
 

 

 

  

PHASE IMAGING WITH COMPUTATIONAL SPECIFICTY FOR 

CELL BIOLOGY APPLICATIONS 

BY 

 

YUCHEN HE 

THESIS 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Electrical and Computer Engineering 

in the Graduate College of the 

University of Illinois Urbana-Champaign, 2021 

Urbana, Illinois 

Adviser: 

 

Professor Gabriel Popescu 

 



ii 

 

Abstract 

Recent advancements in quantitative phase imaging (QPI) and deep learning have opened up an 

exciting frontier. It has been shown that deep learning methods, with their ability to extract 

intricate structures from massive raw datasets, can be applied to both interpreting QPI 

measurements of biological samples and enhancing the imaging capabilities of QPI systems. 

Phase imaging with computational specificity (PICS), a workflow that combines deep learning 

and QPI, has recently been developed to nondestructively measure biophysical parameters or 

markers from label-free samples directly. In this thesis, we present a new non-invasive, high-

throughput method built upon the principle of PICS, to detect the cell cycle of live cell clusters. 

We demonstrate that the proposed method can be applied to study single-cell dynamics within 

the cell cycle as well as investigate cell biophysical parameter distribution across different stages 

of the cell cycle.  
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1. Introduction 

1.1 Quantitative Phase Imaging 

In 1665, Robert Hooke, a Fellow of the Royal Society in London, published the book 

Micrographia, describing his observation of “minute bodies” using “magnifying glasses” [1]. In 

this work, Hooke included an illustration of the compound lens system he used, consisting of a 

light source, three optical lenses, and a moving stage. He also coined the term “cell” to describe 

the porous structure he saw in plant sections [2]. It is intriguing to know what level of impact 

Hooke envisioned for his book, as light microscopes remained the most commonly-used tool in 

biology and medicine [2, 3] four centuries later.  

Interestingly, Hooke was probably also the first scientist to report seeing stained objects 

(dyed wool and hair) under a light microscope [4]. Stains and dyes are still routinely used today 

to investigate specific structures within cells and tissues [5], the necessity of which came from 

the fact that many biological samples (e.g. single cells and thin tissue slices) are transparent and 

weakly scattering [6]. In other words, such samples do not affect the amplitude of the incident 

light significantly, generating orders of magnitude weaker scattered light, hence are difficult to 

see using cameras that are only sensitive to intensity.  

Naturally, one direction to visualize such structures is to change their absorption 

properties. In 1914, soon after the development of the first fluorescence microscope [7], 

Stanislav von Provazek launched the new era of using fluorescent dyes as stains in cell biology 

by reporting the study of dye binding in fixed tissues and living cells [4]. However, the 

visualization capability and highly specific information of fluorescence came at expensive costs, 

for example, photobleaching and phototoxicity. Photobleaching refers to all processes that cause 
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the fluorescent signal to decrease substantially with time and fade permanently [5, 8], yielding 

low signal-to-noise ratio and limiting the applicability to experiments over a long period of time. 

Lots of efforts have been invested to reduce photobleaching, including tight control over the dose 

of light that reaches the sample, development of fluorophores with greater photostability, and 

utilization of high-quality optical filters and cameras [8]. Unfortunately, even with all these 

measures, photobleaching still cannot be fully eliminated and remains one of the most important 

factors restraining future developments and application of fluorescent techniques. Besides 

photobleaching, the strong light necessary to excite the fluorophore also induces phototoxicity, 

which can bring morphologically imperceptible damage to cellular macromolecules [9]. Such 

damage can alter the kinetics of cellular processes, leading to irreproducible and misinterpreted 

experimental data. 

Another direction to visualize the weekly scattering samples, minimizing the risk of light-

induced damage that is associated with any type of fluorescence microscopy [10], is to utilize 

available endogenous contrast [6]. In 1873, Ernst Abbe formulated microscopic image formation 

as a complicated interference phenomenon [11]. Following this idea, Frits Zernike rendered 

transparent objects visible without any stain by placing a phase strip in the focal plane of a 

microscope [12] in the 1930s. The advantage of this method, later known as phase contrast 

microscopy [13, 14], was extended in the 1950s, when two groups of researchers independently 

reported that the refractive index is linearly proportional to cell density, regardless of 

composition [15, 16]. Thus, the phase contrast microscopy measurements can provide a 

qualitative view of the dry-mass distribution of the sample. Phase contrast microscopes remain 

broadly used in biology laboratories for quickly inspecting live samples. In 1948, Dennis Gabor 

introduced the idea of formulating imaging as a form of information transmission by 
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demonstrating that both the amplitude and the phase information of the field at the focus plan can 

be recorded in one photographic recording [17], opening up an active field of research known 

today as holography [18-20].  

Quantitative phase imaging (QPI) [6, 21], built upon the ideas of Abbe, Zernike, and 

Gabor, emerges as a family of label-free methods that can image completely transparent cells 

and tissues and report quantitatively the refractive index and thickness distribution associated 

with the specimen. In recent years, various QPI instruments have been developed and applied to 

both basic and clinical science [6, 22]. QPI methods have been used to reveal red blood cells 

morphology [23-27], monitor cell growth [28-34], measure cell membrane fluctuations [35-37] 

and intracellular transport [38-40], image unlabeled microtubules [41, 42], study neuronal 

networks [43-45], assay sperm cell motility [46-48], and extract intrinsic markers for cancer 

diagnosis and prognosis [49-51]. Recently QPI methods have also been extended to optically 

thick samples, such as embryos, brain slices, and spheroids [52, 53], as well as three-dimensional 

(3-D) tomography [54-58]. Although QPI methods provide sensitivity to nanoscale changes, they 

suffer from a lack of chemical specificity, meaning it is difficult to pinpoint various types of sub-

cellular structures captured in the optical path delay maps. Such difficulty stems from the 

difficulty with mapping the refractive index (RI) distribution to the chemical composition of 

different molecular species [59].  

1.2 Deep Learning 

The last two decades have witnessed another dramatic revival of a classic research field: deep 

learning, a subfield of artificial intelligence [59]. Deep learning is a form of representation 

learning, where a general-purpose learning procedure is employed to automatically extract 

features from raw datasets [60]. The key ideas behind deep learning, i.e., feedforward neural 
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networks [61] and backpropagation algorithms [62, 63], have been proposed since the 1970s. 

However, due to the widely-held belief that prior knowledge is indispensable to learning good 

features, deep learning was largely deserted by the community in the 1990s. It was not until 

around 2006, when researchers reported that deep feedforward networks performed very well in 

recognizing human face, handwritten digits [64], and pedestrians [65], that the interest in neural 

networks was reignited. An important factor to the resurgence of neural networks was the advent 

of powerful programmable graphical processing units (GPUs) [66], which helped reduce the 

training time of neural networks from days to hours [67]. The neural network based methods 

were quickly transferred from computer vision to speech recognition and refreshed state-of-art 

performance for large-vocabulary speech recognition tasks [68] as well.  

As more groups started applying deep neural networks, it was soon discovered that one 

type of deep network, the convolutional neural network (ConvNet) [69], was noticeably easier to 

train and generalize better, especially compared to networks with only fully connected layers 

[60]. Inspired by the biological structure of cells discovered in visual neuroscience [70, 71], 

ConvNets were able to take advantage of the hierarchy presented in many natural signals via 

sharing weights within feature maps, applying local connections to capture motifs that are 

formed by highly correlated adjacent group of values, and using pooling layers to capture 

semantically similar motifs and creating invariance to shifts and distortions [60, 72]. Since the 

ImageNet competition in 2012 [73], when AlexNet [74] reported ground-breaking 15.3% top-5 

test error, ConvNets have become the mainstream methods for object detection, semantic 

segmentation, and image recognition [75-77].  

With QPI’s ability to generate uniform, high-quality data and deep learning’s capability 

of discovering intricate features and structures in large datasets, it would be natural to combine 
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the best of both worlds and utilize deep learning models to interrogate QPI data for information 

that might not be obvious to traditional imaging processing methods. In 2017, researchers from 

Korea Advanced Institute of Science and Technology demonstrated one of the first applications 

of deep learning on QPI data, using ConvNets to classify anthrax spores in phase images [78]. 

Later on, researchers from the University of California, Los Angeles showed that ConvNets can 

transform QPI data into their histologically stained bright-field counterparts [79]. In the general 

light microscopy field, deep learning has also been used to computationally stain biological 

samples from bright-field images or traditional phase contrast images [80, 81]. Inspired by this 

exciting frontier, phase imaging with computationally specificity (PICS) [82], a workflow that 

combined deep learning models with QPI methods, was developed to extract biophysical 

parameters and markers from label-free samples directly [83-85].  

Besides the extraordinary capability to interpret QPI data [78, 86, 87] , deep learning 

methods have also been proven effective for solving inverse problems [88] or enhancing the QPI 

imaging systems [59]. This type of applications, usually referred to as computational imaging or 

image transformation [89], focuses on utilizing ConvNets to extract information about the 

imaging physics while remaining agnostic to the samples presented. In 2017, a ConvNet based 

method to solve the inverse problem was presented and it was able to perform upsampling and 

deblurring simultaneously, generating a high-resolution image from a low-resolution image [90]. 

ConvNet based methods were also recently developed to achieve image reconstruction with a 

single-shot in-line holography over an extended depth of field [91], reconstruct three-

dimensional (3-D) RI tomography [92], perform auto-focusing [93, 94], compensate for phase 

aberration [95], and suppress coherent or speckle noise [96, 97]. 
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1.3 Structure of the Thesis 

In this thesis, we present some of our recent works at the intersection of QPI and deep 

learning. First, we describe the QPI systems used for imaging experiments (Chapter 2). Then we 

outline the principle of PICS and present its application in cell growth study and reproductive 

outcome prediction (Chapter 3). We also report the capability of deep learning to enhance QPI 

imaging systems (Chapter 4). Finally, we present a new non-destructive, high-throughput cell 

cycle classification workflow (Chapter 5). 
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2. Quantitative Phase Imaging 

As introduced in Chapter 1, quantitative phase imaging (QPI) is a family of label-free imaging 

methods that has gained significant interest in recent years due to its applicability to both basic 

and clinical science. In this chapter, we first discussed the figures of merit of QPI systems and 

then outlined the principles of three different QPI methods that were used for the imaging 

experiments presented in this thesis. 

2.1 Full-field QPI and Figures of Merit  

The full-field QPI methods [6, 21, 98] can be categorized into two classes: off-axis [99-106] and 

phase shifting [52, 53, 107-112].  Off-axis interferometry exploits spatial phase modulation and 

can produce a phase map from a single intensity recording, whereas phase-shifting 

interferometry controls the time delay of the reference field to record multiple (at least three) 

intensity images to extract the phase map associated with the object [6]. 

