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ABSTRACT 

Quantifying the hydrological responses to climate change and land use and land cover 

(LULC) change is imperative for sustainable river basin management. In this study, hydrological 

regimes of the upper Lancang River Basin under environmental changes are assessed using a semi-

distributed hydrologic model, Soil and Water Assessment Tool (SWAT). The non-parametric test 

is used to analyze the trend of hydro-meteorological variables based on the hydro-meteorological 

data time series analysis during the period of 1978 - 2014. Global Climate Models (or General 

Circulation Model, GCMs) under RCP 4.5 is used to assess the future climate (2021-2080); future 

hypothetical land-use change (2040) is predicted by Land Change Modeler (LCM). The modelling 

results are evaluated in four scenarios: scenario 1 with historical land use and climate, scenario 2 

with the current land use and climate data from the past, scenario 3 with the current land use map 

and future climate, and scenario 4 with future land use and future climate. Consequently, sediment 

yield rises by 5.0 %, 17.9 %, and 25.9 % under scenarios 2, 3, and 4, respectively, as compared to 

scenario 1. The results indicate that the transition from pasture to cropland has been the topmost 

contributor to the increase in runoff and sediment yield, which is likely to continue to the future. 

Additionally, climate and land use change have a larger synergistic influence than their separate 

effects. This study quantitatively assesses the hydrological responses to environmental changes in 

an alpine pastoral area and provides supports for sustainable river basin management. 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGMENTS 

The accomplishment of the work is attributed to the support from many people. I would 

like to express my gratitude to my adviser, Professor Ximing Cai, for his continuous support and 

advice. His critical insights and invaluable guidance to help me initiate, improve, and finalize the 

thesis. It is a great honor to work under his authoritative supervision. I also would like to thank my 

co-advisor, Prof. Yu Li, for the suggestions. His in-depth knowledge and abundant experience of 

the study site are meant to solve the issues, especially with the data, in the research. Their 

meticulous scrutiny and scientific advice have helped me a lot to accomplish the work. Besides, I 

am also grateful to the students from Prof Cai's group for their feedback and suggestions. 

Finally, I thank my family and friends for their unconditional trust, encouragement, and 

mental support with patience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

CHAPTER 1: Introduction ..............................................................................................................1 

CHAPTER 2: Study Area and Data .................................................................................................5 

CHAPTER 3: Methodology .............................................................................................................8 

CHAPTER 4: Results and Discussion ...........................................................................................14 

CHAPTER 5: Conclusion ..............................................................................................................33 

REFERENCES ..............................................................................................................................35



 1 

CHAPTER 1: Introduction 

Climate change and land use and land cover (LULC) change are the two principal drivers 

of hydrological regimes and significantly influence the hydrological characteristics in many river 

basins. Climate variables, such as precipitation, temperature, wind speed, and humidity, determine 

the hydrological cycle's major inputs and change the hydrological system. Specifically, climate 

change is a critical factor determining hydrological processing, including both runoff and sediment 

loads, by changing the spatial and temporal distribution of precipitation and temperature. Such 

hydrological changes vary by region around the globe. In recent decades, with climate change, the 

hydrological processes have undergone considerable changes, affecting the spatiotemporal 

distribution of water resources.  

Land use and land cover has experienced transformation under climate change and human 

interference in many regions (Xu et al., 2008; Wang et al., 2015; Bunting et al., 2016; Zarei et al., 

2020). LULC changes, including the vegetation type alterations, land use practices transitions and 

their spatial patterns, bring up effects on watershed hydrological processing by affecting 

evapotranspiration (ET), soil infiltration capacity, surface, and subsurface flow regimes, and 

ultimately affecting the availability of water resources in a river basin (Brown et al., 2005; 

Romanowicz and Booij, 2011; Cuo et al., 2013). Quantifying hydrological responses to climate 

change and LULC change is critical to river basin planning and management and ecosystem 

restoration. 

Watershed hydrology alterations under environmental changes have been extensively 

studied during the past decades.  Climate change, resulting from the enhanced greenhouse effect, 

has been recognized as the primary driver of watershed hydrology. The previous studies 

demonstrated that hydrological processing had a dynamic response to the change of meteorological 

factors (Amisigo et al., 2015). For example, Legesse et al. (2003) assessed streamflow responses 

to land-use changes and climatic variability using the distributed Precipitation Runoff Modelling 

System (PRMS) in the Ketar River Basin, confirming that increasing air temperature results in a 

decrease in catchment discharge. Additionally, some studies have found that increased rainfall 

intensity contributes to increased sediment loads in various river basins. Awotwi et al. (2015a) 

investigated the effects of climatic variability on water balance components using the SWAT 

model in the White Volta basin. They verified that increases in precipitation and temperature 

enhanced in surface runoff, base flow, and evapotranspiration. Dibaba et al. (2020) identified the 
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decline of annual flow due to climate change effects; as a result, the study found that water 

availability would be reduced in the upper Blue Nile Basin under future climate scenario.  

Changes in land use and land cover characteristics have given rise to hydrological 

responses changes over the past decades (Hu et al., 2005). Albhaisi et al. (2013) demonstrated a 

systematic increase in groundwater recharge resulted from LULC change in the Upper Berg 

catchment, South Africa. Mengistu (2009) used SWAT and Hydrological Simulation Program – 

FORTRAN (HSPF) models to quantify the hydrological responses to LULC change at Hare 

Watershed, Ethiopia; the analysis revealed that the change of land use pattern altered the 

hydrological cycle, leading to an increase in runoff. Land use practices transition and land cover 

degradation also make the soils more vulnerable to erosion and increase flood frequency. Bonell 

et al. (2010), for example, indicated that the removal of vegetation followed by land-use practices 

transition might compact soils and accelerate soil erosion. Awotwi et al. (2015b) showed a link 

between land cover and the hydrologic response, demonstrating that conversion of savannah and 

grassland to farmlands increased evapotranspiration while decreasing surface flow.  

