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ABSTRACT

One of the core goals in the field of cognitive neuroscience is to decode task

state fMRI data. Task decoding is the process of taking neuroimaging data

and determining the task that was performed when that data was collected.

A large volume of work used for task decoding is done in pursuit of creating a

deep learning model for task prediction. Typically these models will include

either handcrafted features or data driven approaches for downscaling the in-

put features in successive layers. In this thesis, we explore and compare the

effectiveness of linear, graph-based and attention-based methods for hierar-

chical classification. Furthermore, we propose a new attention-based network

architecture which showcases superior performance to all of our baseline ar-

chitectures without the use of handcrafted features on several neuroimaging

datasets.
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Chapter 1

INTRODUCTION

The amount and complexity of data collected for neuroscientific imaging

has seen remarkable growth in recent years [1], [2]. Much of this growth

can be attributed to the popularity of functional magnetic resonance imag-

ing (fMRI) which is a non-invasive, cost-effective and widely available brain

imaging technique that allows neuroscientists to quantitatively measure sig-

nals throughout the brain corresponding to sensory stimuli [3]. This area of

research is typically referred to as fMRI brain state decoding.

In recent years, there has been increasing interest to in decoding brain state

information using a plethora of deep learning network structures. Past works

in this area used standard deep learning models for medical analysis such as

fully connected models and convolutional neural networks (CNNs) [4]. How-

ever, recent works suggest the need for powerful network-based architectures

that can create and utilize capture complex interactions in neurobiological

systems [2] such as graph neural networks (GNNs) [5] and transformers [6].

Furthermore, accompanying neuroscience literature suggests the importance

of clustering [7] and hierarchical organization [8] in fMRI analysis.

These observations motivate our work. In this thesis, we go over and

compare several hierarchical and end-to-end deep learning network struc-

tures for fMRI task state decoding. In particular, we leverage the insights of

the fixed grouping layer [9], graph convolutional networks [5] and attention

mechanisms [6] and propose an attention-based deep learning architecture

that is well-suited to task state decoding. We will show that our architec-

ture outperforms all of the aforementioned architectures on several common

neuroimaging datasets. In the following chapters, we will explore related

works in the field of fMRI task state decoding using GNNs and attention.

Afterwards, we will lay out the baseline architectures and the compare the

results of our experiments. In the final chapter, we will discuss our results

and future directions for our work.
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Figure 1.1: Comparison of CNNs and spatial GNNs: (A) In classical
convolutional layers on images, the hidden representation of a central node (pixel)
is based on a weighted combination of neighboring nodes which are defined by
proximity to the center node. (B) In graphs, nodes are not arranged in a grid-
like structure. So, neighbors are defined through edges rather than by proximity.
Similarly to convolutional layers, the representation of the central node in a graph
is updated based on an aggregation of its neighbors.

1.1 Graph Neural Networks

1.1.1 Graph Convolutional Networks

Standard deep neural network architectures have found great success in do-

mains where the underlying representation of data can be modeled in an

Euclidean or grid-like fashion [10]. However, in many domains, such as func-

tional imaging analysis, we wish to find a non-Euclidean underlying structure

representation for our data. An answer to this predicament comes about by

modeling our data and the interactions amongst our data through graph

structures and by extending standard deep learning frameworks to graph

structures.

The task of creating a graph neural network has been tackled by a vari-

ety of different authors with some notable methods being [5], [11], and [12].

Typically, we can divide these approaches into spectral-based approaches

and spatially-based approaches [11]. Spectral approaches utilize graph signal

processing techniques to perform convolutions between an input graph signal

and an input graph filter [13]. However, spectral approaches suffer when the

number of input nodes in a graph is large due to the high computational cost

of computing the graph Fourier transform [13]. On the other hand, spatial

approaches borrow from traditional convolutional layers by updating the hid-
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den representation of any given node through a function of that node itself

and its neighbors (as seen in Figure 1.1). In recent years, spatial approaches

have seen much more use than spectral-based methods due to the former’s

efficiency and generality [13].

In spatially-based approaches, we wish to find a function to update the

features of a given graph G. The input to a graph convolutional model is a

feature vector matrix X = [x0, x1, ..., xN ] ∈ RN×D where N is the number

of input nodes to our model and D is the number of features of per node.

These nodes are related by an adjacency matrix A which defines the set of

edges E of the graph. In general, we can update the hidden representation

h
(l)
i of each node at layer l in the following manner:

h
(l+1)
i = σ

(
W · h(l)i + AGGRN(i)(h

(l)
q )
)

(1.1)

where AGGR is an aggregation function of the neighbors of node i, N(i) is the

neighborhood about node i, σ is a non-linear activation function, h
(0)
i = xi,

and W is a linear mapping from RDi to RDo for Di input features and Do

output features. The aggregation function is usually taken to be a MAX or

MEAN operation but can be any function of node i’s neighbors, which are

defined by A. One such aggregation function could be defined through the

use of self-attention as found in graph attention models [14].

1.2 Linking GNNs to Transformers

Another deep learning architecture that has been gaining traction for use

with non-Euclidean data is the transformer. At a glance, GNNs and trans-

formers may not seem to have much in common. GNNs are typically used

in tasks where one can infer links between input vectors such as tasks in

social networks, neuroscience, and physics simulations [15]. These links are

usually provided to the model through an input graph which relates the

elements before updating the hidden state of each node. By contrast, in

transformer models, the relationships between corresponding nodes are not

passed as an input to a transformer layer, but rather learned through the use

of an attention matrix. Despite this, in this section, we will motivate our use

of transformers in functional brain analysis tasks by showing a connection
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Figure 1.2: Self-Attention Mechanism: A standard attentional mechanism
which computes the attention output by applying a softmax function on the prod-
uct of Q and KT to interpolate the elements of V .

between GNN’s and transformers.

