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ABSTRACT 

Climate has substantial influence on the distribution of species, and climate change puts 

many species at risk of extirpation or extinction due to diminishing range sizes. Understanding 

how organisms may respond to climate change is important for spatially predicting suitable 

habitat for conservation planning. However, current approaches to modeling suitable habitat 

typically rely on climate data that do not account for important buffering effects of vegetation on 

near-surface microclimates and are produced at spatiotemporal scales irrelevant to a variety of 

organisms that thrive in microenvironments. Furthermore, commonly used species distribution 

models may not account for mechanistic aspects, like physiology, that are relevant to the biology 

and performance of a species. This dissertation integrates aspects from three main components of 

a species’ niche (the habitat, trait, and performance components) into robust correlative and 

mechanistic models for habitat suitability analysis at the microscale. This involved the 

development and evaluation of an approach that incorporates vegetation structure across the 

entire vertical profile of forests into predictions of microclimatic temperature at a highly spatially 

resolved scale. The resulting maps of microclimatic temperature (habitat component) were 

incorporated into a physiological model (trait component) that included a novel method that 

accounts for body-mass elevation effects for predicting the metabolic rate of three plethodontid 

salamander species of varying sizes, sexes, and stage classes. Predictions of suitable climatic 

habitat, vapor pressure deficit, and salamander physiology were combined (performance 

component) at varying spatial scales and temporal periods to assess spatiotemporal agreement 

between model approaches and to target suitable habitat at relevant biological scales to 

plethodontid salamanders in Great Smoky Mountains National Park.  



iii 

 

Understory vegetation structure was found to be an important addition to canopy cover in 

buffering near-surface temperatures and improved accuracy of microclimatic temperature 

estimates. The combined effects of microclimatic temperature variation with increasing 

plethodontid body mass along elevational gradients resulted in spatiotemporal differences in 

salamander energetics across species, sexes, and stage classes. Integrating physiological models 

with predicted suitable habitat demonstrated important spatiotemporal mismatches between 

model approaches, highlighting a problem with relying on static species distribution models, 

which neglect important temporal changes in energetic demand of plethodontid salamanders. 

Furthermore, this dissertation validates the importance of incorporating microclimate into 

species distribution models and demonstrates approaches to integrating multiple model types for 

spatiotemporal targeting of suitable habitat that account for temporal variations in energetic 

demand as well as variations among species and across stage classes. The results from this 

dissertation reveal the importance of predicting microclimate more accurately by accounting for 

the proper vegetation and biophysical buffers to near-surface temperature, and highlight the use 

of multiple model approaches, correlative and mechanistic, developed at proper spatial and 

temporal scales for spatially analyzing and targeting suitable habitat, especially for species 

vulnerable to climate change.  
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CHAPTER 1: LITERATURE REVIEW AND RESEARCH APPROACH 

Literature Review 

Many species are shifting their distributions towards higher latitudes or higher elevations 

as they track suitable climatic conditions, and ecologists now confronted with one of the most 

important challenges of our time, developing a better understanding of organismal responses to 

climate change (Hoegh-Guldberg et al. 2008; Chen et al. 2011; Tingley et al. 2012; Lenoir and 

Svenning 2015). Climate change is a main driver to extinction risk (Urban 2015), because 

species’ ranges and areas of suitable climatic habitat are diminishing (Thomas et al. 2004; 

Maclean and Wilson 2011; Urban 2015). Because global biodiversity is declining at unparalleled 

rates (Hoffmann et al. 2010; WWF 2020), there is a need to develop conservation approaches 

that provide spatially explicit outcomes and reduce uncertainty under future climate conditions 

(Groves et al. 2012; Schmitz et al. 2015; Jones et al. 2016). Protecting areas of microclimatic 

refugia or areas that promote functional connectivity is critically important for species vulnerable 

to climate change (Groves et al. 2012; Jones et al. 2016; Evans et al. 2015).  

Amphibians are the most vulnerable vertebrates in the world with over 40% of the 

species estimated to be at risk of extinction globally, mostly due to habitat loss, fragmentation, 

and climate change (Cushman 2006; Blaustein et al. 2010; IUCN 2020). Because amphibians are 

rarely capable of functioning at temperatures near their upper critical limits and loss of suitable 

climatic habitat reduces dispersal ability, many species are at risk of extinction (Carey and 

Alexander 2003; Milanovich et al., 2010). This is the case for many salamander species in the 

family Plethodontidae which are vulnerable to regional extirpation or extinction for multiple 

reasons (Bernardo and Spotila, 2006; Milanovich et al., 2010). Plethodontid salamanders are 

terrestrial, lungless ectotherms that require cool, moist conditions to avoid water loss (Feder 
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1983; Lutterschmidt and Hutchison 1997; Bernardo and Spotila 2006). Increases in temperature 

may increase desiccation risk, vulnerability to pathogens (Blaustein and Kiesecker 2002; Carey 

and Alexander 2003; Blaustein et al. 2010), diminish growth rates and body size (Caruso et al. 

2014), alter reproductive cycles, and increase physiological stress (Feder and Pouoh 1975; 

Blaustein et al. 2010; Homyack et al. 2010, 2011). Plethodontid energy budgets may be affected 

by increasing temperatures, decreasing availability of water, and overall climatic variability, 

resulting in increased physiological stress which can create ecological tradeoffs that affect 

overall fitness (Pough 1980; Sears 2005; DuRant et al. 2007; Homyack et al. 2010). Therefore, 

these species may be unable to physiologically adapt to increasing temperatures or migrate to 

new areas through unsuitable microclimatic conditions across the landscape matrix due to limited 

dispersal ability within species-specific elevational ranges (Bernardo and Spotila 2006; 

Lutterschmidt and Hutchinson 1997; Milanovich et al. 2010).  

Furthermore, certain plethodontid species are high elevation specialists that have been 

shown to increase in body size with cooler, moister climates that accompany elevational gain 

(Peterman et al. 2016). Because energetic demand of plethodontids increases with body size 

(Feder 1976) and increased temperatures (Pough 1980; Sears 2005; Homyack et al. 2010), there 

is potential for physiological variation along climatic and elevational gradients. Characterizing 

physiological responses to changing microclimatic regimes is important for understanding 

plethodontid surface activity and distribution, but current approaches to assessing suitable habitat 

are typically not resolved at proper spatiotemporal scales and neglect physiology or other 

mechanistic considerations (Kearney and Porter 2009; Lembrechts et al. 2018). 

Small organisms, like plethodontid salamanders, rely on microclimatic conditions, but 

species distribution models (SDMs), the most commonly used approaches to assessing suitable 
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habitat and range size (Elith et al. 2008; Lentini and Wintle 2015; Araújo et al. 2019), are 

commonly produced with bioclimatic variables based on free-air temperature predictions and at 

average spatial resolutions 10,000-fold larger than the organisms being studied (Potter et al. 

2013; Lenoir et al. 2017; Lembrechts et al. 2018). Although temporal resolutions vary in studies 

using SDMs, they are often inadequate as well (Lembrecths et al. 2018). The “spatial resolution 

paradox” suggests that SDMs developed with coarse resolution climate data may overestimate 

suitable habitat regionally, but underestimate suitable habitat at the local scale, an issue for 

accurately predicting organismal responses to climate change (Trivedi et al. 2008; Gillingham et 

al. 2012a, b; Franklin et al. 2013; Lenoir et al. 2017). Furthermore, SDMs typically do not 

account for physiological responses at relevant spatial and temporal scales, neglecting potentially 

important biological information on performance and fitness of organisms (Kearney and Porter 

2009; Barton and Terblanche 2014; Evans et al. 2015). To bridge this spatiotemporal gap in 

habitat suitability predictions, there is a need to develop robust microclimate datasets for use in 

modeling species distributions and amphibian bioenergetics (Kearney and Porter 2009; Bramer 

et al. 2018; Lembrecths et al. 2018). Although advances in developing physiological models at 

relevant biological scales have been made (Kearney and Porter 2016), there remains a need to 

better understand the patterns and drivers of microclimatic variability to enhance accuracy of 

microclimate predictions at fine spatial resolutions (Bolstad et al. 1998; Lenoir et al. 2017; 

Lembrechts et al. 2018).  

Microclimate is controlled by many environmental factors that contribute to the buffering 

of solar radiation and large scale climate patterns; factors that free-air temperature predictions 

are unable to capture (Davis et al. 2018; De Frenne et al. 2019; Zellweger et al. 2019a; Stickley 

and Fraterrigo 2021). In heterogenous landscapes, near surface temperature may vary among 
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locations only a few meters apart or deviate from free-air temperatures at greater magnitudes 

compared to temperature measurements only a few meters above the ground (Fridley 2009; 

Davis et al. 2018). Fine-scale variations in microclimatic temperature are due to the buffering 

effects from topography (e.g., elevation, slope), shading from forest cover and vegetation 

characteristics (e.g. vegetation density, vegetation height), vicinity to water (Fridley 2009; 

Geiger et al. 2009), and ground substrate (e.g., leaf litter, downed woody debris, rocks), which 

also act as microrefugia for terrestrial salamanders (Ashcroft et al. 2008; Caruso et al. 2015; 

O’Donnell et al. 2014). Topoclimatic variables, such as solar heat transfer varying with 

topographic complexities have long been the focus of variability in climatic regimes (Geiger et 

al. 2009; Lembrechts et al. 2018). However, vegetation is also an important, yet commonly 

disregarded, factor to altering climate near the surface of the earth (Geiger et al. 2009; Davis et 

al. 2018; Stickley and Fraterrigo 2021). 

The forest canopy has been shown to act as a thermal insulator that cools maximum 

temperatures (Chen and Franklin 1997; Davis et al. 2018), warms minimum temperatures (De 

Frenne et al. 2019), and reduces temperature variability at the forest floor (Chen et al. 1999; 

Vanwalleghem and Meentemeyer 2009). Important biophysical effects and the structure of sub-

canopy vegetation layers may also buffer direct and diffuse (i.e., scattered and transmitted from 

atmosphere) solar radiation, alter localized wind patterns, and modify evapotranspiration rates 

(Geiger et al. 2009; Bramer et al. 2018). Despite increasing availability of fine resolution 

elevation datasets and remote sensing technologies for characterizing vegetation structure 

(Lefsky et al. 2002; Zellweger et al. 2019b), there is limited development of microclimatic 

datasets at broad extents (Lembrechts et al. 2018). 
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The use of coarse resolution, free-air climate data, which neglect important buffering 

effects of vegetation on near-surface temperatures and disregard mechanistic responses from 

organisms, is problematic for assessing suitable habitat for small, ground-dwelling organisms 

(Kearney and Porter 2009; Helmuth et al. 2010). There is now a critical need to incorporate 

microclimate into species distribution models and mechanistic modeling approaches to estimate 

suitable habitat at scales relevant to a multitude of organisms reliant on climatic regimes near the 

surface of the earth (Lembrechts et al. 2018), but there remains a gap in our understanding of the 

biophysical processes that drive spatiotemporal variability of microclimatic regimes and 

techniques for estimating organismal responses to climate change at microscales are poorly 

developed (Bolstad et al. 1998; Lenoir et al. 2017; Lembrechts et al. 2018). Integrating multiple 

model types at proper spatiotemporal resolutions can provide independent results that strengthen 

predictions in areas of agreement or provide insights on model disagreement (Kearney and Porter 

2009; Morin and Thuiller 2009), information especially relevant for the prioritization of 

conservation assets for species vulnerable to climate change (Cushman 2006; Hoegh-Guldberg et 

al. 2008; Kearney and Porter 2009; Clusella-Trullas et al. 2011). Furthermore, an integration of 

these models may allow for robust targeting of important conservation assets, such as 

microclimatic refugia and areas of connectivity between important habitat locations (Groves et 

al. 2012; Jones et al. 2016).  

 

Research Approach 

The primary goal of this dissertation was to integrate components of a species’ niche 

(Kearney and Porter 2009) to analyze and spatially locate climatically and physiologically 

suitable habitat at microscales relevant to plethodontid salamanders (Fig. 1.1). In Chapter 2, I 
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aimed to capture a habitat component (Fig. 1.1) by developing and evaluating an approach that 

incorporates complex vegetation structure into statistical models for the robust prediction of 

microclimatic temperatures across the Great Smoky Mountains National Park (GSMNP; North 

Carolina and Tennessee, US). I also identified the factors influencing spatiotemporal patterns in 

microclimatic temperature, predicting a priori that understory vegetation layers would be 

important buffers of microclimatic temperatures along with canopy vegetation. Additionally, I 

characterized spatiotemporal mismatches between free-air, coarse resolution temperature models 

and sub-canopy, microclimatic temperature predictions. In Chapter 3, I aimed to capture a trait 

component (Fig. 1.1), by incorporating the microclimatic temperature maps developed in 

Chapter 2 with a physiological model that accounts for body mass-elevation relationships to 

estimate fine resolution predictions of standard metabolic rate (SMR) for three plethodontid 

species of varying sizes, sexes, and stage classes. Additionally, I evaluated the agreement of fine 

resolution salamander bioenergetics with predictions from coarse resolution SDMs to assess 

spatiotemporal mismatches between model approaches. In Chapter 4, I aimed to capture a 

performance component (Fig. 1.1) by integrating current and future predictions of fine resolution 

suitable climatic habitat (i.e., correlative model) and salamander physiology (i.e., mechanistic 

model) during increased periods of surface activity (March-November) for the three plethodontid 

species. I quantified future changes in salamander physiology and suitable climatic habitat, and 

integrated models to spatially target areas with low energetic cost of maintenance within suitable 

climatic habitat locations and areas of functional connectivity between suitable climatic habitat 

locations. In Chapter 5, I summarize the main results and conclusions from this dissertation, and 

discuss potentially important future needs in this field of research.  
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Figure 

 

Figure 1.1  Conceptual diagram that depicts the use of a habitat and trait component to integrate 

physiology and suitable climatic habitat into a performance component for plethodontid 

salamanders at a microscale  
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CHAPTER 2: UNDERSTORY VEGETATION CONTRIBUTES TO 

MICROCLIMATIC BUFFERING OF NEAR-SURFACE TEMPERATURES 

IN TEMPERATE DEDICUOUS FORESTS 

 
Introduction 

One of the greatest ecological challenges of our time is understanding how organisms 

may respond to climate change. Because climate is the underlying factor in determining species’ 

distributions, there has been renewed interests in studying microclimate (De Frenne and 

Verheyen 2016; Jucker et al. 2018) or the climatic conditions at localized areas near the surface 

of the earth (Geiger et al. 2009). Developing accurate microclimate datasets at biologically 

relevant scales has become a high priority for predicting potential species’ range shifts in 

response to climate change (Kearney and Porter 2009; Bramer et al. 2018) and identifying 

climatic microrefugia, i.e., areas essential to the various species reliant on locally persistent 

climatic regimes under regionally changing climatic conditions (Ashcroft 2010; Hannah et al. 

2014; Lenoir et al. 2017). However, techniques for predicting microclimate are poorly developed 

and there is limited understanding of the patterns and drivers of spatiotemporal variability of 

microclimatic regimes, especially in montane forests (Bolstad et al. 1998; Lenoir et al. 2017; 

Lembrechts et al. 2018). To enhance the availability and use of microclimate datasets for 

environmental and conservation planning, it is important to advance methods for characterizing 

microclimate and quantify uncertainties (Potter et al. 2013; Lembrechts et al. 2018). 

Free-air, macroclimate can differ substantially from the microclimatic conditions that 

organisms experience in their natural habitat, resulting in spatiotemporal mismatches (Fridley 

2009; Geiger et al. 2009; Potter et al. 2013). In microhabitat, organisms generally experience 5 

°C deviations in seasonal mean temperatures compared to free-air macroclimate, but these 

deviations can increase up to 20 °C within heterogeneous landscapes (Scherrer and Körner 2010; 
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Suggitt et al. 2011; Zellweger et al. 2019a). In montane forests, near-surface temperatures can 

vary at locations only a few meters apart (Fridley 2009; Geiger et al. 2009; Bramer et al. 2018) 

and deviate from free-air temperatures at greater magnitudes compared to temperature 

measurements only a few meters above the ground (Davis et al. 2018). Fine-scale temperature 

variability has typically been attributed to the interactions between topoclimatic variables, such 

as solar heat transfer varying with topographic complexities (Geiger et al. 2009; Lembrechts et 

al. 2018). However, vegetation also alters forest microclimates (Geiger et al. 2009; Davis et al. 

2018; Lembrechts et al. 2018). 

Forest canopy characteristics such as canopy cover, canopy height, and leaf area index, 

strongly affect sub-canopy temperature, acting as a thermal insulator that cools maximum 

temperatures (MaxT; Chen and Franklin 1997; Davis et al. 2018), warms minimum temperatures 

(MinT; De Frenne et al. 2019), and reduces temperature variability at the forest floor (Chen et al. 

1999; Vanwalleghem and Meentemeyer 2009). For instance, sub-canopy MaxT of forest 

interiors have been shown to be more than 5 °C lower than adjacent clear-cut areas (Chen et al. 

1999), and there tends to be increased variability in MaxT and MinT in forests with limited 

canopy cover (Chen et al. 1999; Vanwalleghem and Meentemeyer 2009). Forest layers below the 

canopy may also be important buffers of direct and diffuse (i.e., scattered and transmitted from 

atmosphere) solar radiation (Geiger et al. 2009), but relatively few studies have evaluated their 

role in determining microclimate. By contributing to structural complexity, sub-canopy 

vegetation layers may produce variations in solar radiation levels, localized wind patterns and 

evapotranspiration (Geiger et al. 2009; Bramer et al. 2018), which could result in further 

alterations of near-surface microclimate. Additionally, vegetation layers below the canopy may 

interact with other landscape physiographic variables such as cold-air-drainage and distance-to-
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stream, creating spatiotemporal variations in microclimate (Kiefer and Zhong 2013; Day and 

Monk 1974). Despite increasing availability of datasets for characterizing vegetation structure 

(Lefsky et al. 2002; Zellweger et al. 2019b), there is limited understanding of its mediating 

effects on microclimatic regimes. 

Accounting for sub-canopy forest layers and biophysical interactions may improve our 

understanding of microclimatic processes and increase the accuracy of microclimatic 

temperature predictions within forests, an important step in developing biologically relevant 

datasets at broad extents. Therefore, we developed and evaluated an approach that incorporates 

complex vegetation structure into statistical models for the robust prediction of microclimatic 

temperatures across the Great Smoky Mountains National Park (GSMNP). Using these models, 

we identified the factors influencing spatiotemporal patterns in microclimatic temperature. 

Previous studies have shown that canopy cover buffers microclimatic temperatures (Chen and 

Franklin 1997; Geiger et al. 2009; Davis et al. 2018); we predicted a priori that understory 

vegetation layers would also be important buffers of microclimatic temperatures. Additionally, 

we identified vegetation and physiographic factors contributing to spatiotemporal mismatches 

between free-air, macroclimatic temperature models and sub-canopy, microclimatic temperature 

predictions. 

 

Materials and methods 

Study area 

This study was conducted in Great Smoky Mountains National Park and included a 150-

meter buffer of the park boundary for a total area of 2430 km2 (Fig. 2.1). Situated along the 

North Carolina (NC) and Tennessee (TN) border, GSMNP ranges in elevation from 
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approximately 267 to 2025 m above sea level (Fig. 2.1) and is one of the most ecologically 

diverse areas in the U.S. Deciduous forests cover approximately 80% of the park extent, with the 

distributions of the five major forest types (Cove Hardwood, Northern Hardwood, Pine-and-Oak, 

Hemlock, and Spruce-fir) greatly influenced by elevation, topography, and moisture gradients 

(Whittaker 1956). The structural characteristics of these differing plant communities, along with 

topographic heterogeneity, contribute to fine-scale variations in microclimatic temperatures. 

 

Temperature data collection 

Our goal was to model daily MaxT and MinT during the months of March through 

November to capture microclimatic variation during the growing season. We obtained daily 

MinT and MaxT measurements from 159 climate dataloggers deployed from 2006 to 2010 by 

Fridley (2009). Climate dataloggers (iButton and HOBO H8 loggers) were placed 1 m above the 

forest floor and recorded temperature in 2-h intervals. Approximately 120 dataloggers were 

initially set up in two focal watersheds in central GSMNP. Both watersheds, roughly 50 km2 in 

area, were chosen for their extensive coverage of overall aspect and elevational gradient. 

Dataloggers were typically deployed in transects of 10 with each logger spaced 50–500 m apart, 

starting at stream channels and moving upslope to the top of the ridge. Another 50 dataloggers 

were distributed parkwide in clusters of three, stratified by elevation and region of the park 

(Fridley 2009). To obtain regional, free-air temperatures, we downloaded daily MaxT and MinT 

measurements recorded at 11 local weather stations from 2006 to 2010 from the National 

Oceanic and Atmospheric Administration’s National Climate Data Center (Fig. 2.1). 
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Characterizing vegetation structure and landscape physiography 

To determine which biophysical features impact near-surface temperature, we 

characterized vegetation structure and landscape physiography with light detection-and-ranging 

(LiDAR) and Geographic Information Systems (GIS) data. For the TN side of GSMNP, we 

obtained airborne LiDAR data collected in 2011 and processed by The Center for Remote 

Sensing and Mapping Science at the University of Georgia and Photo Science, Inc. (Fig. 2.1; 

Jordan 2011). For the NC side of GSMNP, we downloaded NC phase 3, airborne LiDAR data 

collected and processed by the North Carolina Floodplain and Mapping Program (OCM Partners 

2019). 

Filtered LiDAR data points were categorized into ground, unassigned, and noise points 

(i.e., points unlikely to be vegetation). Unassigned points were used to estimate vegetation height 

(VH) at the top of the canopy, and vegetation structure (VS) per raster pixel. To estimate VS 

across multiple strata, we grouped the unassigned points into five height classes: low-

understory = VS < 5 m; high-understory = VS ≥ 5 m to 10 m; low-canopy = VS ≥ 10 m to 15 m; 

mid-canopy = VS ≥ 15 m to 20 m; and high-canopy = VS ≥ 20 m. We divided the number of 

unassigned points per VS layer by the total number of unassigned points producing the 

percentage of vegetation within each stratum across every pixel of the study area raster (GRASS 

Development Team 2017). 

To characterize landscape physiographic variables, we calculated slope, aspect, solar 

insolation, topographic convergence index (TCI), and distance-to-stream for each pixel of the 3 

m2 digital elevation model (DEM). Topographic convergence index was used as a proxy for 

cold-air-drainage and soil moisture based on site water potential (Beven and Kirkby 1979). 

Spatial datasets were modeled using LAStools—efficient LiDAR processing software (version 
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160721, unlicensed), ArcGIS® software versions 10.4.1–10.6.1 by Esri Inc. (2020), and GRASS 

GIS version 7.2.0. Further details about modeling vegetation structure and landscape 

physiography are provided in Appendix A. 