Climate changes bring out significantly impacts on land use and land cover, as well as 

hydrological processing. In the coupled system, the synergy between climate change and 

vegetation cover is necessary to assure the dependability of results. Zarei (2020) developed a 

correlation between the vegetation index and climate variables using regression equations 

established between satellite data images and data obtained from weather stations. Consequently, 

it is a trend to study the influence of vegetation driven by climate change rather than only consider 

the direct impact of climate variation. Numerous studies have been carried out worldwide 

examining the relationship between hydrological processing and synergistic changes of climate 

and LULC. For instance, Mango et al. (2011) conducted a large-scale study to evaluate the impacts 

of combined climate and LULC changes on hydrological responses in the upper Mara River in 

Africa using SWAT. Guo et al. (2008) examined LULC and climate change effects on temporal 

variation of streamflow in the Poyang Lake basin. Xu et al. (2014) According to Xu et al. (2014), 

the consequences of climate change and LULC change are responsible for a runoff drop of 26.9 % 

and 73.1 %, respectively. Shrestha (2018) compared the combined and individual impacts of 

climate change and changes in vegetation cover on runoff and sediment yield. Zhang et al. (2019) 

developed a SWAT model and showed that the synergetic effects enhance the average annual 

runoff by 15% to 38% relative to the base period.   
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The physically based hydrological model and the elasticity method based on the Budyko 

hypothesis are commonly used to assess the variability of the watershed hydrological cycle under 

different environmental scenarios. Physically based distributed hydrological models can consider 

spatial and temporal heterogeneity and describe natural processing more precisely than conceptual 

models (Finger et al., 2011). As a result, the modelling approach is widely applied due to its 

superiorities. For example, the SWAT model has been extensively utilized to simulate and forecast 

hydrological processes in many river basins (Arnorld et al., 1998; Jayakrishnan et al., 2005; Briak 

et al., 2016). 

As an alpine pastoral region and a unique ecological zone, the upper Lancang river basin 

(LRB) has experienced dramatic changes in hydrological processing caused by continuous climate 

and LULC change. The primary vegetation cover type is grassland, which growth is more sensitive 

to climate change than other vegetation types. Consequently, alpine pastoral regions are especially 

vulnerable and susceptible to the worst manifestations of climate change, including severe soil loss 

rates (Orlandi et al., 2016). In addition, a significant portion of natural runoff is driven by snowmelt 

in these regions, which indicates that the temperature can directly determine the timing of 

snowmelt runoff. As a result, LULC conversions driven by climate change may aggravate the 

unignorable ill effects of climate change. For example, as the world's largest alpine pastoral region, 

the warming and wetting of the climate have favored vegetation growth directly in Tibetan Plateau 

over the past decades (Wei et al., 2020; Tian et al., 2020). Rostamian et al. (2008) applied SWAT 

to estimate runoff and sediment yield and assessed the model’s performance in two mountainous 

basins in central Iran that are mostly covered by pasture and cropland. Yang et al. (2017) used 

SWAT to investigate the distinct impacts of climatic and land cover on flow regime changes in 

Yingluoxia and Minxian catchments; the findings indicated that climatic factors indeed dominated 

flow regime changes on the Northeastern Tibetan Plateau. It is critical to analyze the dynamic 

responses of hydrological processing to synergistic climate and LULC change in the alpine 

pastoral region. 

This study aims to take a comprehensive perspective to analyze the synergistic impacts of 

climatic and LULC changes on watershed hydrology. A calibrated and validated physically based 

SWAT hydrological model is used to simulate the hydrological regimes. GCMs and LCM are used 

to predict future climate and LULC scenarios, respectively. Trend analysis and three precipitation 

indices are employed to evaluating the change of environmental variables. The study quantifies 
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the hydrology responses by performing a hydrological model under four scenarios. In summary, 

the purpose of this study is to investigate the environmental change patterns, reveal the 

hydrological responses to the synergistic changes in climate and LULC, and provide scientific 

supports for ecological restoration and sustainable water resources planning and management 

under future climate change. 
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CHAPTER 2: Study Area and Data 

The sampling site of this study is the upper Lancang River Basin (LRB), which lies 

upstream of the Lancang-Mekong River. The Lancang River originates from the Qinghai-Tibetan 

Plateau. The upper LRB has a total area of 52,508 km2 and an elevation of more than 3000 m 

(Figure 2.1). The upper LRB has a temperate plateau climate with an average temperature of 10 °C 

and average annual precipitation of 404.81 mm. The wet season occurs from May to October, 

which accounts for more than 80% of the annual precipitation. 

 

Figure 2.1 Digital elevation model (DEM) in the upper LRB 

 As a representative alpine pastoral region, LULC has experienced substantial 

transformation in recent years. Land use and land cover data were collected from European Space 

Agency from 1992 to 2015 (Figure 2.2). To fit the SWAT model, the original LULC map was 

reclassified into seven categories: pasture (PAST), forest (FRST), barren land (BARR), water areas 

(WATR), urban land (URHD), rice (RICE) and wheat (WWHT). The primary land use types are 

pasture and forest, which account for 83.0% and 5.0% of the total basin area, respectively. 

According to Figure 2.2, forest is concentrated in the lower middle part of the basin. Crop 

cultivation and livestock production dominate the local economy in the basin. In the past decades, 

global warming has led to shrub encroachment in grassland and provided more favorable climatic 

conditions for crop cultivation in the alpine region. As a result, many herders have chosen to 

cultivate rather than graze because of climate change and policy implementation. According to the 

local statistics yearbook, the cultivated land area has increased by an average of 8906.26 km2/year 
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during the past 20 years (Table 2.1). However, the number of livestock production has declined in 

recent years. 

  

Figure 2.2 Land use map for 1992 and 2015 in the upper LRB. 

Table 2.1: Number of Livestock & Area of Cultivated Land in cities within the upper LRB. 

Year Number of Livestock (1000) Cultivated Land (1000 hectares) 

1995 556 354 

2000 537 345 

2005 557 373 

2010 530 368 

2015 369 273 

2019 276.6 220.9 

Table 2.2 summarizes the data used in the research. To set up SWAT model, the Digital 

Elevation Model (DEM) data was derived from the Geospatial Data Cloud at a 90m resolution 

ratio. The DEM map is used to generate the slope map and delineate the subbasins for SWAT 

simulation. Furthermore, the SWAT model requires physical and hydrological properties of soils. 

The soil map (1:1,000,000) was obtained from the soil databases that was produced by the Nanjing 

Institute of Soil Science. Daily meteorological data during the period from 1978 to 2014 was 

collected from China Meteorological Administration.  
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Table 2.2: Description of research data used in the research. 

