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Abstract

Periodic structures have been a focus of research for decades due to their unprecedented wave-control

functionalities. This has made them potential candidates for applications such as wave-�ltering, vibra-

tion/seismic isolation, and wave-guiding. Periodic systems fall under two broad categories: phononic

structures and metamaterials, both of which have been extensively investigated. More recent e�orts

focus on how to make these systems even more versatile and adaptable. As such, the objective of this

dissertation is two-fold:

1. to investigate a modular approach to the design of metamaterials in an attempt to broaden the

design space and achieve new wave-control functionalities that go beyond that of the conventional

designs proposed.

2. to exploit nonlinearities for realizing passive-adaptive wave-control. In the former, we primarily

focus on a special category of modular systems in which elements are entangled through periodic

connections along their length. We explore the second area in the context of surface waves

pursuant to our interest in potential seismic applications.

We start by a theoretical investigation of dispersion properties for a metamaterial beam that consists of

�exural elements periodically coupled (entangled) along their length. We will show that the structure

possesses multiple Bragg scattering and local resonance band gaps, and has unique wave-�ltering

properties unlike its constituents. We will also show how static tuning of connection properties can be

used to alter the system's band structure. Next, entangled monoatomic chains are considered in two

con�gurations. One is a con�guration where each mass in one chain is connected to its corresponding

mass in the other chain (full coupling). The other, consists of chains that are periodically coupled only

at certain locations (partial coupling). We derive closed-form dispersion relations for both cases and

discuss their eccentric dynamic properties, such as double-speed wave propagation zones, emergence

of negative group velocity dispersion branches and �at bands. For each study, we use numerical
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simulations to verify our theoretical results, and present example devices targeted at wave propagation

control using �nite prototypes of each meta-structure.

In the remainder of this work, we focus our attention on embedding nonlinearity in the design of

metamaterials to control surface waves in a passive-adaptive manner. First, we present an approximate

theoretical framework for how Rayleigh waves interact with a periodic array of Du�ng oscillators.

Our analysis indicates that the presence of nonlinearities makes dispersion amplitude-dependent. We

further show that for hardening (softening) nonlinearities, dispersion branches shift towards higher

(lower) frequencies as the amplitude of motion increases. In the light of this promising preliminary

results, we attempt to realize the phenomenon in an experiment. In order to do this, we leverage a

compact experimental setup consisting of a plate, serving as an elastic substrate, and bead-magnet

assemblies, in lieu of nonlinear resonators. We will study the dynamics of the constituting elements

of this structure in detail to present, for the �rst time, experimental evidence of amplitude-dependent

dispersion for surface acoustic waves.

The �ndings of this two-part study will inform the design of more versatile metamaterials at di�erent

scales. Finally, we will also discuss some promising future directions that may be considered as both

short-term and long-term extensions to this work.
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Chapter 1

Introduction

1.1 Fundamentals of wave propagation in periodic structures

Periodic structures have been widely used to control the propagation of acoustic and elastic waves.

A periodic structure is one that exhibits periodicity in either material properties, internal geometry

or boundary conditions [1]. The study of these structures may be traced back to Newton's attempt

to measure the speed of sound in air and Rayleigh's early studies on the propagation of waves in

continuous periodic systems [2] and has, ever since, found applications for wave-control over broad

length scales: from Nanotubes, MEMS �lters and biomedical implants [3, 4, 5, 6, 7] to multi-span

bridges, pipelines [8, 9, 10, 11] and aircraft structures [12, 13, 14] (Figure 1.1).

(a) (b)

(c) (d)

Figure 1.1: Examples of structures systems, in the order of increasing length scale: (a)
carbon nanotubes (from thoughtco.com/what-are-carbon-nanotubes-820395), (b) heart stents
(from augustahealth.com/health-focused/cardiology-101-understanding-heart-stents), (c) aircraft ribs
(from quora.com/Aviation-What-is-Wing-Spar-Ribs), and (d) multi-span bridge (from pinter-
est.com/pin/314407617714507401/).
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Periodic structures may be considered as the spatial repetition of a so-called unit-cell. The fundamental

wave propagation properties of an in�nite periodic system can be captured by studying the dynamics

of the corresponding unit-cell by assuming plane-wave solutions and imposing Floquet-Bloch boundary

conditions. Bloch's theorem states that the change in complex wave amplitude of a non-attenuating

propagating wave in an in�nitely-periodic system does not depend on the location of the unit cell within

the structure [15]. This will manifest itself as a set of relationships between displacements/forces on the

boundaries of the unit-cell. The outcome of a unit-cell analysis is a set of eigenvalue problems, solving

which leads to the dispersion relation for the overall system. The dispersion relation of a structure

contains information about the inter-dependency of wave number k and frequency ω of waves that

freely propagate in the system. This function may be visualized using a band diagram or dispersion

curve plot. Figure 1.2c shows the dispersion curve for the well-known 1-D monoatomic lattice. Band

diagrams contain important information about the elastodynamics of the structure. For example,

the tangent and secant slopes at any point show wave group velocity cg = dω/dk and phase velocity

cp = ω/k. In the next section, two broad categories of periodic structures will be discussed.

(a) (b)

Wave number
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(c)

Figure 1.2: 1-D monoatomic lattice: (a) in�nite lattice con�guration, (b) unit-cell, (c) band diagram.
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1.2 An overview of phononic structures and metamaterials

It has been well-established that waves in certain frequency ranges cannot freely propagate in periodic

systems due to the existence of band gaps in their frequency spectra [1]. This feature has made them

potential candidates for applications such as vibration and seismic isolation [16, 17, 18], wave-guiding

[19, 20, 21] and cloaking [22, 23, 24]. Two mechanisms have been identi�ed for band gap formation in

periodic systems; Bragg scattering (BS) and local resonance (LR). Accordingly, periodic systems may

be categorized in two main groups: phononic structures and metamaterials. In the remainder of this

section, we give a brief overview of each category and their potential applications.

A phononic structure/crystal is a spatially-periodic arrangement of unit-cells containing components

with di�erent geometrical or material properties. Periodic layered composites and engineering struc-

tures, such as aircraft ribs and beam-plate systems inspired the study of this category of periodic

systems. Phononic structures mainly owe their wave-control characteristics to Bragg scattering and

interference e�ects between the periodic constituents of the system. Phononic systems have been used

to realize a wide range of functionalities, from vibration isolation [25, 26] and noise �ltering [27, 28] to

sensing [29, 30] and wave recti�cation [31, 32]. Band gaps in these systems occur at wavelengths that

are proportional to the periodicity length. This limits their practicality for low-frequency applications.

The seminal work of Liu et al. [33], however, showed that gaps can occur at frequencies nearly two

orders of magnitude lower than that of the Bragg frequency if local resonance is exploited. Periodicity

is not a prerequisite for such systems but it's exploited to simplify the analysis. This gave born to

metamaterials - another group of periodic systems comprising of a periodic arrangement of locally-

resonant inclusions in a host medium. Band gaps in these systems form not only due to Bragg

scattering but also as a result of local resonances. Therefore, tuning the resonance frequency of the

inclusions allows for compact designs with sub-wavelength features with applications from seismic

isolation [18, 34, 17] to radiofrequency devices [35]. Local resonance band gaps are usually narrow in

width. This restricts the frequency range over which they can operate. Metamaterials may also be

engineered to show other eccentric characteristics, such as negative e�ective dynamic mass density and

or modulus. These properties have found applications in wave-focusing [36, 37] and subwavelength

imaging [38, 39].

Unconventional designs have been recently proposed that o�er a broader range of dispersion charac-

teristics [40]. Among these novel con�gurations are the concepts of resonator-to-resonator interactions

[41, 42] and nonlocal resonances [43]. For example, in Beli et al. 2018 [42], the interaction between
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the transverse and rotational modes of a resonator chain consisting of beam elements has been used to

achieve a wider band gap in comparison to the case where the resonators perform independently. The

authors show how certain Bloch wave modes of the system correspond to the resonance frequencies

of the resonator chain. DePauw et al. 2018 [43] propose a con�guration called a Phononic Resonator

in which each resonator can directly interact with the neighboring masses in the main chain. It is

then shown how tuning the sti�ness and mass ratios of the main and resonator masses can change

the nature of the attenuation mechanism leading to the system behaving as a Phononic Crystal or an

Acoustic Metamaterial.

1.3 Modularity in design

Phononic structures and metamaterials come in di�erent forms. For the former, the majority of

proposed designs have a layered architecture, in which elements of di�erent material or geometry are

used in a periodic arrangement. Design for locally-resonant metamaterials often rely on embedding

inclusions with engineered resonance properties in a host material. This work proposes a novel approach

to design by introducing the concept of modularity. Here, modularity in design refers to the idea of

creating complex systems from a library of building blocks (Figure 1.3). One can envision such library

to contain various structural elements of di�erent load-bearing properties and material/geometric

designs. Connection between these structural members is idealized as di�erent types of springs (axial,

torsional, etc.) as shown in Figure 1.3. As we will discuss in detail in later chapters, this modular

approach to design of periodic systems has the following bene�ts:

� It broadens the design space.

� It enriches the dispersion characteristics of the structure.

� It gives rise to new wave phenomenon and wave-control properties.

Figure 1.3: Library of structural elements used for modular design.
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In this work, we have primarily focused on a special category of modular systems, in which structural

elements are connected periodically along their length instead of in series, such as in composite designs.

Studying structures that are periodically connected in parallel could be traced back to Sen Gupta's

work in 1970 on the so-called rib-skin structures [44], encountered in airplane applications. These

structures consist of a pair of plates (skins) joined periodically in parallel by another set of orthogonal

plates (ribs). The ribs are usually modeled as rigid bodies while the skins are modeled as elastic beams.

Gupta showed that the dispersion relation of one such structure is quadratic in coshµ, where µ is the

propagation constant, and identi�ed the propagation and attenuation zones. More work has been done

since on sti�ened plates and beams in the context of periodic systems [14, 45, 46]. More recently, Chen

and Elbanna studied the coupling of a pair of bars in parallel and showed that tailoring the properties

of the two elastic members may lead to extreme attenuation zones in the band structure of the system.

The idea was then used to realize a mechanical switch that is used to modulate elastic waves [47]. On

another front, studies on mass-spring chains coupled in parallel have uncovered analogies to quantum-

mechanical systems and proved that such structures allow for the propagation of elastic waves with

nonconventional topology [48, 49, 50, 51]. More investigation in this area could inform and facilitate

the design of systems with desirable wave-control functionalities.

1.4 E�ects of Nonlinearity

Although linear metamaterials exhibit many interesting properties, recent works have shown that non-

linear periodic structures o�er a myriad of opportunities for enhanced control over wave transmission.

These include but are not limited to response tunability/localization [52, 53, 54, 55], frequency con-

version [56, 57], irreversible energy transfer and nonreciprocity [58, 59, 60] or merely broadening the

frequency region over which strong attenuation is achieved [61, 62]. The classical dispersion analysis

methods for linear elastic metamaterials no longer hold in the presence of nonlinear e�ects.

Multiple frameworks have been developed to allow for integrating di�erent types of nonlinearity directly

in the dispersion analysis. For example, Narisetti showed how a modi�ed version of perturbation

approaches, such as the method of Lindstedt-Poincaré or Multiple Scales, may be used to determine the

band structure of weakly nonlinear periodic structures [63]. In the same work, the author also presents

a framework for tackling strong nonlinearities by using the Harmonic Balance method. Manktelow

extended this work to account for wave-wave interactions in nonlinear periodic media [64]. More

recently, Khajehtourian presented an exact, closed-form formulation for the treatment of nonlinearity
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in the strain-displacement gradient relation [65]. However, not much research has been conducted on

the interaction of waves in continuous media with nonlinear local resonators. Recently, Silva used

a perturbation approach for studying wave-wave interactions in discrete metamaterials with weakly

nonlinear quadratic local interactions [66, 67]. The study revealed that energy exchange may occur

between propagating and evanescent waves. An experimental realization was o�ered in [68].

Considering the above, investigating the interaction of waves propagating in continuous media with

a periodic array of nonlinear local resonators is of interests in two regards: one, to develop a uni�ed

theoretical framework for this class of problems, and two, in order to design metamaterials with new

functionalities.

1.5 Motivation and outline

The objective of the present work is two-fold:

� to investigate a modular approach to the design of metamaterials in an attempt to broaden

the design space and achieve new wave-control functionalities that go beyond the conventional

designs proposed. We primarily focus on a special category of modular systems, in which struc-

tural elements are connected periodically along their length, and investigate their dispersion

characteristics, wave-control properties and applications.

� to investigate the interaction of waves propagating in continuous media with discrete nonlinear

local resonators. Pursuant to our interest in structural and earthquake engineering applications,

we speci�cally focus our attention on the e�ect of discrete nonlinear local resonators on the

propagation of surface waves.

The work is organized as follows: The �rst two chapters are dedicated to theoretical and numerical

studies on two classes of structural systems coupled in parallel. One contains continuous �exural beam

elements and another consists of discrete lattices. Both con�gurations follow a modular approach

to design in which structural systems with previously known dispersion characteristics are coupled

to create a new structure with richer dynamic properties and potential applications for wave and

vibration control. Chapters three and four focus on how periodic nonlinear local resonances may be

exploited to realize amplitude-dependent dispersion characteristics for surface acoustic waves. More

speci�cally, chapter three considers the interaction of Rayleigh waves with Du�ng-type oscillators, and

presents a theoretical framework for dispersion analysis using the e�ective medium approach. Chapter
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four proposes a compact table-top experimental setup for realizing amplitude-dependent dispersion for

surface acoustic waves.

The �ndings of this two-part study will inform the design of more versatile metamaterials at di�erent

scales. Finally, we will also discuss some promising future directions that may be considered as both

short-term and long-term extensions to this work.
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Chapter 2

Dynamics of metamaterial beams:

periodically-coupled �exural elements

The content of this chapter has been published in the Journal of Physics D: Applied Physics [69]

2.1 Introduction

Wave propagation in periodic structures has been investigated for decades: from large-scale structures,

such as multi-story buildings, multi-span bridges and pipelines [8, 9, 10, 11] to atomic lattices [4].

These structures have been a focus of attention due to their wave-�ltering properties. It has been

well-established that waves in certain frequency ranges cannot freely propagate in periodic systems

due to the existence of band gaps in their frequency spectra [1]. This feature has made them potential

candidates for applications such as vibration and seismic isolation [16, 17, 18], wave-guiding [19, 20, 21]

and cloaking [22, 23, 24]. Two mechanisms have been identi�ed for band gap formation in periodic

systems: Bragg scattering (BS) and local resonance (LR). Bragg band gaps occur due to multiple

scattering and interference e�ects between the periodic constituents of the system. Hence, these gaps

occur at wavelengths comparable to the structural periodicity. The seminal work of Liu et al. [33],

however, showed that gaps can occur at frequencies nearly two orders of magnitude lower than that of

the Bragg frequency if local resonance is exploited. In an attempt to further enhance the dispersion

characteristics of these systems, researchers have recently proposed novel designs that aim to combine

the features of both mechanisms. These designs range from systems with interconnected resonators

[41, 42] to con�gurations with resonators directly attached to neighboring masses in the host structure

[43].

Periodic beams have been particularly studied to a great extent in literature. As early as the 1960s,

the natural frequencies and steady-state responses of beams with periodic supports and periodic

impedances were studied [70, 71]. Since then, many researchers have investigated �exural vibration

band gaps in beams with various periodicity features. Attention was �rst drawn to periodic beams with
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a binary con�guration, in which the unit cell consists of two �exural elements with di�erent material

or geometric properties placed in series [8, 72, 73]. The Bragg scattering mechanism is responsible

for band gap formation in these structures. More recent studies have focused on Locally Resonant

(LR) beams, in which a periodic array of local resonators leads to the emergence of band gaps in the

frequency spectra of the system [74, 75, 76, 77, 78, 79]. Band gaps in this class of structures form due

to both BS and LR mechanisms [80, 81]. Liu and Hussein studied wave propagation in �exural beams

from both categories and mathematically characterized the condition for transition between Bragg

scattering and local resonance band gaps in LR beams [82]. Most research in the area of LR beams

has focused mainly on the e�ect of discrete resonators. However, recently, Wang et al. studied a local

resonant beam with continuum beam resonators and proved its e�ectiveness in comparison with the

conventional force-only resonators [83]. Beli et al. proposed a metamaterial beam with interconnected

beam attachments, forming a resonator chain. The authors showed that the interaction between the

translational and rotational modes of this chain enriches the band structure in comparison to the case

where the beam resonators perform independently[42].

Studying structures that are periodically connected in parallel could be traced back to Sen Gupta's

work in 1970 on the so-called rib-skin structures [44], encountered in airplane applications. These

structures consist of a pair of plates (skins) joined periodically in parallel by another set of orthogonal

plates (ribs). The ribs are usually modeled as rigid bodies while the skins are modeled as elastic beams.

Gupta showed that the dispersion relation of one such structure is quadratic in coshµ, where µ is the

propagation constant, and identi�ed the propagation and attenuation zones. More work has been done

since on sti�ened plates and beams in the context of periodic systems [14, 45, 46]. More recently, Chen

and Elbanna studied the coupling of a pair of bars in parallel and showed that tailoring the properties

of the two elastic members may lead to extreme attenuation zones in the band structure of the system.

The idea was then used to realize a mechanical switch that is used to modulate elastic waves [47].

In this chapter, we focus our attention on parallel beam elements that are periodically connected by

enforcing compatibility of deformation and force balance at discrete attachment points along their

length. We carry out a parametric study to show the e�ects of material and section properties as well

as connection compliance on the band structure of the system. We, then, show that the system may

possess rich dispersion properties in the low frequency ranges by tuning the parameters properly.
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(a)

(b) (c)

Figure 2.1: Model setup. (a) Metamaterial beam structure consisting of two uniform beams that are
periodically attached. (b) Unit cell con�guration for rigid connections. (c) Unit cell con�guration for
compliant connections.

2.2 Methods

2.2.1 Analytical model

Rigid connections The setup of the metamaterial beam with rigid connections is shown in Fig.

2.1a. The system consists of two uniform beams periodically coupled with rigid arms that enforce

equal transverse displacement and rotation at the connection points between the two beam elements.

The spacing of the periodic attachments is L. The dynamics of the in�nite metamaterial beam is

studied by deriving the governing equations for one of its unit cells (Fig. 2.1b) following the Euler-

Bernoulli beam theory and assuming that the coupling of the two beams is exactly imposed at the

boundaries of the unit cell. The governing equations are written as follows:

∂2

∂x2
[E1I1

∂2Y1(x, t)

∂x2
] + ρ1A1

∂2Y1(x, t)

∂t2
= 0 (2.1a)

∂2

∂x2
[E2I2

∂2Y2(x, t)

∂x2
] + ρ2A2

∂2Y2(x, t)

∂t2
= 0 (2.1b)

where, ρ and E refer to the density and Young's modulus of the beam material, respectively and A

and I denote the cross-sectional area and moment of inertia of the members. The solution of the PDEs

is written as Y1(x, t) = y1(x)eiωt and Y2(x, t) = y2(x)eiωt, where y1(x) and y2(x) are of the following
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general form:

y1(x) = a11 cos

√
ωx

β1
+ a12 sin

√
ωx

β1
+ a13 cosh

√
ωx

β1
+ a14 sinh

√
ωx

β1
(2.2a)

y2(x) = a21 cos

√
ωx

β2
+ a22 sin

√
ωx

β2
+ a23 cosh

√
ωx

β2
+ a24 sinh

√
ωx

β2
(2.2b)

Here, βj = 4

√
EjIj
ρjAj

and the ajk coe�cients are determined by imposing the boundary conditions

(BCs) with j = 1, 2 and k ranging from 1 to 4. Enforcing equal transverse displacements and �exural

rotations at the ends of the unit cell, where the two beams are coupled with a rigid connection, gives

the �rst set of BCs:

y1(0) = y2(0) , θ1(0) = θ2(0) (2.3a)

y1(L) = y2(L) , θ1(L) = θ2(L) (2.3b)

with θj(x) =
dyj
dx . Since the structure is periodic, the displacements and forces associated with the two

boundaries of the unit cell are related by using the Bloch theorem. This yields the second set of BCs:

y1(L) = eiqLy1(0) , θ1(L) = eiqLθ1(0) (2.4a)

V (L) = eiqLV (0) , M(L) = eiqLM(0) (2.4b)

where q is the wave number and i =
√
−1. Due to the coupling at the boundaries, M(0) = M1(0) +

M2(0) and V (0) = V1(0) + V2(0) where Mj(x) = EjIj
d2yj
dx2 and Vj(x) =

dMj

dx denote the moment and

shear force in each beam.

We introduce the variables k
(1)
b =

√
ω
β1

and k
(2)
b =

√
ω
β2

and use the propagation constant, µ = iqL, for

convenience. Substituting (2.2) in (2.3) and (2.4), we can construct a system of linear equations as

follows

[C]{a} = 0 (2.5)

Matrix [C] is a function of material properties and the geometry of the two beam sections as well as the

frequency ω and wave number q. In order for the system to have nontrivial solutions, the determinant

of this matrix must be set to zero. Doing so and rearranging parameters gives the dispersion relation

in the following form

(e2µ + e−2µ) + J1(eµ + e−µ) + J2 = 0 (2.6)
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or

cosh2 µ+
J1

2
coshµ+

J2 − 2

4
= 0 (2.7)

where, J1 = H1

H3
and J2 = H2

H3
and

H1 = 2
[ 2∑
i=1

E(i)I(i)λ(i)
2∑
i=1

E(i)I(i)δ̄(i) −
2∑
i=1

E(i)I(i)λ̄(i)
2∑
i=1

E(i)I(i)δ(i)
]

(2.8a)

H2 = 4
[
−
( 2∑
i=1

E(i)I(i)η(i)
)2

+

2∑
i=1

E(i)I(i)λ(i)
2∑
i=1

E(i)I(i)δ(i)
]

(2.8b)

H3 =
( 2∑
i=1

E(i)I(i)η(i)
)2 − 2∑

i=1

E(i)I(i)λ̄(i)
2∑
i=1

E(i)I(i)δ̄(i) (2.8c)

The superscript i indicates element number. The parameters λ(i), δ(i), λ̄(i), δ̄(i) and η(i) (i = 1, 2) are

de�ned as follows

λ(i) = [cos (k
(i)
b L) sinh (k

(i)
b L) + sin (k

(i)
b L) cosh (k

(i)
b L)](k

(i)
b L)3/∆(i) (2.9a)

δ(i) = [− cos (k
(i)
b L) sinh (k

(i)
b L) + sin (k

(i)
b L) cosh (k

(i)
b L)](k

(i)
b L)/∆(i) (2.9b)

η(i) = [− cos (k
(i)
b L) + cosh (k

(i)
b L)](k

(i)
b L)2/∆(i) (2.9c)

λ̄(i) = [sin (k
(i)
b L) + sinh (k

(i)
b L)]/(k

(i)
b L)3∆(i) (2.9d)

δ̄(i) = [− sin (k
(i)
b L) + sinh (k

(i)
b L)](k

(i)
b L)/∆(i) (2.9e)

∆(i) = 1− cos (k
(i)
b L) cosh (k

(i)
b L) (2.9f)

Examining the resulting dispersion relation reveals that for arbitrary material and cross-sectional

properties of the �rst beam element- i.e. �xed β1-, there are only two non-dimensional parameters

(namely, ρ̂Â and ÊÎ) that in�uence the dispersion relation of the system. Here, (̂.) = (.)2
(.)1

. ρ̂Â indicates

the mass ratio between the two beams while ÊÎ shows the sti�ness ratio. In Section 3.1, we study how

the location and width of the �rst band gap change when these parameters are varied.

Compliant connections In practice, it may be di�cult to have fully-rigid connections. Here, we

develop the analytical solution for the case of connections with �nite translational and rotational

sti�nesses Ks and Kt. The unit cell con�guration alongside with the coordinate system in this case

is shown in Fig. 2.1c. The governing equations as well as the general form of solution for yj(x)

(j = 1, ..., 4) are the same as the previous section. However, the boundary conditions are di�erent in
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this case.