 

Statistical downscaling 

To account for the influence of elevation on temperature, we modeled daily lapse rates 

(i.e., the rate at which temperature changes with elevation) of MinT and MaxT with simple linear 

models as a function of elevation using temperature measurements from the 11 weather stations, 

which range in elevation from 338 to 1979 m (Fig. 2.1). The elevational lapse rates produced 

from regional weather station measurements were used to downscale temperature to a 3 m2 

DEM to produce a level one (L1) model. To estimate sub-canopy, near-surface temperatures 

based on biophysical variables, we fit linear mixed-effects (LME) models to daily MaxT and 

MinT data from the climate dataloggers as a function of the L1 model temperature predictions, 

vegetation structure, and landscape physiographic variables. Daily temperature predictions from 

the L1 model were treated as fixed effects in all candidate models because of the strong effect 

elevation has on temperature variation. The VS and landscape physiographic variables were 

included as additive fixed effects in candidate models (Appendix A Fig. A.1). We examined the 

correlation and covariance among vegetation layers. Vegetation height was strongly correlated 

with high-canopy VS (r = 0.70), so we excluded high-canopy VS to avoid collinearity. To 

investigate potential interactive effects, we included terms representing the interaction of 

vegetation characteristics with solar insolation, distance-to-stream, and TCI. Distance-to-stream 

values were log transformed to address the decreasing effect of stream proximity on temperature 

with distance (Lookingbill 2002). To account for potential non-independence of the residuals, we 



 

 

14 

 

treated datalogger locations as a random effect. Temporal autocorrelation of residuals was 

addressed by including a term that models temporal correlation as an exponential decay and 

allows for unequally spaced observations (“corCAR1” function in the “nlme” package of R; 

Singer and Willett 2003). 

Models were fit using maximum likelihood estimation and candidate models were ranked 

using Akaike’s Information Criterion (AIC) within an information theoretic approach (Burnham 

and Anderson 2002). We initially tested a global model including all terms and a null model 

including only the L1 model predictions. We then used a top-down method for model selection, 

retaining each candidate model within a 95% confidence set (i.e., cumulative Akaike’s 

weight ≤ 0.95; Zuur et al. 2009). To validate the top ranked models, we randomly split the data 

into 70% training data for model fitting and used the remaining 30% as testing data for 

evaluation. We measured goodness-of-fit for each model using the coefficient of determination 

(R2). We report marginal R2, which reflects only the fixed effects, and conditional R2 which 

includes both the fixed and random effects of the LME models. Our aim was to maximize 

predictive accuracy, so we calculated mean absolute error (MAE) for each candidate model, 

selecting the model with the lowest MAE. Final selected models for MaxT and MinT were re-fit 

using restricted maximum likelihood to obtain parameter estimates (Zuur et al. 2009), which 

were used to predict MaxT and MinT for each 3 m2 pixel of the study area raster. We also 

estimated the parameters of the final models after independent variables were scaled and 

centered (mean = 0, standard deviation = 1) to enable direct comparisons of effect sizes. 

Statistical modeling was performed using R v. 3.5.0 software and the “nlme” library (R Core 

Team 2020; Pinheiro et al. 202006). Further details on statistical modeling and candidate models 

are in the Appendix A. 
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Free-air climate comparisons 

To determine the spatiotemporal mismatch between free-air and microclimatic 

temperature, we obtained gridded, free-air temperature data from two widely-used climate 

models, Daymet (Thornton et al. 2018) at 1 km2 spatial resolution and Parameter–Elevation 

Regressions on Independent Slopes Model (PRISM; Daly et al. 1994) at 4 km2 spatial resolution. 

Daily MaxT and MinT were extracted from each of these datasets at each datalogger location to 

compare MAE to the LME model predictions. We also downloaded monthly temperature rasters 

(i.e., average monthly temperature per raster cell) to evaluate temperature mismatch at the 

monthly and seasonal time scale across the entire study extent of GSMNP. Temperature 

mismatch was quantified by calculating temperature differences (absolute and real values) for 

5000 randomly selected points from across the study area, which equated to temperature 

predictions from the L1, Daymet or PRISM raster models less the temperature predictions from 

the final LME model. We also extracted landscape physiographic and VS variables at each point 

location and calculated Pearson correlation coefficients with temperature differences to quantify 

the covariance between biophysical factors and spatiotemporal mismatch. Further information on 

methods can be found in Appendix A. The datasets generated during and/or analyzed during the 

current study are available in the Illinois Data Bank, University of Illinois at Urbana-Champaign, 

https://doi.org/10.13012/B2IDB-0897344_V1. 

 

Results 

LME model results and accuracy 

Across 159 climate dataloggers measuring near-surface temperatures, we obtained 

123,945 daily temperature measurements from 2006 to 2010 for the months of March-
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November. Daily datalogger measurements ranged from 0.4 to 35.1 °C (x¯ = 17.4 °C) for MaxT 

and − 10.1 to 26.0 °C (x¯ = 9.8 °C) for MinT. Variation in daily MaxT and MinT were analyzed 

as a function of the variables summarized in Table 2.1. Temperature predictions from the LME 

models were highly correlated to datalogger measurements for daily MaxT (r = 0.90) and MinT 

(Appendix A Fig. A.2; r = 0.95). The MaxT LME model (marginal R2 = 0.77, conditional 

R2 = 0.81) had an overall mean absolute error (MAE) of 2.1 °C. This was an increase in accuracy 

of 2.8 °C, 1.2 °C, and 2.1 °C compared to the L1 model, Daymet, and PRISM datasets, 

respectively (Fig. 2.2; L1 model R2 = 0.73, MAE = 4.9 °C; Daymet MAE = 3.3 °C; PRISM 

MAE = 4.2 °C). The three free-air datasets consistently overestimated MaxT throughout the 

study period (Fig. 2.2). Goodness of fit measures were better for MinT, but the MinT LME 

model (marginal R2 = 0.90, conditional R2 = 0.92) minimally outperformed the L1 MinT model 

(Table 2.1; Fig. 2.2; R2 = 0.88). The MinT LME model had an overall MAE of 1.6 °C, an 

increase in accuracy of only 0.08 °C compared to the L1 model (MAE = 1.6 °C) and increased 

accuracy of approximately 0.9 °C and 1.8 °C compared to the Daymet and PRISM datasets, 

respectively (Daymet MAE = 2.5 °C; PRISM MAE = 3.4 °C). Daymet and PRISM MinT 

predictions consistently underestimated MinT throughout the study period (Fig. 2.2). 

For MaxT, the LME model was most accurate in the summer (MAE = 1.3 °C) with 

greater errors in spring (MAE = 2.9 °C) and fall (MAE = 2.0 °C). This temporal pattern of 

accuracy was synchronous with vegetation growth as indicated by the normalized difference 

vegetation index (Fig. 2.2b; Norman et al. 2017). The L1 model was asynchronous with 

vegetation growth, and overestimated MaxT by as much as 5.5 °C above datalogger temperatures 

in summer (Fig. 2.2). For MinT, patterns in temporal accuracy were similar for the LME and L1 
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models, both with lower MAEs in summer (LME = 1.4 °C; L1 = 1.3 °C) as compared to spring 

(LME = 1.5 °C; L1 = 1.6 °C) and fall (LME = 1.9 °C; L1 = 2.0 °C). 

 

Effects of vegetation structure and landscape physiography on temperature 

Temperature predictions from the L1 model explained the most variation in MaxT and 

MinT in the final LME models (Table 2.1; Fig. 2.3; ΔMaxT = 0.8 °C and ΔMinT = 0.7 °C with 

1.0 °C from L1 model temperature prediction). This was expected due to strong influence of 

elevation on temperature in montane systems; patterns in the spatial distribution of error were 

visibly similar to elevational variation (Fig. 2.4). However, vegetation structure also had 

significant effects on microclimatic temperatures (Table 2.1; Figs. 2.3, 2.4). Across the study 

area, mean vegetation height (VH) was 20.2 m ± 9.2 (SD) and vegetation structure (VS) was 

characterized by higher density in the low-understory (x¯ = 20.4% ± 17.4%), followed by the 

high-understory (x¯ = 16.7% ± 14.2%), mid-canopy (x¯ = 16.4% ± 12.3%), and low-canopy 

(x¯ = 15.0% ± 12.1%). The vegetation layers were weakly correlated and we found no evidence 

of covariance (Appendix A Table A.1). Among these vegetation characteristics, variation in 

MaxT was best explained by the buffering effects of low-understory and low-canopy VS (Table 

2.1; Figs. 2.3, 2.4). In both cases, MaxT decreased with VS in each stratum (ΔMaxT = − 0.3 °C 

and − 0.8 °C with 10% increase in VS, respectively). On average, areas with dense low-

understory VS (≥ 75th percentile, 33.3%) were 2.2 °C cooler than areas with sparse low-

understory VS for MaxT (Figs. 2.4, 2.5; ≤ 25th percentile, 9.5%). Areas with dense low-

understory VS and low-canopy VS (≥ 75th percentile, 22.7%) were 3.4 °C cooler than areas with 

sparse low-understory VS and low-canopy VS for MaxT (Figs. 2.4, 2.5; ≤ 25th percentile, 8.5%). 

These buffering effects of MaxT were strongest during the summer (Fig. 2.5). Variation in MinT 
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was best explained by low-understory VS (ΔMinT = − 0.3 °C with 10% increase in VS); mid-

canopy VS also had a slight positive or warming effect on MinT (Table 2.1; Fig. 2.3; 

ΔMinT = 0.1 °C with 10% increase in VS). 

Compared to the other additive variables in the LME models, solar insolation best 

explained variation in MaxT and MinT (Table 2.1; Fig. 2.3). Although both MaxT and MinT 

increased with solar insolation (ΔMaxT = 0.4 °C and ΔMinT = 0.7 °C with 1000 Wh/m2/day−1), 

vegetation structure mediated these effects, with dense understories having the largest influence. 

At high solar insolation levels (≥ 75th percentile, 8143 Wh/m2/day−1), sites with dense low-

understory VS (≥ 75th percentile, 33.3%) were 4.7 °C cooler than sites with sparse low-

understory VS (≤ 25th percentile, 9.5%), indicating a large buffering effect during periods of 

increased solar insolation. At low solar insolation levels (≤ 25th percentile, 5516 Wh/m2/day−1) 

this buffering effect was present but minimized (ΔMaxT = − 2.0 °C). For MinT, sites with dense 

low-understory VS were 3.0 °C cooler than sites with sparse VS at high solar insolation levels, 

but only 1.4 °C cooler at low solar insolation levels. At high solar insolation levels, sites with 

dense mid-canopy VS (≥ 75th percentile, 25%) were, on average, 0.7 °C cooler than sites with 

sparse mid-canopy VS (≤ 25th percentile, 10.2%) for MinT; however, at low solar insolation 

levels, sites with dense mid-canopy VS were warmer (ΔMinT = 0.05 °C) than sites with sparse 

VS in this stratum. 

Topographic convergence index and distance-to-stream had smaller effects on MaxT and 

MinT variation (Table 2.1; Fig. 2.3; TCI ΔMaxT = − 0.4 °C and ΔMinT = − 0.0 4 °C with TCI; 

distance-to-stream ΔMaxT = − 0.00094 °C and ΔMinT = 0.00162 °C with a 1% increase in 

distance). At high TCI levels (≥ 75th percentile, TCI = 5.7) MaxT averaged 0.8 °C cooler 

compared to areas with low TCI levels (Fig. 2.5; ≤ 25th percentile, TCI = 3). This cooling effect 
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from TCI was slightly increased in areas with dense low-canopy VS, especially during summer 

(Fig. 2.5; ΔMaxT = 0.9 °C on average, 1.2 °C in summer). 

 

Spatiotemporal patterns of mismatch between microclimatic and free-air temperatures 

The magnitude of mismatch between the MaxT predictions of the LME model and the 

predictions of the free-air temperature datasets covaried with landscape physiography; 

magnitudes were largest for elevation and solar insolation (Fig. 2.6; Appendix A Fig. A.7, A.8, 

A.9). For the L1 model, mismatch was consistently greater at lower elevations, ranging in 

monthly correlation from − 0.29 to − 0.69 (Figs. 2.4, 2.6ab, 2.7a). For the two coarse-grain 

datasets, elevation was more strongly correlated to mismatch with the 4 km2 PRISM dataset 

(monthly range in r = − 0.42 to 0.52) compared to the 1 km2 Daymet dataset (Fig. 2.6ab; 

monthly range in r = − 0.34 to 0.34). The PRISM dataset had greater mismatch at higher 

elevations during summer and lower elevations during spring and fall; however, the Daymet 

dataset showed the opposite temporal trend with elevation (Fig. 2.6ab). The PRISM dataset also 

exhibited seasonal and elevational trends in over- and underestimation of MaxT as compared to 

the LME model predictions, overestimating MaxT at the highest elevations during spring (≥ 90th 

percentile, 1458 m) but underestimating MaxT at the lowest elevations during summer (Fig. 

2.7b; < 285 m). For all three free-air datasets, solar insolation covaried more strongly with 

mismatch during the spring and fall, with limited or no correlation during summer (Fig. 2.6b). 

For the L1 model, mismatch was negatively correlated to solar insolation during early spring 

months of March and April (monthly range in r = − 0.14 to − 0.36) and fall months of 

September–November (monthly range in r = − 0.49 to -0.61). The largest Daymet and PRISM 

mismatches were positively correlated to solar insolation during March (Daymet r = 0.49; 
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PRISM r = 0.38) and November (Daymet r = 0.42; PRISM r = 0.46), with smaller correlation 

magnitudes during the other months in spring and fall (Fig. 2.6b). 

For MinT, mismatch was consistently greater at higher elevations for the L1 model 

(monthly range in r = 0.21 to 0.75) and Daymet dataset (monthly range in r = 0.30 to 0.68) across 

the entire study period, with higher magnitudes occurring in early spring and summer (Fig. 2.6a; 

L1 model monthly range in r = 0.68 to 0.75; Daymet monthly range in r = 0.54 to 0.68). In 

contrast, mismatches in MinT based on PRISM data were not well correlated with elevation 

(monthly range in r = − 0.23 to 0.01). Mismatches between MinT predictions from the LME 

model with the three free-air datasets showed similar temporal patterns of strong, positive 

correlations to solar insolation during spring (L1 model monthly range in r = 0.54 to 0.88; 

Daymet monthly range in r = 0.34 to 0.78; PRISM monthly range in r = 0.29 to 0.80) and fall (L1 

monthly range in r = − 0.39 to 0.91; Daymet monthly range in r = 0.66 to 0.81; PRISM monthly 

range in r = 0.68 to 0.84), but low to moderate correlations during summer (Fig. 2.6b; L1 

monthly range in r = − 0.02 to 0.45; Daymet monthly range in r = 0.26 to 0.45; PRISM monthly 

range in r = 0.22 to 0.46). 

 

Discussion 

It is well established that elevation is a primary factor affecting temperature in montane 

landscapes (Geiger et al. 2009; Vanwalleghem and Meentemeyer 2009), but other climate-

forcing factors, such as solar insolation and cold-air-drainage, contribute to microclimatic 

variation in forests (Chen et al. 1999; Geiger et al. 2009; Ashcroft and Gollan 2012). However, 

the underlying biophysical processes that affect microclimatic regimes are not well understood, 

and climate models typically disregard complex vegetation structure (Lefsky et al. 2002), either 
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not accounting for vegetation or using simplified canopy characteristics (Jennings et al. 1999; 

Wilson 2011). We characterized vegetation structure across multiple levels and incorporated this 

information into statistical models to examine the influence of complex vegetation characteristics 

and landscape physiography on microclimatic temperature variation. Our results indicate that 

vegetation structure in multiple strata contribute to microclimatic buffering, and the inclusion of 

complex vegetation structure improves the accuracy of microclimatic temperature models (Table 

2.1; Figs. 2.2, 2.3). 

Numerous studies have demonstrated the importance of forest canopies in buffering 

microclimatic temperatures, reducing sub-canopy MaxT and increasing sub-canopy MinT (Chen 

and Franklin 1997; Bramer et al. 2018; De Frenne et al. 2019). Our results are consistent with 

these findings, but we also find that understory vegetation structure contributes to microclimatic 

buffering, substantially cooling near-surface temperatures and increasing the accuracy of 

microclimatic temperature predictions, especially for MaxT during the growing season (Table 

2.1; Figs. 2.2b, 2.4, 2.5). Canopy cover reduces solar radiation levels in the understory of 

deciduous forests (Hicks and Chabot 1985; Chazdon 1988), but a substantial fraction of direct 

and diffuse (i.e., from atmospheric scattering) radiation penetrates the canopy (Detlef 1977; 

Jones 2014). Understory plants can use this remaining radiation for growth (Chazdon 1988), 

resulting in dense vegetation below forest canopies or understory plants can use direct radiation 

for growth within canopy gaps and in areas where canopy and understory do not co-occur 

(Washitani and Tang 1991; Koizumi and Oshima 1993). Consequently, understory vegetation 

may be the only buffer against solar radiation within canopy gaps or an important additional 

buffer against solar radiation below the canopy. 
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Although understory vegetation structure is seldom incorporated into microclimate 

models, previous empirical studies accounting for the presence of understory vegetation suggest 

its strong buffering effects. For instance, Clinton (2003) found that the presence of rhododendron 

(Rhododendron maximum), an important evergreen shrub typically growing within 8 m of the 

forest floor, moderated temperatures and lowered minimum, maximum, and mean soil 

temperatures in a North Carolina watershed near GSMNP (Clinton 2003). Similarly, understory 

vegetation characteristics influenced temperature variability during spring and summer in an old-

growth forest located within the Cascade Mountains of central Oregon (Frey et al. 2016). Our 

results reinforce these findings at a substantially finer spatial resolution and with more complex 

vegetation analyses. 

Our results also demonstrate that biophysical interactions can affect microclimate at a 

very fine scale. We found that vegetation structure moderates the magnitude and direction of 

solar insolation and topographic convergence index (TCI), altering microclimatic temperatures. 

Microclimatic buffering associated with vegetation structure was greatest at solar insolation 

extremes, cooling MaxT at high solar insolation levels and warming MinT at low solar insolation 

levels. These results are consistent with the finding that insulating effects from vegetation are 

greatest during temperature extremes (Davis et al. 2018). We also found that higher levels of 

moisture, based on TCI, reduce microclimatic temperatures, and this cooling effect is amplified 

in areas with dense canopy vegetation structure (Fig. 2.5). Soil moisture levels can reduce 

localized temperature by transforming energy into latent heat as opposed to sensible heat (Dai 

and Trenberth 1999), and it has been shown that microclimatic temperature buffering can vary 

with local water balance in forests of the western US (Davis et al. 2018). Our results also suggest 
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variation in microclimatic buffering due to plant-water interactions, even in the humid 

environment of the Great Smoky Mountains. 

Collectively, our findings indicate that a failure to consider sub-canopy vegetation layers, 

and the moderating effects of vegetation on solar radiation and localized moisture, can limit the 

accuracy of microclimatic temperature models in montane, forested landscapes. Although our 

models improved the accuracy of microclimatic temperature predictions, there were limitations. 

For instance, we used TCI as a proxy for soil moisture because of the limited availability of soil 

moisture data, but in situ soil moisture measurements could bolster microclimate predictions 

(Lenoir et al. 2017). It has also been shown that atmospheric demand for water may be more 

important than soil moisture in limiting surface conductance and evapotranspiration (Novick et 

al. 2016), but we did not incorporate these data into our study because they are currently 

unavailable at high spatiotemporal resolution. Integrating high resolution soil moisture data and 

models for evaporative demand, such as vapor pressure deficit, with complex vegetation 

structure data is critically needed to better understand the mechanisms underpinning the 

biophysical effects on microclimatic variation. 

Although complex vegetation data have typically been unavailable at broad spatial 

extents, the increasing availability of LiDAR (Lefsky et al. 2002; Zellweger et al. 2019b) means 

that there is potential for characterizing vegetation structure across multiple levels over large 

extents. In this study, we show the potential importance of understory vegetation structure for 

microclimate prediction, but we were limited to using leaf-off, airborne LiDAR data from two 

separate datasets. LiDAR with increased point density, or via waveform laser scanning, could 

create more accurate representations of vegetation at finer strata. Also, LiDAR data collected 

during leaf-on periods at finer temporal scales could enhance predictions of microclimatic 
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variation during vegetation growth and senescence, increasing accuracy of microclimate models 

during the growing season. 

Accurately predicting microclimate is crucial for bridging the gap between coarse-grain, 

free-air climate layers and actual microclimatic conditions experienced by most organisms 

(Suggitt et al. 2011; Hannah et al. 2014; Lembrechts et al. 2018). Most currently available or 

obtainable climate data are missing relevant climate-forcing factors to accurately portray 

microclimatic regimes or are too coarse in scale to detect the fine variations in microclimate 

across complex landscapes (Randin et al. 2009; Elsen and Tingley 2015; Meineri and Hylander 

2017). Our comparison of microclimatic temperature predictions with two coarse-grain climate 

datasets highlights these problems. Both datasets were found to have large error, but the PRISM 

dataset (4 km2 spatial resolution) was less accurate than the Daymet dataset (1 km2 spatial 

resolution), typically overestimating MaxT and underestimating MinT (Fig. 2.2). Here, we show 

error potentially associated with the spatial scale of these two widely-used datasets, but it is 

important to note that there are datasets available at higher spatial resolution which would likely 

have smaller error. Nevertheless, for MaxT, we found that the mismatch between microclimate 

and PRISM predictions was strongly correlated with elevation with a clear trend of temporally 

over- or underestimating MaxT in areas of increased topographic heterogeneity (Fig. 2.7b). The 

covariation of solar insolation with mismatches between free-air and microclimatic temperatures 

was, at least partially, due to the lack of solar insolation as a climate-forcing factor in the free-air 

temperature models. Temperature increases with solar radiation, but the free-air temperature 

datasets (L1, Daymet, and PRISM) did not indicate this known relationship (Fig. 2.7c). In 

contrast, MaxT predictions from the LME model were positively correlated with solar insolation 

during spring and fall, with a moderated effect during the summer months due to microclimatic 
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buffering of vegetation structure and TCI (Fig. 2.7c). These seasonal trends coincide with the 

covariation of solar insolation to temperature mismatches, suggesting that the inclusion of solar 

insolation in the LME models contributed to increased temperature mismatches for the free-air 

datasets in spring and fall (Fig. 2.6b). Taken together, we speculate that the direction and 

magnitude of mismatch between free-air and microclimatic temperature is dependent not only on 

spatial scale but also the relevant climate-forcing factors used in climate modeling, which can 

contribute to spatiotemporal inaccuracies (Fig. 2.6; Appendix A Fig. A.7, A.8, A.9). 

There has been a call to integrate the appropriate climate-forcing factors and improved 

canopy cover estimates into climate models at relevant biological scales (Ashcroft et al. 2008; 

Kearney and Porter 2009; Ashcroft and Gollan 2012) to better understand how species may 

respond to climate change (Lenoir et al. 2017; Lembrechts et al. 2018). Species distribution 

models (SDMs) are potentially over- and underestimating suitable habitat at differing scales 

(Trivedi 2008; Gillingham 2012a, b; Franklin 2013; Lenoir et al. 2017), and temporally 

inaccurate climate data may cause the misdetection of suitable habitat as well. The use of 

accurate microclimate data for SDMs may be of particular importance for species that rely on 

microclimatic conditions, such as small, ectothermic, dispersal-limited, or ground-dwelling 

species (Kearney and Porter 2009; Helmuth et al. 2010). Our results suggest that the use of 

coarse-grain, free-air temperature models would result in overpredictions of MaxT and 

underpredictions of MinT with considerable spatiotemporal inaccuracy, problems that could 

greatly distort estimates of habitat suitability and connectivity for species that may be most 

vulnerable to climate change. 

Here, we improved accuracy of microclimatic temperatures (3 m2 raster) over a broad 

extent (2430 km2 study area), helping to avoid the potential pitfalls that come with free-air, 
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coarse-grain predictions and demonstrating the plausibility of developing essential microclimate 

inputs for SDMs (Lembrechts et al. 2018). Accurately predicting microclimate across broad 

extents can help to identify potentially suitable habitat for a wide range of taxa, but is especially 

significant for evaluating rare or declining species. Such fine-scale maps of suitable habitat may 

provide the relevant detail for discovering new populations, targeting potential areas for species 

reintroductions, and locating potential climate change microrefugia. 

