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Abstract

Despite having been discovered nearly four decades ago, fractional quantum Hall (FQH) states continue to

provide platforms for the discovery of novel physical phenomena. In this thesis, I present a study of these

remarkable phases of matter from three perspectives: (1) the role of an underlying lattice and its symmetries

in engendering novel FQH states, (2) the description of non-Abelian FQH states using recently developed

field theory dualities, and (3) the use of entanglement entropy in characterizing interfaces of FQH states.

In the first part, we examine phases of matter known as fractional Chern insulators (FCIs), lattice

analogues of FQH states. We begin in Chapter 2 by formulating a composite fermion theory for FCI states

in a kagome lattice model, making use of a recently developed lattice Chern-Simons theory to effect the flux

attachment. We identify sequences of Abelian states, including states for which the Hall conductance does not

match the filling fraction, which we characterize as realizing distinct translational symmetry fractionalization

classes. Next, we apply this formalism in Chapter 3 to identify paired states of composite fermions in a

square-lattice Hofstadter model. Magnetic translation symmetry is found to enforce finite-momentum pairing

of the composite fermions, yielding pair-density wave (PDW) states with daughter charge-density wave order,

analogous to the PDWs conjectured to describe the high-Tc cuprate superconductors. This constitutes a

novel example of intertwined orders, in which topological order and broken symmetry order arise from a

common microscopic origin.

In the second part, we apply a recently proposed web of Chern-Simons-matter theory dualities to develop

effective field theories for a large class of non-Abelian FQH states. First, in Chapter 4, we demonstrate

how these dualities can be used to construct bosonic Landau-Ginzburg theories of the Read-Rezayi and

generalized non-Abelian spin singlet states by introducing interlayer interactions in a multilayer Abelian

FQH system. Next, we extend this construction in Chapter 5 to develop a field theory and motivate a trial

wave function for the elusive Fibonacci FQH state, which is the minimal model for realizing a universal

topological quantum computer. We subsequently examine in Chapter 6 dual fermionic non-Abelian Chern-

Simons-matter theories, allowing us to develop composite fermion descriptions of the Blok-Wen FQH states

and a series of states which may be understood as arising from pairing in a dual Abelian composite fermion
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theory. Our analysis reveals that dual fermionic theories can predict distinct ground states in a magnetic

field, demonstrating the utility of dualities in mapping out regions of the phase diagram of electrons at

fractional filling.

In the final part of this thesis, which comprises Chapter 7, we characterize interfaces of non-Abelian

Moore-Read FQH states using entanglement entropy. We first employ a cut-and-glue approach to obtain

the expected topological entanglement entropy (TEE) for a uniform Moore-Read state on the torus in each

topological sector. This involves approximating the entanglement as arising purely from the coupled 1D chiral

edge degrees of freedom at the entanglement cut. We next consider interfaces of distinct generalized Moore-

Read states, identify when the interfaces can be gapped using an anyon condensation picture, construct

explicit gapping interactions, and then compute the TEE for an entanglement cut along the interface. It is

found that the value of the TEE is related to the total quantum dimension of a “parent” topological phase

of the two generalized Moore-Read states between which the interface is formed.
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Chapter 1

Introduction

1.1 The Quantum Hall Effect and Topological Order

Perhaps one of the greatest surprises in condensed matter physics in recent decades has been the discovery of

insulating phases of matter known as topological orders, which – at least to local probes – appear completely

featureless. Lying outside the Landau paradigm, these phases do not exhibit spontaneous symmetry break-

ing and hence are not characterized by local order parameters. Instead, the defining feature of topologically

ordered phases is that, in these states, the electron fractionalizes into quasiparticles known as anyons, which

can carry fractional electric charge and interact via emergent gauge fields. The non-local correlations medi-

ated by these gauge fields are made manifest in patterns of long-range quantum entanglement, a hallmark

of topological order. Explaining the emergence and properties of these exotic phases of matter has resulted

in a remarkable confluence of ideas from the fields of condensed matter physics, high-energy physics, and

quantum information and continues to be a spring well for novel physics.

Given this impressive résumé and the central role played by topology in modern condensed matter

physics, it is perhaps surprising that the theoretically most well understood and only experimental exam-

ples of topologically ordered phases are found in a seemingly mundane system, first encountered in one’s

undergraduate education: a two-dimensional electron gas (2DEG) in a strong magnetic field. At the single

particle level, the energy spectrum of this system consists of equally spaced and highly degenerate Landau

levels (LLs). Since the kinetic energy is quenched, one expects that on fractionally filling a LL, electronic

interactions will break the degeneracy and select a strongly correlated state as the ground state. It was

with this motivation that studies of 2DEGs in strong magnetic fields were carried out in the 1980s, with the

expectation that one would find Wigner crystals of electrons – symmetry broken states in which electrons

form a rigid lattice as a result of Coulomb repulsion. What was found was much more perplexing [3, 4]. At

rational LL filling fractions ν = Ne/NΦ, where Ne is the number of electrons and NΦ = eB/hc the number of

magnetic flux quanta piercing the system, insulating states were observed which preserved all symmetries of

the two-dimensional system. Moreover, although these states necessarily had gapped charge carriers in the
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bulk due to a vanishing longitudinal conductivity, σxx = 0, they nevertheless exhibited a Hall conductance

exactly quantized to the LL filling fraction:

σxy = ν
e2

h
. (1.1)

These states are now known as integer quantum Hall (IQH) states when ν is an integer and fractional

quantum Hall (FQH) states when ν is a fraction. On one hand, the IQH states are readily explained within

a single particle framework, as a fully filled Landau level is trivially gapped.1 The Hall current can be

computed within linear response theory and argued to be carried by chiral edge currents at the edge of the

sample. On the other hand, strong correlation effects are needed to explain the FQH states, by virtue of

their origin in a fractionally filled Landau level, necessitating a more sophisticated theoretical approach to

explain their emergence. This also would suggest that they correspond to a more non-trivial phase of matter.

Indeed, the theoretical framework developed in the two decades following their discovery led to our

understanding that FQH states constituted the first (and, as of writing, only) examples of entirely new

phases of matter, the aforementioned topologically ordered phases. Although important questions remain

regarding how topological order arises in generic many-body systems, there now exists an essentially complete

classification of the properties of these phases.2 As noted above, these are two-dimensional gapped insulators,

which are locally indistinguishable from a trivial gapped state. Indeed, by virtue of the bulk gap, any local

operator must exhibit exponentially decaying correlations, and so the defining features of a topological order

must instead be hidden in non-local correlations. These phases are distinguished by the fact that electrons

fractionalize into quasiparticles known as anyons, which exhibit fractional braiding statistics and can carry

fractional electric charge.3 There are in fact two classes of anyon, Abelian and non-Abelian, distinguished

by their braiding properties. Abelian anyons provide direct generalizations of bosons and fermions, in that

braiding one such anyon around another anyon results in the wave function accruing a phase of eiπδ, where

0 ≤ δ ≤ 1 is a rational number. Non-Abelian anyons, in contrast, support a topological degeneracy – that is

to say, a particular spatial configuration of non-Abelian anyons defines a degenerate Hilbert subspace and

braiding of these anyons results in rotations within this subspace. It is these braiding processes which lie at

the heart of the proposal for employing topological phases for quantum computation [6].

The second manifestation of non-locality in topological phases is their sensitivity to the boundary con-

1That the IQH states persist for a range of magnetic field strengths and not only exactly at integer values of ν requires the
presence of disorder.

2Formally speaking, in the same way that group theory provides the natural language for understanding broken symmetry
orders, the mathematical language of unitary modular tensor categories provides a classification of topological orders [5].

3In the modern parlance, FQH states are topological orders enriched by a U(1) charge conservation symmetry. That the
anyons carry fractional charge means they transform under a projective representation of U(1). In Chapter 2, we will see how
anyons can transform projectively under lattice symmetries.
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ditions of the spatial manifold on which they are defined. Indeed, these phases exhibit a bulk-boundary

correspondence. On a manifold with boundary, while the bulk of a topological order remains gapped, the

boundary will support (with some exceptions) gapless edge modes described, in general, by a strongly inter-

acting conformal field theory. In the context of the FQHE, it is these edge modes which contribute to both

the electrical and thermal Hall conductance. In the less experimentally relevant scenario of a closed spatial

manifold, a topological order will exhibit a ground state degeneracy dependent on the genus (i.e. number of

holes) of the manifold. For instance, a topological phase will have a unique ground state on the sphere and

degenerate ground states on the torus. Note that if one slices open the torus to obtain a cylinder, the ground

state degeneracy immediately disappears, no matter the system size – information about the topology of

the manifold is somehow non-locally stored in the ground state wave functions. All these manifestations of

non-locality just outlined are captured in the description of topological orders in terms of topological quantum

field theories and, perhaps more fundamentally, reflect their long-range entanglement, a notion we will make

precise later in this Chapter.

Perhaps one of the greatest theoretical advances in recent years has been the development of a framework

– which we shall turn to shortly – predicting the emergence of the vast majority of experimentally observed

FQH states and that they exhibit topological order. In a rare and beautiful display of accord between theory

and experiment, many of the properties outlined above have been observed. As a non-exhaustive list, we

note that quite recently, interferometry experiments have confirmed the fractional statistics of anyons [7, 8]

and thermal Hall measurements have provided strong evidence in favor of non-Abelian topological order at

ν = 5
2 [9].

In spite of these successes, many problems – new and old – remain to be explored in the FQH arena.

Indeed, experimental advances in engineering so-called moiré materials have raised the possibility of realizing

novel FQH states outside the LL context. Yet even in the LL problem, how the vast majority of conjectured

non-Abelian FQH states could emerge remains poorly understood. Systems with interfaces between distinct

FQH states have also come to the fore, as a result of the possibility of engineering non-Abelian zero modes at

said interfaces. In this thesis, we will present work addressing these three broad problems using, accordingly,

both old and new theoretical techniques. In the balance of this Chapter, we will set the stage for these

studies by first briefly reviewing the main devices used in our understanding of the standard FQH states,

emphasizing their surprising interconnections. This will permit us in the following section, which serves as

an outline of this thesis, to then introduce the concepts specific to the three problems addressed in this thesis

and emphasize the new perspectives they provide on the FQHE.
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1.2 The Laughlin States: A Case Study

1.2.1 Wave Functions to Composite Particles

Developing a theoretical understanding of the emergence of FQH states seems to be, at first glance, a difficult

undertaking. Indeed, the extensive degeneracy of states at fractional filling of a Landau level means the

theorist’s first recourse, Hartree-Fock theory, will generically be an unreliable approximation to the ground

state and, beyond that, the absence of a small parameter implies there is no basis upon which to build a

perturbative treatment of the system. A description of these exotic phases of matter evidently necessitates

the use of non-perturbative techniques, keen physical insight, or some combination thereof.

In fact, one of the early crucial advances towards our understanding of the FQHE was provided by an

ansatz wave function proposed by Laughlin [10]. Working in the symmetric gauge, Laughlin proposed that

a system of N electrons in a FQH state at filling ν = 1
m , with m an odd integer, is described by the wave

function,

Ψm(z1, . . . zN ) =
∏
i<j

(zi − zj)me−
∑
i |zi|

2/4lB , (1.2)

where lB =
√
~c/eB is the magnetic length,4 m is a “variational” parameter, which is in fact fixed by the

filling fraction, and zj = xj + iyj describes the complex coordinate of the jth electron. Indeed, if m = 1, this

wave function reduces to one describing a fully filled Landau level of electrons, as expected. In addition,

since m is odd, we see that the wave function is anti-symmetric under exchange of the coordinates of two

electrons, as it should be. A crucial feature of this expression is that the factor multiplying the Gaussian

is an analytic function of the zi, which tells us that Ψm is a superposition of states lying in the lowest

LL. Surprisingly, this simple wave function has remarkably high overlap with that numerically obtained via

exact diagonalization for systems of a few electrons with Coulomb interactions. Moreover, this construction

captures the properties of quasiparticles. As a gedanken experiment one can imagine inserting a solenoid of

a single magnetic flux quantum at position η. This corresponds to multiplying Ψm by the factor
∏
i(zi− η),

since braiding a single electron around the solenoid at η must yield an Aharnaov-Bohm phase of 2π. Using

the so-called “plasma analogy”, one can argue that a fractional charge of − e
m is depleted at η. That is to

say, the ν = 1
m FQH state supports quasihole excitations with charge e

m . Historically, this wave function

was the first step towards understanding the topological order of the FQH states.

Laughlin’s ansatz, however, does not yet provide us with an understanding of how this gapped FQH

4Henceforth, we will work in natural units, ~ = c = 1
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state emerges. As a step towards answering this question, we follow Jain [11] in realizing that Laughlin’s

wave function can trivially be rewritten as

Ψm(z1, . . . zN ) =

∏
i<j

(zi − zj)e−
∑
i |zi|

2/4lB

∏
i<j

(zi − zj)m−1 (1.3)

The first factor is simply the wave function of a fully filled Landau level of fermions. In analogy with the

quasiholes described above, the second factor has the interpretation of describing solenoids attached to these

fermions; indeed, since m − 1 is even, the second factor contributes a phase of eπi(m−1) = 1 on exchanging

one fermion with another. This suggests an intuitive physical picture: a FQH state of electrons emerges as

an IQH state of composite fermions – bound states of fermions with solenoids of an emergent gauge field.

This suggestive picture in fact has a solid grounding in a field theoretic description of the FQHE through

the mapping known as flux attachment. This is the statement that a Lagrangian describing a system of

electrons is equivalent to one describing composite fermions coupled to an emergent Chern-Simons gauge

field [12]. Explicitly, letting Ψ represent the second-quantized electron field, ψ the composite fermions, Aµ

the background electromagnetic (EM) field, and aµ the emergent Chern-Simons field, we have the duality,5

Lel[Ψ,Ψ
†, A]←→ LCF[ψ,ψ†, a] +

1

2π(m− 1)
(a−A)d(a−A) , (1.4)

where we have employed differential form notation: adA ≡ aµε
µνλ∂νAλ. The left hand side describes

interacting electrons in a background magnetic field while the right hand side describes a system of composite

fermions. Note that the densities of the electrons and composite fermions are equal: ρ ≡ 〈Ψ†Ψ〉 = 〈ψ†ψ〉.

Crucially, the equation of motion for a0 enforce the Gauss’ law, or flux attachment constraint,

ρ =
1

2π(m− 1)
εij∂iaj , (1.5)

which is precisely the statement that the composite fermions carry m − 1 flux quanta of the emergent

statistical gauge field aµ. Now, suppose the electrons are at fractional filling ν = 1
m . We can perform a

mean-field approximation in the composite fermion variables and assume that the emergent Chern-Simons

flux is uniform throughout space. From Eq. (1.4), we see that the Chern-Simons field screens the magnetic

5Note that the Chern-Simons term has an improperly quantized coefficient. This can be rectified by introducing an auxiliary
gauge field bµ, known as the “hydrodynamic field”, so as to rewrite 1

2π(m−1)
(a−A)d(a−A) ∼ −m−1

4π
bdb+ 1

2π
bd(a−A). Only

with this correctly quantized action can one obtain the correct topological field theory described in the next subsection.
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flux, so that the composite fermions feel a reduced flux of

NCF
Φ = NΦ − (m− 1)Ne = mNe − (m− 1)Ne = Ne (1.6)

which is to say, they fully fill a single Landau level in this effective flux, as suggested by the wave function

picture! Hence, a FQH state of electrons corresponds (at mean-field level) to an IQH state of composite

fermions. More generally, if the magnetic field was such that the composite fermions filled p Landau levels,

then one would obtain a FQH state at filling ν = p/(p(m − 1) + 1). This describes the Jain sequence of

states, the most stable FQH states observed in experiment.

Remarkably, a completely complementary description of the Laughlin states is accessible within a com-

posite boson framework [13]. Indeed, letting Φ represent the composite boson field, we can apply the flux

attachment transformation to the electronic system as follows:

Lel[Ψ,Ψ
†, A]←→ LCB[Φ,Φ†, a] +

1

2πm
(a−A)d(a−A) . (1.7)

Now the flux attachment constraint attaches an odd number m of flux quanta to the Φ fields so that their

bound state has fermionic statistics, as should be the case for an electron. Now, at filling ν = 1
m , again

in a mean-field approximation, the Chern-Simons field completely screens the external magnetic field. This

allows the composite bosons to condense, Higgsing the aµ field. From the Lagrangian, we see that resulting

gapped state has Hall conductance σxy = 1
m
e2

h , and so we again arrive at the ν = 1
m Laughlin state!

We have proceeded at a brisk pace, so let us pause and recapitulate what we have just done: starting from

an ansatz wave function, we were able to motivate two distinct composite particle field theory perspectives

on the emergence of the Laughlin states. This illustrates an underlying theme in the study of FQH physics

which also pervades this thesis, namely that several complementary perspectives are often needed to build

our understanding of FQH phenomena. The connections between these approaches ultimately hint at the

underlying topological order of the FQH states.

1.2.2 Topological Order and Correspondences

Now, either by integrating out the matter fields in either the composite fermion or boson theories at ν = 1
m ,

one arrives at the hydrodynamic theory [14] of the Laughlin states:

Leff = −m
4π
bdb+

1

2π
bdA. (1.8)

6



Here b is a U(1) gauge field, which is seen to describe the electronic current: JEM = 1
2πdb. This U(1)m Chern-

Simons action (where m denotes the “level”) encodes all the key topological properties of the Laughlin state.

Indeed, one can check that this action correctly predicts a Hall response of σxy = 1
m
e2

h ; that quasiparticles,

represented by point charges with unit charge relative to bµ, have electric charge − e
m and braiding two such

anyons yields a fractional phase of e2πi/m; and a ground state degeneracy of m on the torus.

If this effective Chern-Simons action is placed on an open disk, then gauge invariance in fact mandates

the existence of a single gapless bosonic mode φ on the edge, described by a U(1)m conformal field theory

(CFT),

Ledge =
m

4π
∂xφ(∂t − v∂x)φ. (1.9)

The physical charge density is given by ρ = ∂xφ/2π, from which we see that this action describes the

chiral propagation of charge along the edge, which is what leads to the Hall current. The bulk-boundary

correspondence amounts to the statement that all topological data of the bulk is encoded in this edge theory.

In particular, anyon excitations correspond to solitons on the edge, represented by vertex operators eiφ.

Electron excitations are then given by composites of these operators: eimφ.

And with this, surprisingly, we come full circle. Indeed, the Laughlin wave function of Eq. (1.2) is in

fact equal to an N -point correlation function of electron operators in this edge CFT. The other properties

we have described hold for generic topological orders, but this correspondence between trial wave functions

and the boundary theory is unique to FQH states. This relation is believed to hold for generic FQH states,

whose bulk topological order is described by a Gk Chern-Simons theory, where G is an arbitrary Lie group.

In these cases, trial wave functions can be constructed from correlation functions in the corresponding Gk

Wess-Zumino-Witten CFT [1]. Though only a conjecture, this construction has received considerable mileage

and forms the basis for much of our intuition about non-Abelian FQH states, as we shall soon describe.

What we have recounted in this section constitutes perhaps one of the crowning achievements of modern

condensed matter physics. The composite fermion and boson theories provide explanations for the emergence

of nearly all experimentally observed FQH states. The effective topological quantum field theory derived

from these composite particle pictures provides a complete characterization of the fractionalized excitations,

the gapless edge states, and the entanglement structure of these states. Moreover, the complementary wave

function construction, aside from building our intuition about FQH states, has also served as a key tool in

numerical simulations. In addition to laying the foundation for the modern theory of topological order, this

nearly comprehensive theoretical understanding of the FQHE has largely stood the tests of experiment. And
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yet, as we discuss next, there still is much left to be said about these remarkable states.

1.3 New Perspectives: An Outline of this Thesis

Lying just beyond the purview of the theoretical framework outlined in the previous section are a host

of open problems – both old and new – and areas of exploration. Indeed, in the four decades since the

discovery of the FQHE, new field theoretic tools have been developed which can shed light on hitherto

poorly understood FQH states, while novel features of topological orders and new incarnations of the FQHE

have gained relevance, both in theory and experiment. Our goal is to investigate these new perspectives on

the FQHE. Specifically, in the three parts of this thesis, we wish to address the following problems:

(1) Recent experimental advances, especially in the engineering of moiré materials, have raised the

prospect of realizing FQH states in topological Chern bands, rather than Landau levels. In such systems

the lattice cannot be neglected. Can we still apply a composite fermion picture to understand FQH states

in these settings? If so, can the presence of the lattice lead to novel FQH states? We investigate these states

in Chapters 2 and 3, which are based on Refs. [15] and [16], respectively.

(2) The vast majority of experimentally observed FQH states are Abelian and can be described by the

composite particle picture developed above. However, it is the non-Abelian states which are of interest

for quantum computation applications. These exotic states have largely evaded description in terms of

composite particle theories. In Chapters 4, 5, and 6, we employ new field theory tools to shed light on these

states. These Chapters are based on Refs. [17], [18], and [19].

(3) Although the bulk-boundary correspondence generally implies the existence of gapless edge modes at

the boundary of a topological phase, it has recently been shown that the edge modes of two distinct Abelian

phases joined at an interface can be gapped out, provided the interface itself is nontrivial. In Chapter 7,

which is based on Ref. [20], we extend this picture to interfaces of a class of non-Abelian interfaces, which

we characterize using their entanglement properties.

In the balance of this Chapter we provide more context for these problems and motivate the tools with

which we will attack them.

1.3.1 Fractional Chern Insulators and Composite Fermions

It is natural to ask to what extent a Landau level structure is needed to realize the FQHE in an electronic

system. Indeed, it is now well established that an IQHE can be realized in non-interacting lattice systems

known as Chern insulators in the absence of a magnetic field provided time-reversal symmetry is broken,
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as first shown in the seminal work by Haldane [21]. Such systems exhibit a quantized Hall conductance of

σxy = C e2

h when an integer number of bands are filled, where C is an integer invariant called the Chern

number and characterizes the non-trivial topology of the Bloch states [22]. One can thus mimic a LL in a

net zero magnetic field by realizing a nearly flat Chern band in a lattice system. By partially filling such

a band in the presence of strong interactions, one might then expect to obtain analogues of FQH states.

Indeed, numerical simulations over the past decade have provided concrete evidence for this scenario, with

the resulting states naturally being called fractional Chern insulators (FCIs) [23–33]. These states exhibit

all the hallmarks of FQH states, including anyon excitations and fractional Hall conductance.

Despite the striking similarities between FCIs and FQH states, there are several properties which make

FCIs interesting phases of matter to study. Aside from the potential absence of a net non-zero magnetic

field, a key difference between FCIs and continuum FQH states is the fact that the lattice structure can be

ignored in the latter since the magnetic length is large relative to the lattice constant. In contrast, the lattice

cannot be neglected in FCIs and can lead to novel physics. For instance, the breaking of Galilean invariance

by the lattice can result in states with unequal Hall conductance and filling fraction [34]. Moreover, unlike

Landau levels, Chern bands can have Chern number greater than unity, |C| > 1. It has been argued that

these bands support FCIs with an emergent |C|-layer structure and that lattice defects in these states behave

as non-Abelian objects known as genons [35,36]. Anyons can also interact non-trivially with the lattice in a

phenomenon known as symmetry fractionalization, which means that the anyons carry fractional symmetry

charges, such as fractional crystal momenta [37–40]. Aside from these topological aspects, FCIs also provide

areas to investigate novel quantum critical points [41] and the competition or coexistence of topological order

with conventional broken symmetry orders, such as charge density waves [42,43].

Encouragingly, the observation of lattice FQH states was recently reported in a bilayer graphene/hexagonal

boron nitride moiré heterostructure subjected to a magnetic field [44]. Although this experiment was con-

ducted at non-zero magnetic field, the magnetic length was of the same order as the moiré super-lattice

length, resulting in strong lattice effects. Indeed, states with σxy 6= ν were observed. More excitingly, recent

years have seen significant advances in the engineering of Chern bands in solid-state moiré [44–49] and cold

atom systems [50–54], raising the prospect of realizing genuine FCIs in zero magnetic field.

However, it is precisely the presence of the lattice, which makes FCIs worthy of interest, that also renders

their analytical treatment a daunting theoretical challenge. Indeed, most studies of these states have relied

on exact diagonalization and DMRG [23–33]. In particular, returning to our exposition of the continuum

Laughlin states above, the simple form of the ansatz wave function – such as its analytic dependence on

the electron coordinates – is crucially dependent on the properties of the lowest Landau level single-particle
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eigenstates. Though a wave function approach to studying FCIs can be formulated [55], our goal will instead

to be to develop a composite fermion theory, so as to provide a microscopic understanding of the dynamics

behind the emergence of FCIs in specific lattice models.

This too, however, is fraught with its own difficulties. Indeed, the use of flux attachment on the lattice

requires first understanding how to write down a lattice version of the Chern-Simons action. To see the issues

inherent to this, let us consider the continuum Chern-Simons theory, expressed in Cartesian components:

Scontinuum[aµ] =
1

2π

∫
d3x

[
a0(x)εij∂iaj(x)− 1

2
ai(x)εij ȧj(x)

]
. (1.10)

When coupled to fermions, the first term enforces the flux attachment constraint (note that a0 has no

dynamics of its own and is hence a Lagrange multiplier enforcing this constraint). The second term fixes the

commutation relations of the spatial components of aµ and ensures that the theory is gauge invariant. Now,

let us attempt to write down a similar action on a lattice. In lattice gauge theory, the temporal (spatial)

components of a gauge field are most naturally defined to live on the sites (links) of the lattice. Hence, fluxes

are defined to live in the plaquettes. A natural candidate for a lattice Chern-Simons action then takes the

form

Slattice[aµ] =
1

2π

∫
dt
∑
x

[
aα0 (x, t)Jαi ai(x, t)−

1

2
ai(x, t)Mij ȧj(x, t)

]
(1.11)

where, x labels the unit cell, α the sites within the unit cell, i labels the links within a unit cell, and Jαi is

a lattice version of the curl, such that Φα(x) ≡ Jαi ai(x) is the flux through a plaquette adjacent to the site

α. The first term will again enforce the flux attachment constraint, but also leads to the first issue. Since

the aα0 (x) are defined on the sites and the fluxes Φα(x) on plaquettes, this action is only consistent if there

exists a one-to-one assignment of sites to plaquettes. This is true for, say, the square and kagome lattices,

but not for the triangular and honeycomb lattices. The second issue comes form the second term, in which

the operator Mij again fixes the commutation relations of the spatial components of a. Gauge invariance

can be used to fix the form ofMij , which is lattice-dependent, though this is a non-trivial task and has been

carried out first for the square lattice in Refs. [56, 57] and subsequently for all lattices satisfying the above

vertex-face correspondence in Ref. [58]. So, flux attachment can be carried out on a large class of lattices,

though perhaps not in as elegant a form as one may have hoped.

The aim of the first part of this thesis is to employ this formalism to investigate novel FCI states arising

from gapped states of composite fermions in specific lattice models. In Chapter 2, we provide more details

regarding lattice flux attachment and characterize FCI states in kagome lattice model arising (at mean-
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field level) as Chern insulators of composite fermions and demonstrate how lattice translation symmetry is

fractionalized, implying that anyons carry fractional crystal momenta. Although heuristic pictures of FCIs

in terms of composite fermions have previously been proposed [59, 60], our work presents a more rigorous

justification for these states, through use of the above lattice flux attachment procedure. In Chapter 3

we investigate FCI states in the square lattice Hofstadter model arising from superconducting states of

composite fermions. Although a p + ip paired state of composite fermions, known as the Pfaffian state,

has been proposed to describe the continuum FQH state at ν = 5
2 [1, 61], we find that a richer set of

superconducting phases appear on the lattice. Indeed, lattice symmetries naturally result in pair-density

waves of composite fermions, states which form the basis for one proposal for describing the phase diagram

of the high-Tc cuprate superconductors [62]. These states intriguingly exhibit a coexistence of topological

and broken symmetry (namely, charge density wave) order. We also find a host of novel phases, including

quantum Hall thermal semimetals and weak topological superconductors of composite fermions, illustrating

the richness of the FCI phase diagram.

1.3.2 Non-Abelian States and Duality

Although FCIs present platforms for intriguing new physics, the continuum FQHE still presents many

unresolved problems. Perhaps paramount among these is understanding the potential emergence of non-

Abelian FQH states, which are characterized by their support of non-Abelian anyons. Although the vast

majority of experimentally observed FQH states are believed to be Abelian, a multitude of non-Abelian FQH

states have been proposed. However, these proposals are based primarily on conjectured wave functions, like

that first proposed by Laughlin. Specifically, as noted in our discussion of the Laughlin states, trial wave

functions can be constructed from correlators in an appropriate conformal field theory (CFT). A trial wave

function for a FQH state with topological order characterized by a Gk Chern-Simons theory is obtained

from correlators in the Gk Wess-Zumino-Witten theory. As was the case for Laughlin’s ansatz, while these

trial wave functions can provide us useful intuition about these states, including the properties of their

non-Abelian excitations, they cannot inform us about the physical mechanisms underlying their emergence.

Unfortunately, the vast majority of these proposed states lack composite particle field theory descriptions,

like those describing Abelian states.

One prominent exception is provided by the aforementioned non-Abelian Pfaffian state, which may

explain the experimentally observed FQH plateau at ν = 5
2 . Its history begins with a trial wave function
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constructed by Moore and Read [1] from a correlator in the CFT of a single Majorana and chiral boson6

Ψ(z1, . . . , zN ) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)2. (1.12)

Here, the first factor is the Pfaffian of the matrix A with entries Aij = (zi − zj)−1. As for the Laughlin

state, one can construct wave function for anyon excitations, which can explicitly be shown to exhibit non-

Abelian statistics [63]. An important feature of this wave function is that it vanishes only when at least

three electrons are brought to the same point, in contrast to the Laughlin wave function, which vanishes

when two electrons are coincident. At a heuristic level, this seems to suggest that this FQH state should be

characterized by the Cooper pairing of some degrees of freedom. Indeed, the Pfaffian factor likewise appears

in the BCS wave function for a p+ ip chiral superconductor of electrons, a rather suggestive coincidence.

Read and Green subsequently demonstrated that these connections go beyond mere analogy [61]. Indeed,

if we apply the composite fermion mapping to a system of electrons at ν = 1
2 then, at mean-field level, the

composite fermions will feel a vanishing net flux and hence form a composite Fermi liquid [64]. A natural

path to a gapped state is through the formation of a superconductor of the composite fermions. Since they

are spin polarized, a fully gapped state is obtained if the composite fermions pair in the p + ip channel,

exactly as suggested by the wave function picture! If the resulting composite fermion superconductor is in

the weak-pairing regime, the result is the non-Abelian Pfaffian state. In particular, vortices in the Chern-

Simons gauge field will trap Majorana zero modes and hence correspond to deconfined Ising anyons, which

obey non-Abelian statistics. Excitingly, there is mounting experimental evidence that the observed FQH

plateau at ν = 5
2 is indeed a paired composite fermion state (though perhaps not the Pfaffian state) [9].

Unfortunately, the composite particle theories we have discussed thus far have largely proved inadequate

in describing non-Abelian states beyond the Pfaffian. Indeed, while the Pfaffian involves pairing, more

exotic non-Abelian states are believed to involve clustering of electrons, based on their ideal wave function

descriptions. For instance, the Read-Rezayi states, which have topological order described by an SU(2)k

Chern-Simons theory, seem to arise from the formation of clusters of k electrons [65]. At a more elementary

level, the flux attachment procedure we have employed, which involves Abelian gauge fields, appears ill-

suited to describing non-Abelian FQH states, which necessarily involve emergent non-Abelian Chern-Simons

gauge fields. Neither composite fermions nor bosons are the right set of variables to use, so to speak, to

access these parts of the FQH phase diagram.

However, in the years since the initial proposal of these non-Abelian FQH states, parallel developments

6More precisely, the [Ising × U(1)8]/Z2 CFT.
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in the high-energy literature have led to what is effectively a non-Abelian generalization of flux attachment.

Indeed, recent progress in the study of non-Abelian Chern-Simons-matter theories in their large-N (“planar”)

limit [66,67] has led to the proposal of non-Abelian Chern-Simons-matter theory dualities by Aharony [68].

The key feature of these dualities is that they can relate theories of composite fermions or bosons coupled

to Abelian Chern-Simons gauge fields to theories of composite particles coupled to non-Abelian gauge fields.

The upshot of this is that, starting with a system of electrons, we can first apply the standard flux attachment

procedure to obtain a conventional theory of composite bosons. We can then employ these dualities to obtain

an equivalent description in terms of a non-Abelian Chern-Simons-matter theory. In the same way that

Abelian FQH states of electrons can be readily accessed in Abelian theories of composite fermions/bosons,

it is natural to expect that non-Abelian states in the FQH phase diagram will be more easily accessible in

these dual non-Abelian variables.

In the second part of this thesis, we task ourselves with demonstrating that this is indeed the case and

carry out a program of developing effective field theories using these dualities to describe the emergence

of a large class of non-Abelian FQH states. First, in Chapter 4, we develop Landau-Ginzburg theories

for the Read-Rezayi states and their multicomponent extensions, the generalized non-Abelian spin-singlet

states [69, 70], which exhibit SU(N)k topological order. As was the case for the Pfaffian, our construction,

which involves clustering of emergent particles in a multilayer system, finds motivation from the wave function

description of these states. In Chapter 5, we extend this construction to develop a Landau-Ginzburg theory

for a hitherto poorly understood FQH state, the Fibonacci state. The topological order supported by this

state is the minimal one required to realize universal quantum computation. In a reversal of the standard

story, we use this field theory to motivate a trial wave function for this novel state. Finally, in Chapter 6, we

turn to investigating composite fermion theories coupled to non-Abelian Chern-Simons gauge fields, which

are dual to the bosonic theories employed in the previous chapters. In addition to finding new descriptions of

the so-called Blok-Wen states [71] and states typically arising from paired states of composite fermions, our

analysis provides new insight into the dynamics of the composite fermion theories related by these dualities.

1.3.3 Gapped Interfaces and Entanglement

In Chapter 7, the final part of this thesis, we will change gears from pushing the composite particle picture

to new settings and instead attempt to further our understanding of two other perspectives on the FQHE,

namely, entanglement and the bulk-boundary correspondence. Specifically, we will be interested in investi-

gating the exotic scenario where two, possibly distinct, FQH states are joined together along their edges,

forming a one-dimensional gapped interface.
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Figure 1.1: (a) Cartoon of a gapped interface. The two cylinders support (possibly distinct) topological
orders. The red and blue arrows denote the chiral edge states. The dotted lines between the inner edges rep-
resent electron scattering terms, which gap out the interface. (b) Spatial bipartition involved in computation
of the entanglement entropy.

Such systems have been the subject of much theoretical interest in recent years [72–83]. Indeed, as we

have described, a uniform topological order defined on a disk geometry will generically support chiral edge

modes at its boundary. Suppose we consider two cylinders supporting the same topological order, say, the

ν = 1
3 Laughlin state, which has a single chiral edge mode. If we bring two edges of the two cylinders

together, one can introduce a simple electron tunneling term to gap the edges out, effectively “gluing” the

cylinders together (see Fig. 1.1(a)). In particular, any anyon from one cylinder can freely propagate to the

other. On the other hand, one can also gap out the interface through an electron pairing term via proximity

coupling to a superconductor. In this case, an anyon passing from one cylinder to the other will be converted

to its conjugate (the anyon with opposite electric charge). Intriguingly, it has been predicted that if one gaps

out part of the interface with normal tunneling and the other part with superconducting pairing, the domain

wall between these gapped regions will support a parafermion zero mode, generalizations of Majorana zero

modes, which are sufficient platforms for universal topological quantum computation [73–75]. Excitingly,

experimental progress has in fact been made in inducing superconductivity on the FQH edge [84].

More generally, one may consider the scenario raised above, in which the edges of two distinct topological

orders are brought together to form a gapped interface. A systematic analysis of when the chiral edge

modes at an interface can be fully gapped out via electron scattering has been conducted for the case

where the two orders are both Abelian [85–87]. In this case, the gapped interface itself realizes a non-

trivial symmetry-protected topological phase [88]. If one cuts open the cylinder such that the interface

has endpoints terminating at the vacuum, these endpoints will generically again support parafermion zero

modes.

The natural question we wish to ask is whether more exotic phenomena can occur at interfaces of non-
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Abelian FQH states. The CFTs describing the edges of non-Abelian states are more complicated than those

of their Abelian cousins, and so it seems difficult to directly describe the properties of a non-Abelian gapped

interface. As it turns out, a useful perspective on characterizing the interface is given by the entanglement

between the two phases which the interface separates. In order to motivate this, as well as to make more

precise the notion of long-range entanglement of FQH states alluded to earlier in this Chapter, let us pause

and provide a brief introduction to quantum entanglement.

At a fundamental level, entanglement is the key phenomenon distinguishing quantum and classical physics

and is a reflection of the non-local correlations between observables in quantum systems. Many quantitative

measures of entanglement have been proposed. Here we will concern ourselves with the most elementary

one, the entanglement (or von Neumann) entropy. Let us consider a quantum system prepared in a pure

state, |ψ〉, defined in a Hilbert space H. The density matrix of this pure state is simply given by ρ = |ψ〉 〈ψ|.

Now let us bipartition the system into the region A and its complement A, such that the full Hilbert space

is a product of the two subspaces associated with these subregions: H = HA ⊗HA (see Fig. 1.1(b)). The

reduced density matrix of |ψ〉 for region A is formed by tracing over the degrees of freedom in A: ρA = TrA ρ.

The entanglement entropy between A and A in the state |ψ〉 is then given by

SA = −Tr ρA log ρA = −
∑
i

λi log λi, (1.13)

where, after the second equality, we have expressed the entropy in terms of the eigenvalues, 0 ≤ λi ≤ 1,

of ρA. This latter expression is in fact the classical Shannon entropy and hence makes clear the physical

content of the entanglement entropy: it is a measure of the number of bits of information stored between

A and A in the state |ψ〉. As a simple example to illustrate this, let us consider a pair of spin- 1
2 systems

prepared in a Bell state: |ψ〉 = 1√
2
(|↑↓〉 − |↓↑〉). It is easy to check that the entanglement entropy between

the two systems is log 2 and hence a single bit of information is stored in this state: specifying that one

system is in the up state immediately determines the other state to be in the down state and vice versa.

As a probe of quantum correlations (at least at zero temperature), the entanglement entropy provides a

useful tool to characterize quantum many-body phases. Let us restrict ourselves to ground states of gapped

Hamiltonians in two-dimensional systems. If we bipartition the plane into two connected spatial regions, A

and A, then the entanglement entropy in such a ground state takes the general form

SA = αL− γ, (1.14)

where L is the length of the entanglement cut, the line separating A from A, while α and γ are non-
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universal and universal constants, respectively. The first term is known as the area law and has a simple

interpretation. In a ground state of a gapped Hamiltonian, the correlation length is vanishingly small, and

so any entanglement between A and A should come primarily from degrees of freedom near the entanglement

cut. Hence the entanglement entropy should have a term proportional to the length of the cut. The second

term is known as the topological entanglement entropy (TEE) and, as the name suggests, is non-zero for

topologically ordered phases [89, 90]. For a uniform topological phase, γ = logD, where D is the total

quantum dimension, a number characterizing the anyon content of the phase. Note that γ is independent

of both the sizes of A and A as well as the length of the entanglement cut and hence truly measures non-

local correlations in the system. It is perhaps surprising that, as a signature of topological order, the TEE

decreases the total entanglement entropy, a fact that appears to be at odds with our repeated claim that

topological orders exhibit long-range entanglement. What the TEE is in fact encoding is that topological

orders possess non-local constraints which reduce the information that can be stored in the system. For

instance, in a FQH state in which we have excited some number of anyons, if we measure the net charge in

A to be an integer multiple of e, then we immediately know that the net charge in A cannot be a fraction of

e, since the full system must have an integer number of electrons. This is in contrast to the spin- 1
2 example

above, where a priori there is no restriction on the spins of the two systems – one can prepare the system

in an arbitrary superposition of the two spins.

With this in mind, it is natural to expect that, in the scenario in which two distinct topological phases

are joined at a gapped interface, that the entanglement entropy between the two phases should capture

information about the interface. Indeed, the TEE has been computed [91] for an entanglement cut along

the interface between two generic Abelian phases and shown to be directly connected with the emergence of

the aforementioned symmetry-protected topological phase at the interface [88]. Our goal is to extend this

calculation to non-Abelian phases. As is to be expected, this constitutes a much more challenging problem.

In contrast to the Abelian case, the edge theories of non-Abelian phases are described by more complicated

conformal field theories and an understanding of the possible gapped interfaces that can be formed is lacking.

In Chapter 7 we will provide a first step towards tackling this problem, focusing on interfaces between a

simple class of non-Abelian FQH states. In addition to classifying when gapped interfaces can be formed

for any two given FQH states within this class, we compute the topological entanglement entropy for said

interfaces, and illustrate how the properties of the interface are encoded in the entanglement.
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Chapter 2

Chern-Simons Composite Fermion
Theory of Fractional Chern Insulators

2.1 Introduction

One of the most exciting frontiers in fractional quantum Hall (FQH) physics is the study of FQH states

realized in lattice systems, potentially in the absence of a magnetic field. As described in Chapter 1, these

fractional Chern insulators (FCIs) exhibit the same features as their continuum FQH cousins, but can also

support a richer set of phenomena as a result of the interplay of topological order with the underlying

lattice. For instance, FCIs are expected to support non-Abelian states resulting from partial filling of Chern

bands with |C0| > 1 [36,92], non-Abelian defects [35], and anyonic excitations with fractionalized symmetry

quantum numbers, thus exhibiting ‘symmetry fractionalization’ [37–40]. However it is also the importance

of the lattice which renders the development of an analytic and microscopic theory of FCIs a challenging

endeavor.

The aim of this Chapter is to tackle this problem by developing an analytical description of FCI states

on a specific kagome lattice model in terms of a Chern-Simons composite fermion (CF) theory. The CF

approach has been used successfully in describing the conventional FQHE [11,12]. As described in Chapter

1, in this picture the electrons nucleate fluxes of an emergent Chern-Simons gauge field such that at the

mean field level, the CFs fill an integer number of Landau levels in the new effective flux. The IQH states

of the CFs then correspond to FQH states of the original fermions. Quantum fluctuations about these IQH

states endow the excitations with their correct fractionalized quantum numbers. Numerical studies suggest

that a CF picture is also relevant for the lattice FQHE [59,60] and so may be applicable to FCIs, as is also

suggested by recent analytical work [93, 94], providing further motivation for our study. The methodology

we use here is similar to that used in the continuum, but with a local and gauge-invariant Chern-Simons

action on the lattice which we motivated in Chapter 1 [56, 58, 95, 96]. This is necessary as we work in the

tight binding limit; in contrast, previous studies of the lattice FQHE [34] considered the opposite limit in

which Landau levels are dressed by a lattice potential. Importantly, the theory we develop here will serve

as a stepping stone towards investigating more exotic FCI states arising from paired states of composite
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fermions in the following Chapter.

This Chapter is organized as follows. We begin by outlining in Section 2.2 the Chern insulator model

on the kagome lattice to which we apply our analysis. Next, in Section 2.3, we review the CF mapping

and the consistent definition of a Chern-Simons action on the kagome lattice as discussed in Refs. [96]

and [58] (see Section 2.3.1). Special care will be given to the boundary conditions, focusing on the case

of the torus. In Section 2.4 we construct gapped states of the CFs arising at the mean field level (i.e. the

average field approximation) which are identified as candidate FCI states. The construction of the mean-field

theory requires the self-consistent derivation of a class of Hofstadter states. In Section 2.5.1 we derive the

effective topological field theory describing the gapped low-energy states, from which we can extract the

Hall conductance, fractional excitations, and ground state degeneracy. In Section 2.5.2 we use the results

of the previous sections to identify candidate FCI states from the composite fermion Hofstadter spectrum

and characterize their topological properties. It is found that there are two classes of FCI states which can

be realized: those with Hall conductance equal to the filling factor and those for which these two quantities

are unequal. We then discuss how FCI states with the same topological order arising at different filling

fractions can be viewed as realizing distinct symmetry fractionalization classes which are derived in Section

2.6. We provide concrete predictions arising from this classification which may be verified via numerical

studies. Before concluding, we offer some remarks in Section 2.7 about the distinctions between FCIs and

lattice FQHE states. Section 2.8 is devoted to our conclusions.

2.2 Model

The model we consider is a Chern insulator of spinless fermions with nearest-neighbor hopping on the kagome

lattice, subject to a staggered magnetic field with net zero flux per unit cell [97]. The Hamiltonian of the

model is

H =J
∑
〈x,x′〉

[
ψ†(x)eiφ(x,x′)ψ(x′) + h.c.

]
+
g

2

∑
x,y

n(x)V (x− y)n(y) (2.1)

Here J is the hopping amplitude on the kagome lattice, g is the coupling constant, and V (x − y) is the

interaction between the fermions densities, the occupation numbers labeled by n(x). For concreteness, we

will assume that the interaction is for nearest-neighbors on the kagome lattice, but it can be a general

interaction as well.

The staggered magnetic field is represented by the fixed phase field φ(x,x′), defined on the links of the

kagome lattice, such that the flux of this field is φ+ (φ−) into the page through the up (down) triangles of
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Figure 2.1: Kagome lattice unit cell with phases arising from a magnetic flux indicated by arrows. The net
flux is zero.

the lattice as shown in Fig 2.1. Also illustrated in Fig. 2.1 are the sublattice structure and definition of the

lattice vectors e1,2. We will focus on the case of φ± = π/2 which preserves the lattice point-group symmetry

and yields three well-separated bands with the lowest band possessing Chern number C0 = +1. The band

structure is discussed further in Appendix A.1. We are interested in gapped topological phases arising from

partially filling this lowest band; the fraction of it which is filled will be denoted by nL.

In general, the formation of an FCI requires that the bandwidth of the partially filled Chern band is

at most of the order of the band gaps of the non-interacting problem. Hence, the spinless fermions in the

partially filled band can be regarded as being strongly correlated. Without this condition the system would

be a metal, and not an FCI. In the specific staggered flux model we chose, the bandwidth is comparable to

the gap between the bands. It is, however, still possible to stabilize an FCI, in principle, if interactions are

strong enough.

2.3 Flux Attachment

The mapping of fermions to CFs is accomplished via a mapping onto an equivalent system of spinless

fermions, the composite fermions, minimally coupled to a dynamical lattice Chern-Simons gauge field with

a coupling parameter that we will denote by θ. We use the lattice Chern-Simons gauge theory on a kagome

lattice on a 2D torus, as defined in Ref. [58] (a generalization of the approach of Refs. [56, 95]). This is

an exact mapping provided the Chern-Simons theory can be well-defined on the lattice in a gauge-invariant

fashion. That this is possible on a large class of lattices (including the kagome lattice) was shown in Ref. [58].
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After performing this transformation our system is described by the action

S[ψ,ψ†, Aµ, Bµ] = SF [ψ,ψ†, Aµ] + Sint[Aµ] + SCS [Aµ, Bµ] (2.2)

where ψ is the CF field, Aµ is the statistical gauge field, and Bµ is a hydrodynamic gauge field required

for flux attachment to be defined consistently on a torus as described below [98]. Here SF is the fermionic

action, Sint is a fermion density-density interaction (as will be shown, flux attachment allows one to make a

formal substitution of the densities with fluxes), and SCS is the Chern-Simons action. In the following we

will discuss in detail the actions SF , SCS , and Sint in turn.

The fermionic part of the action is of the usual form,

SF [ψ,ψ†, Aµ] =

∫
t

∑
x

ψ†(x, t)iD0ψ(x, t)−
∫
t

J
∑
〈x,x′〉

(ψ†(x, t)ei(Aj(x,t)+φ(x,x′))ψ(x′, t) + h.c.), (2.3)

where D0 = ∂0 + iA0 is the covariant time derivative and 〈x,x′〉 indicates a sum over nearest neighbors.

The temporal components of the gauge field, A0(x), live on the sites of the lattice whereas the spatial

components, Ai(x) (i = 1, . . . , 6), live on the links.

The form of the lattice Chern-Simons action is less intuitive. For a more detailed construction for a large

class of lattices we direct the reader to Ref. [58]. In the following two subsections we will describe first the

lattice formulation of the action for the statistical gauge field Aµ and subsequently the lattice formulation

of an equivalent theory involving both Aµ and the hydrodynamic field Bµ which can can be defined on

topologically non-trivial manifolds.

2.3.1 Lattice Chern-Simons

Broadly speaking, a theory of fermions coupled to a Chern-Simons field is a theory of flux-charge composites.

Hence a Chern-Simons action must enforce a Gauss’ Law constraint which attaches fluxes to the matter fields

in addition to being gauge invariant. On the lattice, the fermions reside on the lattice sites and so it is natural

to define the fluxes to live in the plaquettes (i.e. the sites of the dual lattice). So, in order to be able to

consistently define a flux attachment condition, the lattice must be such that one can uniquely associate

each site to a plaquette. This is indeed the case for the kagome lattice as well as the dice and square lattices

but not, for instance, the honeycomb or triangular lattices.

As shown in Ref. [96] and [58], it follows from the above considerations that one consistent formulation
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(a) (b) (c)

Figure 2.2: (a) Kagome lattice unit cell with spatial components of the statistical gauge field Ai and fluxes
Φα = Jαi Ai. (b) Dice lattice unit cell with the hydrodynamic gauge field Bi and fluxes Φ∗α = J∗αi Bi. (c)
Orientation of the dual (dice) lattice relative to the direct (kagome) lattice.

for a Chern-Simons action on the kagome lattice is given by1

SCS [Aµ] = θ

∫
dt
∑
x

[
Aα0 (x, t)Jαi Ai(x, t)−

1

2
Ai(x, t)Mij∂tAj(x, t)

]
. (2.4)

Here the sum is over unit cell positions and the index α = a, b, c denotes the sublattice. As noted above, the

temporal components of the gauge field, Aα0 , live on the lattice sites whereas the spatial components, Ai,

live on the links. The orientation of the spatial gauge fields is shown in Fig. 2.2(a). In the context of flux

attachment the coupling θ is given by θ = 1/2π(2k), k ∈ Z. Now, the first term in the action enforces the

flux-attachment (or Gauss’ Law) constraint

nα(x) = θJαi Ai(x) ≡ θΦα(x). (2.5)

The fluxes Φα(x) = Jαi Ai(x) live in the kagome lattice plaquettes as shown in Fig. 2.2(a). The Ji vectors

may be viewed as discretized curl operators on the kagome lattice,

Ja = (1,−1, 1,−s2,−s1,−1),

Jb = (0, s1,−1, 1, 0, 0),

Jc = (−s2, 0, 0, 0,−1, 1),

(2.6)

1Note that what we callMij is the Kij matrix of Refs. [56,58,96]; this is to avoid confusion with the K-matrix of Eq. 2.24.
Additionally, as we have written the action, Jαi and Mij are operators while in Ref. [96] these objects are expressed as the
functions Ji(x− y) andMij(x− y) with the action containing a sum over x and y. This is a matter of notation – in this and
the following sections we will use one or the other convention depending on which is most convenient.
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where we have used the lattice shift operators si which are defined as sif(x) = f(x + ei). Hence the

Gauss law ties the statistical fluxes in the hexagon, up triangle, and down triangle to the a, b, and c sites,

respectively.

Note that the assignment of fluxes to sites necessarily breaks the rotational symmetry of the lattice. This

will be true for any choice of assignment and so the lattice point-group symmetry is not respected by the

lattice Chern-Simons formulation we have chosen. That being said, the mapping of fermions to composite

fermions is an exact one at the level of the path integral and so the ground state predicted by our theory (at

the full quantum level) should respect the lattice symmetries, provided there is no spontaneous symmetry

breaking. We will return to this issue in the discussion of our mean field theory analysis.

The second term in the Chern-Simons action of Eq. (2.4) enforces the commutation relations. The

matrix kernel Mij must be chosen so as to make the theory gauge-invariant. This ensures that the Gauss’

Law constraint can be applied consistently on different plaquettes, in other words, [Φα(x),Φα
′
(y)] = 0. It

was found previously [96] that on the kagome lattice the matrix kernel has the form

Mij =
1

2



0 −1 1 −s2 s1 + s−1
2 −1 + s−1

2

1 0 1− s−1
1 −s2 − s−1

1 s1 −1

−1 s1 − 1 0 1− s2 s1 −1

s−1
2 s1 + s−1

2 s−1
2 − 1 0 s1s

−1
2 s−1

2

−s2 − s−1
1 −s−1

1 −s−1
1 −s2s

−1
1 0 1− s−1

1

1− s2 1 1 −s2 s1 − 1 0


. (2.7)

The standard canonical quantization procedure then yields [Ai(x), Aj(y)] = − i
θM

−1
ij (x − y) so that only

neighboring gauge fields have non-trivial commutation relations. (See Appendix A.4 for a discussion of the

spectrum of Mij .) This provides a fully consistent definition of a local Chern-Simons action on the kagome

lattice with trivial topology.

2.3.2 Lattice Chern-Simons on a Torus

As noted above, when performing our mapping, the Chern-Simons parameter is given by θ = 1/2π(2k). This

is the form of the flux attachment used in Ref. [96]. However, the coefficient θ is not properly quantized and

so the theory cannot be defined on closed manifolds with non-zero genus [99]. Much as in the continuum

case [98, 100], this problem is resolved by introducing the auxiliary, hydrodynamic field Bµ which lives on

the dual lattice which, in our case, is the dice lattice. In particular, the temporal components, Bα0 , live on

the sites of the dice lattice whereas the spatial components, Bk, live on the links. Following the conventions
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of Ref. [58], the orientations of the Bk are obtained by rotating the arrows on the direct lattice counter-

clockwise until they align with the links of the dual lattice. Fig. 2.2(b) shows the definition of the spatial

components of the Bµ field while Fig. 2.2(c) illustrates the relative orientation of the direct and dual lattices.

The resulting action is given by

SCS [Aµ, Bµ] = −2k

2π

∫
dt
∑
x

Bα0 (x, t)J∗αi Bi(x, t)−
1

2
Bi(x, t)M∗ijḂj(x, t)

+
1

2π

∫
dt
∑
x

Aα0 (x, t)J∗αi Bi(x, t) +Bα0 (x, t)Jαi Ai(x, t)− Ḃj(x, t)Aj(x, t).
(2.8)

The first two terms give the Chern-Simons action for Bµ on the dual lattice whereas the remaining three

terms give the ‘BF’ coupling between the Aµ and Bµ fields. This is the discretized form of the continuum

action

Lctm
CS [Aµ, Bµ] = −2k

4π
εµνλBµ∂νBλ +

1

2π
εµνλAµ∂νBλ. (2.9)

known as the BF theory [101]. The objects J∗αi and M∗ij are the analogues of Jαi and Mij on the dice

lattice. Explicitly, we have

J∗a = (1, 1, 0,−s−1
1 ,−s−1

2 , 0),

J∗b = (−1, 0, 1, 1, 0,−s−1
2 ),

J∗c = (0,−1,−s−1
1 , 0, 1, 1)

(2.10)

so that the Bµ fluxes are given by Φ∗α(x) = J∗αi Bi(x). Using the construction of Ref. [58], we find

M∗ij =
1

2



0 −1 1 −1 + s−1
1 s−1

2 s−1
2

1 0 −s−1
1 −s−1

1 1− s−1
2 −1

−1 s1 0 1 s1 −s1 − s−1
2

1− s1 s1 −1 0 s1s
−1
2 s−1

2

−s2 −1 + s2 −s−1
1 −s2s

−1
1 0 1

−s2 1 s2 + s−1
1 −s2 −1 0


. (2.11)

It can be seen thatM∗ = −M−1 and so theM matrices are non-singular. Similar to the calculation shown

in Appendix E of Ref. [58], one can integrate out Bµ in Eq. (2.8) to recover Eq. (2.4), and so the two

theories are formally equivalent. However, Eq. (2.8) has properly quantized coefficients while Eq. (2.4) does

not, and so the former is well-defined on topologically non-trivial manifolds whereas the latter is not. In
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using Eq. (2.8) our flux attachment procedure can be performed on a toroidal geometry and so we will be

able to safely infer the topological field theory describing our FCI states.

Having completed our description of the lattice Chern Simons action, we return to the flux attachment

procedure. Due to their coupling to the statistical gauge field, the ψ fields have statistical angle δ = 2πk

relative to the original fermionic statistics (as per the flux attachment constraint), and so by choosing the

Chern Simons parameter k to be an integer, we ensure that the CFs are indeed fermions. The 2π periodicity

of the statistical angle implies that theories with different integral values of k should be equivalent. This

property is broken at the mean-field level but is recovered at the quantum level.

Lastly, Sint is assumed to describe a density-density interaction which, due to the flux attachment

constraint Eq. 2.5, has the form

Sint[Aµ] = −1

2

∫
t

∑
x,y

g

16π2k2
Φα(x, t)V (x− y)αβΦβ(y, t) (2.12)

where the explicit sum is over unit cell positions and there is an implicit sum over the sublattices, α, β = a, b, c.

In this form, the interaction term does not enter in the fermionic part of the action. Instead, it is a parity-

even contribution to the action of the gauge fields, similar in this sense to a Maxwell term for the fluxes.

