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ABSTRACT

We look at two facets of machine learning from a perspective of dynamical sys-
tems, that is, the data generated from a dynamical system and the iterative inference
algorithm posed as a dynamical system. In the former, we look at time series data
which is generated from a mixture of processes. Each process exists for a fixed
duration and generates i.i.d categorical data points during that duration. More than
one process can coexist at a particular time. The goal is to find the number of such
hidden processes and the characteristic categorical distribution of each. This model
is motivated by the problem of finding error events in error-logs from a mobile
communication network.

In the second direction, we consider the problem of regression using a shallow
overparameterized neural network. Broadly, we look at training the neural network
with the gradient descent algorithm on the squared loss function and discuss the
generalization properties of the output of the gradient descent algorithm on an un-
seen data point. We look at two problems in this setting. First, we discuss the
effect of ¢, regularization on the squared loss and discuss how different strength
of regularization provides a trade-off on the generalization of the neural network.
Second, we look at squared loss without regularization and discuss the generaliza-
tion properties when the true function we are trying to learn belongs to the class of
polynomials in the presence of noisy samples. In both the problems, we consider
the gradient descent algorithm as a dynamical system and use tools from control

theory to analyze this dynamical system.
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CHAPTER 1

INTRODUCTION

In machine learning systems, either the data is generated from a dynamical sys-
tem or the learning algorithm itself behaves like a dynamical system or both. In
problems like clustering or classification, we often assume the data to be given
apriori, generated from an 1.i.d distribution. Although the data is static, one infers
patterns from the data using iterative algorithms optimizing a certain loss func-
tion. For example, it is possibly either a greedy algorithm like K-means for clus-
tering or the gradient descent algorithm and its variants. The path of the variables
changing through each iteration can be viewed as a dynamical system in discrete
time. For example, in gradient descent over a loss function [(w) of variable w,
Wip] = Wy — ea%tl(wt). To further simplify the dynamical system, one can approx-
imate it with a continuous-time ordinary differential equation in the limit ¢ — 0,
%w = —%tl(wt). In this dissertation, we look at the continuous-time equivalent
of gradient descent and analyze the dynamical system from the perspective of Lya-
punov theory [1]. This intuition is carried over to the analysis of gradient descent
in discrete time.

In many online systems, the data is modeled like it is generated from a dynamical
system. For example, in reinforcement learning [2], the data points in the current
time (state reward pairs) are generated based on the past states, actions, and rewards.
This generation process of the data can be modeled as a dynamical system that
is intrinsic to the environment. Another example is the problem of change-point
detection in the context of statistics and signal processing. In its vanilla version,
data points are assumed to be generated at regular time intervals from a distribution
that changes with time, and one has to infer the time instants that mark the change.

An application would be detecting anomalous behavior in a router network [3]. In



this dissertation, we consider time series data from a communication network with
millions of data points which is assumed to be generated from a dynamical system
with a large number of unknown parameters.

We consider the following two problems in the dissertation.

* Inference on data generated from a dynamical system: This application
deals with the error-logs from a mobile network. We infer changes in the
pattern over time in the error-log. The log data consists of time annotated
messages. A message can be thought of as a short phrase or string. An event is
a hidden construct introduced to model the generation of the time series data.
Events can be considered as a generator of messages with timestamps. An
event is characterized by a categorical distribution over the set of all messages
and an unknown process to generate the timestamps. Each event exists during
an unknown time interval and generates i.i.d messages from its characteristic
distribution with timestamps from the unknown process. The entire error-log
is modeled to be generated from an unknown number of events which can
co-exist in time. This is a complex dynamical system with many unknown
parameters. We only care to learn the number of events, the time duration in
which these events exist and the parameters of the categorical distribution for
each event. We connect this problem to topic modeling in natural language

processing and also use change-point detection.

* Gradient descent as a dynamical system: We consider the problem of re-
gression between data points f(z;;w) and y;,¢ € [n]. Function f(z;;w) is
a two-layer overparameterized neural network. We answer two questions in
this setting. Firstly, suppose the weight w is initialized to w, and the objective
function is the least squares loss with addition of a regularizer \|jw — wy|?.
For varying strengths of A\, we show different generalization bounds which
can improve upon the generalization performance without addition of regu-
larization. We model gradient descent as a continuous-time dynamical system
and use tools like Lyapunov arguments from control theory to analyze the dy-
namical system. Secondly, we look at the squared error loss without addition

of regularization. In this setting we characterize the convergence of weight w



when initialized with wy. This leads to a generalization result for the neural
network at the end of gradient descent iterations. Using Lyapunov theory, we

provide results for gradient descent and its continuous-time equivalent.

Organization: In Chapter 2 we present the problem on the inference of error-
logs. We provide a scalable algorithm and theoretical analysis for the change detec-
tion part of the algorithm. In Chapter 3 we analyze the gradient descent algorithm
for an overparameterized neural network with regularization. Our main result in
this chapter is to show generalization guarantees as a function of the regularization
strength. In Chapter 4, we look at the generalization guarantees for an overparame-
terized neural network in the absence of regularization. We use the Neural Tangent
Kernel approach (described in Chapters 3 and 4) to show convergence of weights
under gradient descent and this leads to the generalization results. Chapter 5 pro-

vides conclusions and highlights some future directions.



CHAPTER 2

LEARNING LATENT EVENTS FROM
NETWORK MESSAGE LOGS

2.1 Introduction

In modern data and web services, such as cellular data/voice services, there is a
vast number of network elements, like routers or virtual machines (VMs), which
communicate with one another. Efficient management and operations of these net-
work elements are of paramount importance as the network size is growing increas-
ingly complex with new technologies like 5G. An integral component of network
management is the ability to identify and understand error events. We use error
event to describe any failures that occur in the hardware and/or software compo-
nents of the network. However, the complex interdependence between different
network elements poses a significant challenge in characterizing an error event
because error messages can be generated in network elements beyond the actual
source of error. An error log contains all error messages with timestamps generated
from different error events occurring at different network elements. In this disser-
tation, we are interested in the problem of mining latent error event information
from messages in the error log. The mined events are useful for troubleshooting
purposes. Also, the correlations captured through each learned event could subse-
quently provide useful on-line detection of potential errors. While our methodology
is broadly applicable to any type of data center network, we validate our algorithms
by applying them to a large dataset provided by a major wireless network service
provider.

While mining error logs have been studied extensively in different contexts,

(see [4, 5] for excellent surveys; also see Section 2.1.2 in [6] for a detailed liter-



ature review) there are some fundamental differences in our setting.

Motivating example: Suppose Alice makes a cellphone call to Bob. This call is
first routed through a base station which is attached to a data center verifying the
caller credentials. If Alice is not at her home location, a VM at this data center
must contact a database at her home location to verify her credentials. Once the
credentials are verified, the caller’s cellular base station connects to the base station
near Bob through a complicated network spanning many geographical locations.
Consider two potential error scenarios: (i) an error occurs at a router in the path
from Bob to Alice’s base station, (ii) an error occurs at a router connecting the data
centers verifying the caller’s credentials. In either scenario, the call will fail to be
established leading to the generation of error messages not only at the failed routers
but also at network elements responsible for the call establishment which can be
in a different geographical location than the router. Additionally, depending on the
vendor of a given network element, the timing and content of the error messages
could be different.

Based on the motivating example, we now note the following fundamental char-

acteristics which make our error event mining problem challenging:

* In our setting, the source of an error is usually not known. Furthermore, the
same type of error log message could be generated due to many different
errors. From a data modeling point of view, each (latent) event can be viewed
as a probabilistic-mixture of multiple log-messages and also, the set of log

messages generated by different events could have non-zero intersection.

* Each error event can produce a sequence of messages, including the same
type of message multiple times, and the temporal order between distinct mes-
sages from the same event could vary based on the latency between net-
work elements, network-load, co-occurrence of other uncorrelated events,
etc. Thus, the temporal pattern of messages may also contain useful infor-
mation for our purpose. In our model, the message occurrence times are

modeled as a stochastic process.

* These messages could correspond to multiple simultaneous events without

any further information on the start-time and end-time of each event.
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* An additional challenge arises because the network topology information is
unknown, because modern networks are very complicated and are constantly
evolving due to the churn (addition or deletion) of routers and switches.
Third-party vendor software and hardware have no way of providing infor-
mation to localize and understand the errors. Thus, topological information

cannot be used for event mining purposes.

The practical novelty of our work comes from modeling for all of the above
factors and proposing scalable algorithms that learn the latent event signatures (the

notion of signature is made precise in Section 2.2 along with their occurrence times.

2.1.1 Contributions

We model each error event as a probabilistic mixture of messages from different
sources.! In other words, the probability distribution over messages characterizes an
event, and thus acts as the signature of the event. Each occurrence of an event also
has a start/end time and several messages can be generated during the occurrence
of an event. We only observe the messages and their timestamps while the event
signatures and duration window is unknown; also there could be multiple simulta-
neous events occurring in the network. Given this setting, we study the following
unsupervised learning problem: given a collection of timestamped log-messages,
learn the latent event signatures and event start/end times.

The main contributions in this dissertation are as follows:

* Novel algorithmic framework: One of the main contributions of dissertation
is a novel mapping of our problem which transforms it into a problem of topic
discovery in documents. Events in our problem correspond to topics and mes-
sages in our problem correspond to words in the topic discovery problem.
However, there is no direct analog of documents. Therefore, we use a non-

parametric change-point detection algorithm, which has linear computational

't is more precise to use the terminology event-class to refer to a specific fault-type; each occur-
rence can be referred to as an instance of some event class. However, for simplicity, we simply refer
to event-class as event and we just say occurrence of the event to mean instance of this class.



complexity in the number of messages, to divide the message log into smaller
subsets called episodes, which serve as the equivalents of documents. After
this mapping has been done, we use a well-known algorithm for topic discov-
ery, called Latent Dirichlet Allocation (LDA), to solve our problem. We call
our algorithm CD-LDA.

» Scalable change-point detection: While the details of the LDA algorithm
itself are standard, nonparametric change-point detection as we have used
in dissertation is not as well studied. We adapt an idea from [7] to design
an O(n) algorithm where n is the number of messages in the message log.
Our change detection algorithm uses an easy to compute total-variation (TV)
distance. We analyze the sample complexity (i.e., the number of samples re-
quired to detect change points with a high-degree of accuracy) of our change-
point detection algorithm using the method of types and Pinsker’s inequality
from information theory. To the best of our knowledge, no such sample com-

plexity results exist for the algorithm in [7].

» Experimental validation:We compare our algorithm to two existing ap-
proaches adapted to our setting: a Bayesian inference-based algorithm and
graph-based clustering algorithm. We show the benefits of our approach com-
pared to these methods in terms of scalability and performance, by applying
it to small samples extracted from a large dataset consisting of 97 million
messages. We also validate our method against two real-world events by
comparing the event signature learned by our method with a domain expert
validated event signature for a dataset consisting of 700K messages.? Finally,
we also show results to indicate scalability of our method by applying to the

entire 97 million message dataset.

2Note that manual inference of event signatures is not scalable; we did this for the purpose of
validation.



2.1.2 Context and Related Work

Data-driven techniques have been very useful in extracting meaningful informa-
tion out of system-logs and alarms for large and complex systems. The primary goal
of this “knowledge” extraction is to assist in diagnosing the underlying problems
responsible for log-messages and events. Two excellent resources for the large body
of work done in the area are [4, 5]. Next, we outline some of the key challenges in
this knowledge extraction, associated research in the area, and our problem in the
context of existing work.

Mining and clustering unstructured logs: Log-messages are unstructured tex-
tual data without any annotation for the underlying fault. A significant amount of re-
search has focused on converting unstructured logs to common semantic events [5].
Note that the notion of semantic events is different from the actual real-world events
responsible for generating the messages, nevertheless, such a conversion helps in
providing a canonical description of the log-messages that enables subsequent cor-
relation analysis. These works exploit the structural similarity among different mes-
sages to either compute an intelligent log-parser or cluster the messages based on
message texts [8, 9, 10, 5]. Each cluster can be viewed as a semantic event which
can help in diagnosing the underlying root-cause. One work closely related to ours
is [11], in which the authors mine network log messages to first extract templates
and then learn pairwise implication rules between template pairs. Our setting and
objective are somewhat different in that we model events as message distributions
from different elements with each event occurrence having certain start and end
times; the messages belonging to an event and the associated occurrence time win-
dows are hidden (to be learned). A more recent work [12] develops algorithms to
mine an underlying structural event as a workflow graph. The main differences are
that, each transaction is a fixed sequence of messages unlike our setting where each
message could be generated multiple times based on some hidden stochastic pro-
cess, and furthermore, in our setting, there could be multiple events manifested in
the centralized log-server.

Mining temporal patterns: Log-messages are time series data and thus the
temporal patterns contain useful information. Considerable research has gone into

learning latent patterns, trends and relationship between events based on timing in-



formation in the messages [13, 14, 15]. We refer to [16, 5, 17] for a survey of these
approaches. Extracted event patterns could be used to construct event correlation
graphs that could be mined using techniques such as graph clustering. Specifically,
these approaches are useful when event streams are available as time series. We
are interested in scenarios where each event is manifested in terms of time series
of unstructured messages and furthermore, same message could arise from multiple
events. Nevertheless, certain techniques developed for temporal event mining could
be adapted to our setting as we describe in Section 2.4.1.2; our results indicate that
such an adaptation works well under certain conditions. Note that our goal is to
also learn the event-occurrence times.

Event-summarization: In large dynamic systems, messages could be gener-
ated from multiple components due to reasons ranging from software bugs, system
faults, operational activities, security alerts etc. Thus it is very useful to have a
global summarized snapshot of messages based on logs. Most works in this area
exploit the inter-arrival distribution and co-occurrence of events [18, 19, 20, 21, 5]
to produce summarized correlation between events. These methods are useful when
the event stream is available and possible event types are known in advance. This
limits the applicability to large systems like ours where event types are unknown
along with their generation time window.

The body of work closest to our work is research on event summarization. How-
ever, there are some fundamental differences in our system: (i) we do not have a
readily available event stream, instead, our observables are log-messages, (ii) the
event types are latent variables not known in advance and all we observe are mes-
sage streams, (iii) the time boundaries of different latent events are based on a
learning objective, and (iv) since we are dealing with a large system with multiple
components where different fault types are correlated, the same message could be
generated for different root causes (real-world events).

Apart from the above, a recent paper [22] which uses deep learning models for
anomaly detection in message logs by modeling logs as a natural language sequence

is also worth a mention.



2.2 Problem Statement and Preliminaries

Problem statement: We are given a dataset D consisting of messages generated
by error events in a large distributed data-center network. We assume that the mes-
sages are generated in the time interval [0, 7']. The set of messages in the dataset
come from discrete and finite set M.

We use the term message to mean either a template extracted from a message
or an alarm-id. Each message has a timestamp associated with it, which indicates
when the message was generated. Suppose that an event e started occurring at time
S, and finished at time F. In the interval of time [S,, F.], event e will generate a
mixture of messages from a subset of M, which we will denote by M.. In general,
an event can occur multiple times in the dataset. If an event e occurs multiple times
in the dataset, then each occurrence of the event will have start and finish times
associated with it.

As noted before, for simplicity, we will say event to mean an event-class and
occurrence of an event to mean an instance from the class. An event e is character-
ized by its message set M, and the probability distribution with which messages
are chosen from M., which we will denote by p(©, i.e., pgﬁ) denotes the probability
that event e will generate a message m € M.. For compactness of notation, we can
simply define p(®) over the entire set of messages M, with pgﬁ) =0ifm ¢ M..
Thus, p(e) fully characterizes the event e and can be viewed as the signature of the
event. We assume that the support sets of messages for two different events are not
identical.

It is important to note that the dataset simply consists of messages from the set
M; there is no explicit information about the events in the dataset, i.e., the event
information is latent. The goal of this chapter is to solve the following inference
problem: from the given dataset D, identify the set of events that generated the
messages in the dataset, and for each instance of an event, identify when it started
and finished. In other words, the output of the inference algorithm should contain

the following information:
* The number of E events which generated the dataset.

* The signatures of these events: p(1), p® ... p&).
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 For each event e € {1,2,..., E}, the number of times it occurred in the

dataset and, for each occurrence, its start and finish times.

Notations: We use the notation X; € M, for the i'" message. Also, let ¢; be the
timestamp associated with the i** message. Thus the dataset D can be characterized
by tuples (X1, 1), (Xa,t2),... (X, t,) of n data points.

Before we describe our machine-learning pipeline, we first explain the notion of
messages in the context of our work.

Messages: In our work, messages generated by different network elements are

one of two types: syslog texts in the form of raw-texts, and alarms.

1. Syslog texts: These are raw-textual messages sent by software components from
different elements to a logging server. Raw syslog data fields include times-
tamp, source, and message text. Since the number of distinct messages are very
large and many of them have common patterns, it is often useful [8, 9, 10, 5]
to decompose the message text into two parts: an invariant part called tem-
plate, and parameters associated with the template. For example, a syslog mes-
sage “service wqgffv failed due to connection failure to
IP address a.b.c.d using port 8231” would reduce to template
“service wqgffv failed due to connection failure to IP
address * using port =.” There are many existing methods to extract
such templates [4, 5], ranging from tree-based methods to NLP-based methods.
In our work, we have a template-extraction pre-processing step before applying

our methods. We also say message to simply mean the extracted templates.

2. Alarms: Network alarms are indications of faults and each alarm type refers to
the specific fault condition in a network element. Each alarm has a unique name
and the occurrences are also tagged with timestamps. In this work, we view each
alarm as a message. Note that since each alarm has a unique name/id associated
with it, we do not pre-process alarms before applying our methods. Examples of
alarms are mmscRunTImeError, mmscEAIFUnavailable sent froma

network service named MMSC.

Machine-learning pipeline: In Figure 2.1, we show the machine-learning pipeline

for completeness. This dissertation focuses on the module “Latent Event Learner”
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i s Signature
| processing | Detector Learner

\.

Alarms from
Central DB

Figure 2.1: Figure showing the machine-learning pipeline. Our main contribution
is in “Latent Event Learner” module, specifically proposing the CD-LDA
algorithm.

which has a data-processing step followed by the key proposed algorithm in this dis-
sertation, namely the CD-LDA algorithm which we describe in Section 2.3. Syslog
texts require more pre-processing while alarms do not. We have shown the two
types of messages in Figure 2.1, but for the purposes for developing an algorithm,
in the rest of this dissertation, we only refer to messages without distinguishing

between them.

2.3 Algorithm CD-LDA

We now present our solution to this problem which we call CD-LDA (Change-
point Detection-Latent Dirichlet Allocation). The key novelty in this dissertation
is the connection that we identify between event identification in our problem and
topic modeling in large document datasets, a problem that has been widely studied
in the natural language processing literature. In particular, we process our dataset
into a form that allows us to use a widely used algorithm called LDA to solve our
problem. In standard LDA, we are given multiple documents, with many words
in each document. The goal is to identify the mixture of latent topics that gener-
ated the documents, where each topic is identified with a collection of words and a
probability distribution over the words. Our dataset has similar features: we have
events (which are the equivalents of topics) and messages (which are the equiv-
alents of words) which are generated by the events. However, we do not have a
concept of documents. A key idea in our dissertation is to divide the dataset into
smaller datasets, each of which will be called an episode. The episodes will be

the equivalents of documents in our problem. We do this using a technique called

12



nonparametric change-point detection.

Now we describe the concept of an episode. An episode is an interval of time
over which the same set of events occur i.e., there is no event-churn, and at time
instants on either side of the interval, the set of events that occur are different from
the set of events in the episode. Thus, we can divide our dataset of events such that
no two consecutive episodes have the same set of events. We present an example
to clarify the concept of an episode. Suppose the duration of the message dataset
T = 10. Suppose event one occurred from time 0 to time 5, event two occurred
from time 4 to time 8, and event three occurred from time 5 to time 10. Then there
are four episodes in this dataset: one in the time interval [0, 4] where only one event
occurs, one in the time interval [4, 5] where events one and two occur, one in the
time interval [5, 8] where events two and three occur and finally one in [8, 10] where
only event three occurs. We assume that between successive episodes, at most one
new event starts or one existing event ends.

We use change-point detection to identify episodes. To understand how the
change-point detection algorithm works, we first summarize the characteristics of

an episode:

* An episode consists of a mixture of events, and each event consists of a mix-

ture of messages.

* Since neighboring episodes consist of different mixtures of events, neighbor-
ing episodes also contain different mixtures of messages (due to our assump-

tion that different events do not generate the same set of messages).

* Thus, successive episodes contain different message distributions and there-
fore, the time instances where these distributions change are the episode

boundaries, which we will call change points.

* In our dataset, the messages contain timestamps. In general, the inter-arrival
time distributions of messages are different in successive episodes, because
the episodes represent different mixtures of events. This can be further ex-

ploited to improve the identification of change points.

13



Based on our discussion so far in this section, CD-LDA has two phases as fol-

lows:

1. Change-point detection: In this phase, we detect the start and end time of each
episode. In other words, we identify the time-points where a new event started

or an existing event ended. This phase is described in detail in Section 2.3.1.

2. Applying LDA: In this phase, we show that, once episodes are known, LDA
based techniques can be used to solve the problem of computing message dis-
tribution for each event. Subsequently, we can also infer the occurrence times
for each event. This phase along with the complete algorithm is described in
Section 2.3.2.

2.3.1 Change-Point Detection

Suppose we have n data points and a known number of change-points k. The data
points between two consecutive change points are drawn 1.i.d from the same distri-
bution.? In the inference problem, each data point could be a possible change point.
A naive exhaustive search to find the & best locations would have a computational
complexity of O(n*). Nonparametric approaches to change-point detection aim to
solve this problem with much lower complexity even when the number of change
points is unknown and there are few assumptions on the family of distributions,
[23], [71, [24].

The change-point detection algorithm we use is hierarchical in nature. This is
inspired by the work in [7]. Nevertheless our algorithm has certain key differences
as discussed in Section 2.3.3.1. It is easier to understand the algorithm in the setting
of only one change point, i.e., two episodes. Suppose that 7 is a candidate change
point among the n points. The idea is to measure the change in distribution between
the points to the left and right of 7. We use the TV distance between the empirical
distributions estimated from the points to the left and right of the candidate change-

point 7. In our context the TV distance between two probability mass functions p

3The i.i.d. assumption is not always true in practice as messages could be sparser in time in
the beginning of an event. Indeed, the algorithms developed in this work does not rely on the i.i.d.
assumption, however, the assumption allows us to prove useful theoretical guarantees
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and ¢ is given by one half the L1 distance 0.5||p — ¢||;. This is maximized over
all values of 7 to estimate the location of the change point. If the distributions are
sufficiently different in the two episodes the TV distance between the empirical
distributions is expected to be highest for the correct location of the change point
in comparison to any other candidate point 7 (we rigorously prove this in the proof
Theorem 1, 2).

