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ABSTRACT

Unmanned Aerial Vehicles (UAVs), also known as drones, have become more popular
in commercial activities than before. Many third-party drone service providers offer their
drones and pilots to assist client businesses in a variety of missions. Such a business
model is also known as Drone-as-a-Service (DaaS) model.

However, the adoption of DaaS applications has been severely impeded due to the
potential safety and privacy risks of drones. A malicious drone can fly over residential
area and spy on citizens’ information. When such drones are equipped with sensors,
they can also eavesdrop or devastate private data that goes through wireless sensors.
The public damage of the drones are enlarged in DaaS applications because the client
often has very limited transparency on the hired drones.

To tackle the above challenges, I present Hardware-Assisted Privacy Enforcement (HAPE)
as a potential solution for the privacy issues in DaaS applications. The design of HAPE
relies on the hardware-assisted security components, which are installed on the drones,
to act as an external source of trust. Therefore, it can be used in various situations such as
encrypting sensitive data, authorizing private access, and generating provenance. Based
on HAPE, I design three systems to enhance the location privacy, the data privacy and the
assignment and management of the DaaS applications. The experiments on these proto-
types confirm that HAPE is a viable solution to mitigate the privacy threat of drones in
DaaS applications.
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CHAPTER 1: INTRODUCTION

In the recent years, the drone technology has enabled many promising applications. In
addition to the military purposes, many businesses are paying more attention to the com-
mercial usage of drones. For example, Amazon announced its Air Prime Delivery Service
[1] since 2013, aiming to deploy small drones to deliver lightweight packages. Besides,
commercial drones are also deployed in applications such as infrastructure construction,
precision agriculture, and photography, which were once done by humans [2, 3, 4]. Al-
though the cost of commercial drones has been decreasing over the past decade, it is still
a considerable amount of investment for businesses to purchase devices, train operators
and build their own drone based applications. Therefore, an industry of drone providers
come into play. They provide guidelines to design aerial solutions, lease certificated pilots
and drones to collect data, and analyze the collected data for their client. Such a business
model is known as Drone-as-a-Service (DaaS) model.

1.1 MOTIVATION AND CHALLENGES

Despite all the benefits of DaaS applications, the public has shown great concern of
privacy for drones [5, 6, 7, 8]. For example, a malicious drone operator might use a drone
equipped with a high-resolution camera to fly over residential area and spy on citizens’
private information. Since 2010, the Federal Aviation Administration (FAA), has been
working on the regulations to control the risks of commercial drone usage. The most re-
cent rules [9] include requirements on the pilots, the drone specs, and the locations where
drones are allowed to fly. However, these rules mainly focus on the safety protection but
fail to enforce privacy compliance in DaaS applications.

The challenges in enforcing privacy compliance in DaaS applications are two-fold. On
the one hand, it is hard to detect a drone from the ground due to the small size and
fast speed of drones. Unlike ground transportation vehicles, the route taken by a drone
is more flexible and unpredictable. Many technologies, e.g., radar surveillance, audio
surveillance, video surveillance, radio frequency (RF) surveillance, have been developed
for drone detection and localization. However, most of these technologies require ex-
pensive external detectors to achieve accurate and real-time detection. For example, the
AeroScope drone detection system developed by DJI sells at $340,000 with a $44,000 an-
nual maintenance fee. This is not realistic to be setup by every individual. On the other
hand, the authentication of drones is a critical issue. In the package delivery applica-
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tion, for example, an attacker drone may impersonate the legitimate one in order to steal
packages. Although many software-based solutions were proposed, e.g. using digital
certificates to enable publicly verifiable drone identity, such approaches still pose poten-
tial risks due to the fact that the attacker, as the owner of the drone, has the privileged
access to the device. An attacker may root the software stack in the drone controller and
inject malicious code to bypass the software-based defense mechanisms.

In this thesis, I present a general strategy to solve the privacy challenges of DaaS ap-
plications by assuming the existence of hardware-assisted security extensions on the drones,
and hence name this strategy as Hardware-Assisted Privacy Enforcement (HAPE). The
hardware-assisted security techniques, i.e. Intel software guard extension (SGX) [10] and
ARM TrustZone [11, 12], enable a trusted execution environment (TEE) to secure sensitive
code and data even if the system is compromised with root access. Utilizing TEE allows
us to build systems with stronger security privileges such as two-factor authentication
and peripheral I/O protection [13, 14, 15, 16, 17]. As more and more manufacturers have
introduced hardware security modules into low cost system-on-a-chip (SoC), it can be
foreseen that hardware security features will be affordable and enabled on every drone
controller in the near future. A TEE enabled drone can store and compute sensitive data
in the secure enclave and defend against attacks from software stack. It allows DaaS
applications to compute trustworthy proofs as a demonstration for privacy compliance.

1.2 THESIS STATEMENT

Hence, I claim that the following statement is true:
Hardware-assisted security techniques must play a critical role in enforcing the privacy compli-

ance in commercial DaaS applications.

1.3 THESIS OVERVIEW

In this thesis, I present several research topics following the HAPE strategy to overcome
certain privacy problems. This section provides an overview of each work.

1.3.1 Enforcing Location Privacy for Commercial DaaS Applications

In Chapter 5, we claim that Proof-of-Alibi (PoA) protocols should serve as the basis
for enforcing location privacy compliance in DaaS applications. We design and imple-
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ment AliDrone, a trustworthy PoA protocol that enables individual drones to prove their
non-entrance to certain No-fly-zones (NFZs) to a third party Auditor. AliDrone lever-
ages trusted hardware to produce cryptographically signed GPS readings within a secure
enclave, preventing malicious drone providers from being able to forge geolocation in-
formation. AliDrone features an adaptive sampling algorithm that reacts to NFZ proxim-
ity in order to minimize the processing cost. Through laboratory benchmarks and field
studies, we demonstrate that AliDrone provides strong assurance of geolocation while
imposing a small overhead on CPU utilization and memory consumption.

1.3.2 Enforcing Data Privacy for Commercial DaaS Applications

In Chapter 6, we present a solution that enables drones to collect and process pri-
vate client data from remote data sites in a trustworthy and efficient manner. We design
and implement the Secure Homomorphic Encryption (SHE) framework. SHE combines
trusted hardware enclave and homomorphic encryption technologies to provide strong
privacy primitives on client data. SHE features in a recrypt technique such that the com-
putation and communication overhead for homomorphic encryption on the client data
is minimized. In addition, SHE takes the advantage of drones’ travelling time to run
data aggregation tasks in order to speed-up data processing. The laboratory experiments
demonstrate that SHE can meet the performance requirement in many common data pro-
cessing and aggregation missions.

1.3.3 Enabling Efficient Contract Management for Trustworthy Commercial DaaS
Applications

In Chapter 7, we present UAVChain, a blockchain-based solution that enables trust-
worthy and efficient management of drone services. UAVChain is designed with a rich
trust-by-default toolbox to establish trust between the clients and drone providers. In
addition, it abstracts the interactions in the drone-based applications with several smart
contracts, and thus achieves efficient task management. Last but not least, UAVChain
also applies a task assignment algorithm to minimize resource utilization to complete the
tasks. To validate our design, we implement a proof-of-concept system of UAVChain and
present various system benchmarks measured in a controlled laboratory environment.
Also, we demonstrate simulations on the real-world datasets that our task assignment
algorithm achieves close-to-optimal solution in a short amount of time.
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1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides the background of the
techniques used in this thesis. Chapter 3 presents an overview for each research work,
including the problem description, system scope and the high-level workflow. Chapter 4
introduces the existing or related solutions on each research topic. Chapter 5 demon-
strates the design of AliDrone, the solution to enforce location privacy compliance in
DaaS applications. Chapter 6 presents the Secure Homomorphic Encryption framework as
an enhancement of data privacy protection from the DaaS service providers. Chapter 7
describes UAVChain as the trustworthy management framework for DaaS applications.
Chapter 8 concludes the insight of this thesis and provides future research directions.
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CHAPTER 2: BACKGROUND

In this chapter, we introduce the background and technology that is related to our
research.

2.1 DRONES AND DRONE-AS-A-SERVICE (DAAS) APPLICATION

A drone, a.k.a unmanned aerial vehicle (UAV), is an aircraft without a human pilot
onboard. Such devices can be controlled remotely by the operator within a distance of
2,000 meters. As of 2019, the most popular commercial drones cost from $300 to $3,000.
Unlike the entertainment UAVs which can only last for no more than 20 minutes, the
commercial drones can fly at the speed of 50 mph with a flight duration of 30-40 minutes.

According to Federal Aviation Administration (FAA) [18] in U.S., one must obtain a
Remote Pilot Certificate to be able to operate drones. The certificate requires the pilot
to pass an initial aeronautical knowledge test and complete a remote pilot test using the
electronic FAA Integrated Airman Certificate and/or Rating Application (IACRA) sys-
tem.

Due to the high cost of building drone infrastructure and training pilots, many busi-
nesses hire drone providers to accomplish their aerial demands. Such business model is
referred to as the Drone-as-a-Service (DaaS). Drone providers such as DroneUp, LLC [19]
and PrecisionHawk [20] offer DaaS applications in various missions, including infrastruc-
ture construction, pipeline monitoring and agriculture.

2.2 TRUSTED EXECUTION ENVIRONMENTS

Trusted Execution Environment (TEE) is a set of hardware-assisted security extensions
added to the processors. These processors partition the hardware and software and run a
separated subsystem known as “secure world” in addition to the normal operating sys-
tem, a.k.a. “normal world”. The TEE technology is programmed into the hardware to
protect the memory and peripherals. Consequently, security is enforced without degrad-
ing the system performance. TEE can be implemented on commercial secure hardware
such as ARM TrustZone [11] and Intel SGX [21].

OP-TEE is an open source project for TEE in Linux using the ARM TrustZone tech-
nology. It implements a TEE client in the normal world and a TEE core in the secure
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Figure 2.1: OP-TEE Architecture. The code and data in secure world are protected by
hardware. The switching between two worlds are triggered via Secure Monitor Call
(SMC).

world using the GlobalPlatform TEE System standard. Figure 2.1 shows the architecture
of OP-TEE.

OP-TEE provides a minimal secure kernel (OP-TEE core) which runs in parallel with
a normal world OS such as Linux. It provides drivers (OP-TEE Driver) for the normal
world OS to communicate with the secure world. The transition between the two worlds
are done via Secure Monitor Calls (SMC). It uses a daemon service in the normal world,
i.e., tee-supplicant, to assist the Trusted OS with the miscellaneous such as storage access.

OP-TEE allows programmers to develop Trusted Applications (TAs) in the User space
of the secure world [22]. TAs are signed by a private key which is unknown to the user
in the normal world when the secure world is compiled. Every TA is assigned a unique
UUID. When an OP-TEE enabled application calls an interface provided by a specific TA,
it provides the associated UUID and the interface ID. Then, the tee-supplicant will locate
the TA by the UUID in the storage and help the OP-TEE core to load the TA.

2.3 HOMOMORPHIC ENCRYPTION

A homomorphic encryption scheme allows one to perform certain computations on the
encrypted data without being able to decrypt it. Fully homomorphic encryption (FHE)
provides stronger capability by allowing arbitrary computation on the ciphertext [23].

6



Conceptually, given a plaintext input x, an FHE encryption key pk and an arbitrary func-
tion f(·), it is guaranteed that

FHE-Enc(f(x), pk) = f(FHE-Enc(x, pk)). (2.1)

FHE thus enables various applications to outsource private computation [24, 25, 26]. For
instance, in the context of cloud computation, a client may send the FHE encrypted data
to a remote server. The server can then perform homomorphic computation on the ci-
phertext and return the encrypted result to the client. Finally, the client can use the FHE
decryption key to recover the result. The protection of user data privacy is achieved since
the server is unable to decrypt the user data.

However, FHE encryption consumes a large amount of computation resource. Also,
the FHE ciphertext is thousands of times larger than the plaintext message such that
transmitting FHE ciphertext may result in significant communication overhead. The SHE
framework leverages TEE to avoid the computation and communication overhead and
thus produce a more efficient and feasible solution for using FHE in third-party UAV
services.

2.4 SMART CONTRACT

A smart contract is a collection of code and data embedded in the blockchain. Smart
contracts are widely applied for the first time with the implementation of Ethereum
blockchain and Solidity language [27]. The deployment of a smart contract is done by
sending a transaction that includes the compiled smart contract code to a special receiver
address. The initialization code will be executed when this transaction is added to the
blockchain. The security of the contract is guaranteed by the consensus protocol from the
blockchain.