Since it involves more derivatives than the Chern-Simons term it is irrelevant as far as the long-wavelength

fluctuations are concerned. However, it affects the local energetics and it enters in the mean-field equations

(as we will see below). This analysis very much parallels what is done for the FQH states in the continuum,

e.g. see Ref. [12], whose strategy we will follow closely. Hence, we will first identify the gapped FCI ground

states, in the present formalism, with gapped composite fermion ground states, which will be analyzed in

mean field theory in Sec. 2.4. After integrating out the gapped composite fermions, the universal contribution

of the topological theory is encoded in an effective action Leff [Aµ, Bµ] containing Chern-Simons terms [see

Eq.(2.23)]. In Appendix A.3 we check for two examples of gapped states that, at the mean field level, the

gap persists for a range of interactions strengths. Thus, the states that we will identify will not have any

(infrared) instabilities since it is protected by the gap. In fact, for large enough interactions there should be

a phase transition to a state with a broken translation symmetry. Nevertheless, since Sint is quadratic in

fluxes, it is irrelevant relative to the Chern-Simons action of Eq. (2.23), and its presence does not affect the

universal properties of the topological fixed points of the theory, provided the gap has not closed.
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2.4 Mean Field Theory

Analogous to the approach taken for the CF theory of the conventional FQHE, we wish to identify gapped

states of the CFs at the mean field level. These will correspond to candidate FCI states. The specific form

of the interaction will determine whether these states remain gapped and if they are energetically favorable

to other potential ground states.

We first note that after the Jordan-Wigner mapping the action has become quadratic in the fermions

and so they may formally be integrated out, yielding the effective action

Seff [ψ,ψ†, Aµ, Bµ] = −i log tr [iD0 −H(A)] + SCS [Aµ, Bµ] (2.13)

where H(A) is the Hamiltonian describing fermions hopping on the lattice subject to the original magnetic

fluxes as well as the statistical gauge field. The mean field ground states are solutions to the saddle point

equations which are obtained by extremizing the effective action with respect to the gauge fields. We obtain

〈nα(x)〉 =
1

2π(2k)

∑
y

Jαi (x− y)Ai(y) = θ〈Φα(x)〉 (2.14)

〈jk(x)〉 = θ
∑
y

[
Aα0 (y, t)Jαk (y − x)−Mkj(x− y)Ȧj(y, t)

]
− gθ2

∑
y,z

Jαk (z − x)Vαβ(z − y)Bβ(y) (2.15)

where 〈nα(x)〉 and 〈jk(x)〉 are the fermion density on sublattice α and current on link k, respectively.

Explicitly,

〈nα(x)〉 = − δS

δAα0 (x)
, 〈jk(x)〉 = − δS

δAk(x)
. (2.16)

Note that Eq. (2.14) is simply the flux attachment constraint imposed on average. Now, we are interested

in time-independent solutions which preserve the translational symmetry of the lattice (i.e. 〈nα(x)〉 =

〈nα(x + ei)〉 for i = 1, 2 and likewise for all other gauge-invariant quantities). In addition we assume

that the currents on all links are equal in magnitude and circulate with the same chirality around both up

and down triangular plaquettes so that j ≡ 〈j1,3,5〉 = −〈j2,4,6〉. Since generically j 6= 0, we see from Eq.

(2.15) that the Aα0 ’s can be different from one another, giving rise to unequal fermion densities on the three
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sublattices. So, given this ansatz, the resulting mean field equations are satisfied by

na = θΦa = nL/3− 2∆,

nb = θΦb = nL/3 + ∆,

nc = θΦc = nL/3 + ∆,

(2.17)

where ∆ is the shift of the fermion density onto the b and c sublattices, and

Aa0 =
j

2θ
+ 4g∆, Ab0 = Ac0 = − j

2θ
− 2g∆. (2.18)

In our ansatz, by assuming the link currents, jk, to be equal in magnitude and nb = nc, we have preserved

as much of the lattice symmetry as possible (see Sec. 2.4.1 for more details about broken symmetries in our

analysis).

For convenience we define

Φ = (Φa + Φb + Φc)/3 = 2π
p

q
=
nL
3θ

(2.19)

to be the average statistical flux per unit plaquette where p and q are co-prime integers. Then one gauge

choice which gives the flux configuration mandated by our mean field ansatz is

A1(x) = 0, A2(x) = Φ + ∆/θ, A3(x) = 0

A4(x) = 0, A5(x) = 3Φx1 − Φ−∆/θ, A6(x) = 3Φx1

(2.20)

where xi is the coordinate along the ei direction. So at the mean-field level the problem reduces to one

of fermions subject to constant magnetic and statistical fluxes and a staggered potential, the latter two of

which must be solved for self-consistently, as described by the hopping Hamiltonian

H(A) = J
∑
x

(γ−e
iA1(x) |a,x〉 〈b,x|+ γ+e

iA2(x) |a,x〉 〈c,x|+ γ+e
iA4(x) |b,x〉 〈a,x+ e1|

+ γ+e
iA3(x) |b,x〉 〈c,x+ e1|+ γ−e

iA5(x) |c,x〉 〈a,x+ e2|+ γ−e
iA6(x) |c,x〉 〈b,x+ e2|+ h.c.)

+
∑
x,α

Aα0 |α,x〉 〈α,x| ,

(2.21)

where γ± = eiφ±/3 are the phases arising from the background magnetic field and γ± denote their complex

conjugates.

Now, as is explained in the previous section, the interaction term in the action is (formally) irrelevant
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as it involves more derivatives than the Chern-Simons term. So, as is done in the analysis of the continuum

FQHE, we look for gapped CF states of the kinetic term. Formally this amounts to setting g = 0. Note that

this does not mean that the states we find can exist in the absence of interactions. As in the analysis of the

continuum FQHE, there is a residual effect of the interactions in the composite fermion mapping which is

what attaches the fluxes to the fermions. Additionally, at the mean field level, the interactions for g 6= 0 do

affect the local energetics and and so can affect the sublattice imbalance ∆. However, the states that we

find in the (formal) g = 0 limit should persist for finite g 6= 0. Indeed, we show explicitly in Appendix A.3

that the gapped states we find at a few sample fillings persist for finite interaction strength.

As the the filling of the lowest band of the original fermions nL increases, so too will the statistical flux.

Examining the resulting Hofstadter spectrum as a function of filling will allow us to identify gapped states

of the CFs. For each gapped state we can then compute the Chern number of the filled composite fermions

bands which is given explicitly by [22]

C =
1

2π

∑
n filled

∫
BZ

d2kFn12(k) (2.22)

where the integral is performed over the Brillouin zone and Fn12(k) = εij∂kiAj is the Berry curvature of

the nth band. The Berry connection is defined as Aj = −i 〈n,k| ∂kj |n,k〉 where |n,k〉 is the eigenvector

in the nth band of the Bloch Hamiltonian. We compute the Chern number numerically using the method

of Ref. [102]. As discussed in the following section the Chern number appears in the effective topological

theory of the FCI states.

We have plotted the Hofstadter spectrum, sublattice imbalance, and link currents as a function of in Fig.

2.3(a) for the case of k = 1. For now we simply note that we find a number of sequences of gapped states,

with the gapped states highlighted by the vertical red and purple lines occurring at fillings corresponding

to the Jain sequence: nL = p/(2p + 1), p ∈ Z. In the following section we will discuss the topological field

theory describing these states and the pattern of Hall conductances exhibited by them.

2.4.1 Symmetries and Mean Field Theory

At this point we return to the issue of the explicit lattice point-group symmetry breaking of the action which

is made manifest by this mean-field analysis. In a gapped insulating phase, although the net current must

vanish, the current on a link, 〈jk(x)〉, need not be zero. Indeed, in a generic chiral phase we expect to find

currents circulating around the plaquettes. Eq. (2.15) implies that non-zero currents require a staggered

Aα0 (x, t) (i.e. a spatially modulated Chern-Simons electric field). This staggered sublattice potential will
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create a staggered density of fermions. Hence our mean-field analysis would suggest that in general a ground

state of CFs must necessarily break the point-group symmetry of the lattice (note that previous applications

of this lattice Chern-Simons formalism, such as Ref. [96], did not self-consistently calculate the currents and

so incorrectly found uniform states). The mean-field ansatz we have chosen preserves as much of the lattice

symmetry as possible. This situation is to be contrasted with the CF theory of the continuum FQHE in

which the mean-field ground state consists of fully filled CF Landau levels which have an exactly vanishing

local current and hence a vanishing Chern-Simons electric field. Likewise, if we were to instead consider the

problem of a square lattice in a uniform magnetic field then it would be possible to find a translationally

invariant solution since such a state at the mean field level would have equal fluxes (the sum of the magnetic

and statistical fluxes) through all plaquettes; it can be seen that the link currents must vanish in this state

and hence the A0’s would also vanish as per the self-consistent equations. As a result, the mean-field analysis

reduces to a simple Hofstadter problem, as was discussed in Ref. [60], without the need to self-consistently

solve for the currents and density imbalance.

Although numerical studies have predicted FCI states which spontaneously break lattice symmetries [42],

we suspect that the symmetry breaking in our analysis is an artifact of the mean field theory. In particular,

note that in the g = 0 limit we considered, although our ansatz with na 6= nb = nc satisfies the mean

field equations, configurations corresponding to rotations of this ansatz (e.g. with nb 6= na = nc) are not

solutions as is clear from Eq. (2.18) (which follows from only assuming that the link currents, jk, are equal

in magnitude). Hence there should not be an additional, trivial ground state degeneracy associated with this

breaking of the point-group symmetry which suggests that this symmetry breaking is an artifact of the form

of the lattice CS action. Furthermore, since the mapping of the fermions to CFs is exact at the level of the

path integral, it should follow that all the symmetries of the original problem should be respected under the

CF mapping at the full quantum level. Assuming that the effects of these corrections are not so large as to

close the gap, the topological data we compute will be accurate. Since this is the focus of our study we will

henceforth not concern ourself with the role played by the point-group symmetries, leaving a full analysis to

future work. Evidently an improvement over the saddle-point approximation is needed to correctly describe

the non-topological properties of the candidate FCI states predicted using our Chern-Simons theory.
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2.5 Fractional Chern Insulator States

2.5.1 Topological Field Theory

In the cases where the CFs are gapped, we can integrate them out to obtain an effective low-energy, continuum

theory. Doing so will yield a Chern-Simons term with coefficient equal to the Chern number, C, of the filled

CFs bands [22]. Hence the effective continuum Lagrangian for fluctuations of the gauge fields about the

mean field state is given by

Leff [Aµ, Bµ] =
C

4π
εµνλAµ∂νAλ + Lctm

CS [Aµ, Bµ] + . . . (2.23)

where . . . represents irrelevant terms.

Adding in quasi-particle currents with gauge charges lI and a coupling to an external probe gauge field

Ãµ, we can write our theory in the conventional form:

L =
KIJ

4π
εµνλaIµ∂νa

J
λ −

qI
2π
εµνλÃµ∂νa

I
λ + lIj

µ
qpa

I
µ (2.24)

where2

KIJ =


−2k 1 0

1 C 0

0 0 1

 , qI =


1

0

0

 , aµI =


Bµ

Aµ

Dµ

 . (2.25)

Here, we introduced the gauge field Dµ as the bare quasi-particles are CFs and so possess fermionic statistics.

To account for this, and because the quasi-particles do not couple to Bµ, the flux vector is restricted to have

form l = (0, l, l)T , l ∈ Z [100]. On integrating out the Chern-Simons fields, we find the Hall conductance to

be (in units of e2/h)

σxy = −qTK−1q =
C

2kC + 1
. (2.26)

Likewise, the quasi-particle charges and statistics are

Ql = −lTK−1q, θll′ = −2πlTK−1l′. (2.27)

2This theory is equivalent to that arising from the standard hierarchical construction [14, 103]. In particular, the Hall
conductance and anyon content of the theories are readily checked to be identical.
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The ground state degeneracy g on a torus is then [14]

g = |detK| = |2kC + 1|. (2.28)

We can also extract the modular properties of the theory from the effective, topological action. In

particular, the components of the modular S and T matrices (both of rank |detK|, the number of anyons)

are given by

Sab =
1√
|detK|

e−2πilTaK
−1lb , Taa = e−πil

T
aK
−1la (2.29)

where the total quantum dimension is D =
√
|detK| = S−1

00 , a topological invariant that determines the

universal entanglement properties [89,90,104]. Moreover, the full topological structure of theory is encoded

in S and T . Hence the topological field theory for an FCI state which can be described by a gapped state

of CFs is wholly determined by k, the number of attached fluxes, and C, the Chern number of the filled CF

bands.

2.5.2 Fractionalized States from the CF Hofstadter Spectrum

Following the results of the previous sections, we now analyse the Hofstadter spectra of the CFs to identify

candidate FCI states on the kagome lattice. Before inspecting the spectrum, we note that a gapped state of

the CFs must satisfy the Diophantine equation

nL = −3Φ

2π
C + r, r ∈ Z (2.30)

where C is the Chern number of the filled CF bands [60] and −3Φ is the net flux per unit cell (note that

because of the coupling between the fermions and Aµ, if the statistical flux through a plaquette is φ, the

fermions feel a flux −φ). Combined with the flux attachment condition, this implies that a gapped state

must satisfy

nL =
r

2kC + 1
=

r

C
σxy (2.31)

The existence of states satisfying r 6= C is made possible due to the presence of the lattice.

Turning to our model, Fig. 2.3(a) depicts a portion of the Hofstadter spectrum on the kagome lattice and

Fermi Energy for the case of k = 1 pair of attached fluxes. Figs. 2.3(b)-(c) depict the mean field sublattice
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density shift, ∆, and link current, j, as a function of filling. It is clear from the Hofstadter spectrum that

gapped states exist at fillings given by the principal Jain sequence and the gap sizes approach zero as nL

approaches 1/2, as is the case in the continuum. We have also labelled the first few states in this sequence

with the Chern number of the filled CFs bands and the filling factor. Using the expression for the Hall

conductance given in Eq. (2.26), we find that σxy = nL (except for the state at nL = 2/3). Hence we recover

the principal Jain sequence despite the absence of a net non-zero magnetic field. We have not extensively

analysed the spectrum of mean field states for k 6= 1 but our preliminary numerics suggest that for |k| > 0,

there should generically exist gapped states of the CFs at filling factors corresponding to the Jain sequence

of states nL = p/(2kp + 1), p ∈ Z\{0} with Hall conductances satisfying σxy = sgn(k)nL. These states

are analogous to the FQH Jain sequences. We note, however, that there are exceptions to this rule. For

instance, as noted above, the k = 1 state at nL = 2/3 has σxy = 1/3 6= nL and so is the not a typical

Jain state. In Appendix A.2 we present for comparison the Hofstadter spectrum obtained if one assumes a

uniform density of fermions (and hence uniform statistical flux configuration) and does not correctly solve

for the link current self-consistently via the mean field equations.

Now, in the conventional FQH, one can condense quasiparticles in a Jain state to form a FQH state with

a filling fraction which does not lie in the principal Jain sequence. On the lattice, we instead find what is

presumably a dense set of FCI states not lying in the Jain sequences without invoking this condensation

mechanism. In particular, this means that there exist FCI states with the same Hall conductance but at

different fillings. For instance, we find gapped states at nL = 1/7, 2/7, 3/7, 5/7, all with σxy = 3/7. The

nL = 5/7 state is highlighted in Fig. 2.3(a). It should be noted, however, that interactions will likely render

the lattice-specific states with the smallest gaps energetically unfavorable relative to topologically trivial

phases (e.g. Wigner crystals, CDWs, nematic states), which we have not considered.

2.6 Symmetry Fractionalization

The question now arises as to how states at different fillings but with the same topological order can be

classified. In order to answer this question, we make use of the fact that topological phases enriched with

symmetries (known as SETs) possess anyonic excitations which can transform projectively under symmetry

operations [38]. This phenomenon is known as symmetry fractionalization and implies that anyons can carry

fractional symmetry charges. In particular, SETs can be distinguished by their symmetry fractionalization

class (i.e. the set of projective phases for each anyon). Given an SET with Abelian anyon group A and

symmetry group G, the set of distinct symmetry fractionalization classes is given by the second cohomology
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Figure 2.3: (a) Composite fermion Hofstadter spectrum on the kagome lattice with k = 1 and φ± = π/2.
The blue line is the Fermi energy. Some examples of gapped states are labelled with their filling and Hall
conductance. Vertical red (purple) lines are drawn at fillings corresponding to the principal particle (hole)
Jain sequence. The ratio of the mean field sublattice shift, ∆, to the filling and the mean field current per
link, k, are plotted in (b) and (c), respectively. All quantities are in units of J = 1.
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group H2[G,A] [37, 105].

Now, the anyon group of our FCI states is A = Zm, where m = |detK|, and the symmetry group is

G = Z2×U(1) arising from lattice translation symmetry and U(1) charge conservation, respectively.3 Hence,

the distinct fractionalization classes are given by H2[Z2 × U(1),Zm] = Zm × Zm. The fractionalization is

given on specification of the fluxon/vison F and the background anyon b [106]. Physically speaking, the

fluxon is the anyon created on the insertion of a 2π flux quantum; such an excitation carries charge equal

to σxy. The fluxon specifies the U(1) fractionalization in that the charge of an anyon, Qa, is determined via

the mutual statistics between a and F : exp(2πiQa) = exp(iθF,a). Similarly, the background anyon specifies

the translational symmetry fractionalization. This anyon possesses charge equal to the charge density per

unit cell, nL, and so physically one can view the ground state as a crystal of the background anyon b, with

one b residing in each unit cell [106, 107]. Braiding an anyon a around a single unit cell will give a phase

exp(iθa,b) which implies

(T a2 )−1(T a1 )−1T a2 T
a
1 = eiθa,b (2.32)

where T a1,2 are the local translations along the e1,2 directions acting on anyon a. As an aside, we note

that the fact that the system realizes a projective representation of the translation symmetry group may be

viewed as an quantum anomaly of the discrete translational symmetry. Hence this effect may also lead to

momentum pumping on a torus with tilted boundary conditions, a phenomenon which may be interesting

to study in future work.

This analysis provides an interesting perspective on our spectrum of FCI states. The Jain states satisfy

σxy = nL and so realize the fractionalization classes for which F = b. However, given A = Z|detK| and the

fluxon F (equivalently, σxy) there are a total of |detK| translational fractionalization patterns which can be

realized from the choice of background anyon b. We have shown that these other fractionalization classes

which have b 6= F (i.e. nL 6= σxy) can be realized on the lattice.

Moreover, we can use this language to make statements about the momenta of the topologically degener-

ate ground states [37]. Consider a gapped FCI state with |detK| = m and background anyon b on a torus of

size N1N2 where N1,2 are the number of unit cells in the e1,2 direction, and N2 is co-prime with m. Now, let

|0〉 be the ground state labeled by the trivial anyon, and let |φ〉 , . . . , |φm−1〉 be the ground states generated

by applying Wilson loop operators, Lφ
n

2 , to |0〉 where φ is the minimal charge anyon. The Wilson loops can

be viewed as operators creating anyon-antianyon pairs, braiding the anyons around a cycle of the torus, and

3The kagome lattice has a larger space group symmetry but, for simplicity, we will focus on the symmetry group G =
Z2 × U(1).
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then fusing the anyon with the anti-anyon. We can thus make the identification

Laµ = (T aµ )Nµ (2.33)

where µ = 1, 2. This implies that

T1La2T−1
1 = T1(T a2 )N2T−1

1 = e−iN2θa,bLa2 . (2.34)

Now, we have that |φn〉 = (Lφ2 )n |0〉. Without loss of generality, suppose that the trivial ground state |0〉

has zero momentum. Hence,

T1 |φn〉 = e−iN2nθφ,b |φn〉 . (2.35)

So, relative to the trivial state |0〉, the states |φn〉 will have momenta kn = (N2nθφ,b, 0). Since this momentum

shift depends on the braiding angle with the background anyon, it provides a clear way to distinguish between

two FCIs at different fillings possessing the same topological order.

As an explicit example, consider an FCI state with σxy = C/(2kC + 1) and nL = r/(2kC + 1). In

terms of the quasiparticle vectors l, it is readily seen that the fluxon is represented by lF = −(0, C, C)T , the

background anyon by lb = −(0, r, r)T , and the minimal charge anyon by lφ = −(0, 1, 1)T . The translational

symmetry fractionalization for the minimal anyon is then obtained by using the fact that

θlb,lφ = −2rk
2π

2kC + 1
. (2.36)

We have listed the fractionalization patterns for observed FCI states with σxy = 3/7 in Table 2.1.

Table 2.1: Symmetry fractionalization for FCI states with σxy = 3/7. The third column gives the transla-
tional symmetry fractionalization for the minimal charge anyon φ. The fourth column gives the e1 component
of the crystal momentum of the ground state |φ〉 relative to the trivial ground state.

nL σxy (Tφ2 )−1(Tφ1 )−1Tφ2 T
φ
1 k̂1 |φ〉

1/7 3/7 exp
(
−2 2π

7 i
)

−2 2π
7 N2

2/7 3/7 exp
(
−4 2π

7 i
)

−4 2π
7 N2

3/7 3/7 exp
(
−6 2π

7 i
)

−6 2π
7 N2

5/7 3/7 exp
(
−10 2π

7 i
)

−10 2π
7 N2
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2.7 Distinction between FCIs and the Lattice FQHE

Lastly, we would like to emphasize that the system we studied has a net zero external magnetic field and it

is in this sense that the fractionalized states we find should be called FCI states. Conversely, fractionalized

states found in lattice systems subject to a uniform magnetic field (i.e. in Hofstadter bands) should be

considered lattice FQH states. Although both exhibit similar physics, it is important to make clear the

distinction that one requires a net non-zero magnetic field while the other does not. In that regard, the

states observed in Ref. [44] are lattice FQH states. The experimental observation of an FCI – in the absence

of a net nonzero magnetic field – remains an open problem.

2.8 Conclusions

In this Chapter, we formulated a composite fermion theory of Fractional Chern Insulator states on the

kagome lattice using a consistent lattice Chern-Simons theory. We find that partial filling of the lowest band

yields two types of sequences of gapped states: those which satisfy σxy = nL and those which do not. Hence

our theory provides a series of candidate FCI states whose stability against local interactions may be tested

in numerical and experimental studies. Using the language of SETs we illustrated how these states may be

viewed as realizing distinct symmetry fractionalization classes which exposes the rich structure of FCI states

and allows for concrete, numerically verifiable, statements about ground state quantum numbers.
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Chapter 3

Intertwined Order in Fractional Chern
Insulators from Finite-Momentum
Pairing of Composite Fermions

3.1 Introduction

In the preceding Chapter, we demonstrated that lattice analogues of fractional quantum Hall (FQH) states

known as fractional Chern insulator (FCI) states can still be understood through the widely used composite

fermion (CF) framework [11, 12], like most experimentally observed continuum FQH states, in spite of the

importance of the underlying lattice. Specifically, much as in the case of the continuum FQH states, FCI

states can also be represented in terms of a theory of composite lattice fermions coupled to a lattice version of

Chern-Simons gauge theory [56–58,95]. In this picture, the electrons nucleate fluxes of an emergent Chern-

Simons gauge field. Just as continuum FQH states are formed when (at mean-field level) the composite

fermions fill an integer number of Landau levels in the screened flux, Abelian FCI states are formed when

the composite fermions fill an integer number of Hofstadter bands [15,34,59,60].

With this lattice composite fermion formalism in hand, it is natural to ask whether composite fermions

can exhibit more exotic dynamics on the lattice than in the continuum, leading to novel FCI states. We can

glean some intuition for one route to new lattice states by recalling that certain (non-Abelian) continuum

FQH states arise as superconductors of composite fermions. Specifically, at certain filling fractions in the

continuum case, the composite fermions see no effective flux and so form a Fermi surface [64]. In higher

Landau levels, this composite Fermi liquid yields to a pairing instability, resulting in a px+ipy superconductor

of composite fermions [61]. This gapped state is the non-Abelian Pfaffian state proposed by Moore and

Read [1] to describe the experimentally observed FQH state at ν = 5/2.

Although analogues of the Pfaffian state have been observed numerically in lattice systems [29,108–111],

we claim that more exotic paired phases of composite fermions may also be obtainable. Indeed, although the

composite fermions may form a Fermi surface at certain filling fractions due to the vanishing of the net flux, at

other filling fractions at which the net flux is non-zero, the composite fermions may partially fill a Hofstadter

This Chapter is adapted from Ramanjit Sohal and Eduardo Fradkin, Intertwined order in fractional Chern insulators from
finite-momentum pairing of composite fermions, Phys. Rev. B 101, 245154 (2020). c©2020 American Physical Society. This
paper is also cited as Ref. [16] in this thesis.
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band and so still form a Fermi surface. Magnetic translation symmetry implies, as we will review, that this

Fermi surface must consist of multiple Fermi pockets, raising the possibility of finite-momentum pairing and

the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [112,113] or pair-density wave (PDW) [114] like

states. These statements may hold true even in zero magnetic field, as the composite fermions will still see

a non-zero Chern-Simons flux. We should emphasize that the PDW states we investigate do not arise from

a Zeeman effect (as in the conventional FFLO states) but rather have a purely orbital origin.

The goal of this Chapter is to illustrate the existence, at mean-field level, of a novel set of FCI phases

which exhibit a coexistence of topological order (TO) and broken symmetry order (BSO) as a result of finite-

momentum composite fermion pairing, taking as an example, for simplicity, the square-lattice Hofstadter

model.1 We find, for instance, topologically ordered states supporting CDWs, providing a new entry in

the long history of stripe order in QH systems [119–123]. These states support a range of Abelian and

non-Abelian topological orders, including the Pfaffian and PH-Pfaffian [124] states. We also find a phase

which we call a quantum Hall thermal semimetal, as the charge sector is gapped, while the neutral sector is

described by a theory of relativistic massless Majorana fermions. Such a state will possess a quantized Hall

conductance, but will support unquantized transport of heat through the bulk.

Related phenomena have been exhibited in recent experiments [125–127], which revealed a competition

between pairing and nematicity in continuum Landau levels. A subsequent theoretical study [128] proposed a

px+ ipy PDW state of composite fermions as a possible explanation for this observation. The distinguishing

feature between the physics we present and that of, for instance, Ref. [128] is that we present FCIs as

a platform in which to study intertwining of TO and BSO, in that they do not compete with nor are

even independent of one another, but rather arise from a common microscopic origin, namely the interplay

between the pairing of composite fermions and the commensurability of the lattice and magnetic length

scales. We note that the competition and, in some cases, the coexistence of FCI states with more traditional

broken symmetry orders, such as charge density waves (CDWs), has already been numerically established in

Refs. [42,43] (though the underlying icrocopic mechanisms are likely distinct from those discussed here). This

intriguing phenomenon of multiple orders that sometimes compete with each other but sometimes drive each

other is reminiscent of the complex intertwined orders found in high temperature superconductors [114,129].

We emphasize that, although we focus on a particular lattice model, the basic mechanism of finite-

momentum pairing of composite fermions is applicable to other experimentally relevant lattice systems.

These include the aforementioned Moiré systems, such as bilayer graphene/hexagonal boron nitride het-

erostructures, in which Abelian fractionalized states have been observed in strong magnetic fields [44].

1See Refs. [115–118] for related studies of pairing of electrons in the spin-1/2 Hofstadter model.
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Recent theoretical studies suggest that such states may even be found at zero magnetic field in twisted

bilayer graphene systems [130–133]. On the cold atoms front, the Hofstadter model has already been ex-

perimentally realized [50–52]. Although fractionalized states have not yet been observed, the tunability of

interactions in these systems make them a promising playground in which to search for our proposed finite

momentum paired states. With this in mind, we look for both fermionic and bosonic FCI states in the

Hofstadter model, the latter of which are of relevance to cold atom experiments. At the filling fractions we

consider, the bosonic and fermionic phase diagrams exhibit roughly the same set of ordered states.

The remainder of this Chapter is structured as follows. First, we introduce the fermionic Hofstadter

model and review the flux attachment transformation. We identify three example filling fractions at which

the composite fermions form Fermi surfaces with multiple Fermi pockets. Next, we perform a self-consistent

BCS calculation to produce phase diagrams at these fillings in the presence of attractive nearest-neighbor

(NN) and repulsive next-nearest-neighbor (NNN) interactions. We then briefly repeat this analysis for the

same lattice model, but with hardcore bosons. Lastly, we discuss our results and conclude.

3.2 Model, Flux Attachment, and Compressible FCI States

We consider the Hofstadter model [134–136] of spinless fermions hopping on a square lattice in a uniform

magnetic field, as described by the Hamiltonian

H0 = −t
∑
x

∑
j=x,y

[
c†xcx+eje

−iAj(x) +H.c.
]
, (3.1)

where t is the hopping amplitude, ej are the NN lattice vectors, and Aj(x) is the electromagnetic vector

potential. We choose the Landau gauge A = (0, φ0x), where φ0 is the flux per plaquette. We take

φ0 = 2π
p0

q0
, p0, q0 ∈ Z, (3.2)

with p0 and q0 co-prime, so that the magnetic unit cell (MUC) consists of q0 sites along the x direction. The

energy spectrum therefore consists of q0 bands. Additionally, the magnetic translation algebra [137] dictates

that the single particle dispersion obeys the following periodicity in the magnetic Brillouin zone (MBZ):

ε(kx, ky) = ε(kx, ky − φ0). (3.3)
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Figure 3.1: Flux attachment on the square lattice. The Chern-Simons flux, Φ(x), through the plaquette
north-east of x is attached to the fermion density ρ(x) via Gauss’ law, ρ(x) = θΦ(x).

The consequences of magnetic translation symmetry will play an important role when we turn to discussing

pairing of composite fermions.

Now, the Chern number, C0, of the first r filled bands of the Hofstadter Hamiltonian satisfies the

Diophantine equation r = C0p0 + D0q0, D0 ∈ Z [22]. The lowest Landau level (LLL) corresponds to the

solution (r, C0, D0) = (p0, 1, 0). Hence, lattice effects split the LLL into p0 sub-bands. We are interested in

scenarios in which the LLL filling ν ≡ 2πn/φ, where n is the fermion density per site, is fractional. Here we

are following the conventions of Ref. [60] by defining the filling relative to the bands below a certain gap (in

this case, the gap above the manifold of states corresponding to the LLL), rather than in terms of the filling

of a specific band.

We look for fractionalized phases at these filling fractions by performing an exact mapping of the system

of fermions to a system of composite fermions coupled to an emergent Chern-Simons gauge field [12, 95].

Physically speaking, this flux attachment procedure amounts to attaching solenoids of 2k, k ∈ Z, flux quanta

to each fermion so that the resulting bound state of a fermion and a solenoid, a composite fermion, still

obeys Fermi statistics. The resulting action is given by

S[f, f†, aµ] = SF [f, f†, aµ] + SCS [aµ] (3.4)

where f is the composite fermion field and aµ the statistical gauge field. Explicitly,

SF =

∫
t

∑
x

f†(x, t)(iD0 + µ)f(x, t) +
∑
j=x,y

(f†(x, t)ei(aj(x,t)−Aj(x))f(x+ ej , t) +H.c.)

 , (3.5)
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where D0 = ∂0 + ia0 is the covariant time derivative and µ is the chemical potential. The flux attachment

procedure on the lattice is more subtle than that in the continuum due to the difficulties associated with

defining a lattice Chern-Simons action. We make use of the action defined in Refs. [56,58], which takes the

form,

SCS = θ

∫
t

∑
x

[
a0(x, t)Φ(x, t)− 1

2
ai(x, t)Mij ȧj(x, t)

]
. (3.6)

Here,

θ = 1/2π(2k), k ∈ Z (3.7)

and Φ(x) ≡ εijdiaj(x) is the Chern-Simons flux through the plaquette north-east of the site x, where the

di are forward difference operators: diaj(x) = aj(x + ei) − aj(x). Likewise, we define backward difference

operators, d̂i, which have the action, d̂iaj(x) = aj(x) − aj(x − ei). The operator Mij – the explicit form

of which is unimportant for us and is relegated to Appendix B.1 – is chosen so as to make the theory

gauge-invariant. What is important is that SCS enforces the flux attachment constraint (or Gauss’ law),

f†f(x) = θΦ(x), via the Lagrange multiplier field a0, as depicted in Fig. 3.1.

We will defer the inclusion of interaction terms until the next section, as we first simply wish to understand

the mean-field composite fermion band structure. Now, the saddle-point equations for the above action are

given by (restricting to time-invariant solutions)

〈f†(x)f(x)〉 ≡ ρ(x) = θΦ(x) (3.8)

〈jk(x)〉 = θεkid̂ia0(x) (3.9)

where jk(x) ≡ − ∂SF
∂ak(x) is the gauge-invariant current. On the square lattice, there always exists a uniform

solution at any filling fraction with

ρ(x) ≡ n, Φ(x) ≡ φ = nθ, jk(x) = a0(x) = 0. (3.10)

In this mean-field configuration the composite fermions feel a reduced effective flux of

φ∗ = φ0 − φ ≡ 2π
p∗
q∗

(3.11)

per plaquette, where we restrict ourselves to cases where p∗ and q∗ are integer and take them to be co-prime.
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Table 3.1: Details of the three composite Fermi liquid states whose pairing instabilities we investigate. The
names period two, three, and four refer to the periodicity of the MBZ. Here φ0, n, ν, k, φ, and φ∗ are
the magnetic flux, fermion density per site, LLL filling fraction, number of pairs of attached statistical flux
quanta, statistical flux, and effective flux seen by the composite fermions.

φ0/2π n ν k φ/2π φ∗/2π

Period two 3/4 1/8 1/6 1 1/4 1/2

Period three 2/3 1/6 1/4 1 1/3 1/3

Period four 5/8 3/16 3/10 1 3/8 1/4

Figure 3.2: Composite Fermi surfaces for the period two, three, and four configurations given in Table 3.1.

So, the mean-field CF band structure is described by a Hofstadter Hamiltonian in the form of Eq. (3.1), but

with a flux per plaquette of φ∗.

For appropriate choices of ν and k, the resulting mean-field spectrum consists of CFs partially filling a

Hofstadter band, yielding a Fermi surface and hence a compressible state. In particular, if there is a CF

pocket centered at, say, k = 0, then magnetic translation symmetry implies, through Eq. (3.3), that there

will be q∗−1 additional CF pockets centered at momenta Ql = (0, 2πl/q∗), l ∈ Z, in the Landau gauge. This

is illustrated in Fig. 3.2 for the three different configurations of magnetic flux and filling specified in Table

3.1. Given the number of Fermi pockets for each configuration, we will label them as period two, three, and

four, respectively. It is clear that, in the presence of an attractive interaction, we have the possibility of the

formation of Cooper pairs of CFs with center of mass momenta Ql +Qm.
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3.3 Mean-field Theory of Paired States

Our goal now is to investigate the possible pairing instabilities when the composite fermions form a Fermi

surface with multiple Fermi pockets, focusing, for simplicity, on the three configurations listed in Table 3.1.

To that end, we introduce a NN attractive interaction,

Spair = −V
∫
t

∑
x,j

f†(x, t)f†(x+ ej , t)f(x+ ej , t)f(x, t)

∼ −
∫
t

∑
x,j

[
∆x,jf

†(x, t)f†(x+ ej , t) + ∆†x,jf(x+ ej , t)f(x, t)− 1

V
|∆x,j |2

]

where V < 0 and we have performed a Hubbard-Stratonovich transformation to introduce the complex pair

field ∆x,j . We will also consider the effect of NNN repulsive interactions,

Sint = −g
2

∫
t

∑
x,x′

f†(x, t)f(x, t)U(x− x′)f†(x′, t)f(x′, t)

∼ −g
∫
t

∑
x,x′

[
f†(x, t)f(x, t)U(x− x′)ρ(x′, t)− 1

2
ρ(x, t)U(x− x′)ρ(x′, t)

]

where g > 0, ρ(x) is a Hubbard-Stratonovich field corresponding to the fermion density, and U(x− x′) = 1

if x and x′ are next-nearest-neighbors while U(x− x′) = 0 otherwise. We include this repulsive interaction

in order to stabilize additional striped solutions, which may be metastable at g = 0. Such a combination of

short-range attractive and long-range repulsive interactions can be engineered in cold atom systems and has

been shown numerically to be conducive to the formation of non-Abelian FCI states [111]. We will restrict

our attention to the region of phase space in which 0 ≤ g < −V .

Now, in principle, we could perform a fully self-consistent calculation and solve the saddle-point equations

for the Hubbard-Stratonovich fields and the Chern-Simons gauge fields. Indeed, the gauge fields should

be expected to play an important dynamical role. Since they lead to repulsive interactions between the

composite fermions, they will disfavor superconducting order [138] and possibly lead to phase separation

[139]. However, we will instead adopt a more phenomenological approach, analogous to that used in the

continuum [61], in which we simply take the uniform statistical gauge field flux as a fixed background and

look for paired states on top of it. Our reasons for this are twofold. First, as in the continuum, our motivation

is to look for potentially interesting pairing instabilities, not investigate dynamical questions of the stability

of these states to gauge field fluctuations. Second, as discussed in Chapter 2, mean-field approximations

of this type of lattice Chern-Simons action appear to be “too classical”, in the sense that, although the

mapping to composite fermions is an exact one, the choice of flux attachment breaks the lattice point-group
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symmetries. This makes itself manifest in mean-field solutions and it is for this reason that we did not find

uniform density FCI states in the preceding Chapter [15].2 In the present problem, we are generally not

able to find solutions with reasonably small unit cells, if we perform this fully self-consistent analysis. This

may be indicative of a similar issue, or of the possibility that we are already seeing the effects of phase

separation. In either case, this misses the main physics we which to address which, to reiterate, is the

existence of interesting instabilities of the composite fermions.

It should also be noted that we have chosen specific channels into which to decompose the attractive

and repulsive interactions. In a fully self-consistent variational calculation, it would be more appropriate

to decompose both interactions into all possible channels since, as we shall see, the mean-field solutions

typically exhibit CDWs and bond order waves (BOWs), even for g = 0.3 We have adopted this simplified

approach as our goal is not to provide a detailed, quantitative understanding of the phase diagram, but

rather to highlight the qualitative features of the phases which may appear in these lattice systems.

With these assumptions and caveats out of the way, we are left with solving for mean-field configurations

of spinless fermions in a uniform background magnetic field on a lattice, as described by the mean-field

Hamiltonian

HF =
∑
x,j

[
−tf†xfx+eje

−ia∗,j(x) + ∆x,jf
†
xf
†
x+ej + H.c.

]
− µ

∑
x

f†xfx + g
∑
x,y

f†xfxU(x− y)ρ(y), (3.12)

where we have defined a∗ = A − a = (0, φ∗x). We must look for solutions of the following self-consistent

equations,

ρ(x) = 〈f†(x)f(x)〉 (3.13)

∆x,j = 〈f(x+ ej)f(x)〉 (3.14)∑
x

ρ(x) = Nf , (3.15)

where Nf is the total number of fermions. For non-zero values of the pairing amplitudes, ∆x,j , the total

fermion number is not conserved by the mean-field Hamiltonian, and so we fix the average density, n, by

tuning the chemical potential, µ.

As noted in the previous section, we must allow for pair fields with COM momenta Ql+Qm, the smallest

2Theories of this type do not have small expansion parameters. A more correct treatment of quantum fluctuations can lead,
presumably, to the partial melting of some of the broken symmetry states found in Ref. [15]. The same caveats apply to the
problem under consideration here.

3Here we use a traditional (but inaccurate) terminology in which a CDW is meant a charge density wave on the sites of the
lattice, and by a BOW charge density wave on the bonds of the lattice. In the case of an incommensurate CDW, the charge
modulation has components both on sites and bonds.
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Figure 3.3: Unit cell used in the mean-field analysis. The net flux per unit cell is φ∗ out of the page. Here we
take φ∗ = 2π

(
5
8 −

3
8

)
= 2π 1

4 so that the unit cell contains q∗× q∗ = 4× 4 lattice sites. The arrows represent
our choice of the Landau gauge, with the net mean-field gauge field taking the form a∗ = (0, φ∗α). Lastly,
(α, β) represent the horizontal and vertical coordinates of the lattice sites within a unit cell.

of which is (0, 2π/q∗) and corresponds to a period of q∗ lattice sites in the y-direction. As such, we will

take our unit cell to contain q∗ × q∗ lattice sites, as depicted in Fig. 3.3 for q∗ = 4. This leaves us with q2
∗

densities, ρ(α,β), and 2q2
∗ pair fields, ∆(α,β),j , to solve for, where α, β = 1, . . . , q∗ denote the horizontal and

vertical coordinates of the sites within a unit cell (see Fig. 3.3). For given values of V and g, we numerically

solve the saddle-point equations Eqs. (3.13)-(3.15), using several random ansätze for the densities and pair

fields to ensure we identify the lowest energy solution. Note that the ground state is the solution which

minimizes the energy – not the grand potential – since we are working at fixed particle number rather than

fixed chemical potential. So, although we compute observables within the grand canonical ensemble, we

must subtract −µNf from the mean-field Hamiltonian when comparing the energies of different mean-field

configurations:

E =〈HF 〉+ µNf −
1

V

∑
x,j

|∆x,j |2 −
g

2

∑
x,y

ρ(x)U(x− y)ρ(y). (3.16)

In the following, we will map out the mean-field phase diagrams as functions of V and g.

3.3.1 Role of Magnetic Translation Symmetry

As a brief interlude, let us investigate the role of the magnetic translation symmetry in determining the form

of the pair fields [115]. In the Landau gauge we have chosen, the magnetic translation operators are given
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by

T̃1 = exp

(
iφ∗
∑
r

r2f
†
rfr

)
T1, T̃2 = T2, (3.17)

where T1,2 are the ordinary translation operators and have the action T−1
j fxTj = fx−ej . The magnetic

translations T̃1,2 commute with the kinetic part of the mean-field Hamiltonian. Under the action of T̃1, the

pair fields transform as

T̃1∆(α,β),xT̃
−1
1 = ∆(α+1,β),xe

−2iφ∗β ,

T̃1∆(α,β),yT̃
−1
1 = ∆(α+1,β),ye

−2iφ∗βe−iφ∗ .

(3.18)

This implies that a mean-field state, |ψ〉, with, for instance, uniform px+ipy pairing actually breaks magnetic

translations and the state T̃1 |ψ〉 will have spatially modulated pair fields. We alert the reader to this fact

now so it is clear, when we present real-space configurations of specific mean-field solutions, that the pair

fields of the translated (and rotated) solutions will not take the same form. This is a consequence of the fact

that magnetic translations (rotations) are translations (rotations) combined with a gauge transformation

and the pair fields are not gauge-invariant quantities.

Let us now consider solutions which preserve the magnetic translation symmetry, so that T̃j∆(α,β),j T̃
−1
j =

∆(α,β),j . On defining the Fourier transform of the pair fields in the y-direction, ∆α,Pl,j =
∑q∗
β=1 ∆(α,β),je

−iPlβ

with Pl = 2πl
q∗
, l ∈ Z, and imposing the above magnetic translation symmetry constraints, we find

∆α,Pl,j = ∆α+1,Pl+2φ∗,je
−iφ∗δj,y . (3.19)

This implies that zero-momentum pairing will generically coexist with finite-momentum pairing, if magnetic

translation symmetry is preserved. Of course, there is no guarantee that magnetic translations will be

respected by the mean-field ground state and we will often find it to be the case that it is not. Nevertheless,

this observation highlights the point that there is a predisposition to finite-momentum pairing in these lattice

systems.

3.4 Fermionic Paired FCI Phase Diagrams

The results of our self-consistent mean-field analysis are summarized in the phase diagrams of Fig. 3.4.

We find a host of translation symmetry breaking paired states of the composite fermions, the qualitative

features of which we now describe in more detail. In addition to the site-centered charge density and pair
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Figure 3.4: Schematic mean-field phase diagrams as functions of the NN attraction, |V | = −V , and NNN
repulsion, g, for the fermionic configurations of Table 3.1. Solid (dashed) black lines correspond to first order
(continuous) transitions. The dotted line separating the Stripe I and II regions in (b) indicates a crossover.
Gapped phases are labeled by the Chern number, C, of the BdG bands. The grey regions indicate where
the energies of the saddle-point equation solutions are too close to numerically deduce which is the ground
state. Details of the phases are presented in the main text and illustrated in Figures 3.5, 3.7, and 3.8.

field configurations, we characterize these phases by computing the link currents and the bond densities,

〈jx,k〉 = 〈if†xfx+eke
−ia∗,k(x,t) + H.c〉, (3.20)

〈Bx,k〉 = 〈f†xfx+eke
−ia∗,k(x,t) + H.c〉, (3.21)

as well as the Chern number, C, of the Bogoliubov-de Gennes (BdG) band structure, using the method of

Ref. [102]. The latter quantity determines the number and chirality of Majorana edge modes in a system

with open boundary conditions. This allows us to determine the topological order of the system via the bulk-

boundary correspondence, on taking into account the presence of a charged chiral boson from the gapped

charge sector. Equivalently, from the bulk perspective, vortices of the pair field will trap C Majorana zero

modes (MZMs).

Much as in the well studied case of the paired FQH states in the continuum [61], due to the Higgsing of

the dynamical Chern-Simons gauge field by the pairing amplitudes, vortices of the pair field are finite energy

excitations and carry a charge e/4k, where e is the charge of the electron. So, states with an odd Chern

number possess non-Abelian topological order, as these pair field vortices will possess one unpaired MZM.

Conversely, states with an even Chern number possess Abelian topological order. In particular, since we

have focused on FQH states arising from attaching a single pair of flux quanta (k = 1), states with C = 1,−1

possess the same topological order as the Pfaffian and PH-Pfaffian states [124], respectively, whereas those

with C = 0 support the same topological order as the Abelian Halperin paired state [140].
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Figure 3.5: (a) and (b): Period-two mean-field configurations. In this and the following figures, the color
of the sites indicates the charge density, with darker (lighter) sites corresponding to higher (lower) density.
Likewise, the width of the links represent the magnitude of the bond density, Bx,j . The blue arrows represent
the pair fields ∆x,j = |∆x,j |eiθx,j , with length proportional to |∆x,j | and angle relative to the horizontal given
by θx,j . The link currents all vanish. (c): Spectrum of the BdG Hamiltonian for mean-field configuration
(b). The left panel depicts the two bands closest to E = 0. The black circle highlights the presence of two
Majorana cones along the line ky = 0, which are depicted in more detail in the right panel.

The relation between the Higgsing of the Chern-Simons gauge field and the non-Abelian topological

order is a subtle issue. Its root reason is the the fact that the pair field condensate leaves a local Z2

symmetry unbroken in a regime in which the theory is deconfined [141]. An example is the case of a

conventional superconductor coupled to a dynamical gauge field which has Z2 topological order [142]. In the

case of a relativistic field theory, the non-Abelian character can be described either through a similar pairing

mechanism, or in terms of a topological phase of the partition function in the form of an η-invariant [143].

3.4.1 Period Two

We now turn to the non-uniform paired phases. We begin with the period-two phase diagram, depicted in

Fig. 3.4(a), in which we find three striped phases. The real space configurations of these phases are depicted

in Fig. 3.5. We note that the net (statistical plus magnetic) flux per plaquette is π and so, prior to the

addition of interactions, the mean-field composite Fermi liquid solution [Fig. 3.2(a)] preserves time reversal

symmetry (TRS). The mean-field paired ground states we find also preserve TRS since all the pair fields,

∆x,j , can be made real by a global U(1) rotation.
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Focusing on the individual phases in more detail, the ground state for small g is a bidirectional stripe

phase. As depicted in Fig. 3.5(a), this state possesses a uniform site density but also a bidirectional BOW.

In particular, Bx,x and Bx,y possess modulations at the wave vectors (π, 0) and (0, π), respectively. This

is not surprising, as the pair fields take the forms ∆x,x = ∆eiq1·x + ∆̃eiq2·x and ∆x,y = ∆̃eiq1·x −∆eiq3·x,

where ∆̃ > ∆ > 0, q1 = (0, π), q2 = (π, π) and q3 = (0, 0). In general, the presence of pair fields at momenta

q1 and q2 will induce a daughter CDW order with amplitude ρq1−q2
∼ ∆q1

∆∗q2
+∆−q2

∆∗−q1
, where ρq is

the Fourier transform of the charge density, as can be shown through a simple free energy analysis [114,144].

However, in the present problem, we must be careful to note that the phases of the pair fields, and hence

their Fourier components, depend on the choice of gauge for the background flux. In particular, as noted

above, the pair fields transform non-trivially under magnetic translations and rotations. As such, we cannot

directly use the free energy analysis of Ref. [144] to deduce the daughter orders of the spatially modulated

superconducting order. A more careful treatment, which is beyond the scope of the present work, would

require the analysis of a free energy which takes into account the transformations of the pair fields under

the magnetic algebra. Nevertheless, it is clear that we can still identify the BOW as a daughter order of

the striped superconducting order (and hence a consequence of finite momentum pairing of the composite

fermions) by virtue of the fact that this phase exists as the ground state in the absence of the NNN repulsive

interaction, at g = 0.

The band structure of the BdG Hamiltonian for this phase is less interesting. It is fully gapped with

C = 0, implying there are no chiral Majorana edge states. We have also studied this mean-field configuration

with open boundary conditions to confirm that there are indeed no edge states protected by the mean-field

TRS or any other symmetry.

As g is increased, there is a first-order transition to a striped py phase, in which ∆x,x = 0, while

∆x,y = ∆̃ + ∆eiq·x with q = (π, 0) and ∆̃ > ∆ > 0. The modulation of the pair fields in this phase appears

to be driven by the (π, 0) CDW engendered by the repulsive NNN interactions, as this phase does not exist

as a solution of the saddle-point equations at g = 0. Moreover, we have numerically checked that a similar

stripe phase can be obtained in a square lattice system with the same interactions, but with a vanishing

magnetic flux and hence a single Fermi pocket. Nevertheless, the BdG spectrum exhibits an interesting

nodal structure. For large g and V , the system possesses two Majorana cones, as shown in Fig. 3.5(c). As g

is increased further or V decreased, the cones approach and annihilate one another (indicated by the dashed

black line in Fig. 3.5), yielding a fully gapped spectrum.

Although C = 0 in the gapped stripe phase, both the nodal and gapped phase band structures are in

fact topologically non-trivial. This is demonstrated in Fig. 3.6, in which we plot the energy spectra for these
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Figure 3.6: Dispersions of the (top row) nodal and (bottom row) gapped stripe phases on finite-size systems
with different boundary conditions. In (c), we also plot a horizontal line at E = 0, representing the topological
invariant M(kx) defined in Appendix B.2.1. Purple (yellow) indicates M(kx) = −1(+1).

phases on finite-size systems with open and periodic boundary conditions (OBCs and PBCs, respectively). In

the nodal phase, on imposing OBCs along the direction parallel to the stripes, we find a Majorana flat band

connecting the projections of the bulk nodes onto the edge Brillouin zone (BZ). In the gapped phase, we find

a Majorana flat band spanning the entire surface BZ. These properties are typical of px-paired states [145].

We show in Appendix B.2.1 that a combination of the particle-hole symmetry of the BdG Hamiltonian and

reflection symmetry, with the reflection axis taken along a stripe, are sufficient to protect these flat bands

and the nodal points.

Physically, the existence of these flat bands is not surprising, as the mean-field ground state resembles an

array of Kitaev chains [146]. At large values of g, hopping between the chains consisting of sites with high

density, which also have non-zero ∆x,y, will be suppressed due to the intervening low density chains and the

NNN repulsion. This yields an array of decoupled Kitaev chains which, in the topological regime, will host

MZMs at their ends when OBCs are imposed, giving rise to the observed Majorana flat band. The gapped

stripe phase thus describes a weak two-dimensional topological superconductor of composite fermions, in

that it is formed from an array of one-dimensional topological superconductors (see Appendix B.2.2 for more

details).

Since they both have C = 0, the bidirectional stripe phase and gapped stripe phases possess the topo-

logical order of the Abelian Halperin paired state. That being said, based on the physical picture of the

gapped stripe phase as an array of nearly decoupled Kitaev chains, we expect that lattice dislocations should
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bind MZMs (see Appendix B.2.2). This is a particularly intriguing possibility in the context of cold atom

experiments, where lattice defects can be engineered directly. A somewhat similar nematic FQH phase was

found in a coupled wire construction of paired FQH states in Ref. [147], although, in that case, the edge

supported a pair of helical Majoranas with finite dispersion. Lastly, we note that the nodal striped phase

is a quantum Hall thermal semi-metal in that charged excitations are gapped in the bulk, but the gapless

Majoranas can still transport heat. The nodal striped phase is not strictly topologically ordered since it has

a gapless spectrum. Nevertheless, it still supports gapped charge-1/2 Laughlin quasiparticles.

3.4.2 Period Three

We will now discuss the period-three inhomogeneous paired states. As shown in Fig. 3.4(b), the period-three

phase diagram is dominated by unidirectional stripe phases. The real space configurations of these phases

are depicted in Fig. 3.7. The stripe I and II configurations clearly belong to the same phase – they both

possess a CDW at wave vector (2π/3, 0). For small g, as |V | is increased, there is a crossover from stripe I to

stripe II, as the CDW order parameter continuously drops to zero around |V | ≈ 4.5 and then changes sign.

This crossover is indicated by the dotted black line in Fig. 3.4(b). As g is increased, however, this crossover

changes to a first order transition around g ≈ 2.5. The stripe I/II configurations are also characterized by

finite momentum pairing and counter-propagating currents. The pair fields, in the chosen gauge, have the

forms ∆x,x = ∆0 + ∆1 cos(2πx/3), where ∆0 > ∆1 > 0, and ∆x,y = −i∆2 − i∆3 cos(2π(x + 1)/3), where

∆3 > ∆4 > 0. Note that the pair fields on the horizontal links of the rightmost two columns in Figures 3.7a

and 3.7b do not vanish; they are simply about one to two orders of magnitude smaller than the pair fields

on the other links. As in the example of the period-two bidirectional stripe, we identify the CDW order as

a daughter order of the striped superconducting order, by virtue of the fact that the the stripe I/II phases

persist down to g = 0. Aside from the stripe I/II phases, there is a small region of the phase diagram around

(V, g) = (−5, 3) which supports a vortex lattice phase and is separated from the other phases by a first order

transition. As shown in Fig. 3.7(c), this phase consists of an array of clusters of four high density sites,

around which there are circulating currents. As for the topological properties of these states, the stripe I/II

phase supports regions with C = −1, 0, 1 and C = 0,−1, respectively, whereas the vortex lattice phase has

Chern number C = 0. So, in contrast to the period-two case, non-Abelian phases with the topological orders

of the Pfaffian and PH-Pfaffian are present in the period-three phase diagram.

We note that that we are not able to conclusively identify the ground state in the unlabeled grey region

of Fig. 3.4(b). Here, several states (with C = ±1) compete with the stripe I configuration and all are nearly

degenerate, up to our chosen numerical precision. This suggests that the system will likely be unstable to

50



Figure 3.7: Period-three mean-field configurations. For each configuration, the left figure depicts the link
currents, jk, as red arrows, while the right figure depicts the pair fields in the same manner as Fig. 3.5.
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phase separation in this regime.

3.4.3 Period Four

Lastly, we have the period-four phase diagram, shown in Fig. 3.4(c), which exhibits the greatest diversity of

phases. A unidirectional stripe phase, shown in Fig. 3.8a, occupies most of the the g ' 1 region. Of note is

the fact that it supports a CDW and a BOW in the x-direction with a period of two lattice sites, while the

pair field modulation has a period of four sites in the same direction (that is, the pair field pattern returns

to itself after four magnetic translations). Explicitly, the pair fields on the y-links, ∆x,y, possess a uniform

q1 = (0, 0) Fourier component and a modulation at wave vector q2 = (π, 0), while the pair fields on the

x-links are given by ∆x,x = ∆qe
iq·x + ∆−qe

−iq·x, where q = (π/2, 0) and ∆q = |∆|e−iπ/4 = ∆∗−q. Note

that the appearance of a CDW with half of the period of the pair field modulation is characteristic of PDW

states [144]; indeed, the form of ∆x,x is precisely that of a PDW, at least in the chosen gauge. In fact, this

unidirectional stripe phase remains a solution of the saddle-point equations down to g = 0, and so it indeed

owes its existence to finite-momentum pairing of the CFs – the NNN repulsive interactions are needed only

to stabilize it as the ground state. Additionally, it is topologically trivial except for a small region of the

phase diagram around (V, g) = (−1.2, 1.2), where the BdG bands have C = −2. In this regime, the edge of

the system supports a chiral boson from the charge sector and two counter-propagating Majorana fermions.

The NNN repulsion also helps stabilize a bidirectional stripe phase, shown in Fig. 3.8(b), in a small

region of the phase diagram. This phase possesses CDWs at wave vectors (0, π), (π, 0), and (π, π) as well as

modulations of the bond densities, Bx,x and Bx,y, at wave vectors (0, π) and (π, 0), respectively. The pair

fields take the form

∆x,x = ∆̃ + ∆ + (∆̃−∆)eiπy (3.22)

∆x,y = i∆̃ cos(πx/2 + π/2) + ∆eiπy cos(πx/2), (3.23)

with ∆̃ > ∆ > 0. Note that this mean-field configuration is invariant under two magnetic translations along

both lattice directions, and so the CDW and BOW has the same periodicity as the pair field modulation,

in contrast to the unidirectional stripe phase. However, we find that this phase exists as a (metastable)

self-consistent mean-field solution at g = 0, and so it seems reasonable to view the CDWs and BOWs as

daughter orders of the spatially modulated pairing. As far as its topological properties are concerned, this

bidirectional stripe phase has Chern number C = 1, and so possesses the topological order of the Pfaffian.

