), q†(ti) = F†q†(tf ), thus recasting the differential equation (12.22b),

q†(ti) = F†[ti, tf ]q†(tf ) ≡ q†(tf ) +

∫ tf

ti

∂R
∂q

†
q† dt. (12.24)

The adjoint counterpart of (12.18) can be used with ∂Φ
∂q(ti)

≡ q†(ti) for computing Lyapunov exponents,

∥∥q†(ti)
∥∥2

Q+

‖q†(tf )‖2Q+

=

〈
q†(ti),q†(ti)

〉
Q+

〈q†(tf ),q†(tf )〉Q+

=

〈
q†(tf ),FF†q†(tf )

〉
Q+

〈q†(tf ),q†(tf )〉Q+

, (12.25)

where FF† has the same eigenvalues of F†F [138]. Its eigenvalues represent growth in reverse time.

Any non-pathological choice of q†(tf ) will have at least a small component parallel to the leading eigen-

vector (backward Lyapunov vector [138]) that will therefore dominate the rest for a sufficiently long time

(tf − ti). Therefore, the leading finite-time Lyapunov exponent (12.20) can be inferred using (12.24) and
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(12.25),

λ̃1(ti, tf ) =
1

tf − ti
log
‖q†(ti)‖Q+

‖q†(tf )‖Q+

. (12.26)

The adjoint state q†(tf ) is chosen with a random direction and
∥∥q†(tf )

∥∥
Q+ ≤ 10−5. Specific q†(tf ) are

introduced in Chapter 13.

To sample the possible state distribution, we ensemble-average N q(t) trajectories. All have the same

interval length, sampled at different times. The leading Lyapunov exponent is approximated as

λ1 ≈
1

N

N∑

n=1

λ̃1(ti,n, tf,n), (12.27)

with n-th sample interval [ti,n, tf,n]. Problem-dependent intervals are specified in Chapter 13. The e-folding

time is then

τλ =
1

λ1
. (12.28)

12.3.2 Non-convexity of J

Motivated by the analysis in Section 12.1.5, we measure the decay time scale of the viable step size (12.7)

as an indicator of J non-convexity. To infer the viable step, we utilize the error ε (12.6). Based on Taylor

expansion (11.14),

ε[∆Θ] =
〈eθ,Heθ〉T〈
∂J
∂Θ , eθ

〉
T

∆Θ

2
+O

( εr
∆Θ

)
+O(∆Θ2).

We note that the first-order coefficient of ∆Θ is equivalent to the reciprocal of (12.7). So the viable step is

inferred approximately with (12.6) at the minimum error,

αest =

〈
∂J
∂Θ , eθ

〉
T

〈eθ,Heθ〉T
≈ 1

2

argmin ε[∆Θ]

min ε[∆Θ]
. (12.29)

We define it as the viable step for J and Θ,

δΘ[J ,Θ, ti, tf ] =
1

2

argmin ε[∆Θ]

min ε[∆Θ]
, (12.30)

where its dependency on J and Θ is explicitly specified.

We choose the same J = Φ (12.21) with Θ = q(ti) used for the Lyapunov exponent. In this way,

the viable step represents a dynamical system property just as the Lyapunov exponent. The gradient

∂Φ
∂q(ti)

= q†(ti) is given from (12.22). A finite-difference (12.5) is evaluated with J = Φ in (12.21) and
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Θ = q(ti),

∆Φ

∆Θ
=

Φ[q∆Θ(tf )]− Φ[q(tf )]

∆Θ
, (12.31)

where q∆Θ is evaluated with the full governing equation (11.17) with perturbed initial condition,

q∆Θ(ti) = q0 + ∆Θeθ, (12.32)

where eθ = ∇ΘJ /‖∇ΘJ ‖T = q†(ti)/‖q†(ti)‖Q+ . The relative gradient error is recast from (12.6) as

ε[∆Θ] =

∣∣∣∣∣
∆Φ
∆Θ − ‖q†(ti)‖Q+

‖q†(ti)‖Q+

∣∣∣∣∣ , (12.33)

from which δΘ[Φ,q(ti), ti, tf ] is evaluated from (12.30). Our purpose is to quantify how typical J can

become non-convex in time, so we evaluate the decay of δΘ (12.30) as

φ̃(Φ,q(ti), ti, tf ) = − log δΘ[Φ,q(ti), ti, tf ]

tf − ti
, (12.34)

which is analogous to local Lyapunov exponent (12.20).

As for the Lyapunov exponent (12.27), in order to cover the entire state distribution, we ensemble-average

φ̃ (12.34),

φ =
1

N

N∑

n=1

φ̃(Φn,q(ti,n), ti,n, tf,n), (12.35)

where Φn =
〈
q†(tf,n),q(tf,n)

〉
Q+ . The adjoint states q†(tf,n) and time intervals [ti,n, tf,n] are from the same

sample used for the Lyapunov exponent (12.27). This yields a time scale

τφ =
1

φ
, (12.36)

equivalent to e-folding time (12.28).

There are many quantities for complexity of a chaotic dynamical system, such as metric entropy [17, 114–

120, 141]. We recognize that they may be indirectly connected with the non-convexity of the state q and

associated J , though most of them are intractable to compute for large-scale flow simulations. In Appendix E

we reviewed some of them in connection with folding motion, and discuss challenges of their computation

for large-scale flow simulations.
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Figure 12.8: Evolution of
∥∥q†(t)

∥∥ for the Lorenz system (10.1). The dark blue line indicates the geometric
average over ensemble, and the light blue lines indicate the standard deviation around the average.

12.4 Application to the Lorenz example

The e-folding time (12.28) of the Lorenz equation (10.1) is estimated with N = 500 adjoint final states,

q†(tf ) = (ξx, ξy, ξz), (12.37)

where ξx, ξy, and ξz are pseudo-random numbers with uniform distribution U [−10−5, 10−5]. The adjoint

initial state q†(ti) is computed from each adjoint final state through (12.24) for tf − ti = 20 with a randomly

selected tf ∈ U [20, 104]. Figure 12.8 shows the time-evolution of the ensemble-average of q†(t), where the

ensemble is averaged geometrically,

q† =

(
N∏

k=1

‖q†k‖Q+

) 1
N

. (12.38)

A linear fit shows that the e-folding time (12.28) is τλ ≈ 1.11. At t = ti, the gradient increases by a factor

of exp[(tf − ti)/τλ] ≈ 7× 107, which is consistent with the observation from Figure 12.2 (a).

The sample final adjoint states (12.37), used to estimate τλ, are reused to evaluate the functional Φ

(12.21) for estimating τφ. The q†(t) provide the gradient (12.22) at time t that will be compared to the

finite-difference (12.31). Figure 12.9 (a) shows a sample q†(t), which grows in reverse time t. 10 time points

t are selected, and their q†(t) are compared to finite-differences ∆Φ
∆Θ (12.31) to estimate relative errors ε[∆Θ]

(12.33) as shown in Figure 12.9 (b). The viable step δΘ (12.30) in Figure 12.9 (c) is ensemble-averaged over

N = 100 samples in Figure 12.9 (d). Their decay time scale τφ (12.36) is estimated to be τφ ≈ 1.135.
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Figure 12.9: Computation of viable step of the linear functional (12.21). (a) The adjoint magnitude at the
investigation times, (b) relative error of the finite-difference compared to the gradient at each investigation
time, (c) the viable step in time estimated from the relative errors, and (d) ensemble average of the viable
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Figure 12.10: The impact of chaotic dynamics on the objective functional (12.3). The time axis is shifted
with respect to the final simulation time tf . (a) The gradient to a point-wise force f(ts) (circle) compared
with ensemble average of q†(t) (solid) from Figure 12.8, and (b) the viable step associated with the gradient
∂J

∂f(ts) (circle) compared with ensemble average of δΘ(ti, tf ) (solid) from Figure 12.9 (d).

The gradient growth and inferred viable step for the J (12.3) and control f(t) in (10.1) confirms that

these τλ and τφ quantify the impact of chaos on the optimization. Figure 12.10 (a) shows the gradient of

∂J
∂f(t) at 10 time points, which grows in the time scale of τλ. Its associated viable step per (12.30) is also

decaying in the time scale of τφ, as shown in Figure 12.10 (b). Not only the decay time scale, but also the

magnitude of δΘ itself seems informative for the typical search step size in optimization. In Figure 12.10 (b),

δΘ(t, tf ) ≈ 10−5 at t = ti matches with the useful step size that reduced J in Figure 12.4 (a). After this, the

step size in the optimization is significantly reduced, suggesting that the solution reached a local minimum.

This efficacy will be further evaluated for more complex systems in Chapter 13.

We note that the similarity of τφ ≈ 1.135 to τλ ≈ 1.11 is not expected for all cases, as will be seen when

these analysis procedures are applied to more involved problems. Since the Lorenz system has only one

positive Lyapunov exponent, many of its invariant quantities, such as the metric entropy, share the same

value as the leading Lyapunov exponent.
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Chapter 13

Example applications

The mechanisms by which chaos hinders optimization that were illustrated in Chapter 12 are now demon-

strated and quantified for model chaotic systems with increasing complexity, and ultimately turbulence.

In Section 13.1 we first demonstrate standard adjoint-based control for the one-dimensional Kuramoto–

Sivashinsky (K–S) chaotic advection-diffusion system [121, 122, 143–145]. Two-dimensional Kolmogorov

flow in Section 13.2 is a chaotic, though not turbulent, compressible flow (11.41), where vortices chaotically

oscillate and meander in a small domain [124, 125]. Together these two systems allow us to detail the chal-

lenges analyzed in Chapter 12 before attempting turbulence. In Section 13.3 we set up an advection + K–S

equation model system, which illustrates the challenge of turbulence with the scale-separation hypothesis of

Chapter 10 in mind. A three-dimensional Kolmogorov flow in Section 13.4 provides an ultimate example of

turbulent flows under scale-separation hypothesis, where the large-scale vorticity structures, similar to its

two-dimensional counterpart, are now continually scattered into a broadbanded turbulence.

13.1 The Kuramoto–Sivashinsky system

13.1.1 Governing equation

The Kuramoto–Sivashinsky (K–S) equation is a phenomenological model for concentration-wave propaga-

tion in dissipative media [121] and laminar flame front stability [122]. We consider the generalized K–S

equation [146] for the state u(x, t) ∈ Q = V with control f(x, t) ∈ T = V ,

∂u

∂t
+

∂

∂x

(
1

2
u2

)
+ α1

∂2u

∂x2
+ α2

∂4u

∂x4
−WΓ(x)f(x, t) = 0 (x, t) ∈ [0, 2π]× [0,∞), (13.1)

with α1 = 1.0, α2 = 0.029910, and WΓ the compact mollifying support defining the control region, which

will be introduced subsequently. With these α1 and α2 values, the system (13.1) exhibits chaos [143]. The

spatial domain is 2π-periodic,

u(x, t) = u(x+ 2π, t). (13.2)
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Figure 13.1: The evolution of u(x, t) in space and time.

The initial condition is,

u(x, 0) = 5 + 0.1 sin (x) , (13.3)

so that the characteristic advection speed is Uc = 5. Figure 13.1 shows the evolution of u(x, t).

13.1.2 Numerical method

For the demonstration calculations the spatial domain is discretized with Ng = 512 mesh points, and the

spatial derivative ∂/∂x is discretized with the standard three-point second-order centered difference, which

we denote as an operator D ∈ RNg × RNg . The higher derivatives in (13.1) are discretized with repeated

first-derivatives, as D2 and D4 respectively. Since the second-order derivative is anti-diffusive (α1 > 0) and

the fourth-order derivative is stiff for high wavenumber modes, an implicit time-integration aids stability.

This is convenient since these terms are linear. Yet the nonlinear advective term ∂
∂x ( 1

2u
2) in (13.1) is simpler

when explicitly time integrated. Therefore, a semi-explicit four-step Runge–Kutta scheme is used with time
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Figure 13.2: K–S equation (13.1): (a) The ensemble average of the adjoint q†(t) and the standard deviation
around the average. The gradient of J (13.5) with respect to control forcing f(t) is also for comparison.
(b) The ensemble average of the viable step δΘ(t, tf ) and the standard deviation around the average. The
viable step ‖δf(t)‖ associated with J is also plotted for comparison.

step ∆t = 0.01,

2~un,1 − 2~un−1,4

∆t
= −D

(
~u 2
n−1,4

2

)
− α1D

2~un,1 − α2D
4~un,1 + ~WΓ

~fn,1

2~un,2 − 2~un−1,4

∆t
= −D

(
~u 2
n,1

2

)
− α1D

2~un,2 − α2D
4~un,2 + ~WΓ

~fn,2

~un,3 − ~un−1,4

∆t
= −D

(
~u 2
n,2

2

)
− α1D

2~un,3 − α2D
4~un,3 + ~WΓ

~fn,3

6~un,4 − 2~un,3 − 4~un,2 − 2~un,1 + 2~un−1,4

∆t
= −D

(
~u 2
n,3

2

)
− α1D

2~un,4 − α2D
4~un,4 + ~WΓ

~fn,4,

(13.4)

where arrows ~(·) denote spatially-discretized vectors in RNg , and the subscript (·)n,s indicates the s-th

substep of n-th time step. In (13.4), only the nonlinear term from (13.1) is explicit. This leads to 4th-order

accuracy in explicit time-integration and 1st-order in implicit time-integration. Independence of results on

∆t is confirmed. The discrete-exact adjoint method is used to compute ∇ΘJ .

13.1.3 Quantification of chaos

Chaos of the K–S system is quantified with τλ and τφ as described in Section 12.3. To converge statistics,

N = 100 adjoint final states q†(tf ) are taken to have pseudo-random values on mesh points, with the uniform

random distribution U [−10−5, 10−5]. For each q†(tf ), q†(t) is computed through (12.19) for tf − ti =

5. Initial time for each interval is ti = 5n with n = 1, 2, . . . , N . Their ensemble-average is shown in

Figure 13.2 (a). The e-folding time (12.28) of the K–S equation is estimated based on a linear fit to be
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τλ ≈ 0.412. The viable step and its decay scale is calculated as for the Lorenz example in Section 12.4.

10 q†(tf ) are chosen from the sample for τλ. The corresponding viable step δΘ(ti, tf ) is estimated via (12.30)

and shown in Figure 13.2 (b). Its decay time scale is estimated per (12.36) to be τφ ≈ 0.339.

13.1.4 Control

The objective functional is

J =
1

tf − ti

∫ tf

ti

I(t) dt, (13.5a)

where ti = 0, tf = 5, and I(t) is

I =

∫ 2π

0

1

2
|u(x, t)− Uc|2WΩ(x) dx, (13.5b)

with WΩ(x)

WΩ(x) =





0.5 + 0.5 sin
(
π x−0.4L

0.1L

)
x ∈ [0.35L, 0.45L]

1 x ∈ [0.45L, 0.55L]

0.5− 0.5 sin
(
π x−0.6L

0.1L

)
x ∈ [0.55L, 0.65L]

0 otherwise,

(13.6)

shown in Figure 13.3 along with

WΓ(x) =





0.5− 0.5 sin
(
π x−0.2L

0.1L

)
x ∈ [0.15L, 0.25L]

0 x ∈ [0.25L, 0.75L]

0.5 + 0.5 sin
(
π x−0.8L

0.1L

)
x ∈ [0.75L, 0.85L]

1 otherwise.