The �rst set of BCs is determined by imposing continuity of displacements and balance of forces within

each beam element:

y1(L/2) = y2(0) , θ1(L/2) = θ2(0) (2.10a)

y3(L/2) = y4(0) , θ3(L/2) = θ4(0) (2.10b)

−V1(L/2) + V2(0) + Fs = 0 (2.10c)

−V3(L/2) + V4(0)− Fs = 0 (2.10d)

−M1(L/2) +M2(0) +Ms = 0 (2.10e)

−M3(L/2) +M4(0)−Ms = 0 (2.10f)

In the above, Fs and Ms are the force and moment in the connector springs, respectively and are

de�ned as follows:

Fs = Ks[y2(0)− y4(0)] (2.11a)

Ms = Kt[θ2(0)− θ4(0)] (2.11b)

The second set of BCs consists of the Bloch boundary conditions:

y2(L/2) = y1(0)eiqL , θ2(L/2) = θ1(0)eiqL (2.12a)

y4(L/2) = y3(0)eiqL , θ4(L/2) = θ3(0)eiqL (2.12b)

V2(L/2) = V1(0)eiqL , M2(L/2) = M1(0)eiqL (2.12c)

V4(L/2) = V3(0)eiqL , M4(L/2) = M3(0)eiqL (2.12d)

These boundary conditions are used to form a system of linear equations as in the previous section. The

problem is formulated as in the previous case. The general solutions can be written in a similar form

for all four beam elements (Fig. 2.1c), yielding sixteen unknown coe�cients. Setting the determinant

of the matrix of coe�cients to zero gives the dispersion relation in the following form

(e4µ + e−4µ) + J∗1 (e3µ + e−3µ) + J∗2 (e2µ + e−2µ) + J∗3 (eµ + e−µ) + J∗4 = 0 (2.13)
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or

cosh4 µ+
J∗1
2

cosh3 µ+
J∗2 − 4

4
cosh2 µ+

J∗3 − 3J∗1
8

coshµ+
J∗4 − J∗2 + 1

8
= 0 (2.14)

The dispersion relation is proven to be quartic in cos qL. Again, the coe�cients of this fourth-order

equation are functions of the material and cross-sectional properties as well as sti�ness parameters α

and γ. The closed-form expressions of these coe�cients will not be presented here.

2.2.2 Numerical model

Bloch mode synthesis [84] is used to determine the band structure of the system numerically. We use

a standard Finite Element method to construct the mass and sti�ness matrices of the unit cell. The

matrices are then partitioned according to the interior and interface nodes and the Craig-Bampton

method [73] is chosen to represent the normal and constraint modes. Depending on the highest

frequency of interest and for the sake of computational e�ciency, only a reduced set of the �xed-

interface modes (FIM) is kept. Next, Bloch boundary conditions are imposed through interface nodes

to create the mass and sti�ness matrices of an in�nite metamaterial beam. The reduced model is then

used for eigenvalue analysis to determine the band structure of the periodic system. Matlab® is used

for all numerical simulations in this paper.

2.3 Results

2.3.1 In�nite metamaterial beams

Parametric study of the band gap structure in rigidly-connected beams In this section, we

study the parametric dependence of the �rst band gap characteristics in terms of the two independent

variables identi�ed in the previous section - i.e. the mass ratio and the sti�ness ratio of the two beams.
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(a) Lower edge frequency (b) Upper edge frequency

(c) Band gap width (d) Normalized gap width(%)

Figure 2.2: Variations of the �rst band gap properties with changes in mass ratio (ρ̂Â) and sti�ness

ratio (ÊÎ). β̂ represents the ratio of the wave phase speed for the two beams. Lines of constant β̂ give
another measure for comparing the variations of the properties. (a)-(b) The band gap forms at lower
frequencies as the mass ratio (sti�ness ratio) increases (decreases). (c) The band gap width increases
for high sti�ness ratios along with low mass ratios. (d) The normalized gap width increases as we
move to the two ends of the spectrum. (For the interpretation of the color references in this �gure,
the reader is referred to the web version of the article.)

We consider one of the beams to be a doubly-symmetric I-beam made of concrete with a Young's

modulus of 25 GPa and a density of 2400 kg m−3. The dimensions of the �ange and web are 150× 40

mm and 170 × 30 mm, respectively. The properties of the other beam are varied to explore the

parameter space. The unit cell length, corresponding to the distance between the coupling points, is

1 meter.

Figures 2.2a and 2.2b show the variation of the lower and upper edge frequencies with the non-

dimensional parameters ρ̂Â and ÊÎ. For a �xed mass ratio, as the sti�ness ratio increases, the edge
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frequencies increase. On the other hand, for a �xed value of sti�ness ratio, the lower and upper edge

frequencies decrease with an increase in mass ratio. Since for a homogeneous Euler-Bernoulli beam,

the phase speed for a wave with radial frequency ω is equal to
√
ωβ, the variable β̂ is, in fact, a measure

of the wave's phase speed ratio in the two beams. Fig. 2.2 suggests that the band gap edge frequencies

do not vary signi�cantly in the region close to β̂ = 1, i.e. where the two beams have similar dispersive

properties.

Fig. 2.2c shows the variation of the �rst band gap width with the non-dimensional parameters ρ̂Â and

ÊÎ. When β̂ is close to 1, the band gap width is very small. When β̂ is exactly 1, there is no band gap

- even if the two beams have di�erent material and cross-sectional properties. However, as the contrast

in the sti�ness and mass ratios increases, the band gap width increases as well. In particular, for large

sti�ness ratios and low mass ratios, the band gap width becomes maximum. A local maximum is also

observed in the region with high mass ratios and low sti�ness ratios. It should be noted that as the

bandwidth increases, so does the frequency corresponding to the lower edge of the band gap. In other

words, the set of parameters that maximize bandwidth do not necessarily give the lowest frequency

edge. Hence, depending on the target objective, the required mass and sti�ness ratio may be tuned.

Fig. 2.2d shows a contour for the percent ratio between the gap width and the mid-gap frequency as

a function of the two non-dimensional variables. At the two ends of the spectrum, the gap width-to-

midgap frequency ratio is maximum. Thus, choosing high-contrast properties for the two beams leads

to higher normalized band gap widths.

The above discussion suggests that achieving low-frequency band-gaps requires very high mass ratios

and very low sti�ness ratios; whereas, achieving wide band gaps requires low mass ratios and high

sti�ness ratios. The two, therefore, lie on the two ends of the spectrum. The high contrast required

in β values may be accommodated by a high contrast in material properties of the two beams, a high

contrast in cross-sectional properties or a combination of both. The resulting band gaps may be of BS

or LR type. In the following section we review a classi�cation of the expected band structure zones

and follow with a representative numerical example.

Classi�cation of the band structure zones For rigid connections, the dispersion relation for the

coupled beam system is quadratic in cos qL as shown in section 2.2.1. Therefore, two pairs of wave

numbers ±q1 and ±q2 are determined for a given frequency Ω. The wave numbers in each pair represent

the same characteristic wave but travelling in opposite directions. Therefore, we only consider q1 and
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(a) (b) (c)

Figure 2.3: Classi�cation of �exural waves: (a) propagating, (b) attenuating, (c) complex. λ = eiqL.

q2 herein to analyze the band gap structure. Physically, a �exural wave may be classi�ed as follows

based on its corresponding wave number (see Figure 2.3) [80, 79]:

a. Propagating: The wave number is purely real, q = Re(q). In this case, the wave travels over the

unit cells without attenuation and only with a phase change.

b. Attenuating: The real part of the wave number has the form Re(q) = 0 or |Re(q)| = π and the

imaginary part is nonzero. This corresponds to a wave that attenuates while travelling across a

unit cell.

c. Complex: The wave number is complex, i.e. 0 < |Re(q)| < π and |Im(q)| > 0. In this case, the

wave is propagating and attenuating as it travels along the structure.

(a) (b)

(c) (d)

Figure 2.4: Categorization of di�erent regions in the band structure: (a) propagation-propagation, (b)
propagation-attenuation, (c) attenuation-attenuation, and (d) complex. λ1,2 = eiq1,2L.
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Depending on which category q1 and q2 belong to, the system will have four distinct types of dispersion

properties at a given frequency Ω (see Figure 2.4):

I. Propagation-Propagation (PP): in this case both waves are propagating without attenuation

across the system.

II. Propagation-Attenuation (PA): Only one of the waves propagates through the system and the

other gets attenuated as it travels over multiple unit cells.

III. Attenuation-Attenuation (AA): where both wave numbers belong to the attenuation category.

In this case, the adjacent cells vibrate either in phase or out of phase, attenuating the waves

as they travel through the structure as a result. This behavior is typical of the classical Bragg

Scattering phenomenon. Therefore, this region is also called the Bragg Scattering (BS) zone.

IV. Complex (C): The wave numbers q1 and q2 belong to category (c) above and are complex-

conjugate. In this case, the two wave numbers essentially represent the same characteristic wave

that attenuates and experiences a phase change as it travels across a unit cell. This is usually

characteristic of a local resonance mechanism when using a periodic array of resonators. Thus,

this region can also be marked as the Local Resonance (LR) zone.

Based on the classi�cation proposed, there are two types of pass bands (PP and PA) and two types of

band gaps (AA and C). In the example discussed in the next section, we determine the band structure

and study the dispersive behavior of the system based on this classi�cation.

(a) (b)

Figure 2.5: The complex band structure of the periodic �exural system: (a) shows the real part of the
wave number pair, which determines the dispersion relation of propagating waves and (b) shows the
imaginary part of the wave number pair, governing the attenuation properties of the system.

18



(a) (b)

Figure 2.6: A simpli�ed representation of the complex band structure shown in Figure 2.5. (a) Dis-
persion curves of the periodically-coupled concrete and Tungsten beams. (b) Minimum absolute value
of attenuation constants.

Example To achieve low-frequency band gaps, forming due to a high contrast in β ratios of the

two beams, we consider coupling the concrete beam from the previous section to a beam made of a

Tungsten alloy (Young's modulus 310 GPa and density 18000 kg m−3) with rigid connections. High-

density tungsten alloys are widely used for vibration damping in di�erent industries due to their

favorable physical properties. This beam element is assumed to have a circular cross section with

a radius of 30 millimeters. The length of the unit cell is considered to be 1 meter. The dispersion

response of the system is studied in detail next.

The analytical solution given in section 2.2.1 is used to get a comprehensive view of the system's band

gap structure (Fig. 2.5) and unravel the dispersion properties of the periodic system. The regions of

interest to us are the AA and C regions, in which both waves get attenuated while traveling across the

unit cells either by a BS or LR-type mechanism. The plots show that the �rst and third band gaps are

generated by a blend of BS and LR-type mechanisms. In the �rst band gap, wave numbers transition

from an AA region to a C zone as the frequency increases while for the third band gap, the transition

between these zones is reversed. The second band gap, however, forms purely due to BS e�ects.

It should be noted that the dispersion relation of the waves that propagate freely in the system is

governed by the purely real wave numbers while the attenuation properties of the system are dominated

by the imaginary part of the wave number that has the lowest absolute value. Having this in mind, the

complex band structure in Fig. 2.5 may be reduced to the simple representation in Fig. 2.6. Fig. 2.6a

shows the dispersion curves of the periodic system and also serves to demonstrate that the analytical
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and numerical results match.

Studying the band gap structure of the system shows that the �rst band gap spans from 199 Hz to 276

Hz with a normalized band gap width of 32.5%. The second band gap edge frequencies are 310 Hz and

524 Hz; this band gap has a normalized gap width of 51.2% . Interestingly, an almost �at dispersion

curve lies between the �rst two band gaps. The ratio of the width of this pass band to the width of the

frequency region between 199 Hz and 524 Hz is only 10.4%. Furthermore, waves with frequencies in

this pass band region have signi�cantly lower phase velocities than those corresponding to the �rst and

third dispersion lines. These observations indicate that this pass band may be neglected in practice.

Doing so, gives a wide band gap with a normalized width of nearly 90%.

Fig. 2.6b demonstrates the attenuation constants of the system within the band gaps. The �gure shows

that the �rst and third band gaps are Fano-shaped and highly asymmetric while the second band gap

shows a smooth variation in the attenuation constant. These are well-established properties of the LR

and BS band gaps, respectively and have been previously documented in the literature [82, 80, 83, 85].

E�ect of connection compliance In this section, we study the e�ects of connection compliance

on the band gap structure and attenuation properties of the system. The unit cell con�guration in

this case is shown in Fig. 2.1c. The analytical dispersion relation is determined in a similar manner

as before and is found to be quartic in cos qL (see section 2.2.1). Therefore, four pairs of wave

number solutions exist for a given frequency, with each pair representing the same characteristic wave

but propagating in opposite directions. The nature of these characteristic waves (whether each is of

Attenuating, Propagating or Complex type) determines the band structure of the system.
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(a) Lower edge frequency (b) Upper edge frequency

(c) Band gap width (d) Normalized gap width(%)

Figure 2.7: Variations of the �rst band gap properties with changes in the normalized sti�nesses of the
translational and rotational springs (α and γ). (a)-(b) The edge frequencies increase as the sti�ness of
the connection increases. (c) The band gap width reaches its maximum in two regions: the sti� end
of the spectrum (high α and γ values) and a limited region for very small γ values. (d) The maximum
normalized gap width occurs in a localized region of α values for very low rotational sti�nesses. (For
the interpretation of the color references in this �gure, the reader is referred to the web version of the
article.)

To facilitate further investigation, we introduce the non-dimensional parameters α = Ks/(E1I1/a
3)

and γ = Kt/(E1I1/a). Fig. 2.7 shows the variations in the �rst band gap properties as α and γ

change. For low values of α, no band gaps exist even at high γ values. This suggests that the coupling

between the translational displacements of the two beams is essential for generating band gaps. As

α increases, the �rst band gap starts to form. The plots suggest that the band gap edge frequencies

and width increase as the connection sti�ness increases. Fig. 2.7c shows that the variation of the

band gap width with the connection sti�ness ratios is non-monotonic. Two local regions of maximized

band gap width may be identi�ed. The �rst region occurs for small values of γ (ln γ < −2) and a
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limited range of α values (2.5 < lnα < 4.5). The second region occurs towards the high-sti�ness end

of the spectrum, where both α and γ are large. Fig. 2.7d also suggests that the normalized band gap

width varies non-monotonically with connection sti�ness parameters. The normalized band gap width

is maximized in a limited range of parameter values (2.5 < lnα < 3.5, ln γ < −3.5).

(a) (b)

(c) (d)

Figure 2.8: E�ect of connection compliance on the band structure and attenuation strength of the
system. (a)-(b): γ = 0. (c)-(d): γ = 103

.

The analytical solution discussed in section 2.2.1 is used next to study the e�ect of connection sti�ness

on the band gap structure and attenuation strength of the system. Two candidate cases are examined:

In the �rst case, γ is set to 0 and in the second case, it is set to 103. In both cases, α values of 10,102 and

103 are considered. Fig. 2.8 shows how varying the two parameters modi�es the dispersion properties

of the system. For instance, in the �rst case, when α = 10, there's a possibility of lowering the band

gap edge frequency to 98.2 Hz and increasing the normalized gap width to 53.7% in comparison to the

case with rigid connections (Fig. 2.6a). As another example, in the second case (γ = 103), when α is

100, the attenuation strength in the second band gap increases signi�cantly. Whereas, when α is 10
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in the same case, the band gap widths are very small, making this set of parameters unfavourable.

It should also be noted that when α and γ are both 103, the connection between the two beams may be

considered as almost rigid. Thus, the overall band structure for this set of parameters is similar to the

one for rigid connections (Fig. 2.6). Figures 2.8b and 2.8d show the e�ect of connection compliance on

the attenuation properties of the periodic structure. The plots indicate that tuning the sti�ness of the

connection may increase the attenuation strength, change the nature of the attenuation mechanisms

and make them interact.

Here, we will include the complex band structure of the system with compliant connections for two

sample cases in order to highlight the complexity of solution behaviors and the strong interactions

between characteristic waves: one corresponds to α = 100 and γ = 0 while the other corresponds to

α = 1000 and γ = 0. Figures 2.9a and 2.9b show that within the second band gap, all wave number

solutions are of Attenuating type; however, the solution behavior changes within the third band gap.

This band gap starts with two Complex and two Attenuating wave number pairs but all solutions

become Attenuating as the frequency increases. Figures 2.9c and 2.9d suggest that within the second

band gap, all wave numbers are Attenuating while the third one forms with a complex-conjugate pair

and two attenuating ones. The solution behavior doesn't change within the band gap in this case.

The plots highlight the complexity of the band structure and the strong interactions between the

characteristic waves when the connections are not rigid. The observations encourage further future

investigation to characterize the propagation/attenuation zones corresponding to di�erent solution

behaviors.

Hierarchical systems In this section, we brie�y study the e�ect of coupling more than two beams

having di�erent periodicities at di�erent scales on the dispersion properties of the overall structure.

Fig. 2.10 shows the unit cell con�gurations and the corresponding dispersion curves for three cases: (i)

a concrete and tungsten beam coupled periodically with a unit cell length of 1 meter; (ii) a concrete and

tungsten beam coupled periodically with a unit cell length of 0.5 m; and (iii) a concrete and tungsten

beam periodically coupled at 0.5 m spacing with the whole pair coupled to a third tungsten beam at 1

m spacing. The third con�guration is a combination of the �rst two and involves two periodicity scales.

The �gure shows that the interaction between the two periodicity scales in case (iii) has modi�ed the

system's band structure, creating band gaps where we previously had propagation zones and a�ecting

the edge frequencies. The e�ect of hierarchy is more pronounced when comparing cases (ii) and (iii):
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(a) (b)

(c) (d)

Figure 2.9: The complex band structure of the periodic �exural system with compliant connections
for γ = 0, α = 100 (above) and α = 1000 (below). The di�erent colors show the four characteristic
wave solutions. (a) and (c) show the real part of the wave numbers, which determines the dispersion
relation of propagating waves. (b) and (d) show the imaginary part of the wave numbers, governing
the attenuation properties of the system. (Colored version of this �gure is available online).

the edge frequencies of the �rst band gap are considerably lower in case (iii) and several band gaps form

where we had propagation zones in case (ii). The dispersion curves in case (iii) are close to the ones in

case (i) for low frequencies but start to deviate from them at higher frequency ranges. For example the

fourth band gap in case (iii) forms in a propagation zone of case (i). These �ndings suggest that this

may potentially be an e�ective intervention technique for changing attenuation properties of existing

metamaterial beam structures.
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Figure 2.10: The dispersion plots corresponding to the three unit cell con�gurations in the insert: cases
(i)-(iii) as described in the text plotted with solid black line, blue dashed-dotted line and red dashed
line, respectively.

2.3.2 Finite systems

In order to study the vibration transmittance properties of the system, we calculate the Frequency

Response Function (FRF) of two periodically-connected, simply-supported beams with 20 unit cells.

The material and cross-sectional properties of the beams as well as the unit cell length are the same as

the example discussed in the previous section. Two cases are considered: one with rigid connections

and one with connection sti�ness parameters α = 100 and γ = 0. Each beam is divided into 200 �nite

beam elements. The FRF matrix [HqF ] due to a harmonic excitation force of amplitude F0 can be

determined from the FEM model using modal analysis:

[Mr]{η̈r}+ [Cr]{η̇r}+ [Kr]{ηr} = {Fr}

[Hηrfr ] = [−Ω2[Mr] + [Kr] + iΩ[Cr]]
−1

[HqF ] = [Φ][Hηrfr ][Φ
T ]

(2.15)

where, [Mr], [Kr] and [Cr] are the modal mass, sti�ness and damping matrices respectively. The modal

damping coe�cient ξ is assumed to be equal for all modes. {ηr} is the vector of modal coordinates

and Fr = ΦTF (F = {0, 0, F0e
iΩt, 0, ...}T ) is the modal forcing vector with [Φ] being the matrix of

eigenvectors.
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(a) (b)

Figure 2.11: Steady-state response of the periodic system: (a) Frequency Response Function of the
concrete beam (above) and Tungsten beam (below) for a structure with 20 unit cells and di�erent
damping coe�cients. (b) Comparison of the undamped Frequency Response Functions of the concrete
beam (above) and Tungsten beam (below) for structures with di�erent number of unit cells.

In all cases, the harmonic excitation is applied at the node adjacent to the left support on the concrete

beam and the transverse response is measured at the node adjacent to the right support for each

beam. In addition, the node where the harmonic force is applied is not a connection point between

the two members. Figures 2.11a and 2.12a show the FRF of the transverse displacement for di�erent

levels of damping. The grey areas show the band gap regions predicted in the previous section. The

�gures show that the regions of strong attenuation lie well within the band gaps. The relative strength

of attenuation in each region is consistent with the attenuation constants shown in Figures 2.6b and

2.8b for the case of rigid and compliant connections, respectively. For example, in the case of the

rigid connection, the wave attenuation is intensi�ed in the �rst and third band gaps, where BS and

LR e�ects blend in and the attenuation constants are larger compared to the second band gap with

a BS-type mechanism and smaller attenuation constants. The �gure also shows that the FRF peaks

corresponding to the resonance frequencies of the structure may be smoothened by a slight increase in

the damping coe�cient.

Figures 2.11b and 2.12b show the Frequency Response Function for di�erent number of unit cells. The

�gures indicate that as the number of unit cells increases, the reduction in amplitude becomes larger,

as is expected in periodic systems.
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(a) (b)

Figure 2.12: Steady-state response of the periodic system with compliant connections (γ = 0, α = 100):
(a) Frequency Response Function of the concrete beam (above) and Tungsten beam (below) for a
structure with 20 unit cells and di�erent damping coe�cients. (b) Comparison of the undamped
Frequency Response Functions of the concrete beam (above) and Tungsten beam (below) for structures
with di�erent number of unit cells.

2.4 Discussion

We have presented a mathematical model and analytical representation of the dispersion relation for

coupled Euler-Bernoulli beams that are periodically joined by rigid or compliant connections. While

each homogeneous beam does not individually have band gaps, multiple band gaps emerge when the

two beams are connected in parallel. Our results suggest that a high contrast between the phase

speeds in the pair of �exural members a�ects the band structure of the system and its dispersion

properties signi�cantly. In particular, we have shown that for high mass ratios and low sti�ness ratios,

the edge frequencies may be pushed towards low-frequency ranges but only at the cost of band gap

width reduction. For low mass and high sti�ness ratios, band gaps have remarkably larger widths but

form at higher frequencies. Interestingly enough, β̂ = 1, corresponding to the case of two beams having

the same phase speed, is the line of symmetry for the normalized gap width. The contour shows an

increase in the normalized gap width when moving away from this line.

By analyzing the regions of propagation and attenuation in the band gap structure, we have shown

that, just as in the case of discrete periodic resonators, depending on the nature of the wave numbers,

two di�erent mechanisms are responsible for band gap formation: Bragg Scattering (BS) and Local

Resonance (LR). Constructing a simpli�ed representation of the complex band structure, showed that

the attenuation constant varies smoothly in the band gap regions associated with the BS e�ect while

it possesses sharp peaks and is highly asymmetric where LR is the main attenuation mechanism.
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Thus, unlike the conventional binary con�guration, in which heterogeneous �exural components are

connected in series, leading to the formation of BS-type band gaps, the proposed parallel con�guration

bene�ts from both BS and LR attenuation mechanisms.

Investigation of the e�ect of connection compliance shows that the transverse coupling is necessary for

band gap formation. Whereas, the elimination of the rotational spring lowers the �rst band gap edge

while increasing its width for a limited range of transverse spring sti�ness values. We also showed that

tuning the sti�ness of the springs may a�ect the nature of the band gap formation mechanisms as well

as the strength of attenuation. Thus, the compliance of the connection may be used as a means of

controlling and/or modifying the band structure of the system.

As a preliminary step towards the hierarchical design of metamaterial beam systems, we have demon-

strated how adding periodicity in another length scale may a�ect the dispersion properties of the

original structure. The new system has attenuation zones that do not exist in either of the two struc-

tures alone. Stacking �exural elements with di�erent unit cell sizes, thus, seems a promising avenue for

bene�ting from the interaction between the scales and enriching or altering the dispersion properties

of a system.