In the region below g ≈ 1, we find competition between various configurations with circulating currents,
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Figure 3.8: Period-four mean-field configurations. The link currents in the stripe configurations (a,b) all
vanish.
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Table 3.2: Details of the three composite Fermi liquid states for the bosonic system. Here, 2k′ − 1 is the
number of attached statistical flux quanta.

φ0/2π n ν k′ φ/2π φ∗/2π

Period two 3/4 1/4 1/3 1 1/4 1/2

Period three 2/3 1/9 1/6 2 1/3 1/3

Period four 5/8 1/8 1/5 2 3/8 1/4

Figure 3.9: Composite Fermi surfaces for the period two, three, and four configurations given in Table 3.2.

which we refer to as vortex lattices. Two examples of these phases are shown in Fig. 3.8(c,d). For |V | > 2.2,

the ground state is the vortex lattice I phase, which exhibits a square lattice of vortices. It also has C = −1,

and so supports the same topological order as the PH-Pfaffian. As |V | is lowered, the system transitions

through other vortex lattice phases, including that of Fig. 3.8(d), in which there appears to be a triangular

lattice of vortices. In the region |V | / 0.8, marked by the color gray in Fig. 3.4(c), we find competition

between several vortex lattice states, one of which has Chern number C = −2. These solutions appear to

be degenerate (up to numerical precision), suggesting the system will likely be unstable to phase separation.

It is thus unclear whether a uniform paired state of CFs can actually be stabilized in this regime, or if a

proliferation of vortices will return the system to a composite Fermi liquid.

3.5 Bosonic Paired FCI Phase Diagrams

Thus far, we have considered paired FCI states in a tight-binding model of fermions. In this section, we

repeat our analysis for a system of hardcore bosons in the same square-lattice Hofstadter model, which is of
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Figure 3.10: Schematic mean-field phase diagrams as functions of the NN attraction, |V | = −V , and NNN
repulsion, g for the bosonic configurations listed in Table 3.2. The bidirectional stripe I phase in (a) is the
same as the bidirectional stripe phase present in Fig. 3.4(a).

Figure 3.11: Real-space configuration of the bidirectional stripe (a) IIA and (b) IIB phases in the bosonic
FCI period-two phase diagram (Fig 3.10a). The link currents vanish in both configurations. (c) The two
BdG bands closest to E = 0 for IIB (the spectrum for IIA is similar). Despite appearances, there is a very
small gap, as the pair fields are non-zero but small.
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relevance for cold atom experiments [50–52]. The set-up is the same as that of the fermionic case considered

above, with the only difference being that we must attach an odd number of flux quanta to the bosons to

obtain a theory of composite fermions. Hence, we must take the Chern-Simons coupling to be

θ =
1

2π(2k′ − 1)
, k′ ∈ Z. (3.24)

In gapped, paired states of the CFs, vortices of the pair field will thus carry charge e/(4k′ − 2). We again

consider three different configurations of filling and background magnetic flux, as summarized in Table 3.2,

such that the composite fermions form Fermi surfaces with two, three, and four pockets, as shown in Fig.

3.9.

Repeating the same mean-field analysis as for the fermionic problem, we obtain the phase diagrams of

Fig. 3.10, which exhibit nearly the same topology as the corresponding fermionic phase diagrams. One novel

feature is the emergence of the bidirectional stripe IIA and IIB phases in the period-two phase diagram [Fig.

3.10(a)] around (V, g) = (−1.3, 1.3), which support CDWs at wave vectors (0, π), (π, 0), and (π, π) and

BOWs in Bx,x and Bx,y at wave vectors (0, π) and (π, 0), respectively. The real space configuration of these

phases are depicted in Fig. 3.11; the differences between IIA and IIB are that, in the former, the (0, 0)

component of ∆x,y is greater than the (π, 0) component and the (0, π) component of ∆x,x is greater than

the (0, 0) component, while the opposite statements hold true in the latter. Unlike the other period-two

phases, these phases spontaneously breaks TRS since the pair fields on the x-links, ∆x,x, are all real while

those on the y-links, ∆x,y, are imaginary. The pair fields have very small magnitudes, yielding a minute

gap which is not easily seen in Fig. 3.11(c). As such, even at low temperatures, the system will exhibit

unquantized heat transport mediated by the Bogoliubov quasiparticles through the bulk.

Another new phase seems to appear at small |V | and g in the period four diagram; since the order

parameters are so small in this region, it is difficult to conclusively identify the nature of this phase, but we

tentatively describe it as a vortex lattice and label it as Vortex Lattice IV. The BdG band structure has

C = 2, and so this phase is Abelian. We note that a different C = 2 paired quantum Hall phase was studied

in Ref. [128], which resulted from somewhat similar PDW physics.

3.6 Discussion and Conclusion

In this Chapter, we have presented a qualitative, mean-field picture of the intertwining of symmetry breaking

and topological order in FCI states arising from the finite momentum pairing of composite fermions. This is a

consequence of magnetic translation symmetry enforcing the presence of multiple composite Fermi pockets.
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We find a diverse array of paired states, the most notable of which exhibit some subset of the following

observable features:

1. Daughter CDW and/or BOW order arising from the modulated pair fields, similar to that in theories

of PDW states in the cuprates.

2. Gapped neutral sectors possessing Chern numbers C = −2,−1, 0, 1, 2, resulting in C Majorana edge

modes with chirality sgn(C), in addition to a charged chiral boson. Here, C = −1, 0, 1 correspond to

the PH-Pfaffian, Halperin paired state, and Pfaffian topological orders, respectively.

3. Gapless neutral sectors, forming quantum Hall thermal semimetals (only the nodal stripe phase in

Figures 3.4a and 3.10a possesses this property).

4. The possible trapping of MZMs by lattice dislocations (only the gapped stripe phase in Figures 3.4a

and 3.10a possesses this property).

Although the more interesting phases we find occupy small regions of the phase diagram, there is some hope

for observing these states in future cold atom experiments, in which the nature of the interactions can be

finely tuned. At a minimum, our results demonstrate that the observation of BSO in an experimental setting

need not rule out concomitant TO, as their coexistence is in fact a generic scenario in the composite fermion

picture. In particular, the CDW patterns we discuss could be directly imaged in cold atom experiments [148].

Looking forward, it may prove interesting to better understand the properties of lattice defects in these

systems. In particular, we found a stripe phase in the period-four phase diagram exhibiting a CDW with half

the period of the pair field modulation, a feature shared by PDWs. In PDW states, a dislocation of the CDW

pattern will require the pair field phase to wind by 2π about the dislocation, trapping a vortex [144]. It is

possible that lattice dislocations in this phase, or related paired FCI states, may display similar properties.

If the BdG band structure has Chern number C, such vortices would trap C MZMs and would provide a

novel way of engineering non-Abelian defects in a manner distinct from previous proposals [35,149].

Coupled wire constructions [147, 150–152] may also provide a means by which to demonstrate the exis-

tence of the striped states we find beyond mean-field, especially since, by definition, these are anisotropic

states. However, while such constructions would allow us to identify regions of the phase diagram in which

these states could in principle exist through the fine-tuning of interactions, there is still the issue of phase

separation. As we have discussed, there appear to be nearly degenerate vortex lattice solutions in the

fermionic period-four phase diagram, suggesting a tendency towards a proliferation of vortices and hence

a destruction of superconducting order. Although the more interesting stripe phases can be stabilized, as

we have seen, through long range repulsive interactions, such phases are also sensitive to the breaking of
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translation symmetry via, for instance, disorder or the harmonic traps used in cold atom experiments. Such

features would result in local variations of the density with periods which may be incommensurate with the

expected stripe order in a clean system. So, while cold atoms experiments and solid state Moiré systems

provide promising platforms in which to search for our proposed finite momentum paired FCI states, there

are several physical hurdles which may disfavor the realization of said states.
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Chapter 4

Landau-Ginzburg Theories of
Non-Abelian Quantum Hall States
from Non-Abelian Bosonization

4.1 Introduction

Our attention to this point has been directed towards understanding the novel properties of fractional

quantum Hall (FQH) states realized in lattice systems. However, many unresolved questions still remain in

the context of FQH states formed by two-dimensional electron gases in the continuum subjected to strong

magnetic fields. Many of these loose threads lie in understanding the emergence of non-Abelian FQH states

and it is this question we task ourselves with addressing in this and the following two Chapters of this

thesis. Indeed, despite the success over the past several decades in understanding the Abelian FQH states,

an understanding of the dynamics which can lead to non-Abelian FQH states has remained elusive, as

such states cannot arise directly from the application of flux attachment, which is by definition Abelian.

For example, while it is believed that the observed ν = 5/2 FQH plateau is a non-Abelian state arising

from composite fermion pairing [61], the origin and nature of the pairing instability leading to this state

continues to be debated, with seemingly contradictory results between experiment and numerics [9,153–156].

Nevertheless, assuming a particular pairing channel, the non-Abelian Pfaffian phase appears quite naturally,

as we outlined in Chapter 1 [1, 61].

Unfortunately, this physical picture does not appear to translate simply to the other proposed non-

Abelian states, such as the Read-Rezayi (RR) states [65]. Wave functions for these states can be constructed

using conformal field theory (CFT) techniques [1], but it is not clear which of these states can be obtained

starting from a (physically motivated) field theory of composite particles. To make matters worse, the

wave functions for generic non-Abelian states are typically characterized by clustering of more than two

particles [65, 157]. Näıvely, from perturbative scaling arguments, such states could not arise unless the

clusters with fewer particles are disallowed by symmetry. Most theories of interest do not appear to have

such a symmetry, implying that non-perturbatively strong interaction effects are required to give rise to such

This Chapter is adapted from Hart Goldman, Ramanjit Sohal, and Eduardo Fradkin, Landau-Ginzburg theories of non-
Abelian quantum Hall states from non-Abelian bosonization, Phys. Rev. B 100, 115111 (2019). c©2019 American Physical
Society. This paper is also cited as Ref. [17] in this thesis.
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states. While we note that projective/parton constructions can be used to formulate effective bulk theories

of non-Abelian states [158–160], in such constructions the electron operator is fractionalized by hand, and

it must be taken by fiat that the fractionalized degrees of freedom are deconfined. Consequently, although

the projective approach can formally generate many candidate states, it does not shed much light on their

dynamical origin.

Recent progress in the study of non-Abelian Chern-Simons-matter theories in their large-N (“planar”)

limit [66, 67] has led to the proposal of non-Abelian Chern-Simons-matter theory dualities by Aharony

[68], which take the shape of level-rank dualities. Along with the Abelian web of dualities they imply

[161, 162], these dualities constitute tools with which it may be possible to make non-perturbative progress

on the above problem. Such dualities can relate theories of Abelian composite particles to theories of

non-Abelian monopoles, and they have led to progress on several important problems in condensed matter

physics [124, 163–170]. Of particular importance for us, pairing deformations of a dual non-Abelian theory

can lead to non-Abelian topological phases which appear inaccessible to the original Abelian theory, in which

this pairing corresponds to a highly non-local product of monopole operators.

In this Chapter, our strategy will be to use these non-Abelian dualities to begin to map the landscape of

non-Abelian topological phases accessible from a “composite particle” picture, by way of “projecting down”

from a multi-layer parent Abelian state. This type of approach, in which the transition to the non-Abelian

phase can be physically interpreted as being driven by interlayer tunneling [61,171–177] or pairing [69,178],

has formed the foundation of several lines of attack on the non-Abelian FQH problem. Such projections have

been implemented at the formal level of the edge CFT (“ideal”) wave function [179,180] and in coupled wire

constructions [70, 152]. Numerical studies of bilayer systems have also lent support to this idea [181–187].

However, a robust bulk LG description of generic non-Abelian FQH states continues to be lacking. In one

major attempt to fill this gap, the authors of Ref. [178] constructed a non-Abelian LG theory for a subset

of the bosonic RR states by considering layers of ν = 1
2 (bosonic) Laughlin states. Using the well-known

level-rank duality of the (gapped) bulk Chern-Simons topological quantum field theory (TQFT) [188–190]

(see Ref. [2] for a review), the authors motivated a description of these states involving SU(2) Chern-Simons

gauge fields coupled to scalar matter in the adjoint (matrix) representation, obtaining the non-Abelian QH

state by pairing across the different layers. In this approach, the anyon content of the non-Abelian state is

furnished by the vortices of the pairing order parameter. While this construction is conceptually appealing,

it does not originate from a duality satisfied by the parent Abelian LG theory, which describes a quantum

critical point, but, rather, a duality satisfied only deep in the gapped Abelian FQH phase. Moreover, in

order to give the anyons electric charge in this approach, it is necessary for the external electromagnetic field
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to couple to the U(1) subgroup of the full non-Abelian gauge group, explicitly breaking the larger gauge

invariance.

Using the non-Abelian bosonization dualities, we construct LG theories of the full bosonic RR sequence

at filling fractions ν = k/(kM + 2), k,M ∈ Z, which do not suffer from these problems. These theories are

obtained by starting with k layers of ν = 1/2 bosonic QH states, using the dualities to obtain a LG theory

of non-Abelian composite bosons, and attaching M fluxes to the resulting theory. For example, we obtain

a LG theory of the bosonic ν = 1 Moore-Read state consisting of two layers of bosons φn, n = 1, 2, which

we call the “composite vortices,” each at their Wilson-Fisher fixed point and coupled in the fundamental

representation to a SU(2) gauge field an,

L =

2∑
n=1

[
|Dan−A1/2 φn|2 − |φn|4 +

1

4π
Tr

(
andan −

2i

3
a3
n

)]
− 1

4π
AdA . (4.1)

where Dan−A1/2 = ∂ − i(abntb −A1/2) is the covariant derivative, we use the notation AdB = εµνλAµ∂νBλ,

tb = σb/2 are the SU(2) generators, and 1 is the 2× 2 identity matrix. We use the notation −|φ|4 to denote

tuning to the Wilson-Fisher fixed point. Although the gauge fields an are non-Abelian, the topological phase

accessed by simply gapping out the composite vortices will only support excitations with Abelian statistics.

For a SU(N) gauge group, non-Abelian statistics require the presence of a Chern-Simons term at level

greater than one. To obtain the non-Abelian FQH state, we condense clusters of the non-Abelian composite

vortices across the layers (see Fig. 4.1), in this case condensing φ†1φ2 without condensing φ1, φ2 individually.

This Higgses the linear combination a1 − a2 of the SU(2)1 gauge fields, causing the bilayer SU(2)× SU(2)

gauge group to be broken down to its diagonal SU(2) subgroup. The Chern-Simons levels of the resulting

gapped phase add, leading to the desired SU(2)2 Chern-Simons theory at low energies (the subscript refers

to the Chern-Simons level). We will show below that the composite vortices individually have the proper

quantum numbers to fill out the anyon spectrum of the theory. The clarity of the topological content of the

non-Abelian states is a general advantage of the bosonic LG approach. However, alternative descriptions of

non-Abelian FQH states involving dual non-Abelian composite fermions are also possible. We describe this

complementary perspective in Chapter 6.

In addition to the the RR states, by considering Nf -component generalizations of the Halperin (2,2,1)

spin-singlet states on each layer, we are able to generalize this approach to construct bulk LG descriptions

of generalized non-Abelian SU(Nf )-singlet (NASS) states at fillings [70,191],

ν =
kNf

Nf + 1 + kMNf
, k,Nf ,M ∈ Z , (4.2)
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Figure 4.1: A schematic of our construction of LG theories for the RR states. k copies of the ν = 1
2 Laughlin

state coupled to scalars (left) are dual to k copies of SU(2)1 coupled to scalars (right). The SU(2)k Read-
Rezayi states are obtained in the dual, non-Abelian language via pairing of the layers, represented by
double-headed arrows. In the original Abelian theory, these correspond to non-local, monopole interactions.

which are bosonic (fermionic) for M even (odd). These states generalize the clustering properties of the

RR states to Nf -component systems and, as their name suggests, are singlets under SU(Nf ) rotations.

Indeed, for Nf = 1, these states reduce to the RR states while for Nf = 2, they describe the non-Abelian

spin singlet (also NASS) states of Ardonne and Schoutens [69,192]. These generalized NASS states morally

possess SU(Nf+1)k topological order, and so support anyons obeying the fusion rules of Gepner parafermions

[193], generalizations of the Zk parafermions [194] found in the RR states. Although the physical relevance

of an Nf -component FQH state may seem dubious for larger values of Nf , the generalized NASS states

provide candidate ground states in systems of cold atoms [191,195] and fractional Chern insulators [36]. In

building LG theories of these states, we find a new duality relating (A) Nf Wilson-Fisher bosons coupled to

U(1) Chern-Simons gauge fields with Lagrangian given by the Nf -component generalization of the Halperin

(2, 2, 1) K-matrix theory to (B) a SU(Nf +1)1 Chern-Simons theory coupled to Nf Wilson-Fisher bosons in

the fundamental representation. This non-Abelian dual description makes manifest the emergent SU(Nf )

global symmetry and reflects the fact that the edge theory of the Nf -component (2, 2, 1) state supports an

SU(Nf + 1)1 Kac-Moody algebra.

The remainder of this Chapter is organized as follows. We begin in Section 4.2 by elaborating on the

motivation for our construction both from the perspective of wave functions and that of the earlier Landau-

Ginzburg approach of Ref. [178]. We then proceed to our analysis in Section 4.3 of the RR states using

non-Abelian bosonization, resolving the lingering issues of the LG construction of Ref. [178]. We then extend

our construction to the generalized NASS states in Section 4.4. Future directions are discussed in Section

4.5.
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4.2 “Projecting Down” to Non-Abelian States

4.2.1 Perspective from the Boundary: Wave Functions and their Symmetries

If we wish to construct a LG description of non-Abelian FQH states involving pairing between Abelian states,

it is first necessary to identify which Abelian states to pair. Such states can be motivated by considering

“ideal” wave functions. These can be constructed from certain correlation functions, known as conformal

blocks, of the edge CFT. In this language, the strategy of obtaining non-Abelian states from parent Abelian

states through “projecting down” is well established [179].

Consider for example the bosonic RR states at ν = k/2. The ideal wave functions of these states are

defined as the ground states of ideal k + 1-body Hamiltonians, which can be shown to be given by the

conformal blocks of the SU(2)k Wess-Zumino-Witten (WZW) CFT [65]. This tells us that the RR wave

functions describe FQH states with edges governed by SU(2)k WZW theories [1], corresponding in the bulk

to a SU(2)k Chern-Simons gauge theory [99]. A natural way to obtain the ideal wave functions for the

ν = k/2 RR states uses the state with k = 1 – the ν = 1/2 bosonic Laughlin state, which is Abelian – as a

building block [179]. This state is described by the wave function

Ψ1/2({zi}) =
∏
i<j

(zi − zj)2e−
1
4

∑
i |zi|

2

, (4.3)

where zj = xj + iyj denotes the complex coordinates of the jth particle (a boson). The ν = k/2 RR

wave functions may be obtained from this one by “clustering” bosons across k copies of this state. This

corresponds to taking N = km bosons, dividing them into k groups, writing down a ν = 1
2 Laughlin wave

function for each group, multiplying them together, and then symmetrizing over all possible assignments of

bosons to groups. The resulting wave function is represented as

Ψk({zi}) = Sk

[
k−1∏
i=0

Ψ1/2(z1+iN/k, . . . , z(i+1)N/k)

]
, (4.4)

where Sk denotes symmetrization. It can be shown that this wave function is equivalent to that first proposed

by Read and Rezayi [65] and exhibits the correct clustering properties: the wave function does not vanish

unless the coordinates of k + 1 bosons coincide. The RR wave functions for general k and M are obtained

by multiplying Eq. (4.4) by a ν = 1
M Laughlin factor.

The relation between the k = 1 and the k > 1 RR wave functions suggests that it should be possible

to construct such a LG theory by considering k copies of the effective theory of the (Abelian) k = 1 state,

the first attempt at which we describe in the next subsection. That a state with SU(2)k topological order

63



can be obtained from the Abelian ν = 1
2 Laughlin state is also made plausible by the fact that the latter

has an alternative description as an SU(2)1 Chern-Simons theory. This is a consequence of the level-rank

duality between U(1)2 and SU(2)1, which is reflected in the above description by the fact that the ν = 1
2

wave function can be obtained from the SU(2)1 WZW CFT [70, 178, 196, 197]. We review this level-rank

duality in the subsection below.

4.2.2 Perspective from the Bulk: Early LG Theories from Level-Rank Duality

To approach the problem of constructing a bulk description of the Read-Rezayi states, the authors of

Ref. [178] sought to obtain a non-Abelian Landau-Ginzburg theory of the ν = k/2 RR states by also

considering k layers of ν = 1/2 bosonic Laughlin states, or U(1)2 Chern-Simons theories and recognizing

that each U(1)2 theory is level-rank dual to a SU(2)1 theory. They therefore conjectured that an alternate

LG description was possible, one involving scalar matter coupled to SU(2)1 gauge fields. These scalars could

then pair and lead to the symmetry breaking pattern,

SU(2)1 × · · · × SU(2)1 → SU(2)k . (4.5)

What remained was to (1) determine how the scalars transformed under SU(2) and how they coupled to

the physical background electromagnetic (EM) field, and (2) determine precisely how to pair these fields to

obtain non-Abelian states.

For simplicity, we consider first the case of k = 2, a bilayer of ν = 1/2 bosonic FQH liquids. This will

constitute a parent state for the ν = 1 bosonic Moore-Read state. To motivate the level-rank duality to a

non-Abelian representation, we again consider the edge physics. The edge theory of the U(1)2 state is one

of a chiral boson,

Ledge =
1

4πν
∂xϕ (∂tϕ− v∂xϕ) , (4.6)

where ϕ has compactification radius R = 1 and ν = 1/2. The charge density is therefore ρ = 1
2π∂xϕ. The

local particles (i.e. the physical bosons) of this theory are represented by the vertex operators,

ψ1 = eiϕ/ν . (4.7)

In addition, the theory hosts anyonic quasiparticles, which are semions of charge 1/2 and correspond to the

vertex operators

ψ1/2 = eiϕ . (4.8)
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The ψ1, ψ
†
1, and ρ operators all have the same scaling dimension and furnish a SU(2)1 Kac-Moody algebra.

This is a manifestation of the level-rank duality at the level of the edge CFT, and we can write the bulk

theory on each layer as a SU(2)1 gauge theory with gauge field aµ = abµt
b, where tb are the generators of

SU(2). Importantly, the ρ operator appears as the diagonal generator of SU(2). Therefore, the authors

guessed that in the LG theory the background EM field couples through a BF term to the Cartan component

of the bulk SU(2) gauge field1,

LEM[aa, A] =
1

2π
εµνλAµ∂νa

3
λ . (4.9)

This explicitly breaks gauge invariance and would indicate that the physical EM current is not conserved.

We will eventually see in Section 4.3 that the new dualities will allow us to avoid this difficulty by granting

us a gauge invariant way of coupling to the background electromagnetic field.

From this discussion, a natural guess for the matter variables for the bulk LG theory is a SU(2) triplet on

each layer consisting of boson creation and annihilation operators Bn, B
†
n and a boson number operator B3

n

which essentially corresponds to the EM charge. Here n = 1, 2 is a layer index. If we write Bn = B1
n + iB2

n

with B1,2
n real, the adjoint field Ban transforms like a vector under SO(3). It is important to note, however,

that any non-Abelian LG theory should be thought of as describing a (UV) quantum critical point proximate

to the (IR) FQH state which shares universal features with the Abelian theory we started with. Since the

level-rank duality is invoked deep in the FQH phase, it is a guess that these variables are the proper degrees

of freedom at the UV quantum critical point (they may be alternatively understood as bound states – we

will see later on that this interpretation is more accurate). Nevertheless, pairing these fields will lead to both

the desired symmetry breaking pattern (4.5) as well as the existence of solitons with non-Abelian statistics.

The LG theory for the pairing of these fields can be explicitly constructed as follows. Each layer consists

of a Ban field minimally coupled to its own SU(2)1 gauge field,

L0[Bn, an] =
∑
n=1,2

(
|DanBn|2 +

1

4π
Tr

[
andan −

2i

3
a3
n

])
+ · · · , (4.10)

where we have suppressed Lorentz and SU(2) indices, used the notation AdC = εµνλAµ∂νCλ, and defined

the covariant derivative DanBn ≡ ∂Ban− iεabcabnBcn. The ellipsis refers to additional contact terms, Maxwell

terms, etc. These are set up so that, taken individually, when each layer is at filling ν = 1/2, the diagonal

color flux b3I = 〈f3
I,xy〉/2π, vanishes.

Although the Bn fields are bosons, we assume that they do not condense. Rather, we consider pairing

them using a method analogous to that of Jackiw and Rossi [198], who considered pairing Dirac fermions by

1Note that, depending on context, we use a3 to denote both the diagonal element of a as well as a ∧ a ∧ a.
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coupling them to a scalar order parameter which mediates the pairing interaction. Let us introduce a field

Oab which transforms as an adjoint under each layer’s SU(2), O 7→ G−1
1 OG2, where G1, G2 ∈ SO(3). Here

we have used the fact that, as an adjoint field, O is blind to the Z2 centers of the two SU(2) factors, and

so effectively transforms under SU(2)/Z2
∼= SO(3). The field O mediates a pairing interaction between the

BaI fields as follows,

Lpair = λBa1OabBb2 . (4.11)

We now require that O acquires a vacuum expectation value (VEV), which breaks SU(2)× SU(2) down to

its diagonal subgroup SU(2)diag, implementing the constraint a1 = a2. Any VEV equivalent to 〈O〉 ∝ δab

is sufficient to achieve this. Therefore, in the final IR theory, the CS terms for a1 and a2 add, yielding a

SU(2)2 CS term, which describes precisely the ν = 1 bosonic Moore-Read state. The authors of Ref. [178]

then argued that, since the order parameter is valued on [SO(3) × SO(3)]/SO(3), that it can host non-

trivial vortices which furnish the anyon content. This is in contrast to if we had chosen to pair fields in

the fundamental representation, for which the order parameter has no non-trivial vortices. Finally, we note

that because O is blind to the centers of the two original SU(2) factors, the final gauge group is in fact

SU(2)diag × Z2. This means that the resulting topological order is not quite that of the ν = 1 bosonic

Moore-Read state. We will elaborate on this point as well as the interpretation of the vortices in Section

4.3.3.

In spite of its successes, the LG theory described here has several problems. As mentioned above, the

BF coupling between a3
n and the EM field A explicitly breaks the SU(2) gauge symmetry. In addition, the

theory of adjoint fields (4.10) cannot be the same as the Abelian LG theory of the original layers – the

theories have different phase diagrams and so do not represent the same fixed point. Moreover, the final

gauge group after pairing is not just SU(2) but includes additional discrete gauge group factors. Finally, it

is not entirely obvious how to generalize this approach to the rest of the Read-Rezayi states and beyond.

In the work presented in this Chapter, using non-Abelian boson-fermion dualities, we repair all of these

problems.
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4.3 LG Theories of the RR States from Non-Abelian

Bosonization

4.3.1 Setup

Our setup for obtaining LG theories of the RR states is depicted in Figure 4.1. We again consider k layers

of bosonic quantum Hall fluids at ν = 1/2. The standard LG theory [13] of these states consists of Wilson-

Fisher bosons – the Laughlin quasiparticles – on each layer, denoted Φn, with n = 1, · · · , k being the layer

index. Each of these fields is coupled to an Abelian U(1)2 Chern-Simons gauge field an as follows (the total

gauge group is [U(1)]k),

LA =
∑
n

(
|DanΦn|2 − |Φn|4 +

2

4π
andan +

1

2π
Adan

)
. (4.12)

where again −|Φ|4 denotes tuning to the Wilson-Fisher fixed point and Dan = ∂ − ian is the covariant

derivative. Since we wish to impose particle-hole symmetry on the bosons in the FQH state, these theories

are relativistic. We take the background EM field Aµ to couple to the sum of the global U(1) currents on

each layer jtop = 1
2π

∑
n dan, although we could have in principle coupled background fields to each of these

currents individually [14]. Notice that there is no continuous flavor symmetry manifest in LA since each Φn

couples to its own gauge field an. Being a theory of Laughlin quasiparticles, the Abelian quantum Hall state

arises when the Φ fields are gapped, or ρΦ =
∑
I,n〈i(Φ†n

←→
D an,tΦn)〉 = 0. We note here that throughout this

Chapter we define the filling fraction with a minus sign ν = −2πρe/B, where ρe is the physical EM chage

and B is the background magnetic field.

We call the Abelian theory whose Lagrangian LA is shown in Eq. (4.12), Theory A. In order to obtain

a non-Abelian SU(2)k theory, our strategy is to invoke a non-Abelian duality to trade LA for a theory of k

bosons which are charged under emergent non-Abelian gauge fields. Since these particles are non-Abelian

analogues of the Laughlin quasiparticles (they are gapped in the Abelian QH state), we will refer to them as

non-Abelian composite vortices. Indeed, we will see that these theories are the k-component generalizations

of the theory of Eq. (4.1). We call this non-Abelian theory Theory B. By pairing these fields across

the layers, we will obtain the final SU(2)k theory. Thus, the non-Abelian FQH states we obtain can be

interpreted as clustered states of the dual non-Abelian composite vortices, in analogy to the clustering

interpretation of the wave functions. Moreover, from products of the non-Abelian vortex fields, analogues of

the adjoint Bn operators of Section 4.2 can be constructed and paired, leading to a “quartetted” non-Abelian

state. We now turn to a procedure for obtaining these dualities.
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4.3.2 A Non-Abelian Duality: U(1)2 + bosons ←→ SU(2)1 + bosons

The non-Abelian dualities presented by Aharony [68] relate Chern-Simons theories coupled to complex scalar

fields at their Wilson-Fisher fixed point to dual Chern-Simons theories coupled to Dirac fermions,

Nf scalars + U(N)k,k ←→ Nf fermions + SU(k)−N+Nf/2 , (4.13)

Nf scalars + SU(N)k ←→ Nf fermions + U(k)−N+Nf/2,−N+Nf/2 , (4.14)

Nf scalars + U(N)k,k+N ←→ Nf fermions + U(k)−N+Nf/2,−N−k+Nf/2 , (4.15)

where all matter is in the fundamental representation of the gauge group. These take the shape of level-rank

dualities, but a crucial difference is that they relate critical theories of matter coupled to Chern-Simons gauge

fields rather than gapped TQFTs. Across these dualities, baryons of the SU(k)−N theories are mapped to

monopoles of the U(N)k theories. We list our conventions for the non-Abelian Chern-Simons gauge fields

in Appendix F.

Using these dualities as building blocks, it is possible to obtain new dualities relating the Abelian Theory

A to a non-Abelian Theory B. The dualities obtained in this section are described in Refs. [199, 200],

although we show in Section 4.4 that new, more general dualities can be obtained with an analogous strategy.

To begin, let us consider the case of a single layer k = 1 of bosons at ν = 1/2. The Landau-Ginzburg theory

for this state consists of Wilson-Fisher bosons Φ coupled to a U(1)2 gauge field a,

LA = |DaΦ|2 − |Φ|4 +
2

4π
ada+

1

2π
Ada . (4.16)

We start by invoking an Abelian boson-fermion duality, Eq. (4.14) with N = k = 1, which relates a

Wilson-Fisher boson to a Dirac fermion with a unit of flux attached [161,162],

|DAΦ|2 − |Φ|4 ←→ iψ /Dbψ −
1

2

1

4π
bdb+

1

2π
bdA− 1

4π
AdA , (4.17)

where b is a new dynamical U(1) gauge field2 . Applying this duality to LA by treating a as a background

field, one obtains Theory C,

LA ←→ LC = iψ /Dbψ −
1

2

1

4π
bdb+

1

4π
ada+

1

2π
ad(b+A) . (4.18)

We can integrate out a without violating the Dirac quantization condition: its equation of motion is simply

2Throughout this Chapter, we approximate the Atiyah-Patodi-Singer η-invariant by a level-1/2 Chern-Simons term and
include it in the action.
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−da = db+ dA. Thus,

LA ←→ LC = iψ /Dbψ −
3

2

1

4π
bdb− 1

2π
bdA− 1

4π
AdA . (4.19)

Theory C was motivated as a description of the ν = 1/2 FQH-insulator transition in Ref. [201]. The duality

(4.19) is a special case of more general Abelian dualities described (and derived) in Refs. [202,203]. However,

of those dualities, it is one of the unique ones for which the Chern-Simons level is properly quantized. Notice

also that this is the duality (4.15) with Nf = N = k = 1. The reason that we took a detour through the

Abelian duality will become apparent in Section 4.4.

Applying the duality of Eq. (4.14) to Theory C, we obtain Theory B, which consists of bosons φ

coupled to a SU(2)1 gauge field u,

LA ←→ LB = |Du−A1/2φ|2 − |φ|4 +
1

4π
Tr

[
udu− 2i

3
u3

]
− 1

2

1

4π
AdA , (4.20)

where 1 denotes the 2×2 identity matrix. Like its Abelian dual, Eq. (4.16), this theory describes a quantum

phase transition between a ν = 1/2 bosonic Laughlin state (gapped φ – the topological sector is decoupled)

and a trivial insulator (condensed φ). Across this duality, the monopole current of Theory A is related to

the baryon number current of Theory B,

δLA
δA

=
da

2π
←→ δLB

δA
= − i

2
φ†
←→
D u−A1/2 φ−

1

2

dA

2π
(4.21)

Both of these currents correspond to the physical EM charge current Je. We have suppressed Lorentz indices

for clarity.

We can check explicitly that the ν = 1/2 state has particle-hole symmetry in the composite vortex

variables of Theory B. The physical EM charge density corresponds to the zeroth component of the currents

(4.21),

ρe = 〈J0
e 〉 = −1

2
ρφ −

1

2

B

2π
, (4.22)

where ρφ denotes the number density of the non-Abelian composite vortices, so, when ρφ = 0, the filling

fraction is

ν = −2π
ρe
B

=
1

2
. (4.23)

This means that the ν = 1/2 bosonic Laughlin state can be thought of as a gapped, particle-hole symmetric

phase of non-Abelian composite vortices just as well as Abelian ones! By copying this duality k times, we
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will see in the next subsection how to obtain a non-Abelian LG theory of the RR states.

By applying the duality of Eq. (4.13) with N = 1 and k = 2 to Theory A, it is also possible to obtain

a non-Abelian fermionic Theory D with gauge group SU(2)−1/2. However, in this Chapter we focus on

the non-Abelian bosonic LG theories, since in these theories the nature of the topological order and anyon

content are manifest. Understanding the emergence of the RR states and other non-Abelian FQH states from

the perspective of these non-Abelian composite fermion theories forms the subject of Chapter 6. Combining

all of these dualities, we see that

Theory A: a scalar + U(1)2 ←→ Theory D: a fermion + SU(2)−1/2

l (4.24)

Theory C: a fermion + U(1)−3/2 ←→ Theory B: a scalar + SU(2)1 .

It is a miracle of arithmetic that, like the boson/fermion dualities, the boson/boson and fermion/fermion

dualities above also have the flavor of level-rank dualities. Indeed, it is easy to show that the topological

phases of these theories are all dual to one another [199]. This can be thought of as a consequence of the

fact that we were able to integrate out the gauge field a above without violating flux quantization. It is an

interesting question to ask whether there are more general dualities which exhibit the same miracle. We will

show that this is indeed the case in Section 4.4. We finally note that the dualities of Eq. (4.24) also have the

feature of hosting an emergent SO(3) global symmetry, a consequence of the fact SU(2) ' USp(2) [204,205].

This symmetry is manifest upon rewriting the theory in the USp(2) language, which involves replacing the

single complex matter field with two (pseudo)real ones [206].

4.3.3 Building Non-Abelian States from Clustering

Equipped with the duality (4.20), we now revisit the construction of Ref. [178], which we described in Section

4.2.2. We again start by considering the case where Theory A consists of k = 2 layers of U(1)2 LG theories,

LA =
∑
n

(
|DanΦn|2 − |Φn|4

)
+

2

4π
andan +

1

2π
Ad(a1 + a2) , I = 1, 2 . (4.25)

Invoking Eq. (4.20), Theory B is two SU(2)1 theories,

LB =
∑
n

(
|Dun−A1/2φn|2 − |φn|4

)
+

1

4π

∑
n

Tr

[
undun −

2i

3
u3
n

]
− 1

4π
AdA , (4.26)
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The half-filling condition here is simply ν = 1. Notice that the background gauge field A couples to the

“baryon number” current of the φ’s in a gauge invariant way, in contrast to the theory of Ref. [178]. This

also means that the physical bosons can be interpreted as baryons, or color singlet bound states of two φ’s.

However, these are monopoles from the point of view of Theory A.

To obtain a SU(2)2 bosonic Moore-Read state at ν = 1, we again seek the symmetry breaking pattern

SU(2)1 × SU(2)1 → SU(2)2 . (4.27)

As described in Section 4.2.2, the authors of Ref. [178] achieved this via pairing of adjoint fields so that the

theory would support vortices of the order parameter with non-Abelian statistics. Instead, we will argue that

singlet pairing of our fundamental composite vortices is sufficient to both obtain this symmetry breaking

pattern and to capture the full anyon spectrum from the matter content. Nevertheless, it is still possible to

obtain an analogue of the theory described in Section 4.2.2 by “quartetting” the composite vortices. In this

case, the order parameter contributes non-trivial vortex excitations which possess non-Abelian statistics.

These vortices arise because the order parameter sees SO(3) rather than SU(2) gauge fields, as in Ref. [178],

and the resulting topological order again does not quite match that of the RR states. We provide a brief

account of the quartetted phase at the end of this section.

Singlet Pairing

We pair the non-Abelian composite vortices by adding to Theory B, Eq. (4.26), an interaction with an

electromagnetically neutral fluctuating scalar field Σmn(x),

L = LB + LΣ + Lsinglet pair , (4.28)

LΣ =
∑
m,n

|∂Σmn − iumΣmn + iΣmnun|2 − V [Σ] , (4.29)

Lsinglet pair = −
∑
m,n

φ†mΣmnφn , (4.30)

where Σmn is Hermitian in the layer indices m,n, and V [Σ] is the potential for Σ. The off-diagonal compo-

nents, Σ12 = Σ†21, induce interlayer pairing, while the diagonal components, Σ11 and Σ22, induce intralayer

pairing. Under a gauge transformation, Σnn (no summation intended) transforms in the adjoint representa-

tion of the SU(2) gauge group on layer n, while Σ12 transforms as a bifundamental field under the bilayer
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SU(2)× SU(2) gauge group,

Σmn 7→ UmΣmnU
†
n, Um ∈ SU(2) on layer m. (4.31)

In both Eq. (4.29) and Eq. (4.31), left (right) multiplication indicates contraction with Σ’s color indices in

the fundamental (antifundamental) representation of SU(2).

In order to achieve the symmetry breaking pattern (4.27), we choose the potential V so that Σmn

condenses in such a way that 〈φ†1φ2〉 6= 0 while 〈φ1〉 = 〈φ2〉 = 0. Explicitly,

〈Σnm〉 = Mnm1, M11,M22,detM > 0 (4.32)

The requirement M11,M22,detM > 0 guarantees that the resulting effective potential for φ1,2 is minimized

only for 〈φ1〉 = 〈φ2〉 = 0, while the off-diagonal components M12 = M†21 break the SU(2) × SU(2) gauge

symmetry down to the diagonal SU(2). As described in Section 4.2.2, in the low energy limit, this sets

u1 = u2, and the Chern-Simons levels add to yield the correct SU(2)2 Chern-Simons theory (the bosonic

Moore-Read state) as the low energy TQFT.

Having obtained the SU(2)2 RR state, we now show that its anyon spectrum is furnished by the non-

Abelian composite vortices φ1,2. Both φ1 and φ2 carry electric charge Q = 1
2 and transform in the spin- 1

2

representation of the SU(2)2 gauge group, endowing them with non-Abelian braiding statistics. These are

precisely the properties of the minimal charge anyon in the ν = 1 bosonic Moore-Read state, the half-vortex!

Even though there are two bosonic fields φ1,2, these do not represent distinct anyons: φ1 and φ2 can be

freely transformed into one another via the bilinear condensate 〈φ†1φ2〉. In other words, their currents are

no longer individually conserved, and the layer index is no longer a good quantum number. The remainder

of the anyon spectrum is obtained by constructing composite operators of the φ fields or, equivalently, by

fusing multiple minimal charge anyons. In the present case, the only remaining anyon is the Majorana

fermion, which transforms in the spin-1 representation of SU(2), and so is represented by the local bilinear

χan = φ†nt
aφn (see Table 4.1). We note that, unlike in Ref. [178], there are no non-trivial vortices in this

approach, since an order parameter valued on [SU(2)× SU(2)]/SU(2) cannot host non-trivial vortices.

The reader might object to our identification of the individual particles making up the pairs with the

fundamental anyons, since the energy cost to break up a pair will be on the order of the UV cutoff. However,

this is not a significant shortcoming of our construction, since anyons are only well defined upon projecting

into the (topologically ordered) ground state. They should therefore always be viewed as infinite energy

excitations representated as Wilson lines.
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Table 4.1: List of quasi-particles in the ν = 1 bosonic Moore-Read state, their spin, θ, U(1)EM charges, Q,
and the corresponding operator in our LG theory. We label the anyons by the corresponding operators in
the edge CFT (see e.g. Refs. [1, 2]). Note that we do not sum over the layer index n.

1 (vacuum) σeiϕ/2 (half-vortex) χ (Majorana fermion)

θ 0 3
16

1
2

Q 0 1
2 0

Field theory - φn φ†nt
aφn

Quartetting and Vortices

Although singlet pairing is sufficient to obtain the RR states, it is interesting to consider an alternative

mechanism for obtaining non-Abelian states that more closely resembles the construction of Ref. [178] that

was discussed in Section 4.2.2. In this scenario, rather than pairing the non-Abelian bosons of Theory B

(4.26), we imagine quartetting them. To do this, we define the adjoint operators,

Ban = φ†nt
aφn , (4.33)

where the repeated n index on the right hand side is not summed over. These operators are neutral under

U(1)EM, and they will serve the same purpose for us here as the Ban fields disucussed in Section 4.2 and

Ref. [178]. We thus consider a pairing interaction of the Ban’s, or a quartetting interaction of the φ’s, by

introducing a scalar field O to mediate the pairing interaction

Lquartet = λBa1 OabBb2 = λ (φ†1t
aφ1)Oab (φ†2t

bφ2) . (4.34)

The quartetted phase, where 〈Oab〉 = vδab and 〈φ1〉 = 〈φ2〉 = 0, is accessed by adding a suitable potential

V [O] and ensuring that φ1,2 are gapped via a mass term −m2
∑
n |φn|2. Because O radiatively acquires a

kinetic term of the form of a gauged nonlinear sigma model (NLSM), the resulting effective theory in the

quartetted phase is

Leff = LB + Lquartet −m2
∑
n

|φn|2 − V [O] + κ Tr
[
O−1Du1−u2

OO−1Du1−u2
O
]

(4.35)

where κ is a coupling constant defined so that O is properly normalized.

Since O transforms in the adjoint representation of the SU(2) of each layer, it is blind to their Z2

centers. This means that the quartetted phase hosts not only the non-Abelian SU(2)2 topological order

(since u1 − u2 is again Higgsed), but also an additional Abelian Z2 sector. Explicitly, as noted in Section
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4.2.2, the condensation of O yields the symmetry breaking pattern SU(2)×SU(2)→ SU(2)diag×Z2, where

the residual Z2 can be chosen to act on either φ1 or φ2 (amounting to a choice of basis). Hence, the full

topological order of the ground state is SU(2)2×Z2. This is also true of the original construction of Ref. [178],

meaning that the singlet pairing mechanism discussed above carries the significant advantage that it yields

the ν = 1 Moore-Read state alone, with no additional Abelian sector. We therefore focus on singlet pairing

for the remainder of this Chapter.

How do we account for the new Abelian anyon content? As discussed in Section 4.2.2, because of the

order parameter’s blindness to the Z2 centers, the NLSM above admits vortex solutions. These vortices can

carry fluxes of both of the residual Z2 and SU(2) gauge groups, and so they possess non-trivial braiding

statistics with respect to each other and the scalar fields. However, since the Ban fields here are electrically

neutral, the vortices of the order parameter should not carry any electric charge either. These vortices should

therefore correspond to anyon excitations which are distinct from those that can be obtained from the φ1,2

fields alone, as these fields carry electric charge. We leave a detailed understanding of this Abelian sector to

future work.

As in the singlet pairing case, this quartetting procedure can be generalized to the case of k layers, or

ν = k/2, which can be easily shown to have SU(2)k ×Zk−1
2 topological order (each factor of Z2 corresponds

to the unbroken center of a broken SU(2)). In the next subsection, we describe how both the singlet pairing

and quartetting constructions can be generalized to the remaining RR fillings through a flux attachment

transformation.

4.3.4 Generating the Full Read-Rezayi Sequence through Flux Attachment

By attaching M fluxes to the k-layer generalization of Theory A (4.25) and performing the same trans-

formation on Theory B (4.26), it is possible to obtain LG theories of the remaining RR states at filling

fractions

ν =
k

Mk + 2
. (4.36)

Flux attachment can be performed on Theory A as a modular transformation ST MS [207,208], where

S : L[A] 7→ L[b] +
1

2π
Adb , T : L[A] 7→ L[A] +

1

4π
AdA , (4.37)
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where again A is the background EM field, and b is a new dynamical U(1) gauge field. Thus, attaching M

fluxes to Theory A amounts to

ST MS : LA[A] 7→ LA[b] +
1

2π
cd(b+A) +

M

4π
cdc , (4.38)

where c is a new dynamical U(1) gauge field. It is straightforward to see that this transformation is equivalent

to the usual attachment of M fluxes to the composite bosons (related to the composite vortex variables –

or Laughlin quasiparticles – of Theory A by boson-vortex duality [209, 210]). One of the insights of

Refs. [161, 162] was that the modular group PSL(2,Z) generated by S and T can generate new dualities

from old ones. Restricting for the moment to k = 2 layers, the transformed Theory A is dual to

L̃B =
∑
n

(
|Dun−b1/2φn|

2 − |φn|4
)

+
1

4π

∑
n

Tr

[
undun −

2i

3
u3
n

]
− 1

4π
bdb+

1

2π
cd(b+A) +

M

4π
cdc . (4.39)

We can repackage the SU(2) gauge fields un as new U(2) gauge fields u′n with trace Tr[u′1] = Tr[u′2] = b.

This gluing of the traces together can be implemented by introducing a new auxiliary gauge field α,

L̃B =
∑
n

(
|Du′n

φn|2 − |φn|4
)

+
1

4π

∑
n

Tr

[
u′ndu

′
n −

2i

3
u
′3
n

]
− 2

4π
Tr[u′1]dTr[u′1] +

1

2π
cd(Tr[u′1] +A) +

M

4π
cdc+

1

2π
αd (Tr[u′1]− Tr[u′2]) .

(4.40)

This transformation does not impact the singlet pairing nor the quartetting procedure discussed in the

previous subsection, and it readily generalizes to k layers (more constraints need to be introduced in that

case to glue the Abelian gauge fields together). We therefore obtain the SU(2)2 Chern-Simons theory at

low energies, albeit with the additional Abelian sector introduced above. For the general case of k layers,

the u′n’s on each layer are set equal to one another, and the low energy TQFT is a U(2)k,−2k × U(1)M

Chern-Simons-BF theory given by

L =
k

4π
Tr

[
u′du′ − 2i

3
u
′3

]
− k

4π
Tr[u′]dTr[u′] +

1

2π
cd(Tr[u′] +A) +

M

4π
cdc . (4.41)

This is indeed the proper bulk TQFT describing the RR states at filling (4.36), first described in Ref. [143].

As in the case of the ν = 1 bosonic Moore-Read state discussed above, the fundamental scalars (i.e. the

composite vortices) comprise the minimal charge anyons, here possessing electric charge Q = 1/(Mk + 2).

This is the expected result for the minimal charge anyon in the general RR states.
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4.4 Generalization to Non-Abelian SU(Nf)-Singlet States

Having derived a LG theory for the RR states, we will now demonstrate how our construction can be

naturally extended to the generalized non-Abelian SU(Nf )-singlet states occuring at fillings

ν =
kNf

Nf + 1 + kMNf
, k,Nf ,M ∈ Z . (4.42)

These are clustered states in which k represents the number of local particles (fermions or bosons for odd and

even M , respectively) in a cluster, M the number of attached Abelian fluxes, and Nf the number of internal

degrees of freedom. Like the RR states, which correspond to Nf = 1, we will show that these states can

also be obtained by pairing starting from a parent multi-layer Abelian LG theory. The particular Abelian

states we will target are the Nf -component generalizations of the Halperin (2, 2, 1) states. In parallel to

Section 4.3, we will show that the LG theories of these Abelian states satisfy a new non-Abelian bosonization

duality. This duality relates the Abelian LG theory of the generalized Halperin states to an SU(Nf + 1)1

Chern-Simons-matter theory. That this is possible is perhaps not surprising given that the Nf -component

(2, 2, 1) state is known to have an edge theory which furnishes a representation of the SU(Nf + 1)1 Kac-

Moody algebra, as we shall review below [69, 70, 196, 197]. The generalized NASS states are then obtained

by singlet pairing of the dual non-Abelian bosons.

4.4.1 Motivation: “Projecting Down” to the Generalized NASS States

Just as the RR states are naturally understood starting with the ν = 1/2 Laughlin state by way of “projecting

down,” the generalized NASS states can be built up from Nf -component generalizations of the Halperin

(2, 2, 1) spin-singlet state [140]. These (bosonic) states are Abelian and correspond to M = 0, k = 1. These

states are described by the wave functions

Ψ
(221)
Nf

({zσi }) =

Nf∏
σ=1

∏
i<j

(zσi − zσj )2

Nf∏
σ<σ′

∏
i,j

(zσi − zσ
′

j )1e−
1
4

∑
σ,i |z

σ
i |

2

, (4.43)

where zσi = xσi + iyσi denotes the complex coordinates of the ith boson with component index σ. In direct

analogy with the ν = k/2 RR states, the generalized NASS wave functions for general k (but still M = 0)

may be obtained by symmetrizing over a product of k copies of the Nf -component (2, 2, 1) wave function [36],

Ψk,Nf = Sk

[
k−1∏
i=0

Ψ
(221)
Nf

(z1+iN/k, . . . , z(i+1)N/k)

]
. (4.44)
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where the symmetrization operation Sk is morally the same as the one defined in Section 4.2.1. Again, the

form of the wave function makes explicit the clustering of bosons characteristic of non-Abelian states. The

wave functions for general M are obtained by multiplying Ψk,Nf by a ν = 1
M Laughlin factor. Note that

setting Nf = 1 recovers the RR wave functions (4.4).

The generalized NASS wave functions (4.44) should also be expresssible as correlators of the SU(Nf +1)k

WZW CFT for M = 0 and of the [U(1)]Nf × SU(Nf + 1)/[U(1)]Nf coset CFT for M > 0. Although this

appears to have only been discussed explicitly for Nf = 1, 2, 3 [179,191,211], we will assume that this holds

true for general Nf . We thus expect the corresponding bulk theories for the generalized NASS states to be

SU(Nf + 1)k Chern-Simons theories.

For the Nf -component Halperin states (k = 1), the presence of this “hidden” SU(Nf + 1) representation

can be motivated as follows. These states are described by a Nf ×Nf K-matrix and Nf -component charge

vector q,

K =



2 1 1 . . . 1 1

1 2 1 . . . 1 1

1 1 2 1

...
...

. . .
...

1 1 2 1

1 1 1 . . . 1 2


, q =


1

...

1

 . (4.45)

The form of the charge vector reflects the fact that the physical bosonic excitations of each species each

carry the same EM charge, and it can read off that the Hall conductivity is σxy = qTK−1q e
2

h =
Nf
Nf+1

e2

h .

Under a particular change of basis K̃ = GTKG and q̃ = Gq, G ∈ SL(Nf ,Z), K can be shown to be related

to the Cartan matrix of SU(Nf + 1) [70,197],

G =



1 −1

1 −1

. . .
. . .

1 −1

1


⇒ K̃ =



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 0

...
...

. . .
...

0 0 2 −1

0 0 0 . . . −1 2


, q̃ =



0

0

...

1


. (4.46)

Using this fact, one can show that the edge theory defined by K̃ supports a SU(Nf + 1)1 Kac-Moody
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algebra (see e.g. Refs. [70, 212] for a derivation), and hence is equivalent to the SU(Nf + 1) WZW CFT.

Consequently, the corresponding bulk theory of the Nf -component (2, 2, 1) Halperin state is a SU(Nf + 1)1

Chern-Simons theory. This is the Nf -component generalization of the level-rank duality U(1)2 ↔ SU(2)1

described in Section 4.2.

This discussion indicates that we should expect the LG theories of the generalized NASS states can be

obtained from pairing k copies of the Nf -component (2, 2, 1) Halperin state. Because this state is level-rank

dual to a SU(Nf + 1)1 theory, we might expect that there is a non-Abelian Chern-Simons-matter theory

duality also taking this shape, from which we can build a LG theory of the non-Abelian states. We now

show that this is indeed the case.

4.4.2 Non-Abelian Duals of Nf -Component Halperin (2, 2, 1) States

The necessary non-Abelian duality can be constructed by starting with the Abelian LG theory for the

Nf -component Halperin state, which we again call Theory A. This theory consists of Nf species of Wilson-

Fisher bosons ΦI , I = 1, . . . , Nf , each coupled to a U(1) Chern-Simons gauge fields aI ,

LA =

Nf∑
I=1

(
|DaIΦI |2 − |ΦI |4

)
+

1

4π

Nf∑
I,J=1

KIJaIdaJ +
1

2π

Nf∑
I=1

qIAdaI , (4.47)

where K and q are given in Eq. (4.45). The Nf -component Halperin state corresponds to the phase in which

all of the ΦI fields – the Laughlin quasiparticles – are gapped. We emphasize that there is no continuous

SU(Nf ) global symmetry rotating the ΦI fields manifest in Theory A. Instead, there is only a discrete

exchange symmetry of the ΦI fields.

Following the reasoning laid out in Section 4.3.2, we now show that this theory is dual to one of Nf

Wilson-Fisher bosons coupled to a single SU(Nf + 1) gauge field. Similar dualities have also been described

in Ref. [213]. We start by applying the Abelian boson-fermion duality of Eq. (4.17) to each scalar ΦI ,

treating the aI ’s as background fields, to obtain the Dirac fermion Theory C,

LA ←→ LC =

Nf∑
I=1

iψI /DbIψI +

Nf∑
I=1

1

4π
aIdaI +

Nf∑
I=1

Nf∑
J=I+1

1

2π
aIdaJ +

Nf∑
I=1

1

2π
AdaI

+

Nf∑
I=1

[
−1

2

1

4π
bIdbI +

1

2π
bIdaI

]
.

(4.48)

As in the example discussed in Section 4.3.2, the aI fields can be safely integrated out while respecting the

Dirac flux quantization condition. This is because all of the Chern-Simons terms have coefficient equal to
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unity. On integrating out one of the aI fields,the remaining ones become Lagrange multipliers enforcing the

constraints bI = b1 ≡ b. Integrating out the remaining aI ’s, we find that Theory C can be rewritten as one

of fermions coupled to a single dynamical gauge field,

LC =

Nf∑
I=1

iψI /DbψI −
Nf + 2

2

1

4π
bdb− 1

2π
bdA− 1

4π
AdA. (4.49)

In contrast to Theory A, Theory C has a manifest SU(Nf ) global flavor symmetry3 since the fermions all

couple in the same way to the gauge field b. This symmetry is thus an emergent symmetry from the point

of view of Theory A.

We may now apply the non-Abelian duality (4.14) to Theory C, leading to a non-Abelian bosonic

Theory B,

LB =

Nf∑
I=1

|Du− 1
Nf+1A1φI |2 − |φ|4 +

1

4π
Tr

[
udu− 2i

3
u3

]
− 1

4π

Nf
Nf + 1

AdA . (4.50)

where −|φ|4 denotes tuning to the Wilson-Fisher fixed point consistent with a global SU(Nf ) symmetry. We

will again refer to the φI fields as the non-Abelian composite vortices. It will be convenient in the subsection

below to re-express this theory as a U(Nf + 1) gauge theory with a constraint,

LB =

Nf∑
I=1

|DuφI |2 − |φ|4 +
1

4π
Tr

[
udu− 2i

3
u3

]
+

1

2π
αd(Tr [u]−A)− 1

4π
AdA , (4.51)

where we have introduced a U(1) gauge field α. We have thus obtained a new triality,

Theory A: Nf scalars + U(1) K-matrix theory of Eq. (4.45)

l (4.52)

Theory C: Nf fermions + U(1)
−
Nf+2

2

←→ Theory B: Nf scalars + SU(Nf + 1)1 .

This is the main result of this subsection. It is interesting that, for our particular choice of K-matrix in

Theory A, we have obtained a non-Abelian dual theory in which the rank of the gauge group depends

on the number of matter species and in which an emergent SU(Nf ) symmetry appears. Such trialities can

be extended by applying the modular transformation ST P−1S (flux attachment) to each side, transforming

the K matrix of Theory A to that of the Nf -component (P + 1, P + 1, P ) Halperin states. The family

of Abelian composite fermion theories obtained by this transformation has been conjectured to describe

3See Ref. [204] for a more detailed discussion of global symmetries in non-Abelian dualities.
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plateau transitions in fractional Chern insulators [41].

