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ABSTRACT

Onboard measurements of periodic x-ray signals from highly stable, rapidly spinning stars

called pulsars, enable determination of spacecraft position, velocity, and attitude states.

Due to the short period of pulsar signals, X-ray pulsar based navigation (XNAV), may result

in position ambiguity within the Solar System and typically requires an initial position

estimate in order to determine spacecraft position. This dissertation presents a method to

determine spacecraft position using XNAV in the absence of any prior state information,

a scenario sometimes refered to as the cold-start problem or the lost in space scenario.

In these scenarios, the spacecraft cannot communicate with Earth-based systems, nor is

any prior state information available, excepting the current time. A position determination

capability under these conditions may provide navigation redundancy for high-value missions

(e.g. human missions to Mars), improved spacecraft autonomy, or improved deep-space

navigation accuracy for low cost missions such as cubesats. In order to solve the cold-start

problem, a model is developed to find candidate spacecraft positions for a given XNAV

measurement. Combinations of pulsars are explored to find sets of pulsars which minimize

the number of candidate solutions within a given domain. Through proper pulsar selection

it is possible to find a single candidate position within a given domain solving the initial

position determination problem without prior information.

This investigation includes a comprehensive survey of XNAV technology across a range of

topics from advances in pulsar modeling, timing models, algorithms to estimate the pulsar

phase, navigation filters, and hardware. By observing x-ray signals from pulsars, XNAV may

be used to improve the navigation capabilities of spacecraft. XNAV is a particularly strong

candidate for deep space applications because it is more accurate than ground based systems

beyond 15 AU. XNAV may allow for more spacecraft autonomy, and improved robustness

and accuracy when integrated with other navigation technology. Several flight experiments

have been conducted to test the feasibility of XNAV technology on Earth orbiting spacecraft.

As hardware and signal processing algorithms improve, XNAV will become a more desirable

space technology option for future space missions.

The majority of current XNAV system concepts require an initial position estimate to
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resolve ambiguity in the state determination process. Without prior information there are

many candidate positions which may produce the same measurement as the true spacecraft

position. If position ambiguity can be resolved, XNAV may enable full state estimation

without prior information, a valuable capability for future space missions. Candidate space-

craft positions may be found by searching for intersections between pulsar wavefronts. An

efficient numeric scheme for determining candidate spacecraft positions is developed for an

arbitrary number of observed pulsars in two and three dimensions. Results indicate that,

as the error in the measurement is reduced by an order of magnitude, the number of candi-

date solutions is also reduced by an order of magnitude. However, increasing the number of

pulsars observed by one pulsar reduces the number of candidate solutions by two orders of

magnitude.

Pulsar selection criteria to minimize the number of candidate solutions over a given domain

are developed in terms of relative direction, period, and phase accuracy. Results indicate that

smaller angular separation between the observed pulsars and increased period of the observed

signals reduces the number of solutions in a given domain. Further, phase measurement

accuracy should be improved simultaneously for all observed pulsars rather than focusing on

improving observation of a single pulsar. These selection criteria are verified by evaluating

the number of candidate solutions for all permutations of 34 candidate pulsars. Combinations

of 3, 4 or 5 pulsars are evaluated to determine which set minimizes the number of candidate

positions within a given domain.

By selecting an appropriate set of pulsars for a desired domain size, a single candidate

position may be found within the domain. The trajectories of NASA’s Insight, Juno and New

Horizons missions are considered to represent Mars, Jupiter, or outer Solar System missions.

In these cases results are presented for combinations of 5, 7 or 8 pulsar observations in

the presence of measurement error. For all three cases a single candidate position is found

to within the predefined measurement uncertainty. These results demonstrate feasibility of

using XNAV for initial position determination without prior information for a variety of

missions within the Solar System.
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CHAPTER 1

INTRODUCTION

Since their discovery in 1967, pulsars have been an active topic of research across a variety of

disciplines. Studies have looked into understanding how pulsars are formed [16, 17, 18], the

mechanisms driving pulsars [19, 8], and how pulsars evolve over time [19, 20]. Pulsars have

been proposed to be used for a variety of topics from atmospheric modeling [21], estimating

the mass of planets [22], or gravity wave detection [23]. As knowledge of pulsar astronomy

improved, using pulsars for time keeping [24] or for navigation [25] was proposed. Radio

pulsars were found to require too large of an antenna to be applicable for many spacecraft [26]

and research shifted towards using x-ray pulsars for space navigation applications since the

required detector could be much smaller [27]. Using x-ray pulsars, Downs found that position

accuracy could be between 150 and 1500 km depending on the antenna gain; Chester and

Butman proposed that a 0.1 m2 detector would generate a 150 km position estimate [27].

This work sparked research into the field of x-ray pulsar based space navigation.

X-ray pulsar based navigation (XNAV) uses observations of periodic signals from x-ray pul-

sars to determine spacecraft position, velocity, and/or attitude. XNAV has shown promise as

an independent autonomous navigation system [28, 29, 30, 31], as part of a larger integrated

navigation system [32, 12], or for relative navigation between satellites in a constellation [33].

For deep space navigation applications, XNAV has two main benefits relative to the current

state of the art: (1) XNAV is nearly autonomous, i.e. navigation tasks may be performed on-

board a spacecraft with limited need for communication with an Earth-based ground station

and (2) the root means square XNAV position error is lower than that of the current state of

the art, the Deep space Network (DSN), at distances from Earth greater than approximately

15 AU.

XNAV presents a strong candidate to move away from the DSN for spacecraft navigation.

As more spacecraft are being placed into space, DSN time and resources are becoming

more scarce. XNAV presents an opportunity to navigate spacecraft autonomously, or reduce

communication with the DSN to once every 3 months [30]. DSN-based position accuracy

degrades significantly with distance from Earth: The accuracy of the DSN in non-radial

directions increases by 4 km per AU from Earth [34]. In contrast, the error in XNAV-based

1



Figure 1.1: Pulsar pulse arrival at an observer in the Solar System [1].

position increases from approximately 0 to 5 km as the distance from the Solar System

barrycenter increases from 0 to 100 AU [35].

XNAV technology still requires additional development. In a comparison for a lunar return

trajectory of Global Positioning System (GPS), optical navigation, and XNAV it was found

that current XNAV technology did not satisfy the trajectory requirements [36]. For missions

which travel further than the moon, XNAV may be a promising candidate. Shemar et al.

found that for a mission to Mars a sapcecraft may operate autonomously for up to 3 months

while maintaining a position accuracy of 30 km [30].

Detailed overviews of XNAV are presented in [37, 38, 2, 39, 30]. A typical XNAV concept

of operations is shown in Fig. 1.1. The majority of proposed XNAV applications operate

under a relative position update framework. The state update process can be summarized

as: [40, 41]

1. A pulsar is observed for a given length of time and all x-ray photons which reach the

detector are recorded.

2. Using an initial position estimate, the photon arrival times are then translated from

the spacecraft frame of reference to a reference epoch.

3. The photon time of arrivals are compared to the phase at the epoch, where the phase

evolution of the pulsar is well-characterized, to determine a phase offset relative to the

reference.

4. The phase offset is used to generate a position update in the direction of the observed

pulsar.

A key limitation of the relative position update method is that it requires an initial posi-

tion estimate. Without that estimate, the photon time of arrivals cannot be shifted back to

the reference epoch. Sheikh et al. developed an alternate solution strategy termed “absolute
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position determination” [42], where measurement differences are used to construct a set of

candidate wavefronts for each pulsar measurement. The spacecraft location must be at a

point where all wavefronts intersect. To date this XNAV method has not been considered for

navigation due to the increased complexity required to measure multiple pulsars simultane-

ously. However, if multiple pulsars can be observed simultaneously, a full state update can

be determined with each measurement. The main drawback to absolute position determina-

tion is it requires a bounded domain to search for candidate intersections. If the domain is

too large, many candidate positions may be found (indistinguishable from the true position)

resulting in position ambiguity.

The focus of this dissertation is on finding solutions to resolve the spacecraft’s state in

the absence of an initial position estimate, also called the cold-start problem or the “lost

in space” scenario. For this problem, no initial position estimate is available, so there is

no way to distinguish between peaks of the pulsar waveform and a single pulsar phase

measurement only restricts spacecraft position to an infinite set of planes perpendicular to

the direction of the pulsar. A second pulsar may be observed to determine the spacecraft

position with respect to another direction, this places the spacecraft on a second set of infinite

planes. Combining these two measurements results in an infinite set of lines, a third pulsar

measurement reduces this space to an infinite set of points, and any subsequent measurement

decreases the number of candidate intersections within a given volume of space.

A solution to the cold start problem using XNAV may allow spacecraft to operate with

more autonomy and potentially reduce the overall ground based cost of the mission, and

make communication to the DSN less frequent, allowing the DSN resources to be shifted

to other missions. An independent absolute navigation capability also provides an accurate

navigation source for low-cost missions such as cubesats, and is an excellent candidate for

navigation in a swarm of spacecraft. Being able to use XNAV in a cold-start scenario provides

a sense of redundancy to high-value missions, especially human class missions which cannot

fail. Furthermore, it also increases the reliability of XNAV for deep space missions where

the XNAV accuracy surpasses the DSN accuracy.

Both the requirement for simultaneous observations as well as a bounded domain (as

assumed by Sheikh et al.) can be mitigated when operating in a cold-start scenario. With

appropriate time corrections (i.e. the presence of an accurate onboard clock), absolute

position determination can work for sequential pulsar measurements. In addition to the phase

information from an observed pulsar, the frequency of the signal may also be recorded and

compared to a reference frequency to determine the spacecraft’s velocity in the direction of

the pulsar. Combining the time between measurements with the partial velocity information

allows for the translation of sequential measurements to a common reference. This process is
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similar to how a digital phase-locked loop is used for XNAV applications when the frequency

is time varying [43]. The required domain size to search for a candidate XNAV position

has not been sufficiently characterized. While any sufficiently large domain may lead to an

intractable problem using current computing technology, the issue can be mitigated through

efficient intersection-finding algorithms and developing a better understanding of how to

select pulsars to minimize candidate positions within a given domain.

The contributions of this dissertation address these issues and present solutions for de-

termining candidate positions using XNAV measurements without prior state information.

These contributions can be summarized as, a comprehensive survey of XNAV technology, de-

velopment of an efficient method for determining candidate states in a bounded domain, the

development and assessment of measurement strategies for XNAV systems, and a method

for state determination in a cold-start scenario using XNAV.

Contribution 1: Comprehensive survey of XNAV technology

The use of pulsars for navigation has been an idea since 1974, however, interest in the

subject was renewed in 2005 and since then many articles have been published on XNAV.

In that time there has only been one, limited survey article written by Sheikh et al. [38],

and since then many more publications have presented advances in the use of XNAV, and

several spacecraft have been launched to test XNAV applications. Furthermore that survey

predominately focused on articles within the United States as at that time majority of

XNAV studies were being conducted there. The new survey article seeks to incorporate new

advances in XNAV research as well as incorporate publications from around the world to

better capture current XNAV research. Chapter 2 presents the findings of this article and

gives a comprehensive background on pulsars, modeling pulsars, the XNAV state update

process, and current XNAV missions which seek to validate XNAV as a viable strategy for

future spacecraft.

Contribution 2: Development of an efficient method for determining candidate

states in a bounded domain

Prior to determining a spacecraft’s position using XNAV without prior information, all

candidate spacecraft positions must be known. The lack of an initial position estimate

implies that the spacecraft may be at one of an infinite set of points, therefore a method to

quickly find these candidate points is required. Chapter 3 investigates this issue, formulates

the problem for both two and three dimensions, and solves the problem both analytically

and numerically. Two error modeling methods are proposed, one where the error is modeled

as a ball about the intersection of two pulsar wavefronts and one that models error as

an uncertainty band about each pulsar wavefront. Additionally, trends in the number of

candidate spacecraft positions are shown when the number of pulsar measurements as well
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as the accuracy of the pulsar measurements are varied.

Contribution 3: Development and assessment of measurement strategies for

XNAV systems

Using the banded error model, an investigation of various pulsar parameters are presented

in Chapter 4 to detertmine how to best select a pulsar to minimize the number of candidate

solutions in a given domain. Fictitious pulsars are considered to find trends in pulsar selection

in an ideal scenario where any combination is possible. Real pulsars are then considered

and sets of 3, 4 or 5 pulsars are selected and the number of candidate positions for each

combination is found.

Contribution 4: A method for state determination in a cold-start scenario

using XNAV

Chapter 5 applies the candidate solution identification algorithm developed in Chapter 3

and the pulsar selection techniques outlined in Chapter 4 to select pulsars to use in a cold

start scenario; candidate position identification algorithms are used to determine possible

positions for the selected pulsars. Through proper pulsar selection it is possible to reduce

the number of candidate solutions within a given domain such that only a single solution

exists, thereby removing the position ambiguity entirely. Example applications are presented

using the trajectory data from NASA’s Insight lander’s Earth-Mars transfer trajectory, as

well as notional missions to Jupiter and beyond. Results indicate that XNAV may be used

for position determination in a cold start scenario if sufficiently accurate pulsar observations

can be made and an accurate clock is available. However, the required domain size, and

therefore compute time, increases significantly as distance from the Solar System barycenter

increases.
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CHAPTER 2

SURVEY OF XNAV TECHNOLOGY

This chapter is a comprehensive overview of major developments in the field of XNAV. The

Naval Research Laboratory (NRL) was a large contributor to early XNAV work and has

compiled two surveys of their contributions to XNAV [37, 2]. An overview of the methods

for XNAV was also compiled by Sheikh et al. [38]. The European Space Agency (ESA)

has periodically performed feasibility analyses of XNAV [39, 30]. This survey covers XNAV

technology from its inception through 2019. An overview of pulsar astronomy is presented

along with key findings on the nature of pulsars. The photon emission process is described

along with models to simulate the photon arrival process. Different techniques are presented

for processing photon arrival data into a phase and frequency measurement of the x-ray

pulsar signal. A review of methods for determining spacecraft position or attitude are shown.

Lastly, rescent XNAV flight experiments from both the National Aeronautics and Space

Administration (NASA) and the China Academy of Space Technology (CAST) are discussed.

2.1 Pulsars

When a massive star runs out of fuel it may undergo a supernova explosion, where part of

the star’s matter is released into space and the remaining matter collapses [16]. The angular

momentum of the collapsing matter is conserved and causes an increase in rotation rate and

in some cases the formation of a neutron star [16, 17, 18]. A typical neutron star has roughly

1.4 solar masses with a radius of 20 km and a rotation period of a few seconds or less [8].

The small size of the neutron star led researchers to believe such stars were cold and dark

objects in space and could not be detected. In 1967 Hewish et al. observed a pulsating

radio signal [44] in what is now known as pulsar PSR B1919+21, therefore discovering the

first pulsar. Pulsars are identified by the prefix PSR, with an optional discovery mission

abbreviation (XTE, ASCA, etc.), followed by the time epoch (B for B1950 or J for J2000).

Immediately following the epoch is the right ascension (hours and minutes), and declination

(degrees and minutes). The first measured pulsar, PSR B1919+21, is a pulsar in the B1950

epoch with a right ascension of 19 hours and 19 minutes, and a right ascension of +21
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Fig. 1 Neutron star with rotation axis not aligned with its magnetic
field axis.

Fig. 2 Crab nebula and pulsar in x-ray band.12

the neutron star’s spin axis is not aligned with its magnetic field axis,
then an observer will sense a pulse of electromagnetic radiation as
the magnetic pole sweeps across the observer’s line of sight to the
star. Neutron stars that exhibit this behavior are referred to as pul-
sars. Because no two neutron stars are formed in exactly the same
manner or have the same geometric orientation relative to Earth, the
pulse frequency and shape produce a unique, identifying signature
for each pulsar. Thus, pulsars can act as natural beacons, or celestial
lighthouses, on an intergalactic scale. Figure 1 is a diagram of a
neutron star with its distinct spin and magnetic axes.

In 1967, radio pulsations were discovered during a survey of
scintillation phenomena due to interplanetary plasma.11 Among the
expected random noise emerged a signal having a period of 1.337 s
and constant to better than one part in 107. Because of the extreme
stability in the periodic signature, it was first conjectured that it could
not be a natural signal. However, it was soon realized that these ob-
jects were neutron stars pulsating at radio frequencies. Since their
discovery, pulsars have been found to emit in the radio, infrared,
visible (optical), ultraviolet, x-ray, and gamma-ray energies of the
electromagnetic spectrum. Figure 2 shows an image of the Crab neb-
ula and pulsar (PSR B0531+21) taken by NASA’s Chandra X-Ray
Observatory. Pulsar names are typically labeled using PSR for pul-
sar, or an acronym for their discoverer mission, for example, X-Ray
Timing Explorer (XTE), and their discovered location in right as-
cension (hours and minutes) and declination (degrees and minutes).
Position can either be stated in the B1950 (B) or the J2000 (J) epoch
coordinate frame.

Types of Pulsars

Many x-ray pulsars are rotation-powered pulsars, a neutron star
whose energy source is the stored rotational kinetic energy of the
star, and may exist as an isolated star or as a component of a binary

system. Two other types of pulsars, accretion-powered and anoma-
lous, exist that are powered by different energy sources. Accretion-
powered pulsars are in binary systems where material being trans-
ferred from the companion star onto the neutron star creates hot spots
on the star’s surface. Pulsations result from the changing viewing
angle of the hot spots as the neutron star rotates. Accreting x-ray
pulsars are often subdivided into those with a high-mass binary
companion (HMXB, typically 10–30 solar masses) or a low-mass
binary companion (LMXB, typically less than 1 solar mass). The
anomalous x-ray pulsars are powered by the decay of their immense
magnetic fields (approximately 1014–1015 Gauss) (Ref. 13).

Pulsar Stability

Because some pulsars have been observed for many years, it has
been shown that the stability of their spin rates compares well to the
quality of today’s atomic clocks.14−16 Figures 3 and 4 provide com-
parison plots of the stability of atomic clocks and several pulsars.
The metric used here for comparison is computed using third dif-
ferences, σz(t), or third-order polynomial variations, as opposed to
second differences for the standard clock Allan variance statistic, of
clock and pulsar timing residuals (see Ref. 16). This metric is sensi-
tive to variations in frequency drift rate of atomic clocks and pulsars;
the standard Allan variance is sensitive to variations in frequency
drift. Older pulsars, particularly those that have undergone a long
period of accretion in a binary system that spins them up to a mil-
lisecond period, have extremely stable and predictable rotation rates.
Figure 4 shows data from radio pulsars; however, PSR B1937+21
is also detected in the x-ray band. Its x-ray stability is expected to
be similar, or perhaps better, because of a reduction of propagation
effects from the interstellar medium effect on x-ray photons.

Fig. 3 Stability of atomic clocks.16

Fig. 4 Stability of pulsars.15
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Figure 2.1: Neutron star with different rotation and magnetic field axes [1].

degrees. The discovery by Hewish and Bell spurred interest in the search for other pulsating

celestial bodies and neutron stars.

Pulsars are subdivided into three main categories: accretion powered pulsars, rotation

powered pulsars, and magnetars. The distinction between the pulsars is the manner in

which they are pulsating. Accretion powered pulsars accrete matter from a companion star,

which causes a hot spot on the surface of the pulsar where the accretion disk contacts the

surface. As the binary system spins, the hot spot moves in and out of view of the observer

causing pulsations in recorded x-rays [45]. Rotation powered pulsars are spinning down and

rotational energy is being radiated away by the co-rotating magnetic field. Misalignment of

the magnetic pole and the rotation axis causes a pulsation in the observed particles similar

to a lighthouse [19]. A visual representation of a pulsar may be seen in Fig. 2.1. Magnetars

are isolated neutron stars which have an immense magnetic field of approximately 1015G and

are emitting x-rays due to the decay of this field [8]. Magnetars are not typically considered

viable candidates for XNAV since their long term timing stability has not been sufficiently

analyzed.

Most pulsars are formed in binary star-systems. These may be high mass x-ray binary

(HMXB) systems, where a companion star with a mass greater than 10 solar masses is

present, or low mass x-ray binary (LMXB) systems, where a companion star has mass

smaller than one solar mass. HMXB systems are defined by a neutron star that has a large
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magnetic field pulling in particles from the solar wind. Some of these particles are drawn

in and used to fuel to the pulsar. Others are accelerated along the magnetic field lines and

emitted away from the magnetic poles. These types of systems are found throughout space.

LMXB systems tend to have a weaker magnetic field due to their formation and are expected

to have a longer life. A majority of LMXB systems can be found in galactic cores [19]. When

searching for LMXB systems it is more beneficial to search through globular clusters, since

globular clusters contain 20% of the known LMXB systems and account for 0.05% of the

mass of the galaxy [46].

Rotation powered pulsars are neutron stars where particle emission is being driven by the

rotational energy lost form a co-rotating magnetic field. Rotation powered pulsars are good

candidates for navigation, however a subset called millisecond pulsars have the most favorable

timing characteristics. In general, pulsars slow down as they age, and their magnetic field

becomes weaker until they reach the“death line” and become radio silent. In the event that

the evolution of a companion star fills the Roche lobe, i.e. the region where mass is bound

to the star, mass, and therefore angular momentum, will be transferred to the pulsar. This

will cause the neutron star to speed back up and cross the death line again to emit signals

once more [20]. Once enough matter has been transferred from the companion, the particle

emission powered by the rotation of the pulsar will become significant again. These types

of pulsars may also be referred to as recycled millisecond pulsars. Since this evolutionary

process makes the system a LMXB, an x-ray outburst from accretion may occur in some

millisecond pulsars [47].The formation of isolated millisecond pulsars is not well understood

and is still a topic of ongoing research. One hypothesis is that the companion was completely

consumed by the pulsar or disrupted out of the system during formation [8].

2.1.1 Pulsar Catalogues

After the initial discovery of a pulsar in 1967 many more pulsars have been found emitting

across the electromagnetic spectrum [48, 49, 50, 3, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67]. Since x-rays do not penetrate the Earth’s ionosphere, the first

x-ray pulsar was not measured until 1968 when the Naval Research Lab launched a rocket

which found a pulsar in the Crab nebula [68]. The frequency of pulsations in the x-ray

band matched the frequency of observed radio pulsations [68]. In 1977 the Higher Energy

Astronomy Observatory (HEAO-1) was launched and found found the first non-pulsating

LMXB which [49, 50]. HEAO-1 also conducted a survey to find x-ray sources [2], the results

of which are shown in Fig. 2.2. In 1982, the first millisecond pulsar, PSR B1937+21, was

found pulsating radio waves [48].
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Figure 2.2: X-ray source catalog based on the HAEO sky survey found in [2].
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Fig. 2.—Top: distribution of 541 pulsars projected onto the Galactic 
disk; the Sun is assumed to be located at x = 0, y = 8.5 kpc. According to 
the adopted distances in Table 4, 17 known pulsars lie outside the illus- 
trated region. Bottom: similar plot for the subset of 194 pulsars with inter- 
stellar scattering measurements, rs (see Table 4). Symbol size increases 
with the amount of interstellar scattering, ranging from t5 < 10 _1° s close to 
the Sun to t5 ^ 0.1 s near the Galactic center. Triangles represent upper 
limits to rs. 

Fig. 3.—Comparison of the adopted pulsar distances listed in Table 4 
with those obtained from the obsolete model of Manchester & Taylor 
( 1981 ) and Lyne et al. ( 1985). The central dashed line corresponds to 
equality, and the other two Unes to factors of 2 in either direction. 

(increasing upward). Most binary and recycled pulsars have 
small values of both P and P, and these pulsars do not have 
glitches, high-energy emission, or associated supernova rem- 
nants. On the other hand, pulsars with large P are especially 
likely to have glitches, and those with both small P and large P 
are often associated with supernova remnants and detectable 
as pulsed X-ray or gamma-ray sources. 

