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ABSTRACT

Quantitative state-based models can help those responsible for designing, maintaining, or

insuring cyber systems make informed decisions. However, there are a number of difficulties

that discourage the use of quantitative cybersecurity models in practice. We identify four

significant challenges to quantitative security modeling, (1) cybersecurity models are difficult

to build by hand, particularly for system architects that are not experts in cybersecurity,

(2) it is challenging to model the complex interplay between the cyber system and the many

human entities that interact with it with current modeling formalisms, (3) the uncertainty

that comes from the model’s input variables should be managed and explored with sensitivity

analysis (SA) and uncertainty quantification (UQ), but many models run too slowly to

complete traditional SA and UQ analyses, and (4) there is a lack of appropriate frameworks,

guidance on metrics, and advice on common modeling issues with regards to quantitative

cybersecurity models.

In this dissertation, we address each of the four challenges. To address the first challenge,

we present an ontology-assisted automatic cybersecurity model generation approach that

modelers can use to make cybersecurity models quickly and easily. Using this approach, a

system architect would first create a system diagram of the components of the system and

their relationships to one another. Then, a model generation algorithm would convert the

system diagram (with the aid of an ontology) into a sophisticated cybersecurity model that

can be executed to obtain metrics. We implemented the tool in Möbius and demonstrated

its use with an AMI test case. To address the second challenge, we designed a new agent-

based modeling formalism called GAMES that allows the modeler to explicitly model the

system and all of the human entities that interact with the system in a modular and intu-

itive fashion, and show its strengths with a worked example. To address the third challenge,

we proposed an indirect stacking-based metamodeling approach. Using the metamodeling

approach, we are able to accomplish sensitivity analysis and uncertainty quantification hun-

dreds to thousands of times faster than traditional approaches and with better accuracy than

current metamodel approaches. We demonstrate the approach’s efficacy with eight worked
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examples. Finally, to address the fourth challenge, we present a high-level framework to

guide the modeling process, give guidance on what metrics to calculate and how to calculate

them, and share advice on common issues with cybersecurity modeling.

The theoretical and practical contributions presented in this dissertation will help make

quantitative cybersecurity modeling easier to use and more useful, which will, in turn, help

protect society’s most critical and valuable infrastructure from cyber threats.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Modern societies rely on functioning cyber systems, and will likely grow more reliant on

them in the future. Every field of modern society has been touched by cyber systems, in-

cluding education, communication, health care, industry, critical infrastructure, and defense.

There is every reason to believe that cyber systems, from the largest cloud to the tiniest

IoT device, will continue to improve and become better integrated in different facets of our

modern life. These systems are incredibly valuable and will only become more valuable

in the future. Their value makes them attractive targets to a variety of malicious actors,

from skilled teams of hackers from huge nation states to small terrorist cells to individual

disgruntled employees.

There are many examples that highlight both the importance of cyber infrastructure and

its vulnerability. In 2015 a cyber attack on Ukraine’s electric grid disrupted power for over

two hundred thousand residents [7], the successful hack and exfiltration of emails belonging

to the U.S. Democratic National Committee influenced the contentious U.S. Presidential race

of 2016 [8], the Stuxnet worm delayed Iran’s nuclear program [9], the 2017 Equifax breach

led to the loss of private and very sensitive data for over one hundred forty million people

[10], the Mirai botnet compromised hundreds of thousands of IoT devices and used them to

launch distributed denial of service attacks that caused widespread disruptions, making it

difficult to access popular sites such as Amazon, Netflix, and Twitter, among others [11], and

the SolarWinds hack compromised the U.S. Department of Energy (responsible for managing

the U.S. nuclear weapons program), the Pentagon, the U.S. Cybersecurity and Infrastructure

Security Agency, and major U.S. companies such as Microsoft, Intel, and Cisco [12]. Many

other cyber incidents are not as widely reported but still cumulatively have a significant

societal and economic impact. Overall, the U.S. government’s Council of Economic Advisors

estimates that the United States lost between $57 billion and $109 billion due to malicious

cyber activity in 2016 alone [13]. As a consequence, cyber systems should be designed,

maintained, and insured with security in mind.
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1.2 WHY DO QUANTITATIVE SECURITY MODELING?

Modeling can be difficult, time consuming, and expensive. One may question why quan-

titative modeling should be done in the cybersecurity domain. We identify three major uses

cases: designing systems that are secure, maintaining systems so they stay secure, and de-

termining how to insure systems to effectively manage risks. We shall consider each of these

three use cases in turn. In this dissertation, we focus mainly on the design use case, though

most of the methods, techniques, and arguments can be applied in a straightforward manner

to the other two use cases.

1.2.1 Quantitative Modeling for Designing Secure Cyber Systems

Quantitative models can assist a system architect in making good design decisions. Every

time the architect is faced with a choice when designing a system, the choice implicitly

contains multiple design options: one design for each unique combination of options that

could be chosen for the system. To determine the best choice (or, at least, a satisfactory

choice) the system architect must consider a set of the possible designs and either rank them

by some criteria, or determine whether they will satisfy some minimum efficacy threshold.

When considering a particular design, the system architect always first creates a model and

then examines it in an attempt to forecast how the particular design may function in the

future if a real-world system is constructed using the design. The model could be an informal

mental model, or a more formal model. The forecast obtained from the model must consist of

information that supports the ranking of the design choices or the determination of whether

it surpasses the minimum efficacy threshold, so that an appropriate selection may be made.

An informal mental model may be enough for a sophisticated system architect to make

many decisions (particularly if the system is simple and small), but there are many drawbacks

to relying exclusively on mental models. First, as the systems become larger, more hetero-

geneous, more tightly interconnected, and more complicated, it often becomes increasingly

difficult to create and maintain a sufficiently accurate mental model. In addition, these large,

complicated systems are usually more expensive to build and more valuable than smaller,

simpler systems. It is therefore often the case that the negative consequences of forming an
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inadequate mental model grows with the difficulty of forming an adequate mental model.

Creating formal, documented, falsifiable models also moves the field towards the Science

of Security paradigm, and all the benefits that the scientific method can provide [14]. A

formal quantitative model much more easily facilitates collaboration among subject matter

experts than informal mental models contained in the mind of a coordinator or manager. For

these and other reasons it is advisable for the system architect to pursue formal quantitative

cybersecurity modeling as a design aid.

1.2.2 Maintaining Secure Systems

Cyber infrastructure is under the constant threat of attack after it is constructed. Sys-

tem operators must be prepared to handle very frequent and ongoing attacks. Adversaries

constantly probe the system defenses, looking for a weak link. Often adversaries make their

way into the system, and the operators/defenders of the system must try to get the system

to fulfill its mission objectives despite the presence of the adversary in the system (as in the

case of advanced persistent threats, commonly abbreviated as APTs).

The operators/defenders of the system must make complex decisions very quickly when

the system is under attack. It can be difficult to wargame different scenarios and understand

the consequences of different possible actions in this stressful environment. Prebuilt quanti-

tative models can help defenders make better decisions regarding defensive actions quickly.

Such models can also help to record the knowledge of the primary system architects and de-

fenders, so if they leave the company or are transfered to a different project, or are otherwise

unreachable during an attack, others may use the models that codify their knowledge as a

decision aid to help them develop appropriate responses while under attack.

1.2.3 Insurance

A major cyber breach can be financially devastating to a company. Depending on the

circumstances, a company can lose revenue if the availability or integrity of their systems

is compromised, and may face fines from regulatory agencies. A successful cyber attack

can also negatively impact the reputation of the company, making it less likely that people
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will do business with the company in the future. The probability of an individual company

suffering a major successful cyber attack is relatively small, but the consequences are large.

Companies are increasingly turning to cyber security insurance to help them manage cyber

risk [16] [17]. The cyber insurance market generates $5 billion dollars of premiums per year,

and is expected to continue to grow in the future [18].

Cyber security insurers need to form a quantitative model of the company to determine

an appropriate premium. The goal of the for-profit insurance company is to ensure that the

premium is greater than the customer’s expected insured loss. If the premium is higher than

that threshold the insurance company can expect to make a profit, otherwise, the insurance

company will lose money. The argument makes clear the need for insurance companies to

make good estimates of the expected loss of the company. It is reasonable to assume that

an insurance company that understands the client, the cyber threats the client faces (e.g.

the vulnerabilities in the system along with the potential adversaries, their motivations, and

capabilities), and the defenses of the client’s cyber infrastructure, and how these interact,

will be able to offer better premiums than their competitors (either by offering a lesser

premium to win the client from competitors, or by refusing to offer a premium that will

likely be unprofitable that they otherwise would have offered). Formal quantitative modeling

could give a competitive edge to cyber security insurance companies. Of course, potential

clients of cyber security insurance companies also need to form some sort of quantitative risk

assessment model to determine whether they should obtain the insurance given a particular

premium. Both buyers and sellers of insurance could benefit from quantitative cybersecurity

modeling.

1.3 OVERVIEW: PRINCIPLES, CHALLENGES, CONTRIBUTIONS

Many now recognize that security must be a design consideration from the beginning

of the design process. There was once a tendency to design cyber systems in such a way

that their performance would be maximized in an environment free of adversaries, and

then “security” would be added at the end of the design process, or once the system was

already built. However, adding “security” so late often resulted in a poor fit that left
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the system insecure or needlessly compromised the system’s performance. Instead, system

architects should use models, like the Computer Aided Design (CAD) programs used in other

engineering disciplines, to design secure systems. Though system architects may desire to use

models to help them incorporate security considerations into the design process, in practice

it appears that system architects tend to rely on experience, intuition, and tradition instead.

We believe system architects are faced with a number of challenges that make modeling

cyber system security a particularly onerous task compared to other disciplines that use

quantitative modeling.

We believe that cyber security modeling must satisfy four requirements to be widely

adopted.

1. It should be usable without special modeling expertise.

2. It should model the correct things.

3. It should be able to validate the model results.

4. It should follow appropriate frameworks, be guided by a sensible philosophy of metrics,

and be aided by advice on overcoming common modeling issues.

Cybersecurity modeling is unlikely to become popular and widely used if it cannot satisfy

these four requirements. Each of the four requirements, however, is paired with a correspond-

ing challenge that, if left unresolved, reduces the practicality of cyber security modeling and

discourages its use.

1. The first challenge is to construct cybersecurity models despite the fact that most

cybersecurity domain experts are not expert modelers. Currently, many security mod-

eling formalisms require a near-expert understanding of some combination of game

theory, probability (to understand the assumptions and results), understanding of his-

torical cyber attacks, the ability to forecast future cyber attacks and attackers, and

general modeling principles, in addition to a deep understanding of the intended work-

ings of the system to be modeled. It is uncommon for system architects to have such

a deep understanding in these disparate fields.
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2. The second challenge is to correctly model the complex interplay between the cyber sys-

tem and the humans that interact with it. Most current security modeling formalisms

only consider the adversary’s perspective, or model scenarios as a game between the

adversary and the defender. In reality, however, things are not so simple. Often other

human parties have a huge influence on the security of the system. These parties in-

clude customers, third-party vendors, users, law enforcement, the media, and others.

How should all of these disparate entities be modeled?

3. The third challenge is model validation given given uncertain input variables and long

model execution times which make traditional sensitivity analysis and uncertainty

quantification techniques unfeasible in many cases. It is clear to anyone who has

tried to do cybersecurity modeling that there is often significant uncertainty about the

values of a number of the input variables. Many factors contribute to this uncertainty,

including a lack of knowledge of the identity, motivations, and abilities of potential

attackers, and an incomplete understanding of how the intricate cyber system will

actually behave and evolve over time in real-world conditions. The traditional way

to help explore and manage this uncertainty is through sensitivity analysis (SA) and

uncertainty quantification (UQ). However, traditional SA and UQ techniques require

running the model many times, which is often unfeasible due to long model run times.

How should modelers overcome this issue?

4. The fourth challenge is the lack of helpful modeling frameworks, guidance regarding

appropriate security metrics, and advice on handling common modeling problems.

These, of course, are not the only challenges to cybersecurity modeling, but we believe

that they are among the most pressing. Our contributions address each of the four challenges

to the four requirements enumerated above. Taken together, our contributions point a clear

path towards an end-to-end approach to cybersecurity modeling that is (1) relatively easy

for those without modeling expertise to accomplish, (2) models humans appropriately, (3)

produces results that can be validated and explored, and (4) follows appropriate frameworks,

guidance regarding metrics, and is aided by advice on common modeling issues. The following

summarize the contributions we have made to addressing the challenges.
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1. To address the first challenge, we present a novel ontology-driven method to automat-

ically generate complex security models from relatively simple system diagrams that

can be easily constructed by system architects.

2. To address the second challenge, we developed the novel GAMES modeling formalism,

which allows modelers to intuitively model all of the human agents in the cyber system,

whether adversaries, defenders, users, third-party vendors, customers, or others. The

formalism uses composable submodels for each agent which can then be unified into a

comprehensive executable simulation model.

3. To address the third challenge, we created a novel metamodel-based approach to do

sensitivity analysis (SA) and uncertainty quantification (UQ) indirectly. While the

idea of using metamodels to indirectly perform SA and UQ is not new, it had not

been applied to cybersecurity models before, and the ML process we used (called

stacking) has, to the best of our knowledge, never been applied to the construction

of metamodels before. Using the metamodel approach, we can perform SA and UQ

thousands of times faster than using traditional methods, and with more accuracy than

other metamodeling approaches.

4. To address the fourth challenge, we developed a high-level framework to guide the

modeling process, give guidance on the philosophy, purpose, definition, and creation

of cybersecurity metrics, and give advice on common cybersecurity modeling issues.

1.4 DISSERTATION ORGANIZATION

The following four chapters cover the contributions to addressing the four challenges, re-

spectively. In Chapter 2, we explain our approach to ontology-assisted automatic model

generation from high level system diagrams that dramatically reduces the modeling burden

away from system architects. In Chapter 3, we define the GAMES agent-based modeling

formalism, which allows for construction of modular agent submodels that can be composed

to study the complex interactions of the various human entities (adversaries, defenders, cus-

tomers, regulatory and law enforcement agencies, etc.) with one another and the cyber
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system under investigation. We demonstrate its practicality with a worked example. In

Chapter 4, we show how an indirect stacking-based metamodel approach can help a mod-

eler perform sensitivity analysis and uncertainty quantification on complex slow-running

cybersecurity models much faster than is possible with traditional direct methods, and with

greater accuracy than other indirect metamodeling methods. We show the effectiveness of

the approach by analyzing two cybersecurity models as test cases (and further show the

generalizability of the approach with an analysis of 6 other quantitative models). Chapter

5 contains a framework we have developed to help guide modelers through the modeling

process, a discussion on metrics, including an argument for utility as the key cybersecurity

metric, and advice on common modeling issues. We conclude in Chapter 6 with a discussion

on how to continue pushing the field of cybersecurity modeling forward.
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CHAPTER 2: AUTOMATIC ONOTOLOGY-AIDED MODEL GENERATION

2.1 INTRODUCTION

Architects of new cyber-physical infrastructure must make many decisions when designing

a system that will impact its overall security. There are two major approaches for evaluating

the impact of different design choices on system security: (1) consultation with security

experts, and (2) construction and analysis of rigorous security models.

The two approaches may be used jointly and complement one another, though both suffer

limitations. Security experts may make assumptions that are not explicit, and thus their

decisions are not easily auditable; further, experts often rely on experience and intuition to

make decisions, rather than on rigorous scientific approaches. From a practical perspective,

there is also a significant shortage in the number of qualified security experts, with some

estimating that more than 200,000 cybersecurity-related positions are unfilled [19]. On

the other hand, security models make assumptions explicit and are easily auditable and

scientifically rigorous, but they are also difficult and time-consuming to construct, especially

for domain experts who do not have a background in modeling or security.

We propose a novel approach that allows those with almost no security modeling back-

ground to construct simple and intuitive system models that may be used to automatically

generate relevant, rigorous security models to support the evaluation of a system. Follow-

ing this approach, a user would (1) use a tool with an intuitive graphical user interface to

develop a system model, (2) select the types of adversaries that should be considered in the

analysis, and (3) choose the metrics the security model should compute. Next, the complete

user-defined model would be given to a model generator, which would leverage a predefined

ontology to construct a relevant ADversary VIew Security Evaluation (ADVISE) model [20].

The security model would then be executed to calculate the metrics, and the results would

be presented to the user to aid in the evaluation of designs. We have implemented this

approach in the Möbius tool [21].

We explain the approach through a case study of a hypothetical utility that has an Ad-

vanced Metering Infrastructure (AMI) deployment and seeks to select the most cost-effective
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intrusion detection system (IDS) approach for monitoring and defense. An AMI is a cyber-

enhanced power grid that gives a utility a more fine-grained ability to observe its network, and

more remote control over the network components. Different IDS deployment approaches,

including both centralized and distributed ones, may be used to defend an AMI. We show

how a system architect can easily and automatically create security models to calculate

security estimates to be used to inform the design choices among the IDS options.

2.2 APPROACH

We present a novel approach to automatically generate security models from system mod-

els, which we have implemented in the Möbius modeling tool. At a high level, a modeler

will use component types defined in an ontology to construct a simple system model, choose

adversaries of concern, and select security metrics to be calculated. The user-defined system

model is used as input to the model generation algorithm. This algorithm relies on the ontol-

ogy to provide mappings between system model elements and security model elements. The

algorithm will output a security model, which may be executed to obtain the user-defined

security metrics.

Our approach for automatically generating security models is novel, though the concept

has been considered previously. Groundbreaking work in this area was presented in [22],

though that approach was found to scale poorly. An approach for scalable security model

generation is given in [23], but it is intended for analysis of existing systems and does not

support analysis of systems in the design stage, in contrast to the approach described in this

chapter. The approach shown in [24] is perhaps closest to our method, though that method

does not use an ontology and it is not immediately clear how it could be extended to support

state-based security models, like ADVISE.

2.2.1 Ontology

The ontology is the key to the model generation approach. All of the component types and

relationships between them, in both the system model and the security model, are drawn

from the ontology.
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Figure 2.1: An end-to-end illustration of the approach to calculating security metrics from
security models automatically generated from an ontology and a hand-built system model.

Formally, the ontology can be defined as the tuple < C,R, F,M, I, A, S >, where:

• C is the set of all possible system model component types.

• R is the set of all possible pairwise relationships, r(Cd, Cr), from components of types

from Cd to components of types from Cr, with Cd, Cr ⊂ C.

• F is the set of security model fragments, fragmentx ∈ F . Since the generated se-

curity models conform to the ADVISE formalism, the model fragments may include

attacks along with access, knowledge, skill, and system state variables, and the pre-

condition/effect relationships between them. For more on ADVISE, see Section 2.2.4.

• M is the set of mappings that can be made based on a component’s type to infer a

security model fragment, m(cu, fragmentx) ∈ M . For example, if there is a physical

device in the system and the adversary gains physical access to it, he or she may try

to damage it. This is expressed as

fragment1 = {pAttck, pAccss, dmg, precond(pAttck, pAccss), effect(pAttck, dmg)}

∈ F ,

physicalDevice ∈ C and m(physicalDevice, fragment1).

• I is the inheritance relationship between cu, cv ∈ C. If i(cu, cv) ∈ I, then we say that

component type cu inherits from cv, i.e., cu is a specialized type of cv. For example, if

the smartmeter component type inherits from themeter type, i(smartmeter,meter) ∈
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I. Inheritance is transitive and multiple inheritance is supported. Attributes and

mappings are inherited.

• A is the set of all adversary profiles.

• S is the set of security metrics to be calculated.

The ontology should be constructed by experts who have experience with the system

domain, modeling, and security; the typical user will not have to learn the details of the

ontology or modify it. Once defined, the ontology may be used to construct models of many

different systems and system configurations.

2.2.2 General System Model

To begin, a user builds a model of the system using a graphical user interface tool. The

model resembles a UML-style diagram. The user drags and drops predefined system compo-

nent types from a menu onto a canvas to define instances of the component type, and then

forms connections between the components to describe the relationships between the com-

ponents. Smart meters, DCUs, servers, and networks are examples of components, while

NetworkConnection is an example of a relationship. Components can contain attributes,

which may be editable by the user. At this stage, the user also selects the types of adver-

saries of concern, and customizes the base adversary profiles. Finally, the user selects the

security metrics of interest that should be calculated by the security model (e.g., damage to

the system as the result of an attack, or the probability of detecting the adversary).

2.2.3 Generator

The purpose of the generator is to construct a security model, which may be executed

to calculate security-relevant metrics from the user-defined system model along with the

corresponding ontology. At its core, the generation algorithm is simple. First, the type of

each instance defined in the system model is determined, and then the mapping function is

applied to find the corresponding security model fragments.

12



Figure 2.2: An illustration of system diagram components and their corresponding security
model fragments.

Next, once found, the security model fragments are stitched together to form a whole,

and the model elements are pruned if doing so does not affect the results obtained by ex-

ecuting the model. During fragment stitching, each state variable in a model fragment is

compared to state variables in other fragments. If it is found that the state variables are

equivalent, they may be combined, joining the fragments. As an example, consider two

fragments, f1 and f2. Now, f1 consists of an attack InstallWirelessJammerOnNAN1 that

has an effect on a state variable called WirelessJammerAccessOnNAN1, while f2 con-

sists of an attack JamWirelessSignalOnNAN1 with a precondition state variable called

WirelessJammerAccessOnNAN1. Both fragments contain that state variable, and so may

be linked together to form an attack chain that expresses the idea that a wireless jammer

must be installed before a wireless jamming attack can be accomplished. Similarly, security

model elements (i.e., attack steps and state variables) may be pruned without affecting the

model execution results if a path from the fragment to a goal does not exist. The pruning

step can substantially reduce the computation needed to automatically generate the model.