Notice that Eq. (4.52) does not contain a non-Abelian fermionic theory analogous to Theory D in Eq.

(4.24). That is not to say such a theory does not exist. We leave to future work a full inquiry into how the

NASS states, to be discussed in the next section, may arise in a fermionic picture.

4.4.3 Generating the Non-Abelian SU(Nf )-Singlet Sequence from Clustering

With the non-Abelian composite vortex description of the Nf -component (2, 2, 1) states in hand, we can

follow the pairing procedure of Section 4.3.3 to generate the generalized NASS sequence. Unlike in Section

4.3, in this section we will consider LG theories for general k,M , and Nf from the outset. Our Theory A

will thus consist of k layers of LG theories of the Nf -flavor Halperin (2, 2, 1) states,

LA =
∑
I,n

(
|DaI,nΦI,n|2 − |ΦI,n|4

)
+

1

4π

∑
I,J,n

KIJaI,ndaJ,n +
1

2π

∑
I,n

qIAdaI,n, (4.53)

where again the K-matrix and charge vector are given by Eq. (4.45), and n = 1, . . . , k denotes the layer

index. Applying the duality (4.51) to each layer, this theory is dual to the non-Abelian Theory B,

LB =
∑
I,n

|DunφI,n|2 −
∑
n

|φn|4 +
∑
I,n

LU(Nf+1)[un] +
1

2π

∑
I,n

αnd(Tr [un]−A)− k

4π
AdA. (4.54)

Here, lower case Latin letters denote a layer index, upper case Latin letters a flavor index. We have also

defined, for compactness,

LU(N)[u] ≡ 1

4π
Tr

[
udu− 2i

3
u3

]
. (4.55)

We introduce M via flux attachment, or application of the modular transformation ST MS, as in Section

4.3.4. This yields a sequence of descendant theories labelled by k,M , and Nf ,

L̃B =
∑
I,n

|DunφI,n|2 −
∑
n

|φn|4 +
∑
n

LU(Nf+1)[un] +
1

2π

∑
n

αnd(Tr [un]− a)

− k

4π
ada+

1

2π
adb+

M

4π
bdb+

1

2π
bdA.

(4.56)

We are now in a position to consider singlet pairing between the different layers. One can also consider

quartetting the composite vortices, but this only leads to additional Abelian sectors, as in the RR case.

Singlet pairing between the fundamental scalars is again mediated via a dynamical scalar field, Σm,n(x) =

Σ†n,m(x), transforming in the bifundamental representation of the SU(Nf +1) factor on layer m and on layer
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n, i.e. Σm,n 7→ UmΣm,nU
†
n, where Un, Um ∈ SU(Nf + 1). Note that the U(1) gauge transformations cancel

out, as the αn fields force all the U(1) gauge fields Tr[un] to be equal. If we require that Σm,n be a flavor

singlet, its coupling to the non-Abelian composite vortices is therefore

Lsinglet pair = −
∑
m,n,I

φ†I,m Σm,n φI,n . (4.57)

As before, the off-diagonal terms induce inter-layer pairing, while the diagonal terms can be used to ensure

that 〈φI,n〉 = 0. Thus, we obtain a non-Abelian state when Σm,n condenses in such a way that it enforces

the constraint un ≡ u′ for all n. Putting these pieces together, we find that the paired phase is governed by

the TQFT

Leff = kLU(Nf+1)[u
′]− k

4π
Tr[u′]dTr[u′] +

1

2π
Tr[u′]db+

M

4π
bdb+

1

2π
bdA (4.58)

Integrating out the fluctuating gauge fields indeed yields the correct Hall response,

σxy =
kNf

Nf + 1 + kMNf

e2

h
, (4.59)

which is the expected result for the generalized NASS states.

As in our LG theories of the RR states, the fundamental scalars φI,n correspond to the minimal charge

anyons. Indeed, one can check from the equations of motion that the fundamental scalar fields each carry

charge Q = 1
Nf+1+MkNf

, which reduces to the expected result for the minimal charge anyons of the RR

and non-Abelian spin singlet states for Nf = 1 and Nf = 2, respectively. Additionally, in the paired phase,

the condensation of the bilinears φ†I,mφI,n + H.c. (no sum on I) ensures that all the φI,n, for fixed I, are

indistinguishable, removing the redundancy of the layer degree of freedom. In particular, because we took the

pairing interaction to be diagonal in the flavor indices, there is no mixing between flavors on different layers.

Hence the fundamental scalar excitations should still transform into each other under the diagonal SU(Nf )

subgroup of the original SU(Nf ) × · · · × SU(Nf ) global symmetry. Consequently, our theory reproduces

the desired anyon spectrum, and we conclude that we have obtained a LG theory for the generalized NASS

states.
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4.5 Discussion

Using non-Abelian boson-fermion dualities, we have presented a physical pairing mechanism by which the

non-Abelian Read-Rezayi states and their generalizations, the non-Abelian SU(Nf )-singlet states, may be

obtained by “projecting down” from parent Abelian states. These dualities relate the usual Abelian LG

theories of the parent state to theories of non-Abelian “composite vortices,” which pair to form the non-

Abelian FQH state. While this pairing amounts to condensing local operators in the non-Abelian theory,

this is not the case in the original Abelian LG theory of Laughlin quasiparticles, in which the composite

vortices are monopoles. In the process of developing these theories, we have described a new triality (4.52)

which parallels a level-rank duality apparent from CFT/ideal wave function considerations and which has

the interesting property that it involves a non-Abelian gauge theory with rank depending on the number

of matter species. We believe that this approach for obtaining physically motivated bulk descriptions of

non-trivial gapped phases represents a promising direction for future applications of duality to condensed

matter physics which has thus far been under-explored.

Our construction contrasts with earlier bulk descriptions of non-Abelian FQH states in important ways.

The use of non-Abelian boson-fermion dualities, which relate parent quantum critical points, or Landau-

Ginzburg effective field theories, provides a clear mapping to theories of non-Abelian “composite vortex”

variables which are manifestly gauge invariant, unlike in earlier approaches that invoked level-rank duality

deep in the topological phase [69,178]. Additionally, we showed that these earlier approaches in fact lead to

a superfluous Abelian sector on top of the desired non-Abelian topological order. The use of non-Abelian

dualities also avoids the issues inherent to parton constructions [158–160], which provide a perhaps larger

class of fractionalized descriptions but rely on the assumption that the fractionalized particles are not

confined. This is in spite of the fact that they are generally charged under non-Abelian gauge fields without

Chern-Simons terms and, as such, are known to be confining in 2+1 dimensions. Consequently, it is likely

that many partonic descriptions are on unstable dynamical footing.

We anticipate that many more exotic FQH and otherwise topologically ordered states can be targeted

with our approach. Again, we can draw inspiration from edge CFT and ideal wave function approaches.

For instance, the spin-charge separated spin-singlet states of Ref. [214] can both be related to a parent

bilayer Abelian state and be obtained from conformal blocks of an SO(5) WZW theory. There exist, in

fact, Chern-Simons-matter dualities involving precisely SO(N) (and many other) gauge groups [200, 215],

which suggests that it may be possible to formulate non-Abelian Landau-Ginzburg theories of these states.

It is perhaps also possible to apply our approach to generating bulk parent descriptions of the orbifold FQH

states [176], which can involve an interesting interplay of usual gauge symmetries with gauged higher-form
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symmetries [216,217].

In this Chapter, we have focused on understanding non-Abelian states via pairing of non-Abelian bosonic

matter. However, as described in Section 4.3, a non-Abelian composite fermion description is available for

the ν = 1
2 Laughlin states. In the parent Abelian phase, these fermions feel a magnetic field and fill an

integer number of Landau levels. Pairing across layers of these integer quantum Hall states in fact leads to

U(k)2 topological order, a demonstration of which we defer to Chapter 6. One may also consider starting

not from multiple layers of FQH phases but instead of the (fermionic) compressible states at filling ν = 1/2n,

for which Dirac fermion theories have been proposed [124, 170]. It is possible that applying non-Abelian

dualities to these theories may provide an avenue for developing exotic non-Abelian excitonic phases.

We lastly comment on the possible connection of the theories presented here to numerical studies of

transitions between Abelian and non-Abelian states in bilayers [181–184,186,187]. To the extent that these

transitions are continuous, it is an exciting possibility that they are in the universality class of the quantum

critical theories presented here. However, since these theories are very strongly coupled, the only analytic

techniques against which this can be checked are large-N approaches, which may describe a wholly different

fixed point. Perhaps eventually the conformal bootstrap will be able to shed light on this issue.
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Chapter 5

A Composite Particle Construction of
the Fibonacci Fractional Quantum
Hall State

5.1 Introduction

One of the many compelling motivations for studying non-Abelian topological orders is that they are among

the most promising platforms for fault-tolerant quantum computation [6]. The non-Abelian anyon excitations

in theses phases are quasiparticles with, as their name would suggest, non-Abelian braiding statistics [1].

Non-Abelian anyons therefore provide a source of topological degeneracy, allowing for non-local storage of

information. Information can then be manipulated through braiding of the anyons, a process which is resilient

against decoherence from local perturbations because of its topological nature [218–222]. Prime candidates

for realizing non-Abelian topological order are the systems under consideration in this thesis – namely, two-

dimensional gases of electrons in strong magnetic fields, which can form fractional quantum Hall (FQH)

states. Excitingly, there is mounting experimental evidence for fractional statistics in FQH states [223], and

for the non-Abelian Pfaffian state (introduced in Chapters 3 and 4) at filling fraction ν = 5/2 supporting

the simplest non-Abelian anyon, the Ising anyon [224–227].

Ising anyons, however, are not sufficient for universal quantum computation [6]. In contrast, topological

orders supporting the so-called Fibonacci anyon can serve as universal quantum computers [228]. This

follows from the Fibonacci anyon’s fusion rule, τ × τ = 1 + τ , where τ is the Fibonacci anyon, 1 is the

trivial anyon, and × denotes anyon fusion. For this reason, there has been much interest in the observed

ν = 12/5 FQH state, as numerics suggest this may correspond to the Z3 Read-Rezayi (RR) state [65], which

supports the Fibonacci anyon among other, Abelian anyons [229, 230]. Unfortunately, the presence of the

other anyons can complicate manipulation of the Fibonacci anyons by entering into braiding processes, a

form of quasiparticle poisoning. It is thus of interest to understand if it is possible to realize a topological

order supporting the Fibonacci anyon as its only excitation.

Several proposals have been put forward for realizing such a Fibonacci state. These include the nucleation

This Chapter is adapted from the following preprint, which is also cited as Ref. [18] in this thesis: Hart Goldman, Ra-
manjit Sohal, and Eduardo Fradkin, A composite particle construction of the Fibonacci fractional quantum Hall state, 2020,
arxiv:2012.11611.
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of a Fibonacci state on top of an Abelian FQH state using proximity coupled superconductors [231], chiral

superconducting islands with special couplings [232], and the possible realization of the Fibonacci state

at an integer filling of Landau levels [233]. Further studies have sought Fibonacci anyons via projective

parton constructions [175,234], but all of these constructions lead to additional anyon content as well. All of

the studies that realize a purely Fibonacci state follow the spirit of coupled wire constructions [152] which,

although providing concrete and analytically tractable microscopic models with topologically ordered ground

states, do not provide a physical picture for the dynamics that could lead to the emergence of such states

in an isotropic system. A quantum loop model for a Fibonacci state was proposed in Ref. [235]. In the

context of Abelian FQH states, such a picture is provided by composite fermion/boson field theories [11–13].

While a composite particle picture is lacking for most non-Abelian states, including the Fibonacci state,

notable exceptions include the Moore-Read FQH state (and its cousins) at ν = 5/2, which can be described

as arising from the pairing of composite fermions [61], the Read-Rezayi sequence [17, 178], the generalized

non-Abelian spin singlet states [17, 69, 70], and a range of Blok-Wen states (which will be discussed in the

following Chapter) [19,71,165]. Indeed, it is an open problem to establish a precise composite particle picture

for any purely non-Abelian state, as flux attachment generically leads to Abelian anyon content.

In this Chapter, we continue the program initiated in Chapter 4 and employ the recently proposed

Chern-Simons-matter field theory dualities [66–68] [see Eqs. (4.13)-(4.15)] to construct a composite particle

theory for the emergence of the Fibonacci state in a QH system of bosons at ν = 2. As we have seen, these

dualities can be interpreted as non-Abelian analogues of flux attachment. In the present Chapter, we use

duality to construct a Landau-Ginzburg description of a Fibonacci state of bosons starting from a trilayer

of IQH states, using flux attachment to render the electric charges bosonic. In this setup, the dynamical

mechanism leading to the Fibonacci state is manifest as interlayer clustering of dual bosonic “composite

vortices,” which couple to a fluctuating, non-Abelian gauge field. Our chosen clustering mechanism binds

electric charges on two of the layers to holes on the third, breaking the interlayer exchange symmetry. Our

flux attachment procedure similarly breaks this symmetry, rendering two of the layers topologically trivial

and endowing the remaining layer with the topological order of the Halperin (2, 2, 1) state.

Our dynamical mechanism therefore has an element of clustering, which underlies the interpretation of the

RR states, while retaining the character of a multilayer state, as the (2, 2, 1) state is commonly interpreted as

a bilayer (it has a Z2 exchange symmetry). In parallel to this intuition, we motivate an ideal wave function

for the Fibonacci state, an as-yet unprecedented achievement. This wave function superficially describes a

bilayer state, but nevertheless has the clustering properties of the Z3 RR state, which describes clusters of

three local quasiparticles.
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Figure 5.1: A schematic of our construction of the (a) U(2)3 and (b) U(2)3,1 Fibonacci states. Here ↔
denotes duality between the theories of Laughlin quasiparticles and composite vortices. The non-Abelian
state is obtained by clustering of the dual composite vortices between the layers.

5.2 Parent Model and Non-Abelian Duality

Our starting point is a trilayer of ν = 2 IQH states, as shown in Fig. 5.1. We will take each layer layer to

be near a ν = 2→ 1 transition described by a free Dirac fermion in the clean limit,

LIQH =

3∑
n=1

[
Ψn(i /DA −M)Ψn −

3

2

1

4π
AdA

]
. (5.1)

Here Ψn is a two-component Dirac fermion on layer n, Aµ is the background electromagnetic (EM) gauge

field, and we use the notation Dµ
B = ∂µ− iBµ, BdC = εµνλBµ∂νCλ, and /B = Bµγµ, where γµ are the Dirac

gamma matrices. Integrating out the Dirac fermions yields a ν = 2 (ν = 1) IQH phase for sgn(M) < 0

(sgn(M) > 0). Note we define the filling as ν = −2πρe/B, ρe = 〈δL/δA0〉, B = εij∂iAj . Our interest will

be in the physics near the quantum phase transition at M = 0.

Near M = 0, this theory has been proposed to satisfy a large number of boson-fermion dualities [68],

which are relativistic generalizations of the familiar flux attachment duality that relates the IQH transition

of fermions to the condensation of composite bosons [13]. These relate the free Dirac fermion theory on each

layer to one of a Wilson-Fisher boson, φn, coupled to a fluctuating U(N) Chern-Simons (CS) gauge field,

an, in the fundamental representation [199,236,237]. While a free Dirac fermion has a bosonic dual for any
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value of N , our interest will be in the case of N = 2,

L̃IQH =

3∑
n=1

[
|Daφn|2 − r|φn|2 − |φn|4

]
+

3∑
n=1

LCS[an] +Aµj
µ
top , (5.2)

LCS[an] =
1

4π
Tr

[
andan −

2i

3
(an)3

]
, (5.3)

Aµj
µ
top =

1

2π
AdTr[a1 − a2 + a3] . (5.4)

Here −|φ|4 denotes tuning such that the Wilson-Fisher fixed point occurs at r = 0, and traces are over color

[i.e. U(2)] indices. We have also selected the BF terms in Eq. (5.4) such that the second layer has opposite

EM charge from the other two. Because each layer is decoupled from one another, we may freely determine

the signs in Eq. (5.4) because the partition function has a charge conjugation symmetry.

The fact that the theory in Eq. (5.2) has the same phase diagram as that of Eq. (5.1) follows from

the so-called level-rank duality of topological quantum field theories (TQFTs) [188, 190, 199], which is an

equivalence between U(N)k and SU(k)−N CS theories, where the subscript is the CS level. In particular,

one can set k = 1, leading to a duality between a trivial (i.e. IQH) theory and a U(N)1 CS theory,

LCS[b] +
1

2π
AdTr[b]←→ −N

4π
AdA , (5.5)

where b is a U(N) gauge field, and we have suppressed gravitational Chern-Simons terms.

Using level-rank duality, we can check the phase diagram of Eq. (5.2): for sgn(r) > 0, the φ bosons are

gapped, leading to a U(2)1 theory on each layer, which describes a trilayer of ν = 2 IQH states by Eq. (5.5).

Similarly, for r < 0 the bosons condense, breaking the gauge group down to U(1) on each layer. Integrating

out the remaining U(1) gauge fields leads to the desired trilayer ν = 1 response. The equivalence of the

phase diagrams of the theories in Eqs. (5.1) and (5.2) has led to the conjecture that the critical points at

r = M = 0 are identical. Below we will assume this to be the case, our confidence bolstered by the large-N, k

derivations of Refs. [66, 67] and the Euclidean lattice derivation of Ref. [236].

5.3 Landau-Ginzburg Theory

To target the Fibonacci phase, we first identify a CS TQFT representation of the state. It was recently

shown [215] that one such representation is

U(2)3,1 =
SU(2)3 × U(1)2

Z2
. (5.6)
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This is a U(2) CS gauge theory where the Abelian and non-Abelian parts of the gauge field have different

CS levels. The quotient by Z2 simply enforces that these two components are part of the same U(2) gauge

field (see Appendix F). The Lagrangian for this theory is written as

LFib = 3LCS[a]− 1

4π
Tr[a] dTr[a] +

1

2π
AdTr[a] , (5.7)

where a is again a U(2) gauge field. One can check that this theory has a single nontrivial anyon, besides

the vacuum, which transforms in the spin-1 representation of U(2), satisfies the Fibonacci fusion rule,

τ × τ = 1 + τ , and has topological spin hτ = 2/5, as we illustrate explicitly in Appendix C.2. We also

comment that this theory is known to be dual to a (G2)1 TQFT, where G2 is the smallest exceptional simple

Lie group [5, 215,230].

To access the U(2)3,1 state, we start by introducing interlayer clustering to the composite vortex theory,

Eq. (5.2), via coupling to a scalar field, Σnm,

Lcluster = −
∑
n,m

φ†mΣmnφn − V [Σ] . (5.8)

Under gauge transformations, Σnm 7→ UmΣmnU
†
n, where Un is a U(2) gauge transformation on layer n. It

can be understood as a Hubbard-Stratonovich field associated with the order parameter, φ†mφn. We choose

the potential V [Σ] such that

〈Σmn〉 = Mmn 12 ,Mmn 6= 0 , Mnn > 0 ,detM > 0 , (5.9)

where 12 is the 2×2 identity matrix in color space and Mmn is a constant Hermitian matrix. In the resulting

ground state, the φn fields are individually gapped, while the clustering order parameter, φ†mφn is condensed.

Because Eq. (5.9) is invariant under gauge transformations where U1 = U2 = U3, the gauge group is

broken as U(2)× U(2)× U(2)→ U(2), Higgsing gauge field configurations except for those with a1 = a2 =

a3 ≡ a. As a result, the CS terms for each of the an gauge fields add, leading to a U(2)3 theory,

LU(3)3 [a,A] = 3LCS[a] +
1

2π
AdTr[a] . (5.10)

Computing the Hall response by integrating out Tr[a] = Tr[ã12] = 2ã, one finds that the total filling fraction

is now ν = 2/3, rather than ν = 6. The change in the filling fraction is related to our choice of charge

assignments in Eq. (5.4), which results in the unit coefficient of the BF term in Eq. (5.10). While in the
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decoupled trilayer theory this choice of signs was immaterial, upon clustering the EM charge densities on

each layer, ρn = εij∂
i Tr[ajn]/2π, i, j = x, y, are pinned as ρ1 = ρ3 = −ρ2, thereby breaking the discrete

symmetry exchanging the layers and altering the filling fraction. The resulting minimal EM charge will

prove crucial to obtaining the Fibonacci state.

The Fibonacci state, Eq. (5.7), is a descendant of the U(2)3 state at ν = 2/3. To see this, we attach a

single unit of flux to the “electrons,” the charges which couple to the background EM vector potential, Aµ,

and are understood to be the vortices of Tr[a] in the variables of Eq. (5.10). Since in our starting theory,

Eq. (5.1), the EM charges are fermions, flux attachment shifts their statistics and renders the fundamental

EM charges bosonic. Explicitly, introducing an Abelian statistical gauge field, b, we have

L = LU(3)3 [a, b] +
1

4π
bdb+

1

2π
bdA+

1

4π
AdA . (5.11)

Integrating out b, one immediately finds the Lagrangian in Eq. (5.7), which displays a ν = 2 Hall response.

We have therefore found, using a combination of flux attachment and interlayer clustering, a Fibonacci state

of bosons at ν = 2.

The flux attachment transformation in Eq. (5.11) transmutes the original electric charges, which are

fermions, to bosons, but it also mixes the three layers of the parent model, Eq. (5.1). A more physically

transparent approach, which also leads to a Fibonacci state at ν = 2, proceeds by first attaching a positive

flux to each electron on the first and third layers of the theory in Eq. (5.1) while attaching a negative flux to

each electron on the second layer, explicitly breaking the layer exchange symmetry outright and leading to

the parent theory depicted in Fig. 5.1(b). On the first and third layers, this results in theories of electrically

charged Wilson-Fisher bosons on top of a ν = −2 IQH state. On the second layer, however, this leads to

Wilson-Fisher bosons coupled to the Halperin (2, 2, 1) CS gauge theory at filling ν = +2/3. We show in

Appendix C.1 that clustering of composite vortices starting from this trilayer state leads to a Fibonacci FQH

state. We note that the Halperin (2, 2, 1) state has appeared as a parent state for the Fibonacci order in

related constructions [231,238].

Using this bosonic parent description of Fig. 5.1(b), the final Landau-Ginzburg theory of the Fibonacci

state can be expressed in terms of the clustering order parameter, Σ, after integrating out the composite

vortices, φ, and the auxiliary gauge fields associated with flux attachment,

L =
∑
m,n

Tr
[
|∂Σmn − iamΣmn + iΣmnan|2

]
+
∑
n

LCS[an]

+
∑
n

(−1)n
(

1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

)
− Vr[Σ] .

(5.12)
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where the first term is a kinetic term generated by quantum corrections due to integrating out φ, and Vr is the

renormalized potential for Σ. The trace is again over color indices. The phase diagram can be understood as

follows. For 〈Σ〉 = 0, the theory consists of three decoupled layers: two IQH insulators and a single Halperin

(2, 2, 1) layer. For 〈Σ〉 = M 6= 0, the theory finds itself in a phase with Fibonacci topological order.

Furthermore, one can identify the Fibonacci anyons with gapped degrees of freedom in the Landau-

Ginzburg theory; namely, the excitations of the adjoint bilinear of composite vortices, φ†taφ, where ta are

the generators of SU(2) ⊂ U(2). This can be observed from the fact that this operator transforms in the

spin-1 representation of the gauge group and has vanishing electric charge, both properties of the Fibonacci

anyon. Note that while the φ fields possess a layer index, in the Fibonacci state this does not lead to any

unwanted degeneracy due to the condensation of 〈φ†mφn〉, and so there is only one Fibonacci anyon.

5.4 Fibonacci Wave Function

Having developed an effective field theory that provides a concrete dynamical mechanism for how the Fi-

bonacci state may be realized in a bosonic system at ν = 2, we now seek to develop an ideal wave function,

which until now has also proven elusive. Ideal wave functions encode information about the clustering prop-

erties of electrons in non-Abelian states and can be compared with numerically obtained ground states in

order to identify the topological order realized in realistic Hamiltonians. Remarkably, the wave function we

will obtain displays a number of physical features that parallel the above effective field theory construction.

To obtain a wave function, we employ the standard conformal field theory (CFT) approach, in which the

wave function is constructed in terms of correlation functions of the edge (G2)1
∼= U(2)3,1 Wess-Zumino-

Witten (WZW) CFT, Ψ({zσi }) = 〈
∏N
i=1 Ψσ(zσi )〉 [1]. Here, zσi = xσi + iyσi are the complex coordinates of the

electrons, σ = 1, . . . , nf a type of “flavor” index, nfN is the number of electrons, and Ψσ(zi) are operators

in the CFT. Physically, Ψσ(z) represents an electron operator and can in general be written as the product

Ψσ(z) = χσ(z)eiϕ(z)/
√
ν , where ν is the filling fraction and ϕ is a compact boson. The χσ(z) operators are

electrically neutral. From Eq. (5.6), we observe that for the case at hand the χσ’s are operators in the

SU(2)3 CFT, and eiϕ/
√
ν , with ν = 2, is an operator in the U(1)2 CFT.

The first step in constructing a wave function is therefore to determine the electron operators, Ψσ. We

claim that the appropriate choice of electron operators is

Ψ↑ ≡ ψ2e
iφ/
√

6+iϕ/
√

2, Ψ↓ ≡ ψ1e
−iφ/

√
6+iϕ/

√
2. (5.13)

Here we have made use of the fact that operators in the SU(2)3 CFT can be expressed as products of vertex
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operators of another compact boson, φ, and so-called Z3 parafermions [239], ψ1 and ψ2, which satisfy the

operator product expansions (OPEs),

ψ1(z)ψ1(z′) ∼ (z − z′)−2/3ψ2(z′) + . . . (same for 1↔ 2)

ψ1(z)ψ2(z′) ∼ (z − z′)−4/3 + . . . . (5.14)

The choice of the two electron operators (labeled by “spin” ↑ / ↓) in Eq. (5.13) is motivated by the effective

field theory construction discussed above. Indeed, the (2, 2, 1) Halperin state involved in the parent state in

Fig. 5.1(b) has two species of vortices satisfying a Z2 exchange symmetry and is commonly understood as a

bilayer state; the remaining two layers in Fig. 5.1(b) are topologically trivial. We therefore anticipate that

the Fibonacci wave function “knows” about this exchange symmetry and choose electron operators as such.

More formally, the need for two electron species arises from the fact that the electron operators must

correspond to generators of the (G2)1 current algebra, all of which represent local excitations. These can

be labeled by the twelve roots of G2, of which two are linearly independent. This suggests that we should

have two distinct electron operators, as is the case for other FQH wave functions based on rank-two Lie

algebras [69,160,214]. Following Refs. [69,214], we require that our choice of electron operators is such that

they have the same electric charge and opposite SU(2) spin. The first requirement is satisfied via the two

eiϕ/
√

2 factors; the second by the fact that their SU(2)3 factors are conjugate to one another. The details of

the construction of these electron operators is somewhat technical, and so are relegated to Appendix C.3.

The Fibonacci wave function can thus be written as a 2N -point correlation function of the Ψ↑/↓ operators.

The correlators of the vertex operators can be explicitly evaluated, and so we obtain (up to an overall

Gaussian factor),

Ψ({zi, wi}) = 〈
N∏
i=1

ψ2(zi)ψ1(wi)〉
∏
i,j

(zi − wi)1/3
∏
i<j

(zi − zj)2/3
∏
i<j

(wi − wj)2/3, (5.15)

where zi (wi) labels the position of the up (down) “spin.” This formal expression encodes key properties of

the Fibonacci state. Indeed, the highest power of z1 appearing in the factors multiplying the parafermion

correlator is 2N(1/2), yielding a filling fraction of ν = 2, consistent with our field theory construction.

Additionally, one can use Eq. (5.14) to see that the wave function satisfies the same three-body clustering as

the Z3 RR wave function [65] separately in each of the zi and wi coordinates, dovetailing with our description

in terms of clustering of composite vortices. These parallels between our proposed wave function and our

dynamical construction above are encouraging, giving us confidence that Eq. (5.15) does indeed describe

91



the Fibonacci state.

As we show in Appendix C.4, by using Eq. (5.14) to point-split ψ2 into a product of ψ1’s, one can

explicitly evaluate the above parafermion correlator to express Eq. (5.15) as

Ψ({zi, wi}) =
Ψk=3
RR ({zi, zi, wi})∏

i<j(zi − zj)2
∏
i,j(zi − wj)

, (5.16)

where Ψk=3
RR ({zi, zi, wi}) is the bosonic ν = 3/2 RR wave function for 3N particles, with the coordinates of

N pairs of particles set equal to one another. The apparent asymmetry in zi and wi is an artifact of choosing

to point-split the ψ2’s. A manifestly symmetric wave function can be obtained via symmetric combination

with the wave function obtained by point-splitting the ψ1’s. Note that while the wave function exhibits a

simple pole as we bring zi → wi, we expect that this short-distance singularity can be regularized without

altering the topological properties of the wave function.

5.5 Discussion

In this Chapter, we have presented both a field-theoretic construction of the bosonic Fibonacci state at

ν = 2 based on non-Abelian composite particle dualities, as well as an explicit wave function for this

state. Our construction involves a parent trilayer system, in which the Fibonacci state is realized via

clustering of dual “composite vortices” coupled to fluctuating U(2) gauge fields. Leveraging this construction,

we obtain a wave function for the Fibonacci state sharing many of the physical properties of our field-

theoretic construction. Our approach can therefore be used to generate many other exotic states in need of

a microscopic construction, as well as to motivate their wave functions.

Unlike other non-Abelian states, short-distance constructions of the Fibonacci state, particularly in

isotropic systems, have proven elusive. The fact that our construction is based on a parent state involving

fairly germane bosonic FQH phases suggests that a Fibonacci state may be realizable in the laboratory.

Furthermore, the fact that the wave function for the ν = 2 bosonic Fibonacci state is manifestly holomorphic

clearly suggests that it should be the ground state of a local Hamiltonian projected into a Landau level,

and we hope that our wave function will motivate numerical studies in this direction. Additionally, going

forward, it will be of interest to construct a transparent fermionic analogue of the bosonic Fibonacci state

presented here, which would reproduce the fermionic Fibonacci state to be discussed in Chapter 6.

One may ask whether a different choice of electron operators would have yielded an equally reasonable

candidate wave function. In particular, the Ψ↑/↓ operators we defined are part of an SU(2) quartet. For

example, the wave function one obtains by choosing the other pair of operators within this quartet as the

92



electrons describes the Abelian Halperin (2, 2,−1) state. While it is possible to obtain this state from our

parent trilayer theory, it would be interesting to explore how different choices of electron operator in the

CFT language may represent different parts of the bulk phase diagram.
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Chapter 6

Non-Abelian Fermionization and the
Landscape of Quantum Hall Phases

6.1 Introduction

Employing recently proposed Chern-Simons-matter field theory dualities, which we will review again shortly,

we demonstrated in the proceeding two Chapters how one can construct Landau-Ginzburg theories describing

the emergence of a host of non-Abelian fractional quantum Hall (FQH) states – namely, the Read-Rezayi,

generalized non-Abelian spin singlet, and Fibonacci states – from a parent Abelian theory. A key feature of

our approach is that the parent Abelian theory is described by a composite particle theory. The dualities we

use then allow us to develop a picture of the dynamics underlying the emergence of these non-Abelian states,

which turns out to rest on the clustering of bosonic objects we called “composite vortices”. However, this is

in some sense only half of the story, as the Chern-Simons-matter dualities of Eqs. (4.13)-(4.15) [see also Eqs.

(6.2)-(6.4) below] often relate the bosonic composite vortex theories used in our Landau-Ginzburg theories

of Chapter 4 to theories of composite fermions coupled to non-Abelian Chern-Simons gauge fields. This

naturally leads one to wonder whether the non-Abelian phases found in Chapter 4 (or other non-Abelian

states) are easily accessed within these dual composite fermion variables. As a capstone to our program

of developing composite particle theories of non-Abelian FQH states, one goal of the present Chapter is to

address this question. In pursuit of this question, we will in fact find a scheme by which these dualities allow

us to make general claims about the phase diagrams of these composite fermion theories.

In order to set some context, we begin by first recapitulating the philosophy of the construction presented

in Chapter 4. We developed Landau-Ginzburg theories for a large class of non-Abelian states which are

related to Abelian composite particle theories via recently proposed Chern-Simons-matter theory dualities

[68]. Motivated by the equivalence of U(N)k Chern-Simons theories coupled to gapless complex bosons

and SU(k)−N theories coupled to gapless Dirac fermions in the ’t Hooft (large-N, k) limit [66, 67], these

dualities relate theories of gapless bosons or fermions coupled to Chern-Simons gauge theories in a manner

This Chapter is adapted from Hart Goldman, Ramanjit Sohal, and Eduardo Fradkin, Non-Abelian fermionization and the
landscape of quantum Hall phases, Phys. Rev. B 102, 195151 (2020). c©2020 American Physical Society. This paper is also
cited as Ref. [19] in this thesis.
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which parallels the established level-rank dualities of pure Chern-Simons theories [188–190, 199]. Of these

dualities, several relate theories with Abelian and non-Abelian gauge groups, meaning that they represent

dualities between the conventional composite boson Landau-Ginzburg theories for certain Abelian FQH

states and theories of dual bosons coupled to non-Abelian Chern-Simons gauge fields.1 By stacking multiple

copies of these Abelian states and introducing pairing in the dual non-Abelian composite boson language, we

showed that one can access the Read-Rezayi [65] and generalized non-Abelian spin singlet states [69,70,192]

in Chapter 4 as well as the Fibonacci state in Chapter 5. The success of this construction stems from the

observation that phases naturally accessible by condensing local operators in the non-Abelian dual theory

may not be visible in the original Abelian theory, in which these operators correspond to non-local monopole

operators.

Lying at the heart of our construction in Chapter 4 was a string of dualities involving the usual Landau-

Ginzburg theory for the ν = 1/2 bosonic Laughlin state, a single flavor of Wilson-Fisher boson (describing

the Laughlin quasiparticles) coupled to a U(1)2 Chern-Simons gauge field. This theory has three duals,

a Wilson-Fisher scalar + U(1)2 ←→ a Dirac fermion + SU(2)−1/2

l (6.1)

a Dirac fermion + U(1)−3/2 ←→ a Wilson-Fisher scalar + SU(2)1 ,

where we use ←→ to denote duality and subscripts denote the Chern-Simons level (including the parity

anomaly). The Abelian boson-fermion duality featured here and others like it were explored in Refs. [161,

162,202,203]. While most non-Abelian dualities are boson-fermion dualities, this quadrality – in which each

of the four theories is dual to the others – is distinguished by its inclusion of non-Abelian boson-boson and

fermion-fermion dualities. In Ref. [17], we focused on the non-Abelian boson-boson duality, in which the

dual theory consists of non-Abelian bosonic “composite vortices” coupled to a SU(2)1 Chern-Simons gauge

field, obtaining the non-Abelian phases via inter-layer pairing of the composite vortices.

In this Chapter, we study the non-Abelian phases accessible to the dual theories of composite fermions.

Of these, the theory of Dirac fermions coupled to a U(1)−3/2 gauge field is a relativistic version of the

standard composite fermion description of the ν = 1/2 bosonic Laughlin state, while the theory of Dirac

fermions coupled to a SU(2)−1/2 gauge field constitutes a different kind of “flux attachment” in which

the composite fermions possess charge under a fluctuating non-Abelian gauge field. Using this duality, we

1We emphasize here that it is possible for a Chern-Simons gauge theory to have a non-Abelian gauge group but an Abelian
braid group, meaning that it represents an Abelian topological phase. For example, SU(2)1 is Abelian in this sense, having the
same anyon content as U(1)2 by level-rank duality.
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analyze two of the simplest paths to non-Abelian phases:

1. Forming integer quantum Hall (IQH) phases of the SU(2) composite fermions, in analogy with Jain’s

construction of Abelian FQH phases as IQH states of composite fermions [11] and earlier projective

parton constructions of non-Abelian FQH states [158–160].

2. Excitonic pairing between layers of SU(2) composite fermions. This construction is a composite fermion

version of the one presented in Ref. [17] for composite bosons.

In both constructions, we will find that the composite fermions yield the ν = k/2 Blok-Wen states with U(k)2

topological order [71], in contrast to the Read-Rezayi states obtained via inter-layer pairing of the SU(2)

bosons in Chapter 4. For many of these states, these are the first constructions starting from parent theories

of Abelian composite particles, rather than projective parton constructions [159, 160, 175] or more general

non-Abelian/non-Abelian dualities [165]. In addition, by considering more general non-Abelian dualities,

we find not only the exotic Fibonacci state [6], but also composite fermion descriptions of a variety of non-

Abelian states that have previously been understood via pairing instabilities of a composite Fermi liquid,

including a new description of the anti-Pfaffian state [240, 241]. Remarkably, we find in these special cases

that an IQH phase of the non-Abelian composite fermion theory is dual to pairing in the usual Abelian

description. Our construction of all of these states using non-Abelian dualities represents the first category

of main results of this Chapter.

In addition to revealing paths to different non-Abelian phases, these non-Abelian fermion-fermion dual-

ities possess surprising information about the dynamics of composite fermions, leading to our second main

family of results. These results relate to our first construction of the U(k)2 states, in which a magnetic field

and chemical potential are adjusted so that the SU(2) composite fermions fill k Landau levels. This leads

to a SU(2)−k spin topological quantum field theory (spin TQFT) at low energies, corresponding to U(k)2

topological order by level-rank duality. However, this conclusion is immediately complicated by the duality

with the Abelian composite fermion theory, IQH phases of which correspond to the bosonic Jain sequence

states. Indeed, there are certain filling fractions ν∗ of the underlying electric charges at which both types of

composite fermions fill up an integer number of Landau levels. On integrating out the fermions in these two

theories, one would then be led to conclude that the theory with an Abelian gauge group predicts an Abelian

FQH state, while the non-Abelian theory predicts a non-Abelian FQH state. For instance, for a system of

bosons at filling ν∗ = 3/2, the two theories appear to respectively predict U(1)−2 and U(3)2 topological

order.

Because U(3)2 and U(1)−2 are distinct topological orders and are certainly not dual to one another, one
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Figure 6.1: Proposed phase diagram for the SU(2) composite fermion theory at filling ν = 3/2. Here
λ = g2

YM/ωc, where g2
YM is the Yang-Mills coupling (the fine structure constant) and ωc ∼

√
B is the

cyclotron frequency. When λ→∞, the Yang-Mills term vanishes, and the picture of deconfined composite
fermions filling (color degenerate) Landau levels is valid, leading to the SU(2)spin

−3 ↔ U(3)2 state. When λ
runs small, the Yang-Mills term becomes very large, Landau levels can mix, and the deconfinement of the
composite fermions is no longer assured, leading ultimately to the U(1)2 phase predicted in the dual Abelian
theory. These states are separated by a critical point at λ = λ∗ ∼ O(1), which is likely first order.

might näıvely worry that these results signal a breakdown of the dualities, which postulate an equivalence

of the infrared (IR) limits, or ground states, of the dual theories. On the other hand, it is very common for

states with distinct topological orders to exist at the same filling fraction, with the ultimate choice of ground

state depending on details of local energetics. Indeed, in this work we take the view that both topological

orders are valid ground states at filling ν∗, and that the particular choice of ground state depends on the

order in which the lowest Landau level (B → ∞) and IR limits are taken. This order of limits is subtle,

as the duality is only valid in the IR limit, while the statement that the composite fermions form a stable

IQH state relies on the B →∞ limit. More precisely, on tuning the ratio of the Yang-Mills coupling to the

cyclotron frequency in the non-Abelian theory, we argue that there is a phase transition between the Abelian

and non-Abelian FQH states (see Figure 6.1). Such a transition, if continuous, would be quite exotic, as it

would separate two very different topological orders and therefore lie beyond the Landau-Ginzburg paradigm.

Thus, when the U(1) composite fermions form an IQH state, the SU(2) composite fermions experience an

instability and find themselves on the Abelian side of this transition and vice versa.

Even if this transition is first order, our results demonstrate that QFT dualities can be used to infer

non-trivial statements about the phase diagrams and dynamics of Chern-Simons-matter theories in the

presence of background fields. Indeed, the phenomenon described above is a general feature of fermion-

fermion dualities involving non-Abelian gauge groups, and we collect several additional examples. These

appear both in the SU(2) quadrality discussed above as well as in other dualities. In particular, we consider

the case of the duality between a free Dirac fermion and a Dirac fermion coupled to a U(N)−1/2 gauge

field. We also comment that the scenario we present is reminiscent of recent proposals for the phase diagram

of SU(N)k Chern-Simons theory with Nf > 2k fermion flavors (at zero density and magnetic field) [242]
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and recent follow-up work [243–246], in which it has been suggested that the Yang-Mills term can play a

non-trivial role despite superficially appearing irrelevant (in the sense of the renormalization group).

This Chapter is organized as follows. In Section 6.2, we review the non-Abelian Chern-Simons-matter

dualities, focusing on the quadrality in Eq. (6.1). In Section 6.3, we present a detailed description of the dual

fermionic theories and the properties of their IQH states, and we present the cases in which they appear to

predict different topological orders. We then present our proposed scenario for how this state of affairs can

be made consistent and provide additional examples of dual fermionic theories displaying similar phenomena.

In the process, we uncover an entire series of non-Abelian FQH states, including the anti-Pfaffian [240,241],

which we find can be simultaneously described as arising from IQH states of composite fermions in a non-

Abelian theory and from pairing instabilities of a composite Fermi liquid in a dual Abelian theory. In Section

6.4, we demonstrate how the U(k)2 states can be obtained through stacking and excitonic pairing in Abelian

FQH states. Finally, we conclude with a discussion of our results and their implications.

6.2 Review of Non-Abelian Dualities and the Landau-Ginzburg

Approach

6.2.1 Non-Abelian Dualities and the ν = 1/2 Bosonic Laughlin State

In this section, we first briefly review the dualities relevant to describing the ν = 1/2 bosonic Laughlin state.

The recently proposed non-Abelian Chern-Simons-matter dualities relate theories of Wilson-Fisher bosons

coupled to a Chern-Simons gauge field to theories of Dirac fermions also coupled to a Chern-Simons gauge

field, with the matter content in the fundamental representation of the gauge group. These dualities are

schematically given by Eqs. (4.13)-(4.15); for ease of access, we repeat them here:

Nf scalars + U(N)k,k ←→ Nf fermions + SU(k)−N+Nf/2 , (6.2)

Nf scalars + SU(N)k ←→ Nf fermions + U(k)−N+Nf/2,−N+Nf/2 , (6.3)

Nf scalars + U(N)k,k+N ←→ Nf fermions + U(k)−N+Nf/2,−N−k+Nf/2 . (6.4)

Our conventions and notation concerning non-Abelian Chern-Simons theories are presented in Appendix F.
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The dualities, Eqs. (6.2)-(6.4), can be shown to imply the quadrality described in the Introduction [199],

a scalar + U(1)2 ←→ a fermion + SU(2)−1/2

l (6.5)

a fermion + U(1)−3/2 ←→ a scalar + SU(2)1 .

The first theory (top left) is the relativistic version of the usual Landau-Ginzburg theory for the ν = 1/2

bosonic Laughlin state. Explicitly, it is described by the Lagrangian,

LΦ = |DaΦ|2 − |Φ|4 +
2

4π
ada+

1

2π
Ada . (6.6)

Here a is an emergent U(1) gauge field; A the background electromagnetic (EM) field; we use the notation

Dµ
a = ∂µ − iaµ and adb = εµνλaµ∂νbλ; and the term −|Φ|4 denotes tuning to the Wilson-Fisher fixed point.

The dual non-Abelian bosonic theory (bottom right) is given by

Lφ = |Du−A1/2φ|2 − |φ|4 +
1

4π
Tr

[
udu− 2i

3
u3

]
− 1

2

1

4π
AdA , (6.7)

where u is an SU(2) gauge field, 1 is the 2×2 identity matrix in color space, and −|φ|4 again denotes tuning

to the Wilson-Fisher fixed point. By turning on mass operators, both theories can be shown to describe

the transition between the ν = 1/2 bosonic Laughlin state and the trivial insulator, which correspond to

their gapped (〈Φ〉 = 0, 〈φ〉 = 0) and condensed (〈Φ〉 6= 0, 〈φ〉 6= 0) phases, respectively. Essential to this

conclusion is the fact that SU(2)1, the TQFT obtained when Φ is gapped, is Abelian at the level of the

braid group: it is equivalent to U(1)2 by level-rank duality.

The SU(2) theory, Lφ, served as the main building block in our construction of the Read-Rezayi states

in Chapter 4 in which we considered multiple layers of the ν = 1/2 bosonic Laughlin state and introduced

an interlayer pairing interaction for the Φ particles. The paired phase of this theory yielded the Read-Rezayi

states. However, in that work we did not consider the landscape of non-Abelian phases accessible by dual

theories of Dirac fermions, which we now turn to.

6.2.2 A Comment on Level-Rank Duality and Topological Orders of Fermions

Before describing the composite fermion theories of interest, we mention here a subtlety that arises when

considering topological orders of composite fermions. When assessing the anyon content of the corresponding

gauge theory, it is necessary to account for the the fact that the degrees of freedom charged under the gauge
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field are fermions, which affects the statistics of certain anyons by a minus sign. More technically, this

is a result of the fact that gauge fields which couple to fermions are spin (actually spinc, see Appendix

F) connections, as opposed to the U(1) connections that couple to bosons. We will refer to such gauge

fields throughout this Chapter as spin gauge fields, and we will denote their associated TQFTs with the

superscript ‘spin.’ In general, level-rank duality can be thought of as relating a TQFT with a spin gauge

field (spin TQFT) to one with a U(1) gauge field.2 Therefore, since composite fermion theories give rise to

spin TQFTs, we will frequently invoke level-rank duality below and refer to a state’s topological order via

its corresponding (non-spin) TQFT. For example, if a composite fermion theory yields a SU(2)spin
−k TQFT,

we will refer to the associated topological phase by its level-rank dual, U(k)2.

This formal discussion has physical implications. For example, consider the topological order of the

ν = 1/2 Laughlin state. The anyons of this state are semions, with π/2 statistics. This state can be equally

well described by a U(1)2 TQFT or a U(1)−2 TQFT with a spin gauge field, which we will denote U(1)spin
−2 .

As we will see below, this theory arises on integrating out a Landau level of composite fermions. While it

appears that the anyons in this theory are antisemions (statistics −π/2), the π statistics of the composite

fermions converts them into semions. This is a type of level-rank duality, relating U(1)2 to U(1)spin
−2 . In

this sense, level-rank dualities can generally be viewed as boson-fermion dualities, with some interesting

exceptions, e.g. in the SU(2)1 ↔ U(1)2 duality mentioned above, neither theory is spin.

6.3 Non-Abelian Dualities and the Dynamics of Composite

Fermions

6.3.1 The ν = 1/2 Laughlin State and a Non-Abelian Fermion-Fermion Duality

The bosonic theories described above are dual to a theory of Dirac fermions coupled to a U(1)−3/2 Chern-

Simons gauge field. For clarity, we will refer to this theory as Theory A,

LA = iψ /Daψ −
3

2

1

4π
ada− 1

2π
adA− 1

4π
AdA+ · · · , (6.8)

where a is a U(1) gauge field and we use the notation /D = Dµγ
µ, where γµ are the Dirac gamma matrices.

This theory is also dual to a theory of Dirac fermions coupled to a non-Abelian, SU(2)−1/2 gauge field,

2Level-rank duality can be equivalently formulated to relate two spin-TQFTs by adding an invisible spin-1/2 line (also
known in the condensed matter literature as a local spin-1/2 particle) to each side of the duality [199]. This formulation is less
physical if we wish to view the fundamental charges at short distances as bosons, so we will refrain from using it.
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which we will refer to as Theory B,

LB = iχ /Db−A1/2χ−
1

2

1

4π
Tr

[
bdb− 2i

3
b3
]
− 1

4

1

4π
AdA+ · · · , (6.9)

where b is an SU(2) gauge field and 1 is the 2× 2 identity matrix.3 Here the χ fields transform as a doublet

under SU(2), and they have charge −1/2 under the global EM symmetry, U(1)EM. The fundamental (unit)

charges are therefore the baryons, εαβχ
αχβ , where α, β = 1, 2 are SU(2) color indices. Finally, the ellipses

refer to irrelevant operators, such as Maxwell or Yang-Mills terms for the gauge fields. These operators

are normally dropped since the duality is only valid in the IR limit, in which these operators are taken to

zero, and their usual purpose is to provide UV regularization. However, we will see in the sections below

that these operators can play important roles in determining low energy physics when background fields are

turned on.

Being dual to the bosonic theories discussed in Section 2, Theory A and Theory B each describe

a transition from the ν = 1/2 bosonic Laughlin state, which has U(1)2 topological order, to a trivial

insulator. This can be seen by introducing mass terms, −mψψψ and −mχχχ, to their respective theories.

For mψ > 0,mχ > 0, integrating out ψ and χ can be seen to immediately yield an insulating state with

vanishing Hall conductivity, σxy = 0. On the other hand, when mψ < 0,mχ < 0, integrating out the

composite fermions yields a state with σxy = − 1
2

1
2π (mψ < 0,mχ < 0), with Theory A yielding a U(1)spin

−2

gauge theory and Theory B yielding SU(2)spin
−1 . These constitute the same topological order as the U(1)2

state by level-rank duality.

By differentiating this pair of Lagriangians with respect to the background EM gauge field, Aµ, to obtain

the global EM charge current, Jµ, one observes that, under the duality, the monopole current of Theory

A is related to the baryon number current of Theory B,

Jµe =
1

2π
εµνλ∂ν(aλ −Aλ)↔ −1

2
jµχ −

1

2

1

2π
εµνλ∂νAλ , (6.10)

where jµχ = χγµχ is the χ charge current of the Theory B. The interpretation of this dictionary is analogous

to charge-vortex duality [209,210]: flux of the gauge field a in Theory A maps to charge of the χ fermions

in Theory B. The same interpretation applies to the pair of bosonic theories discussed in the previous

Section.

3As in the preceding chapters of this thesis, we approximate the Atiyah-Patodi-Singer η-invariant as a level- 1
2

Chern-Simons
term and explicitly include it in the Lagrangian.
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6.3.2 Abelian and Non-Abelian Jain Sequences

In contrast to their bosonic counterparts, these composite fermions each satisfy the Pauli exclusion principle.

As a result, it is natural to consider the gapped phases accessible by filling up Landau levels and forming

IQH states, in analogy to the construction of the Jain sequences, in which FQH phases are obtained as IQH

states of composite fermions [11]. In particular, integer quantum Hall states of the SU(2) doublet composite

fermions, χ, can be expected to yield non-Abelian topological orders. This method of forming non-Abelian

quantum Hall phases appears to be quite natural, but we will quickly learn that the non-Abelian dualities

imply that things are not so simple, and the ultimate choice of ground state will be sensitive to the order in

which the lowest Landau level and IR limits are taken.

To this end, we begin by relating the electronic filling fraction, ν, to the filling fractions of the ψ and χ

fermions using the dictionary, Eq. (6.10). Focusing first on the Abelian Theory A, the physical electric

charge density is given in terms of the magnetic flux felt by the composite fermions,

ρe =
〈
J0
e

〉
= − 1

2π
〈εij∂iaj〉 −

1

2π
B, (6.11)

where B = εij∂iAj is the background magnetic field. We use brackets here to emphasize that that we define

ρe to be the expectation value of the charge density operator. We can relate ρe to the composite fermion

charge density through the equation of motion for a0,

0 = 〈ψ†ψ〉 − 3

4π
〈εij∂iaj〉 −

1

2π
B , (6.12)

If we define the composite fermion filling fraction of Theory A to be

νψ = 2π
〈ψ†ψ〉
〈εij∂iaj〉

, (6.13)

we obtain a relation between the composite fermion and electronic filling fractions,

ν = −2π
ρe
B

=
νψ − 1/2

νψ − 3/2
. (6.14)

Note that we have absorbed a minus sign into the definition of ν for notational convenience. From this

formula, we see that IQH states of the ψ fermions, which occur at fillings νψ = p − 1/2, correspond to the
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known (descendent) bosonic Jain sequence states,

νp =
p− 1

p− 2
, p ∈ Z . (6.15)

Indeed, integrating out the composite fermions yields the Lagrangian,

LA,eff =
p− 2

4π
ada− 1

2π
adA− 1

4π
AdA. (6.16)

Each of these states (with the exception of the states at p = 1, 2, which are respectively a trivial insulator

and a superfluid) is an Abelian FQH phase of the physical charges, which here are bosons.

The same type of analysis can be carried out for Theory B, leading to a non-Abelian version of the

bosonic Jain sequence. Recalling Eq. (6.10), the electric charge density is directly related to the density of

χ fermions, χ†χ, via

ρe = −1

2
〈χ†χ〉 − 1

4

1

2π
B. (6.17)

Because the χ fermions are coupled to a Chern-Simons gauge field, they do not confine, meaning that a

non-zero magnetic field, B, will cause them to form Landau levels with degeneracy,

dLL =
BA

2π
× |qχ| × (color degeneracy) =

BA

2π
, (6.18)

where A in this expression is the area of the system and qχ = −1/2 is the EM charge of the χ fermions.

Therefore, the filling fraction of the χ fermions is

νχ = 2π
〈χ†χ〉
B

. (6.19)

Plugging this into Eq. (6.17) yields a relation between ν and νχ,

ν =
1

2
νχ +

1

4
. (6.20)

When the χ fermions fill an integer number of Landau levels, νχ = s − 1/2, and the filling of the physical

charges is

νs =
s

2
, s ∈ Z . (6.21)
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On integrating out the composite fermions, one obtains a SU(2)spin
−s theory with Lagrangian,

LB, eff = − s

4π
Tr

[
bdb− 2i

3
b3
]
− s

2

1

4π
AdA , (6.22)

which describes a non-Abelian, U(s)2, topological order when |s| > 1. This approach recalls earlier ap-

proaches to non-Abelian FQH states using parton constructions [158–160]. However, unlike in those cases,

in which the elctron operator is fractionalized by hand and it is necessary to require that the partons do not

confine by fiat, here the duality provides a clear basis for the presence of a (deconfining) non-Abelian gauge

field.

Having obtained the sequences of incompressible filling fractions associated with Theory A and Theory

B, one can immediately observe several special (non-trivial) filling fractions, ν∗, at which they coincide,

indicating the presence of competing ground states. Comparing Eqs. (6.15) and (6.21), these fillings occur

when νp = νs = ν∗, i.e.

s = 2

(
1 +

1

p− 2

)
, p, s ∈ Z. (6.23)

Here we recall that p and s are the number of Landau levels filled by the ψ and χ fermions, respectively. This

equation has several solutions, which are organized in Table 6.1. Two of these solutions, (p = 1, s = 0) and

(p = 0, s = 1), respectively correspond to the ν = 1/2 bosonic Laughlin state, which has U(1)2 ↔ SU(2)spin
−1

topological order. This is consistent with the fact that at criticality these theories describe a plateau

transition between these states.

It is the presence of other solutions, at (p = 3, s = 4) and (p = 4, s = 3), corresponding to ν∗ = 2 and

ν∗ = 3/2 respectively, that reveals new physics. On the one hand, Theory A predicts the ν∗ = 3/2 and

ν∗ = 2 states to have U(1)−2 and U(1)1 (i.e. trivial) topological orders. On the other hand, Theory B

predicts the same states to have non-Abelian SU(2)spin
−3 ↔ U(3)2 and SU(2)spin

−4 ↔ U(4)2 topological orders.

While it is common in quantum Hall physics for different competing states to be proposed for the same filling

fraction, the duality of Theory A and Theory B identifies the two theories’ ground states. Therefore, the

consistency of the duality implies that the conditions under which the ψ fermions form an IQH state are not

the same as those of the χ fermions, and the two possible states must be separated by a phase transition. A

theory of this phase transition requires short-distance dynamical information not specified by, but consistent

with, the duality. We now present a possible scenario for a transition of this kind.
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Table 6.1: Solutions to Eq. (6.23), in which both the ψ and χ composite fermions form IQH states at special
electronic filling fractions, ν∗. Also indicated are the topological orders predicted by the dual theories for
each filling.

ν∗ 0 1
2

3
2 2

νψ + 1/2 1 0 4 3

νχ + 1/2 0 1 3 4

Theory A Trivial U(1)2 U(1)−2 IQH

Theory B Trivial U(1)2 U(3)2 U(4)2

6.3.3 Dynamical Scenario

We now provide a possible explanation of the physics occurring at the special filling fractions ν∗ = 3/2, 2.

For now, we will work from the point of view of the non-Abelian Theory B, and we will begin by considering

what happens as we fill Landau Levels. From Table 6.1, we see that filling the zeroth and first Landau Levels

of the χ fermions corresponds to the expected trivial insulator (ν = 0) and bosonic Laughlin (ν = 1/2) states.

What occurs when the non-Abelian composite fermions fill two Landau levels is also quite non-trivial, but

we will table that discussion until the next subsection. For now, our concern will be what happens when we

fill the third Landau level, corresponding to ν∗ = 3/2. Our proposal for ν∗ = 2 will prove to be essentially

identical. At ν∗ = 3/2, Theory B predicts an incompressible state with SU(2)spin
−3 ↔ U(3)2 topological

order, while Theory A predicts U(1)2. This suggests that it should be possible to trigger an instability in

the non-Abelian theory as we fill this Landau level, which preempts the U(3)2 topological order and yields

the same Abelian phase predicted by Theory A (and vice versa). Consequently, both the U(1)2 and U(3)2

phases must exist in the ν = 3/2 phase diagram. This is the only state of affairs consistent with the duality.