In conclusion, we show that different vegetation structure layers and their interactions 

with landscape physiographic patterns buffer microclimatic temperatures of temperate deciduous 

forests in the Great Smoky Mountains, resulting in considerable spatiotemporal variation across 

the landscape. Future attempts at modeling microclimate may benefit from including spatially 

and temporally finer vegetation structure models and coupling these data with satellite-derived 

classifications, such as NDVI or leaf area index. This combination could bolster predictions of 

canopy and understory vegetation structure, further increasing our understanding of the 

underlying biophysical processes that control forest microclimates and increasing accuracy in 

microclimate predictions. With the effects of climate change intensifying, the improvement of 

climate data at biologically relevant scales is a crucial step that can lead to better predictions in 

the future, greatly benefiting environmental managers charged with prioritizing conservation 

efforts. 
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Figures 

 
 

Figure 2.1 Location of Great Smoky Mountains National Park (GSMNP) study area on the 

border of North Carolina (NC) and Tennessee (TN), USA, in the southern Appalachian 

Mountains. The map shows the temperature dataloggers spread throughout the park (Fridley 

2009), the locations of the 11 weather stations used for the level one model, the TN (1 km2 

grids) and NC (2 km2 grid) LiDAR dataset boundaries, the GSMNP boundary, and the state line 

between NC and TN 
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Figure 2.2  (a) Average weekly minimum and maximum temperatures (°C) from March–

November of 2006–2010, including temperature averages from datalogger measurements, the 

final LME model predictions (3 m2), the level one model predictions (3 m2), the Daymet dataset 

(1 km2), and the PRISM dataset (4 km2). (b) Weekly averaged mean absolute error (MAE in  °C) 

for maximum temperature model predictions (Final LME Model, level one model, Daymet 

dataset, and PRISM dataset) from observed datalogger measurements. First and last frost date 

averaged from 2006 to 2010 and NDVI based on averages during time period (Norman et al. 

2017). NDVI is overlaid on graph to show temporal synchrony with the final LME model 

predictions and asynchrony with the level one model predictions 
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Figure 2.3 Variable importance based on standardized regression coefficients for the final AIC 

models for maximum (red) and minimum (blue stripes) temperature. Model summaries are in 

Table 2.1. TCI topographic convergence index, SRAD solar radiation (Wh/m2/day−1), VS 

vegetation structure 
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Figure 2.4 (a) Spatial distribution of model error for maximum temperature (°C) and (b) 

minimum temperature (°C). Model error is calculated as the difference between predictions from 

the final linear mixed-effects model and the level one model and averaged across study period. 

The darkest colors display error greater than 5 °C. (c) Elevation of Great Smoky Mountains 

National Park based on a 3 m digital elevation model. (d) Percentage of mid-canopy, (e)low-

canopy, and (f) low-understory vegetation structure (VS) 
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Figure 2.5 Magnitude of microclimatic buffering for maximum temperature (oC) by low-

understory vegetation structure (VS), the combination of low-understory and low-canopy 

vegetation structure, and the combination of topographic convergence index (TCI) with low-

canopy vegetation structure. Buffering magnitudes include the overall average for the entire 

study period and averages during spring, summer, and fall 
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Figure 2.6 Monthly average correlation coefficients between temperature mismatch (absolute 

values from 2006 to 2010) and (a) elevation in meters and (b) solar insolation (Wh/m2/day−1). 

Temperature mismatch was calculated as the difference between free-air temperature estimates 

and microclimate predictions from the final LME models. Large positive or negative values for a 

given month indicate that the mismatch between microclimatic and free-air temperatures heavily 

covaried with the predictor variable 
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Figure 2.7 (a) Heat map showing the difference (absolute value) between predictions of average 

maximum temperature (°C) from the level one model and the final LME model for Spring, 

Summer, and Fall. (b) Heat map showing where the difference between PRISM estimates and 

predictions of the final LME model are either negative or positive, indicating that PRISM was 

underestimating or overestimating maximum temperature. c Final maximum temperature model 

predictions (°C) plotted against solar insolation (Wh/m2/day−1) using a smoothing function 
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Table 

Table 2.1. Variable characteristics and model summaries for the final selected linear mixed-effects models. Daily minimum and 

maximum temperatures (oC) were modeled from March through November (2006–2010) using datalogger measurements as a function 

of the model variables shown here. The R2 values shown are conditional and MAE is the mean absolute error between model 

predictions and datalogger observations. Also shown are variable names, units of measure, means and ranges of modeled data, final 

parameter estimates, the standard error of estimates (SE), degrees of freedom (df), t-values and p-values. The p-values shown (* p-

value < 0.05, ** p-value < 0.01, and *** p-value < 0.001) were not used for model selection. Final model terms seen here were fit 

using restricted maximum likelihood. The level one model was a fixed effect and all other predictor variables were additive fixed 

effects. TCI topographic convergence index, Solar insolation, and VS vegetation structure.  

 

                

Variable Unit Mean (Range) 
Parameter 

estimate 
SE df t-value p-value 

Minimum Temperature Model (MinT) 

Goodness of Fit: R2 = 0.92 , MAE = 1.6 

(Intercept) -   -2.2731135 0.5518857 124584 -4.12 *** 

Level 1 Model oC 10.9 (-8.4 - 30.8) 0.7246783 0.0015900 124584 453.67 *** 

Solar Insolation Wh/m2/day-1 6,709 (611 - 9,156) 0.0006632 0.0000211 124584 31.36 *** 

Distance-to-Stream m 169 (0 - 483) 0.1627245 0.0848747 153 1.92   

Topographic Convergence Index - 4.5 (0.8 - 20.2) -0.0447740 0.0437462 153 -1.02   

Low-understory VS (below 5 m) % 23.1 (0 - 100) -0.0250879 0.0064067 153 -3.92 *** 

Mid-canopy VS (15 m-20 m) % 18.1 (0 - 45) 0.0101210 0.0103495 153 0.98   

Low-understory VS*Solar - 156,119 (0 - 902,712) 0.0000012 0.0000005 124584 2.40 * 

Mid-canopy VS*Solar - 118,714 (0 - 376,444) -0.0000025 0.0000007 124584 -3.42 *** 

Maximum Temperature Model (MaxT) 

Goodness of Fit: R2 = 0.81 , MAE = 2.4 

(Intercept) -   1.3024726 0.7992080 124585 0.63   

Level 1 Model oC 22.5 (4.6 - 41.0) 0.7541793 0.0023310 124585 323.55 *** 
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Table 2.1. continued        

Solar Insolation Wh/m2/day-1 6,709 (611 - 9,156) 0.0003590 0.0000148 124585 24.33 *** 

Distance-to-Stream m 169 (0 - 483) -0.0941063 0.1144836 152 -0.82   

Topographic Convergence Index - 4.2 (0 - 30.3) -0.4351026 0.1130898 152 -3.85 *** 

Low-understory VS (below 5m) % 23.1 (0 - 100) -0.0273063 0.0080448 152 -3.39 *** 

Low-canopy VS (10 m-15 m) % 16.1 (0 - 49.2) -0.0826411 0.0271477 152 -3.04 ** 

Low-understory VS*Solar - 156,119 (0 - 902,712) 0.0000012 0.0000005 124585 2.29 * 

Low-canopy VS*TCI - 23.1 (0 - 321.6) 0.0170228 0.0060343 152 2.82 ** 
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CHAPTER 3: SPATIOTEMPORAL PATTERNS OF ENERGETIC 

MAINTENANCE COSTS ARE INCONSISTENT WITH SUITABLE 

CLIMATIC HABITAT FOR PLETHODONTID SALAMANDERS 

 
Introduction 

Species distribution models (SDMs) rely on a variety of correlative approaches for 

estimating species’ distributional range limits and habitat suitability (Elith et al. 2006; Kearney 

and Porter 2009). Although widely used, SDMs have been criticized for rarely incorporating 

physiological responses at spatial and temporal scales that affect the performance and fitness of 

organisms (Kearney and Porter 2009; Barton and Terblanche 2014; Evans et al. 2015). Typically, 

SDMs are produced with coarse resolution climate data based on free-air temperature predictions 

and modeled at disproportionately broad scales compared to the microclimatic conditions that a 

myriad of organisms experience near the surface of the earth (Kearney and Porter 2009;Potter et 

al. 2013; Lenoir et al. 2017; Lembrechts et al. 2018). Furthermore, the bioclimatic inputs used in 

species distribution modeling may not account for climatic variability at proper temporal scales 

(Lembrechts et al. 2018). These spatiotemporal mismatches may simultaneously result in 

regional overestimations and local underestimations of suitable habitat (Trivedi et al. 2008; 

Gillingham et al. 2012a, b; Franklin et al. 2013). Leveraging microclimate datasets to address 

physiology at appropriate biological scales and to understand potential mismatches with SDMs is 

a priority, especially for small, ectothermic or dispersal limited species that are dependent upon 

climatic regimes at the microhabitat scale (Cushman 2006; Hoegh-Guldberg et al. 2008; Kearney 

and Porter 2009; Clusella-Trullas et al. 2011).  

Salamanders in the family Plethodontidae are lungless ectotherms that require cool, moist 

microclimates to avoid water loss (Feder 1983; Lutterschmidt and Hutchison 1997; Bernardo and 

Spotila 2006). Temperature directly influences plethodontid salamanders by increasing 
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desiccation risk, increasing pathogens, decreasing available energy to catch prey, decreasing 

body size, altering reproductive cycles, and notably, increasing physiological stress (Feder and 

Pough 1975; Blaustein and Kiesecker 2002; Carey and Alexander 2003; Blaustein et al. 2010; 

Homyack et al. 2010, 2011). Higher temperatures and variability in climatic regimes alter the 

metabolic rate of plethodontids which in turn affects energy budgets (Pough 1980; Homyack et 

al. 2010). Changes in energy expenditure can intensify physiological stress, resulting in greater 

susceptibility to pathogenic infection and potentially creating ecological trade-offs that affect 

overall fitness (Sears 2005; DuRant et al. 2007). Because temperature affects the physiology, 

energy expenditure, performance and fitness of plethodontids, their distributional range limits 

and habitat suitability requirements are largely determined by climate, but climate is not the only 

factor that affects salamander energetics (Milanovich et al. 2010; Gifford and Kozak 2012). 

Energetic demand increases with body size for plethodontids (Feder 1976), yet few 

studies simultaneously consider body mass and temperature in metabolic relationships (Petruzzi 

et al. 2006). Furthermore, some plethodontid species are high elevation specialists that have been 

shown to follow Bergmann’s rule (Peterman et al. 2016), increasing in body size with the cooler 

temperatures that accompany elevational gain. However, these body size-elevation relationships 

have yet to be incorporated into physiological models, potentially disregarding an important 

driver of variation of energetic requirements across spatiotemporal scales. Accounting for 

biophysical processes at appropriate microclimatological scales may result in considerable 

spatiotemporal variation in salamander energetics and generate valuable information for 

improving predictions of habitat suitability.  

Integrating physiological variation at microclimatic scales with commonly used 

approaches for modeling species’ distributions is imperative for characterizing differences 



 

 

38 

 

between mechanistic and correlative models (Kearney and Porter 2009; Evans et al. 2015; 

Lembrechts et al. 2018). Comparing these different approaches can provide independent results 

that strengthen predictions in areas of agreement or provide insights on model disagreement, 

generating valuable information on spatiotemporal mismatches (Kearney and Porter 2009; Morin 

and Thuiller 2009). Here, we combined microclimate datasets that account for the buffering 

effects of forest vegetation structure with a physiological model predicting standard metabolic 

rate (SMR) to assess spatiotemporal patterns in the bioenergetics of three plethodontid 

salamander species in Great Smoky Mountains National Park (GSMNP; North Carolina and 

Tennessee, US). Because lower energetic demand suggest better performance for plethodontids 

(Feder and Pough 1975; Pough 1980; Sears 2005; DuRant et al. 2007), we evaluated the 

agreement between low SMR with predictions from SDMs. We also integrated body-mass 

elevation relationships into our physiological models using three plethodontid species of 

differing sizes, all of which have been shown to increase in body length at higher elevations 

(Peterman et al. 2016).  

 

Materials and Methods 

Study area and species 

The study area consisted of the area within GSMNP plus a 150-meter buffer around the 

park boundary, for a total area of 2,430 km2 (Fig. 3.1). Great Smoky Mountains National Park 

straddles the North Carolina and Tennessee border and ranges in elevation from ~265 to 2,025 m 

above sea level (Fig. 3.1; Fig. 3.2d). Topographical variation and vegetative diversity within the 

mostly deciduous forests of GSMNP (Whittaker et al. 2007) creates the cool, moist 

microclimates that lungless, plethodontid salamanders require for exchanging gases across their 
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skin without risking desiccation and providing suitable habitat (Petranka, 1998). The GSMNP is 

considered the “Salamander Capital of the World” because of the vast species richness and 

endemism of plethodontid salamanders (Kozak and Wiens 2010; Gifford and Kozak 2012).  

We focused on three plethodontid species that vary in body size. Desmognathus wrighti 

(pygmy salamander) is the smallest species ranging from ~37-51 mm in total length (TL) at an 

adult stage. Desmognathus ocoee (Ocoee salamander) is a medium-sized speces ranging from 

~70-110 mm in TL at an adult stage. Plethodon jordani (Jordan’s or red-cheeked salamander) is 

a larger species ranging from ~85-185 mm in TL at an adult stage and is endemic to the GSMNP 

(Dodd 2004). These three species are high elevation specialists occuring between ~750-2,025 m 

and widely distributed throughout forested habitats of the GSMNP (Dodd 2004). D. wrighti and 

P. jordani are fully terrestrial species, but D. ocoee have a much more complicated life history, 

laying eggs in seepage areas and springs or near small streams but dispersing throughout the 

forests post-larval stage, especially at higher elevations (~1,460-1,830 m; Dodd 2004).     

 

Plethodontid mass and elevation  

            We obtained body mass measurements for each plethodontid species from Peterman et al. 

(2016). Surveys were conducted in July 2012 at night and within one day of rain events using 

visual encounter to sample surface-active plethodontids (Peterman et al. 2016). Body mass 

measurements were recorded at site locations ranging from 669-2,019 m in elevation (Fig. 3.2d).  

To determine how body mass changed with elevation, we fit multiple linear regression models to 

salamander body mass as a function of elevation and species sex or stage class (Table 3.1; i.e., 

female, male or juvenile). We used a square root transformation of the response variable for the 

D. ocoee and D. wrighti adult models to meet the assumptions of linear regression. Including a 
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quadratic term improved model fit for predicting body mass of D. wrighti juveniles; therefore, 

we modeled juveniles separately from adults. For P. jordani, we included a cubic polynomial 

term to improve model fit for body mass predictions of females, males, and juveniles. We 

evaluated models using 10-fold cross validation in order to use the breadth of the dataset and to 

reduce variance. We assessed predictive accuracy by calculating mean absolute error and root-

mean-square error. Model estimates from the D. wrighti adult, D. wrighti juvenile, D. ocoee, and 

P. jordani models were used to predict body mass for each sex and stage class of the study 

species across a 3 m2 digital elevation model (DEM) raster.  

 

Modeling standard metabolic rate   

We modeled SMR (volume of oxygen consumption, VO2 μl g-1 hr-1) by combining the 

body mass predictions developed for the sex and stage class of each species with highly spatially 

resolved maps of microclimatic temperature for GSMNP. The microclimate maps were 

developed with an approach that incorporated vegetation buffering across the entire vertical 

profile of forest vegetation, thereby estimating the near-surface, sub-canopy temperatures that 

ground-dwelling organisms, like plethodontid salamanders, rely upon for surface activity in their 

microhabitat (Stickley and Fraterrigo 2021). Microclimate data consisted of monthly minimum, 

maximum, and average temperatures for March through November of 2006–2010 at a 3 m2 

spatial resolution. These months were chosen to coincide with periods of increased surface 

activity for terrestrial salamanders in GSMNP. Standard metabolic rate was calculated for the sex 

and stage class of each species using two equations from Feder (1976, 1983), which predict SMR 

for temperate plethodontid species as a function of temperature and body mass, respectively. For 

P. jordani, we also calculated SMR using a species-specific formula developed by Gifford and 
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Kozak (2012) and averaged those estimates with the Feder (1976,1983) predictions for P. 

jordani to account for both approaches to SMR prediction and limit uncertainty.  

Overall, we developed 54 gridded maps of seasonal minimum and maximum SMR (3 

species x 3 sex/stage classes x 3 seasons x 2 temperature estimates) by applying the SMR 

formulas described above to the microclimatic maps. Because we used average monthly 

minimum and maximum temperature (i.e., average monthly value during 2006-2010) for our 

microclimatic maps, we refer to spring, summer, and fall as the monthly averages of March-May, 

June-August, and September-November, respectively. Minimum SMR reflects the energy 

requirements during nighttime minimum temperatures and maximum SMR during daytime 

maximum temperatures. We also determined monthly average, minimum and maximum SMR (9 

months x 3 sex/stage classes x 3 species x 3 temperature estimates = 243 values). To calculate 

SMR on a monthly time step, we randomly selected 50,000 points distributed throughout the 

study area and, for each point, applied the physiological formulas discussed above using the 

average, minimum, and maximum temperature values from the monthly microclimatic 

temperature maps (Stickley and Fraterrigo, 2021) as well as predicted body mass values from the 

maps for each species and sex/stage class. Further details can be found in the Appendix B. 

 

Species distribution modeling 

We developed coarse-resolution (1 km2) SDMs to predict suitable climatic habitat for 

each study species with historical presence data and bioclimatic variables. We obtained historical 

presence-only data for each study species from Peterman et al. (2016), the Illinois Natural 

History Survey (https://herpetology.inhs.illinois.edu/databases/), the Smithsonian National 

Museum of Natural History (https://collections.nmnh.si.edu/search/), and the Hands on the Land 
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Network (https://handsontheland.org/). We also obtained data from Milanovich et al. (2010) via 

HerpNET (www.herpnet.org) and Global Biodiversity Information Facility (www.gbif.org). 

Presence locations were compiled into one spatial dataset and duplicate points were removed. 

The final dataset included 205, 158, and 316 presence locations for D. wrighti, D. ocoee, and P. 

jordani, respectively. We downloaded 11 WorldClim (1 km2 spatial scale; 

https://www.worldclim.org/) bioclimatic variables previously shown to be biologically relevant 

and interpretable for plethodontid salamanders (Appendix B Table B.1; Rissler and Apodaca 

2007; Milanovich et al. 2010).  

Using the 11 bioclimatic variables and presence-only dataset, we calculated suitable 

climatic habitat at ~1 km2 resolution for each study species (D. wrighti, D. ocoee, and P. jordani) 

across the GSMNP. We used a maximum entropy (MaxEnt) method as our modeling approach 

because MaxEnt (Elith et al. 2006) is the most popular and widely-used program for species 

distribution modeling due to high accuracy with presence-only data (Hernandez et al. 2006; Elith 

et al. 2011; Merow et al. 2013). We followed methodologies for data preparation, model fitting, 

model prediction, and model evaluation as recommended by Hijmans and Elith (2017). Model 

goodness of fit was assessed using the average area under the curve (AUC) value, calculated 

during model evaluation with k-fold cross validation. Further details can be found in the 

Appendix B.  

 

Statistical analyses for model comparisons 

To summarize SMR for each species, sex, and stage class, we calculated bootstrapped 

statistics (mean, standard deviation of mean, coefficient of variation, median and confidence 

interval of the median) using the 50,000 randomly selected points. Because SMR is strongly 
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influenced by body mass, we also calculated bootstrapped statistics for the percent change in 

SMR between each month of the study period, calculated as  

(SMRt+1 – SMRt) / SMRt 

where t is the initial month and t+1 is the following month. This allowed us to compare patterns of 

spatiotemporal variation of SMR for each species, sex and stage class while accounting for 

allometry.  

To evaluate the level of agreement and disagreement between estimated metabolic rate 

and predicted habitat suitability, we calculated the mean value of seasonal (spring, summer, and 

fall) SMR (minimum and maximum) for each sex and stage class of each species from the 

gridded maps (3 m2 spatial resolution) within each pixel of the 1 km2 SDM maps. Calculations 

were performed within the projected distributional range of each species as determined by the 

SDM threshold value (i.e., the lowest predicted habitat suitability value for an occurrence point). 

We determined the relationship between the mean SMR values and SDM-predicted habitat 

suitability using correlation coefficients from the modified t-test, based on the work of Clifford 

et al. (1989). The modified t-test creates an appropriate sample size to account for spatial 

autocorrelation and corrects correlation coefficients between two spatially correlated variables. 

Because low SMR values suggest higher performance for plethodontids (Feder and Pough 1975; 

Pough 1980; Sears 2005; DuRant et al. 2007), significant negative correlations (≤ -0.7) indicated 

agreement among predictions, while significant positive correlations (≥ 0.7) indicated 

disagreement.  

To characterize spatial patterns of concordance between estimated salamander energetics 

and predicted habitat suitability, we identified areas with both low energetic costs of 

maintenance (defined as SMR values ≤ median) and high habitat suitability (SDM probability of 
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suitable habitat ≥ 0.7) for the sex and stage class of each species at minimum and maximum 

SMR and among seasons. To compare how concordance changed across space, we quantified the 

number of cells with low energetic cost of maintenance divided by the number of cells with high 

suitable climatic habitat at minimum and maximum SMR and among seasons. All statistical 

modeling was performed using R statistical software v. 3.50 (R Core Team 2020) and spatial 

modeling was conducted using ArcGIS® software versions 10.4.1–10.6.1 (Esri inc. 2020) and R 

statistical software v. 3.50 (R Core Team 2020). All data will be stored and available for 

download from a public repository when this manuscript is accepted for publication.   

 

Results 

Modeling salamander body mass 

            Overall, females were the larger sex for D. wrighti and P. jordani, whereas males 

exhibited larger body mass than females for D. ocoee (Table 3.1; Fig. 3.2). While body mass 

increased significantly with elevation for all plethodontid species, the rate of increase varied with 

sex and age (Table 3.1; Fig. 3.2). For every 100 m gain in elevation, model estimates indicated 

body mass increased by an average of 4.7% for D. wrighti, 12.8% for D. ocoee, and 4.8% for P. 

jordani (Appendix B Table B.2). For D. wrighti, juvenile body mass increased less at lower 

elevations (< 1,400 m) compared to higher elevations of the park (Fig. 3.2; > 1,400 m). 

Desmognathus ocoee adults showed a higher rate of increase in body mass across all elevations 

compared to juveniles (Fig. 3.2). For P. jordani, the estimated rate of body mass increase for all 

sex and stage classes was highest at elevations below 1,000 m (Δmass = 0.50g per 100 m) and 

above 1,600 m (Δmass = 0.43g per 100 m), with smaller increases in mass at mid-elevations 

(Fig. 3.2; Δmass = 0.01g per 100 m).   
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Standard metabolic rate  

From 2006-2010, the average SMR was 34.0 VO2 μl g-1 hr-1 for D. wrighti (female = 

37.6, male = 34.8, juvenile = 29.7), 57.6 VO2 μl g-1 hr-1 for D. ocoee (female = 65.0, male = 66.8, 

juvenile = 41.2) and 100.5 VO2 μl g-1 hr-1 for P. jordani (Appendix B Fig. B.1, B.2, B.3, Table 

A3; female = 114.8, male = 101.2, juvenile = 85.4). Spatial variation in SMR over this period 

was greatest for D. ocoee (CV = 0.11) and P. jordani (CV = 0.10), with D. wrighti demonstrating 

the lowest variation overall (CV = 0.05). For all species, spatial variation in SMR was higher for 

juveniles than adults (Appendix B Table B.3; D. wrighti CV: female = 0.05, male = 0.05, 

juvenile = 0.08; D. ocoee CV: female = 0.11, male = 0.11, juvenile = 0.14; P. jordani CV: 

female = 0.8, male = 0.10, juvenile = 0.15) and generally higher in spring and autumn than in 

summer. For D. ocoee spatial variation was greater for minimum SMR compared to maximum 

SMR (Appendix B Fig. B.1-B.3, Table B.3).  