Further, we also have different inter-arrival times for messages in different
episodes. Hence we use a combination of TV distance and mean inter-arrival time

as the metric to differentiate the two distributions.* We denote this metric by ﬁ(l ).

D(1) = |pr(1) — pr(D)|l + |ESL(1) — ESg(D)] @.1)

where pr (1), pr(l) are empirical estimates of message distributions to the left and
right of [ and ES, (1), ES r([) are empirical estimates of the mean inter-arrival time
to the left and right of [, respectively. The empirical distributions py, (1), pr(l) have
M components. For each m € M, we can write

l-_l ]1 Xz =
Prm(l) = iz {l m} (2.2)
N "X, =
pR’m(l) — Zl—l n{_l m} (2.3)

The mean inter-arrival time ES, (1) and ES (1) are defined as

-1
I/E:;SL(Z) — M (2.4)
~ AN
BSn(l) = Zn—_l_l (2.5)

We sometimes write lA)(l) as lA)(in), where the argument [ = yn. Symbol 7 denotes

the index [ as a fraction of n and it can take n discrete values between zero to one.

4One can potentially use a weighted combination of the TV distance and mean inter-arrival time
as a metric with the weight being a hyperparameter. While the unweighted metric performs well in
out real-life datasets, it is an interesting future direction of research to understand how to optimally
choose a weighted combination in general.
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The indicator function 1{A} takes value one only when event A occurs and zero
otherwise.

Algorithm 1 describes the algorithm in the one change-point case. To make the
algorithm more robust, we declare a change point only when the episode length is
at least an and the maximum value of the metric (2.1) is at least ¢.

Let us consider a simple example to illustrate the idea of change-point detection
with one change point. Suppose we have a sequence of messages with unequal
inter-arrival times as shown in Fig. 2.2. All the messages are the same, but the first
half of the messages arrive at a rate higher than the second half of the messages.
In this scenario, our metric reduces to the difference in the mean inter-arrival times
between the two episodes. So, lA)(l) = |IESL(Z) — IESR(Z) |. The function D in terms
of data point [ for this example is shown in Fig. 2.2. As we show later in Section
2.3.3, the shape of D will be close to the following when the number of samples is
large: D will be increasing to the left of change-point 7 = ~yn, attain its maximum

at the change point and decrease to the right.

prLprLprLprLprL Pr PR Pr PR PR

oSNy S S

T=9n

7

o

Figure 2.2: Example change point with two episodes.

Algorithm 1 Change-point detection with one change point
1: Input: parameter 6 > 0, > 0.
2: Output: changept denoting whether a change point exists and the location of
the change-point 7.
Find 7 € argmax; D(l)
if D(r) > dand an < 7 < 1 — an then
return changept = 1, 7.
else
return changept = 0.

AR A

Next, we consider the case of multiple change points. When we have multiple
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change points, we apply Algorithm 1 hierarchically until we cannot find a change
point. Algorithm 2 CD(D, «, ) is presented below.

Algorithm 2 CD(D, «, 9)
1: Input: data points D, minimum value of TV distance ¢, minimum episode
length a.

2: Output: Change-points 7y, . . . , .
3: Run FINDCHANGEPT(1,n).
4: procedure FINDCHANGEPT(L, H)
5: changept, T < ALGORITHM 1 (X, X .1,..., Xy, «,0).
6: if changept exists then
7: 7, + FINDCHANGEPT(L, 7),
8: 7, <— FINDCHANGEPT(T, H).
9: return {7, 7, 7}
10: else
11: return

Algorithm 2 tries to detect a single change point first, and if such a change point
is found, it divides the dataset into two parts, one consisting of messages to the left
of the change point and the other consisting of messages to the right of the change
point. The single change-point detection algorithm is now applied to each of the
two smaller datasets. This is repeated recursively till no more change points are
detected.

2.3.1.1 Discussion: What metric to use for change-point detection in categorical
data?

We have used the TV distance between two distributions to estimate the change
point in metric (2.1). One can also use other distance measures like the /5 distance,
the Jensen-Shannon (J-S) distance, the Hellinger distance, or the metric used in [7].
The metric used in [7] is shown to be an unbiased estimator of the ¢y distance for
categorical data in Appendix A. We argue that for our dataset, all of the above
distances give similar performance. Our dataset has 97 m points and 39330 types
of messages. In the region where the number of data points is much more than the

dimension of the distribution, estimating a change point through all of the above
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Table 2.1: Comparison between different metrics for change point.

||p — QH1 =0.1
Metric TV Uy Unbiased /5, [7] | J-S | Hellinger
|7/n —0.5] | 0.021 | 0.030 0.025 0.030 0.030

metrics gives order wise similar error rate. We show this through synthetic data ex-
periments since we do not know the ground truth to compute the error in estimating
the change point in the real dataset.

We present one such experiment with a synthetic dataset here. Consider two
distributions p and ¢ whose support set consists of ten points. We assume that p is
the uniform distribution, while ¢[1] = ¢[2] = ... = ¢[5] = 0.09, and ¢[6] = ¢[7] =
... = q[10] = 0.11. There are n = 25000 data points. The first half of the data
points are independently drawn from p and the second half of the data points are
drawn from ¢. Table 2.1 shows the absolute error in estimating the change point at
0.5n to be of the order of 1072 for all the distance metrics.

We test the [; distance metric on real data and we show in Section 2.4.2 that it
is satisfactory. Since we do not know the ground truth, we take a small part of the
real dataset where we can visually identify the approximate location of the major
change points. The change-point algorithm with ¢/; metric correctly estimates these
locations.

A graph-based change-point detection algorithm in [25] can be adapted to our
problem such that the metric computation is linear in the number of messages. We
can do this if we consider a graph with nodes as the messages and edges connecting
message of the same type. But, one can show that the metric in [25] is not consistent

for this adaptation.

2.3.2 Latent Dirichlet Allocation

In the problem considered in this dissertation, each episode can be thought of as
a document and each message can be thought of as a word. Like in the LDA model

where each topic is latent, in our problem, each event is latent and can be thought
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of as a distribution over messages. Unlike LDA-based document modeling, we
have timestamps associated with messages, which we have already used to extract
episodes from our dataset. Additionally, this temporal information can also be used
in a Bayesian inference formulation to extract events and their signatures. However,
to make the algorithm simple and computationally tractable, as in the original LDA
model, we assume that there is no temporal ordering to the episodes or messages
within the episodes. Our experiments suggest that this choice is reasonable and
leads to very good practical results. However, one can potentially use the temporal
information too as in [26, 27], and this is left for future work.

If we apply the LDA algorithm to our episodes, the output will be the event sig-
natures p'® and episode signatures #€), where an episode signature is a probability
distribution of the events in the episode. In other words, LDA assumes that each
message in an episode is generated by first picking an event within an episode from
the episode signature and then picking a message from the event based on the event
signature.

For our event mining problem, we are interested in event signatures and finding
the start and finish times of each occurrence of an event. Therefore, the final step
(which we describe next) is to extract the start and finish times from the episode
signatures.

Putting it all together: In order to detect all the episodes in which the event e
occurs prominently, we proceed as follows. We collect all episodes £ for which
the event occurrence probability 0L is greater than a certain threshold n > 0. We
declare the start and finish times of the collected episodes as the start and finish
times of the various occurrences of the event e. If an event spans many contiguous
episodes, then the start time of the first episode and the end time of the last contigu-
ous episode can be used as the start and finish time of this occurrence of the event.
However, for simplicity, this straightforward step in not presented in the detailed

description of the algorithm in Algorithm 3.

Remark 1. There are many inference techniques for the LDA model, [28, 29, 30, 31,
32, 33]. We use the Gibbs sampling based inference from [28] on the LDA model.

For a discussion on the comparison between the above methods, see Appendix A.

Remark 2. CD-LDA algorithm works without knowledge of topology graph of
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Algorithm 3 CD-LDA(D, «, §, 1)

1: Input: Data points D, threshold of occurrence of an event in an episode 7, the
minimum value of TV distance ¢, minimum episode length a.

2: Output: Event signatures p™, p® ... pF), Start and finish time S,, F, for
each event e.

3: Change-points 71, ..., 7, < CD(D, «, ). Episode & < {X,,_,,..., X, } for
i=1tok+ 1.

g M pELE) e LDA(E,, ..., Exu)

5: Consider event e. G, < Set of all episodes £ such that 9&5) > 1. Se, F, < start
and finish times of all episodes in set G..

message-generating elements. If the topology graph is known, then the algorithm
can be improved as follows. We can run a change-detection phase separately for
messages restricted to each element and its graph neighbors (either single-hop or
two-hop neighbors). The union of change points could be used in the subsequent
LDA phase. Since impact of an event is usually restricted to few hops within the
topology, such an approach detects change points better by eliminating several mes-

sages far from event source.

Note that the LDA algorithm requires an input for the number of events 2. How-
ever, one can run LDA for different values of E and choose the one with maximum
likelihood [29]. Hence E need not be assumed to be an input to CD-LDA. One can
also use the Hierarchical Dirichlet Process (HDP) algorithm [34] which is an exten-
sion of LDA and figure out the number of topics from the data. In our experiments,

we use the maximum likelihood approach to estimate the number of events.

2.3.3 Results for Change Detection (CD)

As mentioned earlier, the novelty in the CD-LDA algorithm lies in the connection
we make to topic modeling in document analysis. In this context, our key contribu-
tion is an efficient algorithm to divide the dataset of messages into episodes (doc-
uments). Once this is done, the application of the LDA of episodes (documents),
consisting of messages (words) generated by events (topics) is standard. Therefore,

the correctness and efficiency of the CD part of the algorithm will determine the
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correctness and efficiency of CD-LDA as a whole. We focus on analyzing the CD
part of the algorithm in this section. We only present the main results here, and the
proofs can be found in the Appendix A.

Section 2.3.3.1 shows that the computational complexity of CD algorithm is lin-
ear in the number of data points. Section 2.3.3.2 contains the asymptotic analysis

of the CD algorithm while Section 2.3.3.3 has the finite sample results.

2.3.3.1 Computational complexity of CD

In this section we discuss the computational complexities of Algorithm 1 and
Algorithm 2. We will first discuss the computational complexity of detecting a
change point in case of one change point. Algorithm 1 requires us to compute
arg max; lA)(l) for 1 <[ < n. From the definition of lA?(l) in (2.1), we only need to
compute the empirical probability estimates py (1), pr(l), and the empirical mean
of the inter arrival time ES/, (1), ES(I) for every value of [ between 1 to n.

We focus on the computation of py(l), pr(l). Consider any message m in the
distribution. For each m, we can compute pr, (1), pr.m(l) in O(n) for every value

of [ by using neighboring values of py,,,,(I — 1), prm(l — 1).

(0= Dprm(—1) + 1{X;y =m}
[
(n—1+1D)prm(l—1) —1{X;_y =m}
n—1

Prm(l) =

Prm(l) = (2.6)
The computation of ES;, (1), ESg({) for every value of [ from 1 to n is similar.

Performing the above computations for all M/ messages, results in a computa-
tional complexity of O(nM). In the case of k change points, it is straightforward to
see that we require O(nM k) computations. In much of our discussion, we assume
M and k are constants and therefore, we present the computational complexity re-
sults in terms of n only.

Related work: Algorithm 2 executes the process of determining change points
hierarchically. This idea was inspired by the work in [7]. However, the metric D

we use to detect change points is different from that of [7]. The change in metric
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necessitates a new analysis of the consistency of the CD algorithm which we present
in the next subsection. Further, for our metric, we are also able to derive sample

complexity results which are presented in Section 2.3.3.3.

2.3.3.2 The consistency of change-point detection

In this section we discuss the consistency of the change-point detection algo-
rithm, i.e., when the number of data points n goes to infinity one can accurately
detect the location of the change points. In both this subsection and the next, we
assume that the inter-arrival times of messages within each episode are i.i.d., and

are independent (with possibly different distributions) across episodes.

~

Theorem 1. For 4 € (0,1), D(7) = lim,_,o D(yn) is well-defined and D(7)
attains its maximum at one of the change points if there is at least one change

point.

Remark 3. The proof of Theorem 1 for the single change-point case is relatively
easy, but the proof in the case of multiple change points is rather involved. So we
only provide a proof of the single change-point case and refer the interested reader

to Appendix A for the proof of the multiple change-point case.

Proof. Proof for single change-point case: We first discuss the single change-
point case. Let the change point be at index 7. The location of the change point is
determined by the point where ZA)(l ) maximizes over 1 < [ < n. We will show that
when n is large the argument where lA)(l ) maximizes converges to the change-point
T.

Suppose all the points X to the left of the change-point 7 are chosen i.i.d from a
distribution F' and all the points from the right of 7 are chosen from a distribution
G, where ' # (. Also, say the inter-arrival times At;’s are chosen i.i.d from
distribution F; and G, to the left and right of change-point 7, respectively. Let
Il = ~9n, 0 < v < 1 be the index of any data point and 7 = ~n, the index of the
change point.

Case 1 7 < 7: Suppose we consider the value of ZA?(Z) = ﬁ(’yn) to the left of the
actual change point, i.e., [ < 7 or 7 < . The distribution to the left of yn, py(n),
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has all the data points chosen from the distribution F'. So pr(7n) is the empirical
estimate for F'. On the other hand, the data points to the right of yn come from a
mixture of distribution F' and G. pr(yn) has g fraction of samples from F' and

t—% fraction of samples from G. Figure 2.3 explains it pictorially.

MM
7

Figure 2.3: Consistency with two change points.

So pr(1) and pr(l) defined in (2.3) converges to

~ ~ 1-
Pull) B, palt) » T=1F + LG )

Similarly, we can say that the empirical mean estimates £.5,(1) and ESg(l) con-

verge to

ESp(l) — EF,, ESg(l) — PEE + ITEGt (2.8)

We can combine (2.7) and (2.8) to say that ﬁ(ﬁn) — D(¥) where

D(Fn) = ||pr(3n) — r(An)|| + |ESL(Fn) — ESa(Fn)]

- 1—
— D) == —%(HF—GHﬁ EF, — EG,) 2.9)

1—

Note that from the definition of D, D(v) = ||F — G||; + |EF; — EG|.

Case 2 7 > v: Proceeding in a similar way to Case 1, we can show

D@En) — D) = %(HF — G|y + |EF, — EGy|) (2.10)
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From Case 1 and Case 2, we have

<9, DGn) - DG) = 1—2D()

7> DGn) - D) = ZD() @1

Equation (2.11) shows that the maximum of D(7) is obtained at ¥ = ~.

2.3.3.3 The sample complexity of change-point detection

In the previous subsection, we studied the CD algorithm in the limit as n — oo.
In this section, we analyze the algorithm when there are only a finite number of
samples. For this purpose, we assume that the inter-arrival distribution of messages
have sub-Gaussian tails.

We say that Algorithm CD is correct if the following conditions are satisfied. Let

€ > 0 be a desired accuracy in estimation of the change point.

Definition 1. Given ¢ > 0, Algorithm CD is correct if

e there are change-points 0 < ' = v,..., 7 = v, < 1 and the algorithm
gives 1, ..., 7 such that max; |y; — ;| < e.

e there is no change point and ﬁ(’yn) <0,Vy € {v, .y}

Now we can state the correctness theorem for Algorithm 2. The sample com-

plexity is shown to scale logarithmically with the number of change points.

Theorem 2. Algorithm 2 is correct in the sense of Definition 1 with probability
(1—p)if
log (%) M+e

2 " e2(1+c)

n = | max

for sufficiently small o, 9, € and for any ¢ > 0.
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Remark 4. The proof of this theorem uses the method of types and Pinsker’s in-
equality. We present the proof for the single change-point case for the sake of
clarity. We move the proof for multiple change points to Appendix A.4.

Proof. We first characterize the single change-point case in finite sample setting.
In order to get the sample complexity, we prove the correctness for Algorithm 1 as
per Definition 1 with high probability. Before we go into the proof, we state the

assumptions on «, d, e under which the proof is valid.

* Suppose a change point exists at index yn and the metric ZA?(fyn) converges
to D(+) at the change point. Then ¢ can only be chosen in following region:
¢ has to be less than the value of the metric at the change point, € < D(7); €

has to be less than the minimum episode length, ¢ < min(y, 1 — 7).

* If a change point exists at index yn, « has to chosen less than the minimum

episode length minus €, @ < min(y,1 — ) —e.
* The threshold § < D(7v) — e.

Under the above assumptions we show that Algorithm 1 is correct as per the

Definition 1 with probability at least

min(4, 1)%e2a?
512max(02,1)

1 —(6n+4)exp (— n+ M log(n)>

Suppose

n = arg max D(n)
n

The idea is to upper bound the probability when Algorithm 1 is not correct. From

Definition 1 this happens when,
* Given a change point exists at v € (0, 1),
(DAR) > 6,|y -7 <e,a <7 <1—a)

occurs. Say the event F; denotes By = {D(J) > 6,|7y — 3| < e, < 7 <
1—a}.
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* Given a change point does not exist,
DA)>da<i<l—a

When a change point does not exist we write v = 0. Say the event F, denotes
Ey={y=0,a<7y<1—-a}l.

So

P(Algorithm 1 is NOT correct)

~

< P(ES)0 <y < 1)+ P(DR) > 6| Ey) (2.12)

We analyze each part in (2.12) separately.

Case 1: Suppose no change point exists and say all the data points are drawn
from the same multinomial distribution F' and all inter-arrival times are generated
i.i.d from a distribution F;. Given event Es, if ||pL(An) — F|, ||pr(An) — F,
|I@SL(ﬁn) — EF,| and ]ESR(ﬁn) — EF,| are all less than 6/4, then D(J) < 4.

So P(D(3) > 0|Ey) < P([pL(3n) = FI| > 6/4|Ez) + P(|pr(An) — F|| >
d/4|Es) + P(|ESL(An) —EF;| > §/4|Ey) + P(|ESg(An) — EFi| > §/4|Es). Now,
we can use Sanov’s theorem followed by Pinsker’s inequality to upper bound each

of the above terms as

P(D®) > 6|Ey) < (nA + 1) exp(—nd?/16)

+ (1 =3)n + DM exp(—nd?/16) + 2 exp(—and?/320?)

+ 2 exp(—and?/320%)

ad?
<4 2)M N 2.13
S 4(n+2)7 exp ( n32max(02,1)) 13)
Case 2: Next, we look at the case when a change point exists at yn. Say the

messages are drawn from a distribution F' to the left of the change point and G to
the right of the change point. Also, suppose the inter-arrival time distribution to the

left of the change point is F; and the inter-arrival time distribution to the right is

Gy. According to our assumptions, « is chosen such that o + ¢ <y < 1 — (a +¢€).
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Hence

~

P(E{I0 <y < 1)< P(D(An) <00 <y < 1)
+P(F=71>eD(r) > 8,0 <y <1)
+Pla<i<l—alDA)>6F—v<e0<vy<1) (2.14)

Given the assumption on o, P(aw <7 < 1 — a]lA)('y) >0,7—7 <e60<vy<
1) = 0. The rest of the proof deals with upper bounding P (ﬁ(ﬁn) <00<y<1)
and P([§ — | > ¢e|D(7) > 6,0 < y < 1).

In Lemmas 1-3 we develop the characteristics of 7 and D(%) when a change
point exists at yn. Lemmas 1-3 are proved in Appendix A.5 and Appendix A.6.

First, we analyze the concentration of ﬁ(?n) for any value of ¥ in the Lemma 1.

Lemma 1. The difference |D(An) — D(F)| < € wp. at least 1 —
3n exp (—1228—0;2271 +M log(n)> for all values of v when ﬁ(?n) is defined.

Lemma 1 shows that the empirical estimate ﬁ(”y’n) is very close to the asymptotic
value D(7¥) with high probability. Recall that the argument at which D maximizes
is n. we next show in Lemma 3 that the value of metric D at 7 is very close to the

value of the D at the change-point .

Lemma 2. The difference |D(y) — D) < 2 wp. 1 -
2.2
3n exp (—%n + Mlog(n)).

Finally, in Lemma 3 we show that 7 is close to the change-point v with high

probability.
Lemma 3. The absolute error |7 — 7| < € wp. 1 —
3n exp (_52?122(2@271 +M log(n)>.
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Also, using Lemma 2 and assuming that ¢ is chosen such that § < D(y) — €,

P(DGFn) < 6l0 <~ < 1)
< P(D(An) <40 <y < 1,|D(Fn) — D(7)| < ¢)
+ P(ID(Fn) — D(7)| > ¢)

2.2

12802

< 0+ 3nexp (— n + Mlog(n)) (2.15)

Lemma 3 gives a bound on P(|3 — 7| > €|D(y) > 8,0 < < 1). Using this along
with (2.15) in (2.14) we have

2,2
P(E7I0 <y <1)<3nexp (— 16280271 + Mlog(n))
D)o’
1 :
+ 3nexp < 19,7 " + M log(n) (2.16)

Finally, putting together (2.13) and (2.16) into (2.12), we have

P(Algorithm 1 is NOT correct)

min(4, 1)%e%a?

512 max(o2,1)

< (6n +4) exp(— + Mlog(n +2)) (2.17)
Ignoring the constants in (2.17), we can derive the sample complexity result for the

one change-point case. 0

2.4 Experiments

We now present our experimental results with real datasets from a large opera-
tional network. The purpose of experiments is threefold. First, we wish to compare
our proposed CD-LDA algorithm with other techniques proposed (adapted to our
setting) in the literature. Second, we want to validate our results against manual
expert-derived event signature for a prominent event. Third, we want to understand

the scalability of our method with respect to very large datasets.
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Datasets used: We use two datasets: one from a legacy network of physical
elements like routers, switches etc., and another from a recently deployed virtual
network function (VNF). The VNF dataset is used to validate our algorithm by
comparing with expert knowledge. The other one is used to show that our algo-
rithm is scalable, i.e., it can handle large datasets and it is less sensitive to the

hyperparameters.

* Dataset-1: This dataset consists of around 97 million raw syslog messages col-
lected from 3500 distinct physical network elements (mostly routers) from a
nationwide operational network over a 15-day period in 2017. There are 39330

types of messages.

* Dataset-2: The second dataset consists of around 728, 000 messages collected
from 285 distinct physical/virtual network elements over three months from a
newly deployed virtual network function (VNF) which is implemented on a data-
center using multiple VMs.

We implemented the machine-learning pipeline as shown in Figure 2.1. The main
algorithmic component in the figure shows the CD-LDA algorithm; however, for the
purpose of comparison, we also implemented two additional algorithms described
shortly. Before the data is applied to any of the algorithms, there are two steps,
namely, template-extraction (in case of textual syslog data) and pre-processing (for

both syslog and alarms). These steps are described in Appendix A.9.

2.4.1 Benchmark Algorithms

We compare CD-LDA with the following algorithms.