Ethereum is a decentralized, open-source blockchain featuring smart contract function-
ality. Ether is the native cryptocurrency of the platform. The Ethereum Virtual Machine
(EVM) is capable of running smart contract code. Solidity is one of the most popular
programing language for the EVM-based smart contract. For example, it can be used
to create smart contract applications such as voting, crowdfunding, blind auctions and
multi-signature wallets.

7



CHAPTER 3: RESEARCH OVERVIEW

In this chapter, we present an overview of our research that has already been done,
including the enforcement of location privacy, data privacy, and the trustworthy proof-
of-work in DaaS applications.

3.1 ENFORCING LOCATION PRIVACY FOR COMMERCIAL DAAS APPLICATIONS

One promising countermeasure for mitigating drone surveillance is the establishment
of no-fly-zones (NFZs) over privacy-sensitive locations. If a drone is sufficiently far away
from a sensitive area, surveillance cannot be carried out successfully. The FAA has des-
ignated a variety of NFZs, primarily for safety purposes, around critical infrastructures
such as airports. An established NFZ specifies that no drone is permitted to fly within 5
miles of the protected location. To more effectively notify the pilots of NFZs in their area,
the FAA has even published the B4UFLY mobile app [28]. Unfortunately, regulation alone
cannot prevent drones from flying over restricted areas; as the drone navigates in open
airspace, it is hard for an observer on the ground to accurately determine the location of
a drone. Instead, what is needed are a reliable means of tracking drone locations for the
detection of NFZ policy violations.

We present the design and implementation of AliDrone, a geo-location based alibi pro-
tocol that enables drones to generate proof-of-non-entrance to an NFZ. We define three
roles in the system: Zone Owners that own some property, Drone Provider that hires a pi-
lot who controls the drone and navigates it through an area, and Auditor, an authorized
third party (e.g. local agent of the FAA) that attests drones’ locations and detects any non-
compliance with NFZ regulations. Before flying, the Drone Provider queries the Auditor
for the location of nearby NFZs. While flying, the drone computes an alibi, i.e. a signed
GPS trace, based on its real-time location. At the end of the flight, the Drone Provider
submits the drone’s Proof-of-Alibi (PoA) to the Auditor. The Auditor then verifies the
PoA and initiates punishment on the Drone Provider if a privacy violation is detected.

We design AliDrone with the consideration that a dishonest drone provider may try to
navigate the drone over a restricted area without being detected by the Auditor. Such an
attacker could attempt to forge an innocent compliant route and compute its alibi based
on this forged GPS trace. As a result, an adversary may take a shortcut route or gain
pictures of the restricted area. Defending against such adversary is challenging. As the
owner of the drone, the Dishonest Drone Provider has privileged access to the drone
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software stack as well as any exposed hardware, meaning the attacker could attempt to
extract security keys used in the alibi protocol or replace the system components with
malicious software.

We demonstrate the hardware-assisted security technique for location privacy and the
system design of AliDrone and address the aforementioned challenges in Chapter 5.

3.2 ENFORCING DATA PRIVACY FOR COMMERCIAL DAAS APPLICATIONS

One drawback of DaaS business model is that the clients often have very limited con-
trol on the drones. Although flying logs and reports can be provided as the proof of
work, the clients cannot fully trust the third-party drone providers on how these logs are
captured. Moreover, the state-of-the-art drone setup does not provide privacy guarantee
when drones need to interact with data owned by other entities during the mission. A
malicious third-party drone provider may abuse the user data without being noticed by
the client and data owners.

Client

Contract

Report

Collect Data

UAV Provider
Data Sites

Aggregate
and Process

Figure 3.1: The high-level concepts of SHE framework.

To enforce the data privacy compliance, we present the design and implementation of
Secure Homomorphic Encryption (SHE), a privacy-preserving data collection and pro-
cessing framework that enables drones to interact with private user data. We identify
three entities in our application scenario: a Drone Provider , a Client, and multiple Data
Sites. From the high level as shown in Figure 3.1, the client makes a contract with the
drone provider who owns a set of UAVs and certified pilots. The contract requires the
drone provider to collect data from a set of data sites and to execute certain data pro-
cessing algorithm within a given expiration time. We assume that such data sites have
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fixed infrastructure sensors (e.g. building sensors, smart city Array of Things, etc.) or
Internet-of-Things (IoT) devices owned either by the client or by different parties. Thus,
the drone provider must have controlled access to the data. When the UAVs finish the
data collection, the drone provider will process the data and return a report to the client.

SHE is designed with the consideration that a dishonest drone provider shall not gain
knowledge of the private data during the contract. Homomorphic encryption [29] is thus
a good candidate in this situation. However, traditional homomorphic encryption tech-
nology consumes extraordinary amount of computation and communication resource on
the data sites. Therefore, it cannot be applied on resource limited devices such as sensors
or lightweight IoT devices.

We successfully overcome these issues and present SHE as the hardware-assisted secu-
rity technique for data privacy on drones in Chapter 6.

3.3 ENABLING EFFICIENT CONTRACT MANAGEMENT FOR TRUSTWORTHY
COMMERCIAL DAAS APPLICATIONS

Negotiating over a contract with the drone provider is not a fast and easy matter. To
deploy a DaaS application, the client company usually first consult the drone provider
on its demands. The drone provider will then do the research about the best hardware
and software platform for the specific targeted industry and designs a solution that best
fits the demands. Therefore, commercial DaaS application today is often provided as a
long-term and sustained contract. As a result, small businesses and individual users can
hardly benefit from the current DaaS applications. Very often, such users only need a
small number of drones to execute some simple tasks for limited runs. It is difficult for
these users to find a provider only wishing to use the service for a short period.

To enable efficient contract management, we present the design and implementation
of UAVChain, a trustworthy and distributed platform for the management of DaaS ap-
plications. UAVChain features in the synergy of the TrustZone technology and a set of
smart contracts. The task information, report and payment are managed and stored by an
Ethereum-based blockchain. Supported by the public smart contract interfaces, the users
can efficiently find a proper provider to execute their aerial demands.

We describe the general workflow of the UAVChain framework in Figure 3.2 using a
“parcel delivery” example. Assume we have a client Alice who wishes to deliver a parcel
from location X to location Y. Alice first posts the task information, including the weight
and size of the parcel, the location coordinates of X and Y, and the reward of the task, to
the platform. The platform then runs a matching algorithm and assigns a proper Drone
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Provider, Bob, for this task. After that, Bob sends his drone into the Task Region and starts
executing the task. When the parcel is dropped at location Y, Bob takes a picture of the
delivered parcel, and make a GPS record. The picture and GPS record will be submitted
to the platform as the proof of work, and the proof will be verified by Alice. If Alice is
happy with the service, Bob will receive the promised reward. Otherwise, an authorized
Mediator will step in to mediate between Alice and Bob.

Client

Request

Report
Proof

Execute Task
Produce Proof

Task RegionDrone Service
Providers

Mediator

Mediate Send
Drones

Smart
Contract

Assign
Tasks

Result

Figure 3.2: The high-level concepts of UAVChain.

From the high level, UAVChain is designed with the guarantee that a dishonest partic-
ipant cannot bypass the verification stage for the proof of work. We consider both clients
and drone providers as the potential adversaries. A malicious drone provider may try to
skip executing the task by submitting a forged report or proof. A dishonest client may
try to avoid paying the reward by negating the proof. In addition, we also consider the
attacks from the outsiders who pretend to be a legitimate participant and try to crash
the system by infinitely triggering unnecessary computation flows. The idea of shutting
down these attacks is done through the economy mechanism built in the smart contracts.
The smart contracts require each participant to deposit some amount of cryptocurrency
at certain steps, and do not allow them to withdraw until the end of the verification. As a
result, it is guaranteed that an honest participant will get or pay the expected amount of
reward. Otherwise, the detected adversary will lose the deposit.

UAVChain relies on hardware-assisted security mechanics from the drones to generate
verifiable and unforgeable proof. Similar to the methods presented in Section 3.1 and
3.2, UAVChain allows the clients to specify the demanded types of proof to be submitted
by the drone providers. Hence, it is compatible with various types of proofs including
location, time, encrypted data and images.

In addition, UAVChain uses a task assignment algorithm to find a proper drone provider
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for the client. The best match of a drone provider should (1) meet the requirement of the
task description, and (2) can complete the task using a minimal number of drones. How-
ever, the computation of the navigation time is reduced to the Travelling Salesman Prob-
lem (TSP) and thus it is NP-hard. Therefore, we use linear programming to formulate the
problem and design a heuristic algorithm to solve it.

Therefore, UAVChain can serve as the management platform for trustworthy DaaS
applications. We will present it in more details in Chapter 7.
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CHAPTER 4: RELATED WORK

In this chapter, we introduce the past literature related to this thesis. An overview of
the related work is shown in Figure 4.1.

4.1 DRONE APPLICATIONS

The drones have enabled many promising commercial applications such as package
delivery, infrastructure construction, precision agriculture, and photography [1, 2, 3, 4]. In
the academia, many researchers are also interested in using this flying platform in varies
activities including wifi relay, data collection, remote surveillance and video processing
[30, 31, 32, 33, 34].

4.2 DRONE PRIVACY

Privacy is one of the major concerns about the pervasive deployment of drones. Never-
theless, among cybersecurity, privacy and public safety issues [35], the previous research
on drone privacy was limited to regulations [5, 36, 37]. The most promising approach
suggested by Cavoukian [38] was to apply Privacy by Design (PbD) principle to drone
technologies. However, even though the drone system is complied with PbD, an autho-
rized drone operator can always attach a small camera to the drone and covertly capture
surveillance videos.

Recent research suggests that geofencing is an effective system to prevent drones from
restricted areas [39, 40, 41, 42]. However, since accurate geofencing devices are often
expensive, it is unrealistic for all the citizens to deploy this technology in their properties.

4.3 TRUSTED EXECUTION ENVIRONMENT

Trusted Execution Environment (TEE) technology has received excessive research in-
terest in recent years. Intel software guard extension (SGX) [10], ARM TrustZone [11, 12]
and virtual TEE solution [43] made it possible to secure sensitive code or data even if the
system is compromised with root access.

Utilizing TEE allows us to build systems with stronger security privileges [13, 14].
Specifically, [15] designed an efficient two-factor authentication scheme on ARM Trust-
Zone and achieved comparable security assurance to hardware token based solution. Liu
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Figure 4.1: An overview of the related work.

and Srivastava [16] used ARM TrustZone to protect essential peripherals for the UAVs.
[44] presented a proof-of-alibi procotol based on TrustZone to verity geo-location data of
UAVs. Hasan and Mohan [17] deployed TEE to secure IoT devices against the control
spoofing attack with the guarantee of timing requirement.

4.4 FULLY HOMOMORPHIC ENCRYPTION

Fully homomorphic ecnryption (FHE) allows arbitrary operations to be executed on
ciphertext. Since Gentry [29] first introduced a feasible FHE construction, a large number
of mathematical constructions and algorithmic concepts have been proposed to improve
the computation and memory efficientcy of FHE [23, 45, 46, 47].

Meanwhile, a number of FHE libraries were developed and open-sourced [48, 49, 50].
These libraries allowed FHE to be experimented on various real-world applications. Pre-
vious literature demonstrated that comprehensive algorithms such as classification and
machine learning can be implemented with FHE using proper approximation [24, 25, 26].
FHE is also proved to be feasible in the cheaper devices (e.g. IoT devices, wearable sen-
sors) which only have limited computation resources [51, 52].
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4.5 BLOCKCHAIN AND SMART CONTRACT

Blockchain and smart contract are secured technologies as they by default feature in
private key cryptography and peer-to-peer network. Although we are the first that apply
these technologies in the management of drone services, similar approaches have been
widely studied in related topics. [53] and [54] demonstrate blockchain-based machanisms
to enable trustworthy and privacy-preserving features in mobile crowdsourcing. [55, 56,
57] propose several smart contract designs such that the supply chain products can be
tracked efficiently.

Beyond the management of tasks, the blockchain technology also attracts a lot of in-
terest in securing the drone systems. It has been pointed out that blockchain may offer a
solution to many security challenges faced by the drone industry [58]. [59] and [60] use
blockchain to secure the communication signals for the drones. [61] designs an intrusion
detection system based on blockchain for the drone delivery services.

4.6 DRONE PATH PLANNING

Drone path planning problem has attracted widespread attention with the technical
mutuality of drones. The essence of path planning is to solve the traveling salesman
problem [62], which is NP-hard. Different algorithms were proposed towards the drone
path planning problem [63, 64, 65, 66]. In terms of algorithm formation, most of the pro-
posed approaches can be divided into two categories, optimal algorithms and heuristic
algorithm.