Energetic requirements changed at different rates for each species as indicated by the 

monthly and seasonal differences in percent change of SMR (Fig. 3.3; Appendix B Fig. B.4-B.6). 

Desmognathus wrighti exhibited the largest increase in SMR from spring to summer and the 

largest decrease in SMR from summer to autumn (Fig. 3.3), while D. ocoee demonstrated the 

lowest rates of change. Juveniles for all species consistently exhibited the largest monthly and 

seasonal changes in SMR, with D. wrighti and D. ocoee exhibiting significant differences 

between adults and juveniles (Fig. 3.3). Variation in the percent change of SMR was consistently 

higher for minimum SMR than maximum SMR (Appendix B Fig. B.4-B.6).  
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Comparing physiology and suitable climatic habitat 

The mean AUC for plethodontid salamander distribution models was 0.91 indicating high 

levels of model accuracy (Fig. 3.4; D. wrighti = 0.92; D. ocoee = 0.89; P. jordani = 0.90). For all 

three species, the most influential predictor variables were precipitation seasonality, followed by 

either annual mean temperature or mean monthly temperature diurnal range (Appendix B Table 

B.1). Approximately 10.3% (249.2 km2), 8.0% (194.8 km2), and 11.8% (286.5 km2) of the 2,430 

km2 study area were considered highly suitable habitat (≥ 0.7) for D. wrighti, D. ocoee, and P. 

jordani, respectively (Fig. 3.4).  

Correlation coefficients from modified t-tests indicated that the level of agreement 

between estimated standard metabolic rate and predicted habitat suitability varied among species 

and, in some cases, within species among season, sex or stage class, and between minimum or 

maximum SMR (Table 3.2; Fig. 3.5; Appendix B Fig. B.7-B.9). Overall, there was strong 

agreement for P. jordani (x̅ = -0.71, range = -0.76 to -0.58) and D. wrighti (x̅ = -0.65, range = -

0.91 to 0.03) and weak agreement for D. ocoee (x̅ = 0.81, range = 0.31 to 0.90). For D. wrighti, 

we found strong agreement between maximum SMR and habitat suitability across all seasons. 

However, agreement between minimum SMR and habitat suitability was inconsistent, with 

stronger agreement in spring than fall and for adults compared to juveniles (Table 3.2; Fig. 3.5). 

For P. jordani, agreement was strongest in summer and weakest in fall with higher model 

agreement for maximum SMR. There was minimal variation among sex or stage class for P. 

Jordani. For D. ocoee, SMR and habitat suitability generally disagreed for each sex and stage 

class, with greater disagreement for minimum SMR (Table 3.2; Fig. 3.5).    

Spatial patterns of concordance between high habitat suitability (SDM probability ≥ 0.7) 

and areas with low energetic cost of maintenance (SMR ≤ median) varied seasonally, among 
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species’ sex or stage class, and minimum and maximum SMR (Fig. 3.6). For D. wrighti, we 

found high levels of spatial concordance among all seasons at maximum SMR, with high 

concordance in summer (female, male, and juvenile = 0.99) and lower concordance during spring 

and autumn for juveniles (spring = 0.52, autumn = 0.41) and adults (female: spring = 0.72, 

autumn = 0.61; male: spring = 0.75, autumn =0.61). Desmognathus ocoee exhibited spatial 

discordance for minimum SMR for all sex and stage classes (all values < 3%), and for maximum 

SMR in spring and summer (0-7%). However, there was weak spatial concordance for adults at 

maximum SMR in autumn (female = 0.32, male = 0.34, juvenile = 0.08). We observed the 

opposite pattern for P. jordani, which demonstrated high levels of spatial concordance at 

minimum and maximum SMR, among seasons, and among each sex and stage class (average 

among sex and stage class for minimum SMR: spring = 0.85, summer = 0.88, autumn = 0.79; 

maximum SMR: spring, summer and fall = 0.89). Spatial concordance varied for each species, 

yet we found examples of spatial discordance within each species when comparing minimum 

and maximum SMR, adults and juveniles, and seasonal differences (Fig. 3.6; Appendix B Fig. 

B.7-B.9).  

 

Discussion 

Metabolic rate is a central component of amphibian energetics, and spatiotemporal 

patterns in energetic requirements have important implications for understanding habitat use and 

distributions of plethodontids (Gifford 2016). However, climate data are typically developed at 

broad spatiotemporal scales and neglect the dynamic buffering of near-surface, sub-canopy 

temperatures by forest vegetation, potentially disregarding information relevant to the prediction 

of salamander energetics (Cushman 2006; Kearney and Porter 2009; Lembrechts et al. 2018). 
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Furthermore, physiological models have not accounted for body size clines in plethodontid 

species following Bergmann’s rule. To our knowledge, the physiological models we developed 

in this study are the first to integrate body mass-elevation relationships into metabolic rate 

formulas for plethodontid salamanders. By combining these models with microclimatic 

predictions that reflect seasonal and diurnal variation in sub-canopy, near-surface temperatures, 

we revealed large temporal discrepancies between energetic demand and static predictions of 

climatically suitable habitat. Our results therefore highlight novel challenges associated with 

relying solely on coarse resolution species distribution models for assessing habitat suitability.  

Previous studies have indicated spatial mismatches between SDMs, developed from free-

air temperature data at a coarse resolution, and mechanistic models, based on fine resolution 

microclimatic data (Kearney and Porter 2009; Bramer et al. 2018; Lembrechts et al. 2018), but 

our results also expose the potential for temporal misalignments between daily (i.e., minimum 

and maximum SMR) and seasonal variations in metabolic demands with static modeling 

approaches like those of SDM. It is the variability in body mass-elevation relationships, along 

with spatiotemporal variability in diurnal and seasonal temperatures, that contributed to the 

physiological variation and model mismatches found in this study. These findings reinforce the 

need to increase efforts in plethodontid sampling and research (Gifford 2016) to better estimate 

physiological responses, an important step in understanding physiological acclimatization to 

changing climate patterns. It may be critical to integrate temporally robust predictions of 

energetic demand for ectothermic species to use in conjunction with the commonly used 

correlative approaches in species distribution modeling.  

Agreement between bioclimatic modeling approaches and mechanistically focused 

approaches that incorporate physiology for terrestrial salamanders has been found in previous 
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research (Arif et al 2007; Gifford and Kozak 2012). However, the spatiotemporal mismatches we 

observed between areas with low energetic cost of maintenance and suitable climatic habitat 

based on coarse resolution SDMs (Table 3.2; Fig. 3.5; Fig. 3.6) indicate that agreement between 

these approaches and spatial concordance may be species dependent, may fluctuate temporally, 

and may vary among stage classes within species (Table 3.2; Fig. 3.5; Fig. 3.6). Furthermore, we 

found that in cases of spatial discordance (Fig. 3.6), areas with low energetic cost of maintenance 

occurred towards the edges of a species’ range, where climate-driven SDMs predicted low 

habitat suitability. Therefore, habitat suitability may not be generalizable across species or even 

within a species, a problem for developing conservation plans at desired levels, such as 

community- or taxa-levels (Mokany and Ferrier 2011; Jones et al. 2016). Further understanding 

the variation in body-mass elevation relationships for plethodontids will be important for future 

attempts at modeling physiologically suitable habitat.   

There has been some debate on whether plethodontid salamanders follow Bergmann’s 

rule, as body size clines may be dependent upon species’ life history traits and regional location 

(Olalla-Tárraga et al. 2006; Adams and Church 2008; Peterman et al. 2016). We found that body 

mass increased with elevation for three species that were previously shown to clearly follow 

Bergmann’s rule (Peterman et al. 2016). Our results suggest that the rate of increase in body 

mass differs for each species and for the sex or stage class within the species. Given that 

metabolism is directly influenced by body mass, investigating the effect that differing body mass 

clines have on the energetic demands of plethodontid salamanders, or other ectotherms following 

Bergmann’s rule, is important for developing more accurate physiological models (Feder 1976).  

Indeed, we found that the inclusion of body mass-elevation relationships in our 

physiological models resulted in substantial spatiotemporal variation of SMR among our study 
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species and among sex or stage classes within each study species. We also found temporal 

variation in these patterns, both seasonally and when comparing nighttime and daytime energetic 

demands (i.e., minimum and maximum SMR). For D. ocoee, juvenile body mass increased at a 

much lower rate than adults (Fig. 3.2). This was not the case for either D. wrighti, which 

demonstrated lower body cline rates at lower elevations and increased rates at higher elevations 

for juveniles, or P. jordani, which demonstrated relatively consistent body mass clines across all 

sex and stage classes (Fig. 3.2). Previous studies show that D. ocoee has slower development 

time to maturity (Tilley 1973, 1980), and D. ocoee has a much more complicated life history in 

comparison to the other species in this study with suitable habitat varying across ontogeny as 

shown in other organisms (Dodd 2004; Carscadden et al. 2020). Therefore, body cline rates for 

juveniles may be different depending upon the time of the year and level of maturation. 

Nevertheless, if body mass cline rates vary among species and among the sex or stage class for a 

species, then the result is variation in SMR along the heterogeneous, montane environment of 

GSMNP. There can be considerable disparities in microclimatic temperatures and lapse rates 

(i.e., the rate at which temperature changes with elevation) across seasons and between minimum 

and maximum temperatures within the GSMNP study area (Fridley 2009), especially when 

vegetation buffering is considered (Stickley and Fraterrigo 2021). It is these temporal variations 

in microclimatic temperatures along elevational gradients, combined with the different rates in 

body mass clines for each species, that drove the observed spatiotemporal variations of SMR. 

Although there is limited understanding of how temperature or other environmental 

factors affect metabolic variation in closely related species (Gifford 2016), previous studies have 

indicated variation in metabolic rates among plethodontids (Feder 1976; Whitford and 

Hutchinson 1965, 1967; Withers 1980; Bernardo et al. 2007). It has also been suggested that 
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physiology may constrain some plethodontid species to certain elevational ranges while other 

species may experience greater or further constraint by other confounding biotic factors, such as 

competition (Gifford and Kozak 2012). Therefore, characterizing metabolic variation may be 

important for understanding plethodontid distributions and dispersal, yet how salamander 

bioenergetics vary across space and time is not well established. We found differences in the 

temporal patterns of metabolic requirement between daytime and nighttime (i.e., maximum and 

minimum SMR) temperatures. We also found that the observed monthly and seasonal 

differences in the percent change of metabolic rate suggest broader temporal variation in 

salamander energetics with the potential of physiological stress to shift at differing rates during 

seasonal transitions (Appendix B Fig. B.1-B.6). Riddell et al. (2018a) demonstrate seasonal 

acclimatization for a Plethodon metcalfi, a close relative to P. jordani, in which metabolic rate is 

lowered during increased summer temperatures. This finding potentially minimizes the 

magnitude of seasonal variation found in our physiological models. However, it is unknown 

whether acclimatization factors hold true among all plethodontids or whether acclimatization 

may occur over shorter temporal periods. The patterns we found across daily (i.e., daytime and 

nighttime SMR) and seasonal time periods are important to consider for plethodontid 

distributions and surface activity within the microhabitat. 

High elevation, southern Appalachian salamanders, such as the three in this study, spend 

much of their time underground with some surface activity during the day, typically under leaf 

litter or downed woody debris, but are mostly surface-active during nighttime with variation in 

peak surface activity among different seasons (Petranka 1998; Dodd 2003; Connette et al. 2015). 

However, behavioral traits (e.g., timing of egg deposition, mating, dispersal, etc.) for each 

species differ or are poorly understood (Petranka 1998; Dodd 2004; Amphibiaweb 2020). 
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Increased energetic demand or variation in energetic demand during nighttime when 

temperatures are lowest or across broader seasonal patterns could constrain important nocturnal 

or phenological surface activities related to dispersal, food acquisition, mating, and other life 

history aspects (Fig. 3.3; Petranka 1998; Dodd 2004; Amphibiaweb 2020). Likewise, the higher 

variation in maximum SMR during summer suggests the potential for increased physiological 

stress during daytime temperatures at the hottest time of the year, potentially constraining the 

already limited daytime surface activity summer (Petranka 1998; Dodd 2003; Connette et al. 

2015). For instance, the timing of surface activities is modified by increased burrowing under 

warmer or drier conditions (Fielding et al. 1999; Tingley 2012; Muñoz et al. 2016; Riddell et al. 

2021); it is currently unclear how plethodontids of different life stages vary in their use of 

surface and vertical space (Dodd 2003). If different species, sexes or stage classes experience 

temporally different rates of physiological stress, behavioral and morphological constraints may 

result in different ecological trade-offs, such as low metabolic rate or resistance to water loss 

(Addo-Bediako et al. 2001; Riddell et al. 2018; Riddell et al. 2021), that limit access to suitable 

microclimatic conditions.  

Taken together, the variation found in our physiological models and the resulting 

spatiotemporal mismatches with suitable climatic habitat may be of great importance to 

understanding patterns in salamander movement or habitat suitability. However, we do note that 

there are limitations with our physiological and suitable habitat models that should be taken into 

consideration. Most importantly, we focus on SMR, based on microclimatic temperatures, but do 

not include a water component, such as vapor pressure deficit or soil moisture, into these 

analyses, an integral part of predicting salamander surface activity (Riddell and Sears 2015; 

Riddell et al. 2017; Riddell et al. 2018b). Our goal here was to assess agreement between 
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salamander physiology and suitable habitat, but a water component will be an important aspect 

of future work that aims to locate physiologically suitable habitat for conservation purposes. 

Another limitation to this study is that D. ocoee has a different life history compared to the other 

two study species that involves a larval stage in or near seepages or small streams, and D. ocoee 

occurrence data have historically been misidentified due to close resemblance to Desmognathus 

imitator (Dodd 2004; Peterman et al. 2016). These differences may result in suitable habitat 

predictions based on D. imitator data, and therefore, should be considered more conservative 

estimates than the D. wrighti and P. jordani suitable habitat predictions. It should be noted that 

these issues could explain some of the variation in model disagreement for D. ocoee. Also, we 

relied on SMR formulas developed for all temperate plethodontid species to model D. wrighti 

and D. ocoee physiology (Feder 1976, 1983). These models do not account for the species-

specific variation that may be found from SMR formulas developed from in situ body mass and 

oxygen consumption data. Because the variation in SMR predictions is driven by mass-elevation 

relationships and microclimatic patterns, we believe our predictions do account for key 

dimensions of variation in energetic demands for these species. However, the body mass-

elevation models were generated from body mass data collected over a relatively short time 

period, and from surface-active salamanders, which could bias the results. Nonetheless, sampling 

effort was equitable and adequate under ideal survey conditions (Peterman et al. 2016), which 

should minimize bias. Lastly, plethodontid species can show physiological plasticity, 

acclimatizing to warmer temperatures during summer months by decreasing their metabolic rates 

(Wells 2007; Riddell et al. 2018a). Given these issues of potential uncertainty, the estimates of 

SMR presented here should also be considered conservative.  
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This study highlights the importance of including microclimatic data that account for 

forest vegetation buffering of near-surface temperatures and the integration of body mass-

elevation relationships for modeling the physiological responses of ectothermic species that 

follow Bergmann’s rule. Spatial discordance between SDM predictions of suitable habitat and 

areas of low energetic cost of maintenance implies that research or conservation efforts based 

solely on SDMs may be less effective than expected for important indicator species, like 

plethodontid salamanders. These findings thus demonstrate the challenges inherent in relying on 

SDMs to predict suitable habitat, and suggest the need for integrating multiple model types 

(correlative, mechanistic, agent-based, etc.) together to provide robust conservation outcomes 

(Kearney and Porter 2009; Keppel et al. 2012; Evans et al. 2015). The integration of 

microclimate data and mechanistic responses at appropriate spatial and temporal scales is an 

important consideration for future research. The data, information, and techniques we used in 

this study could be used in conjunction with vapor pressure deficit (Riddell and Sears 2015) to 

strengthen predictions of physiologically suitable habitat and incorporated into future climate 

projections to better understand potential responses to climate change. Including temporal 

variation in locations of low energetic cost of maintenance, based on SMR and vapor pressure 

deficit, could help in targeting microclimatic refugia, areas for translocation or reintroduction, 

and areas of functional connectivity during surface active periods within transient connectivity 

windows (Zeigler and Fagan 2014; Jones et al. 2016). We support calls to accrue more 

physiological data for plethodontids to better understand physiological variation and plasticity 

from the individual level up to broader taxonomic levels (Gifford 2016). Doing so could generate 

more accurate models to help conservation management for one of the biggest threats to 

plethodontids, anthropogenic climate change. 
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Figures 

 
 

Figure 3.1. Location of Great Smoky Mountains National Park (GSMNP) and study area on the 

border of North Carolina and Tennessee in the southern Appalachian Mountains. The symbols 

indicate the presence locations used to model suitable climatic habitat for each species  
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Figure 3.2. Relationship between body mass and elevation for (a) Desmognathus wrighti, (b) 

Desmognathus ocoee, and (c) Plethodon jordani  by sex and age class. (d) Elevation of Great 

Smoky Mountains National Park study area and salamander sampling locations of Peterman et 

al. (2016)  
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Figure 3.3. Percent change (increase from 0 to 50% and decrease from 0 to -50%) in average 

standard metabolic rate (SMR) from March to June, June to August, and August to November 

for each species (Desmognathus wrighti, Desmognathus ocoee, and Plethodon jordani), sex and 

stage class (male, female, and juvenile) across the study period (2006-2010). Percent change 

calculated as: (SMRt+1 – SMRt)/SMRt, where t is the initial time period and t+1 is the following 

time period. Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean  
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Figure 3.4. Species distribution models for (a) Desmognathus wrighti, (b) Desmognathus ocoee, 

and (c) Plethodon jordani. Suitable climatic habitat predictions are based on modeling presence-

only data using maximum entropy and values represent the probability of suitable habitat 

 

 



 

 

59 

 

 
 

Figure 3.5. Correlation between predicted habitat suitability from maximum entropy species 

distribution models and minimum and maximum standard metabolic rate (SMR) from 

physiological models. Correlation coefficients based on modified t-tests to account for spatial 

autocorrelation. Values are seasonal averages of SMR for Desmognathus wright (DWRI), 

Desmognathus ocoee (DOCO), and Plethodon jordani (PJOR) by sex or stage class. High 

negative values indicate strong agreement between SDM and SMR predictions; high positive 

values indicate disagreement 
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Figure 3.6. Concordance between locations with high suitable climatic habitat (probability ≥ 

0.7) and areas with low energetic cost of maintenance (standard metabolic rate ≤ median) for 

each study species. Graphs show the total percent concordance across the study area and maps 

represent spatial patterns in concordance for (a) Desmognathus wrighti females during autumn 

demonstrating variation in concordance among minimum and maximum temperature, (b) 

Desmogntahus ocoee during autumn maximum temperatures demonstrating variation in 

concordance among adults and juveniles, and (c) Plethodon jordani males during minimum 

temperature demonstrating variation in concordance among season 
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Tables  

 

Table 3.1. Results from multiple linear regression models predicting salamander body mass 

changes in relation to elevation and sex/stage. Goodness of fit measures shown are the 

coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error 

(RMSE) calculated with repeated k-fold cross validation. Also shown are variable names, final 

parameter estimates with square root transformations for D. wrighti adults and D. ocoee), the 

standard error of estimates (SE), 95% confidence intervals (df), t-values and p-values (*p-value 

< 0.05, ** p-value < 0.01, and *** p-value < 0.001). 

 

          

Variable 
Parameter 

estimate 
  SE 95% CI t-value p-value 

Desmognathus wrighti – Male and Female 

n = 209, R2 = 0.55, MAE = 0.07, RMSE = 0.10 

(Intercept) 0.250 0.0303 0.19–0.31  8.234 *** 

Elevation (m) 0.000176 0.0000182 0.00014–0.00021  9.705 *** 

Sex - male -0.138 0.0151 -0.17 to -0.11 -9.123 *** 

Desmognathus wrighti – Juvenile 

n = 82, R2 = 0.40, MAE = 0.09, RMSE = 0.11 

(Intercept) 0.380 0.0127 0.0060–0.17 2.993  ** 

Elevation (m) -0.000291 0.000205 0.00015–0.00026 -1.423  

Elevation2 0.000000186 0.00000007643 0.00015–0.00026 2.436  * 

Desmognathus ocoee 

n = 161, R2 = 0.54, MAE = 0.28, RMSE = 0.37 

(Intercept) 0.442 0.219 0.0087–0.87 2.015  * 

Elevation (m) 0.000819 0.000132 0.00056–0.0011 6.210 *** 

Sex - juvenile -0.777 0.0801 -0.94 to -0.62 -9.699 *** 

Sex - male 0.0530 0.0719 -0.09–0.19 0.738  

Plethodon jordani 

n = 611, R2 = 0.42, MAE = 0.89, RMSE = 1.12 

(Intercept) -6.112 2.093 -10.22 to -2.00 -2.920 ** 

Elevation (m) 0.02731 0.00508 0.017–0.037 5.374 *** 

Elevation2 -0.0000207 0.00000391 
    -0.000028 to       

-0.000013 
-5.281 *** 

Elevation3 0.00000000511 0.000000000962 
  0.0000000032 -

0.0000000070 
5.317 *** 

Sex - juvenile -2.439 -2.439 -2.73 to -2.15 -16.690 *** 

Sex - male -1.206 -1.206 -1.42 to -0.99 -10.839 *** 
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Table 3.2. Results from modified t-tests (Clifford et al. 1989) indicating the association between 

standard metabolic rate (SMR) and estimates for the probability of suitable habitat from species 

distribution models. Model results are displayed for minimum SMR and maximum SMR in () for 

each sex or stage class (i.e., male, female or juvenile) across each season (i.e., spring, summer or 

fall), and include the correlation coefficient, F-statistic, degrees of freedom (df), and p-values 

(*p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001). 