Future work should investigate other opportunities for pruning.
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2.2.4 Security Model

We developed the generator and ontologies to support the creation of ADVISE security

models, though in theory it should be possible to use this approach to generate security

models in other modeling formalisms.

Each model in ADVISE consists of an Attack Execution Graph (AEG) and an adversary

profile, which together form one atomic submodel in Möbius. The full resulting model may

then be executed to obtain the security results. The formalism is explained briefly here; for

more details, consult [25].

Formally, an AEG is defined by the tuple < A,S,C >, where A is a set of attack steps, S

is a set of state variables, and the relation C defines the set of directed connecting arcs from

p ∈ S to a ∈ A, and from a ∈ A to e ∈ S, where p and e are precondition and effect state

variables, respectively.

An attack step a ∈ A is defined by the tuple < B, T, P,O >, where B is a Boolean

precondition that must be satisfied before the adversary may attempt the attack, T is the

time to complete an attack, P is the cost the adversary incurs for attempting the attack,

and O is the set of outcomes that may occur if the attack is attempted. Each outcome has

a probability of occurrence, and, if selected, a specified effect on the system state.

The attacker model describes the initial state of the attack execution graph (the starting

value of every state variable), as well as some further adversary characteristics, such as

the payoff the adversary receives for achieving a goal, the cost the adversary incurs if it is

detected, and the adversary’s ability to forecast the future (modeled by defining an upper

limit on the longest chain of attack steps the adversary may consider when forming attack

plans).

The model is executed once the AEG and adversary profile have been defined. During

model execution, the adversary first uses a competitive Markov decision process to select the

optimal attack, given the system state, that will maximize the accumulated net profit (as

described in [26]); then, one of the attack’s outcomes is randomly selected according to its

probability of occurrence, and its effect is applied to the model state. This process repeats

until the end of the simulation, at which time the results are presented to the user. These

results may be used to inform security-related decisions regarding system design.
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Figure 2.3: The architecture of the AMI deployment under consideration by the
hypothetical utility. The placement of each IDS is shown by a star. The solid black star
indicates the location of the centralized IDS. The locations of the dedicated device IDS and
embedded IDS approaches are denoted by checkered and striped stars, respectively.

2.3 DEMONSTRATION OF APPROACH

Utilities are increasingly upgrading the power grid by incorporating smart meters and other

computerized components to form AMI deployments that enhance the ability to monitor

and remotely control the grid. These upgrades will allow utilities to be more efficient and

cost-effective; the Electric Power Research Institute estimates that utilities will gain billions

of dollars in benefits by constructing smart grids [27], while the U.S. International Trade

Commission cited market observers who forecasted that the global smart meter market

would approximately quintuple between 2011 and 2018, from $4 billion to about $20 billion

[28].

While many network topologies may be used, we shall limit our discussion in this chapter

to one representative case. In this deployment, the smart meters are connected to one

another and to a data concentrator unit (DCU) via a neighborhood area network (NAN),

which is a wireless mesh network. The DCU collects readings from the smart meters and

sends them via the wide area network (WAN) to a centralized server on the utility’s back-

end network, where they may be observed by network operators. The utility may also send

control commands in the reverse direction to the smart meters or to other AMI components.

The AMI deployments are critical infrastructure that must be effectively protected to

ensure that people continue to receive power. However, the increasing networking and com-
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puterization of the power grid are potentially introducing new vulnerabilities [29] [30] [31].

Attacks that exploit the new vulnerabilities may include denial of service attacks, Byzantine

attacks, and various kinds of routing attacks, among others [29]. In addition, the utility must

handle the threat of new types of attacks that customers may employ to steal electricity from

the utility [32] [30] [31]. A utility may choose to defend its AMI deployment by employing

defenses, e.g., IDSes, commonly used to protect more traditional cyber networks.

In general, an intrusion detection system monitors and logs network traffic and processes

on machines and alerts the network operators if it detects suspicious behavior. Different

IDS deployment approaches will give different levels of benefit in terms of coverage and

have different costs, and these must be carefully weighed before an appropriate choice may

be made. In this chapter, we consider two IDS deployment approaches — centralized and

distributed — in addition to the trivial case of having no IDS, which shall serve as a baseline.

The centralized approach places the intrusion detection system in the utility network, so that

network traffic going to and from the centralized server may be monitored. This approach

is relatively cheap, but suffers from the limitation that it cannot observe any of the traffic

between the smart meters at the NAN level. The distributed approach is to embed the

IDS directly into each smart meter. The approach provides greater traffic coverage than

the centralized approach and thus may be able to detect more attacks, or alert at an earlier

stage of an attack. In addition, it enables direct detection of attacks on the smart meters

themselves. However, it will also cost more, since the per-unit cost of each IDS-enabled

smart meter will be higher. The utility must carefully choose among the three IDS options,

and should use security models to help make a decision.

2.3.1 Motivation

To show the effectiveness of the novel model generation approach, we present a case study

of a hypothetical utility that is deciding whether to select a centralized or distributed IDS

approach to protect its AMI, or to do without any IDS at all. The utility is primarily

concerned with attacks from malicious customers, insiders, and terrorist organizations. The

utility wishes to estimate the amount of damage to the system and the probability of detect-
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Figure 2.4: The system side of the AMI ontology used to help autogenerate the security
model from the system diagram.

ing the adversary for each possible pairing of adversary and IDS approach. The estimate will

help the utility evaluate the cost-effectiveness of each IDS approach. However, the employ-

ees of the utility do not possess prior knowledge of security modeling and are not capable

of easily constructing a security model by hand. We show how an effective security model

that can calculate the metrics of interest may be automatically constructed from a simple

system model that a domain expert would be comfortable building by hand.

2.3.2 AMI Ontology

The AMI-focused ontology we created for this case study defines the system model ele-

ments, the security model elements, and the mapping between them. Since the ontology

provides the type definitions allowable in the system model, it must be created before the

system model. An illustration of the system side of the ontology may be found in Figure

2.4.

First, we defined the type information used to create the system model. The base com-

ponent type object in the ontology, Thing, is the parent of both PhysicalThing and Non-

PhysicalThing. Both the Computer and Meter types are children of the PhysicalThing type.

The Computer type is the parent of the DCU type and the BackendServer type, which
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is in turn the parent of the BackendServerIDS type. The Network type and the Wireless

type are children of the NonPhysicalThing type. The WAN type is a child of the Network

type, while the WirelessNAN type is a child of both the Network and Wireless types. The

DedicatedDeviceIDS is the child of both the Computer and Wireless types. Finally, the

SmartMeter type is the child of three parents (the Computer type, the Meter type, and the

Wireless type), while the SmartMeterWithIDS type is the child of the SmartMeter type.

The NetworkConnection relationship is the only relationship defined, and signifies that a

direct network link exists between the two items that share this relationship.

Next, we defined the AMI-focused attack steps and state variables that are used to help

generate the security model. We primarily followed [29] and [33] to come up with the relevant

list of attack steps and state variables. There are 17 attack steps in our ontology, and, at a

high level, they may be broken into several major categories: (1) attack steps the adversary

may attempt in order to gain control of a smart meter, through either a physical exploit or a

remote exploit; (2) attack steps the adversary may perform to gain the ability to route traffic

in the AMI, which in turn could be used to perform routing attacks and Byzantine attacks;

(3) attack steps to form a botnet and perform resource exhaustion attacks; (4) attack steps

meant to jam wireless communication in the NAN; and (5) low-tech physical attacks on the

AMI infrastructure. Relevant AEG state variables, such as skill in various attacks, access to

various parts of the AMI, and knowledge of how things operate internally, are also defined.

Following the definition of system model and security model elements, the appropriate

relationships between ontology elements were defined. The AEG state variables were given

roles as prerequisites or effects of various attacks, e.g., the BotnetOnNAN access is the effect

of the CreateBotnet attack and the prerequisite of the ResourceExhaustion attack. Similarly,

each attack and AEG state variable was associated with at least one system model component

to which it may be applied, e.g., the ResourceExhaustion attack was applied to the DCU

system model component type, and each one of that attack’s prerequisite and effect state

variables was associated with either the DCU component type itself or one of its ancestors,

or was defined to be global. Finally, relevant adversary profiles and metrics were defined in

the ontology. With the ontology thus completed, any system modeler can use the component

types defined in the ontology to create instances of those types and relationships between
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Figure 2.5: Graphical representations of the system models in Möbius. The models (a),
(b), and (c) represent the system with no IDS, a centralized IDS, and a distributed IDS,
respectively.

them in a hand-built system model.

2.3.3 System Model

Next, we constructed a separate system model of the AMI for each IDS approach. Graph-

ical representations of the system models are shown in Figure 2.5. We modeled the AMI at

a high level, both for ease of explanation of the approach and because the metrics we were

interested in calculating did not require a model with more detail. Additional detail could

be added if required for the accurate calculation of different security metrics, if that level of

detail is supported by the ontology. We note that multiple smart meters are present in the

modeled AMI, though only one is shown graphically. Multiple smart meters are defined by

setting the NumMeters attribute of the smart meter instance represented in the graphical

model to the desired number (100 in our model).

After we created the system model, we completed the remaining steps. First, we defined

goals that the adversaries could attempt to accomplish: remain undetected, steal electricity,

damage equipment, or interrupt service. Second, we applied the baseline adversary profiles

defined in the ontology to the model and customized them. Third, we applied two metrics

defined in the ontology, the Undetected metric and the MonetaryDamage metric, which

calculate (1) the probability that the utility will detect the adversary during the attack

and (2) the amount of damage and lost revenue the utility would suffer as a result of the

attack, respectively. Finally, we paired the system model with each defined adversary, along
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with the metrics of interest, to create a complete configuration. From a configuration, we

automatically generated an ADVISE security model consisting of an AEG and an adversary

profile. The end-to-end process of automatically generating an ADVISE security model took

on the order of minutes, as opposed to the hours it would have taken to create an ADVISE

model of comparable size and complexity by hand.

2.3.4 ADVISE Security Models

For each of the 9 configurations (one for each pairing of IDS approach and adversary) we

generated a separate ADVISE security model. We manually verified that each automatically

generated ADVISE model was correct given the definitions in the ontology and hand-built

system model. An example of an AEG that was automatically generated is given in Figure

2.6. Since the ontology is based in part on the attack step and state variable definitions

found in [26] and [33], the AEGs that we automatically generated closely resemble the AEGs

presented in those publications. It is beyond the scope of this work to explain the security

model in detail; consult [26] and [33] for specifics on AMI-focused ADVISE models.

2.3.5 Results

We executed each of the models to obtain estimates of the monetary value of the amount of

damage and lost revenue the utility could expect at the end of an attack and the probability

of detecting the adversary as the attack was in progress. These results are presented in Table

2.2. The results are similar to those presented in [26] and [33], which is not surprising since

the ontology that was used to generate these security models was informed by the security

models in those publications. We could have calculated additional security metrics (e.g.,

the costs and payoffs of the adversary given the chosen sequence of attack steps), but chose

not to do so since a full analysis of the security model is outside the scope of this chapter.

The calculated results give insight that will aid decision-makers in choosing the most cost-

effective IDS. Supplied with the estimates this model provides of the various IDSes, along

with cost information provided by the IDS vendors, a system architect can make an informed

choice in selecting the most cost-effective IDS.
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Table 2.1: Labels and their corresponding names for attack steps or adversary state
variables from Figure 2.6.

Label Attack Step Name Label State Variable Name

1 NAN1 InstallLongRangeJammer A1 NAN1 PhysicalAccess
2 NAN1 InstallShortRangeJammer A2 NAN1 NumCompromisedMeters
3 NAN1 InstallMaliciousSmartMeter A3 NAN1 LongRangeJammerAccess
4 SmrtMtr PhysicalSmrtMtrExploit A4 NAN1 ShortRangeJammerAccess
5 SmrtMtr MassMtrCompromise A5 NAN1 RoutingCapability
6 SmrtMtr RemoteSmrtMtrExploit A6 NAN1 BotnetAccess
7 NAN1 CollectCryptoKeys G1 UndetectedGoal
8 NAN1 CreateBotnet G2 DamageEquipmentGoal
9 NAN1 AnalyzeTraffic G3 InterruptServiceGoal

10 NAN1 GainRoutingCapability K1 NAN1 CryptoKeys
11 NAN1 MajorJammingAttack K2 NAN1 TrafficKnowledge
12 NAN1 MinorJammingAttack S1 NodeInstallationSkill
13 NAN1 PhysicalAttack S2 SmartMeterInstallationSkill
14 NAN1 MinorRoutingAttack S3 PhysicalSmartMeterExploitSkill
15 NAN1 MajorRoutingAttack S4 RemoteSmartMeterExploitSkill
16 NAN1 ByzantineAttack S5 BotnetShepherdSkill
17 DCU1 ResourceExhaustionAttack S6 TrafficAnalysisSkill

S7 RoutingAttackSkill
S8 ByzantineAttackSkill

Table 2.2: Cost incurred by the utility as a result of the actions of each adversary and the
probability of detecting an adversary during an attack, given a particular IDS. Italicized
results indicate that the adversaries did no damage because they did not attempt to attack
the system.

IDS Adversary
Monetary
Damage

Damage
Error

Prob. of
Detect. Adv.

Detection
Error

Insider $11.6M +/− $440K 0.62 +/− 0.03
None Customer $380 +/− $5 0.05 +/− 0.01

Terrorist $1.2M +/− $120K 1 +/− 0
Insider $3M +/− $100K 0.62 +/− 0.03

Centralized Customer $0 +/− $0 0 +/− 0
Terrorist $1.2M +/− $120K 1 +/− 0
Insider $0 +/− $0 0 +/− 0

Distributed Customer $0 +/− $0 0 +/− 0
Terrorist $1.2M +/− $120K 1 +/− 0
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Figure 2.6: The AEG generated from the AMI with a Centralized IDS system model paired
with the Insider adversary. The gray blocks labeled V 1, V 2, V 3, V 4, and V 5 are the
Undetected, Centralized IDS, StealElectricity, InterruptService, and
DamageEquipment state variables, respectively. The names corresponding to the other
labels may be found in Table 2.1.

2.4 CONCLUSION

In this chapter we presented a novel approach a modeler may employ to automatically

create security models from hand-built system models that are used as input to an ontology-

assisted model generator. These security models may then be executed to obtain results that

may be used to gain insight into the system and support design decisions. We demonstrated

the effectiveness of this approach with a case study of a utility that has an AMI deployment

and is deciding whether to protect its infrastructure with a centralized IDS or a distributed

IDS, or to forgo an IDS. We found that the process of automatically building a security

model by first hand-building a system model was much easier and faster than hand-building

a security model of similar complexity and size. This is a promising result that may enable

security modeling at scale and with a minimal learning curve by those who use the approach.
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CHAPTER 3: THE GAMES FORMALISM

3.1 INTRODUCTION

Cyber defenses must be carefully planned from the earliest stages of design to mitigate

threats and ensure that systems will achieve availability, integrity, and confidentiality ob-

jectives, even in the face of attack. Practitioners and academics alike have long known the

importance of accurate risk assessment [34] [35], as it is key to designing effective security

architectures. Risk assessment, while important, is difficult to perform correctly.

Unfortunately, expert-driven, informal risk assessment approaches have several significant

limitations, including the difficulty of auditing the expert decisions, the challenge of making

assumptions explicit to facilitate collaboration among the experts, and the lack of rigor and

scientific basis to give confidence in the forecasts. Formal computer security models help

security experts overcome limitations, gain additional insight into a system, and confirm

conjectures. Assumptions are made explicit in models, and the assumptions, input parame-

ters, methodology, and results of a model may be audited by an outside party. The modeling

formalism could also serve as a common language that would allow security experts and ex-

perts from other domains to more easily collaborate on a security model. Finally, the models

would add additional mathematical and scientific rigor to risk analysis. All of these benefits

speak to the need for security models.

We believe that, when constructing security models, it is necessary to consider not only

the system to be defended, but also the humans that interact with that system: adversaries,

defenders, users, customers, law enforcement, etc. If the model does not consider these

human entities, it is much less likely to be accurate. Unfortunately, many security modeling

formalisms in use today fail to explicitly model all of the human entities in the system, or

do so in an overly simplistic way. Models that ignore or improperly model human users are

significantly less likely to be helpful to system architects.

To address this issue, we propose a new security modeling formalism, the General Agent

Model for the Evaluation of Security (GAMES), which allows a system engineer to explicitly

model and study the adversaries, defenders, and users of a system, in addition to the system
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itself. These models are executed to generate security-relevant metrics to support design

decisions. The formalism is used to easily build realistic models of a cyber system and the

humans who interact with it. We define an agent to be a human who may perform some

action in the cyber system: an adversary, a defender, or a user, for example. The formalism

enables the modular construction of individual state-based agent models. The formalism

also allows the modeler to compose these individual agent models into one model so the

interaction among the adversaries, defenders, users, and other humans may be studied. Once

constructed, this composed model can be executed. During the execution, each individual

agent utilizes an algorithm or policy to decide on what action the agent will take to attempt

to move the system to a state that is advantageous for that agent. The outcome of the action

is then probabilistically determined, and the state updated. Modelers using GAMES have

the flexibility to determine how the agents will behave: either optimally, or according to a

modeler-defined policy. The model execution generates metrics that aid in risk assessment,

and helps the security analyst suggest appropriate defensive strategies. The formalism helps

security architects make cost-effective, risk-aware decisions as they design new cyber systems.

3.2 RELATED WORK

Many academics and practitioners have recognized the need for models for computer se-

curity. Many examples may be found in surveys, e.g., surveys of papers on game-theoretic

security modeling approaches [36] [37], a survey of attack tree and attack-defense tree models

[38], and a survey that includes a useful taxonomy of security models [39].

Such modeling approaches are a step in the right direction, but pose their own sets of

limitations, especially in the ways they model the humans who interact with the cyber portion

of the system. Some modeling approaches explicitly model only the adversary, e.g., the well-

known attack tree formalism [40]. Other formalisms model the adversary and defender, but

neglect the role and impact of users. For example, the attack-defense tree formalism [41]

and related attack-defense graph formalism [42] extend the attack tree formalism to include

one attacker/defender pair, but do not model multiple adversaries or multiple defenders, or

any users, which limits the effectiveness of the models. There exist some approaches and

24



tools for modeling multiple adversaries, defenders, and users in a system, e.g., Haruspex

[43], and some agent-based simulation approaches [44] [45]. However, these approaches and

tools are not in common use, for a number of reasons. Often, the models lack realism

because of model oversimplification, are tailored to narrow use cases, produce results that

are difficult to interpret, or are difficult to use, among other problems. Finally, security

modeling formalisms, particularly those that take a game-theoretic approach, often assume

that attackers and defenders are rational. Some examples include [46] [47] [48]. However,

this assumption may not produce useful security models [39].

The GAMES approach is inspired, in part, by the ADVISE formalism [25]. In particu-

lar, we extend and generalize the ADVISE formalism’s Attack Execution Graph. However,

there are important differences between the two formalisms. Models constructed using the

ADVISE formalism can explicitly model only an adversary. Defenders, users, and the inter-

actions between actors cannot be explicitly modeled with ADVISE. The GAMES formalism

recognizes the importance of considering the actions of humans other than the adversary

(e.g. defender and user actions) when designing secure systems, and explicitly incorporates

them as first class model elements.

3.3 FORMALISM

In this chapter, we give a comprehensive overview of the General Agent Model for the

Evaluation of Security (GAMES) formalism, along with a worked example to demonstrate

the approach. We will first explain in detail how the individual agent models are defined

and composed together. Next, we will describe how the models are executed, including

the algorithms or policies the various agents may utilize to decide upon the best course of

action. Finally, we will describe the kind of results these models will produce, how they

may be interpreted, and how the models may be used. Figure 3.1 gives an overview of the

individual components of the formalism. One or more agent models may be joined in a

composed model. This composed model may then be combined with a reward model to

create a model that may be executed to obtain security-relevant metrics, which a security

analyst may use to gain additional insight into the system being modeled.
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Figure 3.1: Overview of the General Agent Model for Evaluation of Security flow.

3.3.1 Model Formalism Definition

A model defined using the GAMES formalism will consist of one or more agent submodels

and a model composed of the agent submodels, which will describe how the submodels relate

to one another. An agent model represents one acting entity in the cyber system (e.g. an

adversary, a defender, or a user).

The framework allows a modeler to define many different kinds of agents. For example,

a modeler may define a malicious insider adversary, a nation-state adversary, a network

operator defender, and a customer user of the system. Once the individual agent models

have been defined they may be composed into a model that defines the relationships between

the agents. The modeler can then study 1) how the two adversaries may cooperate to achieve

a goal on the network, 2) the effectiveness of the network operator’s defensive actions, and 3)

how the actions of the adversaries and defender impact the user’s experience and behavior.

We shall first describe the agent models, and then how they may be composed together.