How might such an instability occur? It is here that the ellipses in Eqs. (6.8) and (6.9) become crucial.4

These ellipses include operators that are irrelevant at tree level but may nevertheless play an important role

in determining the low energy physics when a magnetic field and chemical potential are introduced. Indeed,

there is no sense in which such fields are ever perturbative, as they reorganize the spectrum of a theory in

dramatic ways. To make this discussion more precise, consider the Yang-Mills term in Theory B,

LYM = − 1

2g2
YM

Tr[fµνf
µν ] , (6.24)

where fµν = ∂µbν − ∂νbµ − i[bµ, bν ] is the field strength of the SU(2) gauge field, b. At tree level, the mass

dimension of the operator Tr[f2] is 4, meaning that [g2
YM ] = 1: it is an energy scale. Commonly, the IR

4We thank Chong Wang for enlightening discussions on this point.
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limit in which the duality of Eqs. (6.8) and (6.9) holds is phrased as the limit g2
YM ∼ Λ → ∞, where Λ

is a UV cutoff, but strictly speaking this is only true in the absence of a background magnetic field, which

provides its own energy scale in the form of the cyclotron frequency, ωc ∼
√
B (for massless Dirac fermions).

Consequently, one can form a dimensionless coupling,

λ =
g2
YM

ωc
, (6.25)

that can have non-trivial running as a result of strong interaction effects. This would mean that the ground

state ultimately chosen by Theory A can depend on the order of the limits, g2
YM → ∞ and ωc → ∞.

Importantly, one order of limits in Theory B may not correspond to an analogous order of limits in

Theory A. In other words, Theory B may be in a strongly coupled regime (0 ≤ λ <∞) while Theory A

may behave as if all of the irrelevant operators have been taken to zero prior to taking ωc →∞.

This is the essence of our proposal5 for the phase diagram of Theory B, shown schematically in Fig.

6.1. Whether the theory is in the U(3)2 or U(1)2 phase is determined by the value of λ, with the two phases

being separated by a phase transition at a value λ = λ∗ ∼ O(1). For λ > λ∗, λ runs large, corresponding to

the limit g2
YM →∞ followed by ωc →∞. In this phase, the Yang-Mills term disappears, leaving the Chern-

Simons term, which ensures that the composite fermions, χ, are deconfined. It is in this regime that we

expect the picture described in the previous subsection of deconfined χ fermions filling Landau levels to hold,

making this the phase with U(3)2 topological order. On the other hand, for λ < λ∗, we propose that λ runs

small. Here the Yang-Mills term becomes important, and the assumption of deconfined composite fermions

breaks down: the Landau levels mix. As a result, the composite fermions will tend to form bound states

that are neutral under SU(2): the baryons, εαβχ
αχβ . These are bosons of charge −1 since the fermions

are doublets under SU(2). Being the physical electric charges in this theory, these bosonic baryons will find

themselves at filling ν = 3/2, and the resulting topological order will ultimately be U(1)2, as predicted by

Theory A. Note that this final conclusion is conjecture based on the consistency of the duality – the physics

in such a phase is very strongly coupled, and we cannot show explicitly that this is the true ground state.

We also point out that λ may not run to zero in this phase, instead running to a small but finite value. This

represents a very interesting but theoretically daunting possibility.

We now comment on what occurs in the dual description of Theory A, in which we can define a similar

running coupling6, λA = g2
Maxwell/ωc, where gMaxwell is the coupling associated with the Maxwell term for

5We emphasize that while we focus on the example of the Yang-Mills term, there are many other operators that might be
responsible for the behavior we propose, and it may be more correct to consider a linear combination of these operators as
being responsible. Another likely family of examples is four-fermion operators, which have the same tree level dimension as the
Yang-Mills operator.

6Note that unlike the fermions of Theory B, the magnetic field felt by the ψ fermions depends both on the background
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the U(1) gauge field, a. In this theory, the limit λA → ∞ corresponds to the U(1)2 (IQH) state at filling

ν∗ = 3/2 (ν∗ = 2), as the Maxwell term vanishes. However, since the Maxwell term is not dual to the Yang-

Mills term, it is not clear whether the phase transitions described for Theory B correspond to transitions

tuned by λA or another coupling, such as one associated with a linear combination of four-fermion operators.

Nevertheless, unless λ∗ =∞ in Theory B (in which case the non-Abelian phase is nowhere stable, having

no basin of attraction), the duality indicates that the non-Abelian states should be accessible to Theory A

as well, and that these transitions should also be present in that theory.

6.3.4 Comments on the Nature of the Transition

The nature of the transition between these phases depends on microscopic details, and it is not immediately

clear how to study the strongly coupled physics when λ ∼ O(1). One exciting possibility is that the phase

transition is continuous, which would exist beyond the Landau paradigm since it separates two distinct

topological orders. Furthermore, this would imply the existence of an unstable conformal field theory (CFT)

fixed point, which we expect would be quite exotic and perhaps involve emergent symmetries. In the spirit of

universality, we attempt here to write down the simplest possible theory of such a transition. The theory we

find consists of Nf = 4 flavors of electrically neutral Dirac fermions, ξi, coupled to a SU(2)spin
−1 Chern-Simons

gauge field, c,

L =

Nf=4∑
i=1

ξi(i /Dc −mξ)ξi −
1

4π
Tr

[
cdc− 2i

3
c3
]
− 3

2

1

4π
AdA . (6.26)

We emphasize that the fields ξ and c need not have any local relationship with the fields in Theory A

nor Theory B. This theory has a U(4) global symmetry rotating the fermion flavors. For mξ � 0, the

theory is in the Abelian, SU(2)spin
+1 ↔ U(1)−2 phase, and for mξ � 0 the theory is in the non-Abelian,

SU(2)spin
−3 ↔ U(3)2 phase. While the flavor index can be interpreted as a kind of Landau level index, there

is no a priori reason for this symmetry to be enforced, rendering this theory at best a multicritical point.

What’s more, this theory has Nf > 2|k| = 2, meaning that it falls outside of the Chern-Simons-matter

dualities of Eqs. (6.2)-(6.4) and may spontaneously break the flavor symmetry at small values of mξ [242].

We therefore find the presence of a direct second-order transition unlikely, and we conjecture that any other

possible CFT with these two phases also has an enlarged set of global symmetries compared to the underlying

UV problem.7 We also conjecture that this is the case for the other transitions discussed in this work.

Therefore, it is perhaps more natural to expect the mundane scenario in which the two phases are

chemical potential and magnetic field, so ωc is not precisely the Landau level gap, which is determined by 〈εij∂iaj〉.
7While one may also wish to consider theories with bosonic matter, we note that it is not possible to condense bosonic

operators to transition between U(3)2 and U(1)−2 due to the difference in the signs of the level. This cannot be repaired with
level-rank duality because the U(1)−2 gauge field is not spin.
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Table 6.2: Solutions to Eq. (6.23) in which one of the two dual theories is metallic, i.e. is at infinite filling.

ν∗ −1 ∞

νψ + 1/2 ∞ 2

νχ + 1/2 2 ∞

Theory A Metal Superfluid

Theory B U(2)2 Metal

separated by a first order transition. Starting in, say, the U(1)2 phase, as λ is increased, phase separation

will set in, yielding bubbles and stripes of the U(3)2 phase, which eventually fill the system. It is also possible

that the transition is not direct, and that several different phases arise when λ ∼ O(1). We cannot exclude

this possibility. That we cannot present a thorough description of the transition is not surprising, given the

complexity of the phase diagrams for electrons in magnetic fields at fractional filling.

6.3.5 Non-Abelian Duality and Paired FQH Phases

In the above subsection, we conspicuously left out a discussion of the case when the χ composite fermions

fill two Landau levels, corresponding to filling ν∗ = 1. At this filling, Eqs. (6.11) and (6.12) indicate that the

ψ composite fermions of Theory A feel a vanishing magnetic field and therefore form a metallic state with

density set by the background magnetic field, 〈ψ†ψ〉 = B/2π. This is the well known metallic, composite

Fermi liquid state of bosons with unit filling [247]. On the other hand, the analysis of Section 6.3.2 finds

Theory B in an IQH state, yielding U(2)2 topological order. Although one of the predicted phases is

gapless, we nevertheless propose that the same scenario presented above holds in this theory: the ultimate

choice of ground state is determined by the order in which the IR and ωc → ∞ limits are taken. These

states are again separated by a phase transition, which is tuned by the dimensionless coupling of the kind

defined in Eq. (6.25).

In contrast to the cases in which both phases were gapped, here we can clearly understand this transition

in terms of the ψ composite fermions of Theory A. Indeed, the U(2)2 state can be shown to be one of a

range of non-Abelian phases of bosons at ν = 1 that can be obtained as paired states of the composite Fermi

liquid [248], the most famous of which being the SU(2)2 bosonic Pfaffian state [249]. The major difference

between the U(2)2 state and the SU(2)2 state lies in the topological spin of the non-Abelian half-vortex,

which is set by the pairing momentum channel. As we will explain in more detail in the following subsection,

the appropriate channel to obtain the U(2)2 order is l = 2. Consequently, this transition can be understood

in terms of the flow of the pairing interaction, which is a four-fermion operator in the Abelian Theory A.
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Interestingly, it is expected from numerical simulations and recent analytic calculations that the composite

Fermi liquid state of bosons at ν = 1 is unstable to pairing in the lowest Landau level limit [250,251], perhaps

suggesting that the metallic state seen in Theory A has no basin of attraction unless the theory is modified

in some way.

From the point of view of Theory B, it is natural to expect that λ is again the correct running coupling,

with the choice of ground state again being viewed as a question of the order in which the lowest Landau

level and IR limits are taken. As above, for λ > λ∗, the χ fermions find themselves in an IQH state, yielding

the U(2)2 topological order. For λ < λ∗, this picture breaks down, leading to a theory involving bosonic

baryons, which we conjecture form the ν = 1 metallic state.

Remarkably, at filling ν∗ = 1, we have observed a duality between composite fermion pairing in Theory

A and the IQH effect in Theory B. This is surprising, as there is no known dictionary of local operators

that makes this connection explicit. Indeed, while the U(2)2 state has previously been obtined both in the

Read-Green pairing picture [61,249] and as an IQH state of non-Abelian partons [158–160,252], it has never

before been suggested that these two constructions may be dual to one another. We will see below that this

duality is not limited to the particular case of bosons at ν = 1: in Section 6.3.6, we will encounter a parallel

story involving the anti-Pfaffian state of fermions at ν = 1/2.

Similar competing ground states are found as the external magnetic field is turned off, i.e. ν∗ →∞ (see

Table 6.2). In this case, the analysis of Section 6.3.2 indicates that Theory A predicts a superfluid state,

the usual fate of bosons at finite density and B = 0. On the other hand, the composite fermions of Theory

B form a metal with density equal to the background charge density, a far more exotic non-Fermi liquid

state which surely requires that the fundamental bosonic charges be very strongly interacting. Nevertheless,

the interpretation of the transition between these states is natural from the point of view of Theory B:

again adopting the notation of Section 6.3.3, for λ > λ∗, the theory remains metallic, while for λ < λ∗,

the χ fermions confine to form bosonic baryons. Since these bosons feel no magnetic field, they would then

condense and spontaneously break U(1)EM, forming the superfluid state seen in Theory A. Given how

natural the state predicted in Theory A is, one might wonder if the metallic state predicted by Theory B

is ever stable to baryon condensation. We leave this question for future work.

6.3.6 Examples in Other Fermion-Fermion Dualities

Thus far, we have focused our analysis on the dual fermionic theories appearing in the SU(2) quadrality.

However, the above considerations are broadly applicable to any pair of fermionic theories related by a

Chern-Simons matter duality. To illustrate this point, we consider a more general composite fermion duality
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Table 6.3: Fillings at which one of Theory A′, Eq. (6.27), and Theory B′, Eq. (6.28), predicts a metallic
ground state and the other a nonmetallic state (first two columns), or where both predict distinct topological
orders (last two columns). Here, N is the rank of the U(N) gauge group in Theory B′, which is always
equal to two in these examples. By Jain we mean a U(1)spin × U(1) theory describing the usual Abelian
Jain state at filling ν∗.

ν∗ 1/(k − 1) 1/(k − 2) 3/(3k − 4) 2/(2k − 3)

νψ + 1/2 ∞ 2 4 3

νη + 1/2 2 ∞ 3 4

Theory A′ Metal
U(1)k−2 (k 6= 2)

Superfluid (k = 2)
Jain Jain

Theory B′ (N = 2) U(2)2,2(k−1) Metal U(3)2,3k−4 U(4)2,2(2k−3)

describing a transition between the ν = 1/k Laughlin state and an insulator. This duality relates a theory

of Dirac composite fermions with k − 1 (Abelian) fluxes attached (Theory A′) to a theory of composite

fermions coupled to a U(N) gauge field (Theory B′) [167],

LA′(k) = iψ /Daψ −
1

2

1

4π
ada+

1

2π
adv +

k − 1

4π
vdv +

1

2π
vdA+ . . . , (6.27)

l

LB′(k,N) = iη /Duη −
1

2

1

4π
Tr

[
udu− 2i

3
u3

]
− N − k

4π
bdb− 1

2π
Tr[u]db+

1

2π
bdA+ . . . (6.28)

In Theory A′, ψ is a Dirac fermion charged under an emergent U(1) gauge field a, and v is another U(1)

gauge field. In Theory B′, η is a Dirac fermion in the fundamental representation of U(N), u is a U(N)

gauge field, and b is a U(1) gauge field. These dualities are derived in Appendix D.1.1, where it is also shown

that these theories are dual composite fermion descriptions of the bosonic Landau-Ginzburg theory for the

ν = 1/k Laughlin state: when k is even, the fundamental charges are bosons, while when k is odd they are

fermions (note that when N = k = 2, we recover Theory A and Theory B, which are associated with the

ν = 1/2 bosonic Laughlin state). We emphasize that the above duality holds regardless of the rank N of the

gauge group U(N) in Theory B′, and hence amounts to the statement that LA′(k) is dual to an infinite

number of theories LB′(k,N) parameterized by the integer N .

As in the examples encountered thus far, we find special filling fractions, ν∗, at which the dual theories

predict differing ground states. The details of this analysis are essentially identical to that of the preceding

SU(2) examples and are presented in detail in Appendix D.1.2. Our results are summarized in Table 6.3.

For example, at the filling ν∗ = 2/(2k−3), Theory A′ predicts the usual Abelian Jain state, while Theory

B′ predicts the more exotic, non-Abelian U(4)2,2(2k−3) state. Our dynamical proposal for understanding the
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transitions between these states, as well as the others featured in Table 6.3, is essentially identical to that

of Section 6.3.3, and so we will not comment on it further.

One state of particular note is the U(3)2,−1 topological order, which is level-rank dual to U(2)spin
−3,−1,

predicted by Theory B′ with k = 1 at ν∗ = −3. Now, the non-spin U(2)3,1 Chern-Simons theory is dual to

the (also non-spin) (G2)1 Chern-Simons theory [253]. Remarkably, (G2)1 describes precisely the Fibonacci

topological order, which supports a single non-trivial anyon, τ , obeying the fusion rule τ × τ = 1 + τ , and

is of particular import from the perspective of topological quantum computation [6]. It is rather interesting

that Theory B′ predicts the (spin) Fibonacci topological order to appear in competition with the ν∗ = −3

IQH state. In Chapter 5, we likewise saw how the pure (non-spin) Fibonacci order can arise at filling ν = 2

in a bosonic system.

Additionally, we wish to highlight the cases at fillings ν∗ = 1/(k − 1), in which the non-Abelian

U(2)2,2(k−1) state predicted by Theory B′ can again be understood as a pairing instability of the Abelian

composite Fermi liquid state in Theory A′. The argument that U(2)2,2(k−1) can be obtained from pairing

in Theory A′ parallels that for the U(2)2 state discussed in the previous subsection, which corresponds

to the special case k = 2. Indeed, the non-Abelian part of U(2)2,2(k−1) is again SU(2)2, and the major

difference from this state lies in the topological spins of the non-Abelian half vortices, which are modified by

the level of the Abelian sector. Moreover, one can check explicitly that pairing of the Theory A′ composite

fermions in the l = 2 angular momentum channel yields the expected U(2)2,2(k−1) topological order for all

k by considering the edge spectrum: this topological order supports three chiral, charge-neutral Majorana

fermions and one anti-chiral U(1)k−1 bosonic charge mode. From the point of view of Theory A′, l = 2

pairing leads to the three chiral Majorana fermions, in addition to a U(1)k−1 charge mode coming from the

left over Abelian sector. That such a large class of non-Abelian topological orders which can be understood

via pairing in a composite fermion theory, in this case Theory A′, has a dual description as IQH states of

composite fermions in a dual non-Abelian theory, Theory B′ is quite remarkable.

We close this section by commenting on some particular examples of physical interest. First, for k = 1

and ν∗ = ∞, Theory A′ is a free Dirac fermion at finite chemical potential but vanishing magnetic field.

In this case, in Theory B′, it is possible to integrate out the auxiliary gauge field b without violating

flux quantization: its Chern-Simons level is −(N − k) = −1. This cancels the Chern-Simons term for the

Abelian part of the U(2) gauge field, Tr[u], Higgsing the background EM field, Aµ, and leading to a chiral

superconductor with topological order is U(2)2,0 = [SU(2)2 × U(1)0]/Z2
∼= SO(3)1, which is Abelian. This

state contains only a single anyon, a Majorana fermion8 [161, 254]. Such a state can be accessed via a

8This can be viewed as a consequence of the condensation of the Majorana fermion of the SU(2)2 topological order, which
confines the non-Abelian “half-vortex” of the SU(2)2 factor.
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pairing instability in Theory A′. It is natural to expect this instability to arise due to the effects of local

four-fermion operators that destabilize Theory A′ in the order of limits in which the η fermions of Theory

B′ form an IQH state.

For k = −1 and ν∗ = −1/2, Theory A′ is Son’s Dirac composite Fermi liquid theory of the half-filled

Landau level [124]. In this case, the topological order predicted by Theory B′ is U(2)2,−4 = [SU(2)2 ×

U(1)−8]/Z2, which is the (time-reversed) topological order of the famous anti-Pfaffian state, another paired

state of composite fermions [240, 241]! Additionally, for k = 3 and ν∗ = 1/2, Theory B′ predicts the

[SU(2)2×U(1)8]/Z2 = U(2)2,4 order, which is that of Wen’s (221) parton state [158,159], another proposed

ground state of fermions at half filling that can be understood in terms of pairing in Theory A′, which now

has additional attached fluxes. Now, although these states are all accessible within parton constructions (see,

for example, Ref. [252]), we must again emphasize that the projective framework hinges on the dynamical

assumption that the electron fractionalizes into partons which do not confine. Finally, another non-trivial

bosonic example is k = 0 and ν∗ = 1, in which Theory B′ predicts a [SU(2)2 × U(1)−4]/Z2 = U(2)2,−2

ground state, which describes the Ising topological order [143]. While these results are reminiscent of the

parton constructions giving these states, the use of duality provides a connection between partonic intuition

and the dynamics of pairing. Additionally, it is straightforward to check in these examples that l = 2 pairing

in Theory A′ yields the expected U(2)2,2(k−1) order by comparing the edge theories. It would be interesting

to determine if other dual descriptions exist which yield the other proposed Pfaffian-like states, which arise

from pairing the composite fermions of Theory A′ in other angular momentum channels, as IQH phases of

dual composite fermions, and we leave this to future work.

6.4 Building Non-Abelian States from Excitonic Pairing

In the preceding section, we illustrated how non-Abelian Chern-Simons matter dualities may be used to map

out parts of the phase diagram for electrons (or bosons) in a magnetic field at certain fractional fillings, ν∗,

finding gapless states as well as both Abelian and non-Abelian topological orders. We now turn to present

an alternative means of constructing non-Abelian FQH states, still making use of the dual composite fermion

theories employed above. Our goal here is to provide a complementary perspective to our previous work [17],

in which we constructed Landau-Ginzburg theories for the Read-Rezayi states using bosonic Chern-Simons-

matter using a multilayer pairing procedure. Specifically, we will consider condensing interlayer excitons

(pairs of fermions in different layers which are neutral under the external EM gauge field) in Theory B, Eq.

(6.9), to generate non-Abelian states. We will find, however, that the excitonic paired phases are not the
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Read-Rezayi states constructed in Ref. [17], but rather the Blok-Wen states with U(k)2 topological order,

as in Section 6.3.

For simplicity, we again consider a bilayer system, with each layer being a ν = 1/2 bosonic Laughlin

state. We use the dual fermionic description of Theory B for each layer so that the (initially decoupled)

multilayer system is described by the Lagrangian

LB,2 =

2∑
n=1

(
iχn /Dbn−A1/2χn −

1

2

1

4π
Tr

[
bndbn −

2i

3
b3n

])
− 1

2

1

4π
AdA. (6.29)

Here, χn and bn are the composite fermions and SU(2) gauge fields on layer n, respectively. Note that each

layer couples in the same way to the external electromagnetic field, A. Moreover, we see from Table 6.1 that

when each layer is at filling ν = 1/2, so that the full multilayer system is at filling ν = 1, the χn of each

layer form an IQH state.

Now, following the standard approach [198], we introduce an interlayer excitonic pairing interaction

mediated by an electrically neutral scalar field, Σ,

Lexciton = χ1Σχ2 + H.c. (6.30)

The field Σ can be thought of as a Hubbard-Stratonovich field for the pairing interaction. It couples minimally

to the gauge fields on either layer, and so has dynamics described by

LΣ = |∂Σ− ib1Σ + iΣb2|2 − V [Σ], (6.31)

where V [Σ] is the potential for Σ. Under gauge transformations,

Σ 7→ U1ΣU†2 , Um ∈ SU(2) on layer m. (6.32)

The full multi-layer theory is therefore described by the Lagrangian,

Lbilayer = LB,2 + Lexciton + LΣ . (6.33)

The condensation of Σ yields the excitonic paired state, characterized by a non-zero expectation value for the

operator χ1χ2. It should be emphasized that in the dual descriptions of Theory A and the Landau-Ginzburg

theory of Eq. (6.6), the interaction Lexciton will correspond to a highly nonlocal object involving monopole

operators. In general, the fundamental fields do not map to local operators under the dualities of Eq. (6.2)-
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(6.4) [68]. Hence, the upshot of examining this dual fermionic theory is that we can access regions of the

phase diagram at a given filling fraction, which are less readily understood in the formulation of Theory A

or the original bosonic Landau-Ginzburg theory, as they would require the inclusion of complicated, nonlocal

interactions.

Now, suppose we have a nonzero magnetic field such that each layer is at filling ν = 1/2, meaning the

χn each fill a single Landau level, as indicated in Table 6.1. We assume that we can safely integrate out the

occupied χn Landau levels, yielding additional level −1/2 Chern-Simons terms for the bm gauge fields. The

effective action describing this gapped state is then

Lbilayer = −
2∑

n=1

1

4π
Tr

[
bndbn −

2i

3
b3n

]
− 1

4π
AdA+ L̃Σ + . . . , (6.34)

where we have integrated out the fermions χ, leading to a renormalized Lagrangian for Σ, denoted L̃Σ. If

the potential V [Σ] is such that the field Σ is massive and does not condense, then we are simply left with

an SU(2)spin
−1 × SU(2)spin

−1 ↔ U(1)2 × U(1)2 Chern-Simons theory at low energy, describing two decoupled

layers of ν = 1/2 Laughlin states. Now, suppose instead that the potential V [Σ] is such that Σ obtains a

non-zero vacuum expectation value, 〈Σ〉 ∝ 1. In this excitonic paired state, the gauge group SU(2)×SU(2)

will be Higgsed down to the diagonal SU(2) subgroup, as follows from the gauge transformations of Eq.

(6.32). Explicitly, from the Lagrangian for Σ, the linear combination b1 − b2 of the gauge fields acquires a

mass, effectively identifying the gauge fields of each layer: b1 ≡ b2 ≡ b. Hence, the Chern-Simons terms will

add, resulting in a non-Abelian SU(2)spin
−2 ↔ U(2)2 Chern-Simons theory at low energies.

It is possible to explicitly write out the anyon spectrum of this U(2)2 topological order in terms of com-

posite operators of the fundamental fermions. This requires identifying the operators which transform under

the non-trivial spin-1/2 and spin-1 representations of the SU(2)−2 gauge theory and taking into account

additional spin factors coming from the underlying fermionic statistics of said operators. For reference, we

denote the anyons transforming in the spin-1/2 and spin-1 representations of the SU(2)−2 topological order

as σ and ψ (not to be confused with the fermion field in Theory A), corresponding to the non-Abelian

half-vortex (i.e. the Ising twist field) and Abelian Majorana fermion, respectively, in the time-reversed con-

jugate of the bosonic ν = 1 Moore-Read state. They have spin9 hσ = −3/16 and hψ = 1/2, respectively,

and satisfy the fusion rules σ × σ = 1 + ψ and ψ × ψ = 1, where 1 represents the vacuum. Now, in our

theory, the minimal charge anyons are represented by the fermions χ1, which transform in the fundamental

(or spin-1/2) representation of SU(2)−2. The χ1 operators will thus satisfy the same fusion rules as the σ

9Here, the spin of an anyon a is the phase factor exp(2πiha) picked up when rotating it through an angle of 2π. This is not
to be confused with the spin-j/2 representations of SU(2).
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anyon in the SU(2)−2 theory, but they have spin −3/16 + 1/2 = 5/16, due to the bare fermionic statistics of

χ1. The other non-trivial anyon is represented by the composite operator χ1τ
aχ1, where τa is the vector of

generators of SU(2). This operator is charge neutral and transforms in the spin-1 representation of SU(2),

meaning it obeys the same fusion rules as ψ. It also has the same spin as ψ, hψ = 1/2, since it has bare

bosonic statistics, being a bilinear in fermion operators. Once can check that these anyons with these spins

match the anyon spectrum expected for the U(2)2 topological order. Finally, note that the fundamental

fermions χ1 and χ2 are indistinguishable in the excitonic paired phase, as one can be transmuted into the

other via the the 〈χ1χ2〉 condensate. Hence, there is no double-counting of anyons.

Several remarks on this construction are in order. This excitonic pairing mechanism is somewhat uncon-

ventional and differs from the more common Read-Green construction [61] used to describe the Moore-Read

states. In the latter picture, the electrons (or bosons) are mapped to composite fermions using non-relativistic

flux attachment. At the appropriate filling fractions, the composite fermions see an effectively vanishing flux

at mean-field level. The resulting composite Fermi liquid can give way to a pairing instability in the p+ ip

channel, Higgsing the dynamical U(1) Chern-Simons gauge field down to its Z2 subgroup and resulting in

a gapped state. The non-Abelian Ising anyons in the Moore-Read state then have a description in terms of

vortices of the Chern-Simons gauge field. In the present construction, we are instead pairing fermions on

top of a filled Landau level, a gapped state. Hence, unlike the Read-Green picture, we cannot understand

our exciton paired state as arising from some perturbative instability, since interactions must be sufficiently

strong to overcome the gap. In addition, one can check from standard homotopy arguments that the symme-

try breaking pattern SU(2)×SU(2)→ SU(2)diagonal does not admit vortex configurations [17,178]. Instead,

the anyon spectrum in our model is generated by composite objects formed from the fundamental fermions,

as outlined above. It should be noted that even our earlier bosonic construction [17] required a similarly

unconventional pairing mechanism, in which it was necessary to assume that composite bosons paired rather

than condensed. Finally, it is clear that we can generalize our construction to a multilayer system with k

copies of the ν = 1/2 Laughlin state; interlayer excitonic pairing in such a system would lead to a U(k)2

topological order.

6.5 Discussion

Employing non-Abelian composite fermion dualities, we have presented two complementary pictures for

describing a broad range of non-Abelian FQH states, which can be obtained either as IQH states of non-

Abelian composite fermions or as excitonic states in multilayer systems. Along the way, we developed new
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insights into the non-Abelian theories’ dynamics, in which the order of the lowest Landau level (B → ∞)

and IR limits was seen to play a crucial role in determining the ultimate choice between the non-Abelian

ground state and a competing Abelian state that is natural in a dual description. This subtlety has thus

far received little attention in studies of non-Abelian dualities, yet we find it to be a ubiquitous feature of

non-Abelian fermion-fermion dualities. It may be a worthwhile endeavour to see whether studying these

theories at finite magnetic field in the ‘t Hooft limit, in the vein of Ref. [255], may provide an analytical

handle on the physics of these transitions – we leave this for future work. Interestingly, related physics

has been observed recently in numerics, where it has been argued that the ground state at certain fillings

can exhibit effectively Abelian topological order for short-range interactions and non-Abelian order as the

interaction range is increased [256,257]. We hope that our work will motivate more numerical efforts in this

direction.

Although we cannot make many concrete statements about the transitions we propose to occur between

the Abelian and non-Abelian states, we remarkably find several examples in which the non-Abelian states

– among them the anti-Pfaffian – can be understood in terms of pairing in a dual composite Fermi liquid

description. Such dualities between composite fermion pairing and the IQH effect in a dual, non-Abelian

theory are new, and finding new examples of such dualities will be a fruitful direction for future work.

Looking forward, a natural question to ask is whether non-Abelian fermion-fermion dualities can be used

to derive other non-Abelian FQH states, beyond the variations of the Blok-Wen states we find. Indeed,

although the anti-Pfaffian is a member of the U(2)2,2(k−1) series of states, we do not seem to arrive at the

Pfaffian or PH-Pfaffian states. To that end, it may be fruitful to apply our analysis using dualities involving

Chern-Simons-matter theories with gauge groups other than SU(N) or U(N), as the family of Pfaffian

states can naturally be described using O(2)2,L Chern-Simons theories [258]. It is also somewhat peculiar in

that the Read-Rezayi and generalized non-Abelian spin singlet states, which are readily obtained through

non-Abelian bosonic theories, do not appear to be accessible within the present approach. We leave the

construction of fermionic theories for these states to future work.
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Chapter 7

Entanglement Entropy of Generalized
Moore-Read Fractional Quantum Hall
State Interfaces

7.1 Introduction

Thus far, our focus has been on understanding the emergence of exotic fractional quantum Hall (FQH) states.

In this, the final chapter of this thesis, we continue our investigation of non-Abelian FQH states, but we

now shift the object of our inquiry to their characterization. Specifically, our focus will be on understanding

systems in which distinct non-Abelian topological states are joined at a one-dimensional interface where

all chiral edge modes are gapped out, forming a gapped interface. Such systems have been the subject of

much theoretical interest, as we discussed in Chapter 1 and will briefly review below. As for conventional

uniform topologically ordered states, the study of such systems and the properties of their one-dimensional

interfaces is impeded by the fact that topological order, being characterized by non-local correlations, cannot

be probed via local order parameters. Instead, we will endeavor to uncover the properties of these interfaces

by characterizing the entanglement structure of the ground state, a calculation which has already been

carried out in the corresponding Abelian problem [91]. As in this previous work, we will employ a “cut-and-

glue” approach, which takes advantage of the bulk-boundary correspondence, to render the entanglement

calculation a tractable one.

Let us briefly review the main concepts regarding quantum entanglement that will be of relevance for us

in this Chapter. The most elementary measure of entanglement is provided by the entanglement entropy

(EE). Given a state |ψ〉 and a bipartition of the Hilbert space H = HA ⊗HB , the EE is given by

S = −TrA(ρA ln ρA) (7.1)

where ρA = TrB |ψ〉 〈ψ| is the reduced density matrix of A. Specializing to 2 + 1-dimensional systems, if |ψ〉

is the ground state of a local Hamiltonian and we choose a spatial bipartitioning of the Hilbert space, then

This Chapter is adapted from Ramanjit Sohal, Bo Han, Luiz H. Santos, and Jeffrey C. Y. Teo, Entanglement entropy of
generalized Moore-Read fractional quantum Hall state interfaces, Phys. Rev. B 102, 045102 (2020). c©2020 American Physical
Society. This paper is also cited as Ref. [20] in this thesis.
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the EE satisfies

S = αL− γ (7.2)

in the thermodynamic limit, where L is the length of the entanglement cut separating regions A and B. The

first term in this expression is known as the area law, where α is a non-universal constant. In contrast, γ is

a universal quantity known as the topological entanglement entropy (TEE) and is non-zero for topologically

ordered systems [89,90]. If A has the topology of a smooth disc, then γ = lnD, where D is the total quantum

dimension, a quantity which characterizes the anyon content of a topological order.

As a single number, the TEE provides a rather coarse grained description of a gapped state. A more

descriptive object is provided by the entanglement spectrum (ES) [259], which is defined by first formally

writing the reduced density matrix for region A in the form of a thermal density matrix,

ρA ∝ e−He . (7.3)

The ES is then given by the spectrum of the operator He, which is known as the entanglement Hamiltonian.

Remarkably, for (chiral) topological phases, the low-lying part [260] of the ES for a spatial entanglement

cut corresponds to the physical spectrum of the conformal field theory (CFT) describing the edge of the

topological order. This was first demonstrated numerically in fractional quantum Hall systems [259], while

analytic arguments for the correspondence appeared shortly thereafter [261–265].

Of particular interest to us is the work of Qi, Katsura, and Ludwig [263], which employed a “cut-and-

glue” approach to calculate the ES. These authors argued that one can compute the ES by physically

cutting the system along the entanglement cut between A and B and turning on an interaction between the

resulting gapless edge states. Since the correlation length vanishes in the bulk, any entanglement between

A and B should come from the the coupled edges. Using boundary CFT techniques, Qi et. al. deduced the

ground state of the coupled edge system and showed that the ES does indeed match that expected for the

bulk topological order. Subsequent works applied this approach to the specific cases of Abelian topological

phases, whose edges are described by multi-component Luttinger liquids [14]. In this case, one can write

down explicit gapping terms for which the ground state can readily be approximated, without recourse to

boundary CFT methods [91,266].1

The utility of the cut-and-glue approach was made manifest in the work of Cano et. al. [91], in which

the TEE for an entanglement cut along a gapped interface between distinct Abelian topological phases was

1See also Refs. [267,268] for related calculations.
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computed. The authors demonstrated that the TEE in fact receives (universal) corrections depending on

the choice of interactions used to gap out the interface, even for an interface between two regions with

the same topological order.2 Gapped interfaces of topological phases are of physical interest, due to the

possibility of realizing non-Abelian defects at their endpoints [72–83]. In fact, it was demonstrated that the

aforementioned TEE corrections are directly related to the emergence of 1D SPTs along these interfaces [88].

Recently, progress has also been made in understanding (gapless) interfaces of topological phases beyond

effective field theory constructions through numerical simulations [271–273].

The goal of this Chapter is to provide a first step towards extending the above story to non-Abelian

topologically ordered phases of matter. Namely, we would like to, for some class of non-Abelian states, (1)

use the cut-and-glue approach to compute the TEE in all topological sectors. Furthermore, we will aim to

(2) identify when a gapped interface can be formed between these states and what interactions can generate

these interfaces, as well as (3) compute the TEE for an entanglement cut along such an interface. The second

of these issues – the construction of explicit gapping interactions – has been extensively studied for Abelian

systems [85–87], but is less well understood for non-Abelian phases (although interfaces of non-Abelian states

have been studied at an abstract level [274–282]).

To these ends, we focus on the generalized Moore-Read (MR) states [1], which provide examples of the

simplest non-Abelian fractional quantum Hall (FQH) states. As described in Chapter 3, these states may

be viewed as arising from p+ ip pairing of composite fermions [61] and, accordingly, their edge theories are

described by a free compactified chiral boson and a free Majorana fermion [283]. One might then expect

the computation of the TEE in the MR state to be an uneventful extension of the Abelian case. However,

the choice of the local electron operator, which determines the allowed quasiparticles and provides the origin

of the non-Abelian properties of these phases, glues the bosonic and fermionic sectors of the Hilbert space

together in a non-trival manner. As we will see, the calculation of the EE requires a careful treatment of this

organization of the Hilbert space. Before delving into these calculations, given the length of this Chapter,

we first provide a summary of our results.

7.1.1 Summary of Results

(1) We first demonstrate that the correct ES and TEE is obtained for uniform MR interfaces on a torus

in all topological sectors using the cut-and-glue approach. On a torus, the ground state of each topological

sector, a, is a minimum entropy state [104, 284] and for an entanglement cut splitting the torus into two

2See also Ref. [269] for related considerations and Ref. [270] for a calculation using the bulk Chern-Simons theory.
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cylinders, the TEE in these states is given by

γ = 2 ln(D/da), (7.4)

where da is the quantum dimension of the anyon associated to the a topological sector. For the MR state

at filling ν = 1/n, D =
√

4n, while the allowed anyons have either da = 1 or da =
√

2 [104, 285]. The local

interaction that gaps the interface corresponds to a single-electron backscattering term. This interaction

is given by a sine-Gordon operator coupled to a Majorana mass and simultaneously gaps out the charged,

chiral boson and neutral Majorana sectors. As in Refs. [91, 266], we will take the strong coupling limit and

approximate this interaction to quadratic order in fluctuations of the fields about their vacuum expectation

values. This approximation violates the requirement of electron locality alluded to above and must be

supplemented by a projection into the correct topological sector.

(2) We investigate interfaces of MR states at filling fractions νA = 1/pb2 and νB = 1/pa2, where p, a, b ∈ Z

and we take a and b to be coprime. Although gapped interfaces of non-Abelian states have been studied in the

literature [274–282], a systematic understanding of interactions generating distinct classes of these interfaces

is lacking. So, we use anyon condensation [286, 287] as a guide to deduce when gapped interfaces should

exist and to motivate explicit gapping terms. Interestingly, although we can always gap out an interface

between MR states at fillings νA and νB , we find that when a and b are both odd, a single interaction term

is needed, whereas when one of a and b is even and the other odd, two terms are needed. Moreover, in the

latter case, we find that the gapped interface is most easily constructed using an alternative representation

of the ν = 1/n MR edge CFT which is topologically equivalent to its standard description in terms of a

chiral Majorana and a U(1)n chiral boson. In particular, we will make use of the fact that we can rewrite

the Ising CFT as

Ising =
SO(N + 1)1

SO(N)1
∼ SO(N + 1)1 � SO(N)1,

where Gk denotes a Wess-Zumino-Witten (WZW) theory with Lie group G at level k and the symbol �

indicates a tensor product supplemented by the condensation of a particular set of bosons. The nature of

the equivalence will be explained in more detail later on. This will allow us to express the MR edge in terms

of a chiral boson and multiple chiral and anti-chiral Majorana fermions, which can be used to construct the

appropriate gapping interactions.

(3) Combining the above results, it is then straightforward to compute the TEE for an entanglement cut

along an interface between MR states at fillings νA and νB . In this calculation, we must take into account
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the additional constraints on the ground states imposed by the specific forms of the gapping interactions, in

a manner analogous to that of the calculation for Abelian interfaces [91]. Again working on the torus, we

find the TEE in the vacuum sector to be given by

γ = 2 ln(2
√
pa2b2) (7.5)

for a and b both odd while,

γ = 2 ln(4
√
pa2b2) (7.6)

for one of a and b odd and the other even. Finally, we discuss the connection between these values of the

TEE with the existence of a “parent” topological phase for the two MR states on either side of the interface.

It should be emphasized that ours is not the first work to investigate the EE of non-Abelian systems

through a cut-and-glue type approach. The work of Qi et. al. applies to generic uniform chiral topological

orders (both Abelian and non-Abelian) and demonstrated that the ground state of the coupled edge system

at the interface should be described by so-called Ishibashi states [288,289]. Wen et. al. [290] later showed that

appropriately regularized Ishibashi states furnish the correct entanglement structure for generic chiral phases

and generic bipartitions on manifolds of arbitrary genus (a related, earlier calculation was also performed in

Ref. [291]). Interfaces between distinct non-Abelian and/or Abelian orders have also been considered, where

the interface was conjectured to be described by an appropriately constructed Ishibashi state [292]. Most

recently (and concurrently with the completion of the work presented in this Chapter), Ref. [293] computed,

using the bulk theory, the entanglement entropy for gapped interfaces between distinct non-Abelian Chern-

Simons theories. One of our main contributions is a more microscopic justification of these results, for a

specific set of non-Abelian phases, starting from an explicit effective field theory description of the interface.

The remainder of this Chapter is structured as follows. We begin by reviewing the MR edge theory,

placing special emphasis on the interpretation of the distinct topological sectors in the CFT language in

Section 7.2. Section 7.3 provides a review of the cut-and-glue approach and our handling of the topological

sectors. We proceed to calculate the EE for a uniform MR state in Section 7.4. In Section 7.5 we identify

the two distinct classes of interfaces between MR states at different fillings and write down explicit gapping

terms. The computation of the EE for each of these interfaces is presented in Section 7.6. We provide a

discussion of our results and conclude in Section 7.7. Finally, the appendixes collect some technical details.
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L

Wilson string
flux

Figure 7.1: Moore-Read state on a cylinder with chiral edge states. The insertion of an anyon flux a through
the cylinder (top) is equivalent to nucleating a conjugate anyon pair in the bulk of the cylinder and dragging
them to opposite edges (bottom). The cylinder geometry is homotopic to a sphere with two punctures
(right), which bounds the anyon pair.

7.2 Review of Moore-Read Edge Theory

We begin by reviewing the edge theory for the MR state at filling fraction ν = 1/n [283]. Note that n may

be either even or odd. If n is even, we have a MR state of electrons (i.e. fermions) while, if n is odd, we

have a MR state of bosons. In the following, we will often refer to the local particles comprising the MR

FQH state as electrons, regardless of whether n is even or odd (and hence regardless of whether the local

particles are fermions or bosons).

Now, let us consider a MR state defined on a cylinder with circumference L. Standard arguments imply

that the edges of the cylinder will be described by CFTs of opposite chirality, µ = L,R = +,−, as indicated

in Fig. 7.1. Specifically, as described in the introduction, the edge theory contains both a neutral Majorana

fermion χ sector and a charged U(1) boson φ sector. The two edges are formally described by the Lagrangian

densities

Lµ =
i

2
χµ(∂t − µvn∂x)χµ +

n

4π
∂xφµ(µ∂t − vc∂x)φµ, (7.7)

where vn > 0 and vc > 0 are the velocities of the Majorana and boson, respectively. The Majorana fermion

and the U(1) boson are Hermitian: χ† = χ, φ† = φ. The fields obey the equal-time (anti)commutation
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relations

[φµ(x), ∂yφµ(y)] =
2πiµ

n
δ(x− y) (7.8)

{χµ(x), χµ(y)} = δ(x− y). (7.9)

The bosons are compactified on a circle of radius R = 1 so that φL/R ≡ φL/R+ 2π, and the primary fields in

the U(1) sector are normal-ordered vertex operators eirφµ with integral r. The charge densities on the two

edges are given by ρL/R = ∂xφL/R/(2π). Note that this means the winding numbers of the scalars around

the length of the edges,

Nµ ≡
∫ L

0

∂xφµ(x)

2π
dx =

∫ L

0

ρµ(x)dx, (7.10)

count the total charge carried by the edges (in units of e above the ground state) and so can only take values

in the set of rational numbers, as determined by the charge of the minimal charge anyon.

At the level of the Lagrangian, it would appear that the charge and neutral sectors are decopuled and

hence that the MR edge theory is described by an Ising × U(1)n CFT. This is not the case, as the physical

theory is not fully defined until the electronic (i.e. local) operators are specified. This determines the anyon

content and hence the Hilbert space topological sectors, as all physical excitations must have trivial braiding

statistics with respect to the electron. This constraint of electron locality is ultimately a consequence of

the fact that the bulk topological state is constructed from electrons. In the MR edge theory, the charge e

operators,

ψe,L = χLe
inφL , ψe,R = χRe

−inφR (7.11)

are defined to be electronic operators.

For later use, let us also define the fermion parity operator, (−1)F , which anti-commutes with the

fermions of both edges:

(−1)FχR/L = −χR/L(−1)F . (7.12)

A similar operator for the bosonic sector is given by (−1)NR+NL which, using the commutation relations of
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Eq. (7.8), is seen to have the action

(−1)NR+NLeinφµ = −einφµ(−1)NR+NL . (7.13)

Hence, the combined operator,

G ≡ (−1)F (−1)NR+NL , (7.14)

which measures the relative parity between the fermion number and bosonic winding number (i.e. charge)

of both edges, clearly commutes with the electron operators of both edges.

Having specified the electron operators, we can now enumerate the anyon content of the theory. Explicitly,

the MR theory of the µ = L,R edge carries the following primary fields,

eirφµ , χµe
irφµ , σµe

i(r+1/2)φµ , (7.15)

where r = 1, . . . , n. We can restrict to these values of r, as two excitations are considered equivalent if they

differ by fusion with an electron operator or a bosonic oscillator mode. Here, 1, χ and σ are the primary

fields of the neutral Ising sector, where χ is the Majorana fermion and σ represents the non-Abelian Ising

twist field. They obey the Ising fusion rules,

χ× χ = 1

χ× σ = σ

σ × σ = 1 + χ.

(7.16)

The vertex operators eirφ are charge-carrying Laughlin quasiparticles. In the bulk, the braiding phase

between the fields eir1φ and eir2φ is e2πir1r2/n. In contrast to the Laughlin U(1)n edge theory, the charge e

boson (fermion) einφµ , for n even (odd), is fractional and is not a local excitation. This allows for the existence

of the non-Abelian twist fields σei(r+1/2)φ, which exhibit −1 braiding with respect to the boson/fermion einφ

(from the eiφ/2 factor) and the Majorana fermion χ (from the σ factor), but are local with respect to the

electronic quasiparticles in Eq. (7.11). In the bulk language, σeiφ/2 corresponds to a non-Abelian half vortex,

which traps a Majorana zero-mode (MZM), represented by σ. The MZM flips the boundary condition of

the Majorana fermion at the edge, since it exhibits a braiding phase of −1 with respect to χ. Note that,

although the Ising× U(1)n CFT is described by the same Lagrangian as the MR CFT, its anyon content is

given by a direct product of that of the Ising and U(1)n topological orders, as the “electron operator” is the
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vertex operator einφ: {1, σ, χ} × {eirφ}r=1,...,n.

The quantum dimension da of an anyon a is defined to respect the fusion rules so that dadb =
∑
cN

c
abdc if

a× b =
∑
cN

c
abc. The 2n Abelian anyons eirφ and χeirφ have quantum dimension d = 1 while the remaining

n non-Abelian Ising anyons σei(r+1/2)φ have quantum dimension d =
√

2. The total quantum dimension D

is defined as

D2 =
∑
c

d2
a. (7.17)

For the MR state, D =
√

4n. The conjugate a of an anyon a is the unique anyon type that annihilates a

under fusion a × a = 1 + . . ., i.e. N1
aa = 1. For example, σµei(r+1/2)φµ ' σµe

i(n−r−1/2)φµ . Note that, in

any physical excited state supporting some number of anyons ai, fusing together all the ai’s must yield the

vacuum, since any physical state must ultimately be constructed from electrons.

As noted above, the choice of electron operator glues together the bosonic and fermionic sectors in a non-

trivial way not specified at the level of the Lagrangian. In particular, we must restrict the edge CFT Hilbert

space to states satisfying G = 1 [Eq. (7.14)]. That is, the parity of charge must match the fermion parity

(as measured with respect to the ground state). Physically, this is just the statement that all physical states

must be constructed out of electrons and acting with an electron operator changes the Majorana fermion

parity by the same amount as the winding number parity. Loosely speaking, one may view the invariance

of the electron operators under conjugation by G as reflecting a Z2 gauge symmetry and the constraint

G = 1 as a projection to the gauge-invariant subspace. This rule organizes the states of the theory into

topological sectors, which are in one-to-one correspondence with the fundamental anyon excitations. From

the bulk perspective, these topological sectors are excited states corresponding to the insertion of Wilson

lines connecting the two edges or, equivalently, the process of nucleating of an anyon and its conjugate in

the bulk and dragging them to opposite edges, as shown in Fig. 7.1. (If one glues the edges together to

form a torus as we shall do later, the Wilson line becomes a Wilson loop and the topological sectors now

correspond to degenerate ground states.) In the following, we describe how these distinct sectors manifest

themselves in the edge CFT.

Let us first consider the ground state of the MR theory on the cylinder (which implies there is no flux

through the hole of the cylinder). Clearly, this state has NR = NL = 0 and no fermionic excitations; hence

G = 1 in this state. Acting with the electron operator ψe,L = χLe
inφL on the left edge of the cylinder, we

obtain an excited state which is still, by definition, within the same topological sector. Since ψe,L and G

commute, it immediately follows that the application of the electron operator on the ground state can only
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yield states in which the fermion parity has flipped and the bosonic winding has increased by one. All states

in this topological sector can be obtained by the application of an arbitrary number of electron operators

and ∂xφ operators, the latter of which simply create charge density fluctuations without changing the charge

or fermion parity. Hence, the states in the identity (1) sector are characterized by having their fermion

parity equal to the bosonic winding parity (equivalently, the parity of charge added above the ground state),

individually on each edge. That is to say,

1 sector: (−1)NR/L(−1)FR/L = +1. (7.18)

Here we have defined individual fermion parities for each edge, (−1)FL/R . This is possible because, in the

untwisted sector, the fermions obey anti-periodic boundary conditions and so do not possess zero modes. So,

acting on a state with, say, a right-moving fermion operator cannot change the left-moving fermion parity.

Let us now consider the states within the χ sector. Starting from the ground state, we can supply some

energy to the bulk to nucleate a pair of neutral χ anyons and drag them to opposite edges (see Fig. 7.1).

This defines a state in the χ sector, in which the fermion parity is odd but the bosonic winding is even

(zero). Constructing the remaining states within this topological sector using the χeinφ and ∂xφ operators,

we see that all states within the χ sector have fermion parity opposite to that of the bosonic winding number

parity. In other words,

χ sector: (−1)NR/L(−1)FR/L = −1. (7.19)

Distinct topological sectors can also be obtained by inserting r magnetic flux quanta through the hole of

the cylinder. This is equivalent to nucleating a Laughlin quasiparticle, eirφ, and its conjugate in the bulk

and dragging them to opposite edges. The Majorana fermions, being electrically neutral, are unaffected

by this flux insertion. The winding number parity (−1)NL/R = eiπNL/R becomes fractional in this sector.

The anyon flux, which in low-energy is represented by the vertex combination eirφLeirφR on the two edges,

associates a phase eiπµr/n to the winding number parity because

(−1)NµeirφLeirφR = eiπµr/neirφLeirφR(−1)Nµ , (7.20)

for µ = L,R = +,−. In other words, the electron operators on both edges pick up a phase of e2πir when
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transported around the circumference of the cylinder. It is straightforward to see that this implies

φµ(x+ L) = φµ(x) + 2πNµ ≡ φµ(x) + 2πµ
r

n
modulo 2πZ (7.21)

and so the winding numbers are quantized as

NL = ÑL +
r

n
, NR = ÑR −

r

n
, ÑL/R ∈ Z. (7.22)

Hence, in the eirφ sector, we have

eirφ sector: (−1)NL(−1)FL = [(−1)NR(−1)FR ]∗ = eiπr/n. (7.23)

Likewise, starting in the χ sector, we can insert r magnetic flux quanta in addition to the χ flux to obtain

the χeirφ sectors:

χeirφ sector: (−1)NL(−1)FL = [(−1)NR(−1)FR ]∗ = −eiπr/n. (7.24)

Note that in all of these sectors, we still have G = 1.

Thus far, we have only considered untwisted sectors – that is, topological sectors in which the Majorana

fermions obey anti-periodic boundary conditions. The twisted sectors are obtained by inserting a π flux

through the cylinder to which only the Majoranas are sensitive, flipping their boundary conditions from

anti-periodic to periodic (note that the Majorana fermions, being real, can only see fluxes which are multiples

of π). However, the electron operators, being local objects, cannot have their boundary conditions changed,

which implies we must simultaneously insert a magnetic flux of (an odd integer multiple of) π to which the

chiral bosons are sensitive. This particular flux insertion corresponds precisely to the half-vortex of the bulk

theory, represented by σeiφ/2 (or σei(r+1/2)φ in general, for r ∈ Z) in the CFT.

Now, it is clear that the effect on the chiral bosons is to simply change the quantization of their winding

to

φµ(x+ L) ≡ φµ(x) + 2πµ
r + 1/2

n
, modulo 2πZ, (7.25)

and therefore the winding numbers are quantized as

NL = ÑL +
r + 1/2

n
, NR = ÑR −

r + 1/2

n
, ÑL/R ∈ Z. (7.26)
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The σei(r+1/2)φ flux through the cylinder can be detected by

σei(r+1/2)φ sector: e2πiNL = e−2πiNR = e2πi(r+1/2). (7.27)

The effect on the Majorana fermions, as stated above, is to change their boundary conditions to being

periodic. As a result, each edge possesses a Majorana zero mode (MZM), χL(k = 0) = c0, χR(k = 0) =

c̃0; these must be paired together to form a single, physical complex fermion mode, f = (c0 + ic̃0)/
√

2,

which may be occupied or unoccupied. This is a reflection of the Ising fusion rules of the σ particles, Eq.

(7.16). Note that this means we can no longer define separate fermion parities for the two edges, as the

MZM operator changes the occupancy of this complex fermion mode, {c0, (−1)Nf } = {c̃0, (−1)Nf } = 0 for

(−1)Nf = (−1)f
†f . In the twisted sector, one can construct a physical state for given windings NR/L in

(7.26) by filling up an arbitrary number of finite momentum Majorana fermion states on either edge, and

then choosing the complex fermion zero mode f to be either occupied or unoccupied to satisfy the G = 1

condition.

Altogether, we see that there are 2n untwisted and n twisted sectors, corresponding to the 2n Abelian

and n non-Abelian anyons of the ν = 1
n MR state. The 2n Abelian anyon fluxes eirφ and χeirφ through

the cylinder can be distinguished by the local edge combined parity (−1)Nµ(−1)Fµ , which is identical to a

Wilson loop of anyon type σµe
iφµ/2 around the cylinder. The phases in (7.23) and (7.24) are identical to

the monodromy braiding phases between σµe
iφµ/2 and eirφ, χeirφ

DSσµeiφµ/2,eirφµ = eiπµr/n. (7.28)

As noticed previously, the remaining n non-Abelian fluxes σei(r+1/2)φ through the cylinder cannot be de-

tected by the same local edge combined parities because separate fermion parities for each edge, (−1)Fµ ,

cannot be defined in these twisted sectors. This is consistent with the trivial modular S-matrix entries

Sσeiφ/2,σei(r+1/2)φ = 0. Instead, the twisted sectors can be distinguished by their U(1) sector according to

e2πiNµ , which is identical to a Wilson loop of anyon type eiφµ around the cylinder. The phases in (7.27) are

identical to the monodromy braiding phases between eiφµ and σµe
i(r+1/2)φµ

DSeiφµ ,σei(r+1/2)φµ = e2πiµ(r+1/2)/n. (7.29)

Note that passing from one topological sector to another requires the application of a non-local Wilson line

operator. In our computation of the EE using the cut-and-glue approach, we will thus need to ensure that
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any approximations we make do not mix topological sectors since the “gluing” will be achieved via local

electronic interactions. We describe this calculation and how we handle this subtlety next.

7.3 Cut-and-Glue Approach Review and Topological Sector

Projection

As described in the introduction, our EE calculation is based on the cut-and-glue approach [263] as it is

employed in Refs. [91,266] and which we now review in the context of the MR state. The application of this

methodology to non-Abelian states such as the MR state brings with it new subtleties regarding the careful

treatment of the edge theory’s topological sectors, as noted above. We will discuss these issues below and

describe in detail our approach for addressing them, which is an important new aspect of our work, in Sec.

7.3.1.

Consider a MR state on the torus. We wish to compute the EE associated with the entanglement cut

splitting the torus into two cylinders, with the left and right halves labeled as regions A and B, respectively,

as depicted in Fig. 7.2. The cut-and-glue approach employs the fact that, since the correlation length

of the system is vanishingly small in a topological phase, we can approximate the EE as arising purely

from entanglement between degrees of freedom near the entanglement cut. To that end, we can treat the

entanglement cut as a physical cut and split the torus into two cylinders labeled as A and B. Adding electron

tunneling interactions will gap out the edges and heal the cut. We can then compute the entanglement

between the resulting coupled edge theories. In the case of a torus geometry, we will have two interfaces, as

depicted in Fig. 7.2, which we label as the LA/RB and RA/LB interfaces, or interface 1 and interface 2,

respectively.

The edges at interface 1, before coupling them through a tunneling term, are described by the Hamilto-

nians:

Hdec,1 =

∫ L

0

dx

[
vc
4π

(∂xφRB)2 − vnχRB
i

2
∂xχRB

]
+

∫ L

0

dx

[
vc
4π

(∂xφLA)2 + vnχLA
i

2
∂xχLA

]
.