 

        

Sex/Stage 

Class 
Season 

Correlation 

Coefficient 
F-statistic df p-value 

Desmognathus wrighti                 SMR Minimum (Maximum) 

Female Spring -0.45 (-0.90) 44.9 (448.8) 173 (107) *** (***) 

  Summer -0.86 (-0.91) 226.7 (500.4) 87 (102) *** (***) 

  Fall -0.18 (-0.85) 15.2 (320.2) 443 (123) *** (***) 

Male Spring -0.49 (-0.90) 51.6 (440.6) 164 (108) *** (***) 

  Summer -0.87 (-0.91) 255.8 (502.5) 84 (102) *** (***) 

  Fall -0.21 (-0.76) 19.7 (217.6) 419 (162) *** (***) 

Juvenile Spring -0.15 (-0.87) 9.0 (351.6) 377 (118) ** (***) 

  Summer -0.81 (-0.90) 185.0 (459.0) 97 (107) *** (***) 

  Fall 0.03 (-0.76) 0.5 (217.6) 661 (162) 0.47 (***) 

Desmognathus ocoee                   SMR Minimum (Maximum) 

Female Spring 0.89 (0.76) 535.8 (326.7) 145 (241) *** (***) 

  Summer 0.90 (0.90) 579.8 (573.0) 143 (140) *** (***) 

  Fall 0.88 (0.34) 480.1 (59.3) 145 (462) *** (***) 

Male Spring 0.89 (0.75) 536.5 (313.6) 144 (250) *** (***) 

  Summer 0.90 (0.90) 580.8 (573.7) 143 (140) *** (***) 

  Fall 0.88 (0.31) 481.3 (49.5) 145 (483) *** (***) 

Juvenile Spring 0.88 (0.89) 519.3 (588.6) 146 (163) *** (***) 

  Summer 0.89 (0.89) 547.3 (537.8) 149 (143) *** (***) 

  Fall 0.87 (0.78) 453.7 (286.4) 147 (189) *** (***) 

Plethodon jordani                        SMR Minimum (Maximum) 

Female Spring -0.69 (-0.75) 145.8 (208.2) 156 (159) *** (***) 

  Summer -0.76 (-0.76) 178.7 (213.2) 130 (153) *** (***) 

  Fall -0.58 (-0.73) 112.9 (195.7) 224 (170) *** (***) 

Male Spring -0.70 (-0.75) 146.5 (159.1) 157 (159) *** (***) 

  Summer -0.76 (-0.76) 178.4 (212.8) 130 (154) *** (***) 

  Fall -0.58 (-0.73) 114.2 (195.7) 223 (170) *** (***) 

Juvenile Spring -0.70(-0.75) 147.4 (207.3) 158 (160) *** (***) 

  Summer -0.76 (-0.76) 177.5 (212.0) 132 (154) *** (***) 

  Fall -0.59 (-0.73) 116.0 (195.6) 222 (170) *** (***) 
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CHAPTER 4: TARGETING AREAS OF HIGH CONSERVATION VALUE 

FOR PLETHODONTID SALAMANDERS THREATENED FROM 

CLIMATE-INDUCED RANGE LOSS 

 
Introduction 

Global biodiversity is declining at an unparalleled rate (Hoffmann et al. 2010; WWF 

2020), and climate change is expected to drive future losses (Thomas et al. 2004; Maclean and 

Wilson 2011; Urban 2015). Climate change is causing the distributions of many species to shift 

towards higher latitudes or higher elevations (Chen et al. 2011; Tingley et al. 2012; Lenoir and 

Svenning 2015), and extinction risk has been linked to increased levels of range loss for many 

species (Urban 2015). Conservation planning has the potential to mitigate climate change effects 

on biodiversity; however, there are several impediments to developing robust plans. Notably, 

accurate predictions of organismal responses to future climatic conditions are still lacking and 

often fail to address uncertainty in climate change forecasts (Hoegh-Guldberg et al. 2008; 

Clusella-Trullas et al. 2011; Urban 2016). Additionally, common approaches to spatially 

targeting areas for conservation are typically neither resolved nor extensive enough (Kearney and 

Porter 2009; Potter et al. 2013; Lenoir et al. 2017) to allow for habitat connectivity planning and 

protection of microclimatic refugia (Groves et al. 2012; Schmitz et al. 2015; Jones et al. 2016). 

There remains a need to incorporate microclimate into habitat suitability analysis to predict 

organismal responses to climate change with high levels of accuracy for conservation 

management (Lembrechts et al. 2018). 

Species distribution models (SDMs) are widely used to map future suitable habit for 

spatial conservation planning (Elith et al. 2008; Lentini and Wintle 2015; Araújo et al. 2019), 

and are typically based on climate data developed from free-air temperature predictions at coarse 

spatial resolutions (Lenoir et al. 2017; Lembrechts et al. 2018). However, free-air temperature 
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predictions disregard the important buffering effects that vegetation and plant-water interactions 

have on near-surface (i.e., microclimatic) temperatures (Davis et al. 2018; De Frenne et al. 2019; 

Zellweger et al. 2019a; Stickley and Fraterrigo 2021). These biophysical and spatial mismatches 

between free-air temperatures and buffered microclimatic temperatures are amplified in montane 

environments because localized climate can vary only a few meters apart due to topographic and 

vegetation heterogeneity (Fridley 2009; Geiger et al. 2009; Stickley and Fraterrigo 2021). 

Therefore, coarse resolution climate predictions may neglect the localized climatic regimes that 

small, ground-dwelling organisms experience within their microhabitat (Kearney and Porter 

2009; Helmuth et al. 2010). The use of coarse-resolution, free-air climate data for modeling 

future species distributions may result in regional overestimations and local underestimations of 

suitable habitat (Trivedi et al. 2008; Gillingham et al. 2012a, b; Franklin et al. 2013). This 

“spatial resolution paradox” demonstrates the potential importance of developing SDMs at 

microclimatological scales, an essential step for improving predictions of species responses to 

climate change (Lenoir et al. 2017).  

However, SDMs are also typically unable to capture fine-scale variation in biological and 

physiological processes that affect the performance and fitness of organisms (Barton and 

Terblanche 2014; Evans et al. 2015). Species distribution models either do not account for 

physiological processes at all or they predict physiological responses with climate information at 

spatial scales much greater than the study species and averaged across temporal periods 

irrelevant to the fine-scale variation in energetic demand (see Chapter 3; Kearney and Porter 

2009; Bramer et al. 2018). Predicting physiological responses of organisms at biologically 

relevant scales is imperative for ectotherms, because areas estimated to provide low standard 

metabolic rate (SMR) may provide highly suitable habitat or important connectivity pathways 
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due the low energetic costs of maintenance to survive in those areas (Cushman 2006; Kearney 

and Porter 2009). Furthermore, because warmer air increases the magnitude of drying, high 

vapor pressure deficits (VPD) may limit foraging activity of plethodontids (Riddell and Sears 

2015; Riddell et al. 2017) and low VPDs may enhance breeding activities for ectotherms (Bellis 

1962). Therefore, locating physiologically suitable microhabitat, where low VPDs and low SMR 

co-occur, may be a critical mechanistic component to plethodontid suitable habitat analysis. 

While there have been substantial advancements in the development of physiological models at 

microclimatic scales, there remains a need to further enhance physiological models that account 

for vegetation and other relevant buffers to sub-canopy, near-surface forest climates to provide 

more accurate estimates (Kearney and Porter 2009, 2016).  

There has been a call to develop SDMs with microclimatic data at biologically relevant 

scales and broad spatial extents (Lembrechts et al. 2018). This is a critical step for conservation 

management of small or dispersal-limited, ground-dwelling species that may be vulnerable to 

climate change (Cushman 2006; Hoegh-Guldberg et al. 2008; Kearney and Porter 2009; 

Clusella-Trullas et al. 2011). Plethodontid salamanders are lungless ectotherms vulnerable to 

climate change because they thrive in the cool, moist microclimates of montane ecosystems, 

disperse short distances during limited surface active periods (Feder 1983; Lutterschmidt and 

Hutchison 1997; Bernardo and Spotila 2006; Connette et al. 2015), and increases in temperature 

can affect their overall fitness (Sears 2005; DuRant et al. 2007). Plethodontid distributions and 

range extents are largely determined by climate and have been projected to drastically shrink in 

area or be completely lost under mid-century climate projections (Milanovich et al. 2010; 

Gifford and Kozak 2012).  
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Here, we used highly spatially resolved maps (3 m2 resolution) of near-surface, 

microclimatic temperature (Stickley and Fraterrigo 2021) to model current and future 

distributions, VPD,  and SMR during periods of increased surface activity (March-November) 

for three terrestrial salamander species in Great Smoky Mountains National Park (GSMNP; 

Tennessee and North Carolina, US). Because lower energetic demand and increased moisture 

suggest higher surface activity and performance for plethodontids (Feder and Pough 1975; Pough 

1980; Sears 2005; DuRant et al. 2007; Riddell and Sears 2015), we evaluated the agreement 

between suitable habitat from species distribution models with VPD and SMR. Furthermore, we 

integrated model predictions to identify areas of low energetic cost of maintenance (i.e., where 

low VPD and low SMR coincide) in suitable microclimatic habitat and areas that enhance 

functional connectivity between fragmented areas of suitable habitat. We also quantified future 

changes in surface activity area, suitable habitat, and salamander physiology at the microscale. 

Additionally, we tested the “spatial resolution paradox” by evaluating spatial discrepancies 

between microclimatic and coarse resolution predictions of suitable habitat and predictions from 

models of salamander metabolic rate.  

 

Materials and Methods 

Study area and species 

This study was conducted in GSMNP which straddles the North Carolina and Tennessee 

border (Fig. 4.1). The study area included the entirety of the park plus a 150-meter buffer for a 

total area of 2,430 km2 (Fig. 4.1). Great Smoky Mountains National Park ranges in elevation 

from 265 to 2,025 m above sea level. This topographical variation and the accompanying 

diversity of vegetation within the mostly deciduous forests (Whittaker et al. 2007) create the 
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cool, moist microclimates that lungless, plethodontid salamanders require for exchanging gases 

across their skin without risking desiccation (Petranka, 1998). The GSMNP, nicknamed the 

“Salamander Capital of the World”, is known to shelter very high levels of species richness and 

endemism of plethodontid salamanders (Kozak and Wiens 2010; Gifford and Kozak 2012).  

We studied three plethodontid salamander species that vary in body size across different 

sex and stage classes. The smallest species, Desmognathus wrighti (pygmy salamander), ranges 

from 37-51 mm in total length (TL) at an adult stage. A medium sized species, Desmognathus 

ocoee (Ocoee salamander), ranges from 70-110 mm in TL at an adult. The largest of our study 

species, Plethodon jordani (Jordan’s or red-cheeked salamander), ranges from 85-185 mm in TL 

at an adult stage. All three species are high elevation specialists occuring between 750-2,025 m 

and widely distributed throughout the GSMNP forests (Dodd 2004). Desmognathus wrighti and 

P. jordani are fully terrestrial species and P. jordani is endemic to the GSMNP region (Dodd 

2004). Desmognathus ocoee is also terrestrial in the higher elevations of the GSMNP but is a 

streamside salamander with a more complicated life history and larval stage, laying eggs in small 

streams or seepages, especially at lower elevations (Dodd 2004). However, all three study 

species have been shown to follow Bergmann’s rule, increasing in length and body mass at 

higher elevations (see Chapter 3; Peterman et al. 2016). 

 

Modeling current and future physiology 

We modeled current and future SMR (volume of oxygen consumption, VO2 μl g-1 hr-1) 

for each sex and stage class (male, female, and juvenile) of the three study species. Following the 

approach in Chapter 3, we combined species specific body mass predictions that account for 

body mass-elevation relationships with seasonal maps of minimum and maximum microclimatic 
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temperature (Stickley and Fraterrigo 2021). Because we used monthly climate data as inputs, we 

refer to spring, summer, and fall as the monthly averages of March-May, June-August, and 

September-November, respectively. Minimum and maximum SMR (i.e., SMR during nighttime 

minimum and daytime maximum temperatures) were calculated for each sex and stage class of 

the study species separately using the equations of Feder (1976, 1983), which predict SMR for 

temperate plethodontid species as a function of temperature and body mass. For P. jordani, we 

also estimated SMR using a formula that incorporated body mass measurements to obtain more 

accurate estimates of percent change in SMR (Gifford and Kozak 2012) and averaged those 

predictions with the Feder (1976, 1983) predictions to reduce uncertainty. Detailed information 

about the modeling approach are available in Stickley and Fraterrigo (2021). Overall, we 

developed 162 gridded maps of seasonal minimum and maximum SMR (3 species x 3 sex/stage 

classes x 3 seasons x 2 temperature estimates x 3 time periods) by applying the SMR formulas 

described above to the maps of microclimatic temperature and body mass. 

Because the microclimatic maps are computationally expensive, we randomly selected 

50,000 points across GSMNP, extracted SMR values from the seasonal SMR maps, and 

calculated bootstrapped statistics from the extracted points. We also calculated the percent 

change in SMR across time periods (i.e., 2006-2010 average, 2030, and 2050) as  

(SMRt+1 – SMRt)/SMRt, 

where t is the initial time period and t+1 is the following time period. This allowed us to compare 

changes in SMR while accounting for allometric differences among species, and sex and stage 

classes. Further details can be found in the Appendix C. 
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Modeling current and future vapor pressure deficit 

Because plethodontid salamanders increase surface and foraging activity under low VPD 

conditions (Riddell and Sears 2015), and plethodontids are mostly surface active at night, we 

estimated minimum VPD to include in our analysis. To model monthly and seasonal minimum 

VPD (kPa), we used our microclimatic temperature dataset as input temperature maps and 

followed similar methodologies to Allen et al. (1998). Here, VPD is measured as the difference 

between the amount of water vapor the air is capable of holding at saturation less the actual 

water vapor in the air, which is calculated as  

VPDMin = esMin – eaMin 

where (esMin) is saturation water vapor pressure (kPa) during minimum temperatures and (ea) is 

actual water vapor pressure (kPa) during minimum temperatures. We used the microclimatic 

minimum temperature maps to estimate esMin as 

esMin = 0.611 * exp(17.3 * Tmin / Tmin + 237.3) 

where Tmin is minimum temperature (oC). We estimate eaMin as 

eaMin = RH * esMin / 100 

where RH is relative humidity (%) and calculated as 

RH = 100 * (SH * p) / esMin * 0.622 

where SH is specific humidity (kg/kg) and p is atmospheric pressure. Atmospheric pressure is 

corrected for elevation as 

p = psea level * (293-0.0065 * Elevation / 293)5.26 

where psea level  is atmospheric pressure at sea level (101.3 kPa) and Elevation is elevation in 

meters above sea level. Specific humidity was extracted from the Multivariate Adaptive 

Constructed Analogs (MACA) dataset (Abatzoglou and Brown 2012). We downloaded NetCDF 
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files of monthly specific humidity estimates at a 4 km2 spatial resolution for the months of March 

through April during 2006-2010, 2030, and 2050. Monthly specific humidity estimates from 20 

climate projections (Abatzoglou and Brown 2012; http://www.climatologylab.org/) were 

averaged into ensemble models for each month of these study years. We used projections 

estimated under Representative Concentration Pathway (RCP) 8.5 because this highly aggressive 

emissions scenario shows close agreement to current trends and is recommended for future 

climate projections through the mid-century (Schwalm et al. 2020). The 4 km2 rasters were 

resampled to a ~3m2 grid size to match the spatial resolution of the other raster datasets used for 

the VPD calculation. Because we used monthly data, we refer to spring, summer, and fall as the 

monthly averages of March-May, June-August, and September-November, respectively. 

 

Modeling current and future suitable habitat 

To develop climate inputs for SDMs at differing spatial resolutions, we used 

microclimatic temperature maps (3m2 spatial resolution) from Stickley and Fraterrigo (2021) and 

coarse resolution climate maps (30 arc-second resolution was ~0.85 km2 after projection) from 

the National Aeronautics and Space Administration Earth Exchange Downscaled Climate 

Projections (Thrasher et al. 2013; NEX-DCP30) dataset. The microclimatic temperature maps 

consisted of monthly minimum and maximum temperature predictions during the growing 

season (March-November) from 2006 to 2010. We downloaded monthly temperature and 

precipitation maps during the same months (March-November) from NEX-DCP30 from 2006-

2010, 2030, and 2050. For future climate predictions, we used projections from an ensemble 

model produced with Representative Concentration Pathway (RCP) 8.5 because this emissions 

scenario shows close agreement to current trends and is recommended for future climate 
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projections through the mid-century (Schwalm et al. 2020). For future microclimatic temperature 

predictions, we calculated spatially explicit temperature anomalies with the NASA NEX-DCP30 

dataset by subtracting the monthly temperature estimates for the current period (monthly average 

from 2006-2010) from the temperature estimates for the future period (2030 and 2050). The 

monthly temperature anomaly maps were resampled to match the spatial resolution of the 

microclimatic maps, then added to the current monthly microclimatic maps to develop fine 

resolution predictions of future temperature. We used current and future temperature predictions 

to estimate changes in future microclimatic temperature and surface active area (i.e., area in km2 

that falls within the preferred temperature range 12-26 oC; Brattstrom 1979; Farallo and Miles 

2016) across GSMNP. Precipitation maps from NASA NEX-DCP30 were resampled to match 

the spatial resolution of the microclimatic maps for use in microclimatic modeling of suitable 

habitat. 

We modeled the probability of suitable habitat and the range extent for each study species 

(D. wrighti, D. ocoee, and P. jordani) across the GSMNP for the 2006-2010, 2030, and 2050 

time periods using bioclimatic variables and species occurrence data. Current and future monthly 

temperature predictions and precipitation predictions were used to calculate 11 bioclimatic 

variables demonstrated to be biologically relevant and interpretable for plethodontid salamanders 

(Rissler and Apodaca 2007; Milanovich et al. 2010; Supplementary Table C.1). We calculated all 

bioclimatic variables specifically during the growing season months to develop predictions 

during periods of increased surface activity for plethodontid salamanders (March-November). 

We obtained historical presence-only data for each study species from Peterman et al. (2016), the 

Illinois Natural History Survey (https://herpetology.inhs.illinois.edu/databases/), the Smithsonian 

National Museum of Natural History (https://collections.nmnh.si.edu/search/), the Hands on the 
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Land Network (https://handsontheland.org/), and from Milanovich et al. (2010) via HerpNET 

(www.herpnet.org) and Global Biodiversity Information Facility (www.gbif.org). After 

compilation and removal of duplicate points, presence locations included 205, 158, and 316 

points for D. wrighti, D. ocoee, and P. jordani, respectively (Fig. 4.1).  

We used a maximum entropy (MaxEnt) approach to estimate suitable habitat for each 

species because MaxEnt (Elith et al. 2006) is the most widely-used program for species 

distribution modeling due to accuracy with presence-only occurrence data (Hernandez et al. 

2006; Elith et al. 2011; Merow et al. 2013). We followed methodologies for data preparation, 

model fitting, model prediction, and model evaluation as recommended by Hijmans and Elith 

(2017). Model goodness of fit was assessed using the average area under the curve (AUC) and 

we considered model fit with AUC ≥ 0.7 to be valid for estimating current and future habitat 

suitability. We evaluated models using k-fold cross validation to ensure the use of all data points 

while reducing variance. The models and threshold values produced for the 2006-2010 time 

period were used to predict the future range and suitable habitat with the bioclimate estimates for 

2030 and 2050. Overall, we produced 18 species distribution models at microclimatic and coarse 

resolutions (3 species x 3 time periods x 2 model approaches). We also characterized changes in 

fragmentation of suitable habitat for each microclimatic model by calculating patch density (PD) 

as the number of individual patches of the species’ range divided by the area of the range. 

To assess the spatiotemporal differences between microclimatic and coarse resolution 

predictions of suitable habitat, we calculated the differences between model outputs as NASA 

NEX-DCP30 prediction less the microclimatic predictions for each time period (2006-2010, 

2030, and 2050). Using these values, we determined the average difference in suitability within 

the predicted species’ ranges and in areas within and outside of highly suitable habitat 



 

 

73 

 

(probability of suitable habitat ≥ 0.7). We also compared the extent (km2) of predicted species’ 

ranges and highly suitable habitat for each species and each model and calculated percent change 

in area from current (2006-2010 average) predictions to 2030 and 2050 projections. Further 

details can be found in the Appendix C.  

 

Integrating physiology and suitable habitat 

To evaluate the agreement between physiological variables and suitable habitat 

predictions across spatial scales, we used correlation coefficients, estimated from the modified t-

test (Clifford et al. 1989), between SMR (minimum and maximum) or VPD and the probability 

of suitable habitat within the predicted species’ range. We used the modified t-test, based on the 

work of Clifford et al. (1989), because this method creates an appropriate sample size to account 

for spatial autocorrelation and corrects correlation coefficients between two spatially correlated 

sequences. To evaluate the association between variables, we extracted values for each variable 

and location (i.e., latitude and longitude) at 50,000 randomly selected points within each species’ 

predicted range extent within GSMNP. Negative correlations ≤ -0.7 indicated model agreement 

and positive correlations ≥ 0.7 indicated model disagreement. We conducted separate analyses 

for each season during the 2006-2010 and 2050 time periods and for microclimatic and coarse 

resolution, aggregated predictions. We previously examined the agreement between 

physiological and suitable habitat predictions for these plethodontid species using aggregated 

SMR data and SDM-predicted habitat suitability at coarse resolutions for the current time period 

(see Chapter 3). We used a similar approach here to evaluate the agreement between future 

microclimatic predictions of suitable habitat and SMR to compare microclimatic model 

agreement and aggregated model agreement under future climate conditions. To develop 
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aggregated predictions of future habitat suitability, VPD and SMR, we used our microclimatic 

maps to calculate the mean value for probability of suitable habitat, mean VPD,  and mean SMR 

at the same coarse-resolution (~0.85 km2). Points were extracted from every raster grid within 

each species’ predicted range for statistical analyses.  

To locate suitable habitat and evaluate potential conservation approaches, we integrated 

predictions of suitable habitat with areas of low energetic cost of maintenance. Here, areas of 

low energetic cost of maintenance are defined as areas within the species’ predicted range where 

low SMR and VPD co-occur. We grouped areas with low energetic cost of maintenance into 

high priority areas (HPA) indicated as the SMR and VPD ≤ first quartile (Q1) and secondary 

priority areas (SPA) as the SMR between Q1 and the median. Our previous research indicates 

that SMR of the three study species varies among seasons and between adults and juveniles (see 

Chapter 3). We incorporate this variation into the SMR estimates by spatially intersecting SMR 

for juveniles and adults and across seasons. We also account for temporal connectivity across 

each time period (i.e., 2010, 2030, 2050), by calculating the average SMR and VPD across time 

periods, then producing final mapped HPAs and SPAs for each season. After classifying VPD 

and SMR into priority areas, we spatially intersected seasonal HPAs to locate where the lowest 

VPD and lowest SMR coincide during spring, summer and fall, thus indicating areas where 

plethodontids would, on average, experience increased ability for surface activity.  

To identify areas of high conservation value, we spatially located areas of overlap 

between microclimatic predictions of highly suitable habitat (≥ 0.7) with locations of low 

energetic cost of maintenance based on HPAs. We also used a multiscale approach to target areas 

of agreement between the aggregated predictions of habitat suitability and VPD by locating the 

raster grids from broad-resolution maps (~0.85 km2) that indicated the highest levels of 
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agreement (i.e., grids where the lowest VPD and highest habitat suitability estimates co-occur). 

Then, we targeted areas of high conservation value from our microscale (3 m2) maps that fell 

within the broad-resolution grids of high predictive agreement. Furthermore, we identified areas 

of low energetic cost of maintenance (i.e., HPAs or SPAs) outside of each species’ range to 

identify potential pathways of functional connectivity between fragmented suitable habitat 

patches. We evaluated the strength of habitat connectivity by comparing the change in a habitat 

fragmentation metric, patch density (PD = patch per km2), between sole habitat suitability maps 

and maps that account for both habitat suitability and areas with low energetic cost of 

maintenance. For connectivity metrics, we only included HPAs and SPAs within dispersal 

distances between time periods. Although home range size has been shown to typically be < 7.5 

m for a plethodontid species, it is accepted that the dispersal ability could be up to a few hundred 

meters (Welsh and Lind 1992; NatureServe 2021), Therefore, we use a conservative approach 

and estimate a possible dispersal distance of 300 m per year or 6,000 m between time periods 

(i.e., from 2010–2030 and 2030-2050). For all spatial and statistical modeling, we used R 

statistical software v. 3.50 (R Core Team 2020) and ArcGIS® software versions 10.4.1–10.6.1 

(Esri 2020). Further details can be found in the Appendix C. All data will be stored and available 

for download from a public repository when this manuscript is accepted for publication.   