Although a lot of research has been done on periodic and local resonant metamaterials, many have

mainly focused on using discrete resonators [86, 87, 77, 88] or modelling the e�ect of continuous

resonators, such as beams, with spring-mass assemblies [78]. Considering that these discrete resonators

a�ect the dispersion properties of the main system by creating band gaps in regions close to their

natural frequency, the use of continuous elements with a countable in�nity set of natural frequencies

seems to o�er more possibilities for enriching the system's band structure. Our study, in particular,

shows that by periodically connecting two Euler-Bernoulli beams, a new system with several LR and BS

band gaps is created and that varying the coupling strength, by changing the connection's compliance,

will let the two mechanisms interact.

As pointed out brie�y in Section 1, unconventional designs have been recently proposed that o�er a

broader range of dispersion characteristics [40]. Among these novel con�gurations are the concepts of

resonator-to-resonator interactions [41, 42] and nonlocal resonances [43]. For example, in Beli et al.

2018 [42], the interaction between the transverse and rotational modes of a resonator chain consisting

of beam elements has been used to achieve a wider band gap in comparison to the case where the

resonators perform independently. The authors show how certain Bloch wave modes of the system

correspond to the resonance frequencies of the resonator chain. DePauw et al. 2018 [43] propose
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a con�guration called a Phononic Resonator in which each resonator can directly interact with the

neighboring masses in the main chain. It is then shown how tuning the sti�ness and mass ratios of the

main and resonator masses can change the nature of the attenuation mechanism leading to the system

behaving as a Phononic Crystal or an Acoustic Metamaterial. In the present work, there can be no

distinction between the host and resonating elements since the members periodically connected are

both continuous. Therefore, we conjecture that, unlike the previous studies, the resonance frequencies

at which the attenuation peaks occur do not solely depend on the properties of one element or the

other. Furthermore, Apart from the fact that tuning the physical parameters of the problem could

change the nature of the attenuation mechanism within band gaps (such as that observed in DePauw

et al. 2018), a mixture of BS and LR e�ects is observed within certain band gaps. Similar phenomenon

has been reported in [81, 79, 83].

Future extensions of this work may include further investigation of the hierarchical coupling, which sig-

ni�cantly increases the dimension of the parameter space. Given the surge of interest in non-reciprocal

wave propagation, it may be of interest to explore the in�uence of space-time modulation of the coupled

beams' elastic properties or the time modulation of the connection compliance on the overall disper-

sion relation structure and directional control of the energy �ow. Furthermore, combination of coupled

beams and discrete resonators may be considered as this setup may enable further tuning of the band

gap structure as well as the formation of band gaps in lower frequencies. Another intriguing route for

future investigations is controlling the transitions between di�erent propagation/attenuation zones in

the band structure by tuning the design parameters. The coe�cients of the dispersion relation, pre-

sented in Appendix ??, may be used to describe the di�erent propagation characteristics of the system

with rigid connections on the invariant's plane J1−J2 [89]. A mapping from the invariant plane to the

physical parameter plane could then be used to visualize the transition between propagation domains

as the parameters are varied. A similar study could be carried out for general systems with dispersion

relations that are of fourth order in cos qL.

2.5 Conclusions

In this work, We investigated the dynamics and dispersion properties of �exural elements that are peri-

odically coupled in parallel using rigid or compliant connections. our main conclusions are summarized

as follows:

� For rigid connections between the two elements, a high contrast between the phase speeds a�ects
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the band structure of the system signi�cantly. In particular, for the �rst band gap, high (low)

mass ratios and low (high) sti�ness ratios result in lower (higher) edge frequencies and narrower

(wider) band gaps.

� Unlike the conventional con�guration, in which beam elements of di�erent material/geometric

properties are connected in series, leading to BS-type band gaps, the proposed con�guration

bene�ts from both BS and LR mechanisms.

� The connection compliance may be used to modify the system's band structure by opening/closing

gaps. Tuning the sti�ness parameters may lower some band gap edge frequencies, increase their

width, intensify the attenuation strength or change the nature of the attenuation mechanisms.

� Stacking �exural elements at di�erent periodicity lengths may modify the band structure by

closing/opening band gaps.
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Chapter 3

Dispersion properties and dynamics of

ladder-like meta-chains

The content of this chapter has been published in Extreme Mechanics Letters [90]

3.1 Introduction

Periodic structures have been widely used to control the propagation of acoustic and elastic waves

[1]. Engineering the architecture of these systems alters their dispersion properties and leads to the

formation of band gaps. Periodic structures may be classi�ed in two groups: Phononic Crystals (PCs)

and Metamaterials. While phononic structures mainly owe their characteristics to Bragg scattering

(BS) and interference e�ects, metamaterials draw their strength from local resonances (LR). Several

realizations of each class have been suggested as possible waveguides, �lters and other devices aimed at

controlling the propagation of waves [91, 92, 93, 94, 53, 19, 20]. More recently, unconventional designs

have been proposed to combine features of the two categories [40, 41, 43] or explain how PCs may

show metamaterial attributes under special circumstances [95, 96].

Recent work on periodic entanglement of elements placed in parallel has shown that this class of

systems possesses interesting dynamic properties [97, 14, 93, 42, 69]. For example, Chen and Elbanna

studied wave propagation in bars that are periodically coupled along their length. The results showed

that for certain set of parameters, the system possesses extreme attenuation zones and may be used

as a mechanical switch [93]. Beli et al. used the interaction between the transverse and rotational

modes of a resonator chain consisting of beam elements to widen the band gap of the original system,

in which resonators were not interconnected [42]. A similar con�guration to [47] for �exural beam

elements was studied by the authors of the present work. Results of the study revealed that several

BS and LR band gaps form and static tuning of the connection sti�ness can change the nature of

attenuation mechanisms [69].

One-dimensional spring-mass systems serve as simpli�ed models for studying various physical phe-
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nomenon at di�erent scales [98, 60, 58, 99, 100]. They are also frequently used in the design of

wave-control devices [101, 53, 102, 103, 104, 105, 60]. In the context of periodic systems, several works

have investigated the wave propagation properties of one-dimensional phononic and resonant spring-

mass lattices [106]. In this work, we set out to determine the dispersion characteristics of ladder-like

meta-chains, consisting of monoatomic chains that are connected in parallel. We will investigate two

con�gurations. One is a con�guration where each mass in one chain is connected to its corresponding

mass in the other chain (full coupling). The other, consists of chains that are periodically coupled

only at certain locations (partial coupling). Properties of the fully-coupled con�guration in the long

wavelength limit have been recently shown to allow for the propagation of elastic waves with noncon-

ventional topology [48, 49, 50].

(a) (b)

(c) (d)

Figure 3.1: Con�guration of the meta-chain and jth unit cell for the fully-coupled (a)-(b) and partially-
coupled (c)-(d) systems.

This chapter is organized as follows: in section 3.2, we develop the mathematical expressions for the

dispersion relations of both coupling con�gurations. Section 3.3 highlights the prominent dispersion

characteristics of the proposed con�gurations using illustrative examples and the analytical expressions

derived. In section 3.4, we propose two simple �ltering devices that leverage the dispersion character-

istics of coupled chains and demonstrate numerically their performance under impact and harmonic

loading.

3.2 Mathematical formulation of the band structure

Fully-Coupled Chains In this con�guration, two classical monoatomic chains with di�erent mass

and spring sti�nesses are fully connected along their length (Fig. 3.1a). The interatomic distance in

both chains is de�ned as d. Each unit cell consists of two masses m1 and m2 that interact through
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a spring of sti�ness k3 (Fig. 3.1b). Within each chain, masses are connected through springs of

sti�ness k1 and k2. Representative frequencies of the two chains are introduced as ω1 =
√
k1/m1 and

ω2 =
√
k2/m2. The equations of motion for the jth unit cell may be written as follows:

m1üj + k1(2uj − uj−1 − uj+1) + k3(uj − vj) = 0 (3.1a)

m2v̈j + k2(2vj − vj−1 − vj+1) + k3(vj − uj) = 0 (3.1b)

where, u and v represent the displacements of m1 and m2. Solutions in the form of harmonic plane

waves are sought.

uj(t) = û (k(ω)) ei(kjd−ωt) (3.2a)

vj(t) = v̂ (k(ω)) ei(kjd−ωt) (3.2b)

Here, ω is the temporal frequency of the harmonic motion and k is the wave number. Eq. (3.2) is

also a representation of the Floquet-Bloch theorem, which governs the propagation of plane waves in

periodic structures. We introduce the following non-dimensional parameters:

α =
m2

m1
, β =

k2

k1
, γ =

k3

k1
(3.3)

Hereafter, the chain whose properties are used for normalization is referred to as the "reference chain".

Substituting Eq. (3.2) in Eq. (3.1) and rewriting the results using the non-dimensional parameters

introduced above, gives the following dispersion relation in terms of the non-dimensional wave number

µ = kd and frequency Ω = ω/ω1:

û
(
2 + γ − Ω2 −

(
e−ika + eika)

))
− γv̂ = 0 (3.4a)

−γû+
(
2β + γ − αΩ2 − β

(
e−ika + eika

))
= 0 (3.4b)

In matrix form, the equations may be written as

2(1− cos ka) + γ − Ω2 −γ

−γ 2β(1− cos ka) + γ − αΩ2


ûv̂
 = 0 (3.5)

33



For nontrivial solutions, we set the determinant of the coe�cient matrix to zero. This gives the

dispersion relation in the following quadratic form:

cos2 µ+
I1
2

cosµ+
I2 − 2

4
= 0 (3.6)

I1 and I2 are the invariant coe�cients of the dispersion relation [89] and may be written as follows

I1 =
1

β

[
(α+ β)Ω2 − (4β + γ + βγ)

]
(3.7a)

I2 = 2 +
1

β

[
αΩ4 − (2α+ 2β + γ + αγ)Ω2 + (4β + 2γ + 2βγ)

]
(3.7b)

Provided that β 6= 0, the solution may be written as

(cosµ)1,2 =
1

4

(
−I1 ±

√
8 + I2

1 − 4I2

)
(3.8)

An alternative approach to deriving the dispersion relation based on the dispersion relation of each

constituent is presented in Appendix A.

It is worth to note that for β = 0, the dispersion relation reduces to the one for a 1-D monoatomic

lattice with internal resonators and when α goes to in�nity, the dispersion relation of a grounded

monoatomic chain is recovered. In the limit of large γ values, the system behaves as one chain with

a mass and sti�ness equal to the sum of the two original chains; whereas, the limit of small γ values

represents the collapse of the system into two separate chains.

Partially-Coupled Chains In this con�guration, the two chains are coupled every N > 1 masses

(Fig. 3.1c). This con�guration could also be thought of as connecting the supercells of two monoatomic

chains. Therefore, a single unit cell consists of 2N masses in total (Fig. 3.1d). We determine the

dispersion relation for an arbitrary N here by considering two cases: one is where the two chains are

coupled every other mass (N = 2) and the other is for the general case of N > 2.

For N > 2, the equations of motion for unit cell j are written as follows. For the left-most masses in

the unit cell:

m1üj,1 + k1(2uj,1 − uj−1,N − uj,2) + k3(uj,1 − vj,1) = 0 (3.9a)

m2v̈j,1 + k2(2vj,1 − vj−1,N − vj,2) + k3(vj,1 − uj,1) = 0 (3.9b)

Here, the �rst subscript for u and v denotes the unit cell number while the second denotes the mass
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number within each chain. For the interior masses in the unit cell:

m1üj,n + k1(2uj,n − uj,n−1 − uj,n+1) = 0 (3.10a)

m2v̈j,n + k2(2vj,n − vj,n−1 − vj,n+1) = 0 (3.10b)

with n ranging from 2 to N − 1. For the rightmost masses in the unit cell:

m1üj,N + k1(2uj,N − uj,N−1 − uj+1,1) = 0 (3.11a)

m2v̈j,N + k2(2vj,N − vj,N−1 − vj+1,1) = 0 (3.11b)

We note that for the case of N = 2, no interior masses exist so only equations (3.9) and (3.11) are

required. For both cases, we assume harmonic plane-wave solutions with the following form

uj,n(t) = Une
iks(j,n)de−iωt (3.12a)

vj,n(t) = Vne
iks(j,n)de−iωt (3.12b)

where, s(j, n) = (j − 1)N + n is a function that determines the position of each mass in the chain.

Substituting Eq. (3.12) in the equations of motion for each case gives the corresponding dispersion

relation.

cos2 µ+
J1

2
cosµ+

J2 − 2

4
= 0 (3.13)

Here, µ = kNd is the non-dimensional wave number. The invariant coe�cients J1 and J2 may be

expressed in closed form for two cases:
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Case 1: N=2 In this case, we may write the closed form of J1 and J2 as:

J1 =
1

β2

(
− (α2 + β2)Ω4

+ (4αβ + αγ + β2γ + 4β2)Ω2

− (2βγ + 2β2γ + 4β2)
) (3.14)

J2 =
1

β2

(
α2Ω8 − (4αβ + αγ + α2γ + 4α2)Ω6

+ (16αβ + 4αγ + 2βγ + 2α2γ + 2α2 + 2β2 + 4αβγ)Ω4

− (8αβ + 2αγ + 8βγ + 2β2γ + 8β2 + 8αβγ)Ω2

+ 4βγ + 4β2γ + 6β2
)

(3.15)

Case 2: N>2 Upon substituting the plane-wave solutions, we may write the equations of motion

of the unit cell in terms of the non-dimensional parameters introduced. For the leftmost masses in the

unit cell:

(2 + γ − Ω2)U1 − U2 − e−iµUN − γV1 = 0, (3.16a)

(2β + γ − αΩ2)V1 − βV2 − βe−iµVN − γU1 = 0 (3.16b)

For the interior masses:

(2− Ω2)Un − (Un−1 + Un+1) = 0 (3.17a)

(2β − αΩ2)Vn − β(Vn−1 + Vn+1) = 0 (3.17b)

For the rightmost masses:

(2− Ω2)UN − UN−1 − eiµU1 = 0 (3.18a)

(2β − αΩ2)VN − βVN−1 − βeiµV1 = 0 (3.18b)

Here, µ = kNd. We look for a general dispersion relation formula for a unit cell with a total of 2N

masses. Seeking non-trivial solutions require that the determinant of the coe�cient matrix be zero.

36



This matrix may be partitioned as follows:

A =

 ALL ALI

AIL AII

 (3.19)

In this partitioning, ALL corresponds to the degrees of freedom (DOFs) on the left boundary and does

not change as N increases. AII corresponds to the interior DOFs. AIL = A∗LI , where the superscript

* indicates complex-conjugate.

ALL =

2 + γ − Ω2 −γ

−γ 2β + γ − αΩ2


2×2

(3.20a)

ALI =

−1 0 ... 0 −e−iµ 0 0 ... 0 0

0 0 ... 0 0 −β 0 ... 0 −βe−iµ


2×(2N−2)

(3.20b)

AII =

 A
(1)
II 0

0 A
(2)
II


(2N−2)×(2N−2)

(3.20c)

where,

A
(1)
II =



2− Ω2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2− Ω2


A

(2)
II =



2β − αΩ2 −β 0

−β
. . .

. . .

. . .
. . . −β

0 −β 2β − αΩ2


(3.21)

Using Schur's identity, |A| = 0 may be written as |ALL − ALIA−1
II AIL||AII | = 0 provided that AII is

invertible, |AII | 6= 0. Thus, |ALL −ALIA−1
II AIL| has to be zero.

A−1
II =

 A
(1)
II

−1
0

0 A
(2)
II

−1

 (3.22)

T = ALIA
−1
II AIL =

T11 0

0 T22


2×2

(3.23)
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We may write the elements of this matrix as follows:

T11 = [A
(1)
II

−1
]1,1 + [A

(1)
II

−1
]N−1,N−1 + [A

(1)
II

−1
]N−1,1e

−iµ + [A
(1)
II

−1
]1,N−1e

iµ (3.24a)

T22 = β2
(

[A
(2)
II

−1
]1,1 + [A

(2)
II

−1
]N−1,N−1 + [A

(2)
II

−1
]N−1,1e

−iµ + [A
(2)
II

−1
]1,N−1e

iµ
)

(3.24b)

Since A
(1)
II and A

(2)
II are both Toeplitz tridiagonal matrices,

[A
(p)
II

−1
]1,1 = [A

(p)
II

−1
]N−1,N−1 (3.25a)

[A
(p)
II

−1
]1,N−1 = [A

(p)
II

−1
]N−1,1 (3.25b)

where p = 1, 2.

We use these equalities to simplify the elements of T :

T11 = 2[A
(1)
II

−1
]1,1 + [A

(1)
II

−1
]N−1,1

(
e−iµ + eiµ

)
(3.26a)

T22 = β2
(

2[A
(2)
II

−1
]1,1 + [A

(2)
II

−1
]N−1,1

(
e−iµ + eiµ

))
(3.26b)

Therefore, determining [A
(p)
II

−1
]1,1, [A

(p)
II

−1
]1,N−1 with p = 1, 2 will give us the dispersion relation.

According to [107], inverse of a symmetric tridiagonal matrix T =



a b 0

b
. . .

. . .

. . .
. . . b

0 b a


n×n

may be

written as

(T−1)ij =


(−1)i+j 1

b
Ui−1(a/2b)Un−j(a/2b)

Un(a/2b) , if i ≤ j

(−1)i+j 1
b
Uj−1(a/2b)Un−i(a/2b)

Un(a/2b) , if i > j

(3.27)

where, Un, n ≥ 0 are Chebyshev polynomials of the second kind satisfying the recurrence relation:

Un+1(x) = 2xUn(x)−Un−1(x), n ≥ 1 with U0 = 1 and U1 = 2x. These functions can also be written

as 
Un(x) = sin (n+1)θ

sin θ for cos θ = x , |x| < 1

Un(x) = sinh (n+1)θ
sinh θ for cosh θ = x , |x| > 1

(3.28)

Using the Chebyshev functions introduced above, we may write the elements of the inverse matrix as
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follows:

[A
(1)
II

−1
]1,1 = −UN−2(x1)

UN−1(x1)
[A

(1)
II

−1
]1,N−1 = (−1)N+1 1

UN−1(x1)
(3.29a)

[A
(2)
II

−1
]1,1 = − 1

β

UN−2(x2)

UN−1(x2)
[A

(2)
II

−1
]1,N−1 = (−1)N+1 1

β

1

UN−1(x2)
(3.29b)

Here, x1 = Ω2/2 − 1, x2 = αΩ2/2β − 1. Therefore, for any arbitrary N ≥ 3, the dispersion relation

may be written in the following form:

(e−2iµ + e2iµ) + J1(e−iµ + eiµ) + J2 = 0 (3.30)

or alternatively,

cos2 µ+
J1

2
cosµ+

J2 − 2

4
= 0 (3.31)

To facilitate the notation, [A
(1)
II

−1
]1,1 and [A

(1)
II

−1
]1,N−1 have been replaced by A1 and A2. Similarly,

[A
(2)
II

−1
]1,1 and [A

(2)
II

−1
]1,N−1 have been replaced with B1 and B2 for a more compact notation. Then,

The invariant coe�cients J1 and J2 may be expressed in closed form as follows.

J1 =
−1

β2A2B2

[
A2

(
2β + γ − αΩ2

)
+ β2B2

(
2 + γ − Ω2

)
− 2β2 (A1B2 +A2B1)

]
(3.32a)

J2 = 2 +
1

β2A2B2

[( (
2 + γ − Ω2

)
− 2A1

)( (
2β + γ − αΩ2

)
− 2β2B1

)
− γ2

]
(3.32b)

Provided that A2B2 6= 0, the solution may be written in a similar manner as Equation (3.8)

(cosµ)1,2 =
1

4

(
−J1 ±

√
8 + J2

1 − 4J2

)
(3.33)

When N approaches in�nity, three distinct regions are identi�ed in the band structure of the system.

We introduce the variables ωmin = min (ω1, ω2) and ωmax = max (ω1, ω2) to facilitate the discussion

that follows. Depending on the relative properties of the two chains,

1. for ω < 2ωmin, the dispersion relation remains quadratic in cosµ.

2. for ω ∈ [2ωmin, 2ωmax], one of A2 or B2 goes to zero and the dispersion relation becomes linear

in cosµ.

3. for ω > 2ωmax, both A2 and B2 go to zero making the dispersion relation independent of µ.
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(a) (b)

Figure 3.2: Band structure of the fully-coupled system for two cases. (a) α = 0.25, β = 0.02 and
γ = 1 leading to band gap formation and (b) α = 0.25, β = 2 and γ = 0.0625 leading to double-speed
wave propagation. Here, α and β are the mass and sti�ness ratio between the two chains and γ is the
connector sti�ness ratio. The blue and red curves show the real and imaginary parts of µ, respectively.
The normalized frequency values Ωl, Ωu and Ωc indicated on the �gures were obtained using Eq.
(3.34).

We note that the bounding values 2ω1 and 2ω2 that mark frequencies at which the dispersive nature of

the system undergoes signi�cant changes, indicate the cut-o� frequencies of each individual monoatomic

chain.

3.3 Dispersion Properties of Example Meta-Chains

In this section, we use the dispersion relations obtained in the previous part along with illustrative

examples to discuss the dispersive properties of meta-chains with full and partial coupling. In-house

MATLAB® codes are used for all numerical simulations in this section and the one that follows.

3.3.1 Fully-Coupled Chains

In this example, the band structure properties of a fully-coupled system are examined. First, we set

problem parameters to α = 0.25, β = 0.02 and γ = 1. Fig. 3.2a shows that the band structure of

the system consists of an acoustic branch and an optical branch, with a band gap forming in between.

Since group velocity on the optical branch is positive, the system's behavior is similar to that of a 1-D

Acoustic Metamaterial - i.e. the conventional monoatomic chain with spring-mass resonators. This is

expected if we notice that the fully-coupled con�guration could also be interpreted as a periodic 1-D

chain with interconnected internal resonators. The band gap's lower and upper edge frequencies as
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well as the cut-o� frequency are determined from Equations (3.7) and (3.8) as follows:

Ωl =

√
1

2

(
δ1 −

√
δ2

)
Ωu = ΩR

√
1 + α Ωc =

√
1

2

(
δ1 +

√
δ2

)
(3.34)

with

δ1 =
[
4 + Ω2

R(1 + α)
]

+ 4Ω2
2 (3.35a)

δ2 = δ2
1 − 16

[
4Ω2

2 + Ω2
R(1 + αΩ2

2)
]

(3.35b)

Here, Ω2 = ω2/ω1, ΩR = ωr/ω1 and ωr =
√
k3/m2. Using the analogy with the 1-D AM, the variable

Figure 3.3: Evolution of the band gap edge frequencies with the normalized resonance frequency ΩR
when α = 0.25. Di�erent colors correspond to di�erent values of the sti�ness ratio β. The curves with
markers show the lower edge while the solid curve shows the upper edge of the band gap, which overlaps
for di�erent β values. Dashed lines show regions where Ωu lies below Ωl, leading to double-speed wave
propagation.

ΩR may be interpreted as the normalized resonance frequency of the resonators had they not been

connected to form a secondary chain. Ωl and Ωu are the lower and upper edge frequencies of the �rst

band gap and Ωc is the cut-o� frequency beyond which the system has a complete stop band. It's

interesting to note that the upper edge frequency in this case is the same as that of the 1-D AM [1].

We may, thus, conclude that connecting the resonators (and consequently the variable β) doesn't a�ect

the upper edge frequency.
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Double-speed wave propagation The analytical expressions in Eq. (3.34) reveal another interest-

ing property of the system. Comparing the expressions for the lower and upper edge frequencies shows

that a critical value ΩcrR =
√

4β/α
β/α+α exists at which the behavior of the system undergoes a dramatic

change. Speci�cally, for ΩR < ΩcrR , Ωu will be smaller than Ωl. In this case, the band gap will close

and instead, a region with double-speed wave propagation appears. In other words, if ΩR > ΩcrR , the

frequency region [Ωl,Ωu] is a band gap while if ΩR < ΩcrR , the system supports two propagation waves

of di�erent phase speeds in the frequency region [Ωu,Ωl]. This second case is shown in Fig. 3.2b for

parameters α = 0.25, β = 2 and γ = 0.0625. This phenomenon is not observed in 1-D AMs since their

dispersion relation is linear in cosµ. In this case, the dispersion relation, which is quadratic in cosµ,

allows for two independent propagating waves.

