Large-scale modes of turbulent channel flow:
Transport and structure

By Z. LIU 2, R. J. ADRIAN!
AND T. J. HANRATTY?

! Laboratory for Turbuleﬁce and Complex Flow,
Department of Theoretical and Applied Mechanics,

2Department of Chemical Engineering,
University of Illinois, Urbana, Illinois 61801, USA

Turbulent flow in a rectangular channel flow is investigated to determine the scale and pattern of
the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress.
Instantaneous, two-dimensional particle image velocimetry measurements in the streamwise-
wall-normal plane at Reynolds numbers Rep= 5,378 and 29,935 are used to form two-point
spatial correlation functions, from which the proper orthogonal modes are determined. Large-
scale motions represented by a small set of lower-order eigenmodes contain a large fraction of
the kinetic energy of the streamwise velocity component, and a small fraction of the kinetic
energy of the wall-normal velocities, consistent with Townsend (1958). Surprisingly, the set of
large-scale modes that contain fifty-per cent of the total turbulent kinetic energy in the channel,
also contains seventy-five per cent of the total Reynolds shear stress in the outer region. Thus,
the large-scale motions dominate turbulent transport in all parts of the channel except the buffer
layer. The flow structures are extracted from individual realizations of the flow field by using
the dominant eigenfunctions as a low-pass filter. In the streamwise wall-normal plane their
pattern often consists of an inclined region of second quadrant vectors separated from an
upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined
Q4/shear/Q2 region of the largest motions extends beyond the centerline of the channel and lies
under a region of fluid that rotates about the spanwise direction. Reynolds number similarity of
the large structures is demonstrated, approximately, by comparing the two-dimensional
correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.

1. Introduction

It is implicit in the velocity defect law and other statements of outer flow similarity for
turbulent flow over walls that large-scale motions scaling with the outer length-scale exist in
these flows. As in the inner wall-layer, these motions are coherent in the sense that they have
characteristic flow patterns that persist over times long enough to contribute significantly to the
time average character of the flow. Perhaps the best known large-scale motions are the bulges of
the turbulent boundary layer which travel at approximately eighty per cent of the free-stream
velocity and are about two-boundary layer thickness long and 1-2 boundary layer thickness wide
(Kovasznay, Kibens & Blackwelder 1970, Murlis, Tsai & Bradshaw 1982). The low-speed puffs
observed by Wygnanski & Champagne (1973) are another well-known type of large-scale
motion that occurs in pipe flow, albeit only at sufficiently low Reynolds numbers and/or
sufficiently smooth entry conditions. Large-scale motions in the form of two-dimensional roll-
cells oriented with their rotation axis in the streamwise direction and spanning the width of the



flow have been observed in plane turbulent Couette flow; however, in this case the rolls cells
appear to be steady and may therefore be better interpreted as secondary flow instabilities of the
mean flow (Papavassiliou & Hanratty, 1997; Lee & Kim 1991).

Although the low-speed streaks that occur in the buffer layer of wall turbulence have very
long dimensions in the streamwise x-direction, their spanwise and wall-normal scales are small,
of the order of 100 viscous wall units (Kline ez al. 1967, Robinson 1991). Therefore, at elevated
Reynolds numbers, where the ratio of the outer length-scale to the inner viscous length-scale is
large, near-wall streaks are very thin, and the large-scale motions are distinguished from them by
their much larger extent in the wall-normal y-direction and the spanwise z-direction. In the
present work, which deals with data in the x-y plane, 'large-scale’ will denote motions that are
Jarge in both the x- and y- directions.

Townsend (1958) and Grant (1958) both observed that the long tail on the streamwise
correlation function of the streamwise velocity implied that large-scale motions contribute
significantly to the streamwise kinetic energy. Townsend (1958, 1976) argued that long extent in
the x-direction implied small values of the v-component of velocity, and hence small
contributions to the Reynolds shear stress, even though the contribution to the kinetic energy of u
is large. He termed the large eddies close to the wall "inactive", and focused attention on the
"main" turbulence eddies which are those with length scales in the inertial range. Several
experimental investigations provide spectral data that can be interpreted to support Townsend’s
view that large-scale motions contain a substantial fraction of the streamwise kinetic energy, c.f.
Lekakis (1988), for example. A few studies (Naguib &Wark 1992; Adrian & Lekakis 1991) have
reported direct observations of this effect.