 

Results 

Future climate and suitable habitat 

From the initial time period (2006-2010) to 2050, average microclimatic temperatures 

within GSMNP are projected to increase by 2.2 oC for minimum temperatures (2006-2010 

average: spring = 10.8 oC, summer = 18.4 oC, autumn = 10.3 oC; 2050: spring = 12.9 oC, summer 
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= 20.5 oC, autumn = 12.5 oC) and 2.2 oC for maximum temperatures (2006-2010 average: spring 

= 19.6 oC, summer = 26.0 oC, autumn = 18.9 oC; 2050: spring = 21.8 oC, summer = 28.0 oC, 

autumn = 21.4 oC). The area of potential surface activity (i.e., temperature between 12-26 oC) is 

projected to decline 16% and 27% at summer maximum temperatures through 2030 and 2050, 

respectively (total area of surface activity in 2030 = 712 km2, 2050 = 446 km2). However, area of 

potential surface activity is predicted to increase during the spring (18% by 2030, 53% by 2050) 

and fall (18% by 2030, 34% by 2050) at nighttime minimum temperatures (total area of surface 

activity during spring 2030 = 930 km2, fall 2030 = 707 km2; spring 2050 = 1,771 km2, fall 2050 

= 1,540 km2). We found no significant change in area of surface activity during other time 

periods as roughly 96% of the park area (2,334-2,336 km2) fell within the surface active 

temperature range.  

Microclimatic SDMs had an average area under the curve (AUC) of 0.80 for the three 

study species, indicating moderate to high model accuracy (Fig. 4.2; Appendix C Fig. C.1; D. 

wrighti =0.74; D. ocoee = 0.86; P. jordani = 0.81). The most influential predictor variables were 

mean temperature of the wettest quarter (WorldClim BIO8) and precipitation of the driest quarter 

(WorldClim BIO17) for all three species (Appendix C Table C.1). Species distribution models 

developed with NASA NEX-DCP30 data had an average AUC of 0.90 indicating high model 

accuracy (Appendix C Fig. C.2; D. wrighti = 0.92; D. ocoee = 0.91; P. jordani = 0.92). The most 

influential predictor variables varied among each species (Appendix C Table C.1; D. wrighti = 

BIO1, BIO17; D. ocoee = BIO7, BIO17, BIO8; P. jordani = BIO17, BIO18). 

Compared to the initial time period (2006-2010), microclimate-based predictions of 

species’ ranges are projected to shift an average of 0.94 km north and 2.75 km east through 2050 

(Fig. 4.3; Appendix C Fig. C.1; D. wrighti = 0.21 km north, 0.23 km east; D. ocoee = 0.52 km 
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north, 5.43 km east; P. jordani = 2.10 km north, 2.59 km east). By 2050, species’ ranges are 

projected to decline by 74%, 55%, and 80% for D. wrighti, D. ocoee, and P. jordani, respectively 

(Table 4.1; Fig. 4.3; Appendix C Fig. C.1). Areas of highly suitable habitat (probability ≥ 0.7) 

are projected to decline by 91%, 92%, and 71% for D. wrighti, D. ocoee, and P. jordani, 

respectively (Table 4.1; Fig. 4.2). However, we also found some gain in areas of highly suitable 

habitat under future microclimatic projections for each species with the majority of gain 

occurring through 2030 and minimal gain from 2030 to 2050 (Fig. 4.2). In total, D. wrighti and 

D. ocoee  are estimated to gain 9 km2 and 3 km2, respectively, in area of highly suitable habitat. 

Plethodon jordani is estimated to gain 39 km2 of highly suitable habitat under future SDM 

projections. For P. jordani and D. ocoee, average elevation for area of gain in highly suitable 

habitat is estimated to be at higher elevations (P. jordani = 1,481 m, D. ocoee = 1,836 m) 

compared to areas of loss in highly suitable habitat (P. jordani = 1,357 m, D. ocoee = 1,574 m). 

The opposite pattern was found for D. wrighti (gain = 1,426 m, loss = 1,538 m). For all species, 

gain in highly suitable habitat is estimated at increasingly southwestern aspects (D. wrighti = 

189, D. ocoee = 176, P. jordani = 189) compared to losses in highly suitable habitat at 

southeastern aspects (D. wrighti = 179, D. ocoee = 159, P. jordani = 165). Fragmentation of 

suitable habitat is projected to increase for all species by an average of 265 patches/km2, more 

than doubling  for D. wrighti and P. jordani by 2050 (Appendix C Table C.2).  

Compared to microclimate-based predictions, predicted suitable habitat and range extents 

based on coarse-resolution, free-air temperatures were larger for all species during the 2006-

2010 time period. However, the estimated amount of future range loss and loss of highly suitable 

habitat varied among species and models (Table 4.1; Appendix C Fig. C.1, C.2). For the 2006-

2010 time period, species’ ranges predicted from coarse-resolution, free-air temperatures were 



 

 

78 

 

13.7% larger than those predicted from microclimate temperatures (D. wrighti = 19%, D. ocoee 

= 10%, and P. jordani = 12%), and area of highly suitable habitat was 40.3% larger than 

microclimatic predictions (Table 4.1; D. wrighti = 20%, D. ocoee = 45%, and P. jordani = 56%). 

The coarse-resolution models predict a larger 2050 range but lower area of highly suitable 

habitat for D. wrighti, and a larger 2050 range and larger area of highly suitable habitat for D. 

ocoee (Table 4.1). By 2050, P. jordani is projected to lose 99% of its range extent and 100% of 

highly suitable habitat based on coarse-resolution predictions, a considerably larger loss of 

habitat compared to the microclimatic estimates of 80% and 71% declines, respectively (Table 

4.1; Appendix C Fig. C.2).  

For the 2006-2010 time period, the coarse-resolution predictions indicated a higher 

probability of suitable habitat for all species compared to microclimatic projections, but the 

probability of suitable habitat was lower within areas of highly suitable habitat (Fig. 4.3; 

Appendix C Table C.3). By 2050, coarse-resolution predictions project lower probability of 

suitable habitat for each species’ range, except for D. ocoee (Fig. 4.3). Under current and future 

conditions, coarse-resolution predictions for the probability of suitable habitat were found to be 

consistently lower within areas of highly suitable habitat as compared to microclimatic 

predictions (Fig. 4.3; Appendix C Table C.3).  

   

Physiological changes under future climate 

The rate at which SMR increases under future temperature projections varied among each 

species, between nighttime and daytime temperatures (i.e., minimum and maximum SMR), and 

among season (Fig. 4.4; Appendix C Fig. C.3-C.6). By 2050, SMR is estimated to increase by an 

average of 13.5%, 6.5%, and 13.2% for D. wrighti, D. ocoee, and P. jordani, respectively. 
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Percent change in SMR from the 2006-2010 time period to 2030 and to 2050 is estimated to be 

greater during nighttime minimum temperatures for D. wrighti and D. ocoee, but marginally 

higher during daytime maximum temperatures for P. jordani (Fig. 4.4; Appendix C Fig. C.6). 

For D. wrighti and D. ocoee, juvenile stage classes exhibited significantly higher SMR increases 

during minimum temperatures with the highest rates and highest variation during spring and 

autumn (Fig. 4.4). Juvenile estimates for P. jordani did not differ significantly, and seasonal 

variation was minimal for all sex and stage classes of P. jordani (Fig. 4.4).    

 

Integrating physiology and suitable habitat 

Results from modified t-tests indicated negative correlations between fine resolution 

SMR and suitable habitat within D. wrighti and P. jordani ranges during the 2006-2010 period, 

but the relationships were weak to moderate on average (Appendix C Table C.4; D. wrighti, x̅ = -

0.14± 0.13; P. jordani, x̅ = -0.49± 0.13). However, within the D. ocoee range correlations were 

strong and positive on average (Appendix C Table C.4; x̅ = 0.67± 0.03). Correlations between 

fine resolution suitable habitat and VPD were moderate in strength and negative (Appendix C 

Table C.4; D. wrighti, x̅ = -0.47± 0.08; P. jordani, x̅ = -0.38± 0.07; P. jordani, x̅ = -0.36± 0.08). 

In general, predictions based on coarse-resolution, aggregated data indicated a higher magnitude 

in correlation between the probability of suitable habitat with SMR and VPD compared to fine 

resolution data (Appendix C Table C.5). Under future climate projections for 2050, we found no 

substantial correlation between predictions of fine resolution SMR and suitable habitat 

(Appendix C Table C.4; D. wrighti, x̅ = -0.02± 0.04; D. ocoee, x̅ = 0.28± 0.04; P. jordani, x̅ = -

0.01± 0.05). Correlations between fine resolution suitable habitat and VPD were weak to 

moderate under future climate projections for 2050 (Appendix C Table C.4; D. wrighti, x̅ = -
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0.20± 0.04; D. ocoee, x̅ = -0.38± 0.04; P. jordani, x̅ = 0.09± 0.03). However, aggregating future 

microclimatic habitat estimates, SMR, and VPD to coarser resolutions (~0.85 km2) increased 

correlation magnitudes (Appendix C Table C.5; D. wrighti, ΔSMR r = -0.24, ΔVPD r = -0.25; D. 

ocoee, ΔSMR r = 0.22, ΔVPD r = 0.02; P. jordani, ΔSMR r = -0.26, ΔVPD r = -0.15). 

In total, we located large extents of high conservation value (i.e., agreement between 

areas of highly suitable habitat with HPAs) for D. wrighti and P. jordani but considerably less 

area was located for D. ocoee (Fig. 4.5; Appendix C Fig. C.7). For the 2006-2010 period, area of 

high conservation value was greater for P. jordani (84 km2, 33% of highly suitable habitat) 

compared to D. wrighti (48 km2, 20% of highly suitable habitat) and D. ocoee (2 km2, 1% of 

highly suitable habitat). By 2050, area of agreement is estimated to be considerably larger for P. 

jordani (32 km2, 43% of highly suitable habitat) compared to D. wrighti (2 km2, 9% of highly 

suitable habitat) and D. ocoee (< 1 km2, < 1% of highly suitable habitat area). Using the 

multiscale approach to first target broad-scale agreement between habitat suitability and low 

SMR resulted in the ability to narrow down targets of high conservation value with an average of 

0.14 km2 and 0.13 km2 in area of high conservation value per coarse-resolution grid cell for 2010 

and 2050 estimates, respectively (D. wrighti 2010 =  0.16 km2, 2050 = 0.09 km2; D. ocoee 2010 

=  < 0.01 km2, 2050 = < 0.01 km2: P. jordani 2010 =  0.26 km2, 2050 = 0.30 km2).  

Integration of functional pathways (i.e., HPAs and SPAs between fragmented areas of 

suitable habitat) with projected range extents enhanced connectivity by reducing fragmentation 

of habitat for each species (Fig. 4.5; Appendix C Table C.2, Fig. C.8). When functional pathways 

are integrated with species’ ranges, fragmentation is estimated to decrease by 36%, 47%, and 

26% in 2050 for D. wrighti, D. ocoee, and P. jordani, respectively (Appendix C Table C.2, Fig. 

C.8). 
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Discussion 

It is critically important to protect areas where species may persist under future climate 

conditions (Faleiro and Machado 2013; Jones et al. 2016a; Elsen et al. 2020). However, 

conservation approaches commonly disregard microclimatic regimes and biophysical responses 

to microclimatic conditions at spatiotemporal scales relevant to a multitude of species threatened 

from climate change (Kearney and Porter 2009; Potter et al. 2013; Lenoir et al. 2017; Ripple et 

al. 2017). Here, we answer the call to incorporate microclimate into SDMs at broad extents 

(Lembrechts et al. 2018) by developing microclimatic SDMs at a 3 m2 spatial resolution across 

GSMNP (2,430 km2 spatial extent). By comparing microclimatic models of suitable habitat, 

which account for the buffering effect of forest vegetation on near-surface temperatures, to 

coarse resolution SDMs, we found potential mismatches across spatial scales. Furthermore, we 

demonstrate approaches to integrating mechanistic and correlative models for locating areas of 

high conservation value (i.e., where suitable habitat, low VPD, and low SMR co-occur), which 

may increase efficiency and flexibility in spatial conservation planning and increase habitat 

connectivity.   

Using a multiscale approach to locate areas of high conservation value may have multiple 

benefits. We found large extents of high conservation value for D. wrighti and P. jordani, but 

substantially less area of high conservation value for D. ocoee due to increased levels of model 

disagreement between predictions of suitable habitat and metabolic rate (Appendix C Table C.4, 

C.5). For D. wrighti and P. jordani, a multiscale approach is beneficial because it allows for 

prioritizing the vast extent of potentially important microscale habitat by first locating broad-

scale areas of co-occurrence between models, then targeting the microscale areas of co-

occurrence between suitable habitat and areas of high conservation value among a choice of 
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assets (Fig. 4.5; Appendix C Fig. C.7). However, a multiscale approach may also be useful for D. 

ocoee because it allows for flexibility in targeting the broad extents that contain the vast majority 

of high conservation value. For example, targeting areas of high conservation value for D. ocoee 

required a backwards approach by first assessing locations with the highest model agreement 

between suitable habitat and vapor pressure deficit, then moving backwards to areas that may 

exhibit less model agreement but spatially higher levels of conservation value (Appendix C Fig. 

C.7). In both examples, the multiscale approach gives more options for choosing areas to target 

for conservation and allows for prioritizing large extents into smaller, more manageable assets. 

This is the type of efficiency, flexibility, and risk spreading that is called for in systematic 

conservation planning (Possingham et al. 2006).  

We also found that targeting areas of low energetic cost of maintenance (i.e., where low 

VPD and low SMR co-occur) between fragmented patches of suitable habitat may provide 

conservation targets of potential functional connectivity under future projections of suitable 

habitat (Fig. 4.5; Appendix C Fig. C.8). Including these areas of low energetic cost of 

maintenance as potentially suitable habitat could reduce fragmentation estimates under future 

climate scenarios (Appendix C Table C.2). Furthermore, the incorporation of temporal 

differences into estimates of low energetic cost of maintenance may reduce uncertainty in these 

connectivity pathways under future climate conditions, an important aspect for developing robust 

conservation plans (Groves et al. 2012; Schmitz et al. 2015; Jones et al. 2016).  

Our results also demonstrate other types of flexibility that could benefit spatial 

prioritization of future conservation assets under climate change. For instance, we found that 

future predictions of energetic demand vary among species, between adults and juveniles, and 

temporally among daily or seasonal temperatures (Fig. 4.4; Appendix C C.3-C.6). These 
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variations in energetic demand were incorporated into conservation plans by targeting intersected 

locations of low VPD with low SMR across future time periods (i.e., through 2030 and 2050) for 

different stage classes of the study species and across multiple seasons of potential surface 

activity. This may help enhance species’ protection at different life stages and during critical 

temporal periods. For example, the high elevation plethodontid salamanders of GSMNP are 

typically surface active at night during the summer (Petranka 1998; Dodd 2004; Connette et al. 

2015). However, temperature projections indicated large increases in surface activity area during 

spring and autumn minimum temperatures. Intersecting areas with low SMR and low VPD 

during these time periods of increased surface activity (e.g., summer nighttime) may allow for 

the identification of spatiotemporally explicit conservation targets (Fig. 4.5; Appendix C Fig. 

C.7, C.8).  

Similarly, this integrative approach supports the development of conservation plans at 

different levels of taxonomic organization. Targeting locations of low energetic cost of 

maintenance for entire taxa could greatly reduce uncertainty in spatial prioritization should these 

species have closely related niche requirements (i.e., phylogenetic niche conservatism; Mokany 

and Ferrier 2011; Jones et al. 2016; Wiens et al. 2009; Evans et al. 2015). Alternatively, targeting 

locations for specific species or stage classes may be important should more robust demographic 

analyses be needed. For example, population connectivity among amphibians is often dependent 

upon juvenile dispersal (Cushman 2006), so the use of connectivity maps that account for 

juvenile variation in physiology may be desired over species-level estimates. These approaches 

could allow for very specific conservation targets or intersected targets that reduce uncertainty 

by accounting for variations in SMR, a necessity for small or dispersal-limited species that may 
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need to move across the landscape as suitable habitat areas decline or become more fragmented 

(Fahrig 2003; Cushman 2006).  

Indeed, we found substantial fragmentation and loss of suitable habitat by mid-century 

for our three study species (Table 4.1; Fig. 4.2; Appendix C Fig. C.1, C.2). These results are 

similar to the findings of other studies that assessed future habitat suitability of high elevation 

plethodontid species (Parra-Olea et al. 2005; Milanovich et al. 2010; Sutton et al. 2015; Jacobsen 

et al. 2020). However, the losses estimated using microclimatic SDMs were not as severe as 

projections from some of these previous studies. For example, Milanovich et al. (2010) projected 

loss of habitat to be much greater by 2050 for the same species we studied, with an average loss 

25.5% greater than our microclimatic estimates. Similar to our estimates from the coarse 

resolution NASA NEX-DCP30 model, Milanovich et al. (2010) estimated over a 99% reduction 

in P. jordani suitable habitat by 2050, indicating near extinction for this species. Our 

microclimatic models indicated a roughly 80% loss in suitable habitat. Differences in spatial 

resolution may be a factor, but we found mixed results that indicated our microclimatic estimates 

projected decreased and increased range losses compared to coarse-resolution predictions 

depending upon the species (Table 4.1). Because the only differences among our SDMs were the 

temperature inputs (i.e., microclimatic and NASA NEX-DCP30), these results indicate large 

potential for over- or underestimation of species’ ranges with free-air, coarse resolution climate 

data.  

We also found that coarse resolution SDMs consistently overestimated the probability of 

suitable habitat in each species range, but underestimated within areas of highly suitable habitat 

(Fig. 4.3). These underestimations were amplified under future climate projections, indicating 

that the most important areas to target for conservation may be undervalued by coarse resolution 



 

 

85 

 

climate models (Fig. 4.3). The “spatial resolution paradox” suggests that coarse resolution SDMs 

may simultaneously overestimate suitable habitat regionally but underestimate suitable habitat 

locally (Lenoir et al. 2017). For instance, bias from coarse resolution SDMs has been shown to 

overestimate thermal tolerances and suitable habitat regionally (Trivedi et al. 2008; Franklin et 

al. 2013) while underestimating locations of climatically stable locations of potential 

microrefugia (Franklin et al. 2013). Our findings of over- and underestimation across spatial 

scales agree with this paradox in terms of valuing suitable habitat and highlight an important 

disparity between SDMs developed from fine resolution, microclimatic and coarse resolution, 

free-air temperature data. Because finer resolution climate data are likely to produce more 

accurate predictions of species distributions compared to broader model inputs (Gillingham et al. 

2012a), we believe the use of more robust climate inputs, that account for the effects of 

vegetation and biophysical interactions of forest microclimate, will be imperative for developing 

robust conservation targets at an appropriate biological level for many species vulnerable to 

climate change (Lembrechts et al. 2018; Stickley and Fraterrigo 2021).  

Our results also demonstrate the value of bottom-up scaling for assessing model 

agreement between suitable habitat and salamander bioenergetics, because the aggregated data 

resulted in increased correlations between model predictions (Fig. 4.5; Appendix C Fig. C.7). 

Finding these broad scale trends in model agreement or disagreement allows for more precise 

targeting of locations with low energetic cost of maintenance within projected suitable habitat at 

the microscale (Fig. 4.5; Appendix C Fig. C.7). It has been shown that correlations are likely to 

increase between spatial variables at aggregated scales, but the use of scaling approaches has 

long been controversial due to potential problems in interpreting ecological processes (Turner et 
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al. 1989; Marceau 1999; Perveen and James 2012). However, our results show this can be a 

useful tactic for locating future suitable habitat.  

We note that this study has limitations that should be considered. First, we specifically 

use a common, maximum entropy approach to modeling suitable habitat with bioclimatic 

variables shown to be important to our study species (Elith et al. 2006, 2011; Rissler and 

Apodaca 2007; Milanovich et al. 2010). There is likely an array of other types of data or abiotic 

and biotic variables that have causal relationships to the distributions of our study species but 

were unable to be captured in our predictions (Araújo et al. 2019; Leitão and Santos 2019). 

Furthermore, using an ensemble approach to modeling species’ distributions would help limit 

uncertainty. While our microclimatic temperature models account for vegetation buffering of 

near-surface temperatures and our physiological models account for the body mass-elevation 

relationships found for the three study species, the suitable habitat projections should be 

considered conservative because other biological processes that can influence organismal 

responses to climate change were not represented (e.g., behavioral changes). We also note that 

there are potential misidentifications of D. ocoee occurrence points due to similar appearance to 

D. imitator, and combined with the complicated life history of D. ocoee, estimates for areas of 

high conservation value with this species should be considered very conservative (see Chapter 

3). Furthermore, the conservation strategies evaluated in this study are within the GSMNP 

region, an already protected area. However, the approach we developed should be useful for 

further research in the region or for park management and can certainly be applied to other 

forested environments globally as the availability of finer resolution data become available 

(Lefsky et al. 2002; Bramer et al. 2018; Zellweger et al. 2019b).   



 

 

87 

 

The findings from this study elucidate problems associated with relying on coarse 

resolution SDMs and demonstrate the potential for enhancing connectivity and targeting future 

suitable microclimatic habitat at a fine resolution. Additionally, the integration of physiological 

variability among stage classes of species and temporally among seasons can help reduce 

uncertainty under future climate conditions. This is an essential step in accurately predicting 

organismal responses to future climate change, especially for species like plethodontid 

salamanders that are reliant on the availability of physiologically and climatically suitable habitat 

for regional persistence (Milanovich et al. 2010; Gifford and Kozak 2012). Targeting locations in 

the microhabitat where species may find microclimatic refugia (Hannah et al. 2014; Lenoir et al. 

2017) or functional connectivity (Groves et al. 2012; Nunez et al. 2013; Jones et al. 2016) to 

future suitable habitats is imperative for all species that need to outpace climate change (Loarie 

et al. 2009). The techniques we apply in this study may also be valuable in searching for 

potential sites of translocation or assisted migration (Hoegh-Guldberg et al. 2008; Jones et al. 

2016). Because climate change is a major threat to the loss of species’ ranges (Urban 2015), 

further approaches to integrating microclimatic inputs into SDMs, along with mechanistic 

approaches, are greatly needed. The conservation of a great portion of global biodiversity will be 

dependent on strengthening predictions of organismal responses to climate change at the 

microscale. 
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Figures 

 

Figure 4.1. Location of Great Smoky Mountains National Park (GSMNP) and study area on the 

border of North Carolina and Tennessee in the southern Appalachian Mountains. The symbols 

indicate the presence locations used to model suitable habitat for each species. Also shown are 

the estimated range extents for each species (IUCN Red List 2021) 
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Figure 4.2. Microclimatic species distribution models displaying the probability of suitable 

habitat for the 2006-2010 time period (left) and loss or gain in highly suitable habitat (probability 

≥ 0.7) in 2050 (right) for (a) Desmognathus wrighti, (b) Desmognathus ocoee, and (c) Plethodon 

jordani. Scale bar represents 2050 map 
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Figure 4.3. Graphs and heatmap showing the difference in the probability of suitable habitat 

between species distribution models derived from NASA NEX-DCP30 coarse-resolution, free-

air temperature data and microclimatic temperature data. Bar graphs represent the mean 

difference within the predicted species’ range and within predicted areas of highly suitable 

habitat (probability ≥ 0.7) during the 2006-2010 and 2050 periods for (a) Desmognathus wrighti, 

(b) Desmognathus ocoee, and (c) Plethodon jordani. Heat maps display the differences during 

the 2006-2010 period. Positive values indicate higher predictions by NASA NEX-DCP30 

(overestimation) and negative values indicate lower predictions (underestimation) compared to 

microclimatic predictions 
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Figure 4.4. Percent change in minimum and maximum standard metabolic rate (SMR) between 

the 2006-2010 average and 2050 during spring, summer, and fall months. Shown are estimates 

for the sex and stage class (male, female, and juvenile) for Desmognathus wrighti (DWRI), 

Desmognathus ocoee (DOCO), and Plethodon jordani (PJOR). Points indicate the bootstrapped 

mean and central error bar lines indicate the confidence interval for the bootstrapped median. 