(13.7)

These forms were selected to be both C3-continuous and exactly compact.

This optimization problem is defined to be similar to the Lorenz example, in that an effective control

is anticipated to exist, yet finding it would be challenging due to chaos. This is done so by considering an

estimate of the time for control effects to reach the target region,

τA ≈
min ‖xΩ − xΓ‖

Uc
≈ 0.25, (13.8)

where min ‖xΩ−xΓ‖ = 0.4π is the minimum distance between the target region Ω and the control region Γ,
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Figure 13.3: Mollifying supports for the control region and target region.

and Uc = 5 is the characteristic advection or wave propagation speed. This ‘control propagation’ time is set

shorter than e-folding time τλ ≈ 0.412, so the control efforts can reach the target region before significantly

affected by the nonlinear chaotic dynamics. While this does not guarantee the controllability as we could for

the Lorenz example (Appendix C), evidences from experiments and simulations empirically support that the

controllability of a flow system is limited by long τA. Kim and Bewley [61] illustrated based on flow instability

modes that even laminar flows can be nearly uncontrollable far away from wall-mounted actuators. It is also

well understood that two-point correlation in turbulence decays both space and time [79, 147], suggesting

that the flow far away from the actuator is likely to be independent of the control. By having τA < τλ we

anticipate to avoid, though not completely, such limitation in controllability.

However, chaos will still present a challenge since the simulation time tf − ti = 5 is much longer than

τλ ≈ 0.412. Figure 13.2 (a) shows that ∂J
∂f(t) grows at the time scale of τλ, up to a factor of exp[(tf−ti)/τλ] ≈

103 during this optimization time period. Its associated viable step ‖δf(t)‖ per (12.30) also decays with the

time scale τφ. In Figure 13.2 (b), ‖δf(t)‖ matches δΘ in both magnitude and decaying time scale τφ. Hence,

it is anticipated from these time scales that the optimization will be impacted significantly by chaos, despite

the potential for an effective control.

13.1.5 Optimization result

Figure 13.4 (a) shows that standard gradient-based optimization reduces J by 22.4%. The step sizes in

Figure 13.4 (b) shows that most steps do not significantly reduce J . Steps are also small with δΘ . 10−5,

which is much smaller than the overall right-hand side of the equation, which yield ‖∂u∂t ‖ ≈ 1 at its minimum

and typically ≈ 102. This suggests that the optimization stalls in narrow features of J optimization space.
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Figure 13.4: Results for the K–S configuration: (a) reduction of J (13.5) using standard gradient-based
optimization; (b) step sizes taken in the optimization; (c) the control strength for the optimized control; and
(d) the instantaneous functional I (13.5b) of the controlled solution compared the baseline solution.
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Occasionally J is reduced by a few line search steps, implying that the optimization escapes ridge-like

features. However, even in these cases, steps are still limited at δΘ ≈ 10−5, consistent in Figure 13.2 (b).

Even if the optimization happens to circumvent a ridge of such narrow feature, it encounters another similar

restriction. Figure 13.4 (c) shows that the control is biased to early times and with a limited amplitude

‖f‖Γ ≈ 10−4, as a result of these small steps. While it is impressive that such a small control can achieve

22% reduction, there is no reason to pursue such control, since the control amplitude is not penalized.

Figure 13.4 (d) confirms that the control effort is focused on late times, with most of the simulation time

unaffected. Overall, the behavior is similar to the Lorenz system we analyzed in detail, with qualitatively

similar optimization challenges.

13.2 Two-dimensional Kolmogorov flow

13.2.1 Configuration

We consider two-dimensional compressible flow with a similarly challenging optimal control problem. A

sinusoidal body force is added to the flow equation (11.41),

∂q

∂t
−R[q, f ] =

(
0 fK(x) 0 0 0

)T
, (13.9)

with x1-direction forcing fK

fK(x, t) = χ sin

(
2πn

x2

Lt

)
, (13.10)

on the two-dimensional periodic domain (x1, x2) ∈ [0, Lx]× [0, Lt]. For simplicity, we assume an energy sink

that exactly cancels out the work by the body force to preserve stationary temperature.

The domain and the external forcing parameters in (13.10) are chosen to be close to the values that are

reported to exhibit strong chaos [123–125]. The Reynolds number based on the forcing strength χ is

Reχ ≡
√
χ

µ0

(
Lt
2π

) 3
2

≈ 284, (13.11)

with dynamic viscosity µ0 constant. This is higher than the reported values (at largest Reχ = 200), at which

a chaotic flow state becomes the global attractor (so any initial flow leads to a chaotic state) [123–125]. The

aspect ratio α ≡ Lt

Lx
≈ 1.11 is chosen close to the α = 1.1 value at which intensely chaotic oscillations of

vortices are observed by Lucas and Kerswell [125]. Lastly, the widely-used wavenumber n = 4 is used in

(13.10) for the body force [123–125]. Time and velocity scales are characterized by Lt and χ with constant
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standard deviation around the average. The gradient of J (13.14) with respect to control forcing f(t) is also
plotted for comparison. (b) The ensemble average of the viable step δΘ(t, tf ) and the standard deviation
around the average. The viable step ‖δf(t)‖ associated with J is also plotted for comparison.

density ρ0 at ambient temperature,

τc =

√
ρ0Lt
χ

uc =

√
Ltχ

ρ0
. (13.12)

The initial condition is,

u1(x) = U0 + ∆U cos

[
2π

(
x1

Lx
− 0.1 sin

2πx2

Lt

)]
, (13.13)

with U0 =
√

5uc, ∆U =
√

5
10 uc, and u2(x) = u3(x) = 0.

Using the SBP 3-6 scheme of Section 11.4.2, the domain is discretized with 2562 uniform mesh points.

Mild artificial dissipation is included per (11.42) with σdiss = 0.005. A standard explicit RK4 scheme is used

for time integration with time step ∆t = 2.236× 10−4τc. The dual-consistent, discrete-exact adjoint solver

developed by Vishnampet [132] is used to compute gradients. Results are confirmed to be independent of

resolution.

13.2.2 Quantification of chaos

To calculate τλ and τφ, N = 10 adjoint final states q†(tf ) are taken to have random values for all state

variables at mesh points, with the uniform random distribution U [−10−5, 10−5]. Sample times tf are chosen

to be tf = (44.72+4.47n)τc for n = 1, 2, . . . , N , and each q†(tf ) is evolved for tf−ti = 4.47τc. Figure 13.5 (a)

shows the ensemble average of the adjoint states in time, which grows exponentially in reverse time for
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t− tf . −τc. The e-folding time based on this is τλ ≈ 0.9556τc and viable step decay time is τφ ≈ 0.6409τc

as shown in Figure 13.5 (b), which is somewhat faster than τλ.

13.2.3 Control formulation

The objective functional is

J =

∫ tf

ti

I(t) dt, (13.14a)

where ti = 44.72τc, tf = 49.19τc, and the instantaneous functional I(t) is,

I(t) =

∫

Ω

(p− p0)2WΩ(x) d2x, (13.14b)

with constant ambient pressure p0 = 14.286Ltχ and

WΩ = 0.5
{

tanh[4(xΩ
1 − 0.075)]− tanh[4(xΩ

1 − 0.925)]
}
, (13.15a)

where

xΩ
1 =





1
0.4

(
x1

Lx
− 0.6

) ∣∣∣ x1

Lx
− 0.8

∣∣∣ ≤ 0.2

0 otherwise.

For the target region

WΓ = 0.5
{

tanh[4(xΓ
1 − 0.075)]− tanh[4(xΓ

1 − 0.925)]
}
, (13.15b)

where

xΓ
1 =





1
0.4

(
x1

Lx
− 0.1

) ∣∣∣ x1

Lx
− 0.3

∣∣∣ ≤ 0.2

0 otherwise.

For this control problem we grant controllability on full-state (ρ, ρu, ρE) at the discrete points in the

control region. Figure 13.6 shows an evolution of the initial condition with the control region and target

region defined above.

As for the K–S equation, this control problem is set up so that an effective control is expected to exist. The

minimum distance between half maximum of WΩ and WΓ is ∆xΓ−Ω = 0.198Lt, so the control propagation

time (13.8) based on average advection speed U0 =
√

5uc is τA = 0.0885τc, significantly shorter than e-

folding time τλ ≈ 0.9556τc. From this, as for K–S example, we anticipate that control efforts can reach the

target region before being overwhelmed by chaos. On the other hand, the optimization is challenging for
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Figure 13.6: Two-dimensional Kolmogorov flow pressure p/p0 ∈ [0.9, 1.1] (grayscale) and vorticity ωτc ∈
[−44.72, 44.72] (contours) at t = 45.62τc with the control and target regions indicated.

the time tf − ti = 4.472τc, for which a gradient is amplified by a factor of exp[(tf − ti)/τλ] ≈ 107.78 and a

viable step decays by exp[−(tf − ti)/τφ] ≈ 10−3.

13.2.4 Optimization result

Figure 13.7 (a) shows that the standard gradient-based optimization achieved 43.8% J -reduction. The

optimization is not stalled so significantly as in Figure 13.4 (a), presumably because the Kolmogorov flow

has longer τλ and τφ compared to tf − ti than K–S system. However, the optimization is still limited by its

chaotic dynamics. Figure 13.7 (b) shows that most line search steps are scattered with δΘ ≈ 10−5, which is

consistent with δΘ(t, tf ) at t − tf = −4.47τc shown in Figure 13.5 (b). This implies that the optimization

is impeded by similarly sized features in J [Θ]. As for other systems, Figure 13.7 (c) and (d) show that the

control is biased to short early times and mainly influences late times.

13.3 Advection + Kuramoto–Sivashinsky (Adv+KS) model

13.3.1 Governing equation

A model system is constructed to illustrate how a relatively chaotic portion of a turbulent flow might

impede optimization even for a case that only requires control of a relatively deterministic (presumably
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larger) component. A one-dimensional periodic solution u(x, t) is taken to be composed of two parts:

u(x, t) = U(x, t) + εv(x, t), (13.16)

where ε = 0.01. These two parts phenomenologically represent a scale separation, and their independence is

explicit for clarifying this demonstration. However, as for turbulence, we assume that we neither know their

independent dynamics nor that we can infer a separation schema.

Each part is governed by a distinct equation. The deterministic large scales U(x, t) = U(x− U0t, 0) are

governed simply by

∂U

∂t
+ U0

∂U

∂x
= 0, (13.17a)

so the initial wave simply advects with a constant U0. The v(x, t) is governed by the K–S equation (13.1),

∂v

∂t
+

1

2

∂v2

∂x
+ α1

∂2v

∂x2
+ α2

∂4v

∂x4
= 0, (13.17b)

with u0 = 2, α1 = 1, and α2 = 0.029910, and so is chaotic. The initial conditions are

U(x, 0) = sin 2x and v(x, 0) = sin 5x. (13.18)

Figure 13.8 (a) shows how U and v constitute the solution u.
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13.3.2 Quantification of chaos

Due to the governing equation (13.17b), only v has the impact of chaos on optimization. We quantify this

with τλ and τφ for U and v separately. To converge statistics, N = 100 adjoint final states U†(tf ) and

v†(tf ) are respectively taken to have pseudo-random numbers at mesh points, with the uniform distribution

U [−10−5, 10−5]. The sample time intervals are chosen the same as for the K–S example in Section 13.1.3.

Figures 13.9 (a) and (b) respectively show the adjoint state for v and its associated viable step, for which

time scales are the same as the K–S example. For U , the adjoint state simply advects with small numerical

dissipation as shown in Figures 13.9 (a), indicating that U is completely deterministic.

13.3.3 Optimization problem

The unified control objective is to suppress the wave in Ω,

J =

∫ tf

t0

∫ L

0

|u(x, t)|2WΩ(x, t) dxdt, (13.19)
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where

WΩ(x) =





0.5 + 0.5 sin
(
x−1.1π

0.2

)
x
2π ∈ [0.5, 0.6]

1 x
2π ∈ [0.6, 0.8]

0.5− 0.5 sin
(
x−1.7π

0.2

)
x
2π ∈ [0.8, 0.9]

0 otherwise,

(13.20)

is C3-continuous and exactly compact (Figure 13.8 b). The scale factor ε = 0.01 in (13.16) causes most

contribution to J to come from U .

We force the entire u in the Γ control region, so the full-dynamics (13.17) has a nominally combined form

with a forcing term,

∂u

∂t
+R[u] = (1 + ε)WΓ(x)f(x, t), (13.21)

where the left-hand side implicitly represents (13.17). For this demonstration, we assume the forcing is

distributed to both U and v in proportion to their amplitude factor 1 and ε, so

∂U

∂t
+ U0

∂U

∂x
= WΓ(x)f(x, t) (13.22a)

∂v

∂t
+

1

2

∂

∂x

(
v2
)

+ α1
∂2v

∂x2
+ α2

∂4v

∂x4
= WΓ(x)f(x, t), (13.22b)

where the control mollifying support WΓ(x) is shown in Figure 13.8 (b),

WΓ(x) =





0.5 + 0.5 sin
(
x−0.2π

0.2

)
x
2π ∈ [0.05, 0.25]

0 otherwise.

(13.23)

The control propagation time τA (13.8) for U is τA = 0.175, and due to the simple characteristics of

(13.22a) its controllability is guaranteed. However, the characteristic advection speed of v is zero due to

its zero mean value, hence we might say τA → ∞. So there is no direct path by which control effort in v

can propagate to the target region, and most of control effort is continually impeded by chaotic dynamics

of (13.22b). In this situation, as discussed in Section 10.3, if our knowledge and technologies permit, it is

reasonable to extract the large-U dynamics (13.22a) to construct a reduced model with it.

We first consider such an ideal case, utilizing the explicit separability of u = U + εv. The optimization
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can be pursued with a corresponding reduced objective from (13.19),

Jreduced =

∫ tf

t0

∫ L

0

|U(x, t)|2WΩ(x, t) dxdt. (13.24)

where the U dynamics (13.22a) is recast as reduced model

∂U

∂t
+ U0

∂U

∂x
= WΓ(x)f(x, t). (13.25)

With Jreduced and (13.25), standard gradient-based optimization identifies an effective control with a few

line searches, as shown in Figure 13.10 (a). For this demonstration, obviously the reduced model represents

the full dynamics accurately, so the control found from the reduced model is similarly effective for the full

dynamics (13.22), as shown in Figure 13.10 (b). When applied to the full dynamics, the control reduces J

slightly more than the model Jreduced (Jreduced = 0.1338 to J = 0.1314).

Of course, extracting the analogous U -dynamics for turbulent flows is challenging, so optimization is

exposed to the full dynamics (13.22). However, this is problematic. In this example, once v is included, the

optimization with the standard gradient method fails, as the useful gradient associated with the large-scale

U is masked by the exploding gradient of the v component (Figure 13.11 a). Figure 13.11 (b) further shows

that the obtained control is limited in its magnitude compared to the one from the reduced-order model.

Figure 13.11 (c) and (d) suggest that this optimization is also trapped.
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Figure 13.12: The baseline simulation of the three-dimensional Kolmogorov flow. (a) Isosurfaces of Q-
criterion (Q = 20τ−2

c ) colored by the pressure p/p0 ∈ [0.95, 1.05] at t = 13.42τc. (b) Pressure p/p0 ∈
[0.973, 1.008] averaged along x3 direction.