2.4.1.1 Algorithm B: A Bayesian inference based algorithm

We consider a fully Bayesian inference algorithm to solve the problem. A
Bayesian inference algorithm requires some assumptions on the statistical gener-

ative model by which the messages are generated. Our model here is inspired by
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topic modeling across documents generated over multiple eras [26]. Suppose that
there are F events which generated our dataset, and event e has a signature p(©) as
mentioned earlier. The generative model for generating each message is assumed

to be as follows:

* To generate a message, we first assume that an event e € [1,2, ..., E] is chosen
with probability P..

* Next, a message m is chosen with probability pfﬁ) .

* Finally, a timestamp is associated with the message which is chosen according
to a beta distribution ((a., b.), where the parameters of the beta distribution are

distinct for different events.

The parameters of the generative model ., piﬁ), a., b, are unknown. As in standard
in such models, we assume a prior on some of these parameters. Here, as in [26],
we assume that there is a prior distribution on g over the space of all possible P and
a prior r over the space of all possible p{®). The prior r is assumed to be indepen-
dent of e. Given these priors, the Bayesian inference problem becomes a maximum

likelihood estimation problem, i.e.,

s By (DIP {p})
We use Gibbs sampling to solve the above maximization problem. There are two
key differences between Algorithm B and proposed CD-LDA. CD-LDA first breaks
up the datasets into smaller episodes whereas Algorithm-B uses prior distributions
(the beta distributions) to model that different events happen at different times. We
show that, such an algorithm works, but the inference procedure is dramatically

slow due to additional parameters to infer {a., b, }.

2.4.1.2 Algorithm C: A graph-clustering-based algorithm

For the purposes of comparison, we will also consider a very simple graph-

based clustering-based algorithm to identify events. This algorithm is inspired from
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graph-based clustering used in event log data in [35]. The basic idea behind the al-
gorithm is as follows: we construct a graph whose nodes are the messages in the
set M. We divide the continuous-time interval [0, 7] into 7'/w timeslots, where
each timeslot is of duration w. For simplicity, we will assume that 7" is divisible by
w. We draw an edge between a pair of nodes (messages) and label the edge by a
distance metric between the messages, which roughly indicates the likelihood with
which two messages are generated by the same event. Then, any standard distance-
based clustering algorithm on the graphs will cluster the messages into clusters, and
one can interpret each cluster as an event. Clearly, the algorithm has the following
major limitation: it can detect M., for an event e and not p®). In some applications,
this may be sufficient. Therefore, we consider this simple algorithm as a possible
candidate algorithm for our real dataset.

We now describe how the similarity metric is computed for two nodes ¢ and j. Let
N; be the number of timeslots during which a message 7 occurs and let /V;; be the
number of timeslots during which both 7 and j appear in the same timeslot. Then,

the distance metric between nodes ¢ and j is defined as

N;
N; + N; — N;;

pij =1

Thus, a smaller p;; indicates that ¢ and j co-occur frequently. The idea behind
choosing this metric is as follows: messages generated by the same event are likely
to occur closer together in time. Since p;; is small it indicates that the messages are
more likely to have been generated by the same event, and thus are closer together

in distance.

2.4.2 Results: Comparison with Benchmark Algorithms

For the purposes of this section only, we consider a smaller slice of data from
Dataset-1. Instead of considering all the 97 million messages, we take a small slice
of 10,000 messages over a three hour duration from 135 distinct routers. Let us call
this dataset D,. There are two reasons for considering this smaller slice. Firstly, it is

easier to visually observe the ground truth in this small dataset and verify visually
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Figure 2.4: Top panel shows scatter plot of different message-ids over the period
of comparison and bottom panel shows the episodes detected by the CD phase of
Algorithm CD-LDA.

if CD-LDA is giving us the ground truth. We can also compare the results from
different methods with this smaller dataset. Secondly, as we show later in this
section, the Bayesian inference Algorithm B is dramatically slow and so running it
over the full dataset is not feasible. Nevertheless, the smaller dataset allows us to
validate the key premise behind our main algorithm, i.e., the decomposition of the
algorithm into the CD and LDA parts.

Applying CD-LDA on this dataset slice: Figure 2.4 (a) shows the data points in
the x-axis and the message-ids on the y-axis. Figure 2.4 (b) shows the five episodes
after the CD part of CD-LDA, where we chose o = 0.1 and 6 = 0.5. For the LDA
part, instead of specifying the number of events, we use maximum likelihood to find
the optimal number of events and based on this, the number of events was found to

be two.
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We next compare event signatures produced by CD-LDA with Algorithm B and
Algorithm C.

CD-LDA versus Algorithm B: For all unknown distributions, we assume a uni-
form prior in Algorithm B. Algorithm B is run with an input number of events from
two to five. It turns out that, with three events the algorithm converges to a solu-
tion which has maximum likelihood. However, upon clustering the event signatures
p(e) based on TV-distance between the event signatures, we find only two events.
The maximum TV-distance between the events signatures found from the two algo-
rithms is 0.068. Hence, we can conclude that the event signatures found by both the
algorithms are very similar.

Despite Algorithm B using fewer hyperparameters, it is not fast enough to run
on large datasets. Figure 2.5 shows the time taken by CD-LDA and Algorithm B
as we increase the size of the dataset from 10, 000 to 40, 000 points. With 40, 000
data points and 12 events as input Algorithm B takes three hours whereas CD-LDA
only takes 26.57 seconds. Clearly, we cannot practically run Algorithm B on large

datasets with millions of points.

1754 —— Algorithm B
—e— CD-LDA

Time in minutes
5
8

10000 15000 20000 25000 30000 35000 40000
Number of data points

Figure 2.5: Time performance: CD-LDA vs Algorithm B.

CD-LDA versus Algorithm C: In this section we compare CD-LDA versus al-
gorithm C on dataset D,. Algorithm C can produce the major event clusters as
CD-LDA, but does not provide the start and end times for the events. We form
the co-occurrence graph for Algorithm C with edge weight as described in Sec-
tion 2.4.1.2 and nodes as messages which occur more than at least five times in the
dataset D,. All the edges with weight more than 0.6 are discarded and we run a

clique detection algorithm in the resulting graph.
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Table 2.2: Events generated by CD-LDA and the constituent messages in
decreasing order of probability. Event 8 matches with expert provided event
signature.

Event one Event two ... Event eight
mmscRuntimeError ISCSImultipath SNMP_sshd
SUDBConnectionDown Logmon_contrail SNMP_crond
SocketConnectionDown VRouter-Vrouter SNMP_AgentCheck
SUDBConnectionUp LogFile_nova SNMP_ntpd
SocketConnectionUp SUDBConnectionDown SNMP_CPU
mmscEAIFUnavailable IPMI SNMP_Swap
bigipServiceUp bigipServiceDown SNMP _Mem
bigipServiceDown bigipServiceUp SNMP_Filespace
SNMP _Mem HW_IPMI Ping_vm

We quantitatively compare the event signature M, of the top two cliques found
by Algorithm C with those found by CD-LDA. Suppose that message sets identified
by Algorithm C for the two events are M., and M., respectively. Message sets
(messages with probability more than 0.007) identified by CD-LDA for the two
events are denoted by S.; and S.o. We can now compute the Jaccard Index between
the two sets.

|Me1 N Ser | — 073 | Mz N Sea|

= (0.68
|Mel U Sel’ ’MeQ U 862‘

Since the full Bayesian inference (Algorithm B) agrees with CD-LDA closely, we
can conclude that Algorithm C gets a large fraction of the messages associated with
the event correctly. However, it also misses a significant fraction of the messages,
and additionally Algorithm C does not provide any information about start and end
times of the events. Also, the events found are sensitive to the threshold for choos-

ing the graph edges, something we have carefully chosen for this small dataset.

2.4.3 Results: Comparison with Expert Knowledge and Scalability

Validation by comparing with manual event signature: The intended use-
case of our methodology is for learning events where the scale of data and system
does not allow for manual identification of event signatures. However, we still

wanted to validate our output against a handful of event signatures inferred man-
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ually by domain experts. For the purpose of this section, we ran CD-LDA for
Dataset-2 which is for an operational VNFE. For this dataset, an expert had iden-
tified that a known service issue had occurred on two dates: 11-Oct and 26-Nov,
2017. This event generated messages with ids Ping_vm, SNMP_AgentCheck,
SNMP _ntpd, SNMP_sshd, SNMP_crond, SNMP_Swap, SNMP_CPU, SNMP _Mem,
SNMP _Filespace.

We ran CD-LDA on this dataset with parameters & = 0.01 and 6 = 0.1. We
chose ten events for the LDA phase by looking at the likelihood computed using
cross validation for different number of topics. See Section 2.4.3.1 for details of the
maximium likelihood approach. Table 2.2 shows the events detected by CD-LDA
in decreasing order of probability. Also, top nine messages are listed for each event.
Indeed, we note that event eight resembles the expert provided event. CD-LDA de-
tected this event as having occurred from 2017-10-08 17:35 to 2017-10-17 15:55
and 2017-11-25 13:45 to 2017-11-26 03:10. The longer than usual detection win-
dow for 11-Oct is because there were other events occurring simultaneously in the
network and the event eight contributed to a small fraction of messages generated
during this time window. Finally, as shown in Table 2.2, our method also discovered
several event signatures not previously known.

Scalability and sensitivity: To understand the scalability of CD-LDA with data
size, we ran it on Dataset-1 with about 97 million data points. CD-LDA was run
with the following input: a = 0.01, § = 0.1, and the number of events equal to
20. The CD part of the algorithm detects 57 change points. The sensitivity of this
output with respect to a and ¢ is discussed next. The event signatures are quite
robust to this parameter choice, but as expected, the accuracy of the start and finish
time estimates of the events will be poorer for large values of o and §. Overall,
CD-LDA takes about six hours to run, which is quite reasonable for a dataset of this
size. Reducing the running time by using other methods for implementing LDA,
such as variational inference, is a topic for future work.

Parameter o specifies the minimum duration of episode that can be detected in
the change detection. By increasing 6 we can control to detect the more sharp
change points (change points across which the change in distribution is large), and

decreasing ¢ helps us detect the soft change points as well. So o and § control the
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granularity of the change-point detection algorithm. Parameter 7 is a user defined
parameter to detect the episodes in which a particular event occurs. We demonstrate
the sensitivity of CD-LDA to « and 6. We run CD-LDA with a, = 10% and 6, =
0.5 on Dataset-2 and compare it with results when run with parameters «; = 1%
and 6; = 0.1. Tables 2.3 and 2.4 show the first two events for parameters «; and
01 when compared to the first two events for parameter s and d,. CD-LDA detects
57 change points with «; and §; whereas it only detects 19 change points with
and 5. Despite this, Figure 2.6 and Table 2.5 show that the event signatures for the
first two events are almost the same. But, since the episodes are larger in duration
with oy and 9, the start and end times of the first two events are less accurate than
o and 91. In particular, event two is shown to occur from 2-10 05:00 to 2-14 00:00
with s and 5 in Table 2.3 whereas it is broken into two episodes, 2-10 05:00 to
2-10 13:33 and 2-10 15:27 to 2-14 00:00, with o and 4; in Table 2.4.

2.4.3.1 Selection of the number of topics in LDA

For Dataset-1, we do tenfold cross validation. We group the 58 documents found
by change detection into ten sets randomly. We compute the likelihood on one
group with a model trained using documents in the remaining nine groups. We plot

the average likelihood in Figure 2.7 vs the number of topics. There is a decrease in
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Table 2.3: Results of CD-LDA on Dataset-2 with o, = 10% and 0, = 0.5.

Event one Event two
2017-02-14 00:00 to 2017-02-15 23:59  2017-02-06 19:29 to 2017-02-07 16:42
2017-02-08 00:00 to 2017-02-08 06:25
2017-02-08 23:59 to 2017-02-10 04:07
2017-02-10 05:00 to 2017-02-14 00:00

Table 2.4: Results of CD-LDA on Dataset-2 with a; = 1% and 6; = 0.1.

Event one Event two
2017-02-14 00:00 to 2017-02-15 23:59  2017-02-05 06:21 to 2017-02-07 16:42
2017-02-08 00:00 to 2017-02-10 00:00
2017-02-10 03:07 to 2017-02-10 04:07
2017-02-10 05:00 to 2017-02-10 13:33
2017-02-10 15:27 to 2017-02-14 00:00

Table 2.5: Comparing results of CD-LDA for different values of « and .
o = 1%,(51 =0.1vs Qo = 10%,52 =0.5
o | e | TV distin p® | TV dist in p®
0.046 0.077 0.036 0.08

likelihood around 20 and hence, we choose the number of topics as 20.

For Dataset-2, we do tenfold cross validation and choose the number of topics as
ten from the Figure 2.8. In this case, we create the ten groups of documents in the
following way. Out of 58 documents, group one has document number 1, 11,21 .. .,
group two has documents 2,22,32, ..., etc. Subsampling in this fashion respects

the ordering in the documents.
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CHAPTER 3

THE ROLE OF REGULARIZATION IN
OVERPARAMETERIZED NEURAL
NETWORKS

3.1 Introduction

Neural networks have proved to be remarkably successful in achieving outstand-
ing performance in many classification and regression tasks. Such networks are
trained with a large amount of training data to yield good performance on test
data. There are many design choices that lead to good test error performance (also
called generalization performance), including the network architecture, the number
of model parameters, use of appropriate regularizers or weight decay to control the
values of the network weights, and the choice of good training algorithms (such as
stochastic gradient descent). One of the surprising aspects of neural network re-
search is the empirical finding that overparameterized networks (i.e., networks in
which the number of parameters is larger than the number of training points used)
are easy to train and have very good test error performance. This observation ap-
pears to be counterintuitive since one would expect overparameterization to lead to
overfitting the training data and poor generalization performance; however, recent
theoretical work in [36, 37, 38, 39, 40] supports the claim that overparameterization
can lead to nice loss function landscapes over which it is easy for gradient descent
to find a good minimum. In this dissertation, we add to this growing literature by
studying the impact of regularization on the performance of a neural network. Our

motivation is twofold:

* We show that, when appropriately initialized gradient descent is performed on
the loss function of an overparameterized network, /5 regularization provides

a knob to control the trade-off between training and test errors. In particu-
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lar, instead of only relying on good initialization, we show that the use of
a regularizer provides a tighter control over the optimization-generalization
trade-off.

* The amount of overparameterization needed for good training and general-
ization in prior work depends on the data distribution through the minimum
eigenvalue of the Neural Tangent Kernel (NTK) matrix [41]. We show that by
adding a regularizer, one does not need the NTK matrix to be positive definite
and hence the amount of overparameterization only depends on user-defined

parameters like number of data points and strength of regularization.

3.1.1 Related Work and Our Contributions

* Mean-squared loss: The standard mean-squared regression loss without any
regularization is considered in [41, 42]. In both these papers, the generaliza-

tion performance is obtained as follows:

. 2yTH*1y
Eyly = f*(@)] <4/ ———— whp.

Here f*(x) is the neural network function with weights obtained from min-
imizing the least squared loss function. An informal statement of Theo-
rem 3.4.6 in this chapter (Section 3.4.2) would show that upon addition of
MJw—w(0)|]* as a regularizer, the test error E(, ,)|y— f*(z)| is upper bounded

by,

AU+l | [2e
Vn ne

with high probability where y* (H+ )" H(H + ) ™'y < n'~c, for some
e > 0. In the above bound, the first term reflects the training error and the
second term reflects the complexity of the function class (via Rademacher
complexity). For small values of A, the second term dominates the first, and

vice versa for large values of A\. Hence, \ provides a handle to leverage the
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training vs generalization error trade-off. This can help us tune the training
algorithm as desired. As an example, we compute the above test error bound
for different values of A\ for the first two classes of the MNIST dataset (con-
taining about 12k data points). The results are presented in Table 3.1. We can
see that there is sweet spot for the choice of A = 2.4 and it is a tighter bound
than A = O in [41].

Table 3.1: Test/Train error bound for the first two classes of the MNIST dataset.

A 0(41) | 0.001 2.4 50
test error 0.481 | 0.476 | 0.226 | 0.293
train error 0 0.001 | 0.123 | 0.236

* Mean-squared loss with regularization: The authors in [43] also consider
the distance to initialization as the regularization (similar to what we do in
(3.2)). But, the authors consider a noisy setting in which the observed label
is the true label with sub-Gaussian noise (with variance proxy o?) added to

it. With noisy labels, the test error performance is shown to be

* TH*I o
Ewyly — (@) < O(A+ 1)\/ynj+ X

with high probability. If we were to set ¢ = 0, this suggests that our test
error bound is sharper. Further, the analysis in [43] is limited to the linearized
approximation of a neural network, whereas we also prove the neural network
model to be close to its linearized approximation in our setting. We focus on
the traditional statistical learning theory model where the test and training
data come from the same distribution. The extension to the case of ¢ > 0,
where the training data is sampled from a noisy version of the original data

distribution is straightforward, and is therefore deferred to Appendix B.12.

* Logistic loss: The authors in [44] consider the task of minimizing the logis-
tic loss function. Under assumptions on the joint distribution of labels and

data, they show that the test error goes to zero when the width of the network
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O(poly log n), where n is the number of training points. This is further ex-
tended to deep networks in [45, 46]. An interesting problem is to quantify the

effect of adding regularization to logistic loss.

* Deep networks: In this dissertation, we consider a shallow two-layer net-
work. However, we can extend our results to deep neural networks, using
techniques from recent work [47, 48, 49, 50]. We leave this extension for

future work.

3.2 Neural Network Model

We consider a single hidden-layer neural network with m neurons of the form

f(x) = %m > wotuls) G.1)

where f(z) € R denotes the output of the neural network when the input is x, and
o denotes an activation function or a neuron. It is assumed that x is a d-dimensional
vector, w; are also vectors and a; are scalars. We note that a bias term is often used
in the input to each neuron, i.e., the output of each neuron is written as a(wiT T+b;).
But we omit b; without loss of generality by assuming the last element of the input
vector is always one so that b; can be subsumed in w;.

We are given n data points (z1,41), (€2, 42), . . . (Zn, ¥ ) in a training dataset and
the goal is to choose the neural network parameters to minimize the regularized loss

function
n

() = 23— @) +5 3 s = w(O) P 62)

j=1
where the first term on the right-hand side above is the standard regression loss, the
second term is a regularizer added to the loss function to ensure that the weights do
not deviate from some value w;(0) which will be chosen appropriately as will be
explained shortly, and A > 0 is a regularizer parameter. This regularization has also

been previously studied in [43].
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As in [41], we will assume that training takes place in the following manner:

e Each a; is chosen to be a Rademacher random variable (i.e., takes val-
ues +1 with equal probability) and fixed throughout the training process.
This is the reason that the loss function is defined only as a function of

w = (wy,wa, ..., wy)" in (3.2).

* Each w; is independently initialized by taking a random sample from

N (0, x%I), and then gradient descent is used to update it, i.e.,
wi(k + 1) = wi(k) — nV l(w), w;(0) ~ N(0,xI)

where 7 > 0 is a step size and k is appropriately chosen later.

The above dynamics are intended to capture some features of practical neural
network training: (i) gradient descent is usually performed from a randomly ini-
tialized point [51, 52] and (i1) some heuristic either in the form of regularization as
above or by using a more general procedure called weight decay is used to ensure
that weights do not become very large [53]. We note that regularization is typically
imposed on w; and not on w; — w;(0) as we have done here, but this form is more
convenient for our mathematical analysis.

In the rest of the dissertation, we will assume that the neuron used in our neural
network is a rectified linear unit (ReLU), i.e., o0(z) = (z)". It has been shown
in [41, 54] that w; does not change very much from its initial condition and that
one can approximate the neural network by a function which is linear in w;. In
particular, the intuition behind the approximation of f is as follows: we linearize f

using Taylor’s series as
fayw) m—= 3" aio(w! (0)2)
) \/m : 7 4
1
t Z a;0’ (w] (0)2) (w; — w;(0)) 'z

While the ReLU activation function is strictly speaking not differentiable, one

can use the natural formula ¢'(2) = I.>( and the relationship (2)* = zl,5¢ =
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z0'(z) to further simplify the above expression as
1 T
f(z;w) ~ \/_ﬁ Z @i LT (0)ez0W; @

If we interpret the term \/%xlw.T(O):rZ()?i = 1,2,...m as feature vectors ¢;(x) asso-

ciated with the input z, then the above approximation can be rewritten as

m

flaw) =Y aw] ¢i(x)
i=1
We note that the above approximation to the original neural network is only linear
in w; but is still a nonlinear function of = and has universal approximation power
as shown in [55]. Further, the approximations above can be justified precisely as in
[41]. The feature vectors ¢;(x),i € [n| can be seen as a kernel transformation on
the space of x with the kernel,

T — arccos ] r;
2m

Hyj = B¢ (2)¢;(x) = ] x; (
as shown in [56]. For the generalization results to make sense, we make the follow-

ing assumption on the dataset, which is also implicit in [41].

Assumption 3.2.1. The joint distribution of labels y = [y, Y2 ...yn|" and data

points x;,i € [n] satisfies

y"(H+MN)T'H(H + X))y
nl-e

<y VA>0 (3.3)

for some € > 0. Here, c) is a function of \. An upper bound to the LHS in (3.3) is
VA

1
> W] (UTy)? > yT(H+ X)) "' H(H + X))y (3.4)
i) (H)>0 i(H)

where H = UANU ! is the eigen decomposition of H. The matrix U = [U U, ... U,]
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and A = diag({\;(H)}™,). Note that LHS in (3.4) simplifies to y" H 'y when H
is invertible, which is same as the expression of generalization in [41]. Hence,
Assumption (3.3) is weaker than the condition in [41].

Assumption (3.3) can be verified in real datasets. For example, consider the first

yTH 'y
n

two classes in the MNIST dataset. One can observe that decreases with n

as shown in Figure 3.1.
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Figure 3.1: Plot of Y7 yg 1 for the first two classes in MNIST.

n

Assumption 3.2.2. The labels and data points are bounded, i.e.,

vil < 1 and
|zi|| = 1,1 € [n]. This can be achieved by simply normalizing the dataset.