Agent Model: An agent model describes the state an agent may read or write, how

this state is initialized, the set of actions the agent may utilize to change the state of the

model, the payoff the agent receives given a particular state, and the decision algorithm that

determines the action the agent will take given the state of the system. The agent model

is composed of an Action Execution Graph (AEG) and an agent profile. The AEG may be

thought of as an extension of the attack-tree formalism [40]. Unlike attack trees, an AEG

contains state, and therefore it shares some similarities with generalized stochastic Petri nets

(GSPNs) [49] and stochastic activity networks (SANs) [50]. However, it is most similar to the

Attack Execution Graphs of ADversary VIew Security Evaluation (ADVISE) models [25].
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Action Execution Graphs are more general than Attack Execution Graphs, since they can

be used to model any agent type, whereas Attack Execution Graphs are only used to model

adversaries. The agent profile defines how the state is initially defined; the payoff function,

which assigns the payoff the agent achieves given a particular model state; and the decision

function the agent uses to decide what action to take to change the state of the system.

An Action Execution Graph (AEG) is defined by the tuple < S,A,C >, where S is some

finite set of state variables that an agent may read or write, A is some finite set of actions

an agent may take, and the relation C defines a set of directed connecting arcs from p ∈ S

to a ∈ A, and from a ∈ A to e ∈ S, where p is a prerequisite state variable whose value

directly affects the behavior of the action a (e.g. whether the action may be attempted, how

much it will cost, how long it will take), and e is a state variable that may be changed when

action a is performed. The states and actions together, S ∪A, are the vertices of the AEG,

while the connecting arcs, C, are the edges.

Each state variables in S may have a single value or a finite sequence of values. Each

value can be drawn from any countable subset of the real numbers. The state variables may

be further subdivided, at the discretion of the modeler, into different classes. For example,

state variables relating to an adversary agent may be divided into those that relate to access

(like physical access to the system, network access, or administrator access to individual

machines), knowledge (of the routing protocols used, company policies, encryption schemes,

etc.), or skill (in decryption, social engineering, privilege escalation, and the like), as proposed

by LeMay [25]. This subdivision of state variables is superficial, but may serve as a conceptual

aid to the modeler.

An action, a ∈ A, may be used by an agent to attempt to change the state of the system to

a more advantageous state for the agent. An action is defined by the tuple < B, T, C,O > .

First, let Q be the countable set of model states, where a model state (also known as a

marking) is given by a mapping µ : S → R.

B : Q → {True, False}, is a Boolean precondition that indicates whether or not the

action is currently enabled. An action may only be taken by an agent if it is enabled.

T : Q→ R≥0 is the length of time needed to complete the action, and is a random variable.

All of the action times in the model are mutually independent.
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C : Q→ R≥0 is the cost to the agent for attempting the action.

O is the finite set of outcomes of the action (such as success or failure). Each outcome

o ∈ O is defined by the tuple < Pr,E >, where

Pr : Q→ [0, 1] is the probability that outcome o ∈ O will occur. Naturally, Σo∈OPr(s) = 1

for all s.

E : Q → Q is the function that transitions the system to a new state upon the selection

of o ∈ O.

An agent profile is composed of three distinct components. The first specifies the initial

value for each variable in the Action Execution Graph. The second is a function that

accepts as input the state of the model and outputs the payoff the agent accrues given that

the model is in that particular state. While in theory a modeler could choose to assign a

different payoff for every state the AEG could be in, that may be impractical in many cases

because of state-space explosion. We anticipate that some state variables will be designated

as goal variables, all of which are initialized to a value of zero, and that the agent will obtain

a payoff for changing the model state such that every goal state variable has a positive value.

The third and final component of the agent profile is the agent decision algorithm. The

agent decision algorithm will take as input the state of the model, and output an action. In

general, the agent decision algorithm will attempt to select an action that will maximize the

agent’s payoff. The modeler may choose to assign to the agent one of several predefined agent

decision functions, or specify a custom decision function. The various predefined decision

functions may be based on well-studied techniques drawn from game theory and artificial

intelligence, or novel algorithms that may be developed in the future. If, in the opinion of

the modeler, none of the predefined decision functions realistically describe an agent’s real

behavior, the modeler may define a custom agent decision algorithm. We will explain the

various adversary decision functions in greater detail in the section on model execution.

Model Composition: Agent models should be composed together to exploit the full

power of the GAMES approach. Agent models are modular and independently functional,

so one agent model could be executed by itself if the application warrants. For example,

if the modeler is only interested in studying the adversary’s behavior and is not interested

in the defender’s response or the impact on the user’s behavior, he or she could build a
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standalone adversary agent model similar to an ADVISE model [25]. However, the chief aim

of the GAMES formalism is to give those in charge of making security decisions the ability

to easily model the interaction among adversaries, defenders, and users in cyber systems.

The composed model will define how the agent models will be allowed to interact with one

another.

In this research, we shall extend the state-sharing approach of the Replicate/Join formal-

ism [51] to enable agents to interact with one another. This state-sharing approach will

allow an agent to read and write state in another agent model. For example, agent models

of defenders may pass messages to one another through shared state variables that serve as

communication channels to coordinate defenses.

3.4 EXAMPLE

We present an example model to illustrate how security practitioners could use the GAMES

formalism to make security decisions. The goal of the model is to help an operator make an

informed choice among several strategies that could be used to defend user accounts from

being compromised by an adversary. We limit the size of the model for ease of explanation;

we could obtain a more realistic model by expanding the size to include more details. We

solved the example model using an implementation of the GAMES framework written in

Python.

In the model, there are four agent types: adversary, operator/defender, user, and media.

The operator’s goal is to provide a service to the users in exchange for a fee. The operator

must maintain a Web-accessible account for every user using the system. Each user has the

goal of using the service (and consequently the account) with minimal effort; if the effort of

using the service becomes too great, the user will switch to a different service. The adversary

wants to obtain unauthorized access to as many accounts as possible. The last agent type, the

media, will publicize a successful hack if it learns about it. The model contains one adversary

instance, one defender instance, one media instance, and two hundred user instances. We

model the two hundred users as two hundred copies of the user submodel with different state

initializations.
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The model can be used to help a security practitioner choose among different defensive

strategies by comparing their effectiveness across a variety of metrics. Specifically, we show

how it may be used to compare three different operator defensive policies (passive, aggressive,

and balanced) with respect to net defender profit, the time to discover the initial breach in

security, and the number of accounts compromised in the attack. The metrics calculated by

the model would help the defender choose a policy to follow in an implemented system.

We chose to create our own simulator for the speed of development and ease of customiza-

tion. We believe other existing simulation frameworks, such as FLAME GPU1, can also

support the modeling formalism and speed up model execution by utilizing GPUs.

We will begin by discussing the composed model. Next, we will examine each of the

individual agent submodels that are composed together to form the composed model, looking

particularly at the two principal elements of each submodel: the Action Execution Graph

and the agent decision algorithm. We will then explain how each of the metrics is constructed

to form a reward model. Finally, we will present and interpret results from the executed

model.

3.4.1 Composed Model

The composed model consists of submodel instances of four submodel types, one for each

of the four agent types in the model. There are two hundred instances of the user submodel

type, and one instance of each other submodel type. Each submodel instance shows a

particular agent’s view of the environment (expressed in the Action Execution Graph) and

the decision algorithm the agent uses to choose an action at each stage of the simulation.

There are twelve state variables in this model, as follows.

• Account Access: The status of a user’s account. A value of 0 denotes that the

account has not been hacked by the adversary and is being actively used by the user.

A value of 1 signifies that the account is compromised and can be accessed by the

adversary. A value of 2 indicates that the account has been abandoned by the user but

is not accessible by the adversary. This state variable is present in every submodel,

1http://www.flamegpu.com/
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because every agent could take at least one action that either reads from or writes to

the state variable.

• Noisiness: The cumulated evidence the attacker left (observable by the defender)

as a result of the actions the attacker took. It can take values in a range from 0

(stealthiest) to 10 (noisiest). Its value is incremented when the adversary takes actions

that leave evidence observable by the defender. The adversary can take actions that

write to this state variable, and the defender can take actions that read from the state

variable.

• Password Complexity: A user’s password strength. The state variable can take

values between 0 and 10. A weak password such as ”password” or ”12345” might

have a value of 0, while a longer password with upper case letters, lower case letters,

numbers, and symbols would have a much higher value. The state variable is present

in the adversary’s and users’ Action Execution Graphs.

• Password Reset Requested: This Boolean-valued state variable indicates whether

the defender has requested that a user change an account password. It is a boolean

variable - a value of 0 signifies that the defender isn’t currently asking the user to

change the password, while a value of 1 signifies that the defender wants the user to

change the password. In effect, it serves as a communication channel that the defender

utilizes to convey a request for a particular action. This state variable exists in both

the defender and users’ Action Execution Graphs.

• Social Engineering Skill: The adversary’s level of skill in this attack.

• Service Fee for Defender: Payment made by the user for account access. The

payment may not be directly monetary - it could represent something valuable like the

user’s willingness to observe advertisements served by the operator. The state variable

is found in the operator-view and users’ Action Execution Graphs.

• Threat Discovered: Defender’s knowledge of an attempted attack. It can contain

one of three value: 0 (indicating that the threat has not been discovered), 1 (indicating
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that the threat has been discovered by not yet communicated to the user), and 2

(indicating that the threat has been uncovered and the user informed). The state

variable is contained in the defender’s and adversary’s Action Execution Graphs.

• Time to Discovery: Days until the media learn of a successful attack. It is only

present in the Media’s Action Execution Graph.

• User Alarm: User’s fear of loss due to an account compromise. Every agent (except

the adversary) has this state variable in their Action Execution Graph.

• User Benefit: The value of the benefit the user accrues. The role it plays for the

user is similar to the role played by the Service Fee for Defender state variable for the

defender. It is found solely in the users’ Action Execution Graphs.

• User Fatigue: The user’s level of fatigue from using the defender’s service. It can

be found in the defender’s and users’ Action Execution Graphs.

• User Gullibility: Susceptibility of a user to social engineering. Every agent (except

the media) has this state variable in their Action Execution Graph.

In the model, the Noisiness, Password Reset Requested, Social Engineering Skill, Service

Fee for Defender, Threat Discovered, and Time to Discovery state variables each have a

single value. The Account Access, Password Complexity, User Alarm, User Benefit, User

Fatigue, and User Gullibility state variables have a sequence (or array) of values, with one

value for each of the two hundred users in the model. The user submodels form an ordered

list, such that the ith user can only read from or write to the ith value of those state variables

that have a sequence of values. (Note that each of those state variables is included in the

users’ Action Execution Graphs.) That allows us to use one state variable, for example,

to hold account status information for every individual user in the system, rather than two

hundred individual copies of a state variable.

Every value of every state variable is initialized to zero, with three exceptions. The first

exception, Social Engineering Skill, is initialized to 7/10 at the beginning of the simulation.

This indicates that the adversary has above-average skill in social engineering. The second
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and third exceptions are Password Complexity and User Gullibility. Some users have more

cybersecurity knowledge, and motivation to act on that knowledge, than others; in this

model, we have 80 sophisticated users and 120 average users, and these user types are

reflected in the values assigned to these two state variables. We randomly selected 80 indices

from 200 users to represent sophisticated users, and for each index in this set of 80 the

corresponding values of Password Complexity and User Gullibility are set to 8/10 and 2/10,

respectively. That indicates that the sophisticated users have strong passwords and are

relatively unlikely to be susceptible to social engineering attacks. The remaining 120 values

of Password Complexity and User Gullibility are initialized to 4/10 and 8/10, respectively.

In addition to the state variables mentioned above, the four submodels contain ten actions.

The attacker can choose to perform either a Dictionary Attack or a Social Engineering

Attack. The defender may select one of four actions: Discover Threat, Email User Info,

Request Password Reset, and Perform Core Work. Use Service, Use Alternate Service, and

Change Password are actions that the user may choose to perform. The media has only

one option of action - it may publicize a hack it discovers by performing the Publicize Hack

action. Each action takes one day to complete, except for the Publicize Hack action, which

takes 180 days to complete. The details of the ten actions, including their prerequisites and

effects, are explained in the descriptions of the submodels that follow below.

3.4.2 Adversary Submodel

This submodel contains the attacker’s Action Execution Graph (visually represented in

Figure 3.2). In addition, it includes the adversary’s agent decision algorithm. In this case

study, we assume that the adversary has already acquired a database of hashed passwords,

either through a prior compromise or on the black market. First, we will consider the agent’s

Action Execution Graph, then the decision algorithm.

Action Execution Graph: The attacker may choose either (1) to perform a dictionary

attack on the database in an attempt to discover passwords via the Dictionary Attack action,

or (2) to conduct a social engineering attack to trick users into revealing their passwords
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via the Social Engineering Attack action. These actions, along with their precondition and

postcondition state variables, form the adversary’s Action Execution Graph. The probability

of a successful social engineering attack depends on the user’s gullibility, the adversary’s skill

in social engineering, and whether or not the defender discovers the attack. If the attack

is attempted, there is some probability that it will generate a small amount of noise. If

successful, the attack will give the adversary access to the account. It follows that the User

Gullibility, Threat Discovered, and Social Engineering Skill state variables are preconditions

for the attack and that the Noisiness and Account Access state variables are effects of the

attack. The probability of a successful dictionary attack depends directly on the complexity

of the user’s password. Therefore, the Password Complexity state variable is a prerequisite

of the attack, and Account Access state variable is an effect of the attack.

Decision Algorithm: The attacker has two actions to choose from: (1) starting a dictionary-

based brute-force attack to obtain the password, or (2) attempting a social engineering attack

to trick users into giving the attacker access to their passwords. The adversary will attempt

a dictionary attack on a password if (1) the minimum value in Password Complexity is less

than 5, (2) Social Engineering Skill is less than 5, and (3) User Gullibility is greater than

5. If these conditions have not been satisfied, the adversary will choose to perform a social

engineering attack.

3.4.3 Defender Submodel

This submodel contains the defender/operator’s view of the overall model’s state and the

actions that the agent could take to change the state. For a visual depiction of the defender’s

Action Execution Graph, see Figure 3.3.

Defender Action Execution Graph: The defender can choose from four actions. The

defender has the option of attempting to discover the adversary’s activities (the Discover

Threat action), sending an email to inform users of relevant threats or educate them about

cybersecurity best practices (the Email User Info action), requesting that the user perform
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Figure 3.2: A graphical representation of the adversary’s Action Execution Graph.

a password reset (the Request Password Reset action, or working on core business activities

(the Perform Core Work action). The defender Action Execution Graph includes these

actions, their precondition and postcondition state variables, and one other state variable

(Service Fee for Defender) that is neither a precondition nor a postcondition for any action

in the submodel. The state variable is included in the Action Execution Graph because the

defender wishes to maximize the fees they collect from the users for providing the service.

First, if a threat has not already been discovered, the defender can try to discover the

adversary’s attack. The probability of successfully uncovering the attack depends on the

noisiness of the attack (the value of the Noisiness state variable). If the defender is suc-

cessful, the attack is discovered (as indicated by Threat Discovered). Second, the defender

can choose to send an email to the users with the Email User Info action to reduce their

susceptibility to social engineering attacks. The email’s effectiveness increases if the threat

has been discovered. If Threat Discovered indicates that the threat has been discovered,

the action will greatly reduce the user’s gullibility; otherwise, the action will reduce it only

slightly. Sending the email also slightly increases every user’s fatigue, and, if the threat has

been discovered, alarm. Third, the defender can also use the Request Password Reset, which

sets the Password Reset Requested state variable to true. It also greatly increases the users’

fatigue (because they have to create and memorize new passwords) and slightly increases the
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users’ alarm (as tracked by the User Fatigue and User Alarm state variables, respectively).

Fourth, and finally, at any time, the defender can attempt the Perform Core Work action.

This action represents work that the operator can do that isn’t directly related to cyberse-

curity. It exists as a sort of placeholder, because in reality, the operator is likely to spend

most of his or her time on tasks that are unrelated to cybersecurity.

Decision Algorithm: We evaluate three different policies that a defender could choose to

employ: aggressive, passive, and balanced.

First, the aggressive policy calls for defenders to take actions frequently to defend their

networks and keep their users educated. Specifically, a defender will (1) email the users every

ninety days to educate them about cyber security and how to avoid social engineering attacks,

(2) request that the users reset the account password every ninety days (and whenever an

ongoing attack has been detected), (3) attempt to discover threats by thoroughly analyzing

security logs (from tools such as intrusion detection systems) every seven days, and (4) do

work unrelated to cybersecurity (such as maintaining infrastructure, providing services to

account users, etc.) on the remaining days.

If the defender employs the passive policy, he or she will take defensive actions infrequently.

Specifically, the defender will send out a password reset request and an email educating users

once every year and do work unrelated to cybersecurity on the remaining days.

Finally, the balanced policy can be used by a defender to strike a balance between the

aggressive and passive approaches. The policy calls for the defender (1) to send an email

educating users every ninety days about how to avoid falling for social engineering attacks,

(2) to request a password reset every year (and whenever a threat has been discovered), and

(3) to attempt to discover threats by examining security logs every two weeks.

The aggressive policy may allow a defender to detect an adversary more quickly and lead

to a more educated and cautious user-base but is expensive to maintain and may exhaust or

annoy the users. The passive policy is easy and cheap for the defender and places a minimal

burden on the user, but may allow an adversary to go undetected for quite some time. The

balanced policy seeks the benefits of each policy while limiting the drawbacks. But does it

strike the right balance?
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Figure 3.3: A graphical representation of the defender’s Action Execution Graph.

3.4.4 User Submodel

As loyal customers, the users wish to keep using the defender’s service, because it meets

their needs more effectively than competitor services do. As a result, the customers are co-

operative and will reset their passwords if the defender asks them to. However, the defender

can take actions that annoy the user (e.g., sending out emails too often), or the media could

alarm the users if a compromise is publicized. Either case could drive the users away from

the defender’s service.

Action Execution Graph: Each user’s Action Execution Graph consists of three actions

and seven state variables. A graphical representation can be found in Figure 3.4. The three

actions that the user could choose are Use Service, Use Alternative Service, and Change

Password.

First, the Use Service action is essentially the default action for this agent. It is enabled as

long as Account Access does not indicate that the user has abandoned the account. Service

Fee for Defender and User Benefit are incremented (by values of one and three, respectively)

when Use Service is attempted. Second, the Use Alternative Service action can be taken by
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a user who is frustrated with the defender’s service. The action is always enabled. It has

only one postcondition state variable, User Benefit, which is incremented by two when the

action is attempted.

Third, the main effect of the Change Password action is to remove the adversary’s access

to the account (if it had previously been gained) by changing the password. The action

is enabled as long as the user hasn’t abandoned his or her account. The Password Reset

Request state variable may signal to the user that the defender believes it would be benefi-

cial to change the password. User Alarm is incremented by a small amount when the user

changes the password, but User Fatigue is incremented by a much larger amount, to model

the difficulty of creating and remembering a new password.

User Decision Algorithm: A user has three options: reset the password, use the defender’s

service, or use an alternate service. The user’s policy is expressed in the following list:

1. If the defender requests that the user reset the password and the user has not abandoned

the account, reset the password.

2. Otherwise, if the User Alarm and User Fatigue state variables both have values of less

than 9, and the account has not been abandoned, use the defender’s service.

3. Otherwise, if the user’s fatigue is greater than or equal to 9, but the user’s alarm is less

than 9, and the account has not been abandoned, with some low probability switch to

a competitor’s service, otherwise continue to use the defender’s service.

4. Otherwise, if the user’s alarm is greater than or equal to 9, and the account has not

been abandoned, with some high probability switch to a competitor’s service, otherwise,

continue using the defender’s service.

5. Otherwise, use a competitor’s service.

3.4.5 Media Submodel

The media submodel is the simplest agent in the model. Its one goal is to publicize a

successful widespread attack against the defender’s service.
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Figure 3.4: A graphical representation of a user’s Action Execution Graph.

Action Execution Graph A graphical representation of the media’s Action Execution

Graph is given in Figure 3.5. The media’s Action Execution Graph consists of only a single

action, the Publicize Hack action, along with the state variables Time to Discovery, Account

Access, and User Alarm. If at least 10% of user accounts have been compromised, the action

will become enabled. Once the action is taken, it will complete at the end of the time

indicated by Time to Discovery. If at least 10% of user accounts remain compromised at the

end of that time, the actions will set the value of every user’s User Alarm state variable to

the maximum value, which could trigger abandonment of accounts by users.

Media Decision Algorithm The media agent has a straightforward decision algorithm

since the media have only one choice of action. The media will publicize the attack, increasing

the users’ alarm, six months after the first account has been compromised, if the defender

doesn’t quickly contain the problem.

3.4.6 Reward Model: Defining Metrics

The model gains its usefulness by supplying relevant metrics that will help the system

architects and policy designers make good security choices. The model calculates seven

metrics that give insight into the modeled system.
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Figure 3.5: A graphical representation of the media’s Action Execution Graph.

To begin, we track the defender’s profit. The defender gains revenue from every user each

day that he or she uses the service. The total revenue gained at the end of a 2-year period can

be found by merely observing the value of the Service Fee for Defender state variable at the

end of a 2-year simulation. The defender incurs costs by performing defensive actions. Every

time a user takes action during a simulation, the cost to perform that action is calculated

and stored in a running counter. At the end of the simulation, the value of that counter can

be observed to determine the total direct cost of a particular policy. The profit is revenue

minus costs. In general, payoffs and costs do not have to be in the same units in GAMES

models. However, in this particular model, they are expressed in the same units. This allows

the modeler to easily determine the profit earned by the operator.

Also, three metrics track the state of the 200 accounts in the defender’s care at the end of

the simulation: the mean number of uncompromised active accounts, the mean number of

compromised accounts, and the mean number of abandoned but uncompromised accounts.