Next, we keep α constant and investigate how the variation of parameters ΩR and β a�ects the band

gap edge frequencies. Fig. 3.3 shows the evolution of the edge frequencies with ΩR for sample β

values. The upper edge frequency of the band gap is independent of β and varies linearly with ΩR, as

shown in Eq. (3.34). However, the lower edge frequency of the band gap tends to increase with larger

β values. The region with the dashed lines shows parameter ranges where the upper edge frequency

falls below the lower edge frequency. These parameter ranges correspond to regions of double-speed

wave propagation in the system. The gray circles with coordinates [ΩcrR
√

1 + α,ΩcrR ] on the �gure show

critical points at which the switch in behavior occurs.

3.3.2 Partially-Coupled

In this section, we highlight the fundamental dispersion characteristics of the partially-coupled con�g-

uration in two main sets of examples. In the �rst set, we show how characteristic waves interact to

form the band structure of the system and show the e�ect of skipping masses in the formation of new

band gaps. In the second part, we explain how �ne-tuning the parameters of the system can lead to

the formation of �at bands in the frequency spectra of the system.

Wave interactions and band gap formation We consider a con�guration with one skipped mass

(N = 2) and set problem parameters to α = 5, β = 0.1 and γ = 1. As Eq. (3.13) shows, two charac-

teristic waves with non-dimensional wave numbers µ1 and µ2 exist. Figures 3.4a and 3.4b show the

evolution of phase constants (real part of the non-dimentional wave number pair) and attenuation con-

stants (imaginary part of the non-dimensional wave number pair), respectively. The former dominates

the characteristics of propagating waves while the latter determines the attenuation properties of the
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(a) (b)

(c) (d)

Figure 3.4: Complex and simpli�ed band structure of the meta-chain with one skipped mass. Here,
the mass ratio α = 5, sti�ness ratio β = 0.1 and connector sti�ness ratio γ = 1. (a) Real part of the
non-dimensional wave number pair dominating the characteristics of propagating waves. (b) Imaginary
part of the non-dimensional wave number pair, governing the attenuation properties. (c) Dispersion
curves. (d) Minimum absolute value of attenuation constants. Insert shows Bloch modes of the system
over �ve unit cells at points A, B, C, and D.

system. The dashed red curves mark the regions where one wave number is the complex-conjugate of

the other. The �gures show that the two waves strongly interact to form several band gaps. The sim-

pli�ed band structure of the system is shown in Figure 3.4c-3.4d. Unlike the fully-coupled case, where

the system resembled an AM, the partially-coupled case shows features of both BS and LR mechanisms

in its frequency spectra. The insert in this �gure shows Bloch modes of the system at selected band

gap edge locations. Figures 3.5a-3.5b show the dispersion curves for two and three skipped masses.

Changing the frequency with which the two chains are connected, alters the band structure of the

system, leading to the formation of new gaps and elimination of others. We also note the presence of

several negative group velocity bands in the band structure of the system. From a design standpoint,
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(a) (b)

Figure 3.5: Dispersion curves for partially-coupled system with di�erent number of skipped masses.
Remaining problem parameters are the same as the case for N = 2. (a) N = 3 and (b) N = 4.
Increasing the number of skipped masses leads to the formation of new band gaps and elimination of
others.

it is of interest to study the e�ect of connection sti�ness on edge frequencies as well as the attenuation

strength within the band gaps. Fig. 3.6 shows contours of the minimum attenuation strength for

di�erent values of N . These contours show that attenuation is strongest close to the line Ω = ΩR, as is

the case in locally-resonant systems. The �gure also suggests that for the most prominent band gaps

in the system, edge frequencies increase with increasing ΩR values. The �gures show that at special

values of ΩR, lower and upper band gap edges nearly coincide. These points are marked with white

circles. This suggests that the proposed system has near-zero group velocity bands for certain set of

parameters. This phenomenon will be explored in more detail next.

Emergence of �at bands Zero group velocity dispersion bands (�at bands) have recently received

a lot of attention in the context of optical and acoustic waveguides [108, 109]. These bands are usually

associated with the existance of degenerate modes in the system and have a wide range of applications

in sensing, telecommunications and storage devices [110, 111]. Here, we show how �ne-tuning the

proposed system leads to the formation of �at bands with near-zero group velocity.

Informed by the results obtained in the previous part, we set problem parameters α and β as before

but change the connection sti�ness ratio γ such that the variable ΩR is 1.4, 0.98 and 0.74 for one,

two, and three skipped masses, respectively. Figures 3.7a-3.7c show the dispersion curves for the three

cases. Flat bands appear in the band structure of the system.

The set of parameters that bring these points into existence correspond to the overlapping of the
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(a) (b)

(c)

Figure 3.6: Contours of minimum attenuation strength for the partially-coupled system. (a) N = 2,
(b) N = 3 and (c) N = 4. The bright nodes where the width of the attenuation zones vanish (1 node
in (a), 2 nodes in (b), and 3 nodes in (c)) correspond to frequency combinations at which �at bands
emerge. Color bar range is set equal for all cases to facilitate comparison.

resonance frequency of the mass directly attached to the reference chain,
√

γ+2β
α , and the natural

frequencies of the reference chain's interior unit cell masses Ω∗ =
√

2(1 + cos jπN ) with j ranging from

1 to N − 1. The latter expression corresponds to the natural frequencies of a chain with N − 1 masses

and same properties as the reference chain. This may be understood better if we notice that the

degenerate modes on �at bands all correspond to motions of the unit cell where the leftmost mass in

the reference chain is at rest while motion in the second chain is con�ned to the mass directly attached

to the reference chain (Figure 3.7d). Therefore, tuning the connection parameter γ to αΩ∗
2 − 2β,

results in the appearance of �at bands and localized modes. As β increases, the resonance condition

is satis�ed only by reducing γ. Therefore, if β is greater than α
2 Ω∗

2

, for the resonance condition to

be satis�ed, γ has to be negative, which is not physical. In general, for very low values of γ, the
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(a) (b) (c)

(d)

Figure 3.7: Emergence of �at bands in the band structure of the partially-coupled system. (a) N = 2
and ΩR = 1.4 and (b) N = 3 and ΩR = 0.98, and (c) N = 4 and ΩR = 0.74. (d) Flat band Modes at
µ = π/4 over �ve unit cells of each con�guration. Reference and secondary chains are represented in
yellow and dark red, respectively.

coupling between the two chains becomes weak and the band structure of the system tends towards

that obtained by the individual supercell analysis of the two monoatomic chains with a periodicity

length R = Nd [106].

3.4 Example Devices

In this section, we will design two spring-mass devices based on the proposed meta-chain con�gurations.

The �rst example shows how a fully-coupled con�guration may be exploited for designing a band-pass

�lter. In the second example, we show that using a combination of partially-coupled unit cells with

varying periodicity widens the frequency region over which attenuation is achieved, similar to a rainbow

trapping e�ect.
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(a)

(b) (c)

(d) (e)

Figure 3.8: An example of a narrow-band pass �lter device. (a) Schematic of the device which consists
of a grounded chain connected in series to a fully coupled chain. (b) Broadband input signal. The
insert shows the normalized spectral amplitude of the input over the frequency region of interest. (c)
Dispersion curves for unit cells of the grounded chain (black) and fully-coupled meta-chain (blue).
The shaded green band represents the range of frequencies that are allowed to pass as a result of this
design. (d)-(e) Normalized spectral amplitude of the output at observation points for the reference
and the secondary chain, respectively. The observation points are located at the 20th unit cell of the
fully-coupled meta-chain.

3.4.1 Band-Pass Filter

Numerous designs for wave-�ltering devices have been proposed in the literature [53, 103, 104]. Here,

We design a band-pass �lter using a combination of a grounded chain and a fully-coupled meta-chain

47



(Fig. 3.8a). The former may also be realized using the fully-coupled con�guration with a large α

value. We examine the response of the system under a broadband impact load (Fig. 3.8b). First,

we carry out a unit cell analysis of the two con�gurations assuming both systems to be in�nitely

periodic. We choose the physical parameters such that the pass bands of the two chains overlap only

in a narrow frequency region. Fig. 3.8c shows the dispersion curves of the considered unit cells and the

green region marks the designed pass-band region where both the grounded and fully coupled chains

simultaneously propagate waves. A non-dimensional parameter γg = kg/k1 is de�ned and set to 5

where kg is the grounding sti�ness. We set the other parameters associated with the meta-chain to

α = 5, β = 0.1 and γ = 1.5. The reference chain has the same properties as the grounded chain. The

normalized frequency Ω is de�ned as before. In order to show how such a device performs, we set up

a numerical model of a �nite prototype consisting of a grounded chain connected to a fully-coupled

meta-chain. Each subsystem consists of 25 unit cells. The reference chain has mass m1 = 0.056 [kg]

and spring constant k1 = 100 [N m−1]. All other non-dimensional parameters are as mentioned above.

The half-sine loading F (t) resembles an impulse and is applied at the left end of the device. We run

a time-history simulation for 25 seconds and use Fourier Transform to identify the frequency content

of response at the 20th unit cell of the meta-chain. Figures 3.8d-3.8e show that the frequency content

of the response is con�ned in a narrow-band pass region, suggesting that the device has successfully

depleted the output of other frequencies. The grounding sti�ness and/or the physical parameters

a�ecting the cuto� frequency Ωc of the meta-chain may be changed to control the operating frequency

region of the device.

3.4.2 Low-frequency rainbow-trap �lter

In Section 3.3.2, we showed that skipping di�erent number of masses in the partially-coupled con�g-

uration changes the band structure of the system and the location of band gaps. Here, this e�ect is

leveraged to design a �ltering device consisting of unit cells with two, three and four skipped masses.

We show that the overlap of band gaps for the carefully-designed subsystems broadens the attenuation

region, similar to a rainbow trapping e�ect [16, 112].

We consider a partially-coupled meta-chain consisting of a total number of 240 masses (120 masses per

chain) with system parameters α = 5, β = 0.1 and ΩR = 0.75. The mass (m1) and sti�ness (k1) of the

reference chain are 0.056 [kg] and 100 [N m−1]. First, we consider three initial periodic con�gurations

of this system with two (40 unit cells), three (30 unit cells) and four skipped masses (24 unit cells).

We refer to these con�gurations as Type 1, Type 2 and Type 3, respectively. Fig. 3.9a shows sample
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dispersion curves and undamped frequency response functions (FRFs) for Type 1 con�guration. For

all the setups considered here, we apply equal harmonic forces on the leftmost masses of both chains

and compute the Frequency Response Functions (FRFs) for masses on the other end of the chains

using standard techniques. Fig. 3.9b shows the overlaid FRF plots in the low-frequency region and

the overlap of band gaps for the three con�gurations.

Next, we consider a graded con�guration with the same number of masses but with the meta-chain

consisting of ten unit cells of each type. The FRF of this composite con�guration is compared to that

of the individual constituent coupled chains. The numerical simulations assume a modal damping of

0.5%. Figure 3.9c shows how a major attenuation region forms in the response spectra of the new

system. The band gap formed is wider than the ones for each type shown in 3.9b, suggesting that

changing the connection frequency between the two chains may be used as a means to design devices

with di�erent wave-�ltering properties.

We note that unlike the rainbow-trapping mechanism where absorbers of varying resonance frequencies

are used to widen the band gap, the physical parameters of the system do not vary in our proposed

con�guration. Rather, it is the change in the topology of the system (varying connection locations) that

results in the broadening of the attenuation zones. This is a key in our modular design approach where

building blocks of distinct dynamic properties may be stitched together to realize more synergistic

e�ects.

3.5 Conclusions and future work

Previous work on systems consisting of elements coupled in parallel has shown that they possess novel

dispersion properties, including strong attenuation zones and interaction between BS and LR mecha-

nisms [47, 69]. In this work, we proposed two one-dimensional spring-mass con�gurations consisting

of coupled monoatomic chains. We showed that wave propagation in the fully-coupled system has a

dual nature depending on system parameters, with the behavior of the system switching between that

of an acoustic metamaterial (AM) and a structure that allows for the simultaneous propagation of two

characteristic waves. Wave propagation in the partially-coupled system showed even more complex

behavior, including several BS and LR band gaps, emergence of �at bands and negative group velocity

bands. By combining coupled chains with di�erent modularities, we were able to realize several devices

with interesting dynamic properties including narrow-band pass �ltering and broad low frequency band

gap. The main conclusions of this work may be summarized as follows.
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For the fully-coupled system:

� If ΩR = ωr/ω1 >
√

4β/α
β/α+α , the behavior of the system is similar to that of a 1-D lattice with

internal resonators: the band structure consists of an acoustic and an optical band and the band

gap has features of a local resonance mechanism.

� If ΩR = ωr/ω1 <
√

4β/α
β/α+α , no band gaps form. Instead, a double-speed wave propagation zone

emerges. In this frequency range, the meta-chain supports the propagation of two characteristic

waves unlike what is observed in conventional 1-D mass-spring con�gurations.

For the partially-coupled system:

� Complex band structure of the system shows that the characteristic waves strongly interact to

form the band structure. Several band gaps with BS and LR features form in the frequency

spectra.

� Changing the frequency with which the chains are connected a�ects the band structure signif-

icantly and leads to the formation of new gaps and elimination of others. This behavior may

be leveraged to realize a broad range of dynamic behaviors with small changes in the system's

con�guration.

� Fine-tuning the parameters leads to degeneracy and the emergence of �at (near-zero group ve-

locity) bands at frequencies we are able to predict analytically. The formation of these bands is

due to the overlapping resonances within the unit cell.

As we noted in section 3.3.2, several negative group velocity bands appear in the band structure of the

partially-coupled con�guration. As the presence of such bands is a prerequisite for designing systems

with negative refractive properties [106], a future extension of this work may include investigating 2D

counterparts of the present system to achieve wave focusing. We also showed that changes in connection

sti�ness may lead to signi�cant changes in the band structure. Therefore, studying similar systems

where the connection sti�ness is modulated in space/time would be another interesting extension

to this study. With the advent of nonlinear metamaterials, several works have recently shown that

nonlinearity and asymmetry in systems of similar con�gurations lead to unusual properties such as

localization and nonreciprocity [113, 114]. Hence, investigating the e�ects of nonlinearity (in individual

chains and/or connection springs) on wave propagation properties of the proposed systems may be of

interest in the future.
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(a)

(b) (c)

Figure 3.9: An example of the rainbow-trap device. (a) Sample unit-cell con�guration, dispersion
curves and undamped FRF for Type 1 meta-chain with two skipped masses per unit cell. (b) overlaid
FRFs of Type 1, 2 and 3 meta-chains with 0.5% damping. The band gaps overlap for the three systems.
(c) FRF for the graded con�guration (black) shows band gap widening. In all cases, Observation points
are located at the right-most masses of the two chains, u120 and v120.
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Chapter 4

Amplitude-dependent dispersion of

Rayleigh waves via nonlinear

locally-resonant metamaterials

4.1 Introduction

Rayleigh waves are a type of surface waves that propagate close to the surface of solids. They cause

particles to move in an elliptical motion, the amplitude of which decreases with depth. The study of

Rayleigh waves is of importance across many areas of science and engineering, from site characterization

[115, 116], and non-destructive testing over di�erent length scales [117, 118] to seismic protection of

the built environment [119, 120].

In earthquake engineering, Rayleigh waves are considered the most destructive type of seismic waves;

responsible for most damage to the built environment. Currently, the most common strategy for

seismic protection is using traditional seismic isolation systems [121]. However, these systems produce

signi�cant horizontal displacements under large earthquakes [122]. Moreover, man-induced seismicity

has become a major issue in regions where structures were not originally designed for earthquakes

[123]. Therefore, there's a need for novel strategies to protect critical urban areas against earthquakes.

Metamaterials, �rst introduced in electromagnetics, are engineered structures designed to �lter, mod-

ulate or bend waves. It is known that waves in certain frequency ranges cannot propagate in these

systems due to the existence of band gaps in their frequency spectra. Over the recent years, researchers

have successfully transferred these concepts to the �elds of geophysics and earthquake engineering in

order to remotely shield structures [34, 119, 16, 124] from Rayleigh waves. Both phononic systems

and metamaterial designs have been proposed. Some solutions have also aimed at bending or redi-

recting waves to protect structures. However, most research in this area has focused on linear elastic

meta-structures, whose dispersion characteristics are �xed once the design is �nalized.

More recently, several works have shown that embedding nonlinearity in the design of metamaterials

o�ers enhanced control over wave transmission by making the response of the structure passively
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tunable, by localizing the response or broadening the operational frequency range. Figure 4.1 shows a

schematic of how harnessing nonlinearity may realize unprecedented control over surface waves.

In this chapter, we propose a preliminary framework to analyze the interaction of Rayleigh waves with

a periodic array of nonlinear resonators. First, The classical problem of a half-space with free surface

boundary conditions is revisited for reference. Next, a half-space with linear resonators distributed on

its surface is investigated. We build upon the work of [18] by using similar problem parameters for the

case of a homogeneous half-space and a half-space with linear resonators. In the end, an approximate

framework is presented for studying the interaction of Rayleigh waves with Du�ng-type oscillators

distributed at the surface.

Figure 4.1: Schematic of nonlinear meta-structures and the potential mechanisms involved for control-
ling seismic waves.

4.2 Homogeneous half-space

The con�guration of the problem is shown in Figure 4.2a. We start by writing the equations of motion.

In what follows, u and v denote displacement of particles in the x and y directions, respectively.

(λ+ 2µ)

[
∂2u

∂x2
+

∂2v

∂x∂y

]
− µ

[
∂2v

∂x∂y
− ∂2u

∂y2

]
= ρ

∂2u

∂t2
, (4.1a)

(λ+ 2µ)

[
∂2v

∂y2
+

∂2u

∂x∂y

]
− µ

[
∂2u

∂x∂y
− ∂2v

∂x2

]
= ρ

∂2v

∂t2
. (4.1b)

where λ and µ are the Lamé constants and ρ is the density. The above equation may also be written

in the following form:

(λ+ 2µ)∇(∇.UUU)− µ∇×∇×UUU = ρÜUU (4.2)
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where UUU = {u, v}′ and ∇ is the gradient operator. Next, we introduce the Helmholtz decomposition

for the displacement vector U.

U = ∇Φ +∇×ΨΨΨ (4.3)

where, Φ and ΨΨΨ are scalar and vector potentials, respectively. Plugging (4.3) in (4.2) and having in

mind that the vector identities ∇× (∇Φ) and ∇.(∇×ΨΨΨ) vanish, we get two uncoupled equations as

follows:

∂2Φ

∂t2
= c2p∇2Φ , (4.4a)

∂2Ψz

∂t2
= c2s∇2Ψz . (4.4b)

where cp =
√

(λ+ 2µ)/ρ and cs =
√
µ/ρ are the longitudinal and shear wave speeds.Considering
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Figure 4.2: Classic problem of the propagation of Rayleigh waves in a homogeneous half-space with
free-surface boundary conditions: (a) problem con�guration. (b) dispersion plot.

wave propagating in the positive x diection, solutions to (4.4) may be written as:

Φ(x, y, t) = f(y)ei(kx−ωt) , (4.5a)

Ψz(x, y, t) = g(y)ei(kx−ωt) . (4.5b)
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Substituting (4.5) in (4.4) yields ordinary di�erential equations for the functions f and g. Solving

these gives:

f(y) = Aeκαy + Ce−καy , (4.6a)

g(y) = Beκβy +De−κβy . (4.6b)

Here, κα =
√
k2 − (ω/cp)2 and κβ =

√
k2 − (ω/cs)2.

We note that for surface wave solutions to exist, both k2 − (ω/cp)
2 and k2 − (ω/cs)

2 must be positive

(otherwise the solutions will be oscillatory in y, which is a property characteristic of bulk waves not

surface waves). This constraint trasnlates to requiring that ω
k , i.e. the Rayleigh wave speed, be less

than both cp and cs. We also note that the second term on the RHS of (4.6) indicates waves that

grow in amplitude with depth, which is unphysical. Therefore, C and D must be set to zero. The �nal

solutions for the potentials, therefore, may be written as:

Φ(x, y, t) = Ae−καy+i(kx−ωt) , (4.7a)

Ψz(x, y, t) = Be−κβy+i(kx−ωt) . (4.7b)

Here, we include the expressions for the stress components in terms of A and B for future reference.

τxy = −2iµkκαAe
−καy+i(kx−ωt) + µ(k2 + κ2

β)Be−κβy+i(kx−ωt) , (4.8a)

σyy =
[
(λ+ 2µ)(κ2

α − k2) + 2µk2
]
Ae−καy+i(kx−ωt)

+ 2iµkκβBe
−κβy+i(kx−ωt)

(4.8b)

In order to obtain the dispersion relation, we need to impose the boundary conditions τxy(x, 0, t) = 0

and σyy(x, 0, t) = 0 next.

τxy|y=0 =

[
µ

(
∂v

∂x
+
∂u

∂y

)]
y=0

= 0 , (4.9a)

σyy|y=0 =

[
(λ+ 2µ)

∂v

∂y
+ λ

∂u

∂x

]
y=0

= 0 . (4.9b)

Knowing that u = ∂Φ
∂x + ∂Ψz

∂y and v = ∂Φ
∂y −

∂Ψz
∂x and rewriting the Lamé constants in terms of cp and
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cs, the above equations can be written in terms of the unknowns A and B:

2ikκαA− (k2 + κ2
β)B = 0 , (4.10a)[

(c2p − 2c2s)k
2 − c2pκ2

α

]
A− 2ic2skκβB = 0 . (4.10b)

In matrix form,  2ikκα −(k2 + κ2
β)

k2 + k2
β 2ikκβ


AB

 = 0 (4.11)

For nontrivial solutions to exist, we require the determinant of the coe�cient matrix to be zero. This

would give the dispersion relation.

[
2− ω2

k2c2s

]2

− 4

√
1− ω2

k2c2p

√
1− ω2

k2c2s
= 0 (4.12)

Figure 2 shows the dispersion relation plotted for a soil with density ρ = 1600 kg/m3, longitudinal

wave speed cp = 468 m/s and shear wave speed cs = 250 m/s [18]. The black dots are solutions

obtained from solving the eigenvalue problem presented above. The slope of the green line indicates

the shear wave speed, cs. The slope of the red dashed line indicates the Rayleigh wave speed reported

in [18] (232m/s). The results agree well as expected.

4.3 Homogeneous half-space with linear resonators

The con�guration of the problem is shown in Fig. 4.3a. In the limit of long wavelengths (in comparison

to the spacing between resonators and resonator dimensions), the problem could be treated as one with

uniform normal stress boundary conditions at the surface. Therefore, the derivation from the previous

section holds up to Equation (4.7).

Considering an e�ective medium approach [125], the equation of motion for a single oscillator can be

written as:

mẅr + k1wr = −mv̈y,0 (4.13)

where, wr is the relative displacement of the oscillator and vy,0 indicates the displacement of the

substrate at the surface y = 0. We assume a traveling wave solution for the oscillator of the form
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wr = Wre
i(kx−ωt). Considering vy,0 = V0e

i(kx−ωt) and substituting in 4.13 gives

Wr = − ω2

ω2
r − ω2

V0 (4.14)

Here, ωr =
√
k1/m is the resonance frequency of the oscillator and ω is the excitation frequency.

Considering vy,0 = V0e
i(kx−ωt) and fs = Fse

i(kx−ωt), the spring force may then be written as

Fs = mω2

(
ω2
r

ω2
r − ω2

)
V0 (4.15)

Therefore, the uniform stress σyy(x, 0, t) = −fs/a = σ0V0, where a is the tributary area of each

resonator and the negative sign accounts for the fact that the unit normal to surface is in the opposite

direction of +y. Considering that V0 = −(καA+ ikB), the counterpart of (4.11) may be written as

 2ikκα −(k2 + κ2
β)

(k2 + k2
β) + σ0κα

µ 2ikκβ + iσ0k
µ


AB

 = 0 (4.16)

Setting the determinant of the coe�cient matrix to zero yields the following dispersion relation:

[
2− ω2

k2c2s

]2

− 4

√
1− ω2

k2c2p

√
1− ω2

k2c2s
=
−σ0ω

2

ρc4sk
3

√
1− ω2

k2c2p
(4.17)

Fig. 4.3b shows the dispersion plot for the exact same problem as the previous sections but with

uniformly-distributed resonators of mass m = 10500 kg and sti�ness k1 = 2.4416 MN/m. The plot

clearly shows that a band gap has opened starting at the resonance frequency of the resonators (fr =

2.43 Hz). The �gure also shows that the new hybrid Rayleigh waves have a speed cRH that is slightly

greater than the Rayleigh wave speed in the medium with free-surface boundary condition. The upper

edge of the band gap is marked where the line of slope cRH meets the curve corresponding to the shear

wave. This is consistent with the fact that modes with velocities higher than cs cannot exist as surface

wave solutions. Therefore, the system has served as an e�ective means for �ltering Rayleigh waves in

a targeted frequency region.
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Figure 4.3: Half-space with linear resonators at surface.: (a) problem con�guration. (b) dispersion
plot.