However, a question exists about the degree to which large-scale motions contribute to
the Reynolds shear stress. Using Lekakis® (1988) correlation data, stochastic estimates of

{u(t+ )v(r+ r)lu(t),v(t)) indicate that following events in which the Reynolds shear stress
u(f)v(f)has large values in either the second quadrant (Q2) or fourth quadrant (Q4), there isa

rapid transient decay of (u(t+ T)v(t+ r)iu(t),v(t)) followed by a long time during which the
velocity disturbance decays slowly (Adrian & Lekakis 1991). Thus, most of the time that the
flow vector spends in the Q2 or Q4 quadrants is due to large time-scale events, i.e. long length-
scale motions.

One-dimensional analysis of the type provided by spectral analysis of hot-wire or LDV
signal is deficient in that it cannot identify the scale of a structure in anything but the mean flow
direction. In particular, one cannot distinguish between the contributions from long, thin
structures such as near-wall streaks, and the long, thick structures that might occur in the outer
region of wall turbulence. Two- or three-dimensional analysis must be used, and for this purpose
visualization of two-dimensional PIV data permits some insights into the large-scale motions in
boundary layers (c.f. Adrian, ef al. 1998, 1999, for example). The present work is motivated by
PIV (particle image velocimetry) visualizations in channel flow of large Reynolds stresses
associated with large-scale motions with sizes that are, approximately, independent of Reynolds
number. On average, they have dimensions of about 1/4 of the channel height in the wall-normal
direction and more than two channel heights in the streamwise direction. Gaussian and spectral
sharp-cut filters were used in an attempt to characterize these motions (Hanratty et al., 1993).
These had a number of disadvantages in that they could not easily accommodate changes of scale
in the normal direction and a certain amount personal judgment entered into the analysis.

Proper orthogonal decomposition (POD) is the correct quantitative way of representing
the distribution of energy among various scales in each direction when the flow is statistically
inhomogeneous in one or more directions. It decomposes the vector signal into modes having



scale in each direction and allows direct evaluation of the contribution that each mode makes to
energy and Reynolds-stress. Therefore, the POD method is used here to provide a precise and
well-defined evaluation of the scales of motion contributing to both the energy and stress-
producing events. .

A number of previous investigators have used this approach to characterize the structure
of turbulence. Bakewell & Lumley (1967) obtained the most energetic eddy structure in the wall

region (y< 40, where y*= yu. /v is the usual inner layer coordinate made non-dimensional by

the viscous length scale based on the friction velocity u. and the kinematic viscosity v) in a
turbulent pipe flow at Rep = 8,700. They measured only the Re;;(rx) component of the
correlation tensor, and obtained the other components by using a mixing-length assumption and
conservation of mass. Only one eigenmode was calculated. The assumption of zero phase was
used to reconstruct a typical eddy, which carried over 90% of the total streamwise turbulent
intensity. They concluded that the dominant structure in the wall region consists of counter-
rotating eddy pairs of elongated extent that are tilted in the upstream direction.

Herzog (1986) measured four components of the correlation tensor R;;, 4, j =1, 3, at six
points in the wall-normal and circumferential directions and at seven points in the streamwise

direction in a pipe flow at Rep = 8,750 (u#/v= 531). The rest of the components of the tensor

were reconstructed from continuity. The decomposition domain, 0 < y* <40, was far too small
to encompass the large-scale structures we are interested in here, but the results they found for
the buffer layer structure are of interest for later comparison. The maximum eigenvalue was

found to be dominant for a wave number of k;v/u,= 0, n = 1 and k3v/u,= 0.0035. The first
contained 60% of the streamwise turbulent intensity, and the first three eigenmodes contained
almos: all of the total energy. A shot noise expansion was used to determine the phase of a
typical eddy. With a zero-phase reconstruction, a typical eddy was found to be a pair of counter-
rotating vortices whose centers were 30 — 40 above the wall, 65 viscous length scales apart, and
400 viscous length scales in extent. They were tilted at 50 to the wall.