The first of the three metrics gives the number of actively used, secure accounts (accounts

that the adversary cannot access and have not been abandoned). The second of the three

metrics tracks the number of accounts that are compromised by the adversary at the end of

the simulation (whether or not the account has been abandoned by its user). The last of

the three metrics gives the number of uncompromised accounts that have been abandoned

by their users (because of alarm or fatigue) at the end of the simulation. All three of these
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Table 3.1: Results from simulation experiments.

Passive Balanced Aggressive

Defender Stats

Revenue 93770 +/− 540 145800 +/− 0 144029 +/− 111
Costs 2200 +/− 0 28300 +/− 0 59610 +/− 20
Profit 91570 +/− 536 117500 +/− 0 84418 +/− 122

Days to Detect Never Detected 17 +/− 2 12 +/− 1

Account info

# Uncompromised 19 +/− 1 200 +/− 0 182 +/− 1
# Compromised 120 +/− 0 0 +/− 0 0 +/− 0
# Abandoned 61 +/− 1 0 +/− 0 18 +/− 1

metrics are calculated by observing the value held by each of the 200 instances of the Account

Access state variable – as explained previously, a value of zero indicates that the account is

uncompromised, a value of one indicates that the account is compromised, and a value of

two indicates that the account is abandoned.

The final metric gives the time from the first successful account compromise to the time

the defender discovers the threat. The first time the adversary compromises an account,

the current simulation time is recorded. Similarly, the first time the Discover Attack action

successfully completes, the current simulation time is noted. The metric is the difference

between the two times.

The suite of metrics will give modelers insight into metrics that are important to the

defender/operator. Operators can use the calculated metrics to find the particular policy

in a set of policies that will maximize profit, minimize detection time, and maintain the

integrity of user accounts.

3.4.7 Model Execution and Results

The complete model may be executed to calculate the defined metrics. At every step of

the simulation, the simulation clock is updated and all enabled actions which have completed

their execution time are executed in a non-deterministic order — one outcome is probabilis-

tically selected from each action, and the outcome’s effect is applied to the model state.

Then each agent may choose one action using their decision algorithm, considering the new
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state of the system. After this process, the simulation proceeds to the next step and the

process repeats. Every action in this particular model takes one day to complete (except the

Publicize Hack action, which takes 180 days to complete). For that reason, the simulation

step size is one day. We simulate the agents’ behaviors over two years of simulation time to

obtain the relevant metrics. All results are simulated with a 95% confidence interval.

The results are presented in Table 3.1. They show that the balanced policy has a clear

advantage over the other two policies. The defender will earn the highest average net profit

and have the most uncompromised accounts at the end of the two-year period if the bal-

anced policy is used. When compared to the balanced policy, the aggressive policy brings

in a similar amount of revenue, but incurs much higher costs (due to the frequency of de-

fensive actions taken with this policy), so the defender earns a significantly lower profit.

The defender, using an aggressive policy, successfully thwarts the adversary’s attempts to

compromise accounts, but the defender’s frequent actions annoy some users, driving them

to abandon the service. The aggressive policy leads to slightly earlier threat detection than

the balanced policy. The passive policy costs the defender much less than the aggressive or

balanced policies. However, revenue isn’t as high, so average net profit is also low. The aban-

donment of so many user accounts explains the low revenue. We investigated why so many

more users abandoned their accounts here than for the other two policies. We found that

the media never publicize the hack if the defender uses the aggressive or balanced policies

(because not enough accounts are compromised for a long enough time to be newsworthy).

However, because the passive defender does so little to counter the attacker, many accounts

are compromised, which triggers the media publication of the hack, which alarms users and

drives them to abandon their accounts.

3.5 CONCLUSION

In this chapter we argue that cyber security models must explicitly incorporate all relevant

agents to provide an accurate view of the overall system behavior, and that the agents must

be modeled in a realistic manner. Formalisms that only model adversary behavior or simple

adversary-defender conflict behavior do not accurately reflect the reality found in cyber
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systems that are manipulated and used by many different human entities. To solve this

problem, we propose a new, easy-to-use modeling framework, the General Agent Model

for the Evaluation of Security. This framework allows the modeler to construct different

agent submodels, which may be composed together and executed to calculate metrics that

give insight into system behavior. Each submodel consists of the agent’s view of the state,

the actions available to the agent, and the agent’s customizable decision algorithm. We

demonstrated the richness of the formalism with an example, which incorporated a number

of different agents with different goals and policies. The GAMES formalism is a significant

step forward in the quest to give cyber security analysts the ability to create realistic security

models of cyber systems.
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CHAPTER 4: STACKED METAMODELS

Many state-based discrete-event simulation models of real-world systems are complex,

large, and contain uncertain input parameters. This is especially true of cybersecurity mod-

els. It is challenging to make realistic quantitative models smaller and simpler (and thus

faster to execute) because the world is large and complex. It is also very difficult to re-

move uncertainty in the model input values. Obtaining precise, certain input values in many

domains may be prohibitively expensive or even impossible. Special approaches must be de-

veloped to make effective use of such models, given the issues of long run times and uncertain

input values.

The traditional way of handling uncertain input parameter values is to perform (a) sensi-

tivity analysis (SA) to determine the most sensitive inputs, and (b) uncertainty quantification

(UQ) to determine how the uncertainty in the inputs propagates to uncertainty in the model

output. Both SA and UQ typically require that models be solved many times, with the

input variable values being varied each time. If the calculation of the model’s metrics could

be done quickly, comprehensive SA and UQ could be accomplished with a reasonable com-

putation and time budget. If the model input values were known with certainty, it would be

unnecessary to execute the model multiple times to perform SA and UQ, so the time and

computation required to obtain a single model solution would be less of a concern. How-

ever, the twin issues of long solution times and uncertain model input values in complex

state-based models present a significant challenge to modelers.

We propose the use of metamodels (also known as emulators or surrogate models) to

address the two issues. Metamodels are models of the original base model that attempt

to approximate the relationship between the base model’s inputs and outputs, and can

generally be executed much more quickly than the base model. With an acceptably accurate

metamodel, fast and comprehensive sensitivity analysis and uncertainty quantification can

be performed on the metamodel in place of the original base model. While metamodels can

be constructed by hand, often they are automatically constructed using machine learning

techniques (e.g. Gaussian process regressors, multilayer perceptrons, and random forests).

A chief concern with metamodeling is the choice of an appropriate machine learning tech-
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nique, as each has its own strengths and weaknesses. While most related work arbitrarily

chooses a particular machine learning technique, or evaluates a small handful of different

techniques and chooses the strongest, in this work we use an ensemble of heterogeneous

regressors in an effort to benefit from the strengths of each approach while mitigating the

weaknesses. We structure the ensemble using a custom stacking approach. Stacking is a

cutting-edge technique used by the winners of some recent machine learning competitions

[52], but we adapt it for use on state-based discrete-event simulation models.

To the best of our knowledge, we are the first to propose and demonstrate a metamodeling-

based approach to the analysis of complex quantitative security models, and the first to use

a stacking-based approach to perform SA and UQ on real-world quantitative models. We

show that our stacked metamodels are several orders of magnitude faster than the original

models, are more accurate than traditional metamodels, and are amenable to SA and UQ

that could not be performed on the original base model within a reasonable time budget. We

use preexisting models used in previously published papers, namely, a SAN botnet model

[53], an ADVISE AMI model [26], and six PRISM models as test cases for the metamodeling

approach.

4.1 APPROACH

In our context, a metamodel, also known as a model surrogate or emulator, is a model

of a model (which we will refer to in this work as the base model) that attempts, given a

particular vector of input variables (which we shall call an input), to produce an output

that matches as closely as possible the output that the base model would produce given the

same input, for all inputs. Metamodels can rarely achieve perfect accuracy in emulating the

base model, but they often run much faster than the base models. The long time needed to

run the base model, together with the need to run the base model many times to conduct

sensitivity analysis, uncertainty quantification, and optimization, provides the motivation to

find fast metamodels that can emulate the base model with acceptable accuracy.

While high-quality metamodels can be constructed manually by an expert familiar with

the base model, it is often easier and faster to build the metamodel automatically. At a high
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level, the metamodeling process is conducted in three stages:

1. Data for training and testing are acquired by generating a number of different model

inputs and running the base model with those inputs to observe the resulting outputs.

2. The training data are used by a machine learning algorithm to train a metamodel.

3. The test data are used to assess the quality of the trained metamodel.

To begin, in the first stage, data for training and testing must be acquired. Time and

computation constraints restrict the maximum number of inputs that can be run on the

base model. We can imagine that an n-dimensional input vector describes a point in the

n-dimensional input space.1 The metamodel will benefit from high-quality training data

that gives the most complete view of the input space possible, given the limited number of

samples. For example, if all the training inputs are clustered closely together in the input

space, the trained metamodel may be accurate only in that limited region of the input space.

The input space should be explored as efficiently as possible. The most important decision at

this first stage is the choice of strategy for input selection. We consider three input selection

strategies in this chapter: random sampling, Latin hypercube sampling, and Sobol sequence

sampling.

In the second stage, the training data gathered in the previous stage are used to train a

metamodel: a model of the original base model that attempts to produce the same output

the base model would produce if it were given the same input. One can choose from a

variety of machine learning regressors, including, e.g., kriging (Gaussian process regressors),

random forest regressors, support vector machine regressors, and k-nearest neighbors (KNN)

regressors. The most important decision at this stage is the selection of the machine learning

technique that will be able to produce the most accurate metamodel given the training data

collected in the first stage. Instead of selecting one regressor, we use the predictions from

multiple heterogeneous regressors through stacking.

In the third stage, the test data are used to evaluate the accuracy of the trained meta-

model. Given each input in the test data, the metamodel will produce an output, and the

1We limit ourselves in this analysis to one-dimensional input variables.
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metamodel’s output is compared to the base model’s output. The absolute value of the

difference between the two outputs quantifies the error of the metamodel. If test inputs

are generated randomly and independently, one can use the standard statistical methods to

determine the average error and associated confidence interval.

The remainder of this section will be devoted to explaining the procedures for obtaining

the training data and constructing the metamodel.

4.1.1 Sampling

Acquiring appropriate data for training and testing is vitally important for constructing

metamodels and evaluating how well they emulate the base model. The general idea is

to choose an input (in other words, a vector that contains a specific value for each input

variable), execute the base model with that input, observe the resulting model output or

metric, and then record the input and output by adding them to the list of previously

observed input-output pairs. This process is repeated multiple times until some stopping

criterion is reached, such as the exhaustion of the allocated time budgeted for acquiring

training data. The choice of input at each iterative stage is very important. If all the inputs

in the training data are “close” to one another in the input space, the metamodel trained

on that data may not be able to accurately emulate the base model in other regions. In

this chapter, we consider three ways of exploring the input space: random sampling, Latin

hypercube sampling, and Sobol sequences. The differences between the three methods are

illustrated in the two-dimensional case in Figures 4.1, 4.2, and 4.3.

Random Sampling

Random sampling is the simplest sampling strategy that we consider. Random sampling

is conducted by selecting a value for each input variable from the range of possible values

at random, independently of any prior sample. Random sampling has a chance of exploring

any region in the input space, unlike deterministic sampling, but random sampling can have

the unfortunate side effect that samples may cluster in regions of the input space that have

already been well explored while ignoring regions that have not been explored at all. The
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clustering effect can easily be observed in the two dimensional case shown in Figure 4.1.

Latin Hybercube

The Latin hypercube sampling (LHS) [54][55] strategy attempts to explore the space more

evenly than random sampling. It is inspired by the Latin square puzzle, which consists of

an n by n array of n unique symbols such that a particular symbol will appear exactly once

in every row and every column.2 In the two-dimensional case, Latin hypercube sampling

generates N samples by dividing the range in the x and y dimensions into N equally likely

intervals, forming a grid of N rows and N columns, and choosing a sample such that each row

and each column is sampled exactly once.3 Similarly, in the case of a finite number of inputs,

LHS generates N samples by dividing each input variable into N equally probable intervals

and choosing exactly one sample from each interval. LHS provides stronger guarantees of

coverage than random sampling, because each interval is sampled once, while a particular

interval may not be sampled at all with random sampling. However, LHS may not evenly

cover the space very well. Indeed, there exist pathological cases in which Latin hypercube

sampling leaves large regions of the input space totally unexplored.4 An illustration of

55 samples chosen via Latin Hypercube sampling is shown in Figure 4.2. Notice that the

sampling approach produces some pairs that are close to one another in the input space.

2A solved Sudoku puzzle is an example of a Latin square.
3This is similar to the classic “8 rooks” problem in chess.
4For example, taking a sample at every cell along the diagonal is a valid Latin hypercube sample sequence

in two dimensions.
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Sobol Sequences

The Sobol method, in contrast to random sampling and LHS, generates low-discrepancy

sequences. Informally, a low-discrepancy sequence will sample the input region relatively

evenly. For a formal definition of discrepancy and technical descriptions of the Sobol gen-

eration procedure, please see [56]. An illustration in the 2-dimensional case can be seen in

Figure 4.3. Notice how evenly the Sobol method samples the region of interest compared to

the random sampling method and LHS.

4.1.2 Metamodeling

A machine learning model can be trained to emulate the base model, producing outputs

that are as close as possible to the base model outputs, given the same input. If the base

model output is qualitative, a machine learning classifier can be trained as the metamodel.

If, on the other hand, the base model output is a quantitative metric, the metamodel will be

a machine learning regressor. A wide variety of regressors exist, each with its own strengths.

Unfortunately, in general, it is not possible to know a priori which particular machine learning

technique will produce the most accurate metamodel for a given black box base model.

We consider a number of regressors in our analysis. Each regressor has its own strengths,

weaknesses, and assumptions about the underlying data. We consider seven major types of

regressors: random forest (RF) regressors, multilayer perceptrons (MLP), gradient-boosting

machines (GBM), the RidgeCV regressor, k-nearest neighbors (KNN) regressors, Gaussian

process (kriging) regressors, and stochastic gradient descent (SGD) regressors. Many of the

regressors have hyperparameters that change their behavior. For example, the number of

neighbors used in the k-nearest neighbors regressor can be any positive integer; different

solvers and activation functions can be used by the multilayer perceptron; and the loss

function used by the gradient-boosting machine can be changed. In this work we consider

twenty-five different regressors of the seven types mentioned above: one random forest,

seven different multilayer perceptrons, four different gradient-boosting machines, one Ridge

regressor, ten different k-nearest neighbor regressors, one Gaussian process regressor, and one

stochastic gradient descent regressor. The collection of regressors we have chosen include
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Table 4.1: The 25 regressors and their hyperparameters considered in the analysis.

ID Regressor Type Hyperparameters
1 Random Forest num estimators=100, criterion=’mse’
2 Multilayer Perceptron solver=adam, activation function=’logistic’
3 solver=adam, activation function=’tanh’
4 solver=adam, activation function=’relu’
5 solver=sgd, activation function=’logistic’
6 solver=sgd, activation function=’tanh’
7 solver=lbfgs, activation function=’logistic’
8 solver=lbfgs, activation function=’tanh’
9 Gradient Boosting Regressor loss function=’least squares’
10 loss function=’least absolute deviation’
11 loss function=’huber’
12 loss function=’quantile’
13 RidgeCV
14 K Nearest Neighbors n neighbors=1, weight=’uniform’
15 n neighbors=2, weight=’uniform’
16 n neighbors=4, weight=’uniform’
17 n neighbors=8, weight=’uniform’
18 n neighbors=16, weight=’uniform’
19 n neighbors=1, weight=’distance’
20 n neighbors=2, weight=’distance’
21 n neighbors=4, weight=’distance’
22 n neighbors=8, weight=’distance’
23 n neighbors=16, weight=’distance’
24 Gaussian Process Regressor
25 Stochastic Gradient Descent

some of the most popular regressors currently in use.

One could simply choose a particular regressor to serve as the metamodel (based on intu-

ition or subject matter expertise), or one could train several different candidate regressors,

compare their levels of accuracy, and select the one with the best performance to serve as the

metamodel. However, the best regressor alone may not perform as well as several regressors

working together. The simplest way to use multiple regressors together is to establish a

voting committee of regressors, where the regressor predictions are averaged to produce a

combined prediction. A drawback of that approach is that poorly performing, inaccurate

regressors have the same vote as the most accurate regressor. It would be beneficial to weight

the votes, such that the more accurate regressors have more say in the final prediction than
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the less accurate regressors. Stacking is one way to accomplish such weighting.

Stacking is a machine learning technique that accomplishes the weighting by training an-

other regressor (or committee of regressors) on the original training data plus the predictions

that the original regressors made [57]. We shall refer to the regressors trained solely on the

training data as layer-1 regressors, and the regressors that were trained on the training

data combined with the predictions from the layer-1 regressors as layer-2 regressors. We

do not know a priori which regressor will perform the best in the second layer, so we train

all twenty-five regressors as layer-2 regressors. We then take the average prediction of the

layer-2 regressors as the final metamodel prediction.

In practice, we find that some of the layer-1 regressors produce predictions that are so

inaccurate that they significantly degrade the performance of some of the layer-2 regressors.

Therefore, we filter the layer-2 training data so they include only the predictions from the

most accurate, best-performing layer-1 regressors. Similarly, some of the layer-2 regressors

are so inaccurate that their predictions would significantly affect the quality of the final vote,

so we filter the predictions of those layer-2 regressors as well. The filtering threshold is set

to remove the predictions of any regressor whose average prediction error is more than 25%

worse than that of the most accurate regressor at that layer. We found that this filtering

strategy was effective in the evaluation of our case study model, but the threshold may have

to be adjusted for other models, or a completely different strategy could be used (e.g., using

the best k regressors out of the set of n, where k < n).

Once trained, the stacked ensemble of regressors can form an accurate metamodel of the

base model. Input analysis (such as sensitivity analysis and uncertainty quantification)

techniques can then be applied to the metamodel in place of the base model.

4.2 ANALYSIS TECHNIQUES

Uncertainty quantification and sensitivity analysis can help a modeler gain a deeper under-

standing of the model’s input variables. Uncertainty quantification determines the likelihood

of different outcomes given the uncertainty in the values of the input variables, and can be

conducted in a straightforward manner using a Monte Carlo method [58]. Unfortunately,
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Figure 4.4: Overview of the metamodel construction approach.

sensitivity analysis techniques are more complicated, and the different techniques may give

differing answers. Sensitivity analysis attempts to determine the degree to which an input

variable influences the output. A number of different techniques can be used to perform

sensitivity analysis. We briefly describe three that we use in this work: Sobol sensitivity

analysis, the Morris method, and the feature importance method. Sensitivity analysis can

be used in a variety of ways. For example, a modeler may be able to dedicate only a limited

amount of time and resources to reducing the uncertainty in particular model inputs (e.g., by

performing experiments or seeking the opinions of experts). If that is the case, the modeler

would like to know the input variables whose values have the greatest effect on the model

output, so the uncertainty-reduction efforts can be focused on those variables.

Sobol Sensitivity Analysis: Sobol sensitivity analysis [59] is a method for performing

global sensitivity analysis. The method calculates the total order index for each value, which

measures its total contribution to the variance in the output. The indices can be used to

rank the input variables to determine the most and least sensitive inputs.
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Morris Method: The Morris method is used to perform global sensitivity analysis; for

details, consult [60][61]. The method varies one input variable at a time. First, it selects

a point in the input space and runs the model with that input to determine the resulting

output, which is used as a baseline. Next, each one of the input variables is assigned a new

value, one at a time, while the others are held at the original baseline value, and the model

is run to determine the magnitude of the difference between the resulting output and the

baseline output. Once every input variable has been modified in turn, a completely new

input is chosen (i.e., all the values for the input variables are changed at once), and the

process repeats several times. The Morris method can use the collected data to perform a

global sensitivity analysis, calculating a value µ∗ for each input variable that quantifies its

impact on the model output. By comparing the µ∗ values, one can order the input variables

based on their impact on the model output.

Feature Importance Method: The feature importance method [62][63] can be used

as a way to rank the influence each input has on the model output. We shall describe the

method at a high level. First, a metamodel is trained on the training data, and its baseline

accuracy is recorded. Then, all the values of one input variable in the training data are

perturbed through addition of noise. The metamodel is retrained with the modified training

data, and the model’s accuracy is compared with the accuracy of the baseline metamodel.

If the input value has a large impact on the output value, we would expect a relatively large

decrease in the accuracy of the new metamodel. If the input value has no impact on the

output value, we would expect no appreciable drop in accuracy. The values of each input

variable are perturbed in turn in the same way. The technique can be used to rank the input

variables from most impactful to least impactful.

4.3 BOTNET TEST CASE

Our botnet test case considers a stochastic model of the growth of botnets in different

conditions. A full description of the model may be found in [53]. A botnet is a collection

of computers that have been compromised and hijacked by a malicious actor. A botnet can

grow or shrink in size. The model gives an estimate of the size of the botnet at the end of one

53



week, given a number of assumptions, including the rate at which bots are removed from the

botnet by defenders. We imagine that defenders may have a choice among several different

methods for removing the bots from the botnet. Methods that remove the bots faster may

cost more or have deleterious side effects on the system’s performance. In this imagined

scenario, the defender would like to know the slowest rate at which the bots may be removed

while ensuring that the botnet does not grow above a certain fixed size. The defenders must

take into account their lack of knowledge of the precise values of all the input variables. In

addition, the defenders would like to know which input variables have the largest effects on

the model output, so that they may obtain the most accurate value estimates possible for

the sensitive input variables.