Vertical lines indicate the error bar for standard deviation of mean  
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Figure 4.5. (a) Multi-scale conservation approach targeting areas with highest model agreement 

(large, colored points in graph) between low vapor pressure deficit (VPD) and high probability of 

suitable habitat to spatially target microscale areas of high conservation value within coarse 

resolution areas (white boxes in map inset). (b) Secondary priority areas (SPA) for microscale 

standard metabolic rate (SMR) and VPD may be useful for targeting functional connectivity  

between 2050 range projections for Desmognathus ocoee. (c) Low energetic cost of maintenance 

at the microscale may be useful in targeting functional connectivity between 2050 projections of 

highly suitable habitat (probability ≥ 0.7) for Plethodon jordani. 
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Table 

 

Table 4.1. Predicted area of species’ range and highly suitable habitat (probability ≥ 0.7) from species distribution models developed 

with bioclimatic variables calculated from microclimate and NASA NEX-DCP30 climate models. Suitable habitat was calculated for 

Desmognathus wrighti, Desmognathus ocoee and Plethodon jordani for the time periods of 2010 (average from 2006-2010), 2030 and 

2050. Also shown is percent change between time periods.  

 

                

      Area  (km2) Percent Change 

Year Species Model Range Suitable Habitat ≥0.7 Years Range Suitable Habitat ≥0.7 

2010 Desmognathus wrighti Microclimate 920.1 243.7 2010-2030 -0.48 -0.60 

2010 Desmognathus wrighti NASA NEX-DCP30 1093.3 292.2 2010-2030 -0.49 -0.84 

2010 Desmognathus ocoee Microclimate 604.2 197.4 2010-2030 -0.60 -0.81 

2010 Desmognathus ocoee NASA NEX-DCP30 661.9 287.2 2010-2030 -0.42 -0.63 

2010 Plethodon jordani Microclimate 840.3 257.1 2010-2030 -0.14 -0.03 

2010 Plethodon jordani NASA NEX-DCP30 941.0 399.8 2010-2030 -0.45 -0.45 

2030 Desmognathus wrighti Microclimate 482.2 96.7 2030-2050 -0.51 -0.78 

2030 Desmognathus wrighti NASA NEX-DCP30 558.7 46.9 2030-2050 -0.28 -0.66 

2030 Desmognathus ocoee Microclimate 243.0 37.0 2030-2050 0.13 -0.56 

2030 Desmognathus ocoee NASA NEX-DCP30 384.7 106.4 2030-2050 0.22 0.70 

2030 Plethodon jordani Microclimate 722.0 249.4 2030-2050 -0.77 -0.70 

2030 Plethodon jordani NASA NEX-DCP30 514.1 220.4 2030-2050 -1.00 -1.00 

2050 Desmognathus wrighti Microclimate 235.4 21.6 2010-2050 -0.74 -0.91 

2050 Desmognathus wrighti NASA NEX-DCP30 402.0 16.1 2010-2050 -0.63 -0.94 

2050 Desmognathus ocoee Microclimate 273.8 16.3 2010-2050 -0.55 -0.92 

2050 Desmognathus ocoee NASA NEX-DCP30 467.8 180.8 2010-2050 -0.29 -0.37 

2050 Plethodon jordani Microclimate 164.4 73.9 2010-2050 -0.80 -0.71 

2050 Plethodon jordani NASA NEX-DCP30 0.7 0.0 2010-2050 -1.00 -1.00 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

Predicting organismal responses to climate change is a difficult, but critically important, 

objective for conservation management, especially for species vulnerable to diminishing ranges. 

Currently, there is a large spatiotemporal gap between the modeling approaches most commonly 

used to assess species’ distributions and the actual conditions many species vulnerable to climate 

change experience within their microhabitat. Our lack of understanding in the structural and 

biophysical effects that forest vegetation and topographical factors have on buffering 

microclimates must be resolved in order to produce accurate climate data for use in developing 

robust correlative and mechanistic habitat suitability predictions. Furthermore, integrating these 

modeling approaches in effective ways that reduce uncertainty in prioritizing suitable 

microclimatic habitat is crucial for the many organisms that rely on microclimatic regimes near 

the surface of the earth.  

The findings from this dissertation research illustrate important spatiotemporal variations 

in mechanistic and correlative models and demonstrate approaches to integrating multiple model 

types for suitable habitat analysis that accounts for temporal variations in energetic demand. The 

results from Chapter 2 indicate that the inclusion of complex vegetation characteristics is 

important for developing robust predictions of microclimatic temperature at fine resolutions, an 

essential aspect of estimating the habitat component of small, ectothermic species, like 

plethodontid salamanders. By integrating robust predictions of microclimatic temperature into a 

physiological model, which also accounts for body-mass elevation relationships of the study 

species, the comparison of fine resolution salamander bioenergetics with commonly used, coarse 

resolution SDMs indicated spatial mismatches between model types. However, the results from 

this study highlight important temporal misalignments between diurnal and seasonal variations in 
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metabolic demand with static modeling approaches like SDMs. This dissertation research 

answers the call to incorporate microclimatic data into SDMs and establishes approaches to 

integrating mechanistic and correlative models for spatially targeting areas of high conservation 

value at relevant biological scales for plethodontid salamanders.  

Multiple findings from this research suggest important considerations for future work in 

this field. In Chapter 2, the finding that sub-canopy vegetation is an important contributor to 

buffering near-surface temperatures and increasing predictive accuracy of microclimatic 

temperature estimates should greatly benefit future attempts at microclimate downscaling. There 

remains a need to enhance these approaches by incorporating more advanced remote sensing 

technologies across multiple temporal periods and collecting better information, like soil 

moisture data, to estimate accurate effects of plant-water interactions on near-surface 

temperatures. In Chapter 3 and Chapter 4, the demonstrated temporal misalignments between 

static, correlative models and mechanistic models will be important to account for habitat 

suitability analysis under projected climate change scenarios. Future studies should integrate 

multiple model approaches that account for spatiotemporal differences, as opposed to solely 

relying on correlative SDMs for analyzing the distributions of species. It will be important for 

future research to include increased efforts of in situ sampling to produce more robust estimates 

of energetic maintenance cost of plethodontids that account for spatiotemporal variation and 

acclimatization. Doing so will greatly benefit mechanistic models and enhance spatial targeting 

of suitable habitat.  

 Finally, the approaches used in this dissertation for estimating microclimatic 

temperature, and incorporating that microclimatic data into mechanistic and correlative models 

of habitat suitability, will be useful for spatially identifying areas of high conservation value. 
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Future studies could imitate and expand on these models as increased availability of LiDAR and 

other fine resolution datasets become available. Enhancing habitat suitability analyses in species’ 

microhabitat could help in precisely targeting areas of microclimatic refugia and connectivity 

pathways between refugial areas. These approaches may also be useful for predicting areas 

appropriate for in situ sampling or for targeting areas for translocation or reintroduction of 

species that rely on microclimatic habitats. The continued development of more robust 

approaches to assessing suitable habitat in the microenvironment is necessary for truly 

understanding how species may respond to climate change.  
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APPENDIX A: CHAPTER 2 SUPPLEMENTARY MATERIAL 

Modeling Vegetation Structure and Landscape Physiographic Characteristics 

Vegetation structure was characterized using two LiDAR datasets, one on the Tennessee 

side and one on the North Carolina side of Great Smoky Mountains National Park. Both datasets 

were airborne-collected, represent leaf-off LiDAR, and LiDAR point clouds were classified 

using automated data classification methods with manual post-classification reviews, cleanup, 

and accuracy testing. The TN dataset was collected in 2011 and processed by The Center for 

Remote Sensing and Mapping Science at the University of Georgia and Photo Science, Inc. 

(Jordan et al 2011). At the time of this paper, information about the TN LiDAR dataset and 

LiDAR classification was available at http://www.cgr.uga.edu/index.php/projects/usgs-great-

smoky-mountains-lidar-and-orthophotos/index.html and downloadable at https://www.data.gov/. 

The NC phase 3, airborne LiDAR dataset was collected in 2006 and processed by the North 

Carolina Floodplain and Mapping Program (OCM Partners 2019). At the time of this paper, 

information about the NC LiDAR dataset and LiDAR classification was available from 

https://flood.nc.gov/ncflood/ and downloadable from 

https://www.coast.noaa.gov/digitalcoast/data/.  

Because the LiDAR datasets were collected from different organizations at different 

times, we tested the correlation between the two datasets to measure the strength of the 

association. We extracted vegetation height (VH) and vegetation structure (VS) from 5,000 

points within the area of overlap on the TN and NC border, and we only used vegetation 

structure variables that had a Pearson correlation coefficient of ≥ 0.5 in our linear mixed-effects 

(LME) models. The final layers chosen between the two LiDAR datasets were vegetation height 

(VH; r = 0.66), and vegetation structure (VS) in the following layers: low-understory = VS 
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below 5 m (r = 0.63), high-understory = VS > 5 m to 10 m (r = 0.65), low-canopy = VS > 10 m 

to 15 m (r = 0.63), and mid-canopy VS = > 15 m to 20 m (r = 0.65). We also examined 

correlation and covariance among each vegetation layer chosen for this study (Table A.1).  

 

Table A.1. Correlation coefficient and covariance (in parentheses) matrix for each vegetation 

structure and vegetation height class chosen for this study.  

 

 

To develop the VS layers, LiDAR point data were filtered into different height classes 

and converted into raster data as point counts per each height class. Calculations were processed 

at a spatial resolution of 9 m2 to allow for an average of 30 points per pixel. Vegetation height 

was calculated for each raster cell of the 3 m2 digital elevation model (DEM). Vegetation 

structure percentages were calculated as the points within each vegetation class divided by the 

total above ground points for each 9 m2 raster cell. We followed similar methodology as Lidar 

Analysis of Vegetation Structure 

(https://grasswiki.osgeo.org/wiki/Lidar_Analysis_of_Vegetation_Structure) for vegetation 

structure data and used r.inlidar to calculate vegetation height data and to develop vegetation 

point count rasters using GRASS GIS version 7.2.0.  

Low-understory 

VS (< 5 m)

High-understory 

VS (5 m-10 m)

Low-canopy VS       

(10 m-15 m

Mid-canopy VS      

(15 m-20 m)

Vegetation 

Height

Low-understory 

VS (< 5 m)
1.00 (172.57) 0.05 (7.51) -0.16 (-18.93) -0.30 (-36.80) -0.39 (-38.15)

High-understory 

VS (5 m-10 m)
0.05 (7.51) 1.00 (115.43) 0.18 (18.00) -0.23 (-23.30) -0.37 (-28.64)

Low-canopy VS       

(10 m-15 m
-0.16 (-18.93) 0.18  (18.00) 1.00 (83.15) 0.17 (14.13) -0.27 (-17.70)

Mid-canopy VS      

(15 m-20 m)
-0.30 (-36.80) -0.23 (23.30) 0.17 (14.13) 1.00 (85.86) -0.01 (-0.52)

Vegetation 

Height
-0.39 (-38.15) -0.37 (-28.64) -0.27 (-17.70) -0.01 (-0.52) 1.00 (52.87)

https://grasswiki.osgeo.org/wiki/Lidar_Analysis_of_Vegetation_Structure
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ArcGIS® software versions 10.4.1–10.6.1 by Esri Inc. (2020) was used to calculate 

slope, aspect, distance-to-stream, and topographic convergence index (TCI). We developed the 

TCI layer by calculating the upslope catchment area of a site and correcting for local slope 

(Beven and Kirby, 1979). Landscape physiographic layers were derived using a DEM produced 

and distributed by the National Park Service, Great Smoky Mountains National Park and 

downloaded from the National Park Service, Integrated Resource Management Applications 

Data Store (Colson 2011; https://irma.nps.gov/Datastore/). Solar insolation was calculated using 

R.sun with GRASS GIS version 7.2.0 (https://grasswiki.osgeo.org/wiki/R.sun). We used the 

DEM, slope, and aspect as inputs keeping the default settings for orientation, slope, atmospheric 

turbidity, and albedo. We calculated solar insolation (Wh/m2/day-1), also known as solar 

irradiance, for the middle day of each week (i.e., estimating weekly average solar insolation) 

during the study period months of March–November. We did not incorporate shadowing effect 

of terrain due to the computational time of calculating solar insolation across such a fine-grain 

DEM and broad extent.  

 

Linear Mixed-Effects Modeling and Results 

The level one (L1) model was calculated to incorporate temperature predictions based 

solely on elevational lapse and regional weather station measurements. We followed a similar 

methodology in producing the L1 model as Fridley (2009) because of the importance in 

elevational lapse rates affecting temperatures in montane environments. The L1 model 

predictions were included as fixed effects in our LME models for the same reason (Fig. A.1). 

Our goal was to develop a final model that outcompeted this null model, which included the L1 

model temperature predictions. 

https://irma.nps.gov/Datastore/
https://grasswiki.osgeo.org/wiki/R.sun
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Temperature predictions from the level one (L1) model were highly correlated to the 

datalogger measurements for daily MaxT (r= 0.85) and MinT (r = 0.94). On average, MaxT and 

MinT decreased with elevation (ΔMaxT = -0.66 oC and ΔMinT = -0.38 oC with 100-m (hm) 

elevational increase), with the highest lapse rates occurring in summer (MaxT = -0.70 oC hm-1, 

MinT = -0.42 oC hm-1) and lowest lapse rates occurring in fall (MaxT = -0.61 oC hm-1, MinT = -

0.34 oC hm-1). We fit our linear mixed effects models to daily MaxT and MinT data from the 

climate dataloggers as a function of the L1 model temperature predictions, vegetation structure, 

and landscape physiographic variables (Fig. A.1). 

 

 

Figure A.1. Flow chart of microclimate temperature model predictions (3 m2 spatial resolution) 

for daily minimum and maximum temperature from 2006–2010 for the months of March–

November. The level one model was developed with daily temperature lapse rates produced using 

simple linear models with data from 11 regional weather stations and elevation data from a 3m2 

digital elevation model. We then combined LiDAR-derived vegetation structure and GIS-derived 

landscape physiography variables with daily temperature predictions from the level one model to 

predict daily microclimate temperatures using a linear mixed-effects models  
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We followed a top-down selection method for model fitting and evaluation as suggested 

by Zuur et al. (2009). We evaluated the predictions from each top-ranked model based on 

Akaike’s Information Criterion (AICc) as seen in Table A.2. To validate the top ranked models, 

Table A.2. Akaike’s Information Criterion for minimum and maximum temperature models 

within a 95% confidence set. Final selected models (FSM) and candidate models are shown. 

Candidate models show the FSM plus (+) or less (-) the other variables included in the candidate 

model. DTS = Distance-to-Stream, TCI = Topographic Convergence Index, Solar = Solar 

Insolation, Veg. = vegetation.  

Model k log L AICc ΔAICc wi 

Minimum Temperature           

Final Selected Model (FSM) 12 -257275.3 514574.7 0.00 0.37 

FSM + TCI*Veg. Density Below 5 m 13 -257274.8 514575.7 0.98 0.23 

FSM + DTS*Veg. Density 5 m to 10 m 14 -257274.2 514576.4 1.72 0.16 

FSM + TCI*Veg. Density Below 5 m +                               

DTS*Veg. Density 5 m to 10 m 
15 -257273.6 514577.1 2.44 0.11 

FSM - TCI - DTS 10 -257278.6 514577.2 2.47 0.11 

Global Model 28 -257271.6 598700.0 15.64 0.00 

Null Model  5 -257271.6 600194.3 1509.90 0.00 

Maximum Temperature           

Final Selected Model (FSM) 12 -299330.2 598684.4 0.00 0.25 

FSM + Solar*Veg. Density 5 m to 10 m 14 -299328.3 598684.7 0.29 0.21 

FSM + Veg. Height 13 -299329.5 598684.9 0.53 0.19 

FSM + Solar*Veg. Density 5 m to 10 m +  

Veg. Height 
15 -299327.5 598684.9 0.54 0.19 

FSM + DTS*Veg. Height 14 -299329.3 598686.6 2.23 0.08 

FSM + Solar*Veg. Density 5 m to 10 m +                                         

DTS*Veg. Height 
16 -299327.3 598686.7 2.27 0.08 

Global Model 28 -299322.0 598700.0 15.64 0.00 

Null Model  5 -300092.1 600194.3 1509.86 0.00 

 

we randomly split the data into 70% training data for model fitting and used the remaining 30% 

as testing data for evaluation. This method was chosen  because we had a very large dataset and 

found no significant variation in the descriptive statistics among the entire dataset, training 
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dataset, and testing dataset. We measured goodness-of-fit for each model using the coefficient of 

determination (R2). Our aim was to maximize predictive accuracy, so we calculated mean 

absolute error (MAE) for each candidate model, selecting the model with the lowest MAE. For 

both MinT and MaxT, the models with the lowest MAE coincided with the best ranked models 

according to AICc (Table A.2).  

Final selected models for MaxT and MinT were re-fit using restricted maximum 

likelihood to obtain parameter estimates (Zuur et al. 2009). Our final LME models resulted in 

conditional coefficient of determinations above 0.8 (Fig. A.2; MaxT R2 = 0.81, MinT R2 =  

0.92). 

 

Figure A2. Relationship between daily temperature measurements from 159 iButton loggers and 

temperature predictions at each iButton logger location from our final linear mixed effects (LME) 

models. Daily minimum and maximum temperatures were estimated from March–November of 

2006–2010 at each iButton logger location (N = 218,625). Data were split into 70 percent training 

data (N = 153,037) and 30 percent test data (N = 65,588) for model validation. Graphs and 

coefficient of determinations were produced with test data 
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Free-Air and Microclimatic Temperature Mismatches 

The gridded, free-air temperature data from the Daymet (Thornton et al. 2016) and the 

Parameter–Elevation Regressions on Independent Slopes Model (PRISM; Daly et al 1994) 

datasets were downloaded at 1-km2 and 4-km2 spatial resolutions, respectively. Raster data and 

extracted point data were downloaded from https://daymet.ornl.gov/ for the Daymet dataset and 

http://www.prism.oregonstate.edu/ for the PRISM dataset.  

We used ArcGIS® software versions 10.4.1–10.6.1 by Esri Inc. (2020) to extract 5,000 

random points from each raster dataset of the climate variables, landscape physiographic 

variables and vegetation structure variables. These point data were used to quantify mismatches, 

based on temperature differences (absolute and real values) on a monthly and seasonal time 

scale, which equated to temperature predictions from the L1, Daymet or PRISM raster models 

less the temperature predictions of our final LME model. We also calculated these temperature 

differences for each raster dataset to develop heat maps of model differences (Fig. A.3; Fig. A.4; 

Fig. A.5; Fig. A.6).  

 

https://daymet.ornl.gov/
http://www.prism.oregonstate.edu/
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Figure A.3. Heat maps showing the mismatch for minimum temperature between the level one 

model (3 m2), Daymet model (1 km2), and Prism model (4 km2) from our LME model predictions. 

Mismatches are calculated as follows: Comparison Model (i.e., level one or Daymet or Prism) – 

Final LME Model Predictions = Mismatch. Values are absolute to show the spatiotemporal 

locations of the largest temperature mismatches. An elevation map is included to show elevational 

patterns in some temperature mismatches  
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Figure A.4. Heat maps showing the mismatch for maximum temperature between the level one 

model (3 m2), Daymet model (1 km2), and Prism model (4 km2) from our LME model predictions. 

Mismatches are calculated as follows: Comparison Model (i.e., level one or Dayment or Prism) – 

Final LME Model Predictions = Temperature Mismatch. Values are absolute to show the 

spatiotemporal locations of the largest temperature mismatches. An elevation map is included to 

show elevational patterns in some temperature mismatches 
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Figure A.5. Heat maps showing the mismatch for minimum temperature between the level one 

model (3 m2), Daymet model (1 km2), and Prism model (4 km2) from our LME model predictions. 

Mismatches are calculated as follows: Comparison Model (i.e., level one or Dayment or Prism) – 

Final LME Model Predictions = Temperature Mismatch. Real values are re-classified to show 

areas of overestimation and underestimation. A negative value means the comparison model (i.e., 

level one, Daymet or Prism Model) is underestimating temperature in comparison to our final LME 

model predictions. An elevation map is included to show elevational patterns in some temperature 

mismatches 
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Figure A.6. Heat maps showing the mismatch for maximum temperature between the level one 

model (3 m2), Daymet model (1 km2), and Prism model (4 km2) from our LME model predictions. 

Mismatches are calculated as follows: Comparison Model (i.e., level one or Dayment or Prism) – 

Final LME Model Predictions = Temperature Mismatch. Real values are re-classified to show 

areas of overestimation and underestimation. A negative value means the comparison model (i.e., 

level one, Daymet or Prism Model) is underestimating temperature in comparison to our final LME 

model predictions. An elevation map is included to show elevational patterns in some temperature 

mismatches  

 

 

Contribution of Predictor Variables to Spatiotemporal Mismatches  

We found that elevation and solar insolation heavily contributed to mismatches and, 

therefore, focused on those predictor variables in our results and discussion. Here, we also display 
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the results from each of the predictor variables from our final LME models to display the 

contribution of temperature mismatches from each predictor variable (Fig. A.7; Fig. A.8; Fig. A.9). 

 

Figure A.7. Monthly average correlation coefficients between temperature mismatches (absolute 

values from 2006–2010) and the important landscape physiographic drivers of (a) topographic 

convergence index (TCI) and (b) distance-to-stream (m). Temperature mismatches are the 

difference between free-air temperature estimates and microclimatic predictions from our final 

LME models. Large positive or negative values for a given month indicate that the predictor 

variable substantially contributed to the mismatch between microclimatic and free-air 

temperatures  
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Figure A.8. Monthly average correlation coefficients between temperature mismatches (absolute 

values from 2006–2010) and the important vegetation structure (VS) drivers of (a) VS in the 

mid-canopy strata, (b) VS in the low-canopy strata and (c) VS in the low-understory strata. 

Temperature mismatches are the difference between free-air temperature estimates and 

microclimatic predictions from our final LME models. Large positive or negative values for a 

given month indicate that the predictor variable substantially contributed to the mismatch 

between microclimatic and free-air temperatures 
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Figure A.9. Monthly average correlation coefficients between temperature mismatches (absolute 

values from 2006–2010) and the important interactions between vegetation structure (VS) and 

landscape physiographic drivers of (a) VS in the mid-canopy strata * solar insolation 

(Wh/m2/day-1), (b) VS in the low-canopy strata * topographic convergence index (TCI), and (c) 

VS in the low-understory strata * solar insolation (Wh/m2/day-1). Temperature mismatches are 

the difference between free-air temperature estimates and microclimatic predictions from our 

final LME models. Large positive or negative values for a given month indicate that the predictor 

variable substantially contributed to the mismatch between microclimatic and free-air 

temperatures 
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APPENDIX B: CHAPTER 3 SUPPLEMENTARY MATERIAL 

Materials and Methods 

Fine-grain standard metabolic rate  

The standard metabolic rate (SMR) formulas we used for can be found in Feder (1976, 

1983). We also used a species-specific formula for P. jordani, which can be found in Gifford and 

Kozak (2012). To produce the Feder SMR models, we used the relationship between body mass 

and SMR at different temperatures (Feder 1976; 5 oC, 15 oC, and 25oC) to develop SMR 

estimates at those temperatures and produce SMR maps at a 3 m2 spatial scale at those static 

temperatures. We then used the linear relationship from Feder (1983) to predict SMR for each 

species using the SMR maps at static temperatures as the initial input. We also calculated P. 

jordani SMR using the following Gifford and Kozak (2012) formula:  

log10 SMR = 0.036(temperature)+0.57(log10 Body Mass)-1.95 

For P. jordani, we model averaged our final outputs from both SMR predictions to limit 

uncertainty. All SMR models were converted to volume of oxygen consumption in microliters 

(VO2 μl g-1 hr-1). Spatial modeling was conducted using the raster calculator with ArcGIS® 

software versions 10.4.1–10.6.1 (Esri inc. 2020).  

