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This study focuses on the effect of spatial non-uniformity in the ambient flow on the forces acting
on a spherical particle at moderate particle Reynolds numbers. A scaling analysis is performed to
-obtain conditions under which such effects are important. A direct numerical simulation, based
on spectral methods, is used to compute three-dimensional time-dependent flow past a stationary
sphere subject to a uniform flow plus a planar straining flow. The particle Reynolds number,
Re, in the range 10 to 300 covering different flow regimes, from unseparated flow to unsteady
vortex shedding is considered. A variety of strain magnitudes and orientations are investigated.
A systematic comparison with the potential flow results and axisymmetric strain results is given.
Under elogational strain, both planar and axisymmetric cases are found to stabilize the sphere
wake and delay onset of unsteadiness, while compressional strain leads to instability. In terms of
separation angles, length of the recirculation eddy and topology of the surface streamlines, planar
and axisymmetric strains yield nearly the same results. The drag force appears to have a linear
relation with strain magnitude in both cases, as predicted by the potential flow. However, contrary
to the potential flow results, the drag in planar strain is higher than that in axisymmetric strain.
Generation of higher drag is explained using surface pressure and vorticity distribution. Planar
strain oriented at an angle with the oncoming unform flow is observed to break the symmetry
of the wake and results in a lift or side force. Variation of the drag and lift forces may be quite
complex and unlike the potential flow results, they may not be monotonic with strain magnitude..
The direction of the lift force may be opposite to that predicted by the inviscid and low Reynolds
number (Re < 1) theories. This behavior is dictated by the presence or absence of a recirculation
eddy. In the absence of a recirculation region at low Reynolds numbers (Re < 20), or, at a very
high strain magnitude when the recirculation region is suppressed, results somewhat follow the
pattern observed in potential flow. However, with the presence of a recirculation region, results
opposite to those predicted by the potential theory are observed.

1. Introduction

Prediction of forces acting on a particle moving in a fluid is important in many particle-laden
flows. Though the problem has received attention for nearly a century, many questions still remain
unresolved. In particular, a generalized form for the equation of motion of an individual particle
that allows for both temporal and spatial variations in the surrounding flow is still lacking. The
effect of temporal acceleration in both the surrounding flow as well as of the particle itself has
been investigated in great detail over the past years, especially in the context of low Reynolds
number and potential flows and to some extent for finite particle Reynolds numbers. On the other
hand, investigations of the effect of spatial non-uniformity in the undisturbed flow have been
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primarily limited to potential flow and low Reynolds number limits. When the particle Reynolds
number becomes finite, very little information is available as to the nature of the flow field and
the resulting forces.

One of the earliest to recognize the importance of spatial non-uniformity in the undisturbed
ambient flow on the motion of a particle is Taylor (1928), who was concerned with the motion
of large airships. Taylor and later Tollmien (1938) computed the rate of change of kinetic energy
of the fluid around bodies in irrotational non-uniform flows. Their investigations showed that
the added-mass force acting on a stationary sphere in a steady straining flow is proportional to
the pressure gradient measured at the center of the sphere. Taylor also performed wind tunnel
experiments to confirm the inviscid theory in predicting the correct equilibrium position of bodies
of different shapes in converging, diverging and curved flows. Over the years Taylor’s work has
been revisited and generalized by others including Voinov, Voinov & Petrov (1973), Auton (1987)
and Auton, Hunt & Prud’homme (1988).

In the limit of zero Reynolds number, a generalization to the classical Basset-Boussinesq-Oseen
(BBO) equation that incorporates the unsteady effect in the ambient flow was derived by Maxey
& Riley (1983). In the Stokes flow regime velocity shear does not produce a lift force. However,
quadratic variation in the ambient flow influences the force on the particle, and the effect of velocity
curvature appears as the Faxen correction. At small but non-zero particle Reynolds numbers,
even a linear variation in the undisturbed ambient flow may have a significant impact. The classic
example is the lift force in a linear shear flow. Saffman (1965, 1968) obtained an expression for
the lift force under the condition that Re < +/Re, < 1, where Re = p¢|U,|d/pu is the particle
Reynolds number, U, measures the relative velocity of the flow with respect to the particle,
Re, = od?ps/u is the shear Reynolds number, o is the shear magnitude, d is the particle diameter,
pr and p are the fluid density and viscosity. Over the years, Saffman’s work has been extended
in several significant ways by Harper & Chang (1968), Miyazaki, Bedeaux & Avalos (1995) and
many others. McLaughlin (1991) extended Saffman’s analysis on linear shear flow to situations
where Re is not small compared to Re,. Analytical results were also obtained for wall-bounded
shear flows by Schonberg & Hinch (1989), McLaughlin (1993), Hogg (1994) and Asmolov (1999).
An interesting review on the subject is given by Stone (2000).

A variety of linearly varying ambient flows other than shear have also received attention in the
limit of small but non-zero Re. For example, Herron, Davis & Bretherton (1975) and Weisenborn
(1985) obtained expressions for force on a particle subjected to a pure rotational flow. Force due
to a pure straining flow was obtained by Bedeaux and Rubi (1987) using the method of induced
forces. Later Pérez-Madrid, Rubi & Bedeaux (1990) derived a general expression for force due to
a combination of rotational and straining flows.

Investigation of the effects of non-uniform ambient flow at moderate Re (> 1) has been limited.
In most two-phase flow simulations, such effects are not taken into consideration due to the
introduction of additional parameters as well as significantly increased cost of computation. Hence,
the results of uniform ambient flow are taken for granted. This approach is indeed correct for
particles of size much smaller than the smallest relevant flow scale, such as the Kolmogorov
length scale, such that the ambient flow variation over one particle diameter is much smaller
than the relative velocity U,. However, as the flow variation over a particle diameter becomes
comparable to U,, the effect cannot be ignored. Numerical simulations of Magnaudet, Rivero
& Fabre (1995) for axisymmetric straining flow and of Dandy & Dwyer (1990) and Kurose &
Komori (1999) for linear shear flow showed that even a 10% variation in the ambient flow over a
particle diameter can have significant effect. As in the previous investigations, in this paper also
we will restrict attention to linearly varying flows. In other words, the undisturbed flow U(x)
is expanded only up to VU such that U(x) ~ U(x = 0) + VU|x=0 - x. The particle is located
at x = 0 and the velocity of the particle is denoted by V, such that the relative velocity of the
flow is given by U, = U(x = 0) — V. Such linearization can be considered appropriate provided
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the flow variation over d is small but not negligible. Of course, for particle sizes greater than the
scale of the ambient flow, the problem can be quite complex. The force on the particle cannot be
parameterized completely in terms of U(x = 0) and VU]sz alone, and higher order gradients of
U will be required. .

In this paper, we will investigate the effect of a planar straining flow on the forces acting on a
stationary spherical particle. Thus our work complements the investigation of Magnaudet et al.
(1995), who considered the effect of axisymmetric strain. Axisymmetric strain is appropriate for
particles in nozzles, in pipe flows with sudden expansion or contraction and in axisymmetric jets.
On the other hand, planar strain will be appropriate in the case of planar nozzles, in sudden planar
expansion or contraction and in planar jets. The effect of such large-scale mean flow gradient is
also relevant for the motion of airships and underwater vessels. Apart from the mean flow effect,
local turbulent velocity gradient can also play a role in determining the particle forces. There is
ample experimental and computational evidence to suggest that particles tend to accumulate in
regions of high strain and avoid regions of high vorticity (Wang & Maxey, 1993; Elghobashi &
Truesdell 1992; Squires & Eaton, 1991). Furthermore, studies on turbulent structure (isotropic
turbulence: Ashurst et al. (1987), convective turbulence: Balachandar (1992)) indicate that regions
of local strain are more likely to be planar than axisymmetric. Thus there is sufficient interest in
the investigation of particles subjected to planar strain.

The uniform relative motion, U,., of the undisturbed ambient flow is characterized in terms of
the particle Reynolds number, Re. With the inclusion of a superimposed straining flow additional
parameters are required. The strength of the straining motion is measured in terms of the variation
in U over a particle diameter compared to U,. The nature of the straining flow can be varied
systematically from planar strain to axisymmetric strain. The orientation of the principal axes of
the strain-rate tensor relative to the direction of U, can also be varied. The present investigation
covers a Reynolds number range of 10 to 300, thus extending from a steady unseparated flow
to periodic shedding of wake vortices, under strain-free case. Consistent with the findings of
Magnaudet et al. (1995), even a modest planar strain has a strong influence on the flow structure
around the particle. Elongational strain aligned with the direction of U, tends to suppress the
wake, and at sufficient strain magnitude the recirculation region is completely eliminated. On the
other hand, compressional alignment of strain results in severe instability. The presence or absence
of a recirculation region in the wake is likely to have a strong influence on the behavior of the
drag and lift forces. When the wake region is completely suppressed, these forces follow the same
pattern found in potential flow. However, with the presence of the wake, its influence can be quite
complex. In this regard the structure of the wake is quite important in understanding the forces
acting on the particle.

This paper will focus on the effect of planar strain on the structure of the wake. One important
difference between axisymmetric and planar strain is that under planar strain the flow is three-
dimensional even in the absence of unsteadiness in the wake. Azimuthal variation in the flow and
correspondingly an azimuthal component of the flow exist at all Re. Of course, as Re increases the
flow becomes unsteady with vortex shedding, resulting in a time-dependent three-dimensional flow,
even in the absence of imposed strain. In order to properly resolve the flow details and accurately
predict the lift and drag forces it is important to have a high-resolution three-dimensional and
time-dependent numerical methodology. Here we employ a Fourier-Chebyshev pseudo-spectral
(collocation) method which is described in section 3. The effect of strain on the structure of the
wake and the surface distribution of pressure and shear stress will be considered in section 4.
In this section we will also study the resulting lift and drag forces and compare them with the
potential flow prediction. Discussion and conclusion will be presented in section 5.
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2. Scaling Analysis

Before we embark upon the details of the wake structure and its influence on the drag and lift,
we would like to establish conditions under which gradients in the ambient flow can be considered
important. Based on the generalization to the BBO equation given by Maxey & Riley (1983) and
on the inviscid analysis of Auton et al. (1988), the force on a particle subjected to an unsteady
and linearly varying ambient flow at finite Re can be represented as

D dv
F =  Fga + mf-% + myCuy (-%I:—— E) + miCyU-VU + msCr(U—-V) xw
t —
+ 3d7m/ K(t—T,T)fi(—U:iT—wd'r, - (21)

where U and its spatial and temporal derivatives are evaluated at the particle position. Here my
is the mass of the fluid displaced by the particle and D/Dt and d/dt are the total derivatives
following the fluid element and the particle, respectively. The first term on the right is the Stokes-
like standard drag force, that would be present even in the absence of any unsteadiness or spatial
variation in the undisturbed flow. The second term is the pressure gradient force due to the local
temporal and convective acceleration of the ambient flow, that would also exist in the absence
of the particle. The third term accounts for the added-mass effect arising from the temporal
acceleration of the particle and the undisturbed flow. Here C)ys is the added-mass coefficient.
The fourth term is the added-mass force arising from the convective acceleration. The fifth term
accounts for the lift force induced by the vorticity, w = V x U, of the undisturbed flow evaluated
at the particle position, where Cyy, is the corresponding lift coefficient. The last term is the Basset
history force, which accounts for the viscous effect of unsteadiness.