We will give a brief overview of the pertinent details. The eleven input variables used

in the model are listed in Table 4.2. In [53], all the input variables were assigned base-

line values based on suggestions from subject matter experts. In our analysis, we assume

that all the inputs are uncertain, and the uncertainty range is ±50% of the baseline val-

ues given in the original paper, with the following exceptions: ProbConnectToPeers and

Prob2ndInjctnSuccessful are probabilities and thus may not be greater than 1, so we assign

[0.25, 1] as a reasonable range of uncertainty; and we increased the range of uncertainty for

RateConnectBotToPeers, RateOfAttack, and RateSecondaryInjection so that the rates

fell between once every 10 seconds to once every hour, which we believed to be realistic

assumptions.

We used Python to write our sampling, metamodeling, and analysis scripts. The construc-

tion of metamodels was accomplished with the aid of the scikit-learn Python package [64],

and the SALib package was used to perform Sobol and Morris method sensitivity analysis

[65]. All the experiments were run on a machine with an Intel i7-5829K processor and 32

GB of RAM.

4.3.1 Speed Comparison

All reported times were rounded to the nearest tenth of a second. The base model was run

one thousand times with random inputs, and it took 7,246.1 seconds (over 2 hours) to obtain
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Table 4.2: List of inputs used in the botnet test case.

Variable Name Domain

ProbConnectToPeers [0.25, 1]

ProbPropagationBot [0.05, 0.15]

ProbInstallInitialInfection [0.05, 0.15]

Prob2ndInjctnSuccessful [0.25, 1]

RateConnectBotToPeers [0.0166, 6]

RateOfAttack [0.0166, 6]

RateSecondaryInjection [0.0166, 6]

RateBotSleeps [0.05, 0.15]

RateBotWakens [0.0005, 0.0015]

RateActiveBotRemoved [0.05, 0.15]

RateInactiveBotRemoved [0.00005, 0.00015]

the corresponding one thousand model outputs. That works out to just over 7 seconds per

input, with a standard deviation of 24.8 seconds. The longest and shortest times it took

to calculate an individual output were 510.6 and 0.8 seconds, respectively. The metamodel

was also run one thousand times with random inputs, and it took a total of 1.9 seconds

to obtain the corresponding one thousand model outputs. It follows that the metamodel

can run several thousand times faster than the base model. Therefore, the input space can

be searched more thoroughly using the metamodel approach compared to the traditional

approach.

We found that the time needed to train the metamodel was correlated with the size of the

dataset. Training of the stacked metamodel took 5 minutes and 19.1 seconds with the dataset

that contained 4,000 random inputs, 1 minute 36.0 seconds with the dataset that contained

1,000 random inputs, and 32.0 seconds with the dataset that contained 250 random inputs.

The time it takes to collect the training data is significantly greater than the time needed

to train the metamodel. Recall that in our approach, only a limited number of samples can

be collected and used to train the metamodel, because it takes such a long time to execute

the base model. The training datasets will therefore be relatively small, leading to relatively

fast training times.
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4.3.2 Metamodel Accuracy

Having established the speed with which the metamodel can be executed, we turn to an

evaluation of the metamodel’s accuracy. Recall that the metamodel attempts to produce

an estimate of the final size of the botnet after one week. The estimation error is the

absolute value of the difference between the metamodel’s estimate and the base model’s

estimate, given a particular input. The errors reported are the average absolute difference

between the metamodel’s predictions and the corresponding base model’s outputs across

all the data in the test set. 2,500 randomly generated inputs (and associated base model

outputs) comprised the test set. The minimum and maximum botnet sizes recorded in the

test set were 0 and 37,143, respectively.

First, we consider the accuracy of the metamodel given the three different input sampling

strategies and three different training dataset sizes. The results can be seen in Figure 4.6.

Unsurprisingly, we found that the metamodel error decreased when the training set contained

more data. We also found that the Sobol sequence was the best-performing sampling strategy

as the number of samples grew: as the number of samples grows, the effect of the low-

discrepancy attribute of the Sobol sampling sequence becomes more obvious. Encouragingly,

it appears that the metamodel can perform well even with a relatively low number of training

samples: the metamodel trained with 250 random samples, the least accurate of the nine

shown in Figure 4.6, had an average estimation error that was less than 1% of the range

found in the test data.

Next, we show that using our stacking approach is better than simply using the predictions

from the best-performing of the twenty-five regressors we consider (which we call the Best

of Many metamodel), and that the predictions of both methods perform better than a

naive metamodel. Our naive metamodel calculates the average value of the outputs in the

training dataset, and gives that average as its prediction regardless of the model input.

Therefore, any well-performing regressor should produce more accurate predictions than the

naive metamodel. We compare the errors of the naive metamodel, the most accurate single

regressor (the Best of Many metamodel), and the stacked metamodel, given different training

data. The results can be seen in Table 4.3. We see that the Best of Many metamodel has

about half the average prediction error as the naive metamodel. In the worst case, the
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(a) Accuracy Comparison with Random Samples

(b) Accuracy Comparison with LHS Samples

(c) Accuracy Comparison with Sobol Samples

Figure 4.5: Accuracy comparison given random, LHS, and Sobol samples.
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Table 4.3: Average metamodel prediction error (lower is better).

Training Naive Best of Many Stacked Error Reduction

Data Metamodel Metamodel Metamodel Stacked vs.

Error Error Error Best of Many

Random250 691 338 281 17%

Random1000 589 285 230 20%

Random4000 973 245 192 22%

LHS250 646 330 260 21%

LHS1000 696 296 222 25%

LHS4000 848 243 219 10%

Sobol250 761 371 282 24%

Sobol1000 825 321 230 28%

Sobol4000 704 234 161 32%

metamodel composed of stacked regressors has a 10% average error reduction compared to

the best single regressor, and in the best case, it achieves a 32% average error reduction. This

analysis shows that regressor stacking can lead to a significantly more accurate metamodel

for our cybersecurity model compared to simply using a single regressor that is the best

among many candidate regressors.

4.3.3 Uncertainty Quantification: Determination of Optimal Removal Rate

Assume that a defender has the ability to remove nodes from the botnet at a specific rate,

but a faster rate costs the defender more than a slower rate. That may be the case when

the defender can implement more effective but more expensive countermeasures to respond

to the attack. The defender may wish to know how quickly the botnet can be expected to

grow given different removal rates, and uncertainty in the other input parameters.

We conducted an experiment in which we used our stacked metamodel trained on the

dataset consisting of four thousand Sobol samples. For each experiment, we fixed the value of

the RateActiveBotRemoved variable. We then generated ten thousand Sobol samples for the

other input variables in the ranges given by Table 4.2, and ran the regressor with those inputs

to observe the predicted botnet size given the conditions described by the input variables.
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Figure 4.6: Comparison of regressors trained on data obtained from random sampling,
Latin hypercube sampling, and Sobol sequence sampling, respectively.

For each value of RateActiveBotRemoved we tested, we found the average botnet size, the

95th percentile, the 99th percentile, and the largest recorded botnet. That information can

help a defender determine the slowest permissible removal rate given uncertainty in the input

parameters. The results of our analysis can be found in Table 4.4.

4.3.4 Sensitivity Analysis

We performed a sensitivity analysis to determine the degree to which model inputs impact

the value of the output. Traditional SA techniques often cannot be applied directly to the

base model because of the long model run times. To overcome that issue, we used several

different SA techniques and compared the results to determine the highly sensitive and highly

insensitive model inputs. We conducted sensitivity analysis through the Morris method, the

feature importance method, and the Sobol method.

The results of the analysis can be found in Table 4.5. Each of the three methods has

two columns; the left column gives the score calculated by the method (M∗
µ for the Morris

method, increase in metamodel error rate for the feature importance method, and the total
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Table 4.4: Estimated botnet size given removal rate.

Removal Rate Average 95% 99% Largest

0.05 170 614 2436 9277

0.04 264 984 3861 11568

0.03 493 1970 6330 30004

0.02 1000 4229 10033 31364

0.01 1661 7206 27029 35593

0.001 2163 8594 27573 48152

0.0001 2207 8650 27965 48152

Table 4.5: Input variables ranked from most to least sensitive by taking the average of the
rankings provided by the Morris, feature importance, and Sobol methods.

Input Name Morris F. I. Sobol Combined

µ∗ Rank Error Rank Total Rank Avg. Std.

Ord. Ind. Rank Dev.

ROfAttack 3620 1 355 1 3.54 1 1 0

RActiveBRemoved 2648 3 303 3 3.53 2 2.67 0.58

PPropagationB 2492 4 307 2 1.25 5 3.67 1.53

PInstall1stInfection 2675 2 74 7 1.20 6 5 2.65

RBWakens 1311 8 120 4 1.69 4 5.33 2.31

PConnectToPeers 2041 6 13 9 1.83 3 6 3

RInactiveBRemoved 2373 5 77 6 1.09 10 7 2.65

RBSleeps 0 11 103 5 1.13 7 7.67 3.06

PSecondaryInjection 1979 7 74 8 1.09 9 8 1

RSecondaryInjection 1113 9 -20 11 1.13 8 9.33 1.53

RConnectBToPeers 1073 10 -19 10 1.06 11 10.33 0.58

order indices for the Sobol method).5 Finally, in the rightmost two columns, we show the

average ranking across the three methods for each input variable and the standard deviation.

We will comment on the results of each SA method in turn, and then discuss how they may

be interpreted when taken together.

First, the Morris method returns a µ∗ value for each parameter, and since higher values

indicate higher sensitivities, we can rank the input parameters relative to one another by

using this value. The Morris method indicates that the model output is most sensitive to

5The µ∗ values and the feature importance errors were rounded to the nearest integer, and all other values
in the table were rounded to the nearest hundredth.
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the RateOfAttack input variable, and least sensitive to the RateBotSleeps variable.

Second, the feature importance method determines how much the average error of the

regressor’s prediction increases (or conversely, how much its accuracy decreases) when a

particular input variable’s value is distorted with noise. The regressor is least accurate

when the RateOfAttack input variable’s value is corrupted with noise, indicating that

variable’s importance. The negative error calculated for the RateSecondaryInjection and

RateConnectBotToPeers input variables indicates that the regressor does not make much

use of these values when performing the regression. A modeler may therefore choose to

ignore the uncertainty in the values of these variables.

Third, the Sobol method calculates total-order indices for the input variables, with higher

values indicating more sensitivity. We can see that the Sobol method is in agreement with

the other two methods in finding that the model output is most sensitive to the value of the

RateOfAttack variable. The output is also quite sensitive to the RateActiveBotRemoved

variable.

Finally, when they are taken together, it can be seen that there is broad agreement among

the three methods in their ranking of the inputs. In Table 4.8, we show the combined

average rank for each input, which we calculated by summing the input variable’s sensitivity

ranks as determined by the three SA methods and dividing by the number of SA methods.

We also calculated the standard deviation of the three rankings; a low standard deviation

shows that the methods are in agreement about the sensitivity rank of an input variable,

while a high standard deviation shows disagreement. For example, each method ranked the

RateOfAttack variable as the most sensitive, so it is given an average rank of (1+1+1)/3 = 1

and a standard deviation of 0, which shows perfect agreement. On the other hand, the three

methods disagreed the most on the relative sensitivity ranking of the RateBotSleeps variable.

The Morris method ranked it as the least sensitive, while the feature importance method

ranked it as the fifth most sensitive, and the Sobol method ranked it as the seventh most

sensitive, for a combined average rank of (11 + 5 + 7)/3 = 7.67, and a standard deviation

of 3.06. In the absence of ground truth from the base model, it is encouraging to find that

multiple SA methods largely agree on the rankings. Furthermore, multiple SA methods can

be quickly used on a metamodel once built, so this approach is feasible.
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Figure 4.7: Attack Execution Graph of the ADVISE AMI IDS test case model.

4.4 AMI TEST CASE

The next test case we use to demonstrate the approach is built around a model constructed

using the ADVISE formalism [25] to compare the effectiveness of different intrusion detection

systems (IDSes) in an advanced metering infrastructure (AMI) deployment. The ADVISE

model is composed of an adversary profile and an Attack Execution Graph (AEG) (see

Figure 4.7), which contains a number of attack steps that the adversary may chain together

to perform a full attack on the system, and the system variables that serve as preconditions

and postconditions of the attack step. The model’s output metric is the monetary damage

done to the utility as a result of the adversary’s attack, given the presence of a particular IDS

in the system. A system architect can use the model to help him or her make an informed

choice among the available IDS options. The description of the model was first published

in [33], while [26] provides a more in-depth look at the model. Please see those publications

for full details.
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Table 4.6: List of inputs used in the ADVISE AMI IDS case study.

Variable Name Domain
Adversary {Insider, Cstmr., Nat. St., Terrorist}
IDS {None, Central, Dedicated, Embedded}
IDS Multiplier [0.0005, 0.5]
Payoff Scalers (5 total) [0.2, 2]
Cost Scalers (10 total) [0.2, 2]

We consider 18 model input variables in our analysis. The variables are listed in Table 4.6.

The first input variable determines the adversary type: the adversary may be a disgruntled

insider employee, a customer who attempts to steal power, a stealthy and well-funded nation-

state, or a publicity-seeking terrorist organization. The second input variable indicates the

IDS present in the AMI: either no IDS is present, or a centralized, dedicated, or embedded

IDS is present. An IDS can lessen the probability that an attacker will successfully complete

a particular attack step in the model, or increase the cost of attempting that attack step.

The third input variable determines by how much the probability of successfully completing

the attack step is reduced by the IDS. The value is not known precisely, so we consider a

range of values in our evaluation. The values of the next five input variables scale the payoff

of each of the adversary’s five goals. We do not know precisely how much an adversary values

achieving a particular goal, so in our evaluation we establish a baseline value for each goal,

and each of these values may be scaled by its respective payoff scaler. Similarly, we use ten

cost scalers in the evaluation to scale the baseline estimated cost of attempting an attack

step. The baseline values and value ranges for all the input variables were drawn from [26].

In this analysis, we are primarily interested in answering two questions. First, we would

like to use sensitivity analysis to rank the contribution of each input variable to the output

uncertainty. Armed with that knowledge, a modeler can focus his or her limited time and

resources on reducing the uncertainty of the most impactful input variables. Second, we

would like to know the degree to which the system architect’s choice of IDS is sensitive

to the uncertainty in the IDS effectiveness multiplier, the particular adversary goal payoff

estimates, and the attack step cost estimates in the model. SA and UQ will help us answer

those questions.
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4.4.1 Variation: One-Hot Encoding vs. Splitting

The stacked metamodel approach we described earlier in this chapter implicitly assumes

that all the input variables will have quantitative values. However, the AMI model in our

test case has two qualitative (categorical) inputs: the IDS type and the adversary type. We

had to carefully consider how to use the qualitative inputs, which required us to adapt the

approach. We chose to evaluate two methods to handle the case of a mix of quantitative and

qualitative inputs.

The first, the one-hot encoding approach, was inspired by a technique commonly used in

ML applications for representing categorical data. With one-hot encoding, the categorical

input is removed, and a new binary variable for each category value is added. Thus, using the

test case model as an example, the input variable representing the IDS type (which can take

one of four values: None, Centralized, Dedicated, or Embedded) is removed and replaced with

four new binary input variables, one for each value the old input could take. Only one of the

four newly-introduced binary input variables will be true at any one time. The metamodel

is trained once the dataset has been processed by the one-hot encoding technique.

The second approach, which we call the split approach, is to split the training dataset

such that there is a separate partition for each possible combination of qualitative values,

and then to train a metamodel for each separate partition. With the split approach, the

training data from the AMI test case model we consider would be split into 16 partitions,

because there are two qualitative inputs that can each take one of four values IDS ×ADV ,

where

IDS = {None, Centralized,Dedicated, Embedded} (4.1)

and

ADV = {Customer, Insider,NationState, Terrorist} (4.2)

Then a new metamodel would be trained for each dataset, for a total of 16 different meta-

models. During testing or use, inputs would be similarly divided and processed by the

corresponding metamodel.

The two approaches have different strengths. The one-hot encoding stacked approach uses

all of the available data to train the metamodel, while the split-stacked approach can use
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only a fraction of the data (about one-sixteenth of the data for the AMI test case model)

to train any one of the split metamodels. The ability to utilize all of the data is a strength

for the one-hot encoding stacked approach, especially in situations like ours in which it is

difficult and time-consuming to obtain additional training data. On the other hand, training

a separate metamodel for each data partition may simplify the regression problem. Some

machine learning techniques may perform better if trained on a smaller dataset that contains

no categorical data. It is not clear a priori which of the two approaches will produce the

most accurate results, so we compare them in our evaluation.

4.4.2 Analysis

To be effective, a metamodel must (a) accurately emulate the behavior of the base model,

(b) be significantly faster than the base model, and (c) be amenable to SA and UQ techniques.

In this section, we will show that the metamodel we have constructed has these properties.

In addition, we shall show that the Stacked metamodel emulates the base model much more

closely than the Best of Many technique.

We used the scikit-learn Python package [64] to build the regressors, and the SALib

Python package to perform Sobol sensitivity analysis [65]. All experiments were performed

on a computer with an Intel i7-5829K processor and 32 GB of RAM.

4.4.3 Accuracy

Recall that each metamodel is trying to predict, as closely as possible, what the base

model would output given the same input. The base model, in turn, gives a forecast of the

monetary damage a particular adversary would inflict on an AMI protected by a particular

kind of IDS. The average error in the metamodel represents the average difference between

the metamodel’s prediction and the base model’s actual output. We had a test set consisting

of 1000 randomly generated inputs (in the range given in Table 4.6) and the corresponding

outputs from the base model. The smallest value among the outputs was 0, and the largest

was 11,608,170. Table 4.7 shows the average error of the different metamodels we trained.

The three metamodel types we trained were the Naive metamodel, the Best of Many meta-
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Table 4.7: Average Prediction Error Given Training Data and Regressor Type.

Training Naive Best of Many Stacked Many

Data Num. Metamodel One-Hot Split One-Hot Split

Samples

250 1,594,770 243,531 71,798 249,163 69577

1,000 1,369,770 187,585 60,614 113,093 46,364

4,000 1,379,670 108,962 60,121 79,006 45,675

model, and the Stacked metamodel. We had two versions each of the Best of Many and

Stacked metamodels: one trained with the dataset processed by one-hot encoding, and one

trained with the split dataset, as described in Section 4.4.1. We trained three metamodels

of each type with datasets containing 250, 1000, and 4000 samples, respectively.

As expected, the Naive metamodels perform poorly (all of the other, more sophisticated

metamodels are substantially more accurate) and demonstrate little improvement with ad-

ditional training samples. While the Stacked metamodels trained with 250 samples perform

about the same as the Best of Many metamodels trained with 250 samples, the other Stacked

metamodels are more accurate than their corresponding Best of Many metamodels. That

result suggests that the ensembles composed of stacked regressors are no worse, and, if given

enough training samples, are substantially better than the best of the collection of regressors

by itself, demonstrating the utility of the stacking/filtering approach given in [4]. Finally, the

splitting approach yielded substantially more accurate metamodels than one-hot encoding

for our AMI model. All of the split stacked metamodels had an average error that was less

than 1% of the observed range of outputs (previously found to be 11,608,170), which should

be sufficiently accurate for our sensitivity analysis and uncertainty quantification.

4.4.4 Speed

We rounded all reported times to the nearest second. We ran the base model one thousand

times with random inputs, which took 6733 seconds (a little under 2 hours). We also ran

the split stacked metamodel one thousand times with the same random inputs, and that

took a total of 38 seconds. The metamodel is thus more than 100 times faster than the base
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model. Training of the split stacked metamodel with a training dataset consisting of 4000

random samples took 14 minutes and 31 seconds. The code was not parallelized, but both

the metamodel training and the execution could easily be parallelized for additional gains in

speed. For example, each regressor at a particular level can be trained independently of the

others at the same level, and each regressor at a particular level can be executed to obtain

its prediction independently of the others at the same level.

4.4.5 Sensitivity Analysis

We conducted a Sobol sensitivity analysis in an effort to determine how much the uncer-

tainty in each input variable contributes to the uncertainty of the output. We performed

the sensitivity analysis on both the base model and the split stacked metamodel trained

with the dataset containing 4000 random samples. The Sobol sensitivity analysis used 48000

samples. It took over 90 hours to complete on the base model, and approximately 30 minutes

to complete on the trained metamodel.

The results of the sensitivity analysis may be found in Table 4.8. The table shows the

total order index calculated by the Sobol sensitivity analysis for each input variable. That

index measures the contribution of the uncertainty of the input variable on the output. We

also show the ranking of the importance of each input variable from most sensitive to least

as measured by the total order index. We show the total order index and ranking for both

the metamodel and the base model. We also show the rank error : the absolute value of

the difference in SA ranking between the base model and the metamodel. Only one input

variable (CostScalar6 ) has a rank error of more than 2. On average the metamodel’s ranking

differed from the base model’s ranking by only 1.25 places. The metamodel also correctly

determined the three most sensitive and three least sensitive input variables.

The results show that the metamodel is a very good surrogate for the base model, as (a)

it is much faster, and (b) a sensitivity analysis applied to the metamodel produces results

that are very similar to the results obtained by a sensitivity analysis applied directly to the

base model.

A modeler may use the rankings provided by the SA to focus his or her attention on
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Table 4.8: AMI Sensitivity Analysis.

Input Name Metamodel Base Model Rank

Sobol SA Method Sobol SA Method Error

Total Rank Total Rank

Ord. Ind. Ord. Ind.