Moin & Moser (1989) applied POD to one (), two (y-z) and three-dimensional
decompositions of turbulent channel flow at a low Reynolds number Re, = 2,800

(Re,= uh/v=180). The two-point velocity correlation tensor Rj(r.y.y'72), i, j = 1, 2, 3; were
computed using DNS data. Domains of 0 < y* < 40, 140 <y™ < 180 and 0 < y* < 180 were
used. A shot noise expansion was used in an effort to determine the phase. The resulting zero-
phase characteristic eddy, which contributed as much as 76% of the kinetic energy, was found to
consist of a narrow ejection straddled by a pair of weak streamwise counter-rotating vortices with

a streamwise extent of less than 100", They are inclined at 10° near the wall and as much as 60°
farther away from the wall. Sirovich, et al. (1990, 1991) also used DNS data to calculate

correlation and spectral tensors at low Reynolds numbers u,#/v = 1,200, 1,800 (u /v = 80, 125).
They considered only the Rej, = 1,800 study to be fully developed. The decomposition domain
was the full channel height. A three-dimensional decomposition was performed; sixteen modes
with wave numbers (k; =0-1,n =1 -2, k3 =0 - 3) were found to account for 60% of the total
energy in the flow, where k; and k3 denote the numbers of full waves in the streamwise and

spanwise directions and » is the eigenmode order in the wall-normal direction. The most
energetic mode with &; # 0 for the two casesisk; =1,n =1, k3 =3.

All of the foregoing POD results are at low Reynolds number, and the behavior at high
Reynolds number is less well understood. Chambers, et al. (1988) used Burgers' equation with
random forcing to create a stationary, spatially inhomogeneous flow structure possessing the
characteristics of a two-scale boundary layer at the endpoints of the unit interval. The POD



eigenfunctions in the inhomogeneous spatial variable were found to be similar, over a range of
Reynolds numbers, when they are scaled with outer variables. They suggested that the POD of
real turbulence might also obey such a generalized law of Reynolds number similarity.

Liu, ef al. (1994, 1995) obtained the POD from measurements in the x-y plane of channel
flow at the same Reynolds numbers reported here. The structure of the 1-D POD eigenfunctions
consisted of a thin layer close to the wall, of order of the buffer layer thickness, in which the
modes decreased rapidly to zero at the wall, and an outer region in which the structure of the
modes was essentially independent of the Reynolds number. The eigenvalue spectra of the
channel flow were shown to correlate well with those of a boundary layer flow (Lu & Smith
1991), supporting the notion that outer layer similarity applies to at least two types of wall
turbulence. Outer layer Reynolds similarity of the POD is a strong form of the similarity usually
found from the mean velocity. Its validity is based on data at a relatively low Reynolds number;
so further work is needed to test its generality for all Reynolds numbers. Even so, outer similarity
of the POD modes suggests that the form of the large-scale motions and the amounts they
contribute to energy and Reynolds stress may also be independent of Reynolds number.

This paper examines the significance and structure of large-scale motions by considering
turbulent flow in a channel. Particle-image velocimetry (Adrian, 1991) is used to capture, at
different instances of time, the spatial variation of the two components of the velocity in a plane
that is perpendicular to the wall and oriented in the flow direction (x-y). Two-dimensional spatial
correlations are determined by averaging a number of realizations of the flow. These correlations
are analyzed by proper orthogonal decomposition to arrive at a representation of the flow field as
the sum of 5,346 two-dimensional orthogonal eigenfunctions.

Two Reynolds numbers were studied Re, = Uph/v = 5,378 and 29,935 (or Re,=uh/v =
315 and 1,414, where Uj, is the bulk velocity, and 7 is the half-height of the channel). These
conditions are identical to those in Liu ef al. (1991, 1994). Because of limitations in the spatial
resolution of PIV close to the wall, all of these studies focus on the outer flow, for which the
appropriate length scale is normally assumed to be independent of Reynolds number and
proportional to the channel height.

By virtue of the orthogonality property, the contributions of each POD mode to the total
Reynolds stress and to the total energy are additive. In this way, it is shown that most of the
Reynolds stress is carried by a small number eigenmodes representing large-scale events. Each
instantaneous measurement of the velocity field can be represented by a linear combination of
the eigenfunctions. By summing the small number of eigenfunctions that contain most of the
Reynolds stress, the coherent structure of interest, in an individual realization of the field, can be
captured. Since these are the large-scale motions, this procedure represents a low-pass filtration.
Similarity is explored by comparing, at the two Reynolds numbers, the two-dimensional spatial
correlations and the fractional contributions of the different eigenmodes to the Reynolds stress
and to the kinetic energy.