Note that, unlike [41], we do not require that /' be positive definite. In order to
get an intuition of the main proof, we will first analyze the linear model in Section

3.3. We defer the analysis of the neural network model to Section 3.4.

3.3 Analysis of Linearized Model

For the purposes of this section, we will assume that the linear approximation is

accurate and use the following expression for the neural network:

flz;w) = % Z a;w! ¢;(z) (3.5)

Our final modeling choice in this chapter is to approximate the discrete-time
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gradient descent algorithm by its continuous-time counterpart, as in [54]:

dwi
dt

= -V, l(w)

with w;(0) ~ N (0, x*I) where the variance » will be initialized appropriately later.
By using the expressions for the loss function in (3.2) and the form of the neural

network in (3.5), the gradient descent ODE can be rewritten as

n

= — z:(f(g:]7 w) — y;)a;pi(z;) + Mw; —w;(0))

Jj=1

dwi
dt

Define V f; to be the matrix whose (7, 7)™ element is a;¢;(z;), f to be the vector
whose j*™ element is f(z;;w), and y to be the vector whose ;™ element is y;. Then

the gradient descent ODE can be compactly written as

dw

y =Vfo(f —y) — Aw —w(0)) (3.6)

In order to analyze the training error, we work with the dynamics of f rather than
the dynamics of w. By differentiating (3.5) and using V ffw(0) = fo, where f; is

a vector whose ;' element is f(z;;w(0)), we get

f==VIVflf—y) = Mf - fo) (3.7)

We can now conclude the following theorem on the training loss.

Theorem 3.3.1. Define

foo =y + ANV VIo+ M) (fo—y)

Then,

f(t) = foo = exp (—(Vfg Vo + ADE) (fo — foo)
and

lim [[£(2) — yll < AN(VIIV o+ A1) (o = v)
where || - || denotes the standard {5 norm.
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Proof. Since A > 0, (VfI'V fo+ M) is positive definite, and hence (3.7) is a stable

system. The result follows by examining the solution of the differential equation,

F==(VIVfo+A)(f — fo0). O

Corollary 1. Since Ef(z,w(0)) = 0, fo can be shown to be close to zero w.h.p.
Further NV fIV fy can be shown to be close to H = EV fI'V f, and thus,

Tim (1) = yl) S AN + A1)y

Additionally we can show that the output of gradient descent w(oc) remains close
to the initialization of weights w(0). This is stated in Lemma 3.3.2 and it will be

used to provide generalization bounds in Theorem 3.3.3.

Lemma 3.3.2. Given w(0), a and data points x;,y;, we can bound

lim [lw(t)—w ()| < {(fo = )" (VFy Vo + M) (fo —v)
“Mfo— 9 (VI fo+ D)2 (fo — )}

Proof. Rearranging (3.6),

W= —(V V7 fo+ A)(w — ws) (3.8)
where

weo = w(0) + (VoY fo + M) 'V foly — fo)
Since A > 0, (3.8) is a stable system, and
w(t) = wee = exp (—(V oV fo + A1) (w(0) — wec)
Upon taking the limit ¢ — oo and using the definition of w,
w(oo) —w(0) = (V oV fo+ M)V foly — fo)

We arrive at the result after using Woodbury matrix identity. 0
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Corollary 2. Assuming fy to be close to zero and V 'V fy to be close to H,

lim [ (t) — w(0)]

S VYT(H + M)ty — \T(H + M)~y

Finally, the generalization bound depends on the Rademacher complexity of the

function class containing all possible outputs of the ODE (3.6) (see [57] for details):

Fo ={w: ||lw—w(0 HQSB;
T -1 T —2 1—c
vy (H+ M) y—Ay (H+ M) "y <n ‘cp\}

Note that lim,_,, w(t) € F,,. Define the Rademacher complexity of class F,, as,

n wWEFu i

Rad(F,) = lI[‘Ee sup (Z eif(:vi;w)>

Subtracting a constant (f(z;, w(0))) inside the supremum does not change the ex-

pectation, therefore:

Rad(F,) = lEE sup (Z &(f(ri;w) — f(xi,w(O)))>

n ’LUE]'—w 4

Also, f(z;;w) — f(zi,w(0)) = VT fo(x;)(w — w(0)). Using Cauchy-Schwartz
inequality followed by the bound on [[w — w(0)|| in F, and ||V fo(x;)|* =~
B[V fo(x:)||* = 1/2.

Rad(F,) < | 2

— V 2n¢

Combining the above result with the training error from Theorem 3.3.1, we get the

final result for the linearized model.

Theorem 3.3.3. With high probability,

Eoyly — fz,w(00))] 5

H )1
ACH Do,
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3.4 Analysis of Neural Network Model

In this section we analyze the non-linear neural network and show that the result
is close to its linearized model analyzed in Section 3.3. But the analysis is more
involved than the linearized case. We also justify all the approximations made in
Section 3.3. For simplicity, we break the analysis into two parts, Section 3.4.1
provides all the probabilistic concentration results, and Section 3.4.2 presents the
analysis under satisfaction of all the conditions in Section 3.4.1.

Notation:

¢ J(@2) = Yo maco(wla)

Vief(z) = % (x) = \a/—%a’(wk x)T.
Vi) =[Vif(z) Vif(@)...Vof@)"
Vif = [Vif(@) Vif(za)... Vif(aa)]:

Vi=[Vf(z1) VI(x2)...Vf(zm)].

* R is a constant such that maxy, [|wy, — wg(0)]] < R.

H = EVngfo, )\mln(H) = )\0 Z 0.

¢ folw) = Sy Smano (] (0)2).

3.4.1 Probability Conditions

Lemma 3.4.1. With probability more than 1 — § over initialization a,w(0) and i.i.d

samples x;,y;,1 € [n| the following conditions are true.

L |wi(0)] < 2k4/dlog (2224) for all k € [m)]
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2. For f(x) defined on any weights w € S, := {w : |wy — wi(0)] < RVEk €

[m]},
sup VT f(z;)w(0)| < 4+/dlog(m)k? + 40/;%
sup VT fw(0)] < 4+/dnlog(m)k? + 4022712
| folz:)| < 4y/dlog(m)r? + 40/;%
| fo| < 4+/dnlog(m)k? + 40,22712

3. Suppose [ is computed on weights w such that maxy, |wy —wy(0)| < R. Then,

s ox (%)
sup|Vf -V < — 4\/— 3
4. Suppose f is computed on w such that maxy |w, — wi(0)] < R, then
sup, [V7FVf V7 [y ol < 328 4 4y/Bn?y/ 2]

5. Let the d—dimensional vector h(a_y) be defined as,

h(a_g) :== Z %vi

itk

where a_j, = {aj,j # k} and v; € R? in any vector that satisfies |v;|
B,Yi # k for some constant B > 0. Then for all k € [m], |h(a_g)]

vm

IA A

6. |V foVifo — H| < (/32 log (22), (VT foVfo + N7 < LO when
128n? log (23 )

m Z =502

7. supp <1 oy e L{|wi (0)zi| < R} < 32Ry/dlog(m +1) + 2RPVm
321 log (12)
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8. supp <1 fo(z) < Esupp, <1 D j—%o‘(wg(o)x) + /40661,{2
9. Foralli € [n], |V fo(x;)|* < % 1 Liog (20n)

10. Suppose sup, <1 <1 |y — f(x)| < M. Then,

E.,ly — f(z)] < = Zm f(x:)| + 2Rad(F,)

log ()

3M
+ 2n

The proof of the Lemma 3.4.1 is application of various concentration inequalities

and is deferred to Appendix B.1.

3.4.2 Deterministic Analysis

The results in this section assume the conditions in Lemma 3.4.1 and hence hold
with probability 1 — §. We will make the following assumptions on variance x and

the number of neurons m.

Assumption 3.4.1. k = for any € > 0 and m = poly(n %, %)

nlte log(m

The amount of overparameterization we need in the assumption above only de-
pends on A\ and not the minimum eigenvalue of H unlike [41].

In [56], the authors analyze the trajectory of f, and substitute it into the trajectory
of w to further show that |w;(t) — w;(0)| is bounded for all ¢ > 0. Instead, we
directly prove that |w;(t) — w;(0)| is bounded, by expressing the RHS of the ODE
Wy, in terms of wy, and bounded error terms. The regularizer term —\(w;(t) —w;(0))
inherently help us make this conclusion since wy, can be easily shown to be stable
for A > 0. For A = 0, this approach might not work since the coefficient of the
linear term of wy, for ODE 1y, is V. f VY f and it is not a positive definite matrix for

m > n.
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We know that gradient descent satisfies the following ODE for the weights w,
w==Vf(V fw—y) = AMw - w(0)) (3.9)
Taking w(oo) = w(0) + V fo(V? foV fo + A) 'y, we can rewrite (3.9) as,

w=—(VVT fo+ N (w—w(0))+ (Vf—Viy
+ (VfVT fo = VIV Hlw — V£,V fow(0) (3.10)

Consider each coordinate of wy, k € [m]. It satisfies the following ODE,
W = —(VifoVi fo+ N (we — wi(00)) + erry (3.11)
where err;, can be written as

erry = (Vif — Viefo)y + (Vi foV7 fo — Vi fVE Hlw

— Vi foV" fow(0) = > Vi foVT folw; — wi(o0))
ik

We bound |erry| by O(\/Lm) in Appendix B.2. This can be used to bound on
|wg(t) — wg(co)|| in the Lemma 3.4.2. The proof of Lemma 3.4.2 is relegated
to Appendix B.3.

Lemma 3.4.2. |wy(t) — wy(c0)| < O(\/Lﬁ) Vit > OVk € [m].

Next we look at the proof for training error.

3.4.2.1 Proof for training error

From the gradient descent dynamics (3.9), we can compute the dynamics of f ,

f==V"IVI(f—y) = Af— V" fw(0)) (3.12)
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which can be re-written as,

f=—H+N(f—y+MH+N"y)
+ AV fw(0) + (H —= VT VH(f —v)

Suppose, foo :=y—AH+X)yand erry := AV fw(0)+(H-VTfV)(f—y)

then f reduces to

f==H+N(f = foo) +erry (3.13)

We will show in Appendix B.4 that |erry| < O(\/Lﬁ) + O(\/Lmﬂf — fool-

Theorem 3.4.3. The training error reduces exponentially fast to

| f(o0) =yl < NyT(H + N2y +O< 1 )

n n

vn

The proof for Theorem 3.4.3 is provided in Appendix B.5.

3.4.2.2 Proof for test error

To get a bound on the test error we need a bound on |w — w(0)|.

Consider again the dynamics of w in (3.9). We can rewrite it as,

w=—(VIVTf4+N)(w—w(x)) — VIV fw(0)
+ (VIVIF+N(VIVIf+ NIV F
— (VAV o+ M)V iy

Again, consider the error term,

err == =V V7T fw(0)
+(VIVTF+N(VIVTfF+ NIV S
— (VAT fo+ NV o)y
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So, the dynamics of w can be simplified into
W= —(VIVTf 4+ N (w —w(o0)) +err (3.14)

We will prove that |err| is o(1) in Appendix B.6.

Lemma 3.4.4. For all timet > 0,

[w(t) —w(0)] < 2v/yT(H + N7 H(H + \)~'y + o(1)

and at steady state t = oo,

w(oo) = w(0)] < VyT(H +N)"'H(H +A)~ly +o(1)
The proof is presented in Appendix B.7. Next, we get bounds on the Rademacher

complexity and the test error. Lemma 3.4.5 is proved in Appendix B.9.

Lemma 3.4.5. The Rademacher complexity of f(x;),i € [n] with samples x;, |x;| <
1 over class, F,, = {w : Jlw — w(0)| < B, |wy — w(0)] < RVE € [m]} is given by

Rad(F,) := %Ee 521}3 <Z Eif(xi)) = \/i;_n o (%)

7

Since

[w(o0) — w(0)] < v/y"(H + X7 H(H + A~y + o(1)

from Lemma 3.4.4, the Rademacher complexity of w(cco) can be deduced from
Assumption (3.3) as, Rad(Fy(x)) < /32 + 0 <\/Lﬁ) :

2n—¢

Using Lemma 3.4.5 we can compute the test error for loss function |y — f(x)|.

Theorem 3.4.6 is proved in Appendix B.10.
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Theorem 3.4.6. The test error E, |y — f(x)| is bounded by,

M(H + M)t 2
’( ) y‘+ Cx

Eeyly — f(2)] < T

z,y n—€

+ 1004 /log (?)0(71_5/2)

where yT (H + \)"*H(H + \) ™'y < n'~<cy, from Assumption (3.3).

3.5 Experiments

Setup: We run experiments on the MNIST dataset only containing the first two
classes for digits zero and one. It contains 10k training data points and about 2k
test data points. The labels are converted to +1, —1 to consider the problem of re-
gression loss. We use a two-layer neural network of width 10k. During the training
of the two-layer neural network we only run gradient descent on the weights of the
first layer with learning rate 0.01.

Generalization: In order to see a significant improvement in test error, we add
noise to the dataset as follows: if the label is +1, then we subtract an i.i.d sample
from U[0, 1] and if the label is —1, we add an i.i.d sample from U[0, 1]. Under this
setting, the test loss is shown to vary between A = 0 to A = 10 in the Fig. 3.2.

05 — A=0 A=0

]
=
=

o

=)

=
]

=

=

o4 — A=10 — A=10

=
n

03

1|4 N—

o 25 50 L= 100 125 150 175 200 o 25 50 =] 100 125 150 175 200
epochs epochs

test loss
train loss

-
o

=
n

Figure 3.2: Test loss and training loss in MNIST dataset during training epochs.
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CHAPTER 4

THE DYNAMICS OF GRADIENT DESCENT
FOR OVERPARAMETERIZED NEURAL
NETWORKS

4.1 Introduction

Neural networks have shown promise in many supervised learning tasks like im-
age classification [58] and semi-supervised learning like reinforcement learning
[59]. A key reason for the success of neural networks is that they can approxi-
mate any continuous function with arbitrary accuracy [60, 61]. Further, choosing
the neural network parameters by optimizing a loss function over this complex non-
convex function class using simple first-order methods, like gradient descent, leads
to good generalization for unseen data points. We address the optimization and gen-
eralization aspect of neural network training in this chapter. Recently it has been
shown that when the network is overparameterized, i.e., the number of neurons in a
layer is much larger than the number of training points, one can achieve zero train-
ing loss by running gradient descent on the squared loss function [56]. This line
of research is motivated by the fact: when one runs gradient descent on an over-
parameterized network initialized appropriately, the network behaves as though it
is linear function of its weights [55, 62]. Although one can achieve zero loss in
an overparameterized network, there may be more than one set of network weights
which achieve zero loss. In this chapter, we study the dynamics of gradient descent
for a single hidden layer, overparameterized neural network, and show that gradient
descent converges to a certain minimum norm solution. We present an application
of such a characterization of the limit behavior of the network weights by providing
an alternative proof of a generalization result in [41].

We are motivated by the results in [56] where it was shown that if the network
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width is polynomial in the number of data points, gradient descent converges to the
global optimum of the squared loss function. The main idea behind their proof is to
show that an overparameterized neural network behaves similarly to a linear func-
tion (linear in the weights). The linear approximation can be described as follows:
the input is mapped to a high-dimensional feature vector and the linear approxima-
tion is an inner product of the network weights and this high-dimensional feature
vector. In the limit as the number of neurons goes to infinity, this mapping of the
input to a high-dimensional space can also be viewed in terms of a kernel corre-
sponding to a Reproducing Kernel Hilbert Space (RKHS). Such a kernel is known
as the Neural Tangent Kernel (NTK) and was introduced in [55]. In this chapter, we
prove that the weights of an overparameterized neural network converge close to
the point where the weights of the linearized neural network would have converged
had we used the linearized network in the optimization process. To the best of our

knowledge, the results in earlier papers do not address such convergence properties.

4.1.1 Related Work

* Convergence of gradient descent for squared loss: For the squared loss
function and ReLLU activation function, the convergence of gradient descent
was proved in [56]. This is further extended to deep networks in [63, 64], but
the dependence of width grows exponentially with the depth of the network;
see [62, 54] for analysis in case of general differentiable activation functions.
The dependence of the width of the network in terms of the data points has

been further improved in [65] by careful choice of Lyapunov functions.

* Convergence of gradient descent for logistic loss: Overparameterized neu-
ral networks with logistic loss function were shown to be in the linear regime
for a finite time in [66]. Under assumptions that the data distribution is lin-
early separable by the neural tangent kernel, it is shown that gradient descent
reaches good test accuracy in this finite time. Unlike the squared loss, opti-
mizing the logistic loss only requires a poly-logarithmic dependence on the

number of data points. This is further extended to deep networks in [67].
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* Implicit regularization: This line of work is closest to our work (see [68]
for an overview). It is known that for least squares linear regression, the it-
erates of gradient descent converge to the minimum norm solution subject to
zero loss. This is also true for certain nonlinear models as shown in [69].
We further add to this literature by showing that the iterates of the neural
network weights under gradient descent stay close to the minimum norm so-
lution of the linearized model and this distance decreases with the increase in
the width of the network. Since gradient descent chooses a particular charac-
terization of weights from all possible solutions achieving zero training error,
this phenomenon is often referred to as the “implicit bias” or “implicit reg-
ularization”. For logistic loss, the weights diverge to infinity, but implicit
regularization still occurs. Specifically, with linear classification, the direc-
tion along which the weights diverge to infinity matches the direction of the
hard margin SVM solution when the data is separable [70, 71]. This result

has been extended to some classes of neural networks recently in [72].

* Generalization results for squared loss: Shallow neural networks are
shown to generalize well for a large class of functions in [41]. We provide
an alternative proof of their result for the case of the squared loss function.
In [73], the authors consider the generalization properties of kernel ridge re-
gression for NTK under different activation functions, but their results are not

directly applicable to finite-width networks as is the case in this work.

4.2 Problem Statement and Contribution

Consider a neural network which takes x as its input and produces an output
f(x,w,b) where w, b are certain weight parameters to be chosen. We suppose that
f R x R™ x R™ — R is of the form

f(z,w,b) Z i o(wix + by)

TTL
k=1



where o(.) = max(0,.) is the Rectified Linear Unit (ReLU) activation function
and x € R? This describes a neural network with one hidden layer where the
input weights are denoted by w’s, input biases are b’s and output layer weights
are a’s. We absorb the biases 0’s as an extra dimension in the weight vector w’s.
Likewise, let Z = {x,1}. So we can compactly write the neural network function
as f: R x R+ 5 R

flz,w) = Z \C/L—%a(wzf)

We are given n data points {z;, y; }!, drawn i.i.d. from a distribution X’ x ) and

we would like to minimize the mean-square error

n

L(w) = Z(yz — flai,w))?
i=1

over all w. One of the ways to perform the above minimization is to use the Gra-
dient Descent (GD) algorithm. GD is an iterative algorithm where in each step
w is updated in the direction of the negative gradient of L(w). Given appropriate
initialization of w(0), and step size n for k = 1,2, ...
w(k+1) =w(k) — niL(w)
ow w=w(k)
GD is known to converge to a global optimum if L(w) were a convex function of
w for small enough values of 7. In our case, even if L(w) is not convex, [56] show
that GD initialized appropriately converges to a global optimum, i.e., L(w(k)) goes

to zero as k — oo.
We would like to characterize the performance of w(k) given a new data point
sampled from the same distribution X x ). In particular, we are interested in the

generalization error for w(k) which is defined as

Exxwaxy(y - f(x,w(k:)))z

We assume that the samples of = are chosen from X'. Given z, y is conditionally
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chosen as y = f*(z) + ¢, where ( is drawn from a mean zero distribution indepen-
dent of X and f* is a continuous function to be specified later.

For the noise-less case, i.e., ( = 0, the generalization error has been characterized
in [41] for certain choices of f*. For the noisy case, to the best of our knowledge
the generalization error has not been characterized. But, [73] consider the general-
ization error for the linearized version of the neural network. We first explain this
linearization.

Consider the first-order Taylor approximation of f(x,w) around w(0). Define

fr(z,w) = f(z,w(0)) + V' f(2,w(0))(w — w(0))

It was shown in [56] that w stays close to w(0) during the training iterations of gra-
dient descent when then neural network is overparameterized, i.e., m > poly(n).
As aresult, f(x;,w) is close to fr(z;, w) for i € [n]| during the GD iterations. This
makes us consider the following problem. Instead of minimizing L(w), consider
the loss function Ly, (w) = Y.(y; — fo(x;,w))?. Minimizing Ly;,(w) using GD
is expected to achieve zero loss since L, (w) is a convex function. Since the net-
work is overparameterized, there are infinitely many values of w achieving zero
loss. However, it is known that GD finds the solution which has the lowest £, norm.

So, minimizing L;;,(w) using gradient descent would lead to a solution

wj = argmin ||[w —w(0)|| s.t. fo(z;,w)=y;i={1,2,...,n} 4.1)

For appropriately chosen w(0), the prediction function f7(z, w3} ) can be shown

tobecloseto ) ., ;K (m)(z, 2;), for some constants ¢; and the kernel function
1 m
K™ (z, 2;) = — Za:T:Ei]l{w,;r(O)x > 0} {w, (0)z; > 0}
m
k=1
In the infinite width limit, i.e.,m — oo, the kernel K™ converges to a kernel K
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which is independent of the initialization w(0) [55]. If K (z,y) = ¢' (z)é(y), then
by Moore-Aronszajn theorem, the RKHS H induced by K is given by this: A func-
tion g € H can be defined by g(.) = ¢ ' (.)w, and inner product between functions
f and g in H is given by (f, g)y = w;w . Further, by Representer theorem, the

solution to kernel regression in ‘H would be given by

L) = mi Loy, = i
frr(.) E%%HQHHS Yyi = g(;)

:ZciK(.,a:i) s.t. ZciK(xj,xi):yjforj:{1,2,...,n} 4.2)

=1

Hence, in the infinite width limit, the prediction function f;(x,w} ) is close to the
solution of kernel regression on the RKHS induced by K. Now we discuss our

contributions below.

* The results in [73] analyze the generalization properties of fx g in the pres-

ence of noise. They would apply to our work in the following manner.

Epexc(y— flz,w(k))? <2E,xc(y — frr(x))? (4.3)
+ 2B, x(f(z,w(k)) — frr(z))?  (44)

If we show that the second term in the RHS of (4.4) is small, then the gen-
eralization results in [73] applies to our setting. Our goal is to show that
the second term is small and in order to do so we require to show a relation

between w(k) and wj . Informally, we show that

1
|lw(k) —wi|| = 0O (W) for m > poly(n) w.h.p for large enough &
4.5)

It was observed that in [56, 41] that the weights stay in a ball around ini-
tialization, i.e., ||w(k) — w(0)|| = O(poly(n)). Equation (4.5) is a finer

characterization of w(k) than [56].

* In the noiseless case, [41] provided generalization bounds for the prediction

61



function f(x,w(k)). We provide an alternate derivation motivated by the re-
sults in [74] in the noiseless case instead of the Rademacher complexity ap-
proach in [63]. The results in [74] are derived from the point of view of linear
regression. Thus it naturally applies to providing bounds to kernel regression
in a RKHS. In the noise-free setting, (( = 0) we derive a bound on the first
term in (4.4), i.e., E,ox(y — frr(2))?.

The structure of this chapter is as follows. We establish the result (4.5) for a
continuous-time version of gradient descent in Section 4.3. This develops an intu-
itive understanding of the proof. In Section 4.4 this is extended to the discrete-time
GD. In Section 4.5, we use the results developed on the convergence of weights
under GD in Sections 4.3-4.4, to show that E,.x(f(z,w(k)) — fxr(z))? is small.