The optimal algorithms are usually formulated into mathematical programming prob-
lems to obtain the exact optimal solution [67]. These mathematical programmings are
usually solved using numerical methods such as parameter optimization and simplex
method. The heuristic algorithms is more efficient and scalable comparing with the opti-
mal algorithms. Several heuristic drone path planning algorithms includes Dijkstra Algo-
rithm [68] and Floyd Algorithm [69]. However, most of aforementioned algorithms only
focus on path planning for a single drone, which can not suffice our needs to plan flying
trajectories for multiple drones to cover a large amount of data sites collectively.
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CHAPTER 5: ENFORCING LOCATION PRIVACY FOR COMMERCIAL DAAS
APPLICATIONS

To enforce location privacy in DaaS systems, we present our design of AliDrone, a
proof-of-alibi protocol in this chapter.

5.1 PRELIMINARIES

Model

S (x, y, t) = GPS sample with longitude, latitude and timestamp.
z (x, y, r) = a circular no-fly-zone with longitude, latitude and radius.

iddrone = Identifier of the drone.
idzone = Identifier of a no-fly-zone.

Keys (T+, T−) = Asymmetric sign key pair of the Drone TEE.
(D+, D−) = Asymmetric sign key pair of the drone.

Table 5.1: Table of Notations Used in This Chapter

5.1.1 Overview

We consider a Drone Provider that instructs a drone to navigate a given flight pattern.
We represent the drone’s activity as a series of samples S = (lat, lon, t), each represented
as a tuple of latitude, longitude and timestamp that are sampled from a GPS receiver. A
particular drone flight pattern F can thus be summarized as F = {S0, S1, . . . , Sn}.

This work considers a situation where a drone must navigate an area in which many
No-fly-zones(NFZs) are present. We assume all NFZs to be circular, and are defined by
z = (lat, lon, r), where lat and lon are the latitude and longitude of the center, and r is the
radius of the circle. We refer to the entities who own the NFZs as No-fly-zone owners (or
Zone Owners). If a drone passes into an NFZ, we say that the privacy of this Zone Owner
is violated.

We assume that each drone is associated with an identifier, similar to a vehicle license
plate, which is visible by an observer on the ground. If a Zone Owner spots a drone close
to her NFZ, she may suspect that privacy violation has occurred. The Zone Owner will
record the drone ID and report the incident to an Auditor, which is an authorized third
party, e.g., a local Federal Aviation Administration (FAA) agent. The Auditor uses the
drone ID to recover the flight pattern F from the Drone Provider, then determines if the
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Figure 5.1: An overview of system workflow. The process starts where the Zone Owner
submits the coordinates to the Auditor (task 1). Then, Drone Provider submits its flight
plan to the Auditor and in response receives the NFZs within the flight zone (task 2 and
3). After the flight, Drone Provider provides the proof-of-alibi, showing that its drone has
not flown over the restricted NFZs to the Auditor (task 4).

privacy violation did occur. In our model, the burden of proof rests on the Drone Providers to
prove conclusively that their drones could not have been present in the NFZs.

Different from the traditional solution which attempts to build a virtual boundary
around the NFZs using Geo-fencing technologies [39, 40, 41, 42], our design does not
require the Zone Owners to install external detecting devices such as radio transmitters
or beacon detectors. Our solution only relies on the existing secure hardware to provide
a trusted execution environment for drones to generate their Proofs-of-Alibi (PoA). PoA
serves to prove that the drone does not enter any of the NFZs on the map during the
navigation. If F is insufficient to produce such a PoA, the Auditor concludes that a pri-
vacy violation has occurred. The Auditor will then initiate punitive measures against the
Drone Provider. The punishment for privacy violation is orthogonal to the purpose of
this work, and can be specified through policy or legislation.

5.1.2 Threat Model

We consider the adversary as a dishonest Drone Provider (or rogue drone) that wants
to violate NFZ airspace without being detected by the Auditor. Such an adversary may
be small business looking to reduce costs by taking a shortcut, or a journalist or amateur
Provider attempting to acquire footage from a restricted area [70]. To avoid detection,
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the adversary will attempt to forge an innocuous route to present to the Auditor in place
of its actual illicit GPS trace. This feat may be attempted through pre-computing a route
that does not intersect any NFZ, replaying a previously reported route, or relaying a route
from another drone. We use the term GPS forgery attack to denote this attack in the rest of
this chapter.

We assume the presence of secure hardware within the drone that provides a trusted
execution environment (i.e., ARM Trustzone, Intel SGX). Furthermore, we assume that
an asymmetric sign key pair is generated within TEE by the hardware manufacturer,
and the private key is not known by the Drone Provider. Side channel attacks on the
enclaves [71, 72, 73] are not considered in this work.

While the attacker can attempt to install malicious software on the drone platform,
we assume the correctness of the GPS hardware. We also do not consider GPS spoofing
attacks in which the GPS receiver is manipulated from the ground through the broad-
cast of incorrect GPS signals [74, 75]; such attacks can be mitigated through existing de-
fenses [76, 77, 78, 79].

5.1.3 Design Objectives

The goal of AliDrone is to protect the privacy of Zone Owners by allowing them to
request NFZs upon their properties. The solution enables the drones to present trustwor-
thy, location-based PoAs proving that the drones do not fly over the NFZs. The PoA is
verified by a trusted third party, described as the Auditor in the previous context. We list
our design goals as follows:

Completeness The PoAs generated by the drone must prove that it does not fly over
any NFZ during the entire flight period.

Low Overhead The computation of trustworthy PoAs should impose small processing
overhead for the drones.

Unforgeability The Auditor must not accept any PoA if it is forged by Drone Provider.

5.2 ALIDRONE PROTOCOL

We describe the high level concepts of AliDrone protocol in this section. Three entities
are involved in the protocol: a Drone Provider, a Zone Owner and an Auditor. Figure 5.1
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demonstrates the interactions among these entities. A summary of cryptographic keys
and data used by the protocol is presented in Table 5.2.

Notation Description Knowledge
iddrone Identifier of drone. It is visible on the drone. All parties
idzone Identifier of NFZ. All parties
T− Private TEE sign key. Drone TEE
T+ Public TEE verification key. Drone Provider/Auditor
D− Private sign key of a Drone Provider. Drone Provider
D+ Public verification key of a Drone Provider. Auditor

Table 5.2: Notations of keys and data used by AliDrone protocol. Column Knowledge
indicates the parties who have access to the information.

Step 0. Drone Registration: We require that a drone should be registered at the Audi-
tor before operated in the field. The Drone Provider generates an asymmetric keypair
D =(D+, D−) and provide the public key D+ to the Auditor. To enable trustworthy
report of geo-locations, we require that an asymmetric keypair for the Trusted Execu-
tion Envirionment (TEE) on the drone T = (T+, T−) is generated at manufacturing time.
The TEE sign key T− is only accessible by TEE and the verification key T+ is known to
the drone owner when the device is merchandised. At registration, the TEE verification
key T+ should also be submitted to the Auditor. An identifier iddrone is then issued to
the drone. This identifier is similar to a vehicle license plate, which must be carried on
the drone when it operates. Therefore, an entry of registered drone can be expressed as
(iddrone, D

+, T+).

Step 1. Zone Registration: In order to register an NFZ, a Zone Owner submits to the
Auditor the coordinates and radius of the property, i.e., z = (lat, lon, r), as well as a proof
of ownership. Upon request approval, the Auditor issues an identifier idzone to the Zone
Owner and adds a new entry (idzone, z) to the NFZ database.
Step 2-3. Zone Query/Response: Before a drone starts navigation, the Drone Provider
should query the auditor for the NFZ information. The query is comprised of the drone
id, two GPS coordinates (x1, y1) and (x2, y2), indicating a rectangular navigation area, and
a random nonce signed by the drone sign key D−, i.e.,

(iddrone, (x1, y1), (x2, y2), nonce, Sig(nonce, D−)). (5.1)

The Auditor first checks if the query is sent from a registered drone by verifying the
signature on the nonce. Then, it pulls a list of NFZs {z1, z2, · · · , zm} within the rectangle
and responses with the coordinates and radii of the zones. The drone can use the NFZ
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information to compute a viable route to its destination.

Step 4. Proof-of-Alibi Submission: During the flight, the drone computes the Proof-of-
Alibis (PoAs) and persists the PoAs to the storage. The purpose of the PoA is to show
that the drone does not enter any NFZ during the flight. The detailed design of PoA
is presented in section 5.3. At the end of the flight, the Drone Provider must submit
the PoAs to the Auditor for verification. To enable real-time auditing, the drone could
alternately transmit its PoAs in real-time to the Auditor; however, we do not pursue this
solution in our work as it would increase battery drain, violating Goal Low Overhead.

5.3 TRUSTWORTHY PROOF-OF-ALIBI

In this section, we introduce the concept and design of Proof-of-Alibi (PoA), which en-
ables drones to generate unforgeable GPS traces. We first explain how the geo-location
information serves as a proof of privacy compliance (Completeness goal). Then, we
demonstrate an extension in the trusted execution environment (Unforgeability goal) and
an optimization to reduce processing overhead (Low Overhead goal).

5.3.1 Possible Traveling Range

To prove that a drone does not enter an NFZ, we show that it is physically impossible
to travel into the zones based on its geo-locations. The idea of this proof is based on the
fact that drones have a maximum traveling speed vmax, which is restricted to 100 mph by
the FAA regulation [9]. This enables the computation of the possible traveling range using
two GPS coordinates.

Consider that the drone produces two GPS samples S1 = (x1, y1, t1) and S2 = (x2, y2, t2).
Denote the location of the drone at arbitrary time t ∈ [t1, t2] as (x, y), the possible traveling
range can be described as an ellipse E with (x1, y1) and (x2, y2) being the two focuses:
E(S1, S2) = {(x, y) | d1 + d2 ≤ vmax(t2 − t1)}, where di =

√
(x− xi)2 + (y − yi)2.

Suppose the drone operates near an NFZ z = (x0, y0, r0). The GPS samples (S1, S2) can
prove that the drone does not enter zone z during (t1, t2) if the ellipse does not intersect
with the circle representing zone z. Otherwise, it suggests that the drone may travel into
zone z during [t1, t2].

During the flight, we require the drone to collect a set of GPS samples and define the
set of the samples as alibi := {S0, S1, · · · , Sn}.
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Given a set of NFZs Z = {z1, z2, · · · , zm}, we say that the alibi is sufficient if every pair
of two consecutive GPS samples proves impossibility of traveling into all the NFZs, i.e.,

E(Si, Si+1) ∩

(⋃
z∈Z

z

)
= ∅, ∀ i < n. (5.2)

Otherwise, we say the alibi is insufficient. Insufficient alibi suggests that the drone may
travel into NFZs during the flight. Hence, it does not show compliance with the no-fly
rule. If we consider a simple case where only one NFZ is on the map shown in Figure 5.2,
the minimum sampling rate that produces sufficient alibi should results in an ellipse that
is tangent to the NFZ.

5.3.2 TEE Enabled GPS Sampling

To ensure that such alibi cannot be forged by Drone Providers, our solution leverages
trusted hardware to authenticate the GPS data in a Trusted Execution Environment (TEE).
We move the sampling logic to the secure world to guarantee that the GPS data is col-
lected from the GPS hardware. The GPS data is signed by the TEE sign key T− before
it leaves the secure world. We define the Proof-of-Alibi (PoA) as a series of GPS samples
along with the TEE signatures, i.e.,

PoA := {(S0, Sig(S0, T
−)), (S1, Sig(S1, T

−)), · · · }. (5.3)

The sign key T− is only available to TEE such that a Drone Provider in the untrusted
environment cannot forge the signatures. The verification key T+ is known to the Auditor
at registration stage, and thus the Auditor is able to detect if the GPS data is modified.
Our design can be generalized to trusted hardware platforms including Intel SGX and
ARM TrustZone. We present the an ARM TrustZone based architecture of AliDrone in
Figure 5.3.

The Auditor runs an AliDrone Server. It stores the information of registered drones and
NFZs, and provides an interface to query the NFZ information to the drone client. Upon
receiving the PoAs from drones, it verifies the sufficiency of the PoAs (see equation (5.2)).
After the PoA verification, the AliDrone Server should save the PoAs for a couple of days.
This is because a Zone Owner may report a violation afterwards and the PoAs serve as
evidence for the accusation.