From the above equation it can be seen that the convective acceleration, U - VU, arising from
the spatial gradient plays an analogous role to the temporal acceleration, 9U/0t, in both the
pressure gradient and the added-mass terms. In addition, the effect of the vortical component of
the ambient flow gradient contributes to a lift force. The influence of spatial non-uniformity, if
any, on the Basset history effect is not clear. The precise form of the kernel K is not fully settled
even in the case of a uniform flow at finite Re (Mei & Adrian, 1992; Lovelenti & Brady 1993;
Kim, Elghobashi & Sirignano, 1998).

In most studies of particle motion, the pressure gradient, added-mass and Basset history effects
arising from unsteadiness in either the particle motion or the surrounding flow are normally
neglected under the assumption that the particle density, pp, is much higher than the fluid density,
ps. For lack of additional information, the pressure gradient and added-mass effects arising from
the spatial non-uniformity are also ignored. Hence the particle motion is considered to be dictated
mainly by the standard drag term. However, it is not clear that such simplifications are always
valid. In particular, it is of interest to know if all these terms can be neglected even in the limit
of heavy particles, i.e. , ps/pp < 1.

In the following we will use simple scaling arguments to asses the relative importance of different
terms in (2.1). The analysis will be general and consider a freely moving particle, droplet or bubble
in an arbitrary ambient flow. The velocity and length scales of the ambient flow are denoted by Up
and L. For simplicity we assume that the ambient flow has no independent time scale; so the time
scale is simply given by L/Up. Further, we restrict attention to long time after the start of the
motion (longer than the particle time constant) when transients arising from the particle’s initial
condition can be considered to have decayed. It is then reasonable to take the particle velocity V
and the relative velocity U, both scale as Up. In such case, the density ratio ps/py, relative size of
the particle d/L and the particle Reynolds number Re are the only parameters which determine
the relative strength of the various terms in (2.1).

The appropriate scaling for the fluid and particle accelerations should be established first. While
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the acceleration of the undisturbed flow, DU/Dt, simply scales as U2 /L, scaling of the particle
acceleration, dV/dt, is more complicated and expected to depend on pe/pp. In the case of particles
and droplets of density ratio of order unity or less, (pr/pp < 1), the magnitude of the particle
acceleration can be estimated by a leading order balance between m, dV/dt and the standard
drag force Fsiqa = 3w pud f (U — V). Here my, is the mass of the particle and f is the finite Re
correction to the Stokes drag. In the case of bubbles, (ps/pp > 1), the leading order balance is
between the added-mass term %m 7 dV/dt and the standard drag. The resulting appropriate scale
for dV/dt is then

2
;——: —R]fé %0— for particles and drops (p¢/pp < 1),
and i Eg— for bubbles (pg/pp > 1)
Re d : P '

In the estimation of the Basset history term, for simplicity, the kernel is assumed to take the
standard t=1/2 decay, and the appropriate time-scale for the integral is d? /v for Re < 1 and d/U,
for Re > 1.

The order of magnitude of different terms in (2.1) compared to the standard drag term is
listed in table 1. Six different cases can be identified: for very small Reynolds number (Re < 1),
the density ratio is the only deciding parameter, whereas for Re > O(1), both pg /pp and d/L are
important. Note that the contributions from DU/Dt and dV/dt can scale differently and therefore
they are listed separately. The pressure gradient force and the rotational lift term scale similar to
the added-mass force and therefore they are not shown in the table.

Contribution from dV/dt follows the expected trend: its contribution to both the added-mass
and history forces is small for heavy particles, (pr/ pp K 1), whereas it is significant in case of
lighter particles and bubbles, (p¢/pp = 1, or, >> 1). This behavior is independent of the relative size
of the particle or the particle Reynolds number. On the other hand, contribution from DU/Dt is
insignificant under most conditions, except when the length-scale of the ambient flow is comparable
to the particle diameter (i.e. d/L ~ O(1)) and when the particle Reynolds number is of O(1) or
higher. In which case, irrespective of the density ratio, the added-mass and history contributions
from DU/Dt cannot be ignored.

In summary, the standard practice of neglecting the added-mass and history forces in case of
heavy particles is valid provided particles are small compared to the flow scales or when the

particle Reynolds number is small. However, when d/L ~ O(1) and Re > 1, these forces have
substantial effect.

3. Numerical Methodology
3.1. Governing Equations

We consider a spherical particle held fixed (V = 0) at the origin x = 0 of an inertial frame. Particle
moving at a constant speed can be considered easily, by choosing a reference frame moving along
with it and the ambient flow corrected for the particle velocity. The undisturbed flow U is steady,
linearly varying in space and directed along the x-axis at the particle position, such that

U(x) = [U,|e, + (S+0)x, (3.1)

where S and €2 are the pure strain and rotational part of the velocity gradient. A perturbation
field u'(x,t) takes into account the deviations from the ambient flow due to the presence of the
sphere. Hence the net flow field u(x,t) can be written as u(x,t) = U(x) + u'(x,t). At large
distances from the particle, (x — c0), u(x,t) approaches the undisturbed ambient flow, and on
the particle surface it satisfies no-slip and no-penetration conditions.
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Re | d/L | pe/po St?;:gard Added-mass force | History force
& DU/Dt dvja | dUjdt dv/dt
<1 fﬁ K1 g k1
. " £
<1 o |24 : 1 Bed . «1
o(1), o(1) O(1).
>1
<1 a1 2y/Re : <1
<1ifom, o) | ¢ : <1 o the s <1 om
o() > 1
L1 fi— K1 % Re : K1
omrom,] oW | ¢+ : 0@ 4_L o)
’ 1)| L VRe 1
>1 oQ) o(1)

TABLE 1. Order of magnitude of different terms in (2.1).

The sphere diameter d, the magnitude of the relative velocity |U,| and the fluid density ps are
used to nondimensionalize the variables. In the following discussion any dimensionless variable
will be denoted by the symbol ~. The governing equations for the total velocity, a(%, t) are given
by the Navier-Stokes equations as

V-a=0, (3.2)
i - - 1 -.
%‘% +@-Vi=-Vp+ -—zvzﬁ. (3.3)
In terms of @’ the above equations are
V-i' =0, (3.4)
8—‘11+ﬁ'ﬁﬁ'+ﬁ’vﬁ+ﬁ-f7ﬁ'=—W>’+i?2ﬁ’ (3.5)
ot Re ' '
Here p(%, ) = P(%) + §(X, ), and P(%) is related to U by
VP=-U-VU. (3.6)

The perturbation velocity @' and pressure §' are determined by solving (3.4 - 3.5) with appro-
priate boundary conditions. The total flow field is then obtained by adding U and P to them.
The resultant force (in dimensional form) on the sphere is obtained by integrating the normal and
the tangential stresses on the surface :

F;, = / [-per + Troe0 + Trg ey - €;dS. (3.7
s

The first term on the right hand side is the pressure force, while the next two terms are the viscous
force. The non-dimensional force coefficient is defined as
F

Cr = .
P T U2 n(d/2)?

(3.8)
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The component of Cg along the z-axis is the drag coefficient Cp.

3.2. Spatial Discretization
We consider a spherical coordinate (r,8, ¢) (figure 1a) where

dj2<r<R, 0<f0<7m and 0<¢<2m.

Here R represents the boundary of the computational domain. A Chebyshev expansion is imple-
mented in the radial direction. The Gauss-Lobatto collocation points in r are first evaluated on

[-1,1] as
& = —cos [7;\(2 :11)] , (3.9)

for i = 1,2, ..., N, where N, is the number of radial grid points. Then a grid stretching is used

to cluster pomts in the shear layer near the surface of the sphere. The function used for radial
stretching is given by

£=Co+Cie~ cosf. +C3®, (3.10)
C1=.5(-m+2C+3), C3=.5(n—-2C-1). (3.11)

The parameters Co and y; are used to vary the amount of stretching. The computational points
in physical space are obtained using the mapping

1, (d 1/d
==& | =— == . 12
T3 26,(2 R>+2<2+R> (3.12)
The azimuthal direction ¢ is periodic over 27 and a Founer expansion is used along this direc-
tion. The collocation points in ¢ are computed as

¢e = 2n(k — 1)/N, (313)

for k=1,2,...,, Ny, where Ny is the number of grid points in ¢. In the tangential direction 8, it is
sufficient to define the variables over the interval 0 < 6 < 7; however, the variables are periodic
over 27, and not over w. Thus a Fourier collocation in- (i can be used only with some symmetry
restrictions. One may note that a scalar, the radial component of a vector, and the radial derivative
of a scalar are continuous over the poles (§ = 0 and 7). But the tangential and the azimuthal
components of a vector change sign across the poles. The tangential and azimuthal derivatives of
a scalar also change sign. It is the so-called ’parity’ problem in spherical geometry, and has been
discussed by Merilees (1973), Orszag (1974) and Yee (1981). The problem of pole-parity does not
arise if surface harmonics are used. However, spectral methods using surface harmonics require
O(NN) operations per mode, while those based on Fourier series require only O(logN) operations.

In the present study, a suitable Fourier expansion in 6 is derived formally by following Shariff’s

(1993) approach. We start by considering a typical term in the expansion:

¢ a
U p =4 B p 7Pexp(imb)exp(ike) (3.14)
Up Y

where ¢ represents a scalar. The method requires that a scalar and the Cartesian components of

a vector each independently be analytic at the poles. Such a requirement results in the following
acceptable expansions:

i { > 0pmiTp(F)cos(mB)exp(ikg)  even k } ,

Y cpmrTp(F)sin(mb)exp(ikg)  odd k (3.15)
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i { 3 BpmiTp(7F)cos(mb)exp(ikp)  even k } (3.16)
Tl 3D Bomk Ip(7)sin(m@)exp(ike) odd % ’
and
I { > YpmiIp(F)sin(mb)exp(ikg)  even k } (3.17)
= U 3 vpmi Tp(7)cos(mb)exp(ik) odd k [’ )
where T}, represents p** Chebyshev polynomial and i = /—1. m and k are the wave-numbers in §
and ¢ directions. «, B and «y are the coefficients in the expansions and are functions of p, m and
k. The expansion for iy follows that of ug.
The collocation points in @ are distributed as

_m

J - NG
for j = 1,2, ..., Ng, where Np is the number of grid points in . A grid stretching is used to cluster
points in the wake region of the sphere as

6, = tan—t | 52001~ A) (3.19)
’ cosf;(1 + h%) — 2R ’

i-1/2, (3.18)

_ where 7 is the parameter that controls the degree of stretching. In the simulations to be reported
here, a value of i = —0.35 provides sufficient resolution in the sphere wake. A ¢-projection of a
typical mesh is shown in figure 1b.