Typically, transformer models are characterized by their use of a self-

attention mechanism as depicted in Figure 1.2 [6]. These attention mech-

anisms take in three inputs: a query matrix Q, a key matrix K, and a value

matrix V . Each of these inputs is formed by linearly projecting an input

feature matrix X to the spaces of the query vectors, the key vectors, and the

value vectors using WQ,WK ,WV ∈ RN×d respectively where N is the number

of input nodes to the self-attention mechanism and d is the dimensionality

of each input feature. So for input X, we can get Q, K and V as follows:

Q = WQ ·X (1.2)

K = WK ·X (1.3)

V = WV ·X (1.4)

Using these inputs we can compute the self-attention:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (1.5)

We see from Equation 1.5, that the each element of the output matrix is an

interpolation of the value vector V through the use of softmax
(

QKT
√
d

)
. We

can view the output of this softmax function as a matrix where the element

at the ith column and jth row is a measure of similarity between input
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features xi and xj. So, for a given matrix of hidden representations H(l) at

a given hidden layer l of our model we can write the update for the hidden

representation of the nodes at the output of the transformer as follows:

h
(l+1)
i =

∑
q∈IX

softmax(W
(l)
Q h

(l)
i ·W

(l)
K h(l)q ) ·

(
W

(l)
V h(l)q

)
(1.6)

where H(0) = X, h
(l)
i is the ith column of H(l), and IX is the index set of X.

We can now take a look back at a the propagation rule in Equation 1.1

for the hidden representations of nodes in a GNN to establish a connection

between GNNs and transformers. We see that in a GNN, a given hidden

node i is updated via an aggregation of nodes in the neighborhood of node

i and then summed with a weighted version of node i. In a similar manner,

in a transformer, the hidden representation of a given node h(l) at layer

l is updated by an aggregation over all nodes as defined by the use of a

similarity matrix. Due to this connection between GNNs and transformers,

we decided to build transformer network architectures for fMRI task decoding

and compare the results of those architectures with the results of GNN-based

architectures.
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Chapter 2

BACKGROUND

In recent years, fMRI analysis has been tackled using a variety of different

deep learning approaches. A common type of approach is to create hierarchi-

cal models which attempt to exploit hierarchical organization of brain fea-

tures through the use of handcrafted or learned clusters [8]. These models use

these clusters to downsample their inputs by aggregating features together

over multiple layers and obtain an output task prediction through the use of

a fully connected layer [9]. Complementary to models using hand-engineered

features are end-to-end models which take only raw fMRI signals as an input

and return a task prediction as an output. Common examples of end-to-end

models include convolutional and transformer-based architectures. In this

chapter, we will continue this discussion by examining key insights of several

network architectures which make use of handcrafted features and by exam-

ining key insights of several end-to-end network architectures that have been

previously used in fMRI task state decoding. In addition, we will discuss

our baseline architectures and discuss how prior works influence our baseline

architectures.

2.1 Convolutional Neural Networks

Convolutional neural networks [4] tend to lend themselves well to problems

where the input data contains strong spatial dependencies and, as a result,

have been used by numerous authors for fMRI analysis [9]. In CNNs, the

relations between input features are assumed to be contained in local win-

dows defined by the size of the kernel of the convolutional layer. Within

these local windows, weights are learned that allow the network to capture

high-frequency information such as information held in textures and edges

[16]. In recent years, multiple attempts have been made to determine the
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Figure 2.1: 3D CNN Diagram: An example of a 3D Convolutional Neural
Network is shown here. The first four layers of the model downscale the 3D input
volume. Afterwards, the output of the 3D convolutional layers is flattened and
sent to two fully connected layers to obtain a final output prediction.

benefits of using CNNs for fMRI tasks. One such attempt is [17] in which

3D CNNs (depicted in Figure 2.1) have been shown to effectively utilize spa-

tial relationships in the brain for task state inference. With this in mind,

in several of our baseline architectures, we attempt to capture information

typically found in spatially local regions of the brain and try to determine

how beneficial that information is for task state prediction when paired with

alternative network structures.

2.2 Fixed Grouping Layer

Another promising network architecture for fMRI analysis is based on the

fixed grouping layer (FGL) which is a network layer proposed by Habeeb and

Koyejo [9]. Given input x the output z to a given FGL l is as follows:

z = S[(xv) ◦ u] + b (2.1)

where S is an assignment matrix formed through the use of handcrafted

features, v ∈ RDi×Do is an input to output feature transform, u ∈ RN(l)×Do

is node specific feature-wise weight parameter, N (l) is the number of input

nodes to layer l, Di is the number of input features to the layer, Do is the

number of output features of the layer and b ∈ RN(l+1)×Do is a bias term [9].

Upon stacking multiple FGLs together, Habeeb and Koyejo [9] have cre-

ated a hierarchical network architecture as depicted in Figure 2.2. Through
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Figure 2.2: Fixed Grouping Layers: FGL Visualization recreated from [9].
The leftmost square on the top shows a segmentation with nine regions. Below
are the input variables, each of which is corresponding to the regions of interest
defined by that square before the first fixed grouping layer. After each layer of
FGL, the segments in the top squares are grouped together and the number of
nodes within each ROI is reduced in a hierarchical manner using an aggregation
of the feature representation of nodes in the previous hidden layer of the model.
After two fixed grouping layers, the output is sent to a fully connected layer to
generate a prediction.

their results, they show that that their architecture outperforms common

baseline architectures for brain state decoding [9]. The success of the FGL

suggests that both the ability to simultaneously cluster feature vectors to-

gether through the use of a learned assignment matrix S and the use of a

learnable parameter u to weight each feature vector before downsampling the

hidden representation of the data are conducive to inference in hierarchical

networks. Due to this success, we utilize FGL as a baseline for our work and

incorporate the insights of FGL into our graphical baseline architectures.