In addition, E,.x(y — f(z,w(k)))? is shown to be small for the noise-free case.

4.2.1 Notation

Let w(0) denote the point at which gradient descent is initialized. The observa-
tion vectoris Y = [y; ¥o...y,|? and the neural network function for the inputs
{x}nis f = [f(z,w) ... f(x,,w)]T. At initialization fo = [f(z1,w(0))...
f(x,, w(0))]*. Let the ReLU activation function be o(x) = max(z,0). The gra-
dient of f(z,w) wrtwis Vf(z,w) = [FLo'(w{2)i" ... 20’ (w,7)7"]". De-
note the m(d + 1) x n matrix Vf = [Vf(z1,w)...V f(z,,w)] and the gradi-
ent matrix at initialization Vfy = [V f(z1,w(0))...Vf(z,, w(0))]. Also H =
Ew(0) (VT foV fo) . Let the projection matrix onto the column space of V f, be
Py = V(VT V) tVT fy and the projection matrix onto the null space be
Ps- := I — Py. When we write ||.|| it means the {5 norm if . is a vector or the

operator norm if . is a matrix.

4.2.2  Assumptions
« The data points are bounded, i.e., [yi| < C,, ||| = Vd,Vi=1,...,n.

* No two data points z;, z; are parallel to each other, x; }f x;.
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The assumptions stated above are mild and the same as in the literature [56].
The second assumption essentially ensures that the matrix H = E,,)[V* foV fo] is
positive definite [56, Theorem 3.1]. We reprove this in Lemma 4. Note that H does
not depend on the width of the network.

max;; zlrijrl
d+1
the smallest eigenvalue of H = E,o\[V7” foV fo] is strictly positive, H > cI,c > 0

Lemma 4. Define 0,,;, by cos 0, := . Under the above assumptions,

and

0 ( (d + 1)0min

log<2n) =+ 1) —¢ S )\min(H) = O<<d + 1)6min)

when 0, < 1. More complicated expressions for the lower and upper bounds
which do not require the condition 0.,;, < 1 can be found in the proof of this lemma

in the Appendix C.2.

4.3 Continuous-Time Gradient Descent Algorithm

First we describe the continuous-time gradient descent algorithm below.
e Initialize wy,(0) ~ N(0,x%I;); a;’s are initialized as 1 with probability 1/2
and —1 with probability 1/2.

* Run gradient descent in continuous time, w = 8@5}}”) =-=Vf(f-Y).

4.3.1 Training Loss and Bound on [|wy, — w(0)]|

The training loss goes to zero exponentially fast. This is shown in Theorem 3.2,
[56].

Lemma 5 ([56]). The continuous-time gradient descent algorithm achieves zero
loss with probability greater than 1 — § (where the randomness is due to the initial-
o 6442

ization) when m = ) (%) and k = 1. Further, the rate of convergence can be

characterized as
|f(t) =Y < exp(—ct/4)||fo = Y| (4.6)
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Moreover, the weights wy,’s remain in a small ball around the initialization wy,(0)

in the following sense:

|wi(t) — wr(0)|| = O (%) | fo =Y 4.7

43.2 Bound on ||w — w}||

We can show that wj from (4.1) is equal to
* 1 T -1
wy = Pyw(0) + V (V" foVfo)Y

since VT fyV fo would be a positive definite matrix. We prove that the weights w(?)
converge to a point close to w; and the distance decreases when the number of
neurons m increases.

n6d4C§
i3

from Section 4.2.2, with probability greater than 1 — ) over initialization and k. = 1

Theorem 3. If the number of neurons m = ) < ) , then under assumptions

. . (dn)2'501'5
|w(t) —wi|| < exp(—c/2t)[|w(0) —wi| +O (02.551.5mg.25>

Proof idea: Consider the dynamics of w,

OL(w)
ow

w =

==-Vf(f-Y)

Since w(t) is close to w(0) from Lemma 5, we can show that V f ~ V f throughout
the dynamics of w. Hence w approximately lies in the column space of V f,. So
P can be expected to be small. To capture this intuition we choose the Lyapunov

functions
Vi =[Py (w — wi)|* and V) = || Po(w — wi)|” (4.8)
The proof of this theorem is deferred to the Appendix C.1.
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4.4 Discrete-Time Gradient Descent Algorithm

In this section we present the discrete-time gradient descent algorithm, and show

results similar to the continuous-time version.

e Initialize wy(0) ~ N(0, x%I;); a;.’s are chosen to be 1 with probability 1/2
and —1 with probability 1/2. Choose a step size n > 0.

* Run gradient descent, i.e., for £ = 0, 1, .. ., update the weights as

Wiy = wi —Vf(f =)

4.4.1 Bound on |jw — wj || for Gradient Descent

The analysis of the gradient descent in discrete time is similar in spirit to that in
continuous time. We relegate the proof of Theorem 4 to Appendix C.3. Unlike in
continuous time, Theorem 4 requires more neurons for the result to hold, O (#)
as opposed to O (—77).

(dn)10CS
Theorem 4. If the number of neurons m = () <CT569) k= land n =

O <ﬁ) then under assumptions from Section 4.2.2, with probability greater than

1 — & over initialization

o) = will < (1 - %m Jw(0) — wi| + O (M)

2 c1551.5970.125

fork=0,1,.... Also, w(k) converges to some point w* as k — oc.

4.5 Generalization

In this section we provide generalization results for the output of gradient de-
scent. The analysis depends on the results from Theorem 4 from optimization.

Suppose the data points {x;}! , are sampled from a distribution X'. In Lemma 6
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we show that the prediction function f(z, w(k)) at the end of iteration k of gradient
descent is close to the minimum norm interpolator for kernel regression from (4.2).

We can show that the solution to (4.2) is given by fxr(x) given below.

frr(x) = hT(x)Hle, h(z) = [K(z,z;),i = 1ton] 4.9)
T — arccos <Zixf )

Hij = K(vs,2;) = 7] 75 (4.10)

2

Lemma 6. Suppose at the end of iteration k, the prediction function is f(x,w(k))
for a new data point sampled i.i.d from the distribution X. Then

E,(f (2, w(k) — ficn(x))’ < O (%) (1= DY Y o) wp. 1

when k? = O (#‘2,5), n=0 (ﬁ) ,m > poly(d,n,Cy,1/c,1/0).

Outline of the proof: We will prove this lemma using various concentration
inequalities. The first step is to show that f(z, w(k)) is close to its linear approxi-
mation f7(x, w(k)) = V' f(x, w(0))w(k) around w(0). The second step is to show
that fr(z,w(k)) is close to the linear prediction function at wj, fr(z, w7 ). The fi-
nal step is to show that f7(z,w}) is close to fxr(x) which close to the limit of
fr(x,w}) as m — oco.

The characterization in Lemma 6 is essential in showing the generalization re-
sult in Theorem 5. The kernel K (z1,x2) can be expressed as the inner product of
infinite-dimensional feature vectors ¢(x1) and ¢(xs). Such a feature vector ¢(.)
exists because the kernel is positive definite and symmetric [57]. Indeed it is easy

to characterize the feature vector for K (., .). It is computed in Lemma 7.

Lemma 7. Define a feature vector ¢(x) of data point x as

0(2) := [Vdo, Vi, /doa™ /da®, . ]
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where 2% denotes the k time Kronecker product of vector x with itself and

=025+ 30 it =0+ 3

p>1

— NN —
o] d+1 2r(2p —2)!1(2p — 1)

Then K (z,y) = ¢(z)To(y) = Zkzo dp(zTy)k = jTjjw for ¥ =
{z, 1}.

In Theorem 5, we show that all functions y = ¢” (z)w, ||w|| < oo which are lin-
ear in the feature vector ¢(z) are learnable by a finite width shallow ReLU network.
Corollary 1 provides some example functions in this class. This function class can
be shown to be learnable from the generalization result in [41]. Their results are
presented without using a bias term in each neuron, in which case, the infinite-
width NTK RKHS is not a universal approximator. However, it is straightforward
to extend their results to allow the addition of a bias term in each neuron, in which
case, it is known that the infinite-width NTK RKHS is a universal approximator
[75]. In the latter, more general case, their results match the results in this chapter.

Our contribution is to provide an alternative proof of the result in [41].

Theorem 5. Suppose y = ¢ (z)w and x is sampled from distribution X . Then
there exists a constant C' > 0 such that

E.(y — f(z,w(k)))* < Clw|? ‘“%(1/5)

w.p. greater than 1 — ¢
over initialization when k> = O(#‘Is), n = O(ﬁ),m
poly(d,n,Cy,1/c,1/6) and the number of gradient descent iterations k =

O (1og(n<||nu;||2+1>)) '

Proof sketch: The argument follows from the proof of the noiseless case in [74].
Denote matrix ® = [¢(z1), ¢(x2), . .. ¢(x,,)]. Together with Lemma 6 we can show
that E,(y — f(z,w))*> = Eo(y — fxr(z))? = @' PyE.¢(x)¢" (x)Pyw where
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Pd)l denotes the projection matrix to the null space of matrix ®. Observe that the
sample covariance matrix n=' " | &(z;)¢” (z;) is orthogonal to the column space
of ®. This reduces the problem of bounding E,(y — fxr(x))? to one of bounding
the error between the population and sample covariance of ¢(x). The result then

follows from use of McDiarmid’s inequality.
Corollary 1. Ify = (2" 8)P = ¢ ()W forp=0,1,2,...and || 3]| < 1, then

1

NG

w=10,...,0, B0, .. ]

Therefore, by Theorem 5, E.(y — f(x,w(k)))* = O ((d +1)P(p+ 1)15, [ osll/d)

w.p. more than 1 — 6 for p > 2 and E,(y — f(z,w(k)))? = O( log(1/9)

w.p. more than 1 — § for p = 0,1 when k? = O(dQCT‘Sm), n = O(W) ,mo>

poly(n,dP’? 1/c,1/5) and the number of gradient descent iterations k =

0 (log(n)+plog(d+1)
nc

set of polynomial functions are dense in the space of continuous functions in the

) . Using the Stone—Weierstrass theorem we can show that the

compact input space and hence, the result here can be extended to include all con-

tinuous functions with appropriate approximation error.

4.6 Experiments

We show an example with a synthetic dataset below. We generate 100 data points
from a uniform distribution [—1, 1]* in R® and normalize it to have unit norm. The
output is y = (x73)2, where z is the input and /3 is chosen from a uniform distribu-
tion [—1,1]° in R®. The output points are normalized by subtracting the empirical
mean and then dividing by the empirical standard deviation. We fit the data points
using a shallow neural network of widths m = 1000, 2000, 5000, 10000 and mean-
squared loss. We perform full gradient descent with a learning rate of 0.01 and do
not train the last layer (i.e., the a;) to be consistent with the theory presented in this

chapter. The experiment is repeated five times with different initialization and the
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Figure 4.1: Gradient descent iterations for different widths of the network.

standard deviation is shown in Figures 4.1 (a), (b), and (c). In Figure 4.1 (b), we
plot the different ||w(t) — w} || for different widths across the iterations of gradient
descent. Figure 4.1 (a) shows that || Py-(w(t) — w})||? is upper bounded and the
upper bound decreases with increase in width of the network. Figure 4.1 (c) plots
distance of the iterates from initialization, ||w(t) — w(0)||>. We can see that the
there is no clear trend on the bound for ||w(t) — w(0)]||* with increase in m whereas

|lw(t) — w}||* decreases when m increases.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation we look at two types of machine learning problems, one where
the data itself is generated from a dynamical system and another where the inference
algorithm is modeled as a dynamical system.

In the first case, we look at the problem of detecting events in an error log gener-
ated by a distributed data center network. The error log consists of error messages
with timestamps. Our goal is to detect latent events which generate these messages
and find the distribution of messages for each event. We solve this problem by
relating it to the topic modeling problem in documents. We introduce a notion of
episodes in the time series data which serves as the equivalent of documents. We
also propose a linear time change detection algorithm to detect these episodes. We
present consistency and sample complexity results for this change detection algo-
rithm. Further, we demonstrate the performance of our algorithm on a real dataset
by comparing it with two benchmark algorithms existing in the literature. We be-
lieve our approach is generic enough to be applied to other problem settings where
the data has similar characteristics as network logs.

In the second case, we look at the analysis of gradient descent for two loss
functions on a shallow neural network. Firstly, we consider the analysis of gra-
dient descent on the squared loss function and show that adding a ¢y regularizer
Al|w — w(0)|?, provides us with control between training and generalization er-
ror. Secondly, we analyze the generalization performance for the squared error
in absence of any regularization. It is well known that, contrary to traditional
wisdom, overparameterized neural networks perform well in training and gener-
alization performance. One intuition behind this is that gradient descent for linear

regression performs implicit regularization, i.e., minimizes the network parameter
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vector among all parameter vectors which provides zero training loss. Motivated

by this intuition, recent works have shown that gradient descent, with good ini-

tialization, carried out on the squared loss function of neural networks have good

generalization properties. We examine this phenomenon more closely and show

that gradient descent with appropriate initialization converges to a point very close

to a minimum solution of a linear regression approximation to the neural network

training problem. We further use this result to provide generalization guarantees on

the prediction function output by gradient descent in the noise-free case.

5.1

Future Work

* In Chapter 2, we only analyze the change detection part of CD-LDA algo-

rithm. Some topic modeling algorithms, such as [32, 33], based on spectral
methods can be theoretically analyzed. It would be interesting to combine
analysis of the change detection and topic modeling algorithm to generate an

end to end analysis.

In Chapter 3, we analyzed the role of regularization |w — w|* with the mean-
squared loss function where wy is the initialization of the gradient descent
algorithm. In practice, however, weight decay is used [76], which is a regu-
larization of |w|?. The proof technique (NTK analysis) used in Chapter 3 does
not extend to this case directly since the weight moves farther away from wy
upon addition of weight decay. Establishing results for weight decay would
potentially require a new framework and therefore, is an interesting direction
of future work since it highlights the shortcomings of the NTK analysis. In
this spirit, a recent work in [77] analyzes the classification problem using a
shallow neural network with weight decay. The analysis relies on showing
some characteristics of the landscape of the loss function. But, the inference
algorithm used is a variant of gradient descent which is not typically used in
practice. Extending the techniques used in [77] for the gradient descent algo-
rithm on the squared loss function would be an interesting direction of future

research.
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* In Chapter 4, we provide the generalization results in the noiseless case. Ex-
tending the generalization results to the non-realizable case, i.e., in the pres-

ence of i.i.d noise, using techniques from [73] is a topic for future work.
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APPENDIX A

PROOFS FROM CHAPTER 2

We are making a code of our algorithm available at https://github.com/
siddpiku/CD-LDA. The code also includes the generation of a synthetic dataset

on which one can run the algorithm.

A.1  Which Algorithm for Inference in LDA Model?

In order to perform this inference of event and episode signatures using topic
modeling, many inference techniques exist: Gibbs sampling on the LDA model
[28], variational inference [29], online variational inference [30], stochastic vari-
ational inference [31]. There are also provable inference models based on spec-
tral methods, such as the tensor decomposition method in [32] and the SVD based
method in [33]. We use one of the popular Python packages based on Gibbs sam-
pling based inference, [28], for the real data experiments. One can also choose to
use other more recent methods for inference as mentioned above. We work in the
region where the number of messages are much larger that than the number of types
of messages. In this region we show that most of the inference algorithms perform
the same for our problem through a synthetic data experiment.

So we compare three different inference algorithms, namely, Gibbs sampling on
the LDA model [28], online variational inference [30] and the tensor decomposition
method in [32]. We build an example with four types of messages and 10000 mes-
sages. We generate the time series as follows: There are two events, event one has
message distribution [0.25,0.25,0.499, 1e — 3] and event two has message distri-

bution [0.25,0.25, 1e — 3,0.499]. Episode one starts from message one to message
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Table A.1: Comparison between inference methods for topic modeling.

7, norm between the estimated and the true event-message distribution
maximized over all events
Gibbs Sampling, [28] | Variational Inference, [30] | Spectral LDA, [32]
0.014 0.021 0.094

3500 and has only event one; episode two starts from message 3501 to 6054 and
has half of event one and half of event two. Episode three begins at message 6055
and continues until the end with only event two occurring in this episode. We run
change detection based on /; metric followed by three different types of topic mod-
eling inference algorithms on the episodes. We compare the inferred event-message
distribution to the true event message distribution by computing the ¢; norm be-
tween the estimated and the true distribution maximized over all events. Table A.1
summarizes the results. We can see that the error in estimating the event-message

distributions is in the same order of magnitude.

A.2  Proof for Multiple Change-Point Case, Theorem 1

To study the multiple change-points case, [7] exploits the fact that their metric for
change-point detection is convex between change points. However, the TV distance
we use 1s not convex between two change points. But we work around this problem
in the proof of Theorem 1 by showing that D(7) is increasing to the left of the first
change point, unimodal/increasing/decreasing between any two change points and
decreasing to the right of the last change point. Hence, any global maximum of
D(7) for 0 <7 < 1is located at a change point.

Suppose we have more than one change point. We plan to show that
D(yn) — D(¥) and D(7) is increasing to the left of the first change point, uni-
modal/increasing/decreasing between two consecutive change points and decreas-
ing to the right of the last change point. If this happens, then we can conclude that

one of the global maximas of the D(7) occurs at a change point. Using similar
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techniques from the single change-point case, it is easy to show that D(7) is in-
creasing to the left of the first change point and decreasing to the right of the last
change point. (The proof is left to the readers as an exercise.) Hence, it remains to
show that D(7) is unimodal/increasing/decreasing between two consecutive change
points. Lemma 8 proves this result. The prove of Lemma 8 is relegated to Appendix

A3.

~

Lemma 8. D(v) = lim,,_,o, D(yn) is unimodal or increasing or decreasing be-

tween two consecutive change points when there is more than one change point.

Remark 5. When we say D(7y) is unimodal between two consecutive change-points
Y < 7o, it means that there exists ¥, 71 < 7 < 7o such that D'(y) < 0 forvy <7
and D' () > 0 for vy > 7.

A.3 Proof of Lemma &

Consider any two consecutive change points at index 7, = 1 and 75 = ~9n.
Suppose the data points X are drawn i.i.d from distribution G between change-
points 71 and 7». The data points to the left of 7, are possibly drawn independently
from more than one distribution. But, for the asymptotic analysis we can assume
that the data points to the left of 7; are possibly drawn i.i.d from the mixture of more
than one distribution. Let us call this mixture distribution F'. Similarly, the data
points to the right of 7, can be assumed to be drawn i.i.d from a mixture distribution
H . Let the inter-arrival time At be drawn from a distribution F; to the left of 7, G,
between 71 and 75 and H, to the right of 7.

Suppose we consider the region 7y between change-points y; and 5. So pr(yn)

is a mixture of % fraction of samples from F' and % fraction from GG. Note that
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pr(7yn) is a mixture of =4 7 fraction from G and + T fraction from H. So

DL (7n)—>%F—|—7 %G
5 ’y
Pr(An) — 2= Jgilzry (A1)

1—7 1—%

Similarly, the mean inter-arrival time of samples to the left of 7n converges to

%EE + ﬁf{“ EG,, and the mean inter-arrival time to the right of 7n converges to
Vf_—; EG, + 11—_7; EH,. Combining this with (A.1), we can say that

D) = D) =1 2(F - 6) + T=2(G = D)l
1 —

+ %E(Ft —G)+—LEG, - H) (A2
If we expand || % (F — G) + e £(G — H)l|1 to sum of probabilities of individual
messages as > L(F, G ) _7;/2 (G, — Hp,), we can write D(7) from (A.2)

ml~

as a function of v as

M+1

Z =

for some constants a;,b; € R,i € {1,2,..., M + 1}. Function D(7) from (A.3)
is only well defined over 7y; < ¥ < . For the purpose of this proof, with some

(A.3)

abuse of notation we assume the function D(~y) to have the same definition outside
(71, 72]- We then show that D(7) defined in (A.3) is unimodal/increasing/decreasing
as a function of 7§ between (0, 1). This would naturally imply that D(5) is uni-
modal/increasing/decreasing in [, 7y2]. The rest of the proof deals with this analy-
sis.

Without loss of generality we can assume a; > 0, Vi. Note that a;, b; # 0 for all
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7. We can expand (A.3) as

~ a; bl a; —bi
DE) = ), §+1_§|+ > |§—1_~|

a;>0,b;>0 a;>0,b;<0 ,y

+ = + = (A4
a b a; dz

=z+——=+ > |z -—= (A.5)
’Y 1 o /7 a;,d; >0 ’y 1 - ’y

where d; = —b; when b; < 0, >, sga; = aand Y., o +b;i Y, _o|b| = b. For
;y < a; a4 _ d N

a;

= > 0. We can assume w.l.0.g. that are in increasing order.

a;i+d;? v 1— a;+d;
Suppose - < v < —asijésﬂ.
~ a_Zi sai—i_Zi s Qi b+21 sdl_Zz sdi
D) = : = = 4 . = =

Leta(s) = a— > ,ai+ ) s,aiand b(s) = b+ >, di — > ;5 di. So for

As = As+1
as+bs <7< as4+1+bst1

DE) = al(s) N b(s) as P (A.6)

— =, <
2l 1-75" as+bs Asy1 + bsi1

See that a(s) > 0 for s = 0 and it is a decreasing function of s. b(s) is a increasing
function of s. Based on where a(s) changes sign w.r.t b(s) we have the following
cases. Note that a(s) and b(s) cannot both be negative for any value of s. D'(¥)

denotes the derivative of D(7) whereever it is defined.
* Suppose a(s) > 0,b(s) > 0 for all values of s. D(7) is a convex function of

~ and hence is unimodal.

* Suppose a(s) > 0 for all values of s and b(s) changes sign at s = u, i.e.,
b(u) < 0,b(u+1) > 0. So for s < u, D'(y) < 0 and for s > u, D'(y) > 0.

Hence, D(7) is an unimodal function of 7 between zero and one.

* Suppose a(s) changes signat s = t, i.e., a(t) > 0,a(t + 1) < 0 and b(s) > 0
for all s. So for s < t, D(yn) is convex, and for s > t, D'(yn) is positive.

Hence, D(7n) is either increasing or unimodal between zero and one.
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* Suppose a(t) > 0,a(t +1) < 0and b(u) < 0,b(u+ 1) > 0. Alsot < u. So
for s <t D’'(yn) is decreasing, for t < s < u D(yn) is convex and for s > u

D'(yn) is increasing. Hence D(7n) is unimodal.

A.4 Proof for Multiple Change-Point Case, Theorem 2

Similar to the single change-point case we first characterize the estimated

change-points 71, . . . , 7, for finite n in Lemmas 9-11.