The research described in this paper and in Liu et al. (1994, 1995) differs from previous
POD studies in that it uses laboratory measurements at a much larger number of points and that it
studies larger Reynolds numbers. The interpretation of the eigenfunctions is also somewhat
different from previous studies in that no attempt is made to use the eigenfunctions to represent a
characteristic eddy. Instead, the structure of the large eddies is found by using the eigenfunctions
as a low-pass filter that extracts the motions that are large contributors to the Reynolds stress
(Liu et al. 1995).

2. Experimental Procedures‘



Physical lengths made dimensionless by the viscous length scale are denoted by the usual
notation (x*, y*, z*), but fluctuating velocity components normalized by the wall-friction
velocity u; are denoted by (u, v, w) = (uy, ua, u3), the superscript "+ being omitted to avoid
clutter in the POD equations. The two-dimensional channel flow facility contained water, and its
rectangular cross-section was 609.6 mm wide by 22 = 48.75 mm high. The channel and the
single-lens, photographic particle image velocimeter used to measure velocity in this study have
been described in detail in Liu, ef al. (1991, 1994). Documentation of the flow in this channel
based on laser Doppler velocimeter measurements at Reynolds numbers ranging from 2,778 to
30,000 can also be found in studies by Niederschulte, et al. (1990), Warholic (1997) and
Guenther, ef al. (1998). All of the experimental measurements of conventional turbulence
statistics through fourth-order are consistent with generally accepted behavior of channel flow, as
found in the experiments of other investigators, and in direct numerical simulations.

The PIV provided instantaneous measurements of (#, v) on an x-y plane that extended
from y = 0, to y = 2h, and the length of the data domain in the streamwise direction was Ly =78
mm = 3.2h, as determined by the field-of-view of the PIV camera. More than 5000 vectors were
calculated from each PIV photograph, and an ensemble of 60 - 80 photographs was obtained at
each Reynolds number. The flow parameters are listed in Table 1. The measurement volume

used to obtain a vector during interrogation was (4xg, 4yp, Azp) = (1.6 mm, 0.8 mm, 0.8 mm).
These dimensions normalized with viscous wall units and with the outer length scale, A, are listed
in Table 2. The spacing between vectors was 1.2 mm in the x-direction and 0.6 mm in the y-
direction. The measurements closest to the wall were at y* = 5.16 and 23.2 for the two Reynolds
numbers, respectively. At the lower Reynolds number the spatial resolution is comparable to that
achieved in direct numerical simulations, but at the higher Reynolds number each measured
vector represents an average over a significant range of small scales. For example, the resolution

in the y-direction dyy™ = 46.5 was clearly inadequate to resolve the buffer layer. However its

size relative to the outer scale, Ay/h = 0.032, was small enough to allow the evaluation of 15
POD modes in the y-direction. Thus, the range of validity of our measurements of the POD
modes and eigenvalue spectra is restricted to the lower orders that are adequately resolved by the
measurements.

Table 1: Flow parameters

Ush/v ub/v=ht |Lyt Up(mm/s) | uo(mm/s) V/u (mm)
3,378 315 1,008 212 12.4 0.0775
29,935 1,414 4,520 11,074 50.7 0.0172
Table 2: The measurement volume in the PIV experiments

Uph/v Ax,t Ay, AzpT Ax/h Ay/h Az /h
5,378 20.6 103 10.3 0.065 0.032 0.032
29,935 93.0 46.5 46.5 0.065 0.032 0.032

3. Proper Orthogonal Decomposition

Proper orthogonal decomposition of the experimental channel flow data is performed on
the domain (0 < x < 1, 0 <y < 1) where x denotes the streamwise coordinate normalized by L, =
78mm = 3.2k, and y denotes the wall-normal coordinate normalized by 2A. It is well known



(Lumley 1970) that the eigenfunctions of the POD are trigonometric in a statistically
homogeneous direction such as the streamwise direction in the channel. Therefore, on (0 <x <1,
0 <y <1) we can represent the ith component of the velocity, u;(x, y) by the Fourier series

w(x.y) = 2, (ky)e” ™, (1
k
where the Fourier coefficient #;(k,y)

ik, y)= j:u,-(x,y)e"z"’“dx, o))

is a random function of the inhomogeneous direction y with parameter k. The two-dimensional
proper orthogonal decomposition is completed by expanding u,(k,y) in a Karhunen-Loeve
expansion

4,06, = D.a*" ¢ (), (3)

wherein the basis functions ¢,.(k’")( y) are orthogonal,

[8%70) 6% Gydy =5, )