2.3 Graph Neural Networks

Graph neural networks are perhaps the most influential network structure

mentioned in this section thus far for fMRI analysis. This is due to the rising

popularity, in recent years, of network-based deep learning models for ana-

lyzing neurobiological systems which typically contain complex interactions

between a large number of elements [2]. As such, a large volume of research

is dedicated to finding how to best determine and model these interactions in
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fMRI scans. Prior literature suggests that aggregation of information from

several statistically connected brain regions in a hierarchical manner is con-

ducive to fMRI task prediction [7], [8]. This is supported by works such as [18]

and [19] which both propose hierarchical graph neural networks. These hier-

archical graph networks take in fMRI images, form graphs between regions of

interest through the use of statistical dependencies or temporal correlations

between fMRI voxels, and demonstrate respectable performance against com-

mon baseline architectures for brain decoding [18], [19]. As a result, for our

baseline hierarchical graph neural network, we attempted to leverage these

insights by forming edges between nodes at each hidden layer through the

use of statistical correlations.

2.4 Graph Attention Networks

Graph attention networks (GATs) are an extension of GNNs which utilize

self-attention as proposed by Veličković et al. [14] to update node features.

Specifically, GATs update the hidden representation h
(l)
i of each node i at

layer l using an aggregation of its neighbors based on an attention mechanism

(visualized in Figure 2.3) as shown below [14]:

h
(l+1)
i = σ

(∑
q∈Ni

αi,qWh(l)q

)
(2.2)

where h
(0)
i = xi, W is a linear transform that takes in an input in RDi and

returns an output in RDo , Di is the number of input features per node, Do is

the number of output features per node, and αi,q is an attention coefficient

that determines the influence of nodes q’s features on node i. The coefficient

αi,q does this by scoring the strength of the connection between two given

nodes i and q as [14]:

αi,q = softmax(LeakyReLU(a[Wh
(l)
i ||Wh(l)q ])) (2.3)

where || represents a concatenation operation along the feature dimension

and a is a learnable parameter vector.

While their use in fMRI task decoding is seemingly limited, GATs have

been shown to be beneficial to in a variety of graph classification tasks in
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Figure 2.3: Graph Attention Mechanism: A diagram of multi-headed self-
attention on graphs where the number of heads K = 3 based on multi-headed
attention from [14] is shown here. The red, blue and black arrows denote differing
attentional heads which each take a weighted representation of their respective
node features. These attention heads are aggregated together using either an
average or a concatenation (shown) to compute a new hidden representation for
the center node.

recent literature. For instance, Gao and Ji [20] combine GCNs, GATs, and

self-attention [6] for inductive graph prediction. Moreover, Filip et al. [21]

show in another work promising results for the task of single-subject per-

sonality trait prediction through the use of a modified GAT architecture on

fMRI images provided by the Human Connectome Project (HCP). These

works suggest that the use of graph attention may prove fruitful for task

state prediction.

2.5 Attention

Modern attention for neural networks was first introduced by Bahdanau et al.

[22] as an extension of recurrent neural networks architectures for machine

translation tasks. A limitation of this approach was poor parallelization

within training examples [6]. Vaswani et al. [6] proposed a new attention-

based architecture that overcame these limitations titled the transformer.

Over the past few years, attention and transformer models have become

increasingly popular in the machine learning community in particular for

natural language processing and computer vision tasks.

More recently, the use of attention has extended into the domain of ma-

chine learning for neuroscience for use in task state decoding. Typically, in
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these works, attention is applied to a 3D fMRI input after it has been pre-

processed by a convolutional deep network architecture such as ResNET-18

[23]. Other works, such as Qi et al. [24], incorporate a modified version of

the transformer’s encoder-decoder module directly into ResNET and Incep-

tionNET architectures to either replace skip connections or to encode the

hidden representations into a lower-dimensional latent space. Inspired by

these works, we prepend convolutional layers to our modified transformer

architecture and compare the results of that architecture with the rest of our

baselines.

Furthermore, there have been various attempts at creating a hierarchical

attention model. These works typically are completed for the study of se-

quence prediction in natural language processing tasks. In these approaches,

the outputs of the transformer are pooled in a manner similar to that found

in [25] and that input is then used as the input to the next transformer layer.

This is repeated until the final output is passed through a fully connected

network for a low-dimensional prediction. In both of these works, a sin-

gle value is used as an input to the transformer layers and a downsampling

operation occurs on the output of the transformer layers to create a hierar-

chical structure. In contrast to these prior attempts, we create a hierarchical

structure by utilizing three distinct inputs to each transformer block. We

let the values be the original input features to each layer, let the keys be

learned feature representations of the inputs and let the queries be pooled

representations of those inputs.

2.6 Baseline Architectures

In this section, we will describe the architectures of the baseline models that

we will compare our channel attention architecture against.

2.6.1 Fixed Grouping Layer

For this baseline, we follow the general structure of the FGL architecture

as found in [9]; however we do change the number of channels per layer to

32. Our baseline model has three FGLs with 13803, 4096, and 2048 nodes in

each layer respectively. The final FGL reduces the number of nodes to 128

11



Figure 2.4: k-NN and Ward Parcellations: (A) Brain parcellations created
using a k-nearest neighbors algorithm (where k = 10 neighbors) on the correspond-
ing 3D coordinates of each fMRI voxel. To achieve a hierarchical parcellation,
regions of interest of similar sizes are grouped together based on their proximity to
one another. (B) Ward’s algorithm to divide the brain. For small brain volumes,
our implementation of Ward’s parcellation resulted in few large ROI and several
smaller ROI at the center of the brain.

and these nodes are sent to a fully connected layer for output predictions.