(7.30)

The Majorana fields have mode expansions

χRB(x) =
1√
L

∑
k

eikxck, χLA(x) =
1√
L

∑
k

eikxdk, (7.31)
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A B

A B

A B

Figure 7.2: (Top) Moore-Read state on a torus. The arrow passing through the x-cycle (i.e. the vertical
cycle) of the torus represents an anyon flux a. The green dashed lines represent an entanglement cut between
regions A and B. In Sections 7.4 and 7.5, we will consider the situation in which regions A and B are occupied
by MR states with equal and unequal, respectively, filling fractions. (Middle) A cartoon of the cut and glue
approach to computing the entanglement entropy. The dotted green lines represent the electron tunneling
terms added to glue the edges together. (Bottom) Same as the middle figure, but with each edge at interfaces
1 and 2 labelled by which mode operators act on them.
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with half-integer quantized momenta in the untwisted sectors, k = 2π
L (j+ 1/2), j ∈ Z, and integer quantized

momenta in the twisted sectors, k = 2π
L j, j ∈ Z. The mode operators satisfy

c†k = c−k, d†k = d−k (7.32)

and obey the anti-commutation relations

{c†k, ck′} = {d†k, dk′} = δk,k′ , {ck, dk′} = 0. (7.33)

The boson fields have mode expansions

φRB = φRB,0 + 2πNRB
x

L
+
∑
k>0

√
2π

nL|k|
(ake

ikx + a†ke
−ikx)

φLA = φLA,0 + 2πNLA
x

L
+
∑
k<0

√
2π

nL|k|
(ake

ikx + a†ke
−ikx)

(7.34)

with integer quantized momenta in all sectors: k = 2π
L j, j ∈ Z/ {0}. The mode operators obey the

commutation relations:

[a†k, ak′ ] = δk,k′ , [ak, ak′ ] = 0, (7.35)

[φRB,0, NRB ] = −[φLA,0, NLA] = − i
n
. (7.36)

The quantization of the winding numbers is determined by the topological sector, as detailed in Section 7.2.

Likewise, before adding any couplings, interface 2 is described by

Hdec,2 =

∫ L

0

dx

[
vc
4π

(∂xφLB)2 − vnχLB
i

2
∂xχLB

]
+

∫ L

0

dx

[
vc
4π

(∂xφRA)2 + vnχRA
i

2
∂xχRA

]
.

(7.37)
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We write the mode expansions of the interface 2 fields as follows:

χLB =
1√
L

∑
k

eikxc̃k, χRA =
1√
L

∑
k

eikxd̃k, (7.38)

φRA = φRA,0 + 2πNRA
x

L
+
∑
k>0

√
2π

nL|k|
(ãke

ikx + ã†ke
−ikx)

φLB = φLB,0 + 2πNLB
x

L
+
∑
k<0

√
2π

nL|k|
(ãke

ikx + ã†ke
−ikx),

(7.39)

where the quantization of the momenta and winding numbers are determined in the same way as for the

interface 1 fields.

Now, the (quasi-)electron operators are given by

ψe,Lα = χLαe
inφLα , ψe,Rα = χRαe

−inφRα . (7.40)

We also define a Z2 symmetry operator for each cylinder:

Gα = (−1)Fα(−1)NLα+NRα , α = A,B, (7.41)

where (−1)Fα is the fermion parity operator on the two edges of cylinder α. Since we have physically split

the torus into two cylinders, we require separately that Gα = 1 for α = A,B. As before, in the untwisted

sectors, we can define separate fermion parities for each edge of either cylinder: (−1)FL/Rα .

We now wish to glue the two edges together to heal the cut. So, we add in the electron tunnelling terms

HAB =

∫ L

0

dx

[
2g

2π

(
ψ†e,LAψe,RB + h.c.

)]
+

∫ L

0

dx

[
2g

2π

(
ψ†e,LBψe,RA + h.c.

)]
=

∫ L

0

dx

[
2g

π
iχLAχRB cos[n(φRB + φLA)]

]
+

∫ L

0

dx

[
2g

π
iχLBχRA cos[n(φRA + φLB)]

]
,

(7.42)

where we take g > 0.3

Our task is to approximate the ground state of

H = Hdec,1 +Hdec,2 +HAB , (7.43)

which requires us to approximate HAB . In the strong coupling limit, the ground state is assumed to give

3Note that this interaction is irrelevant in the renormalization group sense and so need not open up a gap. This can be
remedied by adding in a density-density interaction of the form U∂xφLA∂xφRB . For a range of U , the scaling dimensions of
the scalar fields will be renormalized so as to make the tunnelling term relevant. However, in the interest of simplicity, we will
not include such terms and simply assume g to be large and the edges are gapped out by the interactions.
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rise to individual expectation values of the bosonic operators iχLAχRB and cos[n(φRB + φLA)]. Without

loss of generality, the ground state for g →∞ is represented by the expectation values

〈n(φRB + φLA)〉 = 〈n(φRA + φLB)〉 = π

〈iχLAχRB〉, 〈iχLBχRA〉 > 0 ,

(7.44)

As such, expanding the fields around their classical expectations values yields a harmonic approximation of

the interface interaction

HAB ≈
∫ L

0

dx
[
const.+vng̃iχLAχRB + vng̃iχLBχRA

+
vcλπ

2
(φRB + φLA − π)2 +

vcλπ

2
(φRA + φLB − π)2

] (7.45)

where g̃ = −2g/(vnπ) < 0 and λ > 0. Since we are considering only small fluctuations of φRA + φLB and

φRB +φLA about their pinned values, they cannot have non-zero winding numbers, as this would imply they

vary significantly over the length of the system. We thus have the constraint [266]

NRA +NLB = NLA +NRB = 0, (7.46)

in this strong coupling limit.

The harmonic approximation Eq. (7.45) plays a key role in this work, for it allows us to calculate

the entanglement entropy and spectrum at the interface by analytical means. However, important issues

underlying this approximation need to be accounted for. First, the approximated tunnelling Hamiltonian

violates both the Z2 gauge symmetry gluing the fermionic and bosonic sectors together (as discussed above)

and the U(1) gauge symmetry associated with independent shifts of the bosonic fields4: φL/R → φL/R +

2πPL/R, PL/R ∈ Z. Indeed, under conjugation by GA, we see that iχLAχRB → −iχLAχRB . This in turn

means that the approximated tunnelling Hamiltonian mixes topological sectors. For instance, consider the

identity (1) and χ sectors of the MR theory. Recall that in the former sector, the fermionic parity matches

the bosonic winding number parity on each edge, while these two quantities are opposite in the latter. Now,

it is easy to see that the g̃iχLAχRB term in the approximated interaction will change the fermionic parity

on both edges and so will mix the identity and χ sectors on each half of the torus. The (φRB + φLA − π)2

term also violates the U(1) symmetry associated with the shift symmetry φLA/RB → φLA/RB + cLA/RB and

so, in principle, will also mix bosonic winding number sectors corresponding to distinct topological sectors.

4Note that, when we say the gauge symmetries are violated, we do not mean to imply that a gauge field is being Higgsed.
As we explain, we mean simply that the harmonic approximation of HAB , taken at face value, will mix topological sectors
(that is, it is a non-local expression).
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Hence the ground state of this approximated Hamiltonian cannot describe an approximation of the ground

state of the interface theory in a definite anyon sector.

Our strategy for dealing with the Z2 gauge symmetry violation encoded in Eq. (7.45), is to promote

the theory to an “expanded” Hilbert space in which the gauge symmetries are violated. In this expanded

Hilbert space, the bosonic and fermionic sectors are genuinely decoupled and so we can compute the ground

state of the approximated Hamiltonian using straightforward free field theory methods. Once this is done,

we can project the resulting state into the appropriate topological sector of the gauge-invariant subspace.

Restoring the U(1) gauge symmetry amounts to projecting to states with appropriately quantized bosonic

winding numbers. Restoring the Z2 symmetry means projecting to states obeying the appropriate matching

of the fermion parity and bosonic winding number parity. We describe this in more detail next.

7.3.1 Description of the Projection

Let us denote the exact ground state of the coupled edge system, as described by the Hamiltonian of Eq.

(7.43), in topological sector a as

|ψa〉 = |ψ1,a〉 ⊗ |ψ2,a〉 . (7.47)

Here, |ψ1,a〉 and |ψ2,a〉 are the ground states of interfaces 1 and 2, respectively, in the topological sector a.

Note that, although we can express the ground state as a tensor product of the two interfaces, the ground

states of the interfaces are constrained to lie in the same topological sector. This is a consequence of the

fact that the anyon flux a passing through one interface must necessarily pass through the other interface,

as shown in Fig. 7.2. In particular, this means that we must have GA |ψa〉 = GB |ψa〉 = |ψa〉 – that is to

say, each cylinder must, on its own, lie in the physical MR Hilbert space.

We can write the ground state of the approximated Hamiltonian, given by Eq. (7.43) with the approxi-

mation of HAB by Eq. (7.45), in a similar form

|ψ̂a〉 = |ψ̂1,a〉 ⊗ |ψ̂2,a〉 . (7.48)

(Henceforth, symbols with hats will denote objects in the unprojected Hilbert space.) As emphasized above,

our approximation of the gapping term violates the Z2 gauge symmetry, and so both |ψ̂1,a〉 and |ψ̂2,a〉 will be

superpositions of states from different topological sectors of the MR theory. Nevertheless, we have written

|ψ̂1,a〉 and |ψ̂2,a〉 as having dependence on a because they still retain some information about a through

the boundary conditions of both the bosonic and fermionic fields. For instance, if we are working in one of
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the twisted sectors, our approximation of the interaction term will not change the fact that the Majorana

fermions obey periodic boundary conditions.

In order to obtain a state in a definite topological sector of the MR theory, we consider

|ψa〉 ≈ Pa |ψ̂a〉 ≡ Pa,APa,B |ψ̂a〉 (7.49)

where Pa,α projects cylinder α to the topological sector a, and we have defined Pa ≡ Pa,APa,B . We will show

in Section 7.4 that the projected state Eq. (7.49) correctly describes the universal entanglement properties

of the MR state in each topological sector a (and takes the expected form of an Ishibashi state [263,290]).

For a general topological sector a, the action of the projection is most easily understood when writing

|ψ̂a〉 in terms of a superposition of eigenstates of Nµα and (−1)Fµα , in which case the projection amounts

to removing those states in the sum which do not satisfy the Z2 constraint appropriate to the topological

sector in question. Focusing first on the untwisted sectors, we can, as noted above, define separate fermion

parities for each edge:

(−1)Fα ≡ (−1)FLα(−1)FRα . (7.50)

This permits us to define operators which project each edge to specific topological sectors of the untwisted

sector. Indeed, we can formally write

Pa,α ≡ Pa,LαPa,Rα (7.51)

as the operator which projects cylinder α to the untwisted sector a, where Pa,µα are operators acting on

edges µα. Specialising momentarily to the sector a = eirφ and edge RB, we define Peirφ,RB via its action on

a basis of states for the edge. An arbitrary state on edge RB can be written as a superposition of the states

|NRB , {na,k}k>0, {nc,k}k>0〉 , (7.52)

which are eigenstates of NRB , a†kak, and c†kck with eigenvalues NRB , {na,k}k>0, and {nc,k}k>0, respectively.

We then define

Peirφ,RB |NRB , {na,k}, {nc,k}〉 = |NRB , {na,k}, {nc,k}〉 (7.53)
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if NRB + r
n ∈ Z and (−1)NRB+ r

n+
∑
k nc,k = 1, while

Peirφ,RB |NRB , {na,k}, {nc,k}〉 = 0 (7.54)

otherwise. The first condition enforces that the winding number obey the appropriate quantization for the

a = eirφ sector on edge RB, Eq. (7.22), while the second condition ensures that the Z2 constraint for sector

a = eirφ, Eq. (7.23), is satisfied. In physical terms, this operator ensures that the correct magnetic flux

is threaded through the circle defined by the edge and that the fermion parity matches the integer part of

bosonic winding on this edge. We similarly define for edge LB

Peirφ,LB |NLB , {nã,k}, {nc̃,k}〉 = |NLB , {nã,k}, {nc̃,k}〉 (7.55)

if NLB − r
n ∈ Z and (−1)NLB−

r
n+

∑
k nc̃,k = 1, while

Peirφ,LB |NLB , {nã,k}, {nc̃,k}〉 = 0 (7.56)

otherwise. The operators Peirφ,µA are defined in an analogous manner. Likewise, the Pχeirφ,σα operators are

defined in a similar way, but by instead enforcing the Z2 constraint of Eq. (7.24) on each edge.

As for the twisted sectors, since we cannot define separate fermion parities for each edge, we cannot write

down a projection operator as a product of operators acting on the two edges of the cylinder. Let us first

consider cylinder B. We define a complex fermion from the Majorana zero modes of each edge (recall that

the Majorana fermions obey periodic boundary conditions in the twisted sectors),

fB =
1√
2

(c0 + ic̃0), (7.57)

which explicitly ties together the µ = L,R Hilbert spaces of the cylinder. An arbitrary state on cylinder B

can then be written as a superposition of states of the form

|NRB , {na,k}k>0, {nc,k}k>0〉 ⊗ |NLB , {nã,k}k<0, {nc̃,k}k<0〉 ⊗ |nB〉 (7.58)

which are eigenstates ofNR/L,B , a†kak, ã†kãk, c†kck, c̃†k c̃k, f†BfB with eigenvalues, NR/L,B , {na,k}k 6=0, {nc,k}k>0,

{nc̃,k}k<0, and nB respectively. We then define the operator Pa,B , which projects cylinder B to the twisted
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topological sector a = σei(r+1/2)φ, via its action on these states:

Pσei(r+1/2)φ,B |NµB , {na/ã,k, nc/c̃,k}, nB〉 = |NµB , {na/ã,k, nc/c̃,k}, nB〉 (7.59)

if NµB + µ rn ∈ Z and (−1)
∑
µNµB+

∑
k(nc,k+nc̃,−k)+nB = 1, while

Pσei(r+1/2)φ,B |NµB , {na/ã,k, nc/c̃,k}, nB〉 = 0 (7.60)

otherwise. Again, the first constraint ensures that the bosonic winding numbers satisfy the quantization of

Eq. (7.26) while the second condition enforces the Z2 constraint GB = 1. Physically, Pσei(r+1/2,φ),B ensures

the correct magnetic flux passes through the cylinder and that the total fermion parity across both edges

matches the total bosonic winding of the two edges. An analogous operator, Pσei(r+1/2)φ,A, for cylinder A can

be defined, after forming a complex fermion, fA, defined from the Majorana zero modes of the two edges:

fA =
1√
2

(d0 + id̃0). (7.61)

One can write down explicit expressions for the projection operators defined above but, for our purposes,

the above operational definitions will prove more convenient. We also note that there is a bit of an ambiguity

in defining the projection operators for the twisted sectors in that there is a choice as to whether one defines

an occupied fA/B state as corresponding to odd or even fermion parity. We will return to this point in

Section 7.4.2, when we calculate the EE in the twisted sectors, and in Appendix E.2.2, where we present

explicit expressions for the twisted sector ground states.

7.4 Uniform Interface Entanglement Entropy

We are now prepared to move on to the actual computation of the ES and EE of the MR states. We first

recall that, for an entanglement cut of the torus of the type we are considering (Fig. 7.2), the TEE in the

ground state of topological sector a is given by

γa = 2 ln(D/da), (7.62)

where D is again the total quantum dimension and da is the quantum dimension of the anyon a. These

states (on the torus) are known as minimum entropy states, as they maximize the TEE within the space of

degenerate ground states [104, 284]. As noted in Section 7.2, a MR state at filling ν = 1/n has D = 2
√
n,
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the Abelian anyons eirφ and χeirφ all have da = 1, and the non-Abelian anyons σei(r+1/2)φ have da =
√

2.

Hence, in the untwisted sectors, we expect to find the TEE

γa = 2 ln 2
√
n, a = eirφ, χeirφ, (7.63)

while in the twisted sectors we expect

γa = 2 ln
√

2n, a = σei(r+1/2)φ . (7.64)

We can glean some intuition for these results by contrasting them with the TEE for the Abelian system

consisting of a p + ip superconductor stacked with (and decoupled from) a ν = 1
n Laughlin state. Such a

state has D =
√
n and an edge is also described by Eq. (7.7), but with local (electronic) operators given

by χ and einφ. The TEE in, for instance, the trivial sector on the torus of this theory is thus γ1 = 2 ln
√
n,

in contrast to γ1 = 2 ln 2
√
n for the MR state. As we will see explicitly, the factor of two difference in the

argument of the logarithm arises precisely from the the projection discussed in Section 7.3.1. Indeed, when

writing the approximated ground state |ψ̂a〉, as a superposition of states with definite bosonic winding and

fermion occupation numbers, we will find that the projection to the physical MR Hilbert space, Eq. (7.49),

will remove exactly half of the states appearing in the superposition. This increases the TEE by ln 2 + ln 2,

with each interface contributing a single ln 2.

A heuristic understanding of the difference between the TEEs of the untwisted and twisted sectors follows

from the fact that a cylinder with a σei(r+1/2) flux traps a MZM at each edge. Gluing two cylinders together

to form a torus, as we do, hybridizes the MZMs on the edges. On tracing out one cylinder to compute the

EE, one is, loosely speaking, tracing out half of a qubit for each pair of edges, giving a contribution of 2 ln
√

2

to the EE.

In the following subsections, we proceed to compute the entanglement spectrum and TEE of the ground

state of the MR theory for the Abelian and non-Abelian topological sectors. We will compute the ground

state for the interface 1 explicitly; the calculations for interface 2 are identical.

7.4.1 Abelian (Untwisted) Sectors

We begin by considering a MR state on a torus in one of the untwisted topological sectors: eirφ, χeirφ. The

Majorana fields satisfy anti-periodic boundary conditions while the bosons obey the boundary conditions

of Eq. (7.21) and hence the winding numbers are quantized as in Eq. (7.22). Now, using the field mode

expansions, the full approximated Hamiltonian describing interface 1 decouples into fermionic and bosonic
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terms:

H1 ≡ Hosc
1,f +Hosc

1,b +Hzero
1,b . (7.65)

The bosonic zero mode Hamiltonian is given by

Hzero
1,b =

πvcn

2L
(NRB −NLA)2 +

πλvcL

2
(φRB,0 + φLA,0)2, (7.66)

where we have made use of the constraint of Eq. (7.46). The bosonic oscillator part takes the form

Hosc
1,b =

vc
2

∑
k 6=0

(a†k a−k)

Ak Bk

Bk Ak


 ak

a†−k

 , (7.67)

where

Ak = |k|+ 2λπ2

n|k|
, Bk =

2λπ2

n|k|
. (7.68)

Lastly, the fermion oscillator modes are governed by the Hamiltonian

Hosc
1,f = vn

∑
k>0

(c†k d−k)

k −ig̃

ig̃ −k


 ck

d†−k

 . (7.69)

Since, within our harmonic approximation, the bosons and fermions decouple, we can compute the ground

state of these two sectors separately. However, as emphasized above, this decoupling is a manifestation of

the violation of the Z2 gauge symmetry by our approximation. As discussed in Section 7.3.1, we will have

to perform a projection to obtain a state in a definite untwisted topological sector. Having done so, it will

then be straightforward to obtain the reduced density matrix for subregion B, as the projected ground state

will take a simple Schmidt decomposed form.

Bosonic Sector Ground State

In the expanded Hilbert space, the computation of the ground state in the bosonic sector is identical to the

calculation carried out by Lundgren et. al. [266] for the Laughlin states at filling ν = 1/n. For completeness,

we briefly review the calculation here.
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Starting with the oscillator sector, we can diagonalize Eq. (7.67) via a Bogoliubov transformation,

 ak

a†−k

 =

cosh θk sinh θk

sinh θk cosh θk


 bk

b†−k

 , (7.70)

where cosh(2θk) = Ak/εk, sinh(2θk) = −Bk/εk, and εk =
√
|k|2 + 4λπ2/n. With these definitions, we can

write Hosc
1,b = vc

∑
k 6=0 εk(b†kbk + 1

2 ), so that the ground state is defined by bk |Gb,osc,1〉 = 0. It is readily

checked that the ground state is given by the coherent state

|Gb,osc,1〉 = exp

(∑
k>0

e−uk/2a†ka
†
−k

)
|0〉 , (7.71)

where uk = ln coth2(2θk) and |0〉 is the ground state of the decoupled system, satisfying ak |0〉 = 0 for all

k 6= 0. For |k| � λ,

uk ≈
2

π

√
n

λ
k ≡ vek, (7.72)

where we have defined the entanglement velocity ve = 2
π

√
n
λ .

As for the zero-mode sector, on defining X = n(NRB−NLA)/2 and P = φLA,0 +φRB,0 so that [X,P ] = i,

we see that Eq. (7.66) describes a simple harmonic oscillator. In the L → ∞ limit, we can ignore the

discretization of X and simply write down the ground state:

|Gb,zero,1〉 =
∑

N∈Z− r
n

e−veπnN
2/2L |NRB = N,NLA = −N〉 , (7.73)

where we have again made use of the constraint NRB + NLA = 0 [Eq. Eq. (7.46)] and enforced the

quantization of the winding numbers given in Eq. (7.21).

Majorana Sector Ground State

Turning next to the Majorana fermions, we can perform a unitary transformation to diagonalize Eq. (7.69).

We define γk = cosϕkck+ i sinϕkd
†
−k, where sinϕk = g̃/λk, cosϕk = k/λk, and λk =

√
k2 + g̃2. The Hamil-

tonian, in this basis, becomes Hosc
1,f = vn

∑
k 6=0 λk(γ†kγk−

1
2 ). The ground state is defined by γk |Gf,osc,1〉 = 0.

Explicitly, we can write the ground state of Hosc
1,f in BCS form:

|Gf,osc,1〉 = exp

(∑
k>0

ie−wk/2d†−kc
†
k

)
|0〉 , (7.74)
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where we have defined wk through e−wk/2 = − tanϕk (recalling that g̃ < 0) and |0〉 is the ground state of

the decoupled system, satisfying ck |0〉 = d−k |0〉 = 0 for all k > 0. For |k| � g̃, we have that

wk ≈
2k

|g̃|
≡ ṽek, (7.75)

where we have defined ṽe = 2/|g̃|.

Projecting to the Physical Hilbert Space

We can now construct the full ground state of the coupled edge system in the expanded Hilbert space by

combining the above results with the analogous results for interface 2 (i.e. the RA/LB interface). Explicitly,

|ψ̂a〉 = |ψ̂1,a〉 ⊗ |ψ̂2,a〉 ,

|ψ̂i,a〉 = |Gb,zero,i〉 ⊗ |Gb,osc,i〉 ⊗ |Gf,osc,i〉 , i = 1, 2

(7.76)

where,

|Gb,zero,2〉 =
∑

N∈Z− r
n

e−
veπnN

2

2L |NLB = −N,NRA = N〉 , (7.77)

|Gb,osc,2〉 = exp

(∑
k>0

e−vek/2ã†kã
†
−k

)
|0〉 , (7.78)

|Gf,osc,2〉 = exp

(∑
k>0

ie−ṽek/2c̃†−kd̃
†
k

)
|0〉 . (7.79)

Note that in the expressions for the oscillator sector ground states, we have taken the low-energy limit

by expanding uk and wk to linear order in k. This is because the correspondence between the entangle-

ment spectrum and the physical edge CFT spectrum only holds for the low lying entanglement spectrum

eigenvalues.

In order to obtain an approximation to the true ground state |ψa〉 (a = eirφ or χeirφ), we must apply

the projection operator Pa ≡ Pa,APa,B defined in Eq. (7.49). Now, since |ψ̂a〉 is a superposition of states

with winding number and fermion parity eigenvalues satisfying NRB = −NLA and (−1)FRB = (−1)FLA as

well as NLB = −NRA and (−1)FLB = (−1)FRA , it is straightforward to see that

|ψa〉 = Pa |ψ̂a〉 = Pa,A |ψ̂a〉 = Pa,B |ψ̂a〉 . (7.80)

In more physical terms, this expresses the fact that the electron tunneling term enforces that the two cylinders
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reside in the same topological sector.

The explicit form of |ψa〉 = Pa,B |ψ̂a〉 is rather cumbersome, and so we leave it for Appendix E.2.1.

However, on expanding out the exponentials in |Gb,osc,1/2〉 and |Gf,osc,1/2〉, it is not too difficult to see that

|ψa〉 = Pa,B |ψ̂a〉 is in a Schmidt decomposed form. Indeed, we have that

|ψ1,a〉 = e−H
RB
e /2

∑
NRB ,

{na,k,nc,k}

i
∑
k nc,kPa,RB

[
|NRB = −NLA〉 ⊗ |{na,k = na,−k, nc,k = nd,−k}k>0〉

]
, (7.81)

|ψ2,a〉 = e−H
LB
e /2

∑
NLB ,

{nã,k,nc̃,k}

i
∑
k nc̃,kPa,LB

[
|NLB = −NRA〉 ⊗ |{nã,−k = nã,k, nc̃,−k = nd̃,k}k>0〉

]
(7.82)

where,

HRBe =ve

(
πn

L
N2
RB +

∑
k>0

ka†kak −
π

12L

)
+ ṽe

(∑
k>0

kc†kck −
π

24L

)
(7.83)

and

HLBe =ve

(
πn

L
N2
LB +

∑
k<0

|k|ã†kãk −
π

12L

)
+ ṽe

(∑
k<0

|k|c̃†k c̃k −
π

24L

)
. (7.84)

Note that we have multipled |ψa,i〉 by unimportant overall constants, e−veπ/24L and e−ṽeπ/48L, for later

convenience. For readers familiar with boundary CFT methods, it should hopefully be clear that |ψ1/2,a〉

are essentially regularized Ishibashi states for the a topological sectors of the MR CFT [263, 290] (up to

unimportant relative phases). In other words, |ψa〉 = |ψ1,a〉 ⊗ |ψ2,a〉 is a superposition of all states in the a

topological sector, regulated by the operator exp[−(HLBe +HRBe )/2]. We can thus deduce that the reduced

density matrix for, say, cylinder B is given by

ρa,B = TrA [|ψa〉 〈ψa|] =
1

Za,e
Pa,Be

−HRBe −H
LB
e Pa,B , (7.85)

So, the form of the entanglement Hamiltonian precisely matches that of the physical edge Hamiltonian in

the topological sector a, as expected. The projection operator Pa,B ensures the reduced density matrix only

acts on states within the topological sector a of the physical Hilbert space.
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Entanglement Spectrum and Entropy

At this point in the calculation, we are actually done. Indeed, we have argued that the entanglement spectrum

exactly matches the physical edge CFT spectrum (taking into account the projection into the appropriate

topological sector), and so we will necessarily obtain the correct TEE. Nevertheless, for completeness, we

will show explicitly that we obtain the correct TEE for the eirφ sectors.

Introducing the fictitious inverse temperature β = 1/T , we wish to compute

Zeirφ,e = TrB

[
Peirφ,Be

−β(HRBe +HLBe )Peirφ,B

]
= ZRBeirφ,eZ

LB
eirφ,e

(7.86)

where we have defined5

ZRBeirφ,e = TrRB

[
Peirφ,RBe

−βHRBe Peirφ,RB

]
, (7.87)

ZLBeirφ,e = TrLB

[
Peirφ,LBe

−βHLBe Peirφ,LB

]
. (7.88)

In the following, we will focus on the computation of ZRBeirφ,e, as the calculation of ZLBeirφ,e is virtually identical.

First, we define the modular parameters

τ = iτ2 = i
βve
L
, τ̃ = iτ̃2 = i

βṽe
L

(7.89)

and the variables

q = e2πiτ , q̃ = e2πiτ̃ . (7.90)

We compute the trace using eigenstates of NRB , a†kak, and c†kck. Keeping in mind that that the role of the

projection operator Peirφ,RB is to exclude those states which do not satisfy the constraint of Eq. (7.23), we

compute the entanglement partition function to be

ZRBeirφ,e =
1

2
χIsing

0 (q̃)[χ+
r/n(q) + χ−r/n(q)] +

1

2
χIsing

1/2 (q̃)[χ+
r/n(q)− χ−r/n(q)], (7.91)

5We emphasize that the trace is taken over all states in the physical MR Hilbert space on cylinder B. In particular, this
means that we cannot, in general, separate the trace into separate traces over the edges RB and LB, since the states appearing
in the trace must lie in a definite topological sector. However, the presence of the Peirφ,µB operators within the trace ensures

that only states on edge µB satisfying the winding number quantization of Eq. (7.22) contribute, ensuring we do not mix
topological sectors. So, in this case, we are justified in splitting the trace over B into two traces over its two edges.
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where, employing the notation of Ref. [283], we have defined

χIsing
0 (q̃) =

1

2
q̃−

1
48

 ∞∏
j=0

(1 + q̃j+1/2) +

∞∏
j=0

(1− q̃j+1/2)

 (7.92)

χIsing
1/2 (q̃) =

1

2
q̃−

1
48

 ∞∏
j=0

(1 + q̃j+1/2)−
∞∏
j=0

(1− q̃j+1/2)

 (7.93)

and

χ±r/n(q) = q−
1
24

(∑
N∈Z

(±1)Nqn(N− r
n )2/2

) ∞∏
j=1

(
1− qj

)−1
. (7.94)

Let us take a moment to unpack these expressions. The terms χIsing
0 (q̃) and χIsing

1/2 (q̃) are the contributions

from the fermionic sector. Focusing first on χIsing
0 (q̃), we note that the first product appearing within the

square brackets is simply the partition function for a free Majorana fermion with momenta quantized as

k = 2π(j + 1/2)/L. The second product is the partition function for a free Majorana, but with each

state weighted by its fermion parity, (−1)F . So, when these two products are added together, all terms

corresponding to a state with an odd number of excited Majorana oscillator modes will cancel out. In other

words, χIsing
0 (q̃) is the partition function for a free Majorana, with the trace restricted to states with an

even fermion parity, (−1)F = +1. Likewise, χIsing
1/2 (q̃) is the partition function for a free Majorana, with the

trace restricted to states with an odd fermion parity, (−1)F = −1. In more formal terms, χIsing
0,1/2(q̃) are the

characters of the 1 and χ sectors of the Ising CFT, respectively. Similarly, χ+
r/n(q) are the characters for

a U(1)n boson in the eirφ sector. In particular, the term in large rounded brackets in Eq. (7.94) results

from the trace over the winding number sector, while the product outside the brackets results from the

trace over the oscillator modes. The term χ−r/n(q) is the character for a U(1)n boson in the eirφ sector,

but with each term in the trace weighted by the parity of the integer part of its winding number, (−1)N .

Hence, χ+
r/n(q)± χ−r/n(q) correspond to the partition functions for U(1)n bosons in the eirφ sector with the

trace over the winding numbers restricted to states with the integer part of the winding being even and odd,

respectively. Altogether, the first (second) line of Eq. (7.91) corresponds to a trace of e−H
RB
e over states with

even (odd) fermion number and an even (odd) integer part of the bosonic winding number. This accounts

for all states in the eirφ topological sector. So, the entanglement partition function of the right-movers of

the MR theory in the eirφ sector is indeed given by Eq. (7.91).
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Now, we can write Eq. (7.91) in terms of the Dedekind η and Jacobi θ functions (see Appendix E.1):

ZRBeirφ,e =
1

4

√θ0
0(τ̃)

η(τ̃)
+

√
θ0

1/2(τ̃)

η(τ̃)

 θ−r/m0 (nτ) + e−
iπr
m θ
−r/m
1/2 (nτ)

η(τ)

+
1

4

√θ0
0(τ̃)

η(τ̃)
−

√
θ0

1/2(τ̃)

η(τ̃)

 θ−r/m0 (nτ)− e− iπrm θ
−r/m
1/2 (nτ)

η(τ)
.

(7.95)

Using the modular transformation properties of the η and θ functions given in Eqs. (E.4) and (E.7), as well

as their asymptotic behaviour in the limit L→∞ as given in Eqs. (E.11) and (E.12), we find

lim
L→∞

ZRBeirφ,e →
1

2
√
n
e
πL
12β ( 1

ve
+ 1

2ṽe
). (7.96)

Essentially identical calculations yield ZRBeirφ,e = ZLBeirφ,e in this limit. Hence,

Seirφ =
∂[T lnZeirφ,e]

∂T

∣∣∣∣
T=1

= −2 ln(2
√
n) +

πL

3

(
1

ve
+

1

2ṽe

)
, (7.97)

and so we obtain the expected TEE [see Eq. (7.63)].

7.4.2 Non-Abelian (Twisted) Sectors

Next we turn to the twisted sectors, corresponding to the insertion of a σe(r+1/2)φ anyon flux through the

torus. The mode expansions of the fields have the same form as that in Eq. (7.31) and Eq. (7.34), except

that the quantization of the quantum numbers has changed. The Majorana fields are now periodic and so

have integer-quantized momenta k = 2π
L j, j ∈ Z. As for the bosons, the momenta will still be quantized as

k = 2πj
L , j ∈ Z. The winding numbers, however, now obey the quantization of Eq. (7.26).

Let us again first focus on interface 1. The full approximate Hamiltonian takes the form

H1 ≡ Hosc
1,f +Hzero

1,f +Hosc
1,b +Hzero

1,b . (7.98)

Here, Hosc
1,f , Hosc

1,b , and Hzero
1,b are again given by Eqs. (7.66)-(7.69), with appropriate changes to the quanti-

zation of the momenta and winding numbers. The new addition is a contribution from the Majorana zero

modes

Hzero
1,f = ig̃d0c0. (7.99)
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We now proceed to derive the reduced density matrices for each sector, following the same methodology as

was employed for the untwisted sectors.

Bosonic Sector Ground State

Aside from the change in the quantization of the winding modes, the calculation of the bosonic sector ground

state proceeds as before. Hence, we can immediately write the zero mode ground state as

|Gb,zero,1〉 =
∑

N∈Z− r+1/2
n

e−
veπnN

2

2L |NRB = N,NLA = −N〉 , (7.100)

with the only change being the quantization of NRB . Similarly, the oscillator mode ground state is again

given by Eq. (7.71).

Majorana Sector Ground State

Likewise, the ground state for the Majorana oscillator mode sector is again given by Eq. (7.74), where now

k = 2π
L j, j ∈ Z. The new aspect of the calculation in the twisted sector is the presence of the Majorana zero

modes. Constructing complex fermion operators as

f =
1√
2

(c0 + id0), f̃ =
1√
2

(d̃0 + ic̃0) (7.101)

the Hamiltonian describing the zero modes of interfaces 1 and 2 can be expressed as

Hzero
1,f +Hzero

2,f = ig̃d0c0 + ig̃c̃0d̃0 = −g̃(f†f + f̃†f̃ − 1) (7.102)

where g̃ < 0. Now, a complete basis for the zero-mode Hilbert space is given by |n, ñ〉 where n (ñ) denotes

the occupation of the f (f̃) fermion. The ground state is then given by |Gf,zero〉 = |0, 0̃〉.

We can also form a different pair of complex fermions from the above Majorana zero modes, localized in

the two halves of the torus, as defined in Eq. (7.57) and Eq. (7.61):

fA =
1√
2

(d0 + id̃0), fB =
1√
2

(c0 + ic̃0).

Calculating the reduced density matrix for cylinder B will require us to trace out the fA degree of freedom

from the state |0, 0̃〉, and so we must express |Gf,zero〉 in terms of the basis states |nA, nB〉, where nA/B
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denotes the occupation of the fA/B fermion:

|Gf,zero〉 =
1√
2

(|0A, 0B〉+ i |1A, 1B〉). (7.103)

Projecting to the Physical Hilbert Space

Putting everything together, we can write the ground state of the approximated Hamiltonian, Eq. (7.98),

as

|ψ̂a〉 = |Gb,osc,1〉 ⊗ |Gb,zero,1〉 ⊗ |Gf,osc,1〉

⊗ |Gb,osc,2〉 ⊗ |Gb,zero,2〉 ⊗ |Gf,osc,2〉 ⊗ |Gf,zero〉
(7.104)

where the explicit forms of |Gb,zero,1〉, |Gb,osc,1〉, |Gf,osc,1〉, and |Gf,zero〉 are given above, while

|Gb,zero,2〉 =
∑

N∈Z− r+1/2
n

e−
veπnN

2

2L |NLB = −N,NRA = N〉 , (7.105)

|Gb,osc,2〉 is again given by Eq. (7.78), and |Gf,osc,2〉 is given by Eq. (7.79) with k = 2π
L j, j ∈ Z.

We now obtain an approximation to the physical ground state, |ψa〉, through the projection Pa =

Pa,APa,B defined in Section 7.3.1, with a = σei(r+1/2)φ. As in the untwisted sector problem, it suffices to

apply only one of the projection operators acting on one of the cylinders, say, Pa,B , due to the form of |ψ̂a〉.

Indeed, from its explicit form, we see that every state appearing in |ψ̂a〉 has (−1)NRB+NLB = (−1)NRA+NLA

and (−1)FB = (−1)FA . Hence, following the same reasoning given in the untwisted sector calculation, we

have that

|ψa〉 = Pa |ψ̂a〉 = Pa,APa,B |ψ̂a〉 = Pa,B |ψ̂a〉 (7.106)

Again, we reserve the explicit form of |ψa〉 for Appendix E.2.2. We also discuss, in Appendix E.2.2, an

important subtlety regarding the definition of the fermion parity of the complex fermion zero mode. Now, as

we did in the untwisted sector problem, we can make use of the fact that |ψa〉 = Pa |ψ̂a〉 = Pa,B |ψ̂a〉 is in a

Schmidt decomposed form to deduce the form of the reduced density matrix for, say, cylinder B. Explicitly,

ρa,B =
1

Zσei(r+1/2)φ,e

Pa,Bρzero,Be
−HRBe −H

LB
e Pa,B , (7.107)
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where,

HRBe =ve

(
πn

L
N2
RB +

∑
k>0

ka†kak −
π

12L

)
+ ṽe

(∑
k>0

kc†kck +
π

12L

)
, (7.108)

HLBe =ve

(
πn

L
N2
LB +

∑
k<0

|k|ã†kãk −
π

12L

)
+ ṽe

(∑
k<0

|k|c̃†k c̃k +
π

12L

)
, (7.109)

ρzero,B = |0B〉 〈0B |+ |1B〉 〈1B | . (7.110)

We have again shifted the entanglement spectrum by a constant for convenience.

Entanglement Spectrum and Entropy

Now, introducing the fictitious inverse temperature β = 1/T , we wish to compute (for a = σei(r+1/2)φ)

Za,e = TrB

[
Pa,Bρzero,Be

−β(HRBe +HLBe )Pa,B

]
. (7.111)

When computing the trace, the presence of the Pa,B projection operators requires that we only sum over

states in the a = σei(r+1/2)φ sector. Now, consider a state |β〉 which obeys the correct quantization of

winding numbers for the σei(r+1/2)φ sector, but has a fermion parity such that (−1)FB 6= (−1)NRB+NLB ,

implying it does not lie in the physical MR Hilbert space and so will not contribute to the trace. It follows

that by applying either fB or f†B (recall that these are the zero-mode operators on cylinder B) to |β〉 will

yield a state that does satisfy the parity selection rule (−1)FB = (−1)NRB+NLB . Moreover, whichever of

fB |β〉 or f†B |β〉 is non-zero will have the same eigenvalue as |β〉 under ρzero,Be
−β(HRBe +HLBe ), since ρzero,B is

simply the identity operator in the zero-mode sector. It is then not too difficult to see that we obtain

Zσei(r+1/2)φ,e = ZRBσei(r+1/2)φ,eZ
LB
σei(r+1/2)φ,e (7.112)

where, focusing on edge RB and recalling the definitions of Eq. (7.90),

ZRBσei(r+1/2)φ,e = χIsing
1/16 (q̃)χ+

(r+1/2)/n(q). (7.113)
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Here,

χIsing
1/16 (q̃) = q̃

1
24

∞∏
j=1

(1 + q̃j) (7.114)

results from the trace over the (anti-periodic) Majorana oscillator modes and is the character of the Ising

CFT in the twisted sector. The quantity χ+
m(q) was defined in Eq. (7.94). It should be emphasized that the

entanglement partition function can be expressed as a product of traces over edges RB and LB because the

the Majorana zero modes have been traced over; the Hilbert spaces of edges RB and LB are not genuinely

decoupled.

This expression for the entanglement partition function matches the character of the appropriate topo-

logical sector in the MR CFT [283], and so it follows immediately that we will obtain the correct EE. Indeed,

as usual, we can express the entanglement partition function in terms of modular functions:

ZRBσei(r+1/2)φ,e =

√
θ

1/2
0 (τ̃)

2η(τ̃)

θ
−(r+1/2)/n
0 (nτ)

η(τ)
. (7.115)

Making use of the modular transformation and asymptotic properties of the θ and η functions (see Appendix

E.1), we obtain, in the L→∞ limit,

lim
L→∞

ZRBσei(r+1/2)φ,e ≈
1√
2n
e

π
24τ̃2 e

π
12τ2 . (7.116)

One finds that ZLB
σei(r+1/2)φ,e

is given by the same expression in this limit. So,

Sσei(r+1/2)φ = lim
L→∞

∂[T lnZσei(r+1/2)φ,e(β)]

∂T

∣∣∣∣
T=1

= −2 ln(
√

2n) +
πL

3

(
1

ve
+

1

2ṽe

)
, (7.117)

as required [see Eq. (7.64)].

7.5 Non-Uniform Moore-Read Gapped Interfaces

Thus far, we have demonstrated that the cut-and-glue approach can be extended to the computation of the

EE in all topological sectors of the MR theory. However, the utility of this approach is that it may be used to

compute the EE for an entanglement cut lying along the interface between two different topological phases.

This was demonstrated for interfaces of arbitrary Abelian phases in Ref. [91]. The focus of the remainder of

this Chapter is to conduct a similar analysis of interfaces of MR states at different filling fractions.
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As a prerequisite to computing the EE for non-uniform interfaces, it is necessary to first deduce which

pairs of MR states actually admit gapped interfaces and what interaction terms can generate such a gap.

The corresponding question for arbitrary Abelian states has been studied in great detail [85–87, 294]. It

is now well established that an interface between Abelian topological orders A and B can be gapped if

and only if (i) A and B have identical chiral central charge c(A) = c(B), which is related to the thermal

Hall conductance [295–297] by κ = dIenergy/dT = c
π2k2B

3h T , and (ii) the topological order A× B (where the

overbar indicates time-reversal) possesses a Lagrangian subgroup, a maximal set of mutually local bosons

which, when condensed, confine all other anyons. Such subgroups, when they exist, are related to the so-

called null vectors [298], which label sine-Gordon interactions corresponding to tunneling of integer numbers

of electrons.

Interfaces of non-Abelian states have also been studied intensively [274–282], although many open ques-

tions still remain. Indeed, in contrast to Abelian edge theories, which are described by multi-component

Luttinger liquids [14], non-Abelian edge theories are described by generic CFTs [1], whose primary fields

need not have free-field representations. As such, a comprehensive approach to classifying gapped interfaces

via explicit gapping interactions seems difficult to develop (although specific examples have been considered

before, such as those in Ref. [299]). Our goal in this section is to use anyon condensation, which we will

briefly review, to understand when interfaces between MR states can be gapped, and then to use this picture

to propose explicit gapping interactions.

7.5.1 Anyon Condensation Picture of Gapped Interfaces

Suppose we wish to determine whether one can form a gapped interface between topological phases A and

B, assuming they have identical chiral central charges. This is equivalent to asking whether one can gap

out an interface between the phase A× B and the vacuum by the folding trick [80, 287]. In the case where

A and B are both Abelian, the necessary and sufficient criterion for the existence of such an interface is

the existence of a Lagrangian subgroup, L ⊂ A × B. If A × B is a bosonic topological order (i.e. the local

“electron” operators have bosonic statistics), then a Lagrangian subgroup is a set of anyons defined by the

requirements that (1) for all a ∈ L, eiθa = 1, where θa is the spin of a, (2) for all a, b ∈ L, eiθa,b = 1, where

θa,b is the braiding phase between a and b, and (3) for any b /∈ L, there exists some a ∈ L such that eiθa,b 6= 1.

Now, in the anyon condensation picture of Bais and Slingerland [286], if one condenses all anyons in L, all

other anyons in the theory will become confined. If A× B is fermionic, then condition (1) is relaxed to the

constraint eiθa = ±1 – that is, the anyons in L can have bosonic or fermionic self-statistics. This is because

a fermionic anyon a ∈ L can be fused with a local fermion (an electron) to obtain a bosonic quasiparticle
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which can be condensed. In either case, A× B can be reduced to the vacuum or a trivial state without the

closing of a gap, implying the existence of a gapped interface between A and B.

It is believed that a similar anyon condensation criterion can be used to identify gapped interfaces of

non-Abelian states [279,280]. In this case, the picture is a bit more subtle as non-Abelian anyons may “split”

under condensation, and so the maximal set of condensable anyons may not be closed under fusion. For

this reason, we will call such a set of anyons a Lagrangian subset, as opposed to a subgroup. Although, to

the best of our knowledge, there is no rigorous proof of connection between the existence of a Lagrangian

subset and the gappability of a non-Abelian interface, we can use this picture as motivation for writing down

explicit gapping terms for the Moore-Read states. After first reviewing gapped Laughlin interfaces, this will

be the next order of business.

Review of Laughlin Interfaces

Let us consider an interface between Laughlin states at fillings ν1 = 1/k1 and ν2 = 1/k2, as studied in

Ref. [81]. The free part of the Lagrangian describing the interface is given by

L0 =
k1

4π
∂xφL(∂t − ∂x)φL +

k2

4π
∂xφR(−∂t − ∂x)φR. (7.118)

The interaction term we add in to gap out the interface must be constructed from local degrees of freedom

(i.e. electron operators). It will be sufficient to restrict our attention to an electron tunneling term:

Lint = (ψ†L)aψbR + H.c. = cos(ak1φL + bk2φR), (7.119)

where ψL = e−ik1φL and ψR = eik2φ2 are the local electron operators. Here, Λ = (a, b) must satisfy Haldane’s

null vector criterion [298]

(
a b

)k1 0

0 −k2


a
b

 = 0. (7.120)

This ensures the argument of the cosine argument behaves as a classical variable and so can obtain an

expectation value in the strongly interacting limit, gapping out the scalar fields. In the present case, this

means

a2k1 − b2k2 = 0. (7.121)
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We also require Λ to be primitive [300], so as to not introduce a spurious ground state degeneracy, meaning

that a and b must be co-prime. These two requirements can be shown to constrain the fillings to be [81]

ν1 = k−1
1 =

1

pb2
, ν2 = k−1

2 =
1

pa2
. (7.122)

Hence, there exists a gapped interface between Laughlin states A and B at the filling fractions:

(A) ν =
1

pb2
| (B) ν =

1

pa2
. (7.123)

Let us now confirm that there indeed exists a Lagrangian subgroup for A×B, which is condensed by Eq.

(7.119). The anyon content of A× B is

A× B = {eirφL}r=1,...,pb2 × {eisφR}s=1,...,pa2 . (7.124)

For concreteness, r and s will henceforth always index the A and B factors, respectively. These anyons have

spin

hr,s =
1

2

(
r2

pb2
− s2

pa2

)
. (7.125)

Hence, anyons of the form (r, s) = l(b, a) have trivial spin; it is also straightforward to see that they have

trivial braiding statistics with each other and non-trivial statistics with respect to all other anyons. So, the

anyons

L = {eilbφLeilaφR}l=1,...,pab (7.126)

form a Lagrangian subgroup and their condensation fully gaps the interface. Note, in particular, that

(eibφLeiaφR)pab = eipab
2φLeipa

2bφR (7.127)

corresponds to the composite electron operator ψaLψ
b
R appearing in Eq. (7.119) and will obtain an expectation

value when the argument of the cosine is pinned, resulting in the condensation of all anyons in L. This makes

explicit the connection between Lagrangian subgroups and electron tunneling terms.
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Extension to Moore-Read Interfaces

We would now like to identify gapped interfaces between generalized MR states at different filling fractions.

Absent a correspondence between gapping terms and Lagrangian subsets, as exists in the Abelian case, we

can at best use the anyon condensation picture as a source of intuition for identifying candidate gapping

terms. As a first step, however, we can restrict which filling fractions to consider by focusing on gapping

terms that correspond to tunneling of electrons. Indeed, if we consider an interface between MR states at

filling fractions ν1 = 1/k1 and ν2 = 1/k2, the most general electron tunneling term we can write down is

given by

Lint = (ψ†L)aψbR + H.c. = iχaLχ
b
R cos(ak1φL + bk2φR). (7.128)

We will analyze this interaction term in more detail in the following subsection. For now, we emphasize

that our implementation of the cut-and-glue approach required that the Majorana and bosonic parts of

the interaction term were separately bosonic and so separately obtained expectation values in the strongly

interacting limit [see the discussion around Eq. (7.44)]. Using our analysis of Laughlin interfaces above,

we see that this is only possible if k1 = pb and k2 = pa, with a and b co-prime 6. So, we will restrict our

attention to gapped interfaces (GIs) between two MR phases, A and B, at filling fractions

(A) ν =
1

pb2
| (B) ν =

1

pa2
. (7.129)

This is not to say that GIs cannot be formed between MR states at other filling fractions, only that these

GIs are those most obviously amenable to our cut-and-glue approach to the calculation of the EE.

In this case, the anyon content of A× B is

A⊗ B ={eirφL , χLeirφL , σLei(r+1/2)φL}r=1,...,pb2 ⊗ {eisφR , χReisφR , σRei(s+1/2)φR}s=1,...,pa2 . (7.130)

Again, our goal is to condense a set of bosonic anyons such that all other anyons will be confined. Our

strategy is as follows: we will first condense all possible Abelian anyons. This will yield a new topological

order in which all of the non-Abelian anyons will have, hopefully, either become confined or have split into

Abelian ones. It will then be straightforward to see whether that order can be reduced to a trivial one.

Motivated by our analysis of the Laughlin problem, we start by condensing the following set of Abelian

6The condition that a and b be co-prime arose in the Abelian case by requiring primitivity of the gapping term. We do
not have a systematic understanding of what constitutes a primitive gapping term in the MR case, but we can at least justify

requiring a and b being co-prime by noticing that any tunneling term of the form (ψ†L)qaψqbR +H.c. with q integer will necessarily
be less relevant (in the renormalization group sense) than Eq. (7.128).
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anyons:

L0 = {eilbφLeilaφR}l=1,...,pab × {1L1R, χLχR} (7.131)

It follows immediately that all anyons of the form eirφLeisφR and χLe
irφLχRe

isφR not lying in L0 will be

confined. The condensation pattern of the remaining anyons depends on whether a and b are odd or even.

Since we have assumed a and b to be coprime, there are only two cases to consider: (i) one of a and b even,

the other odd and (ii) both a and b odd.

Case (i): One of a and b even, the other odd

Without loss of generality, let us take a to be even and b odd. In this case, the anyons in the set

{χLeilbφLeilaφR , eilbφLχReilaφR}l=1,...,pab, (7.132)

despite being fermionic, can be condensed after combining them with (fermionic) electrons. In fact, they are

all equivalent to products of anyons in L0, up to fusion with electron operators. For instance,

1LχR ∼ 1LχR × (χLe
ipb2φL)a × (χRe

ipa2φR)b

= eipab
2φLeipa

2bφR ,

(7.133)

where the tilde indicates an equivalence up to fusion with electrons. Here we made use of the fact that

χa ∼ 1, since a ∈ 2Z. Thus, we should extend the Lagrangian subset from L0 to

L = {eilbφLeilaφR}l=1,...,2pab × {1L1R, χLχR}. (7.134)

It immediately follows that all of the non-Abelian anyons will be confined. Indeed, any anyons of the form

σLe
i(r+1/2)φLeisφR ∼ σLei(r+1/2)φLχRe

isφR (7.135)

and

eirφLσRe
i(s+1/2)φR ∼ χLeirφLσRei(s+1/2)φR (7.136)
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will be confined, since they all possess non-trivial braiding with χLχR. As for anyons of the form,

σL,rσR,s ≡ σLei(r+1/2)φLσRe
i(s+1/2)φR , (7.137)

we can compute their braiding with eilbφLeilaφR and χLe
ilbφLχRe

ilaφR to be

eiθ(r,s),l = exp

(
2πi

l

pab

[
ar − bs+

1

2
(a− b)

])
. (7.138)

Since a is even while b is odd, this phase can never be trivial. Hence all anyons of the form σL,rσR,s will

be confined. Thus, we obtain a gapped interface, but one which is opaque to non-Abelian anyons since they

are all confined.

Case (ii): a, b both odd

As a first step, we again condense L0. Upon doing so, the anyon

f ≡ χLeilbφLeilaφR ∼ χL1R ∼ 1LχR ∼ eilbφLχReilaφR (7.139)

remains deconfined, where the equivalences come from fusion with elements of L0. However, any other

anyon of the form χLe
irφLeisφR or eirφLχRe

isφR will clearly be confined, as the chiral boson factors will

yield non-trivial braiding with the elements of L0. It is also straightforward to see that any anyons of

the form σLe
i(r+1/2)φLeisφR ∼ σLei(r+1/2)φLχRe

isφR and eirφLσRe
i(s+1/2)φR ∼ χLeirφLσRei(s+1/2)φR will be

confined, since they all possess non-trivial braiding with χLχR.

This leaves us with the anyons of Eq. (7.137). Their braiding with eilbφLeilaφR and χLe
ilbφLχRe

ilaφR

is again given by Eq. (7.138). Since a and b are both odd, it follows that a − b ∈ 2Z and so this phase

can be trivial for an appropriate choice of r and s. Specifically, we need to look for r, s ∈ Z satisfying the

Diophantine equation

ar − bs+
1

2
(a− b) = pabt, t ∈ Z (7.140)

in order to identify the deconfined non-Abelian anyons. One can show that solutions to this equation for

arbitrary t are equivalent to those for t = 0, up to fusion with electrons. It is easy to see that, for the t = 0

case, one solution to the Diophantine equation is given by

r0 =
b− 1

2
, s0 =

a− 1

2
. (7.141)
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All other solutions can be parameterized as

ru = r0 + ub, su = s0 + ua (7.142)

and correspond to fusing σL,r0σR,s0 with a condensed anyon in L0. Hence, after condensing L0, σL,r0σR,s0

is the only non-Abelian anyon (up to fusion with electrons and condensed anyons) which is not confined.

In order to understand the fate of σL,r0σR,s0 after condensing the anyons in L0, let us check the fusion

of σL,r0σR,s0 with itself. We have that

σL,r0σR,s0 × σL,r0σR,s0 = (1 + χL1R + 1LχR + χLχR)eibφLeiaφR → 2× 1 + 2× f (7.143)

where, in the last step, we applied the identifications arising from condensing L0. Since the vacuum appears

twice in this fusion rule, σL,r0σR,s0 must split [286] into two Abelian anyons: σL,r0σR,s0 → e+m, with the

fusion rules e2 = m2 = f2 = 1 and e ×m = f . So, after condensing the Abelian anyons in L0, we are left

with the Abelian anyons {1, e,m, f}. Now, since σL,r0σR,s0 has bosonic self-statistics,

eiθ(r0,s0) = exp

(
πi

[
(r0 + 1/2)2

pb2
− (s0 + 1/2)2

pa2

])
= 1, (7.144)

it follows that the daughter e andm anyons must also be self-bosons. Additionally, the monodromy associated

with braiding f around σL,r0σR,s0 , and hence also around either e or m, is −1. So, this condensation pattern

is essentially that of the Ising× Ising→ Toric code transition. We can then condense either e or m to fully

gap out the interface. In contrast to the previous case, however, a subset of non-Abelian anyons can pass

through this interface.

We thus conclude that we can always form a GI between Moore-Read states at filling fractions ν−1 = pa2

and ν−1 = pb2, although the nature of the interface depends on whether or not a− b ∈ 2Z.

7.5.2 Gapping Terms for ν−1
1 = pb2 and ν−1

2 = pa2 MR Interfaces

We now turn to the problem of constructing explicit interactions which can gap out these interfaces by

drawing some intuition from the above anyon condensation pictures.
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Equal Parity Interface: a, b ∈ 2Z + 1

Let us first focus on the interface between ν−1
1 = pb2 and ν−1

2 = pa2 with a and b both odd. In this case,

the näıve electron tunneling term of Eq. (7.128) takes the form

Lint = iχLχR cos(pab2φL + pa2bφR), (7.145)

where we used the fusion rule χ2 = 1. [To be more careful about this, one should point-split Eq. (7.128)

and perform an operator product expansion to obtain Eq. (7.145)]. It is straightforward to see that, in the

strongly interacting limit, this interaction term will gap out both the scalar fields and Majorana fermions.

How does this interaction term connect with the anyon condensation picture described above? As a start,

one may ask what anyon (or anyons) generate the set of anyons, L0, of Eq. (7.131). First, we note that up

to the electronic combinations χLe
−ipb2φL and χRe

−ipa2φR ,

eipab
2φLeipa

2bφR ∼ (χLe
−ipb2φL)a × (χRe

−ipa2φR)b × eipab
2φLeipa

2bφR = χLχR. (7.146)

So, all anyons in L0 can be obtained by fusing the anyon eibφLeiaφR with itself some number of times, which

is to say, L0 is generated by a single anyon. Additionally, we observed above that

σL,r0σR,s0 × σL,r0σR,s0 = (1 + χL1R + 1LχR + χLχR)eibφLeiaφR , (7.147)

which means the elements of L0, and hence the full Lagrangian subset, can all be generated from this single

non-Abelian anyon. This suggests that the corresponding gapped edge can be obtained using a single gapping

term, namely that given by Eq. (7.145). Indeed, in the strong coupling limit, the argument of the cosine

will be pinned and χLχR will obtain an expectation value, corresponding to the condensation of χLχR and

all anyons of the form eilbφeilaφ, as suggested by the Lagrangian subset picture. That, roughly speaking,

σL,r0σR,s0 is condensed can be inferred from Eq. (7.147), since eibφeiaφ is also condensed, or by analogy

with the standard Ising model, in which the condensation of χLχR implies a gap for the full theory.