13.4 Three-dimensional Kolmogorov flow

Three-dimensional Kolmogorov flow is turbulent. The chaotic small scales are expected to shorten the time

scales τλ and τφ.

13.4.1 Configuration and discretization

The compressible flow equations are solved on the triply periodic domain (x1, x2, x3) ∈ [0, Lx]×[0, Lt]×[0, Lt].

The same aspect ratio α = Lt

Lx
≈ 1.11 and body force wave number n = 4 are used with the same non-

dimensional parameters (13.11) as for the two-dimensional case. The initial condition is

u1(x) = U0 (13.26a)

u2(x) = ∆U cos

[
2π

(
x1

Lx
− 0.1 sin

2πx2

Lt
− 0.1 sin

2πx3

Lt

)]
, (13.26b)

with U0 =
√

5uc, ∆U =
√

5
50 uc, and u3(x) = 0.

The domain is discretized with 2563 uniform mesh points, and the time step is ∆t = 2.236×10−4τc. The

same SBP 3-6 scheme from Section 13.2 is used in all three directions.
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Figure 13.13: Spectra of the three-dimensional Kolmogorov flow simulation for (a) turbulence energy, and
(b) pressure fluctuation. Gray line indicates the external forcing wavenumber.

Figure 13.12 (a) visualizes the flow, showing the presence of small-scale turbulence. At the same time its

x3-averaged pressure, shown in Figure 13.12 (b), has a structure similar to the two-dimensional counterpart

(Figure 13.6). This two-dimensional structure is expected in this flow [148], and loosely corresponds the

class of potential control targets discussed in Section 10.3 in which a deterministic component underlies more

chaotic turbulence. Turbulence statistics are collected at 200 intervals during t/τc ∈ [13.42, 17.89]. Energy

spectra in Figure 13.13 shows that the turbulence is broadbanded. However, unlike the Adv+KS example,

no prior knowledge is given concerning the dynamics between the larger—seemingly more deterministic—

structure and smaller—seemingly more chaotic—scales of turbulence. In general, a reduced model to accu-

rately separate the dynamics is not available.

13.4.2 Quantification of chaos

The e-folding time (12.28) is computed as two-dimensions. Figure 13.14 (a) shows the ensemble average of

10 adjoint state samples in time, which starts to grow in reverse time for t − tf . −0.22τc. The e-folding

time based on this growth rate is τλ ≈ 0.49τc. Figure 13.14 (b) shows the decay time scale τφ ≈ 0.30τc of the

corresponding viable steps. These two time scales are shorter than the two-dimensional case, presumably

due to turbulence.
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13.4.3 Control problem

The same objective functional (13.14) as for two dimensions is targeted between ti = 13.42τc and tf =

17.89τc, with the same spatial support WΩ in (13.15b). The control region is taken smaller than the two-

dimensional case with

WΓ ∼ B0,3(4xΓ
1 − 2), (13.27)

where B0,3(x) is the cubic B-spline basis function, and

xΓ
1 =

1

0.1Lx
(x1 − 0.25Lx).

The support is normalized so that maxWΓ = 1. The controller actuates thermal energy ρE in this region.

Figure 13.12 (a) visualized the flow.

As for the previous examples, the configuration is set up so the control propagation time τA is shorter

than τλ ≈ 0.49τc. The τA we assume is again based on the minimum distance ∆xΓ−Ω . 0.279Lt between

half maximum of WΩ and WΓ, so with average advection speed U0 =
√

5uc, τA = 0.125τc. The simulation

time tf − ti = 4.47τc is the same as the two-dimensional case. The gradient and associated viable step for

the actual J (13.14) are shown in Figure 13.14. Though the gradient seem to be not affected by the chaos

for t− tf & −2.24τc, it eventually explodes with the time scale of τλ. Similarly, in Figure 13.14 (b) its viable

step also starts to decay with the time scale close to τφ for t− tf < −2.24τc.
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Figure 13.15: The three-dimensional Kolmogorov flow control: (a) reduction of J (13.14), (b) step sizes
taken in the optimization, (c) the control strength of the optimized control, and (d) the instantaneous
functional I (13.14b) of the controlled solution compared the baseline solution.
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13.4.4 Optimization result

The optimization of turbulent Kolmogorov flow is also impacted by the chaotic dynamics as other flows.

Figure 13.15 (a) shows that the standard adjoint method achieved 51.5% reduction of J . Though perhaps

significant, most of the reduction is in one single step of the third line search. Figure 13.15 (b) shows the

step sizes taken in the optimization, where most of them are consistent with the smallest δΘ ∼ 10−7 in

Figure 13.14 (b), except the third line search. While this seems to be a fortunate escape of ridges in J [Θ]

space, the control pursued by the optimization is still biased, distributed exponentially in time, as shown in

Figure 13.15 (c). Figure 13.15 (d) shows the reduced instantaneous objective functional, where most of the

reduction is achieved in the third line search. Further reduction after the third search is still biased to late

times.

13.5 Summary on the quantification of chaos time scales

We summarize the τλ and τφ time scales for all systems considered. Figure 13.16 shows τλ/τφ. While

the Lorenz system has τλ ≈ τφ, all the other systems have τφ < τλ. This suggests that for these systems

non-convexity is the greater concern than the gradient growth.
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Chapter 14

Multi-step penalty method

In this chapter, we propose an optimization framework that can skirt the non-convexity of J described in

Chapter 12. It is based on the framework for the equality-constrained optimization introduced in Chapter 11,

which includes many variants [57], from which we focus on two: the quadratic penalty method and the

augmented Lagrangian method [57, 58]. To motivate our formulation, the new framework is developed in

Sections 14.1 through 14.3 and applied to the logistics map example of Section 12.2.2, showing its effectiveness

in face of horseshoe mapping. It is then demonstrated for the Lorenz example in Section 14.4. Chapter 15

will cover its application to the increasingly challenging applications of Chapter 13.

14.1 Equality-constrained optimization with a penalty method

We recall the generic equality-constrained optimization problem (11.3)

minimize J [q,Θ] ∈ R such that N [q; Θ] = 0.

While the gradient-based optimization framework in Chapter 11 strictly enforces the equality, some optimiza-

tion methods pursue a local solution to (11.3) via a sequence of unconstrained optimizations. In these, the

state q is not strictly constrained by N = 0, but the violation is penalized with increasing strength [57, 58].

The penalization is imposed by augmenting J in each subproblem

minimize JA[q,Θ, µ] ≡ J [q,Θ] + P[N [q,Θ], µ] ∈ R, (14.1)

where the functional P penalizes the violation of N [q,Θ] = 0 with a penalty strength µ > 0. Since N = 0

is not strictly constrained, the gradient is directly obtained without adjoint variables,

∇qJA = ∇qJ [q,Θ] +∇qP[N , µ] (14.2a)
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∇ΘJA = ∇ΘJ [q,Θ] +∇ΘP[N , µ]. (14.2b)

The subproblem (14.1) is then solved with (14.2) via standard gradient-based methods. Algorithm 3 summa-

rizes this procedure. This is different from Algorithm 2 in three aspects: instead of solving N [q,Θ] = 0 for

Algorithm 3 Minimization of JA (14.1)

Given: initial guess (q0,Θ0), tolerance ε, maximum search limit Kmax

Result: (q∗,Θ∗) = argminJA[q,Θ, µ]
Evaluate the residual N0 = N [q0; Θ0]
JA = J [q0,Θ0] + P[N0, µ]
Compute (∇qJA,1,∇ΘJA,1) via (14.2)
for k = 1, . . . ,Kmax do

(δqk, δΘk) = direction(∇qJA,1,∇ΘJA,1, . . . ,∇qJA,k,∇ΘJA,k) . Eq. (11.12)
τk = argminJA[qk−1 + τδqk,Θk−1 + τδΘk] . Eq. (11.13)
(qk,Θk) = (qk−1 + τkδqk,Θk−1 + τkδΘk) . Determine (qk,Θk)
Evaluate the residual Nk = N [qk; Θk]
JA = J [qk,Θk] + P[Nk, µ]
Compute (∇qJA,k+1,∇ΘJA,k+1) via (14.2)
if ‖∇qJA,k+1‖, ‖∇ΘJA,k+1‖ < ε then

(q∗,Θ∗) = (qk,Θk)
Exit

q, the residual N is evaluated; while Algorithm 2 only computes the gradient with respect to Θ, Algorithm 3

also computes the gradient with respect to q; and the adjoint variable is not used to compute gradients.

A local minimum for the original problem (11.3) is then pursued by increasing µ, wherein each subproblem

is solved with Algorithm 3. Algorithm 4 summarizes this procedure.

Algorithm 4 Penalty-based unconstrained optimization

Given: 0q, 0Θ, 1µ . The prescript i(·) indicates i-th subproblem
Result: (q∗,Θ∗) = argminJ [q,Θ] such that N [q,Θ] = 0
for i = 1, . . . do

(iq, iΘ) = argminJA[q,Θ, iµ] with initial guess (i−1q, i−1Θ) . Use Algorithm 3 with tolerance iε
if convergence test then

(q∗,Θ∗) = (iq, iΘ)
Exit

Choose i+1µ > iµ

Many variants have been proposed and studied for the penalty functional P [57, 149]. Comparing

them and proposing the best functional for our formulation is beyond the scope of this study. Instead, we

introduce the quadratic penalty method, which is widely used due to its simplicity and intuitive appeal [57].

The augmented Lagrangian method, as its extension, is also used in combination with it. Our framework

will be formulated with a consideration for other compatible functionals that may be used in the future.
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14.1.1 Quadratic penalty method

This method uses a squared norm reflecting the equality constraint [57, 58, 126],

P[N [q,Θ], µ] =
µ

2
‖N [q,Θ]‖2, (14.3)

with ‖ · ‖ defined for N ≡ Q, so in an implementation it would be the residual of the governing equation.

For a real vector space (11.7), it is shown that the sequence from Algorithm 4 with the quadratic penalty

converges to a local optimum as µ→∞ [57, 58].

Theorem 14.1 (Convergence of quadratic penalty method [57]). Suppose lim
i→∞ iµ → ∞ and lim

i→∞ iε = 0 in

Algorithm 4. If a limit solution (q∗,Θ∗) = lim
i→∞

(iq, iΘ) has linearly independent gradients (∇qNl,∇ΘNl)

with l = 1, . . . , n, then (q∗,Θ∗) satisfies the first-order optimality condition in Theorem 11.2 with an adjoint

variable q†∗

q†∗ = − lim
i→∞ iµN [iq, iΘ]. (14.4)

Proof. See Nocedal and Wright [57, Theorem 17.2].

There is no set rule for choosing the penalty strength i+1µ > iµ for subsequent subproblems. A typical

choice is i+1µ = α iµ with α = 4 and to adjust within α ∈ [1.5, 10] depending on the reduction achieved

from the previous subproblem [57]; if a local minimum of JA is found within a few search steps, larger α > 4

is used, and otherwise smaller α < 4. For our examples, we compare the number of search steps with the

previous subproblem and adjust α accordingly: α = 2 if more steps are taken, and α = 10 otherwise.

Note (14.4) that the residual decreases with µ in the following form,

N [iq, iΘ] ≈ −q†∗

iµ
. (14.5)

This suggests that, while N → 0 as µ increases, the residual always remains non-zero with a finite iµ. While

this is often effective enough to find a local optimum, the residual can decrease faster by revising P. This is

the motivation of the Augmented Lagrangian method, which is introduced subsequently.
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14.1.2 Augmented Lagrangian method

The augmented Lagrangian method augments the quadratic penalty (14.3) with the Lagrange multiplier

(adjoint variable) [57, 58],

P[N [q,Θ];µ,q†] =
µ

2
‖N [q,Θ]‖2 −

〈
q†,N [q,Θ]

〉
. (14.6)

Since the equality N [q,Θ] = 0 is not constrained, there is no corresponding adjoint equation to solve for q†

as in Chapter 11. Instead, we utilize (14.4) that the residual approximates the optimal adjoint variable. We

consider a stationary point (iq, iq
†, iΘ) for JA, which gradient (14.2) is zero,

∇qJA = ∇qJ [iq, iΘ]− (∇qN )T (iq
† − iµN [iq, iΘ]) = 0 (14.7a)

∇ΘJA = ∇ΘJ [iq, iΘ]− (∇ΘN )T (iq
† − iµN [iq, iΘ]) = 0, (14.7b)

which is expressed on a real vector space (11.7) for simplicity. The goal is that (iq, iq
†, iΘ) would approxi-

mate the first-order optimality condition in Theorem 11.2 after solving a sufficient number of subproblem.

Comparing (14.7) with (11.9a-b), we deduce that the optimal adjoint variable should be approximated as

q†∗ ≈ iq
† − iµ N [iq, iΘ]. (14.8)

This immediately motivates an update formula for q†

i+1q
† = iq

† − iµ N [iq, iΘ], (14.9)

after solving each subproblem in Algorithm 4. Algorithm 5 shows the extended procedure with (14.9). In

Algorithm 5 Augmented Lagrangian method

Given: 0q, 0Θ, 1q
†, 1µ . The prescript i(·) indicates i-th subproblem

Result: (q∗,q†∗,Θ∗) = stationary point of L[q,q†,Θ]
for i = 1, . . . do

(iq, iΘ) = argminJA[q, iq
†,Θ, iµ] with initial guess (i−1q, i−1Θ) . Use Algorithm 3

if convergence test then
(q∗,q†∗,Θ∗) = (iq, iq

†, iΘ)
Exit

i+1q
† = iq

† − iµ N [iq, iΘ]
Choose i+1µ ≥ iµ
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this method, not only the optimal state q∗ and control Θ∗ are pursued, but also the associated Lagrange

multiplier q†∗ as in Theorem 11.2 is sought.

Now (14.8) suggests that the residual will have the form

N [iq, iΘ] ≈ −q†∗ − iq
†

iµ
, (14.10)

after solving each subproblem. Thus, compared with (14.5) for quadratic penalty, the residual can also de-

crease as iq
† → q†∗, aside from increasing µ. The convergence and some salient properties of the augmented

Lagrangian method are proven by Bertsekas [58]. This method is also attractive in that it can be linked

with the adjoint method, which will be further formulated in detail in Section 14.3.

A condition for the convergence is to have a penalty strength larger than a threshold iµ > µ [58,

Proposition 2.7]. In essence, the Hessian of JA has only positive eigenvalues with µ > µ. While this threshold

is difficult to evaluate, for our examples we simply solve a first few subproblems with the quadratic penalty

(14.3) via Algorithm 4, so that the solution may enter a convex set for JA. Then Algorithm 5 takes over

afterward for faster convergence to N = 0. This transition is simple. The quadratic penalty method is

identical to the augmented Lagrangian method with iq
† = 0 not updated. So in the transition, the solution

from the quadratic method is used as the initial guess 0q, 0Θ with 1q
† = 0 for Algorithm 5.

Standard penalty method relaxes the entire equation N [q,Θ] = 0, and includes q in the optimization

space as an independent variable from Θ. However, doing it for large-scale flow simulations will significantly

increase the optimization space dimension, leading to slower convergence. On the other hand, the multi-step

penalty method relaxes only key equality constraints which are the root cause of non-convexity, which is

illustrated subsequently.