We assign nodes to groups and perform a reduction of features in subsequent

layers using the “max” variation of the FGL architecture. That is, we follow

Equation 2.1 and pool the nodes at each layer by keeping the maximumN (l+1)

nodes after applying assignment matrix S where N (l+1) is a model parameter

for the number of input nodes to layer l+ 1. Afterwards, we discard the rest

of the nodes. The handcrafted feature matrix S is formed by using either

a Ward parcellation algorithm or a k-nearest neighbors algorithm (with k

= 10) on the downsampled brain volumes. We compare the results of our

brain parcellations on a downsampled brain image of size 37 x 45 x 37 voxels

using both Ward parcellations and k-nearest neighbors (k-NN) parcellations

in Figure 2.4.

2.6.2 Hierarchical GNN

For our second baseline, we utilize a hierarchical GNN (Figure 2.5) and, for

each convolutional layer, we expand upon the layers of the graph convolu-

tional network (GCN) introduced in [5]. Mathematically, we can write the

representation of the nodes at each hidden layer of a GCN at layer l by the

12



Figure 2.5: Hierarchical GNN Visualization: An illustration of a hierarchi-
cal GNN composed of three convolutional layers. After each layer receives input
features, the nodes of that layer are grouped into six ROI. Within each convolu-
tional layer, the network updates the hidden representation of each node based on
their respective neighbors. In the second layer, the six ROI are grouped together
into four ROI. Features within each ROI are combined to reduce the number of
nodes. In the two subsequent layers, convolution is again used to update the repre-
sentation of the nodes and ROI are combined. Downsampling occurs within each
of the new ROI to compute a hierarchical representation. At the end, a final fully
connected layer is reached and an output is found.

following formula:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2X(l)W (l)

)
(2.4)

where X(l) is the input feature vector, H(l) is the hidden representation of the

nodes, W (l) is a linear transform that takes in an input in RDi and returns

an output in RDo , Di is the number of input features per node, Do is the

number of output features per node, Ã = A+ IN is the adjacency matrix of

input graph G, IN is an identity matrix with N diagonal elements, N is the

number of nodes in the input graph, σ is an activation function such as ReLU

and D̃ is a matrix that weights the connections between nodes in graph G

[5].

To create our hierarchical graph convolutional architecture, we build upon

Equation 2.4 by borrowing both the aggregation step and the learnable weight

vector u from FGL. That is, we begin by taking learnable weight vector u

and elementwise multiplying u with the output of Equation 2.4. Afterwards,

to reduce the number of nodes in hierarchical fashion, we aggregate the nodes

through the use of a linear transformation S that takes in an input of di-

mensionality RN(l)
and returns an output of dimensionality RN(l+1)

. We then

write the final expression for the output at layer l of our hierarchical GNN

13



model as:

X(l+1) = S
(
H(l+1)

)
◦ u (2.5)

where ◦ denotes the element-wise product.

Overall, we use four layers for our baseline architecture: three hierarchi-

cal graph convolutional layers followed by a fully connected layer. In our

first hierarchical graph convolutional layer, we expand the number of input

channels from 1 to 32. We maintain this number of channels for the two

subsequent graph convolutional layers. The number of input nodes in each

graphical layer is 13803, 4096, and 2048 respectively. To reduce the number

of nodes per layer, we make use k-NN parcellations with k = 10. The output

of the final graph convolutional layer has 128 nodes and 32 channels and

is flattened before being sent to a fully connected layer for inference. We

attempted to create edges between nodes through the use of Pearson’s cor-

relation coefficient, an identity matrix and through a learnable edge weight

system inspired by [15]. In the case of defining an edge between regions of

interest using correlation, an edge between regions was defined if the Pear-

son’s correlation coefficient between the mean of two regions of interest was

greater than 0.99. However, we found that edges formed with an identity

matrix yielded the best performance.

2.6.3 Hierarchical GAT

For our third baseline, we implemented a hierarchical graph attention net-

work. In this network, we replace the graph convolutional layers in our

hierarchical GNN model with graph attentional layers. So, our model takes

in an input fMRI volume, masks the input volume and separates the volume

into input nodes. We then append three channels corresponding to the 3D

coordinates of the input fMRI voxels to our input features. Next, we utilize a

node weight vector u from FGL to learn which nodes are beneficial to hierar-

chical classification. Afterwards, we pass these features to three hierarchical

graph attention layers. The final output is then used as an input to a fully

connected layer for inference.

Within each graph attention layer, we update the hidden representation

14



Figure 2.6: Hierarchical GAT Visualization: (A) An overview of the hi-
erarchical graph attention model. Our hierarchical graph attention model takes
in a 3D fMRI volume and separates the volume into several nodes. Each node is
appended along the channel dimension with a 3× 1 3D positional token based on
the node’s positional location in the input volume. The set of all nodes becomes
our input to our hierarchical GAT model. (B) The hierarchical GAT model forms
ROI and downstreams the input graph in a similar manner to our hierarchical
GNN. (C) Each hierarchical GAT layer is composed of two sub-layers. The first
uses self-attention as an aggregation scheme and concatenates the features to get
an intermediate representation. Afterwards, this concatenated representation is
passed to another attention layer where the learned representations are averaged
to update the final hidden representations of the nodes.