3.3. Temporal Discretization

A two-step time-split method is used to advance @' in time. In the first step the velocity field
is advanced from time level 'n’ to an intermediate level '*’ by solving the advection diffusion
equation

ﬁl !

-u 1
- ﬁ + NL(a),) = ﬁD(ﬁ;) , (3.20)
where D and NL are the diffusion and nonlinear terms. This is followed by a pressure correction
step

., -1 =

—%—* = Vi1 (3.21)
By satisfying the divergence free condition, V- @,,; = 0, a Poisson equation for pressure is
obtained from (3.21) as
V.-l

At

The above equation is solved fully implicitly for p),,, and the intermediate velocity a, is then
corrected by (3.21) to obtain @' at (n + 1). In the advection-diffusion step, the non-linear and
the cross-derivative terms are treated explicitly using second order Adams-Bashforth scheme. The
9-diffusion term is also treated explicitly. To avoid severe viscous stability constraint due to the
grid stretching near the surface, the radial diffusion term is treated implicitly using a Crank-
Nicholson scheme. The azimuthal diffusion term decouples from the rest of the operators when
the momentum equation is transformed to Fourier space; hence it is also treated implicitly.

V2Pl = (3.22)

3.4. Boundary Conditions

Spectral methods are extremely sensitive to boundary conditions due to their global nature. Only
carefully derived boundary conditions will produce stable and consistent results. At the inflow, the
Dirichlet boundary condition specifying the undisturbed ambient flow is used. At the outflow, a
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non-reflecting boundary condition by Mittal & Balachandar (1996) is used. The idea is to smoothly
parabolize the governing equations by multiplying the radial diffusion terms by a filter function.
The filter function is such that the diffusion terms are unaltered in most of the computational
domain, while at the outflow boundary they smoothly vanish. Hence the method does not require
any explicit outflow boundary condition and the governing equations are solved there.

On the surface of the sphere, no-slip and no-penetration conditions are imposed for the total
velocity field @. This is equivalent to the condition that @' = —U on the sphere surface. In the
context of time split scheme the appropriate boundary condition for the intermediate velocity is

@, = U+ At2Vp, — Vi,_,). (3.23)

Combined with the homogeneous Neumann boundary condition for pressure, 95, ,,/07 = 0,
(3.23) guarantees zero penetration through the surface of the sphere, while the no-slip condition
is satisfied to order O(A#%). A typical Af used in the present study is 0.001.

3.5. Pole Stability

Due to the topology of the grid, the azimuthal resolution is spatially nonuniform. The resolution
is much higher near the poles compared to the equator. Furthermore, the azimuthal grid spacing
linearly decreases with the radial location as the surface of the sphere is approached. The viscous
stability constraint due to such nonuniform resolution is avoided by the implicit treatment of
the radial and the azimuthal diffusion terms. However, the time-step size is still restricted by
the convective stability (CFL) condition. Ideally it is desirable to have higher spatial resolution
only in regions as demanded by the local flow structure. A simple strategy to remove higher ¢
resolution in regions where it is not needed is to filter high frequency components. Such a filter
necessarily has to be a function of both # and 4.

There are some constraints that must be satisfied by the pole filter. It must be sufficiently
smooth in all its variables to preserve spectral convergence. The analytic nature of the scalar and
vector fields requires that in the limit # — Oandn, only the azimuthal modes k = Oandk = +1
exist in the expansions (3.15) - (3.17). Physically, k = 0 is the axisymmetric mode and it does not
contribute to the pole stability constraint. The k¥ = +1 modes are the most unstable and lead to
bifurcation in the flow (Natarajan & Acrivos, 1993). Hence, to the lowest order, these modes must
be retained over the entire computational domain. From CFL criterion, it can be inferred that as
long as the ¢ spectra of the velocity field decays faster than (k)~2, the time-step is dictated by
the k£ = £1 mode. Based on this observation, we introduce a pole filter function given by

fo=1—exp[-MY], (3.24)

where Y = 7 sinf. A\, and ), are functions of k and are determined by the conditions

f¢ = % at Y =Yy and f¢ =09 at Y =kYnn. (325)
Here Yyin is the value of Y at the grid-point closest to the pole on the sphere (note that in
(3.18) the 6 discretization has been chosen to avoid § = 0 and 7 points). Thus the filter function
attempts to achieve at least (k) =2 decay at the point closest to the pole. However, the filter function
approaches unity exponentially such that at a distance kYmi, form the pole, f, approaches 0.9.
Thus filtering is localized to a very small region near the poles close to the sphere. The size of
the filtered region slowly increases with the azimuthal mode number. The filter is applied on the
intermediate velocity field i), at the end of the advection-diffusion step.



10 P. Bagchi and S. Balachandar
4. Results and Discussion
4.1. Uniform Flow

Before presenting the results for planar straining flow we will first consider the case of uniform
flow. Simulations are performed in the range 10 < Re < 500 to cover four different flow regimes:
unseparated flow for Re < 20, steady axisymmetric flow with separation for 20 < Re < 210,
steady non-axisymmetric flow for 210 < Re < 270 and unsteady vortex shedding for Re > 270.

Streamline pattern for Re = 10 is shown in figure 2a. Here the flow direction is from left to
right. Flow does not separate at this Re, but there is asymmetry about § = 7/2 in the vicinity of
the sphere which indicates departure from Stokes flow. The onset of separation occurs at around
Re = 20 (Le Clair et al., 1970; Dennis & Walker, 1971). Corresponding streamlines at Re = 100
are shown in figure 2b. The steady separated flow appears as an axisymmetric toroidal eddy
behind the sphere. The topological structure of the wake remains the same up to Re = 210.

At around Re = 210, axisymmetric nature of the wake is broken by a regular bifurcation
(Natarajan & Acrivos, 1993; Tomboulides et al., 1993). Unlike a two dimensional bluff body,
symmetry-breaking in the sphere wake does not initiate vortex shedding process and the wake
remains steady for approximately 210 < Re < 270. In this regime, the wake consists of two
streamwise vortices which are opposite in sign and appear as two distinct dye threads emanating
from the end of the recirculating region. It is commonly known as the ”double threaded” wake
and has a plane of symmetry (the z —y plane, in the present case). Figure 2c (view along the z —y
plane) and 2d (view normal to the z —y plane) show the double threaded structure for Re = 250.
Here the vortical structure is extracted in terms of an iso-surface of the imaginary part of the
complex conjugate eigenvalue of the velocity gradient tensor (see Zhou, Adrian, Balachandar &
Kendall, 1999 for details). Above Re = 270, the steady non-axisymmetric wake undergoes Hopf
bifurcation resulting in periodic shedding of vortices. The hairpin-shaped vortical structures are
shown in figure 2e and 2f for Re = 350. Even at this Re, a plane of symmetry (the z — y plane) in
the wake is present which remains fixed in time. As a result, in contrast to a two dimensional body
where vortices are shed alternately from two sides, here vortices are shed in the same orientation.
The vortical structure consists of a chain of ‘interlocking loops which is similar to the structure
postulated by Achenbach (1974). The results presented here agree well with the simulations of
Mittal (1999), Johnson & Patel (1999), Tomboulides et al. (1993), and flow visualizations by
Sakamoto & Haniu (1990) and Magarvey & Bishop (1961).

A quantitative comparison with previous results is shown in table 2. The drag coefficient Cp,
obtained from present simulations agree well with the experimental correlation of Clift et al.
(1978). Good agreement is also observed with the numerical results obtained by Mittal (1999)
and Magnaudet et al. (1995). The separation angle, 6, measured from the rear stagnation point
and the length of the recirculation eddy, L., measured from the base of the sphere and normalized
by the sphere diameter are also presented for the steady regime. Here also good agreement is found
with the data given in Clift et al. (1978) and the simulation results of Magnaudet et al. (1995). The
separation angle and recirculation length are not reported for the non-axisymmetric and unsteady
cases, as in these regimes the recirculation eddy is not a closed bubble and the separation line on
the sphere surface is no longer axisymmetric. Non-axisymmetry in the wake, however, produces a
lift force and the corresponding lift coefficient, C, at Re = 250 is found to be the same as that
reported in Johnson & Patel (1999). Further comparison in the unsteady regime can be made
for the dimensionless shedding frequency or the Strouhal number, St. At Re = 350, St reported
by Sakamoto & Haniu (1995) lies between 0.13 — 0.14 while Mittal’s (1999) simulation predicts
St = 0.138. These results are in reasonable agreement with the present value of 0.135. Similar
agreement is found at Re = 500, where the present simulation predicts St = 0.175 against the
experimental range of 0.17 — 0.18. ’

The adequacy of grid resolution can be investigated in terms of the decay of the energy spectra
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| Present simulations | Previous results ‘ |

Cr 6. Le/d St I or Cr  8s Le/d St I

| 10 |4.30 | 432 |
| 50 |1.57 40.8 0.41 | 1.54%, 1.57** 40.0" 0.44* |
| 100 |1.09 53.2 0.87 | 1.09*, 1.09** 53.6" 0.87* |
| 200]0.77 63.7 1.43 |0.80", 0.765 65.01 1.297 |
|250]0.70 —0.06 |0.73*, 0.68** —0.06% |
| 350]0.62 0.135]0.64", 0.62"* 0.13-0.14]
|500|0.56 0.04 0.175 056" O..17—0.181l

TABLE 2. Compa.nson of present simulations with prevxous experlmental and numerical results for uniform
flow past a sphere. * Clift et al. (1978); ** Mittal (1999); ¥ Magnaudet et al. (1995); ¥ Johnson & Patel
(1999); ¥ Sakamoto & Haniu (1995).

with respect to wavenumber. Here we present the.energy spectra for a uniform flow at Re = 500.
For this simulation a grid of N, = 81, Ny = 96 and Ny = 32 points is used. The radial resolution
in terms of Chebyshev spectra, measured at two different locations in the near wake, is shown
in figure 3a. At least 7 orders of magnitude decay is observed. Figure 3b shows the 6 spectra at
two different radial locations: within the boundary layer, and at a downstream location far from
the sphere. Here also at least 7 orders of magnitude decay in energy is observed. The ¢ spectra
is shown in figure 3¢ for which a minimum decay of 9 orders is found. The chosen grid therefore
provides adequate resolution for Re up to 500. Similar checks on the adequacy of resolution have
been performed for all other cases including straining flows.

Further validation of the present computational approach in linearly varying flows is given in ta-
ble 3. Here we consider an axisymmetric straining flow and a linear shear flow for varying Reynolds
number and dimensionless strain or shear magnitude, s (to be defined later). The drag coefficient,
separation angle and the recirculation length obtained from our simulations are consistent with
Magnaudet et al.’s (1995) results for the straining flow. For the shear flow case, the drag and lift
coefficients are in good agreement with the results of Komori and Kurose (1996).