Data Resolution/Time  Data Source 

Digital Elevation Model 

(DEM) 

90m×90m Geospatial Data Cloud  

Land use 200m; 1992-2015 European Space Agency 

Soil Map 1:1,000,000 Nanjing Institute of Soil Science; Chinese soil database; SPAW software 

River Networks 1:250,000  Chinese Academy of Sciences  

Daily Meteorological data 33 stations; 1978-2014 
 

China Meteorological Administration 

(Rainfall, temperature, relative humidity, and solar radiation) 

Monthly streamflow  3 stations; 1980–2008  Hydrological statistical yearbook of the Lancang River Basin, and the 

operating agency of the reservoirs 

Monthly transported 

sediment  

3 stations; 1980–1986  Hydrological statistical yearbook of the Lancang River Basin  

Normalized Difference 

Vegetation Index (NDVI) 

500m; 1-day Moderate Resolution Imaging Spectroradiometer (MODIS) images  

Cultivated land area 1995-2019 Statistical Yearbook of provinces locating in the basin (Tibet and Qinghai) 

Livestock production 1995-2019 Statistical Yearbook of provinces locating in the basin (Tibet and Qinghai) 
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CHAPTER 3: Methodology 

3.1 Hydrological Model 

SWAT is a comprehensive, semi-distributed, and physically based tool developed by the 

United States Department of Agriculture (USDA) that can be used to tackle hydrological and 

environmental problems at different catchment scales (Novotny et al., 2007; Arnold et al., 2012; 

Aboelnour et al., 2020). SWAT has been widely used to model the impact of land management 

practices on water, sediment and agricultural chemical yields. The model components can describe 

processing associated with water movement, sediment movement, soils, weather, plant growth, 

nutrients cycling and land management (Srinivasan et al., 1998; Gassman et al., 2014; Yesuf, 2015; 

Trang et al., 2017). In this study, a SWAT model is developed to perform long-term continuous 

simulation of hydrological processing under different scenarios in the upper LRB. 

In this model, the upper LRB is delineated into 150 sub-basins. The sub-basins are further 

divided into 958 hydrological response units (HRUs) depending on land use, soil type and slope. 

The SWAT model estimates the surface runoff volumes from daily rainfall within each HRU using 

a modified Soil Conservation Service curve number (SCS-CN) approach (USDA Soil 

Conservation Service, 1972). The CN (dimensionless number ranging from 0 to 100) depends on 

soil group, land use, and management practice. Erosion and sediment yield are estimated for each 

sub-basin using the Modified Universal Soil Loss Equation (MUSLE) developed by Williams and 

Brendt (1977). The SWAT model in this study simulates both streamflow and sediment yield.  

3.2 Scenario Design 

To quantitatively analyze the impacts of environmental factors on the hydrological 

processing, four experiments were conducted under various scenarios. They are the combinations 

of climate and LULC data (Table 3.1): scenario 1 with historical land use and historical climate, 

scenario 2 with current land use and historical climate, scenario 3 with current land use and future 

climate, and scenario 4 with future land use and future climate. By comparing simulation results 

between scenarios, the impacts of two environmental factors on hydrological processing can be 

quantitatively analyzed throughout time. 

 

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/agrochemical
https://www.sciencedirect.com/science/article/pii/S0022169417301087?casa_token=yDgqeVFDgbkAAAAA:08IneZvc4LEMOugli8CcLJiXznjLeMNMMnWQWSW6sfaC-fXpGlopdLBUUR1i3s2JcHj5q2Wv568#b0560
https://www.sciencedirect.com/science/article/pii/S0022169417301087?casa_token=yDgqeVFDgbkAAAAA:08IneZvc4LEMOugli8CcLJiXznjLeMNMMnWQWSW6sfaC-fXpGlopdLBUUR1i3s2JcHj5q2Wv568#b0560
https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.1034?casa_token=Qdfwm3j5eFEAAAAA%3AM7gGGfxiCgLldUuw68nApxD0sUy41-Tbq5R07kB_CrPHd9GtHZw03gEurgumzFQIcWqWzYfmqjx1_qJj#bib39
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Table 3.1: Scenario design for SWAT model. 

Scenarios Climate data Land use data 

1 1978 - 2014 LULC 1992 

2 1978 - 2014 LULC 2015 

3 2021 – 2080 LULC 2015 

4 2021 - 2080 LULC 2040 

3.2.1 Climate Change Projection 

To investigate the climate change impacts on watershed hydrology, the common 

methodology is to introduce the outputs General Circulation Models (GCMs) into the hydrological 

models (Gosling et al., 2011). The Coupled Model Intercomparison Project Phase 5 (CMIP5) 

generated a multi-model dataset of projected global climatic changes. CMIP5 includes 40 GCMs, 

and its outputs include historical climate simulations from 1850 to 2005, as well as climate 

projection for the near term (up to around 2035) and long term (up to 2100 and beyond) based on 

four Representative Concentration Pathways (RCPs) (Kamworapan et al., 2019). The coupled 

general circulation model (CM3) developed by the Geophysical Fluid Dynamics Laboratory 

(GFDL) is beneficial for addressing the climate change concerns (Donner et al., 2011, Griffies et 

al., 2011). In this study, GFDL-CM3 for the CMIP5 is employed to generate future climatic 

variables under RCP 4.5 emission scenario.  

Daily climatic datasets over the coming 60 years (2021-2080), including maximum and 

minimum temperature and precipitation, are derived from CMIP5 at 2.5 ° × 2°  resolution. 

Furthermore, the results statistically downscaled to a resolution of 0.5° × 0.5°. Because the future 

climate datasets are projected on a grid-scale, the inverse distance weighting (IDW) method is 

used to interpolate the spatial climatic data into 33 weather stations around the river basin to serve 

as climate inputs of the hydrological model.  

3.2.2 LULC Change Projection 

Land Change Modeler (LCM) is an integrated software developed by IDRISI Selva 

(Adhikari and Southworth, 2012). In this study, LCM is used to analyze the trend of LULC change 

for different classes amid 1992-2015 and predict the land use map for the year 2040. The LULC 

change simulation and forecast are done on a neural network built-in module, which can be used 

to incorporate spatial interaction and stimulate LULC categories (Mishra et al., 2014; Jain et al., 
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2017). LULC transitions are modelled using the Multi-Layer Perceptron (MLP) neural network. 

Transition potential represents the relative potential of land to go through each of the transitions. 