The Fourier coefficients are given by

1

a("’") = j‘¢i(k’n)*(Y) &i(k,y)dy- (5)

0

Requiring the Fourier coefficients to be statistically orthogonal,
quiring g
(@0ad*""y = A 8, 8y, ©)

and requiring the basis functions ¢,.(k’")(y) to have the property that the partial sums of (3)
converge faster than the partial sums of any other set of orthogonal functions results in the

following integral equation for ¢*”():

1

[£,20.0) o0 &y = 2% 6500y, ij=12 (D)

0

where
KR 0,5) = @lky) #(ky)). (8)

The kernel K, (3,)') is related to the two-point spatial correlation tensor

Ryreyd) = () )(x 47090 ©)



1 R A
KO0y = [A-r R, (03 e dr, (10)
0

The spatial correlation tensor is calculated from the PIV data by forming the product of
velocity components, ensemble averaging over the ensemble of experimental fields, and line
averaging over the x-direction. The ensemble average for a given (ry, ¥, ¥') extends only over
those realizations that have valid vector data at those points. The effect of missing data is
accounted for by dividing by the number of valid data in the ensemble at each point. The
separations between the two points in the correlation functions are in the wall-normal and
streamwise directions. Separations in spanwise direction and time-lags are not considered.

Combining the foregoing equations gives .
u(xy) =2, 2.d"" " (), (1
k n
where

v (0 y) = 4" ) 2 (12)

is the two-dimensionally orthogonal eigenfunction of the complete POD expansion, which
satisfies the orthogonality condition,

1

[ W x,9) W (x,3) dxdy = Gy S5 (13)

0

The eigenfunction of the ith velocity component ¢/%7)(y) is a Fourier mode of order & in
the streamwise direction and order » in the wall-normal direction. The order £ is associated with
a wavelength L,/k. The principal usefulness of the POD is that it also associates a length scale in
the y-direction with the modal order n, but since the statistical inhomogeneity in this direction
implies varying length scale, the modal order » cannot be related to a single length. Rather, the
structure of the eigenfunction itself defines the length scales for each mode. It has been shown
that the modes approach trigonometric form as the modal order increases (Sung & Adrian 1994,
Moser 1994) and the mode becomes associated with a length scale 2/4/n for large n. Thus, POD
decomposition makes it possible to evaluate the contribution of structures on the basis of their
size in both the streamwise and the wall-normal directions, i.e. structures that are, for example,
long in x, but narrow in y, or structures that are large in both x and y.

The contributions of structures of various sizes can be evaluated quantitatively by
summing the contributions from the various modes. This is possible because the modes are
statistically uncorrelated. For the turbulent kinetic energy,

1
E = _Ku,-(x,y) u:(x,y))dy = ;Zﬂ(k’é). (14)

For the turbulent Reynolds stress



W,(x,3) 0 (x.))=2 2, A% g1 1) 6“0 (15)

and

1 1
- Jeuten) weenay =24 [87G) ¢, )y . (16)
0 n 0

The mode order k equals the number of sinusoidal wavelengths in the domain L,. It is related to
streamwise wavenumber by k, = (2n/Ly)k. Superscript n represents the mode order in the
inhomogeneous wall-normal direction. In a one-dimensional decomposition (Liu et al., 1994) n
is the number of zero-crossings of the eigenfunctions. However, in two- or three-dimensional
decompositions the interpretation is more complicated because the eigenfunctions are complex.

Term A(k7) is the eigenvalue of the mode with orders » and k.
4. Distribution and structure of energy and transport
4.1 The two-point correlation functions

Contours of the two-point auto-correlation coefficients with separations in both y- and x-
directions, R;i(ry y, ¥) 0i()oj(y), i, j = u, v, are plotted in Fig. 1 for Re, = 5,378 and in Fig. 2

for Re, = 29,935. Here o7 denotes the root-mean-square value of the fluctuation of the ith-
component of velocity. The auto-correlation functions are given for the fixed point, y, located at

different distances from the wall: y/& = 0.065, 0.237, 0.508, and 1.0. These correspond to yt=

20.5, 75, 160 and 315 for the low Reynolds number, and yT =92, 335, 718, and 1,414 for the
high Reynolds number. Statistical sampling error of the two-dimensional correlation functions is
estimated to be £10% of the peak correlation value. Corresponding contour plots of the cross-
correlations (i, /) = (1, 2) and (2, 1) are available from the editorial office.