 The main figures of merit to quantify the performance of QPI methods are: acquisition 

rate, transverse resolution, temporal phase sensitivity, and spatial phase sensitivity [21]. In 

general, off-axis QPI methods provide faster acquisition rate, while phase-shifting interferometry 

are more likely to preserve the diffraction-limited transverse resolution. Phase sensitivity defines 

the smallest phase shift a QPI method can detect. This figure of merit can be quantified by 

measuring a stable sample and then calculating the standard deviation of the phase measurements 

(see Section 8.5 of Ref [21]). Temporal phase sensitivity is governed by the phase stability of the 

QPI method and the spatial phase sensitivity is limited by the amount of background noise 

present. Common-path QPI methods, where the reference field and the scattered field travel 

along physically close paths, usually provide better phase stability and temporal phase 
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sensitivity. White-light QPI methods, where a broad optical spectrum illumination is used, yield 

images with lower spatial intensity fluctuations, thus better spatial phase sensitivity.  

2.2 Diffraction Phase Microscopy 

Diffraction phase microscopy (DPM) is an off-axis, common-path and single-shot QPI method 

that utilize a compact Mach-Zehnder interferometer system to alleviate common phase noise 

problems due to mechanical vibration and air fluctuation [99-101, 113-118]. Figure 1 presents 

the system schematic of DPM, where a phase grating and a 4f lens system is appended to the 

output port of a conventional microscope.  

 

Figure 1. DPM Schematic. The DPM system consists of a phase grating and a 4f lens system with a pinhole filter.  

Let 𝑈0 denote the 0th order field and 𝑈1 denote the 1st order field. Notice we are only 

concerned with these two fields as the other orders from the grating either do not pass Lens L1 or 

get filtered out in the Fourier plane. The optical field at the grating plane can be expressed as  

𝑈𝐺𝑃(𝑥, 𝑦) = 𝑈0(𝑥, 𝑦) + 𝑈1(𝑥, 𝑦)𝑒𝑖𝛽𝑥 (2.1) 

where 𝛽 =
2𝜋

Λ
 and Λ is the grating period.  
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Lens L1 performs a Fourier transform of the field and thus the field at the Fourier plane, 

before the pinhole filter can be expressed as Equation (2.2). The shifting theorem of Fourier 

transform is applied to simplify the term involving 𝑈1̃. 

�̃�𝐹𝑃−(𝑘𝑥, 𝑘𝑦) = 𝑈0̃(𝑘𝑥, 𝑘𝑦) + 𝑈1̃(𝑘𝑥 − 𝛽, 𝑘𝑦) (2.2) 

𝑘𝑥 = 𝛼𝑥1 where 𝑥1 denotes the coordinate at the Fourier plane and 𝛼 =
2𝜋

𝜆𝑓1
. 𝑘𝑦 is defined 

similarly. At the Fourier plane, the pinhole filter allows the full 0th order to pass and filters down 

the 1st order such that the field becomes a uniform plane wave after lens L2. Thus, the field after 

the filter can be expressed as 

�̃�𝐹𝑃+(𝑘𝑥, 𝑘𝑦) = 𝑈0̃(𝑘𝑥, 𝑘𝑦) + 𝑈1̃(0,0)𝛿(𝑘𝑥 − 𝛽, 𝑘𝑦) (2.3) 

Notice the property of delta function 𝑓(𝑥)𝛿(𝑥 − 𝑥0) = 𝑓(𝑥0)𝛿(𝑥 − 𝑥0) is used to simplify the 

product of 𝑈1̃ and the transfer function of the filter.  

Lens L2 performs a second Fourier transform and we have the filed at the camera plane 

as 

𝑈𝐶𝑃(𝑥, 𝑦) =
1

|𝛼|
[𝑈0 (−

𝑥

𝑀
, −

𝑦

𝑀
) + 𝑈1(0,0)𝑒𝑖

𝛽𝑥
𝑀 ] 

(2.4) 

Here 𝑀 = −
𝑓2

𝑓1
 denotes the magnification introduced by the 4f lens system. 

Let 𝐴0,1 and 𝜙0,1 denote the amplitude and phase of the 0th and 1st order field, 

respectively. We can rewrite Equation (2.4) as  

𝑈𝐶𝑃(𝑥, 𝑦) =
1

|𝛼|
{𝐴0 (−

𝑥

𝑀
, −

𝑦

𝑀
) 𝑒𝑖𝜙0(−

𝑥
𝑀

,−
𝑦
𝑀

) + 𝐴1(0,0)𝑒
𝑖[𝜙1(0,0)+

𝛽𝑥
𝑀

]
} 

(2.5) 

The field at the camera is essentially an interferogram between two magnified copies of the 

image, where one contains all the information (0th order) and the other is filtered down to DC as 
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a reference field (1st order). To simplify the notation, we define 𝑥′ = −
𝑥

𝑀
 and Δ𝜙 = 𝜙0(𝑥′, 𝑦′) −

𝜙1. And the irradiance detected by the camera can thus be expressed as 

𝐼𝐶𝑃(𝑥′, 𝑦′) = 𝐼0(𝑥′, 𝑦′) + 𝐼1 + 2√𝐼0(𝑥′, 𝑦′)𝐼1 cos(𝛽𝑥′ + Δ𝜙) (2.6) 

To reconstruct the phase information, we can first isolate the cosine term in Equation 

(2.6) and then formulate it as the real part of a complex analytical signal and retrieve the 

imaginary prat of that signal via a Hilbert transform, as denoted in Ref [102] 

sin(𝛽𝑥′ + Δ𝜙) = 𝑃∫
cos(𝛽𝑥′′ + Δϕ)

𝑥′ − 𝑥′′
𝑑𝑥′′ 

(2.7) 

Then the phase information associated with the object is extracted as 

Δϕ = tan−1 [
sin(𝛽𝑥′ + Δ𝜙)

cos(𝛽𝑥′ + Δ𝜙)
] − 𝛽𝑥′ 

(2.8) 

Practically, this operation can be implemented by taking the Fourier transform of the 

interferogram, selecting only one side of the Fourier spectrum, moving it to the baseband, and 

taking the inverse Fourier transform back to the spatial domain [101, 113]. 

Since these integral operators are computationally demanding, researchers have 

parallelized these operations using compute unified device architecture (CUDA) [66, 119] and 

GPUs and successfully achieved video rate performance for mega-pixel images [120]. Besides 

utilizing hardware acceleration, a derivative method for phase reconstruction has also been 

proposed in [121]. This method retrieves the phase information by numerically calculating the 

transverse 1st and 2nd order derivatives of the interferogram, thus providing a four-time speed up 

compared to traditional Hilbert transform based approach [121]. 

Recently, white-light DPM (wDPM) [100] has also been developed, where a spatially 

coherent white-light halogen lamp replaces the laser. The reference beam is created by closing 

down the condenser numerical aperture (NA) and filtering the 0th order beam with a pinhole 



11 

 

mask that matches the condenser NA. Thus, the reference beam is now a low-pass-filtered 

version of the sample beam. 

DPM has been widely applied to both materials [115-117] and life sciences [100, 113, 

114]. Its common-path architecture ensures phase stability against noise, thus providing high 

temporal phase sensitivity, while its off-axis geometry allows single-shot measurement as fast as 

the camera detector permits. With wDPM, the system can be easily attached to existing 

conventional microscopy without changing illumination. With recent advancements in CUDA 

and GPU computing, DPM measurements can be performed to extract quantitative information 

in real time [101]. 

2.3 Spatial Light Interference Microscopy 

Spatial light interference microscopy (SLIM) [42, 45, 108, 109, 122-127] is a phase-shifting 

common-path QPI method that can be implemented as an add-on module to a commercial phase 

contrast microscope. The SLIM schematic is illustrated in Fig. 2. The phase ring, which provides 

𝜋/2 attenuation in traditional phase contrast microscopy [13], is imaged via Lens L1 onto the 

spatial light modulator (SLM) plane. By controlling the voltage applied to the SLM via a 

software package developed in house, we recorded four intensity images corresponding to phase 

shifts of 0, 𝜋/2, 𝜋, and 3𝜋/2 between the scattered field and the incident field. We denote the 

incident field as 𝑈0 and the scattered field as 𝑈1. The field at the camera plane can be expressed 

as 

𝑈(𝑥, 𝑦, 𝑘) = |𝑈0|𝑒𝑖𝜙0 + |𝑈1(𝑥, 𝑦)|𝑒𝑖(𝜙0+Δ𝜙(𝑥,𝑦)+
𝑘𝜋
2

)
 

(2.9) 

where 𝜙0 denotes the phase of the incident field; 𝑘 = 0,1,2,3; and Δ𝜙(𝑥, 𝑦) denotes the phase 

difference between the incident field 𝑈0 and the scattered field 𝑈1. The intensity detected by the 

camera can thus be written as 
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𝐼(𝑥, 𝑦, 𝑘) = |𝑈0|2 + |𝑈1|2 + 2|𝑈0||𝑈1(𝑥, 𝑦)| cos[Δ𝜙(𝑥, 𝑦) +
𝑘𝜋

2
] 

(2.10) 

The phase difference can be retrieved following reported procedures [107-109] as  

Δ𝜙(𝑥, 𝑦) = tan−1 [
𝐼(𝑥, 𝑦, 3) − 𝐼(𝑥, 𝑦, 1)

𝐼(𝑥, 𝑦, 0) − 𝐼(𝑥, 𝑦, 2)
] 

(2.11) 

Now the phase distribution associated with the image (difference between the total field and the 

incident field) can be extracted following Equation (2.12 – 2.14). Assuming no additional phase 

shift is introduced (𝑘 = 0), we can write the interferogram as Equation (2.12). 

𝑈(𝑥, 𝑦) = |𝑈0|𝑒𝑖𝜙0 + |𝑈1(𝑥, 𝑦)|𝑒𝑖(𝜙0+Δ𝜙(𝑥,𝑦)) (2.12) 

If we denote 𝛽(𝑥, 𝑦) = |𝐸1(𝑥, 𝑦)|/|𝐸0|, we can rewrite Equation (2.12) into Equation (2.13). 

𝑈(𝑥, 𝑦) = |𝑈0|𝑒𝑖𝜙0[1 + 𝛽(𝑥, 𝑦)𝑒𝑖Δ𝜙(𝑥,𝑦)] (2.13) 

Namely, 

𝑈(𝑥, 𝑦) = |𝑈0|𝑒𝑖𝜙0[1 + 𝛽(𝑥, 𝑦)𝑒𝑖Δ𝜙(𝑥,𝑦)] 

= |𝑈0|{[cos 𝜙0 + 𝛽 cos(𝜙0 + Δ𝜙(𝑥, 𝑦))] + 𝑖[sin 𝜙0 + 𝛽 sin(𝜙0 + 𝛥𝜙(𝑥, 𝑦)]} 

(2.14) 

Now we can retrieve the total phase as in Equation (2.15). Notice since the incident field 𝑈0 is 

used as reference, 𝜙0 essentially becomes 0. The amplitude ratio 𝛽(𝑥, 𝑦) can be obtained from 

the four intensity recordings directly without additional measurements (see Ref [107]).  