Based on the transition matrix, LCM analyzes land use change over the historical period to 

determine the expected quantity of pixels that went through the transition being modified and 

determine the spatial allocation of the change pixels using the previous (1992) and later (2015) 

LULC maps.  

 

Figure 3.1 Schematic diagram of the methodology flow chart for LCM. 

3.3 Statistics Analysis 

3.3.1 Mann-Kendall (M-K) Test  

The Mann-Kendall (M-K) test is a non-parametric rank-based test used for detecting 

monotonic trend (Mann, 1945; Kendall, 1975). The M-K test can identify a trend in a time series 

without specifying whether the trend is linear or non-linear (Khaliq et al., 2009). Numerous studies 

have used the M-K test to assess the spatial and temporal trends in the hydro-climatic time series 

(e.g., Zhang et al. 2004; Ahmad et al., 2o15; Gebremicael et al., 2013). In this paper, the M-K test 

is conducted to analyze the variation in meteorological and hydrological components during 

historical and future periods. 

The M-K statistics (S) is defined as 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

                                                        (1) 

with  
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𝑠𝑔𝑛(𝑥𝑦 − 𝑥𝑖) {

1     𝑖𝑓 𝑥𝑗 − 𝑥𝑖 > 1

0     𝑖𝑓 𝑥𝑗 − 𝑥𝑖 = 1

−1  𝑖𝑓 𝑥𝑗 − 𝑥𝑖 < 1

                                                (2) 

where N is the length of time series, 𝑥𝑖  and 𝑥𝑗  are the time series observations in 

chronological order.  

The variance for the statistics S is defined by 

𝑉(𝑆) =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

]                  (3) 

where 𝑡𝑝 is the number of data points in the 𝑝th tied group and 𝑞 is the number of tied 

groups. The normalized test statistics 𝑍 for the M-K test is computing using the equation below: 

𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
    𝑖𝑓 𝑆 > 0

0                    𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝐴𝑅(𝑆)
    𝑖𝑓 𝑆 < 0

                                                   (4) 

𝑍 follows up a standard normal distribution (Adamowski and Bougadis 2003). Positive 𝑍 

values indicate an upward trend in the hydrologic time series, while negative values show a 

decreasing trend. Additionally, a two-tailed probability (p-value) will be computed to identify the 

trend of variables. A statistical significance level α is also defined to identify the trend of variables. 

The null hypothesis of no trend is rejected if the absolute value of Z is greater than the theoretical 

value Z1−α/2 (Pingale et al. 2016). 

3.3.2 Precipitation Concentration Index (PCI)  

The variation of precipitation concentration plays a decisive role in hydrological processing 

(Ezenwaji et al., 2017). The Precipitation Concentration Index (PCI) is an effective indicator of 

the temporal inhomogeneity of precipitation and widely used to evaluate the seasonal variability 

of precipitation (e.g., Michiels et al., 1992; Luis et al., 2011). This study conducts a frequency 

analysis of rainfall series using the precipitation heterogeneity index to analyze the variations of 

precipitation concentration on an annual scale. 

To assess the effects of the contribution of the days with the most significant rainfall to the 

total amount, the cumulative percentage of precipitation (𝑌) on qualifying days (𝑋) was analyzed. 

This study uses a limit of 0.1 mm/day to classify wet and dry days and 1 mm precipitation as the 

https://link.springer.com/article/10.1007/s12518-017-0193-z#ref-CR2
https://link.springer.com/article/10.1007/s12518-017-0193-z#ref-CR34
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interval to further classify the precipitation class limits. The numbers of days will be counted for 

each class. Furthermore, the precipitation amount for each class and the cumulative total 

precipitation will be calculated. The exponential curve 𝑋 versus 𝑌 is derived: 

  𝑌 = 𝑎𝑋 𝑒𝑥𝑝(𝑏𝑋)                                                            (5) 

where 𝑎 and 𝑏 are constants estimated by the least-squares method. According to Martin-

Vide (2004), one approach to adapt the above curve from the equation is through the curve: 

𝑌 = 𝑋 exp [−𝑏(100 − 𝑋)𝑐]                                                (6) 

where 𝑏 and 𝑐 are regression coefficient estimated using the least-squares method with 

observed precipitation data (Ananthakrishnan and Soman, 1989). 

Both equations generate a polygonal line called the concentration curve, or Lorenz curve 

(Martin, 2004). The area 𝑆 circled by the bisector of the quadrant, and the polygonal line provides 

a measure of the concentration. Gini concentration defined by 2𝑆/10000 is used to quantify the 

concentration. The area S for Equations (1) and (2) is the difference between 5000 and the definite 

integral of the Lorenze curve and can be written as: 

𝑆 = 5000 − ∫ 𝑎𝑥 exp(𝑏𝑥) 𝑑𝑥
100

0
                                              (7) 

𝑆 = 5000 − ∫ 𝑥 exp[ − 𝑏(100 − 𝑋)𝑐]𝑑𝑥
100

0
                                     (8) 

Then, the PCI can be expressed by  

𝑃𝐶𝐼 =
𝑆

5000
                                                                (9) 

The PCI index reveals the cumulative precipitation amount contributed by the cumulative 

number of precipitation days. A higher precipitation concentration is represented by greater 

percentages of the total annual precipitation on the rainy days. 

In conclusion, the research methodology is depicted schematically in Figure 3.2. The 

LULC maps in 1992 and 2015 collected from European Space Agency are used to generate a 

transition matrix by Land Change Modeler. Furthermore, LULC is predicted for the future scenario 

(2040) based on the transition potential of various land use categories. Future climate change 

results under RCP 4.5 derived from GCMs are downscaled and interpolated to serve as climate 

input to the SWAT model. The M-K test is used identify the trends in historical and future 

meteorological variables. Three precipitation heterogeneity indices are also introduced to examine 

the climatic variability. After scenario design, streamflow and sediment yields under four scenarios 

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2181?casa_token=FDOTz6B9f9kAAAAA%3A8Xkjm9BRdrkV1ZpbHX-4qqfx5rpe_4ZVfTmxzxUccq9d_e4GzJCWAV0ffbacnAyGkjX3czTaaXulCJs0#bib19
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2181?casa_token=FDOTz6B9f9kAAAAA%3A8Xkjm9BRdrkV1ZpbHX-4qqfx5rpe_4ZVfTmxzxUccq9d_e4GzJCWAV0ffbacnAyGkjX3czTaaXulCJs0#bib1
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2181?casa_token=FDOTz6B9f9kAAAAA%3A8Xkjm9BRdrkV1ZpbHX-4qqfx5rpe_4ZVfTmxzxUccq9d_e4GzJCWAV0ffbacnAyGkjX3czTaaXulCJs0#eqn1
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2181?casa_token=FDOTz6B9f9kAAAAA%3A8Xkjm9BRdrkV1ZpbHX-4qqfx5rpe_4ZVfTmxzxUccq9d_e4GzJCWAV0ffbacnAyGkjX3czTaaXulCJs0#eqn2


 13 

defined above can be simulated via SWAT. Finally, the hydrological responses under synergistic 

climate and LULC changes are examined.  