The drone client consists of three components: GPS Driver, GPS Sampler and Adapter.
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Figure 5.2: Possible traveling range and a single NFZ. The possible traveling range should
not intersect with the NFZ to produce sufficient alibi.

Figure 5.3: AliDrone System Architecture. AliDrone enables trustworthy PoA generation
on the drone by performing GPS sampling in a TEE. The GPS data is sampled, encrypted
and signed by the trusted application GPS Sampler. The Adapter runs adaptive sampling
algorithm and adjusts GPS sampling rate in real time. The Auditor runs AliDrone Server
to verify the PoA uploaded by the drone.
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GPS Driver runs in the kernel space of the secure world. It is used to access the GPS
receiver and parse the raw GPS data into coordinates and timestamps.

GPS Sampler runs in non-privileged mode in the secure world. It exposes an interface
GetGPSAuth to the Adapter to produce an authenticated GPS sample. It reads the parsed
GPS data from the underlying GPS Driver and signs the data with the TEE sign key T−.

The Adapter is a daemon service in the normal world. It has access to the GPS receiver
and controls the PoA sampling rate using the adaptive sampling mechanism, which will
be introduced in section 5.3.3. In addition, it is responsible for encrypting the PoA with
the public encryption key of the AliDrone Server.

5.3.3 Adaptive Sampling

A commercial GPS receiver can update the GPS measurements with a maximum rate
of 5Hz. However, performing frequent sampling in AliDrone is expensive because signa-
ture and world-switching operations are costly. Maintaining the maximum sampling rate
has a non-negligible amount of processing overhead on the resource limited hardware.
Therefore, an adaptive sampling mechanism is essential to minimize the processing over-
head for the drones.

As mentioned in section 5.3.1, two samples (S1, S2) are sufficient to prove alibi from
zone z if the ellipse of possible traveling range does not intersect the zone, i.e., E(S1, S2)∩
z = ∅.

Given a traveling trace described by a series of samples {S0, S1, · · · , Sn} such that ti <
ti+1, we can conclude that E(Si, Sj) ⊂ E(Si, Sk), ∀ i < j < k.

This implies that if the sample pair (Si, Sk) is sufficient, all the intermediate samples in
between are not needed in the PoA. Denote the PoA as a set of samples selected from the
trace {Sk0 , Sk1 , · · · , Skm} and let the first sample from PoA be Sk0 = S0. The task of the
Adapter is to find

ki+1 = arg max
j

(E(Ski , Sj) ∩ z = ∅) , ∀ ki < j < n. (5.4)

Since the Sampler only samples the current GPS information by demand, it can be too late
to recover a previous sample when the current location already violates PoA sufficiency.
Therefore, the Adapter must take a sample when the boundaries of the possible traveling
range and the NFZ are close.

Consider the worst case where the drone flies towards the NFZ z = (x0, y0, r0) at maxi-
mum speed vmax. Assume that the GPS receiver has a maximum update rate of R Hz. Let
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the last sample recorded in PoA be S1 = (x1, y1, t1) and the latest sample measured by the
Adapter be S2 = (x2, y2, t2) such that

D1 + D2 ≥ vmax(t2 − t1) (5.5)

where Di =
√

(xi − x0)2 + (yi − y0)2−r is the distance between the drone and the bound-
ary of z. The next GPS update will be made in ∆t = 1

R
and the difference of such distance

will be ∆D = −vmax/R.
The sample S2 should be made if the next measurement will be insufficient, i.e., D1 +

D2 + ∆D < vmax(t2 − t1 + ∆t). Therefore we have

D1 + D2 < vmax(t2 − t1 + 2/R) (5.6)

Now we can conclude that a sample should be recorded in PoA if conditions (5.5) and
(5.6) are both true.

When multiple NFZs are present, we only need to prove PoA sufficiency for the closest
zone. We present the Adaptive Sampling algorithm in Algorithm 5.1. In each iteration,
the Adapter first samples the GPS data in the normal world by calling ReadGPS() with
the same rate R that the GPS receiver updates the measurements. Then, it finds the closest
zone from NFZ list. If both conditions (5.5) and (5.6) hold, it calls GetGPSAuth(), which
acquires the sample and the signature from the GPS Sampler in the secure world.

5.4 SYSTEM EVALUATION

5.4.1 Field Studies

In this section, we evaluate the AliDrone in two cases, each representing a specific
pattern of the surrounding no-fly-zones.

Experimental Setup We implement a proof-of-concept prototype on Raspberry Pi 3 and
emulate the flight pattern of a drone by driving a vehicle carrying our prototype. As the
personal properties may be reserved as NFZs, it is reasonable to assume that the airspace
upon roads and public areas like parks are available for commercial drone navigation.
We emulate the GPS sampling of drones by driving the vehicle around a small county
region. The maximum sampling rate of the GPS sensor was set to 5 Hz and the entire
GPS traces including latitude, longitude and timestamps were recorded. The collected
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Algorithm 5.1: Adaptive Sampling Algorithm. The adaptation is achieved by
skipping unnecessary calls of GetGPSAuth() interface.

NextSample (R, S1, Z);
Input : R - GPS Update Rate; S1 - Last GPS Sample in PoA; Z - NFZ list.
Output: S2 - Next GPS sample in PoA; Sig(S2, T

−) - Signature of S2

while true do
S2← ReadGPS();
z← FindNearestZone(S2, Z);
D1← Dist(S1, z);
D2← Dist(S2, z);
if S2.t− S1.t ≤ (D1 + D2)/vmax < S2.t− S1.t + 2/R then

S2, Sig(S2)← GetGPSAuth();
return S2, Sig(S2, T

−);
else

sleep(1/R);
end

end

GPS data was replayed to the GPS Sampler to emulate the real-time GPS samples read
from the GPS Driver interface.

We specify two sets of no-fly-zones into the AliDrone client. In the first case, we set a
single NFZ with a large radius. This case represents large no-fly areas in the city or nearby
critical infrastructures like airports and power plants. In the second case, we set multiple
small and dense no-fly-zones along the route of the driving path. This case simulates the
scenario where the drone flies through a residential area and it should not fly over any of
the neighbors with no-fly-zone.

We compare the adaptive sampling with a baseline approach which we refer as “Fix
Rate Sampling”. Every time after a GPS data is sampled, the sampling thread will sleep
for a period according to the sampling rate. Since the GPS hardware has an independent
rate for updating the measurements, the sampler cannot always get the most updated
GPS data immediately after it wakes up. Therefore, we let the sampler wait until the first
measurement update for each time after it wakes up. As a result, the actual sampling
rate is as fast as configured. For example, if the update rate of GPS hardware is 5Hz, five
samples are produced in each second at t = 0.0, 0.2, 0.4, 0.6, and 0.8s. If the sampler runs
at 3Hz, it wakes up at t = 0.0, 0.33, and 0.67s. Then the time that three samples are taken
should be t = 0.0, 0.4, 0.8s.
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Figure 5.4: In airport scenario, we keep track of the total number of GPS samples, and the
distance between the vehicle and the boundary of the NFZ.

Airport Scenario FAA regulations forbid drone operations within 5 miles of any airport.
In this scenario, we set an NFZ centered at an airport with a radius of 5 miles. The GPS
trace starts about 30 feet outside the boundary of the NFZ. The vehicle drives away from
the NFZ for about 3 miles in 12 minutes.

We set the sampling rate as 1Hz and keep track of the total number of GPS samples
as well as the distance to the boundary. When the vehicle is close to the boundary, the
sampling rates of fix rate sampling and adaptive sampling are similar. As the distance
increases, the adaptive sampling requires fewer samples for a sufficient alibi. Comparing
to the 649 samples collected by 1Hz fix rate sampling, the adaptive sampling uses only 14
GPS samples.

Residential Scenario The residential areas are comprised of many small but dense NFZs.
In this scenario, we drive the vehicle through a local county for about one mile. Figure 5.5
shows the satellite view of the residential area and marks the driving route from location
A to B. For purpose of anonymity, the names and labels are removed from the map. We
use Google Maps to identify the houses along the driving route and mark each of them as
an NFZ. Every NFZ is represented by a circle centers at a house with a radius of 20 feet.
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Figure 5.5: Map and driving route of the residential area.
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Figure 5.6: We measure three metrics in the residential scenario: (a) distance to the nearest
NFZ; (b) instantaneous sampling rate; (c) total number of insufficient Proof-of-Alibi.
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In total, 94 NFZs are identified in this area.
We are interested in three metrics in the residential scenario.

Distance to the nearest NFZ: As the vehicle moves, its distances to the NFZs are chang-
ing. However, only the nearest NFZ affects the sampling rate because a PoA proving
alibi to the nearest NFZ is also sufficient for the other NFZs. The distance of the vehicle
to the nearest NFZ is shown in Figure 5.6-(a). Such distance indicates the density of the
neighborhood. At the beginning, the distance is primarily within range 50 - 100 ft. When
the vehicle enters a more dense area, the distance decreases to 20 - 70 ft. At the closest
point, the vehicle is only 21 ft to the boundary of the nearest NFZ.
Instantaneous Sampling Rate: We compare the the instantaneous sampling rate of adap-
tive sampling to fix rate sampling with 2 Hz, 3 Hz and 5 Hz in Figure 5.6-(b). Note that
the sampler may wait for a small period time for the first GPS update, the actual sampling
rate in Fix Rate Sampling can be lower than the settings. When the vehicle travels in the
less dense area, the Adaptive Sampling uses a sampling rate lower than 2Hz. This saves
the total number of GPS samples produced in PoA. As the vehicle enters the dense area,
the adaptive algorithm pushes to higher sampling rate to preserve the sufficiency of PoA.
Total Number of Insufficient PoA: If the time between two continuous GPS samples
is too long, the trace cannot provide sufficient PoA. For every continuous sample pair
(xi, yi, ti) and (xi+1, yi+1, ti+1), we count the insufficient PoAs as follows:

count +=

1 if minj(di,j + di+1,j) ≤ vmax(ti+1 − ti),

0 otherwise,
(5.7)

where di,j is the distance from the location of sample i to NFZ j.
Figure 5.6-(c) demonstrates the total number of insufficient PoAs over time. In the first

one and a half minutes, no insufficient PoA is spotted. As the vehicle drives into the
dense area, the fix rate sampling with 2Hz and 3Hz are unable to produce sufficient PoA.
In total, 39 and 9 insufficient PoAs are counted in 2Hz and 3Hz Fix Rate Sampling.

Adaptive sampling achieves as few insufficient PoAs as fix rate sampling (5Hz). How-
ever, an insufficient PoA is identified at a time the vehicle is 25 ft to an NFZ. By further
inspection of the GPS trace, we find that the GPS hardware misses an update when insuf-
ficient PoA takes place. This means that the maximum sampling rate drops from 5Hz to
2.5Hz at this point.
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5.4.2 Benchmarks

In this section, we present the benchmarks of AliDrone by testing the processing and
energy overhead in a controlled laboratory environment. The experimental platform of
the benchmarks is Raspberry Pi 3 Model B, which has a 1.2 GHz 64-bit quad-core ARMv8
processor and a 1 GB LPDDR2-900 SDRAM memory. The CPU utilization and memory
consumption of AliDrone are measured by running the GPS Sampler on a single core
under a fixed sampling rate. The power consumption is derived from the power model
presented by Kaup et al. [80]:

PCPU(u) = 1.5778W + 0.181 · u ·W (5.8)

where u is the average CPU utilization ranging from 0 to 1.
We first run the GPS Sampler under a fixed sampling rate of 2 Hz, 3 Hz and 5 Hz for 5

minutes. We use top command to measure the CPU utilization and memory consump-
tion once per second and take the average over all the measurements. Power consump-
tion is computed by equation (5.8). Two encryption and sign key sizes (1024 and 2048
bits) are tested in the benchmarks. Then, we replay the GPS data collected from the two
field studies and run the measurements again using the same settings.

Table 5.3 shows the benchmarks for CPU utilization, power consumption and mem-
ory consumption. Since the Raspberry Pi has four cores, the range of CPU utilization
measurement is [0, 25%].