Lemma 9. |D(3n) — D(F)| < e wp. at least 1—

4n exp —mn + Mlog(n + k‘)) for all values of 7.
Lemma 10 can be proved in a similar way to Lemma 2 in the single change-point

case.

Lemma 10. |D(v;) — D(7;)| < 2e w.p. at least 1—

co phn+ M log(n + k)) for any change-point ;.

dnexp | —g max(ok 1

Lemma 11. |5; — ;| < ce wp. at least 1—
4n exp (—%n—k M log(n + k:)> for some constant ¢ > 0 and any
change-point ;.

Now, we can state the correctness result for Algorithm 2. Algorithm 2 is correct
given accuracy € > 0 as mentioned in Definition 1 with probability 1 — 7(2k +

(D*—e¢)?e2a

1) exp(——SIQmaX(027k+1)n + Mlog(n)).
We upper bound the probability that Algorithm 2 is not correct. From Definition
1, this happens when

* Algorithm 2 is correct every time it calls Algorithm 1.

The maximum number of times Algorithm 1 would be applied is 2k + 1 if it is

correct every time it is applied. Out of the 2k + 1 times k£ number of times should
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return a change point and £ + 1 number of times should return no change point. So

P(Algorithm 2 is NOT correct)

< kP(Algorithm 1 does NOT detect a change point
when one exists for dataset X, ..., Xg)

+ (k + 1) P(Algorithm 1 returns a change point

when one does not exist) (A.7)

We assume that X;,..., Xy is at least of size an or an episode is at least an
samples long. Let D* denote the minimum value of metric D at a global maxima
for the reduced problem of X, ..., Xy over all possible values of L, H for which
Algorithm 1 is applied. From the correctness result for one change point, we have
that

P(Algorithm 1 does NOT detect a change point

when one exists for dataset X,..., Xp)
22

€
< dnexp <__12802

n+Mmgm)

2 Ty*

+ 3nexp (— ¢

F12g2" + Mlog(n)) (A.8)

and

P(Algorithm 1 returns a change point
when one does not exist)

< (n+2)Y exp(—nd?/8) (A.9)
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Combining the above two cases, we get

P(Algorithm 2 is NOT correct)
(D* — €)?e2at

< TRk D exp(— g ek 1)

n + M log(n)) (A.10)
Finally, we can derive the sample complexity result for £ change points from (A.10)
by assuming

ce< 2
* a+e<min, |y — V1]

e < D* —e.

A.5 Proof of Lemma 1

For notational simplicity, for any 7, suppose p;(yn) — pr(¥) and pr(yn) —
pr(7)- R
Since |D(in) — D) < | [5Gn) — BaEm)| — o) — aGm)l| |+
| [ESy () = ESy(yn)| — [ESi(yn) — ESy(Yn)| |,
P(|D(n) — D(Fn)| > ¢)
~f~ o~~~ ~ ~ €
< P(| llpGyn) —qm)ll = llp(m) — ()| > 5)
~ o~ ~ gy~ ~ ~ €
4P () = WaFn)| = fma(Gn) = maGn)| > 5)  (AID

First we focus on finding an upper bound to the probability P(| ||p(7n)—q(An)||—
lp(yn) = q(ym)ll | > 5).

P(| [pGn) = aGm)l ~ IlpGn) — aGnll | > 3) (A12)
< P(IpGn) = aGm)l| > [p(n) — oGl + 3)
+ P([p(n) = GGm) | < llp(n) —a(Gm)]| - 3) (A13)
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Using [[p(yn) —g(yn) || < Ip(3n) —p(yn) |+ [l(3n) —a(yn) [+ lp(3n) —a(n) |

and [[p(yn) —q(yn)|| = lp(yn) — ¢(yn)[| = [[p(yn) — p(3)|| — llg(Fn) — a(3n)|
in (A.13) we have,

P(| [pGn) = aGm] — llpGn) — aGnll | > 3) (A.14)
< 2P([p(Fn) — pFn)ll + 3Fn) — aGn)] > 3) (A15)
< 2P([pGn) = pFn)l| > ) +2P([aGn) —aGnl > ) (A16)

Let 7 > 7. Now, [[5(3n) = p(in)|| < Z|[p(yn) —pll + 2 (|p(yn : 3n) —q|. So,

€

P(IpG) — p(in) > ) (a17)
< PLIgOm) = pll > 9 + PO p0m s 3n) —al > §) - a9

We will apply Sanov’s theorem to find an upper bound to P(2[|p(yn) — p[| >

¢). Consider the set £ of empirical probability distributions from i.i.d samples

X1, Xon. E={p(yn) : Z[p(yn) — pll > §}. By Sanov’s theorem we can say
that,

P(E) < (yn+1)" exp(=n min Dic(p’[|p)) (A.19)
Further, by Pinsker’s inequality, we have D (p*||p) > 3|lp* — p||*. Using this

in (A.19),

2 ~\ 2
PR -7l > §) < (m+ )Y exp (‘% (2) ) (A20)

A similar approach yields
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Y=~ - €
PT . — > —
( > 1P(yn = n) — q| 8)

< ((F =7+ DY exp (—”—62 (-

128

/)

Combining (A.20) and (A.21) and substituting in (A.18), we get

P(l[ptyn) = p(in) || >

F(F =)+ 1) esp (—%8 (%))

Also using Sanov’s theorem followed by Pinsker’s inequality we have,

Pl —all > §) < (1= T)n -+ 1) exp -

Finally, (A.22) and (A.23) yield the following inequality using (A.16),

P(] [p(yn) — qtm)ll = llp(n) — ()|l [ >

< 2(yn+1)" exp (_@ (%) )

+2((F = y)n+ 1)V exp ( 98 (7—

+2((1 =F)n+ 1)V exp (—2-?)

2.2

a
55" + Vlog(n))

< Jexp (—

We can get a result that is the same as (A.27) for v < ~.
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128

))

ne

)

32

2

)

=)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



Now, let us prove concentration results for g(7).

. - oAt S A
) = ESi(3n) — ESy(n) = =L =2 =immt )
9(7) 1(yn) 2(7n) n (1—7)n

By assumption, A¢; is sub-Gaussian from j = 1 to yn with parameter o3 and
from j = yn + 1 to yn with parameter 5. If At; is sub-Gaussian, S0 is r.v.
—At; with the same sub-Gaussian parameter. Sum of sub-Gaussian r.v is also sub-
Gaussian with parameter equal to the sum of individual sub-Gaussian parameters.

Let 0 = max(oy, 02). So, the sum of sub-Gaussian parameters for g(7), say o, is

upper bounded by
< = + —
g = 27,2 — 22,2 2
LG 2w (T=APaE " ot
~ - € €2
P(lg(yn) —Bg(3n)| > 5) < 2exp | —o— (A.28)
g
o
< 2exp (—neQ—Q) (A.29)
8o

Putting together (A.29) and (A.27) with (A.11),

P(ID(An) — D(An)| > €) < 3exp <_ f;‘;n + Vlog(n))
+ 2exp (—né;—i) (A.30)
62053
< 3exp <—Wn + Vlog(n)) (A.31)

For all values of 7, we have by union bound,

P(|ID(An) — DAn)| <€, foralla <7 < 1—a)
2,2

<1-—3nexp (— ¢

537" +V 10g(n)> (A.32)
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A.6 Proof of Lemma 2 and Lemma 3

From (2.11) arg maxy D(ﬁn) = 7. Let arg maxs ﬁﬁn) =7.
n+ Vlog(n ))

Now, w.p. 1 — 3nexp < 12802

D(yn) — D) < D(yn) — D(@n) + ¢ < ¢
Also,
D(yn) — D(3) > D(yn) — D(An) — ¢ > —¢
So we have,
[D(yn) — D(An)| < €

oo o n+ Vlog(n ))

Now 0 < D(yn) — D(3n) < D(yn) — D(An) + € < 2e.

Suppose 7 > 7. So by (2.11), |D(yn) — D(Fn)| = D(yn)| =] > FELF — ],
Fory < 7, |D(yn) = D@n)| = D(yn)|1=2| > 5025 — 4.

w.p. 1 — 3nexp (

A.7 Proof of Lemma 9

Since |D(Fn)=D(Fn)| < | IPGR)—aGn) |~ llpGin)—aGn)]| |+ |7 (Fn)—

ma(yn)| — [mi(yn) — ma(yn) |,

P(|D(n) = D(n)]| > )
< P(| [pGn) - a6l - llpGin) = aGu)ll | > 3)

+ P(] [n(An) — Ma(Fn)| — [ma(Gn) — ma(3n)| | > = (A33)

5)
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First we focus on finding an upper bound to the probability P(| ||p(7n)—q(An)||—
lp(n) —a(yn)ll [ > 5).

P(| 115Gn) = @Gn)l = lpGn) = aG)ll | > 3) (A34)
< P(IpGn) = 3Gn)|| > llpGn) — aGn)ll + 3)

+ P(IpGn) —§Gn)| < Ip(Gn) - a@n)] - 3) (A35)
Using () )| < [2Gn) —p(n)l| + |3Gn) —aGn)l| + |p(n) — (i)

and [[p(yn) — q(yn)|| = [lp(3n) — a(yn)[| = [[P(yn) — p(Yn) || — llg(yn) — a(yn)|
in (A.35), we have,

P(| pGn) = aGm)] ~ lpGn) — aGnll | > 3) (A.36)
< 2P(|pGn) — pF)l| + 3Gn) — a(Gn)]l > 3) (A37)
< 2P([p(Fn) — pEn)ll > 7+ 2P([a0n) —aGm)| > D) (A3B)

Let 7, <5 < %41 Now, [[p(Fn) — p(In)|| < 320 ==~ — 7 +

2= p(yn s An) — p'l. So,

€

P(|lp(yn) —p(m)| > 4) (A.39)
~ % = VY g1 _ il €
S;P( 5 P’ P ||>4<T+1))
Y= Yy AN T
+ P( = |p(yem 2 ) —p"|| > o+ 1)) (A.40)

We will apply Sanov’s theorem to find an upper bound to P(’“}#Hﬁ_l —
P > 3555)- Consider the set £ of empirical probability distributions from
iidsamples X ..., X, .. E={p": %Hﬁ_l —p 7 > ) BY

Sanov’s theorem we can say that,
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P(E) < ((yj —y-1)n+ 1)V exp(—n min Dir(p*|lp’™")) (A41)

Further, by Pinsker’s inequality, we have D (p*||p’~!) > 1 ||p* —p’~!||*. Using
this in (A.41),

Vi~ Vil e
P<JT”1|W Lo >

ne? 5 2
< (O = 7)n+ 1Y exp <_ 32(r + 1)2 (7- — 1> ) A
J J—

A similar approach yields

4(r+1)

:)7_7’!’ A~ L=~ . i—1 €
P( 7 [P(yn 2 An) —p" 77| > 4<T+1))
2 ~ 2
< (7 =7 )n +1)" exp (—32(:‘1 7 (Av,j%ﬂ) ) (A.43)
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Combining (A.42) and (A.43) and substituting in (A.40), we get

P([pGn) = pGn) | > 7)

<Z yjln—i—l)

exp <_32(:6j 1)? (%‘ j%'—l)Q)
+((F = )n+1)" exp (_32(:12 1)2 <7 j%y)

< (Z((%‘ —y—)n+ 1)V +((F —w)n + 1)V> X

ne*a?
exp <_—32(k; n 1)2) (A.44)

Also using Sanov’s theorem followed by Pinsker’s inequality we have,

P(aGn) = a(in)| > )

< ( Y (= 0n+ DY + (1 —F)n+ 1)V> X

j=r+1

nEQOéQ

Finally, (A.44) and (A.45) yield the following inequality using (A.38),
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P(] p(yn) = qtn)ll = [lp(n) = aGym)l| [ >

r

<23 (0 = y-)n+ DY + (7 =3 +1)"

)

=0

+ ((ml —F)n+1)"

3)

ne’a’?
E 1 e
+ 7] 1n+ ) )eXp( 32(]€+1)2
j=r+1
e2a?
<2 - | k
< exp( 32(k+1)2n+v og(n + ))

Now, let us prove concentration results for g(7).

9(3) = ES1(3n) — ESy(An) = ==

7n1 Atj .

n

Jj=yn+1

n

(1=9)n

(A.46)

(A47)

By assumption, At; is sub-Gaussian from j = 1 to y;n with parameter 0% and

from j = vn + 1 to y9n with parameter o3 and so on. If A¢; is sub-Gaussian,

so is r.v. —At; with the same sub-Gaussian parameter. Sum of sub-Gaussian r.v

is also sub-Gaussian with parameter equal to the sum of individual sub-Gaussian

parameters. Let 0 = max(oy,09, ..., 0%

for g(7), say o, , is upper bounded by

n

02

DI

j= Jj= 7n+1

PllgGin) ~ Bg(n)| > §) < 200
< 2exp (

Putting together (A.48) and (A.47) with (A.33),
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a?n

=)

")

). So, the sum of sub-Gaussian parameters

(A.48)



< 2exp (—mn + Vlog(n + k))

B ea?
- 32max(o, k + 1)

sn+ Vlog(n + k)) (A.49)

For all values of 7, we have by union bound,

P(|ID(An) — D(An)| <e, foralla <7 < 1 —a)
e2a?
32max(o, k +1)2

<1—4nexp <— n+ Vlog(n + k)> (A.50)

A.8 Proof of Lemma 11

From Lemma 10, |D(yn) — D(7n)| < 2¢ w.p. at least 1—

2.2

4n exp (—mn + Vlog(n + k:)) Also, from Lemma 8 we know that
wyn is a change point, and all local maximas in D(yn) for 0 < 7 < 1 corre-
spond to a change point. Suppose that v, is a change point closest to 7 such that
|D(~,n) — D(7n)| < 2e. Also, since D(yn) for 0 < 5 < 1 is unimodal or mono-
tonic between 7,., J,41 Or ¥,_1, 7y, we assume w.l.o.g that D’(~,n) and D(7n) have
the same sign. Hence, D(7n), 7 between 7, and 7 is monotonic. We want to lower
bound W. W.l.o.g we assume that v, < 7 and D(7yn), 7 between 7, and
7, is decreasing.
From (A.5) we know the expression for D(yn) as
DGy = L4 (A51)
S e
for some constants a, b. The constants a and b may change over different ranges of

~ between ~, and 7. Consider a range of ¥ between -, and 7 over which a, b are
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constant. Now, consider the difference D(y'n) — D(v*n) for ! < +? belonging to

that range. We will lower bound %ﬁ(g% for different values of a, b.

* Suppose a > 0,0 > 0. So,

D<71n) — D(”an) o a B b
(’}/2 — 71) - (71,}/2 (1 _ 72)(1 — 71)) (A.52)

D(3'n)—D(%n)
)
is a minimum when 72 —~! is maximum. 7?—~" is maximum when D(y'n)—

Now (A.52) is a decreasing function of v2 since a,b > 0. Now

D(v*n) is 2¢. So, % is ¢(€, a, b) > 0 at minimum, where c is some

constant as a function of 2¢, a, b .

* Suppose a > 0,b < 0.

¢ _ b ) (A.53)

(

> (71622 + (1— 72)b<1 _ 71)) (A.54)
(
D

24 L) (A.55)

(v'n) (A.56)

D(y'n)—D(¥*n)
(v2—=1)

v

From the above two cases we can conclude that
min(D(y'n), 2¢).
Suppose a, b change values at [ different places between ~, and 7. Let the points

be denoted as 7,72, ..., 7. So,
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D(y,n) — D(Fn) (A.57)

= D(y,n) — D(y'n) + D(y'n) — D(y*n) (A.58)
+ ...+ D(y'n) — D(An) (A.59)
> min(D(y,n), c(e, a*, b)) (YH — ) + . ..
+ min(D(yn), c(e, a', b)) (F — ) (A.60)
> min(D(vy'n), mm c(e, ai b)) (Y — V) (A.61)
> min(D(y,n) — 2, 1121111 cle,a;, b)) (7 — ) (A.62)
So,
2e

N — <
(=) < min(D(7y,n) — 26, miny;; c(€, a;, b;))

We can prove similarly when 7 < 7.

A.9 Setup and Methodology for Experiments

Template extraction: Raw syslog data has three fields: timestamp, router id,
and message text. Since the number of distinct messages are very large and many
of them have common patterns, it is often useful [8, 9, 10, 5] to decompose the
message text into two parts: an invariant part called template, and parameters as-
sociated with template. For example, two different messages in the log can look
like:

* Base SVCMGR-MINOR-sapCemPacketDefectAlarmClear-2212 [CEM SAP
Packet Errors]: SAP 124 in service wqgffv (customer 1): Alarm
bfrUnderrun Port 23.334 Alarm bfrUnderrun 22333242 ,22595400

* Base SVCMGR-MINOR-sapCemPacketDefectAlarmClear-2212 [CEM SAP
Packet Errors]: SAP 231 in service gaazxs (customer 1): Alarm

BfrUnderrun Port 3322 Alarm bfrUnderrun 22121222 ,22595400

Ideally, we wish to extract the following template from these identical messages:
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* Base SVCMGR-MINOR-sapCemPacketDefectAlarmClear-2212 [CEM
SAP Packet Errors]: SAP * in service * (customer 1): Alarm

BfrUnderrun Port * Alarm bfrUnderrun + , 22595400

There are many existing methods to extract such templates [4, 5], ranging from tree-
based methods to NLP based methods. In our work, we use an NLP based method as
follows: (i) We compute the bigram probability of each word in the message corpus,
(i1) next, each words above a predetermined empirical probability is declared as a
word belonging to a template, (iii) each message is converted into a template by
substituting the non-template-words with * as in the preceding paragraph, and (iv)
finally, we assign an id to each template-router tuple in every log entry. The last
step essentially combines two fields in syslog, namely text message converted to
template, and source/router field. The output of this last step is treated as message
by CD-LDA and the other algorithms. When we applied this steps to our first
dataset, we extracted 39,330 distinct template-router combinations.

Note that, when alarms are reported, the template extraction stage is redundant.

Additional pre-processing: Since each event in a real-system has effects that
last for several minutes to hours (even days at times), we are only interested in
events at the time-scale of several minutes to an hour. Thus, in this step, we round
the time-steps from msec granularity to minutes (or fraction of minute) . This
temporal rounding helps us to speed-up our algorithms while serving the intended
practical benefit. We chose 1 minute rounding for dataset-1 and 5 minute rounding
for dataset-2. Note that, upon performing temporal rounding, we do not discard

duplicate messages that could result from the rounding.

A.10 The Metric in Matteson et al.

In [7] the data points lie in a continuous real space. We can still apply it to
categorical data like ours if we encode a categorical data pointi € {1,2,... M}
as a vector with all zeros except for the location ¢. If we use this encoding, we can
show that the metric used in [7] degenerates to an unbiased estimator of the squared

{5 norm. This encoding also helps us compute the metric in linear cost as opposed
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to quadratic computation cost in [7]. The proof follows below.
Suppose X, ..., X, are drawn i.i.d from p and Y7, ..., Y,, are drawn i.i.d from

q. Then [7] computes the similarity in the two distributions as,

~

2 (03
E(X,Y,a) = %Zpﬁ = Yj[*(a € (0,2))
i.j

(1) Sweexe-(3) S

i<j i<j
2
= — H{X;, #Y;
2 WX A Y
0.
n\ ! m\
_ (2) > OU{X; # X} - (2> > 1Y #£ Y} (A.63)
i<j 1<J
Let n; denote the number of data points in X, ..., X,, taking the value 7 and m;
denote the number of data points in Y7, ...,Y,, taking value 7. One can reduce
(A.63) to
E(X,Y.a)=Y ni—ng i (A.64)
OK = - .
T n2—n mZ—-m nm

%

Asn,m — oo, E(X,Y,a) — ||p — q|2. Also, EE(X,Y,a) = |lp — ¢||% So

~

E(X,Y,a) is both a consistent and unbiased estimator for ||p — ¢||3.
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B.1

1.

APPENDIX B

PROOFS FROM CHAPTER 3

Probability Conditions, Lemma 3.4.1

With probability more than 1 —

2ky/dlog (2224) for all k € [m).

So VT f(z;)w(0) = Dk o' (wlz;)wl (0)x; for any w € S, = {w : |wy —
wk(0)] < RVE € [m]}. We will apply Effron-Stein inequality to prove the

2., the Gaussian tail satisfies |w(0)] <

concentration on sup,,g, V' f(;)w(0) and then bound its expectation using
the VC theory. Denote the random variable

h(a, w(0)) := sup V" f(z;)w(0)
wWESy
Consider the set of random variable (ax,wy(0)) for k € [m} We create a
copy (a,(f), wk (0))‘v’k: € [m] as follows. For one index [, (al ,wl(l)(O)) is an
i.i.d copy of (a;, w;(0)). Forall k # [, (ak ,w,(f)(())) = (ag, wg(0)). Changing
one coordinate [ of the random variables (a, w(0)) only affects change in one

coordinate w; and leads to a change in h(-) by
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Hence, by Effron-Stein inequality,
Var(h(a, w(O)))

<]EZ (i ()l + | (w” (0)) i) = 4r?

as w} (0)z; is distributed as N'(0, k?).
So, applying Chebyshev’s inequality,
P(lh(a, w(0)) — Eh(a, w(0))] > 1) < —-

Now, we need to bound Eh(a, w(0)). Note that,

We can consider 1{w]z; > 0} as a function which classifies x; into zero or
one. Consider the class of functions G,,(z;) = {1{w"z; < R},w € S, }. Gy
classifies a point z; as one when w’z; > 0. Since G,, is a linear classifier, its

VC dimension is d + 1 for data points wy, . . ., w,,. So, by VC theory,

Eh(a,w(0)) < Ew(o)él\/d log(m) Z %|wg(0)xz|2

k

Further, by Jensen’s inequality,

Eh(a, w(0)) < 4k+/dlog(m)
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Finally, using union bound for all i € [n], w.p. more than 1 — 10

sup VT f(a:)w(0)| < 4+/dlog(m)r? + 40/;271

sup V" fu(0)] < 4y/dnTog(m)s? + 4022712

| fo(zi)] = [V fo(z:)w(0)] < 4y/dlog(m)k? + 40,;2”
| fo| < 4+/dnlog(m)k? + 40,.;62n2

3. Suppose [ is computed on weights w such that maxy |wy — wg(0)] < R.

Consider,

sup IVf—Vfol%

w:Vk|wg —wg (0)|[<R

— _z — o' (w] (0)a) ]

w:Vk|w,—wg (0)|[<R T

< —2411{\w 0)z;| < R}

We can apply McDiarmid’s inequality now. See that bounded difference upon
changing w; to its i.i.d copy w] is upper bounded by %. Hence, by McDi-
armid’s inequality,

> t)

(1

mt?
s 2exp | - 32n?