 

Figure 3.2 Schematic diagram of the research methodology. 
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CHAPTER 4: Results and Discussion 

4.1 Climate Projection and Analysis  

The historical climatic variables recorded for 33 selected weather stations within or close 

to the upper LRB are collected from 1978 to 2014. The future climate weather variables derived 

from CMIP5 are interpolated into 33 weather stations from 2021 to 2080. In this section, the 

historical and predicted time series of annual precipitation, maximum and minimum temperature 

(Figure 4.1 to Figure 4.6) are analyzed based on the M-K test.  

 

Figure 4.1 Time series of historical annual precipitation (mm) in the upper LRB. 

   

Figure 4.2 Time series of historical annual maximum temperature (℃) in the upper LRB. 



 15 

 

Figure 4.3 Time series of historical annual minimum temperature (℃) in the upper LRB. 

 

Figure 4.4 Time series of predicted annual precipitation (mm) in the upper LRB. 

                          

Figure 4.5 Time series of predicted annual maximum temperature (℃) in the upper LRB. 
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Figure 4.6 Time series of predicted annual minimum temperature (℃) in the upper LRB. 

The time series of annual average precipitation, maximum and minimum temperature are 

statistically analyzed for both historical and future periods (Table 4.1). The results of M-K tests 

can be used to determine the significance of trends in climatic variables within a river basin. A 

positive Z value indicates that the time series has an increasing trend. The standard normal 

statistics |Z| ≥ 1.96 confirms that the trend of the time series is statistically significant. If p-value 

is less than the significance level 𝛼 = 0.05, the null hypothesis is rejected, and the thus trend is 

significant.  

During the period 1978 - 2014, annual maximum temperature and minimum temperature 

show significant positive trends. The results imply that the annual maximum and minimum 

temperature increased by 0.056℃ per year and 0.061℃ per year, respectively. However, there is 

a non-significant downward trend in the time series of precipitation in the historical period.  

According to the M-K results for the future period from 2021 to 2080, the basin shows an 

obvious rising trend, which is greater than the trend observed in the historical period for all climatic 

variables. The future annual maximum and minimum temperature show significant positive trends 

of 0.089℃ per year and 0.026℃ per year, respectively. The future warming is roughly four times 

faster than the global average warming rate. In addition, the trend of maximum temperature will 

be more remarkable than that of minimum temperature, which indicates a higher extreme climate 

event frequency in the future. Furthermore, an upward trend for rainfall is statistically showed at 

a rate of 1.81 mm per year. Overall, the upper LRB becomes warmer and wetter at a faster rate 

higher than other regions in the world. 
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Table 4.1: M-K test statistics for annual maximum and minimum temperature, precipitation. 

Time series First year Last Year Test Z p slope h Trend 

Precipitation (mm) 1978 2014 -0.719 0.471932 -1.2389 FALSE No Trend 

Max. Temperature (℃)  1978 2014 2.158 0.030927 0.05565 TRUE Increase 

Min. Temperature (℃) 1978 2014 2.2888 0.022091 0.06135 TRUE Increase 

Time series First year Last Year Test Z p slope h Trend 

Precipitation (mm) 2021 2080 2.94022 0.003280 1.81123 TRUE Increase 

Max. Temperature (℃) 2021 2080 8.48902 0.0 0.08893 TRUE Increase 

Min. Temperature (℃) 2021 2080 5.23627 0.001638 0.02645 TRUE Increase 

4.2 Precipitation Variability Analysis 

Climate change affects the precipitation concentration, volume, and intensity, which 

further alters the hydrological responses within a river basin. In this study, the variability of 

precipitation is statistically analyzed based on three indices.  

Precipitation Concentration Indices (PCI) is calculated to detect precipitation 

concentrations and their associated patterns. A higher PCI value indicates that the precipitation is 

more concentrated during the rainy days. The time series of annual PCI is analyzed by the M-K 

test for the whole period. P-value of the significance test and Z value is calculated to be 0.00719 

and -2.6185, respectively. As a result, there is a significant decreasing trend of PCI, which implies 

that distribution of intra-annual precipitation within the basin will be more uniform in the future.  

 
Figure 4.7 Time series of PCI in the upper LRB during the whole period. 
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Extreme precipitation events are also investigated using two additional indices: maximum 

1-day precipitation (RX1day) and the number of heavy precipitation days (R10mm) (Song et al., 

2015). RX1day describes the annual maximum 1-day precipitation. R10mm represents the number 

of days per year characterized by heavy (≥10 mm/d, R10mm). RX1day and R10mm are used to 

temporally analyze the extreme precipitation events on an annual scale throughout time. 

 

Figure 4.8 Time series of historical and predicted maximum 1-day precipitation (mm). 

 

Figure 4.9 Time series of historical and future number of heavy precipitation days (d). 

The variation trends of the time series of RX1day and R10mm are examined by the M-K 

test and shown graphically in Figure 4.8 and Figure 4.9. From the M-K results, |Z| values greater 

than 2.5 are calculated in the trend analysis of two indices, indicating prominent rising trends at a 

high confidence level. The results reveal that both RX1day and R10mm increase considerably 

during the whole period.  
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Table 4.2: Time series of historical and predicted number of heavy precipitation days. 

Time series First year Last Year Test Z p slope h Trend 

PCI 1978 2080 -2.6185 0.008830 -0.0061 TRUE Decrease 

RX1day (mm) 
1978 2014 2.2615 0.023728 0.3230 TRUE Increase 

2021 2080 3.6866 0.000227 0.0885 TRUE Increase 

R10mm (day) 
1978 2014 2.5896 0.009607 0.1666 TRUE Increase 

2021 2080 2.6256 0.008647 0.1481 TRUE Increase 

In summary, the Precipitation Concentration Index shows a slightly downward trend, 

which means the intra-annual precipitation will be more evenly distributed in the future. Therefore, 

the increase in precipitation is accompanied by a decrease in the concentration index. RX1day and 

R10mm are introduced to directly assess the variation of extreme precipitation events in the future. 