14.2 Application to the logistics map of Chapter 12

The logistics map example (12.11) of Section 12.2.3 is used to show how the proposed method should be

able to navigate the horseshoe mapping of more challenging systems:

qn+1 = q(qn) ≡ (2qn − 1)2 qn ∈ [0, 1],

with the objective functional (12.13),

J = q2 +
1

2
q0.
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Figure 14.1: (a) The basin of attraction for the global minimum of J (12.13). (b) The objective J (14.11a)
in (q0, q

+
1 )-space.

Figure 14.1 (a) shows the basin of attraction for the global minimum minJ1: gradient-based optimization

for any initial q0 outside this basin q0 ∈ [0, 0.515] converges to the other local minimum minJ2. This is

emblematic of the local minima landscape that the horseshoe mapping creates (Section 12.2.3).

To expose a path that reaches minJ1 for any q0, we introduce an intermediate state q+
1 , which corresponds

to a possible q1 though not one that is strictly tied to the current q0. Instead of viewing q2 ≡ q(q(q0)) as a

direct function of q0, we replace q1 ≡ q(q0) with q+
1 and consider J as it depends on q0 and q+

1 ,

J (q0, q
+
1 ) = q2(q+

1 ) +
1

2
q0 = (2q+

1 − 1)2 +
1

2
q0, (14.11a)

with an additional equality constraint for the intermediate state

q+
1 = q1(q0). (14.11b)

This is an exact rearrangement of the original problem, however without the intermediate constraint

(14.11b), the two-dimensional objective functional J (q0, q
+
1 ) has the unique global minimum at (q0, q

+
1 ) =

(0, 0.5), as shown in Figure 14.1 (b). The basin of attraction for the global minimum is thus all of the

(q0, q
+
1 )-domain. Only the constraint q+

1 = q1(q0) limits the basin of attraction. With this constraint,

J (q0, q1(q0)) is a curve through the two-dimensional space, shown as the green line in Figure 14.1 (b).

Three extrema (two minima) are created in the green line J (q0, q1(q0)), as the blue curve q+
1 = q1(q0) is

projected and folded onto the surface J (q0, q1). The result is the J (q0) of Figure 14.1. This illustrates how

the convexity per Definition 11.2 breaks down: while J may be defined to be convex on Q (q0, q
+
1 ), the set
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dom(N ) (constrained by q+
1 = q1(q0)) becomes non-convex and thus a stationary point only becomes the

minimum of a smaller subset.

The strategy is therefore to relax this intermediate constraint (14.11b) to expand the basin of attraction

for objective functionals, such as J (q0, q
+
1 ) in Figure 14.1 (b), avoiding the confinement introduced by the

horseshoe mapping. This is compatible with the optimization framework of Section 14.1. The objective

functional is augmented with the penalty,

JA = (2q+
1 − 1)2 +

1

2
q0 +

µ

2
{q+

1 − (2q0 − 1)2}2, (14.12)

which is minimized over (q,Θ) = (q+
1 , q0) by Algorithm 4. The intermediate state q+

1 is optimized together

with q0, until q+
1 → q1 ≡ (2q0 − 1)2 as µ increases. This circumvents the non-convexity J .

Figure 14.2 (a) shows that JA with a weak µ = 10−1 has a nearly idential shape to J (q0, q
+
1 ) (14.11a)

in Figure 14.1 (b). So the entire domain (q0, q
+
1 ) is still the basin of attraction for its global minimum. As

µ increases, JA converges to the original J (q0, q1(q0)) as shown in Figure 14.2 (b). This JA with a larger µ

has the similarly limited basin of attraction as the original J (q0). However, if used correctly, the optimized

(q0, q
+
1 ) will have already entered the J1 basin before the penalty strength µ is increased. Figure 14.3 shows

how the local minimizer of JA converges to the global minimizer of J in (12.13) as µ increases. Any initial

guess (q0, q
+
1 ) converges to this optimum.

The augmented Lagrangian method can accelerate enforcement of the intermediate constraint via the

additional adjoint term. In this case, the augmented objective functional is

JA[q0, q
+
1 ; q†+1 , µ] = (2q+

1 − 1)2 +
1

2
q0

+
µ

2
{q+

1 − (2q0 − 1)2}2−q†+1 {q+
1 − (2q0 − 1)2}︸ ︷︷ ︸
JA,adj

,
(14.13)

which is minimized over (q,q†,Θ) = (q+
1 , q

†+
1 , q0) by Algorithm 5. As the adjoint q†+1 is updated with

(14.9), the solution converges to the optimum even with constant µ = 10−1, as shown in Figure 14.3.

Figure 14.2 (c) shows its adjoint-associated term JA,adj = −q†+1 {q+
1 − q1(q0)}, which guides the minimum

of JA toward the intermediate constraint. This adjoint term shifts minJA of quadratic penalty with same

µ = 10−1 (Figure 14.2 a) toward the feasible optimum, as shown in Figure 14.2 (d). This demonstrates that

the augmented Lagrangian method can enforce the equality constraint faster than the quadratic penalty

method at smaller µ [57, 58].
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(c) Augmentative adjoint term JA,adj (d) Augmented Lagrangian µ = 10−1

Figure 14.2: Logistics map demonstration objective functionals: JA (14.12) for the quadratic penalty method

with (a) µ = 10−1 and (b) µ = 102; (c) additional adjoint term JA,adj = −q†+1 {q+
1 −q1(q0)} for the augmented

Lagrangian method (converged), and (d) JA (14.13) for the augmented Lagrangian method with µ = 10−1

compared with the quadratic penalty method.
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14.3 Formulation for time-continuous dynamical systems

Penalty-based optimization is extended to time-continuous dynamical systems by redefining the govern-

ing equation N and the flow state q with auxiliary intermediate conditions, resulting in a modified inner

product for the adjoint formulation. The multi-step penalty-based optimization framework is formulated

subsequently.

14.3.1 Modified governing equation with intermediate constraints

We consider modifications needed for the general governing equation (11.17),

dq

dt
−R[q; Θ] = 0

with

q(ti) = q0,

and the objective functional (11.21)

J [q,Θ] = φ[q(tf )] +

∫ tf

ti

I[q(t),Θ(t)] dt.
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q+
1

q(t−1 )
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(b) Multi-step penalty-based method

Figure 14.4: Schematic of (a) standard gradient-based-based optimization and (b) multi-step penalty-based
optimization with three intermediate conditions.
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Figure 14.4 (a) shows a schematic of the standard optimization with (11.17) and (11.21). We recall from

(12.10) that the interval T can be considered a discrete mapping, and introduce intermediate conditions q+
k

for each time tk = ti + kT ,

dq

dt
−R[q; Θ] = 0 for t ∈ [tk, tk+1) (14.15a)

q(tk) = q+
k for k = 0, . . . , N − 1. (14.15b)

The intermediate constraints analogous to (14.11b) are

∆qk ≡ q+
k − q(t−k ) = 0 for k = 1, . . . , N − 1, (14.15c)

where q(t−k ) is the terminal state of the previous interval t ∈ [tk−1, tk),

q(t−k ) = q+
k−1 +

∫ t−k

tk−1

R[q; Θ] dt. (14.16)

Figure 14.4 (b) shows the modified system schematically. Only the (14.15c) constraint is relaxed, and (14.15a)

and (14.15b) are strictly enforced within the intervals. The state trajectory q ∈ Q is piecewise-continuous

with intermediate discontinuities ∆qk at t = tk.

For the adjoint formulation, the inner-product for the state space Q is modified with sub-inner-products

for piecewise-continuous trajectories,

〈p,q〉Q =

N∑

k=1

〈p,q〉Qk
, (14.17)

where the subspaces Qk ⊂ Q cover time intervals t ∈ [tk−1, tk),

〈p,q〉Qk
=

∫ t−k

tk−1

〈p(t),q(t)〉Q+ dt. (14.18)

In our examples, (14.15) is integrated in time with the standard four-step Runge–Kutta method, and (11.43)

is used to approximate time integral (14.18).
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14.3.2 Penalty-based optimization

We first formulate the augmented objective functional JA (14.1), for which Algorithm 4 can be applied, with

a generic penalty form for the intermediate constraints (14.15c),

JA[q,Θ; {q+
k }, µ] = J [q,Θ] + P[{∆qk}, µ], (14.19)

with {q+
k } = (q+

1 ,q
+
2 , . . . ,q

+
N−1) and {∆qk} = (∆q1,∆q2, . . . ,∆qN−1). The subproblem for Algorithm 4

is then,

(
i{q+

k }, iΘ
)

= argmin
{q+

k },Θ
JA[q,Θ; {q+

k }, iµ], with (14.15a) and (14.15b), (14.20)

which forms Algorithm 6 with the subproblem (14.20). The subproblem (14.20) is solved using Algorithm 2,

Algorithm 6 Multi-point penalty-based method

Given: 0{q+
k }, 0Θ, 1µ

for i = 1, . . . do
Solve subproblem (14.20) with i−1{q+

k }, i−1Θ . Algorithm 2 with gradient (14.25)
if convergence test then

Exit
Choose i+1µ > iµ

which requires the gradient of JA (14.19) to the control parameter Θ and the intermediate conditions {q+
k }.

This is formulated subsequently by the standard gradient-based method.

14.3.3 Adjoint-based gradient for the subproblem (14.20)

The Lagrangian associated with JA (14.19) is

LA[q,q†,Θ] = J [q,Θ] + P[{∆qk}, µ]−
〈

q†,
dq

dt
−R[q; Θ]

〉

Q

= J [q,Θ] + P[{∆qk}, µ]−
N∑

k=1

〈
q†,

dq

dt
−R[q; Θ]

〉

Qk

.

(14.21)

Linearizing it and formulating its adjoint as in Section 11.3 yields

δLA[q,q†,Θ] =
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−
N∑

k=1

〈
δq†,

dq

dt
−R[q; Θ]

〉

Qk

−
〈
q†(ti), δq(ti)

〉
Q+





Governing equation

−
〈

q†(tf )− ∂φ

∂q(tf )
, δq(tf )

〉

Q+

−
N−1∑

k=1

〈
q†(t−k )− ∂P

∂q(t−k )
, δq(t−k )

〉

Q+

+

N∑

k=1

〈
dq†

dt
+
∂R
∂q

†
q† +

∂I
∂q

, δq

〉

Qk





Adjoint equation (14.22)

+

〈
∂R
∂Θ

†
q† +

∂I
∂Θ

, δΘ

〉

T

+

N−1∑

k=1

〈
q†(tk) +

∂P
∂q+

k

, δq+
k

〉

Q+

,





Gradient

where ∂P
∂q+

k

and ∂P
∂q(t−k )

are weak-form gradients of P, so its variation is

δP =

N−1∑

k=1

[〈
∂P
∂q+

k

, δq+
k

〉

Q+

+

〈
∂P

∂q(t−k )
, δq(t−k )

〉

Q+

]
. (14.23)

In (14.22), the first two inner products vanish because the governing equation (14.15a) is enforced and

δq(t0) = 0 since the initial condition in (14.15b) is fixed. The next three inner products are related to the

adjoint solution. For each time interval t ∈ [tk, tk+1) we solve the adjoint equation

−dq
†

dt
=
∂R
∂q

†
q† +

∂I
∂q

, (14.24a)

in reverse time with conditions

q†(tf ) =
∂Φ

∂q(tf )
for k = N − 1 (14.24b)

q†(t−k+1) =
∂P

∂q(t−k+1)
for k = 1, . . . , N − 2. (14.24c)

Each interval starts from intermediate condition q†(t−k+1), then progresses in reverse time to q†(tk). Then the

adjoint simulation for the previous interval t ∈ [tk−1, tk) starts with its own distinct intermediate condition

q†(t−k ). This procedure is illustrated schematically in Figure 14.4 (b). The last two inner products in (14.22)
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provide the gradient for updating the control and the intermediate conditions,

∂LA
∂q+

k

= q†(tk) +
∂P
∂q+

k

(14.25a)

∂LA
∂Θ

=
∂R
∂Θ

†
q† +

∂I
∂Θ

, (14.25b)

which are used in Algorithm 6.

For the quadratic penalty method,

P[{∆qk}, µ] =
µ

2

N−1∑

k=1

‖q+
k − q(t−k )‖2Q+ , (14.26)

with gradients for (14.24) and (14.25),

∂P
∂q+

k

= µ
[
q+
k − q(t−k )

]
(14.27a)

∂P
∂q(t−k )

= −µ
[
q+
k − q(t−k )

]
. (14.27b)

Similarly, for the augmented Lagrangian method,

P[{∆qk}, µ] =
µ

2

N−1∑

k=1

‖q+
k − q(t−k )‖2Q+ −

N−1∑

k=1

〈
q†+k ,q+

k − q(t−k )
〉
Q+

, (14.28)

with gradients for (14.24) and (14.25),

∂P
∂q+

k

= −q†+k + µ
[
q+
k − q(t−k )

]
(14.29a)

∂P
∂q(t−k )

= q†+k − µ
[
q+
k − q(t−k )

]
. (14.29b)

As in Algorithm 5, the augmented adjoint variables {q†+k } are updated after solving each subproblem (14.20),

i+1q
†+
k = iq

†+
k − iµ

[
iq

+
k − iq(t−k )

]
, for k = 1, . . . , N − 1, (14.30)

for which Algorithm 5 is recast as Algorithm 7.

As discussed previously, we recommend using Algorithm 6 with quadratic penalty in early stages then
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Algorithm 7 Multi-point Augmented Lagrangian method

Given: 0{q+
k }, 0Θ, 1{q†+k }, 1µ

for i = 1, . . . do
Subproblem (14.20) with initial guess i−1{q+

k }, i−1Θ . Use Algorithm 2 with the gradient (14.25)
if convergence test then

Exit
Update i+1{q†+k } with (14.30)
Choose i+1µ ≥ iµ

switch to Algorithm 7 with the augmented Lagrangian method. When switching to the augmented La-

grangian method, the solution from the quadratic method is simply used as the initial guess 0{q+
k }, 0Θ with

1{q†+k } = {0} for Algorithm 7.

14.4 Demonstration on the Lorenz example

Because it is so easily dissected, the Lorenz example is used here to illustrate the full method for the numerical

solution of a time-continuous system. More challenging examples, including turbulence, are considered in

the following chapter. The optimization period tf − t0 = 20 is split evenly into n = 200 intervals of period

T = 0.1. Based on e-folding time of this system tλ ≈ 1.11 from Figure 12.8, the sensitivity is anticipated

to be amplified by only about a factor of 1.09 within intervals. The optimization uses only the quadratic

penalty (14.26), and Algorithm 6 is applied for 6 iterations of subproblem (14.20). The minimization of each

subproblem is deemed sufficient when

∥∥∥∥
∂LA
∂Θ

∥∥∥∥
2

T
+

N−1∑

k=1

∥∥∥∥
∂LA
∂q+

k

∥∥∥∥
2

Q+

< 10−8. (14.31)

The penalty strength µ is increased by a factor of 10 at each subproblem, starting from 1µ = 10−5.

Figure 14.5 (a) compares the result to the standard gradient-based method from Figure 10.3. The multi-

point method achieves a 99.99% reduction of J versus the 44.6% for the standard gradient-based method.