h
(l)
i for node i in layer l in the following manner:

y
(l)
i = σ

(
‖
∑
j∈Ni

αk
ijW

kh
(l)
j

)
(2.6)

h
(l+1)
i = σ

(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

ky
(l)
j

)
· ui (2.7)

where K is the number of attention heads used, ‖ is the concatenation oper-

ation, αk
ij is the attention coefficient of node j on node i for head k, W k is a

linear transform that takes in an input in RDi and returns an output in RDo

for head k, Di is the number of input features per node, Do is the number of

output features per node, and ui is the ith element of node weighting vector

u.
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After each update to the hidden node representation, we cluster the nodes

in an aggregation step once again leveraged from FGL in order to lower the

number of input feature vectors to the next set of graph attention layers. We

set the number of nodes per layer to 13803, 4096, and 2048 respectively and

the number of input channels to each layer except for the first to 32. The

output of our final hierarchical graph attention layer has 128 nodes and 32

channels. This output is flattened and sent to a final fully connected layer

for task predictions. Furthermore, we utilize an identity matrix to form our

adjacency matrix for each graph layer since we once again found that edges

formed with an identity matrix yielded the best in-sample and out-of-sample

accuracy. A visualization of our final hierarchical graph attention network

can be seen in Figure 2.6.
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Chapter 3

CHANNEL ATTENTION MODEL

3.1 Hierarchical Transformer Network

In this chapter, we describe our hierarchical transformer architecture and

describe several variants of this model.

3.1.1 Transformer Channel Attention Model

Our proposed hierarchical transformer architecture, as seen in Figure 3.1, is

composed of three transformer channel attention layers and a fully connected

layer. The first transformer channel attention layer expands the number of

input channels from 1 to 32 and is made up of 13803 nodes. The next two

layers maintain this number of channels and have 1024 nodes. The output

of the final channel attention layer has 128 nodes and is flattened before it

is sent to a fully connected layer to generate output predictions.

Each of the aforementioned transformer layers, as visualized in Figure 3.2,

is modeled after the transformer encoder as defined in [6]. The input to a

transformer layer is a matrix of node features X ∈ RN(l)xDi where N (l) is the

number of nodes at layer l and Di is the number of features per node. We

apply a linear transform v to the input X such that

Y = Xv (3.1)

The transform v is a linear projection vector which takes an input in RDi and

maps it to an output in RDo where Do is the number of output features of

the layer. Afterwards, the intermediate representation Y is used to compute
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Figure 3.1: Hierarchical Transformer Network Visualization: An illus-
tration of the overall transformer channel attention model composed of L channel
attention layers. Each layer takes in three separate inputs: query Q, value V and
key matrix K which are computed using the input feature matrix X. The output
of each channel attention layer is used to compute the next set of Q,K, V matrices.

value V , key K, and query Q as follows:

V = Y T (3.2)

K = f1(Y
T ) (3.3)

Q = f2(Y
T ) ◦ softmax(f3(Y

T )) (3.4)

where f1 is a neural network which takes an input in RN(l)
and maps it to

an output in RN(l)
and f2, and f3 are neural networks which take inputs in

in RN(l)
and maps it to an output in RN(l+1)

.

The output of the multi-head attention is given by the following equation:

Z1 = softmax

(
QKT

√
N (l)

)
V (3.5)

In order to get the input feature matrix X(l+1) to the next transformer

layer from this output, we make use of a residual connection [26] and layer

normalization [27] as follows:

Z2 = LayerNorm(f4(V ) + Z1) (3.6)

X(l+1) = (LayerNorm(f5(Z2) + Z2))
T (3.7)

where f4 is a fully connected layer that projects inputs in RN(l+1)
to outputs in

RN(l+1)
. f5 is a feed-forward network that consists of a ReLU transformation
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Figure 3.2: Transformer Channel Attention Layer: A diagram of a single
transformer channel attention layer. In our transformer layer, we compute the
queries, values and keys separately. We take features as value matrix V . K is
learned through a neural network. Q is also learned through a neural network and
then weighted by a learned probability score before being used in the transformer
layer. This transformer layer is similar to the transformer encoder stack found in
[6]; however, we replace the first skip connection with a feedforward network that
lowers the dimensionality of matrix V .

and two linear transformations as shown below:

f5(Z2) = max (0,W1(Z2) + b1)W2 + b2 (3.8)

where W1 and W2 are linear transforms that take in inputs in Rdff and Rdmodel

and return outputs in Rdmodel and Rdff respectively. We set dff and dmodel

as 2048 and N (l+1) respectively and let b1 and b2 be learnable biases.

3.1.2 Transformer Node Attention Model

A simple variant of our architecture can be constructed in order to attend

over nodes rather than over channels. In this variant of our transformer layer,

we once again apply a linear mapping V to the input X to get intermediate
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Figure 3.3: Transformer Node Attention Layer: A diagram of a single
transformer node attention layer. This layer is similar to the channel attention
layer. However, we remove the feed forward connection on V and lower the di-
mensionality of Q through the use of a learned similarity matrix as opposed to
weighting the elements of Q in the channel attention formulation.

representation Y . We compute V , K, and Q as seen below:

V = Y (3.9)

K = f1(Y ) (3.10)

Q = softmax(f2(Y ))Tf3(K) (3.11)

where f1, f2, and f3 are neural networks such that f1 and f3 maps from inputs

in RDo to RDo and f2 maps from inputs in RDo to RN(l+1)
. Like before, these

vectors are used as inputs to transformer node attention layer l.

The output of the multi-headed attention block Z1 can then be found as

seen in Equation 2.1. That is,

Z1 = softmax

(
QKT

√
Do

)
V (3.12)

where Z1 ∈ RN(l+1)×Do . Afterwards, Z1 is used to get the output of a single

transformer layer as seen below:

Z2 = LayerNorm(Z1) (3.13)

X(l+1) = LayerNorm(f4(Z2) + Z2) (3.14)

where f4 is a feed-forward network as described in Equation 3.8 for dff = 16
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and dmodel = Do. A complete overview of a node attention layer is provided

in Figure 3.3.