According to the M-K test results, there is an increasing trend of the number of days when daily 

precipitation greater than 10 mm and the maximum daily precipitation in the future. As a result, 

higher frequency of extreme precipitation may accelerate the soil erosion in the study area in the 

future.  

4.3 LULC Change Projection and Analysis 

In the upper LRB, land use and land cover has experienced considerable transformations 

in recent years. In this study, three LULC maps are required to represent land use in three 

different scenarios: historical (1992), current (2015) and future (2040). Using the historical rates 

of change and the transition potential model, Land Change Modeler predicts the land use map for 

the year 2040 (Figure 4.10). 
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Figure 4.10 Predicted LULC map for the year 2040 in the upper LRB. 

The land use change map (Figure 4.11) shows the spatial distribution of land use transition 

across the river basin from 1992 to 2015. In the upper LRB, the southern part has a higher potential 

of transition relative to the northern part. 

 

Figure 4.11 LULC change map from 1992 to 2015 in the upper LRB. 

The transition probability matrix (Table 4.3) indicates the probability of changing from a 

given type to a target type. From the matrix results, the primary transitions are from forest to rice, 

pasture to forest, and pasture to cropland. It was found that human influence is rising in the upper 

LRB through the transformation from herding to cultivation, which results in an increase in 

cropland area.  
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Table 4.4 summarizes the changes in the composition of LULC in the upper LRB. 

Comparing the land use in 1992 and 2040, forest, rice and wheat acreage increases by 50.29%, 

78.25% and 40.35%, respectively. Cropland areas expand the most among all the LULC 

classifications, while pasture lands continue to decline. Cultivated lands expand by 8906.26 km2 

per year, while the pasture areas decrease by 5.03% from 1992 to 2040. Simultaneously, with the 

development of the social economy, the urban area increased to 111km2. However, the urban areas 

still account for a small proportion of the total area in the basin.  

Table 4.3: Land use change map from 1992 to 2015 and transition matrix. 

  FRST PAST RICE URHD BARR WATR WWHT 

FRST 0.7086 0.0000 0.2914 0.0000 0.0000 0.0000 0.0000 

PAST 0.0276 0.9554 0.0034 0.0001 0.0000 0.0000 0.0135 

RICE 0.0000 0.0114 0.9882 0.0004 0.0000 0.0000 0.0000 

URHD 0.1667 0.1667 0.1667 0.0000 0.1667 0.1667 0.1667 

BARR 0.0000 0.0005 0.0000 0.0000 0.9995 0.0000 0.0000 

WATR 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

WWHT 0.0000 0.0258 0.0001 0.0007 0.0000 0.0000 0.9734 

Table 4.4: Land use composition in the upper LRB. 

Type 1992 2015 2040 % Change 

FRST 25534 33044 38374 50.29% 

PAST 575476 552855 546541 -5.03% 

RICE 24998 33653 44560 78.25% 

URHD 0 86 111 - 

BARR 4271 4281 4237 -0.80% 

WATR 2973 2973 2923 -1.68% 

4.4 Correlation of Land Cover with Climate Factors 

Changes in climate and LULC can result in the alterations of watershed hydrology. 

However, the synergy between land use and climate change may exacerbate the impacts of climate 

variables. Therefore, the impact of climate variables on vegetation growth is meaningful to 

evaluate in the alpine pastoral regions.  
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Normalized Difference Vegetation Index (NDVI) is selected as the vegetation index to 

represent the vegetation cover quality in this study. A regression model between NDVI and climate 

change variables is set up to exploit the climate change impacts on land cover. Moderate 

Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13Q1) V6 data during 

the plant growth season (May to October) from 2002 to 2020 are collected.  

The average NDVI value during the plant growth season for the past 18 years is calculated. 

The positive NDVI represents that there is vegetation present, and a higher value indicates that the 

vegetation is in better condition. The results show a significant rising trend of NDVI in the study 

area. In the past 20 years, the basin averaged NDVI during the plant growth season has increased 

by almost 9%.  

 

Figure 4.12 Average NDVI spatial distribution during the plant growth season in 2020. 

The correlation of vegetation with precipitation and temperature was analyzed at the 

basin scale:  

𝑅𝑃 =
∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) ∗ (𝑃𝑖 − 𝑃̅)

√∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )2 ∗ ∑(𝑃𝑖 − 𝑃̅)
2

                                          (10) 

𝑅𝑇 =
∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) ∗ (𝑇𝑖 − 𝑇̅)

√∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )2 ∗ ∑(𝑇𝑖 − 𝑇̅)
2

                                          (11) 



 23 

RP and RT are the correlation coefficient of vegetation with precipitation and temperature 

in the basin scale, respectively.  

As a result, 

RP = 0.537, RT = 0.614 

Based on correlation analysis, comparing with the correlation coefficients of vegetation 

with precipitation and temperature, the dominant variable for vegetation cover change can be 

identified. Correlation analysis reveals that the increase in NDVI might be attributed to more 

favorable climatic conditions, as vegetation positively correlated with annual temperature and 

precipitation. In addition, RT is greater than RP, indicating that temperature has stronger effects 

on plant production in the alpine meadows. As a conclusion, the tight relationship between 

vegetation and climatic factors demonstrates the need of considering the synergistic impacts of 

environmental changes. 

4.5 SWAT Calibration and Validation 

Due to the scarcity of hydrological stations in the upper Lancang River Basin, a SWAT 

model for the whole Lancang River Basin developed by Xu et al. (2020) is utilized to assist in 

determining the parameters for the upper LRB SWAT model. Monthly flow and sediment load 

observations were obtained at three hydrological stations. The SWAT model was calibrated for 

streamflow and sediment using an automated calibration model (Soil and Water Assessment Tool 

Calibration and Uncertainty Procedure, SWAT-CUP). The most influential parameters for the 

hydrological model were chosen in the calibration procedure based on preliminary sensitivity 

analysis and previous studies (Luo et al., 2008; Li et al., 2010; Zheng and Han, 2016). Five 

sensitive parameters were considered when calibrating streamflow. The observed data at Jiajiu and 

Jiuzhou Stations were split for calibration (1982–2002) and validation (2003–2008) purpose. The 

observed data from the Yunjinghong Station were split for calibration (1982–2002) and validation 

(2003–2008) due to the lack of data. Seven sensitive parameters were considered when calibrating 

sediment yields. The observed data were split for calibration (1980–1984) and validation (1985-

1986).  