The intermediate discontinuities are decreased to ‖∆qk‖Q+ < 10−13. There is no need for the augmented

Lagrangian method to accelerate the optimization. Figure 14.5 (b) compares the step sizes taken in line

searches to the standard gradient-based method. Clearly, the multi-point method searches a much larger

region, only decreasing the step size with increasing µ. This enables identification of the effective control

shown in Figure 14.5 (c) and (d). It is not concentrated toward early times, unlike the optimized control

with standard gradient-based method. Similarly, without exception it suppresses all the peaks of I(t).

Figure 14.6 further shows that it is more regular compared to the nonlinear feedback control of Appendix C.
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Figure 14.5: Multi-point penalty-based method applied to the Lorenz example of Section 12.1. (a) Reduction
of J (12.3) and the intermediate discontinuities of the multi-point method. Markers indicate the updates
of µ in Algorithm 6. (b) Step sizes taken in the optimizations. For the multi-point method, color changing
from blue to red indicates the increase of µ. (c) The control strength f(t) of the optimized controls. (d) The
instantaneous objective functional I(t) (12.4) of the baseline solution and the controlled solutions.

127



0 2 4 6 8 10 12 14 16 18 20
−800

−600

−400

−200

0

200

400

Time t

‖f
(t
)‖

Γ

Standard Multi-point
Nonlinear feedback

Figure 14.6: The control f(t) in (10.1), optimized by the standard gradient-based method, the nonlinear
feedback control from Appendix C, and the multi-point method.

The optimized state trajectory was shown in Figure 10.4.

The control is successful, but the pathological sensitivity to initial condition still raises questions about

the utility of the optimized solution: Does it approximate a realistic trajectory? Can it be used for the

actual control? These are discussed in following sections.

14.5 Approximation in a shadowing sense

Although intermediate discontinuities ∆qk of the optimized solution (Figure 14.5 a) are small, and the

optimized state trajectory in Figure 10.4 seems smooth and continuous in time, we consider the details of

the procedure, recognizing that
∑ ‖∆qk‖ → 0 only for µ→∞ [57, 58]. Because chaotic dynamics amplify

any small deviation, a question remains whether or not the result can be considered physical, reflecting the

true dynamics of the actual system.

We can indeed confirm that the small ∆qk does affect the optimized solution. Figure 14.7 (a) shows the

piecewise-continuous trajectory with the optimized control forcing Θ = f(t) and small but finite {∆qk}.

Applying the same Θ with q(tk) = q+
k = q(t−k ) so {∆qk} = 0 leads to the continuous trajectory shown in

Figure 14.7 (b), which eventually deviates and return to orbit U2.

Though this is expected, this same question underlies any numerical solution of a chaotic dynamical

system. Even without ∆qk, a numerical solution is still subject to errors from its discretization and finite-

precision arithmetics, so its true fidelity is likewise questionable. Similarly, no a real-world actuator can
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Figure 14.7: (a) The optimized state trajectory of the Lorenz system (10.1) that is piecewise continuous.
(b) The state trajectory with the optimized control forcing and with the intermediate constraints strictly
enforced.

apply the optimized Θ without error, nor can a state-estimator exactly identify the flow state q.

This error susceptibility of numerical solutions of chaotic dynamical systems is well recognized [13, 39, 41,

42], and it has been extensively studied concerning in what sense they approximate the true solution [150–

153]. While numerical solutions do deviate from the true trajectory with the same initial condition, in many

cases there is thought to exist a different true trajectory with slightly different initial conditions that closely

tracks the computed solution for a long time [152], lending credence to the numerical solution. That is, there

is a true trajectory that shadows the numerical solution.

Definition 14.1 (shadowing [39, 151]). Let q∗ ∈ Q be the exact trajectory of (11.17), so

∥∥∥∥
∂q∗(t)
∂t

−R[q∗(t)]

∥∥∥∥
Q+

= 0 ∀t > 0, (14.32)

and let q̃ ∈ Q be a ε-pseudo trajectory of (11.17) which is subject to error

∥∥∥∥
∂q̃(t)

∂t
−R[q̃(t)]

∥∥∥∥
Q+

< ε ∀t > 0. (14.33)

The exact trajectory q∗ δ-shadows the numerical solution q̃ for t ∈ [ti, tf ] if

‖q∗(t)− q̃(t)‖Q+ < δ ∀t ∈ [ti, tf ]. (14.34)

Figure 14.8 (a) illustrates an exact solution q∗ that shadows an ε-pseudo solution. There exists a δ-shadowing
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‖N [q̃]‖ < ε (14.33)
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Time t
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(b) Definition 14.2

Figure 14.8: Schematics of shadowing: (a) Exact solution q∗ shadowing ε-pseudo solution q̃, (b) ε1-pseudo
solution q̃ shadowing multi-point (ε1, ε2)-pseudo solution q, with their respective controls.

q∗ for any ε-pseudo trajectory q̃ and any time interval if the dynamical system (11.17) is hyperbolic [150, 151].

While we do not know whether the examples of Chapter 13 are hyperbolic in the required strict sense, it has

been supported by a chaotic hypothesis that systems with more state-space complexity may behave more

hyperbolically [8, 154, 155]. Even for non-hyperbolic systems, a shadowing trajectory may exist for a finite

time [39, 152, 153].

So a full validation, of course, depends on the existence of q∗. However, it is likely impossible to present

such a solution, and its existence has been proven only implicitly [39, 152, 153]. Thus we restrict the question

with respect to the ‘numerically continuous’ solution: Does a numerical solution with ‖∆qk‖ = 0 (ε-pseudo

solution in Definition 14.1) shadow the multi-point optimized solution q and Θ? For this, we re-define

shadowing in Definition 14.1 for the multi-point optimized solution.

Definition 14.2 (shadowing for multi-point optimized solution). Let q̃ ∈ Q and Θ̃ ∈ T be an ε1-pseudo

solution of (11.17), so
∥∥∥∥
∂q̃(t)

∂t
−R[q̃(t), Θ̃(t)]

∥∥∥∥
Q+

< ε1 ∀t ∈ [ti, tf ], (14.35)
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Figure 14.9: Schematic diagram of the subproblem (14.39) for the shadowing trajectory construction (Algo-
rithm 8).

and let q ∈ Q and Θ ∈ T be a multi-point (ε1, ε2)-pseudo solution of (11.17), so

∥∥q+
k − q(t−k )

∥∥
Q+ < ε2 ∀t ∈ Tint ≡ {t1, t2, . . . , tn−1} (14.36a)

and ∥∥∥∥
∂q(t)

∂t
−R[q(t)]

∥∥∥∥
Q+

< ε1 ∀t ∈ [ti, tf ]/Tint. (14.36b)

Both q̃ and q have the same initial condition, so q̃(ti) = q(ti). The ε1-pseudo solution q̃ and Θ̃ δ-shadows

the multi-point solution q and Θ for t ∈ [ti, tf ] if

‖q̃(t)− q(t)‖Q+ < δ
∥∥∥Θ̃(t)−Θ(t)

∥∥∥
T+

< δ ∀t ∈ [ti, tf ]. (14.37)

For our present considerations, ε1 in Definition 14.2 represents corresponds to discretization and finite-

precision error. Similarly, ε2 corresponds to the intermediate discontinuities {∆qk}. Figure 14.8 (b) illus-

trates a ε1-pseudo solution q̃ that shadows the optimized (ε1, ε2)-pseudo solution q. Like Definition 14.1, it

is likely impossible to prove its existence analytically, though it is possible to numerically construct a viable

q̃ and Θ̃. The existence of q̃ then suggests that the multi-point solution q approximates an exact trajectory

q∗, just as q̃ does. We introduce a systematic procedure for this. This is in some sense the refinement

procedure of Grebogi et al. [152], though the specific steps are different.

To find a shadowing q̃ with ∆qk = 0, we continue the optimization with the framework introduced in

Section 14.3, but sequentially enforces the intermediate constraint (14.15c) at increasingly many times tk.

Figure 14.9 shows a schematic for this sequential enforcement. The procedure starts from the optimized

solution, for which all {∆qk} are small but finite. The optimization period is shortened by strictly enforcing
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(14.15c) for the first M ≤ N − 1 time points, so the governing equation (14.15) becomes

dq

dt
−R[q; Θ] = 0 for t ∈ [ti, tM ) (14.38a)

q(ti) = q0, (14.38b)

with q+
k used for tk ≥ tM+1,

dq

dt
−R[q; Θ] = 0 for t ∈ [tk, tk+1) (14.38c)

q(tM ) = q(t−M ) (14.38d)

q(tk) = q+
k for k = M + 1, . . . , N − 1. (14.38e)

Hence, the violation of (14.15c) is considered only for tk ≥ tM+1,

∆qk ≡ q+
k − q(t−k ) = 0 for k = M + 1, . . . , N − 1. (14.38f)

We continue to use Algorithms 6 and 7 to minimize JA (14.19), but exclude all optimization variables for

t < tM , so the subproblem (14.20) is modified as

(
i{q+

k }N−1
M+1, iΘ(tM ≤ t ≤ tf )

)
= argminJA[q,Θ; {q+

k }N−1
M+1, iµ], with (14.38c-e), (14.39)

where the solution for t ∈ [ti, tM ) under (14.38a) does not change in the optimization. For t ∈ [tM , tf ], the

standard multi-step optimization is applied. Repeating the optimization of (14.39) from M = 1 to N − 1

enforces (14.15c) for all k = 1, 2, . . . , N − 1, which constructs a shadowing trajectory q̃ in Definition 14.2.

Algorithm 8 summarizes the overall construction procedure.

Algorithm 8 Shadowing trajectory construction

Given: the multi-point optimized solution 0{q+
k }, 0Θ, 1µ

for M = 1, 2, . . . , N − 1 do
for k = 1, . . . ,M do

Mq+
k = M−1q(t−k )

Subproblem (14.39) with initial guess M−1{q+
k }, M−1Θ . Optimize only within t ∈ [tM , tN ]

M+1µ = Mµ . Needs not increase

A shadowing solution q̃1 is constructed from the optimized q of Section 14.4. To start the procedure, an

initial solution q1 is taken to be the optimized solution after 460 searches, as shown in Figure 14.10 (a). q̃1 is
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Figure 14.10: Construction of ε1-pseudo trajectories q̃1 and q̃2 of the Lorenz system (10.1) from the multi-
point optimized solutions. (a) Initial solutions for Algorithm 8 chosen from the multi-point optimization. (b)
Total discontinuity throughout the procedure of Algorithm 8. In the end, the discontinuity strictly becomes
zero, as all the intermediate constraints are enforced.

constructed via Algorithm 8 with the penalty strength µ = 102. Figure 14.10 (b) shows the total discontinuity

of q̃1 under the construction procedure, in which
∑ ‖∆qk‖2 remains at ≈ 10−11 until q+

k = q(t−k ) for all

k, then the discontinuity is reduced directly to zero. q̃1 has almost the same J = 9.7722578 × 10−4 to

J = 9.7722579× 10−4 of the optimized solution.

To see whether the construction procedure is sensitive to the discontinuity of initial solution, we con-

structed another shadowing solution q̃2 with a less optimized solution. An initial solution q2 is taken to be

the optimized solution after 252 searches in Figure 14.10 (a). It has a larger discontinuity than q1 by about

a factor of 108. q̃2 is constructed with weaker µ = 10−1. During the procedure, the total discontinuity of

q̃2 remains at ≈ 10−5 larger than q̃1, though it is also reduced directly to zero at the end. Despite a larger

discontinuity, q̃2 still has J = 9.695× 10−4 similar to the optimized solution. Shadowing solutions q̃1 and

q̃2 are compared with the optimized solution q1 in their trajectory q(t) and forcing f(t) in Figure 14.11. All

of them appear to overlay each other, for both q and f . The shadowing distances of q̃1 and q̃2 in (14.37),

quantified in Figure 14.12, are bounded at all times, not diverging as in Figure 14.7 (b). With its µ and

smaller {∆qk} (Figure 14.10 b), q̃1 shadows closer (smaller δ in Definition 14.2). These results suggest

that a multi-point solution, even with a moderately reduced discontinuity, can approximate a (numerically)

continuous solution.
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14.6 Utility of the optimized solution and the burden of

interpretation

The results in Section 14.5 may seem contradictory in that the optimized solution is sensitive to small

discontinuities yet at the same time shadows an actual continuous trajectory. One may even question

the utility of the optimized solution: if it requires such extremely fine resolution to have the expected

performance, is the control usefully robust? or even, is the system controllable in practice? As discussed in

the previous section, this concern underlies any numerical simulations of chaotic dynamical systems, making

the optimized solution useful only for some tasks (e.g, computation of turbulence statistics) but not all (e.g,

exactly tracking dynamics).

There is, however, another perspective, which exposes additional utility. From the control system theory

viewpoint, the optimized q(t) and Θ(t) solution is given in a format of open-loop control, where there is

no Θ compensation regardless of how q deviates from the desired output [156, 157]. This is illustrated in

Figure 14.13 (a). Many such controls are well understood to be highly sensitive to disturbances and errors,

and only effective when the underlying dynamical system is stable [156].
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However, as one instance of the control law Θ[q], it retails utility to advance knowledge about an effective

feedback control law Θ(t) = Θ[q(t)], as is illustrated in Figure 14.13 (b). In this sense, the failure shown in

Figure 14.7 is only a consequence of passively applying the control in an open-loop fashion.

We demonstrate an approach for this Lorenz example by simply fitting q(t) and Θ(t) to find a closed-loop

control that is robust. The optimized solution q and Θ in t ∈ [0, 20] has 2000 time steps, which are used as

2000 training samples of (q(t), f(t)). A regression tree, as implemented in the MATLAB Toolbox [158], is

used as a model function with minimum leaf size 4, leading to a tree of 685 nodes. The trained regression

tree has

R2 = 1−

2000∑
k=1

[fk − f(qk)]2

2000∑
k=1

(fk − f)2

≈ 0.91. (14.40)

Figure 14.14 (b) shows the time history of the actuation by the inferred control law, which agrees well with

the optimized solution. Figure 14.15 shows the application of the inferred control law for 4 different initial

conditions. Only one initial condition shown in Figure 14.15 (a) is used for the training, however all of them

are well controlled, even for the initial conditions far from the training data (Figure 14.15 c and d).

In this example, the optimization procedure is useful, not because it can be used directly for an actual

control, but because it provides a valuable training data. Similarly, it is often not known whether a flow

is controllable to the desired flow state. In such situations, the control found by the optimization also

exposes the controllability of the flow system, in addition to providing a pathway to analyze and harness

its mechanism. It is also anticipated that human-learning is possible such as in analysis done by Wei and

Freund [78] for the optimized control of two-dimensional shear layer noise.
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(a) Original initial condition x0 = (1.49, 1.49, 37)T (b) x0 = (−3.67, 0.78, 28.03)T

(c) x0 = (−3.49,−18.49, 28)T (d) x0 = (10, 15, 25)T

Figure 14.15: Controlled solutions by the inferred control law starting from 4 different initial conditions.
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Chapter 15

Optimal control of chaotic advective
systems and turbulent flow

The multi-point optimization framework proposed in Chapter 14 is applied to the control problems of

Chapter 13: the Kuramoto–Sivashinsky Equation, two-dimensional Kolmogorov flow, the Adv+KS system,

and three-dimensional Kolmogorov turbulence.