4.2. Planar Strain

In this section we will present the results of a stationary spherical particle subjected to a steady
ambient flow consisting of a uniform flow and a planar straining flow. The results will be compared
with axisymmetric straining flow considered by Magnaudet et al. (1995). The uniform flow is given
by the relative flow velocity at x = 0, and in non-dimensional terms U, = e,. The strain-rate
tensor for planar strain is given by

) 50820 cos® $sin20 cos® —s5cos20 sin® cos @
S= s8in20 cos ® —5 €0s20 —s5sin 20 sin ¢ , (4.1)
—5¢c0s20 sin® cos® —ssin20 sin ® 50820 sin? &
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| Imposed flow | Parameters | Present simulations ] Previous results |
Cp Cr 0s Le/d St |Cp Cp 8 Le/d St
fe =100 1138 425 0.38 1.39 43 037
Axisymmetric
strain
Re =100 |4 g5 339 0.21 1.66 35 0.20
s =0.2
Re =200 | o7 51.3 0.57 1.06 54 0.60
s=0.1
Re =300 |4 g9 58.6 0.77 0.92 60 0.76
s=0.1
Re =200 1979 _g.058 0.80 —0.05
s =0.2
Linear
shear
R;_:O‘*go 0.62 —0.075 0.19]0.62 —0.07 0.15 - 0.17

TABLE 3. Comparison of present simulations with previous numerical results for nonuniform flows over
a sphere. Results for axisymmetric strain are compared with Magnaudet et al. (1995); results for linear
shear flows are compared with Kurose & Komori (1999).

where § = Sd/|U,|, and s is the dimensionless strain magnitude. The angles © and ® measure
the relative orientation of the planar strain with respect to U,. The following orientations are
considered in this study :

a) Elongational strain along relative velocity: @ = 0 and & = 0;

b) Compressional strain along relative velocity: @ = 7/2 and & = 0;

c) Relative velocity along the plane of strain: © # 0 or 7/2 and @ = 0;

d) Relative velocity away from the plane of strain: ® = 0 and @ # 0.

These orientations are schematically shown in figure 4. For axisymmetric strain, cases ¢ and d are
the same, whereas for planar strain they are different. In the following sections we will consider
each of these cases in detail.

4.2.1 Elongational strain along relative velocity (© = 0,® = 0)

The influence of strain on the structure of the wake can be observed in terms of changes in the
length of the recirculation eddy, separation angle and limiting streamlines on the sphere surface.
The identification of separation line for a three-dimensional flow has been a subject of interest for
many years. The issue is discussed by Tobak and Peake (1982). One way to identify the separation
line is to draw the skin friction lines or the limiting streamlines from the two-dimensional vector
field given by the shear stresses 7,9 and 7.4 on the surface of the sphere. For an axisymmetric
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flow, 79 and 7,4 vanish simultaneously along the line of separation and the separation is defined
as singular separation. For three-dimensional separation, a second type of separation exists in
which the limiting streamlines merge together to form a separation line. For the latter type of
separation, both 7,9 and 7,4 need not vanish simultaneously.

The surface streamlines for uniform flow at Re = 200 are shown in figure 5a. The view shown
is the end view looking along the negative z direction. The separation line is a perfect circle
due to the steady axisymmetric nature of the wake. The unsteady non-axisymmetric regime in
uniform flow is considered in figure 5b for Re = 300. Since the flow is time-dependent, the
surface streamlines in this figure correspond to an instant in the vortex shedding cycle. Here the
x — y plane can be identified as the plane of symmetry. Though the line of separation is nearly
circular, non-axisymmetric nature of the wake is clear from the surface streamline patterns. The
separation line does not change significantly over the shedding cycle; however the rear stagnation
point oscillates on the # — y plane. The drag and lift forces change periodically and the time-
averaged lift remains non-zero. The effect of an axisymmetric elongational strain imposed on the
uniform flow is to stabilize the flow and delay bifurcation to the non-axisymmetric and unsteady
regimes. At Re = 300, in figure 5¢, the axisymmetric nature of the wake is recovered under the
influence of an axisymmetric strain of magnitude s = 0.1. Consequently, the lift force is zero and
the drag force remains steady in time. Evolution of the drag coefficient over time is shown in
figure 6 for the axisymmetric strain case and compared with the uniform flow result.

The effect of planar strain on the surface streamlines is shown in figure 5d for Re = 300 and
s = 0.1. Due to the three-dimensional nature of planar strain it is natural to expect the separation
line to be non-axisymmetric. On the other hand, the strong favorable pressure gradient associated
with elongational straining flow tends to stabilize the wake and preserve axisymmetry. The surface
streamlines on the sphere appear to be strikingly similar in both planar and axisymmetric strain
cases. Similar to the axisymmetric case, planar strain delays bifurcation to the unsteady regime.
The resulting lift force in planar strain is also zero and the drag force remains steady over time.
Time evolution of the drag coefficient in planar strain is shown in figure 6.

In axisymmetric straining flow, at moderate Re, the azimuthal component of velocity ug, as
well as the shear stress 7,4 are zero. Thus, at any ¢ plane, the location of separation is identified
by the condition 7,9 = 0. In planar strain, however, Tr¢ 1S zero only on the £ —y and z — 2
planes. Hence the condition 7,4 = 0 can be used in these planes only. The difference in separation
angles in the two planes will provide a quantitative information about non-axisymmetry of the
wake. Separation angles measured from the rear stagnation point are listed in table 4. The results
of uniform flow (s = 0.0) are also listed for comparison. First, we observe that the presence of
an elongational strain delays the onset of separation with increasing s by imposing a favorable
pressure gradient over 6 < /2. Secondly, consistent with the nature of planar strain, separation
on the z — z plane occurs slightly ahead than on the & — y plane. Nevertheless, the difference
between the separation angles on the z — y and = — z planes is small, which implies that the
separation line is nearly circular even in case of planar strain. The results of the planar strain
cases may also be compared with the axisymmetric strain cases given in table 3. Consistent with
our observation of surface streamlines, separation location in case of planar strain is very close to
that for axisymmetric strain.

Further insight into the non-axisymmetric nature of the wake can be gained by considering
the trajectory of a fluid element. In the regime of steady axisymmetric flow, the path lines (or
streamlines) remain on individual ¢ planes and there is no mixing of fluid across these planes.
Furthermore, the recirculation region is closed and the fluid inside is entrapped. In the unsteady
non-axisymmetric regime, the recirculation region is not closed and there is significant mixing
across different ¢-planes. The path lines of two fluid elements emanating symmetrically from both
sides of the  — y plane are shown in figure 7a for uniform flow at Re = 300. Corresponding view
along the x — z plane is shown in figure 7b where the path lines coincide. The fluid element from
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i |Plane|s =0.0|s=0.05|s =0.1]s=0.2]s = —0.04|

e lz—y 335 | 275 465
Re=50 |2—o 408 s 55

_ oy 469 | 418 | 34.6 58.4
Re=1007—H 932 —mg——133 T 336 573

_ z—y 57.2 | 523 | 45.5 69.8
Re=200\2—XH 637 5536 | 157 69.0

TABLE 4. Effect of planar strain on separation angles. Here x — y and = — 2z are the planes where §; is
measured.

the upstream side is drawn around the upper focus of the recirculation eddy (located on the x —y
plane for ¥ > 0). Then it travels around the lower focus (located on the z —y plane for y < 0) and
the upper focus several times before being ejected from the eddy and joining the downstream flow.
The stable or unstable nature of the upper and lower foci alternates periodically over a shedding
cycle. The path-lines are separated to the left and right of the z — y plane and there is no mixing
across this plane. However, significant mixing occurs on each side of the plane.

Application of planar strain significantly affects mixing as shown in figure 7c and d for the
case Re = 300,s = 0.1. We consider trajectory of two fluid elements which are initially located
symmetrically on either side of the z —y plane. The fluid element is first drawn towards the stable
foci located on the = — z plane. As it spirals inwards, it is gradually pushed out of the z — z plane
and towards the unstable foci located on the x —y plane. The path lines in the figure indicate the
direction of azimuthal velocity from one focus to the other. As the unstable foci are approached,
the fluid elements begin spiraling outward and finally join the downstream flow. Note that for
planar strain, both £ — y and = — z planes are the symmetry planes. Thus fluid is confined to
only one quadrant of the separation eddy resulting in less mixing. Also unlike the uniform flow
case at Re = 300, the stable or unstable nature of the foci is fixed in time. Trajectory of the fluid
elements and nature of the foci remain similar at other Reynolds numbers and strain magnitude
as well.

The length of the recirculation region L. normalized by the sphere diameter d is presented
in figure 8. Here, L. is measured from the sphere surface at § = 0 to the reattachment point.
In elongational strain, the length decreases with higher strain magnitude; for example at Re =
100,s = 0.2, L./d is found to be 0.22 against its value of 0.87 in uniform flow. Given a strain
of sufficient magnitude, the recirculation eddy may be suppressed completely as in the case of
Re = 50,s = 0.2. Similar to separation angles, the length of the recirculation eddy at a given
Reynolds number and strain magnitude is nearly the same in both planar and axisymmetric strain
(see table 3 for axisymmetric results).

For the case of elongational planar strain, the particle experiences only a drag force. Corre-
sponding drag coefficient, Cp, is compared with the uniform flow result in figure 9a. A significant
increase in Cp under the influence of strain is observed. In terms of percentage change, increase
in Cp is much larger at higher Reynolds numbers. For example, at Re = 300 and s = 0.2, Cp
increases by nearly 87%; on the other hand, at Re = 10 and for. the same value of s, the increase
is about 25%. The drag coefficient can be further separated into the pressure and viscous contri-
butions, Cpp and Cy p, which are shown in figure 9b and 9c. In the absence of imposed strain the
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[ Strain | Re | 10 | 50 | 100 | 200 | 300 |

C 431 | 159 | 1.09 | 0.78 .66
P 1(5.38) | (3.48) | (3.21) | (2.95) | (2.86)

C 1.51 | .662 | .51 42 .38
PD

Planar (2.96) | (2.37) | (2.31) | (2.26) | (2.24)

2.8 .93 .58 .36 .28

Cvp (2.44) [ (1.09) | (.88) | (.71) | (.66)

o | 432 110 | .77 | .65
P 1(4.33) (2:81) | (2.70) | (2.72)
. . 1.49 51 | 40 | 37 |
Axisymmetric® | Crp | (5'r7y (1.96) | (2.04) | (2.08)
Cvp | 283 59 | 37 | 27
(1.76) (.86) | (.65) | (.65)

TABLE 5. The y—mtercepts and slopes of the best-fit linear curves for the planar and axisymmetric strain

data. The values in bracket are the slopes. *, axisymmetric data are obtained from Magnaudet et ol.’s
(1995) simulations.

pressure contribution dominates for Re > 100. However, over the entire range of Re, the strain
induced increase in the pressure drag is larger than that in the viscous drag. The difference is
small at low Reynolds numbers, but increases substantially at higher Re.