Calibration and validation results for the Lancang River Basin are showed in Figure 4.15, 

based on the study of Xu et al. (2020). For the calibration and validation periods, the Nash–

Sutcliffe efficiency coefficient, NS (Nash and Sutcliffe, 1976), for streamflow and sediment loads 

is between 0.87 and 0.94. The NS statistic is used to assess the fit between simulated and observed 
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data. Additionally, higher values of R2 (0.93-0.96) obtained during the calibration and validation 

period show a strong correlation between observed and simulated streamflow and sediment loads. 

In general, the SWAT model performs well in the Lancang River Basin for the two target variables.  

In the upper Lancang River Basin, parameters related to streamflow and sediment are 

considered and 16 parameters are identified as the most sensitive parameters for calibration. Table 

4.5 shows the original range and calibrated values. The calibrated values for the study site are 

derived from the previous studies and initial range, which varying for different subbasins and 

reaches, as well as land cover and soil type. According to the table, the most sensitive parameter 

in the upper LRB is CN2 (moisture condition II curve number). Based on the calibrated values of 

parameters, the SWAT model simulates the monthly streamflow and monthly sediment loads in 

the upper Lancang River Basin (Figure 4.13 and 4.14). 

 

Figure 4.13 Simulated monthly streamflow (𝑚3/𝑠) at the outlet. 

      

Figure 4.14 Simulated monthly sediment yield (103 tons) at the outlet.
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Table 4.5: Ranges and calibrated values of the major SWAT parameters. 

Target 

variables 
Parameter Description Initial range 

Calibrated 

values 

 

 

 

 

 

 

 

Streamflow 

CN2 Initial SCS runoff curve number for moisture condition II  35–98 53.2–67.4𝑏 

ALPHA_BF  Baseflow alpha factor (days) 0–1 0–0.04𝑎 

GWQMN  
Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm). 
0–500 15– 357 𝑎 

ESCO  Soil evaporation compensation factor 0–1 0.1 − 1𝑎 

SURLAG  Surface runoff lag time 0.05–0.10 0.05 

OV_N  Manning's “n” value for overland flow 0.01–1 0.12 − 0.23𝑏 

SOL_AWC  Available water capacity of the soil layer 0–1 0.05 − 0.53𝑏 

CH_K2  Effective hydraulic conductivity in main channel alluvium. 0.01–50 15.8 − 23.9𝑎 

CH_N1  Manning's “n” value for the tributary channels 0.01–0.3 0.05 − 0.10𝑎 

ALPHA_BNK  Baseflow alpha factor for bank storage 0–1 0.05 − 0.94𝑎 

GW_REVAP  Groundwater delay (days) 0.02–0.20 0.05 − 0.16𝑎 

 

 

 

 

Sediments 

USLE_P  USLE equation support practice factor 0–1 0.27 − 0.89𝑎 

SPEXP  
Exponent parameter for calculating sediment retrained in channel sediment 

routing 
1–1.5 1.38 

SPCON  
Linear parameter for calculating the maximum amount of sediment that 

can be retrained during channel sediment routing 
0.0001–0.01 0.00018 

PRF_BSN  Peak rate adjust factor for sediment routing in the main channel 0–2 2 

USLE_C  Min value of USLE C factor applicable to the land cover/plant 0.001–0.5 0.09 − 0.43𝑏 

𝑎 Varying for different sub-basins or reaches; 𝑏 Varying for different land covers or soil types.
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Figure 4.15 Observed and simulated monthly streamflow at Jiuzhou, Jiajiu and Yunjinghong 

Stations. (a), (c) and (e) are for the calibration period, and (b), (d) and (f) are for the validation 

period. The solid line is the 45-degree line for comparison.  
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4.6 Spatiotemporal Distribution of Hydrological Processing 

4.6.1 Temporal Distribution of Sediment Yield 

To identify the effects of environmental factors on the temporal variation of sediment yield, 

four comprised of various climatic and land use data are separately fed into the SWAT model. 

From Figure 4.16 to Figure 4.21, the time series of simulated annual/monthly accumulated 

sediment yield and the spatial distribution of simulated annual/monthly accumulated sediment 

yield are presented.  

 

Figure 4.16 Simulated Annual Accumulated Sediment Yield under Scenario 1. 

 

Figure 4.17 Simulated Monthly Accumulated Sediment Yield under Scenario 1. 

 

Figure 4.18 Simulated Annual Accumulated Sediment Yield under Scenario 2. 
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Figure 4.19 Simulated Annual Accumulated Sediment Yield under Scenario 3. 

 

Figure 4.20 Simulated Monthly Accumulated Sediment Yield under Scenario 3. 

 

Figure 4.21 Simulated Annual Accumulated Sediment Yield under Scenario 4. 

Table 4.7 compares the results of all scenarios and illustrates the changes in average annual 

sediment yield under various scenarios. The greater value of sediment yield represents the 

significant soil erosion in the absence of soil conservation intervention. Sediment losses form the 
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landscape are determined by a variety of causes. By comparing simulation results from four 

scenarios, the individual and synergistic effects of two environmental factors on hydrological 

processing over time may be quantified. In comparison to scenario 1, the annual average 

accumulated sediment yield increases by 5.0%, 17.9% and 25.9% for scenarios 2, 3, and 4, 

respectively. 

Table 4.6: Comparison of scenario results to show % change in annual sediment yield. 

Scenario Sediment yield (𝟏𝟎𝟑 tons) % Change 

1 89108.745 - 

2 93545.099 4.978% 

3 105057.511 17.898% 

4 112213.850 25.929% 

In scenario 1, the M-K test indicates that there is no discernible trend detected in the time 

series of annual accumulated sediment yield (Figure 4-16). However, the sediment yield variation 

pattern is clearly identified at the monthly scale (Figure 4-17). The sediment yield in wet season 

accounts for the vast majority part of precipitation in the year. Monthly accumulated sediment 

yields reach a maximum of 16.53 million tons. 