𝜙(𝑥, 𝑦) = tan−1 [
𝛽(𝑥, 𝑦) sin Δ𝜙(𝑥, 𝑦)

1 + 𝛽(𝑥, 𝑦) cos Δ𝜙(𝑥, 𝑦)
] 

(2.15) 

Due to the white light illumination used and thus the lack of speckle noise, SLIM 

measurements have better spatial uniformity and accuracy compared to those of DPM [108, 

109]. However, since such illumination is not perfectly spatially coherent, SLIM images are 

affected by the “halo” artifact, which refers to the phenomenon of missing low frequencies in the 

measured phase map [128]. Numerical processing approaches have been proposed to correct 
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halos in real time [129, 130]. Figure 2b presents an example of the scattered phase map 

(Equation (2.11)), total phase map (Equation (2.15)), as well as the halo-free phase map. 

 

Figure 2. SLIM Principle. (a) The ring illumination is matched to the objective’s back focal plane and the mask on 

the spatial light modulator (SLM), effectively resulting in a phase-contrast microscope with a variable retardance ring. 

Four frames are recorded, corresponding to increments of 90 degrees introduced by the SLM. (b) SLIM image 

reconstruction and the halo-removed SLIM image. Adapted from Ref [82] with permission. 

 SLIM has been successfully applied to study cell dynamics [131], cell growth [30, 33], 

cell migration [132], and dry mass transport [38]. Besides basic science applications, SLIM has 

also been used to perform cancer screening [133, 134], cancer diagnosis and prognosis [135, 

136], blood testing [137] , as well as to assist reproductive studies [138].  SLIM measurements 

have been used to solve for the scattering potential under the first-order Born approximation 

[56], extending the QPI measurements to three-dimensional (3-D). Recently, Wolf phase 

tomography (WPT) [139], a fast 3-D RI construction method based on the Wolf equations for 

propagation correlations of partially coherent light [140] is developed. This method can decouple 

the RI information from the sample thickness directly in the space-time domain from three 
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independent SLIM measurements corresponding to each phase shift, which can be employed to 

develop RI-based cell classification methods or fiber tracking methods.  

2.4 Gradient Light Interference Microscopy 

Gradient light interference microscopy (GLIM) [52, 53] is a common-path, phase-shifting and 

white-light QPI methods that generate phase maps with nanometer pathlength stability, speck-

free quality, and diffraction-limited resolution. Just as SLIM upgrades a conventional phase 

contrast microscope, GLIM upgrades a conventional differential interference contrast (DIC) 

[141] microscope via phase-shifting interferometry. The system schematic of a GLIM module is 

illustrated in Fig. 3.  

 

Figure 3. GLIM Principle. (a) GLIM optical setup. (b) Four frames are acquired by the GLIM module, one for each 

phase shift applied by the SLM. (c) Extracted quantitative-gradient map of two 3 µm polystyrene beads immersed in 

oil. (d) Integrated phase map of a 4.5 µm polystyrene microbeads at NAcon = 0.09. (e) Cross-sections of the 

reconstructed phase and the computed ground truth (black dashed curve). Reprinted from Ref [52] with permission.  

As in typical DIC microscope, a Wollaston prism is used to generate two replicas of the 

image field, transversely shifted by a distance 𝛿𝒓 smaller than the diffraction spot. Both fields 

are Fourier transformed by lens L1 to its back focal plane. The SLM, with its active axis aligned 

to the polarization of one field, introduces an extra phase shift of 
𝑘𝜋

2
 for 𝑘 = 0,1,2, and 3. Both 
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fields are then Fourier transformed by lens L2 to the camera plane, where a linear polarizer is 

aligned at 45° with respect to both fields. The interferogram at the camera plane can thus be 

expressed as in Equation (2.16). The irradiance detected by the cameras is expressed as in 

Equation (2.17) where 𝛾(𝒓, 𝛿𝒓) = 〈𝑈∗(𝒓)𝑈(𝒓 + 𝛿𝒓)〉𝑡 is the mutual intensity of the temporal 

cross-correlation function between the two fields.  

𝑈(𝒓, 𝑘) = 𝑈(𝒓) + 𝑈(𝒓 + 𝛿𝒓)𝑒
𝑖𝑘𝜋

2  
(2.16) 

 

𝐼(𝒓, 𝑘) = 𝐼(𝒓) + 𝐼(𝒓 + 𝛿𝒓) + 2|𝛾(𝒓, 𝛿𝒓)| cos[Δ𝜙(𝒓) +
𝑘𝜋

2
] 

(2.17) 

Using the same method described in Equation (2.11), we can solve for the phase 

difference between the two fields as Δ𝜙(𝒓) = tan−1 [
𝐼(𝒓,3)−𝐼(𝒓,1)

𝐼(𝒓,0)−𝐼(𝒓,2)
], which renders the phase 

gradient along the direction of the transverse shift ∇𝑥𝜙(𝒓) ≈ Δ𝜙(𝒓)/𝛿𝑥. To retrieve the actual 

phase map, we perform integration along the gradient direction, as shown in Equation (2.18). 

𝜙(𝑥, 𝑦) = ∫[∇𝑥𝜙(𝑥′, 𝑦)]𝑑𝑥′ + 𝜙(0, 𝑦)

𝑥

0

 

(2.18) 

 The transverse offset 𝛿𝒓 is usually not publicly listed by the microscope manufacturer 

and thus needs to be estimated using a known calibration sample (e.g., beads) [52, 142]. Notice 

that an inaccurate 𝛿𝒓 might introduce a uniform shift of the measured phase values. Figures 5b-c 

shows an example of the four intensity images acquired and the quantitative phase gradient map. 

The integrated phase map is presented in Fig. 3d with the comparison of phase values presented 

in Fig. 3e. 

 As a QPI method, GLIM is suitable for quantifying the growth and proliferation of 

adherent cell cultures over a large temporal scale. Dispersion phase spectroscopy (DPS) method 
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can also be used to analyze GLIM measurements for cellular mass transport investigation [40, 

52]. Unlike previously mentioned QPI methods, GLIM has strong sectioning capabilities due to 

the high numerical aperture illumination, thus able to perform tomographic imaging of thin and 

thick samples. Since the two interfering fields in GLIM are only shifted by a small distance 

laterally, they suffer equally from multiple scattering of thick samples. As a result, by taking 

multiple intensity images with the same incoherent background, GLIM is able to reject much of 

the multiple scattering contribution and produces high contrast measurements on thick samples 

(e.g., embryos, brain slices, spheroids, and organoids). GLIM has been applied to image bovine 

embryos over several days [52], to study the development of 3-D cellular architectures [40], and 

to monitor reactivation of latent human immunodeficiency virus (HIV) [143] . Recently, GLIM 

was also extended to an epi-illumination set up to facilitate imaging of biological structures that 

would be difficult in transmission [53]. 
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3. Phase Imaging with Computational Specificity 

In recent years, in part due to the continuous decline of computing power cost, development of 

frameworks for dataflow representation as well as a steep increase in data generation, deep 

learning techniques have been translating from consumer to scientific applications (see Chapter 1 

and Ref [59, 60]). For example, it has been shown that AI can map one form of contrast into 

another, a concept coined as image-to-image translation [79-81, 144], which provides a data 

driven approach to estimate the fluorescence stain from unlabeled specimen. One of the first 

applications of this strategy was to estimate histological staining from QPI [79] or 

autofluorescence [145] signals of tissues. In those works, a separate microscope was employed to 

collect the stained brightfield images followed by a semi-automatic image registration step. A 

similar methodology was used to convert holographic microscopy images of isolated sperm cells 

to their virtually stained counterparts [146]. As in previous work, the stain was estimated on dead 

cells as a purely computational post-processing step.  

3.1 Motivation 

Inspired by this exciting frontier, we present phase imaging with computational 

specificity (PICS) [82], a combination of quantitative phase imaging and deep learning, which 

provides information about unlabeled live cells with high specificity. We believe PICS has 

several advantages compared to the previously reported methods. First, instead of focusing on 

fixed cells or tissue, our method (PICS) can be applied to live mammalian cell cultures, which 

are only possible through label-free imaging. Second, PICS performs automatic annotation by 

recording both QPI and fluorescence microscopy of the same field of view, on the same camera. 

The two imaging channels are integrated seamlessly by our software that controls both the QPI 

modules, fluorescence light path, and scanning stage. As a result, the colocalization of phase and 
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fluorescence channels came with little to none cost, meaning all the phase images were already 

annotated with fluorescence ground truth during acquisition, ready for deep learning training. 

Also, since this multimodal investigation can be extended to multiple fluorescence channels 

simultaneously, PICS can also be developed for multiple fluorophores at little extra cost. Third, 

PICS can perform real-time inference. Once the deep learning model is optimized, we 

incorporated it into the acquisition software, allowing users to see computational specificity 

during new experiments. The inference turns out to be faster than the image acquisition rate in 

SLIM and GLIM (limited by the four-frame modulation of SLM). Fourth, using the specificity 

maps obtained by computation, we can exploit the QPI channel to compute the dry mass 

associated with particular subcellular structures. For example, using this procedure, we 

demonstrated the measurement of growth curves of cell nuclei vs. cytoplasm over several days, 

nondestructively (see Section 3.3). PICS has also been successfully applied to predict 

reproductive outcomes [83], investigate neuronal growth [85], assay cell viability [84], and 

detect cell cycle progression (see Chapter 5). 

3.2 PICS Principle 

A complete PICS workflow encompasses three major steps: acquiring development and 

application dataset, optimizing the deep learning algorithm, and deploying the trained model for 

applications. The principle of each step is explained below. 

3.2.1 Data Acquisition 

The PICS methodology is outlined in Fig. 4. We use an inverted microscope (Axio Observer Z1, 

Zeiss) equipped with a QPI module (CellVista SLIM Pro and CellVista GLIM Pro, Phi Optics, 

Inc.) to acquire both QPI and fluorescence images simultaneously (Fig. 4a). There are multiple 

possible patterns to design the training data acquisition experiments. Figure 4b illustrates one 
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such pattern following a last in, first out (LIFO) order. We first imaged one time-lapse dataset 𝐷1 

containing unstained cells on QPI channel only for over five days. Then we applied staining and 

fixation on these cells and imaged the second dataset 𝐷2 with both QPI and fluorescence 

channels. During data analysis, we used the later imaged dataset 𝐷2 first to train a deep neural 

network from the colocalized QPI and fluorescence image pairs. Then we applied the trained 

network back on the first imaged dataset 𝐷1 to perform digital staining (Fig. 4c) and extract 

biophysical parameters (e.g., dry mass and area) directly from label-free data. Finally, we 

deployed the trained neural network into the acquisition software (Fig. 4d), such that the 

computational specificity can be exploited during future experiments.  