 

Species distribution modeling 

Our objective was to develop climatically-derived species distribution models that are 

commonly used for predicting habitat suitability. The 11 WorldClim 

(https://www.worldclim.org/) bioclimatic variables used for our species distribution models had 

previously been shown to be biologically relevant and interpretable for plethodontid salamanders 

(Rissler and Apodaca 2007; Milanovich 2010). The 11 bioclimatic variables included annual 
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mean temperature (BIO1), mean diurnal range (BIO2), isothermality (BIO3), temperature annual 

range (BIO7), mean temperature of wettest (BIO8) and driest quarter (BIO9), precipitation 

seasonality (BIO15), precipitation of the wettest quarter (BIO16) and driest quarter (BIO17), and 

precipitation of the warmest (BIO18) and coldest quarter (BIO19; Table B.1).  

To develop SDMs, we first produced raw outputs of suitable habitat at approximately 1 

km2 resolution for each plethodontid salamander species (D. wrighti, D. ocoee, and P. jordani) 

across GSMNP using the 11 bioclimatic variables and presence-only dataset. A maximum 

entropy method was chosen for our modeling approach because MaxEnt is one of the most 

popular and widely-used programs due to high accuracy with presence-only data (Elith et al. 

2006; Hernandez et al. 2006). We followed methodologies for data preparation, model fitting, 

model prediction, and model evaluation as recommended by Hijmans and Elith (2017). For 

model fitting and prediction, we selected 500 random points across the study area and extracted 

the bioclimatic variables as background data points. We also extracted the bioclimatic variables 

at every presence location for each species. Data were partitioned into five groups and we fit and 

test our model five times using k-fold cross validation. Goodness of fit was assessed using the 

average area under the curve (AUC) value. We used the ‘dismo’ package in R statistical software 

v. 3.50 (R Core Team 2020) to estimate MaxEnt habitat suitability.  
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Figures 

 
 

Figure B.1. Minimum and maximum standard metabolic rate (SMR) for Desmognathus wrighti. 

Shown are estimates for each sex and stage class (female, male, and juvenile) during each month 

of the study period. Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean   
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Figure B.2. Minimum and maximum standard metabolic rate (SMR) for Desmognathus ocoee. 

Shown are estimates for each sex and stage class (female, male, and juvenile) during each month 

of the study period. Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean   
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Figure B.3. Minimum and maximum standard metabolic rate (SMR) for Plethodon jordani. 

Shown are estimates for each sex and stage class (female, male, and juvenile) during each month 

of the study period. Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean   
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Figure B.4. Percent change in minimum and maximum standard metabolic rate (SMR) between 

each month of the study period (March-November). Shown are estimates for the sex and stage 

class (male, female, and juvenile) for Desmognathus wrighti. Points indicate the bootstrapped 

mean and central error bar lines indicate the confidence interval for the bootstrapped median. 

Vertical lines indicate the error bar for standard deviation of mean   
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Figure B.5. Percent change in minimum and maximum standard metabolic rate (SMR) between 

each month of the study period (March-November). Shown are estimates for the sex and stage 

class (male, female, and juvenile) for Desmognathus ocoee. Points indicate the bootstrapped mean 

and central error bar lines indicate the confidence interval for the bootstrapped median. Vertical 

lines indicate the error bar for standard deviation of mean   
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Figure B.6. Percent change in minimum and maximum standard metabolic rate (SMR) between 

each month of the study period (March-November). Shown are estimates for the sex and stage 

class (male, female, and juvenile) for Plethodon jordani. Points indicate the bootstrapped mean 

and central error bar lines indicate the confidence interval for the bootstrapped median. Vertical 

lines indicate the error bar for standard deviation of mean   
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Figure B.7. (a) Minimum and maximum standard metabolic rate plotted against the predicted 

habitat suitability from species distribution models. (b) Locations of low standard metabolic rate 

(SMR ≤ median) vary between minimum and maximum SMR. Examples in (a) and (b) are using 

data for Desmognathus wrighti females during autumn. (c) Minimum standard metabolic rate in 

spring plotted against predicted habitat suitability for Desmognathus wrighti. (d) Locations of low 

standard metabolic rate (SMR ≤ median) vary between adults and juveniles. (e) Minimum standard 

metabolic rate during summer and autumn plotted against predicted habitat suitability for 

Desmognathus wrighti juveniles. (f) Locations of low standard metabolic rate (SMR ≤ median 

vary between seasons. (a), (c) , and (e) are plotted with piecewise regression to demonstrate the 

relationship in low suitable habitat (0.0-0.7) and high suitable habitat (> 0.7) 
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Figure B.8. a) Minimum and maximum standard metabolic rate plotted against the predicted 

habitat suitability from species distribution models. (b) Locations of low standard metabolic rate 

(SMR ≤ median) vary between minimum and maximum SMR. Examples in (a) and (b) are using 

data for Desmognathus ocoee females during autumn. (c) Maximum standard metabolic rate 

during autumn plotted against predicted habitat suitability for Desmognathus ocoee. (d) Locations 

of low standard metabolic rate (SMR ≤ median) vary between adults and juveniles. (e) Maximum 

standard metabolic rate during summer and autumn plotted against predicted habitat suitability for 

Desmognathus ocoee males. (f) Locations of low standard metabolic rate (SMR ≤ median vary 

between seasons. (a), (c), and (e) are plotted with piecewise regression to demonstrate the 

relationship in low suitable habitat (0.0-0.7) and high suitable habitat (> 0.7) 



 

121 

 

 
 

Figure B.9. a) Minimum and maximum standard metabolic rate plotted against the predicted 

habitat suitability from species distribution models. (b) Locations of low standard metabolic rate 

(SMR ≤ median) vary between minimum and maximum SMR. Examples in (a) and (b) are using 

data for Plethodon jordani juveniles during autumn. (c) Minimum standard metabolic rate during 

autumn plotted against predicted habitat suitability for Desmognathus ocoee. (d) Locations of low 

standard metabolic rate (SMR ≤ median) vary between adults and juveniles. (e) Minimum standard 

metabolic rate during summer and autumn plotted against predicted habitat suitability for 

Desmognathus ocoee males. (f) Locations of low standard metabolic rate (SMR ≤ median vary 

between seasons. (a), (c) , and (e) are plotted with piecewise regression to demonstrate the 

relationship in low suitable habitat (0.0-0.7) and high suitable habitat (> 0.7) 
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Table B.1. The 11 bioclimatic variables used in our species distribution models. 

WorldClim Bioclimatic Variables             

Bioclim 

Code 
Description 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (Mean Diurnal Range/Temperature Annual Range) (×100) 

BIO7 
Temperature Annual Range (Maximum Temperature of Warmest Month-

Minimum Temperature of Coldest Month) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Table B.2. Mean mass (g) and standard error of the mean for observed females, males, and 

juveniles of each study species. Also shown are model estimates for the increase in mass (g) and 

percent increase in mass per 100 m gain in elevation.   

 

         

Sex/Stage Count Mass (g) SE ΔMass (g)/100 m ΔMass (%)/100 m 

Desmognathus wrighti 

Female 59 0.52 0.017 0.017 3.3 

Male 150 0.35 0.009 0.017 4.9 

Juvenile 82 0.36 0.015 0.021 5.8 

Desmognathus ocoee 

Female 41 3.23 0.224 0.31 9.6 

Male 76 3.29 0.179 0.32 9.7 

Juvenile 44 0.99 0.106 0.19 19.2 

Plethodon jordani 

Female 148 5.73 0.113 0.20 3.5 

Male 359 4.43 0.059 0.20 4.5 

Juvenile 104 3.06 0.114 0.20 6.5 
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Table B.3. Mean, minimum, and maximum standard metabolic rate (SMR) estimates and the 

coefficient of variation (CV) for each species. Shown are averages across the entire study period, 

and during spring, summer, and autumn months. 

     

D. wrighti Study Period Spring Summer Autumn 

  Mean CV Mean CV Mean CV Mean CV 

Minimum SMR 26.54 0.06 22.27 0.07 35.92 0.03 21.44 0.10 

Female 30.11 0.05 25.84 0.05 39.49 0.03 25.01 0.08 

Male 27.31 0.05 23.04 0.06 36.69 0.03 22.20 0.10 

Juvenile 22.20 0.08 17.93 0.10 31.58 0.05 17.10 0.13 

   Average SMR 34.04 0.06 30.21 0.06 42.78 0.04 29.15 0.07 

Female 37.61 0.05 33.78 0.05 46.35 0.03 32.72 0.06 

Male 34.81 0.05 30.97 0.06 43.55 0.04 29.92 0.08 

Juvenile 29.70 0.08 25.87 0.09 38.44 0.06 24.81 0.09 

Maximum SMR 41.55 0.06 38.14 0.07 49.64 0.05 36.87 0.07 

Female 45.12 0.05 41.71 0.06 53.21 0.04 40.44 0.06 

Male 42.32 0.06 38.91 0.06 50.40 0.05 37.63 0.07 

Juvenile 37.21 0.08 33.80 0.09 45.30 0.07 32.53 0.09 

D. ocoee Study Period Spring Summer Autumn 

  Mean CV Mean CV Mean CV Mean CV 

Minimum SMR 50.14 0.15 45.87 0.16 59.51 0.12 45.03 0.17 

Female 57.49 0.14 53.22 0.15 66.87 0.12 52.39 0.16 

Male 59.25 0.14 54.98 0.15 68.63 0.11 54.15 0.13 

Juvenile 33.66 0.20 29.39 0.22 43.04 0.15 28.56 0.24 

   Average SMR 57.64 0.12 53.80 0.13 66.37 0.10 52.74 0.13 

Female 65.00 0.11 61.16 0.12 73.73 0.10 60.10 0.13 

Male 66.75 0.11 62.91 0.12 75.49 0.09 61.86 0.10 

Juvenile 41.17 0.14 37.33 0.15 49.90 0.11 36.27 0.17 

Maximum SMR 65.14 0.09 61.73 0.10 73.23 0.08 60.46 0.11 

Female 72.50 0.09 69.09 0.09 80.59 0.08 67.82 0.10 

Male 74.26 0.09 70.85 0.09 82.34 0.08 69.57 0.08 

Juvenile 48.67 0.10 45.26 0.11 56.76 0.09 43.99 0.12 

P. jordani Study Period Spring Summer Autumn 

  Mean CV Mean CV Mean CV Mean CV 

Minimum SMR 79.90 0.11 68.91 0.12 102.83 0.10 67.95 0.13 

Female 91.52 0.08 79.15 0.08 117.30 0.07 78.10 0.09 

Male 80.50 0.11 69.44 0.11 103.59 0.10 68.47 0.15 

Juvenile 67.67 0.16 58.14 0.17 87.59 0.15 57.28 0.18 

   Average SMR 100.47 0.10 87.42 0.10 128.66 0.10 85.34 0.11 
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Table B.3. continued 

Female 114.79 0.08 99.99 0.08 146.73 0.07 97.64 0.08 

Male 101.24 0.10 88.09 0.10 129.63 0.09 85.98 0.13 

Juvenile 85.40 0.15 74.19 0.15 109.62 0.15 72.38 0.16 

Maximum SMR 127.98 0.11 112.43 0.10 163.02 0.11 108.48 0.11 

Female 146.12 0.08 128.39 0.08 186.09 0.09 123.88 0.08 

Male 128.96 0.10 113.29 0.10 164.29 0.10 109.31 0.13 

Juvenile 108.85 0.15 95.61 0.15 138.69 0.15 92.26 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

126 

 

APPENDIX C: CHAPTER 4 SUPPLEMENTARY MATERIAL 

Figures 

 
 

Figure C.1. Microclimatic species distribution models for (a) Desmognathus wrighti, (c) 

Desmognathus ocoee, and (e) Plethodon jordani displaying the probability of suitable habitat 

above 0.5 for each species from an average 2006-2010 model, 2030 model, and 2050 model. 

Probability of suitable habitat > 0.5 is overlaid on the entire estimated species range, denoted in 

black. Compass shows average directional shift of species’ range from 2010 to 2050 
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Figure C.2. Coarse resolution species distribution models developed from the NASA NEX-

DCP30 dataset for (a) Desmognathus wrighti, (c) Desmognathus ocoee, and (e) Plethodon 

jordani displaying the probability of suitable habitat above 0.5 for each species from an average 

2006-2010 model, 2030 model, and 2050 model. Probability of suitable habitat > 0.5 is overlaid 

on the entire estimated species range, denoted in black 
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Figure C.3. Seasonal estimates for (a) minimum and (b) maximum standard metabolic rate (SMR) 

during 2006-2010 for Desmognathus wrighti (DWRI), Desmognathus ocoee (DOCO), and 

Plethodon jordani (PJOR). Shown are estimates for each sex and stage class (female, male, and 

juvenile). Points indicate the bootstrapped mean and central error bar lines indicate the confidence 

interval for the bootstrapped median. Vertical lines indicate the error bar for standard deviation of 

mean 
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Figure C.4. Future seasonal estimates for (a) minimum and (b) maximum standard metabolic 

rate (SMR) during 2030 for Desmognathus wrighti (DWRI), Desmognathus ocoee (DOCO), and 

Plethodon jordani (PJOR). Shown are estimates for each sex and stage class (female, male, and 

juvenile). Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean 



 

130 

 

 
 

Figure C.5. Future seasonal estimates for (a) minimum and (b) maximum standard metabolic 

rate (SMR) during 2050 for Desmognathus wrighti (DWRI), Desmognathus ocoee (DOCO), and 

Plethodon jordani (PJOR). Shown are estimates for each sex and stage class (female, male, and 

juvenile). Points indicate the bootstrapped mean and central error bar lines indicate the 

confidence interval for the bootstrapped median. Vertical lines indicate the error bar for standard 

deviation of mean 
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Figure C.6. Percent change in minimum and maximum standard metabolic rate (SMR) between 

2010 (2006-2010 average) and 2030 for each season. Shown are estimates for the sex and stage 

class (male, female, and juvenile) for Desmognathus wrighti (DWRI), Desmognathus ocoee 

(DOCO), and Plethodon jordani (PJOR). Points indicate the bootstrapped mean and central error 

bar lines indicate the confidence interval for the bootstrapped median. Vertical lines indicate the 

error bar for standard deviation of mean 
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Figure C.7. Multi-scale conservation approach targeting locations with model agreement (large, 

colored points in graph) between low vapor pressure deficit (VPD) and high probability of suitable 

habitat to spatially target microscale areas of high conservation value or secondary priority areas 

within coarse resolution areas (white boxes in map insets). (a) Desmognathus wrighti, (b) 

Desmognathus ocoee, and (c) Plethodon jordani 
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Figure C.8. Low energetic costs of maintenance at the microscale may be useful in targeting 

functional connectivity between 2050 projections of range extent for Desmognathus wrighti. (b) 

Secondary priority areas (SPA) for microscale standard metabolic rate (SMR) and VPD may be 

useful for targeting functional connectivity  between 2050 range projections for Desmognathus 

ocoee. (c) Low energetic cost of maintenance at the microscale may be useful in targeting 

functional connectivity between 2050 projections of highly suitable habitat (probability ≥ 0.7) for 

Plethodon jordani 



 

134 

 

Table C.1. The 11 bioclimatic variables used in our species distribution models. 

 

WorldClim Bioclimatic Variables             

Bioclim 

Code 
Description 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (Mean Diurnal Range/Temperature Annual Range) (×100) 

BIO7 
Temperature Annual Range (Maximum Temperature of Warmest Month-

Minimum Temperature of Coldest Month) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Table C.2. Landscape fragmentation of suitable climatic habitat areas within each species’ 

predicted range from microclimatic species distribution models. Patch density (PD) is equal to 

the number of patches/km2 and is shown for only species distribution models (SDM) and the 

integration of SDMs with functional connectivity, based on high and secondary priority areas, 

under future climate scenarios (2030 and 2050).  

 

     

      

Species Distribution 

Model (SDM) 

SDM + 

Connectivity 

Year Species 

Range Area  

(km2) 

Number 

Patches 

PD 

(km) 

Number 

Patches 

PD 

(km) 

2010 Desmognathus wrighti 920.1 250226 272.0 - - 

2010 Desmognathus ocoee 604.2 234047 387.4 - - 

2010 Plethodon jordani 840.3 157200 187.1 - - 

2030 Desmognathus wrighti 482.2 266504 552.7 206560 428.4 

2030 Desmognathus ocoee 243.0 141896 584.0 80640 331.9 

2030 Plethodon jordani 722.0 270040 374.0 206560 286.1 

2050 Desmognathus wrighti 235.4 140458 596.7 89572 380.5 

2050 Desmognathus ocoee 273.8 138663 506.4 73399 268.1 

2050 Plethodon jordani 164.4 88532 538.6 65792 400.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

136 

 

 

Table C.3. Average difference in probability of suitable habitat between species’ distribution 

models developed from coarse grain, NASA NEX-DCP30 data and microclimatic temperature 

data. Averages were calculated within the entire species’ range, only within areas of highly 

suitable habitat (probability ≥ 0.7), and only in areas outside of highly suitable habitat. 

Difference is calculated as NASA NEX-DCP30 prediction – microclimatic predictions.  

 

          

Species 

Time 

Period 

Species' 

Range 

Suitable 

Habitat ≥ 0.7 

Outside Suitable 

Habitat 

Desmognathus wrighti 2006-2010 0.06 -0.08 0.03 

Desmognathus wrighti 2030 -0.11 -0.23 -0.14 

Desmognathus wrighti 2050 -0.07 -0.15 -0.08 

Desmognathus ocoee 2006-2010 0.09 -0.02 0.06 

Desmognathus ocoee 2030 0.17 0.00 0.14 

Desmognathus ocoee 2050 0.24 -0.13 0.22 

Plethodon jordani 2006-2010 0.05 -0.02 0.03 

Plethodon jordani 2030 -0.07 -0.09 -0.08 

Plethodon jordani 2050 -0.29 -0.59 -0.44 
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Table C.4. Results from modified t-tests between minimum standard metabolic rate (SMR) or 

vapor pressure deficit (VPD) with the probability of suitable habitat from species distribution 

models at a 3 m2 spatial resolution. Shown are results for the 2006-2010 study period and 2050 

study period in () for each sex and stage class of each species and for each season of the study 

period. Test results include the correlation coefficient, F-statistic, degrees of freedom (df), and p-

values (*p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001). 

 

        

Sex/Stage 

Class 
Season 

Correlation 

Coefficient 
F-statistic df p-value 

Desmognathus wrighti                                             2006-2010 (2050)           

Minimum SMR Spring -0.18 (-0.02) 36.0 (0.3) 1085 (877) *** (0.61) 

 Female Summer -0.34 (-0.06) 40.9 (1.1) 310 (338) *** (0.29) 

  Fall -0.08 (0.01) 21.7 (0.01) 3683 (2041) *** (0.93) 

Minimum SMR Spring -0.20 (-0.02) 39.6 (0.4) 994 (858) *** (0.51) 

 Male Summer -0.36 (-0.07) 44.4 (1.5) 289 (331) *** (0.22) 

  Fall -0.09 (-0.01) 26.8 (0.01) 3440 (2009) *** (0.93) 

Minimum SMR Spring -0.01 (0.12) 0.2 (18.8) 2052 (1371) 0.65 (***) 

Juvenile Summer -0.07 (0.15) 3.6 (16.2) 667 (742) 0.06 (***) 

  Fall 0.04 (0.09) 5.1 (18.5) 4113 (2131) * (***) 

VPD Spring -0.57 (-0.22) 125.1 (46.1) 255 (881) *** (***) 

  Summer -0.47 (-0.23) 72.6 (40.5) 251 (699) *** (***) 

  Fall -0.38 (-0.14) 101.7 (25.7) 585 (1266) *** (***) 

Desmognathus ocoee                                                2006-2010 (2050) 

Minimum SMR Spring 0.68 (0.29) 273.4 (18.8) 326 (205.8) *** (***) 

 Female Summer 0.71 (0.33) 311.4 (25.6) 313 (215) *** (***) 

  Fall 0.63 (0.24) 234.4 (12.7) 356 (203) *** (***) 

Minimum SMR Spring 0.68 (0.29) 274.3 (18.8) 326 (205) *** (***) 

 Male Summer 0.71 (0.33) 312.0 (25.7) 312 (214) *** (***) 

  Fall 0.63 (0.24) 235.3 (12.8) 355 (202) *** (***) 

Minimum SMR Spring 0.66 (0.27) 256.8 (17.5) 339 (218) *** (***) 

 Juvenile Summer 0.70 (0.32) 298.5 (25.2) 320 (227) *** (***) 

  Fall 0.60 (0.22) 216.2 (11.1) 379 (217) *** (***) 

VPD Spring -0.48 (-0.42) 289.9 (98.4) 959 (471) *** (***) 

  Summer -0.36 (-0.39) 64.6 (41.8) 446 (232) *** (***) 

  Fall -0.31 (-0.33) 
163.1 

(157.2) 
1568 (1272) *** (***) 

Plethodon 

jordani 
            2006-2010 (2050)     

Minimum SMR Spring -0.48 (-0.01) 93.7 (0.01) 309.9 (322) *** (0.91) 

 Female Summer -0.65 (-0.09) 129.0 (2.9) 180.8 (356) *** (0.09) 
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Table C.4. continued 

  Fall -0.31 (0.02) 75.3 (0.3) 708 (232) *** (0.63) 

Minimum SMR Spring -0.49 (0.01) 94.5 (0.01) 305 (326) *** (***) 

 Male Summer -0.65 (-0.07) 129.5 (2.0) 181 (359) *** (***) 

  Fall -0.32 (0.03) 76.0 (0.4) 684 (326) *** (***) 

Minimum SMR Spring -0.49 (0.02) 95.5 (0.1) 298 (334) 0.65 (***) 

 Juvenile Summer -0.65 (-0.05) 129.8 (0.9) 181 (369) 0.06 (***) 

  Fall -0.33 (0.05) 77.0 (0.7) 652 (331) * (***) 

VPD Spring -0.46 (-0.11) 114.4 (1.5) 421 (111) *** (***) 

  Summer -0.36 (-0.11) 45.4 (1.1) 300 (84) *** (***) 

  Fall -0.26 (-0.04) 45.9 (0.2) 627 (142) *** (***) 
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Table C.5. Results from modified t-tests between minimum standard metabolic rate (SMR) or 

vapor pressure deficit (VPD) with the probability of suitable habitat from species distribution 

models. Shown are results for the 2050 projections for aggregated data at a 0.85 km2 spatial 

resolution. Correlation coefficients are shown for aggregated data along with microclimatic 

correlations in () for comparison. Test results include the correlation coefficient, F-statistic, 

degrees of freedom (df), and p-values (*p-value < 0.05, ** p-value < 0.01, and *** p-value < 

0.001).  

 

      

Sex/Stage Class Correlation Coefficient F-statistic df p-value 

Desmognathus wrighti      Aggregated (Microclimate)          

Minimum SMR Average -0.26 (-0.02) 3.4 48 *** 

VPD Average -0.45 (-0.20) 28.4 109 *** 

Desmognathus ocoee         Aggregated (Microclimate)          

Minimum SMR Average 0.52 (0.28) 33.6 90 *** 

VPD Average -0.40 (-0.38) 14.8 81 *** 

Plethodon jordani             Aggregated (Microclimate)           

Minimum SMR Average -0.27 (-0.01) 12.8 166 *** 

VPD Average -0.24 (-0.09) 3.9 61 *** 
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