15.1 Kuramoto–Sivashinsky equation

To apply the multi-point method to this control problem as introduced in Section 13.1.4, the full simulation

time tf − t0 = 5 is split into n = 125 intervals of T = 0.04. Based on the e-folding time of this system

tλ ≈ 0.412 (Section 13.1), the sensitivity is therefore expected to be amplified a factor of only 1.1 within each

interval. The quadratic penalty method with Algorithm 6 is applied for the first 6 subproblems, and the

augmented Lagrangian method with Algorithm 7 is applied from the 7th subproblem and onward. A control

is found to reduce J (13.5) by 99.7%, whereas the standard gradient-based approach from Section 13.1 only

achieved a 22.4% reduction. The controlled solution is shown in Figure 15.1.

Figure 15.2 (a) illustrates how the multi-point optimization framework finds its minimum (13.5). In

most subproblem minimizing JA, the actual objective J initially rises to a larger value before decreasing

more gradually, eventually approaching a local optimum for the specified µ. The intermediate discontinuities

‖∆uk‖ decrease monotonically with each line search. Figure 15.2 (b) confirms, as anticipated by design of

the method, that the multi-point framework takes larger Θ steps, and that the search scale reduces as µ

increases. Figure 15.2 (c) and (d) show that the control found by the multi-point method is no longer biased

to early times due to the gradient amplification over the full time horizon. Similarly, the control amplitude

is not restricted to low-amplitude as in Section 12.1.4. It is active at all times and reduces I(t) throughout

the simulation except for times t < τA ≈ 0.25.

In this demonstration, the penalty strength µ is increased by a factor of 4 for each quadratic penalty

subproblem, and by a factor of 2 for each augmented Lagrangian subproblem, as shown in Figure 15.3 (a).
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Figure 15.1: Controlled solution (black) at t = 2.5 of K–S equation. The control is visualized as orange
arrows, with a scaled magnitude 0.05f(x, t).

Each subproblem is solved until the gradient magnitude decreases below a relative threshold,

‖∇LA‖2
‖∇LA,1‖2

< iε. (15.1)

with ‖∇LA‖2 = ‖∇ΘLA‖2T +
n−1∑
k=1

‖∇q+
k
LA‖2Q+ and ‖∇LA,1‖2 the gradient for the first line search of the

subproblem. The threshold is set iε = 0.1 for i ≤ 8 and iε = 0.01 for i > 8. The gradient magnitude

throughout the optimization is shown in Figure 15.3 (b). There is no formal criterion known yet to terminate

a subproblem, only having a loose condition lim
i→∞ iε = 0 [57, 58]. For our examples, keeping this relative

threshold is sufficient and the results are not sensitive to iε. Various precisions for the line search (α3 − α1

with values used in (11.16)) were used to decrease the gradient threshold, however the gradient magnitude

was also insensitive to them.

For the final iterations shown in Figure 15.2 (a), we deem the optimization to be sufficient, because

the ‖∆uk‖Q+ keeps decreasing without significantly changing J . We consider the validity of the optimized

solution in the shadowing sense as we did for the Lorenz example in Section 14.5. Two shadowing solutions

by Definition 14.2 are constructed by Algorithm 8. First shadowing solution q̃1 is constructed from the

optimized solution q1 (Figure 15.4 a) via Algorithm 8 with µ = 800. Another shadowing solution q̃2 is

constructed from a less-optimized solution q2 (Figure 15.4 a) with µ = 25, to confirm the insensitivity to

∆uk as we did for the Lorenz example. Both are constructed with augmented Lagrangian method, with

µ and {u†+k } constant. Figure 15.4 (b) shows that the total discontinuity of q̃2 remains higher than q̃1,

though both have ‖∆uk‖Q+ = 0 for all k at the end of the procedure. Though it takes many about 104

searches to finish the construction procedure, their J ’s only slightly change from the optimized solution q1:
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(d) The instantaneous objective functional I(t) (13.5b) of the baseline solution and the controlled solutions.

140



0 5 10 15 20

10−5
10−4
10−3
10−2
10−1
100
101
102
103

Quadratic Augmented

Penalty Lagrangian

i-th subproblem

iµ

0 100 200 300 400 500 600 700
10−4

10−2

100

102

104

106

108

1010

Line searches

‖∇
L A
‖2

(a) (b)

Figure 15.3: (a) Updated penalty strength iµ at the i-th subproblem. (b) Gradient magnitude of augmented
Lagrangians in Algorithm 6 and Algorithm 7, with markers denoting penalty strength updates. The gray
line indicates the transition from the quadratic penalty method to the augmented Lagrangian method.

10−8

10−6

10−4

10−2

100

0 1,000 2,000 3,000 4,000
10−6

10−5

10−4

10−3

0 200 400 600 800
10−2

10−1

100

101

q2

q1

Line searches

J

A
ve

ra
ge
‖∆

u
k
‖2

All ∆uk = 0

All ∆uk = 0

Line searches

∑
‖∆

u
k
‖2

(a) (b)

q̃1
q̃2

Figure 15.4: Construction of shadowing trajectories q̃1 and q̃2 of the K–S equation from the multi-point
optimized solutions. (a) Initial solutions for Algorithm 8 chosen from the multi-point optimization. (b) Total
discontinuity throughout the procedure of Algorithm 8. In the end, ‖∆uk‖Q+ = 0, as all the intermediate
constraints are enforced.

141



0 1 2 3 4 5

10−4

10−3

10−2

1 2 3 4

10−4

10−3

10−2

10−1

Time t

‖q
(t
)
−

q̃
(t
)‖

Q
+
/‖

q̃
(t
)‖

Q
+

Time t

‖Θ
(t
)
−

Θ̃
(t
)‖

T+
/‖

Θ
(t
)‖

T+

(a) (b)

q̃1 (µ = 800)
q̃2 (µ = 25)

q̃1 (µ = 800)
q̃2 (µ = 25)

Figure 15.5: The shadowing distance of q̃1 and q̃2 with respect to q1 in (a) their states, and (b) their control
strengths.

J = 7.64× 10−2 for q1, J = 7.60× 10−2 for q̃1, and J = 8.13× 10−2 for q̃2. The shadowing distances of

q̃1 and q̃2, quantified in Figure 15.5, are bounded at all times for both q and Θ. This again supports that

the optimized solution, though it includes ‖∆uk‖Q+ . 10−3, does approximate a continuous-in-time solution

with similar J .

Although this exhaustive approach we have used supports consistent convergence of the optimization for

both the Lorenz system and the K–S equation, doing it for the following cases seem prohibitive, since these

are significantly more costly simulations and are also anticipated to require still more line searches.

15.2 Two-dimensional Kolmogorov flow

For this flow, which was introduced in Section 13.2.3, the time tf−t0 = 4.47τc is split into N = 40 intervals of

T = 0.11τc. Based on the inferred e-folding time of this system, the sensitivity is anticipated to be amplified

by a factor of 1.13 within each interval. For the results we consider, the quadratic penalty method with

Algorithm 6 is applied for the first 4 subproblems, and the augmented Lagrangian method with Algorithm 7

is applied from the 5th subproblem and onward. The penalty strength µ is increased by a factor of 4 for

the first 3 subproblems and then by a factor of 10 thereafter, as shown in Figure 15.6 (a). Similar to

the K–S equation, each subproblem is solved until the relative gradient (15.1) decreases below a threshold:

εi = 0.1 for i ≤ 3 and εi = 0.01 for i > 3. The gradient magnitude throughout the optimization is shown in

Figure 15.6 (b). Figure 15.7 shows that the control found significantly disrupts the vortices of the baseline

simulation, preventing them from creating the pronounced dynamic pressure of the baseline flow.
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Figure 15.8 (a) shows the optimization of the objective functional and intermediate discontinuities, com-

pared with the result by the standard gradient-based method. That method stagnates after a 43.8% J

reduction, whereas the proposed method achieves 97.8% reduction. As for the K–S example, Figure 15.8 (b)

suggests that the multi-point framework explores a larger region of T space. Likewise, the control is active

throughout the entire simulation time, as shown in Figure 15.8 (c). Figure 15.8 (d) confirms with I(t) that

the solution is converged to a uniformly effective trajectory.

145



2 4 6 8 10

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500 600 700

10−7

10−6

10−5

10−4

10−3

i-th subproblem

iµ

Line searches

‖∇
L A
‖2

(a) (b)

Figure 15.10: Three-dimensional Kolmogorov flow: (a) Penalty strength µ each update; and (b) Gradient
magnitude in optimization procedure. Circles denote the starting points of the subproblems.

15.3 Advection+Kuramoto–Sivashinsky model (Adv+KS)

As for Kuramoto–Sivashinsky equation in Section 15.1, the optimization time period is split into 125 intervals.

Algorithm 6 is implemented for 8 subproblems with quadratic penalty method. The penalty strength starts

from 1µ = 10−4, increased by a factor of 10 up to 3µ = 10−2, and by a factor of 4 subsequently. Figure 15.9 (a)

shows that the multi-point method achieves a similarly effective reduction of J as the reduced-order model

shown in Figure 13.10, while gradually decreasing its
∑ ‖∆qk‖2. The step sizes in Figure 15.9 (b) shows that

it too seems to avoid poor local minima. In addition, Figure 15.9 (c) shows that the control found recovers

the reduced model, without explicit representation of such a model. Whether this behavior can be achieved

in a true turbulent flow, for which accurate reduced models are challenging, is assessed for Kolmogorov flow

in the next section.

15.4 Three-dimensional Kolmogorov flow

As for the two-dimensional case in Section 15.2, the optimization time period is split into 40 segments of

length T = 0.11τc. Algorithm 6 is implemented with the quadratic penalty method, for which µ is shown in

Figure 15.10 (a). The gradient magnitude throughout the optimization is shown in Figure 15.10 (b).

Figure 15.11 (a) shows that the multi-point framework again finds a better optimum than the standard

method (88.3% versus 51.5% reduction), again by seeming to explore more of T space (Figure 15.11 b).

Only the first two line searches of the standard method have comparable step sizes. In Figure 15.11 (c),

the control found by the multi-point method is also stronger and distributed throughout the simulation
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time. In Figure 15.11 (d), this control effectively suppresses the control objective after a short transient time

t & 14.5τc. This transient time t− ti ≈ 1.12τc is longer than τA ≈ 0.125τc, presumably because the control

Θ is set to manipulate only thermal energy of the flow. However, the control from the standard method has

a longer transient response similar to the entire simulation time, leaving a significant of early times nearly

unaffected, Figures 15.11 (c) and (d) together suggest again that the multi-point method is not blocked by

small scale features of J .

We can also confirm that the control found by the multi-point framework targets the large-scale structure.

Figure 15.12 (a) and (b) show that the spanwise-averaged pressure fluctuations are suppressed. However,

this is not achieved via laminarization. Figures 15.12 (c) and (d) show that smaller-scale turbulence still

remains intact in the controlled flow, while large-scale structures are suppressed. This indicates that the

control skirts these small-scale fluctuations which are unimportant for the control objective. Turbulence

spectra in Figure 15.13 further supports this. The actuator only slightly decreases turbulence kinetic energy

across small scales, while the large-scale spanwise pressure fluctuations in Figure 15.13 (b) are suppressed.

15.4.1 Flexibility of multi-point method with µ

Before conclusion, we mark the importance of exploiting small µ in early line searches. In Section 14.2, it

was illustrated with the logistics map example, that the augmented functional with small µ expands basin of

attraction for the global optimum, which then becomes confined again as µ is increased. While the logistics

map needs only one line search to reach the local optimum, typical flow control problems requires many line

searches. Therefore, it is important to allow sufficient line searches with small µ, to find a smaller J .

In Figure 15.14 we show another optimization for the three-dimensional Kolmogorov flow with a faster

penalty strength increase. As expected, the discontinuity decreases faster as well. However, this decrease

compromises the true objective of reducing J . Abrupt jumps appear in J . As the line searches continue,

J decreases again, but when the subproblem terminates after only a few line searches, these upjumps are

not fully countered. Thus, in Figure 15.14, optimization with faster increase of µ leads to an inferior J . At

the same discontinuity ‖∆qk‖2 = 10−6, the slower case in Figure 15.14 (b) achieves more J reduction. In

general, it is unclear what µ would best tailor the basin of attraction.

While it requires a caution, this still provides us with flexibility. To see this, we compare the opti-

mization result of two regimens in Figure 15.14, mainly with their instantaneous objective functionals I(t).

Figure 15.15 (a) shows I(t) in time at their final iterations, indicating that the flow of regimen B reaches

a stationary state inferior to regimen A. However, this solution is obtained with about 4 times fewer line

searches, as shown in Figure 15.14 (b), with a lower discontinuity than regimen A. This suggests that there is
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lence kinetic energy; and (b) pressure fluctuation.
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a trade-off between faster convergence and a better J outcome, and the multi-point method has a flexibility

to choose between them by adjusting µ. Figure 15.15 (b) shows I(t) of regimen A changing throughout line

searches. It changes mainly in its early transient response, while the terminal stationary value increases only

slightly, still lower than that of regimen B. This shows that these two regimens converge to qualitatively

different solutions. Both solutions, however, have similar transient time t− ti ≈ 1.12τc shorter than that of

standard gradient-based optimization. The optimization behavior shown in Figure 15.15 suggests that the

multi-point method has the flexibility to choose among these solutions by adjusting µ.
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Chapter 16

Conclusion

The calculation of gradients, for analysis and optimization of turbulent flows is challenged by the chaotic

dynamics of turbulence. A series of model problems, including a genuinely turbulent flow, was developed

to assess this challenge and overcome it. These problems were used to quantify how the gradient grows in

reverse time and its consequence. It was also shown how J becomes increasingly non-convex, so standard

gradient-based algorithms find only a poor local optimum that does not reduce J significantly. Even in cases

when it is conjectured that there are useful, relatively deterministic turbulence components, chaotic turbu-

lence fluctuations obscure the gradient-based search methods. The advection plus Kuramoto–Sivashinsky

(Adv+KS) system was introduced as a model for this. Reduced models might seek descriptions that avoid

this challenge, and can be realized for the Adv+KS system, however they have not found a definite and

broad success. A detailed simulation remains the only means of accurately predicting many flows, and then

only if computer resources are available. In face of this challenge, we have developed a method to skirt the

chaos and optimize without extracting an explicit reduced-order model for turbulence.

The method is developed as an extension of standard gradient-based method as part of a standard

framework for equality-constrained optimization. Two well-understood features of this framework summa-

rized in Chapter 11 are that the governing equation is strictly enforced and that it seeks the closest local

minimum. These are hindering for chaotic dynamical systems, which was demonstrated and analyzed with

simple examples (Logistics map and Lorenz system) in Chapter 12. A result of the exponential sensitivity

is that the optimization is biased toward controls that reduce J at late times with actuations at earliy

times. Another is that J becomes extremely non-convex, so gradient-based methods cannot search large

regions of parameter space. Even exact gradients cannot circumvent the nonconvexity. This perspective is

introduced in Section 12.2 with the typical horseshoe mapping illustrated with the one-dimensional logistics

map. To evaluate these same mechanisms in more complex flow cases, two time scales are introduced in

Section 12.3. The e-folding time tλ represents gradient growth, and tφ the viable search step decay due to

the non-convexity of J .