4.4 Homogeneous half-space with nonlinear Du�ng resonators

In this section, we extend the analysis presented in the previous sections to the case where the oscillators

have Du�ng-type nonlinearity. Same as the previous section, we use an e�ective medium approach.

In the presence of nonlinearities, higher harmonics may generate and waves can interact. Here, we

only consider the e�ect of self-action on dispersion curves and do not consider wave-wave interactions,

i.e. the wave is assumed to be isochromatic. We rewrite Equation (4.1) here fore reference.

(λ+ 2µ)
∂2u

∂x2
+ (λ+ µ)

∂2v

∂x∂y
+ µ

∂2u

∂y2
= ρ

∂2u

∂t2
, (4.18a)

(λ+ 2µ)
∂2v

∂y2
+ (λ+ µ)

∂2u

∂x∂y
+ µ

∂2v

∂x2
= ρ

∂2v

∂t2
. (4.18b)

subjected to the following boundary conditions:

τxy|y=0 =

[
µ

(
∂v

∂x
+
∂u

∂y

)]
y=0

= 0 , (4.19a)

σyy|y=0 =

[
(λ+ 2µ)

∂v

∂y
+ µ

∂u

∂x

]
y=0

= σ . (4.19b)
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We introduce the potentials Φ, Ψ such that

u =
∂Φ

∂x
+
∂Ψ

∂y
, (4.20a)

v =
∂Φ

∂y
− ∂Ψ

∂x
, (4.20b)

so that Equation (4.18)may be rewritten as

∂2Φ

∂t2
= c2p∇2Φ , (4.21a)

∂2Ψ

∂t2
= c2s∇2Φ . (4.21b)

Therefore, functions f and g may be written in the following form

Φ = f(y)ei(kx−ωt) + cc , (4.22)

Ψ = g(y)ei(kx−ωt) + cc , (4.23)

where cc stands for complex-conjugate. Up to this point, everything has been handled in a similar

manner to the linear case. Substituting Equation (4.22) in (4.21) gives

Φ = Ae−καy+i(kx−ωt) + cc , (4.24a)

Ψ = Be−κβ i(kx−ωt) + cc , (4.24b)

We write the equation of motion for the oscillator as follows

mẅr + k1wr + k3w
3
r = −mv̈y,0 (4.25)

where, k1 and k3 are the linear and nonlinear sti�ness coe�cients and vy,0 indicates displacement of

the substrate at surface y = 0. Using the e�ective medium approach, we assume a traveling wave

solution for the oscillator of the form wr = Wre
i(kx−ωt) + cc. Thus,

fs = k1

[
Wre

i(kx−ωt) + cc
]

+ k3

[
Wre

i(kx−ωt) + cc
]3

= Wr

[
k1 + 3k3|Wr|2

]
ei(kx−ωt) + cc +H.H.T ,

(4.26)

where H.H.T stands for �Higher Harmonic Terms�, which are to be ignored. Similar to the previous

section, σ may be written as fs/a.
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Hence, the equation of motion of the oscillator yields

−mω2Wr + k1Wr + 3k3|Wr|2Wr = mω2V0 , (4.27)

where, relating this to the displacement �eld in the continuum, v|y=0 = V0e
i(kx−ωt) + cc. On the other

hand, from the continuum viewpoint:

V0 = −καA− ikB , (4.28)

hence,

(−mω2 + k1 + 3k3|Wr|2)Wr = mω2V0 (4.29)

and,

Wr =
mω2

(−mω2 + k1 + 3k3|Wr|2)
V0

=
ω2

(−ω2 + ω2
r(1 + 3α|Wr|2))

V0

(4.30)

where, α = k3/k1. Considering fs = Fse
i(kx−ωt), the magnitude of the spring force Fs can be written

as follows:

Fs = mω2

[
ω2
r(1 + 3α|Wr|2)

ω2
r(1 + 3α|Wr|2)− ω2

]
V0 (4.31)

Setting α equal to zero gives the expression derived for the linear case. The term 3α|Wr|2 is a �rst

order correction to the linear case, accounting for the nonlinear force-displacement relationship of the

spring.

The uniform stress σyy(x, 0, t) = −fs/a = σ0V0, where a is the tributary area of each resonator and the

negative sign accounts for the fact that the unit normal to surface is in the opposite direction of +y.

Furthermore, it should be noted that the uniform stress is now amplitude-dependent, which means

that the amplitude of the motion a�ects the overall behavior of the system. This is characteristic of

nonlinear systems in general.

Now, we impose the boundary conditions. For the shear stress we have

−2iκαkA+ (κβ + k2)B = 0 , (4.32)
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and for the normal stress we get

[(λ+ 2µ)κ2
α − λk2]A+ 2iµκβkB = σ0(καA+ ikB) , (4.33)

The dispersion relation may be obtained similar to the previous section using Equation (4.17) by

replacing the de�nition of σ0 with the new amplitude-dependent one.

Figures 4.4c and 4.4d show sample dispersion plots for α = 0.25 (hardening) and α = −0.25 (softening).

In both cases, |Wr| is set to unity. All other problem parameters are the same as previous sections.

The �gure shows that nonlinearity can shift the band gap location to lower/higher frequencies in the

case of softening/hardening nonlinearity.

4.5 Discussion and conclusions

In this chapter, we presented a theoretical framework for obtaining the dispersion relation of a half-

space with a periodic array of Du�ng resonators on its surface using the harmonic balance method,

and showed that nonlinear local resonances lead to amplitude-dependent dispersion for Rayleigh waves.

The derivation is based on two fundamental assumptions:

� the wavelength of propagating waves is much larger than the characteristic lengths of the problem,

such as resonator dimensions and the periodicity length. This ensures the validity of using an

e�ective medium approach.

� free-propagating waves in the system are mono-chromatic. This neglects the generation of higher

harmonics in the system, and accounts only for nonlinear self-action, by which a wave self-adjusts

its frequency.

Our �ndings show that the shift in dispersion branches and consequently band gap locations are closely

tied to nonlinear local resonance shifts. That is, for hardening resonators whose resonance frequency

increases with an increase in the steady-state amplitude, dispersion branches shift to higher frequencies

for larger amplitudes. The reverse is true when nonlinearity is softening. Increasing the nonlinearity

coe�cient has a similar e�ect to that of the amplitude as well. On another note, for hardening

(softening) resonators, the band gap width increases (decreases) with an increase in amplitude.

We note that these are preliminary analytical results which should be veri�ed using numerical simula-
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tions. There are challenges associated with this. For example, radiation damping in such simulations

could contribute to energy loss which will a�ect the nonlinear resonance frequency shift of the oscilla-

tors.
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Figure 4.4: Dispersion curves for (a) half-space with an array of linear resonators, (b) half-space with
an array hardening Du�ng oscillators with α = 0.25, and (c) half-space with an array softening Du�ng
oscillators with α = −0.25.
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Figure 4.5: Amplitude-dependent dispersion for Rayleigh waves. Dispersion curves for the half-space
with an array of hardening Du�ng oscillators with α = 0.25 and |Wr| = 1 (left panel) and |Wr| = 1.5
(right panel).
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Chapter 5

Experimental evidence of

amplitude-dependent dispersion for

surface acoustic waves

5.1 Introduction

Controlling surface acoustic waves has broad applications in science and engineering. At the micro

and nano scales, these waves are of interest in the design of radiofrequency �lters for wireless telecom-

munication systems [126, 35] as well as biosensors for medical diagnostics [127]. At larger scales, the

study of these waves is essential for protecting the built environment from the damaging e�ects of

seismic waves [120, 128, 26]. The advent of metamaterials has realized unique engineering solutions for

manipulating these waves over broad frequency spectrums. For example, phononic crystals in the form

of architectured surface layers have been used to design SAW �lters, space-saving re�ective gratings

and waveguides [129, 130]. Periodic arrangement of local resonators has also been used to achieve

subwavelength wave �ltering and waveguiding [131, 132] as well as high-resolution imaging [133, 37].

Once fabricated, metamaterials for SAW control are only bound to operate at a speci�c frequency

range. Recently, preliminary e�orts have been undertaken to increase the versatility of these systems

by making their response tunable [134, 135], or even non-reciprocal [136]. Most previous work on SAW

tunability has focused on using external stimuli, such as thermal, magnetic and electrical �elds for

tuning the wave-control capabilities of these systems [134, 135, 137]. On the other hand, the design

of self-tunable SAW devices, which can passively adapt to the loading conditions without the need for

external tuning stimuli, has not received much attention. Incorporating nonlinearity in the design of

metamaterials will provide an opportunity to explore amplitude-dependent tuning.

Nonlinear metamaterials o�er enhanced control over wave transmission compared to their linear

counterparts. Several exotic features have already been demonstrated in these systems, including

self-tunability [53, 138], nonreciprocity [60, 139, 140, 141, 59], energy tunneling and localization

[142, 143] and, more recently, the emergence of subharmonic bandgaps [67, 68]. Theoretical frameworks

have been developed for determining the dispersive properties of nonlinear phononic lattices/crystals
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[144, 145, 146, 147], and nonlinear elastic continua with linear local resonators [148]. The e�ects of

nonlinear local resonators, on the other hand, have been mostly studied in the context of discrete

systems [149, 150, 151]. Limited works exist on wave propagation in systems consisting of an array of

nonlinear resonators embedded in linear elastic continua [61]. A notable exception is represented by

works on the interaction of SAWs with contact-based resonators [125, 152, 153, 154]. It must be noted,

however, that these studies are based on the assumption that the amplitude of the propagating waves

is small and that the nonlinear sti�ness can be linearized.

Amplitude-dependent resonance is a well-documented phenomenon in nonlinear dynamics [155]. Sev-

eral works have documented this e�ect for Hertzian contact resonators [156, 157]. A notable study

on a cylindrical rod in contact with a bead provides experimental proof that the nonlinear properties

of the contact lead to amplitude-dependent resonance shifts [158]. A notable experimental work had

previously demonstrated how resonance shifts in a one-dimensional chain of beads connected with non-

linear springs are intimately related to shifts in dispersion curves for the overall system [159]. In a most

recent study, nonlinearity-induced resonance frequency tuning was achieved in a nanostrip phononic

metasurface (NPM) through the power-dependent coupling of adjacent nanostrips [160]. However,

experimental investigations of nonlinear dispersion shifts for SAWs have largely remained unexplored.

In this work, we leverage the experimental setup in [135] and exploit the nonlinear dynamics of an

array of contact resonators to achieve amplitude-dependent dispersive properties for plate edge waves.

Our table-top experimental setup consists of a thin plate decorated with an array of bead-magnet

resonators along its edge. We exploit the similarity between dispersion properties of edge waves in

plates and surface waves propagating in a semi-in�nite medium [161, 162] to demonstrate how nonlinear

resonant inclusions may be used to achieve amplitude-dependent dispersive properties for SAWs. These

�ndings may inform the design of passive-adaptive metamaterials for controlling surface acoustic waves

at di�erent scales. Among other applications, these �ndings are bound to be particularly consequential

in the context of seismic wave attenuation; in fact, the large wave amplitude associated with seismic

events are bound to excite the nonlinear characteristics of any metamaterial-inspired barrier.

The chapter is organized as follows: in section 5.2, we describe the main experimental setup and its

constituents. In section 5.3, we unravel the physics behind the interaction of SAWs with nonlinear

bead-magnet resonators in three stages: �rst, we study the nonlinear dynamics of a single bead-magnet

resonator on a rigid substrate theoretically and experimentally; then we focus our attention on the

nonlinear resonance properties of a single bead-magnet resonator on a compliant substrate. We will
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provide experimental evidence of higher harmonic generation as well as a more well-rounded numerical

study on the nonlinear properties of the contact resonators. In the last part of this section, we provide

numerical and experimental proof of amplitude-dependent dispersion for SAWs by closely studying

the behavior of the overall experimental setup as well as the resonators in the linear and nonlinear

regimes. We conclude by discussing the �ndings, and limitations of the current approach, and we make

recommendations for the betterment of future studies.

5.2 A compact experimental setup

The theoretical predictions from the previous section suggest that using nonlinear resonators may be an

e�ective way to achieve amplitude-dependent dispersion for surface waves. In this section, we leverage

the experimental setup in [135] and exploit the inherent nonlinear properties of contact resonances

to achieve amplitude-dependent dispersive properties for plate edge waves. Our compact table-top

experimental setup is shown in Figure 5.2. It consists of an acrylic plate of dimensions 608× 912× 8

mm (H × W × t), Young's modulus E = 5.5 GPa, Poisson ratio ν = 0.35, and density ρ = 1190

kg m−3. The plate is clamped to an optical table at the bottom along the longer edge. A set of 41

disk magnets (K&J magnetics DH101; NdFeB, Grade N42) are glued at equal distances of d = 15 mm

on its top edge. The magnets have a diameter of Dm = 2.5 mm and a thickness of tm = 0.8 mm.

Steel beads (McMaster-Carr 9642K49) with radius rb = 4.8 mm and mass mb = 3.5 g are placed on

top of each magnet. The bead-magnet assemblies will serve as nonlinear mechanical oscillators. A

vibration exciter (HBK Type 4810) is glued to the plate at a distance of ls = 168 mm from the �rst

bead. A signal generator (Agilent 33220A) and power ampli�er (HBK Type 2718) are used to drive

the shaker and excite vertically-polarized edge waves along the edge of the plate. A laser doppler

vibrometer (LDV, Polytec OFV-5000) is mounted on a linear stage and a motor is used to measure

the vertical velocity component at observation points consecutively. Two sets of observation points

were chosen to record the response of the plate's edge as well as the resonators. The distance between

adjacent observation points in each set is 15 mm. Measurement data is acquired using an oscilloscope

(Tektronix DPO3034).
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Figure 5.1: Schematics of the table-top experimental setup showing the dimensions of the elements as
well as the location of observation points on plate's edge (red) and resonators (blue).

We use the analytical dispersion relation for thin semi-in�nite plates with free stress boundary condi-

tions [161, 162] to predict the phase velocity cR of edge waves in a pristine plate:

(
2− c2R

c2T

)2

− 4

√(
1−

c2R
c2T

)(
1−

c2R
v2
P

)
= 0 (5.1)

where vp =
[
E/ρ(1− ν2)

]1/2
is the velocity of dilational waves in a thin plate and cT = [E/2ρ(1 + ν)]

1/2

is the shear wave speed. We note that this equation is similar to the one describing the dispersion

relation of Rayleigh waves in a half-space (Equation (4.12)). Using this equation, we make a theoretical

prediction of cR = 1205 m s−1 for the phase velocity of edge waves propagating on a pristine plate.

In what follows, we �rst explain the theoretical and numerical frameworks used to study the system

under consideration as well as its individual components. Next, we present the results and discuss

them in detail.

5.3 SAW - nonlinear contact-resonance interaction

We start by studying the nonlinear dynamics of a single bead-magnet resonator on a rigid substrate

analytically. After characterizing the bead-magnet as a spring-mass oscillator, we use ABAQUS to

model the dynamics of a single bead-magnet as well as an array of bead-magnets on a thin plate. This

theoretical/numerical framework will help us predict and interpret the experimental results.
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5.3.1 Nonlinear Dynamics of a single resonator on a rigid substrate

Theroretical framework

The con�guration is shown in Figure 5.2. We consider the bead as a rigid body of mass mb. The

contact between the bead and magnet may be modeled by using normal and shear springs [152, 135].

Here, we only consider normal contact resonance and neglect the resonance induced by the horizontal

movement of the bead. We use the Hertzian contact law to determine the properties of the normal

spring. Following Hertz's theory of contact [163], the contact force Fc between a sphere of radius rb

and a planar surface may be written as

Fc =
4

3
E∗r

1/2
b δ3/2 (5.2)

Figure 5.2: Idealization of the bead-magnet resonator as a nonlinear mass-spring oscillator.

where, E∗ =
[
(1− ν2

m)/Em + (1− ν2
b )/Eb

]−1
. Em and νm are the modulus and Poisson's ratio of the

magnetic disk, respectively. Similarly, Eb and νb indicate the modulus and Poisson's ratio of the steel

bead. δ is the relative normal contact displacement between the two surfaces in contact.

The equation of motion for the oscillator may be written as

mbz̈ + cż + kz3/2 = F (t) + Fm (5.3)

Here, c denotes the damping constant and k = 4
3E
∗r

1/2
b . We note that the variable z measures the

displacement of the bead from the top face of the magnet. Fm is the magnetic force and F (t) is the

load applied directly to the bead. We assume loading to be harmonic and of the form F (t) = F0 cosωt.

Introducing the variable q = 3(z−δs)
2δs

, we rewrite the previous equation as follows

2

3
mbδsq̈ +

2

3
cδsq̇ + kδ3/2

s

[
1 +

2

3
q

]3/2

= F0 cosωt+ Fm , q ≤ −3/2 (5.4)
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The condition q ≤ −3/2 guarantees that loss of contact does not occur. Dividing both sides by 2
3mbδs

gives

q̈ +
c

mb
q̇ +

3k

2mb
δ1/2
s

[
1 +

2

3
q

]3/2

=
3

2mbδs
(F0 cosωt+ Fm) (5.5)

We de�ne Ω =
[

3k
2mb

δ
1/2
s

]1/2
and set c = 2µmbΩ. Ω is, in fact, the natural frequency of the oscillator

and µ is the damping coe�cient. We also introduce the non-dimensional time variable τ = Ωt.

Rewriting the equation in terms of these new variables yields

d2q

dτ2
+ 2µ

dq

dτ
+

[
1 +

2

3
q

]3/2

= 1 +
F0

Fm
cos

ω

Ω
τ (5.6)

Now, we introduce the following dimensionless groups:

r =
ω

Ω
, µ =

c

2mbΩ
, κ =

F0

Fm
(5.7)

Using Taylor series, we may expand the nonlinear term and rewrite the previous equation.

d2q

dτ2
+ 2µ

dq

dτ
+ q +

1

6
q2 − 1

54
q3 = κ cos rτ (5.8)

For now, we consider the system to be undamped (µ = 0). In this case, the only dimensionless groups

governing the dynamics of the system are the parameters r and κ. In what follows, we brie�y discuss

the in�uence of these parameters on the dynamics.

κ shows the magnitude of excitation with respect to the magnetic force while r is a characteristic

frequency of the problem that represents the ratio of inertial forces to the nonlinear elastic forces.

Therefore, for r � 1, the problem is quasi-static while for r ≈ 1 and r � 1, the problem must be

treated as a standard or high-frequency dynamic system. This parameter increases as the excitation

frequency and bead's mass increase. However, sti�ening the contact or strengthening the magnet

decreases this parameter.

It is well known that nonlinearity can lead to primary, subharmonic and superharmonic resonances

based on the excitation intensity and frequency content. For now, we focus our attention to the case

of "Primary Resonances". The equation needs to be rescaled such that the nonlinearity, damping and

the forcing appear at the same scale. Note that this is intuitively consistent with the de�nition of a
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primary resonance condition in which a small excitation leads to a large-amplitude response. We set:

q = εq̂ , µ = ε2µ̂ , κ = ε3κ̂ (5.9)

Here, q̂, µ̂ and k̂ are all O(1) variables. We further assume that the energy source is ideal (the excited

system has no e�ect on it). ε is a small-scale parameter that represents the order of the motion

amplitude (|ε| � 1). Without loss of generality, the equation of motion may be rewritten in the

following form:

d2q̂

dτ2
+ 2ε2µ̂

dq̂

dτ
+ ω2

0 q̂ + εα2q̂
2 + ε2α3q̂

3 = ε2κ̂ cos rτ (5.10)

For the speci�c problem at hand, ω0 = 1, α2 = 1/6 and α3 = −1/54. For studying primary resonances,

we further assume that r = ω0 + ε2σ, where σ is the detuning parameter. The following variables

representing slow and fast time scales are then introduced:

T0 = τ , T1 = ετ , T2 = ε2τ (5.11)

A uniform expansion for q̂ is considered as follows:

q̂(T0, T1, T2) = q̂0 + εq̂1 + ε2q̂2 +O(ε3) (5.12)

Substituting equations 5.11 and 5.12 in the equation of motion gives the following ordered set of

equations:

O(ε0) : D2
0 q̂0 + ω2

0 q̂0 = 0 (5.13a)

O(ε1) : D2
0 q̂1 + ω2

0 q̂1 = −2D0D1q̂0 − α2q̂
2
0 (5.13b)

O(ε2) : D2
0 q̂2 + ω2

0 q̂2 = −
(
D2

1 + 2D0D2 + 2µ̂D0

)
q̂0

− 2D0D1q̂1 − 2α2q̂0q̂1

− α3q̂
3
0 + κ̂ cos (ω0T0 + σT2)

(5.13c)

where, Di = d/dTi. Solving the zeroth order equation yields

q̂0(T0, T1, T2) = A(T1, T2)eiω0T0 + c.c. (5.14)

Here, A is a complex function of the fast time scale variables and c.c. indicates complex-conjugate.
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Using this equation, equation (5.13b) may be rewritten as

D2
0 q̂1 + ω2

0 q̂1 = −2iω0DT1Ae
iω0T0

− α2

[
A2e2iω0T0 + |A|2

]
+ c.c.

(5.15)

The only secular term on the right hand side is DT1A. Setting this term to zero gives A = A(T2),

which means the amplitude A is independent of the time scale T1. Thus, equation (5.15) may be

rewritten as

D2
0 q̂1 + ω2

0 q̂1 = −α2

[
A2e2iω0T0 + 2|A|2 + Ā2e−2iω0T0

]
(5.16)

Here, (̄.) indicates complex-conjugate. Solving this equation gives the solution for q̂1.

q̂1 =
α2

ω2
0

[
1

3
A2e2iω0T0 +

1

3
Ā2e−2iω0T0 − 2|A|2

]
(5.17)

A similar procedure may be repeated for equation (5.13c). Setting the secular terms on the right hand

side to zero would give

2iω0DT2A =− 2iω0µ̂A− 2

(
α2

ω0

)2 [
−2|A|2A+

1

3
|A|2A

]
− 3α3|A|3 +

1

2
κ̂eiσT2

(5.18)

Substituting the polar representation of A = 1
2a(T2)eiβ(T2) in the above equation gives the so-called

modulation equations for a and β.

ω0a
′ = −ω0µ̂a−

1

2
κ̂ sin (σT2 − β) (5.19a)

−aβ′ω0 =
1

2
κ̂ cos (σT2 − β)− 1

8
a3

[
3α3 −

10

3

(
α2

ω0

)2
]

(5.19b)

Here, a and β are real variables denoting the amplitude and phase, respectively. Furthermore, (.)′

denotes di�erentiation with respect to the variable T2. We introduce γ = σT2 − β. The autonomous

counterpart of the above may be written as

a′ = −µ̂a+
κ̂

2ω0
sin γ (5.20a)

aγ′ = aσ − 9α3ω
2
0 − 10α2

2

24ω3
0

a3 +
κ̂

2ω0
cos γ (5.20b)
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These equations give information about the evolution of the solution to steady-state and may be used

to identify the domains of attraction. The frequency response function may be found by considering

the steady-state solution (a′ = 0 and γ′ = 0):

a2

{
µ̂2 +

[
σ − 9α3ω

2
0 − 10α2

2

24ω3
0

a2

]2
}

=
κ̂2

4ω2
0

(5.21)

Furthermore, for steady-state response, to the second order approximation we have

q̂ = a cos (rτ − γ) +
1

2
ε
α2a

2

ω2
0

[
−1 +

1

3
cos (2rτ − 2γ)

]
+O(ε∈) (5.22)

The frequency-response function given by equation (5.21) is similar to that of a Du�ng oscillator with

a nonlinear coe�cient α = α3 − 10α2
2

9ω2
0
. For the speci�c problem at hand, α3 = −1/54 and α2 = 1/6.