SnR
Z4]1{|w 0)z;] < R} — Nz
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So w.p. greater than 1 — 10

sup IVf—Vfol5
w:Vk|wg—wi (0)|[<R

< S o2 )

. In order to find a concentration on |[VTfVf — VT f,Vfy| for any {w :
|wr — wi(0)| < RVE € [m]}, we follow a similar approach to [56, 41] sim-
plifying the problem into concentration of each element of matrix VZ fV f —
VT fuV fo, but we prove sub-Gaussian tail bound instead of using Markov
inequality as in [56, 41]. Consider,

sup VISV f = V2 foV fol

<sup [VIfVf =V foV folr

<sup 3 DS ot o i )
Yo k
00w 0

< Z Z L{jwg (0)zi] < R} + T{|wy (0)z;] < R})

Now, we can apply McDiarmid’s inequality on }; . 25 H{|wf(0)z;| <
R} + 1{|w}(0)z;] < R}. Changing w;(0) to its i.i.d copy w}(0), one can
bound the change in function )=, - 2 37 1{|w/ (0)z;| < Ror [w{(0)z;] <
R} by ¥ So by McDiarmid’s inequality,

Z Zﬂ{lwk )zi| < R} + 1{|wg (0)z;] < R}

97



)

Hence w.p. greater than 1 — {5,

sup VIV =V [V fol

w:|wg—w (0)|[ <RVEKE[m)]

8n’R log (%)
< +4y2on? | =02
TRV 2T m

. Let the d—dimensional vector h(a_j) be defined as,

h(a_y) = Z %vi

itk

where a_;, = {a;,j # k} and v; € R? is any vector that satisfies |v;| <
B, Vi # k for some constant B > 0. Then for all k € [m]w.p. > 1 — &

2B, /dlog (2md
h(a_)| < S

Jm

Proof: We will apply McDiarmid’s inequality to h(a_g). Since h(a_y) is a

vector we will compute the bounded difference property for each coordinate

of h(a_g). Consider a coordinate vector e,,b € [d]. Suppose we change

one of q; to its i.i.d copy a; for some | # k, then the maximum change in

(h(a—x) — h(a’_), em) can be computed as,

sup [(h(a_x) — h(a’ ), ep)|

/
ag,a;

< sup |h(a_r) — h(a’)|
ay,a;
1
T
= lar — af| v
2

—B
m

IN
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Note that E, , h(a_x) = 0. So, by McDiarmid’s inequality,

P([(h(a-r),en)| > t) < 2exp (_222 >

So, for all k& € [m],b € [d], by using union bound, with probability greater
than 1 — %,

By/210g (%)
Jm

[{h(a—k), &) <

For the entire vector h(a_y),

o By /2dlog (20md)
h(a_g)| < vVdsup |[(h(a_g),ep)| <
|h(a—p)| < be[dp]K (a—r), ep)] T

. With probability greater than 1 — 2, |V7 oV fo — H| < /322 log (2n).
We apply matrix McDiarmid’s inequality from [78] to prove this result. Con-
sider the matrix VT oV fy — H as sum of m ii.d self ad-joint matrices
> VE foVifo — Hy.. Now, changing, say, w; (0) to its i.i.d copy w} (0) leads
to a maximum difference,

, , 4n?
VT foVifo— V1 fVif]? < o

. . . o . 2 2
Hence the variance proxy for matrix McDiarmid’s is | Y, #%| = = So,
k m m

—mit?
P(|VT oV fo — H| > t) < 2nexp < 392 )
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Hence, with probability greater than 1 — 10,

32n2 20m
VT foVfo— H| < \/ log ( )
m 1)

2n2 92
Amin (V7 foV fo + ) 2 A + max <)‘0 - \/Svf: log ( gn>a0>

1

(VT foVfo+ A7 <
A + max ()\0 — 32"2 log ( ) O)

7. We will use McDiarmid’s inequality now to show that 5", 2 b T 2R 1 {|wf(0)z;| <
R} is close to its expectation E >, 2 ]1{|wk( Y| < R} uniformly over
|z;| < 1. Also, for this concentration we are working in the law of large
number L -~ regime instead of the W regime. Changing w; to wl for some
[ € [m], the maximum change in function value is given by 2 \F Hence, by
McDiarmid’s inequality,

P <sup > S fuf (00| < R)

—E sup Zj—%]lﬂw,{(())xz\ <R} > t)

|z4|<1 A

—¢$2
< exp (3232)

With probability more than 1 — %

lza| <1 \/m
<Eswp 3 21 {juf (0)r] < )
|| <177, \/m
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Also,

LTS j—}%l{le(O)xil < R)

< E sup Z ]l{|wk 0)z;| < R}

|| <17,

(\wk( Jzi| < R))

+ Sup —— ZIP’ lwi (0)x;| < R)

We can use symmetrization for the first term and a trivial bound on the prob-

ability for the second term. With ¢, as i.i.d Rademacher random variable,
B sup 3 1ol 0] < B}

<E sup Z ek (1{|wf (0)z;| < RY})

|z4]<1 L
2R*\/m
+
2T

Further, we can break the Rademacher average term into two,

E sup Z \/—€k(]1{|wkT(0)$i’ < R})

—Esup Y j—%em{wz (0)z: < R}

s |<1

— 1wy (0)z; < —R})
4R
E su —ek]lw,{Oxi_R
< s 3 Lo {ul 0 < )

+E sup Y (1] 0): < -}

|zi|<1 ©
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We can bound each of the Rademacher average using VC theory. We can
consider 1{w} (0)z; < R} as a function which classifies wy(0) into zero or
1. Consider the class of functions G, (w) = {1{w’z < R}, |z| < 1}. G,
classifies a point w as one when w2z < R. Since G, is a linear classifier, its
VC dimension is d 4+ 1. So, by VC theory,

4R
E sup Z \/—mek]lﬂw;f(())xﬂ < R}

24| <1 k

< 32Ry/dlog(m + 1)

Hence, w.p. more than 1 — % and m > 10,
sup Z IL{|wk Yz;| < R}

2R%,/ 10
< 32R+/dlog(m + 1) + 2m + \/32R2 log (F)
RV 2T

. Suppose the random variable

e, w(0) = sup 3 j—%awﬂom) = folx)

Consider the set of random variable (a, wy) for k € [m]. We create a copy
(ak ,wk )Vk € [m] as follows. For one index [, (al ,wl(l)) is an i.i.d copy of
(aj,w;). Forall k # 1, (ak ,w,(cl)) = (ag, wg). So, changing one coordinate [

leads to a change in A(.) by

2 2
\h(a, w) — h(a(l),w(l))|2 < 2(lwi]* + |wy]*)
- m
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By Efron—Stein inequality,

Var(sup

Z Ok
|| <1 k \/ﬁ
<EY  |h(a,w) — h(a®, w)”

E2(Jwi]* + [wi]?) 5
<E E L < 4d
- - m = san

Hence by Chebyshev’s inequality, with probability more than 1 — 1%

sup Y o (w] (0)2)

lz|<1 k \/ﬁ

ay T 40dk?
< E sup —o(w, (0)x) +
2 k00 4
. We have
|V fo(z)|” = ZU w} (0)a;)|z)?

We will use McDiarmid’s inequality on |V fo(z;)|?>. Upon changing one co-
ordinate wy, to wj, while keeping others the same, the maximum change in

IV fo(z;)[* is 2. So, by McDiarmid’s inequality,

P (19 u(e)l? ~ BV o)) < 2exp (-5 )

2 Vi€ [n],

10°

The mean E|V fo(z;)|? = 0.5. Hence, w.p. more than 1 —

1 1 20n
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10. We will use the generalization result from Theorem 11.3 from [57]. Suppose

sup |y — f(x)| < M

ly|<1,|z[<1

Since the loss function |y — f(z)| is 1—Lipschitz, with probability more than

1 — - over the i.i.d. sampled data points z;, ;i € [n],
Eayly — f(z)] < = Z lyi — f(x:)] + 2Rad(F,,)
1 20
430y 22 (5)
2n

For the next sections from B.2 to B.12, we will use the following bounds:
1. Expression |V fo(VT foV fo + A)~1y| can be bound by %ﬁ using con-

dition (6). Further

So,

(VTfOVfO +A)” y| < \ﬁ()\_;_)\o)

2. Now, wy(00)] < |wg(0)]+[Vifo(VT foV fo+X) "y < 264/ dlog (20md) 4

m using condition (1) and (6).
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B.2 Bounding erry

In this section we will bound erry, by O(\/Lm) We can expand erry, into the terms

as below and apply triangle inequality to each.

erry = (Vif — Vifo)y
+ (VifoVi fo = Vi Vi ) (we — wi(o0))
+ (VifoVi fo — ViV fwi (o)

= > VS V] flwi = wi(o0))
i#k
+ 3 (Vi foVT fo = Vif VT fw(oo)
ik
— Vifofo (B.1)

We bound terms in err;, from (B.1) below.

* Expression |(Vi.f — Vifo)y| = | 221, 2 (o' (wiw) — o' (wi (0)z:))| is

upper bounded by 3—%

¢ We have

(Vi foVi fo = VSV ) (we — wi(00))]

= | Z %((0’(10?(0)%))2 — (0" (wyz))*) @iy |[wy, — wi(00))]

2n
< —Jwg — wy(00)]
m

* Using bound (2), |[(VifoVifo — VifVifluwg(oo)] < Hlwi(oo)| <

4n 20md 4n?
E”\/‘”Og( 74) T et
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* Expanding the term |}, Vi fV] f(w; — wi(00))],

Y ViV fwi = wi(00))|
ik

a/»
=3 o' (wiw)o! (w]ay)uye] (wi — wilo0))|
itk g
Since max; | Y, o' (wfx;)o’ (wi z;)z;x] (wi — wi(o0))] < nmax;|w; —

w;(00)| < nR, we can use Lemma 5 to get a bound,
| Z Vif V] f(w; — w;(00)]
i#k
2nmax; [w; — w;(co)|y/dlog (2424)

= Vm

* Expanding the term | >~ (Vi foV] fo — Vi fV] flwi(oo)],

1> S (VifoVT fo = Vif VT fwi(00))|
ik
=13 237 (o (wf (0),)0" (w] (0)a)
ik j

—o'(wya;)o’ (wi w;)) vy

J

We have

max| Y7 (0 (e (0)2,)0'(w] (0)z,)

—o'(wj, z;)0’ (w] x;)) w27 wi(0o)]

< 2nmax |w;(00)| (B.2)
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We can use Lemma 5, bound (2) and (B.2) to get a bound,

1> S (VifoVT fo = Vif VT fwi(00))|
ik

4dn max; |w;(00)|4/dlog (20md)
< Jm
- 20md
_ 8nkdlog (2on) N 8n? dlog( )
S Jm m(X+ o)

* Using condition (2), |V fofol = |, —“’“”"’j/ff?f“)o’ (wl(0)x;)] < —max"\l/cn%(“)' <
4K

Vmés'

Combining the results above we can determine,

2n
lerry] = —

vm
2n

+ —|wg — wi(00)]
m

+4—n/< dlo 20md + dn”
m B\ my/m (A + Ao)

2n max; |w; — w;(00)|4/dlog (QOmd)

_|_

é

Snkd IOg (20md) 8 leg (20md>
Jm o mDr )

vmé

< 80nd log (2%4) (1 4 max; sy, [w; — w;(co)|)
- vVmo
40n4/log (2%24) (1 + |wy — wy(00)|)

m
- 120nd log (2%4) (1 4+ maxepn) [w; — w;(00)|)

- vmé

(B.3)

+

(B.4)
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B.3 Proof of Lemma 3.4.2

Suppose, at time ¢ = 0 we have |w; (0) —wy,(00)| < [Vifo(VE foV fo+ X)Lyl +

O(\/Lm) < & where ¢, is O(n). Let T be the first time that wg(t) exists the ball

2lwi(0) — wi(o0)] + O(7) < 2[Vifo(VT foVfo + XN)7'yl + O() < 2=
Consider the Lyapunov function V' (wy,) = |wy(t) — wi(oo)|?. This satisfies,

V < AV 4 |err VYV

Since |errg| < O(\/Lm) from Appendix B.2, we have,

WV < w_+0(—)

ﬂ

Solving this equation for all t < T,

[wi(t) — wi(00)| < [wg(0) — wi(00)| + O(—=)

W

Hence, at time ¢ = T', |wy(t) — wx(00)| is strictly inside the ball % SoT = oc.
This shows that,

|wi.(t) — wi(00)] < 2|wk(0) — wi(00)]| + 0(%

By applying triangle inequality, we get a bound on |wy(t) — wy(0)| as,

Wt >0

|wi(t) — wi(0)] < 3Jwi(0) — wi(00)] + 0(—)Vt >0

ﬂ

Using bound (1), we arrive at the result.
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B.4 Boundon erry
* Using condition (4) and (6),

IV'fVf—H]
< VIV =V oV fol + IV foV fo — H]

8n2R +4\/§ , [log (22) \/32n2 20n>

Sn’R 128n4 <20n)
+ log
2 m 1)

<

* By triangle inequality,

|f =yl <|f = fool + |MH + X))y

W
< —

* Also by condition (2),

V" fw(0)] < V2nrlog (%Tn>

Now, we can easily bound the error term err; by applying triangle inequality,

lerr| < AV fw(O) + (VT V] — HI|f -yl

S@Amlog(m()sn) 873/E<|f ol + \CO)

128n* 20
+\/ S tog (2507 = el + 1250
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B.5 Proof of Theorem 3.4.3

One can choose a Lyapunov function V(f) = |f — fu|*. From the dynamics of

f in (3.13), we can compute the dynamics of V" as,

V< —(A )V + yem\\/—

VV < (A4 MWVT 4+ O(—= T + O(—)

vm v

when m > poly(n, 5, 3). Solving this,

£ (t) = fool < exp (= ((A+X0) = O(m™ ) 1) | fo — fuol
O(n‘0'5)

X e — O(m09)

So the training error is bounded as,

F(8) =yl < exp (=((A + Xo) = O(m™"))t) | fo — fx]
O(n=99)

A+ Ao — O(m %)
< exp (—((A + o) = O(m™"))t) | fo — foo
O(n_0'5)

A+ )\0 — O(m*0~5)

+ +’y_foo‘

+ +A(H + M)y

If X + Ao > O(m~%9), then at steady state ¢ = oo the training error is

o < MU0

n

L f(00) - +O(n )
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B.6 Bound on err

First, applying Matrix Woodbury identity on err simplifies it to

err = VfVwa(O) + (VfVTf + ) (Vf(VTfo -+ )x)_l
— VRV oV fo+ X))y

Again, breaking up the terms and applying Matrix Woodbury identity,

err = VIV fw(0) + (VfVTf +N)
[(Vf=V )V IVf+N)"

+ Vfo(VTfOVfg + /\)‘1

(VT foV fo = VIV IV +0) "y

We bound each term in RHS of err as below.

* [Vfol < v/n.
« |VVTfw(0)] < /n|VT fw(0)] < nky/2log (23*) where we use condition
2).

« (VIVTf+A)| <n+A

« [(VfVTf+ M) <L
* From condition (3) [V f — V fo| < 5%1 1/4/%.
log(?)

e From condition (4) VT foV fo — VI fVf| < % + 44/2n2 — =t
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By triangle inequality we can bound |err| as,

2()
lerr| < nky /210g n
I3 / 0
N Vvn(n + A) N /4] 32n? log (7)
V21K m

2n (n+\) 8n2R log (?)
AA+ No)
) when k = pyEe —., Ve >0

B.7 Proof of Lemma 3.4.4

Now we can analyze (3.14). Choose V (w) = |w — w(0)|?. So,

V <AV A+ |err|VV
VV < AWV +o(1)

Therefore, one can solve the above equation to get a bound,
[w(t) — w(oo)| < e |w(0) — w(oo)| + ==
which gives us a bound on |w(t) — w(0)|, V¢ > 0
|w(t) — w(0)] < 2w(0) — w(oo)| + o(1)
Also,

[w(0) = w(oo)|* =y (VI foV o+ A)
— X (VI foVfo+0) 7%y
=y (H+ Ny — XNy (H+ X%y +err,
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where we define

erry =y (VP foVfo+ N = (H+ M)y
— M (VT foV o+ N2 = (H+ N2y

We bound err,, in Appendix B.8. Hence, we can finally conclude that,

[w(t) —w(0)| < 2v/yT(H + N7 H(H + A\)~'y + o(1)
[w(o0) — w(0)] < vy (H + X" H(H + N~y +o(1)

B.8 Bound on err,

* By Matrix Woodbury identity,

(VT foVfo+ )71 = (H + )7
= [(H + N (T foV fo — H)(VT foV fo + A) 7|

We can use triangle inequality in conjunction with condition (6) and (6) to

have,

(VT foVfo+ X)) —H

< 2 32n2 1 20n
SO a2l m B\

* Similarly, we can apply Matrix Woodbury identity along with triangle in-

equality to have

(VT foVfo+N)2 — H?
< |(H 4+ X2V oV fo — HP (VT foV fo + N) 72
+2[(H+ NIV foV fo — H|(VT oV fo + A) 7
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Further, condition (6) gives us,

-2 < 4IVT foV fo — H|?
- (A4 Xo)4
4VT Vo — H|
(A + Xo)3

(VT foV fo+ )72

Finally applying condition (6) we get,

128n2 20n
T - H7?< 1
S e

n 4 32n2l 20n
D ap\ m B\

Combining the results from above, we can bound |err,| as,

lerry,| < n[(VTfono + AT = (H+ N
+ XNV foV fo + 02— H?

2n 32n2 o 20n
S CYSWE 8

128n3)\ o <20n)
m(A + Ao)* &

N An\ 32n2 ( )
(A4 Xo)3

=o(1)

when m > poly <n, log (%) , A, ﬁ) )
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B.9 Proof of Lemma 3.4.5

We can write f(z;) = VT f(z;)(w — w(0)) + VT f(x;)w(0). So,

n weFy

Rad(F,) = l]Ee sup ((Z Eivf()(xi)> (w —w(0))

i

+ (Z &(Vf(x)— Vfo(a:i))) (w — w(0))

+ Z vl f(xﬂw(()))

Using |w —w(0)| < B, the Cauchy-Schwartz inequality and the triangle inequality,
1
Rad(F,,) < ~E, (B\ Zeiv fo(mi)\)
+— sup \/Z]Vf z;) — V fo(x;)|?

N weFy,

+ sup max |V* f(z;)w(0)]

wE.Fw ¢

Further using condition (2), condition (3) and Jensen’s inequality,

Rad(F,) < g\/EJ Z &V fo(wi)|?

1/4
32log (2
L +B<ﬂ> +o(1)

m

115



Also, using condition (9), E|> &V f(z)]* = >, |Vfolz)? < % +

%2 log (%%). Hence,

Nz
Rad(F,) B —log< 0") + |2

B
<+ =
T \/2n m 4] V2K
/4
3210g (2} '
m

The result follows as k = nl% for any € > 0.

B.10 Proof of Theorem 3.4.6

In order to relate the test error with the Rademacher complexity result from
Lemma 3.4.5, we can use condition (10). But, we will need to compute an upper
bound M to the loss function supy,<; <1 [y — f(z)|. We prove an upper bound on
M in Appendix B.11,

M= sup |ys— flas)| < o(n'/>2) +o(1)

lys| <1,]as| <1

Using this value of M the theorem statement follows.

B.11 Bounding M

Suppose w is such that |w —w(0)| < B where B is given Lemma 3.4.5. The loss
function |y; — f(x;)| is bounded over the range of |y;| < 1, |x;| < 1,

lyi — f(@:)| = |y — VTf(xi)w|
< Jyil + VT f () (w — w(0)
+|(Vf(2:) = V fo(x:) w(0
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We will bound each term separately,
|yl < 1.

* By Cauchy-Schwartz inequality |V f(x;)(w — w(0))] < |w —w(0)] < B <
O(n1/2—e/2).

e Let us expand the term |(V f(x;) — V fo(z;))Tw(0)| as below,

((Vf (i) = Vfo(xi))Tw 0)]

< |3 2rviz) o Do O,

Further o' (w} x;) — o’ (wl (0)z;) is nonzero only when 1{|w} (0)z;| < R}.

Following a decomposition similar to proof of Lemma 5.4 in [41],

| Z a (o' (wi =;) \}%k (0)z;))wy (0)$i|

|Z L1 {juf (0)z] < R)

(o’ (wkTwi) — o' (wy (0)z:))wy (0)x]
= IZ ]l{lwk (0)z:| < R}

(o’ (wfl’i)(wk(o) —wi)' @i+ o(wiw;) — o(wy (0)zy))|

Using the 1-Lipschitz property of ¢(.) and triangle inequality we can further
upper bound,

| Z a (o' (wy ) — U%Z(O)wi))wf(o)% |

%:T {lwi (0)z;| < R}
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Using condition (7) we can upper bound,

(Vf (i) = V fo(a:)) w(0)]

2R?\/ 1
< 32R\/dlogm + 1) + & 2m v \/3232 log (70)
T

R

= o(1)
as R = O(z=).

* Now, consider the term f(z;) over the range of |z;| < 1.
ay
Jo(xi) = zk: ﬁg(w}f(o)xi)

From condition (8), we know that sup,,, <; fo(;) is close to its expectation.

a 40dk?
fo(z)| <E sup Y —=o(wf (0)z;) +
0 g N T 5

|zi|<1

Since o(.) is 1—Lipschitz, the expected value can be bounded by using the
contraction principle with respect to distribution of a;’s,

E sup i o(w (0)z;) <E sup &wkT(O)xi

> >
il <1 5 VM jasl<1 S VM

Now using Cauchy-Schwartz followed by Jensen’s inequality,

2

k %wk(O)
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Finally, we can bound | fo(x;)| over |z;| < 1.

ola)| < wv/d -+ P~ o)

whenever £ = O(-2).

Combining the results from above,

M:= sup |y — flx)] < 0(n1/2_6/2) +o(1)
lyil <1,]z:|<1

B.12 Extensionto o > 0

For added noise 0 > 0, we can assume a similar approach to bounding
E,,|ly — f(x)|. Suppose we observe §j = y + € where € is uncorrelated to y and
sub-Gaussian with variance proxy o2. Now, following a similar procedure as done
in this Chapter 3 and Appendix B, E, ,|y — f(z)| is broken down into the train-
ing loss and the Rademacher complexity. The Rademacher complexity term simply

changes to,

\/gT(H +AN)"IH(H + A\~
2n

which can then be upper bounded by

\/yT(H +A)TH(H + M)y o
2n

The training loss computed on y is upper bounded by the training loss computed on

7y as the added noise € is uncorrelated to y.
1 , 1 B )
=Y My = F@)P < 3l — S (@) Pwhp.