Figure 6 is a scatter plot of P versus P with the sizes of plotted 

tron density in the solar neighborhood inherent in the Taylor 
and Cordes model, consistent with the Sun’s location between 
major spiral arms. Farther from the Sun the changes are more 
complicated; pulsars with hues of sight passing between the 
spiral arms have been moved farther away, while those close to 
the spiral-arm tangent directions are significantly closer than 
in the old model. E CÖ 

Perhaps the most fundamental of pulsar observables are the ^ 
period and spin-down rate. The sample distribution of periods a 

is shown in Figure 4. Most known pulsars have periods 0.2 ^ ° 
F ^ 2 s, but a significant tail in the distribution extends down | 
to F ^ 0.0015 s. Most of the short-period pulsars ( say F < 0.1 | 
s ) are members of gravitationally bound binary systems ( indi- 
cated by shading in the histogram). These pulsars are generally 
believed to be old neutron stars, reactivated by the accretion of 
mass and angular momentum from an evolving companion 
star(Alparet al. 1982; Bhattacharya&van den Heuvel 1991). 
Many of these “recycled” pulsars lie within globular clusters. A 
Venn diagram illustrating interrelationships among various 
subsets of the sample population is presented in Figure 5. It is 
designed so that positions of the smaller circles within the large 
one correspond loosely with F (increasing to the right) and F 

Fig. 4.—Distribution of the observed periods of 558 pulsars. Binary 
pulsars are indicated by the shaded area. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 2.3: Histogram of the first 558 discovered pulsar periods produced by [3].
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Fig. 7.—Distribution of periods and period derivatives for the subset of 
466 pulsars with measured values of both radio luminosity L and intrinsic 
period derivative P. Symbol sizes denote relative luminosity (with trian- 
gles indicating lower limits). The dashed line corresponds to spin-down 
age r = 5 Myr; pulsars older than about this limit have significantly smaller 
luminosities than do younger ones. 

DM (Fig. 9) are little affected by experimental errors, because 
period, period derivative, pulse width, and dispersion measure 
can all be measured with moderate to high precision. The re- 
maining plotted quantities (spectral index a, defined in the 
sense S az va\ radio luminosity L; and z-distance) have much 
larger uncertainties, in many cases even several times larger 

.003 .01 .03 .1 .3 1 Fractional pulse width 

Fig. 8.—Histograms illustrating the sample distributions of r, i?, É, 
and W5Q. The number of pulsars represented in each plot is listed below the 
identifying label. 

TABLE 7 
Selected Percentiles of Various Pulsar Parameters 

Parameter 
Minimum 

PSR 0 

Percentiles 

50 95 100 
Maximum 

PSR 

T(s).;  
logio^   
logic T (yr)  
logic B(G) • • •  
logic E (ergs s') ... 

(mP)   
DM (cm 3 pc)   
logions)    
log,o L (mjy kpc 2) 
Spectral index, a ... 
z(kpc)   
d(kpc)   

B1937+21 
J2322+2057 
B0531+21 
B1957+20 
B0320+39 
B1910+20 
J0437—4715 
B0950+08 
J2322+2057 
B0531+21 
B0042-73 
B0950+08 

0.0016 
-20.15 

3.10 
8.22 

30.00 
4.2 
2.7 

-10.84 
-0.52 
-3.37 
-39.5 

0.13 

0.0104 
-17.02 

5.05 
10.84 
30.80 

10.9 
14.0 

-8.04 
0.61 

-2.61 
<-1.76 

0.78 

0.576 
-14.63 

6.64 
12.10 
32.64 

28.7 
91.9 

-3.54 
2.13 

-1.66 
0.00 
4.07 

1.906 
-13.16 

8.39 
12.75 
35.08 

146 
490 

-1.44 
3.58 

-0.22 
1.53 
12.5 

5.094 
-11.81 

10.04 
13.33 
38.65 

400 
1074 

-0.55 
4.42 
1.08 
18.6 
57.0 

J1951 + 11 
B1509-58 
J2322+2057 
B0154+61 
B0531+21 
B0826-34 
B1758-23 
B1758-23 
B1302-64 
B1736-31 
B1310+18 
B0042-73 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 2.4: Derivative of the pulsar period as a function of the period for 466 identified
pulsars [3].
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The 1990s saw an increase in the number of in-space x-ray observatories with the launches

of Röntgenstrahlen (ROSAT), Advanced Satellite for Cosmology and Astrophysics (ASCA),

Rossie X-Ray Timing Explorer (RXTE), Chandra X-ray Explorer, and the Advanced Re-

search and Global Observation Satellite (ARGOS). In 1993 the first millisecond x-ray pulsar

was discovered by ROSAT as part of the All-Sky Survey [51]. ROSAT performed all-sky sur-

veys which discovered pulsars of all types located throughout the galaxy [55, 58, 66]. ASCA

is the first high-throughput imaging and x-ray spectroscopy observatory [52, 53]. RXTE ex-

panded upon the results of ROSAT with additional sky surveys [54, 56, 69, 57, 62, 65, 66, 67].

Chandra is one of NASA’s flagship observatories which can detect very faint x-ray signals [70].

The Unconventional Stellar Experiment, USA, was launched aboard ARGOS to observe

bright x-ray sources and evaluate their potential for navigation [71, 72, 73, 2, 74, 37]. A

catalogue of all pulsars has been compiled by the Australia Telescope National Facility [75],

and updated versions are available online. Future spacecraft such as the Large Observatory

for X-ray Timing (LOFT) may further expand these catalogues [76, 77]. An early consol-

idated catalogue of the first 558 pulsars was compiled by Taylor et al. [3], which was the

first consolidation of pulsar catalogues, and showed that a majority of the observed pulsars

have a period between 0.1 and 2 s (see Fig. 2.3). This distribution of pulsar periods has

remained consistent as more pulsars have been discovered [59]. Furthermore, Fig. 2.4 shows

that pulsars with shorter periods have smaller period derivatives implying that the faster a

pulsar is spinning the smaller the spin-down rate.

2.1.2 Pulsar Stability

During the observation of pulsars, a pattern of peak pulsation was noted similar to the tick

of a clock [24]. This enables the possibility of using a pulsar for timing. The discovery of

millisecond pulsars, which emit more stable signals than longer-period pulsars, presented

better candidates for timing applications [4]. Rawley et al. investigated the stability of PSR

B1937+21 and found that, given a long enough observation interval, the timing stability of

the pulsar was comparable to the timing stability of the reference atomic clock [4]. Figure 2.5

shows a comparison of the frequency stability as a function of measurement time for pulsar

PSR B1937+21, filled circles, and the reference time, open circle. The dashed line represents

a model for the stability of the UTC(NBS) reference time, and the solid line is the locus

of frequency stability values that would be observed for a perfect clock measured every 16

days with 300 ns random error. The work of Rawley et al. was extended to more pulsars

to generate timing and stability information for each pulsar [78, 65, 79]. As more pulsar

stability characteristics were quantified it was found that there is some variance to their
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Fig. 2. Fractional frequency stabil-
ities &a(r) for measurements of PSR
1937+21 relative to UTC(NBS)
(filled circles) and UTC(NBS) rela-
tive to other atomic time standards
(open circles). Error bars correspond
to standard deviations of the means
of available estimates for each plotted
point. The dashed line represents a
model of the stability ofUTC(NBS);
the solid line is the locus of ry(T)
values that would be observed for a
perfect dock measured once every 16
days with 300-nsec random measure-
ment errors (white phase noise).

-12

-13

-14

-15
7

log xc (sec)

1937+21 are plotted as filled circles in Fig. 2. Values for T c
1.1 x 107 seconds (128 days) are based on the higher quality 1984-
1987 data alone; the last point, for T = 2.2 x 107 seconds = 256
days, is based on the full 4.2-year data set. For comparison purposes,

Fig. 2 also includes estimates of the stability of the reference time
scale UTC(NBS) over the period 1984.4-1987.1 (open circles). We
obtained these estimates by monitoring UJTC(NBS) relative to a

weighted set of the data from other principal timing centers around
the world. Dashed line segments drawn through the open cirdes
constitute a plausible model of the stability of UTC(NBS) (12).
Figure 2 also includes a solid line corresponding to the CFy(T) values
that would be measured for a perfect clock contaminated by 300
nsec of uncorrelated measurement errors or "white phase noise,"
with an average sampling interval of 16 days.
Over time intervals r < 3 x 106 seconds (about 1 month), the

estimates of &y(r) for PSR 1937+21 are dominated by uncertainties
in measuring the phase of the pulsar waveform. Most of this
uncertainty appears to be random, and although we are aware of
ways in which the measurement procedure at the radio telescope and
the data analysis could still be improved, these sources do not
presently impose accuracy limitations at the 300-nsec level. For time
scales of2 to 4 months, Fig. 2 shows marginal evidence ofinstability
in excess of that attributable to the reference time standard. We
believe this most likely results from errors in the corrections for
variable interstellar dispersion (5), or possibly from small changes in
effective path length to the pulsar caused by refractive effects in the
interstellar medium (13). Further observations, preferably at higher
radio frequencies, will be required to test these conjectures.
Over time scales exceeding about 6 months, Fig. 2 suggests

strongly that observations of PSR 1937+21 at Arecibo have been
limited by the stability of existing atomic time and frequency
standards. In particular, the measured value of y(&r) for T = 256
days falls nearly on the extrapolated stability curve for UTC(NBS);
since it cannot be expected to fall below this line, its position well

above the line that shows 300-nsec white phase noise is no

indication ofinstability inherent in the pulsar. It is likely, in fact, that
all ofthe filled circles in Fig. 2 represent only upper limits to the true

frequency stability ofPSR 1937+21. For time intervals greater than
about half a year, this pulsar could be the most stable time and
frequency reference known.
UTC(NBS) is a "steered" time scale designed to stay within 1

,usec of UTC, the internationally coordinated version of atomic
time. The National Bureau of Standards also maintains an un-

steered, locally generated proper time scale called AT1, and we have
also analyzed our measurements of PSR 1937+21 with respect to
AT1. The results show that since late 1984, the pulsar timing
residuals relative to AT1 are marginally smaller than those relative to
UTC(NBS). Over the full 4.2 years, however, the pulsar data
indicate that AT1 was less stable than UTC(NBS), mostly the result
of a frequency change of slightly more than 2 parts in 10's during

764.

the first half of 1984. Such a change, only twice the estimated
uncertainty of the best primary frequency standards, is difficult to
detect with certainty in direct comparisons between a small number
of atomic clocks. However, comparison ofATI with clocks at both
the National Research Council of Canada and the Physikalisch-
Technische Bundesanstalt in the Federal Republic of Germany
confirms both the epoch and the magnitude of the frequency shift
seen in AT1 relative to PSR 1937+21.

Gravitational Radiation in the Universe
According to some cosmological theories (14), the universc may

contain a substantial energy density in the form of a stochastic
background of gravitational waves, analogous to the known cosmic
microwave background (15). The gravitational background could in
principle be detected by means of pulsar timing observations,
because a gravitational wave passing the pulsar during time of pulse
emission, or passing the earth during reception, would cause
changes in the rates of local clocks relative to distant clocks (16). In
practice, the range of accessible gravitational wave periods extends
from the minimum observing interval to the total time spanned by
the observations.

If, by hypothesis, we ascribe all of the nonzero PSR 1937+21
timing residuals to this cause, we can obtain a firm upper limit to the
energy density in gravitational waves over the relevant frequency
interval. Such an exercise was already carried out for our 1982-1984
data (7), yielding the limit p < 1 x 10-32 g cm3 for the equivalent
density of gravitational radiation in the frequency range 1 <f< 3
cycles per year. We can now improve substantially on this limit, for
several reasons. With the baseline of data extended from 1.9 to 4.2
years, the minimum frequency to which we are sensitive has
decreased proportionally, and the average transmission coefficients
g(T) have increased. In addition, the more precise data obtained
since October 1984 would allow lower limits to be set even over the
same observing span. In order to make our results directly compara-
ble with those previously published, we again use the procedure
outlined in (7), and developed in detail in (6), to compute limits for
p(f). We obtain p(f) < 1.7 x 10-g cm3 forf 0.8 cycle per
year, and p(f) < 7 x 10-36 g cm-3 forf- 0.23 cycle per year. In
both cases the implied bandwidth is a factor of e, or slightly more
than an octave, upward in frequency.
For a Hubble constant Ho = 100 km sec-1 Mpc-1, the critical

density required to close the universe is Pc = 3H1/(8'rG) =
2 x 10-29 g cm3. Thus our limits correspond to fractions
9 x 10-6 and 4 x 10'7 of dosure density, respectively. The latter
figure is within a factor of4 ofthe predicted radiation that would be
produced by vibrating cosmic strings that may have been present in
the early universe (17). Such strings have been postulated as an aid
to galaxy formation; if they exist, then observations like those
reported here should be able to detect their effects in just a few more
years. Distinguishing a gravitational radiation background from
instabilities in the pulsar, the reference clocks, or the propagation
medium will be difficult, but not necessarily impossible-particular-
ly if data are obtained from additional millisecond pulsars (5).

Conclusions
Timekeeping was for many years based on astronomical observa-

tions related to the rotation of the earth. In the last several decades,
atomic clocks have been shown to be more stable than the rotation
of the earth, and consequently the SI second was redefined (18). It
now seems that another astronomical phenomenon-the rotation of
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Figure 2.5: Stability of Pulsar PSR B1937+21 compared to the estimated stability of the
time standard [4].
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Figure 5 Fractional frequency stability. The heavy solid lines give estimates of the fractional 
frequency stability of the rotation of the Earth based on UTI measurements and of several 
pulsars (Cordes & Downs 1985, Davis et al. 1985). The line for PSR 1937 +21 results from 
a stability analysis of the residuals presented in Figure 3. The dashed lines give the stabilities 
of several laboratory standards and International Atomic Time (TAl). The dotted line gives 
the stability of the Global Positioning Satellite (GPS) "common-view" time-transfer link 
(Allan & Weiss 1980). Circles indicate the stability of several trapped-ion atomic clocks 
(Prestage et al. 1985, Wineland 1984). 

seen, the best time standards at long times are atomic clocks, although the 
noise in PSR 1937 + 21 is continuing to drop as the time scale increases 
(Davis et al. 1985). Until some equivalent or better time standard is found, 
it will not be known whether the stability of the pulsar can continue to 
improve, since there is presently nothing better than an atomic clock to 
compare it against (Allan et al. 1985). 

4. MODEL OF THE PULSE ARRIVAL TIMES 

In the previous section, we discussed the transformation by which the 
observed terrestrial observations of pulse arrival times are converted into 
PPN coordinate times of reception. In this section and the next, we derive 
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Figure 2.6: Frequency stability of pulsars compared to several different clock types [5].
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stability [5]. The stability of pulsars PSR B1927+21, PSR B1133+16, and PSR B0823+26

are plotted along with GPS, a quartz crystal, UTC(NBS), and H Master laboratory clocks

(see Fig. 2.6). Over the measurement intervals provided, only pulsar PSR B1937+21 does

not begin to drift, all other pulsars and clocks begin to become less stable with increasing

measurement time.

2.1.3 Glitches and Noise

Pulsars have been found to have stability comparable to that of an atomic clock, however,

pulsars may also exhibit glitches were the period and period derivative changes. The first

published glitch was of PSR B0833-45 which had four glitches between 1968 and 1980 [6],

as shown in Fig. 2.7. The pulsar had a nominal period of 0.0892 s and was slowing down

at a rate of 1.247 × 10−13 ss−1. Each jump caused a relatively instantaneous change in the

period and the period derivatives. The change in the period derivatives decayed back to

their pre-glitch values over the course of the next 200 days. It was initially believed that

these glitch events did not occur in millisecond pulsars until a glitch was observed in pulsar

PSR B1821-24 [80]. This glitch was the smallest recorded glitch in a pulsar and remains the

only detected glitch in a millisecond pulsar [81, 82]. One potential explanation for this glitch

is PSR B1821-24 is young and the glitch is due to the pulsar’s formation.
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neutron stars in which a solid outer crust of high electri- 
cal conductivity spins at a slightly slower rate than the 
interior neutron fluid. They estimated from the pub- 
lished values of A P/P and A P/P that the coupling time 
Tr between the crystalline crust and the neutron fluid is 
several years, indicating the interior is a superfluid which 
is coupled only loosely to the crust. The observed spin- 
ups are then caused by the sudden release of strain 
energy (a “starquake”) built up in the crust as the pulsar 
is slowed by external torques (P>0), thereby losing a 
fraction of the supportive centrifugal force. Shortly after 
the observation of the first Vela event, Baym and Pines 
(1971) calculated the expected strain rate in the crust 
versus the critical stress for fracture, indicating that the 
Vela pulsar is a light neutron star and that the time 
between such large events is at least 300 years, and 
probably much more. Shortly thereafter the second event 
of comparable magnitude was observed in Vela, forcing 
them to consider “core-quakes” (Pines, Shaham, and 
Ruderman 1972). Therefore other mechanisms for 
rapidly spinning up a pulsar have been actively studied 
within the framework of the two-component model. 
Anderson and Itoh (1975) and Ruderman (1976) have 
suggested that vortices of the neutron superfluid are 
pinned to the crust nuclei and to flaws in the crust, 
thereby decoupling the crust and the superfluid. How- 
ever, increasing stresses on the crust eventually occur, 
increasing the frictional forces and allowing angular 
momentum to be transferred from the interior to the 
crust. Greenstein (1979a, b) has computed the effects of 
a temperature dependent rr in the presence of a thermal 
instability within the neutron star. An uncontrolled 
growth of the internal temperature would cause Tr to 
decrease drastically, increasing the friction between core 
and superfluid and allowing an outward transfer of 
angular momentum. 

All of the theoretical discussions to date suffer from 
the lack of published information on the rotational 
behavior of the Vela pulsar. A detailed analysis of over 
12 years of timing data is presented in this paper, where 
it is shown that about 2% of the period decrease decays 
within 200 days and that P returns to within 0.05% of 
the same value following each jump. Following this 
decay, P continues to decrease until the next jump occurs 
since a persistent value of P pervades the inteijump time 
span. Thus, P never reaches a stable pre-jump value. 
The behavior following a small jump (AP 1 ns) 
occuring shortly after the second large jump may be 
evidence that spin-up effects can be linearly superposed. 
A correlation is presented which indicates that the long- 
term post-jump decay may in fact be a pre-jump 
buildup, suggesting that a prediction of the epoch of a 
large jump may be possible. 

YEAR 
1970 1975 1980 

Fig. L—The pulse period of PSR 0833—45 from late 1968 to 
mid-1980. The four large jumps are enumerated, and the time span 
in years between jumps is noted. 

0. 0892 s is lengthening at the nominal rate of 1.247 X 
10~13 s s“1. This period increase, equivalent to 11 ns 
per day, is so large that the measurement error is 
consequently suppressed on the scale required in Figure 
1. The spin-ups, appearing as abrupt decreases in the 
period, are enumerated in succession from the first 
observed jump in 1969 March. The size of these jumps 
in the period is shown in proper perspective relative to 
the effects of the general slowdown. Variations in the 
slowdown rate, never more than a few percent, as well as 
smaller changes in the period are too small to be seen on 
the scale of Figure 1. All of these variations, down to the 
limits of the measurement noise, are expanded upon in 
the following analysis. 

The span in both time and pulse period covered by 
the data set is represented by Figure 1. The data are the 
barycentric arrival times listed by Downs and Reichley 
(1981), who discuss in detail the measurement and re- 
duction procedures, as well as experimental considera- 
tions which may affect the analysis. Those arrival times 
were referred to the solar system barycenter using the 
JPL export ephemeris DE96 and the celestial coordi- 
nates determined by radio observations (Goss etal 
1977). 

a) The Pulse Period Model 

The barycentric pulse period P{t) is represented by a 
Taylor expansion about a jump epoch T, obtaining 

P(t-T) = P0+P0(t-T)+P0(t-Tf/2, (1) 

II. THE ANALYSIS 

A view of the general slowdown of the Vela pulsar is 
provided in Figure 1, where a pulse period of about 

where P0 and P0 are the first and second period deriva- 
tives, respectively, of the period at time t—T=0. The 
barycentric arrival time of the nth pulse after T is given 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 2.7: Period of pulsar PSR B0833-45 from 1968 to 1980 [6].
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and there is strong evidence for either correla-
tion or anticorrelation in all six cases (fig. S4). It
is not clear whether the imperfect correlations
are intrinsic or arise from the sparse sampling of
the time series or from measurement errors.

Some of the pulse profiles suggest that in-
creased |v̇| is associatedwith increased amplitude of
the central (often described as core) emission rela-
tive to the surrounding (or conal) emission (Fig. 3).
PSR B1822−09 exhibits a main pulse, a precursor,
and an interpulse (24, 25). For the high-|v̇| state, the
precursor is weak and the interpulse is strong, with
the reverse occurring for the smaller-|v̇| state. Clear-
ly, some changes in v̇ are associated with large pro-
file changes (for example, PSRs J2043+2740 and
B1822−09), whereas smaller profile changes are
also observable if sufficiently high-quality data are
available (as in PSR B1540−06).

Although the main impression given by the
traces in Fig. 4 is that they are bounded by two ex-
treme levels, there are substantial, and often repeated,
subtle changes that are synchronized in both shape
parameter and v̇. The shape parameters for the
observations of PSRs B1822−09, B1828−11, and
B2035+36 imply that they spend most of the time
in just one extreme state or the other. This is essen-
tially the phenomenon of mode changing, which
has been known since shortly after the discovery of
pulsars (26–28, 24). In those papers, pulsars are re-
ported to show stable profiles but suddenly switch to
another stablemode for times ranging fromminutes
to hours. However, the time-averaged values of the
shape parameters depend on the mix of the two
states over the averaging period, and that varies
with time, causing the slower changes in the shape-
parameter curves and the spin-down rate curves.
About 2500 days of detail in the shape parame-
ters and spin-down rates of PSRs B1822−09 and
B1828−11 (Fig. 5) illustrate how a slowly changing
mix of the two states is reflected in the form of the
smoothed shape curves. In PSR B1822−09, the
events centered on modified Julian dates 51100
and 52050 are the sites of slow glitches (13, 14),
which we confirm are not a unique phenomenon
(8) but arise from short periods of time spent pre-
dominantly in a small-|v̇ |, large-precursor mode.

Discussion. The large number of pulsars ob-
served over many years in the Jodrell Bank data
archive has allowed the identification of a sub-
stantial number of pulsars that have large changes
in v̇, some of which also have detectable, correlated
pulse-shape changes. This correlation indicates that
the causes of these phenomena are linked and are
magnetospheric in origin. The physical mechanism
for this link is likely to be that suggested to explain
the relationship between spin-down rate and radio
emission in B1931+24; namely, a change in mag-
netospheric particle current flow (9). An enhanced
flow of charged particles causes an increase in the
braking torque on the neutron star and also in the
emission radio waves.

The link between the spin-down rate and radio
emission properties has not been established pre-
viously, mainly because the time scales of the long-
established phenomena of mode changing and

pulse nulling were much shorter than the time re-
quired to measure any change in v̇. The extended
high-quality monitoring of many pulsars has re-
vealed long-termmanifestations of these phenome-
na and allowed their unambiguous associationwith
the spin-down rates of pulsars, seen as timing noise.

Pulsars can spend long periods of time in one mag-
netospheric state or another, or in some cases switch
rapidly back and forth between states, with the
fractions of time spent in the two states often vary-
ing with time. It has long been suspected that mode
changing and nulling are closely related (29, 30).

Fig. 3. (A to F) The inte-
grated profiles at 1400
MHz of six pulsars that
show long-term pulse-
shape changes. For each
pulsar, the two traces
represent examples of
the most extreme pulse
shapes observed. The pro-
file drawn in the thick line
corresponds to the largest
rate of spin-down |

.
v|.

The profiles are scaled
so that the peak flux
density is approximately
the same. PSRB1822−09
has an interpulse which
is displayed, shifted by
half the pulse period, in
the second trace below
the main pulse.