Evolution of the drag coefficients with increasing strain magnitude is shown in figure 10 for
Re =10, 50 and 300. The variation is nearly linear with s, and similar trend is observed at other
Reynolds numbers. At Re = 10, contribution from the viscous drag dominates over pressure drag,
and both increase nearly at the same rate. At higher Re, the pressure drag increases at a faster
rate than viscous drag. This effect can be clearly seen at Re = 50, where the viscous contribution
is larger for weak strain, whereas the pressure contribution is dominant in the range s > 0.2. This
trend continues as Re increases and at Re = 300 for all s, the pressure contribution dominates.
From figure 10, it is clear that the drag coefficients can be expressed as the sum of two quantities:

a baseline drag that corresponds to the uniform flow and a linearly increasing contribution due
to strain,

Cp(Re,s) = Ap(Re) + Bp s (4.2)
Cpp(Re,s) = App(Re) + Bpp s (4.3)
CVD(Re, s) = AVD(Re) + Byps. ' (4.4)

Table 5 lists the intercept along the ordinate (A) and the slope (B) obtained from the linear
fit of the data shown in figure 10. The intercept values for the total, pressure and viscous drag

components are indeed very close to the corresponding values for uniform flow, i.e., Ap(Re) ~
Cp(Re,0), etc.
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The above results for planar strain are qualitatively similar to axisymmetric strain considered
by Magnaudet et al. (1995). The baseline total, pressure and viscous drag components are nearly
the same in planar and axisymmetric cases. However, the slopes are different (see table 5). While
the difference is small in viscous contribution, it is substantial in pressure contribution. For the
planar strain cases, the values of Bpp and By p are somewhat higher, which implies that the drag
is higher in planar strain than in axisymmetric strain.

One can use potential flow analysis as the basis for obtaining a fair comparison between the
two cases. In order to do so, the dimensionless strain-rate tensor for ® = 0, ® = 0 for both
axisymmetric and planar strains is written in a combined fashion as:

_ s 0 0 :

S=1]0 —fss 0 . (4.5)
0 0 (fsi—-Ds

The parameter f; accounts for the nature of strain; it is bounded between 1/2 (axisymmetric

strain) and 1 (planar strain). The velocity potential for an ambient flow U = e; + S - x can be

written as
"+—1— cosf +s ,:2+ ! 3cos 9——1-
"7 162 ) °° 967 2

+ s (- - fs> <~2 19; ~3) sin® 6 cos 2¢ . (4.6)

The first term is due to the uniform flow, and the remaining terms represent contributions from
strain. Using the Bernoulli equation, the pressure coefficient on the surface of the sphere is eval-
uated as

3 5 (1 . 5 7
Cp=1- [—-—2—s1n9+ 12 (5 —fs> sin 26 cos 2¢ — gssm29]

- §s l—fs sin 6 sin 2¢ ’ (4.7)
[ (35 mosn)

The above surface pressure distribution yields a drag coefficient of 2 s, which is surprisingly in-
dependent of the planar or axisymmetric nature of strain. This behavior is also implied in the
inviscid analysis of Taylor (1928) and Auton et al. (1988). Therefore, for potential flow the only
quantity that matters is the strain magnitude s, which can be interpreted as the component of S
along relative velocity. Exact partitioning of the strain-rate tensor along the other two directions
does not matter. A comparison of the numerical results for the planar and axisymmetric strain
cases presented in table 5 shows that this indifference to the nature of strain for potential flow
may not be entirely accurate at finite Reynolds numbers. For the same s, planar strain results
in larger drag. One possible explanation could be that the overall strain magnitude, measured in

terms of 1/tr(S?) is larger for planar strain than for axisymmetric strain.

The influence of strain on the pressure drag can be illustrated further by looking at the dis-
tribution of the pressure coefficient, Cp, on the surface of the sphere. For the uniform flow and
axisymmetric strain cases, pressure distribution is independent of the azimuthal angle, ¢. For
the case of planar strain, pressure is non-axisymmetric and hence Cp at selected ¢-planes will

be considered. For the latter case, it is also convenient to use a ¢-averaged pressure coefficient
defined as

2
(Cr) = 5 / Cpdp. (4.8)
0
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First, we will consider the surface pressure distribution in potential flow. Six different curves are
shown in figure 11a that correspond to a uniform flow case and planar and axisymmetric strain
cases, both at s = 0.2. For the planar strain case, Cp at three different ¢-planes, ¢ = 0,7/4 and
m/2, and (Cp) are plotted. The front stagnation pressure is used as reference. Pressure distribution
is symmetric about 6 = 7/2 in the uniform flow case resulting in zero drag. The effect of strain
is to introduce a fore-aft asymmetry about § = m/2 which produces a finite drag. The decrease
in favorable pressure on the upstream side is somewhat slowed down, but the region of favorable
pressure gradient extends into the leeward side. In the case of planar strain, the effect is the largest
along ¢ = 0 and the smallest along ¢ = /2. Difference between (Cp) for planar and axisymmetric
strains is of O(s?) and is indistinguishable in the figure.

Surface pressure distribution for Re = 100 is shown in figure 11b. Five different curves are
plotted: Cp for uniform flow, and for axisymmetric strain at s = 0.2; Cp along ¢ = 0 and /2
and (Cp) for planar strain at s = 0.2. On the windward side, similar to potential flow, the effect
of strain is to slow down and prolong the favorable pressure gradient. On this side, difference
bewteen the two strain cases is small. However, significant difference exists in the leeward side.
The wake pressure is lower in planar strain than in axisymmetric strain which results in a higher
pressure drag for the former case. '

Unlike the pressure drag, the viscous drag has no analog in potential low. We will consider vari-
ation of surface vorticity to study the effect of strain on the viscous drag. In a three-dimensional
flow field, there are two orthogonal components of surface vorticity: the tangential component, wy,
and the azimuthal component, wg. Under steady flow conditions, wg = 0 in case of axisymmetric
strain, whereas, in planar strain, the ¢-averaged tangential vorticity (wg) is zero. Hence ¢-averaged
azimuthal vorticity (we) alone can be used to illustrate the effect of planar strain on vorticity, and
on the viscous drag. The distribution of (wy) is shown in figure 12a for Re = 10. Three different
cases are considered: uniform flow, axisymmetric strain at s = 0.1 and planar strain at s = 0.1.
Corresponding results for Re = 300 are shown in figure 12b. There are two different mechanisms
that influence the distribution of surface vorticity under a straining flow. First, in addition to the
uniform flow, the imposed strain field must also satisfy the no-slip condition. As a result, for an
elongational strain, the surface vorticity from the strain component is opposite to that arising from
the uniform flow on the upstream side (§ > 7/2); on the downstream side (§ < m/2), ahead of flow
separation the two contributions are of the same sign. Although the effect of strain is to shrink the
separated region, the strength of the recirculation eddy is enhanced as indicated by the increased
magnitude of surface vorticity in the wake. This corresponds well with the enhanced the viscous
drag in the presence of elongational strain. The second mechanism leading to change in vorticity
distribution is the strain-induced vortex stretching mechanism. This mechanism also causes the
magnitude of the surface vorticity to increase for § < 7/2 and decrease for § > 7 /2. Thus the
overall effect of strain is to increase viscous drag. As observed in table 5, the effect is strong in
planar strain at low Re. With increasing Re, the effect is nearly independent of the nature of strain.

4.2.2 Compressional strain along relative velocity (© = 7/2,® = 0)

In this section we present the results of a compressional planar strain (s < 0) imposed on a
uniform flow; in other words we consider the case © = /2, ® = 0 as shown in figure 4b. Magnaudet
et al. (1995) have studied the same configuration for axisymmetric strain. It is observed that the
vorticity generated on the surface of the sphere is intensified as it convects along the streamwise
direction. The undisturbed flow, U, has a stagnation plane downstream of the sphere at x = —2/s
(for elongational strain, s > 0, this plane is located upstream of the sphere). For the compressional
planar strain case, the stagnation plane is located at z = —1 /s. A vortical wake from the sphere
approaches this stagnation plane from upstream and the irrotational ambient flow approaches the
stagnation plane from downstream. Thus there is a discontinuity in vorticity at z = —1 /s. At a
low Reynolds number, such discontinuity can be diffused by viscosity; but at higher Re, the flow
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becomes unstable even at moderate s. Magnaudet et al. (1995) have discussed this problem in
detail in the context of axisymmetric strain and obtained the corresponding stability domain. In
the present simulations for planar strain, we simply restrict computations to two values of s: one
at s = —0.04 for 10 < Re < 300 range and the other at s = —0.1 for Re = 10 only.

Contrary to elongational strain, the effect of compressional strain is to advance the location of
separation and to increase the length of the recirculation region. Corresponding data are presented
in table 4 and figure 8. Separation is found to advance more on the & — y plane than on the
z — z plane. For example, at Re = 50 and s = —0.04, separation occurs at § = 46.5° and 45.5°,
respectively, on the z —y and z — z planes as opposed to 40.8° in uniform flow. Significant increase
in the recirculation length is also clear from figure 8. At Re = 50 and s = —0.04, the length is
0.62, while it is 0.41 in uniform flow. The influence of compressional strain is to reduce the drag
force. The drag coefficient for various Re is shown in figure 9. Since the strain magnitude is small,
the only distinguishable change is for Re > 200 for which Cp is reduced by 11%. For the case of
Re =10,s = —0.1, a 20% decrease in Cp is observed (not shown in the figure).

Variation of (Cp) is shown in figure 11c for potential flow and for the case Re = 300,s = —0.04.
Under compressional strain, the region of favorable pressure gradient is reduced. Decrease in
pressure drop in the windward side is also faster compared to the uniform flow case. But unlike
potential flow, (Cp) at Re = 300 is lower even on the downstream side of the sphere. Such decrease
in (Cp) on the leeward side actually tends to increase the pressure drag. The effect is however
overcome by the decrease in favorable pressure on the windward side resulting in an overall
decrease in the pressure drag. Similar variation in (Cp) is observed at other Reynolds numbers
as well. The average surface vorticity (wy) for Re = 10,s = —.1 and Re = 300,5 = —0.04 are
shown in figure 12. The magnitude of (wy) decreases on the downstream side and increases on the
upstream side which results in a decrease in the viscous drag.

The Re = 300,s = —0.04 case develops unsteady vortex shedding and the time history of the
drag coefficient is shown in figure 6. The shedding process appears to be more chaotic than in
uniform flow and is dominated by a low frequency mode at St &~ 0.035. Although the compres-
sional strain magnitude considered is weak, certain aspects of the flow, such as movement of the
separation line and the recirculation length seem to fit the trend observed in elongational strain.
On the other hand, the behavior of the drag coefficient cannot be extrapolated from the results of
elongational strain. As observed by Magnaudet et al. (1995), the present approach becomes un-
stable for larger values of compressional strain. This raises an interesting question whether such
ambient flow configuration is stable for extended period of time and whether the quasi-steady
approach employed here is meaningful.