Opposite Parity Interface: a ∈ 2Z, b ∈ 2Z + 1

In contast to the previous case, the naive tunneling term of Eq. (7.128) will not serve to gap out the

interface. Indeed, since a is even and b is odd, we have that ψaLψ
b
R is fermionic and so cannot obtain a

non-zero expectation value. In order to identify an appropriate gapping interaction, let us try to draw some

intuition from the above anyon condensation picture. In particular, we may ask which anyons generate the
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set L of Eq. (7.134). By inspection, we see that L has the group structure Z2pab × Z2. (Note that χLχR is

not equivalent up to fusion with electrons with eipab
2φLeipa

2bφR when one of a and b is even and the other

odd.) In particular, L is generated by eibφLeiaφR and χLχR. This suggests that we will need two distinct

tunneling terms to condense the anyons in each of the Z2pab and Z2 factors and hence fully gap the interface.

Motivated by this observation, we can write down what is effectively the square of the näıve electron

tunneling operator of Eq. (7.128):

Lc = (ψ†L)2aψ2b
R +H.c. = cos(2pab2φL + 2pa2bφR), (7.148)

where we again used the fusion rule χ2 = 1. It is clear that this interaction can gap out the charged sector

(i.e. the scalar fields) and the pinning of the argument of the cosine will correspond to the condensation of

the anyons eilbφLeilaφR in Eq. (7.134).

We are thus left with the task of gapping out the neutral degrees of freedom, namely the Majorana

fermions. The näıve expectation, on inspection of Eq. (7.134), is that the neutral sector should be gapped

out by a term of the form (χLχR)2, since χ2
L = 1 and χ2

R = 1 are local quasi-particles and (χLχR)2 obtaining

an expectation value would correspond to the condensation of χLχR. But, it is precisely due to these fusion

rules that (χLχR)2 ∼ 1 cannot introduce a gap. More precisely, on point-splitting the interaction, one finds

(χLχR)2 ∼ χL∂χLχR∂χR, which is an irrelevant interaction (in the RG sense) and cannot perturbatively

introduce a gap 7. Evidently, we must employ a more indirect approach to fully gap out the interface.

Indeed, we will make use of an alternative representation of the Ising CFT

Ising =
SO(N + 1)1

SO(N)1
∼ SO(N + 1)1 � SO(N)1, (7.149)

where N = 2r is an even number with r > 1, SO(N)1 denotes the SO(N) Kac-Moody algbera at level one,

and the tensor product � denotes a usual tensor product combined with the condensation of a particular set

of bosonic anyons to tie the two factors together. The details of this representation are reviewed in Appendix

E.3. This representation allows us to to re-express the Majorana sector of the MR theory in terms of N + 1

left-moving and N right-moving Majorana fermions. The topological data of theory (i.e. the anyon content)

will remain the same in this alternative reprsentation due to the choice of condensed operators encoded in the

� notation. In particular, all 2N+1 Majorana operators belong to a single topological sector. So, we expect

to obtain the correct TEE in our entanglement calculation. However, the total central charge will change

7In the Ising model, this interaction induces a flow from the tricritical to the critical Ising CFT, all along which the fermions
remain massless [301]. Beyond the tricritial Ising CFT fixed point, this interaction does open a gap. Although a similar
situation may arise here, we are interested in writing down relevant interactions, which we know will perturbatively introduce
a gap
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and will alter the area law term in the entanglement entropy. This, of course, is not distressing since the

coefficient of the area law term is a non-universal quantity. The upshot of this alternative representation is

that we can write down current-current backscattering interactions which are manifestly local and marginally

relevant, which means they can induce a gap.

Explicitly, in this alternative reprsentation, we can write the free part of the ν = 1/n MR edge theory as

L =
n

4π
∂xφ(∂t − ∂x)φ+

1

4π

r∑
j=1

∂xφ
j(∂t − ∂x)φj +

1

4π

r∑
j=1

∂xφ
j
(−∂t − ∂x)φ

j
+ χ

i

2
(∂t − ∂x)χ, (7.150)

with the local operators being the electron operator

ψe = χeinφ, (7.151)

the SO currents of Eqs. (E.32)-(E.34), as well as the condensed operators of Eqs. (E.35)-(E.36). As usual,

it is important to understand the organization of the Hilbert space. To that end, let us place this MR phase

on a cylinder so that we have chiral and anti-chiral copies on the left (L) and right (R) edges of the cylinder.

We then define the operator

G′ = G(−1)
∑
j(N

j
R+NjL)(−1)

∑
j(N

j
R+N

j
L) = (−1)NR+NL(−1)F (−1)

∑
j(N

j
R+NjL)(−1)

∑
j(N

j
R+N

j
L), (7.152)

where Nµ, N j
µ, and N

j

µ are the winding modes of φµ, φjµ, and φ
j

µ, respectively. One can check that G′

commutes with all the local-electronic operators in this theory. Hence, similar to the conventional MR edge

theory, the physical Hilbert space is defined by the constraint G′ = 1. This simply states that the charge

(i.e. the winding number parity of the φ field) must match the combined fermion number parity and neutral

boson winding number parity. In particular, in the 1 sector we can define separate fermion parities for each

edge. As such, we can define the operators

G′µ = (−1)Nµ(−1)Fµ(−1)
∑
j N

j
µ × (−1)

∑
j N

j
µ . (7.153)

The 1 sector is then defined by the constraint G′µ = 1. For later convenience, we can define the operator

P1 = P1,RP1,L (7.154)

which projects states the cylinder to the 1 sector of the MR edge theory. Here, P1,µ acts on edge µ of the
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cylinder and for |ψ〉 an eigenstate of (−1)Fµ , (−1)Nµ , (−1)N
j
µ , and (−1)N

j
µ , we have that, schematically,

P1,µ |ψ〉 = |ψ〉 (7.155)

if G′µ |ψ〉 = |ψ〉 and

P1,µ |ψ〉 = 0 (7.156)

otherwise.

Returning to the non-uniform interface, we can now employ the current-current interactions described

in Appendix E.3 to gap out the neutral modes [302]:

Ln =u
∑
j1 6=j2

cos(2Θj1) cos(2Θj2) + u

r∑
j=1

cos(2Θj)iχLχR + u
∑
j1 6=j2

cos(2Θ
j1

) cos(2Θ
j2

) (7.157)

where we have defined

2Θj ≡ φjR − φ
j
L, 2Θ

j
= φ

j

R − φ
j

L. (7.158)

In its fermionized form, as presented in Eq. (E.40) of Appendix E.3, we see that Ln does indeed, heuristically,

represent a (χLχR)2 interaction, in line with our intuition from the anyon condensation picture. It is clear

that, taken together, the charge sector and neutral sector interaction terms,

Lgap ≡ Lc + Ln, (7.159)

will fully gap the interface.

7.6 Non-Uniform Interface Entanglement Entropy

Having established which interfaces of MR states can be gapped and which explicit interactions can induce

these gaps, we can proceed to apply the cut-and-glue approach to the calculation of the EE for these

interface systems. We again consider the geometry of Fig. 7.2 except, now, region A (B) will be occupied

by a ν−1 = pb2 (ν−1 = pa2) MR state. The entanglement cut thus lies on the interface between these two

distinct topological orders. We will consider the two classes of interfaces discussed in the previous section in

turn. Our analysis will parallel that of Ref. [91], in that we will first illustrate how the gapping interactions
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place constraints on the ground state. Aside from these constraints, the actual computation of the ground

state and the EE then proceeds in essentially the same way as for the uniform interfaces. We will focus, for

simplicity, on the trivial (1) sector.

7.6.1 Equal Parity Interface

We begin by considering the case where both a and b are odd. As in the uniform interface calculation, we

will focus on the LA/RB interface (i.e. interface 1). For ease of access, we restate here the free Lagrangian,

Ldec,1 = χLA
i

2
(∂t − vn∂x)χLA +

pb2

4π
∂xφLA(∂t − vc∂x)φLA

+ χRB
i

2
(∂t + vn∂x)χRB +

pa2

4π
∂xφRB(−∂t − vc∂x)φRB ,

(7.160)

and the gapping interaction,

Lgap,1 = −2g

π
iχLAχRB cos(pab2φLA + pa2bφRB). (7.161)

Gapping Term Constraints

As in the uniform interface problem, we will take the strongly interacting limit and approximate

Hgap,1 ≈
∫ L

0

[
const.+ vng̃iχLAχRB +

vcλπ

2
(bφLA + aφRB − π/pab)2

]
dx, (7.162)

where g̃ = −2g/(vnπ) < 0 and we have expanded about the vacuum

〈pab2φLA + pa2bφRB〉 = π

〈iχLAχRB〉 > 0.

(7.163)

We perform a similar approximation for interface 2. As before, this violates the Z2 gauge symmetries

generated by the Gα operators [Eq. (7.41)], and so the ground state to the approximated Hamiltonian will

need to be projected to the Gα = 1 subspace. However, following Ref. [91], an additional constraint is

imposed by the gapping interaction.

Indeed, as in the case of the uniform interface problem, the pinning of the cosine term implies the linear

combination of the scalar fields bφLA + aφRB cannot fluctuate significantly from its vacuum expectation
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value over the length of the system. In particular, it cannot have a non-zero winding, which requires that

bNLA + aNRB = 0. (7.164)

Since a and b are coprime, this relation fixes the quantization of the winding numbers to be

NLA = az, NRB = −bz, z ∈ Z. (7.165)

The physical content of this restriction is clear in view of the form of the gapping interaction, which involves

scattering a electrons from edge LA with b holes from edge RB. The ground state of the interface will

then naturally consist of a superposition of states consisting of multiples of (ψ†LA)aψbRB particle-hole pairs.

This is precisely what is expressed by the above constraint, once we also enforce the Z2 gauge symmetry

constraint, which ties the bosonic winding to the fermionic parity.

Entanglement Entropy Calculation

The calculation of the EE is nearly identical to that of the uniform interface case, with the primary difference

being that we must take into account the above constraints on the winding numbers. The approximated

Hamiltonian again takes the decoupled form

H1 ≡ Hosc
1,f +Hosc

1,b +Hzero
1,b . (7.166)

The fermionic part of the approximated Hamiltonian, Hosc
1,f , is identical to that for the uniform interface

problem, Eq. (7.69), and so the ground state of the fermionic sector will again be given by Eq. (7.74). The

bosonic parts of the Hamiltonian are now given by:

Hzero
1,b =

πvcp

2L
(aNRB − bNLA)2 +

πλvcL

2
(aφRB,0 + bφLA,0)2, (7.167)

Hosc
1,b =

vc
2

∑
k 6=0

(a†k a−k)

Ak Bk

Bk Ak


 ak

a†−k

 , (7.168)

where

Ak = |k|+ 2λπ2

p|k|
, Bk =

2λπ2

p|k|
. (7.169)
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Dispensing with the details, we simply jump to writing down the ground state for the approximated Hamil-

tonian (including both interfaces):

|ψ̂1〉 = |ψ̂1,1〉 ⊗ |ψ̂2,1〉 , (7.170)

|ψ̂1/2,1〉 = |Gb,zero,1/2〉 ⊗ |Gb,osc,1/2〉 ⊗ |Gf,osc,1/2〉 (7.171)

where

|Gb,zero,1〉 =
∑
N∈Z

e−
veπpa

2b2N2

2L |NRB = bN,NLA = −aN〉 ,

|Gb,zero,2〉 =
∑
N∈Z

e−
veπpa

2b2N2

2L |NLB = −bN,NRA = aN〉 ,
(7.172)

while |Gb,osc,1/2〉 and |Gf,osc,1/2〉 are again given by Equations (7.71), (7.78) and (7.74), (7.79), respectively.

The constraint imposed by the gapping interaction manifests itself in the sums over the winding mode states.

The entanglement velocities are given by

ve =
2

π

√
p

λ
, ṽe =

2

|g̃|
. (7.173)

Following the now standard procedure, we must apply the projection operator P1 ≡ P1,AP1,B defined

in Eq. (7.49) to obtain a physical state in the MR Hilbert space. As in the uniform interface case, we

again have that P1 |ψ̂1〉 = P1,A |ψ̂1〉 = P1,B |ψ̂1〉. Indeed, we see that every state appearing in |ψ̂1〉 has

(−1)FRB = (−1)FLA and (−1)FLB = (−1)FRA . Additionally, since both a and b are odd, we have that

(−1)bN = (−1)aN , and so the states also satisfy (−1)NRB = (−1)NLA , as well as (−1)NLB = (−1)NRA . It

then readily follows that

|ψ1〉 = P1 |ψ̂1〉 = P1,A |ψ̂1〉 = P1,B |ψ̂1〉 . (7.174)

As in the uniform interface problem, P1,B |ψ̂1〉 is again in a Schmidt decomposed form, and so we can directly

read off the entanglement spectrum and hence the reduced density matrix for B (the only difference with

the uniform interface calculation is the winding mode sector. We have that

ρ1,B =
1

Zeirφ,e
P1,BPbe

−HRBe −H
LB
e PbP1,B , (7.175)

where HRBe and HLBe are given by Equations (7.83) and (7.84), respectively, with the substitution n = pa2.
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The operator Pb enforces the constraint of Eq. (7.165):

Pb |NRB , NLB〉 = δNRB ,0 modbδNLB ,0 modb |NRB , NLB〉 . (7.176)

It is now a straightforward matter to derive the entanglement partition function. As before, we can write

Z1,e as a product of contributions from the right and left edges:

Z1,e = ZRB1,e Z
LB
1,e . (7.177)

Explicitly,

ZRB1,e = χIsing
0 (q̃)

( ∑
N∈even

qpa
2(bN)2/2

)
q−

1
24

∞∏
j=1

(
1− qj

)−1

+ χIsing
1/2 (q̃)

( ∑
N∈odd

qpa
2(bN)2/2

)
q−

1
24

∞∏
j=1

(
1− qj

)−1
,

(7.178)

where χIsing
0 (q̃) and χIsing

1/2 (q̃) were defined in Eqs. (7.92) and (7.93), respectively, and ZLB1,e is given by

a similar expression. As in the entanglement partition function for the untwisted sectors of the uniform

interface problem, the first (second) line of Eq. (7.178) arises from the states in the trace which have both

an even (odd) fermion parity and winding number parity. It is immediate to see that Eq. (7.178) is formally

equivalent to Eq. (7.91) with the substitutions n → pa2b2 and r → 0. This implies that Eq. (7.178) is in

fact the partition function in the trivial sector for a MR state at inverse filling ν−1 = pa2b2. We will have

more to say on this point later in this section but, for now, this observation allows us to immediately deduce

the EE in the present non-uniform interface problem to be,

S1 = −2 ln(2
√
pa2b2) +

πL

3

(
1

ve
+

1

2ṽe

)
. (7.179)

We thus find the TEE for this nonuniform interface on the torus (in the vacuum sector) is given by

γ1 = 2 ln(2
√
pa2b2), (7.180)

which is one of the main results of this Chapter.
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7.6.2 Opposite Parity Interface

We now turn to the class of interfaces in which one of a and b is even and the other odd. Without loss of

generality, we will again take a to be even and b to be odd. We will also employ the topologically equivalent

representation of the MR CFT, as discussed in Section 7.5.2 and detailed in Appendix E.3. Again focusing

on interface 1, the free part of the Lagrangian is given by,

Ldec,1 =
∑
µ

[
kµ
4π
∂xφµ(µ∂t − vc∂x)φµ + χµ

i

2
(∂t − µvn∂x)χµ

+
1

4π

r∑
j=1

{
∂xφ

j

µ(−µ∂t − vn∂x)φ
j

µ + ∂xφ
j
µ(µ∂t − vn∂x)φjµ

}]
,

(7.181)

where, in the interest of compactness, we have abused our earlier notation by temporarily redefining µ =

LA/RB = +/−. We have also set,

kLA = pa2, kRB = pb2. (7.182)

The gapping interaction is given by

Lgap,1 = Lc,1 + Ln,1, (7.183)

Lc,1 = −2g

π
cos(2pab2φLA + 2pa2bφRB) (7.184)

Ln,1 = u
∑
j1 6=j2

[
cos(2Θj1

1 ) cos(2Θj2
1 ) + cos(2Θ

j1
1 ) cos(2Θ

j2
1 )
]

+ u

r∑
j=1

cos(2Θj
1)iχLAχRB , (7.185)

where,

2Θj
1 ≡ φ

j
RB − φ

j
LA, 2Θ

j

1 = φ
j

RB − φ
j

LA, (7.186)

and we take u, g > 0. We will also require the mode expansions

φjµ = φjµ,0 + 2πN j
µ

x

L
+
∑
µk<0

√
2π

L|k|

[
ajke

ikx + (ajk)†e−ikx
]

φµ = φµ,0 + 2πN
j

µ

x

L
+
∑
µk>0

√
2π

L|k|

[
ajke

ikx + (ajk)†e−ikx
] (7.187)
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where

[(aik)†, ajk′ ] = [(aik)†, ajk′ ] = δk,k′δi,j , (7.188)

[φiµ,0, N
j
RB ] = −[φ

i

µ,0, N
j

µ] = −iδi,j , (7.189)

and we have temporarily set µ = LA/RB = +/−.

Gapping Term Constraints

We now take the strong coupling limit. Without loss of generality, we expand about the vacuum defined by

the expectation values

〈2pab2φLA + 2pa2bφRB〉 = π

〈2Θj
1〉 = 〈2Θj

1〉 = 0

〈iχLAχRB〉 < 0,

(7.190)

so that

Hgap,1 ≈
∫ L

0

[
λπ

2

∑
j

[
(2Θj)2 + (2Θ

j
)2
]

+ g̃iχLAχRB +
vcλ̃π

2
(bφLA + aφRB − π/(2pab))2

]
dx. (7.191)

Here, λ, λ̃ > 0 and g̃ = −ru < 0. As in the equal parity interface problem, the pinning of bφLA + aφRB

enforces the constraint Eq. (7.165), while the pinning of the 2Θj
1 and 2Θ

j

1 fields enforces the constraints

N j
LA = N j

RB ∈ Z, N
j

LA = N
j

RB ∈ Z. (7.192)

Note that, at this level of our approximation, the factor of two in the argument of Lc,1, which reflects the

fact that we must tunnel an even number of electrons, does not play any role. This will be accounted for

once we project to the physical Hilbert space.

Entanglement Entropy Calculation

We see that, in the approximated Hamiltonian, the Majorana fermion, neutral boson, and charged boson

sectors all decouple. In particular, the Hamiltonians for each of these sectors have already appeared in our

calculations for the equal-parity interface in Eq. (7.166). Hence, we will skip the details of the computation
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and simply jump to writing down the ground state of the approximated Hamiltonian:

|ψ̂1,1〉 = |Gb,zero,1〉 ⊗ |Gb,osc,1〉 ⊗ |Gf,osc,1〉 ⊗
r∏
j=1

|Gjn,zero,1〉 ⊗
r∏
j=1

|Gjn,osc,1〉 , (7.193)

where, |Gb,osc,1〉, |Gf,osc,1〉, and |Gb,zero,1〉 are again given by Equations (7.71), (7.74), and (7.172), re-

spectively, while the ground states for the neutral boson oscillator and zero-mode sectors of interface 1,

respectively, take the form

|Gjn,osc,1〉 = exp

(∑
k>0

e−
ve,nk

2 [(ajk)†(aj−k)† + (ajk)†(aj−k)†]

)
|0〉 , (7.194)

|Gjn,zero,1〉 =

∑
N
j

e−
ve,nπ(Nj)2

2L |N j

RB = N
j
, N

j

LA = N
j〉

⊗(∑
Nj

e−
ve,nπ(Nj)2

2L |N j
RB = N j , N j

LA = N j〉

)
,

(7.195)

where the non-universal entanglement velocity ve,n depends on the field expectation values in an unimportant

way. The corresponding state for interface 2, |ψ̂1,2〉, is given by a similar expression.

As usual, we obtain an approximation to the physical ground state of the unapproximated gapping

Hamiltonian in the 1 sector by applying a projection to |ψ̂1〉. Defining Z2 symmetry operators, Eq. (7.153),

for each cylinder, G′µα (where µ = L,R, α = A,B), the 1 sector is defined by the constraint G′µα = 1.

Likewise, we define copies of the projection operators, Eq. (7.154), for each cylinder: P1,α = P1,LαP1,Rα.

We thus obtain an approximation to the ground state in the physical Hilbert space via the projection

|ψ1〉 = P1 |ψ̂1〉 = P1,AP1,B |ψ̂1〉 . (7.196)

In contrast to our earlier calculations, however, the projection requires a bit more care, since a is even while

b is odd, and so (−1)aN 6= (−1)bN for N odd. Explicitly, we have that

(−1)NLA |ψ̂1,1〉 = |ψ̂1,1〉 , (7.197)

since each state appearing in |ψ̂1,1〉 is an eigenstate of NLA with eigenvalue aN and (−1)aN = 1. So, P1,LA

will project out all states in |ψ̂1,1〉 with

(−1)FLA(−1)
∑
j N

j
LA(−1)

∑
j N

j
LA = −1, (7.198)

that is, those states whose fermion parity does not match the neutral boson winding parity. However, we
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can see from the explicit form of |ψ̂1,1〉 that

(−1)FRB+
∑
j N

j
RB+

∑
j N

j
RB = (−1)FLA+

∑
j N

j
LA+

∑
j N

j
LA (7.199)

for each state appearing in |ψ̂1,1〉. Now, when we apply P1,RB to P1,LA |ψ1,1〉, we must project out those

states with (−1)NRB = −1, since all the remaining states have (−1)FRB+
∑
j N

j
RB+

∑
j N

j
RB = +1. But, each

state in |ψ̂1,1〉 has NL = bN , with b odd, and (−1)bN = (−1)N . Thus, the only states remaining in the

sum after projection will have N ∈ 2Z – i.e. NRB = 2bz and NLA = −2az, with z = N/2. Physically, this

reflects the fact that we are scattering an even number of electrons and holes, as manifested by the factor of

two in the argument of Lc,1 [Eq. (7.184)].

It is now a simple matter to deduce the entanglement spectrum and hence the entanglement partition

function for, say, cylinder B. Taking into account the constraints on the fermion parity and bosonic winding

number quantum numbers imposed by the projections, we can read off the entangelement spectrum from

the explicit forms of |ψ1,1〉 and |ψ2,1〉, which are in Schmidt-decomposed form. Indeed, we find for the

entanglement partition function,

ZRB1,e =

( ∑
N∈even

qpb
2(aN)2/2

)
q−

1
24

∞∏
j=1

(
1− qj

)−1 ×

χIsing
0 (q̃)

∑
{Ni}∑
iNi∈even

q
∑
iN

2
i /2

n

q− 1
24

n

∞∏
j=1

(1− qjn)−1

2r

+ χIsing
1/2 (q̃)

∑
{Ni}∑
iNi∈odd

q
∑
iN

2
i /2

n

q− 1
24

n

∞∏
j=1

(1− qjn)−1

2r
 ,

(7.200)

where q and q̃ are again take forms given by Eq. (7.90) and we have defined qn ≡ exp(2πiτn), with

τn ≡ iβve,n/L [ve,n is defined implicitly in Eqs. (7.194), (7.195)]. We have also used the fact that, since we

are in the untwisted sector, we can write

Z1,e = ZRB1,e Z
LA
1,e (7.201)

and, as usual, Z1,LA takes a similar form to that of Z1,RB . We can express the partition function in terms
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of modular functions:

ZRB1,e =
θ0

0(pa2b2τ) + θ0
1/2(pa2b2τ)

η(τ)
×

1

4

√θ0
0(τ̃)

η(τ̃)
+

√
θ0

1/2(τ̃)

η(τ̃)

 θ0
0(τn)2r + θ0

1/2(τn)2r

η(τn)2r

+
1

4

√θ0
0(τ̃)

η(τ̃)
−

√
θ0

1/2(τ̃)

η(τ̃)

 θ0
0(τn)2r − θ0

1/2(τn)2r

η(τn)2r

 .

(7.202)

Applying the usual modular transformations and taking the large length limit, we find

S1 = −2 ln(4
√
pa2b2) +

πL

3

(
2r

ve,n
+

1

ve
+

1

2ṽe

)
. (7.203)

Hence, the TEE for this nonuniform interface on the torus (in the vacuum sector) is given by

γ1 = 2 ln(4
√
pa2b2), (7.204)

which is another of the main results of this Chapter. Note that this differs from that of the same-parity

interface [cf. Eq. (7.180)].

7.6.3 Relation to Parent Topological Phase

We now provide a physical interpretation for the values of the TEE associated with the non-uniform interface

between A and B, which is based on determining whether a gapped interface can be formed between phases

A and B using anyon condensation. This approach has been fruitful in classifying gapped interfaces of 2D

Abelian phases [81,88] as well as the case where the bulk topological order is non-Abelian [274,292].

Suppose A and B share a common parent phase C – that is to say, a phase in which condensing one set

of anyons yields A and condensing a different set of anyons yields phase B. Then, one can form an interface

between A and B by starting with C, condensing down to A in one region, and then condensing down to B

in another region, yielding a configuration which is gapped everywhere as follows:

(A) | (C) | (B) . (7.205)

Shrinking the region containing C yields a gapped interface between A and B. Similarly, a gapped interface

can be formed if C is a daughter phase of A and B – that is, A and B can be condensed to obtain C.

The intermediate state C can be thought of as originating from A or B by gauging of an appropriate

discrete symmetry, insofar as anyon condensation can be viewed as the inverse operation of gauging an
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anyonic symmetry [105, 303] (related observations of the connection between boundary physics and bulk

physics have been made in Ref. [304]). Consequently, the local interactions that gap the interface manifest

this symmetry, which, in the Abelian case can be precisely shown to contribute to a correction to the

TEE [88]. Furthermore, in Ref. [292], it was argued that the choice of C determines the ground state of

the interface to be a particular Ishibashi state, from which the interface TEE was calculated to be lnDC ,

where DC is the total quantum dimension of C. In this subsection, after first reviewing this construction for

interfaces of Laughlin states, we identify the appropriate parent phases for the two classes of MR interfaces

identified above, as determined by the choice of gapping interaction, and verify this relation with the TEE.

Review of Laughlin Interfaces

Let us again consider an interface between Laughlin ν−1 = pb2 and ν−1 = pa2 states, where a and b are

co-prime [81]. In this case the parent topological phase is a Laughlin state at inverse filling ν−1 = pa2b2:

(A) ν =
1

pb2

∣∣∣∣ (C) ν =
1

pa2b2

∣∣∣∣ (B) ν =
1

pa2
, (7.206)

The state C originates from A and B by gauging discrete Za and Zb symmetries, respectively. As such, the

local gapping interaction of the A−C interface displays a discrete Za symmetry associated with the pairing

of a local quasiparticles of A with one local quasiparticle of A. Similarly, on the B − C interface, the local

interaction displays a Zb symmetry. Consequently, as the phase “thins out,” one is left with the A − B

interface where a local quasiparticles of A bind to b local quasiparticles of B.

Now, the anyon content of C is given by

C = {eirφ}r=1,...,pa2b2 . (7.207)

These anyons have spin

hr =
1

2

r2

pa2b2
. (7.208)

Consider the anyon labelled by r0 = pa2b. It has the same spin, hr0 = 1
2pa

2, as the electron operator in the

ν−1 = pa2 Laughlin state. The mutual statistics between r0 and all other anyons is given by

θr0,r = exp
(

2πi
r

b

)
. (7.209)

So, if we condense r0, only anyons of the form r = bl will remain deconfined. These remaining anyons have
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mutual statistics

θl,l′ = exp

(
2πi

ll′

pa2

)
. (7.210)

This precisely describes the topological order of B. It is easy to see that condensing r = pab2 would instead

give A. Thus, C is indeed the parent state of A and B.

Now, the total quantum dimension of a Laughlin ν−1 = pa2b2 state is D =
√
pa2b2, which agrees with

the value of the TEE for an entanglement cut lying along the physical interface, γ = ln
√
pa2b2, as computed

in Ref. [91].

Extension to Moore-Read Interfaces

Let us now consider the interface between ν−1 = pb2 and ν−1 = pa2 MR states, with a and b both odd.

We calculated the TEE in this scenario to be given by γ = ln(2
√
pa2b2). This is precisely the TEE for a

uniform ν−1 = pa2b2 MR state. We thus claim that the parent phase for the ν−1 = pb2 and ν−1 = pa2 MR

states, with a and b both odd, is the ν−1 = pa2b2 MR state:

(A) MRpb2
∣∣ (C) MRpa2b2

∣∣ (B) MRpa2 , (7.211)

where we have introduced the shorthand MRν−1 to denote the MR state at filling ν. Now, C has the anyon

content

C = {eirφ, χeirφ, σei(r+1/2)φ}r=1,...,pa2b2 . (7.212)

In order to obtain, say, phase B, we must condense an anyon of the form χeirφ, since this will serve as the new

electron operator and we wish to obtain another MR state. From the discussion of the Laughlin interface, it

is straightforward to see that condensing ψB = χeipa
2bφ will yield the correct Laughlin quasiparticle content,

as well as Majorana content (since χ has trivial braiding with itself, under a full 2π rotation).

As for the non-Abelian anyons, σei(r+1/2)φ, their braiding with ψB is given by,

θσei(r+1/2)φ,ψB = exp

[
2πi

(
b+ 2r + 1

2b

)]
. (7.213)
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In order for this phase to be trivial, we require

2r + 1 = b(2m+ 1), m ∈ Z. (7.214)

Both the LHS and 2m + 1 are odd, and so a solution exists if and only if b is also odd. If this is the case,

we find that the non-Abelian anyons parameterized as

r = b(m+ 1/2)− 1/2 =⇒ σei(r+1/2)φ = σeib(m+1/2)φ (7.215)

remain deconfined. These anyons have spin

hr =
1

16
+

1

2

(m+ 1/2)2

pa2
, (7.216)

which are precisely the spins of the non-Abelian anyons in the MRpb2 state. We can also compute the

braiding of these anyons and the deconfined Abelian anyons, eilbφ, to be

θσei(r+1/2)φ,eilbφ = exp

[
2πi

l(m+ 1/2)

pa2

]
. (7.217)

This is the expected phase for braiding of the corresponding anyons in the MRpb2 state. It is straightforward

to see that the correct braiding statistics between the remaining non-Abelian anyons and Majoranas will

also be obtained. We thus conclude that by condensing χeipa
2bφ in phase C, we obtain phase B. Provided a

is odd, it follows immediately that condensing χeipab
2φ in phase C will yield phase A. We thus conclude that

if both a and b are odd, we can obtain a GI between MRpb2 and MRpa2 states which is characterized by an

intervening MRpa2b2 state, consistent with the fact that the TEE for this interface is γ = ln(2
√
pa2b2).

Let us now consider the case where one of a and b, say a, is even and the other odd. Our claim is that

the parent phase in this case is given not by a MR state, but by an Ising × U(1)4pa2b2 theory:

(A) MRpb2
∣∣ (C) Ising × U(1)4pa2b2

∣∣ (B) MRpa2 (7.218)

The anyon content of C is given by

C = {1, χ, σ} × {eilφ}l=1,...,4pa2b2 . (7.219)

It is readily seen that C has the correct total quantum dimension, DC = 4
√
pa2b2, given that the TEE for
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this interface is given by γ = ln(4
√
pa2b2).

Suppose we condense

ψB = χei2pa
2bφ. (7.220)

This quasiparticle has spin

hB =
1

2
+

1

2

4p2a4b2

4pa2b2
=

1

2
+

1

2
pa2, (7.221)

which matches that of the electron operator in phase B. Now, the braiding of a Laughlin quasiparticle eilφ

with ψB is given by

θeilφ,ψB = exp

[
2πi

(2pa2b)l

4pa2b

]
= exp

[
2πi

l

2b

]
, (7.222)

which is trivial when l = 2bm, m ∈ Z. So, all Laughlin quasiparticles except those of the form ei2bmφ are

confined. The remaining Laughlin quasiparticles have mutual statistics

θeimφ,eim′φ = exp

[
2πi

(2bm)(2bm′)

4pa2b

]
= exp

[
2πi

mm′

pa2

]
, (7.223)

which are precisely the mutual statistics of the Laughlin anyons in phase B. It immediately follows that

anyons of the form χei2bmφ are also deconfined and reproduce the Majorana sectors of phase B. The braiding

statistics of the non-Abelian anyons, σeitφ with ψB is given by

1

2π
θσeitφ,ψB =

1

2
+

(2pa2b)t

4pa2b2
=

1

2
+

t

2b
=
b+ t

2b
. (7.224)

The deconfined non-Abelian anyons thus satisfy

b+ t = 2b(r + 1) =⇒ t = b(2r + 1) (7.225)

with r ∈ Z. These deconfined anyons have spin

hr =
1

16
+
b2(2r + 1)2

4pa2b2
=

1

16
+

(r + 1/2)2

pa2
, (7.226)

which matches that of the non-Abelian anyons in phase B. Hence, condensing ψB in C correctly reproduces
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phase B. It follows, of course, that by instead condensing ψA = χei2pab
2φ, we would have obtained phase

A. Hence, C = Ising × U(1)4pa2b2 appears to be the correct intermediate phase to describe the a even, b

odd interface. Note that, however, at no point was it necessary to impose that one of a and b was even and

the other odd; indeed, both could have been odd as well. This is consistent with the fact that the a, b odd

interface could, in principle, also be gapped using the tunneling terms of Eq. (7.159).

7.7 Discussion and Conclusion

In this Chapter, we extended the cut-and-glue approach to calculating entanglement entropy of two-dimensional

topologically ordered phases to interfaces of the simplest non-Abelian fractional quantum Hall states, namely

the generalized Moore-Read states. By carefully taking into account the Hilbert space structure of the MR

CFT, as reviewed in Section 7.2, we first demonstrated, in Section 7.4, that we can reproduce the entangle-

ment spectrum and hence the topological entanglement entropy for each of the topological sectors of the MR

state on a torus. In Section 7.5.2, we investigated interfaces of distinct generalized MR states, identifying

when and how they can be gapped out. In particular, we looked at interfaces of MR states at inverse fillings

ν−1 = pa2 and ν−1 = pb2, with a and b coprime, finding that they can always be gapped, but also that the

form of the gapping interaction depends on whether a and b are both odd or if one is even. We then found

that this distinction manifests itself in the TEE when the entanglement cut is placed along the interface.

Indeed, we found in Section 7.6 that, in the trivial sector, the TEE is given by γ1 = 2 ln(2
√
pa2b2) when

a and b are both odd and by γ1 = 2 ln(4
√
pa2b2) when one of a and b is even. Finally, we demonstrated

how this value of the TEE is connected to the existence of a parent topological phase from which both the

ν−1 = pa2 and ν−1 = pb2 MR states descend.

Although we focused on the generalized MR states, in principle, the cut-and-glue approach could, in

principle, be extended to other non-Abelian topological orders whose edge CFTs possess a free-field rep-

resentation. Following our prescription, one can approximate a gapping term to quadratic order and then

project the resulting ground state to the appropriate topological sector of the physical Hilbert space. It

should be possible, for instance, to repeat our calculation for states in the Bonderson-Slingerland hierar-

chy [305] and for the orbifold FQH states of Barkeshli and Wen [176]. It would also be interesting to see

whether our methodology could be used to investigate interfaces of Abelian and non-Abelian states.

Aside from calculations of the entanglement entropy in other systems, another open question is the

extent to which the anyon condensation picture of gapped interfaces of non-Abelian states is connected

to the existence of explicit gapping interactions for such interfaces. In the examples we considered, we
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found that there did indeed appear to be a close correspondence between the two. For an interface of MR

states at inverse fillings ν−1 = pb2 and ν−1 = pa2 with a and b both odd, we were able to write down

a gapping term which simply corresponded to a local operator constructed by fusing together elements

of the set of anyons to be condensed. In contrast, when one of a and b was even, we found it useful

to resort to a topologically equivalent description of the MR edge theory to be able to write down an

interaction which fully gapped the interface. Nevertheless, this interaction was still closely connected to the

set of condensed anyons characterizing the interface. Now, for interfaces of Abelian states, it is known that

there is a one-to-one correspondence between Lagrangian subgroups and gapping interactions, provided one

allows for the introduction of additional topologically trivial edge states (physically, this corresponds to edge

reconstruction). Two Abelian theories differing from one another only by the addition of such trivial edge

states are said to be stably equivalent theories [85, 86]. At a superficial level, our construction mirrors this

notion of stable equivalence, in that we write down a theory with the same topological content, but with

additional degrees of freedom. However, the additional fields which are added in our case are not local, in

contrast to the Abelian case. It is not clear how general this coset construction of topologically equivalent

CFTs is, but it could perhaps be used as a basis to write down general gapping interactions for interfaces

of arbitrary non-Abelian orders – or at least those with free field representations. Such a scheme could

potentially be used to derive the different sets of tunneling interactions that can be used to gap out an

interface between two given non-Abelian topological orders.

Lastly, as noted in the introduction, gapped interfaces of Abelian topological phases have attracted

much interest in recent years, due to the possibility of realizing non-Abelian defects at terminations of said

interfaces [72–81, 83]. In fact, as also noted in the introduction, the value of the TEE of an entanglement

cut along an interface between Abelian topological phases has been connected to the emergence of a one-

dimensional symmetry protected topological phase (SPT) along the interface [88]. The endpoints of these

SPTs support parafermions, in contrast to purely one-dimensional SPTs which can only host Majorana zero

modes. It would be interesting to see whether an analogous statement holds for interfaces of generalized MR

states and if one can obtain bound states more exotic than parafermions.
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Appendix A

Supplement to Chapter 2

A.1 Non-Interacting Model Band Structure

In Fig. A.1 we have plotted the band structure of the model Eq. (2.1) for g = 0, φ± = π/2, and J = 1. The

lowest band, which we partially fill, has Chern number C0 = +1. Note that the bandwidth of this band and

the band gap are comparable in magnitude (the former is slightly smaller than the latter).

A.2 Comparison with Uniform Density Approximation

As noted in the main text our lattice Chern-Simons action explicitly breaks the lattice symmetries and as

a consequence the mean-field ground state the theory predicts on the Kagome lattice breaks them as well.

Previous applications of this method (e.g. the chiral spin liquid study of Ref. [96]) did not correctly solve

the mean field equations (they assumed the currents to be zero) and so found uniform states. To reiterate

what is said in the main text, we believe that at the full quantum level the lattice symmetries broken by

our mean field solution should be restored. However this is a nontrivial calculation (presumably being a

non-perturbative effect) so it is worthwhile to compare the results of our mean-field theory with those one

would obtain if one assumed a uniform ground state with equal statistical fluxes through all plaquettes

(which we stress is not a valid solution to the mean field equations of our theory).

In Fig. A.2 we have plotted the Hofstadter spectrum for this uniform flux approximation. Note that

the spectrum here has much finer detail than Fig. 2.3(a) of the main text as in this case we are not

solving the mean field equations self-consistently but rather simply computing the band structure with the

aforementioned uniform fluxes. We see that Fig. 2.3(a) and Fig. A.2 are largely similar. In particular, gapped

states exist at the same fillings, including the Jain sequence. The Chern numbers are mostly unchanged for

the fillings we have checked; one exception is the gapped state at nL = 2/3 filling. Our mean-field analysis

predicts this gapped state to have σxy = 1/3 while the uniform approximation would suggest a state with

σxy = 2/3. The gap of this state in both schemes is small, however, so it is unlikely that it would survive

176



k
x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 ky2.0
1.5 1.0 0.5 0.0

0.5 1.0 1.5
2.0

E

4

3

2

1

0

1

2

3

4

Figure A.1: Band structure of the model given by Eq. (2.1) in the absence of interactions with φ± = π/2
and J = 1. The lower, middle, and upper bands have C0 = +1, 0,−1, respectively.
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Figure A.2: Composite fermion Hofstadter spectrum on the kagome lattice with k = 1 and φ± = π/2
assuming a uniform density of composite fermions and equal fluxes through all plaquettes. The blue line
is the Fermi energy. Some examples of gapped states are labelled with their filling and Hall conductance.
Vertical red (purple) lines are drawn at fillings corresponding to the principal particle (hole) Jain sequence.
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competition with other ordered states.

A.3 Full Self-Consistent Solution

In this Appendix we repeat our mean field analysis for g 6= 0 to check the stability of the gapped states we

predict. As explained in Sec. 2.4, although the situation considered in the main text corresponds to formally

taking g = 0, this does not mean that we neglected the role of interactions. Now, in our mean field analysis

we found that even for g = 0, the sublattice imbalance, ∆, is generically non-zero, presumably as a result of

the explicit point-group symmetry breaking of our lattice Chern-Simons action. In the case of g 6= 0 there

is a finite energy cost associated with this imbalance and thus any finite value for the interaction strength,

g, will affect the values of the sublattice densities. However, provided g is smaller than some critical gc, we

expect in general that the sublattice density will vary continuously and slowly so that the gapped states

predicted in the main text remain gapped. In order to illustrate this, we perform a mean field analysis of our

theory with the interaction term, Eq. (2.12), where Vαβ(x−y) = 1 if (x, α) and (y, β) are nearest neighbors

and Vαβ(x − y) = 0 otherwise. As before we focus on time independent solutions of Eq. (2.14) and Eq.

(2.15) which preserve translational symmetry. Using these assumptions we note that we can re-write Eq.

(2.15) as

〈jk〉 = −θ(−1)k(Aa0 − fkAc0 − (1− fk)Ac0)

− 2gθ2(−1)k
(
Φa − fkΦc − (1− fk)Φb

) (A.1)

where fk = 1 for k = 1, 5, 6 and fk = 0 for k = 2, 3, 4.

For simplicity we have focused on the cases of nL = 1/3 and nL = 2/3. In Fig. A.3 we have plotted ∆

and the band gap as a function of g at these two fillings. It is clear in the case of nL = 1/3 that the band

gap does not close and ∆ varies smoothly up to a critical value of g. Likewise in the case of nL = 2/3 the

imbalance ∆ varies smoothly. The jump of ∆ in the case of nL = 1/3 appears to signal a phase transition

to a nematic state. However, as discussed in the main text, since our Chern-Simons lattice action explicitly

breaks the point-group symmetry we cannot trust our mean-field analysis to make accurate predictions

about spontaneous rotational symmetry breaking. Nevertheless, this data suggests that we are justified in

assuming that small, finite interactions will not affect the topological properties of the states predicted by

our mean field analysis.
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(a) nL = 1/3 (b) nL = 1/3

(c) nL = 2/3 (d) nL = 2/3

Figure A.3: Plots of the sublattice imbalance and band gap for (a,b) nL = 1/3 and (c,d) nL = 2/3 as a
function of interaction strength g. Note that for small g the imbalance, ∆, and band gap vary smoothly
with the latter never vanishing.
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A.4 Spectrum of the M-Matrix

Proper implementation of the lattice Chern-Simons theory requires that the matrix kernel Eq.(2.7) be non-

singular, so as to guarantee that the commutation relations [Ai(x), Aj(y)] = − i
θM

−1
ij (x − y) are well

defined. To access the eigenvalues of the Mij(x− y), we work with its Fourier transform Mij(q) obtained

by substituting the displacement operators sj , j = 1, 2, by their Fourier representation sj(q) = e−iqj , where

qj = q · ej is the momentum component along the direction defined by the unit vector ej . With that,M(q)

is seen to be an anti-Hermitian matrix. Then iM(q) is a Hermitian 6 × 6 matrix, whose eigenvalues are

found to be non-zero, hence M is invertible. To illustrate the non-singular character of the matrix kernel,

we plot below the eigenvalues of iM(q) as function of q1 for the choice q2 = π.

-3 -2 -1 1 2 3

q1

-6

-4

-2

2

4

6

λ

Figure A.4: Spectrum of the Hermitian 6× 6 matrix iM(q) as function of q1 for the choice q2 = π.
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Appendix B

Supplement to Chapter 3

B.1 Details of Flux Attachment

We again direct the reader to Refs. [56,58] for more details about the lattice Chern-Simons action of which

we make use. Here, we record only for completeness the explicit form of theM-matrix for the square lattice

model under consideration, which does not play a role in our mean-field analysis:

M = −1

2

 d2d̂2 −2− 2d1 + 2d̂2 + d̂2d1

2 + 2d2 − 2d̂1 − d̂1d2 −d1 − d̂1

 . (B.1)

As noted in Chapter 2, the form of M is lattice dependent and ensures that the theory is gauge invariant.

We also remind the reader that the lattice Chern-Simons action of Ref. [58] can only be defined on lattices for

which the number of vertices matches the number of plaquettes, of which the square lattice is one example.

B.2 Topological Properties of Period-Two Stripe Phases

B.2.1 Protection of Edge Majorana Flat Band and Bulk Nodes

We briefly detail the protection, at the level of non-interacting band theory, of the Majorana cones found in

the nodal py stripe phase and the Majorana flat bands in both the nodal and gapped py stripe phases of the

period-two case via reflection and particle-hole symmetries [306]. From Fig. 3.5b, we see that the unit cell

of this striped phase consists of two sites, which we label as a (white, low density) sites and b (black, high

density) sites. Using this notation, we can write HF in the usual BdG form (dropping constant terms),

HF =
1

2

∑
k

Ψ†kh(k)Ψk =
1

2

∑
k

Ψ†k

h0(k) ∆(k)

∆(k)† −h0(−k)∗

Ψk (B.2)

181



where we have defined the Nambu spinor

Ψk =

(
ak bk a†−k b†−k

)T
(B.3)

and

h0(k) =

2t cos(ky) + 4gρb − µ −2t cos(kx)

−2t cos(kx) −2t cos(ky) + 4gρa − µ

 , (B.4)

∆(k) =

2i∆a sin(ky) 0

0 2i∆b sin(ky)

 . (B.5)

Here, ρa,b are the average densities on the a and b sites and ∆a,b > 0 the pair fields on the links connecting

the a and b sites, respectively. As a BdG Hamiltonian, Eq. (B.2) automatically satisfies a particle-hole

symmetry:

Ch(k)C−1 = −h(−k) (B.6)

with

C = Kσ0τx =⇒ C2 = 1. (B.7)

Here, K is the complex conjugation operator, the σa, a = 0, . . . , 3, are the Pauli matrices acting on the band

index (with σ0 = 1), and the τa are Pauli matrices acting on the particle-hole sector.

The Hamiltonian is also invariant under reflection about the y-axis, under which

αx,y → α−x,y =⇒ αkx,ky → α−kx,ky (α = a, b). (B.8)

Eq. (B.2) thus satisfies the reflection symmetry

R−1h(kx, ky)R = h(−kx, ky) (B.9)

where, since we are dealing with spinless fermions, R = 1. Defining the composite operator [306] C̃ = RC,
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we have that

C̃−1h(kx, ky)C̃ = −h(kx,−ky). (B.10)

Hence, for fixed kx, h(kx, ky) describes a one-dimensional (particle-hole symmetric) BdG Hamiltonian in

symmetry class D, for which we can define the usual Z2 invariant, M(kx) = ±1 [146]. The nodal points

of h(kx, ky) then correspond to critical points separating regions in kx space with different M(kx). Since

M(kx) takes discrete values, this means the nodal points cannot be gapped out by (local) perturbations

preserving reflection symmetry. Additionally, if one imposes open boundary conditions in the y-direction, a

kx point withM(kx) = −1 will possess a MZM. Hence, the regions in kx space withM(kx) = −1 will yield

the observed edge Majorana flat bands. We note that, although HF also possesses a time-reversal symmetry,

we restrict ourselves to a consideration of the C and P symmetries, as they are sufficient to protect the single

pair of nodes and non-degenerate Majorana flat bands in the period-two stripe phases.

We can computeM(kx) using the usual Pfaffian expression [146], which requires us to express Eq. (B.2)

in a Majorana basis. Following [307], we can define Majorana operators as



γak,1

γbk,1

γak,2

γbk,2


=
√

2UΨk, U =
1√
2

 σ0 σ0

−iσ0 iσ0

 (B.11)

where σ0 = 1 acts on the band index. In the Majorana basis the BdG Hamiltonian takes the form

iA(k) = Uh(k)U†, (B.12)

where

A(k) =

 0 q(k)

−q†(k) 0

 , q(k) = h0(k) + ∆(k). (B.13)

Note that A(k) is antisymmetric for ky = 0, π. We have that [146]

M(kx) = sgn [Pf(A(kx, ky = 0))Pf(A(kx, ky = π))] (B.14)
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where Pf(M) is the Pfaffian of the antisymmetric matrix M . Explicitly,

M(kx) = sgn
[
(4t2 cos2 kx + (2t− 4gρb + µ)(2t+ 4gρa − µ))

× (4t2 cos2 kx + (2t− 4gρa + µ)(2t+ 4gρb − µ))
]
.

(B.15)

In Fig. 3.6c, we have plotted M(kx) on top of the BdG spectra with periodic boundary conditions in both

directions as a horizontal line at E = 0. when M(kx) = −1 (+1), the line is purple (yellow). We see that

the changes inM(kx) coincide exactly with the projected positions of the bulk nodes and the Majorana flat

bands, shown in Fig. 3.6b, exist in regions with M(kx) = −1, up to energy splittings due to the finite size

of the system.

B.2.2 Majorana Zero Modes at Lattice Dislocations

We claimed in the main text that the gapped stripe phase in the period two phase diagram (see Fig.

3.5) is a weak topological superconductor and hence lattice dislocations in this phase should trap MZMs.

Although this is clear from the physical picture described in the main text, we can show this more formally,

following Refs. [308,309]. Indeed, we first note that, following the discussion of the previous subsection, the

particle-hole conjugation operator C = Kσ0τx maps the point (kx, ky) = (π, ky) in the Brillouin zone to

(kx, ky) = (π,−ky). Hence, assuming only translation symmetry, h(kx = π, ky) describes a one-dimensional

BdG Hamiltonian in symmetry class D. Thus, even in the absence of reflection symmetry, we can then still

define a Z2 invariantM(kx = π) = ±1. This integer defines a weak invariant, in that if it is non-trivial, then

the two-dimensional superconductor is effectively described by an array of Kitaev chains stacked along the

x-direction. From Fig. 3.6c, we see that the gapped stripe phase is indeed a weak topological superconductor

of composite fermions. In particular, lattice dislocations corresponding to terminating one of these effective

Kitaev chains in the bulk (i.e. dislocations with Burger’s vector ex) will then trap a Majorana zero mode,

as discussed in Refs. [308,309].
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Appendix C

Supplement to Chapter 5

C.1 Derivation of the Bosonic Parent State from Intralayer Flux

Attachment

Here we describe the intra-layer flux attachment procedure described in the main text, which yields the

bosonic parent state depicted in Fig. 1(b) of the main text. We start again with a trilayer of free Dirac

fermions near a ν = 2→ 1 plateau transition,

LIQH =

3∑
n=1

[
Ψn(i /DA −M)Ψn −

3

2

1

4π
AdA

]
. (C.1)

This theory is dual to a trilayer of Wilson-Fisher composite bosons, Φn, coupled to fluctuating CS gauge

fields, αn, [161,162],

LIQH[A]↔
∑
n

LΦ
n [Φn, αn, A] =

∑
n

[
|DαnΦn|2 − r|Φn|2 − |Φn|4 +

1

4π
αndαn +

1

2π
Adαn −

1

4π
AdA

]
,

(C.2)

where −|Φ|4 again denotes tuning such that the theory is at its Wilson-Fisher fixed point when r = 0, and

the phase diagrams of the two theories match if sgn(r) = − sgn(M).

We now attach a positive flux to the electric charges on layers n = 1 and 3 and a negative flux to those

on layer n = 2. This is implemented in a manifestly gauge invariant way by the following transformation on

each layer’s Lagrangian [207,208],

LΦ
n [Φn, αn, A]→ LΦ

n [Φn, αn, γn] +
1

2π
γndβn +

(−1)n

4π
βndβn +

1

2π
Adβn, (C.3)

where βn, γn are new fluctuating U(1) gauge fields. One can easily check that the electric charges in the

gapped phases of this theory have had their statistics shifted by ±π. Because the equation of motion for γn
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is

d(αn + βn) = dγn , (C.4)

γn may be integrated out while preserving flux quantization. The resulting Lagrangian on each layer is

LΦ
n ≡ |DαnΦn|2 − r|Φn|2 − |Φn|4 +

2

4π
αndαn +

1

4π
[1 + (−1)n]

1

4π
βndβn +

1

2π
αndβn +

1

2π
Adβn , (C.5)

where we have redefined LΦ
n to minimize the number of labels in use. On layers n = 1, 3, the CS term for

βn vanishes. Integrating it out therefore Higgses αn (in other words, sets dαn = dA), leaving a topologically

trivial theory near a superconductor-insulator transition. On layer n = 2, however, the CS term for βn

has level 2, meaning that the gauge theory is topologically nontrivial and has the K-matrix of the Halperin

(2,2,1) state. Explicitly, renaming α2 ≡ α, β2 ≡ β,

LΦ
p = |DAΦp|2 − r|Φp|2 − |Φp|4 +

2

4π
AdA , p = 1, 3 ; (C.6)

LΦ
2 = |DαΦ2|2 − r|Φ2|2 − |Φ2|4 +

2

4π
αdα+

2

4π
βdβ +

1

2π
αdβ +

1

2π
βdA . (C.7)

The trilayer theory,
∑
n L̃Φ

n , is the theory depicted in Fig. 1(b) of the main text.

We now check that these theories are dual to theories of composite vortices, which on clustering yield

the Fibonacci state. Applying the duality used in Eq. (5.2) of the main text along with the transformation

flux attachment transformation in Eq. (C.3), the dual theories of composite vortices are

L̃φn ↔ L̃φp = |Daφp|2 − r̃|φn|2 − |φn|4 +
1

4π
Tr

[
andan −

2i

3
a3
n

]
+

1

2π
γndTr[an] +

1

2π
γndβn +

(−1)n

4π
βndβn +

1

2π
Adβn , (C.8)

where again an are U(2) gauge fields. In this case, both γn and βn can be safely integrated out without

running afoul of flux quantization: integrating out γn implements a constraint on (i.e. Higgses) βn, dβn =

−dTr[an]. The resulting theories involve U(2)1,−1 gauge theories on layers n = 1, 3, which is topologically

trivial [199], and a U(2)1,3 theory on the n = 2 layer,

L̃φn = |Daφp|2 − r̃|φn|2 − |φn|4 +
1

4π
Tr

[
andan −

2i

3
a3
n

]
+ (−1)n

[
1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

]
.

(C.9)

186



As in the discussion in the main text, we are free to invoke charge conjugation symmetry to flip the sign of

the BF term on layer n = 2 relative to those on layers 1, 3. From here, it is straightforward to see that a

nonzero expectation value for the clustering order parameter, 〈Σmn〉 = 〈φ†mφn〉 6= 0, sets a1 = a2 = a3 ≡ a

and produces the Fibonacci U(2)3,1 TQFT,

LFib =
3

4π
Tr

[
andan −

2i

3
a3
n

]
− 1

4π
Tr[a] dTr[a] +

1

2π
AdTr[a] . (C.10)

Integrating out the φn fields but leaving the Fibonacci order parameter thus leads to the final Landau-

Ginzburg theory obtained in the main text,

L =
∑
m,n

Tr
[
|∂Σmn − iamΣmn + iΣmnan|2

]
− Vr[Σ]

+
∑
n

[
LCS[an] + (−1)n

(
1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

)]
. (C.11)

C.2 Representation of the Fibonacci order in terms of U(2)3,1

In this section, we demonstrate explicitly that U(2)3,1 = [SU(2)3 × U(1)2]/Z2 possesses the same anyon

content as that of (G2)1, namely, just the Fibonacci anyon. There are multiple ways to describe the process

of enforcing the Z2 quotient in the definition of U(2)3,1. From the perspective of the anyon content of the

theories, this quotient amounts to condensing [286] a bosonic anyon in the SU(2)3 × U(1)2 product theory

with Z2 fusion rules and either 0 or π braiding statistics with all other anyons. The condensed anyon is then

identified as a local quasiparticle, and so all anyons with which it braids nontrivially are projected out. In

order to identify the anyon to be condensed, let us remind ourselves of the anyon content of the SU(2)3 and

U(1)2 factors:

U(1)2 : 1, s (C.12)

SU(2)3 : [0], [1/2], [1], [3/2]. (C.13)

Here, s is the semion, which has topological spin hs = 1/4 and satisfies the fusion rule s× s = 1. We have

labelled the anyons of SU(2)3 by the representation of SU(2) under which they transform. They are all
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self-dual, satisfying the fusion rules

[0]× [0] = [0] (C.14)

[1/2]× [1/2] = [0] + [1] (C.15)

[1]× [1] = [0] + [1] (C.16)

[3/2]× [3/2] = [0]. (C.17)

From this, we see that [1], which has spin h[1] = 2/5, is the Fibonacci. The only Abelian anyon is [3/2],

which has spin h[3/2] = 3/4, trivial braiding with [1], and non-trivial braiding with [1/2]. We immediately

see that, in the product theory, [3/2]s is an Abelian anyon with spin unity. On condensing this anyon,

all anyons aside from the Fibonacci will become confined, yielding the desired (G2)1 Fibonacci topological

order.