More complex flow examples are examined in Chapter 13. It is first confirmed with Kuramoto–Sivashinsky
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Equation and two-dimensional Kolmogorov flow, that the optimization is similarly impacted by chaotic

dynamics, even though the control problem is anticipated from its setup to have an effective control. The

Adv+K–S model is introduced to show how optimization of a deterministic component can be obscured by

chaotic component, which is thought to be similar to the challenge of flow turbulence. Turbulence per se

is studied in a three-dimensional Kolmogorov flow, where large-scale pressure fluctuations are obscured by

finer-scale turbulence. The two time scales tλ and tφ are quantified for all these examples. The tφ is not

proportional to tλ, suggesting that tλ (or the inverse Lyapunov exponent) alone does not fully describe the

impact of chaos, and raised a need to investigate and establish the scaling behavior of tφ.

Based on these observations a new optimization framework is proposed in Chapter 14. Its key feature

is that the simulation is split into multiple intervals of length T . τλ, each starting with an auxiliary

intermediate condition. Allowing discontinuities at these times expands the optimization space, reducing

the non-convexity of J , thereby enlarging the initial search scale of gradient-based methods. As the search

progresses, these discontinuities are penalized with increasing strength, ultimately becoming negligible. Two

widely-used methods, quadratic penalty and augmented Lagrangian method, are introduced and shown to

reduces J significantly.

The utility of the optimized solutions is, of course, in question because of its susceptibility to the same

sensitivities that make such analysis of chaotic systems challenging. Two main points are discussed in this

regard. The optimized solutions still reflects the true dynamics, at least to the same degree any numerical

simulation of a chaotic system can, so as such they approximate continuous trajectories in a shadowing

sense. This is supported by numerically constructing solutions that shadow the optimized solutions. In

addition, the optimized solutions can be useful when they are interpreted as instances of an underlying

control law. Like many open-loop controls, these solutions can be expected to be unstable, however they can

provide useful data to infer a closed-loop control law. This is demonstrated for the Lorenz example, where

an effective control law is inferred from the optimized solution using a machine learning technique.

The new method is demonstrated in Chapter 15 on the examples from Chapter 13. In all cases, the

optimized controls are not biased to early times. This is the case even for the turbulent Kolmogorov flow.

for which it targets large-scale pressure fluctuations without laminarization.

Numerical simulations in the multi-step penalty method has additional arithmetic operations and memory

use compared to standard gradient-based methods. This computational cost mainly comes from evaluating

intermediate discontinuities and their gradients, though it is not significant compared to time integration

of the governing equation and its adjoint. Rather, multiple intervals enhances the scalability of the system,

since each interval starts with its own initial condition, thereby enabling parallel-in-time integration of both
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governing equation and its adjoint.

The multi-step penalty method has a flexibility with penalty strength µ to compromise between faster

convergence and better solution. However, there are only loose rules for updating µ and it requires more

systematic investigations to set up a specific guideline. Although all the examples in this study are optimal

control problems, we believe it can be extended toward a general optimization problem.

154



Appendix A

Shape functions for PIC formulation

A tensor-product of B-splines is often chosen as the shape function of computational particles x [23],

Sx(x− xp) =
1

∆x
bl

(
x− xp

∆x

)

=
1

∆x∆y∆z
bl

(
x− xp

∆x

)
bl

(
y − yp

∆y

)
bl

(
z − zp

∆z

)
.

(A.1)

Cloud-in-cell (l = 0) and triangular-shaped-cloud (l = 1) are the most common [20], which is shown in

Figure A.1 (a).
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Figure A.1: (a) B-spline functions of order l = 0, 1, 2, and (b) derivative of B-spline of order l = 3.

Derivatives of B-splines are used in the source evaluation (3.22) of particle-pdf approach. We describe

here ∂
∂v bl

(
viv−vp

∆v

)
for l = 3:

∂

∂v
b3

(
ζp,iv =

viv − vp
∆v

)
=





− 1
∆v

(
3
2 − ζp,iv

)
1
2 ≤ ζp,iv ≤ 3

2

− 2ζp,iv
∆v − 1

2 ≤ ζp,iv ≤ 1
2

1
∆v

(
3
2 + ζp,iv

)
− 3

2 ≤ ζp,iv ≤ − 1
2 ,

(A.2)

which is plotted in Figure A.1 (b).
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Appendix B

Particle-exact sensitivity with respect
to simulation parameters

B.1 Number of particles

For the Debye shielding configuration in Chapter 4, standard deviation of JD and its particle-exact sensitivity

∂θJD is measured over 104 realizations, with different numbers of particles. The statistics are evaluated at

ωpt = 150.0, when the particle-exact sensitivity starts to diverge in initial response. Figure B.1 shows that

standard deviation of the particle-exact sensitivity also decreases with Np, though not enough to suppress

the exponential growth of standard deviation shown in Figure 5.4.

104 105 106

10−1

101

103

105

2
-1

N

σ

J
∂θJ

Figure B.1: Standard deviations of QoI (4.5) and its particle-exact sensitivity versus number of simulation
particles.

B.2 Discretization parameters

Standard deviation of J and its particle-exact sensitivity is further investigated for different mesh sizes

and time steps. Standard deviation of particle methods mainly depends on the number of particles, unless

a numerical instability arises through discrete-particle noise and fluctuation due to too large ∆x or ∆t

[20, 21, 38]. The particle-exact sensitivities are sampled at ωpt = 150.0, with different mesh sizes and time

steps which does not induce artificial instability, and their statistics are tabulated in table B.1. It is shown
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that standard deviation of QoI is insensitive to mesh size ∆x or time step ∆t. The standard deviation of

particle-exact sensitivities is also insensitive to time step ∆t, but not to mesh size ∆x. When the mesh

size is decreased, the standard deviation of sensitivities increase almost linearly. Considering that the use

of mesh in force interpolation regularizes the discontinuity (or singularity) of short-range interaction with

particles, it seems that decrease in mesh size weakens the regularizing effect, resulting in the increase of

Lyapunov exponent [40]. ∆x and ∆t may affect statistical accuracy by correcting the mean, although not

quantitatively confirmed in this paper.

Nm ωp∆t µ σ

J
64 0.05 619.875 0.2223
256 0.05 619.838 0.2226
64 0.01 619.700 0.2205

∂θJ
64 0.05 26.449 984.04
256 0.05 9.705 3.15× 103

64 0.01 9.1592 997.145

Table B.1: Mean and standard deviation of J and its particle-exact sensitivity, with different discretization
parameters. Samples are taken with 105 particles at simulation time t = 150ω−1

p,e.
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Appendix C

Nonlinear feedback control of the
Lorenz system

We design a nonlinear feedback controller f(t) for the Lorenz equation (10.1),

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz + f(t),

with σ = 10, β = 8/3, and ρ = 28. We denote the state as q = (x, y, z)T ∈ R3. The controller is sought to

minimize the objective functional (12.3),

J =
1

tf − t0

∫ tf

t0

I[q] dt,

with the instantaneous objective functional I (12.4),

I[q] =





1

2

(
2x+ y

5

)2

2x+ y ≥ 0

0 otherwise.

The nonlinear feedback controller is designed with a nonlinear transformation of state space which con-

verts the dynamics into a controllable linear dynamics [136, 137]. The formulation closely follows the work

by Chen and Liu [137].

C.1 State-space exact linearization

We first introduce the preliminary theorems for the transformation [137]. Its actual application for the

Lorenz system is in Section C.2.
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Consider a single-input nonlinear control system

q̇ = R(q) + G(q)u, (C.1)

where q ∈ Rn and u ∈ R are the state variables and control parameter respectively. R : Rn → Rn is

the right-hand side of the nonlinear governing equation, and G : Rn → Rn defines the specific form of the

controller. We define the adjoint action of R on G,

adRG = ∇qG · R −∇qR · G, (C.2)

where ∇q is the Jacobian with respect to q. This is also known as the Lie bracket [R,G] ≡ adRG.

Theorem C.1 (Exact linearization). For a given state q0 ∈ Rn, suppose

1. that the controllability matrix

C =
[
G(q0), adRG(q0), ad2

RG(q0), · · · , adn−1
R G(q0)

]
∈ Rn × Rn (C.3)

has rank n, and

2. that near q0 the vector space associated with the state q0

D = span{G(q0), adRG(q0), ad2
RG(q0), · · · , adn−2

R G(q0)} (C.4)

is closed under the adjoint action (C.2).

Then there exists a real-valued function λ(q) : Rn → R defined in a neighborhood U(q0) of q0 such that for

all q ∈ U(q0)

LGλ(q) = LadRGλ(q) = · · · = Ladn−2
R Gλ(q) = 0, (C.5a)

and

Ladn−1
R Gλ(q0) 6= 0, (C.5b)

where LGλ denotes the Lie derivative of λ(q) with regard to the vector field G,

LGλ(q) = (G · ∇q)λ(q). (C.6)
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Furthermore, in U(q0) there exists the nonlinear transformation q̂(q) : Rn → Rn associated with λ(q),

q̂(q) = [q̂1(q), q̂2(q), · · · , q̂n(q)]T ∈ Rn

= [λ(q), LRλ(q), · · · , Ln−1
R λ(q)]T ,

(C.7)

and the nonlinear transformation v for the control u,

v = LnRλ(q) + {LGLn−1
R λ(q)}u, (C.8)

such that the nonlinear dynamics (C.1) is transformed into linear controllable dynamics,

dq̂1

dt
= q̂2,

dq̂2

dt
= q̂3, · · · , dq̂n−1

dt
= q̂n,

dq̂v
dt

= v, (C.9)

by the transformation (C.7) and (C.8).

Proof. See Isidori [136, Chapter 4].

C.2 Feedback control design for the Lorenz equation

We apply Theorem C.1 to the Lorenz equation. R(q) and G(q) in (C.1) corresponding to the Lorenz equation

(10.1) are

R(q) =




σ(y − x)

x(ρ− z)− y

xy − βz



, (C.10)

and

G(q) = (0, 0, 1)T , (C.11)

with u in (C.1) being the controller f(t) in (10.1) we seek to design.

We first evaluate the controllability of the system with the two conditions in Theorem C.1. The adjoint
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actions of R on G are then

adRG = ∇qG · R −∇qR · G

=




0 0 0

0 0 0

0 0 0







σ(y − x)

x(ρ− z)− y

xy − βz



−




−σ σ 0

ρ− z −1 −x

y x −β







0

0

1




=




0

x

β




(C.12a)

ad2
RG = ∇qadRG · R −∇qR · adRG

=




0 0 0

1 0 0

0 0 0







σ(y − x)

x(ρ− z)− y

xy − βz



−




−σ σ 0

ρ− z −1 −x

y x −β







0

x

β




=




−σx

σ(y − x) + (1 + β)x

β2 − x2



.

(C.12b)

The controllability matrix (C.3) is then constructed with (C.11) and (C.12),

C =




0 0 −σx

0 x (1 + β − σ)x+ σy

1 β β2 − x2



, (C.13)

which determinant is det C = σx2. Therefore, as long as σ 6= 0 and x 6= 0, the controllability matrix has

rank n = 3. Meanwhile, the vector space D = span{G, adRG} in (C.14) is closed under the adjoint action,

since

adG(adRG) ≡ −adadRGG = (0, 0, 0)T . (C.14)

(C.13) and (C.14) together show that the Lorenz equation (10.1) satisfies the preliminary conditions for

controllability in Theorem C.1, and therefore the nonlinear transformation q̂(q) (C.7) exists.

We construct λ(q) in Theorem C.1 that satisfies (C.5), in order to find the nonlinear transformation q̂(q)

(C.7). For the Lorenz equation, (C.5) becomes

LGλ(q) =
∂λ

∂z
= 0 (C.15a)
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LadRGλ(q) = x
∂λ

∂y
+ β

∂λ

∂z
= 0 (C.15b)

Lad2
RGλ(q) = −σx∂λ

∂x
+ {σ(y − x) + (1 + β)x}∂λ

∂y
+ (β2 − x2)

∂λ

∂z
6= 0, (C.15c)

For (C.15) λ(q) must be a function of x, having no dependency on y and z. In fact, any arbitrary non-trivial

λ(x) can be used to construct the nonlinear transformation q̂(q) (C.7). We use

λ(q) = x, (C.16)

with which the q̂ = (q̂1, q̂2, q̂3)T is

q̂1 = λ(q) = x (C.17a)

q̂2 = LRλ(q) = σ(y − x) (C.17b)

q̂3 = L2
Rλ(q) = σ(σ + ρ)x− σ(σ + 1)y − σxz, (C.17c)

and its inverse

x = q̂1 (C.18a)

y = q̂1 +
1

σ
q̂2 (C.18b)

z =
1

σq̂1
{(ρ− 1)q̂1 − (σ + 1)q̂2 − q̂3} . (C.18c)

The control transformation (C.8) is

v = LnRλ(q) + {LGLn−1
R λ(q)}u,

= σ2(y − x)(σ + ρ− z)− σ(σ + 1){x(ρ− z)− y} − σ2z(y − x)− σx(xy − βz)− σxu.
(C.19)

(C.17) and (C.19) transforms the Lorenz equation (10.1) into the linear control system,

dq̂

dt
=




0 1 0

0 0 1

0 0 0




q̂ +




0

0

1



v

= Âq̂ + B̂v.

(C.20)
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The linear system (C.20) is controllable, and the design of linear systems is well-established. Any standard

methodology can be used to design v, and once v is designed, the nonlinear control u can be deduced through

the transformation (C.19).

Now we design a linear state-feedback controller v for (C.20) that can satisfy the objective functional

(12.3). We recall the observable (12.2),

O = 2x+ y =

(
2 1 0

)



x

y

z



,

which is the term in the objective I (12.4). With the inverse transformation (C.18), the observable becomes

O = 2x+ y = 3q̂1 +
1

σ
q̂2 =

(
3

1

σ
0

)



q̂1

q̂2

q̂3




= Ĉq̂. (C.21)

We consider the following form of linear feedback v,

v = −
(
k1 k2 k3

)



q̂1

q̂2

q̂3




+ krr

= −K̂q̂ + krr,

(C.22)

where the feedback gain K̂ = (k1, k2, k3) determines the stability and performance of the controller, and we

seek to control the observable O to match the reference value r. The constant kr will be determined so that

lim
t→∞

O = r. With (C.22), the transformed Lorenz equation (C.20) is

dq̂

dt
= (Â− B̂K̂)q̂ + krrB̂, (C.23)

and is stable if all eigenvalues of Â− B̂K̂ are negative. Its characteristic equation is

det(sI− Â + B̂K̂) = s3 + k3s
2 + k2s+ k1 = 0, (C.24)

Therefore the eigenvalues of Â − B̂K̂ can be arbitrarily designed by the feedback gain K̂. In other words,

163



0 2 4 6 8 10 12 14 16 18 20

−40

−20

0

20

Time t

I,
O

I(t) (12.4)
O(t) (12.2)

−15 −10 −5 0 5 10 15 −20

0

20

0

50

100

x0

U1
U2

S

x
y

z

−4,000

−2,000

0

2,000

f
(t
)

(a) (b)

Figure C.1: Nonlinear feedback control of the Lorenz system (10.1). (a) The instantaneous objective func-
tional (12.4), and the observable (12.2) in time. (b) The feedback-controlled trajectory colored with the
actuation magnitude.

the system is stabilizable. We consider somewhat strongly negative eigenvalues of s1 = −10, s2 = −20, and

s3 = −30 for a fast reaction of control. The corresponding feedback gain is then

K̂ =

(
6000 1100 60

)
. (C.25)

The steady-state of this control system can be obtained from (C.23) with dq̂/dt = 0,

q̂ss = −krr(Â− B̂K̂)−1B̂, (C.26)

where we target its observable to match the reference value r,

Oss = Ĉq̂ss = −krrĈ(Â− B̂K̂)−1B̂ = r, (C.27)

which determines kr to be

kr = − 1

Ĉ(Â− B̂K̂)−1B̂
, (C.28)

the same as the inverse of zero-frequency gain of the feedback controller. (C.25) and (C.28) complete the

design of v (C.22), which can control the observable O (C.21) to any arbitrary value r. The original control

u then can be deduced from (C.19) together with (C.17) and (C.22),

u =
1

σx

{
−v + σ2(y − x)(σ + ρ− z)− σ(σ + 1){x(ρ− z)− y} − σ2z(y − x)− σx(xy − βz)

}
. (C.29)

164



While the designed control can drive O to any value, we only need to keep O < 0 to minimize the objective

functional J (12.3). This indicates that the control u needs not be activated at all times. Furthermore, the

numerator of u (C.29) shows that u is ill-defined near σx = 0. While this is consistent with the controllability

condition shown from (C.13), we simply do not have to activate the control when the state is near x = 0.