4.2.3 Relative velocity along the plane of strain (© # 0 or n/2, ® = 0)

This section deals with the situation when relative velocity is in the plane of strain but not
aligned along the elongational or compressional directions of strain. In particular, the case of
© = /4, & = 0 will be considered (see figure 4c). Along z = 0, y > 0 (the top side of the
sphere), the straining flow acts in the same direction of the uniform flow, while along z =0,y < 0
(the bottom side) it opposes the uniform flow. Thus y > 0 side will be called the high-speed side
(marked as HSS) and y < 0 will be called the low-speed side (LSS). The effect of strain on the
structure of the wake is described first. Streamlines constructed from the velocity field on the z—y
plane are shown in figure 13. For the given strain orientation, this plane is a plane of symmetry.
The Re = 10,s = 0.1 case is shown in figure 13a. The symmetry of the flow about the z — 2
plane is broken and the front and rear stagnation points are no longer located at the poles 8 = 0
and 7. At higher Re, the shape of the wake is dramatically modified in the presence of strain.
Figures 13b and 13c show the effect of increasing strain magnitude while Re is held fixed at 50.
Even a relatively weak strain of s = 0.05 can be seen to visibly break the axisymmetric nature
of the wake. The recirculation eddy is suppressed on the high-speed side while it is reduced in
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05 | stagnation point |
|Re 8 |{¢=0]¢=m] rear | front |
[ 10| 0.1 | 1 | 192 |174.3|

| 50 |0.05|41.86 | 37.9 |7.1, on LSS |174.0 |

| 50 | 0.1 | 47.64 | | |173.9|

| 50 | 0.2 |52.19 | | |170.0 |

|100| 0.1 | 57.58 | 31.71 | 5.3, on LSS |173.9 |

|200] 0.1 |65.66 | 47.94| 106  |174.2|

|300] 0.1 [69.76 | 54.67 | 19.9  |174.5]

TABLE 6. Location of the separation and stagnation points for © = 7/4,® = 0 case.

size on the low-speed side. Fluid moving around the bottom of the sphere continues around the
eddy and departs near the upper separation line and joins with the fluid from the high speed side.
The recirculation eddy is nearly removed with increasing strain magnitude, as shown in the figure
13c for Re = 50,5 = 0.1. At even higher strain magnitudes the separation eddy is completely
suppressed. The effect of strain at higher Re is considered in figure 13d for Re = 300,s = 0.1. The
deformation of the recirculation eddy is quite similar to the one shown in figure 13b. Comparing
figures 13c and d, it may be claimed that suppression of the eddy is pushed up to higher strain
magnitude as Re increases. At Re = 300, s = 0.1, the flow is steady thus suggesting that strain
oriented at m/4 tends to inhibit the vortex shedding process.

Locations of separation on the = —y plane are presented in table 6. For the case of s = 0.1, at all
Re > 100, separation is advanced on the high-speed side (¢ = 0) and is delayed on the low-speed
side (¢ = 7). The effect of increasing s from 0 to 0.2 while keeping Re fixed at 50 is also shown in
table 6. For a relatively weak strain, at s = 0.05, separation line remains a closed curve, though
not axisymmetric. Separation on ¢ = 0 occurs at 8 = 41.9° which is higher than 8 = 40.8° in
uniform flow. Separation on ¢ = 7 is however delayed to 8 = 37.9°. When s is increased beyond
0.05, lower separation no longer exists, and upper separation is advanced further upstream. Also
shown in table 6 are the locations of the rear and front stagnation points. Owing to the symmetry
of the applied strain field about the = — y plane, these points are confined to this plane only.
However, they are no longer located at & = 0 and . For the entire range of Re and s, the front
stagnation point is located nearly at the same 6 on the high-speed side. The movement of the rear
stagnation point is however very different. At Re = 10 and Re > 200 and s = 0.1, it is located on
the high speed side. But at Re = 50, s = 0.05 and Re = 100, s = 0.1, it has moved towards the
low speed side.

We also examine the sphere wake by means of the surface streamline plots in figure 14. For
Re = 50,s = 0.05 case shown in figure 14a, a downward movement of the rear stagnation point
(indicated as RS in the plot) away from the geometric pole (6 = 0) is clearly visible. The top-
bottom asymmetry in the wake is also quite evident here. Figure 14b shows the surface streamlines
for Re = 50 and s = 0.1. The separation line is no longer a closed curve and it exists only on the
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high-speed side. With further increase in s, the separation line is gradually reduced before being
eliminated completely at a sufficiently high strain. The non-axisymmetric nature of the wake can
also be observed in figures 14¢ and d corresponding to Re = 100, s = 0.1 and 300, s = 0.1 cases.

A close observation of the surface streamlines reveals an interesting phenomenon. In figure 14a,
for Re = 50 and s = 0.05, all the surface streamlines merge tangentially to the separation line
at the upper singular point located on the ¢ = 0 plane; whereas only two surface streamlines
intersect each other at the lower singular point at ¢ = w. Thus, the upper singular point is a
nodal point, denoted by N in the plot, while the lower one is a saddle point, denoted by S. At
s = 0.1 (figure 14b), the nodal point is no longer located at ¢ = 0. Instead, there are two nodal
points (N1 and N2) located on either side of the z — y plane and a saddle point (S) appears at
¢ = 0. The trend is further magnified at higher strain magnitudes. The effect of increasing Re
is shown in the next two figures. At Re = 100 and s = 0.1, in figure 14c, the singular points at
¢ = 0 and 7 are saddle points (S1 and S2). Two nodal points (N1 and N2) are now located away
from the z — y plane in y < 0. At Re = 300,s = 0.1, in figure 14d, two nodal points merge into
the lower singular point (N) at ¢ = 7 while the upper singular point (S) at ¢ = 0 still remains a
saddle point.

The drag coefficient Cp for the case of ® = m/4 and ® = 0 is presented in figure 15a for
s = 0.1. The coefficients Cp, Cpp and Cyp are nearly the same as their values in uniform flow.
Although there is a small increase in the coefficients over their values in uniform flow, the effect
is far less than what was observed under elongational alignment. Considering potential flow for
the orientation © # 0 and ® = 0, the velocity potential is given by

- 1 72 1 3, 1
(r+ W) cosf+s (—2—+ §6?‘§) (5(208 6 - 5) cos 20

=2

-3 (%— + 5;?) [(sin® 6 cos 2¢) cos 20 + sin 26 cos ¢ sin 20)] (4.9)
In particular, for ©® = 7/4 and ® = 0, Cp,pos = 0. Therefore the trend of weak influence on drag
observed at finite Reynolds number is consistent with the potential flow result.

The ambient flow considered here is not symmetric about the x — z plane. As a result, a lift force
is generated along the y-direction. For @ = 7/4, Cf pot = 25, and the lift force is directed to the
positive y-axis, i.e., from the low-speed side of the sphere to the high-speed side. In the limit of
low Reynolds number (Re < 1) also, the lift coefficient is observed to be positive by Pérez-Madrid
et al.(1990). The present simulations, however, show that C; at moderate Re may be directed
towards the negative y-axis. Variation of C, and its pressure and viscous components are shown
in figure 15b for a fixed strain magnitude of s = 0.1. Except for Re < 40, C is negative over
the entire range of Re. The pressure contribution Cpy, is negative for approximately Re > 80,
while the viscous contribution Cy f, is negative for Re > 10. The generation of a negative lift force
at finite Re is contrary to the potential flow and low Reynolds number limits and therefore is
somewhat surprising. However, it must be pointed out that such negative lift force has also been
observed in both experiments and computations for the case of spheres subjected to a linear shear
flow by Komori & Kurose (1999).

Figure 15¢ presents the variation of the lift coefficients with increasing s as Re is held fixed at
50. The finite Re behavior is very different from the linear variation predicted by potential flow.
All three lift coefficients first attain a negative maximum at about s = 0.05. Both Cp, and Cpp,
then increase with s and eventually become positive for s > 0.1. The viscous part C'y 7 however
remains negative up to about s = 0.25. At s = 0.05, the viscous lift contributes to nearly 70%
of the total lift, while at s = 0.3 it accounts for only 12%. Thus, the pressure contribution takes
over the viscous contribution as Re and s increase.

Generation of the negative lift force is explained by considering separately the pressure and the
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viscous contributions. The pressure coefficient Cp on the surface of the sphere is shown in figure
16 for two cases: Re = 200, s = 0.1 and Re = 50, s = 0.2. We consider the variation of Cp with 8
along ¢ = 0 and m where Cp attains extremum values. Corresponding distributions for potential
flow are also shown. The potential pressure along the high-speed side is slightly larger than that
along the low-speed side near § = 0 and 7. However, a large drop in pressure along the high
speed side near 6 = /2 results in a positive lift. The finite Re behavior is significantly different,
especially in the wake region. For Re = 200,s = 0.1 case, the pressure drop along the high speed
side is much less and Cp along ¢ = 0 and ¢ = 7 are nearly the same for § < /2. On the other
hand, for & > /2, Cp along ¢ = 0 is higher than that along ¢ = m. Therefore the negative value
of Cpy, arises essentially from the negative contribution in @ > /2. In figure 16b, for the case
of Re = 50,s = 0.2, the pressure drop on the high speed side near § = /2 is large enough to
overcome the negative contribution arising from the upstream side, thereby producing a positive
value of Cpy,. '

In figure 15 it was observed that for moderate strain magnitudes in the range of 0 < s < 0.3,
pressure contribution to the lift force is generally positive at low Reynolds numbers (Re = 10)
and negative at higher Reynolds numbers (Re > 200). In the intermediate Reynolds numbers
(Re = 50), pressure contribution changes from negative at low strain values (s £0.1) to positive
at higher strain. This behavior is investigated further in figure 17 where contours of the local
contribution to the y-component of the pressure lift is plotted. Here the local contribution is
defined in terms of the deviation in the surface pressure from its surface-averaged value. Four
different cases are considered: a) Re = 10, s = 0.1;b) Re = 50, s = 0.05; ¢) Re = 50, s = 0.2; and
d) Re = 300, s = 0.1. Owing to the symmetry of the flow about the z — y plane, only one half of
the surface is shown. For all the cases, behavior near § = 7 is similar to the potential flow result:
higher than average pressure above the centerline contributing to negative lift and below average
pressure below the centerline contributing to positive lift. The negative contribution above the
centerline somewhat outweighs the positive contribution and thus for all the four cases there is a
negative contribution to the pressure lift coming from the upstream portion of the sphere. However,
away from the upstream side, results are markedly different for each case. For Re = 10,s = 0.1,
a strong upward force is present on the downstream side which makes the resultant contribution
to be positive. For Re = 50, s = 0.05 case, pressure on the upper surface is roughly comparable
to that on the lower surface over almost entire 6 except near § = m. Near 0 = T, negative
contribution is strong enough to produce a negative pressure lift. When s is increased, as in figure
17c for Re = 50,5 = 0.2, a stronger positive force acts on the top surface near § = 7 /2 resulting
in a positive pressure lift. For the high Reynolds number case of Re = 300,s = 0.1 shown in
figure 17d, significant pressure difference comes only from the upstream side of the sphere, and
the overall pressure lift is negative.

In summary, one can conclude that when the recirculation region is absent in the wake, pressure
distribution in 6 < /2 dictates the pressure lift force to be positive, just as in potential flow.
This situation arises at low Re when the recirculation region is entirely absent, or at higher Re,
when the formation of the recirculation region is suppressed by the presence of a strong straining
flow. When the recirculation region is present, the wake pressures above and below the « — z plane
are nearly equalized and the resultant effect is a negative pressure lift arising from the front part
(0 ~ ) of the sphere.