Therefore, α < 0. Thus, the nonlinearity has a softening e�ect and bends the frequency-response

curves to lower frequencies.

Experimental framework

To test the nonlinear resonance characteristics of the bead-magnet assembly, we attach the disk magnet

to the surface of a piezoelectric transducer (Panametrics-NDT V1011) using an all-purpose Krazy glue.

Once the glue has set, we place the bead on top of the magnet (see Figure 5.3b). Due to the importance

of the contact surface in these experiments, we thoroughly clean the surface of the magnet as well as

the steel bead before they get in contact. A Stanford SR 860 analyzer is used for the excitation in a

sine sweep mode from �ve to eight kHz. We start at an amplitude of 8 mV and repeat the test by

increasing the excitation amplitude at 8 mV intervals. Figure 5.3d shows the frequency-response plots

of the bead-magnet resonator. The black and red curves show results for sweep-up and sweep-down

tests, respectively.

At low excitation amplitudes, the bead-magnet assembly is expected to behave as a linear oscillator.

Thus, the frequency-response curves from up and down sweeps coincide. The underlying linear natural

frequency of the oscillator is approximately 7 kHz. The quality factor Q and damping ratio µ of the

linear resonator may be determined using the half-power method.

Q =
fr

f2 − f1
(5.23a)

µ ≈ 1

2Q
(5.23b)
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where fr is the natural frequency and f1,2 are frequencies corresponding to half-power points (Figure

5.3c). Using equation (5.23), we determine a quality factor and damping ratio of approximately 35

and 0.014, respectively.

(a) (b)

6 6.5 7 7.5 8
Frequency [kHz]

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

f
1

f
2

(c)

6.5 7 7.5
Frequency [kHz]

0

0.5

1

1.5

2

2.5

3

3.5

M
ax

im
um

 A
m

pl
itu

de
 [m

m
]

10-5

up-sweep
down-sweep

(d)

Figure 5.3: Single bead-magnet assembly on a rigid substrate. (a) Schematics of problem and the
forces exerted on the bead. The insert shows the static overlap δs between the surfaces in contact at
rest. Fc is the contact force. (b) Schematics of the experimental setup. (c) Normalized frequency-
response curve of the bead-magnet oscillator at 8 mV. (d) Up-sweep (black) and down-sweep (red)
frequency-response functions for the bead-magnet resonator at 8 mV-interval excitation amplitudes.

As the excitation amplitude is increased, nonlinearity bends the frequency-response away from the

linear curve and shifts the locus of the peak amplitude to lower frequencies. This is consistent with the

softening nonlinear response predicted in the previous section. Emergence of jumps in the frequency-

response at an excitation amplitude of 32 mV is another indication of the inherent nonlinear properties

of contact resonance.

It should be noted the analytical model presented in the previous section underestimates resonance

frequency shifts observed in experimental results. This is due to the inadequacy of the Hertzian model

in capturing the true nature of the contact. Merkel et al. studied various contact models - classical
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Hertzian, JKR model with adhesion, a model including the roughness of the surfaces in contact, and

a viscoelastic contact model - for modeling the nonlinear frequency-response of a bead in contact with

an elastic rod. The results of their study reveals that the �rst three models are unable to capture

the experimental behavior. They further show using the viscoelastic model can reproduce either the

measured quality factor or the nonlinear resonance frequency shifts, but not both at the same time

[158]. Here, we su�ce to compare the theoretical and experimental results qualitatively; establishing

that both show evidence of softening nonlinearity. Further studies on the dissipative nature of granular

contact is required to capture the true behavior of the bead-magnet resonator.

5.3.2 Nonlinear dynamics of a single resonator on a compliant substrate

In the previous section, we showed that the bead-magnet assembly behaves as a nonlinear oscillator

for su�ciently large excitation amplitudes. Here, we study the dynamics of a single bead-magnet

oscillator on an acrylic plate. We present experimental evidence of higher harmonic generation and

resonance frequency shifts in the contact resonator's response, and verify our experimental �ndings

using numerical simulations.

The schematic of the experimental setup is similar to the one shown in Figure 5.2 with the di�erence

that all bead-magnet resonators except the one closest to the shaker are removed. Linear resonance

frequency of the oscillator is identi�ed at roughly 5.3 kHz using a broadband excitation. This shows

a shift of approximately 1.8 kHz in comparison to experimental results from the previous section.

This resonance frequency shift can be attributed to substrate's compliance and its coupling to the

rigid contact dynamics. Similar e�ect has been reported in previous work [135]. Based on the deter-

mined resonance frequency in the linear regime, we use a narrow-band slow (200 Hz s−1) sweep-down

excitation from 6 kHz to 4 kHz to characterize the nonlinear response of the oscillator. Three di�er-

ent excitation amplitudes (10, 20, and 30 dB) were chosen by changing the gain on Brüel and Kjær

ampli�er.

Additionally, we resort to Finite Element simulations in ABAQUS [164] to model the problem and

compare results with experiments. In order to do so, a 2D plane stress framework is used to model

the Acrylic plate with material properties listed in section 5.2. The contact resonator is modeled using

point masses along with nonlinear spring elements (see Figure 5.4). The springs only operate in the y
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Figure 5.4: Schematic of the single bead-magnet resonator on plate in the ABAQUS models. The
insert shows the nonlinear spring's force-displacement relationship.

direction. In order to model the nonlinear spring force fnl, we use

fnl(δ) = −k(δs − δ)3/2H < δs − δ > +Fm (5.24)

where k = 4/3E∗r
1/2
b as before, δ is the change in spring's length (positive in tension and negative in

compression) and H is the Heaviside function. The insert in Figure 5.4 shows the force-displacement

relationship implemented in ABAQUS models. The shaker is modeled as a point force acting on the

plate's edge. The force F (t) is the same narrow-band slow (200 Hz s−1) sweep-down excitation from 6

kHz to 4 kHz used in experiments. ABAQUS Explicit is used to carry out time-domain simulations.

The amplitude of this force has been chosen such that the bead's maximum velocity is similar in

the experimental and numerical setups. A �xed time step of 0.1 µs is used to guarantee stability.

The plate is meshed with an approximate global size of 5 mm using free, advancing front algorithm.

Linear quad-dominated plane-stress elements are used. We note that this average element size is

su�ciently small to capture the smallest wavelength propagating in the system λmin = cR/fmax.

Fixed boundary conditions are imposed along the plate's bottom edge. Furthermore, the point mass's

motion is restricted such that it can only move in the y direction. We need to introduce a form of

damping mechanism in the model to create a realistic situation in which an approximately steady-state

response can be achieved, similar to the experimental setup. Due to lack of information on the damping

properties of the plate as well as the uncertainties associated with the damping properties of the contact

(see Section 5.3.1), we use a linear bulk viscosity parameter of 1.2 in ABAQUS to introduce arti�cial

damping in the model. Bulk viscosity introduces damping associated with volumetric straining and
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Figure 5.5: Experimental results for the single bead-magnet resonator on plate at increasing gain from
left (10 dB) to right (30 dB): time history of the bead-magnet resonator (a)-(c); frequency spectrum
of the response (d)-(f).

is purely a numerical e�ect. Consequently, it does not a�ect the material's constitutive model. Due

to the existing discrepancies between damping properties of the experimental setup and that of the

numerical simulation, we do not expect to have a one-on-one correspondence between results. Instead,

we compare the experimental and numerical results qualitatively, that is: we seek to show that the

resonator's response in both has indications of nonlinear resonance.

Figure 5.5 shows the time history as well as frequency spectrum for the bead's response at 10, 20

and 30 dB gains, from left to right, respectively. A few observations can be made. First, we note

that the excitation's frequency range includes multiple resonance frequencies of the overall system

and does not sweep over the resonance frequency of the oscillator in an isolated manner. Since the

contact resonator response is coupled to that of the acrylic substrate, we observe multiple peaks in the

oscillator's frequency spectrum at all levels of gain. Second, increasing the excitation amplitude leads

to the generation of higher harmonics at twice the resonance frequency. This is consistent with our

theoretical prediction for the bead's nonlinear response in the previous section. Lastly, the resonance

frequency of the oscillator shifts from 5.3 kHz to 4.8 kHz as gain is increased.

Another interesting feature can be observed in the results by comparing time history plots. At lower

gains, the rise and fall of amplitude at resonance is symmetric in shape. However, at 30 dB, the
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Figure 5.6: Sweep down response of the contact resonator at 30 dB gain. The left panel shows the
response of the bead as well as the response envelope. The right panel shows the monochromatic
steady-state response right before loss of stability.

(a) (b)

Figure 5.7: Continuous wavelet transform of the bead's experimental response for (a) 10 dB and (b)
30 dB gain.

descent from resonance is abrupt, suggesting a plausible loss of stability common to nonlinear resonance

phenomenon. In order to get a better understanding, we a take a closer look at the bead's dynamics

at 30 dB gain. Figure 5.6a shows the time history plot at 30 dB. The red curve marks the response

envelope. The amplitude and phase of the response prior to the onset of instability can be determined

by looking at a time window where the response is monochromatic. This is shown in Figure 5.6b.

The emergence of instability and the so-called jump phenomenon is a de�nitive indication of the

nonlinear nature of contact resonance. We analyze the response further in the time-frequency domain.

Figure 5.6b shows the scalogram of the response using continuous wavelet transforms. Comparing the

response at 10 and 30 dB clearly con�rms the presence of second harmonics in the nonlinear regime.

The onset of instability can be identi�ed around 13 seconds in Figure 5.7b. Next, we present the
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Figure 5.8: Numerical results for the bead's response: frequency spectrum at (a) 0.1 N and (b) 2 N
forcing amplitudes; continuous wavelet transform of the response for (c) 0.1 N and (d) 2 N forcing
amplitudes.

numerical results. As mentioned previously, the amplitude of force F (t) has been chosen such that the

bead's maximum velocity is similar in the experimental and numerical setups for the three di�erent

levels of gain. Figures 5.8a and 5.8b show the numerical frequency spectrum of bead's response overlaid

on corresponding experimental results. When the force amplitude is small (0.1 N), numerical results

show a resonance frequency of 5.6 kHz, which is slightly higher than that recorded in experiments (5.3

kHz). We conjecture that this is due to variations in contact sti�ness at the time of experiments. In

other words, k is calculated assuming perfect surfaces in Hertzian contact. However, these surfaces are

not perfect and may degrade during experiment, leading to variations in resonance frequency. At high

amplitudes (2 N), generation of second harmonic is evident in the numerical results. We note that in

the numerical models, resonance frequency shifts from 5.62 kHz at 0.1 N to 5.6 kHz at 2 N. This shift

(20 Hz) is signi�cantly smaller than what we have in experiments (500 Hz). This observation is another

indication that modeling contact using Hertzian law underestimates resonance shifts. Based on this
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observation, we expect amplitude-dependent dispersion shift to be greater in experiments compared

to numerical simulations.

Figures 5.8c and 5.8d show continuous wavelet transforms for the bead's response at 0.1 and 2 N. The

presence of second harmonic at 2 N is a clear indication of the nonlinear nature of resonance. We

also note that in the case of numerical simulations, transients persist for a longer duration before they

completely disappear. This is due to the di�erence in damping characteristics of the experimental

setup compared to the numerical model.

5.3.3 Plate with an array of bead-magnet resonators

The experimental setup is as shown in Figure 5.2. Two primary modes of excitation are utilized

in this experiment: a wide-band sweep at low amplitudes that captures the linear response of the

system, and a narrow-band slow sweep at higher amplitudes that is used to investigate the nonlinear

characteristics of the system. Low-amplitude response is measured by using a wide-band fast (590

Hz s−1) sweep-up excitation. Dispersion reconstruction in the linear regime is carried out for the

Figure 5.9: Schematics of the ABAQUS model, representing the experimental setup. The beads and
magnets are modeled as discrete point masses, and nonlinear spring elements are used to model the
contact sti�ness.

pristine plate, plate with magnets as well as plate with bead-magnet resonators using this excitation.

Due to evidence of softening nonlinearity in the response of the oscillator, the nonlinear system response

is best characterized using a narrow-band slow (200 Hz s−1) sweep-down excitation from 6 kHz to 4

kHz.

Numerical simulations in ABAQUS are set up as explained in the previous section. Schematics of the
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model is shown in Figure 5.9. Nonlinear springs are modeled as before. The plate is meshed with

an approximate global size of 5 mm using free, advancing front algorithm. Linear quad-dominated

plane-stress elements are used. The chosen mesh size guarantees to su�ciently discretize both the

smallest wavelength λmin and the smallest characteristic length of the system d = 15 mm. Linear

bulk viscosity is used to introduce arti�cial damping in the system as before. As the case for single

resonator on the plate, we will su�ce to comparing the experimental and numerical results qualitatively;

more speci�cally, we seek to corroborate that both show evidence of amplitude-dependent dispersion

properties. Next, we present and discuss the experimental and numerical results for dispersion analysis.
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Figure 5.10: Spatio-temporal evolution of response for the (a) pristine plate, (b) plate with an array
of magnets and (c) plate with an array of bead-magnet resonators. Slope of black dashed lines show
theoretical prediction for wave speed in pristine plate.

As mentioned in section 5.2, we experimentally investigated the interaction of surface waves with the

array of bead-magnet resonators by recording the vertical velocity at 42 stations along the edge of the

plate. In order to reconstruct the dispersion curves experimentally, the recorded time-history response

of the stations is postprocessed using 2D Fourier transforms. In the ABAQUS models, we de�ne

observation points at the same location as in the experimental setup. The response at these stations

will be recorded throughout the simulation. This set of data collectively represents the spatio-temporal

evolution of the response as the wave propagates through the system. In a similar manner as before,

2D Fourier transforms are used to postprocess the data.

In the linear regime, we reconstruct and numerically verify the dispersion for the pristine plate, plate

with an array of magnets, and �nally plate with an array of bead-magnet resonators. Reconstructing

the dispersion curves for the pristine plate characterizes the original system, and helps us validate

the theoretical wave speed predicted in 5.2. The second case will corroborate our assumption that
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adding the magnets on their own does not introduce dispersive features in the system. Eventually,

reconstructing dispersion for the third case will help us understand how surface acoustic waves interact

with the bead-magnet resonators in the linear regime.

Figure 5.10 shows the spatio-temporal evolution of response on the plate's egde in experiments for the

pristine plate, plate with an array of bead magnets and plate decorated with an array of bead-magnet

resonators. Slope of the black dashed lines show the wave speed we predicted for edge waves in Section

5.2. For the �rst two cases, the wave travels along the edge of the plate with constant speed. However,

for the third case, the �gure shows that the wave is attenuated as it travels along the plate's edge as

time progresses. Taking a closer look at the response in the wave-number frequency domain will help

us analyze dispersion properties of each case.

Figure 5.11a shows the experimental dispersion curve for the pristine plate in a gray-scale contour. The

broadband chirp generated by the shaker travels along the plate's edge dispersionless, as expected. The

red dashed curve shows the dispersion line predicted by ABAQUS simulations. We note that numerical

dispersion curves were originally in the form of contour plots as well. However, for visualization

purposes, we only track the location of the maxima and use a smoothing spline to obtain the best

�t for the data. This will allow for direct comparison between numerical and experimental results

since both datasets can be overlaid. Figure 5.11a shows excellent agreement between experimental

measurements and numerical simulations. We should note that the slope of the dispersion line also

matches the theoretical prediction of cR = 1205 m s−1 in section 5.2.

Figure 5.11b shows the dispersion curve for the plate with an array of 41 magnets placed on the plate's

edge. The magnets do not introduce any dispersive e�ects due to the their negligible mass (≈ 0.03 g).

Figure 5.11c shows the dispersion curves for the plate with an array of bead-magnet resonators. Placing

the contact resonators on the plate's edge leads to hybridization between the traveling wave and the

resonance modes. The slow-propagating �at branch observed in the dispersion plot is a result of

SAW interaction with vertical resonances of the bead-magnet resonators. Similar phenomenon has

been observed in microscale dynamics [152]. The frequencies where branches �atten indicate the

resonance frequency of the beads. We observe a signi�cant shift in resonance frequency compared to

our measurements for the single bead on rigid substrate (from 7 kHz to nearly 5.6 kHz). This resonance

shift, which is observed in the linear regime, could be associated with the coupling between the contact

resonators and the compliant substrate. This e�ect is captured very well in the ABAQUS numerical

model as it can be seen from the �gure. The �gure also shows that the experimental contour seems to
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(a) (b) (c)

Figure 5.11: Dispersion reconstruction in the linear regime for (a) the pristine plate, (b) the plate with
an array of magnets, and (c) the plate with an array of bead-magnet resonators. The contour shows
the experimental reconstruction while the red dashed curves show numerical results from ABAQUS.

�atten at a lower frequency compared to numerical results. We conjecture that the chirp is too fast to

capture the dispersion branch precisely in the experiments. We will show, later in this section, that

using a slower chirp resolves this discrepancy.

In order to investigate the behavior of system in the nonlinear regime, we use the slow narrow-band

chirp. Three di�erent excitation amplitudes were chosen by changing the gain on Brüel and Kjær

ampli�er. Similar to the previous case, the response of the plate is measured at designated observation

points along the edge. In order to quantify con�dence in the experimental results, three sets of

measurements were done at each amplitude, leading to nine sets of data in total. It is worth to

note that after each measurement, all beads were removed and placed on magnets again. This was

done to ensure that the results were not signi�cantly a�ected by the uncertainties associated with the

bead-magnet contact surface. Furthermore, the order in which the nine experiments were done was

completely random. For each set of measurements at constant amplitude, recorded spatio-temporal

data on plate's edge was postprocessed using 2D Fourier transforms. The average of Fourier amplitudes

was then used to visualize the system's dispersion.

Figure 5.12 shows the reconstructed dispersion for the structure at three di�erent excitation ampli-

tudes. The gray-scale contour shows the full 2D visualization of response in the wave number-frequency
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Figure 5.12: Dispersion reconstruction from experiments at (a) 10 dB, (b) 20 dB, and (c) 30 dB.
Background contour shows the intensity of response in the frequency domain. Circles track the location
of contour's maxima at each frequency. The color of each point indicates the peak's amplitude in the
frequency spectrum.

domain, with white showing the highest intensity. The red line marks the dispersionless SAW propa-

gation in the pristine plate while the slope of the dashed black line represents the shear wave speed. At

each discrete frequency value, we identify the wave-number with maximum Fourier amplitude. This

gives the overlaid scattered plots in blue, red and green. In addition, the color of circles at each point

indicates the intensity of the Fourier amplitude, with white having the lowest intensity. This approach

will prove itself crucial later for comparing the dispersion branches at di�erent amplitudes. It also

helps discard data points of little relevance. For example, we can see that in all �gures, some points lie

outside the sound cone, which is not physical. However, the intensity at these data points is extremely

low. Therefore, we can safely ignore them. Another instance of anomaly is the apparent discontinuity

of the dispersion branch around 5.2 kHz in Figure 5.12c. Like the previous case, the intensity of the
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data points beyond the discontinuity is near zero. Therefore, we may ignore them for all practical

purposes.
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Figure 5.13: Dispersion reconstruction in a limited frequency region for varying excitation amplitudes.
Numerical dispersion from ABAQUS simulations for the linear system (blue), the nonlinear system
with unit point force (red), and nonlinear system with twice the forcing of the previous case (green).

Figure 5.13a shows the dispersion branches reconstructed at the three di�erent amplitudes overlaid.

The scattered plots in the previous case are now shown in the form of error-bar plots; that is, at

each data point, the horizontal bars show the standard deviation for the three sets of measurement.

We can clearly see that in the regions where intensity is high, standard deviation is extremely small.

On the contrary, as intensity approaches zero, the standard deviation becomes very large. This is

another evidence that data points with low intensity may be ignored. Where standard deviation is

low, the �gure shows that increasing the excitation amplitude shifts the dispersion curve to lower

frequencies. Figure 5.13b shows the dispersion branches in a more limited wave number-frequency

region to highlight the amplitude-dependent dispersion shift.
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Figure 5.14: Dynamics of select resonators interacting with the narrow-band chirp. (a) Normalized
frequency spectrum of resonators for experiments at 30 dB (blue) and numerical models 3 N (red). n
represents resonator number with 10 being closest to the shaker. (b) Similar to (a), after the application
of the bandpass �lter.

Numerical dispersion curves are obtained using the simulation setup described in the beginning of

this section. Simulations are run for three di�erent levels of forcing amplitude - 0.3, 1 and 3 N.

These amplitudes were chosen such that maximum response amplitude reached in simulations and

experiments are similar at the three di�erent levels. In addition, since the experimental gains increase

by a ratio of
√

10, a similar protocol was used for increasing the forcing amplitude in numerical

simulations.

Figure 5.13c shows the numerical dispersion curves for the three di�erent levels of amplitude mentioned.

We note that these branches have been constructed in three steps: �rst, 2-D Fourier transforms were

used on the spatio-temporal response of discrete points on the plate's edge to visualize dispersion in the

frequency-wave number domain; next, at each frequency value, the wave number with highest Fourier

amplitude is chosen to detect the dispersion branch; �nally, a smoothing spline is �t to data points with

maximum normalized Fourier amplitude greater than 0.15. Figure 5.13d shows the dispersion branches

in a more limited wave number-frequency region to highlight the amplitude-dependent dispersion shift.

We note that the shift observed in numerical results is less than that observed in experiments, as

expected.

It would also be insightful to also study the dynamics of resonators. In the experimental setup, this

was done by recording the velocity of each bead with the Laser Doppler Vibrometer at three di�erent

amplitude levels. In numerical simulations, we also recorded the time-history response of resonators

for comparison. Results for select oscillators are shown in Figure 5.14. Figure 5.14a shows overlaid
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frequency domain plots for the experimental and numerical response of the 10th, 20th, 30th and 40th

bead at the highest excitation amplitude. Overall, there's a reasonable match between the two in terms

of peak's locations. Although a seemingly larger discrepancy exists for the 20th resonator, the peak for

numerical results lies at the location of a less pronounced peak in experimental data. However, unlike

the case of a single resonator on plate, the nonlinear features are much smaller in magnitude and more

di�cult to detect. Therefore, we use a band-pass �lter limited to the range of [8,12] kHz to reveal

the nonlinear nature of the response. Figure 5.14b shows the frequency response of the resonators

after the application of this band-pass �lter. Similar to the previous case, multiple peaks appear in

the frequency spectra. Discrepancy between peak locations are more pronounced than before since

second harmonics are being considered. The emergence of higher harmonics and the similarity between

experimental and numerical results corroborates the nonlinear nature of resonator dynamics.

5.4 Discussion

In this chapter, we adapted an experimental setup proposed in [135] to investigate the interaction

of surface acoustic waves with nonlinear resonators. We exploited nonlinear properties of contact

and used bead-magnet assemblies as nonlinear resonators. We started by investigating the nonlinear

dynamics of an individual bead-magnet resonator. Using the Method of Multiple Scales, we predicted

that the resonator has softening nonlinear characteristics - i.e. the resonance frequency decreases

as the amplitude of motion increases. We, then, validated this claim with experiments. Next, the

dynamics of a single resonator on an acrylic plate was considered. It was shown that the bead-

magnet oscillator possessed all common traits of a nonlinear resonator, such as the existence of higher

harmonics in the frequency spectra, the emergence of instabilities (so-called jump phenomenon), and

resonance frequency shifts. We also used �nite element simulations to verify our observations. Finally,

in the last section, we focused our attention on studying dispersion properties of a plate with an array

of bead-magnet resonators. The problem was investigated both experimentally and numerically. We

started o� by considering the system's dispersion properties in the linear regime, and showed that wave

propagation in the pristine plate as well as plate with an array of magnets is, in fact, dispersionless.