Therefore, we augment the control u (C.29) with a smooth switch function,

W (q) =

(
1 +

1

2
tanhσ(x− 0.3)− 1

2
tanhσ(x+ 0.3)

)(
1

2
+

1

2
tanh(2x+ y + 5)

)
, (C.30)

which becomes zero when |x| < 0.3 or O < −5. This completes the design for the nonlinear feedback

controller f(t) = W (q)u for the Lorenz equation (10.1). Figure C.1 shows the numerical result of applying

the designed feedback control, with the reference value r = −10.
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Appendix D

An illustration for the decreasing
utility of gradient in chaos

We first illustrate how the non-convexity of J , observed in Section 12.1.4, impacts the utility of gradient.

We consider four model objective functionals Jk for k = 1, 2, 3, 4,

Jk(θ) = sin
(
Gkθ −

π

6

)
, (D.1)

with Gk = −1.1× 10k−1. Figure D.1 (a) shows these increasingly non-convex Jk. This mimicks a typical J

of chaotic dynamical systems, with larger k representing longer time for gradient amplification. The gradient

and Hessian increases with k,

∂J
∂θ

=

√
3

2
Gk

∂2J
∂θ2

=
1

2
G2
k, (D.2)

and their ratio also increases exponentially with k. Figure D.1 (b) shows ε[∆θ] (12.6), where the O[∆θ]

asymptotes shift toward smaller ∆θ with larger k, as for the Lorenz example in Figure 12.5 (a).

On the other hand, these Jk are qualitatively different from the Lorenz example in Figure 12.5, in that

the minimum errors remain the same. The increasing minimum error shown in Figure 12.5 is not a typical

behavior of a finite-difference as in Figure D.1 (b), which suggests an additional impact of chaos. We consider

round-off errors from its arithmetic operations of the finite-difference (12.5),

∆J
∆Θ

∣∣∣∣
ε1

=
J [q; Θ0 + ∆Θeθ]− J [q; Θ0]

∆Θ
+O

( εr
∆Θ

)
, (D.3)

with εr the error in the difference in the numerator due to finite precision. While this error term is associated

with any finite difference including Jk (D.1), J of chaotic dynamical systems involves another round-off error,

as J is evaluated over many numerical time steps. Each time step involves many arithmetic operations,

which induce round-off errors independent of ∆Θ. This also amplifies state deviation δq. This can be
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Figure D.1: (a) Model objective functionals Jk (D.1). (b) Relative error (12.6) for the gradient ∂Jk

∂θ of the
model objective functionals.
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Figure D.2: Relative error (12.6) for the gradient ∂Jk

∂θ of the model objective functionals Jk (D.1), with
the modified finite-difference (D.4). The relative errors from Figure D.1 (b) are plotted with light colors for
comparison.
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modeled as a random fluctuation in the parameter variation, so

∆J
∆Θ

∣∣∣∣
ε2

=
J [q; Θ0 + ∆Θeθ + ε′rξ]− J [q; Θ0]

∆Θ
+O

( εr
∆Θ

)

=
J [q; Θ0 + ∆Θeθ]− J [q; Θ0]

∆Θ
+O

( εr
∆Θ

)
+O

(∥∥∥∥
∂J
∂Θ

∥∥∥∥
ε′r

∆Θ

)
,

(D.4)

where ξ is a random unit vector in T. The last term in (D.4) shows the finite-precision error ε′ amplified

by the chaotic gradient. To model this error amplification for Jk (D.1), we evaluated the modified finite-

difference in (D.4), with a random fluctuation εrξ added in J [q; Θ0 + ∆Θeθ + εrξ]. Figure D.2 shows ε[∆θ]

of the modified finite-differences, which exhibits the same behavior as the Lorenz example in Figure 12.5 (a).

Figure D.2 completes the picture of how chaos impacts the utility of gradients: the increasing non-convexity

of J makes the gradient accurate over a diminishing range of ∆Θ; J evaluation over many time steps

amplifies the finite-precision errors, increasing the minimum error of the gradient. These two factors inhibit

the utility of the gradient for representing a useful J variation.
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Appendix E

The metric entropy for a chaotic
dynamical system

Although we do not compute it directly, the concept of entropy measures underlies some of our discussions

about increasing non-convexity and the tφ time scale. We therefore introduce it in some detail in this

appendix. We start with a question for the logistics example in Section 12.2.2: for a given value qn = q at

step n, what is its initial condition at q0? From Figure 12.6, it is obvious that due to the folding motion

there are two candidate qn−1. The number of candidate q0 increases as 2n with the number of horseshoe

mappings. If all candidates q0 have the equal probability, then Pn = 1
2n . This uncertainty can be quantified

by Shannon’s information entropy [159],

H[Pn] = −E [logPn] = −
2n∑

k=1

1

2n
log

(
1

2n

)
= n log 2, (E.1)

which growth rate 1
nH[Pn] = log 2 is positive. This concept defines the entropy growth of a chaotic dynamical

system, which is introduced as metric entropy by Kolmogorov and Sinai [116, 117].

To formally introduce the metric entropy, we consider the discrete mapping (12.10) to be operated on a

distribution (or set) of the states A ⊂ Q,

q(A) ≡ {qn+1 ∈ Q|qn+1 = q(qn, T ) for ∀qn ∈ A}, (E.2)

and its pre-image

q−1(A) ≡ {qn ∈ Q|qn+1 = q(qn, T ) for ∀qn+1 ∈ A}. (E.3)

In the example above A = {q}, and its successive pre-images q−n(A) are the candidates for its initial

condition.

In the example above, the probability of the initial condition was assumed to be uniform over all can-

didates. However, the probability of each candidate can be more completely formulated, based on ergodic

theory [160]. We assume that the state space Q is a complete probability space with the probability measure

P, and the mapping (E.2) is a measure-preserving transformation [160, Chap 2]. We consider a set Q ⊂ Q
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that is invariant under the discrete mapping (E.2),

Q = q(Q). (E.4)

Note that for any subset A ⊂ Q, both its map and pre-image are subsets as well, i.e. q(A),q−1(A) ⊂ Q. Thus

if the probability P in this ergodic distribution Q is known, then the probabilities of the initial condition

candidates can be evaluated.

For A = {q}, the pre-image q−n(A) include all the candidates for qn = q. We want to discern each

candidate and evaluate its probability respectively. This can be done systematically by partitioning Q with

a finite partition ξ = {C1, C2, · · · , Cp}, such that

Ci ∩ Cj = ∅ ∀i 6= j

p⋃

i=1

Ci = Q.
(E.5)

An intersection of pre-images of this partition can sort initial conditions according to their trajectories. For

example, an intersection

Ci1 ∩ q−1(Ci2) ∩ · · · ∩ qn−1(Cin) ∩ q−n(A), (E.6)

indicates initial conditions q0 ∈ Ci1 that pass through q1 ∈ Ci2, · · · , qn−1 ∈ Cin successively and arrive

in qn ∈ A. Its probability can be denoted as P
(
Ci1 ∩ q−1(Ci2) ∩ · · · ∩ qn−1(Cin) ∩ q−n(A)

)
. Likewise, all

the initial condition candidates can be sorted out by using different combinations of Ci1, Ci2, · · · , Cin. We

generalize the Shannon’s entropy (E.1) using the partition ξ,

Hn[q, ξ] = −
∑

i0,i1,··· ,in
P
(

n⋂

k=0

q−k(Cik)

)
logP

(
n⋂

k=0

q−k(Cik)

)
, (E.7)

which increases with n and requires a finer partition. The metric entropy is defined as its maximum growth

rate over all finite partitions [116, 117],

h[q] = sup
ξ

lim
n→∞

1

n
Hn[q, ξ]. (E.8)

While it is clear that the positive entropy is related with the non-convexity of J via the folding of

horseshoe mapping, direct evaluation of (E.8) for a turbulent flow simulation is infeasible. It requires the

ergodic distribution of all turbulent flow states and its probabilistic distribution. Furthermore, one needs to
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come up with a partition that maximizes the entropy. This is very complex tasks even for one-dimensional

maps [161], and so it does not seem possible for turbulence.

Many practical estimations of the metric entropy uses its relation with the Lyapunov exponents λk (??).

It is shown that the metric entropy is upper-bounded by the sum of positive λk [162],

h[q] ≤
∑

λk>0

λk, (E.9)

and furthermore the equality holds true for Hamiltonian dynamics [163] and dissipative dynamical systems

that are uniformly hyperbolic [162]. Its connection to turbulent flows is supported by a chaotic hypothesis [8,

154, 155], an assumption that sufficiently large systems may behave hyperbolically. Berera et al. [164]

computed the metric entropy of two-dimensional turbulence based on the equality in (E.9) and studied

its scaling behavior with Reynolds number and other invariants. This is also studied for three-dimensional

isotropic turbulence with the same numerical approach [165]. In their study, Lyapunov spectra are computed

with the method proposed by Benettin et al. [166], for which computational cost scales as O(M2) for M

Lyapunov exponents. The number of positive λk are theoretically estimated for turbulent flows as power

laws of Reynolds number [167–169], and this has been numerically confirmed by Berera and Clark [165].

They found that turbulent flows with Re ≤ 212 have at most 3000 positive Lyapunov exponents. The

O(M2) scaling of the cost to compute M Lyapunov exponents is the main bottleneck for directly computing

the entropy of turbulent flows at higher Reynolds numbers. There are additional definitions of entropy for

chaotic dynamical systems, though all are expected to be similarly expensive [114].

More salient to our purposes, the probabilistic viewpoint of the entropy is not a direct description of

the impact of chaos on optimization. The rate the uncertainty is produced, or how a system becomes less

predictable in time, only indirectly quantifies the non-convexity of J . For example, it is more important

how quickly the typical size of neighborhood for a local minimum, as in Definition 11.1, decreases in time.

Additional quantities, which might better describe the complexity for purposes of optimization, such as

fractal dimensions [114, 118–120], are similarly difficult to evaluate. They too require multiple Lyapunov

exponents [164, 165, 170]. Furthermore, while fractal dimensions may characterize non-convexity, they lack

the notion of the rate of change in time. They are only applied to the invariant sets, such as the ergodic

distribution Q introduced above, which are only valid for t → ∞. This is crucial for our study, since the

optimization time period is finite and limited by how fast J becomes non-convex.
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[105] M. Koenig, Réduction de bruit de jet par injection fluidique en corps central tournant, Ph.D. thesis,
Poitiers (2011).

[106] J. B. Freund, T. Colonius, Turbulence and Sound-Field POD Analysis of a Turbulent Jet, International
Journal of Aeroacoustics 8 (4) (2009) 337–354. doi:10.1260/147547209787548903.

[107] C. W. Rowley, S. T. M. Dawson, Model Reduction for Flow Analysis and Control, Annual Review of
Fluid Mechanics 49 (2017) 387–417. doi:10.1146/annurev-fluid-010816-060042.

[108] L. Magri, M. P. Juniper, Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-
based approach, Journal of Fluid Mechanics 719 (2013) 183–202. arXiv:1303.4267, doi:10.1017/
jfm.2012.639.

[109] M. P. Juniper, R. I. Sujith, Sensitivity and Nonlinearity of Thermoacoustic Oscillations, Annual Review
of Fluid Mechanics 50 (2018) 661–689. doi:10.1146/annurev-fluid-122316-045125.

[110] V. Nair, G. Thampi, S. Karuppusamy, S. Gopalan, R. I. Sujith, Loss of chaos in combustion noise
as a precursor of impending combustion instability, International Journal of Spray and Combustion
Dynamics 5 (4) (2013) 273–290. doi:10.1260/1756-8277.5.4.273.

[111] V. Nair, G. Thampi, R. I. Sujith, Intermittency route to thermoacoustic instability in turbulent com-
bustors, Journal of Fluid Mechanics 756 (2014) 470–487. doi:10.1017/jfm.2014.468.

[112] J. Tony, E. A. Gopalakrishnan, E. Sreelekha, R. I. Sujith, Detecting deterministic nature of pressure
measurements from a turbulent combustor, Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics 92 (6) (2015) 1–11. doi:10.1103/PhysRevE.92.062902.

[113] V. R. Unni, R. I. Sujith, Multifractal characteristics of combustor dynamics close to lean blowout,
Journal of Fluid Mechanics 784 (2015) 30–50. doi:10.1017/jfm.2015.567.

[114] E. Ott, Chaos in Dynamical Systems, 2002. doi:10.1017/CBO9781107415324.004.

177

http://dx.doi.org/10.1017/S0022112076002176
http://www.annualreviews.org/doi/10.1146/annurev-fluid-011212-140756
http://dx.doi.org/10.1146/annurev-fluid-011212-140756
http://www.annualreviews.org/doi/10.1146/annurev-fluid-011212-140756
http://dx.doi.org/10.1017/jfm.2011.401
http://dx.doi.org/10.1017/jfm.2013.346
http://dx.doi.org/10.2514/1.6150
http://dx.doi.org/10.2514/1.17720
http://dx.doi.org/10.2514/6.2007-3599
http://dx.doi.org/10.2514/6.2007-3599
http://dx.doi.org/10.1260/147547209787548903
http://dx.doi.org/10.1146/annurev-fluid-010816-060042
http://arxiv.org/abs/1303.4267
http://dx.doi.org/10.1017/jfm.2012.639
http://dx.doi.org/10.1017/jfm.2012.639
http://dx.doi.org/10.1146/annurev-fluid-122316-045125
http://dx.doi.org/10.1260/1756-8277.5.4.273
http://dx.doi.org/10.1017/jfm.2014.468
http://dx.doi.org/10.1103/PhysRevE.92.062902
http://dx.doi.org/10.1017/jfm.2015.567
http://dx.doi.org/10.1017/CBO9781107415324.004
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