Our final node-based attention model has three transformer layers stacked

together in a hierarchical fashion with 13803, 4096, and 2048 nodes in each

layer respectively. In the first layer of our model, we expand the number

of input features from 1 to 32 and we maintain this number of features for

the latter two transformer layers. The output of the final transformer layer

contains 128 nodes, is once again flattened, and sent to a final fully connected

network before a predictive score is found.

Finding Queries: Data Driven and Spatial Approaches

The query vector Q for layer l can be learned in two ways. The first is a

similar manner to how it was constructed in Section 2.1.2 in an approach

which we will refer to this approach as the data driven pooling approach.

However, an interesting variant for constructing the query vector comes about

by crafting the query vector through the use of an aggregation function to

reduce the dimensionality of the input features X(l). In this spatial pooling

approach, we construct the query vectors as follows:

Q = STX(l) (3.15)

where S is a linear transformation that maps from inputs in RN(l)
to outputs

in RN(l+1)
. The matrix S is crafted using regions of interest found through

the Ward parcellation algorithm on resting state fMRI scans [9] or through

the use of a k-nearest neighbors algorithm applied to the 3D coordinates of

each fMRI volume.

3.1.3 Channel Attention Transformer Preprocessed with 3D
Coordinate Convolution

A second variant of our transformer architecture can be constructed by com-

bining 3D convolutional layers with channel attention layers as seen in Figure

3.4. Under this construction, we first preprocess the input 37 x 45 x 37 fMRI

image using 3D convolutional layers. The first convolutional layer expands

the input from one channel to four channels. The second layer takes in an
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Figure 3.4: Convolution with Channel Attention: A diagram of our trans-
former model with 3D convolutional layers. 3D coordinate convolutional layers, as
found in [9], are used to create a low dimensional embedding of the input volume.
The output of the convolutional layers is then reshaped and used as an input to
two channel attention layers as described in Section 3.1.1.

input volume of size 18 x 22 x 18 with four channels and outputs a hidden

representation with 32 channels. In order to incorporate spatial information,

in each layer, we append the 3D positions of each voxel of the input volume

to the input as three separate channels. The output of the convolutional

layers is reshaped and passed to two transformer channel attention layers

stacked together in a hierarchical fashion. The input to the first transformer

channel attention layer has 7128 nodes and 32 channels. The input to the

second transformer channel attention layer has 2048 input nodes and 32 in-

put channels. The final output contains 128 nodes, is flattened and is sent

to a fully connected layer to get an output prediction.

3.1.4 Channel Attention Variant

A final variant for our channel attention model can be found if we adopt

the node attention architecture for channel attention. An illustration of each

transformer layer of this variant is given in Figure 3.5. In this network, we

keep the same general structure of reading an input, processing that input

through three channel attention layers and passing the attention output to a

fully connected layer for a low-dimensional prediction. However, we construct
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Figure 3.5: Variant of Channel Attention: A diagram of our variant of a
single transformer channel attention layer. In this model, we compute the query
matrix through the use of an learned weight matrix just as we did in the node
attention model. We also leverage the feed forward connection in the channel
attention from Section 3.1.1.

K, Q, and V in the following manner:

V = Y T (3.16)

K = f1(Y
T ) (3.17)

Q = softmax(f2(Y
T ))Tf3(K) (3.18)

Again f1, f2, and f3 are neural networks such that f1 and f3 maps from

inputs in RN(l)
to RN(l)

and f2 maps from inputs in RN(l)
to RN(l+1)

. The

remainder of the network architecture remains the same as the channel at-

tention architecture described in Section 3.1.1.
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Chapter 4

EXPERIMENTS

In this chapter, we compare the results of our channel attention deep net-

work architecture against the aforementioned baseline models on five fMRI

datasets which are publicly available on Neurovault. Moreover, we summa-

rize the setup of our experiment and our results.

4.1 Datasets

For this thesis, we use five fMRI datasets which are publicly available on

Neurovault [28]. Neurovault is a public web-based archive of human brain

statistical maps [28]. The datasets leveraged from Neurovault for use in this

thesis are described in the following list:

• ARCHI [29]: This dataset is comprised of 78 healthy subjects who

were between the ages of 19 and 28 years old and in total contains

2340 fMRI images. The images collected in this dataset correspond to

how subjects reacted to visual and auditory stimuli such as reading and

comprehension of short sentences, subtractions and motor instructions.

The images are broken up into three tasks based on either how the data

was collected or what general category those tasks represented [30]. In

total, there are 30 labels for the tasks in this dataset.

• Brainomics [29]: This dataset is a subset of the Fuctional Localizer

dataset [29] and is composed of 94 healthy subjects with 1786 fMRI

images. The mean age of the subjects was 24.7 years old. The Brain-

omics dataset aims to create a rough cognitive profile of each subject

based of each subject’s responses to questions tackling education, de-

velopmental disorders, reading difficulties, basic numerical knowledge,

arithmetic and visuospatial abilities and visuomotor abilities [29].
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• Cam-CAN [31]: The Cam-CAN dataset has fMRI scans for 605 pa-

tients between 18 and 87 years of age with 3025 images in total. The

dataset aimed to capture the changes in cognitive ability due to aging

through the use of two different types of tasks: AV-frequency tasks and

audio video tasks. AV-frequency tasks concern how subjects reach to

audio and visual stimuli at various frequencies. For the audio video

tasks the subjects performed objectives to measure their motor co-

ordination after audio or visual stimuli. All in all, these tasks are

subdivided into five labels.