We also showed that the introduction of beads leads to hybridization between the traveling wave and

resonance modes, resulting in the �attening of dispersion branch. Next, we investigated the variation

of dispersive properties in the presence of nonlinearities, and showed, for the �rst time, experimental

and numerical evidence of amplitude-dependent dispersion for surface waves.
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As mentioned at the beginning of this chapter, the study of surface acoustic waves is essential in science.

These waves �nd applications in di�erent areas, from the design of radiofrequency �lters and biosensors

at small scales to the control of seismic waves at large scales. We showed that exploiting nonlinearity in

the design of metamaterials is a promising avenue for passive-adaptive control of these waves. These

�ndings may inform the design of tunable metamaterials for controlling surface acoustic waves at

di�erent scales. Among other applications, these �ndings are bound to be particularly consequential

in the context of seismic wave attenuation; in fact, the large wave amplitude associated with seismic

events are bound to excite the nonlinear characteristics of any metamaterial-inspired barrier.

The author would like to acknowledge limitations of the current work and make suggestions to improve

the continuation of this work in future. Although we have established the nonlinear nature of contact

resonances, it is essential to ensure that other elements involved in experiments are not contributing to

dispersion shifts. One such element is the shaker. Characterizing the shaker's response in the frequency

region of interest at di�erent levels of gain would eliminate such concerns. One could also use the slow

narrow-band chirp with di�erent gains to reconstruct dispersion curves for the plate with an array of

magnets in order to prove that the shift observed in the dispersion of plate with bead-magnet resonators

is, indeed, due to the presence of beads and the nonlinear properties of contact. Another suggestion

for increasing consistency among experiments, is to characterize the single bead-magnet nonlinear

frequency response using the same input excitation utilized for reconstructing dispersion curves in the

nonlinear regime. To increase consistency between experiments and simulations, it would have been

ideal to characterize the damping properties of the plate. We also tried characterizing and installing a

force sensor to determine the exact force applied on plate's edge by the shaker. However, due to the

con�guration of this experimental setup, dynamics of the force sensor was getting a�ected by plate's

dynamics. This defeated the purpose of a force sensor. The author thinks �nding an appropriate

way to use a force sensor would greatly help with the validation of experiments through simulations.

Finally, as we discussed in previous sections, Hertzian law does not represent the true nature of contact

in this problem. Therefore, it would be of great value to investigate more suitable contact laws.

5.5 Conclusions and future work

We proposed a compact experimental setup to realize amplitude-dependent dispersion for surface

waves. Conclusions of this chapter are summarized as follows:

� We used both theory and experiments to show that a bead-magnet contact resonator has softening
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nonlinear properties and amplitude-dependent resonance frequency.

� A compliant substrate reduces the underlying resonance frequency of the bead-magnet oscillator.

For su�ciently large amplitudes, we observe evidence for nonlinear resonance frequency shifts

and generation of higher harmonics. A closer look also showed the emergence of instabilities and

the so-called jump phenomenon, which is another characteristic of nonlinear systems.

� In general, the frequency shift observed in experiments is larger than that obtained from numerics.

This is in line with the fact that Hertzian law underestimates resonance frequency shifts for such

oscillators, and has direct consequences for the amount of shift we will observe for dispersion

curves.

� We showed that wave propagation is dispersionless for the pristine plate and plate with an array of

magnets. For the plate with an array of bead-magnet resonators, however, mode hybridizations in

the linear regime lead to the �attening of branches around the resonance frequency of oscillators.

� We used a slow narrow-band chirp to investigate the system's dispersion properties and showed

that as amplitude increases, the dispersion branch shifts towards lower frequencies. This o�ers

experimental evidence for amplitude-dependent dispersion of surface waves for the �rst time.

� We showed that bead dynamics in this case is in general complicated and gets a�ected by the

dynamics of the substrate. Using appropriate �lters, we highlighted the generation of higher

harmonics in the frequency spectra of resonators.

� As predicted in a previous item, the dispersion shifts predicted by numerical simulations are

smaller than the ones observed in experiments since Hertzian law is used for modeling contact

sti�ness.

As we showed in the previous section, the dispersion shift achieved due to amplitude-dependence is

limited. In future, it would be of interest to investigate the design of more versatile resonators that

would realize more signi�cant shifts due to variations in amplitude. We also showed how the presence

of nonlinearities gives rise to the generation of higher harmonics, which may interact with the primary

wave. It would also be interesting to study how this interaction may have additional consequences

for wave propagation in the system. Due to huge implications that one-way propagation of surface

waves could have in the design of telecommunication devices and mechanical diodes [136], another

path to pursue is harnessing nonlinear e�ects to achieve surface-wave nonreciprocity. Additionally,
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there are limited works on dispersion reconstruction for nonlinear metamaterials using chirp excita-

tions. Investigating the e�ect of sweep-up and sweep-down excitations as well as the sweep rate on

dispersion reconstruction for nonlinear systems would be an important step for future studies in this

area. Another direction could focus on investigating the behavior of nonlinear metamaterials subject

to transient inputs. These studies will be essential to the design of practical nonlinear metamaterials

with applications for controlling transient wave phenomenon, such as earthquakes.
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Chapter 6

Summary and future work

6.1 Summary

This dissertation aims to address the e�ects of modularity and nonlinearity in the design of metama-

terials.

Chapters 2 and 3 were dedicated to the study of modular metamaterials. We started by a theoret-

ical investigation of dispersion properties for a metamaterial beam that consists of �exural elements

periodically coupled (entangled) along their length. We showed that the structure possesses multiple

Bragg scattering and local resonance band gaps, and has unique wave-�ltering properties unlike its

constituents. We also showed how static tuning of connection properties can be used to alter the

system's band structure. Next, entangled monoatomic chains were considered in two con�gurations.

One is a con�guration where each mass in one chain is connected to its corresponding mass in the

other chain (full coupling). The other, consists of chains that are periodically coupled only at certain

locations (partial coupling). We derived closed-form dispersion relations for both cases and discussed

their eccentric dynamic properties, such as double-speed wave propagation zones, emergence of nega-

tive group velocity dispersion branches and �at bands. For each study, we used numerical simulations

to verify our theoretical results, and present example devices targeted at wave propagation control

using �nite prototypes of each meta-structure.

In Chapters 4 and 5, we focused our attention on embedding nonlinearity in the design of metama-

terials to control surface waves in a passive-adaptive manner. First, we presented an approximate

theoretical framework for how Rayleigh waves interact with a periodic array of Du�ng oscillators.

Our analysis indicates that the presence of nonlinearities makes dispersion amplitude-dependent. We

further showed that for hardening (softening) nonlinearities, dispersion branches shift towards higher

(lower) frequencies as the amplitude of motion increases. In the light of this promising preliminary

results, we attempted to realize the phenomenon in an experiment. In order to do this, we leveraged
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a compact experimental setup consisting of a plate, serving as an elastic substrate, and bead-magnet

assemblies, in lieu of nonlinear resonators. We studied the dynamics of the constituting elements of

this structure in detail to present, for the �rst time, experimental evidence of amplitude-dependent

dispersion for surface acoustic waves.

It is our hope that the �ndings of this two-part study will inform the design of more versatile meta-

materials at di�erent scales.

6.2 Future work

6.2.1 Smart Adaptive Metamaterials

Linear-elastic time-invariant systems, once engineered for certain topology and material properties,

will have �xed dispersion characteristics. However, many application areas demand structural systems

and materials that can adapt to external stimuli. Leveraging nonlinearity and time-modulation enables

the design of such versatile systems. In the short run, the following research areas may be pursued:

� Tunable and nonreciprocal wave control: tunable and nonreciprocal wave control have

broad applications; from amplitude-dependent wave-focusing devices for Non-Destructive Testing

to redirecting mechanical shocks and vibrations.

� Geo-inspired metamaterials: Geophysical processes, such as friction and fracture of hard

rocks and granular material, may be used to design devices that can enable solitary wave prop-

agation, localization and in times chaotic behavior. This will have applications in areas such as

energy focusing and directional propagation.

6.2.2 Metamaterials for controlling surface acoustic waves

Surface acoustic waves are acoustic waves traveling close to the surface of an elastic medium. Control

and manipulation of these waves is of high interest in various areas of science and engineering. At

scales of micrometers, these waves are essential for the design of biosensors and electronic �lters while

at the larger scales, they �nd application in earthquake engineering and geophysics. Some short-term

research directions may include:

� Control of SAWs in media with heterogeneity/nonlinearity: this area would focus on

how surface waves in heterogenous or nonlinear media would interact with metamaterials.
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� Control and manipulation of boundary waves: manipulation of boundary waves at the

interface of two materials are of interest in soils and layered composites.

� Investigation of transient SAW control with mechanical metamaterials: the transient

response of metamaterials in the manipulation of surface waves needs to be investigated for

earthquake engineering and impact applications.

Cross-collaborations with researchers in the �eld of Geotechnical engineering will enable the evalu-

ation of these designs as seismic barriers and isolation systems at the foundation level of essential

infrastructures.

On smaller scales, SAW devices are ubiquitous across disciplines; from MEMS and wireless sensors for

structural health monitoring to delay devices and �lters. Investigation of tunable and nonreciprocal

wave control with SAW devices opens avenues for the design of smart sensing systems and the next

generation of wireless networks. Metamaterials may be used to introduce a distribution of resonators

at the surface of these devices in order to control and manipulate waves.

6.2.3 Data-Driven design of mechanical metamaterials

There is potential for applying machine learning and data-driven techniques to predict the dynamic

properties of potential new designs and investigate functionality-driven design of metamaterials. Promis-

ing future directions in this area include:

� Predicting the dynamic properties of mechanical metamaterials: In the short run, it

would be interesting to use machine learning to predict the band structure and dynamic prop-

erties of architected media. Currently, choosing the topology and material properties of new

mechanical metamaterials relies largely on intuition, optimization and a trial and error proce-

dure. The computational cost of determining the band structure of unit cells, which translates

into solving multiple eigenvalue problems, grows signi�cantly as wave number samples and the de-

grees of freedom increase. Using advanced data-driven techniques will help predict reliable band

structures for complex 3-D designs by solving fewer eigenvalue problems. The computational

power of machine learning will help sweeping huge design spaces much more e�ciently.

� Functionality-driven design of mechanical metamaterials: This direction is in the spirit

of NIST's Materials Genome Initiative (MGI), which has led to fast and cost-e�ective design

solutions at nano and micro scales. There is an opportunity now to revolutionize the design of
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mechanical metamaterials at scales relevant to structural and acoustic applications. The �rst step

would rely on creating databases of di�erent unit cell designs, characterizing potential features

and labeling designs based on their e�cacy for a desired functionality. These databases will be

used to train machine learning models. The algorithm is then expected to asses a much larger

set of potential designs in terms of a desired functionality. The best design may then be chosen

using a search algorithm. This area will help us engineer systems that are structurally e�cient

and optimized for di�erent purposes (shock absorption, energy harvesting, vibration suppression,

etc.).

These advanced techniques will not only aid engineers in identifying important design features for

speci�c applications but will also accelerate the otherwise computationally intensive search for adaptive

and multifunctional structural designs.

94



Bibliography

[1] M. I. Hussein, M. J. Leamy, and M. Ruzzene, �Dynamics of phononic materials and structures:
Historical origins, recent progress, and future outlook,� Applied Mechanics Reviews, vol. 66, no. 4,
2014.

[2] Léon Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices.
New York: McGraw-Hill Book Company, inc., 1st editio ed., 1946.

[3] S. Iijima, �Helical microtubules of graphitic carbon,� Nature, vol. 354, no. 6348, pp. 56�58, 1991.

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,
and A. A. Firsov, �Electric �eld e�ect in atomically thin carbon �lms.,� Science (New York,
N.Y.), vol. 306, pp. 666�9, oct 2004.

[5] I. El-Kady, R. H. Olsson, and J. G. Fleming, �Phononic band-gap crystals for radio frequency
communications,� Applied Physics Letters, vol. 92, no. 23, 2008.

[6] J. F. V. Vincent, Structural biomaterials. Macmillan, 1982.

[7] L. J. Gibson, M. F. Ashby, and B. A. Harley, Cellular materials in nature and medicine.

[8] D. Yu, J. Wen, H. Zhao, Y. Liu, and X. Wen, �Vibration reduction by using the idea of phononic
crystals in a pipe-conveying �uid,� Journal of Sound and Vibration, 2008.

[9] M. Brun, G. F. Giaccu, A. B. Movchan, and N. V. Movchan, �Asymptotics of eigenfrequencies
in the dynamic response of elongated multi-structures,� Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 468, no. 2138, pp. 378�394, 2012.

[10] M. Brun, A. B. Movchan, and I. S. Jones, �Phononic Band Gap Systems in Structural Mechanics:
Finite Slender Elastic Structures and In�nite Periodic Waveguides,� Journal of Vibration and
Acoustics, 2013.

[11] G. Carta, G. F. Giaccu, and M. Brun, �A phononic band gap model for long bridges. The
`Brabau' bridge case,� Engineering Structures, vol. 140, pp. 66�76, jun 2017.

[12] A. L. Abrahamson, �The response of periodic structures to aero-acoustic pressures, with partic-
ular reference to aircraft skin-rib spar structures,� 1973.

[13] D. J. Mead, �A general theory of harmonic wave propagation in linear periodic systems with
multiple coupling,� Journal of Sound and Vibration, vol. 27, pp. 235�260, mar 1973.

[14] Q. Chen and A. Elbanna, �Modulating Elastic Band Gap Structure in Layered Soft Composites
Using Sacri�cial Interfaces,� Journal of Applied Mechanics, Transactions ASME, vol. 83, nov
2016.

95



[15] A. S. Phani, �Elastodynamics of Lattice Materials,� in Dynamics of Lattice Materials (M. I. H.
A. Srikantha Phani, ed.), ch. 3, p. 58, Wiley, 2017.

[16] S. Krödel, N. Thomé, and C. Daraio, �Wide band-gap seismic metastructures,� Extreme Me-
chanics Letters, vol. 4, pp. 111�117, sep 2015.

[17] D. J. Colquitt, A. Colombi, R. V. Craster, P. Roux, and S. R. L. Guenneau, �Seismic metasur-
faces: Sub-wavelength resonators and Rayleigh wave interaction,� Journal of the Mechanics and
Physics of Solids, vol. 99, pp. 379�393, feb 2017.

[18] A. Palermo, S. Krödel, K. Matlack, R. Zaccherini, V. Dertimanis, E. Chatzi, A. Marzani, and
C. Daraio, �Large scale metasurfaces for seismic waves control,� The Journal of the Acoustical
Society of America, vol. 143, pp. 1713�1713, mar 2018.

[19] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and M. Ruzzene, �Piezoelectric resonator
arrays for tunable acoustic waveguides and metamaterials,� Journal of Applied Physics, vol. 112,
p. 064902, sep 2012.

[20] R. K. Pal and M. Ruzzene, �Edge waves in plates with resonators: an elastic analogue of the
quantum valley Hall e�ect,� New Journal of Physics, vol. 19, p. 025001, feb 2017.

[21] A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, �Broadband Bending of Flexural Waves:
Acoustic Shapes and Patterns,� Scienti�c Reports, vol. 8, p. 11219, dec 2018.

[22] S. Zhang, C. Xia, and N. Fang, �Broadband Acoustic Cloak for Ultrasound Waves,� Physical
Review Letters, vol. 106, p. 024301, jan 2011.

[23] A. Zareei and M.-R. Alam, �Broadband cloaking of �exural waves,� Physical Review E, vol. 95,
p. 063002, jun 2017.

[24] G. Ma and P. Sheng, �Acoustic metamaterials: From local resonances to broad horizons,� 2016.

[25] M. I. Hussein, K. Hamza, G. M. Hulbert, and K. Saitou, �Optimal synthesis of 2D phononic
crystals for broadband frequency isolation,� Waves in Random and Complex Media, vol. 17,
pp. 491�510, nov 2007.

[26] G. Aguzzi, A. Colombi, V. Dertimanis, and E. N. Chatzi, �Metamaterials for groundborne vi-
bration absorption in pillars,� tech. rep., ETH Zürich, 2020.

[27] R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, �Sound
attenuation by sculpture,� Nature, vol. 378, p. 241, nov 1995.

[28] H. Pichard, O. Richoux, and J.-P. Groby, �Experimental demonstrations in audible frequency
range of band gap tunability and negative refraction in two-dimensional sonic crystal,� The
Journal of the Acoustical Society of America, vol. 132, pp. 2816�2822, oct 2012.

[29] A. Gueddida, Y. Pennec, S. Hemon, F. Lucklum, M. Vellekoop, N. Mukhin, R. Lucklum,
B. Bonello, and B. Djafari Rouhani, �Numerical Analysis of a Tubular Phononic Crystal Sen-
sor,� in Proceedings of IEEE Sensors, vol. 2020-October, Institute of Electrical and Electronics
Engineers Inc., oct 2020.

[30] Y. Pennec, Y. Jin, and B. Djafari-Rouhani, �Phononic and photonic crystals for sensing appli-
cations,� Advances in Applied Mechanics, vol. 52, pp. 105�145, jan 2019.

[31] L. Feng, J. Chen, H. Huang, S. Huo, Z. Tan, X. Han, and G. Huang, �High-e�ciency elastic
wave recti�er in one-dimensional linear magnetoelastic phononic crystal slabs by an external
magnetostatic �eld,� Physical Review Applied, vol. 13, p. 064042, jun 2020.

96



[32] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, and C. Daraio, �Observation of Non-
reciprocal Wave Propagation in a Dynamic Phononic Lattice,� Physical Review Letters, vol. 121,
p. 194301, nov 2018.

[33] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, �Locally resonant
sonic materials,� Science (New York, N.Y.), vol. 289, pp. 1734�6, sep 2000.

[34] A. Colombi, D. Colquitt, P. Roux, S. Guenneau, and R. V. Craster, �A seismic metamaterial:
The resonant metawedge,� Scienti�c Reports, vol. 6, pp. 1�6, jun 2016.

[35] S. Benchabane and A. Reinhardt, �Elastic Metamaterials for Radiofrequency Applications,� in
Fundamentals and Applications of Acoustic Metamaterials, pp. 207�262, Wiley, aug 2019.

[36] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, �Negative refractive index and acoustic superlens
from multiple scattering in single negative metamaterials,� Nature, vol. 525, pp. 77�81, sep 2015.

[37] R. Fuentes-Domínguez, M. Yao, A. Colombi, P. Dryburgh, D. Pieris, A. Jackson-Crisp,
D. Colquitt, A. Clare, R. J. Smith, and M. Clark, �Design of a resonant Luneburg lens for
surface acoustic waves,� Ultrasonics, vol. 111, p. 106306, mar 2021.

[38] R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, �Negative refraction of elastic waves at
the deep-subwavelength scale in a single-phase metamaterial,� Nature Communications, vol. 5,
pp. 1�8, nov 2014.

[39] S. Zhang, L. Yin, and N. Fang, �Focusing ultrasound with an acoustic metamaterial network,�
Physical Review Letters, vol. 102, may 2009.

[40] C. L. Bacquet, H. Al Ba'ba'a, M. J. Frazier, and M. Nouh, �Metadamping: Dissipation Emer-
gence in Elastic Metamaterials,� Advances in Applied Mechanics, vol. 51, pp. 115�164, jan 2018.

[41] G. Hu, L. Tang, R. Das, S. Gao, and H. Liu, �Acoustic metamaterials with coupled local res-
onators for broadband vibration suppression,� AIP Advances, vol. 7, feb 2017.

[42] D. Beli, J. R. F. Arruda, and M. Ruzzene, �Wave propagation in elastic metamaterial beams and
plates with interconnected resonators,� International Journal of Solids and Structures, vol. 139-
140, pp. 105�120, may 2018.

[43] D. DePauw, H. Al Ba'ba'a, and M. Nouh, �Metadamping and energy dissipation enhancement
via hybrid phononic resonators,� Extreme Mechanics Letters, vol. 18, pp. 36�44, jan 2018.

[44] G. Gupta, Dynamics of Periodically Sti�ened Structures Using a Wave Approach. PhD thesis,
University of Southampton (United Kingdom), 1971.

[45] J. Wang, C. M. Mak, and Y. Yun, �A methodology for direct identi�cation of characteristic wave-
types in a �nite periodic dual-layer structure with transverse connection,� Journal of Vibration
and Control, vol. 18, pp. 1406�1414, aug 2012.

[46] H. Xiuchang, J. Aihua, Z. Zhiyi, and H. Hongxing, �Design and optimization of periodic structure
mechanical �lter in suppression of foundation resonances,� Journal of Sound and Vibration,
vol. 330, pp. 4689�4712, sep 2011.

[47] Q. Chen and A. Elbanna, �Emergent wave phenomena in coupled elastic bars: From extreme
attenuation to realization of elastodynamic switches,� Scienti�c Reports, vol. 7, dec 2017.

[48] P. Deymier and K. Runge, �One-Dimensional Mass-Spring Chains Supporting Elastic Waves
with Non-Conventional Topology,� Crystals, vol. 6, p. 44, apr 2016.

97



[49] P. A. Deymier and K. Runge, �Non-separable states in a bipartite elastic system,� AIP Advances,
vol. 7, apr 2017.

[50] P. A. Deymier, K. Runge, P. Lucas, and J. O. Vasseur, �Spacetime representation of topological
phononics,� New Journal of Physics, vol. 20, may 2018.

[51] M. A. Hasan, L. Calderin, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, �Directional elastic
pseudospin and nonseparability of directional and spatial degrees of freedom in parallel arrays
of coupled waveguides,� Applied Sciences (Switzerland), vol. 10, p. 3202, may 2020.

[52] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, �Tunability of solitary wave properties in
one-dimensional strongly nonlinear phononic crystals,� Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, vol. 73, no. 2, 2006.

[53] R. K. Narisetti, M. J. Leamy, and M. Ruzzene, �A perturbation approach for predicting wave
propagation in one-dimensional nonlinear periodic structures,� Journal of Vibration and Acous-
tics, Transactions of the ASME, vol. 132, pp. 0310011�03100111, jun 2010.

[54] A. F. Vakakis, M. E. King, and A. J. Pearlstein, �Forced localization in a periodic chain of non-
linear oscillators,� International Journal of Non-Linear Mechanics, vol. 29, no. 3, pp. 429�447,
1994.

[55] A. J. Sievers and S. Takeno, �Intrinsic localized modes in anharmonic crystals,� Physical Review
Letters, vol. 61, no. 8, pp. 970�973, 1988.

[56] A. Krasnok, M. Tymchenko, and A. Alù, �Nonlinear metasurfaces: a paradigm shift in nonlinear
optics,� jan 2018.

[57] X. Guo, V. E. Gusev, V. Tournat, B. Deng, and K. Bertoldi, �Frequency-doubling e�ect in
acoustic re�ection by a nonlinear, architected rotating-square metasurface,� Physical Review E,
vol. 99, may 2019.

[58] J. Bunyan, K. J. Moore, A. Mojahed, M. D. Fronk, M. Leamy, S. Taw�ck, and A. F. Vakakis,
�Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale
hierarchy: Experimental study,� Physical Review E, vol. 97, p. 52211, may 2018.

[59] M. D. Fronk, S. Taw�ck, C. Daraio, S. Li, A. Vakakis, and M. J. Leamy, �Acoustic non-reciprocity
in lattices with nonlinearity, internal hierarchy, and asymmetry: Computational study,� Journal
of Vibration and Acoustics, Transactions of the ASME, vol. 141, oct 2019.

[60] A. Mojahed, O. V. Gendelman, and A. F. Vakakis, �Breather arrest, localization, and acous-
tic non-reciprocity in dissipative nonlinear lattices,� The Journal of the Acoustical Society of
America, vol. 146, pp. 826�842, jul 2019.

[61] X. Fang, J. Wen, D. Yu, G. Huang, and J. Yin, �Wave propagation in a nonlinear acoustic
metamaterial beam considering third harmonic generation,� New Journal of Physics, vol. 20,
p. 123028, dec 2018.

[62] A. Casalotti, S. El-Borgi, and W. Lacarbonara, �Metamaterial beam with embedded nonlinear
vibration absorbers,� International Journal of Non-Linear Mechanics, vol. 98, pp. 32�42, jan
2018.

[63] R. K. Narisetti,Wave propagation in nonlinear periodic structures. PhD thesis, Georegia Institute
of Technology, 2010.