The viscous lift force arising from two contributions, 7,9 and 7,4, is listed in table 7. Contribution
from 7,4 is negative over the entire range of Re and s. Contribution from 7, is mostly positive,
but nearly an order of magnitude less than that from Tré, €xcept at Re = 10 and at Re = 50 for
high values of s.

The role of the shear stress 7.4 to the lift force is examined in figure 18. The flow is from left
to right and the view shown here is looking towards the negative z-axis. Here contours of the
y-component of the viscous force arising from 7,4, i.e., 7,4 cos 6 cos ¢, are shown on one half of
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Re| s |Cvy dueto ¢ |Cyy due to 7rg

10 6.0298 —0.03
50 0.0110 —0.04
100} 0.1 0.0069 —0.04
200 0.0030 -0.03
300 0.0006 -0.02

0.05 —0.008 —0.06
50 | 0.1 0.011 —0.04

0.2 0.035 —0.04

TABLE 7. Contribution of the shear stresses 7,4 and 7,4 to viscous lift for the case @ = 45°,& = 0.

the sphere surface. A positive value of this quantity leads to a positive viscous lift force while
negative value contributes negatively. We consider two representative cases: a) Re = 200,s = 0.1
and b) Re = 50,s = 0.2. For the first case, values on the upper and lower surface of the sphere
are nearly comparable but of opposite sign over the entire range of §. Thus the integrated value
of 7,4 cos 8 cos ¢ over the surface is negligible. For the second case, values on the upper and lower
surface on the upstream side of the sphere are roughly the same and of opposite sign. But a
positive contribution arises from the lower surface on the downstream side of the sphere. Similar
to the surface pressure behavior, the effect of 7,4 is dictated by the presence of a recirculation
eddy. In the case of Re = 200, s = 0.1, the presence of a recirculation region leads to a weaker 7,9
distribution on the leeward side. On the other hand, at Re = 50, s = 0.2, the recirculation eddy
is suppressed and a strong flow gradient is created at the lower surface resulting in a larger and
positive 7.9 contribution.

The persistent negative contribution from 7,4 is explained in figure 19. Contours of the local
contribution to the viscous lift arising from 7,4, i.e., —7,¢ sin ¢ are shown for Re = 200,s = 0.1.
A strong negative force acts almost over the entire surface. Generation of this downward force
is due to the distribution of the azimuthal velocity component, ug, around the sphere. Figure
19b shows the contours of u, velocity component on the x — z plane. Note that in this plane ug
is identically same as uy. The u, component is directed towards the negative y-axis around the
sphere almost over the z — z plane, except near the rear stagnation point. The contours of u, are
clustered closely on the upstream side than on the downstream side. As a result a strong negative
gradient is generated over the upstream side of the sphere and a relatively weaker positive gradient
is created over a smaller region on the downstream surface. Therefore, —7,4 sin ¢ integrated over
the entire surface leads to a negative contribution to the lift force.

4.2.4 Effect of varying ©

The effect of varying the angle © is investigated in figure 20. We consider only the range 0 < © <
/2 and the results for 7/2 < © < 7 can easily be obtained by the transformation ® — 6 + 7 /2.
According to the potential flow result (4.9), the drag coefficient for such configuration is given
by 25 cos20 and the lift coefficient (directed towards the positive y-direction) by 2ssin 20. These
results are compared with the simulation results for Re = 10, s = 0.1 and Re = 50, s = 0.1
cases. For both cases the trend of the pressure drag matches reasonably well with the potential
flow result. For @ < 7/4, the elongational part of the strain-rate tensor is more aligned with the
direction of relative velocity and the drag coefficient is higher than in uniform flow. As © increases,
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the compressional part of the strain-rate tensor becomes more aligned with relative velocity and
results in a decrease in Cp.

The lift coefficients for the two cases are shown in figures 20c and d. The trend is somewhat
complex and is dictated by the presence or absence of a recirculation eddy. The pressure contri-
bution, Cpy, at Re = 10 is positive for all ©® with a maximum value at about © = /4 and thus
follows the same trend as in potential flow. Cy 1 is negative in the range 7/4 < © < /2 due to a
negative contribution from 7,4, as discussed earlier. However, the pressure contribution outweighs
the viscous contribution, and the total lift force remains positive at Re = 10 for all ©.

At Re = 50, in figure 20d, we consider the range 0 < © < 37/8, as © = m/2 (pure compressional
alignment) was found to be unstable (see §4.2.2). Unlike in potential flow, Cpy, is not symmetric
about © = 7/4 and it exhibits a peak around © = /8. Although positive in general, it tends to
become negative at higher © where the compressional strain is increasingly aligned with relative
velocity. Such behavior is again due to the presence of a recirculation region. For © < 7/8, the
recirculation region is suppressed and the top-bottom asymmetry in the surface pressure leads
to a positive Cpr. Above © = /8, a recirculation region starts developing which reduces the
wake pressure difference above and below the z — z plane and the pressure differential near the
front stagnation point dominates, leading to a negative pressure lift. The viscous lift coefficient
at Re = 50 is negative over the entire range of ©. For © > 7/6, its magnitude is higher than the
pressure lift coefficient resulting in a negative total lift force.

4.2.5 Relative velocity away from the plane of strain

In this section we will consider a strain orientation such that relative velocity is not on the
plane of strain; in particular, the results for © = 0 and ® = 7 /4 (figure 4d) are presented here.
For an axisymmetric strain this configuration is same as © = 7 /4, ® = 0. For a planar strain these
two cases are very different in terms of the wake structure and the drag and lift forces. Here, the
z — z plane is a plane of symmetry, and streamlines constructed on this plane are shown in figure
21. Adjacent to the sphere, the ambient velocity is higher along z = 0, z < 0 and this side will
be termed as the high-speed side while z = 0, z > 0 will be called the low-speed side. A word of
caution is warranted in interpreting this figure - although in the vicinity of the sphere the effect
of strain appears to move the fluid from top left to bottom right, the far field flow is consistent
with what is shown in figure 4d. ‘

In figure 21a, for Re = 10,5 = 0.1, it is observed that the rear and front stagnation points move
away from the geometric poles at § = 0 and 7. The front stagnation point has moved toward the
high speed side and the rear one has moved to the low speed side. At Re = 50, s = 0.05, in figure
21b, the wake is suppressed on the high speed side and reduced in size on the low speed side. As
s is increased to 0.2 keeping Re fixed at 50, in figure 21c, the wake is completely suppressed. The
case of Re = 300,s = 0.1 is shown in figure 21d. Suppression of the wake is now possible only at
higher strain magnitudes. Comparing figure 21 with figure 13 it can be seen that the streamlines
on the z — z plane in case of ® = 0, & = 7/4 appear qualitatively similar to those on the 2 — y
plane in case of © = 7/4, ® = 0. However, quantitative differences exist between the two cases,
for example, in terms of the location of the separation points. In general, at the same Re and s,
deformation of the wake bubble is less for © = 0, & = /4 than for © = /4, ® = 0. This can be
clearly seen for Re = 300, s = 0.1 by comparing figures 13d and 21d.

Surface streamlines for the orientation © = 0,® = /4 are shown in figure 22, and qualitative
comparison with figure 14 can be drawn. At Re = 50, s = 0.05, in figure 22a, axisymmetric nature
of the wake is broken and the rear stagnation point (denoted by RS in the figure) is seen to have
shifted to the low speed side. Two saddle points (S1 and S2) are seen on the separation line along
the = — z plane, while two nodal points (N1 and N2) appear on both sides of the © — z plane
on the high speed side. When s is increased to 0.1, asymmetry about the z — y plane is further
enhanced as in figure 22b. Further increase in s to 0.2 causes the separation line to disappear on
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the low speed side (figure 22c¢). The nodal points now have moved closer to the 2 — z plane. The

case of Re = 300,s = 0.1 is shown in figure 22d. The separation line now appears as a closed

curve and the rear stagnation point has shifted to the high speed side. On the symmetry plane,

a saddle point (S) exists on the high speed side and a nodal point (N) on the low speed side.
The velocity potential for the configuration ® = 0, ® # 0 is given by

| 2 3, 1\
(r+ 16;2>C°SB+S(“2“+965:3> (icos 0—-2-) cos” @

72 1 . o . o . . .
—s (-:1— + 192 F3) [(sin® § cos 2¢)(1 + sin® @) — (sin 26 sin ¢) sin 28] (4.10)

For ® = 7 /4, the above equation yields Cp pot = s. The corresponding finite Re results for are
shown in figure 23. At s = 0.1, Cp is slightly lower than the uniform flow result over the entire
range of Re. The effect of increasing s at Re = 50 is also shown in the figure. Unlike the potential
flow result, Cp at finite Re does not vary linearly with s. It reaches a minimum at around s = 0.1
and then slowly increases. At s = 0.3, Cp is about 26% higher than the uniform flow result. From
the streamline plots shown in figure 21 it can be inferred that till about s = 0.1, the presence
of wake recirculation dictates the behavior of drag; during this process the drag force decreases.
With further increase in strain, recirculation region is suppressed and potential flow behavior is
somewhat mimicked.

Due to asymmetry in the ambient flow about the z — y plane, a side-force is generated along
the positive z-direction. This behavior is different from the potential flow result, which predicts a
side-force of magnitude s, but directed along the negative z-direction. Here we will denote the side
force coefficients by Cz, Cz,p and Cz v representing the total, pressure and viscous components,
respectively. Variations of these coefficients for the finite Re case are shown in figure 24. When s
is fixed at 0.1 and Re is varied, the coefficients are positive over the entire Re range. Although
the flow field close to the sphere appeared to be qualitatively similar to the case of in-plane strain
oriented at ® = 7 /4, ® = 0, by comparing figures 24 and 15, it can be realized that the effect
of strain orientation on lift is quite different. Most importantly, for @ = n/4, ® = 0 case, the
lift coefficient is an order of magnitude lower than the drag coefficient, whereas in figure 24, the
side-force coefficient Cz is significantly larger and can be as high as 30% of Cp.

The variation of (Cp) with @ is shown in figure 25a for potential flow and for Re = 50. In
potential flow, asymmetry in (Cp) about 6 = m/2 increases with s contributing to higher drag,
whereas, at finite Re, the behavior of drag is dictated by the presence or absence of a recirculation
region in the wake. For Re = 50, s < 0.1, the presence of a recirculation region raises (Cp) on
the downstream side which results in a lower drag compared to uniform flow. For s > 0.1, the
recirculation region is suppressed and (Cp) on the downstream side is reduced which results in a
higher drag.

Figures 25b and 25c¢ show the pressure contours on the surface of the sphere for potential flow
at s = 0.1 and for Re = 50,s = 0.1. Asymmetry in the surface pressure distribution about the
z — y plane is responsible for the z-force in both cases. The negative z-force in potential flow is
primarily due to the dominant low pressure present on the high speed side. No such distinct low
pressure region can be observed in figure 25¢. On the upstream side, in figure 25¢, pressure on the
high speed side is higher than on the low speed side, while on the downstream side, pressure on
the low speed side is higher. The positive contribution coming from the upstream side outweighs
the negative contribution from the downstream side resulting in a positive side-force.