A

B

C

D

E

F

Table 1. Measured parameters of 17 pulsars presented in Fig. 2, as well as PSR B1931+24, which is
also discussed in the text. We give the pulsar names, rotational frequency n, and the first derivative .v,
followed by the peak-to-peak fractional amplitude D .v/ .v of the variation seen in Fig. 2. The pulsars are
given in order of decreasing value of this quantity. We also present the fluctuation frequencies F of the
peaks of the Lomb-Scargle power spectra (fig. S2), with the widths of the peaks or group of peaks given
in parenthesis in units of the last quoted digit.

Pulsar name J2000 name
n

.
v D

.
v/ .v F

Comment
(Hz) (Hz s−15) (%) (year−1)

B1931+24* J1933+2421 1.229 −12.25 44.90 13.1(7) Intermittent pulsar
B2035+36 J2037+3621 1.616 −12.05 13.28 0.02(2) 28% change in Weq

B1903+07 J1905+0709 1.543 −11.76 6.80 0.36(13)
J2043+2740 J2043+2740 10.40 −135.36 5.91 0.11(5) 100% change in W50

B1822−09 J1825−0935 1.300 −88.31 3.28 0.40(7) 100% change in Apc/Amp
B1642−03 J1645−0317 2.579 −11.84 2.53 0.26(7)
B1839+09 J1841+0912 2.622 −7.50 2.00 1.00(15)
B1540−06 J1543−0620 1.410 −1.75 1.71 0.24(2) 12% change in W10

B2148+63 J2149+6329 2.631 −1.18 1.69 0.33(7)
B1818−04 J1820−0427 1.672 −17.70 0.85 0.11(1)
B0950+08 J0953+0755 3.952 −3.59 0.84 0.07(3)
B1714−34 J1717−3425 1.524 −22.75 0.79 0.26(4)
B1907+00 J1909+0007 0.983 −5.33 0.75 0.15(2)
B1828−11 J1830−1059 2.469 −365.68 0.71 0.73(2)† 100% change in W10

B1826−17 J1829−1751 3.256 −58.85 0.68 0.33(2)
B0919+06 J0922+0638 2.322 −73.96 0.68 0.62(4)
B0740−28 J0742−2822 5.996 −604.36 0.66 2.70(20) 20% change in W75

B1929+20 J1932+2020 3.728 −58.64 0.31 0.59(2)

*Data from reference (9). †Note the presence of a second harmonic at F = 1.47(2) year−1, seen in fig. S2 and
discussed in (10).
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Figure 2.8: The profile for 6 pulsars which exhibited significant changes to their profile in
the 1400MHz band [7].
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In addition to glitches, pulsars may also exhibit other timing deviations which have are

commonly referred to as red noise. It has been postulated that red noise events are quasi-

random switches between two different spin down rates [7]. These switches change not only

the frequency and its derivatives, but also the shape of the pulsar profile. Figure 2.8 shows

two states for the pulse profile of several pulsars which, for some pulsars, can exhibit a

significant change. Additionally pulsar PSR B1822-09 had its small pulse shifted by half a

period shown at the bottom of Fig. 2.8 [7]. Unlike glitches, red noise is present in millisecond

pulsars and radio pulsars, however they are rare occurrences [83, 84].

2.1.4 Pulsar Profile

As pulsars rotate, the intensity of the signal from the pulsar varies in time periodically; a

single period of the signal is the pulsar profile. The time-varying intensity of the signal

is determined by the alignment of the magnetic field axis and rotation axis as well as the

orientation of the pulsar with respect to Earth. Since each pulsar has a different orientation,

the profile from each pulsar is unique [8]. The mean pulsar signal profiles for 100 pulsars are

presented in [59]. When using the profile of the pulsar it is important to note the frequency

at which the measurement is taken.

Figure 2.9: Profile for the Crab pulsar across different frequencies [8].
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For the same pulsar different measurement frequency bands may produce different pulsar

profiles, as shown in signals from the Crab pulsar in Fig. 2.9 [85, 8]. The dashed line indicates

the mean peaks across all frequencies with respect to the phase of the Crab pulsar. This

mean peak works well for the first peak of the Crab pulsar, however the second peak occurs

at different places in the phase at different frequencies.

2.2 Pulsar Modeling

Since pulsars exhibit stability characteristics similar to that of an atomic clock, much work

has gone into the creation of models to predict the observed phase at some time in the

future. For XNAV applications, most pulsars may be observed for 6 months to a year

without the need for model parameter updates. However, some pulsars are less reliable, such

as the Crab pulsar, PSR B0531+21, which is far less consistent and whose model parameters

must be updated every several days [30, 29] to maintain accuracy. The timing residuals for

the Crab pulsar are plotted in Fig. 2.10 along with the residuals generated by an optimal

extrapolation [9]. The Crab pulsar deviates from the model quickly; other millisecond pulsars

take much longer for significant differences to appear.

Recall that if a pulsar glitches, both the frequency and its derivatives change, it may take

up to a year to return to nominal observation. Models have been created to discuss the

decay of the glitch terms back to their nominal values in [86], however, since millisecond

Figure 2.10: Comparison for the timing residuals for the Crab pulsar and an optimal extrap-
olation [9].
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pulsars used for XNAV do not glitch often the glitches will not be discussed here. For XNAV

applications red noise variations are small enough that they do not need to be accounted for

to achieve the required accuracy for SEXTANT [9]. Red noise models are available in [7, 84].

2.2.1 Phase Evolution of Pulsar Signals

The phase of the pulsar in time may be approximated as a Taylor series expansion about a

given point [4, 87],

φ(t) =
∑
n≥1

νn−1

n!
(t− t0)n + φ0 (2.1)

where t is the proper time of signal which must be modified if the pulsar is in a binary

system due to additional binary effects. Any number of frequency derivatives, νn+1, may be

used; however, most studies have truncated the expansion after 3 terms. These derivatives

are fitted parameters and may be found from ephemeris sources such as the Jordell Bank

Observatory [88], or software packages such as Tempo2. An alternate timing model was

developed by Deng et al. [89] which uses a maximum likelihood estimator to estimate the

timing residuals given red and white noise covariance.

2.2.2 Time Transformation

Ephemeris databases for pulsar timing are typically referenced to an epoch at the Solar

System barycenter (SSB). The Taylor expansion in Eq. 2.1 may be set to coordinate time by

converting the time from proper time to coordinate time. This conversion is useful if there is

an additional observer not located at the SSB, e.g. a spacecraft, which is measuring the phase

of the pulsar. In order to use the frequency and its derivatives the time information from

the observer must be converted to the same frame as the ephemeris database. Information

on the pulsar time delays may be found in [90, 91, 92, 93, 94, 95, 5, 96, 97, 98] and are

combined together in [85, 1, 87, 86, 40]. Deviations of the higher order time delays due to

relativistic effects may be found in [99, 40, 100]. The arrival time correction at the barycenter

combines the Roemer, Einstein, parallax, and Shapiro delays. Since XNAV applications are

for spacecraft, the delays for atmospheric and Solar System dispersion effects will not be

included andare neglected for XNAV; the reader is directed to [86] for coverage of those

delays. If the observed pulsar is in a binary system additional terms must be included to

account for those delays [91, 86]. The Tempo2 documentation has a detailed description of

the timing delays [86].
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Roemer Delay

The Roemer delay is the vacuum delay between arrival times at the observer and the SSB

given by

∆R = −r · n
c

(2.2)

where r is the vector between the observer position and reference position, and n is the

normal vector in the direction of the pulsar.

Einstein Delay

The Einstein delay accounts for the red-shift caused by the gravitational potential of planets

in curved space time and is given by

∆E =
1

c2

∫ t

t0

(
U +

v2

2
+ ∆L

(PN)
C + ∆L

(A)
C

)
(2.3)

In Eq. 2.3 the final two terms ∆L
(PN)
C + ∆L

(A)
C represent the time delays due to higher order

terms and asteroids respectively. These terms are approximated as constants ∆L
(PN)
C ≈

1.097× 10−16, and ∆L
(A)
C ≈ 5× 10−18 [97].

Parallax Delay

Since the pulsars are located outside of the Solar System, XNAV often assumess that the

pulsars are an infinite distance from the observer. The infinite distance assumption is equiv-

alent to approximating the incoming wavefronts as planes rather than spherical segments.

The parallax delay corrects the infinite-distance assumption adding time delays due to the

curvature of the signals [95, 5, 86]. Computing the parallax delay requires knowledge of the

distance between observers and the distance to the pulsar, R0,

∆P =
r2 − (n · r)2

2cR0

(2.4)
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Shapiro Delay

The Shapiro delay is the time delay caused by the pulse moving through curved spacetime.

The total delay for all bodies in the Solar System is given by [5],

∆S = −2
∑
j

Gmj

c3
ln (n · rj + |rj|) + ∆S2 (2.5)

In this equation the term rj represents the distance from the observer to each planetary

body. The final term ∆S2 is a higher order term which is only important if the observer is

very close to one of the planets or the sun and is given by:

∆S2 =
4G2m2

c5|r|tan(ψ)sin(ψ)
≈ 4G2m2

c5|r|ψ2
(2.6)

where ψ is the pulsar-telescope-object angle of the object. For example, using this equation

light grazing the solar rim will only have a time delay of 9.1 ns [101].

Binary System Delays

The previous corrections apply to all pulsars. However, if the pulsar is in a binary star

system, the binary dynamics affect the light travel time. Four more terms are then added

to the timing delays, three of which are Einstein, Roemer and Shaprio delays, the fourth

accounts for the aberration of a radio beam from binary motion. This fourth term does not

need to be included in the case of XNAV. These terms for binary system delays are complex

and do not apply to all pulsars. The reader is referred to [91] for the original work, or to [86]

for the application within the Tempo2 timing software.

2.2.3 Non-homogeneous Poisson’s Process

The arrival times of photons at the detector may be modeled as a non-homogeneous Poisson

process which has a period arrival rate function λ(t) ≥ 0. The arrival rate function is

typically written as,

λ(t) = β + αh(φ(t)) (2.7)

where α and β are the effective source and background arrival rates, respectively. The

function h is the profile of the pulsar which is normalized to an area of one over one period

such that:

1 =

∫ 1

0

h(φ)dφ (2.8)
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The phase φ in this equation is the accumulated phase which depends on the initial phase

and the velocity of the observer with respect to the pulsar,

φ(t) = φ0 + fs(t− t0) +

∫ t

t0

fs
v(τ) · n

c
dτ. (2.9)

The probability of k photons arriving in a time interval (ta, tb) is then a Poisson random

variable and is given by Eq. 2.10 [102],

P (k; (ta, tb)) =
e−

∫ tb
ta
λ(s)ds − (

∫ tb
ta
λ(s)ds)k

k!
(2.10)

Or as Eq. 2.12 [103] using a mean count rate given in Eq. 2.11,

Λ(t) =

∫ t

0

λ(s)ds (2.11)

P (k; (ta, tb)) =
e−(Λ(tb)−Λ(ta)) − (Λ(tb)− Λ(ta))

k

k!
(2.12)

Simulating this process may be done by either an inversion of the count rate or through

thinning [104, 10, 105, 106, 103]. Pasupathy [104] presents an overview of methods for the

generating the Poisson random numbers from a non-homogeneous Poisson process. Count-

rate inversion methods simulate a standard Poisson process with uniform count rate of 1.

The non-homogeneous arrival times are found by substituting these event times into the

inverse of the mean arrival rate function. There are several different algorithms which fall

under the inversion category and are discussed in detail in Refs. [103, 104, 10], Algorithm 1

is an example of an inversion algorithm from the SEXTANT documentation [103].

Algorithm 1 Inversion

1: Simulate N standard Poisson process event times SK
2: Transform the time events to phase events Uk = Λ−1(Sk)
3: Transform from phase back to time domain Tk = φ−1(Uk)

Thinning algorithms [103, 105, 106, 104] may be classified as accept-reject algorithms.

Algorithm 2 is an example of a thinning algorithm [106]. The algorithm generates a uniformly

distributed random point D (e.g. D ∈ U(0, 1)) and multiples it by the maximum arrival

rate λ̄. If this value is above the arrival rate for the current time no measurement is taken,

if it is below the arrival rate for the current time an event has occurred and a measurement

is taken. The time is then moved forward by a uniform exponential random variable, and

the procedure is repeated.
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Algorithm 2 Thinning

Input: λ(t), T

1: Initialize n = m = 0, t0 = s0 = 0, λ̄ = sup0≤t≤Tλ(t)
2: while sm ≤ T do
3: Generate u ∼ U(0, 1)
4: Let w = −ln(u)/λ
5: Set sm+1 = sm + w
6: Generate D ∼ U(0, 1)
7: if D ≤ λ(sm+1)/λ̄ then
8: tn + 1 = sm+1

9: n = n + 1

10: if tn ≤ T then
11: return {tk}k1,2,...,n

12: else
13: return {tk}k1,2,...,n−1

Using these arrival times, an onboard waveform may be constructed to determine an

observed phase and frequency. The values for the background radiation arrival rates are

typically an order of magnitude larger than the pulsar source arrival rates of interest [107].

This results in not only low signal-to-noise ratio for the x-ray detector, but on average

only one photon will be recorded every four to five seconds for a sensor comparable to

SEXTANT [107]. Together, these challenges require relatively long observation times and

appropriate filtering and estimation algorithms to estimate pulsar phase and frequency.

2.3 X-Ray Signal Measurement and Estimation

In order to determine spacecraft position and velocity on board, an XNAV system must

determine pulsar phase and frequency at a given time. These are not directly measurable

quantities; instead x-ray detectors measure individual photon arrivals. Photon arrival data

are then used to build an onboard representation of the pulsar profile allowing estimation of

the pulsar phase and frequency. Photon arrival times can be modeled by a Non-Homogeneous

Poisson’s Process (NHPP) with a time varying photon arrival rate [108, 109]. These photon

arrival times may then be processed with epoch folding or maximum likelihood estimation

schemes to generate a phase and frequency estimates whose accuracy depend on the obser-

vation time.
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Figure 2.11: Visual representation of Epoch Folding as seen in [10].

2.3.1 Epoch Folding Methods

One method to generate an observed phase and frequency measurement is by using epoch

folding, or phase averaging the photons. Since the period of the pulsar is known, the obser-

vation interval may be divided into segments where the length of each segment is one period.

Each segment is then overlaid one on top of another so that all observation times are between

0 and P, one period. This interval is then subdivided into a number of bins and the number

of photons in each bin is summed up and divided by the number of periods measured. A

visual representation of this may be seen in Fig. 2.11. If the bin size is too small, statistical

error will corrupt the produced waveform; if the bin is too large, information is lost due to

averaging. Becker and Trümper [57] present a method for determining the bin size based

on the optimal number of harmonics used in the H test. The H test was developed by De

Jager et al. for determining the periodicity of a signal for either x or gamma ray astronomy

without any light curve information [110]. Their method is built upon a statistical variable

Zm, Eq. 2.13, which quantifies the periodicity of the signal given by the first m harmonics for

measurements N . Using Zm, another statistic variable H, Eq. 2.14, may be computed to find

the number of harmonics to include in order to minimize the error between the Fourier series

estimator and the unknown light curve, this number is denoted as M . In their work Becker

and Trümper present the number of bins as the second expression in Eq. 2.15 where Ri

represents Fourier power of the ith. Equation 2.16 is an equivalent form given by Bernhardt

et al. [111] in terms of Zm and m.
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The phase averaged photon arrivals create an onboard light curve given by Eq. 2.17 [109].

In this expression the onboard arrival rate λ̆ is given in terms of the number of measured

periods, Np, bin size in seconds, Tb, and the number of detected photons in the ith bin, c(ti).

This rate function may may be compared to a known pulsar profile by using non-linear least

squares methods as given in Equations 2.18 and 2.19 to generate a phase measurement.

λ̆(ti) =
1

NpTb

n∑
j=1

cj(ti) (2.17)

φ̂ = min
φ∈Φ

J(φ) (2.18)

J(φ) =
N∑
i=1

(
λ̆(ti)− λ(ti, φ)

)2

(2.19)

Information on the mean and variance of the estimator along with more detailed deriva-

tions may be found in [108, 109, 10]. Epoch folding has some drawbacks related to velocity

estimation. The measured period of the pulsar depends on the frequency, which in turn

depends on the observer’s velocity through the Doppler shift. The first step of epoch folding

is to divide the measurement interval into smaller intervals of one period length. If there

is some error in the velocity estimate, as in a real system, then the intervals will not have

the correct size leading to photons being placed in incorrect bins, distorting the measured

waveform [10]. Emadzadeh and Speyer found that if the velocity error is small enough

this contribution will not distort the waveform enough to prevent the reconstruction of the

waveform [10, 112].

Epoch folding may also be extended further to incorporate the velocity into the construc-

tion of the estimator [113]. First, the spacecraft motion effects are removed by splitting the

frequency into two terms, the source frequency and the expected frequency component due
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to the spacecraft orbital velocity. The arrival times are then shifted based on the frequency

from the orbit. The converted photons have a new period which is the inverse of the dif-

ference between the orbital frequency and source frequency. Epoch folding is then executed

using this new period to better model the phase in dynamic environments.

The incorporation of compressed sensing into epoch folding methods has also been consid-

ered [114]. Compressed sensing is a relatively new signal processing paradigm which recovers

a signal from a sparse data set. The basis of this idea is that a few key points may be able

to sufficiently represent a larger data set. Compressed sensing theory was applied to x-ray

pulsar based navigation in [114] where Li et al. found that their compressed sensing method

required one order of magnitude less observation time to detect the signal.

2.3.2 Maximum Likelihood Estimation

An alternative method for phase determination using photon arival times is a maximum

likelihood estimator (MLE). While MLE was first discussed for XNAV applicaitons in [39],

a clear majority of studies follow the derivation in [11]. A MLE attempts to find model

parameters which maximize the likelihood of the observation of a particular signal or pulsar.

MLE for XNAV was derived in [11] where the log likelihood function is given by Eq. 2.20,

where the summation is of the arrival rate function over measurements k.

(θ̂, f̂) = max
θ̃∈θ,f̃∈Ω

K∑
k=1

β + αh(θ̃0 + f̃(tk − t0)) (2.20)

Many pulsar shape functions have two peaks, which means that the likelihood function will

also have two peaks implying that an exhaustive search of phases should first be conducted.

This is used to generate a solution near the global minimum. Gradient based methods may

then be used after an initial estimate is generated with a smaller search domain to further

refine the estimate [115].

2.3.3 Square Timing Estimation

Along with the derivation of a maximum likelihood estimator in [39], a reformulation of the

MLE to a square timing estimator was also developed. The key difference is that the arrival

rate function, and likelihood function, may be reformulated in terms of a Fourier series such

that,
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Figure 2.12: Cramer-Rao lower bound for three cases, (A) high source arrival rate, (B) equal
source and background rates, (C) high background arrival rate [11].

Λ(τ) =
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k=−∞
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(
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)
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T
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)
=
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Λ(n)exp

(
−j2π k

Ns

n

)
(2.22)

where Ns is the sample number. Sala et al. showed that this method for computing the phase

of the pulsar is far more computationally efficient since it only requires Ns + 1 evaluations

of the likelihood function. The improvement in computational efficiency comes at the cost

of a bias in the estimator accuracy. Huang et al. found that a bias of 100.4 was added to the

minimum variance of the estimator by performing the computation in this manner [116].

2.3.4 Phase Accuracy vs Observation Time

Pulsar signal phase and frequency estimation accuracy generally improves as observation time

increases, i.e. as more photon arrivals are recorded. This relationship can be more accurately

written using the Cramer-Rao Lower Bound (CRLB) which quantifies a lower bound on

the variance of an unbiased estimator. Golshan and Sheikh derived the CRLB for XNAV,
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Eq. 2.23 and 2.24, in terms of the pulsar shape function, the derivative of the shape function,

source arrival rate, background arrival rate, and observation time [11]. Equation 2.23 shows

the CRLB in terms of phase2 and the Eq. 2.24 in terms of s2.

Var(θ̂0) =

[
Tobs

∫ 1

0

[αh′(φ)]2

αh(φ) + β
dφ

]−1

(2.23)

Var(τ̂) =

[
f 2Tobs

∫ 1

0

[αh′(φ)]2

αh(φ) + β
dφ

]−1

(2.24)

Since the CRLB depends on the properties of the pulsar, each pulsar will result in a

different variance for a given observation time. Lower variance results from pulsars with

high source arrival rates compared to the background arrival rate, and pulsars with distinct

peaks also help to reduce the variance of the observation. Furthermore, MLE methods

for estimating waveforms approach the CRLB as observation time increases, as shown in

Fig. 2.12 [11]. Epoch folding via either cross correlation or nonlinear least squares will not

reach the CRLB in finite time, but will instead converge to a bias offset [112]. One note here

is the MLE convergence to the CRLB is for cases where the velocity of the observer relative

to the pulsar is constant. In the presence of acceleration, the MLE will no longer reach the

CRLB. If the observer motion is transient enough then shorter observation intervals have

been found to give better results than long observations [116].

2.3.5 Phase-Locked Loops

Individually, maximum likelihood estimators or epoch folding may provide a good estimate of

the phase and frequency, but these estimates require that the frequency is constant over the

observation interval. However, an observer with time varying velocity relative to the pulsar

may experience shifts in frequency over the measurement interval. Potential frequency shifts

may be accounted for by dividing the observation into smaller intervals where the frequency is

nearly constant. These segments may then be recombined with a phase-locked loop. Phase-

locked loops compare a measured signal with a reference signal to determine any offsets in

phase, frequency, or frequency derivatives. The local model of the signal is then adjusted to

synchronize with the observation at which point the signal is considered locked. An overview

of phase-locked loops may be found in [117]. The first use of a phase locked loop for XNAV

is discussed by Hanson in chapter 5 of his thesis where he uses an analog phase-locked loop

to track the phase of the Crab pulsar [13]. The system was shown to lock onto the frequency

of the Crab pulsar within 500 s with a steady state time error of 0.0015 s (the Crab pulsar
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has a period of 0.033 s).

Digital phase-locked loops (DPLL) originally were more complex than their analog coun-

terpart, until phase-locked loops were reformulated specifically for digital applications by

Stephens in 1995 [118]. For definitions of the blocks and general structure of a DPLL the

reader is referred to [119]. The first application of a DPLL to XNAV was done by Golshan

and Sheikh who constructed a second order DPLL to refine the estimate of a MLE. Their

application assumes that the spacecraft velocity with respect to the pulsar is not constant.

In such cases their observation is subdivided into smaller blocks of near constant frequency.

A MLE then generates a phase estimate over this block, which is passed into a DPLL to

generate an updated phase and frequency estimate. This method was proven to work with

phase errors tending towards zero using the Rossi X-ray Timing Explorer trajectory along

with the actual photon measurements of the Crab pulsar [11]. Anderson and Pines then

took this cascaded MLE-DPLL model and tested it on a lab testbed at the NASA Goddard

Space Flight Center (GSFC) [107]. With the hardware experiments they were able to show

that the MLE was able to obtain an initial phase estimate to within 0.15% for a moving

spacecraft with velocity errors. Furthermore the MLE-DPLL cascaded system was able to

track the doppler frequency of a spacecraft which was accelerating at 5 km/s2 [43]. Anderson

et al. used an x-ray test bed developed by GSFC to validate their algorithm with hardware

generated photon events. For the Crab pulsar it was found that the phase error tended

toward zero in 250 s while the frequency error tended toward zero in 100 s [31]. One of the

issue with many of the phase tracking studies is that they use the Crab pulsar as a model.

The Crab pulsar has photon arrival rates several orders of magnitude larger than other x-ray

pulsars. To account for this Anderson and Pines extended the DPLL to a third order DPLL

to better track low flux pulsars [120]; their model is able to keep the phase bounded however

does not have the same convergence as the cases which used the Crab pulsar.