In the outer region the correlation contours for the two Reynolds numbers are
qualitatively similar when the separations of the two points in both the x- and y-directions are
scaled with h, supporting the notion that the structure of large-scale motions exhibits Reynolds
number similarity, (Townsend, 1976). However, there are some differences, one being a
tendency for the highly correlated regions (say 0.8 or higher) of the higher Reynolds number data
to be smaller than the highly correlated region of the lower Reynolds number data. This effect is
expected because the ratio between the Taylor microscale and the integral length scale decreases
with increasing Reynolds number. A more fundamental Reynolds number effect has to do with
the streamwise extent of the streamwise velocity correlation. Relative to the lower Reynolds
number case, the length of the correlated region at the higher Reynolds number is longer close to
the wall (compare Fig. 2(al) and (a2) to Fig. 1(al) and (a2)) and shorter farther away from the
wall (compare Fig. 2(a3) and (a4) to Fig. 1(a3) and (a4)). The longer extent of the high Reynolds
number correlation closer to the wall may reflect correlation between the near-wall eddies and
other, larger scale eddies.

Auto-correlations of the streamwise component for fixed points not on the centerline
exhibit a characteristic shape that is elongated in the streamwise direction and inclined at a
shallow angle to the wall. The average angle is 6° and 8° at the lower and higher Reynolds
numbers, respectively. Symmetry forces the inclination to vanish when the fixed point is at the
centerline of the channel. The length and height of the region of high positive correlation grow
with increasing distance of the fixed point from the wall. The streamwise length attains a value in

8
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Figure 1. Contours of the two-point auto-correlation coefficients for Rep = 5,378. (al) - (ad),
Rusropy) G )0 (0); (B1) - (04), Rn(r%,y)/ %(¥) Oy(y"). The locations of the fixed correlating
points are: (al) - (bl), /A =0.065 (v = 20.5); (a2) - (b2), y/h = 0.237 T =175); (@3) - (b3), y/h
=0.508 (or yT=160); (a4) - (b4), h =1.0 (ory™ =315).
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excess of 4k, c.f. Fig. 2(a3) and Fig 3(a2) and (a3). Auto-correlations of the v-component also
grow as the fixed point moves away from the wall. This is consistent with Townsend's (1976)
attached eddy hypothesis which states, in part, that eddies extend down to the wall, so that eddies
centered at y have wall-normal scale of order y. But the v-correlations have roughly circular
contours, in shape contrast to the elongated contours of the #-component auto-correlation.

The v-correlations are also short relative to the u-correlations. For example, for the fixed
point at y/h = 0.237 the length of the region in which the u-correlation coefficient exceeds 40% is
1.5 (126 viscous wall units) in Fig. 1(a2) while the corresponding length of the v-correlation
coefficient in Fig. 1(b2) is only 0.4A, a ratio of almost 4:1. At the higher Reynolds number the
length of the u-correlation is 3.44 compared to 0.3/ (424 viscous wall units) for the v-correlation,
a ratio of more than 10:1. Although the extent of the v-correlation, of order 0.3 - 0.44, is
relatively small, the motions associated with the v-component are still large scale, in the sense
that they scale with 4. Inspection of the u-v cross-correlations reveals that they are elongated,
much like the u-correlations (although somewhat shorter). This suggests that the largest scale
motions contain a significant fraction of the Reynolds shear stress and only a small fraction of
the v-component energy, but one must perform proper orthogonal decomposition to evaluate the
exact amounts.

Cross-correlation coefficients have negative values around the fixed point, and with zero
separation, the coefficients are approximately -0.41 over most of the channel. When the fixed
point is on the centerline of the channel the cross-correlation coefficients are anti-symmetric with
respect to y. When the fixed point is off of the centerline, the anti-symmetry persists to the
extent that the correlation coefficients tend to have opposite sign above and below the centerline.
Thus, second quadrant events in the lower half of the channel which produce strong negative
values of the uv-product, tend to be associated with positive uv-events in the upper half of the
channel. Note that the latter is equivalent to a second quadrant event since the normal to the
upper wall is in the downward direction.

4.2 Eigenfunctions and eigenvalue spectra

Equation (7) was solved for the eigenfunctions and eigenvalues for each k using
trapezoidal quadrature and an IMSL eigenproblem subroutine. The number of eigenmodes in the
decomposition was 5,346, with 33 modes (k = 0 - 32) in the streamwise homogeneous direction
and 162 modes (n = 1 - 162) in the wall-normal direction.