• WU-Minn HCP 1200 Subjects (HCP) [32]: This dataset is made

up of 787 subjects with 18070 fMRI images where the subjects were

healthy adults between the ages of 22 and 35 years old. The dataset

can be broken up into resting state fMRI data and task state fMRI

data. The tasks used to collect data from the subjects were broken into

the following categories: working memory, gambling, motor, language,

social cognition, relational processing and emotional processing [32]. In

total, there are 23 labels for all of the tasks.

• LA5c [33]: This dataset was collected on participants between 21 and

50 years. In this dataset, the participants were divided into healthy

and patient groups where members of the patient groups had previ-

ously been diagnosed with ADHD, bipolar disorder, or schizophrenia.

Collectively, this dataset has 191 subjects with 5756 images. The tasks

used to collect this dataset focused on understanding the dimensional

structure of memory and cognitive control in subjects [33]. These tasks

are divided into 24 labels.

As a preprocessing step, we downsampled each image in the previously

mentioned datasets using nilearn which is a Python package based on scikit-

learn designed to help out researchers with neuroimaging for machine learning

[34]. Each 4D fMRI scan was decomposed into several 3D fMRI volumes of

size 37 x 41 x 37.
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4.2 Training Procedure

In this section we go over our the model configurations for the baseline archi-

tectures and our results. For each of the models, we follow a similar training

setup to that used in [9]. That is, we begin by taking each dataset and split-

ting it into train and test sets such that there is no overlap between both

sets of data. We hold 30% out of each dataset and use that for our testing

(out-of-sample) dataset and the remaining 70% of each dataset is used for

our train (in-sample) set. We repeat this process ten times and report the

average of our best results over 35 epochs. For our optimizer, we used the

Adam optimizer [35] with β1 = 0.5 and β2 = 0.9. For all models, we use a

multi-step learning rate scheduler to decrease the learning rate by a factor of

10 after epoch 5 and epoch 25. In addition, we implement each model using

Pytorch. We train each transformer model with a learning rate of 0.00005

and a batch size of 32. Whereas our graph-based models and FGL model are

trained with a learning rate of 0.001 and a batch size of 32. Furthermore, we

implement all models except for our FGL baseline on two Nvidia GeForce

GTX Titan XP GPUs. For our FGL baseline, we utilize two K80 GPUs.

4.3 Results

In Tables 4.1, 4.2, 4.3, and 4.4, we compare the mean out-of-sample accu-

racy, the mean f1 score, the mean precision and the mean recall over ten

random splits across all five neuroimaging datasets for the following network

architectures: a hierarchical GNN, a hierarchical GAT model, our FGL base-

line model using Ward and k-NN parcellations, a transformer model with 3D

convolutional layers and our proposed transformer channel attention model.

Furthermore, we provide figures showcasing the average accuracy and aver-

age loss at each epoch for our three best performing models which are our

channel attention model, our transformer model prepended with 3D convo-

lutional layers and our FGL baseline. The accuracy and loss curves for the

ARCHI, the Brainomics, the Cam-CAN, the HCP, and the LA5c datasets

can be found in Appendix A, Figures A.1, A.2, A.3, A.4, and A.5 respec-

tively. On our figures, we denote the standard deviation of the accuracies

and losses for each model at each epoch through the use of error bars.
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Table 4.1: Out-of-sample accuracy on all datasets per model (in percent)

ARCHI Brainomics Cam-CAN HCP LA5c
Hierarchical GNN Model 79.90 72.65 60.21 83.59 53.88
Hierarchical GAT Model 71.26 81.86 59.26 81.50 50.98
FGL (Ward Parcellation) 75.41 83.42 64.01 82.62 51.85
FGL (k-NN Parcellation) 85.01 89.76 67.02 87.46 60.46
Transformer 3D Convolution 84.52 93.16 64.73 89.61 63.31
Transformer Channel Attention 88.12 94.45 65.92 91.26 64.16

Table 4.2: F1 Score on all datasets per model (in percent)

ARCHI Brainomics Cam-CAN HCP LA5c
Hierarchical GNN Model 80.08 72.41 59.69 83.43 52.35
Hierarchical GAT Model 71.50 81.98 58.95 81.44 49.54
FGL (Ward Parcellation) 75.51 83.22 63.75 82.54 50.29
FGL (k-NN Parcellation) 85.04 89.73 66.60 87.36 59.34
Transformer 3D Convolution 84.46 93.17 64.17 89.49 61.36
Transformer Channel Attention 88.04 94.46 65.47 91.17 61.67

Table 4.3: Mean precision on all datasets per model (in percent)

ARCHI Brainomics Cam-CAN HCP LA5c
Hierarchical GNN Model 81.10 75.22 59.70 83.73 53.55
Hierarchical GAT Model 72.88 83.09 58.89 81.75 50.29
FGL (Ward Parcellation) 76.63 84.61 63.65 82.90 51.08
FGL (k-NN Parcellation) 85.67 90.44 66.50 87.55 61.06
Transformer 3D Convolution 85.00 93.46 64.10 89.62 61.95
Transformer Channel Attention 88.48 94.70 65.27 91.29 62.83

Table 4.4: Mean recall on all datasets per model (in percent)