2.4 X-Ray Pulsar Based Navigation Methods

X-ray pulsar navigation has been developed for a variety of in-space applications. The

most prominent aplication has been position estimation. Current XNAV position estimation

technology can be subdivided into three categories: relative position, absolute position, or

occulation. Aside from position, XNAV may be used to update estimates of spacecraft

velocity, time, or attitude. Measurement of each quantity using XNAV presents its own set

of challenges and error sources to overcome.
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2.4.1 Position Estimation

Occultation

The Unconventional Stellar Aspect (USA) experiment was designed to demonstrate a posi-

tion determination scheme using the occulation of x-ray sources along the Earth’s limb [73,

72]. For bodies with an atmosphere, an atmosphere model is needed to account for photon

disturbances through events such as refraction, winds, or weather. If these effects can be

accounted for then the measured photon signal may be fit to the atmospheric model. Know-

ing the radius of the planet’s disk, the time the source is occulted can be used to determine

the spacecraft position relative to the planet [40]. The in-track satellite position may then

be determined, with an expected accuracy of 350 m. A few hundred observations may then

improve the resulting accuracy to 10s of meters [73]. Unfortunately the atmospheric models

were not mature enough to yield any meaningful results on position determination via x-ray

occulation [71]. X-ray occulations have also been proposed for navigation at other celestial

bodies such as the moon [73].

Absolute Position

Sheikh et al. proposed a method for determining an absolute position estimate by measuring

multiple pulsars simultaneously [40, 42]. Specifically, the methods assumes there is one

unique observer position which satisfies the phase evolution for all measured pulsars. Four

pulsars may be observed over a given observation interval. The intersection of three sets of

planes from the first three pulsars may be found. The set of planes from the fourth pulsar may

be evaluated at the intersection of the first three pulsars, and the point with the smallest

distance to the fourth pulsar is considered the position. One drawback is that the phase

measurements produce an underdetermined system. The spacecraft position is unknown,

and each pulsar measurement adds an additional unknown in the pulsars phase. The system

then becomes a system of N equations with N+3 unknowns. Within his dissertation Sheikh

has proposed several methods to evaluate each cycle combination to determine which set is

the most likely solution to the spacecraft position [40].

Relative Position

The first and most prominent position update method in the literature is a relative position

update. By measuring photons from a known pulsar for a sufficient length of time a phase

estimate for the pulsar may be generated. This phase estimate may be compared to the
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same pulse measurement at a different location to produce a phase error. The error in phase

may be converted to an error in position in the direction of the pulsar. To generate a full

position state update at least 3 pulsars must be observed [25]. There are two distinct relative

position measurement strategies. In the first case both observers are spacecraft and a relative

position between the two spacecraft is computed. In the other case, one of the observers is

set to the epoch of an ephemeris database. In the second case the computed relative position

vector is between the epoch of the ephemeris database and the spacecraft. The epoch of the

ephemeris database is typically located at the SSB or the center of the Earth.

In the first case a relative position between two spacecraft is computed by comparing the

time taken for a pulsar signal to reach each satellite. The difference in observation may be

converted to a relative range between the two spacecraft in the direction of the pulsar. For

satellites in a constellation it was found that the computing phase offsets between satellites

produces smaller position errors compared to using the SSB or Earth. The resulting position

estimation has an error on the order of 100 m [33]. For this technology to work, the highly

stable millisecond x-ray pulsars are not required. There are other variable x-ray sources

which do not have any repeating waveform, but have a high source intensity. So long as the

signal is time varying, peaks in the intensity of observed photons may be observed and their

times recorded. If both spacecraft measure the same peak, then any difference in the time

of observation is used to generate the position update [121].

The second option is to set one of the observers at an ephemeris database epoch such as

the Solar System barrycenter or the Earth’s center. At the ephemeris epoch, models must

be constructed to predict what the phase should be as a function of time. The spacecraft

observer then records photon arrivals and the arrival times are shifted to the frame of the

ephemeris database. In order to do so, the navigation system requires the use of an initial

position estimate, on-board clock, and pulsar models to calculate the required time shift and

resolve any cycle ambiguities. The predicted phase is then compared with the observed phase

to generate a position error. Overviews of the relative position solution framework where

one observer is set to an ephemeris database epoch have been provided in [10, 122, 40, 41].

This method of relative position determination has been documented more extensively in

the literature than all others.

Relative position determination XNAV is often compared to the Deep Space Network to

determine at which point the expected accuracy of XNAV surpasses the DSN [35, 123].

When pulsar selection is based on noise characteristics alone it was found that a XNAV

system would be more accurate than the DSN at 5.5AU from Earth [123]. However, when

considering errors in the pulsar location it was determined that XNAV is more accurate

than the DSN only beyond 15AU from Earth [35]. Although XNAV surpasses the expected
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accuracy of the DSN at these points, an initial position estimate is still required. Like the

absolute position determination scheme, the relative position will have an undetermined set

of equations to solve. It is proposed that the initial position estimate only needs to be within

half a phase to to allow relative position determination to work [124].

2.4.2 Velocity

The velocity of the spacecraft may be estimated by comparing the measured frequency of

the pulsar with a known source frequency. The two are then related by a Doppler shift in

the wavelength which may be solved for velocity.

f =

(
1 +

∆v

c

)
fo (2.25)

∆f =
∆v

c
f0 (2.26)

This form of the Doppler shift is a linear approximation which is not entirely accurate for

XNAV applications since higher order relativistic terms are not included. The time shifts

to convert the pulsar time to the spacecraft time may be differentiated to determine higher

order Doppler effects on the frequency, as presented in [116, 125]. Huang et al. found that

the differentiation resulted in 28 terms for the pulsar frequency which was then reduced to

six main terms with a contribution larger than 0.01 m/s to the velocity error. These terms

are related to the second order Roemer delay, Shapiro delay, and three binary Roemer delay

terms [116].

2.4.3 Attitude Determination

X-ray astronomy may also be used to determine observer attitude. In position estimation, a

measured signal is compared to a reference to determine an offset in position. To estimate

attitude, the detector must measure x-rays in a particular field of view and compare to a

known catalogue of the area, similar to a star tracker. This is done by observing across a

section of the sky and measuring the response. If the detector is well collimated there should

be a time varying intensity of photons as the detector moves across a source. This process

should be repeated to give full attitude information [73]. One key benefit here is that there

are far fewer bright x-ray sources compared to the visible spectrum. This means that the

required catalogue of x-ray sources is small, reducing the computing requirements. Since

there are fewer sources and these sources are farther apart source confusion becomes less of
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Figure 2.13: Geometric relationship between a CNS measurement and the observed bod-
ies [12].

a problem. Furthermore, pulsation in some x-ray sources may also be used as a additional

means to identify specific sources [13].

2.4.4 Integrated Systems

While XNAV has the potential to be a completely autonomous system for deep space nav-

igation, XNAV may also be a means to reduce required communication with Earth-based

systems through integration with existing on-board navigation technologies. Woodfork pro-

posed the first integration solution by combining XNAV and GPS measurements [32], which

resulted in marginal improvements in position estimation performance. Woodfork found that

in order to generate more meaningful position updates the x-ray detector accuracy needs to

be significantly improved. Integration work has moved away from using GPS and instead

studied the potential benefits of integrating with the DSN, or with a celestial navigation

system, CNS. Integration with the DSN has been studied by Sheikh et al. to determine mis-

sions which would benefit from XNAV support [126]. Measurement accuracies for the DSN

can be broken down into radial and non-radial accuracies [127]. The radial measurements

are a range measurement from an antenna on the Earth’s surface whereas the non-radial

measurement is derived from the angle at which the antenna is pointing. The expected

error of the angular measurement provide a large component of the error in the non-radial

direction and grows by approximately 4 km per AU from Earth [34]. Integration of XNAV

with the DSN may present a better navigation solution that either method independently.

An active area of research is the integration of XNAV with a celestial navigation system
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(CNS) [12, 128, 129]. A celestial navigation system measures the angle between a star and

the horizon of a known body. The geometric relationship between the observed angle and the

distance form the planet is shown in Fig. 2.13. Integrating XNAV and CNS again provides

better position estimation than either system independently. The initial study by Liu et

al. found that integration would result in a 33% improvement in position accuracy over

CNS alone. For a high Earth orbit application, the RMS position error was found to be

larger than 200 m for CNS alone, however system integration as able to reduce this to below

100 m [128].

2.4.5 Filter Development

Over the past 15 years the application of the Kalman filter for the XNAV estimation problem

has improved the estimated position update accuracy while also allowing for new ways to

integrate XNAV into other navigation systems. The first application of a Kalman filter

for XNAV was presented by Sheikh in [130], with a more concise version in [40]. Both of

these works used an extended Kalman filter to better capture the non-linearities in the state

dynamics. This work was then extended to an Earth orbiting spacecraft to take the Earth’s

shadowing effect into account which limits the pulsar observation intervals [41]. Ju et al.

found that using multiple sensors to measure pulsars simultaneously along with multirate

processing may improve position estimation by up to 50% [131]. These efforts determined

position relative to a given epoch; an implementation of an extended Kalman filter for the

relative position between two satellites is shown by Kai et al. in [33].

Chen et al. integrated epoch folding into an extended Kalman filter in an attempt to

remove some of the noise from the position and velocity estimation [132]. Four methods are

compared in the study: an extended Kalman filter provides the baseline performance, two

variations which incorporate epoch folding, and the last converts the measurement into a

Fourier series. This Fourier series measurement is called quadrature formulation which is

essentially the square timing estimation model presented in [39]. The analysis concluded that

the quadrature formulation was not a good candidate for deep space applications. Huang

et al. also studied the squared timing estimation formulation for a satellite in geostationary

orbit, and found that the loss of accuracy may be justified by a reduction in the required

computation time [116]. The study also examined the use of a second order Kalman filter

to remove the use of a DPLL. The authors found that by properly selecting gains, the noise

in the MLE-DPLL cascade may be removed without increasing the phase error.

Several different methods for integrating XNAV into other navigation systems have been

proposed each with their own type of filter. The original proposal for integration of XNAV
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with a CNS by Liu et al. also proposed the use of a federated unscented Kalman filter [12].

The federated filter is used to fuse the measurements of the two systems while the un-

scented estimation improves performance for non-linear dynamics. Further development of

the XNAV CNAS integration lead to the proposal of an augmented state unscented Kalman

filter [133]. This filtering process is the same as an unscented Kalman filter, however the

state vector is augmented with a system bias and clock bias. Rather than using a single

filter for the integrated measurement, Wang et al. proposed the use of a kinematic and

static filter [128]. Here the CNS measurement is fused with the dynamics in a kinematic

filter whose output is then combined with the XNAV measurement in a static filter. Both

filters use an unscented transformations to estimate the non-linear dynamics, however the

authors acknowledge that linearization may be done for computational considerations. Re-

sults showed that, using the non-linear dynamics, the position of a satellite in high Earth

orbit may be estimated within 100 m. For a derivation of the error for a mixed XNAV/CNS

system refer to [129].

If the x-ray detector is capable of measuring the photon angle of arrival, Runnels and

Gebre-Egziabher proposed an integrated system which estimates both the spacecraft attitude

and position simultaneously using a joint probabilistic data association filter [134]. The

photon angle of arrival allows the filter to estimate the spacecraft attitude and if the attitude

is recursively estimated the system them behaves as if it knows from which source the photons

are originating. This allows the joint filter to more closely approximate an ideal estimator.

Implementing a Kalman filter requires the use of an error model which depends on the

error sources being considered. The two largest sources or error are in the clock and the

knowledge of the pulsar direction. Clock errors may incorrectly time tag photons leading to

a bias in the phase estimate while errors in the pulsar direction apply the state update in

an incorrect direction. An overview of the clock errors is presented by Sheikh [40]. Ashby

and Howe recognized that higher order relativistic terms are not always negligible in the

clock error models [135]. To simplify computations a linearized reformulation of the clock

dynamics is presented by Chen et al. in terms of an intermediate variable which depends on

the clock noise and pulsar timing noise [132].

The second large error source of error is the direction of the pulsar relative to the observer.

XNAV is sometimes presented as a means to obtain the same position accuracy everywhere

in the Solar System. This is not possible for a relative position estimate because the pulsar

position error is a function of distance from the Solar System barrycenter [35, 30]. Graven et

al. presents an error analysis where the XANV update error is related to the error in phase

from the three pulsars and the error in the position of the pulsars [35]. This study found that

the position error may grow by up to 5 km at 100 AU from the Solar System barrycenter.
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Note that this study presents figures of the position error in terms of the detector size.

Hanson et al. found that the error in the pulse estimate is inversely proportional to the

product of the observation time and square root of the detector area [136].

Deng et al. presented a study of XNAV under various scenarios [124], including whether

the spacecraft has its trajectory information, if the measurements are simultaneous, clock

drift, potential glitches, and if the system is autonomous. The simulation measured 4 pulsars

every 7 days and determined that for a trajectory from Earth to Mars the position may be

determined to approximately 20 km depending on the included errors.

2.4.6 Pulsar Selection

The majority of studies choose a candidate set of pulsars based on which set gives the best

estimate of phase as predicted by the CRLB. This may not always be the case. As discussed

in the previous section the error in pulsar location increases with distance from the Solar

System barrycetner [35]. The expected error for each pulsar changes at a difference rate which

may change the set of observed pulsars. In a study by Shemar et al., the authors found that

at 30 AU the best set of pulsars is PSR B1937+21, B1821-24, and J0437-4715. However

at 1.5AU the set PSR B1937+21, B1821-24, and J1012+5307 provides the best accuracy

and could be used with similar accuracy at 30AU without updating the timing model as

frequently [30]. For missions which do not communicate with Earth, the pulsar-based time

standard must be used which requires the observation of more pulsars [137].

One way to determine which pulsar should be observed is to look at the observability

of the system. The observability of XNAV is presented in two different ways by Chen at

al [132] for an autonomous spacecraft, and Ning et al. [129] for an integrated XNAV/CNS

system. The method by Chen et al. preforms an analysis for a simplified system which

is linear, has constant velocity, no timing noise, constant clock bias, and only the Roemer

delay (geometric time shift). In this model the authors found that each pulsar observation

increased the rank of the observability matrix by 1 which resulted in a full rank matrix after 3

different observations. An analysis of the resulting information matrix was conducted, where

the size of the information was maximized by measuring pulsars in the opposite direction of

the spacecraft motion [132]. The second method as derived by Ning et al. conducted the

observably analysis under a piecewise constant model. Rather than looking at the rank of

this matrix the authors instead looked at the condition number of the observability matrix.

By integrating XNAV into a CNS the condition number was reduced by 66%. To minimize

the condition number the authors found that pulsars either in the same, or opposite, direction

as the CNS body should be observed; as the angle between the measurements increases the
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error increases exponentially [129].

Alternatively, some studies pick pulsars based on the observation characteristics. Each

pulsar has a different phase estimate for a given observation interval as defined by the CRLB.

The CRLB depends on the pulsar profile, arrival rates, and observation time [11]. Chen et

al. found that pulsars which had a high frequency, high peak intensity, low noise, large

fourier coefficients for higher order minimized the error covariance [132]. The state update

then strongly depends on the pulsars selected where the bounds on position update may

vary from 5 km to over 200 km based only on pulsar selection [111]. The orientation of the

pulsars also plays a role in the overall position update. As the measurements become more

parallel the intersection of the error bands forms a larger area than if the measurements

are orthogonal. This is a representation of the geometric dilution of precision (GDOP).

Several studies evaluated the GDOP for pulsars [30, 1, 99, 40]. Shemar et al. found that

the lowest GDOP for the considered pulsars is 1.7 and is achieved by pulsars PSR B1821-24,

J1012+5307, J0437-4715, and J0030+0451 [30]. This candidate set had a position accuracy

of 75 km whereas the best set, PSR B1937+21, B1821-24, and J0437-4715 had an accuracy

of 35 km. It is therefore a combination of the orientation of pulsars with the expected phase

accuracy. Shemar et al. also composed a table of candidate pulsars and ranked them based

on the accuracy of the position estimate [30]. An analysis of the uncertainty, x-ray spectra,

arrival rates, and orientation of candidate SEXTANT pulsars is presented in [9].

When considering pulsar selection for integrated systems there does not seem to be

any consensus on how many pulsars to observe. Woodfork found that for an integrated

GPS/XNAV system observing one pulsar accurately is better than observing pulsars less

accurately [32]. Liu et al. came to the same conclusion for a XNAV/CNS integrated sys-

tem [12]. Wang et al. found that observing 3 pulsars with three 0.3 m2 detectors is better

than observing one pulsar with a 1.0 m2 detector [138]. There is no clear consensus for the

number of pulsars to observe in an integrated system since the number seems to depend on

the implementation and filter being used.

2.5 Hardware Implementation

Currently there have been three missions which sought to use x-ray pulsar navigation: the

Unconventional Stellar Aspect (USA), X-ray Pulsar Navigation-1 (XPNAV-1), and Station

Explorer for X-ray Timing and Navigation Technology (SEXTANT). The SEXTANT ex-

periment is using the same x-ray optics as the Neutron Star Interior Composition Explorer,

NICER. The USA and SEXTANT/NICER experiments are both payloads on a larger sys-
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Figure 2.14: Drawing of the USA experiment as found in [13].

tem, whereas XPNAV-1 is an entire satellite.

2.5.1 Flight Systems

USA/ARGOS

The first mission which sought to use x-ray pulsars for navigation purposes was ARGOS.

ARGOS carried the USA payload which was designed to use x-ray occulation to estimate the

spacecraft position [72, 73]. A technical description of the USA payload is provided in [13]

and an image of the payload is presented in Fig. 2.14. As previously mentioned position

determination via x-ray occulation was unsuccessful since atmospheric models were not ac-

curate enough to give a meaningful position update [71]. The mission instead proved that

x-ray pulsars may be used for attitude determination. Hanson proposed a method for atti-

tude determination by sweeping over x-ray sources [13] which was implemented on ARGOS.

Shortly after ARGOS was operational, errors in the spacecraft attitude were discovered. To

resolve the issue Hanson’s attitude determination was implemented on ARGOS, which cor-

rected the spacecraft attitude issue on August 18, 1999. The analyses suggested that the

spacecraft roll angle was 1◦ out of alignment [74]. Although the spacecraft had the capability

to preform the correction autonomously all data analysis was conducted on the ground [71].
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Figure 2.15: Schematic of XPNAV-1 [14].

XPNAV-1

The next XNAV mission launched was XPNAV-1 on November 10, 2016, Fig. 2.15. XPNAV-

1 is the first of three phases of the China Academy of Space Technology (CAST), XNAV

space demonstration. XPNAV-1 was launched to validate the capability of observing pulsars

in space. The second phase is to launch another satellite which will generate more data

and test navigation algorithms onboard. The third phase is a constellation of satellites [14].

XPNAV-1 was launched on a sun-synchronous orbit which allows it to observe one of 8

candidate pulsars. Four of the candidate pulsars are millisecond pulsars while the other four

are x-ray binaries. The recorded data is analyzed to determine the energy of the photons, the

number of source and background photons, time conversions to the Solar System barrycenter,

and construction of an epoch folded profile. It is expected that the next mission, whose goal

is to test XNAV algorithms, will launch within 3-5 years [14].

NICER/SEXTANT

The NICER/SEXTANT system is funded through the NASA Science Mission Directorate

and Space Technology Mission Directorate. The NICER x-ray instruments were installed

aboard the international space station in June 2017. The joint payload requirements are

driven by NICER which seeks to further explore the composition of neutron stars. NICER is

looking to use pulse timing to enable mass measurements, discover a maximum pulsar spin

rate, determine long term clock stability, and determine the seismology of neutron stars.
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Figure 2.16: Schematic of NICER [15].

In order to achieve these goals, the NICER instrument was designed to measure the light

curve state, Shapiro delays, search for periodic pulsation in the submillisecond scale, measure

pulse arrival times monthly, and distinguish between thermal and non-thermal spectra [15].

Information on the hardware components may be seen in [139], and a rendering of the

NICER payload may be seen in Fig. 2.16. SEXTANT’s goal is to demonstrate real-time

on-orbit XNAV-only orbit determination using the unmodified NICER flight hardware [137].

Successful orbit determination is achieved if the position error remains below 10 km in the

worst direction, with a stretch goal of estimating the position error within 1 km. A secondary

goal is to further explorer the pulsar clock stability and its potential for spacecraft clock

synchronization.

SEXTANT was sent to determine the position of the International Space Station on or-

bit using the measured photons from NICER’s x-ray timing instrument. Descriptions of

SEXTANT XNAV algorithms are documented in [103, 107, 115]. The recorded photons

will be processed through a MLE to generate a phase and frequency model. The MLE on

SEXTANT will also allow estimates of the source and background arrival rates since these

parameters may change with position and time. The phase estimation is conducted by find-

ing the maximum of the likelihood function through an exhaustive search. The estimate is

refined by taking the exhaustive search maximum then preforming Newton iterations on a

restricted domain to better approximate the phase [115]. The estimated phase and frequency

will be compared to a first order predictive model [107]. The Crab pulsar is another object of
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interest since it has a high flux of photons requiring far less observation time. The photons

signal processing was adjusted in the event of observations of the Crab pulsar [115]. In the

event of a glitch SEXTANT will stop the measurement and update the pulsar model prior

top measuring new photons [107].

The SEXTANT experiment started with an initial GPS measurement which is degraded

prior to running a XNAV algorithm [107]. Initial models of SEXTANT predicted that the

estimation should keep the root-sum-squared error to within 5 km [107, 115]. The SEXTANT

flight experiment showed that the error remained within the 10 km goal for majority of the

experiment. Near the start of the observation there is a point where the error rose above

the 10 km threshold to over 15 km prior to dropping down. This error growth follows the

propagation of the initial state before the system recovers and quickly reduces the error [28].

Future experiments will observe the Crab pulsar which will require model updates in order

to accurately capture the noise characteristics. The model extensions are presented in [29]

along with simulated results.

2.5.2 GXLT

Prior to implementation on SEXTANT, the algorithms were first tested on the GSFC X-

ray Navigation Laboratory Testbed (GXLT). The GXLT has three modes of operation, one

mode passes a phase and frequency measurement to the flight software, another simulates

photons arrivals and passes those. The final mode is a hardware in the loop mode where

x-ray events are generated by shinning a ultraviolet light emitting diode to remove electrons

from a photocathode [107]. A reference signal is generated by Tempo2 and compared to

the phase and frequency measurements to generate the position update. More details of the

testbed may be found in [107, 115].

Aside from the SEXTANT algorithm verification the GXLT was used to test other models

for XNAV. Anderson and Pines were able to test some of the advancements in XNAV [43],

including the first experimental use of the DPLL for XNAV. As part of their experiments

the GXLT was used with a time varying frequency and it was found that if the Crab pulsar

may be used the estimation can give good results. These tests were done for the case where

the source has a higher arrival rate than background, equal arrival rates, or a small source

arrival rate. Based on the SEXTANT documentation the source arrival rate is much lower

than the background arrival rate [107]. These tests provided a baseline for the SEXTANT

experiments.
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2.5.3 Sensor Technology

While most studies look at improving algorithms to process photons, some have considered

possible improvements to the sensor technology [140, 141, 30]. Bernhardt et al. presents

an overview of x-ray telescopes for navigation [141]. A key issue with the telescopes is

the required mass per effective area, since as the angular resolution decreases the mass per

effective area increases. Shemar et al. recognize that much of the literature on high time

resolution sensing is centered around collimated detectors, however XNAV concepts use

imaging detectors [30]. Imaging detectors tend to record less of the background noise while

having a smaller, and simpler, detector. The main drawback is additional constraints on the

pointing requirements. The study also presents some design considerations for future XNAV

instruments. Revnivstev et al. studied how potential improvements in sensor technology

would impact the XNAV accuracy of 1000 s of x-ray data from RXTE [140]. By increasing

the detection band to 1 keV the position determination may improve to 450 m from 730 m,

while an increase in detector size from 0.6 m2 to 1.0 m2 may further improve the accuracy

to 350 m.