 

Figure 4. PICS Workflow. (a) We upgrade a conventional transmitted light microscope with a quantitative phase 

imaging add-on module. (b) To avoid the intrinsic toxicity of fluorescent stains, we develop a two-step protocol 

imaging protocol where label-free images are recorded followed by fixation and staining. From the toxic stain recorded 

at the end of the experiment, we train a neural network capable of digitally staining the time-lapse sequence, thus 

enabling time-lapse imaging of otherwise toxic stains. (c) The digital stain is used to introduce specificity to label-

free imaging. (d) The PICS method is integrated into a fully automated plate reading instrument capable of displaying 

the machine learning results in real-time. Reprinted with permission from Ref [82]. 
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We note that this LIFO pattern of image acquisition might not be suitable for some 

applications, e.g., cell viability [84] or cell cycle progression (see Chapter 5). For cell viability 

problems, if we image the training dataset only on the fixed cells toward the end of the 

experiments, the training dataset will suffer from severe class imbalance since all the cells 

become dead. For cell cycle progression, a similar problem will occur since fixed cells will not 

provide information about dynamic biological processes. Thus, a first in, first out (FIFO) pattern 

is more suitable for such applications. To be more specific, we first image a dataset 𝐷1 with 

labelled cells under QPI and fluorescence channels. The imaging period will inevitably be 

shorter due to phototoxicity [9]. Based on the image pairs in 𝐷1, we develop a deep neural 

network. Then we image a second dataset 𝐷2 with unlabeled cells under QPI channel and applied 

the trained network on it for specificity.  

Depending on the application and interpretation of fluorescence images, a post-

processing step may also be appended to the image acquisition procedure. For instance, if the 

intensity level of the fluorescence signal provides additional information [82, 85], it makes sense 

to feed in raw fluorescence images as the ground truth to train the neural network. However, if 

the fluorescence signal is only used to pinpointing structures or indicating states and the intensity 

can vary across time or is sample-dependent [84, 147, 148],  it is better to perform thresholding 

on the raw fluorescence images and feed in resulting segmentation masks as the ground truth. In 

the cases when the samples are extremely sensitive to phototoxicity or when it is difficult to find 

a dye that is specific enough, we inevitably need to perform manual annotation. We note that by 

an incremental annotation approach, we were able to get accurate ground truth data more 

efficiently (see Section 3.4). Figure. 5a presents the GLIM optical setup (see Section 2.4 for 
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details). Figure. 5b gives an example of the acquired images consisting of two fluorescence 

channels (cell nuclei marked by DAPI and membrane marked by DiI in this case) and GLIM.  

3.2.2 Deep Learning Development 

For deep learning, we developed models based on the classic U-Net architecture [149], 

which has been proven quite successful in many biomedical applications [150]. Fig. 5c gives an 

example of a modified U-Net architecture with three major changes, utilized to infer DAPI and 

DiI stains from GLIM images [82]. First, following the work by Google [151], we added batch 

normalization layers before all the activation layers, which helped accelerate the training. 

Second, we greatly reduced the number of parameters in our network by changing the number of 

feature maps in each layer of the network to a quarter of what was proposed in the original paper 

[149]. This change greatly reduced GPU memory usage and improved inference time, without 

loss of performance. Our modified U-Net model used approximately 1.9 million parameters, 

while the original architecture had over 30 million parameters. Third, we utilized the advantage 

of residual learning [152] with the hypothesis that it is easier for the models to approximate the 

mapping from phase images to the difference between phase images and fluorescence images 

than directly to fluorescence images. Thus, we implemented an addition operation between the 

input and the output of the last convolutional block to generate the final prediction. We noticed 

that this change enabled us to have much better performance under the same training conditions. 

Fig. 5d shows the result of the inference. Besides tuning the network architecture 

hyperparameter, other training strategies to enhance network performance include incorporating 

a pre-trained classification network with the U-Net (explored in Chapter 5), engineering better 

loss functions (explored in Chapter 5), and utilizing general adversarial networks (GANs) [79, 

85, 91, 144, 145].  
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Inspired by previous works on bright-field images [80], we generate training dataset 

consisting of three images of each unique field of view (one in-focus, two slightly out of focus 

spaced 2-3 depths of field apart). We believe this approach serves as a natural form of data 

augmentation. We also noticed that it helps to train the network on a randomly sample sub-

region from the input images during each epoch (see Chapter 4). 

Despite the superior performance, the interpretability of deep learning approaches 

remains a big concern [153, 154], especially when applied to biomedical tasks. Many methods 

have been proposed recently to visualize what happens during the decision-making process 

inside a trained neural network black box [155]. Figure 6 presents, as an example, the 

intermediate representations within our network trained to infer DAPI stain from GLIM images. 

It can be seen that the U-Net architecture makes use of both textures inside the cell (leftmost, 

first layers) and spatial information such as the edges around the cellular nucleolus (bottom 

layers). For semantic segmentation tasks, it is also possible to visualize what regions of the 

images contributes to the classification of each class [156]. It has also been advocated recently to 

incorporate interpretability as one figure of merit to any deep learning models [157] such that we 

train models with interpretable design in the first place.   
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Figure 5. PICS Components. (a)  GLIM module (b) Zoomed portion of a field of view showing a typical SW620 

cell (20x/0.8) under DAPI, DiI, and GLIM. (c) U-Net architecture. (d) Real-time inference using optimized deep 

neural networks. (e) Real-time workflow with acquisition and inference. (f) Optimally overlapping computation with 

acquisition. Reprinted with permission from Ref [82].  
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Figure 6. Interpretability of PICS-DAPI model. Reprinted with permission from Ref [82].  

3.2.3 Deep Learning Deployment 

To deploy our trained neural networks into acquisition and achieve real-time inference, we use 

TensorRT (NVIDIA) [158, 159] which automatically tunes the inference pipeline for the specific 

network architecture and GPU pairings [158]. It avoids kernel launch overhead by merging them 

when possible and achieves optimal memory bandwidth by tuning the work per element in the 

kernels. In addition to performance gains, TensorRT can operate directly on GPU memory, 

avoiding redundant data copies and simplifying integration with existing codes. 

There are three ways to load a trained model into TensorRT: via an ONNX file [160], via 

a UFF file [158], or via an HDF5 file [161]. At the time of [82], TensorRT libraries lack support 

for the upsampling operation used extensively in the U-Net architecture. As a result, we had to 

implement a custom layer for the upsampling operation and then instrument the entire network 

architecture, layer by layer, using the TensorRT C++ API. While this process was tedious, the 

same network without modifications runs approximately 50% faster compared to TensorFlow 

[162] (conventional approach). We also found that TensorRT stores weights in a different format 

than TensorFlow. Thus, we developed a script to convert the model from TensorFlow (Google) 
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to the optimized TensorRT inference engine (NVIDIA). In short, this script transposes the 

weights learned by TensorFlow to match the format supported by TensorRT. Newer versions of 

TensorRT and ONNX have added in support for upsampling. For new projects [84], we only 

needed to convert a trained TensorFlow model into ONNX format and the TensorRT parser 

could construct the entire inference pipeline form there. 

The PICS inference framework is designed to account for differences between 

magnification and camera frame size. Differences in magnification are accounted for by scaling 

the input image to the networks' required pixel size using NVIDIA’s Performance Primitives 

(NPP) library. While TensorRT is fast, the network-tuning is performed online and can take a 

non-negligible time to initialize (30 seconds). To avoid tuning the network for each camera 

sensor size, we construct an optimized network for the largest image size and extend smaller 

images by mirror padding. Further, to avoid the edge artifacts typical of deep convolutional 

neural networks, a 32-pixel mirror pad is performed for all inference using NPP (NVIDIA, Fig. 

5e).  

The principal modification to the acquisition procedure was to overlap computation with 

hardware operation (Fig. 5e). Using the threading capabilities of C++, we divide the acquisition 

into four steps that are performed in parallel (Fig. 5f). One thread is assigned to coordinate the 

acquisition which is responsible for controlling the phase modulation hardware and initiation 

camera exposure. A second thread waits for the image to arrive from the camera and uploads the 

data to the GPU. A third thread coordinates phase-retrieval and integration. Finally, a fourth 

thread is responsible for running inference and rendering the image into an OpenGL buffer that 

can be displayed by the widget kit (Qt). Importantly this procedure prevents the graphic interface 
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from stalling between computation events. Remarkably, we find that this with robust 

implementation PICS can often run faster than the underlying fluorescent signal. 

3.3 Cell Dynamics Study via PICS 

Because of the non-destructive nature of PICS, we can apply it to monitor cells over extended 

periods, of many days, without a noticeable loss in cell viability. This important aspect is 

emphasized in Fig. 7. To perform a high-content cell growth screening assay, unlabeled SW480 

and SW620 cells were imaged over seven days and PICS predicted both DAPI (nucleus) and DiI 

(cell membrane) fluorophores. The density of the cell culture increased significantly over the 

seven days, a sign that cells continued their multiplication throughout the imaging. Note that, in 

principle, PICS can multiplex numerous stain predictions simultaneously, as training can be 

performed on an arbitrary number of fluorophores for the same cell type. The only price paid is 

computational time, as each inference channel adds, ~65 ms to the real-time inference. The 

computation time for one stain is completely masked by the acquisition process and multiple 

networks can be evaluated in parallel on separate GPUs. We also note that fluorescence tags 

generally require an order of magnitude more exposure time than the QPI frames, implying that 

our plate reader achieves higher throughput while maintaining specificity. This effect is 

amplified when separate exposures are used for individual fluorophores. 
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Figure 7. Time-lapse PICS of Unstained Cells. To demonstrate time-lapse imaging and high content screening 

capabilities, we seeded a multiwell with three distinct concentrations of SW cells (20x/0.8). These conditions were 

imaged over the course of a week by acquiring mosaic tiles consisting of a 2.5 mm2 square area in each well using a 

20x/0.8 objective. The machine learning classifier, trained at the final time point after paraformaldehyde fixation, is 

applied to the previously unseen sequence to yield a DiI and DAPI equivalent image. Interestingly, the neural network 

was able to correctly reproduce the DiI stain on more elongated fibroblast-like cells, even though few such cells are 

present when the training data was acquired (white arrows). Reprinted with permission from Ref [82].  