Key Size (bits) Case CPU (%) Power (W)

1024

Fixed 2 Hz 2.17 ±0.05 1.5817
Fixed 3 Hz 3.17 ±0.04 1.5835
Fixed 5 Hz 5.59 ±0.06 1.5879

Airport 0.024 ±0.160 1.5778
Residential 1.567 ±0.827 1.5806

2048

Fixed 2 Hz 10.94 ±0.09 1.5976
Fixed 3 Hz 16.81 ±0.10 1.6082
Fixed 5 Hz - -

Airport 0.122 ±0.810 1.5780
Residential - -

Memory 3.27 MB (0.3%)

Table 5.3: CPU, Power and Memory Benchmarks

The benchmark results show that AliDrone only consumes a small amount of mem-
ory of about 0.3%, which suggests that it will not affect other memory intensive tasks.
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In terms of CPU utilization, AliDrone can support trustworthy GPS sampling with the
maximum rate of 5 Hz using a short sign key (1024 bits). The computation overhead in-
troduced by AliDrone is about 5.6% on average. In the case of large TEE sign key (2048
bits), AliDrone cannot keep up with the maximum sampling rate. This result implies that
more efficient signature schemes are required to support higher GPS sampling rate.

The real-world benchmarks demonstrate that the adaptive sampling mechanism can
further reduce the processing overhead. Running AliDrone in a dense residential county
using a 1024-bit sign key only costs an average of 1.5% CPU cycles. Again the measure-
ment under 2048-bit sign key is not presented because of the large overhead of computing
asymmetric signatures.

5.5 SUMMARY

In this section, we demonstrate how the design goals are achieved and summarized on
the security features of AliDrone. We claim that the following design goals are achieved:

Completeness As long as the PoAs are sufficient, it implies that the possible traveling
range of the drone does not intersect with any NFZ, which means the
drone cannot travel into any NFZ at any time.

Low Overhead As shown in evaluation, AliDrone only add to a small amount of power
consumption.

Unforgeability The malicious drone provider is unable to forge a PoA because he does
not have access to the TEE sign key.
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CHAPTER 6: ENFORCING DATA PRIVACY FOR COMMERCIAL DAAS
APPLICATIONS

In this chapter, we introduce our solution to enforce data privacy for commercial DaaS
applications, a.k.a the Secure Homomorphic Encryption (SHE) framework.

6.1 PRELIMINARIES

6.1.1 Table of Notations

Model

S = Set of data sites.
si = The i-th data site. i from 1 to n.

(xi, yi) = The coordinate of task site si.
U = Set of drones.
ui = The i-th drone. i from 1 to m.
Pi = The path assigned to drone ui.

Keys

(C+, C−) = Asymmetric sign key pair of the Client.
(U+

i , U
−
i ) = Asymmetric encryption key pair of drone ui.

(S+
i , S

−
i ) = Asymmetric encryption key pair of data site si.
skij = Shared secret key established between si and uj .

(pk+C , pk
−
C) = Homomorphic encryption key pair of the Client.

Protocol

Sig(M,K) = Sign message M with key K.
Enc(M,K) = Encrypt message M with key K.

FHE-Enc(M,K) = Homomorphically encrypt message M with key K.
Dec(C,K) = Encrypt cipher C with key K.
KGen(x, y) = Generate a shared secret with two randoms x, y.

Table 6.1: Table of Notations Used in This Chapter

6.1.2 System Model

We consider that n data sites S = {s1, s2, . . . , sn} are distributed on a 2D-plane, each
site si is associated with a coordinate (xi, yi). A Client contracts with the Drone Provider
to send m drones U = {u1, u2, . . . , um} to collect data from these sites. For simplicity,
we assume that all the drones take off from the same spot s0 with coordinate (x0, y0).
We use a directed graph G = (V,E) to describe the connectivity of these locations. The
vertices V = s0 ∪ S represent all data sites (including the take-off spot). The edges E =

{(si, sj) | ∀i 6= j ∈ {0, 1, 2, . . . , n}} represent the traveling paths taken by a drone from
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one site to another. The distance between two vertices (si, sj) is defined as the Euclidean
distance di,j =

√
(xi − xj)2 + (yi − yj)2.

The drone provider assigns a path Pk = {s0, sk1 , sk2 , . . . , skl} to each drone uk to pass
through and collect data from a group of data sites. We require that each site is visited
and only visited by one drone, i.e.P1 ∪ P2 · · · ∪ Pm = V

Pi ∩ Pj = {s0}, ∀ i 6= j ∈ {1, 2, . . . ,m}
(6.1)

When a drone ui approaches a site, it follows the SHE data collection protocol to collect
the sensor data. After a drone ui has traversed through all the sites in Pi, it will return
the collected data to the drone provider at the take-off spot. The communication protocol
and SHE features will be further discussed in section 6.2.

Secure	World

SHE
Controller

SHE
Agent

Normal	World

Untrusted	Apps

Untrusted	
Kernel

TEE
Driver

Trusted	Apps

SHE

Not	SHE

Trusted Untrusted

TEE
CoreMonitor

Data
Site

AES Data

Client
FHE	Report

Trusted
Kernel

TA	API

FHE Data
UAV 

Provider FHE Data

Figure 6.1: SHE system architecture and boundary. The green and red regions illustrate
for the trusted and untrusted components. The system boundary covers all dark compo-
nents.

6.1.3 Threat Model

We consider the adversary as an honest but curious drone provider or pilot that wants
to reveal the private data. Such an adversary may be malicious business looking to gain
benefits from leaking the sensitive data. An adversary may attempt to obtain plaintext
data by, for example, passively reading any accessible hardware buffer or actively eaves-
dropping with man-in-the-middle (MITM) attack.
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We assume that all drone platforms support secure hardware to create a trusted en-
clave (i.e., ARM Trustzone or Intel SGX). Furthermore, we assume that an asymmetric
encryption key pair is generated within the TEE by the hardware manufacturer, and the
private key is not known by the drone provider.

6.1.4 SHE Architecture

We present the system boundary and architecture of the Secure Homomorphic Encryp-
tion framework from the view of a single drone in Figure 6.1. Looking from the inside of
a drone, we divide it into two isolated regions, a trusted “secure world” and an untrusted
“normal world”.

The SHE Agent operates inside of the secure world. It is the only entity that has access
to the private TEE key. The SHE Agent is certificated by the Client such that it can read the
encrypted messages from the data sites. The major responsibility of the SHE Agent is to
recrypt the encrypted data coming from the data sites. The recrypt operation involves SHE
Agent in transforming the ciphertext encrypted by a symmetric encryption scheme (e.g.
AES) into fully homomorphic encryption (FHE) scheme. The format of the collected data
is assumed to be numerical numbers. More detail of the recrypt operation is described in
Section 6.2.

The SHE Controller is a normal world service which is responsible for coordinating and
relaying messages between the SHE Agent and the data sites. It interacts with the TEE
by calling the Trusted Application APIs provided by the SHE Agent. Note that the drone
provider is assumed to have privileged control of the normal world. Thus, a malicious
drone provider may be able to monitor the messages sent from or received by the SHE
Controller.

When the data collection phase is completed, the drone provider collects the FHE en-
crypted data from the SHE Controller and executes specific data processing algorithm
upon the collected data. Fully homomorphic encryption scheme enables the drone provider
to process the ciphertext without directly accessing the data in plaintext. The drone
provider thus can present an FHE encrypted result to the Client.

6.1.5 Security Keys

We summarize the notations and usage for the security keys to be used in the SHE
protocol in Table 6.2.
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Notation Description Visibility
C− Private Client sign key. Client
C+ Public Client verification key. Public
U−i Private SHE decryption key of ui. ui

U+
i Public SHE encryption key of ui. Public

S−i Private decryption key of si. si
S+
i Public encryption key of si. Public

skij Shared secret key of si and uj . si and uj

pk−C Homomorphic decryption key of Client. Client
pk+C Homomorphic encryption key of Client. Public

Table 6.2: Notations of keys and data used by Secure Homomorphic Encryption protocol.
Column Visibility indicates the entities who have access to the information.

• (C+, C−): asymmetric sign key pair of the Client. The sign key is used to certificate the
SHE Agent on drones. The data sites can use the public verification key to verify if the
drone is allowed to access the data.

• (U+
i , U

−
i ): asymmetric encryption key pair of the SHE agent on drone ui. They are used

to encrypt and decrypt the handshake messages during the communication with the
data sites.

• (S+
i , S

−
i ): asymmetric encryption key pair of the data site si. They are used to encrypt

and decrypt the handshake messages during the communication with the drones.

• skij : shared secret key established between si and uj . It is used to encrypt and decrypt
data. The candidate encryption method can be any symmetric encryption scheme, e.g.
AES.

• (pk−C , pk
+
C): homomorphic encryption key pair of the Client. They are used to encrypt

and decrypt messages in FHE scheme. The private key is only known to the Client so
that other parties cannot decrypt the FHE ciphertext.

6.1.6 Design Objectives

The Secure Homomorphic Encryption protocol is designed to protect the privacy of the
sensing data while still allow the drone providers to process the collected data. We list
our design goals as follows:
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Privacy-preserving The data must remain secret to the drone provider, given that a ma-
licious drone provider or pilot may attempt to eavesdrop passively
or actively.

Computable The drone provider must be able to run arithmetic computation on
the data and present the encrypted computation result to the client.

Low Overhead The protocol should have low computation and communication
overhead on the data sites with the assumption that the sensing
devices may only have limited computation resource.

6.2 SYSTEM DESIGN

6.2.1 Protocol Workflow

SHE protocol involves three entities: a Client, a drone provider and multiple data sites.
Figure 6.2 demonstrates the interactions among these entities. We describe the protocol
workflow in this section.

Client

Data
Site

UAV Provider

1. Contract

2. Path Planning

3. Collection

4. Recrypt

5. Processing
and Report

Trusted Untrusted

Figure 6.2: An overview of system workflow. The workflow starts where the Client con-
tracts an aerial mission from the drone provider by offering the location of the data sites
and certificating the drones (step 1). Then, the drone provider makes path plans for the
navigation (step 2). The drones follow SHE handshake and recrypt protocols to collect
data from the data sites. (step 3 and 4). When the navigation completes, the drone
provider gathers and processes the encrypted data to get the encrypted report back to
the client. (step 5).
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1. Contract Setup: As the first step, the Client starts by contracting a DaaS task from
the drone provider. The Client presents to the drone provider a list of data sites S =

{s1, s2, . . . , sn}, their coordinates {(x1, y1), (x2, y2), . . . , (xn, yn)}, an expiration time of the
mission te and an algorithm A to be executed on the data. The drone provider then plans
to send a set of drones {u1, u2, . . . , um} to execute the mission and submits the public
encryption keys {U+

1 , U
+
2 , . . . , U

+
m} of these drones to the Client for mission certificate.

The Client uses its asymmetric sign key to create a signature on the drones’ public keys
concatenated by the expiration time of the mission Sig(U+

i ⊕ te, C
−). This signature will

serve as the certificate during the contract.
2. Path Planning: For each drone uk, the drone provider plans a path for it to travel
through a subset of data sites Pk = {s0, sk1 , sk2 , . . . , skl}. Two conditions should be satis-
fied: (1) the drone must return to the drone provider after it visits all the assigned sites;
(2) the drone must be able to complete planned path before the expiration deadline te and
its battery capacity tb. The method and algorithm to find the optimal paths is out of the
scope of this work.
3. Data Collection: When a drone uj approaches a data site si, it sends a hello message
from the SHE agent to initiate the one-way handshake. The hello message is defined as
the drone’s public key concatenated by the certificate obtained from the Client

hello := U+
j ⊕ Sig(U+

j ⊕ te, C
−)⊕ Enc(rj, S

+
i ), (6.2)

where rj is a random picked and stored by the SHE Agent.
As the Client’s verification key C+ is public, the data sites can verify the hello message

and determine if the data collection request is valid by looking at the drone’s public key
and the expiration time. If the request is valid, it picks a second random ri and respond
with a hello-ack message as follows

hello-ack := Enc(ri ⊕ rj ⊕ pk+C , U
+
j ). (6.3)

The two randoms will be used to generate a shared secret key skij = KGen(ri, rj). This
key will be used to encrypt/decrypt the sensing data. In addition, the hello-ack message
binds the shared secret key with the homomorphic encryption key of the Client pk+C . This
key will be use in the recrypt operation.
4. Recrypt: After the shared secret key is established, the data site si can transmit private
data to the drone by

data := Enc(raw-data, skij). (6.4)
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Note that this message uses the symmetric encryption scheme, it only takes a small
amount of time and bandwidth to transmit the encrypted data.

Upon receiving the encrypted data block, the SHE agent can use the shared key to
decrypt it, and then encrypt it using the fully homomorphic encryption scheme. We refer
to this process as recrypt and it can be described as follows:

fhe-data := FHE-Enc(Dec(data, skij), pk
+
C). (6.5)

Finally, the FHE encrypted data will be stored on the drone.