Similar to the pressure contribution, the viscous contribution to the z-force is also positive
for the finite Re cases. While both 7,4 and 7,4 contribute to the z-force, the former accounts
for nearly 80% and is examined in figure 25d for Re = 50,5 = 0.1. Here contours of azimuthal
velocity component 14 are plotted on the x — y plane and the view shown is looking along the
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z-direction. Positive values of ug imply that it is directed from the plane of the paper into the
positive z-direction. Except in the near-wake region, us appears to be positive over the entire
region around the sphere. Particularly, in the windward side, a strong positive gradient 7,4 exists
which contributes positively to the viscous side-force. .

4.2.6 Effect of Varying ®
Finally we consider the effect of varying the angle ® between relative velocity vector and the
plane of strain. It is sufficient to consider the range 0 < ® < /2 and the results for 7/2 < @ < 7
can be obtained by the transformation ® — ® + n/2. Drag and lift forces under varying ® are
shown in figure 26 for potential flow and for Re = 50 at s = 0.1. The potential flow solution
(4.10) yields Cp pot = 2scos®> ® and Czpot = —ss8in2®. The behavior of the finite Re drag and
side-force coefficients are quite complex and markedly different from the potential flow results.

5. Conclusion

This paper is concerned with the effect of spatial non-uniformity in the undisturbed ambient
flow on the forces acting on a spherical body. Using a simple scaling analysis, we have shown that
the standard practice of neglecting the added-mass and history terms in case of heavy particles
is valid provided particles are small compared to the flow scales or when the particle Reynolds
number is small. However, when the particle size is comparable to the flow scales and the particle
Reynolds number is of the order of unity or more, the added-mass and history terms arising
from the gradients of the ambient flow is important. In this paper we present results from the
numerical simulations of a planar straining flow superimposed on a nominally steady uniform
flow past a stationary sphere. The numerical methodology used in this study employs a high-
resolution Fourier-Chebyshev pseudo-spectral scheme. The investigation covers a particle Reynolds
number range of 10 to 300, thus extending from a non-separated wake to a time-dependent three-
dimensional flow field. The planar straining flow is characterized by three parameters: the strain
magnitude s, and the angles ® and © formed between relative velocity vector and the principal
directions of the strain-rate tensor. A wide range of s, © and ® is examined with a systematic
comparison against the results of potential flow and finite Re axisymmetric straining flow.

The focus has been to study the effect of planar strain on the structure of the wake in an
attempt to explain the drag and lift forces acting on the particle. Several important observations
can be made: )

(a) Planar strain, when its direction of elongation is aligned with the direction of relative
velocity, stabilizes the wake flow and delays the onset of unsteadiness. With increasing strain
magnitude, separation is delayed and the length of the recirculation region decreases. Elongational
strain of sufficient magnitude completely suppresses the recirculating eddy. In this respect, both
planar and axisymmetric strains have similar effect on the wake structure. Despite the three-
dimensional nature of planar strain, the flow in the vicinity of the sphere is nearly axisymmetric
as indicated by the surface streamlines. Also, in terms of the length of the recirculation eddy and
the angle of separation, the planar and axisymmetric strains yield similar results.

(b) Under elongational alignment, both planar and axisymmetric strain enhance the drag force.
According to potential flow theory, strain induced increase in drag is given by 2s and is independent
of the nature of strain. In case of axisymmetric strain, above a certain Re, increase in pressure
drag very nearly follows the potential flow prediction. In case of planar strain, increase in pressure
drag is still linear with s, but the rate of increase is higher. In both planar and axisymmetric
strain, the viscous drag also increases with s, thus the increase in total drag is higher than the
potential prediction. At low Re, increase in viscous drag is higher for planar strain; however, for
Re > 50, the viscous drag is nearly the same for both cases.

(¢) In potential flow, strain introduces a fore-aft asymmetry about # = 7/2 contributing to
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drag. At finite Re, the region of favourable pressure gradient extends into the leeward side of the
sphere. Nevertheless, the wake pressure decreases resulting in further enhancement of the pressure
drag. The drop in wake pressure is higher for planar strain.

(d) There are two mechanisms by which the surface vorticity distribution is modified under the
influence of strain and leads to an increase in the viscous drag. First, in addition to the uniform
flow, the imposed straining flow must also satisfy no-slip condition. This leads to an enhancement
of surface vorticity on the downstream side and reduction on the upstream side. Secondly, the
vortex stretching mechanism also leads to similar modification in surface vorticity. The resultant
effect is an increase in the viscous drag.

(e) When compressional direction of strain is aligned with relative velocity, the extent of
favourable pressure gradient on the upstream side is reduced and the recirculation region increases
in size. Both the pressure and viscous drag components decrease compared to the uniform flow
result. Results for compressional alignment (s < 0) cannot be extrapolated directly from those
of elongational alignment (s > 0). Compressional alignment promotes unsteady vortex shedding
in the wake and even a modest magnitude of strain renders the flow highly unstable. The insta-
bility arises from the discontinuity in the vorticity distribution across a stagnation plane located
downstream of the sphere.

(f) Planar strain oriented at an angle other than a pure elongational or compressional alignment
breaks the axisymmetric nature of the wake. The recirculation eddy is significantly deformed and
the separation line with associated critical points on the surface of the sphere undergoes complex
changes with increasing strain magnitude. For the case of © = /4, ® = 0 considered in detail,
the recirculation region is completely suppressed at sufficiently high strain, and the strength of
strain required for complete suppression increases with Re.

(9) For ® = /4, ® = 0 configuration, the drag force is nearly the same as in uniform flow, in
accordance with the potential flow result. However, unlike potential flow where the lift is always
positive and increases linearly with the strain magnitude, at finite Re, the lift force shows a non-
monotonic behavior and can be negative. The negative lift force can be related to the presence of
a recirculation region in the wake. At higher strain magnitudes, when the recirculation region is
suppressed, potenatil flow behavior is approximately recovered and the lift force becomes positive.

(h) The out-of-plane strain orientation © = 0, & = 7/4 is found to yield markedly different
results from the in-plane orientation ® = 7/4, ® = 0 in terms of the flow structure and forces. In
case of axisymmetric strain these two configurations are identical. The drag force is higher than
the uniform flow result but not linear with s as predicted by the inviscid theory. Under © = 0,
® = 7/4 orientation, symmetry of the flow is broken and as a result there is a side force. The side
force is opposite in sign to that predicted by the potential theory and its variation with strain
magnitude is not linear.

(4) In general, for varying © and ®, the present results show that at low Re (e.g. Re =~ 10)
and for high strain magnitude in the absence of a recirculation eddy, the finite Re drag and lift
forces somewhat follow the pattern observed in potential flow. At higher Reynolds numbers, their
behavior is dictated by the presence of an eddy and thus may be very complex in nature.
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FIGURE 1. a) Schematic of the spherical coordinate and b) a o-projection of the computational grid.
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(e) z

FIGURE 2. Wake structure in uniform flow. a) Streamlines at Re = 10 and b) Re = 100. Vortical topology
at Re = 250 : c) view along the plane of symmetry, d) view normal to the plane of symmetry. Re = 350 :
e) view along the plane of symmetry, f) view normal to the plane of symmetry.
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FIGURE 3. Energy spectra along three coordinate directions. a) Radial spectra at : § = .07w, ¢ =0

andat § =.14n, p=m----- . b) f-spectra at : v = 0.75d, ¢ = 0

¢-spectra at : r = 0.75d, 6 = .07

-; and at r = 10d, § = .027

;andat r=10d, ¢ =71
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(b)

(c) (d)

FIGURE 5. Surface streamlines for a uniform flow at a) Re = 200, and b) Re = 300. ¢) Axisymmetric
strain at Re = 300 and s = 0.1, d) planar strain at Re = 300 and s = 0.1. Flow is directed from the plane
of the paper.
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(c) (d)

FIGURE 7. Fluid trajectory for uniform flow at Re = 300 (a and b) and planar strain flow at Re = 300
and s = 0.1 (c and d). The left panel shows the view along the z —y plane, and the right panel shows the
view along the z — z plane.
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FIGURE 8. Separation length in planar strain : e, Re = 50; o, Re = 100; o, Re = 200.
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FIGURE 9. Variation of the drag coefficients with Re and s for planar strain at © = 0 or 7/2, & = 0.
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FIGURE 11. a) and b) : surface pressure distribution for the case © = 0, & = 0. a) Potential flow solutions
: - - - -, uniform flow (s = 0.0); —o—, axisymmetric strain at s = 0.2; —eo—, ¢-average surface pressure
(Cp) in planar strain at s = 0.2; Cp at different ¢-locations in planar strain : ------ -

¢ =7/4;
at s = 0.2 ;

..... b=/

. .
in planar strain.

¢) compressional strain :
s =—0.04; - - - -, Re =300, s = 0.0;

, potential flow, s = 0.0;
----- , Re =300, s = —0.04.

0; —o—
b) Re = 100 : - - - -, uniform flow (s = 0.0) ; —e—, axisymmetric strain
, (Cp) for planar strain (s = 0.2) ;

k]

, Cp along ¢ = 0 and -------, Cp along ¢ = /2

----- , potential flow at
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FIGURE 12. ¢-averaged surface vorticity distribution for a) Re = 10 and b) Re = 300 : - - - - - , uniform
flow (s = 0.0); - - - -, axisymmetric strain at s = 0.1; ——, planar strain at s = 0.1; ------- , compressional

planar strain at s = —0.1 (for Re = 10) and s = —0.04 (for Re = 300).
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FIGURE 13. Streamline contours on the z — y plane for © = nr/4, & = 0. a) Re =10,s =0.1; b)
Re = 50,5 = 0.05; c) Re = 50,5 =0.1; d) Re = 300,s = 0.1.
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Y

©) (d)

FIGURE 14. Surface streamlines for © = w/4, ® = 0. a) Re = 50, s = 0.05; b) Re = 50,s = 0.1; ¢)
Re =100,s = 0.1; d) Re = 300,s = 0.1 .
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F1GURE 17. Contours of y-component of surface pressure for © = 7/4, & = 0. a) Re =10, s = 0.1; b)

Re = 50, s = 0.05; c) Re =50, s = 0.2; and d) Re = 300 , s = 0.1. Contours are plotted in steps of 0.05.
The dashed lines indicate negative values.
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FIGURE 18. Contours of y-component of viscous force due to 19 contribution. a) Re = 200,s = 0.1, b)
Re = 50,s =0.2.
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FI1GURE 19. Viscous lift due to 7,4 at Re = 200, s = 0.1. a) Contours of y-component of viscous lift due
to T4 , b) Contours of azimuthal velocity component uy in x-z plane.
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FIGURE 21. Streamline contours for @ = 0,® = 45° on x-z plane. a) Ré =10,5s =0.1; b)
Re = 50,5 = 0.05; ¢) Re =50,s =0.2; d) Re =300,s =0.1.
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c) Re =50,s =0.2, d) Re = 300,s = 0.1.
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