2.6 Summary

XNAV is a strong candidate for improving navigation capabilities on future autonomous

spacecraft, especially for deep space applications which may have limited communication

with Earth-based systems. XNAV technology is currently mature enough that several flight

experiments have been conducted to test feasibility on spacecraft. As XNAV technology

improves both in the available hardware and algorithms used for processing, XNAV will likely

become a more desireable space navigation technology option for future space missions. In

particular, XNAV may improve spacecraft autonomy, improve robustness and accuracy when

integrated with other navigation technology, and provide improved navigation accuracy for

missions to the outer Solar System and beyond.
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CHAPTER 3

XNAV CANDIDATE STATE DETERMINATION

The majority of XNAV implementations to date are designed to operate under a relative

position update framework. A key limitation of relative position update framework schemes

is that they require an initial position estimate. Without that estimate, the photon time

of arrivals can not be shifted back to the reference epoch. Sheikh et al. developed an

alternate solution strategy called absolute position determination [42]. This method uses

measurement difference to construct a set of wavefronts for each pulsar measurement. The

spacecraft location must be at a point where all wavefronts intersect. Sheikh et al. postulated

that this method would require simultaneous measurement of multiple pulsars; using current

technology, simultaneous measurement requires multiple gimbaled detectors.

This chapter characterizes how candidate intersections, and therefore candidate spacecraft

positions, evolve with measurement error, number of observed pulsars, and the selected set

of pulsars observed with the application to the absolute position determination method.

The problem formulation for the intersection of infinite sets of lines, or planes, is presented

along with criteria to determine candidate set intersections. An analytic solution to the

mixed-integer math problem is shown for a simplified test case. A numeric algorithm to

rapidly determine candidate solutions is presented in both two and three dimensions. Using

candidate XNAV pulsars, the number of candidate solutions for a given domain are found

using various measurement accuracies and number of pulsars measured.

3.1 Identification of Candidate Positions in Two Dimensions

During the XNAV state update process, the onboard navigation system generates a phase

offset with respect to an expected phase. A position update can be generated based on the

phase offset, a first order approximation of which is given by,

n ·∆r

vc
= ∆t (3.1)

Here the position update, n · ∆r, is in the direction of the pulsar, see Fig. 1.1. Since the
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distance between pulsars and our Solar System is large, pulsars are assumed to be infinitely

far from the Solar System, making the pulsar waveform appear to propagate as a plane. The

time delay caused by the curvature of the wavefront is given by,

dt =
|r⊥|2

2vc|R|
(3.2)

where R is the distance to the pulsar, and r⊥ is the perpendicular component of the spacecraft

position with respect to the pulsar direction [86]. The nearest millisecond pulsar to Earth is

at a distance of 157 parsecs [75] which corresponds to 4.84451×1015 km or 3.24×107 AU. For

spacecraft operating within the Solar System, approximately 80 AU diameter, we assume

the time delay correction term is negligible.

The problem can be further simplified to two dimensions (2D) for the following reasons:

1. Most in-space trajectories are planar, and the plane of motion may be determined

using velocity state information also available from XNAV [142].

2. The three-dimensional candidate solution identification problem quickly reduces to

finding intersections of lines, a feature preserved in two dimensions.

3. Computational time required to determine candidate intersections is significantly re-

duced in two dimensions.

Figure 3.1 illustrates the candidate position identification problem in two dimensions: the

lines are the projections of notional pulsar wavefronts in 2D. Each pulsar observation gener-

ates a candidate spacecraft position somewhere on an infinite set of lines. The intersection

of two measurements reduces the spacecraft position to an infinite set of points, and each

measurement afterwards reduces the number of points, but the set of candidate positions

remains infinite for an unbounded domain. Figure 3.1(a) shows candidate spacecraft posi-

tions at the intersections of two observed pulsar wavefronts; Fig. 3.1(b) shows the reduced

number of intersections resulting from three pulsar wavefronts. Error in the pulsar position

estimate is assumed to be independent of position in the domain.

In this section, consider the following pulsars to determine position: J0218+4232, J0030+

0451, B1937+21, B18218-24, and J0437-4715 (see Table 3.1). These are the pulsars used

for NASA’s Station Explorer for X-ray Timing and Navigation Technology (SEXTANT)

experiments [28]. The search domain for the spacecraft position is restricted to a square with

sides of length 2 × 1010m (approximately 0.134 AU) unless otherwise noted. This domain

size, when centered at Earth, encompasses all of cislunar space, as well as the Earth-Sun L1

and L2 points, for reference see Fig. 3.2.
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(a) (b)

Figure 3.1: The intersection of (a) two sets of lines and (b) three sets of lines.

-1 -0.5 0 0.5 1
x[m] 1010

-1

-0.5

0

0.5

1

y[
m

]

1010

Orbit of the Moon
Search domain boundary
Earth-Sun Lagrange point 1
Earth-Sun Lagrange point 2

Figure 3.2: Visual representation of the search domain with the orbit of the moon.

Table 3.1: Candidate Pulsar Properties.
Pulsar 1 2 3 4 5
Name J0437-4715 B18218-24 J0218+4232 B1937+21 J0030+0451

Period [s] 0.0058 0.0031 0.0023 0.0016 0.0049

Normal Vector

−0.2594
0.9355
0.2397

 −0.0449
0.9943
0.0969

 0.5570
0.5668
0.6070

  0.1549
−0.9070
0.3917

 0.0840
0.1325
0.9876


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Candidate intersections may be found by modeling observed pulsar wavefronts as lines.

The standard form of a 2D line is given by,

ax+ by = c (3.3)

where c characterizes the line, and is defined by a point on the line:

c = ax0 + by0 (3.4)

A set of lines for each pulsar measurement corresponding to the signal wavefronts may be

defined and used to generate a system of equations, all of the form,

apx+ bpy = ci (3.5)

where i is the index of a wavefront from a pulsar. The intersection of two pulsar wavefronts

is given by, [
a1 b1

a2 b2

][
x

y

]
=

[
c1

c2

]
(3.6)

where the normal vector components are given by,

np =

[
ap

bp

]
p = 1 : 2 (3.7)

Equation 3.4 is the dot product of the normal vector with a point on the plane. The point

on the plane is the normal vector multiplied by the distance between wavefronts, or the

wavelength. For a given wavefront, the constant, c, is given by,

ci = cTpi = λpi (3.8)

The periods, Ti, are the corresponding 2D period of the pulsar wavefront. When projecting

the wavefronts from 3D into a 2D plane, the corresponding wavefronts may have a smaller

wavelength and therefore period. The period may be found by computing the angle between

the normal vector and the z-axis using a dot product, then multiplying the sine of this angle

by the period of the pulsar. Additionally, a phase offset may be added to the index to enable

wavefront placement at any point in the domain.

ci = λp(i+ φp) (3.9)
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For each additional observed pulsar, the (x, y) candidate point must satisfy Eq. 3.5 for the

new pulsar. The set of Eq. 3.6 for a given set of pulsars results in an under-determined

problem. The intersection of N pulsars has N equations, but N +2 unknowns. N unknowns

are from the required index i to identify the line, and 2 unknowns for the (x, y) candidate

intersection location.

3.2 Analytic Candidate Determination

The candidate position identification problem can be written as a mixed-integer program-

ming problem, which provides a closed-form analytic solution for exact intersections of lines.

The solution presented below follows the form of Bowman and Burdet [143] whose solution

represents the mixed-integer problem as an equivalent linear Diophantine problem. The so-

lution to this class of problem may be found using reflexive generalized inverses, as shown

by Hurt and Waid [144]. First, the problem is express the problem in the required form. For

XNAV, the system of equations given by Eq. 3.6 and 3.9 may be combined to form the set

of equations, [
a1 b1

a2 b2

][
x

y

]
=

[
λ1(i1 + φ1)

λ2(i2 + φ2)

]
(3.10)

If a fourth pulsar is added to the system, an additional row is added to the matrix equation,a1 b1

a2 b2

a3 b3

[x
y

]
=

λ1(i1 + φ1)

λ2(i2 + φ2)

λ3(i3 + φ3)

 (3.11)

Each additional pulsar observed would add a row to the matrix equation. The standard

form of a mixed integer problem is given by,

Am +Bs = q (3.12)

where m is a vector of integers, s is a vector of scalars, and q is a vector of rational numbers.

Equation 3.11 may be rearranged into this form and is given by Eq. 3.13, where m is a vector

of integer indices, [i1, i2, i3]T , and s is the spacecraft position, [x, y]T .λ1 0 0

0 λ2 0

0 0 λ3

m +

a1 b1

a2 b2

a3 b3

 s =

λ1φ1

λ2φ2

λ3φ3

 (3.13)
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Closed-form solutions to equations of this form have been found for some cases [143]. The

solutions are built around a reflexive generalized inverse of B, denoted as B#. A reflexive

generalized inverse is not the same as a pseudo-inverse. The conditions for a pseudo-inverse

are given by,

BB−1B = B (3.14)

B−1BB−1 = B−1 (3.15)

(BB−1)T = BB−1 (3.16)

(B−1B)T = B−1B (3.17)

To be a reflexive generalized inverse, only the first two conditions are required. One

important note is that for a reflexive generalized inverse, BB# or B#B is not necessarily

equal to the identity matrix. If a reflexive generalized inverse of B can be found, then a pair

of intermediate quantities may be defined,

D = (I −BB#)A (3.18)

d = (I −BB#)q (3.19)

If the following set of conditions are satisfied:

D# is integral (3.20)

D#d is integral (3.21)

DD#d = d (3.22)

Hurt and Waid derived an analytic solution, given by Eq. 3.23 and 3.24 [144].

m = D#d + (I −D#D)w (3.23)

s = B#c−B#AD#d−B#A(I −D#D)w + (I −B#B)z (3.24)

where w is a vector of arbitrary integers and z is an arbitrary vector of real numbers. Any

combination of integers in w or real numbers in z will result in a solution to the mixed-

integer problem. The length of the vectors w and z is equal to the number of measurements

considered.

To test the mixed-integer programming solution in 2D, consider pulsars with normal vec-
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tors [1, 0]T , [3/5, 4/5]T , [−4/5, 3/5]T . For simplicity, the period and speed of light are nor-

malized to 1, making the A matrix equal to the identity matrix and c a vector of ones. The

problem being considered is given by:

m +

 1 0

3/5 4/5

−4/5 3/5

 s =

1

1

1

 (3.25)

A reflexive generalized inverse of B which solves this problem is:

B# =

[
1 0 0

−3/4 5/4 0

]
(3.26)

The resulting d, D, and D# are given by:

d =

6

0

0

 , D =

−5 3 −4

0 0 0

0 0 0

 , D# =

1 0 0

2 0 0

0 0 0

 (3.27)

Using these parameters, the solution to Eq. 3.25 is:

m =

 6w1 − 3w2 + 4w3 + 6

10w1 − 5w2 + 8w3 + 12

w3

 (3.28)

s =

[
6w1 − 3w2 + 4w3 + 7

8w1 − 4w2 + 7w3 + 11

]
(3.29)

By substituting integer values into w1, w2, w3, the candidate positions s, may be deter-

mined along with the pulsar index m. In this case, BB# = I makes the problem independent

of z, the vector of arbitrary numbers. One drawback of the analytic solution is that the can-

didate position vector is a 2x1 vector (3x1 for 3 dimensional problems) and the w vector will

be an Nx1 vector, where N is the number of pulsar measurements used. Therefore, there is

not a one-to-one correspondence between combinations of wi and m; thus, a given candidate

position may correspond to multiple w vectors.

Figure 3.3 shows the pulsar wavefronts; all analytic solutions are highlighted as orange

dots. In this case, each wi is varied independently from -10 to 10, resulting in 213 different

values of w and 9261 candidate solutions. Within the desired domain, Eq. (3.28-3.29) identify

only 77 candidate solutions (the orange dots) of the 84 total solutions. The remaining
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Figure 3.3: The intersection of three sets of lines are presented where the orange dots are
analytically found intersections and the blue dots are additional intersections which were
found numerically.
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Figure 3.4: Analytic solutions to the mixed integer problem.
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unidentified 7 solutions are shown as blue dots. Since there is no one-to-one correspondence

between w and m, there is no guarantee that all solutions in a given domain will be identified.

Furthermore, there is no guarantee that each unique w will result in a new solution: of the

9261 analytic candidate solutions only 1281 are unique. Figure 3.4 shows additional solutions

which are found by the analytic method that lie outside of the domain in question, resulting

from the selection of w. Therefore, while analytic solution yields a closed-form expression

for the intersection of multiple sets of lines in terms of a single parameter w, there is no

way to know what combinations of w are required in order to capture all solutions within a

desired domain. Also, this method can only determine exact solutions, meaning there is no

way to incorporate the measurement error presented in a real XNAV system.

3.3 Numeric Candidate Determination

In a realistic scenario there will be some error in the measurement of the photons emitted

from the pulsar. Error in this measurement will result in some phase error when comparing

the measured signal to a reference. Phase measurement errors can be converted into a linear

distance by,

∆r = vcφTn (3.30)

where c is the speed of light, φ is the phase error, and T is the period of the pulsar. Using

the pulsars in Table 3.1, and phase errors of 10−3, 10−4 and 10−5 the corresponding errors

in position are on the order of 1 km, 100 m and 10 m respectively.

The error in phase may be defined by the Cramer-Rao lower bound, Eq. 2.24, which

places a bound on the variance of an unbiased estimator. Golshan et al. derived this

quantity for pulsar based navigation in terms of the observation time, Tobs, pulsar waveform,

h, the derivative of the waveform, h′, and the source, α, and background, β, photon arrival

rates [11]. For a given pulsar this expression relates the observation time with the phase

error.

Var(φ̂0) ≥

[
Tobs

∫ 1

0

[αh′(φ)]2

αh(φ) + β
dφ

]−1

(3.31)

All of the terms within the integral are constant for a specific pulsar and may be computed

for a given source and background photon arrival rate, which simplifies the expression in

terms of an integration parameter, IP .

Var(φ̂0) ≥ [TobsIp]
−1 (3.32)
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Table 3.2: Required Observation Time to Achieve the Desired Phase Tolerance for Each
Pulsar.

Pulsar
1 2 3 4 5

Phase Tolerance J0218+4232 J0030+0451 B1937+21 B18218-24 J0437-4715
10−3 1.79×105s 1.85×105s 4.29×104s 4.19×103s 3.45×105s
10−4 1.98×107s 1.85×107s 4.29×106s 4.19×105s 3.45×107s
10−5 1.79×109s 1.85×109s 4.29×108s 4.19×107s 3.45×109s

Ray et al. computed these integration parameters for the pulsars in Table 3.1 [9]. The

required observation time in order to generate a measurement with the above accuracies has

been computed for each pulsar and can be seen in Table 3.2.

Using these error characteristics, measurement error may be applied to the problem of

finding intersections of pulsar wavefronts. The domain size is set to a square domain wide

sides of length 2×1010 m to adequately capture the structure of candidate solutions while

minimizing computational expense. Within this domain, sets of three, four and five pulsars

will be considered from Table 3.1. In this chapter, if three pulsar measurements are used the

first three pulsars will be considered, pulsars 1-3, if a fourth measurements is used pulsar 4

is added to the set, and if five measurements are used pulsar 5 is added. The phase accuracy

will be set to be between 10−3 and 10−5. The minimum phase accuracy is set to 10−3 so

that the Cramer-Rao lower bound more closely matches the SEXTANT experimental data,

Fig. 3.5 [9]. The solid lines represent the Cramer-Rao lower bound, and the data points

are obtained from NASA’s SEXTANT. Additionally, all measurements are assumed to be

concurrent to allow for the calculation of intersections, without the need for time-based

corrections. To enforce a solution within the domain, no phase offset is given for any of the

pulsars, resulting in a solution at the origin, which for these cases is the only exact solution.

3.3.1 Intersection of Pulsar Wavefronts in a Bounded Domain

Prior to evaluating pulsar intersections, first the number of wavefronts within a given domain

must be found. For a square domain this can be done by taking the dot product of the

pulsar normal vector with each corner of the domain. Then this value can be divided by

the pulsar wavelength to determine the number of wavefronts required to reach each corner.

This process is then repeated for each pulsar observation used as their normal vectors and

wavelengths will both impact the required number of wavefronts to search through.

In order to begin the numeric evaluation of pulsar intersections, first the intersection

of two wavefronts must be computed by solving Eq. 3.6 for the candidate position. This
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Figure 3.5: Measurement uncertainty vs observation time of pulsar measurements from SEX-
TANT [9]. The data points are observation accuracy from SEXTANT with dashed lines
connecting them, and the solid lines show the estimated Cramer-Rao lower bound.

Table 3.3: Normal vector combinations for fictitious pulsars.
Case (A) (B) (C) (D) (E)

Normal Vectors

[
1
0

]
,

[
0
1

] [
1
0

]
,

[
0.7
0.7

] [
1
0

]
,

[
−0.89
0.45

] [
0.7
0.7

]
,

[
0.45
0.89

] [
1
1

]
,

[
0.9999

0

]

can be done by calculating the ci values for each wavefronts in the domain by Eq. 3.9 and

substituting it into Eq. 3.6. A matrix inverse is then used to find the each candidate position

for each combination of wavefronts. This process may be completed for each combination

of wavefronts within the defined boundary, but may not always be necessary. The only case

where each combination must be evaluated is the case where the the pulsar normal vectors

are aligned with the edges of the domain. For other pulsar wavefront orientations, some

combinations may result in candidate positions which lie outside the considered domain.

Consider a pair of fictitious pulsars whose wavelengths are 1, and a square domain with

a side length of 200. Figure 3.6 shows the candidate position for each index combination

for the normal vector combinations in Table 3.3. Here the blue dots are candidate positions

within the domain and the red dots are candidate positions outside of the domain. Only

in the case where the normal vectors are aligned with the Cartesian coordinates are all
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(a) (b)

(c) (d)

Figure 3.6: Candidate positions for all wavefront combinations using the normal vectors in
Table 3.3 for case (a) A (b) B (c) C (d) D.
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combinations within the domain, for all other cases there are some combinations which lie

outside the domain in question. In all cases the solutions form a parallelogram whose edges

are perpendicular to the wavefront normal vectors.

The indices which result in intersections within the domain can be recorded and for cases B,

C and D are visualized in Fig. 3.7. Here the blue dots represent wavefront index combinations

(i1, i2) which result in a candidate intersection within the specified domain, and the red dots

are combinations which lie outside the domain. It can be seen that there is a structure along

one of the diagonals, the direction of which corresponds to the sign of the normal vector

dot products. If the dot products of the normal vectors are positive, the set of solutions

which result in candidate positions within the domain will have an overall positive slope,

and a negative dot product will result in an overall negative slope. Furthermore the width of

(a) (b)

(c)

Figure 3.7: Pulsar wavefront index combinations, where the red dots result in candidate
positions outside the domain, and the blue dots inside the domain, for pulsars with normal
vectors as defined in Table 3.3 for case (a) B (b) C (c) D.
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the band is correlated to the dot product of the normal vectors where a larger dot product

results in a thinner band.

This can be tested with a more extreme case with pulsar normal vectors which are nearly

parallel to one another, case E. The resulting candidate positions and index combinations

which result in those positions are shown in Fig. 3.8, where again blue dots are within the

domain and red dots are outside of the domain. Figure 3.8(a) shows the resulting set of

candidate positions, which result in the most solutions along a thin band extending far

outside of the domain, for a clearer image of the area within the domain refer to Fig. 3.8(b).

Here it can be seen that there are a few combinations which result in feasible intersections

within the domain. The upper and lower bands are only half within the domain as they cross

over the domain boundary at 0. Figure 3.8(c) shows the index combinations and whether

they result in a candidate inside or outside of the domain. This is a more extreme case than

(a) (b)

(c)

Figure 3.8: For pulsars with normal vectors defined by case E from Table 3.3 (a) the resulting
candidate positions (b) candidate positions near the domain.
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those in Fig. 3.7 where the parallelogram is very thin and concentrated along the diagonal.

Looking at Fig. 3.7 and Fig. 3.8(c) searching all possible combinations of wavefronts that

are within the domain would result in a significant number unnecessary computations. This

can be avoided by searching along the banded region using an adaptive algorithm to define

which index combinations should be checked (see Algorithm 3). The presented algorithm

is for a case where the normal vectors have a positive dot product and consists of three

main steps. The first main step is setting i1 = 0, and searching along i2 both upwards and

downwards to find the maximum and minimum i2 which result in a candidate position within

the domain, steps 3-15. Once those values are found the loop is broken as there is no need to

continue searching since points outside this range will result in candidate positions outside

the domain. Next i1 is incremented and i2 is searched from the previous lower boundary

upwards. When the value of i2 no longer results in a candidate position within the domain

the loop is broken and a new lower bound on i2 is defined and i1 is increased. The process

repeats until i1 reaches it’s upper boundary, steps 16-25. This results in finding all points

from Fig. 3.8 with an i1 ≥ 1 that result in candidate positions within the domain. Steps 26-

35 do a similar process but search by decreasing i1 and searching i2 from its upper boundary

downwards, finding all points with i1 ≤ −1 from Fig. 3.8 which would result in candidate

positions within the domain. For the case where the normal vectors result in a negative dot

product, the inner loops which increment i2 must be reversed, swapping steps 18-24 with

steps 28-34.

Using algorithm 3 to iterate through candidate points results in far fewer computations for

the intersection of two pulsars as well as reduces the number of candidate points which would

need to be checked for additional pulsar measurements. In case B, there were a total of 57,285

index combinations within the upper and lower boundaries, however only 28,427 resulted in

candidate positions within the domain, meaning approximately half needed to be evaluated.

For case C, the proportion of combinations which needed to be evaluated was further reduced

from 54,471 total combinations to 17,979, and for case D from 77,235 to 12,649. Case

E provided the most significant reduction in the number of evaluated from 40,083 total

combinations down to 401, less than 1% of the total number of index combinations. Each

index combination evaluated requires one matrix inverse calculation, therefore removing

half or more of the combinations results in significant reduction in computation time. The

order the pulsars appear in Table 3.1 was set such than the maximum number of wavefronts

within the domain are increasing from pulsars 1-5, to minimize the computation time for the

following sections.
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Algorithm 3 Index search for normal vectors with positive dot product

1: Compute index upper and lower bounds for each pulsar, LB1, UB1, LB2, UB2

2: Set i1 = 0, i2 = 0
3: while i2 ≤ UB2 do
4: Compute candidate position
5: if Candidate position outside of domain then
6: Define upper bound of i2, iU
7: Break loop

8: i2 = i2 + 1

9: i2 = −1
10: while i2 ≥ LB2 do
11: Compute candidate position
12: if Candidate position outside of domain then
13: Define lower bound of i2, iL
14: Break loop

15: i2 = i2 − 1

16: i1 = 1
17: while i1 ≤ UB1 do
18: i2 = iL
19: while i2 ≤ UB2 do
20: Compute candidate intersection
21: if Candidate position outside of domain then
22: Define lower bound of i2, iL
23: Break loop

24: i2 = i2 + 1

25: i1 = i1 + 1

26: i1 = −1
27: while i1 ≥ LB1 do
28: i2 = iU
29: while i2 ≥ LB2 do
30: Compute candidate intersection
31: if Candidate position outside of domain then
32: Define upper bound of i2, iU
33: Break loop

34: i2 = i2 − 1

35: i1 = i1 + 1

36: Evaluate additional pulsar measurements
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3.3.2 Error Ball Model

To check if the wavefronts from an additional pulsar coincide with a given intersection,

Eq. 3.5 must be valid when evaluated at a candidate intersection point. From Eq. 3.5, the

coefficient c may be moved to the left hand side and the right hand side may be interpreted

as the distance from the new wavefront to the intersection point, as shown in Eq. 3.33. If the

right hand side is less than some tolerance, ε, the intersection point is a candidate spacecraft

position, see Fig. 3.9. The tolerance may be set to represent the phase accuracy of the pulsar

waveform measurement.

apx+ bpy − ci ≤ ε i, p = 3, 4, ... (3.33)

If this condition is checked for each candidate point then
∏j

i=1Ni computations are re-

quired where the Ni correspond to the number of pulsar wavefronts in the search space, and

j is the number of pulsars observed. Solving the problem in this manner is inefficient and

may be intractable given the limitations of flight computers, especially if the search domain

is large. A more efficient method of determining the feasibility of a candidate intersection is

to determine the required ci value for an intersection to exist by solving Eq. 3.5 for a given

candidate position. Looking back to Eq. 3.9, it can be seen that this value is related to the

period of the pulsar, its phase offset, and an integer index. Equation 3.9 may be solved for

the integer index as

j =
ci
λp
− φp (3.34)

The required ci and other pulsar properties are substituted into this equation, and if the

value of j is integral, then the pulsar wavefront will intersect at this candidate location.