In scenario 2, the historical map is superseded by the present land use map. The simulation 

results indicate that sediment yields increase with land use transformation (Figure 4-18). Relative 

to scenario 1, the annual sediment yield increases by 5.0 % in the historical period. The expansion 

of agriculture and urban areas at the expense of pastureland is the primary reason for the negative 

effects on sediment production. According to Table 4.3, the primary land use change between 1992 

and 2015 was the conversion of some pastureland to crops. Soil erosion is accelerated on land 

when erosive rain falls on deforested and agricultural landscapes. Meanwhile, urbanization might 

result in the expansion of pervious areas and a decrease in vegetation coverage. As a result, 

cropland depicts the highest rate of erosion among the primary land cover types, whereas 

forest usually exhibit lower rates of erosion than pasture. 

Climate change impacts may be assessed using simulations under climate-change-only 

scenarios. In scenario 3, predicted daily precipitation, minimum and maximum temperatures, and 

precipitation data are used for SWAT simulation. The M-K test demonstrates that in the future 

scenario, annual accumulated sediment yield grows substantially. According to the pattern of 
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monthly sediment yield variation, most of the sediment yield occurs during the rainy season. The 

annual average sediment yield increases by 12.4% comparing with scenario 2. The findings show 

that climatic variables are the primary determinants of sediment yield variation.  

To further investigate the synergistic effects of environmental factors, scenarios including 

concurrent changes in climate and land use are explored. Scenario 4 represents a future scenario 

when cropland occupies a larger proportion of the basin area. According to the modeling findings 

(Figure 4-21), the LULC modification is anticipated to result in a substantial increase in sediment 

yield. In comparison to scenario 3, land use conversion results in an increase of 6.8% of the annual 

sediment yield under future climate condition, which is greater than the results under historical 

climate conditions. 

4.6.2 Spatial Distribution of Sediment Yield 

Apart from the temporal distribution, the spatial distribution of sediment yield is also 

simulated. Figure 4.22 depicts the simulated spatial distribution of annual average sediment yield 

at the subbasin scale Barren area and farmland are the major land use categories in the 

southwestern and central subbasins with the highest sediment yield. The area in the southern 

portion of the basin with the greatest potential for transition from pasture to cropland has a greater 

sediment yield due to climate change and changes in land use and cover. 

The simulation results show that climate and LULC changes have occurred at both basin 

and sub-basin levels. Furthermore, the impacts of land use change on the water balance vary for 

each sub-basin. Some sub-basins show a distinct pattern of change in terms of hydrologic 

components. Without soil conservation measures, subbasins transitioning from pasture to 

agriculture will continue to suffer from soil erosion in the future.  
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(a) Scenario 1                                                                            (b) Scenario 2 

        
               (c) Scenario 3                                                                  (d) Scenario 4 

Figure 4.22 Spatial Distribution of Accumulated Sediment Yield under 4 Scenarios. 

 

Figure 4.23 Linear Regression between Sediment Yield (t) and Precipitation (mm). 
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Additionally, similar patterns and variations are observed in sediment yield and 

precipitation in the upper LRB. The result in Figure 4.23 shows that precipitation has a positively 

high correlation with sediment yield, with the coefficient of determination being 0.6794. The 

results demonstrate that even minor reduction in seasonal and annual precipitation may have large 

effects on sediment yield in the upper LRB.   
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CHAPTER 5: Conclusion 

In this study, a semi-distributed hydrological model (SWAT) is set up for the upper 

Lancang River Basin, a basin in an alpine pastoral region; four scenarios combining climate change 

and land use conditions are simulated to quantify the hydrologic response to the environmental 

changes. Statistical tests are conducted to identify trends in both historical and future period. 

In the historical period of 1978 - 2014, the temperature showed a remarkable upward trend, 

whereas the precipitation displayed a non-significant downward trend. The wet season last from 

May to October, which accounts for more than 80% of the annual precipitation. In the future period, 

it is found that the climate in the basin will likely to be warmer and wetter. More specifically, as 

the trend analysis result shows, the temperature can have a significant rising trend in the upper 

LRB, with a much higher rate than the global average warming rate; the rising trend predicted with 

extreme precipitation events is more obvious than that with the historical period.  

The vegetation cover will change driven by climate change and land use transition. As 

predicted by the Land Change Modeler, the cultivation area will increase the most among all land 

use classes from now to 2040; meanwhile the pastureland will decline. In addition, the NDVI-

climate regression analysis shows that NDVI has a strong positive correlation with temperature 

and precipitation, but temperature plays a major role in the spatiotemporal distribution of 

vegetation in the area. 

As a result of the projected climate and land use change, strong effects on watershed 

hydrology are projected for both streamflow and sediment discharges in the area. In particular, the 

synergistic climate and LULC change may alter the hydrological regimes significantly by both 

time and space in the upper LRB. The simulation results under the four scenarios show that the 

runoff and sediment yield will experience a clear upward trend. Precipitation is the most sensitive 

factor affecting runoff and sediment yield in the river basin. Moreover, climate change will have 

substantial effects on land use by promoting the conversion from pasture to crop cultivation under 

a warmer and wetter climate, which will eventually accelerate the rate of soil erosion and sediment 

yield.  Spatially, the predicted sediment yield in the southern part of the basin increases obviously 

due to higher transition potentials. Although the effect of climate change on sediment yield is 

higher than that of land use change, the synergistic effect of climate and land use change is stronger 

than the sum of their individual effects. 
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The results from the modeling exercises will provide supports for sustainable water 

resources management in the upper LRB, especially to deal with the challenges of climate change 

and associated land use and land cover change in the future. Conversions of land use patterns from 

forest or pastural land to crop land under conditions of climate change, which has been observed 

in the historical period, may strongly affect the natural system in the barely developed alpine 

pastoral regions, and should be avoided with certain regulations and incentives. Thus, measuring 

hydrologic responses to environmental changes allows the estimate the potential impacts on 

hydrologic processing under different land use planning and management scenarios, which may 

offer scientific supports for more appropriate land use management in the basin. Additionally, the 

spatial heterogeneity of hydrological responses enables the evaluation and identification of 

erosion-prone areas for the purpose of prioritizing sub-watershed conservation interventions and 

maximizing the utilization of scarce resources. The insights gained from this study may help 

decision-makers manage land and water resources holistically in alpine pastoral regions. 
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