Now, the training loss on 3 is exactly as computed in Chapter 3 and Appendix B.
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APPENDIX C

PROOFS FROM CHAPTER 4

C.1 Proof of Theorem 3

The proof of this theorem is divided into Section C.1.2, which provides a bound
on V, Section C.1.3, which bounds V), and Section C.1.4 which provides a bound
on ||w — wj|| and further proves that w(t) converges by proving that it forms a
Cauchy sequence. Section C.1.1 provides the probability conditions that are as-

sumed to be true in Sections C.1.2-C.1.4.

C.1.1 Probability Conditions
Lemma 12 is proved in [79], it requires use of various concentration inequalities.

Lemma 12. With probability greater than 1 — § over initialization a,w(0) the fol-

lowing conditions are true. Lemma 5 is true and

1. Suppose S, := {w : maxy |wy — wg(0)] < R Vk € [m]}. Then,

8dnR log (@)
sup [Vf =V /l2 < 1+ 4v/2dn 0
wGSI‘?U H f fOHF — \/%KJ m

8dn2R 1 20
sup VTV f = V7 foV foll < \7/12_+4\/§dn2 log ()

WE Sy K T m

2. At initialization || fo| is bounded, || fo|| < %.
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3. The perturbation between N7 oV fo and Eq,)[V7 foV fo] is bounded from

above by
32n2d 20n
VT foV fo — H| g\/ - log( >

J

C.1.2 Boundon V|

V= —(Fy(w—wp), B VI(f-Y))
Since PV fy =0
Vi = (B (w—wp), By (Vf = Vfo)(f = Y))
Applying the Cauchy-Schwarz inequality,

Ve <VVLIVE=Vlllf =Y

dn/Cy

From Lemma 12 ||V f — V fy|| = O Tam0 s

exp (—ct/2) ||fo — Y| So

) and from Lemma 5 ||f — V|| <

\/_mo 25

(dnC,)"
=0 (01.551.5%0.25

C.1.3 Bound on V”

Vi = / VVids <0 ( dny/C, ) / exp (—cs/4) [lfo — Yds

We can decompose 1w as
W ==V oV folw —wp) + (Vo = VI =Y) + VoV fow — f)
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Define
ew = (Vo= VH(f =Y)+Vfo(V fow — f)
Plugging this into V], we get
Vi = =(Po(w —wp), VoV folw = wp)) + (Po(w — wy), Poew)  (C.1)

First, we are going to bound each term in ||e,, || below.

UV = V0 - VI < 05 e (-et/a) e - Y] =
O( (dnCy)1-5 ) '

/o515 m0-25
e Using VT fow — f = fOt(VTfou'J — f)dsand f = V7 fu
IV fow — f]) < / 1OV o — V7 f )b de
< / (Y7 fo = VT AV AF = Y |t
0

< / TNV fo = VANl exp (—ct/4) [ fo — Ylde
B (dn)QCEB
=0 (55t

cl-5§1.590.25

(dn)25CL5 . . .
Hence |le,|| = O (W) Using this bound on ||e, | together with

Cauchy-Schwarz inequality we can simplify (C.1) as

| e (dnyCy?
Vi < —(Po(w —wp), VOV folw—wp)) +/VjO c1551.5,7,0.25

From Lemma 12 VT,V f, = ¢/2 when m = O(n%dlog(n/d)/c?). Hence
VfoVT fo = ¢/2P. So

. (dn>2.501.5
Vi < =¢/2Vj+ V|0 (01-551-5mg-25
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Solving the above differential equation implies
(dn)2'501'5
Vi < exp(—c/2t),/V}(0) + O (c2-551~5m3~25

C.1.4 Convergence of w

In this subsection, we first show that the results in the previous two subsections

imply that ||w — w} || is bounded. Combining results on V, and V|,

dn)2-5 L5
lw —wi || < VL + V] < exp(—¢/2t),/V}(0) + O (5257?1—%325)
We know that .
w(t) = w(0) + /0 VI(f=Y)dt

For any ¢t > s > T, we show that ||w(t) — w(s)|| = O(exp(—T1")). Then it will
follow that {w(t,)},>1 is a Cauchy sequence for any sequence t; < ¢, ... and that

it converges.

o)~ wil < [ 1957 =Vl < [ Vadesw (~5) 1= )l

-0 (dzgy) exp(—T)

*

This shows that w(t) — w* as t — oo for some w*.

C.2 Proof of Lemma 4

,..T,.. ~T~
. R % Zj\op — (2p=3)N(d+1) _
We can write the H;; = =2 + > o) cop(557 )7 cop = a2y -1y~ Con

sider the sequence of n x n matrices H® p > 1 where we define the 7, j element
of H) as HZ-(JP) = (ﬁ)%. We can write H = 0.25X7X + > o1 CopH® where

d+1
X = [#1...%,]. Note that H (p), p > 1 are positive semidefinite as we can write it
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as HP) = (dH)QPX(p)TX(p),X(p) = [#9% ... 7%%]. So H is a positive semidefi-
nite matrix. We will lower bound the smallest eigenvalue of H by computing the

smallest eigenvalue for each of H (") using Gershgorin circle theorem.

Amin(H) = min o’ Hu > ZCQP min u’ HPy = Z Czp)\min(H(p))

u:flull=1 Jlul|=1
p>1

The diagonal elements of H ") are 1. Hence by Gershgorin circle theorem the eigen-

values of H® can be lower bounded by 1 — max; Y H;; ) This bound is

JijF
T~
positive when max; » i Hi(f ) is less than 1. Denote cos Omin = Max;x; xd fl]
So max; Y HZ-(;’) < (n — 1)(cosOpin)?. For all p > k = %,

(n — 1)(cos Omin)?? < 0.5. Hence

d+1 /°° d+1
mln > 0.5 Cop > Z dx
D o> Z 8Tvp—1(2p — 1) = Jupr 87v/z — 1(22 — 1)

p>k
S d+1  d+1 log(1/ cos Opmin)
~8rvk+1 8« log(2n/ cos Oin)
where we use Wallis’ inequality to lower bound the ratio of the double factorial

[80].

We can also get a simple upper bound on the minimum eigenvalue of A, (H).

T : 1 1
Suppose a, b = arg max;; x; x,;. Choose vector u € R" with u, = T3 U = 5

1
)\min(H) = min ’LLTHU S é(Haa + be - 2Hab)

wsul|=1

= 0.5(d+1) <1 - <1 - Hmin) cos emin)
m

Using the identity 1 — 6%/2 < cos < 1 — 0*/4,0 < 1 we arrive at the approxima-

tions.
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C.3 Proof of Theorem 4

It is proved in [56] that gradient descent achieves zero training error in overpa-

rameterized networks.

Lemma 13. (/56]) The discrete-time gradient descent algorithm achieves zero loss
ifm=Q (%) k= 1landn = 0O (dQ—CnQ) . With probability more than 1 — §

over initialization, || fy — Y| < (1 — %)k | fo — Y||%. Also, the weights stay close

to initialization, ||wg(k) — wg(0)|| = O (g:f%) fork={0,1,...}.

C.3.1 Boundon V|

Since, P;-(w(0) — w}) = 0, we can use a telescoping expansion of Ps-(w(k +

1) — wj ) followed by the use of triangle inequality to get

VVi(k+1) ZHPL (1+1)—w)|

= nZ 1P (Y fi =V fo)(fi = V)
=0

<130 (M) -]
<0 <M> S 1= )2 fo— |

!fo Y]
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C.3.2 Bound on V”

We have

Vi(k + 1) =[| Po(wps1 — wi)|*> = [Po(wi — wi)* + || Po(wers — wy) ||
+ 2(Py(wi — wy), Po(wgy1 — wg)) (C.2)

We can expand Py(wg+1 — wy) as

Po(wgs1 —wi) = =PV fiu(fr = Y)
= —n(Po(V fi = Vo) (fi = Y) + Vol fi = VT fows)
+ VoV fo(wr — w}))
— )V foV7 fo(wi — wi)) (C.3)

where we define e,, := —1(Py(V fi = Vo) (fe = Y) +V fo( fr — VT fowy)). We can

analyze the terms in (C.2) separately as below using the decomposition in (C.3).

* || Po(wgs1 — wy)||*: Using the bound on ||V f — V fy|| from Lemma 12,

dn+/C,
[ Po(wisr — we)|| < 0O <\/n_5—\/0—25> 1 =Y

+nVdnl| fe = V7 fowgl| + ndnl| Po(wy — wy)|

k
fre = V7 fowy = Z fi =V fow = fiey = V" fowia
= Z Vf—=Vfo) (w —wi)

k
ZW V) Vhialfiei = Y)
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By using the triangle inequality,

dn 1.5 /
\/_5 0.25

k 1.5
dn £/ C
< nzo )| fo =Y

k
1= V" founll < 030! Dllfia -V
=1

5 0.25
dn15
§0< = STAS ) Ifo— Y]

0 ( (dn)>CL? )
cl-551.591,0.25

Using this bound we can upper bound || Py(wy+1 — wg)]| as

d
\/n_(;\/;s)) Cn)k/2||fo Y|
(dn)2 501 5

—|—7]O <Cl5515 025) +7]ng

(dn)2 501 .5

| Po(wis1 — w)|| < nO (

So || Po(wyy1 — wy)||* can be bounded as

2 5,3
n*(dn)°C
— 37505 y) +1%(dn)*V]

IR —wP < 0 (L0

2d 3.501.5
+O(?7(n) y> T

c1-551.5970.25
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Using the bound /V| < 1+ V)

2 5,13
n*(dn)°C,
| Po(wi1 — wi)||> < O (me +1%(dn)*V + O

(dn)?) 501 5
10 (—) Vi ©5)

772(dn)3'50y1'5 )

CL5515,,0.25
154157025
7 (dn)°C}
0363m0 %

<0
(dn)3.501.5
( ( W)) Vi (C6)

o (Po(wg — w}), Po(wiy1 — wy)): We can expand Py(wy1 — wy,) as in (C.3)

and use Cauchy-Schwarz inequality to get

(Po(wy — wy), Po(wpgr — wy))
< lewllv/ V) = n{Po(we — w}), V oV fo(wy, — wi)))

Using the bound V f, V7 fy = c¢Py when m > n?dlog(n/d)/c* from Lemma
12

(Pofuw = w}), Poluwier —wn)) < enlly/T) —enVi  (€7)

1.5
Now we can use the bound ||e, | = nO (M%) and \/V| <1+Vto

have
. (dn)2'501'5
(Po(wy — wy), Po(wpgr — wy)) < — <C77 —n0 <C1A551.5mg.25)) Vi
d 2.501.5
+ 10 ((n)—y> (C.8)

c1-551.59170.25

We are now ready to combine the bounds from (C.6) and (C.8) into the recursion in
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(C.2). Tf we have ) < 52, and m = Q(%;CG)

Vi(k +1) < Vj(k) + O (n2(dn)503)

3531m0-25
(dn)3 501 5
( ( 15515m025)> V\\(k)
dn 2. 501 .5 (dn)Q.SCZ}E
cn —n0O 15515,7,0.25 0 % Vi +n0 cL5815,,0.25 (C.9)

dnC,
1= )itk +0 <Cz(53”—moz5> (C.10)
cn\* (dnC,)
S <1 - E) Vi(0)+0 <0353m%.25> (C.11)

where the final step follows from induction.

C.3.3 Putting It All Together

We combine the bounds on V) and V to get

Hwk—wLy|<¢_+¢VT<o<ﬁ¢;> Ifo =Yl

(dnC,)?
( 2 > c303m0-2
7\ F/2 (dnC,)'
(1 N 7) lwo —wi] + O <01.551.5$noA125

(C.12)
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C.3.4 Convergence of Iterates for GD

Similar to the continuous-time dynamics of gradient flow, we show that the iter-

ates wy form a Cauchy sequence. For n > m > N,

lwn = wnll <0 ) IV flfe = V)l S nVdn Y (1= en)*(|(fo = V)]
k=m

k=m
1
< pVdn(1 — cn)m/Zl_\/T—an(fo =Y
< VI )

Hence, {wy }72, converges.

C.4 Proof of Lemma 6

We can decompose f(x,w(k)) — fxr(x) as

(f(z, w(k)) = frlz, wk))) + (fo(z, wk) = fulz,wp))
+ (V' f 2, w(0) Pyw(0) + (V7 f (2, w(0))V oV foV fo) 'Y = frer(z))

We bound each of the above terms below. In the derivation below we use the bounds
resulting from Theorem 4, Lemma 13 and Lemma 12 deterministically. Section
C.4.1 shows the probabilistic events that are assumed to be true w.p. greater than

1 — ¢ in the proof below.

* We begin by showing that E,(f(z, w(k)) — fr(z,w(k)))? is small. We can
expand f(x,w(k)) — fr(x,w(k)) as

—= 3 0o ] (03) = (] (O3] ()2

Define S(z,w(0)) = {j € [m] : o'(w] (0)F) # o(w] (K)&)}, the set of

J

indices from 1...m for which w; (0)Z has a different sign than w/ (k)z.
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This implies that f(z,w(k)) — fr(z,w(k)) can be equivalently written as

% Y. alo(w] (k)F) = o(w] (0)7) + o (w] (0)7)

JE€S(z,w(0))
— o' (w] (0)2)w] (k)1)
We can use triangle inequality followed by 1-Lipschitz property of o(.) to
bound | f(z, w(k)) — fo(z, w(k))| by
2 T(1\4 T4~
PN CICES Ok

jeSs(z,w(0))

Denote the bound on ||w;(k) — w;(0)|| from Lemma 13 as R := O (;:5%)
So

_ AdR?S (. w(0)

m

|f (@, w(k) = fulz, w(k)?

(C.13)

where |S(x,w(0))| denotes the cardinality of set S(z,w(0)). From Section
C.4.1, we have that

Ea,w(o)|S(z, w(0))]*

E,|S(z, w(0))]? < :

When |w] (0)Z| < |w] (0)Z — w]/ (k)Z| there is a difference in sign between

w; (0)Z and w] (k)Z. Hence

Ey.w(0)|S (@, w(0))]* < Eq o) (Z 1L{|w;(0)f| < |ij(0)55 — ij(k)ﬂ})

By triangle inequality followed by Cauchy-Schwartz

Esu(0)]S (@, w(0))[*

<3 VB0 {w] (0)F] < R0 {w] (0)F] < R}
gl
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Since w;(0) is distributed N(0, x*I,) and z is a distributed as X which is

supported on the ball ||z| = V/d, w] (0)Z is distributed as (0, x*(d + 1)).

Hence P(Jw] (0)Z| < R) is bounded by . This shows

E.wio)|S (2, w(0)) = O (%R)

Plugging this bound back into (C.13) we have

MR 3.5,,3 (3
Egc|f(1'aw(k’))—fL(JU,w(k))|2:O<\/a R ) :O(d y )

0K KkO4e3mO-5

We can upper bound the term E,| fr(x, w(k)) — fr.(z, w})|* < |Jw(k)—w? ||

Using the bound on ||w(k) — wj || from Theorem 4

Bl (e w(h) — fuwwp)P < (1= D) (o) - i
0 ( (dnC’y)l'5 >

c1-551.5470.125

From the definition of wj we can write w(0) — wj; = Pw(0) —
Vfo(VT foV fo)~1Y. Hence

lw(0) = w[|* < 2 Puw(0)|I* + 2|V fo( V" foV fo) 'Y |
=2/ T (VI V fo) o+ 2Y (VI V fo) 'Y

Using the bound on || fo||? from Section C.4.1 fI(Vf V fo)™1fo = O (
when k2 = O (#) . Now consider the term YT (VT f,V fo)~1Y.

L
/=)

YOV oV )Y =YTH Y + YT(VT foV fo) ' —H Y

Using the identity A~™! — B™!' = A~!(B — A)B~! and the concentration

132



results from Lemma 12

202\/3
VIV 9 h) = HY < 5 SRR (5) =00
whenm = Q(dn*C; log(n/d)/c*). Thus ||w(0)—wi|* < YTH'Y+0 (1).
Consider VT f(z,w(0))Psw(0) = flz,w(0)) —
VT f(z,w(0)V fo(V fd ¥V fo)~* fo. From Section C.4.1
E. f?(z,w(0)) < % (C.14)

For the second term, note that E,(V' f(z,w(0)Vfo(Vfi Vo) fo)?* <
dfE(V fo ¥V fo) "L fo since E,V f(z,w(0))VT f(x,w(0)) < dI and so

Eo (V' f(a,w(0))V fo(Vfo Vfo) " fo)* <

d|| fol”
Cc

when m = Q(n2dlog(n/d)/c?). Using the bound on || fy]|? from Section

C4.1
ol _ (1)
c co

Combining this with (C.14)

T 1 2 /€2d2n - 1
E.(V f(w,w(0) R w(0))? < " _o(—J

when k2 = O (525) .

Finally, consider the term V' f(x, w(0))V fo(VT foVfo) 'Y — fxr(x). We

can expand it as
(VT f(2,w(0)Vfo—h") (VT foVfo) 'Y +hT (VT foVfo) ' —H Y

Applying triangle inequality we can upper bound
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Eq (VT f(2,w(0)V oV oV fo) ™Y = ficn(x))” as

(dnC,)?

1—6H(VTf0Vf0)‘1 — H7']?

B, (S o9 e w(0) = BIE) +
(C.15)

First consider the left term in (C.15). From Section C.4.1 the left term in
(C.15) can be bounded by

2
nC 1 T
02; i E"Eﬂﬂ(o)mz'i (EZU <wj (0).’13)0 (wj (O)I'Z)LE XTi— K(mjx»)

Since w; (0)Z; and w; (0)Z are statistically independently for all j given x, 2,

we have

nC 2nC!
E, <7yIIVTf<x,w(o))Vfo - hT||2) <% (C.16)

Now consider the second term in (C.15). Using the identity A~ — B~! =

A~ (B — A)B~! and the concentration results from Lemma 12

(VT foVfo) ! = HT? <

dnC,)? d*niC? 20n
e < (5) e

when m = O(n%dlog(n/d)/c?). Combining the above bound with (C.16)

d2n4C§ logn

Amo

E, (V7 (2, w(0))VSo(V oV fo) 'Y — fren(x))” <

C.4.1 Probability Conditions for Lemma 6

We can use a union bound to show the below events occur simultaneously with

probability at least 1 — ¢ :

e Theorem 4, Lemma 13 and Lemma 12 are true.
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By Markov inequality, we have that

10E, (0| S (, w(0))[?

E, |, w(0)? < .

w.p. greater than 1 — §/10

Using Markov inequality

10dk>

. w(0) < =

w.p. greater thanl — §/10

By Markov inequality

E, (V" f(z,w(0)Vfo—hT|?)
< B (5 197 0, 00) 0 7IP)

with probability greater than 1 — 6/10.
Again, we apply Markov inequality.

||f0||2 < IE||fo||2 < 10k2dn

. S5 S5 w.p. greater than 1 — §/10
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C.5 Proof of Lemma 7

m—arccos | &

Ty
~T ~ d+1 5T~ T4
Note that K(x,y) = x?y# = ()P ey =

(2p—3)!1(d+1) L
27r(2pp—2)!!(2p—1)' Using & = {z, 1}

-t

4 = d+1
ey S ()

4 (d+ 1) g )Y

Denoting the coefficient of (z"y)* by dj

K(z,y) =Y di(z"y)F =" di(@®) Ty = 67 (2)s(y) (C.18)

k>0 k>0

where ¢(x) = [\/do, Vd1x, V/dox®?, \/dz2x®3, . . ].

C.6 Proof of Theorem 5

Denote matrix & = [¢(x1), ¢(z2), . .. ¢(x,)] with n columns. Note that
frr(@) = ¢ (2)®(@"®) 0w = ¢ (2) Ppw

where Py is the projection matrix onto the columns space of ®. First we center the
random variable ¢(x) around its expectation and denote ¢(x) = ¢(x) — E ¢(z).

Since the columns space of ® remains unchanged due to this transformation, Pj; =
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P@.SO

Using || — P3|| < 1 and Pgé(z;) = 0 Vi € [n], we can further upper bound

E,(y — fxr(@))? < 2)@]?(|E.d(2) _IZaﬁ ;)¢

+ 2@ )| (C.19)

Now we will apply McDiarmid’s inequality to the first term in (C.19). Note
that typically one would need to use more involved concentration inequality for
sample covariance matrix (like [81]). But our data points (E(x) are bounded
and hence we can simply use McDiarmid’s inequality. If we change one of the
qg(xz) with its 1.i.d. copy then we can apply triangle inequality to show that
IE.p(x)pT (2) — n~ '3, é(2:)d" (x)|| changes by a maximum of 2(d + 1)/n.
Hence by McDiarmid’s inequality

B, () n*12<z>

<E,,|E,d() Zgzﬁ ()8 (2:) \/(dﬂ):g(lm) wp. 1-3§
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We can now upper bound E,, |E,é(2)¢ " (z) —n~' >, ¢(2;)6 " (2;)] as

Eq, |Exo(x Zm )6 (;

< \/ By, |Ed(2)0" (x) - n‘12¢ 7)o" (@Il

) \/En S IE.4(@)3T (x) — o) (i) 3

2(d+1)

as ||p(z)|| < d+ 1. Hence
[romere Z¢ (z:)¢" ()

=0 (\/(d +1) 10g(1/5)> w.p. mote than 1 — § (C.20)

n

We will apply McDiarmid’s inequality to the second term in (C.19) as well. Since
|n~13". &(x;)|| changes by a maximum of 2(d+1)/n by changing one of the ()
with an i.i.d copy

In= > )]

N T (d+ 1)log(1/9) B
<E.|n Zqﬁ(xz)ﬂ + \/ - w.p. motethan1 —9  (C.21)

The mean B, [0~ 3, &(x:)| < /Ex, 1 30, 6(x)||2 < /L. Putting this to-
gether with (C.21)

anl Z &(SU@)H < \/d +1 + \/(d +1)log(1/9) w.p. mote than 1 — § (C.22)

n n
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Combining the result in (C.22) and (C.20) with (C.19), we arrive at the bound on
E.(y — fxr(x))?. Finally, using the bound on E,(y — f(x,w(k)))? from Lemma
6 we arrive at the result.

C.7 Proof of Corollary 1

Ify = (z"8)",||8]| <1 then y can be equivalently written as

1

vy

In order to apply Theorem 5 we need to compute an upper bound on ||@|* =

%. It boils down to computing a lower bound on d,. d, > 0.25 for p = 0, 1.
Forp > 2d, = prz(p /9] (dfﬁ (25l). Using the results in [80] to lower bound the

v = (V)T 6% = 6T (@), 0 = [0,....0,——F,0,..]

ratio of double factorial,

_ @ =3Md+1) | dt]
C2m(2p = 2)!1(2p — 1) T 10(2p)15

Cgp/

/ / k
Combining this with the bound (2]’; ) > (%)

> wtw () 2w (7))

p'>[p/2] p'>[p/2]
1

>
— 10(p+ 1) (d+1)p

Hence ||w]|* < 10(p + 1)'5(d + 1)? and we arrive at the result.
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