Otherwise, there will be no intersection. By performing the computation this way, there are

Candidate
 Position

e
Line 3

Line 1 Line 2

Figure 3.9: Feasible region for the intersection of an additional pulsar.
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now only
∏j−1

i=1 Ni computations which corresponds to the number of candidate locations. If

additional pulsars are observed, only the points which pass the previous test are considered,

further reducing the computational load.

A few additional assumptions were made to simplify the problem. All measurements are

assumed to be measured concurrently to allow for the calculation of their intersections. Based

on how the problem has been defined, the intersection of two wavefronts are found first then

an error ball is constructed from this point, Fig. 3.9. The size of the error ball is related

to the uncertainty in the measurement of an additional pulsar. The error of the first two

measurements would correspond to shifting the center of the error ball not increasing the

size of the ball. Therefore, the error in the first two pulsar observations is not included. To

enforce a solution within the domain no phase offset is given for any of the pulsars resulting

in a solution at the origin.

Effecting of Varying Phase Error

Using a phase tolerance of 10−3 the intersections of the first three, four, or five pulsars from

Table 3.1 may be found as shown in Fig. 3.10. The phase error of 10−3 results in a position

error on the order of 1 km. This position error results in 114,281 candidate solutions within

the space when observing three pulsars, and the solution has a banded structure throughout

the domain. Since each of these points is a feasible solution to within 1 km there is no way

of accurately determining at which point the observer is located. There are two options to

then resolve position: the pulsars may be observed for a larger period of time to reduce the

position error and accept fewer candidate positions, or another pulsar may be observed. If

an additional pulsar is observed the 114,281 solutions may be reduced to 233 solutions, and

if the fifth pulsar is observed three solutions remain. However, it should be noted that, in

general, there is no guarantee that a solution exists in a domain of this size. The addition of

a small phase offset to a set of wavefrons to the problem may result in no solutions within

the domain.

The same procedure may be repeated with other phase tolerances to determine how the

candidate solutions change with phase accuracy. If the phase tolerance is adjusted to 10−4,

which corresponds to a position error on the order of 100 m, there are 11,439 solutions for

three pulsars and a single solution for four or five pulsars, Fig. 3.11. Comparing the 10−4 case

(Fig. 3.11) to the 10−3 case (Fig. 3.10) shows that increasing the phase tolerance by an order

of magnitude decreased the number of candidate solutions by an order of magnitude for the

intersection of 3 pulsars. For the 3 pulsar case the banded structure is present for both phase

tolerances, but as the accuracy is increased the thickness of the band is decreased. Adding
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Figure 3.10: Candidate spacecraft positions for 3, 4 and 5 pulsars within a phase tolerance
of 10−3.

Figure 3.11: Candidate spacecraft positions for 3, 4 and 5 pulsars within a phase tolerance
of 10−4. A single candidate position for the 4 pulsar case is found and it lies underneath the
candidate position for the 5 pulsar case.
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Figure 3.12: Candidate spacecraft positions for 3, 4 and 5 pulsars within a phase tolerance
of 10−5. A single candidate position for the 4 pulsar case is found and it lies underneath the
candidate position for the 5 pulsar case.

a fourth pulsar with a phase accuracy of 10−4 now results in a single solution whereas with

a larger phase tolerance it had 233 solutions, a reduction of two orders of magnitude. For

the five pulsar cases there is now a single solution at the origin.

A final case may be considered where the pulsar is observed for a phase tolerance of 10−5

resulting in a position error on the order of 10 m. In this case there are 1,143 solutions for

three pulsars and a single solution for four or five pulsars, Fig. 3.10(a). Again the increase of

the phase tolerance by an order of magnitude decreased the number of candidate solutions

by an order of magnitude for three pulsars. For four or five pulsars again there is a single

solution at the origin. The banded structure of the three pulsar solution is still present but

the solutions are more spread out and there are gaps in the structure that were not present

before.

There are now two possible methods to obtain the solution at the origin. Either a phase

tolerance of 10−4 may be used for four pulsars, or a phase tolerance of 10−3 may be used with

five pulsars. When considering these cases, the time required to perform the computation is

nearly identical. Computing the intersections for the first two pulsars directions is obtained

by permuting Eq. 3.6 by all possible ci values within the domain. Using the pulsar properties

from Table 3.1 and a domain size of 2×1010 m the number of wavefronts within the domain

may be found by a dot product of the pulsar direction and the corner of the domain, this

results in 14,574 wavefronts in the first direction and 22560 in the second. Evaluating
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Eq. 3.6 at each combination of these wavefronts yields 328,789,440 candidate intersections.

Evaluating a third pulsar at these candidate locations reduces the number of candidates down

to 11,439 for the 10−4 case, and 114,281 for the 10−3 case, which is negligible compared to the

initial number of candidates. For a given domain size, adding additional pulsar measurements

results in negligible changes in computation time.

Observation Time Versus Additional Measurements

Equation 2.23 shows the variance in measurement error is related to the observation time

by 1/Tobs, which makes the error proportional to 1/
√
Tobs. Fig. 3.13 shows the number of

candidate solutions as a function of observation time for 3, 4 or 5 pulsar measurements, with

phase accuracies between 10−3 and 10−5 and their corresponding required observation time

from Table 3.2. For the case of 3 pulsars, as the measurement accuracy is increased by an

order of magnitude the number of solutions also drops by an order of magnitude. When

considering 4 pulsars, as the measurement accuracy is increased by an order of magnitude

the number of solutions drops by two orders of magnitude until there is a single solution.

The five pulsar case has three solutions with a phase accuracy of 10−3 and otherwise it is

a horizontal line with one solution. In order to determine the candidate set with a phase

tolerance of 10−3, a total observation time between 4.07×105 and 7.56×105 s (approximately

1 day) is required depending on the number of pulsars observed. A phase tolerance of 10−4
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Figure 3.13: Number of candidate solutions as a function of observation time for 3, 4 or 5
pulsar measurements.
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requires between 4.07×107 and 7.56×107 s (approximately 100 days), and a tolerance of 10−5

between 4.07×109 and 7.56×109 s (approximately 10000 days). Measuring five pulsars at

a phase tolerance of 10−3 takes over 3 orders of magnitude less observation time than the

required observation time for even one measurement at a phase tolerance of 10−5. Therefore,

when trying to minimize the number of candidate solutions in a given domain, it may be

more beneficial to observe additional pulsars for shorter durations rather than increase the

observation time for each pulsar.

Non-zero Phase Offset

In a real scenario, it is unlikely that the phase offset of each pulsar will all be zero; therefore,

the phase of each pulsar will be allowed to vary as time is shifted forward by 10 s. This

results in different phase offsets for each pulsar and the resulting intersections are computed

and can be seen in in Fig. 3.14. For this case, if a small phase offset is added the same

type of banded structure is retained; however, the bands are shifted. Looking back, the

intersections are calculated by solving the equation of each line simultaneously and finding a

position that satisfies all of them, Eq. 3.6. The c values are defined in Eq. 3.9, where φ is the

phase offset. As time moves forward the phase offset changes linearly for each pulsar, and

the combination of linear transformations will always be a linear transformation. As a result,

changing the phase offset only linearly shifts the candidate solutions as a whole, it does not

Figure 3.14: Candidate spacecraft positions for 3 and 4 pulsars within a phase tolerance of
10−4 with t=10 s.
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change the orientation of the solutions. This implies that the number of solutions and how

they are oriented within a domain only need to be calculated once for each combination of

pulsars and phase accuracies. To asses the number of candidate solutions and their relative

orientation, setting the phase offset to zero0 is sufficient and will be used for all following

analysis.

Observation Order

As previously mentioned, the intersection of the first two pulsar wavefronts is computed and

this intersection point serves as the center of the error ball, which implies that error in the

first two measurements is not being accurately represented. Since the error ball is constructed

(a) (b)

(c)

Figure 3.15: Candidate solutions for 3,4 and 5 pulsar observations with a phase tolerance of
10−3 where the order is defined by (a) the order in Table 3.1 (b) measurements 1 and 3 are
switched (c) measurements 2 and 3 are switched.
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in this way the order the measurements are considered matters since a different order would

shift the location of the error ball center. The order of the first three pulsar observation

is permuted to and the resulting intersections are computed and shown in Fig. 3.15. By

varying the order that the pulsar observations are considered the structure of the 4 and 5

pulsar solutions are different. The original case, Fig. 3.15(a) presents the most sparse set of

candidate solutions, the case where the first and third observations are flipped, Fig. 3.15(b)

has the most solutions and the case where the second and third observations are flipped,

Fig. 3.15(c), is an intermediate case. In cases (b) and (c) a clearer banded solution structure

for the four pulsar case can now be seen whereas in case (a) it is more uniformly distributed.

Aside from the solution at the origin, observing all five pulsars results in different candidate

positions for all three cases. The order of observation impacts the number of candidate

solutions as well as their relative position.

3.3.3 Banded Error Model

The error ball model may provide a quick estimate of candidate solutions, however it does not

consistently identify all potential solutions. More realistically, measurement error typically

results in some uncertainty in the position of wavefronts, which can be modeled as a band

about each wavefront (see Fig. 3.16). By modeling the error as a banded region, the model is

able to account for each pulsar’s error characteristics independently by adjusting the width

of the band. Intersecting two banded regions creates a parallelogram which will define the

feasible intersection region. The error band for any additional pulsar measurement must

overlap part of this feasible region. Only the portion of the region which intersects all of the

banded errors will be considered a feasible solution. There are three scenarios which result in

an overlap of banded regions as shown in Fig. 3.17. In cases (a) and (b) the pulsar wavefront

passes within the feasible region, however in case (b) the feasible region is entirely within

the banded region of the third pulsar resulting in no reduction of the feasible region. In case

(c) the pulsar wavefront lies outside of the feasible region, but the error band overlaps the

feasible region.

Calculating the feasible region for the banded error model starts by finding the intersection

of two wavefronts and computing the vertices of the overlapping banded regions. The vertices

are found by solving Eq. 3.6 four times where the ci values are permuted by ±εiλi:[
a1 b1

a2 b2

][
x

y

]
=

[
c1 ± ε1λ1

c2 ± ε2λ2

]
(3.35)

At each vertex, the required wavefront number for the additional measurement to coincide
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Figure 3.16: Feasible search region for the intersection of 2 pulsars.

(a) (b)

(c)

Figure 3.17: The intersection may be feasible if (a) the new wavefront and error bands lie
within the feasible region (b) the error band covers the entire feasible region (c) the wavefront
is outside of the feasible region, but the error band overlaps the feasible region.
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with that vertex is computed. The constant c is defined for a general line by Eq. 3.4, where

in this case the x0 and y0 are the vertex of the parallelogram. This calculated value of c may

be substituted into Eq. 3.9, and rearranged to solve for the index, j, as in Eq. 3.34.

j =
ci
λi
− φi (3.36)

In this case the value of i does not need to be integral, rather if the integer part of i

changes between any of the vertices then the third wavefront passes through the polygon,

as in cases (a) and (b). To check for case (c) a tolerance of ε is added to the maximum

i and subtracted from the minimum i. If there is no solution for the additional pulsar

measurement the computed i value will have the same integer part for all vertices and this

candidate location will be discarded as an infeasible solution. The condition in Eq. 3.37

determines if the feasible solution region overlaps with the banded region of an additional

pulsar measurement.

if ∃ j ∈ Z where min(i− εp) ≤ j ≤ max(i+ εp) (3.37)

The above condition only determines if the banded regions overlap, it does not determine

the new shape of the feasible region. Each vertex of the original parallelogram must be

evaluated to see if it lies within the banded region by evaluating if the i value of the vertex

is within the tolerance ε of the j index.

j − εp ≤ i ≤ j + εp (3.38)

The vertices which do not satisfy this condition lie outside the new feasible region and

are removed. When comparing the i ± ε and j, if all i values are above the j − ε or below

the j + ε value, then the corresponding boundary of the banded region lies outside of the

previous feasible region. This occurs in case (b) and on the lower boundary of the banded

region in case (c). As seen in cases (a) and (c) there may be additional vertices of the new

feasible region which must be calculated.

Consider case (a) where there are three vertices which would lie outside of the overlapping

banded regions and additional vertices would need to be found. For simplicity, the vertices

will be labeled as in Fig. 3.18. Vertices A, B, C, D are found previously from the intersection

of the first two pulsar banded regions by using Eq. 3.35. When using these vertices, the

condition in Eq. 3.34 would fail for vertices B, C and D, while vertex A is passed into the

new parallelogram. Aside from the vertices A, B, C, D there are additional intersections

labeled E, F, G, H, P, Q, R, S which are the intersections of the boundary of banded region

of the new measurement with all other boundaries in the space. To determine which vertices
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Figure 3.18: All intersections of the boundaries of banded wavefronts.
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Figure 3.19: Selected vertices for intersection of (a) 2 wavefronts (b) 3 wavefronts or (c) 5
wavefronts.
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construct the feasible region the indices are split into two sets, one for each boundary. Then

the sets are sorted in ascending or descending order along the boundary, creating sets E, F,

G, H and P, Q, R, S. The two innermost vertices are selected to construct the feasible region.

For the set E, F, G, H vertices F and G are output and for the set P, Q, R, S vertices Q,

and R are output. The set of vertices A, F, G, Q, R are used to construct the feasible region

from Fig. 3.17(a). If additional pulsar observations are used, the same procedure is repeated

for each subsequent measurement. If N is the number of pulsar observations, there will be

2(N − 1) intersections, and again the middle two vertices are output.

An example set of data is shown in Fig. 3.19, for the 5 pulsars described in Table 3.1

with a phase tolerance of 10−3. No phase offset was used, so an exact solution occurs at the

origin. In this case, after the third pulsar observation, the other wavefront banded regions

overlap the entire feasible region so no changes to the vertices are observed.

3.3.4 Effect of Varying Phase Error and the Number of Pulsars Observed

Using a phase tolerance of 10−3 the intersections of the first three, four, or five pulsars from

Table 3.1 may be found as shown in Fig. 3.20. The phase error of 10−3 results in a position

error on the order of 1 km. This position error results in 2,016,493 candidate solutions within

the space when observing three pulsars. Since each of these points is a feasible solution to

within 1 km there is no way of accurately determining at which point the observer is located.

There are two options to then resolve position: the pulsars may be observed for a larger period

Figure 3.20: Feasible solutions with a phase tolerance of 10−3 for 3, 4 and 5 pulsars observed.
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Figure 3.21: Feasible solutions with a phase tolerance of 10−4 for 3, 4 and 5 pulsars observed.

of time to reduce the position error and accept fewer candidate positions, or another pulsar

may be observed. If an additional pulsar is observed the 2,016,493 solutions may be reduced

to 10,103 solutions, and if the fifth pulsar is observed 65 solutions remain. As the number of

measurements are increased the number of solutions in the domain is reduced by two orders

of magnitude. For 4 pulsars there are bands of feasible solutions and for 5 pulsars there are

clusters of solutions. However, it should be noted that, in general, there is no guarantee that

a solution exists in a domain of this size. The addition of a small phase offset to a set of

wavefronts to the problem may result in no solutions within the domain.

The same procedure may be repeated with other phase tolerances to determine how the

candidate solutions change with phase accuracy. If the phase tolerance is adjusted to 10−4,

which corresponds to a position error on the order of 100 m, there are 201,615 solutions

for three pulsars, and 95 for four pulsars and a single solution for five pulsars, Fig. 3.21.

Comparing the 10−4 case (Fig. 3.21) to the 10−3 case (Fig. 3.20) shows that increasing

the phase tolerance by an order of magnitude decreased the number of candidate solutions

by an order of magnitude for the intersection of 3 pulsars and two orders of magnitude

for the intersection of 4 pulsars. For the 3 pulsar case, majority of the domain is covered

in solutions, however some gaps are now visible. Adding a fourth pulsar with a phase

accuracy of 10−4 results in a banded structure again, however the bands are now in a different

direction. Furthermore for 4 pulsars increasing the phase accuracy by an order of magnitude

has decreased the number of candidate solutions by more that two orders of magnitude

compared the the 10−3 case. For the five pulsar cases there is now a single solution at the
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Figure 3.22: Feasible solutions with a phase tolerance of 10−5 for 3, 4 and 5 pulsars observed.

origin.

A final case is considered where the pulsar is observed for a phase tolerance of 10−5

resulting in a position error on the order of 10 m. In this case there are 20,161 solutions for

three pulsars and a single solution for four or five pulsars, Fig. 3.22. Again the increase of

the phase tolerance by an order of magnitude decreased the number of candidate solutions

by an order of magnitude for three pulsars. For four or five pulsars there is a single solution

at the origin. The banded structure is now present for the three pulsar solution and is in

the same direction as the four pulsar case with a phase accuracy of 10−4, however the gaps

between the bands resemble that of the 4 pulsar case with a phase accuracy of 10−3.

There are now two possible methods to obtain the solution at the origin. Either a phase

tolerance of 10−4 may be used for five pulsars, or a phase tolerance of 10−5 may be used

with four or five pulsars. When considering these cases, the time required to perform the

computation is nearly identical. Computing the intersections for the first two pulsars direc-

tions is obtained by permuting Eq. 3.6 by all possible ci values within the domain. Using

the pulsar properties from Table 3.1 and a domain size of 2×1010 m the number of wave-

fronts within the domain may be found by a dot product of the pulsar direction and the

corner of the domain, this results in 14,574 wavefronts in the first direction and 22,560 in

the second. Evaluating Eq. 3.6 at each combination of these wavefronts yields 328,789,440

candidate intersections. Evaluating a third pulsar at these candidate locations reduces the

number of candidates down to 201,615 for the 10−4 case, and 20,161 for the 10−5 case, which

is negligible compared to the initial number of candidates. For a given domain size, adding
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additional pulsar measurements results in negligible changes in computation time.

3.3.5 Observation Time Versus Additional Measurements

Just as in the error ball case the number of solutions may be found as a function of total

observation time and the number of pulsar measurements. Figure 3.23 shows the number

of candidate solutions as a function of observation time for 3, 4 or 5 pulsar measurements,

with phase accuracies between 10−3 and 10−5. For the case of 3 pulsars, as the measurement

accuracy is increased by an order of magnitude the number of solutions also drops by an

order of magnitude. For 4 pulsars the rate at which solutions is reduced is increased to

two order of magnitude per order of magnitude increase in accuracy, and for 5 pulsars it is

further increased to three orders of magnitude per order of magnitude increase in accuracy.

In order to determine the number of feasible solutions with a phase tolerance of 10−3, a total

observation time between 4.07×105 and 7.56×105 s is required depending on the number

of pulsars observed. A phase tolerance of 10−4 requires between 4.07×107 and 7.56×107 s,

and a tolerance of 10−5 between 4.07×109 and 7.56×109 s. Again, measuring five pulsars at

a phase tolerance of 10−3 takes over 3 orders of magnitude less observation time than the

required observation time for even one measurement at a phase tolerance of 10−5. As in the

error ball case, it may be more beneficial to observe additional pulsars for shorter durations

rather than increase the observation time for each pulsar.
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Figure 3.23: Number of candidate solutions as a function of observation time for 3, 4 or 5
pulsar measurements.

71



Figure 3.24: Candidate spacecraft positions for 3 and 4 pulsars within a phase tolerance of
10−4 with t=10 s.

3.3.6 Non-zero Phase Offset

In a real scenario, it is unlikely that the phase offset of each pulsar will all be zero; therefore,

the phase of each pulsar will be allowed to vary as time is shifted forward by 10 s. This

results in different phase offsets for each pulsar and the resulting intersections are computed

and can be seen in in Fig. 3.24. For this case, if a small phase offset is added the same type

of banded structure is retained; however, the bands are shifted. Looking back, the c values

are defined in Eq. 3.9, where φ is the phase offset. As time moves forward the phase offset

changes linearly for each pulsar, and the combination of linear transformations will always

be a linear transformation. As a result, changing the phase offset only linearly shifts the

candidate solutions as a whole, it does not change the orientation of the solutions. This

implies that the number of solutions and how they are oriented within a domain only need

to be calculated once for each combination of pulsars and phase accuracies. To assess the

number of candidate solutions and their relative orientation, setting the phase offset to zero

is sufficient and will be used for all following analysis.

Area of Intersection

One metric which was considered as a means to reduce the number of candidate solutions

without the need for additional measurements was to only consider points with large feasible

regions. It was thought that candidates with a large feasible region would be more likely to

72



Figure 3.25: Definition of the angle between each measurement.

contain the true solution. The area of each feasible region may be calculated by Gauss’s area

formula, Eq. 3.39, where the xi and yi are the coordinates of each vertex. This formula works

for the banded error model since the polygon will always be a convex closed polygon. In order

to apply Gauss’s area formula the vertices must be written in order along the edge of the

polygon. The procedure described above calculates the location of each vertex, however they

are not sorted in the correct order. To sort the vertices an interior point to the region must

be found, and since the polygon is convex, averaging each vertex will result in an interior

point. A vector can then be constructed from this point to each vertex of the polygon. The

angle that vector makes with respect to the x axis is found by an inverse tangent, and all

vertices are then sorted by their corresponding angle, Fig. 3.25.

A =
1

2

n−1∑
i=0

xiyi+1 − xi+1yi (3.39)

Under this condition, the area of the feasible regions was computed for the case with a

phase tolerance of 10−4 using 4 pulsars, and the results are presented in Fig. 3.26. It can

be seen that there is a significant difference in the area among all of the solutions; however,

there are still many candidates with similar area to the true solution at the origin. Many

of these candidates have similar areas as that of the solution at the origin. It may be

possible to reduce the number of solutions in the domain using the area of the intersection

region, however this does not present a unique solution and additional pulsar observations

would still be required. Thus, using the area to reduce the set of candidate solutions is not

recommended.
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Figure 3.26: Area of the feasible region for the intersection of 4 pulsars.

Geometric Centroid Calculation

If a single solution can be found there is still some uncertainty in the spacecraft position,

since anywhere within the polygon is feasible. One candidate for the spacecraft location is

the centroid of the feasible region. Since the polygon is convex and closed the coordinates of

the centroid, (Cx, Cy), may be computed similarly to the area of the feasible region. Using

the area of the polygon, A, and the vertices ordered along the polygons edge from the area

calculation, the following equations define the centroid.

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (3.40)

CY =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (3.41)

3.4 Extension to Three Dimensions

Determining the candidate states for XNAV may still solved in 3D using much of the same

framework as 2D. Instead of solving the equation of a line as in Eq. 3.3, each pulsar is
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represented by a plane given by,

ax+ by + cz = d (3.42)

The constant d characterizes the plane and is given by a point on the plane,

d = ax0 + by0 + cz0 (3.43)

In the same fashion as 2D the constant defining the plane, d, is defined by the pulsar

wavelength and phase offset, and the coefficients a, b and c are defined by the normal vector.