C.3 Constructing the Electron Operators

As stated in the main text, the electron operators used in constructing the Fibonacci wave function must be

selected from the generators of the (G2)1 current algebra. We present the technical details of this process

here. The (G2)1 current algebra has fourteen generators, twelve of which are labeled by the roots of G2.

In order to obtain explicit expressions for these operators, we make use of the duality between (G2)1 and

U(2)3,1 = [SU(2)3 × U(1)2]/Z2, which will allow us to write the generators in terms of operators in the

SU(2)3 and U(1)2 conformal field theories (CFTs).

The U(1)2 factor is described by a chiral boson, ϕ, with compactification radius R = 1. It supports a

single anyon, the semion, represented by the vertex operator

s(z) ≡ eiϕ(z)/
√

2, (C.18)

which has scaling dimension ∆s = 1/4. The operators s2 = ei
√

2ϕ and s2 = e−i
√

2ϕ generate the U(1)2 chiral

algebra, and so correspond to local excitations.

As for SU(2)3, its primary fields, like the anyons in the corresponding TQFT, fall into four topological

sectors labelled by the SU(2) representation under which they transform: [j], j = 0, 1/2, 1, 3/2. In order

to write down explicit forms of these fields and the current operators, we make use of the fact that the

operators of SU(2)3 can be expressed in terms of products of operators in the k = 3 parafermion and U(1)6

CFTs, the former of which we will write as Parafermion3. The U(1)6 CFT is described by a chiral boson φ
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at radius R = 1, with primary fields

al(z) ≡ eilφ/
√

6, l = 0, . . . , 5 (C.19)

These fields have scaling dimensions ∆l = l2/12, from which we see that the field a6 represents a local

excitation. The primary fields of the Parafermion3 CFT and their scaling dimensions are given in Table C.1

while their fusion rules are given in Table C.2. The raising and lowering operators of the SU(2)3 algebra

are given by the operators,

ψ1a
2 = ψ1e

i
√

2/3φ, ψ†1a
2 = ψ2e

−i
√

2/3φ. (C.20)

Table C.1: Scaling dimensions of the Parafermion3 primary fields.
1 ψ1 ψ2 σ1 σ2 ε

∆ 0 2/3 2/3 1/15 1/15 2/5

Table C.2: Fusion rules of Parafermion3.
× ψ1 ψ2 σ1 σ2 ε

ψ1 ψ2

ψ2 1 ψ1

σ1 ε σ2 σ2 + ψ1

σ2 σ1 ε 1 + ε σ1 + ψ2

ε σ2 σ1 σ1 + ψ2 σ2 + ψ1 1 + ε

Now, in order to obtain the (G2)1 algebra from SU(2)3 × U(1)2, we must perform the Z2 quotient. As

in the TQFT description, this corresponds to condensing operators in the

[
3

2

]
s (C.21)

topological sectors. In the language of CFT, this “condensation” means that the operators in these topolog-

ical sectors will be identified as generators of the [SU(2)3×U(1)2]/Z2 (equivalently, (G2)1) CFT. Explicitly,

the operators

a3, ψ1a, ψ2a, a3 (C.22)

are all in the [3/2] sector, and so are topologically equivalent. Indeed, each is related to the other by

fusion with the SU(2)3 generators, forming an SU(2)3 quartet. Hence, performing the Z2 quotient means
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condensing the operators

a3s, ψ1as, ψ2as, a3s

a3s, ψ1as, ψ2as, a3s

(C.23)

This set of operators, combined with the generators of SU(2)3 and U(1)2 constitute the twelve generators

of (G2)1 labelled by its roots [310].

Fig. C.1 depicts the G2 root system labeled by the corresponding current generators. One can check

that vector addition of the roots matches up with fusion of the corresponding current operators. Note also

that the generators naturally organize themselves in terms of their transformation properties under SU(2)

and U(1). The vertical coordinate of the root corresponds to the U(1) charge and the horizontal coordinate

to the SU(2) spin.

Figure C.1: Root system of G2 labelled by the corresponding (G2)1 current generators. The green circles
indicate the operators we identify as the electron operators.

It now remains to determine which generators we should identify as the physical electrons. In the spirit

of Refs. [69, 214], we expect that we must choose two electron operators, by virtue of the fact that the root

system is two-dimensional. The electrons should have the same positive charge, suggesting we should restrict

ourselves to the upper half-plane of the root system. As described in the main text, we expect the Fibonacci

wave function to describe a two-flavor system, and so the electron operators should have opposite SU(2)
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spin. We thus claim that

Ψ↑ ≡ ψ2as = ψ2e
iφ/
√

6+iϕ/
√

2,

Ψ↓ ≡ ψ1as = ψ2e
−iφ/

√
6+iϕ/

√
2

(C.24)

are the appropriate electron operators.

We note that operators a3s and a3s also satisfy our two criteria for charge and spin. In fact, Ψ↑ and Ψ↓

form an SU(2) quartet with a3s and a3s (as can be seen from Fig. C.1), and so one may reasonably ask

whether the latter two operators constitute equally valid choices for the electron operator. As it turns out,

the wave function obtained from a3s and a3s describes an Abelian state, as we demonstrate in the following

section. This suggests, a posteriori, that Ψ↑/↓ are the correct electron operators needed to obtain a wave

function describing the non-Abelian Fibonacci state.

C.4 Derivation of the Fibonacci Wave Function

In this section, we present a computation of the explicit form of the Fibonacci wave function provided in the

main text. With the choice of electron operators given in Eq. (C.24), we can express the wave function as

Ψ({zi, wi}) = 〈
N∏
i=1

Ψ↑(zi)Ψ↓(wi)Obg〉 = 〈
N∏
i=1

ψ2as(zi)ψ1as(wi)Obg〉, (C.25)

where zi and wi label the positions of the up and down spins (spin is used as a stand-in for some flavor

index). Here Obg is a background charge operator that ensures the correlator of the s fields is non-vanishing

and yields the usual Gaussian factor on the plane [212]. Note that such an operator for the a fields is not

necessary, since there are an equal number of a and a fields, ensuring their charge neutrality condition is

satisfied. Physically, this is a consequence of the fact that it is the U(1)2 sector and hence the s fields which

are charged under the external electromagnetic field. We thus obtain (dropping the usual overall Gaussian

factor),

Ψ({zi, wi}) = 〈
N∏
i=1

ψ2(zi)ψ1(wi)〉〈
N∏
i=1

e
i 1√

6
φ(zi)e

−i 1√
6
φ(wi)〉〈

N∏
i=1

e
i 1√

2
ϕ(zi)e

i 1√
2
ϕ(wi)Obg〉 (C.26)

= 〈
N∏
i=1

ψ2(zi)ψ1(wi)〉
∏
i,j

(zi − wi)1/3
∏
i<j

(zi − zj)2/3
∏
i<j

(wi − wj)2/3. (C.27)
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In order to evaluate the remaining correlator, we can use the parafermion operator product expansions

(OPEs),

ψ1(z)ψ1(z′) ∼ (z − z′)−2/3ψ2(z′) + . . . (likewise for 1↔ 2)

ψ1(z)ψ2(z′) ∼ (z − z′)−4/3 + . . . . (C.28)

to effectively point-split the ψ2 operators into products of ψ1 operators:

〈
N∏
i=1

ψ1(z1
i )ψ1(z2

i )ψ1(wi)〉 = 〈
N∏
i=1

(z1
i − z2

i )−2/3ψ2(z2
i )ψ1(wi)〉+ . . . , (C.29)

where, here and in the following, the limit z1
i → z2

i is taken implicitly. The ellipsis represent less singular

terms in the ψ1×ψ1 OPE which vanish in this limit, allowing us to isolate the desired parafermion correlator

when we take z1
i = z2

i ≡ zi at the end of the computation.

Now, the correlator of ψ1 fields is precisely given in terms of the Read-Rezayi (RR) wave functions:

〈
N∏
i=1

ψ1(z1
i )ψ1(z2

i )ψ1(wi)〉 = Ψk=3
RR ({z1

i , z
2
i , wi})Ψ

−2/3
LJ ({z1

1 , z
2
i , wi}). (C.30)

Here, Ψk=3
RR and ΨLJ({zi}) =

∏
i<j(zi − zj) are the ν = 3/2 bosonic RR (taking k = 3 and M = 0 in the

notation of Ref. [65]) and Landau-Jastrow wave functions, respectively. Hence,

〈
N∏
i=1

ψ2(z2
i )ψ1(wi)〉+ . . . = Ψk=3

RR ({z1
i , z

2
i , wi})Ψ

−2/3
LJ ({z1

1 , z
2
i , wi})

N∏
i=1

(z1
i − z2

i )2/3 (C.31)

= Ψk=3
RR ({z1

i , z
2
i , wi})

∏
i<j

(z1
i − z1

j )−2/3(z2
i − z2

j )−2/3(wi − wj)−2/3

×
∏
i 6=j

(z1
i − z2

j )−2/3
∏
i,j

(z1
i − wj)−2/3(z2

i − wj)−2/3.

(C.32)

We can now safely set z1
i = z2

i ≡ zi, in which case the terms contained in the ellipsis vanish identically.

Combining terms and ignoring unimportant overall phase factors, we obtain

Ψ({zi, wi}) = Ψk=3
RR ({zi, zi, wi})

∏
i<j

(zi − zj)−2
∏
i,j

(zi − wj)−1 (C.33)

as our Fibonacci wave function. Here, Ψk=3
RR ({zi, zi, wi}) is the bosonic ν = 3/2 RR wave function for 3N

particles, with the coordinates of N pairs of these particles set equal to one another. As noted in the main

text, the asymmetry in zi and wi is a consequence of having point-split the ψ2 parafermions as opposed
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to the ψ1 parafermions. Had we instead point-split the ψ1 parafermions into products of ψ2 parafermions,

we would have obtained the above expression with zi and wi exchanged. Since the expressions obtained

via these two different point-splitting procedures must necessarily be equal, we can write down the wave

function in a manifestly symmetric way by taking their average:

Ψ({zi, wi}) =
1

2

(
Ψk=3
RR ({zi, zi, wi})∏
i<j(zi − zj)2

+
Ψk=3
RR ({zi, wi, wi})∏
i<j(wi − wj)2

)∏
i,j

(zi − wj)−1. (C.34)

Finally, we return to the remark regarding the choice of electron operators made at the end of the

preceding section. Had we instead attempted to construct a wave function using Ψ↑↑ = a3s and Ψ↓↓ = a3s

as the electron operators, we would have obtained

Ψ̃({zi, wi}) = 〈
N∏
i=1

Ψ↑↑(zi)Ψ↓↓(wi)Obg〉 = 〈
N∏
i=1

ei
√

3
2φ(zi)e−i

√
3
2φ(wi)〉〈

N∏
i=1

e
i 1√

2
ϕ(zi)e

i 1√
2
ϕ(wi)Obg〉 . (C.35)

The correlators of vertex operators can be straightforwardly evaluated to obtain

Ψ̃({zi, wi}) =
∏
i<j

(zi − zj)2(wi − wj)2
∏
i,j

(zi − wj)−1, (C.36)

which describes the Abelian Halperin (2, 2,−1) state, again at filling ν = 2. This gives us some confidence

that Ψ({zi, wi}) correctly describes the Fibonacci state.
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Appendix D

Supplement to Chapter 6

D.1 Details of U(N) Fermion-Fermion Duality Examples

In this Appendix we provide the details of the analysis outlined in Section 6.3.6. We begin by deriving the

duality between Eq. (6.27) and Eq. (6.28) and then identify the states listed in Table 6.3.

D.1.1 Derivation of the Duality

As noted in Section 6.3.6, the fermionic theories Theory A′ and Theory B′ are both dual to the bosonic

Landau-Ginzburg theory for the ν = 1/k Laughlin state, which is described by the Lagrangian

LΦ(k) = |DbΦ|2 − |Φ|4 +
k

4π
bdb+

1

2π
bdA. (D.1)

Here, Φ is a complex scalar field, b is a U(1) gauge field, and A is the external electromagnetic field. It is

straightforward to see that one obtains the Laughlin state when Φ is gapped by a mass and a trivial insulator

when Φ condenses.

In order to derive these dualities, we take as our starting point the SU/U duality of Eq. (6.3),

|DAΦ|2 − |Φ|4 ←→ iη /Duη −
1/2

4π
Tr

[
udu− 2i

3
u3

]
− 1

2π
Tr[u]dA− N

4π
AdA, a ∈ U(N), (D.2)

where u is a U(N) gauge field and η is a fermion in the fundamental representation of U(N). Note that the

rank N can be an arbitrary integer, and so the above equation implies that the Wilson-Fisher theory is dual

to an infinite number of fermionic U(N) gauge theories. Now, one can derive new dualities from old ones by

applying the modular transformations [208]

S : L[A] 7→ L[b] +
1

2π
Adb , T : L[A] 7→ L[A] +

1

4π
AdA , (D.3)

to both sides of a duality, where again A is the background EM field and b is a new dynamical U(1) gauge
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field. Here, S is the operation of promoting a background gauge field to a dynamical one, while T corresponds

to the addition of a Landau level. Applying ST k to the SU/U duality yields,

LΦ(k)←→ iη /Duη −
1/2

4π
Tr

[
udu− 2i

3
u3

]
− 1

2π
Tr[u]db− N − k

4π
bdb+

1

2π
bdA = LB′(k,N) . (D.4)

On the other hand, we can also consider the Abelian bosonization duality [161,162],

|DAΦ|2 − |Φ|4 ←→ iψ /Daψ −
1

2

1

4π
ada+

1

2π
adA− 1

4π
AdA , (D.5)

where a is an emergent U(1) gauge field and ψ a Dirac fermion. Applying ST k to this duality, we find

LΦ(k)←→ iψ /Daψ −
1

2

1

4π
ada+

1

2π
adv +

k − 1

4π
vdv +

1

2π
vdA = LA′(k). (D.6)

We thus arrive at the desired dualities

LA′(k)←→ LΦ(k)←→ LB′(k,N). (D.7)

We emphasize that these dualities hold true for any value of the rank, N > 0, of the gauge group U(N) of

Theory B′.

D.1.2 Examples Involving Gapless States

Let us now investigate the states predicted by the dual theories, Theory A′ and Theory B′, at fractional

electronic filling fractions, following the logic in our study of the dual fermionic theories in the SU(2)

quadrality in Section 6.3. We define the filling fraction of the ψ composite fermions as

νψ =
2π〈ψ†ψ〉
〈εij∂iaj〉

. (D.8)

Using the equations of motion of LA′ , we find the following relationship between the electronic and ψ filling

fractions

νψ =
1

2
+

1

−1/ν + (k − 1)
⇐⇒ ν =

2νψ − 1

2(k − 1)νψ − k − 1
. (D.9)

As for the composite fermions of the non-Abelian Theory B′, to define the η filling fraction, we first

decompose the U(N) gauge field as u = uSU(N) + ũ1, where 1 is the N × N identity matrix, ũ is a U(1)
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gauge field, and uSU(N) is an SU(N) gauge field. In the presence of a non-zero U(1) flux, 〈εij∂iũj〉, the η

fermion Landau level degeneracy is given by

dLL =
〈εij∂iũj〉A

2π
× (color degeneracy)× (charge) =

〈εij∂iũj〉A
2π

×N × 1 =
N〈εij∂iũj〉A

2π
. (D.10)

Hence, the η fermion filling fraction is given by1

νη = − 2π〈η†η〉
N〈εij∂iũj〉

. (D.11)

Using the equations of motion of LB′ , we find

νη = −1

2
+

N

1/ν +N − k
⇐⇒ ν =

2νη + 1

2(k −N)νη + (k +N)
. (D.12)

Let us suppose the ψ fermions fill up an integer number of LLs, so that νψ = p−1/2. Then, from Eq. (D.9),

we have

ν =
p− 1

(p− 1)(k − 1)− 1
, (D.13)

which is simply the Jain sequence of states.

We are interested in seeing whether a gapped state of the ψ fermions ever corresponds to a metallic state

of the η fermions (i.e. with νη → ∞). From Eq. (D.12), we see that the η fermions form a metallic state

when 1/ν = −N + k ∈ Z. We must therefore look for solutions of the equation

k − 1− (p− 1)−1 = −N + k. (D.14)

The only valid solution with N > 0 is (N, p) = (2, 2). So, when N = 2 and the ψ fermions fill the p = 2

Landau level, the η fermions form a metallic state. The electronic filling fraction is ν∗ = 1/(k − 2). At this

filling, we can integrate out the ψ fermions in Theory A′ to obtain the effective action

LA′,eff =
k − 2

4π
vdv +

1

2π
vdA . (D.15)

We thus have two cases to consider: k = 2 and k 6= 2. When k = 2, Theory A′ yields the usual dual theory

for a superfluid (recall that there is an implicit Maxwell term in the action for c). This is not surprising,

1We add the minus sign for consistency with the definition of the χ filling fraction νχ of Eq. (6.19) when N = k = 2.
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as the filling fraction of the electrons (which are bosons for k = 2) is ν = ∞, which is to say they see no

magnetic field. Hence, for k = 2, both Theory A′ and Theory B′ predict compressible states. In contrast,

for k 6= 2, Theory A′ describes the incompressible ν = 1/(k − 2) Laughlin state, while Theory B′ again

describes a metallic state of the η fermions.

Let us now consider the inverse scenario in which the η fermions fill an integer number of LLs, so that

νη = s− 1/2. Hence,

ν =
s

s(k −N) +N
, (D.16)

From Eq. (D.9), we see that the ψ-fermions are in a metallic state when 1/ν = k − 1. This implies

s− 1

s
= N > 0, (D.17)

for which the only solution is (N, s) = (2, 2). In this case, the electronic filling fraction is ν∗ = 1/(k − 1).

This simply corresponds to the usual sequence of incompressible states for the fermionic (k odd) and bosonic

(k even) Jain sequences. At these fillings, we can integrate out the η fermions in Theory B′ to obtain the

effective action

LB′,eff =
−2

4π
Tr

[
udu− 2i

3
u3

]
+
k − 2

4π
bdb− 1

2π
Tr[u]db+

1

2π
bdA , (D.18)

describing a non-Abelian topological order. Specifically, this is the Lagrangian for the [U(2)spin
−2 ×U(1)4(k−1)]/Z2

↔ [SU(2)2 × U(1)4(k−1)]/Z2 = U(2)2,2(k−1) Chern-Simons theory.

In order to understand how one arrives at this identification of the Lagrangian as that for a quotient

theory, let us start with a decoupled U(2)spin
−2 × U(1)4(k−1) Chern-Simons theory:

L =
−2

4π
Tr

[
ûdû− 2i

3
û3

]
+

4(k − 1)

4π
b̂db̂+

2

2π
b̂dA . (D.19)

Now, taking the Z2 quotient of this theory amounts to declaring that û and b̂ are no longer “good” gauge

fields but the linear combinations

u = û− b̂1 (D.20)

b = 2b̂ (D.21)

are [143]. That is to say, we declare u and b to satisfy the appropriate flux quantization conditions. In more
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formal terms, taking the Z2 quotient means we gauge the common Z2 one-form symmetry of the U(2)spin
−2

and U(1)4(k−1) factors [143, 217] (which is to say, we project out all Wilson lines which have non-trivial

braiding with respect to the Wilson line generating the Z2 one-form symmetry). Rewriting L in terms of

these gauge fields, we arrive at Eq. (D.18), as desired.

D.1.3 Examples Involving Gapped States

Lastly, we can look for filling fractions at which both the ψ and η fermions form IQH states. Setting Eqs.

(D.13) and (D.16) equal to one another, we find that this happens when

N =
s

s− 1

p

p− 1
(D.22)

The topological orders predicted by Theory A′ and Theory B′ at these filling fractions are described by,

respectively, the low energy actions

LA′,eff =
p− 1

4π
ada+

1

2π
adv +

k − 1

4π
vdv +

1

2π
vdA , (D.23)

LB′,eff = − s

4π
Tr

[
udu− 2i

3
u3

]
+
k − 2

4π
bdb− 1

2π
Tr[u]db+

1

2π
bdA . (D.24)

One integer solution to the above equation is given by (s, p,N) = (3, 4, 2), corresponding to an electronic

filling fraction of ν∗ = 3/(3k − 4). Here, Theory A′ predicts a U(1)spin × U(1) theory (note a is a

spinc connection while v is a regular gauge field) describing the Abelian Jain state at ν∗ = 2k/(2k − 3).

Using the same quotient construction as in the previous subsection, we can see that Theory B′ describes

a [U(2)spin
−3 × U(1)3(3k−4)]/Z3 ↔ [SU(3)2 × U(1)3(3k−4)]/Z3 = U(3)2,3k−4 topological order. A second

integer solution is given by (s, p,N) = (4, 3, 2), corresponding to an electronic filling fraction of ν∗ =

2/(2k − 3). Theory A′ again predicts an Abelian Jain state, whereas Theory B′ predicts a non-Abelian

[U(2)spin
−4 × U(1)8(2k−3)]/Z4 ↔ [SU(4)2 × U(1)8(2k−3)]/Z4 = U(4)2,2(2k−3) topological order.
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Appendix E

Supplement to Chapter 7

E.1 Modular Functions

In this appendix we collect the definitions and basic properties of the θ and η functions. First, we introduce

the notation

q = e2πiτ , (E.1)

where τ ∈ C is the modular parameter. The Dedekind η function is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn). (E.2)

Under modular transformations, the η function satisfies

η(τ + 1) = eπi/12η(τ), (E.3)

η(−1/τ) =
√
−iτη(τ). (E.4)

We also make use of the θ functions,

θαβ (τ) =
∑
n∈Z

q
1
2 (n+α)2e2πi(n+α)β . (E.5)

Under modular transformations, these functions satisfy

θαβ (τ + 1) = e−πiα(α−1)θαα+β− 1
2
(τ), (E.6)

θαβ (−1/τ) =
√
−iτe2πiαβθβ−α(τ). (E.7)
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The standard Jacobi θ functions (see, for instance, Ref. [311]) can be expressed in terms of these more

general functions:

θ2(τ) =
∑
n∈Z

q(n+1/2)2/2 = θ
1/2
0 (τ), (E.8)

θ3(τ) =
∑
n∈Z

qn
2/2 = θ0

0(τ), (E.9)

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 = θ0

1/2(τ). (E.10)

Lastly, we note that for τ = iτ2, with τ2 ∈ R+, we have that

lim
τ2→∞

η(τ) = q1/24 . (E.11)

lim
τ2→∞

θαβ (τ) = δα,0 . (E.12)

E.2 Details of Projected Ground States

E.2.1 Untwisted Sectors

For completeness, we can write down the explicit form of the ground state in, say, the eirφ sector:

|ψeirφ〉 = Peirφ,B |ψ̂eirφ〉 = |ψeirφ,1〉 ⊗ |ψeirφ,2〉 , (E.13)

where we made use of Eq. (7.80). Following Section 7.3.1, we further rewrite Peirφ,B = Peirφ,RBPeirφ,LB so

that we can express the exact interface ground states as

|ψeirφ,1〉 = Peirφ,RB |ψ̂eirφ,1〉 =
1

2
(1 + (−1)FRB (−1)NRB+r/n) |ψ̂eirφ,1〉 , (E.14)

|ψeirφ,2〉 = Peirφ,LB |ψ̂eirφ,2〉 =
1

2
(1 + (−1)FLB (−1)NLB−r/n) |ψ̂eirφ,2〉 . (E.15)

As is evident from the above expression, the effect of the projection on, say, |ψ̂eirφ,1〉, is to annihilate all

states not satisfying (−1)FRB (−1)NRB+r/n = 1. As discussed in the main text, the form of |ψ̂eirφ,1〉 is such

that the remainig states will also satisfy (−1)FLA(−1)NLA−r/n = 1. Analogous statements hold for the action

of the projection on |ψ̂eirφ,2〉. Note that these expressions for the projections require that |ψ̂eirφ,1/2〉 already
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obey the correct quantization of the winding numbers, NµB for sector eirφ. Explicitly, we can write

|ψeirφ,1〉 =
1

2

|Gb,osc,1〉 ⊗
∑

N∈Z− r
n

e−
veπnN

2

2L |NRB = N〉 |NLA = −N〉 ⊗
∏
k>0

(
1 + ie−ṽek/2d†−kc

†
k

)
|0〉

+ |Gb,osc,1〉 ⊗
∑

N∈Z− r
n

(−1)N+ r
n e−

veπnN
2

2L |NRB = N〉 |NLA = −N〉 ⊗
∏
k>0

(
1− ie−ṽek/2d†−kc

†
k

)
|0〉

 ,
(E.16)

with |ψeirφ,2〉 taking a similar form. Focusing on the explicit expression for |ψeirφ,1〉, we see that every

state appearing in the second line of Eq. (E.16) with (−1)FRB (−1)NRB+r/n = −1 will indeed cancel with a

corresponding state in the first line.

E.2.2 Twisted Sectors

Ground State

We present here the explicit form of the approximated ground state in the a = σei(r+1/2)φ sector:

|ψa〉 = PB |ψ̂a〉 =
1

2
(1 + (−1)FB (−1)NRB+NLB ) |ψ̂a〉 , (E.17)

where we used Eq. (7.106) to write P |ψ̂a〉 = PB |ψ̂a〉. As in the untwisted sector case of the previous subsec-

tion, we made use of the fact that all the states appearing in |ψ̂a〉 obey the correct quantization of the winding

modes, Nµα, appropriate to the a = σei(r+1/2)φ sector to write down a closed form expression for PB |ψ̂a〉.

The effect of the projection is to annihilate all states not satisfying (−1)FB (−1)NRB+NLB = 1. Again, as

discussed in the main text, the remaining states will also automatically satisfy (−1)FA(−1)NRA+NLA = 1.
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Explicitly evaluating the above expression for |ψa〉, we can write

|ψa〉 =
1

2

|Gb,osc,1〉 ⊗
∑

N∈Z− r+1/2
n

e−
veπnN

2

2L |NRB = N〉 |NLA = −N〉 ⊗
∏
k>0

(
1 + ie−ṽek/2d†−kc

†
k

)
|0〉


⊗

|Gb,osc,2〉 ⊗
∑

N∈Z− r+1/2
n

e−
veπnN

2

2L |NLB = −N〉 |NRA = N〉 ⊗
∏
k>0

(
1 + ie−ṽek/2c̃†−kd̃

†
k

)
|0〉


⊗ 1√

2
(|0A, 0B〉+ i |1A, 1B〉)

+
1

2

|Gb,osc,1〉 ⊗
∑

N∈Z− r+1/2
n

(−1)N+
r+1/2
n e−

veπnN
2

2L |NRB = N〉 |NLA = −N〉 ⊗
∏
k>0

(
1− ie−ṽek/2d†−kc

†
k

)
|0〉


⊗

|Gb,osc,2〉 ⊗
∑

N∈Z− r+1/2
n

(−1)−N−
r+1/2
n e−

veπnN
2

2L |NLB = −N〉 |NRA = N〉 ⊗
∏
k>0

(
1− ie−ṽek/2c̃†−kd̃

†
k

)
|0〉


⊗ 1√

2
(|0A, 0B〉 − i |1A, 1B〉).

(E.18)

Although this is a rather cumbersome expression, we can parse its meaning as follows. The first three lines

are simply a re-expression of |ψ̂a〉. The last three lines correspond to the state obtained by acting on |ψ̂a〉 with

(−1)FB (−1)NRB+NLB . Every state appearing in the last three lines for which (−1)FB (−1)NRB+NLB = −1

will thus cancel with a state in the first three lines, leaving only states with (−1)FB (−1)NRB+NLB = 1, as

desired.

Zero Mode Fermion Parity

Now, as alluded to in the main text, there is a subtlety regarding how to interpret the fermion parity of the

zero mode. We constructed the fermion fA from the MZMs d0 and d̃0 as fA = (d0 + id̃0)/
√

2. However, we

can also define f ′A = (d̃0 + id0)/
√

2, so that

|0, 0̃〉 =
1√
2

(|0A, 0B〉+ i |1A, 1B〉) =
1√
2

(|1′A, 0B〉 − |0′A, 1B〉). (E.19)

In other words, fA being occupied is equivalent to saying that f ′A is unoccupied and vice versa. The point

at issue is that the Z2 symmetry operators, Gα [see Eq. (7.41)], are defined in terms of the total fermion

parities, (−1)Fα , and one must decide whether this parity is measured relative to the occupation of fA or f ′A.

Indeed, if we measured it with respect to f ′A, one would find that Pa |ψ̂a〉 = 0 since, for each state appearing
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in |ψ̂a〉, the total fermion parities of A and B would be opposite to one another.

In order to remove this ambiguity in the definition of the fermion parity, it is necessary to resort to

physical arguments which can provide additional input, which we now provide. Before physically cutting

the torus into the cylinders A and B, the torus starts in the ground state with a σei(r+1/2)φ Wilson loop

wrapping around the y-cycle (i.e. the cycle perpendicular to the entanglement cut). On performing the

physical cut of the torus into two cylinders, the Wilson loop is cut into two Wilon lines with endpoints at

the edges of the cylinders. Physically, this configuration corresponds to having a σei(r+1/2)φ anyon on one

end of each cylinder and the corrsponding conjugate anyon on the other end of each cylinder.

Let us label these anyons as σA,r ≡ σAe
i(r+1/2)φA , σA,r ≡ σAe

i(r+1/2)φA , σB,r ≡ σBe
i(r+1/2)φB , and

σB,r ≡ σBei(r+1/2)φB . We claim that the pairs of anyons at each interface must fuse to the identity, and not

to a neutral Majorana:

σA,r × σB,r = σB,r × σA,r = 1. (E.20)

Physically, we can think of the electron tunneling terms which glue the edges together as hybridizations of

σA,r with σB,r and σB,r with σA,r. This would make it energetically preferable for each pair of these anyons

to fuse into the identity, as opposed to a Majorana fermion. In particular, when we expanded the tunneling

term about one of its minima, we did so assuming that this corresponded to the ground state, which one

should interpret as the vacuum.

Now, we wish to identify what the allowed fusion possibilities for σA×σA and σB ×σB should be. From

the previous paragraph, we see that fusing all four of the twist anyons should yield the vacuum. This requires

that either σA × σA = σB × σB = 1 or σA × σA = σB × σB = χ. This suggests that we should define the

complex fermions f1,2 on cylinders A and B to be such that we can express the ground state as

|0, 0̃〉 =
1√
2

(|01, 02〉+ α |11, 12〉), (E.21)

where α is some unimportant phase. Hence, our choice of measuring the fermion parity relative to fA and

fB is consistent with this physical picture. We note that this line of reasoning is similar to more carefully

constructed arguments for determining the ground state degeneracy of the Moore-Read state on the torus –

see, for instance, Refs. [312,313].
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E.3 Alternative Representation of the Ising CFT

In this section, we consider the edge theory of the Ising topological order which, conventionally, is described

by the Ising CFT. We first write down a CFT description of the edge which is topologically equivalent to

the Ising CFT, in a sense to be made more precise shortly. We then show how we can write down an explicit

gapping interaction for the interface of two Ising edges using this alternative CFT description, which does

not appear possible (at least based on a superficial analysis) in the standard Ising CFT description of the

edge.

E.3.1 Coset Construction and Hilbert Space Structure

In the usual free-field representation, the Ising edge theory contains a single chiral Majorana:

L′ = ψ
i

2
(∂t − ∂x)ψ. (E.22)

The three topological sectors in the theory are 1, σ, and ψ – the vacuum, twist operator, and Majorana

sectors, respectively. Gapping an interface between two Ising topological orders thus appears difficult, as any

local tunneling operator would have to involve terms quadratic in both the left- and right-moving Majoranas,

which näıvely would square to unity.

We instead make use of the coset representation,

Ising =
SO(N + 1)1

SO(N)
∼ SO(N + 1)1 � SO(N)1. (E.23)

Here we take N = 2r, 1 < r ∈ Z. On the left hand side of the equivalence, we have a theory of N + 1

chiral Majoranas in which we gap out N of them. On the right hand side, we have a theory of N + 1 chiral

Majoranas and N anti-chiral Majoranas in which we have condensed a certain set of bosonic anyons so as

to identify certain topological sectors. Now, the Ising CFT is identical to the coset SO(N + 1)1/SO(N), in

that they have the same primary operator content as well as total and chiral central charges. In contrast,we

will say the Ising CFT and the SO(N + 1)1�SO(N)1 CFT are topologically equivalent, in that they possess

the same primary operator content (i.e. topological sectors) and chiral central charge, but not the same

total central charge [286,314].

Let us now outline in detail the structure of the SO(N + 1)1 � SO(N)1 theory. Placing the Ising
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topological order on a cylinder, as in Fig. 7.1, the µ = L,R = +,− edges are described by the Lagrangians

Lµ =

N∑
α=0

ψαµ
i

2
(∂t − µ∂x)ψαµ +

N∑
a=1

ψ
a

µ

i

2
(∂t + µ∂x)ψ

a

µ. (E.24)

So, on edge L (R), there are N + 1 chiral (anti-chiral) Majoranas, ψαµ and N anti-chiral (chiral) Majoranas,

ψ
a

µ. For simplicity, we have set all velocities to unity. Additionally, we adopt the convention that Greek

indices α, β run from 0 to N and the Latin indices a, b from 1 to N . This theory possesses the currents

Jαβµ = iψαµψ
β
µ , J

ab

µ = iψ
a

µψ
b

µ, (E.25)

which generate the SO(N+1)1 and SO(N)1 Kac-Moody algebras of the two edges, respectively. Additionally,

the operators

Mαa
µ = iψαµψ

a

µ (E.26)

correspond to the condensed bosons encoded in the tensor product, �, and hence, like the currents, are local-

electronic objects. Using these expressions, we can see that this theory is in fact topologically equivalent to

the Ising CFT. For instance, starting with one Majorana fermion, say, ψα, we can obtain any other Majorana

ψβ or ψ
a

by fusing it with Jαβ or Mαa. Hence, there is only one distinct Majorana fermion sector, as in

the Ising theory.

Although not strictly necessary, it will prove convenient for our purposes to bosonize as many of the

fermions as possible. Since we have taken N = 2r to be even, we can pair up all the Majoranas in the

SO(N)1 factor into Dirac fermions and bosonize them:

cjµ = (ψ
2j−1

µ + iψ
2j

µ )/
√

2 ∼ eiφ
j
µ , j = 1, . . . , r. (E.27)

Hence,

ψ
2j−1

µ ∼ cos(φ
j

µ), ψ
2j

µ ∼ sin(φ
j

µ). (E.28)

As for the SO(N + 1) factor, we can bosonize all but one of the Majoranas, say the µ = 0 one:

cjµ = (ψ2j−1
µ + iψ2j

µ )/
√

2 ∼ eiφ
j
µ , j = 1, . . . , r. (E.29)
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Hence

ψ2j−1
µ ∼ cos(φjµ), ψ2j

µ ∼ sin(φjµ). (E.30)

The µ = L,R = +,− edges are then described by the Lagrangians

Lµ =
1

4π

r∑
j=1

[
∂xφ

j
µ(µ∂t − ∂x)φjµ + ∂xφ

j

µ(−µ∂t − ∂x)φ
j

µ

]
+ ψµ

i

2
(∂t − µ∂x)ψµ, (E.31)

where we have relabelled ψα=0
µ ≡ ψµ. In this partially bosonized language, the currents are given by

Jαβ ∼


cos(φ(α+1)/2) cos(φ(β+1)/2), α odd, β odd

cos(φ(α+1)/2) sin(φβ/2), α odd, β even

sin(φα/2) sin(φβ/2), α even, β even

(E.32)

for α, β 6= 0, while,

J0β ∼


ψ cos(φ(β+1)/2), β odd

ψ sin(φβ/2), β even

, (E.33)

for β 6= 0, and

J
ab ∼


cos(φ

(a+1)/2
) cos(φ

(b+1)/2
), a odd, b odd

cos(φ
(a+1)/2

) sin(φ
b/2

), a odd, b even

sin(φ
a/2

) sin(φ
b/2

), a even, b even.

(E.34)

The local-electronic operators, Mαa, are likewise given by

Mαa ∼


cos(φ(α+1)/2) cos(φ

(a+1)/2
), α odd, a odd

cos(φ(α+1)/2) sin(φ
a/2

), α odd, a even

sin(φα/2) sin(φ
a/2

), α even, a even

(E.35)
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for α 6= 0, and by

M0a ∼


ψ cos(φ

(a+1)/2
), a odd

ψ sin(φ
a/2

), a even.

(E.36)

We have suppressed the µ = L,R edge subscript for compactness in the above expressions.

Now, as discussed in Section 7.2 for the MR theory, it is important that we understand the organization

of the Hilbert space as dictated by the currents. Let us first work in the fermionic language of Eq. (E.24)

and Eq. (E.25). As described above, there are three topological sectors: 1, ψ, and σ. Since the currents are

all bilinears in the Majorana fields, it immediately follows that all states within a topological sector have

the same total fermion parity, (−1)F , where (−1)F anti-commutes with all the Majorana fields.

Similar statements hold in the (partially) bosonized language. From Equations (E.32)-(E.36) we see that

the current operators either change the bosonic winding number parity of two bosonic fields, or change the

bosonic winding number parity of one field and the Majorana fermion parity. In other words, in the identity

sector, the total bosonic winding number parity (of both the barred and unbarred fields) must much that of

the fermion parity – note the similarity with the “gluing” constraint in the Moore-Read CFT.

In order to express this Hilbert space organization more formally, let us identify the operator which

generates the underlying Z2 gauge symmetry. As usual, we write the bosonic winding numbers as

N j
µ =

∫ L

0

∂xφ
j
µ

2π
dx, N

j

µ =

∫ L

0

∂xφ
j

µ

2π
dx, (E.37)

which have integer eigenvalues. We then define the operator

I = (−1)F (−1)
∑
j(N

j
R+NjL)(−1)

∑
j(N

j
R+N

j
L), (E.38)

where (−1)F anti-commutes with the Majorana fields ψL and ψR. This generates the Z2 transformation,

ψµ → −ψµ, φjµ → φjµ + µπ, φ
j

µ → φ
j

µ − µπ, (E.39)

under which the currents are manifestly invariant. The physical Hilbert space is defined by the constraint

I = 1, which simply states the total number of fermionic excitations (recalling that the vertex operators eiφ
j
µ

and eiφ
j
µ obey fermionic statistics) is even.
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E.3.2 Gapping Term

Let us now return to the question which motivated the search for an alternative representation of the Ising

edge theory, namely, how to gap out an interface of Ising edges. For instance, suppose we would like to glue

the two edges of the cylinder in Fig. 7.1 together by bringing them close together and adding an interaction

to gap them out. To do so, we can simply write down a current-current interaction, which is local by

definition and takes the form of a Gross-Neveu interaction [302]:

Hgap = u
∑
α,β

JαβR JαβL + u
∑
a,b

JabR J
ab
L = −u(ψR ·ψL)2 − u(ψR ·ψL)2. (E.40)

In the language of the standard Ising edge theory (i.e. the usual Ising CFT), this interaction heuristically

corresponds to (ψLψR)2, as one would expect on the basis of an anyon condensation picture of the gapped

interface. Indeed, condensing ψLψR in the Ising× Ising theory yields the Toric code topological order, which

can further be condensed to a trivial order. In the partially bosonized language, this Gross-Neveu interaction

becomes (dropping terms which only renormalize velocities)

Hgap =− u
∑
j1 6=j2

[
cos(2Θj1) cos(2Θj2) + cos(2Θ

j1
) cos(2Θ

j2
)
]
− u

r∑
j=1

cos(2Θj)iψLψR (E.41)

where we have defined

2Θj ≡ φjR − φ
j
L, 2Θ

j
= φ

j

R − φ
j

L. (E.42)

It is straightforward to see that Eq. (E.41) will gap out the interface – the sine-Gordon terms will pin the

angle variables, which in turn will result in a mass term for the remaining Majoranas.
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Appendix F

Chern-Simons conventions for
Chapters 4, 5, and 6

Here we lay out our conventions for non-Abelian Chern-Simons gauge theories. We define U(N) gauge fields

aµ = abµt
b, where tb are the (Hermitian) generators of the Lie algebra of U(N), which satisfy [ta, tb] = ifabctc,

where fabc are the structure constants of U(N). The generators are normalized so that Tr[tbtc] = 1
2δ
bc. The

trace of a is a U(1) gauge field, which we require to satisfy the Dirac quantization condition,

∫
Σ

dTr[a]

2π
= n ∈ Z . (F.1)

where Σ ⊂ X is an oriented 2-cycle in spacetime, which we denote X. If aµ couples to fermions, then it is a

spinc connection, and it satisfies a modified flux quantization condition

∫
Σ

dTr[a]

2π
=

∫
Σ

w2

2
+ n , n ∈ Z , (F.2)

where w2 is the second Stiefel-Whitney class of X. In general, the Chern-Simons levels for the SU(N) and

U(1) components of a can be different. We therefore adopt the standard notation [68],

U(N)k,k′ =
SU(N)k × U(1)Nk′

ZN
. (F.3)

By taking the quotient with ZN , we are restricting the difference of the SU(N) and U(1) levels to be an

integer multiple of N ,

k′ = k + nN , n ∈ Z . (F.4)

This enables us to glue the U(1) and SU(N) gauge fields together to form a gauge invariant theory of a

single U(N) gauge field a = aSU(N) + ã1, with Tr[a] = Nã having quantized fluxes as in Eq. (F.1). The
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Lagrangian for the U(N)k,k′ theory can be written as

LU(N)k,k′
=

k

4π
Tr

[
ada− 2i

3
a3

]
+
k′ − k
4πN

Tr[a]dTr[a] (F.5)

=
k

4π
Tr

[
aSU(N)daSU(N) −

2i

3
a3
SU(N)

]
+
Nk′

4π
ãdã . (F.6)

For the case k = k′, we simply refer to the theory as U(N)k.

Throughout this thesis, we implicitly regulate non-Abelian (Abelian) gauge theories using Yang-Mills

(Maxwell) terms, as opposed to dimensional regularization [99,315]. In Yang-Mills regularization, there is a

one-loop exact shift of the SU(N) level, k → k+sgn(k)N , that does not appear in dimensional regularization.

Consequently, to describe the same theory in dimensional regularization, one must start with a SU(N) level

kDR = k + sgn(k)N . The dualities discussed in this thesis e.g. Eqs. (4.13)-(4.15), therefore would take a

somewhat different form in dimensional regularization.
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[149] Z. Liu, G. Möller, and E. J. Bergholtz, Exotic Non-Abelian Topological Defects in Lattice Fractional
Quantum Hall States, Phys. Rev. Lett. 119, 106801 (2017).

[150] S. L. Sondhi and K. Yang, Sliding phases via magnetic fields, Phys. Rev. B 63, 054430 (2001).

[151] C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Fractional Quantum Hall Effect in an Array of
Quantum Wires, Phys. Rev. Lett. 88, 036401 (2002).

[152] J. C. Y. Teo and C. L. Kane, From Luttinger liquid to non-Abelian quantum Hall states, Phys. Rev.
B 89, 085101 (2014).

[153] M. Storni, R. H. Morf, and S. Das Sarma, Fractional quantum hall state at ν = 5
2 and the moore-read

pfaffian, Phys. Rev. Lett. 104, 076803 (2010).

[154] M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H. Rezayi, Infinite density matrix renormalization
group for multicomponent quantum hall systems, Phys. Rev. B 91, 045115 (2015).

[155] E. H. Rezayi, Landau level mixing and the ground state of the ν = 5/2 quantum hall effect, Phys.
Rev. Lett. 119, 026801 (2017).

[156] R. V. Mishmash, D. F. Mross, J. Alicea, and O. I. Motrunich, Numerical exploration of trial wave
functions for the particle-hole-symmetric pfaffian, Phys. Rev. B 98, 081107 (2018).

[157] E. Ardonne, R. Kedem, and M. Stone, Filling the Bose sea: symmetric quantum Hall edge states and
affine characters, Journal of Physics A: Mathematical and General 38, 617 (2004).

[158] X. G. Wen, Non-Abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett. 66, 802
(1991).

[159] X.-G. Wen, Projective construction of non-Abelian quantum Hall liquids, Phys. Rev. B 60, 8827
(1999).

[160] M. Barkeshli and X.-G. Wen, Effective field theory and projective construction for Zk parafermion
fractional quantum Hall states, Phys. Rev. B 81, 155302 (2010).

[161] N. Seiberg, T. Senthil, C. Wang, and E. Witten, A Duality Web in 2+1 Dimensions and Condensed
Matter Physics, Annals of Physics 374, 395 (2016).

218



[162] A. Karch and D. Tong, Particle-Vortex Duality from 3D Bosonization, Phys. Rev. X 6, 031043 (2016).

[163] C. Wang and T. Senthil, Dual Dirac liquid on the surface of the electron topological insulator, Phys.
Rev. X 5, 041031 (2015).

[164] M. A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from
electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93, 245151 (2016).

[165] D. Radicevic, D. Tong, and C. Turner, Non-Abelian 3d Bosonization and Quantum Hall States, JHEP
12, 067 (2016), 1608.04732.

[166] H. Goldman, M. Mulligan, S. Raghu, G. Torroba, and M. Zimet, Two-dimensional conductors with
interactions and disorder from particle-vortex duality, Phys. Rev. B 96, 245140 (2017), 1709.07005.

[167] A. Hui, E.-A. Kim, and M. Mulligan, Non-abelian bosonization and modular transformation approach
to superuniversality, Phys. Rev. B 99, 125135 (2019).

[168] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil, Deconfined quantum critical points:
Symmetries and dualities, Phys. Rev. X 7, 031051 (2017).

[169] A. Thomson and S. Sachdev, Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel
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[197] J. Fröhlich and A. Zee, Large scale physics of the quantum Hall fluid, Nuclear Physics B 364, 517
(1991).

[198] R. Jackiw and P. Rossi, Zero modes of the vortex-fermion system, Nuclear Physics B 190, 681 (1981).

[199] P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP 09, 095
(2016), 1607.07457.

[200] O. Aharony, F. Benini, P.-S. Hsin, and N. Seiberg, Chern-Simons-matter dualities with SO and USp
gauge groups, JHEP 02, 072 (2017), arXiv:1611.07874.

[201] M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid
states, Phys. Rev. B 89, 235116 (2014).

[202] D. F. Mross, J. Alicea, and O. I. Motrunich, Symmetry and duality in bosonization of two-dimensional
Dirac fermions, Phys. Rev. X 7, 041016 (2017).

220



[203] H. Goldman and E. Fradkin, Loop Models, Modular Invariance, and Three Dimensional Bosonization,
Phys. Rev. B 97, 195112 (2018), 1801.04936.

[204] F. Benini, P.-S. Hsin, and N. Seiberg, Comments on global symmetries, anomalies, and duality in (2
+ 1)d, JHEP 04, 135 (2017), 1702.07035.

[205] C. Cordova, P.-S. Hsin, and N. Seiberg, Global Symmetries, Counterterms, and Duality in Chern-
Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4, 021 (2018), 1711.10008.

[206] S. Chatterjee et al., Field-induced transition to semion topological order from the square-lattice Néel
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[283] M. Milovanović and N. Read, Edge excitations of paired fractional quantum hall states, Phys. Rev. B
53, 13559 (1996).

[284] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Quasiparticle statistics and
braiding from ground-state entanglement, Phys. Rev. B 85, 235151 (2012).

[285] P. Fendley, M. P. A. Fisher, and C. Nayak, Topological Entanglement Entropy from the Holographic
Partition Function, Journal of Statistical Physics 126, 1111 (2007).

[286] F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically ordered phases,
Phys. Rev. B 79, 045316 (2009).

[287] F. Burnell, Anyon condensation and its applications, Annual Review of Condensed Matter Physics 9,
307 (2018), https://doi.org/10.1146/annurev-conmatphys-033117-054154.

[288] N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A4,
251 (1989).

[289] J. Cardy, Boundary conformal field theory, in Encyclopedia of Mathematical Physics, edited by J.-P.
Franoise, G. L. Naber, and T. S. Tsun, pp. 333 – 340, Academic Press, Oxford, 2006.

[290] X. Wen, S. Matsuura, and S. Ryu, Edge theory approach to topological entanglement entropy, mutual
information, and entanglement negativity in chern-simons theories, Phys. Rev. B 93, 245140 (2016).

[291] D. Das and S. Datta, Universal features of left-right entanglement entropy, Phys. Rev. Lett. 115,
131602 (2015).

[292] J. Lou, C. Shen, and L.-Y. Hung, Ishibashi states, topological orders with boundaries and topological
entanglement entropy. part i, Journal of High Energy Physics 2019, 17 (2019).

[293] J. R. Fliss and R. G. Leigh, Interfaces and the extended Hilbert space of Chern-Simons theory, 2020,
2004.05123.

[294] A. Kapustin and N. Saulina, Topological boundary conditions in abelian chernsimons theory, Nuclear
Physics B 845, 393 (2011).

[295] C. L. Kane and M. P. A. Fisher, Quantized thermal transport in the fractional quantum hall effect,
Phys. Rev. B 55, 15832 (1997).

[296] A. Cappelli, M. Huerta, and G. R. Zemba, Thermal transport in chiral conformal theories and hierar-
chical quantum hall states, Nuclear Physics B 636, 568 (2002).

[297] A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).

[298] F. D. M. Haldane, Stability of chiral luttinger liquids and abelian quantum hall states, Phys. Rev.
Lett. 74, 2090 (1995).

[299] A. Cappelli and E. Randellini, Stability of topological insulators with non-abelian edge excitations,
Journal of Physics A: Mathematical and Theoretical 48, 105404 (2015).

[300] M. Levin and A. Stern, Classification and analysis of two-dimensional abelian fractional topological
insulators, Phys. Rev. B 86, 115131 (2012).

[301] A. Zamolodchikov, From tricritical ising to critical ising by thermodynamic bethe ansatz, Nuclear
Physics B 358, 524 (1991).

[302] D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys.
Rev. D 10, 3235 (1974).

[303] J. C. Y. Teo, T. L. Hughes, and E. Fradkin, Theory of Twist Liquids: Gauging an Anyonic Symmetry,
arXiv e-prints , arXiv:1503.06812 (2015), 1503.06812.

225



[304] T. Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E. Berg, Bulk Anyons as Edge Symmetries:
Boundary Phase Diagrams of Topologically Ordered States, arXiv e-prints , arXiv:2003.04328 (2020),
2003.04328.

[305] P. Bonderson and J. K. Slingerland, Fractional quantum hall hierarchy and the second landau level,
Phys. Rev. B 78, 125323 (2008).

[306] C.-K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals
and nodal superconductors, Phys. Rev. B 90, 205136 (2014).

[307] J. C. Budich and E. Ardonne, Equivalent topological invariants for one-dimensional Majorana wires
in symmetry class D, Phys. Rev. B 88, 075419 (2013).

[308] D. Asahi and N. Nagaosa, Topological indices, defects, and majorana fermions in chiral superconduc-
tors, Phys. Rev. B 86, 100504 (2012).

[309] J. C. Teo and T. L. Hughes, Topological defects in symmetry-protected topological phases, Annual
Review of Condensed Matter Physics 8, 211 (2017), https://doi.org/10.1146/annurev-conmatphys-
031016-025154.

[310] K. Schoutens and X.-G. Wen, Simple-current algebra constructions of 2+1-dimensional topological
orders, Phys. Rev. B 93, 045109 (2016).

[311] P. Di Francesco, P. Mathieu, and D. Snchal, Conformal field theoryGraduate texts in contemporary
physics (Springer, New York, NY, 1997).

[312] M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari, Topological degeneracy of non-abelian
states for dummies, Annals of Physics 322, 1477 (2007).

[313] T. Iadecola, T. Neupert, C. Chamon, and C. Mudry, Ground-state degeneracy of non-abelian topo-
logical phases from coupled wires, Phys. Rev. B 99, 245138 (2019).

[314] G. Moore and N. Seiberg, Taming the conformal zoo, Physics Letters B 220, 422 (1989).

[315] W. Chen, G. W. Semenoff, and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory,
Phys. Rev. D46, 5521 (1992), hep-th/9209005.

226


	List of Tables
	List of Figures
	Chapter 1 1emIntroduction  
	The Quantum Hall Effect and Topological Order
	The Laughlin States: A Case Study
	Wave Functions to Composite Particles
	Topological Order and Correspondences

	New Perspectives: An Outline of this Thesis
	Fractional Chern Insulators and Composite Fermions
	Non-Abelian States and Duality
	Gapped Interfaces and Entanglement


	Chapter 2 1emChern-Simons Composite Fermion Theory of Fractional Chern Insulators  
	Introduction
	Model
	Flux Attachment
	Lattice Chern-Simons
	Lattice Chern-Simons on a Torus

	Mean Field Theory
	Symmetries and Mean Field Theory

	Fractional Chern Insulator States
	Topological Field Theory
	Fractionalized States from the CF Hofstadter Spectrum

	Symmetry Fractionalization
	Distinction between FCIs and the Lattice FQHE
	Conclusions

	Chapter 3 1emIntertwined Order in Fractional Chern Insulators from Finite-Momentum Pairing of Composite Fermions  
	Introduction
	Model, Flux Attachment, and Compressible FCI States
	Mean-field Theory of Paired States
	Role of Magnetic Translation Symmetry

	Fermionic Paired FCI Phase Diagrams
	Period Two
	Period Three
	Period Four

	Bosonic Paired FCI Phase Diagrams 
	Discussion and Conclusion

	Chapter 4 1emLandau-Ginzburg Theories of Non-Abelian Quantum Hall States from Non-Abelian Bosonization  
	Introduction
	``Projecting Down'' to Non-Abelian States
	Perspective from the Boundary: Wave Functions and their Symmetries
	Perspective from the Bulk: Early LG Theories from Level-Rank Duality

	LG Theories of the RR States from Non-Abelian Bosonization 
	Setup
	A Non-Abelian Duality: U(1)2 + bosons < - > SU(2)1 + bosons
	Building Non-Abelian States from Clustering
	Generating the Full Read-Rezayi Sequence through Flux Attachment

	Generalization to Non-Abelian SU(Nf)-Singlet States
	Motivation: ``Projecting Down'' to the Generalized NASS States
	Non-Abelian Duals of Nf-Component Halperin (2,2,1) States
	Generating the Non-Abelian SU(Nf)-Singlet Sequence from Clustering

	Discussion

	Chapter 5 1emA Composite Particle Construction of the Fibonacci Fractional Quantum Hall State  
	Introduction
	Parent Model and Non-Abelian Duality
	Landau-Ginzburg Theory
	Fibonacci Wave Function
	Discussion

	Chapter 6 1emNon-Abelian Fermionization and the Landscape of Quantum Hall Phases  
	Introduction
	Review of Non-Abelian Dualities and the Landau-Ginzburg Approach
	Non-Abelian Dualities and the v=1/2 Bosonic Laughlin State
	A Comment on Level-Rank Duality and Topological Orders of Fermions

	Non-Abelian Dualities and the Dynamics of Composite Fermions
	The v=1/2 Laughlin State and a Non-Abelian Fermion-Fermion Duality
	Abelian and Non-Abelian Jain Sequences
	Dynamical Scenario
	Comments on the Nature of the Transition
	Non-Abelian Duality and Paired FQH Phases
	Examples in Other Fermion-Fermion Dualities

	Building Non-Abelian States from Excitonic Pairing
	Discussion

	Chapter 7 1emEntanglement Entropy of Generalized Moore-Read Fractional Quantum Hall State Interfaces  
	Introduction 
	Summary of Results

	Review of Moore-Read Edge Theory 
	Cut-and-Glue Approach Review and Topological Sector Projection 
	Description of the Projection 

	Uniform Interface Entanglement Entropy 
	Abelian (Untwisted) Sectors 
	Non-Abelian (Twisted) Sectors 

	Non-Uniform Moore-Read Gapped Interfaces 
	Anyon Condensation Picture of Gapped Interfaces
	Gapping Terms for 1/nu=pb2 and 1/nu=pb2 MR Interfaces 

	Non-Uniform Interface Entanglement Entropy 
	Equal Parity Interface 
	Opposite Parity Interface 
	Relation to Parent Topological Phase

	Discussion and Conclusion 

	Appendix A 1emSupplement to Chapter 2
	Non-Interacting Model Band Structure
	Comparison with Uniform Density Approximation
	Full Self-Consistent Solution
	Spectrum of the M-Matrix

	Appendix B 1emSupplement to Chapter 3
	Details of Flux Attachment 
	Topological Properties of Period-Two Stripe Phases
	Protection of Edge Majorana Flat Band and Bulk Nodes
	Majorana Zero Modes at Lattice Dislocations


	Appendix C 1emSupplement to Chapter 5  
	Derivation of the Bosonic Parent State from Intralayer Flux Attachment  
	Representation of the Fibonacci order in terms of U(2)3,1  
	Constructing the Electron Operators  
	Derivation of the Fibonacci Wave Function  

	Appendix D 1emSupplement to Chapter 6
	Details of U(N) Fermion-Fermion Duality Examples
	Derivation of the Duality 
	Examples Involving Gapless States 
	Examples Involving Gapped States 


	Appendix E 1emSupplement to Chapter 7
	Modular Functions 
	Details of Projected Ground States
	Untwisted Sectors 
	Twisted Sectors 

	Alternative Representation of the Ising CFT 
	Coset Construction and Hilbert Space Structure
	Gapping Term


	Appendix F 1emChern-Simons conventions for Chapters 4, 5, and 6 
	References