5. Processing and report: When all the drones complete the navigation, the drone provider
can collect the FHE encrypted data from all the drones and run the demanded algo-
rithm A on the ciphertext. Since the data is encrypted by fully homomorphic encryption
scheme, the drone provider can perform arbitrary computation on the ciphertext.

6.2.2 Recrypt Protocol v.s. Fully Homomorphic Encryption

The Fully Homomorphic Encryption is very expensive for devices with limited com-
putation resource. Previous studies [51] show that a general computation platform (e.g.
PC) can perform FHE encryption up to 100x faster than common IoT devices (e.g. Rasp-
berry Pi). Moreover, the size of FHE ciphertext is huge. Encrypting a 10-bit numerical
number with the state-of-the-art FHE libraries such as Helib [48] or SEAL [81] produces
a ciphertext with a size of over 60k bytes. This will introduce significant communication
overhead. Although bootstrapping operation can be applied to reduce the size of the ci-
phertext, it usually takes more time than the FHE encryption operation and thus adding
heavier computation load to the IoT devices.

Compared to the FHE scheme, the recrypt protocol moves the FHE encryption from
the data sites to the drone. The data transmitted is encrypted with symmetric encryp-
tion scheme which is very fast and efficient in terms of the size of ciphertext blocks. A
standard AES-256-CBC [82] only uses 16-bytes in the ciphertext-size and it only takes less
than 1 millisecond on Raspberry Pis to run AES encryption. Furthermore, since the com-
mercial drone platforms on the market have much better computation performance than
the sensing devices, it takes less time for the drones to compute FHE encryption than the
data sites.
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6.3 HARDWARE AND IMPLEMENTATION

6.3.1 Hardware Platform

We choose ARM Trustzone [11] as our secure hardware platform. Although Intel SGX
[21] processors provide better performance in general, they do not emulate computation
environment of the drone hardwares. TrustZone partitions the software and hardware
into two worlds, a.k.a a normal world and a secure world. The hardware logic ensures
that the resources in the secure world is inaccessible from the normal world.

Specifically, we implement a proof-of-concept prototype of the SHE framework on
Raspberry Pi 3 Model B [83], which has a 1.2GHz 64-bit quad-core ARMv8 CPU that
supports ARM TrustZone. Previous effort has shown feasibility of deploying a practical
drone controller on Raspberry Pi [84].

6.3.2 Software Interfaces

Now we introduce the implementation of two main components of the SHE.

SHE Agent The SHE agent is implemented as a Trusted Application (TA) in non-privileged
mode in the secure world. It uses an asymmetric key pair to decrypt messages from
the sensors. Three interfaces are exposed to the SHE Controller: GenSharedSecret(),
SetKeys() and GetFheData().

• GenSharedSecret() is used to initiate data collection session. A session id is
provided by the SHE Controller. The SHE Agent randomly generates one half of the
shared secret rj and stores it with the session id. The shared secret rj is returned to the
SHE Controller.

• SetKeys() is called when a sensor replies a hello-ack message. The full hello-ack
message and the session id are feeded to the SHE Agent. The SHE Agent uses its
decryption key to get the other half of the shared secret ri and the homomorphic en-
cryption key pk+C from the hello-ack message. The shared key skij is computed with the
two halfs of shared secrets. The SHE Agent stores the shared key, the homomorphic
encryption key and the session id in the memory.

• GetFheData() is called when an AES encrypted data block is received by the SHE
Controller. The SHE Controller passes the encrypted data and the session id to the
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SHE Agent for recrypt operation. FHE encrypted ciphertext is returned to the SHE
Controller.

SHE Controller The SHE Controller is implemented as a daemon service in the user
space of the normal world. It is responsible for coordinating messages among SHE Agent,
sensors and the drone provider. The main features implemented on the SHE Controllers
are as follows:

• GetCertificate() is used to obtain certificate from the Client. The SHE Controller
presents the public key of its SHE Agent to the Client and get a signed certificate for a
mission.

• StartDcSession() is used to initiate a data collection session when the drone is
getting into the communication range of a sensor. It gets a half secret from the SHE
Agent by calling GenSharedSecret() and send a hello message to the sensor. Note
that although SHE Controller shares the half secret with the SHE Agent, it is not aware
of the other half secret because it does not have access to the SHE Agent’s decryption
key.

When a hello-ack message is received. The SHE Controller calls SetKeys() to estab-
lish shared keys between the SHE Agent and the sensors. Upon receiving the follow-up
data blocks, it uses GetFheData() interface to obtain FHE encrypted data from the
SHE Agent. The FHE ciphertext is stored in the memory space in the normal world.

6.4 SYSTEM EVALUATION

In this section, we present the system performance benchmarks of SHE framework in a
controlled laboratory environment. The system performance is measured in two phases.
In the data collection phase, we focus on the processing and energy overhead of drones to
run the encrypt and recrypt operations. In the data processing phase, we design several
data processing patterns and measure the computation time and memory consumption
of the drone providers.

6.4.1 Data Collection Phase

We measure the CPU utilization and energy consumption during the data collection
phase. The experimental platform that emulates a drone is Raspberry Pi 3 Model B, which
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has a 1.2 GHz 64-bit quad-core ARMv8 processor and a 1 GB LPDDR2-900 SDRAM mem-
ory. We run a “mocked sensor” (MS) on a Unix-based laptop, which has a 64-bit 2.8GHz
quad-core Intel Core I7 processor. The MS implements the SHE protocol so that it can
respond to the handshake messages and send encrypted numerical data to the drone
platform.

We use top command to measure the CPU utilization of the SHE Agent and SHE Con-
troller on the drone platform. The CPU utilization is measured once per 100 milliseconds
and we take an average on all the measurement readings in a measurement cycle. The
same power model for Raspberry Pi is used as in Section 5.4.

Each measurement cycle begins when the drone sends a hello message from the SHE
Controller to the MS. Then, the MS replies with the hello-ack message to establish the
shared AES key, and uses this key to send k encrypted data blocks to the drone platform.
As a result, the SHE Agent will run k recrypt operations to convert the AES encrypted
data to FHE encrypted data. Such measurement cycles are executed once per second. If
the one measurement cycle cannot be finished before the next cycle starts, we will abort
the last cycle and start the next one immediately.

k CPU (%) Power (W)
1 9.29 ±0.54 1.579
5 21.87 ±1.20 1.617

20 66.17 ±2.91 1.698
31 99.52 ±1.03 1.759

Table 6.3: CPU Utilization and Energy Consumption for Data Collection Phase

Table 6.3 shows the experimental result for CPU utilization and power consumption
under different number of recrypt operations in one data collection session. The hand-
shake process uses 2048-bit keys and the RSAES-PKCS1-v1 5 standard to encrypt and
decrypt the hello and hello-ack messages. The TFHE library is used in the SHE Agent
and the security level of FHE is set to match the 1024-bit asymmetric key.

The experimental result suggests that SHE reaches the processing limitation at around
31 recrypt operations per second with our security settings. It is possible to mitigate this
problem an asynchronous implementation.

6.4.2 Data Processing Phase

In the data processing phase, we design several tasks for the drone providers and eval-
uate the performance of the computation and storage overhead. The performance eval-
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uations are run on a desktop computer which has a 64-bit hexa-core Intel I7 processor
running at 3.7GHz with 16GB RAM. We choose the following tasks to be executed by the
drone provider:

• Average of N FHE encrypted data;

• Dot Product of an MxN matrix with an Nx1 vector, with each element encrypted
by FHE;

• Linear Classifier for M input with N attributes by a pre-computed model with K

classes. The model and input are both encrypted by FHE.

Task Parameters Computation Time Ciphertext-size
Before After

Average N = 10000 58.4 ms 389.5MB 73.2KB
Dot Product M = 100, N = 10 2067.5 ms 39.3MB 7.47MB

Human-small M = 10, N = 37, K = 2 2127.2 ms 15.9MB 800.6KB
Human-large M = 10, N = 561, K = 5 16517.5 ms 240.5MB 792.3KB

Table 6.4: Performance evaluation for Data Processing Phase. Most of the tasks can be
finished on the order of seconds.

These tasks are the common building blocks widely used in many comprehensive data
processing algorithms. Specifically for the linear classifier, the models are trained in plain-
text using scikit-learn [85], a Python-based machine learning framework. We use the data
from two real-world human activity recognition datasets provided by the UCI machine
learning repository [86] and train two linear classifier models with different parameters.

We measure the computation time and the ciphertext-size before and after the process-
ing phase and present the evaluation result in Table 6.4. The evaluation result suggests
that most of the data processing tasks can be finished on the order of seconds. In addi-
tion, Average and Linear Classifier tasks achieve relatively high data compression ratio
compared to the Dot Product task.

6.5 SUMMARY

In this section, we demonstrate how the design goals are achieved and summarized on
the security features of SHE. We claim that the following design goals are achieved:
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Privacy-preserving The drone provider can only access the AES-encrypted data trans-
mitted by the sensors and the FHE-enrypted data generated by
TEE. Since he does not have the AES key or the FHE decryption
key, he is not able to decrypt the data in plaintext.

Computable The drone provider can run arithmetic operations on the FHE-encrypted
data.

Low Overhead Our experiment demonstrates that our proof-of-concept prototype
can be successfully executed on a computationally limited device.
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CHAPTER 7: ENABLING EFFICIENT AND TRUSTWORTHY CONTRACT
MANAGEMENT COMMERCIAL DAAS APPLICATIONS

In this chapter, we introduce the design and implementation of UAVChain to enable
efficient and trustworthy contract management for commercial DaaS applications.

7.1 PRELIMINARIES

7.1.1 Table of Notations

Model

C = Set of clients.
ci = The i-th client. i from 1 to M .
P = Set of drone providers.
pi = The i-th drone provider. i from 1 to N .
S = Set of task sites.
si = The i-th task site. i from 1 to n.

(xl, yl) = The coordinate of task site sl.

Protocol

tb = Battery duration of a drone.
r = Amount of reward coins deposit by the client.
b = Amount of bidding coins deposit by the drone provider.
m = Amount of mediate fee deposit by the client.

Formulation
Ti,j = Time to travel from si to sj .
T k = Total operation time on the k-th path.
xk
i,j = Binary variable. =1 if si to sj is in the k-th path.

Table 7.1: Table of Notations Used in This Chapter

7.1.2 Graph Model

We consider that M clients C = {c1, c2, . . . , cM} and N drone providers P = {p1, p2, . . . , pN}
are distributed on a 2D-plane, and denote the coordinates of a drone provider pi as
(x0

i , y
0
i ).

A task from client cj requires a drone provider to send drones and visit n task sites
Sj = {sj1, s

j
2, . . . , s

j
n}with no specific order. The coordinates of each task site sjl is denoted

as (xj
l , y

j
l ). We assume that all the drones owned by the drone provider pi always take off

and return to the same location of pi during each task.
We use a directed graph G = (V,E) to describe the connectivity of all the aforemen-

tioned locations. The vertices V = P ∪ S1 ∪ S2 · · · ∪ SM represent the locations of all
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drone providers and task sites. The edges E = {(vi, vj) | ∀i 6= j, vi ∈ V, vj ∈ V } represent
the traveling path taken from one vertex to the other. The distance between two ver-
tices (vi, vj) is defined as the Euclidean distance. When a drone travels from one vertex
to another, we always assume the traveling path is a straight line without any obstacle.
Plenty of previous research have studied the path planning problem to avoid obstacles
[87, 88, 89]. We argue that our approach can adapt to the obstacle scenario by replac-
ing the distances between vertices with the actual traveling distance computed from a
obstacle-avoiding algorithm.

7.1.3 Task Workflow

The workflow of a task starts when a client posts a task description to an Ethereum-based
platform, a.k.a. UAVChain. A task description includes the following information:

• The general description for the purpose of this task;

• The reward for this task in cryptocurrency;

• The deadline that this task needed to be finished before;

• The requirement for the drone specification, e.g. carrying weight, battery hours, etc.

• A list of locations for the task sites that the drones will visit;

• A list of operations that the drones will execute at each task site, e.g. taking a picture;

• The description of the report to be returned to the client;

• A list of proof-of-work to be returned to the client.

The task information will be displayed to the public until it is assigned to a drone
provider. The assignment of a task from client cj to drone provider pi guarantees that the
drone provider pi has enough drones to traverse all the task sites in Sj . Also, we opti-
mize the assignment algorithm such that the chosen drone provider only uses a minimal
number of drones to finish the task before its deadline. We will further discuss the task
assignment algorithm in Section 7.3.