The plane defining a pulsar wavefront may then be written as

apx+ bpy + cpz = di = λp(i+ φp) (3.44)

n =

apbp
cp

 (3.45)

The intersection of three planes is a simple linear system given by Eq. 3.46 which may

be solved through a matrix inverse. Again, each additional pulsar measurement adds an

additional equation, but also adds an unknown in the wavefront index number, i. Solving

for the candidate positions in 3D is again an under-constrained problem however now there

are N + 3 unknowns with N equations.a1 b1 c1

a2 b2 c2

a3 b3 c3


xy
z

 =

d1

d2

d3

 (3.46)

3.4.1 Error Ball Model

Solving the intersection of planes using the error ball method works similarly in 3D as in 2D.

The intersection of three planes is calculated using Eq. 3.46. As was the case in 2D, instead

of evaluating each plane to see if one of them is near the intersection point to within some

tolerance, the required wavefront number, j, is found. Again if j is integral to within some

tolerance, ε then a solution exists.

j =
di
λp
− φp (3.47)
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(a) (b)

Figure 3.27: Candidate positions for 4 and 5 pulsars in 3D using different views.

Using this condition and the set of equations defined above the intersection for pulsars in

3D may be calculated, and are shown in Fig. 3.27. Here the phase tolerance used is 10−4.

Due to the increase in dimension the domain boundary was reduced to a cube with a side

length of 2×108 m. Using 4 pulsars results in 361 candidate intersections, with a fifth pulsar

measurement revealing the true solution at the origin. The 3D candidate positions behave

similarly to the 2D candidates in that it follows a periodic structure; however, in the 3D case

the solution is periodic in multiple directions.

3.4.2 Banded Error Model

The error ball method has a direct translation to 3D by changing the equation from a line

to a plane and adding an additional measurement. In order to solve the banded error model

in 3D additional steps are required. The problem begins by converting the base equations

from those of lines to planes. Each plane is then offset in each direction by some tolerance

ε which defines a banded region where feasible intersections may occur. Overlapping two

banded region reduces the feasible region further and each additional measurement after-

wards reduces it down even more. Figure 3.28 shows an example banded region for 3 pulsar

measurements.

The polyhedron defining the feasible region for a solution to exist will be given by its

vertices. In order to have a closed polyhedron three pulsar measurements are required.

These vertices may be found by solving the following equation
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Figure 3.28: Intersection of banded regions in 3D.

a1 b1 c1

a2 b2 c2

a3 b3 c3


xy
z

 =

d1 ± λ1ε1

d2 ± λ2ε2

d3 ± λ3ε3

 (3.48)

The 8 combinations result in the 8 vertices of the parallelepiped defined by the intersection

of the three banded regions. When considering additional measurements, the condition which

determines if this vertex is within the new polyhedron or not is the same as it was in 2D,

Eq. 3.37. If this condition is not satisfied, the vertex is removed. The removal of any of the

vertices implies that the polyhedron has changed shape and additional vertices are created.

These vertices are found by solving a 2D problem on the plane of the additional measurement,

where the lines are computed by finding the intersection of each boundary plane.

The problem may be written in the same form as the 2D banded error model presented

above by rotating the plane such that its normal vector points along the z-axis. This can be

done by an axis-angle rotation, where the axis is defined by the cross product of the normal

vector with the z-axis and the angle is the dot product of the normal vector and the z-axis.

Upon completing this rotation all of the points would be have a non-zero z offset which can

be removed to make the problem identical to the 2D version. Once the resulting polygon

is found, the z offset must be added to each vertex then the resulting coordinates can be

rotated back into the original frame. These vertices create one face of the polyhedron for the

3D problem. This procedure may then be repeated for any number of pulsar measurements.
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Figure 3.29: Candidate positions using a banded error model in 3D.

Using the above procedure the candidate solutions can be found, as seen in Fig. 3.29. The

phase tolerance was set to be 10−4 with a cube domain with a side length of 2×108 m in

order to match the parameters of the error ball case, as seen in Fig. 3.27. Here there are

2937 solutions as compared to the 361 solutions of the error ball case. Similar to the error

ball case the solution has a banded structure in multiple directions.

3.5 Summary

In this chapter, methods for determining candidate spacecraft positions are presented for an

XNAV system operating without prior information. Methods for finding candidate position

in both 2D and 3D are presented which reduce to finding the intersection of infinite sets, in

2D between lines and in 3D between planes. An analytical method is presented which finds

an expression for exact solutions which are parameterized by a non-unique vector of integers,

w. This method does not guarantee all solutions within a particular domain will be found,

nor does it guarantee that solutions will be within a predetermined domain. The analytic

model also does not account for measurement error. Two error models are considered, one

where the error is modeled as a ball centered at the intersection of two pulsar wavefronts,

and any subsequent wavefront must pass within this ball. The other models the error of each

wavefront as a banded region and these banded regions must overlap for a solution to exist.

Using the error ball model, a numeric scheme for quickly determining if the next wavefront is
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within the feasible region is presented, which reduces the computational expense by a factor

of N. The error band model is more computationally expensive, but more accurately models

the error compared to the error ball. Using these methods the candidate intersections are

found for three, four and, five pulsars with phase errors of 10−3, 10−4 and 10−5. As the

error in the measurement is reduced by an order of magnitude the number of candidate

solutions is also reduced by an order of magnitude. Increasing the number of observations

by one pulsar reduces the number of solutions by two orders of magnitude. Since the error

is proportional to 1/
√
Tobs, adding additional pulsar measurements is more efficient in terms

of total observation time than increasing the accuracy of each pulsar measurement.
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CHAPTER 4

PULSAR MEASUREMENT AND SELECTION

In the previous chapter, methods were developed for efficiently finding pulsar wavefront

intersections (and therefore candidate positions) using the pulsars selected for NASA’s SEX-

TANT mission. However, the SEXTANT pulsars were selected to minimize the uncertainty

of the measured spacecraft position in a relative position update navigation framework. If an

XNAV system was operating with a prior position estimate this would be an effective pulsar

selection strategy to continue operation with minimal errors. In the case without an initial

position estimate this may result in additional candidate spacecraft positions within a given

domain. A new method to select candidate pulsars must be developed to find pulsars which

minimize the number of candidate solutions within a specified domain to reduce ambiguity

in the spacecraft position.

This chapter explores pulsar selection criteria to determine how to best select pulsars to

minimize the candidate spacing within a given domain. A set of guidelines are developed

using three fictitious pulsars. The pulsar characteristics are varied to independently test the

effect of their angular separation, period, and measurement uncertainty on the number of

candidate positions within the domain. Using these fictitious pulsars, trends in the number

of candidate positions may be found to create guidelines on how to select a set of real pulsars.

Using pulsars from an XNAV feasibility study [30], combinations of 3, 4, 5 and 6 pulsars

are found and evaluated to determine the size of the domain required to determine the

spacing between candidate positions. The spacing between candidate positions determines

the maximum domain size which results in a single solution, therefore removing the ambiguity

in position.

4.1 Pulsar Selection Criteria

With each x-ray sky survey additional x-ray pulsars are discovered and the number of can-

didate pulsars increases. Rather than considering real pulsars, we consider hypothetical

pulsars to determine trends in pulsar selection which minimize candidate solutions. Three

hypothetical pulsars are generated with various directions, period, and phase accuracy to
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Figure 4.1: Orientation definition of hypothetical pulsars.

capture the range of candidate pulsars. By comparing hypothetical pulsars, guidelines may

be determined for selecting real pulsars to minimize the number of candidate solutions. The

domain is set to a 2×108 m square to reduce computation time and, unless otherwise stated,

a phase tolerance of 10−3 is considered.

4.1.1 Effect of Pulsar Direction

The first pulsar characteristic considered is the relative direction of each pulsar and corre-

sponding wavefront. Varying each direction results in a problem with 3 parameters; however,

this may be reduced to a 2 parameter problem by instead selecting the angle between each

direction, as shown in Fig. 4.1. Here θ1 is the angle between the first and second pulsar

and θ2 is the angle between the first and third pulsar wavefronts. These angles are varied

between 0 and π to account for all possible combinations without repetition. In this scenario

the orientation of the first wavefront is free and forms the basis for the coordinate system.

Figure 4.2 shows contours of the number of intersections computed as a function of θ1 and

θ2 when all three pulsars have a period of 0.002 s. The diagonal is not computed as having

both pulsars along the same direction would result in no additional information gained. The

contour is mirrored along the diagonal since both pulsar period and phase accuracies are

identical. The red dots represent combinations which result in more than 1000 solutions,

which would reduce the resolution for the remainder of the contours. There are additional

outliers concentrated along two lines going from (π/2,0) to (π,π) and from (0,π/2) to (π,π).

These lines represent cases where the second and third wavefronts are orthogonal and result

in numeric instability. These outliers come as a result of the two pulsars having identical

period and error characteristics. If the period of one wavefront is changed slightly from
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Figure 4.2: Number of solutions for various pulsar directions using a period of 0.002 s for
each pulsar; red dots indicate orientations with more than 1000 candidate solutions.

0.002 s to 0.001999 s the linear structure of the outliers is removed; the resulting data are

shown in Fig. 4.3. The general solution structure has relatively smooth contours where there

are two peaks when the wavefronts are at an even spacing apart, θ1 = π/3 and θ2 = 2π/3

or vice versa. The corner cases where all three pulsars are most closely aligned performs the

best in terms of limiting candidate solutions.

Having pulsar wavefronts nearly parallel gives the fewest candidate solutions regardless of

the pulsar periods selected. Two additional cases are shown in Fig. 4.4. Figure 4.4(a) is the

case where the period of the first pulsar is set to 0.0015 s and the other two remain at 0.002 s,

and in Fig. 4.4(b) the first pulsar has a period of 0.001 s, the second has a period of 0.005 s

and the third has a period of 0.01 s. For the case where the first pulsar’s period is 0.0015 s

there are more solutions in the domain than compared to any of the other cases, whereas

the case where all three periods results in the fewest solutions in the domain. In both of

these cases the corners again have the best performance in terms of the fewest candidate

solutions. In the absence of other requirements, the number of candidate solutions within a

domain for absolute position determination is minimized when the pulsars are selected such

that they are nearly in the same direction.
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Figure 4.3: Number of solutions for various pulsar directions using a period of 0.001999 s
for the first pulsar and 0.002 s for the other two pulsars; red dots indicate orientations with
more than 1000 candidate solutions.

(a) (b)

Figure 4.4: Number of solutions for various pulsar directions with a change in the period of
(a) first pulsar to 0.0015 s or (b) first pulsar to 0.001 s, second pulsar to 0.005 s and third
to 0.01 s; red dots indicate orientations with more than 1000 candidate solutions.
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4.1.2 Effect of Period

As seen above, the period of the selected pulsars may have a significant effect on the number

of candidate solutions. There is no defined upper or lower bound for the pulsar period;

however, when considering all known millisecond pulsars, majority are within a range of

0.02 s to 0.001 s [75], including those used for this analysis. The pulsar directions are set

to 60◦ apart to show the maximum number of solutions for the given periods. In order to

better visualize the results, the period of the third pulsar is fixed to some value within these

bounds.

The boundary cases are considered where the third pulsar has a period of 0.001 s and 0.02 s

and the results are shown in Fig. 4.5. Here the contours are presented on a log scale plot with

the data truncated at 500 candidate solutions for the case where the period of the third pulsar

is set to 0.001 s and to 100 solutions for the case where the period is 0.02 s. The truncation

is necessary to provide contrast since the peak number of solutions is far greater than the

remainder of the domain. For the case where the fixed period is 0.001 s the peak number of

solutions is 3561 and for the 0.02 s case it is 1267. Both of these peaks occur in the lower

left corner of the figure where the periods of the two varying pulsars are at their minimum.

Both of these cases suggest that, to minimize the number of candidate solutions, pulsars

with as large of a period as possible should be selected. As the periods of the pulsars are

increased the number of wavefronts within the domain decreases resulting in fewer candidate

points which must be evaluated for additional intersections. In the case where the period is

0.001 s there are 456 wavefronts within the domain; when the period is increased to 0.02 s

the number of wavefronts is decreased to 23. Selecting three pulsars with period of 0.02 s

(a) (b)

Figure 4.5: Number of candidate solutions for various pulsar periods with the third pulsar’s
period fixed to (a) 0.001 s and (b) 0.02 s.
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results in less than 10 solutions compared to the 3561 candidate solutions in the case where

all three have a period of 0.001 s. In the absence of other measurement criteria, pulsars with

large periods are better candidates for minimizing the number of solutions within a given

domain.

4.1.3 Effect of Measurement Error

In all prior analysis the pulsar phase accuracy was set to be the same for all pulsars, however

this does not need to be the case. The phase accuracy of the pulsars will be varied between

10−3 and 10−5 independently to keep the bounds consistent with the prior analysis. The

pulsar periods are set to 0.002 s and the directions are set 60◦ apart. The third pulsar’s

phase error bound will be fixed to either 10−3 or 10−5 to determine the boundary cases, and

the resulting number of candidate intersections can be seen in Fig. 4.6, note that both axis

are on a log scale. In both cases, as the error in the pulsar measurements is reduced, the

number of candidate solutions decreases. The upper right corner of Fig. 4.6(a) represents

the case where all three pulsars have an error tolerance of 10−3 and the lower left corner

of Fig. 4.6(b) is the case where all three have a phase tolerance of 10−5. Fig. 4.6(a) shows

that improving the accuracy of only one pulsar from 10−3 to 10−5 gives rapidly diminishing

returns, whereas improving both pulsar accuracies simultaneously performs better.

(a) (b)

Figure 4.6: Number of candidate solutions for various phase errors with the third pulsar
having a phase error of (a) 10−3 and (b) 10−5.
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4.1.4 Effect of Phase Estimation Parameters

In reality all pulsars will have a different measurement uncertainty for a given observation

time which can be approximated by Eq. 2.23. In Section 3.3, this equation was simplified

since terms within the integral are constant and may be integrated for each pulsar, commonly

refereed to as the integration parameter. The previous analysis only considered changing

the measured phase accuracy without considering the observation time required to generate

that measurement. The three pulsars will be assigned independent integration parameters

of 5, 50, and 100 for pulsars 1, 2, and 3 respectively. Using this integration parameter and

observation times between 1000 s and 107 s, the expected phase accuracy may be computed

and the resulting number of intersections found. Figure 4.7(a) shows the case where the first

pulsar observation has a measurement time of 1000 s, and in Fig. 4.7(b) the first pulsar has

an observation time of 107 s. The red curves on these figures are lines of equal observation

time on a log scale. On these figures there are two sets of x-axis and y-axis. The lower

x-axis and left y-axis show the pulsar observation time, while the upper x-axis and right

y-axis represent the phase accuracy of the corresponding observation time. Once again the

figures show that in terms of phase accuracy it is best to improve the phase accuracy of

both measurements simultaneously. When observation time is considered, the contours are

shifted such that increasing the observation time of the second pulsar is more beneficial than

increasing the observation time of the third measurement. However, increasing only one

measurement is not as efficient as increasing both measurements. Looking at Fig. 4.7(a),

if the second pulsar is observed for 107 s and the third pulsar is observed for 1000 s there

(a) (b)

Figure 4.7: Contours of the number of candidate solutions for varying observation times,
and the corresponding phase accuracy where the first pulsar has an observation time of (a)
1,000 s and (b) 107 s. In the red curves of equal observation time, on a log scale.
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(a) (b)

Figure 4.8: The three most common results for the number of candidate solutions with
varying observation time where the first pulsar is observed for (a) 1,000 s and (b) 107 s.
The red dots show observation times which result in the most commonly found number of
candidate solutions, the green dots show the second most common, and blue dots the third
most common.

would be approximately 10,000 candidate positions. A similar result could be obtained by

measuring each pulsar for 5,000 s.

Increasing the observation time for each measurement by a small amount is not guaranteed

to reduce the number of solutions. When considering the case where the first pulsar is

observed for 1000 s, there are 1798 combinations of observation times for pulsars two and

three which result in 8491 candidate positions. In Fig. 4.8(a), these are represented as

the red dots and are the most commonly found number of candidate solutions. The green

dots show the second most commonly found number of candidate solutions, 8825, which is

found for 1129 observation time combinations. The third most commonly found number of

candidate solutions is 9157 which was found 838 times and are shown in the green dots. Of

the 10,000 combinations of observation time evaluated, 3765 combinations resulted in one

of the three most common number of candidate solutions. Figure 4.8(b) shows the three

most commonly found number of candidate solutions for the case where the first pulsar is

observed for 107 s. Here the most common number of candidate positions is 167 which is

shown in 1694 red dots, the green dots show 1560 combinations with 499 candidate solutions,

and the blue dots are 1039 combinations with 833 candidate positions. In this case, 4293 of

10,000 combinations result in one of the three most common number of candidate solutions.

For both cases, the combinations of observations times which results in equivalent number

of candidate solutions are in banded regions and combinations of observation times between

these bands are more transient. As the phase error is reduced, the bands of equivalent
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number of candidate solutions become thicker requiring more and more observation time in

order to reduce the number of candidate solutions. If the observation time of one of the

pulsar measurements is increased by too small an amount, it may not reduce the number of

candidate solutions within the domain.

4.2 Pulsar Selection From Real Pulsars

In a real scenario, selecting a set of pulsars to observe requires a trade off between the pulsar

period and relative directions. To determine how to best select form a real group of pulsars,

this study will consider the set of pulsars used by Shemar et. al. in their feasibility study of

XNAV [30]. Pulsar B0628-28 is removed for this study since it represents an outlier in terms

of period, with a period is 1.244 s while the next largest period is 0.408 s. The remaining 34

pulsars are considered and combinations of 3, 4, and 5 pulsar observations are evaluated to

determine the number of candidate solutions in a given domain. For each combination the

average period is found and the average angular separation is computed by a dot product

and bounded to be between [0, π/2]. Note that this is the average angular separation of

wavefronts, not of the pulsars’ directions. When computing candidate intersections using

these sets of pulsars a phase accuracy of 10−3 is assumed.

Directly testing all combinations is computationally expensive as some pulsar combinations

may result in several million candidate intersections on a large domain. Instead, a simple

algorithm may be used to significantly reduce the computational expense, Algorithm 4. The

algorithm works by starting with a small domain, for this case the domain is set to a 2×106 m

square, and each pulsar combination is checked one at a time. Steps 4-7 initialize the current

pulsar combinations by loading in the pulsar parameters of the set, finding the bounds on

the number of wavefronts in the domain, and sorting the pulsars based on the maximum

number of wavefronts. Step 9 calculates the intersection of the banded region of the first two

pulsars. If the intersection is within a previously evaluated region, step 12 skips the wavefront

combination and proceeds to the next one. Step 18 does the same for the case where the

candidate is outside of the feasible region. If the current wavefront combination is outside of

the domain, steps 14-16 are a check statement to see if any additional intersections will be

found if the second wavefront is incremented to the next value. If the candidate is determined

to be within the new feasible regions, additional pulsar measurements are evaluated based

on the banded error model as described in Section 3.3.3. The wavefront indices i1, i2 are then

incremented based on Algorithm 4 until all candidate intersections within the domain are

found. Only combinations which have a single solution are passed retained, step 26, since
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Algorithm 4 Rapidly search through candidate sets of pulsars

1: Set Np = the number of pulsar combinations to evaluate, l = domain size, lold = 0 (last
domain size)

2: while Np > 0 do
3: for j=1:Np do
4: Load pulsar combination parameters
5: Compute index upper and lower bounds for all pulsars in set j (LB1, UB1, . . . )
6: Sort pulsars based on wavefront bounds
7: Initialize Check variable to 0 (Determine when to break loop)
8: Set i1 = 0, i2 = 0
9: while i2 ≤ UB2 do
10: Compute candidate vertices
11: if Vertices < lold then
12: Continue to next i2
13: if Vertices > l then
14: if Check==1 then
15: Define upper bound of i2, iU
16: Break loop
17: else
18: Continue to next i2
19: else
20: Evaluate Pulsar(s) 3, 4, . . .
21: Check = 1;

22: i2 = i2 + 1
23: if More than one candidate position exists then
24: Break to evaluate the next combination of pulsars

25:

Preform similar computations for remainder of Algorithm 3
(Evaluate down/left/right)

...
26: Save candidate positions

27: Np = number of set in j which had only 1 candidate position
28: lold = l, increase l
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the spacing between candidate solutions for these pulsars has not yet been determined. The

current domain size is saved in step 27 and the domain size to evaluate is increased. If more

than one candidate position is found, step 24 immediately exits the loop and returns to step 3

to evaluate the next pulsar combination. This algorithm is searching to find what domain

size is required to find multiple solutions for a set of pulsars, evaluating the full domain for

each set, after an additional candidate position is found, may be computationally expensive

when a large number of pulsar combinations are considered. This algorithm results in a

computation time which is proportional to Np(l
2 − l2old), where Np is the number of pulsar

combinations considered, l is the current domain size, and lold is the previous domain size.

By starting with a small domain, combinations which result in many solutions are removed

early which improves performance as the domain grows. Once no combinations remain in

the set, the combinations which required the largest domain size to find additional solutions

may then be fully evaluated on a largest domain to determine the number of solutions.

The combination which results in the fewest candidate positions is then considered the best

combination of pulsars to use. For all following cases a phase accuracy of 10−3 will be used

for each pulsar observation.

4.2.1 3 Pulsar Observations

Using the 34 candidate pulsars, each possible combination of 3 pulsars is found resulting in

5984 sets of pulsars. The resulting distribution of candidate pulsars can be seen as black

dots in Fig. 4.9(a), for which the required domain side length to find multiple solutions for

all sets of pulsars is 2×1010 m. The 50 combinations which results in the fewest solution

are highlighted in Fig. 4.9(a) as red dots and also presented in Fig. 4.9(b) in terms of the

resulting number of candidate solutions. The smallest number of candidate solutions with

a domain size of 2×1010 is 9, which is significantly reduced from the 2,016,493 candidate

solutions using the initial set from Table 3.1. Although the best solutions (ones that present

the fewest number of candidate positions) are concentrated in the region with low average

angular separation and large average period, not every combination in this area performs

similar to the “best” combinations.

This procedure may be repeated with constraints on the angular separation between the

pulsars to be larger than 1 degree, resulting in 5578 candidate combinations, or larger than

10 degrees resulting in 3027 combinations. Figure 4.10 shows the distribution for the 1 degree

separation case along with the 50 combinations which most reduce the number of candidate

intersections, and Fig. 4.11 shows the 10 degree separation case. For the 1 degree case,

the smallest number of candidate solutions in a 2×1010 m domain is 9. Again, it appears
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(a) (b)

Figure 4.9: Distribution of average period vs average angular separation for (a) all pulsar
combinations with the best 50 highlighted in red (b) the best 50 combinations with the
number of candidate solutions shown.

(a) (b)

Figure 4.10: Distribution of average period vs average angular separation with a minimum
of 1 degree of angular separation constraint for (a) all pulsar combinations with the best
50 highlighted in red (b) the best 50 combinations with the number of candidate solutions
shown.
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(a) (b)

Figure 4.11: Distribution of average period vs average angular separation with a minimum
of 10 degree of angular separation constraint for (a) all pulsar combinations with the best
50 highlighted in red (b) the best 50 combinations with the number of candidate solutions
shown.

that having a smaller angular separation is more significant than having a smaller period

as solutions are concentrated on the lower boundary of Fig. 4.10 and not along the right

boundary. The 10 degree separation constraint removed approximately half of the pulsar

combinations, including the best 50 combinations for both the unconstrained case and the

1 degree separation case. With this constraint the best 50 solutions are now concentrated

closer to the boundary of larger average period rather than smaller angular separation, with

the best solution near the maximum angular separation boundary. Due to the constraints

on the problem the required domain size to resolve all combinations was reduced to a square

domain with a side length of 6.32×109 m and in this domain the set with the fewest possible

candidate positions had 21 candidates.