 

We used PICS-DiI to generate a binary mask (Fig. 8), which, when applied to the QPI 

images, yields the dry mass of the entire cell. Similarly, PICS-DAPI allows us to obtain the 

nuclear dry mass. Thus, we can independently and dynamically monitor the dry mass content of 

the cytoplasm and nucleus. This capability is illustrated in Figs. 8b and c, where an individual 

cell is followed through mitosis. It is known that the nuclear-cytoplasmic ratio (NCR) is a 

controlling factor in embryogenesis [163] and a prognosis marker in various types of cancer 

[164, 165]. Figures 8d-f show the specific growth curves for a large cell field of view, consisting 

of a mosaic of covering a 2.5 mm2 portion of a multiwell. Figure 8g illustrates the behavior of 

the confluence factor (defined as a fraction of the total area occupied by the cells) in time. Not 

surprisingly, as the confluence increases, the growth saturates due to contact inhibition[166].  
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Figure 8. Tracking Dry Mass Changes in Cellular Compartments Using PICS. (a) The DiI and DAPI stains are 

specific to the cell body and nucleus, respectively. The difference between the two areas produces a semantic 

segmentation map that distinguishes between the nuclear and non-nuclear content of the cell (cytoplasm). (b) 

Throughout the experiment, we observe cellular growth and proliferation with cells often traveling a substantial 

distance between division events. (c) Using the semantic segmentation map we can track the nuclear and cytoplasmic 

dry mass. We find that nuclear and cytoplasmic dry mass steadily increases until mitosis, with some loss of dry mass 

due to cellular migration. (d-g) Semantic segmentation maps enable us to track the nuclear and cytoplasmic dry mass 

and area over 155 hours. The dark curve represents the median of the growth rate across forty-nine fields of view 

(lighter curves). The dry mass and area are normalized by the average measured value from the first six hours. In this 

experiment we observe that total nuclear dry mass grows faster than total cytoplasmic mass, providing further evidence 

that cells can divide without growing. As the cells reach optimal confluence (𝑡 ≈ 114 hours), we observe a decrease 

in the growth rate of nuclear mass, although less difference in cytoplasmic dry mass growth. Reprinted with permission 

from Ref [82]. 

 

3.4 Reproductive Outcome Prediction via PICS 

The male infertility accounts for more than 40 percent of the infertile couples [167]. The ability to 

evaluate sperm at the microscopic level would be useful for assisted reproductive technologies 

(ART), as it can allow specific selection of sperm cells for in vitro fertilization (IVF).  For example, 

it has been shown that intracytoplasmic morphologically selected sperm injection (IMSI) improves 

the outcome of in vitro fertilization, as compared to the conventional intracytoplasmic sperm 

injection (ICSI) [168, 169]. Previous studies suggested that the anomalies unselected by IMSI are 
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due to abnormalities in chromatin packaging [170]. It is also important to note that the chemical 

reaction of the stain or label and the required fixative change the shape and size of spermatozoa 

[171-173]. Due to the potential toxic effects of fluorophores, morphology of sperm cells is 

observed using intrinsic contrast microscopy, such as differential interference contrast (DIC) [141, 

174], phase contrast [13, 14], or Hoffman modulation contrast [175] microscopy. These methods 

generate contrast exploiting the local variations in refractive index across the cell. As a result, these 

technologies do not require fluorescence tagging and are relatively harmless. However, the 

relationship between the intensity map generated by these methods and the properties of the cell 

(e.g., thickness, mass) are only qualitative. Recently, QPI has been applied to imaging sperm cells 

as well [46, 176-178]. Particularly, several studies used QPI for measuring sperm motility [48, 

179, 180]. 

Here, we show that using PICS allows us to identify subcellular compartments of unlabeled 

bovine spermatozoa, which can assist to produce intrinsic markers for reproductive outcomes. 

Because the QPI modules can be attached to existing microscopes, we anticipate that our approach 

will be adopted broadly.  

To analyze microscope slides of bovine spermatozoa, we developed a deep learning system 

to label the pixels in the image as “head,” “midpiece,” “tail,” or “background.” The challenges for 

developing such a system are twofold. First, the system must be trained on annotated images that 

are labor-intensive to generate and necessarily include bias from the individual annotators. To that 

end, we developed a “bootstrapping” image segmentation approach that ameliorates these 

concerns by annotating a subset of images that are then used to train the initial classification 

system. The results of this initial classification form a larger set of training images that can be 
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quickly corrected for coarse defects and used to re-train the classification system. This approach 

produces a larger training set in a shorter period than finely annotating the entire training corpus. 

The second challenge is to develop an efficient classification system. We followed the 

practices described in Section 3.3 and utilized the U-Net architecture. We trained two different 

models with 30 million parameters (Fig. 9A) and 1.9 million parameters, respectively. Both 

networks achieved over 0.8 F-1 score [181]. We then used the network to annotate the sperm cells 

across all slides, resulting in a semantic map for every SLIM image. Additionally, we used 

connected coordinate analysis to generate instance segmentation which separates individual sperm 

cells, enabling us to group the labels on a per-cell basis [182]. This step also removes sperm cells 

that are stuck together. The U-Net architecture is presented in Fig. 9A, and the complete workflow 

is shown in Fig. 9B. 
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Figure 9. Reproductive Outcome Prediction Using PICS. (a) Semantic segmentation converts phase maps into a 

segmentation mask corresponding to the head, neck, and tail. The U-Net architecture performs well on our data, as it 

contains a large receptive field, well suited for the rich, broadband images typically found in microscopy. (b) 

Workflow for training a deep convolutional neural network on quantitative phase images and inferring the semantic 

segmentation. For each slide we performed z-stacks, selecting the fields of view with intact sperm cells. We recover 

the phase from the four intensity images and perform halo removal to account for the partially coherent illumination. 

Next, we use ImageJ to manually segment the cells into the head, neck, and tail. We down-sample the images to match 

the optical resolution and perform data augmentation by rotation and flipping. Training is performed using a 

TensorFlow back end. To boost the performance of our network, we correct for grossly defective segmentation using 

the Image Segmented App (part of MATLAB). This step is substantially faster than manually annotating every cell. 

A final training round is then performed using all data. By evaluating the network (inference) on all images, we obtain 

the segmentation results for all the cells, which are then used to determine the relationship between the dry mass of 

cellular ultrastructure and ART success rates. (c) Performance of the neural network in terms of the loss plot and 

confusion matrix. Adapted with permission from Ref [83]. 

The results in terms of percentages of zygotes cleaved and ready-to-transfer blastocysts 

produced are summarized in Fig. 10a. Statistically significant correlations between dry ratios and 

fertility outcomes are shown in bold. The graphs in Figs. 10b-c show these findings in more detail. 

Essentially, cleavage outcomes correlate negatively with head-to-tail and midpiece-to-tail dry 

mass ratios, but not statistically significantly for head-to-midpiece ratios. These results suggest 

that a long sperm tail is beneficial. However, when we evaluate the embryo blastocyst development 

rate, it appears that a large head-to-midpiece value is desirable, while the other two ratios are only 

weakly correlated. This result appears to indicate that a denser head promotes blastocyst 
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development. Note that this subgroup of spermatozoa that are associated with the embryo 

blastocyst development rate has, with a high probability, larger tails (Fig. 10b).  

 

Figure 10. Summary of Outcomes. (a and b) Cleavage is strongly favored by a more massive tail (a), while blastocyst 

development is favored by a heavier head (b). (c) Summary across the five bulls for cleavage and blastocyst rates. H, 

head; Mid, midpiece; 𝑅ℎ𝑚, head-to-midpiece ratio; 𝑅ℎ𝑡, head-to-tail ratio; 𝑅𝑚𝑡,midpiece-to-tail ratio; T, tail. Reprinted 

with permission from Ref [83]. 

We envision that our PICS-based system can be applied to individual sperm selection 

which is performed on chemically slowed cells [183] or as a slide cytometer capable of 

automatically assessing sperm sample quality. Since deploying the deep learning inference is 

straight-forward, our methodology can likely be embraced at a large scale. Thus, our technology 

may provide a solution for sperm classification and sorting in real-time, as well as provided 

valuable insight into the relationships between cellular ultra-structure and fertility. 
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4. Computational Interference Microscopy 

The figures of merits for QPI systems are discussed in Section 2.1. Usually off-axis methods 

provide fast acquisition rate, while white-light methods yield high spatial phase stability and thus 

less speckle noise. An ideal QPI method, taking the best from both worlds, would be able to 

provide the low noise, high resolution associated with phase shifting interferometry and single-

shot performance associated with off-axis geometries.  

As discussed in Section 1.2, deep learning has already been applied to enhance imaging 

systems. Inspired by previous works [184], we presented in this chapter Computation 

Interference Microscopy (CIM) [97], a QPI method with the ideal performance mentioned above, 

achieved by using deep learning to produce an image-to-image translation from single shot noisy 

data to phase-shifting, low-noise images, on which the network was a priori trained.  

4.1 Methods 

Similar to the PICS workflow explained in Chapter 3, the development of CIM can be broken 

into three major steps: acquiring SLIM and DPM image pairs for training, developing the deep 

learning algorithm, and applying the optimized model into the acquisition software. In this 

section, we explained the methods for all three steps. 

4.1.1 Data Acquisition 

In order to acquire training data necessary to produce SLIM-quality images in a single-shot, we 

developed a combined SLIM-DPM system, which generates both images from the same field of 

view (Figure 11). The DPM and SLIM modules were placed at the two side ports of a 

commercial inverted microscope (Axio Observer Z1, Zeiss). A coupled fiber green laser (𝜆 =

532 𝑛𝑚) was used as illumination for DPM, with the condenser aperture closed to minimum. A 

collimated LED source (𝜆 = 623 𝑛𝑚, 20 nm bandwidth) was used as illumination for SLIM 
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(CellVista SLIM Pro, Phi Optics, Inc.), with the conventional ring illumination associated with 

phase contrast microscopy. Using 20×/0.4 NA objective, the magnified image is replicated to 

either port by using a switch.  

 

Figure 11. Schematic of the Imaging Setup. The system is built around an inverted microscope. We are using a 

20×/0.4NA objective. The two side ports connect to the DPM (right) and SLIM (left) modules. Thus, we obtain SLIM 

and DPM images on the same field of view. The focal length of lenses 1 and 2 are 100 mm and 200 mm, respectively. 

Lenses 3 and 4 have the same focal length. When switching between DPM and SLIM, Prisms 1 and 2 are switched to 

different positions and the condenser is set to PH1 set. Due to the magnification of the 4f system in DPM, a registration 

is needed to match the DPM and SLIM images. Reprinted with permission from [97]. 