Once a task is assigned from cj to a drone provider pi, the drone provider pi will send
a couple of drones to traverse all the task sites in Sj . When a drone approaches a task
site, it executes the demanded operation according to the task description, and generates
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a corresponding proof-of-work. The proof-of-work is a verifiable data structure that proves
the demanded operation is executed correctly.

UAVChain allows the client to specify four different types of proof-of-work: location,
time, image and encrypted data. Depending on task description, the drone provider may
be demanded to submit multiple proof-of-works in one task. Taking the parcel delivery as
an example, the drone provider should submit a picture that shows the parcel is dropped
at the door of the receiver, and a proof of location to prove the correctness of the delivery
address. The detailed design and implementation of the proof-of-work is demonstrated
in Section 7.2.2.

Upon task completion, the drone provider will submit the report and the proof-of-work
to the UAVChain. The client can verify the report and the proof. If the client is satisfied,
the amount of the promised cryptocurrency will be transferred automatically from the
account of the client to the account of the drone provider. Otherwise, the client can ask a
mediator, who is an authorized entity, to step in and resolve the conflict.

7.1.4 Threat Model

We identify three different types of adversaries in this system. First, we consider that a
dishonest drone provider can attempt to get the reward from clients without completing
the demanded tasks. Such a malicious drone provider may fake the report or proof to
bypass the verification step. Second, we consider that a dishonest client can try to avoid
paying the promised reward to the drone provider when a task is completed correctly.
Last but not least, we consider the adversary as an outsider who impersonates a legiti-
mate participant and aims to gain reward from or take down the UAVChain. A potential
attack from such an adversary can be a denial-of-service (DoS) attack, which exploits
triggering unnecessary computation flow in the system.

We assume that all drone platforms support secure hardware to create a trusted en-
clave (i.e., ARM Trustzone or Intel SGX). Furthermore, we assume that an asymmetric
encryption key pair is generated within the TEE by the hardware manufacturer. The
drone provider has the public key but does not have access to the private key.

7.1.5 Design Objectives

The UAVChain is designed to assign DaaS tasks in an efficient and trustworthy man-
ner. Our solution leverages the trusted execution environment (TEE) on the drones to
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Figure 7.1: An overview of system workflow. The workflow starts where a client post a
task to the UAVChain using the smart contract API (step 1). Then, the drone providers
bid for the task and one of them wins the task and get the assignment (step 2). The
drone provider sends a couple of drones to execute the task (step 3). When the task is
finished, the drone provider gathers the report and proof from the drones and submit to
the UAVChain (step 4). The client can get the report and verify the proof (step 5). If the
client is not satisfied with the result, a Mediator will step in to mediate between the client
and drone provider to resolve the conflict (step 6).

provide trustworthy proof-of-work, and utilizes smart contracts to manage the contract
information on a distributed ledger. The main design goals of UAVChain are listed below:

Efficiency UAVChain must be efficient in terms of system performance. In addi-
tion, it should use minimal resource to complete the tasks.

Verifiability The task result returned to the clients must be trustworthy and verifi-
able so that the client can distinguish if the drone provider is a potential
adversary.

Correctness UAVChain must resolve the reward distribution correctly regardless of
the completion of the tasks. Given the existence of adversaries, UAVChain
should be able to detect and punish malicious users as well as to protect
the benefits of honest participants.
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7.2 SYSTEM DESIGN

7.2.1 System Workflow

We describe the workflow of UAVChain in this section using an example of one client
and one drone provider. Figure 7.1 demonstrates the interactions among the participants
in the protocol.

1 struct TaskDescription {

2 string public info;

3 // The general description for the task

4
5 uint256 public reward = r;

6 // The amount of reward paid to the drone provider

7
8 uint256 public expiration;

9 // Deadline of this task

10
11 DroneSpec public spec;

12 // The required specification for the drones

13
14 Location[] public locations;

15 // The coordinates of task sites, expressed as (lat, lon) pairs

16
17 string public operation;

18 // Operation taken by drones at each task site

19
20 string public report;

21 // Description of report returned to the client

22
23 enum PoWType { LOCATION, TIME, IMAGE, ENC_DATA }

24 PoWType[] public types;

25 // Types of proof-of-work

26 }

Listing 7.1: TaskDescription Data Structure

1. Post Task: In the first step, the client starts by posting a task description on the
UAVChain. The data structure of a task description is shown in Listing 7.1. It includes
a general description for the task, an amount of the promised reward, a task deadline,
a specification of the drone requirement, a list of the locations for the task sites, the op-
eration of the drones, a description of the report, and the types of proof-of-work. When
the client posts a task, she is required to deposit r coins in the UAVChain, which is the
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promised reward stated in the task description. Once the transaction of task posting is
processed, the information of this task becomes public to all the potential drone provider
for a tb hours. The client will not get back the coins unless (1) the task is not assigned to
any drone provider within time tb, or (2) the assigned drone provider fails to complete
the task.
2. Assign Task: Any drone provider who is willing to take a task can bid for it by de-
positing a number of coins b. Since we do not consider the game theory based strategies,
we simply let b = r. While bidding for a task, the drone provider is required to provide
the following information:

• The number of drones he can offer;

• The drone specification;

• The location of the drone provider.

After tb hours since the task is posted, a scheduled transaction will be triggered to
run the task assignment algorithm. The algorithm aims to find the drone provider who
can complete the task with minimal number of drones. In addition, the task assignment
algorithm will give a suggested route to the drone provider.
3. Execute Task: Upon getting the assignment, the drone provider sends a swarm of
drones as instructed by UAVChain to traverse all the task site. When a drone approaches
a task site, it executes the demanded operation as described in the task description. The
report and proof are obtained at the same time by in the trusted execution environment
(TEE) on the drone.
4/5. Submit/Get Report and Proof: When all the drones return to the drone provider,
the drone provider gathers all the report and proof from the drones and submit them to
the UAVChain. In addition, the public keys of the drone TEE are also uploaded so that
the client can verify the cryptographic signatures generated by the drone TEE. The report
and proof are encrypted and presented through a private url. Only the client can view
these contents with her credential. If the client is satisfied with the report and proof, the
promised r coins will be transferred to the drone provider.
6. (Optional) Mediate: If the client is not satisfied with the report and proof presented by
the drone provider, she can ask a Mediator to step in. We assume that the mediator is an
authorized individual or the quorum of a group of judges such that it does not collude
with either client or drone provider. To initiate the mediate step, the client is required to
deposit m coins as the mediate fee. If the mediator decides that the client wins, the client
can get all her deposit r+m coins back, and the drone provider will be responsible to pay
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the mediate fee m. Otherwise if the drone provider wins, the client will lose the all of her
deposit. The drone provider will get r coins as the reward and the mediator will get m
coins.

7.2.2 Proof-of-work Design

The construction of proof-of-work follows the similar idea of AliDrone and SHE. UAVChain
supports four types of proof-of-work: location, time, image and encrypted data. We
briefly describe the data format and the use case of each type of the proof.

Location A proof of location is constructed as a latitude-longitude pair of GPS
coordinates and a TEE signature on the coordinates. It can be used to
show that the drone has visited the authenticated location. When com-
bined with other proofs, it can also prove that the drone has executed
certain operations at this location.

Time A proof of time is constructed as a timestamp and a TEE signature on
the timestamp. It can be used to show that the drone is operated at the
authenticated time.

Image A proof of image is constructed as an image and a TEE signature on the
hash of the image file. It can be used to authenticate that the image is
taken by this drone.

Encrypted Data A proof of data is constructed as the ciphertext of the data and a TEE
signature on the decrypted data. It can be used to prove the data source
when the task requires the drones to collect or transmit data with other
devices.

7.3 TASK ASSIGNMENT PROBLEM

When multiple drone providers bid for the same task, we aim to choose the drone
provider who can complete the task with the minimal number of drones (Goal Efficiency).
A commercial drone can only travel for tens of miles due to the limitation of the battery
hour. To simply the problem, we assume that all the drones have identical battery hour
and traveling speed.
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Figure 7.2: Examples of feasible and infeasible path planning. The dummy variables are
introduced to avoid producing an infeasible solution.

7.3.1 Path Planning Formulation

To find the drone provider best fits the efficiency goal, we formulate the path planning
problem for one task and one drone provider using integer programming. We consider
that all the drones will departure from the location of the drone provider and traverse n

task sites over the task region. Denote s0 be the departure location and the other n task
sites being {s1, s2, . . . , sn}. The drone provider needs multiple drones and assign each
drone to visit a subset of the task sites. As shown in Figure 7.2(a), the drone provider
need to send two drones to visit all the five task sites.

The objective of our path planning problem is to send the least possible number of
drones so that all the task sites are visited before any drone runs out of battery tb. Let xk

i,j

be a binary variable representing whether the k-th planned path travels from task sites si
to sj . Thus,

xk
i,j =

1 if si → sj is in the k-th planned path;

0 otherwise.
(7.1)

Specifically, we let xk
i,i = 0, ∀i, k to avoid self-loop. For example, in Figure 7.2(a), there

are two trajectories planned, which are s0 → s1 → s2 → s3 → s0 and s0 → s4 → s5 → s0.
Therefore we have x1

0,1 = x1
1,2 = x1

2,3 = x1
3,0 = 1 for the first trajectory and x2

0,4 = x2
4,5 =

x2
5,0 = 1 for the second trajectory. All other xk

i,js are equal to zero. We further define
xi,j =

∑n
k=1 x

k
i,j being the binary variable representing whether there exists a planned

path containing the trajectory from si to sj .
Besides xk

i,j and xi,j , we also introduce a set of dummy variables 0 ≤ zki ≤ n ∈ Z, where
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1 ≤ k, i,≤ n. zki s are used to enforce the topology property that any planned path must
go through the departure location s0. As shown in figure 7.2(b), this path planning is
infeasible because there is a subloop s4 → s5 → s4 which does not go through s0. The
zki s are introduced and further used in equation 7.6 to avoid getting such an infeasible
solution.

We assume all the drones have the same battery hour tb and flying speed. With the
location information of s0, s1, . . . , sn, it is easy to obtain the single trip time from any task
site to anther. For simplicity, we denote Ti,j, ∀i 6= j ∈ {0, 1, . . . , n} being the time for a
drone to travel from si to sj . Furthermore, we require every drone to come back to the
departure location at the end of the navigation. Besides traveling time, every drone needs
to hover above a task site for a small period of time e to perform the demanded operation.
Therefore, one intuitive constraint is that the total operation time on every planned path,
denoted as T k, can not exceed the battery hour of any drone, where T k is defined as

T k =
n∑

i=0

∑
j 6=i

Ti,jxk
i,j + e(

n∑
i=0

∑
j 6=i

xk
i,j − 1) ∀k ≥ 1. (7.2)

We thus show the formal formulation as follows.

min
n∑

j=1

x0,j (7.3)

s.t.
n∑

i=0

xi,j =
n∑

l=0

xj,l = 1 ∀ j 6= 0 (7.4)

n∑
i=0

xk
i,j =

n∑
l=0

xk
j,l ∀ j,∀ k (7.5)

zki − zkj + (n + 1)xk
i,j ≤ n ∀ i, j 6= 0,∀ k (7.6)

T k ≤ tb ∀ k (7.7)

The intuition of these constraints can be interpreted as follows:

(7.4) Every task site will be included exactly by one path. Therefore, every task site
will be visited by a drone and no redundant drone will visit the same task site.

(7.5) For the k-th path Pk, the in degree and out degree on Pk will be the same for any
node. That is, if a task site si is on Pk, then its in and out degree on this path are
both equal to one. On the other hand, if sj is not on Pk, its in and out degree on
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this path are both equal to zero.

(7.6) The dummy variable zki s are formulated to enforce that the departure site is in-
cluded in every planned path, which means that all the drones will eventually
come back to the drone provider.

(7.7) The time constraint which enforce the total operation time (traveling time plus
the execution time for each task sites) cannot exceed the battery hour of a drone.

7.3.2 Heuristic Algorithm

The formulated problem is NP-hard. We design a heuristic algorithm to approximate
the path planning problem.

In the worst case, a trivial solution to the path planning problem is just to send n drones,
each visiting one task site correspondingly and coming back to the departure spot. In this
solution, the worst total traveling time is

Tworst = 2
n∑

i=1

T0,i. (7.8)

In order to minimize the number of drones in the assignment, we introduce two heuris-
tics:

1. Each drone should make maximal contribution to minimize the worst total time.

2. The task sites close to each other should be assigned to the same drone.

Suppose we already assigned a path Pk = {s0, sk1 , ..., skl} to a drone. The worst total
time for the rest of the task sites is reduced by

∆Tworst = 2
n∑

i=1

T0,i, ∀ si ∈ Pk. (7.9)

When we want to assign a new site sl to the same path, the worst total time can be further
reduced by ∆Tworst = 2T0,l. Heuristic 1 attempts to maximize ∆Tworst in the assignment.
As a result, the farthest sites will be first assigned to this path.