4.3 4 Pulsar Observations

The above process may be repeated with a fourth pulsar measurement, without a constraint

on the angular separation, and the 46,376 combinations are searched through to find the

best combination of four pulsars, Fig. 4.12. As the number of pulsar measurements increases

the domain size required in order to determine the candidate spacing is also increased. The

required side length for the domain is 4.48×1011 m and in this domain the minimum number

of candidate solutions is 5. Comparing this case to the prior case with 3 pulsars, the location

of the best 50 solutions is similar in that majority of them occur with larger average period
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(a) (b)

Figure 4.12: Distribution of average period vs average angular separation for 4 pulsar com-
binations (a) all pulsar combinations with the best 50 highlighted in red (b) the best 50
combinations with the number of candidate solutions shown.

and smaller average angular separation. However, for the best 50 combinations of four

pulsars, the smallest average period is larger than it was for the three pulsar case.

4.4 5 Pulsar Observations

A combinations of 5 pulsars may be considered, however now there are 278,256 potential

combinations to consider. For each increase in puslar observations the domain size required

to resolve all combinations would increase. This combined with the increase in the number of

combinations may make this problem too computationally expensive to solve in a reasonable

amount of time. Therefore an objective function is defined as

J = µ

(
P − Pmax
Pmax

)2

+ (1− µ)θ2; (4.1)

where P is the average pulsar period, Pmax is the maximum average pulsar period, θ is

the average angular separation, and µ is a weighting factor. By adjusting the value of µ

the objective function will weight the average period and angular separation differently. To

capture the trends from the 3 and 4 pulsar cases with no angular separation constraint the

weight will be set to 0.99, and the 100 lowest objective functions are selected, combinations

may be seen in Fig. 4.13(a). Using these 100 combinations the domain size required to resolve

the domain size required for position ambiguity may be done, and the best 15 solutions are

shown alongside the 100 selected combinations, Fig 4.13(b). In order to determine a high-

performing set of 5 pulsars, a square domain with a side length of 3.46×1012 m was used,
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(a) (b)

Figure 4.13: Average period and angular separation for 5 pulsars (a) the 100 selected pulsar
combinations in red and all combinations in black (b) the 100 combinations in black and the
best 15 in red.
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Figure 4.14: Distribution of the candidate positions for (a) the 11 solution case (b) the 13
solution case.
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and the best two combinations resulted in 11 and 13 candidate positions. Figure 4.14 shows

distributions of candidate solutions for the two best solutions. Both cases have significant

spacing between the candidate positions, however this spacing is not uniform in either case.

The main similarity between the cases are the large distance between the exact solution at

the origin and all other solutions. This gap is so large that the entire orbit of Mars fits

within this area.

4.5 Trends in the Required Domain Size to Fully Resolve Position

Comparing the results of the 3, 4, and 5 pulsar cases, as the number of pulsars considered

increased by one, the domain size required to resolve the combinations increased by an order

of magnitude. The square domain for the 3 pulsar case had a side length of 2×1010, for the

4 pulsar case 4.48×1011 m and the five pulsar case had a side length of 3.46×1012 m. If this

trend continues observing a sixth pulsar may require a domain size on the order of 1013 m

to resolve, which would capture the orbit of Pluto. As previously mentioned, the pulsar

combinations with the largest average period and smallest average angular separation tend

to perform the best.

Looking at Fig. 4.9(a), 4.10(a) and 4.12(a) it can be seen that there are some gaps between

the best 50 combinations. The domain at which candidate pulsar combinations are removed

can be explored and for the case of 3 pulsars are shown in Fig. 4.15. As the domain size is

increased, candidate are removed with a wide range of angular separation and average period

characteristics. On the final domain, 2×1010 m, there still were candidates with an average

angular separation of over 40◦ with average periods less than 0.1 s, while in the first domain,

2×107 m, there were candidates with smaller average angular separation and larger average

periods that were removed. It may not be possible to directly determine which combination

is best by looking at their average characteristics, rather these characteristics are couple with

the independent periods and pulsar normal vectors. If given an average period and angular

separation there is no way to know what domain size would be required to resolve the system

without performing the computation. However, it is justified to say that the set which will

minimize candidate spacing the most will have a larger average period and smaller average

angular spacing, however there is no way to determine which specific combination that it

will be.
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(a) (b)

(c) (d)

Figure 4.15: Distribution of the pulsar combinations which yielded multiple solutions in a
square domain with side length (a) 2×107 m (b) 2×108 m (c) 2×109 m (d) 2×1010 m.
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4.6 Summary

Criteria on the relative angular separation of the pulsars selected, their period, and mea-

surement uncertainties were determined to minimize solution density over a given domain.

Results indicate the number of candidate solutions is minimized for pulsars whose angular

separation is as small as practical with as large of a period as possible. Further, it is more

beneficial to improve the measured phase accuracy of all pulsars simultaneously rather than

focusing on one pulsar. A set of 34 pulsars was selected and the average period and angular

separation for all combinations was found. The resulting number of candidate solutions were

found for each combination and those with both a small angular separation and large period

performed the best with respect to minimizing the number of candidate solutions in a given

domain.
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CHAPTER 5

XNAV STATE DETERMINATION WITHOUT
PRIOR INFORMATION

In the previous chapter, results indicated that a set of 5 pulsars requires a square domain side

length on the order of 1012 m to find additional candidate positions; solving the absolute

position determination problem with a properly selected set of pulsars would result in a

sufficiently large candidate spacing to remove position ambiguity entirely over this domain

size. A few assumptions must be made in order for position determination to be performed

without prior state information. It is assumed that the spacecraft has an accurate onboard

clock; for this analysis, it is assumed to be a perfect clock. The spacecraft is assumed to have

an accurate x-ray detector such that the phase of the pulsar waveform may be estimated with

an uncertainty 10−3, as well as an attitude determination and control system to keep the

detector pointed to the pulsar for the duration of the observation; current state-of-the-art

star trackers and reaction wheels can provide the required pointing capability. A catalog of

pulsar waveforms must be stored onboard along with the timing models at the Solar System

barycenter. The spacecraft must also have sufficient onboard computational resources to

carry out the evaluation of all possible candidate positions. If these conditions are met, the

spacecraft may determine its position within the Solar System without ambiguity.

The position determination process is preformed by evaluating all possible candidate po-

sitions using the methods described in this dissertation, and increasing the number of pulsar

observations until a unique solution is found. The process begins by recording all photon

time of arrivals from the desired pulsar. In the absence of an initial position estimate the

photon time of arrivals cannot be shifted back to the Solar System barycenter, or other ref-

erence location; however, a phase and frequency measurement of the pulsar signal may still

be estimated without shifting the time of arrivals. A phase difference may still be computed

with respect to the reference signal, which places the vehicle at the Solar System barycenter.

Using these phase values sets of lines may be constructed from the Solar System barycen-

ter outwards for each pulsar observation. Once three sets of lines may be computed, the

algorithms previously described may be used to start computing the feasible intersections of

wavefronts from the three pulsar observations for a given domain size. If a fourth pulsar is

observed, only candidate positions which were feasible for the first three pulsar observations
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need to be evaluated for intersection of wavefronts from the fourth pulsar observation. The

process repeats for any additional pulsar observations. If position ambiguity is found, ad-

ditional pulsar observations are required. This process can be demonstrated using various

combinations of pulsars and is applied to NASA Insight’s trajectory, Juno trajectory and

New Horizon’s trajectory to illustrate the efficacy of the proposed method.

5.1 Earth-Mars Transfer Trajectory

A set of pulsars can be selected such that the candidate spacing is sufficiently large to

cover the orbit of Mars, and resolve missions to the inner Solar System. The Earth-Mars

trajectory of NASA’s Insight lander is considered and is shown in Fig 5.1 [145, 146]. Here

the spacecraft position is set to the first trajectory correction maneuver (TCM), which is

shortly after the spacecraft has been launched. The domain side length was set to 6×1011 m

to cover the entire Mars orbit, and the observation phase accuracy is set to 10−3, consistent

with individual pulsar observation times of approximately one day.

5.1.1 5 Pulsar Observations - No Measurement Error

Using the 5 pulsar set which resulted in the fewest candidate positions from Chapter 4, a

single XNAV solution is found which coincides with the true spacecraft location. The selected

pulsars have very small angular separation with normal vectors which are all nearly along

the y-direction, which means that their wavefronts are nearly parallel to the x-direction.

This results in an uncertainty region which is skewed to be much longer in the x-direction,

approximately 300 km, compared to the y-direction, approximately 7 km, which results in

an area of 8.7921×104 km2 for the feasible region, Fig. 5.1(b). The main goal of this analysis

is to demonstrate the lack of position ambiguity, not to reduce the position uncertainty.

In this example no measurement error is imposed on the measurement, only measurement

uncertainty. The spacecraft is measuring the true phase which implies that one wavefront

from each pulsar coincides with the true position and the uncertainty region is then centered

about this true location. For clarity in Fig. 5.1(b), and all figures showing the feasible region,

the values are shifted such that the true position is set to 0 in order to make the uncertainty

bounds more clear.

The above procedure may be repeated for other locations in the orbit, and again there is

only one resulting candidate solution. Figure 5.2 shows the candidate solutions and feasible

spacecraft position at TCM 2, which is in the cruise stage of the transfer, and Fig. 5.3 shows
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the results for TCM 6 which is just before atmospheric entry at Mars. For both cases there

is only a single solution which occurs at the true solution. The feasible intersection region

at all 3 TCM locations is the same with the true solution at its center, which is due to the

lack of measurement error. As a result the wavefronts of each measurement coincide with

the true position and the center of the feasible region is then centered on the true position.

5.1.2 5 Pulsar Observations - Random Measurement Error

To better capture a realistic scenario, a uniform random phase was added to each pulsar

measurement. The magnitude of the measured phase was constrained to be less that 10−3,

and the spacecraft’s position was set to TCM 1. Four sets of random uniformly distributed

phase offsets were tested and two resulted in only one candidate position at TCM 1, while

the other two resulted in two solutions. Figure 5.4 shows what the feasible intersection region

looks like for the two cases which resulted in a single solution, and Fig. 5.5 shows the one ad-

ditional solution found for the two seeds which resulted in additional solutions. By applying

measurement error, the location of the vertices may change, however the area of the feasible

region may only stay the same or decrease. The uncertainty region for each measurement is

centered about the wavefront measurement and for the case with no measurement error all

wavefronts are intersecting at the true solution. When measurement error is applied these

wavefronts are not all coinciding at the same point which may cause some wavefronts to

overlap less of the feasible region than in the case with no measurement error.
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Figure 5.1: At TCM 1 (a)XNAV solutions in a domain covering the orbit of Mars along
with relevant trajectories (b) The feasible region of the XNAV solution centered at the true
spacecraft location.
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Figure 5.2: At TCM 2 (a)XNAV solutions in a domain covering the orbit of Mars along
with relevant trajectories (b) TThe feasible region of the XNAV solution centered at the
true spacecraft location
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Figure 5.3: At TCM 6 (a)XNAV solutions in a domain covering the orbit of Mars along
with relevant trajectories (b) The feasible region of the XNAV solution centered at the true
spacecraft location
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Figure 5.4: The feasible intersection region at TCM 1 with random measurement error for
two different random number generator seeds.
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Figure 5.5: The candidate positions at TCM 1 with random measurement error for two
different random number generator seeds which caused position ambiguity.
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5.1.3 7 Pulsar Observations

Since the case of 5 pulsar measurements cannot reliably yield a single solution for the applied

random error, additional pulsars must be observed. One option would be to add a sixth

pulsar measurement, however, due to the size of the feasible region, a case could be made to

incorporate pulsars which reduce the size of the feasible region. Shemar et al. presents a best

set of 3 pulsars to measure to reduce position uncertainty [30], these can be incorporated into

the measurement. However if these 3 measurements are used (which are selected to reduce

position uncertainty, as opposed to position ambiguity, as discussed in Ch. 4), 7 observations

are required as 6 would result in 3 solutions within the domain. These additional solutions

come as a result of the structure of the uncertainty region. Looking back to Fig. 5.1(b) the

uncertainty region is approximately 300 km long in the x-direction, but the pulsars selected to

reduce the size of the uncertainty region have wavelengths on the order of smaller than that.

In some cases, a single uncertainty region may actually be split into two smaller uncertainty

regions making one candidate position become two. This requires additional measurements

to overcome, which is why 7 pulsar measurements are used. The best combination of 4

pulsars has been selected along with 3 pulsars which minimize the XNAV uncertainty in

a conventional XNAV operation [30], for a total of 7 pulsar observations. At TCM 1 the

resulting position and uncertainty region for the case with no error is presented in Fig. 5.6,

and the resulting uncertainty regions for the same four measurement errors as in the previous

section are shown in Fig. 5.7. All cases find a single solution at the true solution, with various

uncertainty regions. The uncertainty region in the case with no measurement error is now

bounded within 14 km in the x-direction and 1.5 km in the y-direction, with an area of

7.37 km2. The area of the feasible region has been reduced by four orders of magnitude
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Figure 5.6: Using 7 pulsars at TCM 1 (a)XNAV solutions in a domain covering the orbit of
Mars along with relevant trajectories (b) The feasible region about the XNAV solution.
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Figure 5.7: The feasible intersection region at TCM 1 for 7 pulsar measurements with random
measurement error for four different random number generator seeds.

compared to the 5 pulsar case. In the 7 pulsar case also shows some cases where the number

of vertices of the feasible region may increase or decrease.

5.2 Missions within Jupiter’s Orbit

The same set of 7 pulsars may be used to determine a spacecraft’s position for spacecraft

operating within Jupiter’s orbit. For the following example, NASA’s Juno spacecraft tra-

jectory is considered [145, 146], and the true position is the start of Juno’s orbit insertion

maneuver at Jupiter. Figure 5.8(a) shows the orbits of Earth and Jupiter, the trajectory

of Juno, and the true and XNAV estimated positions, while Fig. 5.8(b) shows the feasible

intersection region for the 7 pulsars, centered at the true position. For these 7 pulsars, there

is a single solution at the true solution when no measurement error is applied, and since the

pulsars selected are the same as the Mars case the area of the feasible region is 7.37 km2.
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Figure 5.8: Using 7 pulsars at orbit insertion for JUNO (a)XNAV solutions in a domain
covering the orbit of Jupiter along with relevant trajectories (b) The feasible region about
the XNAV solution.
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Figure 5.9: The feasible intersection region at orbit insertion for 7 pulsar measurements with
random measurement error for four different random number generator seeds.
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The same random measurement error is applied as above and the resulting feasible regions is

shown in Fig. 5.9. Once again the shape and area of the feasible region may change between

all cases, but the true position is still contained within the feasible region. In all cases con-

sidered, a single candidate position was found within the orbit of Jupiter using only XNAV

measurements.

5.3 Missions within Pluto’s Orbit

An additional case may be considered for missions to the outer Solar System. The reference

trajectory for this case will be NASA’s New Horizons mission, and the domain size will be

set to contain Pluto’s orbit. For this case 8 pulsars are needed to be used to find a single

solution, the combination of 5 pulsars which resulted in largest candidate spacing and the

3 which minimize the uncertainty in position. If 7 pulsars are used as in the Jupiter or

Mars cases there are 2 or more solutions in a domain bounded by the orbit of Pluto. For an

8-pulsar-observation test case, the spacecraft is located at Pluto approach for New Horizons.

Figure 5.10(a) shows Pluto’s orbit, New Horizon’s trajectory, the spacecraft’s position and

the XNAV estimated position while Fig. 5.10(b) shows the feasible intersection region for

this case. Once again, a single solution for the spacecraft position is found for the case of no

error, Fig. 5.10 or with random error, Fig. 5.11. The case with no measurement error bound

the area of the feasible region to be less than 7.37 km2, the addition of measurement error

may reduce this area.
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Figure 5.10: Using 7 pulsars at Pluto approach for New Horizons (a) XNAV solutions in a
domain covering the orbit of Pluto along with relevant trajectories (b) The feasible region
about the XNAV solution.

106



-5000 0 5000
x[m]

-1500

-1000

-500

0

500

1000

1500

y[
m

]

Verticies Found
Intersection Region
Center
True Position

-5000 0 5000
x[m]

-1500

-1000

-500

0

500

1000

1500

y[
m

]

Verticies Found
Intersection Region
Center
True Position

(a) (b)

-5000 0 5000
x[m]

-1500

-1000

-500

0

500

1000

1500

y[
m

]

Verticies Found
Intersection Region
Center
True Position

-5000 0 5000
x[m]

-1500

-1000

-500

0

500

1000

1500

y[
m

]

Verticies Found
Intersection Region
Center
True Position

(c) (d)

Figure 5.11: The feasible intersection region at orbit insertion for 7 pulsar measurements
with random measurement error for four different random number generator seeds.
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5.4 Summary

By selecting an appropriate set of pulsars, XNAV measurements may be used to unambigu-

ously resolve spacecraft position within a bounded domain. Five pulsars must be observed

to fully resolve position within the orbit of Mars, however this case is susceptible to mea-

surement error and results in a large intersection region in which the position may not be

further resolved without additional measurements. Six pulsars can be used to find a single

solution, or the combinations of pulsars can be switched to select 4 which minimize the spac-

ing between candidates and 3 to minimize the area of the feasible region. This 7-pulsar set

results in a single solution with an area of 7.37 km2 compared to an area of 8.7921×104 km2

for the 5 pulsar case. Missions to Jupiter and Pluto are also considered and a single solution

was found for both cases. For the Jupiter case, the same 7 pulsars were used and the area

of the feasible region was once again bounded by 7.37 km2. For the Pluto case, 8 pulsar

observations are required to find a single spacecraft position. In terms of determining the

spacecraft’s position, all three cases have a similar performance, they all find a single solution

whose feasible region is bounded by the same maximum area.

The difference between these cases is the required computation time to evaluate all possible

candidate positions. Table 5.1 shows the computational resources and wall time required for

evaluate all candidate positions. In these cases majority of the computation time is spent

in evaluating the combination of the first three pulsar measurements, since only feasible

candidate positions need to be evaluated for subsequent measurements. Increasing from 7 to

8 pulsar measurements will not significantly impact performance, but increasing the domain

size by an order of magnitude will. Between the Insight and Juno cases, the number of

pulsar observations was unchanged, and the area of the domain increased by a factor of 10.6,

however the computation time increased by a factor of 16. In both of these cases, the total

computation time is not significant compared to the time for a single pulsar observation,

approximately one day. In the New Horizons case, the computation time increased by a

factor of 16.36 compared to the Juno case even with the addition of 36 more computer

cores. If the computation is run on a single computer core, the calculations would take

approximately 160 hours, or 6.6 days. In this case it is important to begin the calculations

Table 5.1: Comparison of Case Studies

Case Domain Size
Number of

Observations
Computer
Cores Used

Compute Time

Insight 5×1011 m 7 (or 5) 4 ∼ 55 s
Juno 6.3×1012 m 7 4 ∼ 880 s

New Horizons 3.3×1013 m 8 40 ∼ 14,400 s

108



as soon as the second pulsar observation is finished so that 6 days worth of computation may

be preformed while the spacecraft is observing the 6 remaining pulsars, and less than one day

of computation would remain at the end once all pulsar observations have been completed.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Research Contributions

This dissertation presents a solution for determining candidate positions using XNAV mea-

surements without prior state information. The contributions of this work are a compre-

hensive survey of XNAV technology, development of an efficient method for determining

candidate states in a bounded domain, the development and assessment of measurement

strategies for XNAV systems, and a method for state determination in a cold-start scenario

using XNAV.

A comprehensive survey on XNAV technology was conducted which incorporates new

advances in XNAV research from around the world. This work builds upon a more limited

article published in 2005 by Sheikh et al. [38], which covered much of the early work in

XNAV which was dominated by researchers in the United States of America. Since that

time, research in XNAV has progressed and many more countries have contributed to the

field. Advances in pulsar modeling, timing models, algorithms to estimate the pulsar phase,

navigation filters, and hardware have made XNAV a more and more promising candidate for

spacecraft navigation. Prior research has not addressed solving for a spacecraft’s position in

a cold-start scenario.

As a first step in solving the cold-start problem, a model for efficiently determining can-

didate states in a bounded domain using XNAV measurements is developed. An algorithm

to determine which pulsar wavefronts to evaluate is presented to avoid iterating through

all possible wavefronts combinations. Two error models are presented to determine if pulsar

wavefronts intersect in two and three dimensions. One model defines the error as a ball about

the intersection of two wavefronts, the other models the error as a banded region about each

wavefront independently. For both models it is more efficient, in terms of observation time,

to observe additional pulsars rather than improve the pulsar observation accuracy.

Using the banded error model, pulsar parameters were varied to determine which pulsars

to measure in order to minimize the number of candidate solutions in a given domain. First,

fictitious pulsars are considered to find guidelines for pulsar selection in an ideal scenario. It

110



was found that minimizing the angular separation between pulsar and increasing the period

of the pulsars minimized the number of candidate solutions. In terms of accuracy, it is

best to improve the accuracy of each measurement simultaneously rather than focusing on

a single measurement. A set of real pulsars are then considered and combinations of 3, 4

and 5 pulsars are considered. The sets which minimize the number of candidates within the

domain follow the same trends as with the fictitious pulsars.

Using proper pulsar selection, state determination using XNAV without any prior infor-

mation is possible. Combinations of pulsars with sufficiently large candidate spacing may

result in a single candidate position within the desired domain. The trajectories of NASA’s

Insight lander is considered for a Mars class mission, Juno for a Jupiter mission, and New

Horizons for an outer Solar System mission. Using proper pulsar selection a single solution

is found for all three cases for various measurement errors.

6.2 Future Work

The results presented in this dissertation have several areas which may be improved. The

main areas identified are as follows:

6.2.1 Evaluation of combinations of 5 or more pulsars

Within this dissertation all combinations of 3 and 4 pulsars were evaluated in two dimen-

sions to find which combinations produced the fewest solutions in a given domain. Results

indicated that the combination which preformed best was one with small average angular

separation and large average period, however there is no way to pick this combination out

based purely on the average characteristics. One hundred combinations of pulsars were con-

sidered and evaluated in attempt to capture the solution which may perform best, but there

is no guarantee that this happened. An full evaluation of combinations of 5 pulsars should

be preformed to determine which combination performs best. The same procedure may be

repeated for all combinations of 6 pulsars as well. These analyses are very computationally

expensive; however, the computation does not need to be performed on the spacecraft, rather

they may be performed prior to launch.
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6.2.2 Evaluation of pulsar combination sensitivity to error

The analysis to determine which pulsar combination resulted in the fewest number of can-

didate solutions within a domain was done by by evaluating all combinations on a small

domain, removing combinations which resulted in more than one candidate position, then

increasing the domain and repeating the process. This method removes combinations when

a single additional candidate solutions is found, it does not consider that some combinations

of pulsars may result in clusters of candidate solutions near one another. Combinations

like these may result in position ambiguity when error is introduced into the measurement.

Pulsar combinations should then be evaluated to determine their sensitivity to error to more

accurately determine the maximum domain size which can be used to position determination.

6.2.3 Evaluation of pulsar combinations in three dimensions

A majority of the results in this dissertation were presented in two dimensions for simplic-

ity. Examples were given in three dimensions to show feasibility, but a full study was not

conducted. The domain should be expanded to three dimensions to more accurately cap-

ture a realistic scenario. When expanding to three dimensions, the domain does not need

to be a cube as bodies within the Solar System do not have a large inclination. However

with the expansion to three dimensions, sets of pulsars to consider may change and analysis

must be preformed again to determine which set to consider. Furthermore the number of

pulsars required to determine position without any ambiguity will increase compared to two

dimensions.

6.2.4 Improvements in the efficiency of candidate position determination
algorithms

In order to determine a spacecraft’s candidate position, a spacecraft would need to calculate

all intersections for all pulsar measurements onboard. This may result in millions of candi-

dates being checked since the computation time is proportional to the area of the domain.

For deep space applications, where XNAV becomes a more attractive method of naviga-

tion, this becomes an increasingly important issue. When the problem is extended to three

dimensions this computation time will only increase. Some time may be saved since the

computations may begin once two measurements are completed for a 2D case, or three in a

3D case; however, depending on the computational resources it may require days in order to

evaluate all potential positions.
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