4.1.2 Deep Learning Development 

We formulated the problem as an image-to-image translation problem [89], where the deep 

neural network takes in a DPM image as input and predicts a new image that is close to a SLIM 

image of the same field of view. Following the practices outlined in Chapter 3, we built our deep 

learning model based on the U-Net architecture. We first added Batch Normalization layers 

between convolution and activation layers to stabilize the learning process. We also added in a 

residual connection after every two convolution operations (on the same field of view) for faster 

convergence and better performance. The model has a symmetric layout and consists of three 

major parts: an encoder path, a bottleneck and a decoder path. The encoder path captures 
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contextual information in the image. It consists of 4 stages of convolutional and non-linear 

activation operations with residual connection. Each stage was followed by a 2×2 downsampling 

operation. The decoder path is almost symmetric to the encoder path, except that it has 

upsampling operations to combine low-resolution and high-resolution information and enables 

localization. The convolution kernel size within the network was set to 3×3 except for those used 

in residual connection, which was set to 1×1. The number of kernels in each stage were set to 16, 

32, 64, and 128 respectively. Thus, our model had only 3.3 million trainable parameters. Based 

on the training results, it was apparent that this model was already complex enough to 

approximate the transform from DPM images to SLIM images. We picked the mean-squared 

error as our loss function and used the Adam optimizer [185] with the default exponential decay 

rate for both moment estimates (0.9 and 0.999, respectively). We used peak signal-to-noise ratio 

(PSNR), Pearson correlation coefficient, and structural similarity index (SSIM) to measure the 

performance of our network. All the input images (DPM and SLIM) were scaled from [−𝜋, 𝜋] to 

[0,1]. We trained the model from scratch with a learning rate of 6e-5 for 1,000 epochs. The batch 

size was set to 4 during training. The mean squared loss value on both the training and the 

validation dataset was plotted after each epoch. To add more variation during the training 

process, we applied random cropping to each training image. A 400 × 400 crop was selected 

randomly from each original 1536 x 1536 image and fed into the model during one epoch (see 

Chapter 3). Since U-Net is fully convolutional, it can pick up features on these smaller crops and 

apply them later onto the larger images. This random cropping has two main advantages. First, it 

served as a form of data augmentation, contributing to better generalizability. Second, it reduced 

the training time and GPU memory requirement. The model was implemented using TensorFlow 
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[162] and the training was performed on a GTX 1070 GPU with 8GB memory. The training took 

approximately 21 hours.  

4.1.3 Deep Learning Deployment 

We followed the practices outlined in Section 3.2 to incorporate the trained model into our 

acquisition software. First, we saved all the trained weights (convolution kernels and batch 

normalization parameters) into a single HDF5 [161] file. Then we constructed the same network 

architecture within our acquisition software using the Nvidia TensorRT API in C++. Due to the 

mismatch between weight formats in TensorFlow and TensorRT, the weights were first 

transposed and then loaded into the network architecture in C++. Once the network was built, 

TensorRT optimized the inference procedure by enumerating different configuration of kernels. 

This optimization was necessary because the optimal configuration for inference differ on from 

hardware to hardware. Thus, we overlapped the model optimization with the software 

initialization by utilizing multi-threading in C++. 

4.2 Results 

Figure 12 illustrates the DPM input data (left column), SLIM ground truth (middle), and the 

resulting CIM (right). Visually, the U-Net is able to reduce the overall noise of the DPM input 

and produce a remarkably similar image to the SLIM ground truth. In order to quantify the 

performance of the neural network, we computed PSNR, Pearson correlation, and SSIM between 

the ground truth and the prediction. The mean-squared loss value on the training dataset and the 

validation dataset after each epoch is plotted in Figure 12. The model checkpoint with lowest 

loss value on the validation dataset was selected as our end model for evaluation and 

deployment. Figure 12 also shows the result of the average PSNR, Pearson correlation and 

structural similarity index measure (SSIM) calculated on the training, validation, and test 
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datasets. The results are consistent among all three datasets, indicating that the model 

generalized well on the unseen test dataset. Figure 13 illustrates the images with lowest, average 

and highest Pearson correlation. The profile of RBC at exact same position were plot. The result 

indicates that all the structure are properly calculated, while the CIM image with higher Pearson 

correlation have a closer profile. 

 

Figure 12. CIM Development. DPM input data (left column), SLIM ground truth data (center) and the U-net 

inference (right). All images share the same calibration and scale bar. As can be seen, the neural network correctly 

infers SLIM images from the DPM input, with drastically reduced noise levels. The learning curve plot is shown on 

the right. As can be seen, the model’s performance remained stable among all three datasets. Reprinted with 

permission from [97]. 

To boost the usability of CIM, we integrated the inference algorithm into the real-time 

acquisition software for DPM (wDPM CellVista Pro, Phi Optics, Inc.). Figure 14 shows the user 

interface, with the DPM image being reconstructed and used as input for inference. Ref [97] 

includes a video demonstration. The conversion from the noisy DPM images to CIM takes place 

at a push of a button. Note that translating the stage does not affect the quality of the inference, 

which works very well for both red and white blood cells. Thus, we envision that CIM can be 

readily used for automating large field of view and multi-well plate scanning.  
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Figure 13. CIM Performance. Comparison of the lowest, average and highest Pearson correlation output images. 

The data were chosen from the test set. We plot the profile of chosen RBC at the exact same pixel position. All the 

structure were properly calculated, while the CIM image with higher Pearson correlation had a closer profile compared 

to SLIM image. Reprinted with permission from [97]. 

To validate the performance of our method on unseen data, we collected blood from a 

healthy volunteer, diluted one drop of blood with 10 ml Phosphate-buffered saline. No effect was 

devoted to stabilizing the smear, such that we can test the ability of CIM to operate on highly 

dynamic samples. Clearly CIM performs very well and even reveals minute membrane 

fluctuation in individual red blood cells. The area of cell overlapping sometimes display lower 

phase values than expected, but this appears to be an optical, rather than computational artifact, 

as it is also present in Fig. 4 (SLIM column). These data highlight the capability of CIM to run 

under flow conditions, for applications such as flow cytometry. Figure 15 shows 4 sequential 

frames from the time lapse in Visualization 2 of Ref [97], taken 100 ms apart, with 2 ms 
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exposure each. The cells selected in the rectangular boxes moved very fast, as can be visualized 

in the movie and these snapshots. These results prove that the CIM system can provide single-

shot, high speed measurements, as allowed by DPM, while the output has the high quality of 

SLIM images.  

 

Figure 14. Live Imaging Interface. The image shows the graphic user interface and a snapshot of CIM operation in 

real-time. Reprinted with permission from [97]. 

 

Figure 15. Dynamic Imaging of Blood Cells. Dynamic imaging of blood cells with snapshots at different moments 

in time, 100 ms apart, as indicated. The scale bar and color bar are the same for all the frames. In these frames, one 

can see cells (e.g., those in the rectangular boxes) that flow very fast. However, the CIM inference is accurate and 

operates in real-time. Reprinted with permission from [97]. 
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5. Cell Cycle Detection via PICS 

Traditional methods for cell cycle stage classification rely heavily on fluorescence microscopy to 

monitor nuclear dynamics. These methods inevitably face the typical phototoxicity and 

photobleaching limitations of fluorescence imaging. In this chapter, we present a new label-free 

cell cycle detection workflow using the principle of PICS. The proposed method uses neural 

networks to extract cell cycle-dependent features from QPI measurements directly. Our results 

indicate that the new method attains 0.76, 0.76, and 0.60 F-1 scores in classifying live cells into 

G1, S, and G2/M stages, respectively. We also demonstrate that the proposed method can be 

applied to study single-cell dynamics within the cell cycle as well as cell population distribution 

across different stages of the cell cycle. We envision that the proposed method can become a 

nondestructive tool to analyze cell cycle progression in applications ranging from cell biology 

research to biopharma applications. 

5.1 Motivation 

The cell cycle [186] is a complex and ubiquitous process encompassing a series of ordered stages 

that can lead to mitosis and cellular division. It is involved in many biological events such as cell 

growth, organismal development, and diseases. Significantly, alteration in the cell cycle 

progression is one major mechanism that cells have developed to cope with DNA damage [187], 

which is central to both the cause and cure of cancer. Thus, understanding the cell cycle 

progression as part of cellular responses to DNA damage has emerged as an active field in cancer 

biology [188, 189].  

Morphologically, the cell cycle can be divided into interphase and mitosis. The interphase 

can further be divided into three stages: G1, S, and G2 [186]. Since the cells are preparing for 

DNA synthesis and mitosis during G1 and G2 respectively, these two stages are also referred to as 
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the “gaps” of the cell cycle [190]. During the S stage, the cells are synthesizing DNA, with the 

chromosome count increasing from 2N to 4N.  

Traditional approaches to distinguish different stages within the cell cycle rely on 

fluorescence microscopy [5] to monitor the activity of proteins that are involved in DNA 

replication and repair, e.g. proliferating cell nuclear antigen (PCNA) [191, 192]. Historically, a 

variety of signal processing techniques, including support vector machine (SVM) [193], intensity 

histogram and intensity surface curvature [194, 195], level-set segmentation [196], and k-nearest 

neighbor [197] have been applied to fluorescence intensity images to perform classification. In 

recent years, with the rapid development of parallel-computing capability [66, 162] and deep 

learning algorithms [89, 198, 199], convolutional neural networks have also been applied to 

fluorescence images of single cells for cell cycle tracking [200, 201]. Since all these methods are 

based on fluorescence microscopy, they inevitably face the associated limitations, including 

photobleaching, chemical, and phototoxicity, weak fluorescent signals that require large 

exposures, as well as nonspecific binding. These constraints limit the applicability of fluorescence 

imaging to studying live cell cultures over large temporal scales [202]. 

In this chapter we present a new methodology for label-free cell cycle detection that utilizes 

phase imaging with computational specificity (PICS) (see Ref [82-85] and Chapter 3). Our 

workflow combines spatial light interference microscopy (SLIM) (see Ref [108, 109] and Chapter 

2), a highly sensitive QPI method, with recently developed deep learning network architecture E-

U-Net [149, 203, 204]. We demonstrate on live cell cultures that the proposed method classifies 

cell cycle stages solely using SLIM images. The signals from the fluorescent ubiquitination-based 

cell cycle indicator (FUCCI) [148] were only used to generate ground truth annotations during the 

deep learning training stage. Unlike previous methods that perform single-cell classification based 
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on bright-field and dark-field images from flow cytometry [205] or phase images from 

ptychography [206], our method can classify all adherent cells in the field of view and perform 

longitudinal studies over many cell cycles. Evaluated on a test set consisting of 408 unseen SLIM 

images (over 10,000 HeLa cells), our method achieves over 0.75 F-1 scores for both the G1 and S 

stage, and an 0.6 F-1 score for the G2/M stage. We also show that our method allows for the 

investigation of single cell area and dry mass change within the cell cycle as well as the cell area 

and dry mass distribution of cell populations in different cell cycle stages. We envision that our 

proposed method can be extended to different cell lines and other QPI imaging modalities for high 

through-put and nondestructive cell cycle analysis, thus, eliminating the need for cell 

synchronization [207, 208]. 

5.2 Methods 

We presented, in this section, the sample preparation procedure, the imaging experiment setup, 

the deep learning model development, and the evaluation and application of the proposed cell 

cycle stage classification method. 