CostScalar1 1.069 1 1.221 1 0

CostScalar4 1.055 2 1.189 2 0

CostScalar9 1.047 3 1.180 3 0

PayoffScalar5 0.949 5 1.174 4 1

CostScalar5 0.937 6 1.163 5 1

PayoffScalar1 0.913 7 1.149 6 1

PayoffScalar3 0.910 8 1.140 7 1

CostScalar7 0.874 10 1.102 8 2

PayoffScalar2 0.848 11 1.083 9 2

CostScalar10 0.890 9 1.075 10 1

PayoffScalar4 0.841 12 1.036 11 1

CostScalar8 0.838 13 1.033 12 1

CostScalar6 1.030 4 1.0294 13 9

IDSMultiplier 0.672 14 0.6933 14 0

CostScalar2 0.563 15 0.609 15 0

CostScalar3 0.242 16 0.332 16 0

reducing the uncertainty of the most sensitive input variables (Cost Scalars 1, 4, and 9)

while spending less time on the least sensitive input variables (the IDSMultiplier, and Cost

Scalars 2 and 3).

4.4.6 Uncertainty Quantification

Recall that we are interested in determining whether the choice of IDS is sensitive to the

uncertainty in the model input variables. To help answer this question, we ran 80,000 random

samples through the metamodel (20,000 for each IDS option) to thoroughly explore the input

space. The results of our uncertainty quantification analysis are summarized in Table 4.9,

which shows the average, 95th percentile, and 99th percentile damage calculated by the

metamodel for each IDS option. The results confirm that any IDS provides substantially

better protection than none, even when the uncertainty in the input variables is factored

in. The modeler can use these results to help select the correct IDS for an AMI, given the

modeler’s risk tolerance and the costs of acquisition and maintenance.
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Table 4.9: Estimated Monetary Damage Given IDS.

IDS Type Average 95% 99%

None $3,076,859 $11,608,170 $11,608,169

Centralized $447,718 $3,036,137 $3,040,767

Distributed $255,162 $1,019,546 $1,019,546

Embedded $325,785 $1,019,546 $1,019,546

4.5 PRISM TEST CASES

In this section, we evaluate seven different test cases to evaluate how well the stacking

technique generalizes. We used the botnet model as a base case. In addition, we used six

published PRISM [66] models which, to the best of our knowledge, have never been used

as subjects of metamodeling. We examined the publicly available PRISM case studies6,

and from that list we selected those that had many model input variables and were non-

trivial. Since we are especially interested in the use of metamodeling for sensitivity analysis,

uncertainty quantification, and optimization, which are commonly used when the model

has many uncertain input variables, we selected case studies that had many model input

variables. We chose to use published models, rather than create synthetic models, to help

evaluate the real-world effectiveness of the metamodeling techniques. We are also pleased

that these models cover a variety of domains: cybsecurity, reliability, chemistry, and biology.

We shall briefly describe each test case in turn.

Botnet The Botnet model is a Mobius model described in detail in [53], and was used as

the sole test case in [4]. The model can be used to study the growth of a botnet over the

course of a week given certain conditions, such as the probability of an uninfected computer

becoming infected and the rate of removal of bots from the net. The values of eleven input

variables are uncertain in this model. The input variables, and the range of values that they

can take in our evaluation, can be found in Table 4.2.

Circadian The Circadian Clock model [67], based on the abstract model found in [68]

and [69], is a CTMC PRISM model. Given rates for transcription, translation, binding,

6Available here: https://www.prismmodelchecker.org/casestudies/
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Table 4.10: List of inputs used in the Circadian test case and the corresponding ranges of
values.

Variable Name Domain

T [0, 200]

transc da [45, 55]

transc da a [450, 550]

transc dr [0.009, 0.011]

transc dr a [45, 55]

transl a [45, 55]

transl r [4.5, 5.5]

bind a [0.9, 1.1]

bind r [0.9, 1.1]

deactivate [1.8, 2.2]

rel a [45, 55]

rel r [90, 110]

deg a [0.9, 1.1]

deg c [0.9, 1.1]

deg r [0.18, 0.22]

deg ma [9, 11]

deg mr [0.45, 0.55]

release, and degradation, for activator and repressor gene and mRNA the model calculates

the amount of activator protein at a given time. There are 17 input variables in this model.

The input variables, and the range of values that they can take in our evaluation, can be

found in Table 4.10.

Cluster The Workstation Cluster model[70] is a PRISM model from [71]. It can be used

to calculate the quality of service (QoS) of a workstation cluster arranged in a star topology.

The workstations are grouped into sub-clusters connected by a switch, the switches are

connected by a central backbone. The components of the cluster fail and are repaired at

specific rates. The values of thirteen input variables are uncertain in this model. The

majority of these uncertain input variables are various failure and repair rates. The input

variables, and the range of values that they can take can be found in Table 4.11.
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Table 4.11: List of inputs used in the Cluster test case and the corresponding ranges of
values.

Variable Name Domain

ws fail [0.0002, 0.02]

switch fail [0.000025, 0.0025]

line fail [0.00002, 0.002]

startLeft [5, 15]

startRight [5, 15]

startToLeft [5, 15]

startToRight [5, 15]

startLine [5, 15]

repairLeft [1, 3]

repairRight [1, 3]

repairToLeft [0.125, 0.375]

repairToRight [0.125, 0.375]

repairLine [0.0625, 0.1875]

Cyclin The Cyclin model [72] is a CTMC PRISM model based on a formal specification

from [73]. It models cell cycle control in eukaryotes, given a specific quantity of various

molecules and various base reaction rates. This model contains 14 input variables. The

input variables, and the range of values that they can take in our evaluation, can be found

in Table 4.12.

Embedded The Embedded System model [74] is a CTMC PRISM model of an embedded

control system based on a model description from [75]. The embedded system consists of

three sensors, a sensor input processor, a main processor, an output processor, two actuators,

and a bus that connects the processors. The components have a probability of failing, either

permenantly or in a transient manner. Some failures can be repaired by a system reboot.

This model can be used to calculate reliability and availability metrics. There are six input

variables in this model. The input variables, and the range of values that they can take, can

be found in Table 4.13.

Kanban The Kanban Manufacturing System model [76] is a CTMC PRISM model based
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Table 4.12: List of inputs used in the Cyclin test case and the corresponding ranges of
values.

Variable Domain

Name

N [2, 4]

t [0, 60]

k [0, 4]

R1 [0.0045, 0.055]

R2 [0.0009, 0.0011]

R3 [0.0027, 0.0033]

R4 [0.45, 0.55]

R5 [0.27, 0.33]

R6 [0.0045, 0.0055]

R7 [0.0081, 0.0099]

R8 [0.0081, 0.0099]

R9 [0.009, 0.011]

R10 [0.0153, 0.0187]

R11 [0.018, 0.022]

Table 4.13: List of inputs used in the Embedded test case and the corresponding ranges of
values. The values form intervals of time. The value 1 represents once a second. For
example, lambda p ranges from once every two years to once every month, and tau ranges
from once every 90 seconds to once every 30 seconds.

Variable Domain

Name

lambda p [1/(2*365*24*60*60), 1/(30*24*60*60)]

lambda s [1/(90*24*60*60), 1/(7*24*60*60)]

lambda a [1/(4*30*24*60*60), 1/(7*24*60*60)]

tau [1/90, 1/30]

delta f [1/(2*24*60), 1/(8*60*60)]

delta r [1/(5*60), 1]
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Table 4.14: List of inputs used in the Kanban test case and the corresponding ranges of
values.

Variable Name Domain

t [1, 5]

in1 [0.5, 1.5]

out4 [0.45, 1.35]

synch123 [0.2, 0.6]

synch234 [0.25, 0.75]

back [0.15, 0.45]

redo1 [0.18, 0.54]

redo2 [0.21, 0.63]

redo3 [0.195, 0.585]

redo4 [0.165, 0.495]

ok1 [0.42, 1.26]

ok2 [0.46, 1.38]

ok3 [0.455, 1.365]

ok4 [0.385, 1.155]

on a model found in [77]. The model can be used to estimate the throughput of the man-

ufacturing system. There are fourteen input variables in this model. The input variables,

and the range of values that they can take in our evaluation, can be found in Table 4.14.

Molecules The Simple Molecular Reactions model [78] is a CTMC PRISM model. Given

a particular number of Na, Cl, and K molecules, various reaction rates, and length of time, it

can calculate the expected percentage of Na/K molecules. There are nine input variables in

this model. The input variables, and the range of values that they can take in our evaluation,

can be found in Table 4.15.

4.5.1 Approach

In addition to evaluating the generalizability of the stacking approach, in this section we

want to evaluate different committees and filter types to determine the ones that produce

the most accurate metamodels. Recall that in prior sections we evaluated only one type of

73



Table 4.15: List of inputs used in the Molecules test case and the corresponding ranges of
values.

Variable Name Domain

T [0, 0.003]

i [0, 10]

N1, N2, N3 [10, 100]

e1rate [90, 110]

e2rate [9, 11]

e3rate [27, 33]

e4rate [18, 22]

committee and one type of filter. There are two main design decisions in metamodeling:

committee composition and the filter approach. In general, one may choose any set of

regressors as members of the two committees. However, one must of course choose a specific

set of regressors. This is an important choice, since the overall accuracy of the metamodel

heavily depends on which regressors are members of the two committees. Only one kind of

committee was evaluated earlier in the chapter, we now evaluate five different committees in

this section with a variety of properties.

Similarly, in general, one may use the predictions of each regressor in the committee,

regardless of the accuracy of the regressor. However, we have experimentally found that it

can be useful to filter predictions from inaccurate regressors. Only one kind of filter was

evaluated earlier in this chapter, however, filtering can be accomplished in a variety of ways.

We now evaluate variants on two different types of filters.

Committees We evaluate five different committees in this section. We hypothesize that

larger committees would outperform smaller committees, and committees with more hetero-

geneity would outperform those with less, and wish to test the hypothesis. To that end, we

evaluate committees of different sizes, and with varying degrees of heterogeneity in member-

ship. We evaluate a large committee with many heterogeneous regressors (Committee 0),

a couple of small committees with relatively homogeneous members (Committees 1 and 2,

which only contain different kinds of random forests and multilayer perceptrons, respectively,
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as members), a medium-sized committee with heterogeneous members (Committee 3), and a

small committee with heterogeneous members (Committee 4). What follows is a description

of each committee. A summary of the properties of the committees can be found in Table

4.16.

0. Committee 0: The regressors in this committee are the same as the regressors used

in the two earlier test cases that we previously described in this chapter. It is also

the largest committee we evaluate, with 25 members. The members are 1 random

forest regressor, 8 different multilayer perceptrons (each with a different combination

of solvers and activation functions), 4 different Gradient Boosting Regressors (each with

a different loss function), a RidgeCV regressor, 10 different KNN regressors (each vary

by the number of neighbors and whether the neighbor votes are weighted uniformly or

by distance), a Gaussian Process regressor, and a stochastic gradient descent regressor.

1. Committee 1: All of the regressors in this committee are variants of the random forest

architecture with different hyperparameters. There are 4 regressors in this committee,

and each varies by the number of trees in the forest (either 10 or 100) and by the

criterion used (either mean squared error or mean absolute error).

2. Committee 2: All of the regressors in this committee are variants of the multilayer

perceptron architecture with different hyperparameters. There are 6 regressors in this

committee, and each has a unique combination of solver (either adam, sgd, or lbfgs)

and activation function (either logistic or tanh).

3. Committee 3: This committee is our representative example of a committee with a

moderate number of regressors. There are six regressors in this committee: one random

forest, one multilayer perceptron, one support vector machine, one Gaussian process

regressor, one KNN regressor, one Gradient Boosting regressor, and one stochastic

gradient descent regressor.

4. Committee 4: This committee is our representative example of a small committee of

just three regressors, each having a different architecture. This committee contains a

random forest, a multilayer perceptron, and an Gaussian process regressor.
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Table 4.16: Properties of committees.

Committee Regressor Mix Size of

Index (Heterogeneous or Committee

Homogeneous) (# members)

0 Heterogeneous Largest (25)

1 Heterogeneous Small (4)

2 Homogeneous Moderate (6)

3 Homogeneous Moderate (6)

4 Heterogeneous Small (3)

Filters We evaluate two different types of filters in this section: Top k and Within n

Percent. The Top k filter only allows the predictions from the k most accurate regressors to

pass through. We consider k = {1, 2, 3}. The Within n Percent filter will allow predictions

from all regressors through as long as the regressor’s error is no worse than n percent worse

than the best performing regressor. We consider n = {10%, 25%, 50%, 100%}. With this

filter, it is not known a priori how many regressors will be filtered - theoretically, all of the

regressor predictions could be filtered (except the predictions from the best regressor), or all

of them could pass through the filter. As a control, we also construct metamodels with no

filters.

4.5.2 Results

In this evaluation, we first determine the most effective combination of committee and filter

to use for the metamodel, and rank the committees and filter types by their effectiveness.

Then, we calculate the accuracy of the metamodel on each of the test cases. We also

investigate by how much the accuracy of the metamodels increase with more training data.

Finally, we evaluate speed of the metamodel compared to the base models and the time it

takes to train the metamodels.

Before we begin the evaluation, it is important to explain how the accuracy of the meta-

models is calculated. For each of the test case base models we created a dataset of one

thousand randomly generated input vectors and executed the base model with those vectors
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Table 4.17: Most accurate committee/filter combination for each test case. Note:
Properties of committees by given index found in Table 4.16.

Base Model Committee Filter

Index Index

Botnet 0 Within n Percent, n=50%

Circadian 1 No filter

Cluster 0 Within n Percent, n=25%

Cyclin 1 Within n Percent, n=25%

Embedded 0 Within n Percent, n=10%

Kanban 0 Within n Percent, n=50%

Molecules 0 Within n Percent, n=10%

to obtain the corresponding outputs to create a “ground truth” test dataset. The test dataset

was distinct from the training dataset. The trained metamodel is executed with all of the

input vectors from the test dataset, and the metamodel prediction for each input vector is

recorded. We then calculate the absolute error for each vector by taking the absolute value

of the difference between the metamodel’s prediction and the ground truth model output.

We sum all of the absolute errors and then divide by the number of input vectors in the test

dataset to obtain the mean absolute error. Finally, to facilitate comparison between different

the different test cases (whose outputs have very different ranges of values), we normalize

the errors by dividing the mean absolute error by the range of the base model’s outputs in

the test dataset.

4.5.3 Accuracy Given Different Committee Compositions and Filters

We evaluate five different committee types and eight different filters, so there are a total

of 8 × 5 = 40 different combinations of committee and filter. The most accurate stacked

metamodel committee/filter combination for each test case we consider is given in Table

4.17. We see that Committee 0, the largest and most diverse of the committees, is the

best performing committee for five of the seven test cases, and that Committee 1, which is

composed of four different random forest regressors, is the best performing committee for
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the remaining two test cases. The best performing filters were all variants of the Within

n Percent filter, with the exception of the Circadian test case, where not having a filter

outperformed all of the other filters.

It would be useful to know which committee/filter combination works best in general.

Table 4.17 shows that the best committee/filter combination for one base model will not be

the best combination for another base model. One may of course try all forty combinations

and select the best for their particular model. It does not take long to train a metamodel,

so it is feasible to try many different variants. However, it is illuminating to know which

committee and filter combinations work well across many different kinds of models. To

determine this, we ranked each committee/filter combination for each of our seven test cases

from 1 to 40, from most accurate to least. We then calculated the average rank for each

committee/filter combination by summing all of the individual ranks and then dividing by

the number of test cases. The committee/filter combination with the lowest average rank

would be the most accurate metamodel across the test cases. When we performed that

calculation, we found that Committee 0 (the largest and most heterogeneous committee)

paired with the Within n Percent, n=10% filter was the most accurate combination across

all of the test case models.

It would also be illuminative to rank the committees (each paired with the filter that

maximizes its performance) and filters (each paired with the committee that maximizes its

performance) across the test models, respectively. We shall describe the process to deter-

mine the rank of a committee, a similar process can be used to rank a filter. To rank the

committees, we first calculate the average rank of each combination of the 40 combinations

of committee/filter as described in the paragraph above, and then sort this list from the

smallest value to the largest. We then start at the top of this list and if we see an entry with

a committee we have seen before, we delete that entry. When we reach the end of the list we

will have a ranked list of committees. By ranking in this way, we compare each committee

when paired with the filter that maximizes its performance.

The ranking of the committees and filters can be found in Table 4.18. From the table it is

clear that the stacking approach benefits from having committees with many heterogeneous

members. Committees with more homogeneity (e.g. Committee 1 and 2) and small com-
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Table 4.18: Committees and filters ranked by accuracy.

Rank Committee Committee

Index Description

1 0 Large

2 3 Medium

3 1 4 RF

4 4 MLP, RF, GPR

5 2 6 MLP

Rank Filter

Description

1 Within n Percent, n=10%

2 Within n Percent, n=25%

3 Within n Percent, n=50%

4 No filter

5 Within n Percent, n=100%

6 Top k, k=3

7 Top k, k=2

8 Top k, k=1

mittees (e.g. Committee 4) do not perform as well in general (though, as we saw previously

in Table 4.17, they may perform better than the alternatives on specific models). The re-

sults validate the intuition that an ensemble with many diverse members will outperform an

smaller ensemble with fewer, more homogeneous members.

Table 4.18 also provides striking results for the filter. Clearly, the Within n Percent filter

dramatically outperformed the Top k filter. In fact, the Top k filter was worse than having

no filter at all. It is interesting that of the filters we considered, the more restrictive Within

n Percent filters outperformed the less restrictive filters of the same type, while the less

restrictive Top k filters outperformed the more restrictive. We hypothesize that the Top k

filters were too restrictive to allow for the diversity necessary for a well-performing ensemble.

4.5.4 Metamodel Accuracy: Naive vs. Best of Many vs. Stacked

Up to this point, we have only evaluated the accuracy of different variants of the stacked

metamodel relative to one another. It is also important to know (a) the accuracy of the

stacked metamodel compared to other metamodels, and (b) the absolute accuracy of the

model.

First, it is important to know whether sophisticated ML techniques perform better than

very naive methods. To help make this comparison, we created a Naive metamodel, which
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consists of a regressor that predicts that the output will be the average of the outputs in the

training data, regardless of the input (as we described earlier in the chapter). More sophis-

ticated metamodels must show that they are substantially better than this naive metamodel

to demonstrate utility.

Table 4.19 reports the errors of the Naive, Best of Many, and Stacked metamodels. The

errors we report are the mean absolute error normalized by the range of observed test values.

We normalize the errors to make it possible to compare the accuracy of the metamodels across

test cases. We chose to use the stacked metamodel architecture that was most suited for each

individual test case (e.g. the metamodel variants listed in Table 4.17), rather than use the

same committee/filter combination for every test case. All metamodels were trained with a

datasets that contained 1000 random inputs each.

By examining the table we see that the Best of Many and Stacked metamodels always

substantially outperform the Naive metamodel, as we had hoped. Further, for five of the

seven test cases, the stacked metamodel was more than 5% more accurate than the Best of

Many metamodel, and it was never less accurate. The stacked metamodels were, on average,

8.2% more accurate than the base models. These numbers demonstrate the effectiveness of

the stacked approach compared to the current state-of-the-practice Best of Many approach,

and validates its general applicability.

A metamodel must be accurate enough for it to be a practical tool for modelers. However,

it is difficult to know how accurate a metamodel must be to be a good emulator. One of

the primary challenges in determining an acceptable accuracy threshold is that a modeler

may use metamodels for different reasons, and different use cases may require more accuracy

than others. We leave to future work an investigation to determine the acceptable accuracy

threshold for a variety of common applications of metamodels.

4.5.5 Accuracy Given Different Training Sample Dataset Sizes

It can be time consuming to collect the training data because the base model runs slowly.

To be time efficient it would be best to collect as little training data as possible while

maintaining reasonable metamodel accuracy. For this reason we investigated the impact of
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Table 4.19: Average metamodel prediction error. The error is the mean absolute error
normalized by the range of test values.

Metamodel Naive Best of Many Stacked Error Reduction

Type Metamodel Metamodel Metamodel Stacked vs.

Error Error Error Best of Many

Botnet 0.00161 0.00111 0.00100 10.4%

Circadian 0.08461 0.05658 0.05648 0.2%

Cluster 0.03322 0.01181 0.01141 3.4%

Cyclin 0.14129 0.02369 0.02111 10.9%

Embedded 0.03726 0.00459 0.00432 5.9%

Kanban 0.17832 0.02798 0.02508 10.3%

Molecules 0.06610 0.03899 0.03262 16.3%

the size of the training set on the accuracy of the metamodel. We trained stacked metamodels

with Committee 0 (the largest and most heterogeneous committee) and the Within n percent,

n=10% filter with datasets that contained 250, 500, 750, and 1000 input vectors, respectively,

and evaluated their accuracy. The results of our investigation are contained in Table 4.20. As

expected, the metamodels trained with more training data are more accurate than those that

were trained with less. However, it is encouraging to see how that even those metamodels

that were trained with just 250 training samples are often reasonably accurate compared to

the metamodels trained with 1000 training samples.

4.5.6 Speed Comparison

We performed these speed experiments on an Ubuntu VM running on a laptop with an

Intel i7-7500U processor and 8 GB of RAM. For each test case, both the base model and

the metamodel were run with the same 200 randomly generated inputs, and the time it took

to execute with those inputs was recorded. In addition, we recorded the time it took to

train the metamodel for each case. We used the same committee/filter combination for each

metamodel in these experiments to make it easier to compare across test cases. Committee

0 paired with the Within n Percent, n=10% filter was the combination we chose, for two

reasons. First, we had previously determined that that combination was, on average, the
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Table 4.20: Mean absolute error normalized by range of stacked metamodel trained with
training datasets of different sizes.