However, the heuristic 1 alone may assign a very far task site to the path. An example
is shown in Figure 7.3. Suppose we already assigned a path P1 = {s0, s1} and we want to
assign the next site to this path. According to heuristic 1, the farthest site is s5. However, a
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Figure 7.3: Examples of path assignment using the heuristics. The heuristic 1 alone may
assign a very far site to the path (s5 in (b)). Combined with heuristic 2, s2 can be selected
as a better assignment.

better assignment should be s2 in this scenario because s2 is the second-farthest site from
s0 and also s2 is close to the current path.

To approximate heuristic 2, we use the idea of incremental path cost to compute the extra
cost introduced by assigning a new site sj to a current path Pk. Denote the current path
cost of Pk = {s0, sk1 , ..., skl} as

TPk
=

l−1∑
i=1

Tki,ki+1
+ T0,k1 + Tl,0. (7.10)

Since the new site sj can be inserted between any two neighbor spots, i.e. changing
the path from ski → ski+1

to ski → sj → ski+1
, we define the incremental path cost as the

minimal incremental cost to insert the new site at arbitrary location

∆T (Pk, sj) = min

 TPk
− T0,k1 + T0,j + Tj,k1 ,

TPk
− Tkl,0 + Tkl,j + Tj,0,

minl−1
i=1(TPk

− Tki,ki+1
+ Tki,j + Tj,ki+1

)

 (7.11)

Selecting a task site with the minimal incremental path cost results in choosing a site that
is close to the current path Pk.

We list the heuristic algorithm in Algorithm 7.1. The algorithm AssignPath() started
with a set of all the task sites and an empty assignment plan. In each iteration, it creates
a new path and assigning sites one by one to the path. The criteria of selecting the new
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Algorithm 7.1: The algorithm AssignPath() searches for a feasible assignment
with minimal number of drones.
AssignPath (T , S, e, tb):
Input : T - matrix for traveling costs; S - task sites; e - cost for operation; tb -

battery hour.
Output: P - an assignment for m drones to traverse |S| spots.

m← 0; . The number of drones.
P ← {};
while S is not empty do

m←m + 1;
Pm← {s0};
Cm← 0;
while true do

i← arg minj(∆T (Pm, sj)− 2T0,j); . Minimizing heuristics
if Cm + ∆T (Pm, si) + e > tb then

break; . A new site cannot be assigned to this path.
end
Cm← Cm + ∆T (Pm, si) + e;
Pm.insert(si); . Minimizing incremental path cost.
S ← S\si;

end
P ← P ∪ Pm;

end

sites is to optimize the two heuristics. As we want to maximize ∆Tworst (heuristic 1) and
minimize ∆T (Pk, sj) (heuristic 2), we combine them as

H := ∆T (Pk, sj)−∆Tworst, (7.12)

and minimizes H in each assignment. The algorithm repeats assigning a task site to the
path until the cost of this path exceeds the battery hour tb. If there are sites not assigned
to any path, a new path will be created, which means the drone provider needs to commit
one more drone to the task. When the algorithm terminates, all the task sites are assigned
to the paths. As a result, m is the minimal number of drones needed to complete the task,
and P is a feasible assignment of these drones. The complexity of this algorithm is O(n2).

With Algorithm 7.1, we can compute the most suitable drone provider for a task in
the smart contract code. Since it is hard to estimate the cost for operation (e), we can set
e = 0. When a potential drone provider bids for a task, the contract will have its location
and set it as s0. Combining it with the locations of the task sites, we can get the set of all
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the sites S and compute the matrix for the traveling costs T . Then, the contract runs the
AssignPath algorithm on these parameters to get the minimal possible number of drones
and a feasible path assignment.

7.4 SYSTEM EVALUATION

7.4.1 Load Test on UAVChain Prototype

In this section, we present the system performance benchmarks of UAVChain in a con-
trolled laboratory environment. We implement a proof-of-concept prototype for UAVChain
in Solidity and enable the interfaces for the participants to post a task, bid for a task, get
task assignment and submit report and proof. We deploy the blockchain miners on a local
cluster of four VMs. All the VMs are configured with 8 virtual CPUs and 16 GB of RAM.

We also deploy a web server on another local PC with a 3.6-4.9 GHz 8-core Intel i7-
9700K processor. The server runs Ubuntu 16.04 64-bit and Apache Web Server 2.4.43. The
web server accepts http requests from the clients and drone providers and runs smart
contract code in the backend. It provides four interfaces to the users: PostTask, BidTask,
UploadReportProof, GetReportProof.

We use Apache JMeter 5.4.1 to load test the prototype and measure the average re-
sponse time of the web server. In the first scenario, we simulate a load where PostTask
is requested by N clients within 5 minutes, with N varied from 1 to 1000. In the sec-
ond scenario, we simulate that 100 drone providers upload the report and proof through
the UploadReportProof interface. We test on different size of the payload from 1KB to
1MB. From our experience, this range covers the sizes of the common types of report and
proof. The small proofs (e.g. location) are usually less than 1 KB, and the large proofs
(e.g. image) are around 1MB.

The experiment results of the load tests are shown in Figure 7.4. The blue lines and
charts show the region where our system handles the requests with negligible number
of failures. As the number of client grows over 300 and the size of uploaded payload
goes over 128 KB, we observe a significant increase in the failures. This indicates that the
system is overwhelmed.
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Figure 7.4: Load test on the proof-of-concept prototype of UAVChain. The blue lines and
charts demonstrate that the system can handle all the requests. The red lines and charts
show that the system is overwhelmed.

7.4.2 Simulation on Path Planning

In this section, we present the simulation results of our path planning algorithm on two
real-world datasets. As shown in Figure 7.5, the sparse map is retrieved from Chicago
Array of Things project [90], and the dense map is retrieved from Chicago Energy Bench-
marking project [91]. We randomly select from the locations of the sensors as the task
sites. In the sparse map, there are total 63 task sites spanning over the area of Chicago
city, which is roughly 300 mile2. There are total 1600 task sites in the dense map as shown
in figure 7.5(b) over the same area. In both two maps, task sites are presented with red
dots. We mannually select the location of drone provider on the map, represented as a
purple pentagram. All the drones will departure from and return to this location for the
task.

In our simulation, we set the battery hour of the drones to 30 mins and the flying speed
to 40 mph. We further set the task operation time e to be 500 ms, 800 ms and 1000 ms
corresponding to different tasks. We compare the performance of our path planning al-
gorithm with the state of art optimization solver [92] on the sparse map. We do not apply
the solver on the dense map because the number of task sites is too large to be solved with
the solver in reasonable time. For the dense map, we randomly sample different sized
subsets from all the 1600 task sites and apply our path planning algorithm on them. We
thus present how the algorithm performance changes corresponding to different number
of task sites. The detailed simulation settings are presented in Table 7.2.

For the sparse map, both our algorithm and the solver obtain the minimum number of
drones to be 5, which is the optimal solution. However, our path planning algorithm is
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Compare
with solver

Number of
task sites

Execution
time (ms)

Sparse map X 63 500
Dense map × 100, . . . , 1500 500, 800, 1000

Table 7.2: Simulation settings

(a) Sparse Map (b) Dense Map

Figure 7.5: Two Real World task sites Map

significantly faster than the solver. The solver obtains the solution in 163, 534s, while our
algorithm only takes 0.043s.

For the dense map, we present the number of drones calculated by our algorithm cor-
responding to different number of task sites in Figure 7.6. It is easy to observe that even
the number of task sites increase dramatically, the number of drones does not increase
too much. This is because most of the task sites are assigned to the same path. Another
interesting observation is that, when the task sites become denser, an increase of execu-
tion time is more likely to result in more drones needed. The reason is that when the task
sites are deployed very dense, the total execution time becomes a more important source
of drone operation time. While in the case when the task sites are sparse, the drone trav-
eling time is the dominant source of the total navigation time.

7.5 SUMMARY

In this section, we demonstrate how the design goals are achieved and summarized on
the security features of UAVChain. We claim that the following design goals are achieved:

57



Figure 7.6: Path planning algorithm results with different number of task sites

Efficiency Our system benchmark demonstrate that UAVChain can survive large
concurrent loads. Also, due to our task assignment algorithm, the tasks
are always executed by the drone provider who can finish the task with
minimal number of drones.

Verifiability The PoW enables client to verify the result with the corresponding proofs.

Correctness The mediate protocol ensures that the dishonest participant is pun-
ished. The final distribution of the coins is guaranteed to be correct
thanks to the smart contract.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 SUMMARY

In this thesis, I present to enforce the privacy compliance of DaaS applications through
a combination of hardware-assisted security extension and various security tools. By
introducing the hardware-assisted security extension into the DaaS applications, we have
an external source of trust so that it enables drones to generate trustworthy proofs and
data.

Following this principle, I designed three systems, i.e. Alidrone, SHE and UAVChain,
to tackle the location privacy, data privacy and management problems of DaaS applica-
tions correspondingly. In each problem, I implement a proof-of-concept prototype and
evaluate the system performance in a controlled laboratory environment. The bench-
mark results show that although the system performance is bounded by certain security
parameters, the presented approaches can meet the requirement in the normal use cases.

8.2 LESSONS LEARNED

Throughout the design and experiments in this thesis, I learned that the solution de-
rived from HAPE strategy often encounters a tradeoff between system performance and
certain security parameters. For example, the maximum number of trusted GPS samples
taken per second is constrained by the length of the encryption and sign key. When the
key is longer than 2048 bits, the drone CPU cannot keep up with the GPS sampling rate.
Similar results can also be observed in the system benchmark of Recrypt operation in
Chapter 6.4.

Although these designs have their performance bottlenecks, there are many potential
solutions to improve the system performance. One direct solution is to find the minimum
security parameters that are sufficient in different use cases. In addition, the hardware
improvement of the future SoCs and hardware-assisted security extensions will help to
raise the performance bottleneck. Some potential strategies are also mentioned in the
following section.
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8.3 FUTURE WORK

8.3.1 Optimization on System Performance

Inspired by the fact that the performance of hardware-assisted approaches are bounded
by certain security parameters, one potential direction of the future work may consider
optimizing the system performance in the following ways.

Using Symmetric Cryptography Asymmetric encryption is used in both Alidrone and
SHE, which consumes a non-negligible amount of time if the number of encryption oper-
ations increase. One solution is to use ephemeral symmetric keys between the drone TEE
and other entities.

Batching Sign & Encrypt Operations In the design of all three systems, we do not con-
sider batching the operations like sign and encryption. Actually, there are plenty of ways
that we can batching technique to optimize system performance. For example in SHE,
when TEE receives data from the sensors, it can store it temporarily without running
homomorphic encryption right away. Later when it collects more data, it can run aggre-
gation first and then encrypt the result using homomorphic encryption. In this scenario,
TEE can save a huge amount of time on the expensive homomorphic encryption.

8.3.2 Large Scale Tasks

One limitation of the UAVChain is that if a task requires a huge number of drones,
UAVChain may not be able to find a single drone provider with enough resource to
complete the task. In this situation, a client may consider splitting the task into small
non-relevant sub-tasks and publish them as standalone tasks. These tasks will be bid
separately and assigned to multiple drone providers.

The drawback of the aforementioned solution is that the client has to track multiple
contracts with different drone providers. We can solve this problem by allowing drone
providers to offload part of the tasks to other drone providers. For example, if a drone
provider A is assigned a task which requires ten drones, it can complete part of the
task using its five drones, and then publish a task including the other five drones to the
UAVChain. Another drone provider B will execute this new task and return the reports
and proofs to A. Finally, A will submit all the collected results to the original task. In this
solution, the client is only contracted with drone provider A.

60



8.3.3 3D Physical Model and Obstacles

For model simplicity, we assume the drone can travel from any site to another without
any obstacle in our path planning module. The traveling distance between two sites is
calculated as the 2D Euclidean distance. However, the drones may encounter obstacles,
such as trees, buildings and No-Fly Zones, and thus change their flying height from time
to time in real world.

Some possible solutions to deal with the problems in 3D physical world include (1)
More precise map of the task area including obstacles, (2) Deploying traditional robotic
obstacle avoidance algorithm, i.e. visibility graph algorithm [93], to adjust trajectory
when drones are close to obstacles.
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