5.2.1 Cell Preparation 

HeLa/FUCCI(CA)2 [148] cells were acquired from RIKEN cell bank and kept frozen in liquid 

nitrogen tank. Prior to the experiments, we thawed and cultured cells into T75 flasks in Dulbecco’s 

Modified Eagle Medium (DMEM with low glucose) containing 10% fetal bovine serum (FBS) 

and incubated in 37°C with 5% CO2. When the cell reached 70% confluency, the flask was washed 

with phosphate-buffered saline (PBS) and trypsinized with 4 mL of 0.25% (w/v) Trypsin EDTA 

for four minutes. When the cells started to detach, they were suspended in 4 mL of DMEM and 

passaged onto a glass-bottom six-well plate. HeLa cells were then imaged after two days of 

growth. 
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5.2.2 SLIM Imaging 

The SLIM system architecture is shown in Fig. 16a, and more details can be found in Section 2.3. 

We attached a SLIM module (CellVista SLIM Pro; Phi Optics) to the output port of a phase 

contrast microscope. Inside the SLIM module, the spatial light modulator matched to the back 

focal plane of the objective controlled the phase delay between the incident field and the reference 

field. We recorded four intensity images at phase shifts of 0, π/2, π, and 3π/2 and reconstructed the 

quantitative phase map of the sample. We measured both the SLIM signal and the fluorescence 

signal with a 10×/0.3NA objective. The camera we used was Andor Zyla with a pixel size of 6.5 

µm. The exposure time for SLIM channel and fluorescence channel was set to 25 ms and 500 ms, 

respectively. 

 

Figure 16. Schematic of the Imaging System. (a) The SLIM module was connected to the side port of an existing 

phase contrast microscope. This setup allows us to take co-localized SLIM images and fluorescence images by 

switching between transmission and reflection illumination. (b) Measurements of HeLa cells. (c) mCherry 

fluorescence signals. (d) mVenus fluorescence signals. (e) Cell cycle phase masks generated by using adaptive 

thresholding to combine information from all three channels. Scale bar is 100 μm. 
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5.2.3 Cellular Dry Mass Computation 

As the refractive index is linearly proportional to cell density [15, 16], independent of composition, 

QPI methods can be used to measure the non-aqueous content (dry mass) of the cellular culture 

[28]. We recovered the dry mass density as 

𝑚(𝑥, 𝑦) =
𝜆

2𝜋𝛾
𝜙(𝑥, 𝑦) 

(5.1) 

using the same procedure outlined in previous works [15, 28, 33, 83]. 𝜆 = 550 𝑛𝑚 is the central 

wavelength; 𝛾 = 0.2 𝑚𝑙/𝑔 is the specific refraction increment, corresponding to the average of 

reported values [15, 209]; and 𝜙(𝑥, 𝑦) is the measured phase. Equation (5.1) provides the dry mass 

density at each pixel, and we integrated over the region of interest to get the cellular dry mass. In 

Equation (5.2), 𝑀𝐶 denotes the cellular dry mass associated with cell mask 𝐶. To retrieve this 

quantity, for each pixel within the mask, we multiply the dry mass density with the unit area Δ𝐴, 

which is determined by the camera pixel size as well as the magnification used. 

𝑀𝐶 = ∑ 𝑚(𝑥, 𝑦) ⋅ Δ𝐴
(𝑥,𝑦)∈𝐶

 
(5.2) 

5.2.4 Ground Truth Cell Cycle Mask Generation 

To prepare the ground truth cell cycle masks for training the deep learning models, we combined 

information from the SLIM channel and the fluorescence channels (Fig. 17a) by applying adaptive 

thresholding (Fig. 17b). All the code was implemented in Python, using the scikit-image library 

[210]. We first applied the adaptive thresholding algorithm on the SLIM images to generate 

accurate cell body masks. Then we applied the algorithm on the mCherry fluorescence images and 

mVenus fluorescence images to get the nuclei masks that indicate the presence of the fluorescence 

signals. The window size used in the adaptive thresholding algorithm was tuned by visually 

inspected the correlation between the generated mask and the SLIM image. We took the 
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intersection between the three sets of masks. Following the FUCCI color readout detailed in [148], 

a presence of mCherry signal alone indicates the cell is in G1 stage and a presence of mVenus 

signal alone indicates the cell is in S stage. The overlapping of both signals indicates the cell is in 

G2 or M stage. Since the cell mask is always larger than the nuclei mask, we filled in the entire 

cell area with the corresponding label. We handled the case of no fluorescence signal by 

automatically labeling them as S because both fluorescence channels yield low-intensity signals 

only at the start of the S phase [148]. Before using the mask for analysis, we also performed 

traditional computer vision operations, e.g., hole filling. on the generated masks to ensure the 

accuracy of computed dry mass and cell area (Fig. 17c).  

 

Figure 17. Ground Truth Mask Generation Workflow. (a) Images from the SLIM channel (left), mCherry channel 

(middle) and the mVenus channel (right). (b) Preliminary masks generated from the SLIM and fluorescence images 

using adaptive thresholding. (c) Combing three masks in b. Holes in cell masks were removed during analysis to avoid 

errors in cell dry mass and area. Scale bar is 100 μm. 

5.2.5 Deep Learning Model Development 

We used the E-U-Net architecture [84, 204] to develop the deep learning model that can assign a 

cell cycle phase label to each pixel. The E-U-Net upgraded the classic U-Net [149] architecture by 
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swapping its encoder component with a pre-trained EfficientNet [203]. Compared to previously 

reported transfer-learning strategies [211, 212], e.g. utilizing a pre-trained ResNet [152] for the 

encoder part,  we believe the E-U-Net architecture is superior since the pre-trained EfficientNet 

attains higher performance on the benchmark dataset [73] while remaining compact due to the 

compound scaling strategy [203].  

 The EfficientNet backbone we ended up using for this project was EfficientNet-B4 (Fig. 

18a). The entire E-U-Net-B4 model contains around 25 million trainable parameters, which is 

smaller compared to the number of parameters from the stock U-Net [83, 85, 149] and other 

variations [213, 214]. We trained the network with 2046 image pairs in the training dataset and 

408 image pairs in the validation dataset. Each image contains 736 × 736 pixels. The model was 

optimized using an Adam optimizer [185] with default parameters against the sum of the DICE 

loss [215] and the categorical focal loss [216]. The DICE loss was designed to maximize the dice 

coefficient 𝐷 (Equation (5.3)) between the ground truth label (𝑔𝑖) and prediction label (𝑝𝑖) at each 

pixel. It has been shown in previous works that DICE loss can help tackle class imbalance in the 

dataset [217, 218]. Besides DICE loss, we also utilized the categorical focal loss 𝐹𝐿(𝑝𝑡) (Equation 

(5.4)). The categorical focal loss extended the cross-entropy loss by adding a modulating 

factor (1 − 𝑝𝑡)𝛾. It helped the model to focus more on wrong inferences by preventing easily 

classified pixels dominating the gradient. We tuned the ratio between these two loss values and 

launched multiple training sessions. In the end we found the model trained against an equally 

weighted DICE loss and categorical focal loss gave the best results.  

𝐷 =
2 ∑ 𝑝𝑖𝑔𝑖

𝑁
𝑖

(∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔𝑖
2)𝑁

𝑖

 
(5.3) 
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𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) (5.4) 

 The model was trained for 120 epochs, taking over 18 hours on an Nvidia V-100 GPU. For 

learning rate scheduling, we followed previous works [219-221] and implemented learning rate 

warmup and cosine learning rate decay. During the first five epochs of training, the learning rate 

will increase linearly from 0 to 4×10-3. After that, we decreased the learning rate at each epoch 

following the cosine function. Based on our experiments, we ended up relaxing the learning rate 

decay such that the learning rate in the final epoch will be half of the initial learning rate instead 

of zero [220]. We plotted the model’s loss value on both the training dataset and the validation 

dataset after each epoch (Fig. 18b) and picked the model checkpoint with the lowest validation 

loss as our final model to avoid overfitting. All the deep learning code was implemented using 

Python 3.8 and TensorFlow 2.3. 

 

Figure 18. PICS Training Procedure. (a) We used a network architecture called the E-U-Net that replaces the 

encoder part of a standard U-Net with the pre-trained EfficientNet-B4. Within the encoder path, the input images were 

downsampled 5 times through 7 blocks of encoder operations. Each encoder operation consists of multiple MBConvX 

modules that consist of convolutional layers, squeeze and excitation, and residual connections. The decoder path 

consists of concatenation, convolution and upsampling operations. (b) The model loss values on the training dataset 
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and the validation dataset after each epoch. We picked the model checkpoint with the lowest validation loss as our 

final model and used it for all analysis. (c) The model’s average F-1 score on the training dataset and the validation 

dataset after each epoch. 

5.2.6 Post-processing for Cellular Level Evaluation 

We evaluated the performance of our trained E-U-Net on an unseen test dataset and reported the 

precision, recall, and F-1 score for each category: G1, S, G2/M, and background, respectively (Fig. 

19). The pixel-wise confusion matrix indicated our model achieved high performance in 

segmenting the cell bodies from the background. However, since this pixel-wise evaluation 

overlooked the biologically relevant instance, i.e., the number of cells in each cell cycle stage, we 

performed an extra step of post-processing to evaluate that.  

 

Figure 19. PICS Performance Evaluated at a Pixel Level. 

We first performed connected-component analysis on the raw model predictions. Within 

each connected component, we applied a simple voting strategy where the majority label will take 

over the entire cell. Figures 20a-b illustrate this process. We believe enforcing particle-wise 

consistency, in this case, is justified because it is impossible for a single cell to have two cell cycle 

stages at the same time and that our model is highly accurate in segmenting cell bodies, with over 

0.96 precision and recall (Fig. 19). We then computed the precision, recall, and F-1 score for each 
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99.75% 0.03% 0.17% 0.05%

1.50% 70.27% 26.21% 2.01%
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category on the cellular-level. For each particle in the ground truth, we used its centroid (or the 

median coordinates if the centroid falls out of the cell body) to determine if the predicted label 

matches the ground truth. The cellular-wise metrics were reported in Fig. 21d.  

Before using the post-processed prediction masks to compute the area and dry mass of 

each cell, we also performed hole-filling as we did for the ground truth masks to ensure the 

values are accurate (Fig. 20c). 

 

Figure 20. Post-processing Workflow. (a) Raw prediction from PICS. (b) Prediction map after enforcing particle 

consistency and removing small particles. A few examples were shown in the red rectangles. (c) Prediction map after 

filling in the holes in the masks. Masks at this stage were used for analysis. 
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Figure 21. PICS Performance. (a) Cell area histograms for cells in G1, S, and G2/M, generated by the ground truth 

mask (in blue) and by PICS (in green). (b) Cell dry mass histograms for cells in G1, S, and G2/M, generated by the 

ground truth mask (in blue) and by PICS (in green). (c) Cell dry mass density histogram for cells in G1, S, and G2/M, 

generated by the ground truth mask (in blue) and by PICS (in green). (d) Confusion matrix for PICS inference on the 

test dataset. 

5.3 Results 

In this section, we first present both the raw performance of our model, and the cellular level 

performance after the post-processing step. Then we demonstrate the application of our method 

on both single cells and cell populations. 