Metamodel 250 Training 500 Training 750 Training 1000 Training

Type Samples Samples Samples Samples

Botnet 0.03817 0.03227 0.01816 0.01626

Circadian 0.07011 0.064872 0.06065 0.05707

Cluster 0.02151 0.01631 0.01562 0.01349

Cyclin 0.05285 0.04281 0.03048 0.02606

Embedded 0.02445 0.01547 0.01271 0.01126

Kanban 0.03956 0.03222 0.02956 0.02555

Molecules 0.05672 0.05688 0.05072 0.04750

most accurate across all the test cases. Second, Committee 0 is the largest committee, so

it will likely to take longer to train compared to the other committees, so it is a sort of

“worst-case” training time.

Table 4.21 shows that the metamodel runs faster than the base model by several orders

of magnitude, thousands of times faster. On average it took an hour and twenty minutes to

run the base model with the dataset containing 200 inputs, while it took the metamodels

on average half a second to run the same dataset. The metamodels are almost ten thousand

times faster than their corresponding base model on average. The table also shows that

training the metamodel can be done reasonably quickly, in about two minutes.

4.5.7 Discussion

Our analysis can help modelers who are interested in using metamodeling for their own

models. At a high level, it appears that reasonably accurate metamodels can be created

for a variety of different kinds of models using a variety of different machine learning algo-

rithms. Even relatively slow running complicated ensemble methods run thousands of times

faster than the base model, making feasible analyses that would otherwise be unfeasible if

performed directly on the base model. We recommend that modelers consider the use of

metamodels to help with analyses involving slow-running models that have many uncertain
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Table 4.21: Base model vs. metamodel execution speed comparison and metamodel
training time (all in seconds).

Name Base Model Metamodel Metamodel

Execution Execution Training

(seconds) (seconds) (seconds)

Botnet 1115.5 0.3 137.4

Circadian 18291.6 0.5 204.7

Cluster 2034.9 0.6 66.4

Cyclin 2668.2 0.5 76.9

Embedded 684.7 0.2 60.6

Kanban 5737.6 0.3 64.5

Molecules 3714.5 1.1 67.1

input variables.

A stacking-based ensemble approach appears to produce more accurate metamodels than

approaches that use a single regressor, even if that regressor is the best among many candi-

date regressors. Our analysis of the seven test cases shows that the best stacking metamodels

were never worse than those metamodels produced by using the Best of Many approach, and

were often significantly better. The accuracy of the metamodel was impacted by the size

and heterogeneity of the constituent committees: more accurate metamodels had larger and

more heterogeneous committees, while less accurate metamodels had smaller and more ho-

mogeneous committees. Judicious use of filters can increase the accuracy the metamodel,

with relatively restrictive versions of the Within n Percent filter being the best we evalu-

ated. Our evaluation shows that it does not take long to train a metamodel if one already

has the training dataset, so it is possible to try a number of different metamodel variants to

see which would work best for that particular dataset. We recommend that modelers using

metamodeling should (1) use stacking rather than the more common Best of Many approach,

(2) use committees that are large and heterogeneous in their stacked metamodels, (3) use a

filter to remove predictions of under performing regressors, and (4) take advantage of how

quickly metamodels can be trained by trying a number of different metamodel variants to

find one that works particularly well for the dataset.
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We found that the accuracy of the metamodel depends in part on the size of the train-

ing dataset: the larger the training dataset, the more accurate the metamodel. However,

the stacked metamodels were reasonably accurate even with little training data. This is

encouraging, because our original motivation for using metamodels was as a replacement for

models that run slowly. Collecting training data can be the most time consuming stage of

the ML-based metamodeling, so it is encouraging that metamodels do not require onerously

large training datasets to be accurate. We recommend that modelers obtain as much training

data as is practical, but to not be discouraged only a small training dataset can be obtained.

A modeler should be aware of the limitation of the approach. If the model being considered

runs too slowly it may not be feasible to collect enough training data to build a reasonably

accurate metamodel. However, if the model being considered runs quickly, it would be better

to do the analysis (whether SA, UQ, optimization, or something else) directly on the model

instead of doing the analysis indirectly with the use of a metamodel, because metamodels

usually don’t perfectly emulate the base model and can introduce errors into the analysis.

For this reason, in some cases it may be beneficial to do a hybrid approach in which a

broad metamodel-based analysis is paired with (and perhaps even guides) a more limited

and narrowly focused analysis on the base model.

4.6 CONCLUSION

We have evaluated the effectiveness of metamodeling on seven real-world published mod-

els. We showed that the metamodels we created can be quite accurate in emulating the

behavior of the base model, and run almost ten thousand times faster on average. Since

the metamodels are so fast relative to the base model, analyses that could take too long

to complete on the base model directly (such as sensitivity analysis, uncertainty quantifica-

tion, and optimization) can be done indirectly with the aid of the metamodel instead in a

reasonable amount of time. Metamodels can be constructed automatically with the aid of

machine learning, minimizing the manual efforts of the modeler. We evaluated a variety of

metamodels, and found that stacked metamodels performed better than the more commonly

used Best of Many metamodels. Of the stacked metamodels, in general metamodels that
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had larger and more diverse committees were more accurate than those that had smaller and

more homogeneous committees. We believe that ML metamodels, like those shown in this

work, are an underused and relatively-unknown tool in the modeler’s toolbox. We hope that

our descriptions and evaluations will encourage their future use in exploring slow-running

state-based quantitative models with many uncertain input variables.
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CHAPTER 5: THE MODELING PROCESS

We have shown how to use an ontology-assisted automatic model generation approach to

ease the burden of making models, we have presented a new formalism called GAMES to

help modelers explicitly model all of the agents that can impact the security of a system, and

we have shown how to use metamodeling to do faster sensitivity analysis and uncertainty

quantification. Each contribution addresses a particular specific modeling need. Not every

modeling effort will require any one of the three contributions. Some models should be

built by hand, not generated automatically with the aid of an ontology. Some models will

only require modeling the adversary or adversary/defender pair, so the GAMES formalism

may not be the right choice for every circumstance. Some models may run fast enough to do

direct sensitivity analysis and uncertainty quantification, making metamodeling unnecessary.

In this chapter, we give more general, higher-level advice that can guide any cybersecurity

modeling effort.

It can be difficult to build realistic models when reality itself can be so complicated.

Recognizing the need for a model is only the first step. Going from a desire for a model to a

useful working model is usually not easy or straightforward. However, there are frameworks

and advice that can make the modeling process smoother that we have learned over years of

building models. Of particular interest, we (1) created a framework that can help direct the

modeling effort, (2) developed a philosophy for cybersecurity metrics that can help modelers

get the most out of their models, and (3) gained experience that can help us to give advice

on how to handle commonly encountered issues in the modeling process.

The chapter is divided into three sections. In the first section, we present a high-level

framework we developed that can guide the cybersecurity modeling process from beginning

to end. In the second section, we discuss one of the most important topics in quantitative

modeling: metrics. We present an overarching philosophy of cybersecurity metrics, show how

the theory of reward-model-based performance variables can be used to construct metrics,

and discuss a variety of practical cybersecurity metrics that can be calculated to aid decision

makers. In the third section, we give practical advice on topics of interesting in the modeling

process. Topics include: collaboration, choosing the right level of abstraction, minimizing
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the effects of uncertainty in the values of the input variables, and increasing confidence in

the model outputs.

5.1 A MODELING FRAMEWORK

We believe that modeling frameworks can make quantitative cyber security modeling easier

and more effective. We have developed our own modeling framework, inspired by years of

experience building models, and informed by the methodologies and approaches of others.

Prominent examples of existing frameworks include the methodology given by Saydjari [79],

the failure mode and effects analysis (FMEA) methodology [80] [81], the Cyber Capability

Maturity Model (C2M2) [82], Hierarchical Holographic Modeling approach (HMM) [83], and

the SAHARA approach [84]. We do not intend this framework to be used as a rigid checklist,

but as an aid that a modeling team may use to inform their efforts to build a model that can

support decision making. What follows is our multistage modeling framework that modelers

can use as a to guide the modeling process.

1. Form a team to construct the model, including modeling experts and subject matter

experts. Subject matter experts should be especially involved in aspects of the mod-

eling that pertain to their expertise, but all team members should seek to learn about

and critique the model in its entirety, to the degree that they are able. Subject matter

experts should not ignore the aspects of the model that fall outside their domain of

expertise. If subject matter experts broaden their scope outside their field of exper-

tise they will both be able help correct mistakes that others make and deepen their

own understanding of how the system works as a whole. Ontology-based automatic

modeling approaches, like the one presented in Chapter 2, can help modelers to lever-

age modeling and subject matter expertise in a scalable and repeatable way, since the

modeling expertise is encoded in an ontology that can be reused and shared.

2. Clearly define the decision the model is supposed to help make and the corresponding

metric or metrics that will help support the decision-making process. When selecting

appropriate metrics the modeler should keep in mind the primary goal(s) of the system

and seek to define metrics that will give insight into how design decisions will impact
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the system’s goal(s). We shall discuss the issue of metrics in greater depth later in the

chapter.

3. Conduct a review to determine what existing data sets, experiments, models of previous

systems, or prior research could be used to help construct the model.

4. With the help of all the experts, develop a model of the system, and all of the enti-

ties that may interact with the system (adversary, defender(s), customers, third-party

partners, etc.). The abilities, motivations, and decision-making process of each entity

that could impact the security of the system should be incorporated into the model.

It may be helpful to make composable submodels, one for each human entity or major

system component, as in the GAMES modeling formalism [3]. Composable submodels

allow domain experts to focus on their own submodel and can make it easier to upgrade

or correct submodels in a clean way. We discussed the GAMES formalism that can be

used to easily model human players in the cybersecurity game in detail in Chapter 3.

5. Obtain any values needed for the input variables of the model, using prior research,

experiments, or data when possible. Otherwise, use reasonable estimates from subject

matter experts for the values. The modeling team should do a sensitivity analysis

to determine the relative importance of the various inputs (i.e. if the model is not

sensitive to the input variable it is less important to obtain a precise value for it). If

the model is sensitive to particular input values and the modeler is not confident in

the values of the input variables then custom experiments or data gathering efforts to

obtain better estimates for the values may be beneficial. If the model runs too slowly

for traditional sensitivity analysis techniques, consider using a faster metamodel-based

approach, like the one shown in Chapter 4, which can make possible analyses that are

otherwise infeasible using standard methods.

6. The modelers should develop a hypothesis (based on their own mental model) of what

results the quantitative model may produce before attempting to obtain metrics from

the model. The hypothesis may be falsified or supported by the model’s execution.

Forming a falsifiable hypothesis is one way to make the cybersecurity modeling process
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more scientific [85].

7. Obtain metric(s) from the model, and validate the metrics. There are a number of

ways the validation can be accomplished. Choose the appropriate validation method

or combination of methods for the task at hand. Some of the common validation

techniques include:

(a) Check to see if the model result matches the modeler’s previously developed hy-

pothesis. If the two do not match, at least one is wrong. Determine why either

the hypothesis was wrong or the model was wrong. If the hypothesis is wrong and

the model is right, it gives the modeler new insight and corrects the modeler’s

mental model which led to the erroneous hypothesis.

(b) Check against prior data, experiments, or research results, if available.

(c) Check against another model built in a different formalism (possibly by the same

modeling team).

(d) Check against models built by other independent teams. If the results do not

match, determine the cause.

(e) Check against experiments carried out in emulation.

(f) Check against experiments carried out on the actual implemented system. Red

teaming is a good example of this kind of experiment.

If the model fails a validation check, the modeler should return to the model and

determine why the model is incorrect. The modeler should then fix the model and

rerun the validation check.

8. Once validated, the modeler can use the model results to help make a decision.

It is important when following this method that the perfect not be allowed to become the

enemy of the good. In particular, in many cases it may be challenging to obtain accurate

values for all of the input variables needed for a particular model, and to validate the model

as well as the modelers would wish. However, it is our belief that it is better to attempt

to create a formal quantitative security model with a clear understanding of its limitations
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and weaknesses than to depend solely on informal mental models a decision maker may use

instead.

5.2 METRICS THAT HELP DECISION MAKERS

Our framework helps modelers to fulfill the purpose of quantitative modeling, which is to

produce metrics that help decision makers make better decisions. The metrics themselves

must be chosen with great care. Everything about the design and production of the model is

ordered towards producing high-quality metrics. However, it is possible for novices and even

experts to take counterproductive approaches to metrics. We aim to address issues related

to metrics in this section.

We begin this section on metrics with a discussion on a philosophy of cybersecurity metrics

that focuses on the maximization of the expected utility of the system, then a review of the

theory of performance variables based on the reward model formalism that we leverage to

construct metrics, and then finally a presentation of a number of example cybersecurity

metrics.

5.2.1 A Philosophy of Metrics

At first glance, it may appear reasonable that quantitative cybersecurity modeling pre-

supposes that it is possible to calculate a metric that quantifies the security of the system.

Given such a metric, different system designs could be ranked from most secure to least

secure, which could help a system architect to make appropriate design decisions.

However, an examination of the academic literature and state-of-practice clearly shows

that there is no commonly accepted overarching cybersecurity metric (in either theory or

practice) that a system architect can use to rank systems (or designs) from most secure to

least secure. Does this doom cybersecurity modeling? Consider the issue from a broader

perspective.

Classical decision theory can help inform quantitative security modeling in its goal of

helping decision makers to make better decisions by helping to define what a “better decision”

means. The decision maker has a variety of preferences. We assume that the system architect
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has certain preferences for the system. Preferences may include high availability, reliability,

survivability, performability, security, etc. and low costs. The system’s utility (from the

perspective of the system architect) is a function of his or her preferences. At a high level, a

common assumption in decision theory is that a rational agent has a utility function and acts

as if it is trying maximize the expected value of this utility function when deciding which

action to take.

Therefore, a rational system architect is expected to seek to maximize the expected utility

of the system. The abstract concept of “increasing security” is not the priority for the

system architect, nor should it be. Recognition and acceptance of this fact clarifies the role

of cybersecurity modeling. The role of the cybersecurity modeling should not be to “increase

the security” of the system (which is a poorly defined goal), but instead to help the system

architect to maximize the expected utility of the system. Expected utility therefore obviates

the need for an overarching cybersecurity metric that can rank designs from most secure to

least secure.

Some may object to the preceding statement that the cybersecurity modeler’s primary

goal is to increase the expected utility of the system, rather to increase the security of the

system. It may help to illustrate the point with an example. Say that a system architect

must decide between two designs, A and B. A system constructed according to Design A has

minimal cyber defenses and is predicted to produce revenue of $1,000,000 per year, and suffer

an expected loss of $50,000 per year due to cyber security attacks. A system constructed

according to design B has sophisticated and powerful cyber defenses, which are predicted

to prevent all cyber attacks and monetary loss due to cyber attacks, but will only produce

a revenue of $900,000 per year, because the enhanced security detracts from the customer’s

experience and lessens the productivity of employees (e.g. annoyance of using two-factor

authentication and requiring frequent password resets, increased network latency due to deep

packet inspection, and resources invested in cyber defenses reduce investments that could

have been used to improve other aspects of the business all potentially contribute to lessening

the profitability of the system). In these circumstances, the owner/operator of the system

will rationally select Design A, because it maximizes profit, even though Design A is less

secure than Design B by every common sense definition of the word. A modeler specializing
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in quantitative cybersecurity modeling should take care not to waste effort creating a secure

design like Design B in the thought experiment, when the effort would be better spent on

creating something like Design A that maximizes the utility of the system.

Careful consideration of expected utility resolves the apparent tension between system per-

formance on the one hand and cybersecurity on the other. A cyber system that is airgapped,

powered off and physically inaccessible is, in essence, both perfectly secure and perfectly use-

less. On the other hand, a cyber system with no defenses may have great performance, until

an adversary attacks and easily commandeers or destroys the system. However, appropriate

defenses will maximize the expected utility of the system. In fact, “appropriate defenses”

in this context can be defined as the measures designed to prevent, detect, and respond to

attacks in the way that will maximize the expected utility of the system.

Expected utility also informs a proper view of risk in cybersecurity. Risk can be defined

as

r = l ∗ i (5.1)

where r is the risk, l is the expected probability of the occurrence, and i is the expected

impact of the occurrence. A similar definition is

r = f ∗ i (5.2)

where r is the risk, f is the expected frequency of the occurrence, and i is the expected

impact of the occurrence.

Since risk can be quantified, some may view it as the chief cybersecurity metric, and seek to

mitigate it whenever they find it. However, it is almost always necessary to accept some risk

to maximize the system’s expected utility. Just as an investment portfolio cannot maximize

expected returns without accepting some risks, similarly the utility of a system can rarely be

maximized without accepting some risks. The process of modeling may reveal opportunities

to reduce risk, but it may also reveal opportunities to accept more risk for outsize gains in

utility. Cybersecurity modelers should not overly focus on risk, but recognize that is just

one component of the unavoidable costs of building and maintaining the system. In short,

cybersecurity experts should focus on risk management rather than risk mitigation.
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Auxiliary Metrics

While system architects focus on maximizing expected utility, it can be useful to calculate

a variety of other metrics if those metrics can help a system architect to create a system

with higher expected utility. See Subsection 5.2.3 for example security metrics that can be

calculated by a quantitative model built using a cybersecurity formalism like GAMES.

5.2.2 Metric Theory

Those interested in quantitative security modeling may leverage the theory of performance

variables based on the reward-model formalism [86] to construct metrics for quantitative

models. Performance variables accumulate reward, and the amount of reward accumulated

may be examined to gain insight into some phenomenon of the model. Performance variables

may be divided into two distinct classes based on how they accumulate reward: rate-based

rewards and impulse-based rewards. The rate-based performance variables collect reward

when the model is in a particular state, while the impulse-based performance variables collect

reward when the model makes a particular type of state transition. Performance variables

may be further categorized by their approach to time: instant of time, interval of time,

and time-averaged interval of time. As the names suggest, an instant of time performance

variable calculates the reward accumulated at a particular discrete point in time; interval

of time reward variables calculate the reward accumulated during a particular interval of

time; and time-averaged interval of time reward variables calculate the reward accumulated

during a particular interval of time divided by the length of the interval of time. Performance

variables are very flexible, and allow a great deal of freedom and creativity in the definition

of cybersecurity metrics.

5.2.3 Examples of Metrics

We describe several example metrics to give a more concrete understanding of the kinds

of metrics that may be calculated using quantitative models. The metrics may be divided

into two broad classes. The first class consists of metrics that may be used to analyze the

behavior of any type of agent in general, while the second class consists of metrics apply
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more specifically to one agent type: adversary, defender, or user, for example.

First, an analyst may calculate the expected costs, expected payoffs, and expected net

profit accumulated by the agent in a set time range. For example, an analyst may estimate

how much more an attack would cost an adversary if the defender implemented a new

security feature, or what sort of return a defender may expect on an investment in security

infrastructure or employee training. Another metric that may be calculated is the number

of times a particular action is attempted, and the number of times a particular sequence or

chain of actions is attempted. By examining these metrics, an analyst may be able to tell

the most likely attack path an adversary would take against the system, find inefficiencies in

defender response, or forecast how changing the configuration of the system may influence

users’ actions. The analyst may also calculate the probability of a state variable having a

particular value during a time interval. That value may represent the possession or control of

a particular part of the cyber system. For example, an analyst may use this kind of metric to

determine whether an adversary has root access on a particular machine by examining value

of the state variable that represents access on that machine. By constructing several such

metrics, an analyst may analyze network penetration by the adversary. Similarly, an analyst

could examine whether a user’s service was interrupted by examining the value of the state

variable that represents access to the service provided by the defender’s system. If the value

of the state variable does not change for the duration of the model execution, the analyst

may surmise that the user’s service was not interrupted by the actions and counteractions

of the adversaries and defenders.

Many metrics are generic and may be used to help the modeler understand the behavior

of each kind of agent, but there are also metrics that apply more specifically to particular

kinds of agents, whether adversary, defender, or user. For example, a metric may be defined

that will allow the analyst to estimate the probability an adversary will remain undetected

by the defender for the duration of an attack. This would allow the analyst to examine

the effectiveness of different intrusion detection systems. An example of a defender-focused

metric is the amount of damage the adversary does to the system being defended. An

analyst could use this metric to provide aid in a number of design decisions, for example, to

examine whether changing the policy used by a defender reduces or increases the expected
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damage to the system. A more user-specific metric is the overhead and loss of performance

a user may incur if the system is reconfigured to be more secure. For example, a bank

may be interested in improving the security of online account access by implementing two-

factor authentication, but may also be concerned that the change will overly frustrate their

legitimate customers. Those are just a few examples of metrics that apply to one agent type

that could be calculated using the GAMES formalism (or similar state-based agent modeling

formalisms).

5.3 MODELING ISSUES REQUIRING SPECIAL ATTENTION

We have presented our modeling framework and a discussion of metrics in the cybersecurity

modeling context, and we shall now proceed to give advice on a number of modeling issues

requiring special attention, including collaboration, choosing the right level of abstraction,

and proper management of modeling inputs and outputs.

5.3.1 Collaboration

Constructing and maintaining large networked cyber systems composed of heterogeneous

components requires the collaboration of multiple subject matter experts. Each expert may

have a deep understanding of some aspect of the system, but not fully grasp how the system

as a whole will function. Quantitative models can serve as a common language used by

different subject matter experts to collaborate on a shared design. A formally documented

model much more easily enables collaboration compared to a mental model held in the mind

of the manager who is responsible for coordinating the efforts of the subject matter experts.