[64] K. L. Manktekow, Dispersion analysis of nonlinear periodic structures. PhD thesis, Georgia
Institute of Technology, 2013.

98



[65] R. Khajehtourian and M. I. Hussein, �Dispersion characteristics of a nonlinear elastic metama-
terial,� AIP Advances, vol. 4, p. 124308, dec 2014.

[66] P. B. Silva, M. J. Leamy, M. G. D. Geers, and V. G. Kouznetsova arXiv.

[67] P. B. Silva, M. J. Leamy, M. G. Geers, and V. G. Kouznetsova, �Emergent subharmonic band
gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance,� Physical
Review E, vol. 99, p. 063003, jun 2019.

[68] V. Zega, P. B. Silva, M. G. Geers, and V. G. Kouznetsova, �Experimental proof of emergent
subharmonic attenuation zones in a nonlinear locally resonant metamaterial,� Scienti�c Reports,
vol. 10, p. 12041, dec 2020.

[69] S. Hajarolasvadi and A. E. Elbanna, �Dynamics of metamaterial beams consisting of periodically-
coupled parallel �exural elements: A theoretical study,� Journal of Physics D: Applied Physics,
vol. 52, p. 315101, may 2019.

[70] J. Miles, �Vibrations of Beams on Many Supports,� Proceedings of the American Society of Civil
Engineers, vol. 82, no. 1, pp. 1�9, 1956.

[71] E. E. Ungar, �Steady-State Responses of One-Dimensional Periodic Flexural Systems,� The
Journal of the Acoustical Society of America, vol. 39, no. March 1965, 1965.

[72] H. J. Xiang and Z. F. Shi, �Analysis of �exural vibration band gaps in periodic beams using
di�erential quadrature method,� Computers and Structures, 2009.

[73] C. Zhou, M. Ichchou, J.-P. Lainé, and A. Zine, �Application of wave �nite element method on
reduced models for the analysis of �exural waves in periodic beams,� in 1st Euro Mediterranean
Conference on Structural Dynamics and Vibroacoustics, apr 2013.

[74] D. J. Thompson, �A continuous damped vibration absorber to reduce broad-band wave propa-
gation in beams,� Journal of Sound and Vibration, 2008.

[75] Y. Xiao, J. Wen, and X. Wen, �Broadband locally resonant beams containing multiple periodic
arrays of attached resonators,� Physics Letters, Section A: General, Atomic and Solid State
Physics, vol. 376, no. 16, pp. 1384�1390, 2012.

[76] V. Candido de Sousa, C. Sugino, C. De Marqui Junior, and A. Erturk, �Adaptive locally resonant
metamaterials leveraging shape memory alloys,� Journal of Applied Physics, vol. 124, p. 064505,
aug 2018.

[77] C. Sugino, S. Leadenham, M. Ruzzene, and A. Erturk, �On the mechanism of bandgap formation
in locally resonant �nite elastic metamaterials,� Journal of Applied Physics, vol. 120, p. 134501,
oct 2016.

[78] H. Sun, X. Du, and P. F. Pai, �Theory of metamaterial beams for broadband vibration absorp-
tion,� Journal of Intelligent Material Systems and Structures, 2010.

[79] M. Y. Wang and X. Wang, �Frequency band structure of locally resonant periodic �exural
beams suspended with force�moment resonators,� Journal of Physics D: Applied Physics, vol. 46,
p. 255502, jun 2013.

[80] Y. Xiao, J. Wen, G. Wang, and X. Wen, �Theoretical and Experimental Study of Locally Res-
onant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Res-
onators,� Journal of Vibration and Acoustics, vol. 135, p. 041006, jun 2013.

[81] Y. Xiao, J. Wen, D. Yu, and X. Wen, �Flexural wave propagation in beams with periodically

99



attached vibration absorbers: Band-gap behavior and band formation mechanisms,� Journal of
Sound and Vibration, 2013.

[82] L. Liu and M. I. Hussein, �Wave Motion in Periodic Flexural Beams and Characterization of
the Transition Between Bragg Scattering and Local Resonance,� Journal of Applied Mechanics,
vol. 79, p. 11003, jan 2012.

[83] X. Wang and M. Y. Wang, �An analysis of �exural wave band gaps of locally resonant beams
with continuum beam resonators,� Meccanica, vol. 51, pp. 171�178, jan 2016.

[84] D. Krattiger and M. I. Hussein, �Bloch mode synthesis: Ultrafast methodology for elastic band-
structure calculations,� Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
2014.

[85] C. Go�aux, J. Sánchez-Dehesa, A. L. Yeyati, P. Lambin, A. Khelif, J. O. Vasseur, and B. Djafari-
Rouhani, �Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials,� Phys-
ical Review Letters, vol. 88, p. 225502, may 2002.

[86] P. F. Pai, �Metamaterial-based Broadband Elastic Wave Absorber,� Journal of Intelligent Ma-
terial Systems and Structures, vol. 21, pp. 517�528, mar 2010.

[87] P. F. Pai, H. Peng, and S. Jiang, �Acoustic metamaterial beams based on multi-frequency vibra-
tion absorbers,� International Journal of Mechanical Sciences, vol. 79, pp. 195�205, feb 2014.

[88] Y. Xiao, B. R. Mace, J. Wen, and X. Wen, �Formation and coupling of band gaps in a locally
resonant elastic system comprising a string with attached resonators,� Physics Letters A, vol. 375,
pp. 1485�1491, mar 2011.

[89] F. ROMEO and A. LUONGO, �Invariant Representation Of Propogation Properties For Bi-
Coupled Periodic Structures,� Journal of Sound and Vibration, vol. 257, pp. 869�886, nov 2002.

[90] S. Hajarolasvadi and A. E. Elbanna, �Dispersion properties and dynamics of ladder-like meta-
chains,� Extreme Mechanics Letters, vol. 43, p. 101133, feb 2021.

[91] H. H. Huang, C. T. Sun, and G. L. Huang, �On the negative e�ective mass density in acoustic
metamaterials,� International Journal of Engineering Science, vol. 47, pp. 610�617, apr 2009.

[92] G. L. Huang and C. T. Sun, �Band gaps in a multiresonator acoustic metamaterial,� Journal of
Vibration and Acoustics, Transactions of the ASME, vol. 132, pp. 0310031�0310036, jun 2010.

[93] H. Chen, X. P. Li, Y. Y. Chen, and G. L. Huang, �Wave propagation and absorption of sandwich
beams containing interior dissipative multi-resonators,� Ultrasonics, vol. 76, pp. 99�108, apr
2017.

[94] R. Zhu, X. N. Liu, G. K. Hu, F. G. Yuan, and G. L. Huang, �Microstructural designs of plate-
type elastic metamaterial and their potential applications: a review,� International Journal of
Smart and Nano Materials, vol. 6, pp. 14�40, jan 2015.

[95] A. A. Mokhtari, Y. Lu, and A. Srivastava, �Optimized phononic crystals for bandGap and meta-
material properties,� in Health Monitoring of Structural and Biological Systems XII, vol. 10600,
p. 68, SPIE-Intl Soc Optical Eng, mar 2018.

[96] A. A. Mokhtari, Y. Lu, and A. Srivastava, �On the emergence of negative e�ective density and
modulus in 2-phase phononic crystals,� Journal of the Mechanics and Physics of Solids, vol. 126,
pp. 256�271, may 2019.

[97] Q. Chen and A. Elbanna, �Tension-induced tunable corrugation in two-phase soft composites:

100



Mechanisms and implications,� Extreme Mechanics Letters, vol. 4, pp. 26�37, sep 2015.

[98] A. Bylinskii, D. Ganglo�, I. Counts, and V. Vuleti¢, �Observation of Aubry-type transition in
�nite atom chains via friction,� Nature Materials, vol. 15, pp. 717�721, jul 2016.

[99] B. A. Erickson, B. Birnir, and D. Lavallée, �Periodicity, chaos and localization in a Burridge-
Knopo� model of an earthquake with rate-and-state friction,� Geophysical Journal International,
vol. 187, pp. 178�198, oct 2011.

[100] A. E. Elbanna and T. H. Heaton, �A new paradigm for simulating pulse-like ruptures: The pulse
energy equation,� Geophysical Journal International, vol. 189, pp. 1797�1806, jun 2012.

[101] Léon Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices.
New York: McGraw-Hill Book Company, inc., 1st editio ed., 1946.

[102] N. Boechler, J. Yang, G. Theocharis, P. G. Kevrekidis, and C. Daraio, �Tunable vibrational band
gaps in one-dimensional diatomic granular crystals with three-particle unit cells,� in Journal of
Applied Physics, vol. 109, p. 074906, American Institute of PhysicsAIP, apr 2011.

[103] F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, and C. Daraio, �Granular acoustic switches and logic
elements,� Nature Communications, vol. 5, pp. 1�6, oct 2014.

[104] L. Bonanomi, G. Theocharis, and C. Daraio, �Wave propagation in granular chains with local res-
onances,� Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 91, p. 033208,
mar 2015.

[105] A. Darabi, L. Fang, A. Mojahed, M. D. Fronk, A. F. Vakakis, and M. J. Leamy, �Broadband
passive nonlinear acoustic diode,� Physical Review B, vol. 99, p. 214305, jun 2019.

[106] P. A. Deymier, �Introduction to Phononic Crystals and Acoustic Metamaterials,� in Acoustic
Metamaterials and Phononic Crystals, pp. 1�12, Springer, 2013.

[107] C. M. Da Fonseca and J. Petronilho, �Explicit inverses of some tridiagonal matrices,� Linear
Algebra and Its Applications, vol. 325, pp. 7�21, mar 2001.

[108] D. Leykam, A. Andreanov, and S. Flach, �Arti�cial �at band systems: From lattice models to
experiments,� jan 2018.

[109] V. Yantchev, L. Arapan, I. Katardjiev, and V. Plessky, �Thin-�lm zero-group-velocity Lamb
wave resonator,� Applied Physics Letters, vol. 99, p. 033505, jul 2011.

[110] K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber, and C. Daraio, �Designing perturbative
metamaterials from discrete models,� Nature Materials, vol. 17, pp. 323�328, apr 2018.

[111] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann,
A. Szameit, and M. I. Molina, �Observation of Localized States in Lieb Photonic Lattices,�
Physical Review Letters, vol. 114, p. 245503, jun 2015.

[112] P. Celli, B. Yousefzadeh, C. Daraio, and S. Gonella, �Bandgap widening by disorder in rainbow
metamaterials,� Applied Physics Letters, vol. 114, mar 2017.

[113] M. A. Hasan, Y. Starosvetsky, A. F. Vakakis, and L. I. Manevitch, �Nonlinear targeted energy
transfer and macroscopic analog of the quantum Landau-Zener e�ect in coupled granular chains,�
Physica D: Nonlinear Phenomena, vol. 252, pp. 46�58, jun 2013.

[114] C. Wang, S. Taw�ck, and A. F. Vakakis, �Irreversible energy transfer, localization and non-
reciprocity in weakly coupled, nonlinear lattices with asymmetry,� Physica D: Nonlinear Phe-

101



nomena, jan 2019.

[115] S. Foti, S. Parolai, D. Albarello, and M. Picozzi, �Application of Surface-Wave Methods for
Seismic Site Characterization,� Surveys in Geophysics, vol. 32, pp. 777�825, nov 2011.

[116] S. C. Gri�ths, B. R. Cox, E. M. Rathje, and D. P. Teague, �Surface-Wave Dispersion Approach
for Evaluating Statistical Models That Account for Shear-Wave Velocity Uncertainty,� Journal
of Geotechnical and Geoenvironmental Engineering, vol. 142, p. 04016061, nov 2016.

[117] G. Hévin, O. Abraham, H. A. Pedersen, and M. Campillo, �Characterisation of surface cracks
with rayleigh waves: A numerical model,� NDT and E International, vol. 31, pp. 289�297, aug
1998.

[118] J. H. Kim and H. G. Kwak, �Nondestructive evaluation of elastic properties of concrete us-
ing simulation of surface waves,� Computer-Aided Civil and Infrastructure Engineering, vol. 23,
pp. 611�624, nov 2008.

[119] A. Palermo, S. Krödel, A. Marzani, and C. Daraio, �Engineered metabarrier as shield from
seismic surface waves,� Scienti�c Reports, vol. 6, pp. 1�10, dec 2016.

[120] S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, �Experiments on seismic metamaterials:
Molding surface waves,� Physical Review Letters, vol. 112, p. 133901, dec 2013.

[121] B. F. Spencer and S. Nagarajaiah, �State of the Art of Structural Control,� Journal of Structural
Engineering, vol. 129, pp. 845�856, jul 2003.

[122] T. H. Heaton, J. F. Hall, D. J. Wald, and M. W. Halling, �Response of high-rise and base-isolated
buildings to a hypothetical M w 7.0 blind thrust earthquake,� Science, vol. 267, pp. 206�211, jan
1995.

[123] W. L. Ellsworth, A. L. Llenos, A. F. McGarr, A. J. Michael, J. L. Rubinstein, C. S. Mueller,
M. D. Petersen, and E. Calais, �Increasing seismicity in the U. S. midcontinent: Implications for
earthquake hazard,� Leading Edge, vol. 34, pp. 618�626, jun 2015.

[124] A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R. V. Craster, �Forests as a natural seismic
metamaterial: Rayleigh wave bandgaps induced by local resonances,� Scienti�c Reports, vol. 6,
jan 2016.

[125] N. Boechler, J. K. Eliason, A. Kumar, A. A. Maznev, K. A. Nelson, and N. Fang, �Interaction
of a contact resonance of microspheres with surface acoustic waves,� Physical Review Letters,
vol. 111, p. 036103, jul 2013.

[126] S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, �Evidence for complete surface
wave band gap in a piezoelectric phononic crystal,� Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, vol. 73, no. 6, pp. 1�4, 2006.

[127] K. Länge, B. E. Rapp, and M. Rapp, �Surface acoustic wave biosensors: A review,� jul 2008.

[128] Muhammad, C. W. Lim, and J. N. Reddy, �Built-up structural steel sections as seismic metama-
terials for surface wave attenuation with low frequency wide bandgap in layered soil medium,�
Engineering Structures, vol. 188, pp. 440�451, jun 2019.

[129] T. T. Wu, J. C. Hsu, J. H. Sun, and S. Benchabane, �Surface acoustic waves in phononic crystals,�
in Phononic Crystals: Fundamentals and Applications, pp. 145�189, Springer New York, jul 2015.

[130] O. B. Wright and O. Matsuda, �Watching surface waves in phononic crystals,� Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 373,

102



p. 20140364, aug 2015.

[131] A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, �Locally resonant surface
acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface,� Physical
Review B - Condensed Matter and Materials Physics, vol. 81, p. 214303, jun 2010.

[132] F. Zeighami, A. Palermo, and A. Marzani, �Rayleigh waves in locally resonant metamaterials,�
International Journal of Mechanical Sciences, vol. 195, p. 106250, dec 2020.

[133] M. Addouche, M. A. Al-Lethawe, A. Choujaa, and A. Khelif, �Superlensing e�ect for surface
acoustic waves in a pillar-based phononic crystal with negative refractive index,� Applied Physics
Letters, vol. 105, p. 023501, jul 2014.

[134] N. Cselyuszka, M. Se£ujski, N. Engheta, and V. Crnojevi¢-Bengin, �Temperature-controlled
acoustic surface waves,� New Journal of Physics, vol. 18, no. 10, 2016.

[135] A. Palermo, Y. Wang, P. Celli, and C. Daraio, �Tuning of Surface-Acoustic-Wave Dispersion
via Magnetically Modulated Contact Resonances,� Physical Review Applied, vol. 11, no. 4, p. 1,
2019.

[136] A. Palermo, P. Celli, B. Yousefzadeh, C. Daraio, and A. Marzani, �Surface wave non-reciprocity
via time-modulated metamaterials,� Journal of the Mechanics and Physics of Solids, vol. 145,
p. 104181, dec 2020.

[137] S. Alan, A. Allam, and A. Erturk, �Programmable mode conversion and bandgap formation
for surface acoustic waves using piezoelectric metamaterials,� Applied Physics Letters, vol. 115,
p. 093502, aug 2019.

[138] W. Jiao and S. Gonella, �Doubly nonlinear waveguides with self-switching functionality selection
capabilities,� Physical Review E, vol. 99, p. 042206, apr 2019.

[139] K. J. Moore, J. Bunyan, S. Taw�ck, O. V. Gendelman, S. Li, M. Leamy, and A. F. Vakakis,
�Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale
hierarchy,� Physical Review E, vol. 97, p. 012219, jan 2018.

[140] L. Fang, A. Darabi, A. Mojahed, A. F. Vakakis, and M. J. Leamy, �Broadband non-reciprocity
with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial,� Nonlinear Dynam-
ics, vol. 100, pp. 1�13, mar 2020.

[141] D. Zhou, J. Ma, K. Sun, S. Gonella, and X. Mao, �Switchable phonon diodes using nonlinear
topological Maxwell lattices,� Physical Review B, vol. 101, p. 104106, mar 2020.

[142] W. Jiao and S. Gonella, �Intermodal and Subwavelength Energy Trapping in Nonlinear Meta-
material Waveguides,� Physical Review Applied, vol. 10, p. 024006, aug 2018.

[143] W. Jiao and S. Gonella, �Mechanics of inter-modal tunneling in nonlinear waveguides,� Journal
of the Mechanics and Physics of Solids, vol. 111, pp. 1�17, feb 2018.

[144] R. K. Narisetti, M. Ruzzene, and M. J. Leamy, �Study of wave propagation in strongly nonlinear
periodic lattices using a harmonic balance approach,� Wave Motion, vol. 49, pp. 394�410, mar
2012.

[145] R. K. Narisetti, M. Ruzzene, and M. J. Leamy, �Study of wave propagation in strongly nonlinear
periodic lattices using a harmonic balance approach,� Wave Motion, vol. 49, pp. 394�410, mar
2012.

[146] K. Manktelow, M. J. Leamy, and M. Ruzzene, �Multiple scales analysis of wave-wave interactions

103



in a cubically nonlinear monoatomic chain,� Nonlinear Dynamics, vol. 63, pp. 193�203, jan 2011.

[147] K. Manktelow, R. K. Narisetti, M. J. Leamy, and M. Ruzzene, �Finite-element based perturbation
analysis of wave propagation in nonlinear periodic structures,� Mechanical Systems and Signal
Processing, vol. 39, pp. 32�46, aug 2013.

[148] R. Khajehtourian and M. I. Hussein, �Dispersion characteristics of a nonlinear elastic metama-
terial,� AIP Advances, vol. 4, p. 124308, dec 2014.

[149] B. S. Lazarov and J. S. Jensen, �Low-frequency band gaps in chains with attached non-linear
oscillators,� International Journal of Non-Linear Mechanics, vol. 42, pp. 1186�1193, dec 2007.

[150] J. M. Manimala and C. T. Sun, �Numerical investigation of amplitude-dependent dynamic re-
sponse in acoustic metamaterials with nonlinear oscillators,� The Journal of the Acoustical So-
ciety of America, vol. 139, pp. 3365�3372, jun 2016.

[151] K. L. Manktelow, M. Ruzzene, and M. J. Leamy, �Wave Propagation in Nonlinear Lattice Mate-
rials,� in Dynamics of Lattice Materials, pp. 107�137, Chichester, UK: John Wiley & Sons, Ltd,
jul 2017.

[152] S. P. Wallen, A. A. Maznev, and N. Boechler, �Dynamics of a monolayer of microspheres on an
elastic substrate,� Physical Review B - Condensed Matter and Materials Physics, vol. 92, no. 17,
pp. 1�9, 2015.

[153] M. Hiraiwa, M. Abi Ghanem, S. P. Wallen, A. Khanolkar, A. A. Maznev, and N. Boechler, �Com-
plex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of
Surface Acoustic Waves,� Physical Review Letters, vol. 116, p. 198001, may 2016.

[154] S. P. Wallen, J. Lee, D. Mei, C. Chong, P. G. Kevrekidis, and N. Boechler, �Discrete breathers
in a mass-in-mass chain with Hertzian local resonators,� Physical Review E, vol. 95, p. 022904,
feb 2017.

[155] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. Wiley, may 1995.

[156] E. Rigaud and J. Perret-Liaudet, �Experiments and numerical results on non-linear vibrations of
an impacting Hertzian contact. Part 1: Harmonic excitation,� Journal of Sound and Vibration,
vol. 265, pp. 289�307, aug 2003.

[157] J. Perret-Liaudet and E. Rigaud, �Experiments and numerical results on non-linear vibrations
of an impacting Hertzian contact. Part 2: Random excitation,� Journal of Sound and Vibration,
vol. 265, pp. 309�327, aug 2003.

[158] A. Merkel, G. Theocharis, F. Allein, J. P. Groby, V. Gusev, and V. Tournat, �Testing a bead-rod
contact with a nonlinear resonance method,� Journal of Sound and Vibration, vol. 441, pp. 84�95,
feb 2019.

[159] K. L. Manktelow, M. J. Leamy, and M. Ruzzene, �Analysis and experimental estimation of
nonlinear dispersion in a periodic string,� Journal of Vibration and Acoustics, Transactions of
the ASME, vol. 136, jun 2014.

[160] F. Gao, A. Bermak, S. Benchabane, M. Raschetti, and A. Khelif, �Nonlinear e�ects in locally-
resonant nanostrip phononic metasurface at GHz frequencies,� dec 2020.

[161] J. Oliver, F. Press, and M. Ewing, �Two-dimensional Model Seismology,� GEOPHYSICS, vol. 19,
pp. 202�219, apr 1954.

[162] M. V. Wilde, M. V. Golub, and A. A. Eremin, �Experimental and theoretical investigation of

104



transient edge waves excited by a piezoelectric transducer bonded to the edge of a thick elastic
plate,� Journal of Sound and Vibration, vol. 441, pp. 26�49, feb 2019.

[163] K. L. Johnson, Contact Mechanics. Cambridge University Press, may 1985.

[164] ABAQUS Analysis User's Manual, ed. 6.14. Providence, IR.: Dassault Systèmes Simulia, 2014.

105



Appendix A

Fully-Coupled Chains

Dispersion relation for the fully-coupled chains can also be obtained using the dispersion relation of

each subsystem (mono-atomic chains). We consider the unit-cell shown in Figure 3.1b and write the

�nal eigenvalue problem following the approach proposed in [1] as

[
K(µ)− ω2M

]
eijµ = 0 (A.1)

where K(µ) =
∑
n=−1,0,1 e

inµKn. Kn, with n = −1, 0, 1 are matrices that de�ne the spring interac-

tiong within a representative unit cell and its adjacent neighbors. For the fully-coupled con�guration,

this formulation gives

∣∣∣∣∣∣∣
2k1(1− cosµ)−m1ω

2 + k3 −k3

−k3 2k2(1− cosµ)−m2ω
2 + k3

∣∣∣∣∣∣∣ = 0 (A.2)

The above may be rewritten in the following form

∣∣∣∣∣∣∣
2k1(1− cosµ)−m1ω

2 0

0 2k2(1− cosµ)−m2ω
2

+

 k3 −k3

−k3 k3


∣∣∣∣∣∣∣ = 0 (A.3)

We notice that the diagonal elements in the leftmost matrix represent the dispersion relation for the

individual spring-mass lattices. We refer to these as DR1 and DR2 to simplify notation. The second

matrix shows the e�ect of connection elements and may be rewritten as the product of two vectors

 k3 −k3

−k3 k3

 =

 k3

−k3

[1 −1

]
(A.4)
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We recall the following matrix lemma:

|A+ uvT | = |A|(1 + vTAu) (A.5)

and rewrite the original eigenvalue problem as follow

|D|

1 +

[
1 −1

]
D−1

 k3

−k3


 (A.6)

where D =

DR1 0

0 DR2

. Therefore, dispersion relation for the overall structure may be written in

terms of the dispersion relation of each subsystem.

DR1DR2 + k3(DR1 +DR2) = 0 (A.7)

The �rst term shows the dispersion relation of the system when k3 is zero while the second term

captures the e�ect of connection elements in an isolated manner. Extending this type of analysis may

o�er a means of predicting the dispersive characteristics of a system from its constituents.
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