5.3.1 PICS Performance 

After training the model, we evaluated its performance on 408 unseen SLIM images from the test 

dataset. The test dataset was selected from wells that are different from the ones used for network 

training and validation during the experiment. Figure 22a shows randomly selected images from 

the test dataset. Figures 22b-c show the corresponding ground truth cell cycle masks and the PICS 

cell cycle masks, respectively. It can be seen that the trained model was able to identify the cell 

body accurately. 
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Figure 22. PICS Results on the Test Dataset. (a) SLIM images of Hela cells from the test dataset. (b) Ground truth 

cell cycle phase masks. (c) PICS-generated cell cycle phase masks. Scale bar is 100 μm. 

 We reported the raw performance of our PICS methods in Fig. 19, with pixel-wise 

precision, recall, and F1-score for each class. However, we noticed that these metrics did not reflect 

the performance in terms of the number of cells. Thus, we performed a post-processing step on the 

inferred masks to enforce particle-wise consistency, as detailed in Section 5.2.6. After this post-

processing step, we evaluated the model’s performance on the cellular level and produced the cell 

count-based results shown in Fig. 21. Figure 21a shows the histogram of cell body area for cells 

in different stages, derived from both the ground truth masks and the prediction masks. Figures 

21b and 21c show similar histograms of cellular dry mass and dry mass density, respectively. The 

histograms indicated that there is a close overlap between the quantities derived from the ground 

truth masks and the prediction masks. We also reported the cellular-wise precision, recall, and F-
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1 score for all three stages in Fig. 21d. Each entry is normalized with respect to the ground truth 

number of cells in that stage. Our deep learning model achieved over 0.75 F-1 scores for both the 

G1 stage and the S stage, and a 0.6 F-1 score for the G2/M stage. 

5.3.2 PICS Application  

The PICS method can be applied to track the cell cycle transition of single cells, nondestructively. 

Figure 5a shows the time-lapse SLIM measurements and PICS inference of HeLa cells. The time 

increment was roughly two hours between two measurements and the images at t = 2, 6, 10, and 

14 hours were displayed in Fig. 23a. Our deep learning model has not seen any of these SLIM 

images during training. The comparison between the SLIM images and the PICS inference showed 

that the deep learning model produced accurate cell body masks and assigned viable cell cycle 

stages. We showed in Fig. 23b-c the results of manually tracking two cells in this field of view 

across 16 hours and using the PICS cell cycle masks to compute their cellular area and dry mass. 

Figure 23b demonstrates the cellular area and dry mass change for the cell marked by the red 

rectangle. We observed an abrupt drop in both the area and dry mass around t = 8 hours, at which 

point the mother cell divides into daughter cells. The PICS cell cycle mask also captured this 

mitosis event as it progressed from the “G2/M” label to the “G1” label. We observed a similar 

drop in Fig. 23c after 14 hours due to mitosis marked by the orange rectangle. Figure 5c also shows 

that the cell continues growing before t = 14 hours and the PICS cell cycle mask progressed from 

the “S” label to the “G2/M” label correspondingly. 
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Figure 23. PICS on Time-lapse of FUCCI-Hela Cells. (a) SLIM images and PICS inference of cells measured at 2, 

6, 10, and 14 hours. The time interval is roughly 2 hours. We manually tracked two cells (marked in red and orange). 

(b) Cell area and dry mass change of the cell in the red rectangle, across 16 hours. These values were obtained via 

PICS inferred masks. We can observe an abrupt drop in cell dry mass and area as the cell divides after around 8 hours. 

(c) Cell area and dry mass change of the cell in orange rectangle, across 16 hours. We can observe that the cell 

continues growing in the first 14 hours as it goes through G1, S, and G2 phase. It divides between hour 14 and hour 

16, with an abrupt drop in its dry mass and cell area. Scale bar is 100 μm. 

 We also demonstrated that the PICS method can be used to study the statistical distribution 

of cells across different stages within interphase. The cell area distribution across G1, S, and G2/M 

was plotted in Fig. 24a and a clear shift between cellular area in these stages can be observed. We 

performed Welch’s t-test on these 3 groups of data points. To avoid the impact on p-value due to 

the large sample size, we randomly sampled 20% of all data points from each group and performed 

the t-test on these subsets instead. After sampling, we have 884 cells in G1, 1345 cells in S, and 

373 cells in G2/M. The p-values are less than 10-3, indicating statistical significance. The same 

analysis was performed on the cell dry mass and cell dry mass density, as shown in Figs. 24b-c. 

We observed a clear distinction between cell dry mass in S and G2/M as well as between cell dry 

mass density in G1 and S. These results agree with the general knowledge that cells are 

metabolically active and grow during G1 and G2. During S, the cells remain metabolically inactive 

and replicate their DNA. Since the DNA dry mass only accounts for a very small factor of the total 

cell dry mass [222], the distinction between G1 cell dry mass and S cell dry mass is less obvious 



54 

 

than the distinction between S cell dry mass and G2/M cell dry mass. We also noted that our 

observation on the cell dry mass density distribution agrees with previous findings [32]. 

 

Figure 24. Statistical Analysis from PICS Inference on the Test Dataset. (a) Histogram and box plot of cell area. 

The p-value returned from Welch’s t-test indicated statistical significance. (b) Histogram and box plot of cell dry 

mass. The p-value returned from Welch’s t-test indicated statistical significance. (c) Histogram and box plot of cell 

dry mass density. The p-value returned from Welch’s t-test indicated statistical significance comparing cells in G1 

and S. The box plot and Welch’s t-test are computed on 20% of all data points in G1, S, and G2/M, randomly sampled. 

The sample size is 884 for G1, 1345 for S, and 373 for G2/M. Outliers are omitted from the box plot. (*** p < 0.001). 

5.4 Discussion 

We proposed a PICS-based cell cycle stage classification workflow for fast, label-free cell cycle 

analysis on adherent HeLa cell cultures. Our new method utilizes trained deep neural networks to 

infer an accurate cell cycle mask from a single SLIM image. The method can be applied to study 

single-cell dynamics within the cell cycle as well as compare the cellular parameter distributions 

between cells in different cell cycle phases.  

Compared to many existing methods of cell cycle detection [193-197, 200, 201, 205, 206], 

we believe that our method has three main advantages. First, our method uses a SLIM module, 

which can be installed as an add-on component to a conventional phase contrast microscope. The 

imaging cost and setup complexity are much lower compared to previous methods using flow 
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cytometry [205], while the user experience remains the same as using a commercial microscope. 

Significantly, due to the seamless integration with the fluorescence channel on the same field of 

view, the instrument can collect the ground truth data very easily, while the annotation is 

automatically performed via thresholding, rather than manually. Second, our method is label-free 

and does not rely on fluorescence signals as input. On the contrary, our method is built upon the 

capability of neural networks to extract label-free cell cycle markers from the quantitative phase 

map. Thus, the method can be applied to live cell samples over long periods of time without 

concerns of photobleaching or degraded cell viability due to chemical or phototoxicity. Third, our 

approach can be applied to large sample sizes consisting of entire fields of views and hundreds of 

cells. Since we formulated the task as semantic segmentation and trained our model on a dataset 

containing images with various cell counts, our method worked with FOVs containing up to 

hundreds of cells. Also, since the U-Net [149] style neural network is fully convolutional, our 

trained model can be applied to images with arbitrary size. Consequentially, the method can 

directly extend to other cell datasets or experiments with different cell confluency, as long as the 

magnification and numerical aperture stay the same. 

During the development of our method, we followed standard protocols in the community 

[94, 145, 223-225], such as preparing a diverse enough training dataset, properly splitting the 

training, validation and test dataset, and closely monitoring the model loss convergence to ensure 

that our model can generalize [224, 226, 227]. We believe PICS-based instruments are well-suited 

for extending our generalizable method to different cell lines and imaging conditions as the effort 

to perform extra training is minimal [82]. Our typical training only takes approximately 20 hours, 

which can be further reduced by utilizing distributed training on advanced GPUs. Thus, we 
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envision that our proposed workflow is a valuable alternative to the existing methods for cell cycle 

stage classification and eliminates the need for cell synchronization. 
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6. Conclusion 

Recent advancements in QPI and deep learning have opened up an exciting frontier. This thesis 

presented the principle of PICS, a family of methods that combine deep learning and QPI, and its 

application in cell biology study. The label-free nature of QPI and deep learning makes it 

possible to study biological phenomenon previously limited by photobleaching or phototoxicity 

associated with fluorescence microscopy. We believe that PICS can be easily tailored to various 

sorts of biological problems. 

We note that, however, the following measures should be taken when developing PICS-

style methods or operating deep learning enhanced QPI systems to ensure quality of the resulting 

methods. First, deep learning methods also have limitations. They cannot extract nonexistent 

structures or features. For example, it would be problematic to apply deep learning to 

approximate ill-posed problems which lack uniqueness of solutions [59]. In those scenarios, the 

deep learning model will likely learn characteristics associated with the dataset used for 

development and hallucinate when presented with unseen new data. Second, all the deep learning 

methods should be carefully evaluated on a test dataset of sufficient size to ensure 

generalizability. For clinical applications, it is recommended to test the trained networks on a 

well-curated external dataset of appropriate size [228]. Such practices might be hard to achieve 

at present, for basic science applications, due to lack of standard measurements and benchmark 

datasets [59, 89]. Third, the development datasets should be carefully acquired as the trained 

models’ performance is ultimately limited by the training data [229]. The issues within the 

training dataset could have long-term negative impacts to the application of trained models 

downstream. Data issues might be easier to locate and correct in domains where human experts 

can provide the ultimate ground truth (e.g., pathology). In biological related problems, where 
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fluorescence signals are usually used to generate the ground truth data, the sample preparation 

procedure and experimental design have to be evaluated carefully as they might impact the 

acquired data. It is also recently speculated that deep learning systems might benefit from 

consuming raw data, e.g., data that might seem uninterpretable to human eyes, directly  and more 

investigations are going into the fusion of deep learning based image formation and image 

interpretation [89]. Last but not least, the deep learning training procedure (including 

hyperparameters, model architectures, and data splits) should be carefully noted for replicability 

and more meaningful comparison among different trained models. 

What we presented in this thesis aims to provide examples of not only the enhancement 

deep learning can bring to both QPI data and QPI systems, but also the value that this synergy 

between QPI and deep learning can bring to the broader field of imaging and biomedical 

research. We envision that deep learning algorithms will continue to be relevant for enhancing 

QPI methods as well as interpreting QPI data. Since most algorithms and models are already 

open-sourced and companies like MATLAB are actively building easy-to-use interface for 

applying such algorithms on any dataset, we believe the cost to try out deep learning methods 

will continue to decrease. Thus, the research at the interface between QPI and deep learning will 

continue to be highly multidisciplinary, application-driven, and data-dependent.  
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