ARCHI Brainomics Cam-CAN HCP LA5c
Hierarchical GNN Model 79.90 72.65 60.21 83.55 52.13
Hierarchical GAT Model 71.26 81.86 59.26 81.46 49.46
FGL (Ward Parcellation) 75.41 83.42 64.01 82.57 50.29
FGL (k-NN Parcellation) 85.01 89.76 67.02 87.42 58.73
Transformer 3D Convolution 84.52 93.16 64.73 89.58 61.59
Transformer Channel Attention 88.12 94.45 65.92 91.22 62.15
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From our results, we can see that our channel attention model surpasses

all of our other benchmarks on all measurements on all datasets except for

the Cam-CAN dataset. On the Cam-CAN dataset, we see that our FGL

model with the use of k-NN parcellations performs best which shows a clear

benefit to using spatial information to cluster nodes for inference in task state

decoding. Moreover, we see that all of the models used in our experiments

performed worst on the LA5c and Cam-CAN datasets. We speculate that

this is related to the age and health conditions of the patients involved in

those datasets. In general, the participants involved in the collection of

the ARCHI, Brainomics, and HCP datasets were cognitively healthy adults

between the ages of 20 and 30 [29], [32]. However, this was not the case for

subjects of the Cam-CAN and LA5c datasets. While those involved in the

collection of the Cam-CAN dataset were healthy, they varied in age by more

than 60 years [31]. In addition, in the LA5c only 130 patients involved in

the study were healthy individuals [33]. The remaining subjects had one of

ADHD, bipolar disorder, or schizophrenia.
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Chapter 5

CONCLUSION

In this thesis, we introduced an attention-based architecture for task state

decoding. Our model takes entire 3D volumetric fMRI scans as inputs and

outputs a prediction in an end-to-end fashion. By attending over channels

instead of over nodes, we have demonstrated superior performance against

multiple hierarchical end-to-end deep learning architectures across four of

five neuroimaging datasets out-of-sample accuracy. We have also shown that

pre-trained features, such as hierarchical clustering derived from Ward’s al-

gorithm, are not needed for good predictive performance.

With that said, where do we go from here? We envision multiple differ-

ent directions that we could take to improve the results in this thesis. One

such approach could be to combine the efforts of node-based attention and

channel attention. In this thesis, we utilized nodal attention and channel

attention separately in two different models. In future works, we could cre-

ate a new attention layer that attends over channels and then attends over

nodes in a hierarchical manner to downstream the data. Similar works have

been attempted to attend over channels and nodes such as the work of [20];

however, to our knowledge there has not been a work that is solely based on

transformers which utilizes node and channel attention for inference.

Another interesting direction to take this work could be found in making

appropriate modifications to our model to incorporate larger input data se-

quences. In our current model, we downsample the input fMRI signals using

nilearn due to having limited computational resources when computing both

the query matrix and the attention matrix in the transformer layers. We

can alleviate this issue by looking to related efforts in natural language pro-

cessing tasks for computing transformer outputs for large input sequences.

These efforts mainly extend the use of transformers to higher-dimensional

data by splitting the computation of one large attention matrix into the

several computations of multiple sparse attention matrices [36], [37]. These
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sparse attention matrices are summed together to get an approximation for

the original attention matrix [36], [37]. In future works, we could build upon

some of these insights to compute the attention matrix for larger fMRI signals

within each of our transformer layers.

A final avenue to investigate for our work is related to determining the

effect of locally connected spatial regions in the transformer. In prior works,

it has been shown that positional information is beneficial to functional task

state inference in transformer models [23]. Next steps for our transformer

model could incorporate the use of a 3D positional embedding token to relate

spatially connected regions in the input fMRI data.
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Appendix A

ADDITIONAL MATERIALS

Figure A.1: In-Sample and Out-of-Sample Accuracy and Loss Curves
for the ARCHI Dataset: Accuracy and loss curves per epoch for our channel
attention model, our transformer preprocessed with convolutional layers model and
our baseline FGL model over ten random splits of our data. We show the spread
of the distribution of accuracies and losses by plotting the standard deviation of
each model about the mean of each epoch through the use of error bars. We
note that on the ARCHI dataset, both our transformer model prepended with
convolutional layers and our FGL model converge to approximately the same out-
of-sample accuracy after 35 epochs. Our channel attention model out-performs
both of the aforementioned models and does not suffer from overfitting to the
in-sample data.
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Figure A.2: In-Sample and Out-of-Sample Accuracy and Loss Curves
for the Brainomics Dataset: Accuracy and loss curves for the three deep
learning models with the highest out-of-sample accuracy on the Brainomics dataset
averaged over ten random splits. On this dataset, we see that both transformer
models have a higher out-of-sample accuracy than the FGL model. We also see
that both transformer models suffer less from overfitting to the in-sample data
than the FGL model does.
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Figure A.3: In-Sample and Out-of-Sample Accuracy and Loss Curves
for the Cam-CAN Dataset: Accuracy and loss curves over 35 epochs for the
three deep learning models shown in our tabular results with the highest out-of-
sample accuracy on the Cam-CAN dataset. On this dataset, the FGL baseline
out-performs despite not overfitting to the in-sample data on this dataset. Our
channel attention model suffers greatly from overfitting as seen in our out-of-
sample loss curve and as seen by the decrease in performance in our out-of-sample
accuracy curve.
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Figure A.4: In-Sample and Out-of-Sample Accuracy and Loss Curves
for the HCP Dataset: Accuracy and loss curves for the three deep learning
models with the highest out-of-sample accuracy averaged over 35 epochs on the
HCP dataset over 10 random splits of our data. Once again, the transformer-based
models out-perform the FGL baseline. We note that our channel attention model
continues to have the best out-of-sample accuracy. Furthermore, we see that the
out-of-sample accuracy curves of our models stay relatively flat which indicates
that our models do not suffer much from overfitting to the HCP dataset.
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Figure A.5: In-Sample and Out-of-Sample Accuracy and Loss Curves
for the LA5c Dataset: Accuracy and loss curves for our transformer models
and our baseline FGL model over 10 random splits of our data. The transformer-
based models continue to out-perform the FGL baseline. For this dataset, the
channel attention model suffers from overfitting to the in-sample data whereas our
transformer model prepended 3D convolutional layers has no such issue.
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[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
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