Multiple people can contribute their individual subject matter expertise to different aspects

of the model to increase its richness and accuracy, and leverage a form of the “wisdom of

the crowds” phenomenon [87] to reach a shared vision that may be more accurate than what

could otherwise be achieved. Similarly, a formally documented model can also be easily

examined by third-party auditors. In this way the model’s assumptions can be checked and

the the design can be analyzed to determine whether a system built to its specifications will

be in compliance with established policies. A well-constructed, well-documented model will
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also allow those charged with maintaining the constructed system in the future to check

whether new technological developments or newly discovered threats affect the assumptions

and results of the model (and consequently the real-world system). Quantitative models can

also help newly hired security personnel to quickly understand the underlying assumptions,

design choices, and policies of a system’s security architecture. For these reasons, it is our

recommendation that security models be created by a collaborative team of subject matter

experts, and the security model should be well documented so others in the future can

understand and update the model.

5.3.2 Choosing a Level of Abstraction

Choosing the right level of abstraction for the model is one of the most important decisions

a modeler must make. For example, consider the construction of a security model for an

enterprise network. Should the model include every packet that flows through the network,

every process on every host in the system, and every read and write to every database in

the system, every type of adversary that could attack the system, every individual user of

the system, and the diurnal usage patterns in the network, and a hundred other details?

Or should the model be highly simplified, perhaps limited to a rational adversary and a

defender (each having a well-defined and highly restricted subset of actions), and a contested

“resource”?1 Or should the model’s level of abstraction fall somewhere on the spectrum

between these two extremes?

Fundamentally, we believe that a modeler should aim to construct the simplest model

that can still produce high-quality actionable metrics. The addition of unnecessary details

consumes the modeler’s time and resources, makes it more difficult for others to understand,

audit, and collaborate on the model, and may lead to a false sense of confidence, since the

unnecessary details may obscure poor assumptions built into the model.2 Needless complex-

ity also makes it difficult to maintain the model over time, which limits its effectiveness as

1This approach is taken by a number of game-theory inspired research papers, for a prominent example,
see FLIPIT [88].

2In some unfortunate circumstances, a modeler may find it expedient to include unnecessary details to
the model when presenting it to others (such as superiors, funding agencies, etc.) who would distrust a
model that did not include these details.
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a tool that could be used in the future to help redesign the system to respond to changing

circumstances.

Of course, the simplifying process can be taken too far: over simplification and lack of

detail can produce a model that poorly reflects reality and may produce low quality metrics.

Determining the correct level of abstraction is more of an art than a science. Modelers are

encouraged to find the golden mean between too much and too little detail. Modelers should

always consider how the inclusion or exclusion of detail in the model will impact the quality

of the metrics of interest.

The modeling of human behavior is one aspect of quantitative cybersecurity modeling

that is frequently oversimplified and unrealistic. For example, one of the oldest and most

well known modeling formalisms, attack trees [40], along with the more recent ADVISE

formalism [25], explicitly model only the adversary behavior, which makes it difficult to

model the interaction between the attacker and the defender. Attack-defense trees [41] and

attack-defense graphs [42] can be used to model the interaction between the two parties, but

neglect the other human entities whose behavior may enhance or detract from the security

of the system, such as trusted third party contractors, customers, employees, and law en-

forcement.3 The limitations reduce the realism of models made with these formalisms and

reduce their utility to modelers. Another common simplifying assumption is the rationality

of the humans in the system (a small selection of papers that make this assumption include

[46] [47] [48] [25]), despite the well-known fact that humans often do not behave rationally

[90]. Optimizing defenses against the worst-case rational adversary may be suboptimal if

the system is never actually attacked by such an unrealistic adversary.

We believe that one of the most fruitful potential research directions in the field of cyber-

security modeling is developing ways to realistically model multiple parties interacting in a

cybersecurity context. Motivated by this belief, we created the GAMES formalism [3]. We

believe that there exist great opportunities for researchers to make interesting and useful

discoveries in the quest to accurately model human behavior in a cybersecurity context.

3The 2013 Target data breach, which resulted in the theft of 40 million credit card records, is a good
example of a cyber security attack which cannot be described as a game between the adversary and defender.
Rather, it involved multiple parties: the attackers are believed to have first compromised a trusted third-
party vendor and leveraged that trust relationship to access Target’s systems, and ultimately Target was
first made aware of the breach not by their own security team, but by the U.S. Department of Justice [89].
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5.3.3 Model Inputs

A model can be well designed but still produce inaccurate, useless results if low quality

input values are used. The phrase “garbage in, garbage out” is a phrase colloquially used to

describe this phenomenon. Some input values can be relatively easy to find. Unfortunately, in

many cases it is not easy to obtain highly accurate input values for quantitative cyber security

models, due to (1) the rapid evolution of hardware, software, and networking technologies,

(2) the understandable reluctance institutions have with sharing data about cyber breaches,

(3) the difficulty of performing realistic experiments, and (4) the challenge of predicting

human behavior. In an ideal world, a modeler could do extensive research to determine the

value of each input variable, including realistic experiments and surveys, to determine an

accurate value. However, time and budget constraints often make this approach infeasible.

We propose a sketch of a method the modeler may use to mitigate the concerns regarding

uncertain input values.

First of all, models should be kept as simple as possible, so a modeler doesn’t spend

unnecessary time and resources trying to determine values for a large number of inputs that

have little to no effect on the results of the model. When in doubt regarding the value of a

particular input, a modeler should seek the opinion of multiple subject matter and members

of the design team to provide estimates for the value [87]. If the estimates are identical or

very close, the modeler may be justified in trusting the estimate as the value for the input.

If, however, the estimates vary, the modeler can use the set of estimates as the basis of a

sensitivity analysis. The sensitivity analysis may reveal that the metrics of interest are not

sensitive to that range of input values. In that case, the disagreement among the estimates

is unimportant and do not detract from the effectiveness of the model as a decision-making

aid, so the modeler can use any of the estimates (or the average, or median, etc.) as the

value for the input without concern. If, however, the metrics of interest in the model are

sensitive to the value of the input in the range of the estimates, more effort should be focused

on experiments and analyses to create as accurate an estimate as possible. If the research is

inconclusive or infeasible, the whole range of model outputs given the possible set of model

input values should considered in the decision making process that the model was created

to support.
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5.3.4 Model Outputs

The modeler should have increased confidence in the quality of the model outputs if he or

she collaborates with other modelers and subject matter experts in the creation of the model,

documents the model to help make the assumptions explicit, makes the model as simple

as possible without ignoring important factors or making unreasonable assumptions, and

carefully selects input values, as we previously suggested. We believe that if those responsible

for making impactful cyber security decisions build a model following these guidelines and

incorporate the model results into their decision making, it would be a huge improvement

compared to the current state-of-practice of relying solely on the intuition, experience, and

ad hoc mental models of individual cyber security experts.

One model alone, even a well-constructed model, may not give the desired level of con-

fidence to a decision maker. One way to increase confidence is to use ensemble modeling

techniques, which have been successfully employed in other fields which make predictions

about large complicated non-deterministic systems that are difficult to fully understand,

such as climate modeling [91]. In the case of cyber security, a decision maker may gain addi-

tional insight by instructing multiple independent teams to each produce a model, and then

comparing the models and their results with one another. If the models are in substantial

agreement, the decision maker will have increased confidence in their results and recom-

mendations. If the results do not match, the models and assumptions can be examined to

determine the cause, and the inferior model (and its results) may be discarded, or the best

features of the models may be merged together to produce a superior model. Ensemble mod-

eling can be achieved using only one team (instead of multiple teams) if that team builds

multiple different models (e.g. by using different modeling formalisms or different sets of

reasonable starting assumptions).

If the models are being used to help guide the system design process, it may be advisable

to have a design cycle of multiple mutually enriching stages that progress between modeling,

emulation, and implementation, similar to the model-test-model process[92]. Our proposal is

illustrated in Figure 5.1. First, a large number of small, simple models, each representing a

different design, can be created and analyzed. After analyzing the large set of simple models,

a smaller subset of the most promising model designs can be further developed into larger,
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Figure 5.1: An illustration of a method to progressively validate and improve models.

more realistic models. Small-scale emulations of the best performing of the more realistic

models can be made to support experiments that will confirm the model results, perhaps

using virtual machines, testbeds or other similar technology that can cheaply emulate a real

cyber system. Comparing the model and the emulation side by side may validate the model

or reveal ways to improve the model. The models can be improved if necessary, and then

new emulations and accompanying experiments can be run to further exercise and validate

the improved model. The process can be applied iteratively until the system architect is

satisfied and the first prototype of the system is made. The design cycle described above can

be labor intensive and expensive, but may be useful in certain circumstances, particularly

with the design of especially critical and expensive cyber infrastructure.

5.3.5 Summary of Advice

We have given many specific points of advice, but in general, one should pursue diversity

and multiple perspectives whenever possible (whether it is different people, different models,

or different methods to achieve a task) and compare them to see the underlying unity. One

should avoid the false comfort that needless complexity brings: things should be as simple as

possible, but no simpler. Above all, modelers should keep the goal of quantitative security

modeling in mind: producing metrics that help decision-makers. With the advice given in

this section we hope modelers in the future will be able to avoid or overcome common issues

in cybersecurity modeling.
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CHAPTER 6: CONCLUSIONS

Frequent successful attacks on important cyber infrastructure demonstrate the need for

care in designing, maintaining, and insuring secure infrastructure. Quantitative cybersecu-

rity modeling can help decision makers make better decisions so they can create and sustain

useful cyber infrastructure that is performant and secure. Cybersecurity modeling has many

benefits, but a number of practical challenges make it difficult in practice. Arguably, quanti-

tative modeling is less practiced and developed in the cybersecurity field compared to other

engineering disciplines such as civil and mechanical engineering.

In our dissertation, we aimed to address several of the most important challenges to

quantitative cybersecurity modeling. We identified four important requirements for such

modeling:

1. It should be usable without special modeling expertise.

2. It should model the correct things.

3. It should be able to validate the model results.

4. It should be guided by a reasonable framework.

Within each requirement, we identified a key challenge:

1. The first challenge is to construct cybersecurity models despite the fact that most

cybersecurity domain experts lack modeling expertise, and can be overwhelmed with

the effort and time needed to build a useful model.

2. The second challenge is to model the complex interplay between the cyber system and

the humans that interact with it in a way that is intuitive, modular, and easy to use.

Many current security modeling formalisms only consider the adversary’s perspective,

or only directly model the adversary and defender, excluding the other human agents

that impact the security of the system (though other human parties often have a huge

impact on the security of the system). These parties include customers, vendors, users,

law enforcement, and the media. How should all of these disparate entities be modeled?
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3. The third challenge is model validation given given uncertain input variables and long

model execution times which make traditional sensitivity analysis and uncertainty

quantification techniques unfeasible in many cases.

4. The fourth challenge is the identification of a framework that can guide the modeling

process and selection of appropriate security metrics.

In this chapter, we shall review our contributions to addressing these key challenges, present

directions for future work, and end with concluding thoughts.

6.1 REVIEW OF CONTRIBUTIONS

The first challenge to cybersecurity modeling we identified is the difficulty of creating

models by hand. Our contribution to address the challenge is an ontology-assisted auto-

matic model generation approach that can convert a user-created system diagram into a

sophisticated executable cybersecurity model. We helped implement the approach in the

Möbiusmodeling tool. We demonstrated its effectiveness with an AMI case study. We cre-

ated a custom AMI-focused ontology that the generation algorithm could utilize to translate

the user-created system diagram representing an AMI instance into a custom cybersecurity

model. Using the ontology approach, a modeler could create a complex cybersecurity model

in hours rather than days. The ontology shifts much of the needed modeling expertise from

the average modeler to the creators and maintainers of the ontology. Since the ontology can

be reused to study different AMI deployment scenarios across the industry, the modeling

expertise that goes into the ontology can likewise scale and be reused in a way that was

not previously possible. The ontology-assisted automatic model generation is a significant

step towards addressing the first challenge and helps modelers make models faster and more

easily.

The second challenge we identified is that none of the popular cybersecurity modeling

formalisms allowed for the explicit modeling of all of the human players of the cybersecurity

game: adversaries, defenders, users, customers, law enforcement, media, and others. While

most security modeling formalisms allow either the adversary or the adversary/defender pair

to be modeled explicitly, few allowed an arbitrary number of human entities to be modeled,
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despite the impact other humans have on the security of the system. Our contribution

is the creation of a new modeling formalism called GAMES that enables the creation of

composable agent submodels to allow all human entities involved in cybersecurity scenarios

to be modeled explicitly in a modular and intuitive way. We implemented a prototype tool

to demonstrate the GAMES approach, and showed its utility with a case study involving

an account security scenario that explicitly modeled an adversary, defender, customers of

different types, and the media and their interaction with one another and the system. Our

contribution of a novel modeling formalism that allows all of the humans in a cybersecurity

scenario to be modeled is an important step towards addressing the second challenge.

The third challenge is that sensitivity analysis and uncertainty quantification are useful

tools to understand and validate models, but traditional approaches to SA and UQ are often

infeasible for cybersecurity models, due to the large number of uncertain input variables and

long execution times. To address the challenge, our contribution is an exploration of indirect

metamodel-based approaches to SA and UQ. In particular, we are the first to design and

apply the stacking ensemble technique to metamodeling. We demonstrate with a botnet

case study, an AMI IDS case study, and 6 PRISM models that stacking-based metamodeling

produces metamodels that are significantly faster than the original model and can be accurate

enough to be a useful standin for sensitivity analysis and uncertainty quantification purposes.

Our contribution helps address the challenge by giving modelers a practical approach to help

them explore and validate models that would otherwise run too slowly to be analyzed by

traditional methods.

The fourth contribution address the challenge of a lack of (1) cohesive pragmatic and

effective modeling frameworks, (2) guidance on the fundamentals of metrics, and (3) prac-

tical advice on overcoming common modeling issues. Our contribution includes a high-level

framework to guide the modeling process, concrete suggestions on the creation of useful

metrics, and practical advice on common modeling issues such as choosing the correct level

of abstraction and detail, facilitating collaboration among domain experts, and validation of

model results. Our contribution in this chapter will hopefully help modelers in the future to

quickly build effective models that are useful aids to decision makers while avoiding common

pitfalls.
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6.2 FUTURE WORK

We recommend directions that can be taken in the future to further address the identified

challenges.

The ontology-assisted automatic model generation approach can be extended in several

ways. The ontology and generation algorithm can be enhanced in such a way as to enable

the automatic generation of other kinds of models (not just security models), such as mod-

els of availability, reliability, and performance. Second, we only created an AMI-focused

ontology, ontologies for other critical infrastructure and enterprise domains should be cre-

ated. A common publicly-available repository or library of ontologies should be created and

maintained to increase adoption. Different methods for testing, validating, and updating

ontologies should explored, to ensure that the ontologies correctly codify expert knowledge,

and to ensure that expert knowledge actually corresponds to reality.

Similarly, the GAMES formalism could be further developed to become an even more

useful tool for modelers. The current prototype tool is limited, there are many ways it could

be made more powerful and easier to use. Templates for common agent types could be

developed (currently each agent must be made by hand). Different common agent decision

algorithms could be implemented, inspired by artificial intelligence, game theory, agent based

modeling, psychology, or other fields. We believe that policy-space response oracles [93]

could be an especially fruitful research direction for developing appropriate agent-decision

algorithms for the GAMES formalism. The addition of a graphical user interface (GUI) to

the prototype tool would make it easier to create and study GAMES models. Finally, larger

and more complex case studies should be developed using the GAMES formalism to exercise

its capabilities and identify further areas for improvement.

The metamodeling approach provides rich opportunities for further research. Perhaps the

most important issue to research is to determine how closely the sensitivity analysis and

uncertainty quantification results obtained from the metamodel correspond with the results

from the base model. We showed that the results do correspond with the AMI case study, but

further research is needed to determine if the results generalize to other models. In addition,

while we did explore a number of different committee and filter types, further research could
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be done to explore in this direction to design the most effective stacked metamodel. Finally,

we have not parallelized any of the code, though we believe that it would be relatively easy

to parallelize and could significantly speed (1) training and testing data collection and (2)

metamodel training.

Last, we recommend that more research be done in the area of metrics. We believe it is

important for researchers to learn what metrics current practitioners in the field are using,

and whether those metrics are serving decision makers (e.g. designers and maintainers of

systems) well. It may be that currently popular metrics may not give particularly good

insight into the system or support for decision making that will boost the utility of the

system. If that is the case, a future effort could try to bridge the gap between theory and

practice to improve metrics.

6.3 CONCLUDING REMARKS

In this dissertation, we addressed some of the most significant challenges facing quantita-

tive cybersecurity modeling. We developed an AMI-focused ontology and automatic model

generation approach so modelers can quickly and easily create sophisticated cybersecurity

models from simple system diagrams without much prior modeling expertise. We created

the GAMES modeling formalism to explicitly model all of the human entities involved in

cybersecurity scenarios (not just the adversary or adversary and defender). We developed

and tested a novel stacking-based metamodel approach to do much faster sensitivity analysis

and uncertainty quantification than would be possible with traditional approaches. Finally,

we provided a framework to guide the modeling process, presented a practical philosophy

of metrics, and gave advice on common issues encountered while doing cybersecurity mod-

eling. The research presented here can help modelers to develop useful quantitative models

that support decision makers in their quest to develop and maintain useful and secure cyber

systems.

105



REFERENCES

[1] M. Rausch, K. Keefe, B. Feddersen, and W. H. Sanders, “Automatically generating se-
curity models from system models to aid in the evaluation of AMI deployment options,”
in International Conference on Critical Information Infrastructures Security. Springer,
2017, pp. 156–167.

[2] K. Keefe, B. Feddersen, M. Rausch, R. Wright, and W. H. Sanders, “An ontology
framework for generating discrete-event stochastic models,” in Computer Performance
Engineering, R. Bakhshi, P. Ballarini, B. Barbot, H. Castel-Taleb, and A. Remke, Eds.
Springer International Publishing, 2018, pp. 173–189.

[3] M. Rausch, A. Fawaz, K. Keefe, and W. H. Sanders, “Modeling humans: A general agent
model for the evaluation of security,” in Proc. International Conference on Quantitative
Evaluation of Systems. Springer, 2018, pp. 373–388.

[4] M. Rausch and W. H. Sanders, “Sensitivity analysis and uncertainty quantification of
state-based discrete-event simulation models through a stacked ensemble metamodel,”
in Proceedings of the International Conference on Quantitative Evaluation of Systems,
vol. 12289. Springer, 2020, pp. 276–293.

[5] M. Rausch and W. H. Sanders, “Stacked metamodels for sensitivity analysis and un-
certainty quantification of ami models,” in Proceedings of the 2020 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), 2020, pp. 1–7.

[6] M. Rausch and W. H. Sanders, “Evaluating the effectiveness of metamodeling in emulat-
ing quantitative models,” in Proceedings of the International Conference on Quantitative
Evaluation of Systems, vol. 12846. Springer, 2021, pp. 127–145.

[7] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack on the Ukrainian
power grid,” SANS Industrial Control Systems, 2016.

[8] M. Buratowski, “The DNC server breach: who did it and what does it mean?” Network
Security, vol. 2016, no. 10, pp. 5–7, 2016.

[9] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy,
vol. 9, no. 3, pp. 49–51, 2011.

[10] S. Cowley, “2.5 million more people potentially exposed in equifax
breach,” October 2017, accessed: 2019-01-31. [Online]. Available:
https://www.nytimes.com/2017/10/02/business/equifax-breach.html

[11] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Under-
standing the mirai botnet,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, 2017, pp. 1093–1110.

106



[12] D. Temple-Raston, “A ’worst nightmare’ cyberattack: The un-
told story of the solarwinds hack,” April 2021. [Online]. Avail-
able: https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-
the-untold-story-of-the-solarwinds-hack

[13] T. C. of Economic Advisers, “The cost of malicious cy-
ber activity to the u.s. economy,” February 2018. [Online].
Available: https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-
Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf

[14] C. Herley and P. C. van Oorschot, “Science of security: Combining theory and mea-
surement to reflect the observable,” IEEE Security Privacy, vol. 16, no. 1, pp. 12–22,
January 2018.

[15] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “Rre: A game-theoretic
intrusion response and recovery engine,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 395–406, 2013.

[16] C. Biener, M. Eling, and J. H. Wirfs, “Insurability of cyber risk: An empirical analysis,”
The Geneva Papers on Risk and Insurance-Issues and Practice, vol. 40, no. 1, pp. 131–
158, 2015.

[17] A. Marotta, F. Martinelli, S. Nanni, A. Orlando, and A. Yautsiukhin, “Cyber-insurance
survey,” Computer Science Review, vol. 24, pp. 35–61, 2017.

[18] R. Betterley, “The betterley report: Cyber/privacy insur-
ance market survey - 2018,” June 2018. [Online]. Avail-
able: https://www.irmi.com/docs/default-source/publication-tocs/betterley-report—
cyber-risk-market-survey-june-2018-summary.pdf

[19] A. Setalvad, “Demand to fill cybersecurity jobs booming,” March 2015. [Online].
Available: http://peninsulapress.com/2015/03/31/cybersecurity-jobs-growth/

[20] M. Ford, K. Keefe, E. Lemay, W. Sanders, and C. Muehrcke, “Implementing the advise
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