The eigenfunctions for the two Reynolds numbers with the domain of 24 are plotted in
Figs. 3 for eigenmodes £ =0, 1 and n = 1, 2, 3, 4. Recalling that x denotes the streamwise
coordinate normalized by Ly, and y denotes the wall-normal coordinate normalized by 2, the

non-dimensional eigenfunctions of the two-dimensional decomposition are (hL,)!2¢,")(y) and

the non-dimensional eigenvalues are A®&"/(u2hL,). The factor of (hL,)1/2 is determined by the
orthogonality of eigenfunctions (13) and the factor (u,2hL,) comes from equation (7). The
imaginary parts of all £ = 0 eigenmodes are zero, but for £ > 0 the eigenfunctions are complex.
The figures show only the real parts. Both real and imaginary parts of eigenfunctions contribute
to the energy and Reynolds stress associated with each eigenmode. The phases between
eigenfunctions of the »- and v-components do not influence the contributions of the eigenmodes
to the turbulent kinetic energy. However, they are very important in determining the
contributions of the eigenmodes to the Reynolds stress, as can be seen from equation (15). The
phases are mostly opposite in sign in the lower half of the channel and have the same sign in the

upper half of the channel. This results in positive contributions to the Reynolds stress in both
halves of the channel.
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The eigenfunctions for both components are alternately symmetric and anti-symmetric
about the center of the channel for successive orders of the wall-normal modes and streamwise
modes. For each eigenmode, the symmetries of the eigenfunctions for the two components are
always opposite. As a consequence, contributions of each of the eigenmodes to the Reynolds
stress are mostly positive. There is a simple rule which can be used to identify the symmetry of
the eigenfunctions in terms of eigenmode orders k and n. If (k + n) is odd, the eigenfunctions for
the u-component are symmetric and the eigenfunctions of the v-component are anti-symmetric. If
(k + n) is even, the opposite is true. This feature of the eigenfunctions reveals that contributions
to the Reynolds stress are statistically positive, and that both the upper and the lower halves of
the channel are statistically identical.

Equations (14) - (16) can be used to evaluate the contributions of the different
eigenmodes and hence different scales of eddies, to the energy and the Reynolds stress. Each
mode makes its contribution independently because of the orthogonality of the eigenfunctions.
The k = 0 modes require careful interpretation. From equations (2) and (3) the k = 0 modes are
given by

A 1 1 x . 7 n
8,0.9) = [ (x.y)eds = A [ u el y)d(eL,)= gaw, ") a7

Thus, the (0, #) eigenfunctions represent decomposition of the line average of the fluctuating
velocity over the streamwise length of the domain, Ly. If Ly were infinite, ergodicity of line
averages in the homogeneous streamwise direction would imply that the line average of each
fluctuating velocity component is zero, and hence all (0, #) modes would vanish. When Ly is
finite, the integral in (17) can be interpreted as a running average, which acts-as a low pass filter.
All modes of wavelength Ly or less integrate to zero, so the k = 0 modes represent the
contribution from all motions whose wavelengths are longer than Ly.

Table 3 gives the fractional contribution of each eigenmode of order (k, n) to the total
energy. They are energy-ordered for the Re, = 5,378 modes. Table 4 gives the fractional
contribution of each eigenmode to the total Reynolds stress as calculated from Equation (16) by
integrating the eigenfunction products across the channel. The contributions are arranged in
descending order for the Rej, = 5,378 modes (the descending ordering is slightly different for the
high Reynolds number). Both of these quantities represent contributions to the total value
integrated across the channel. The (0, 1) modes for Re, = 5,378 and 29,935 contain 10.5% and
13.8% of total energy, respectively, and they are the strongest contributors to the energy. The
largest contributors to the total Reynolds stress are the (0, 2) modes, which contain 13.3% and
13.6% of total Reynolds stress for Rej, = 5,378 and Rej, = 29,935. The first six modes (k=0 -2,
n=1-2) out of total 5,346 eigenmodes contribute more than one third of total energy and one
half of total Reynolds stress for both Reynolds numbers. The first 12 eigenmodes (k = 0-2, n =
I - 4) contain almost one half of the total energy and two-thirds to three-quarters of the total
Reynolds stress. These modes consist of structures whose lengths in the streamwise direction are
Ly=32h (k=1) and Ly/2 = 1.6h, and all modes longer than L , (k = 0), In the y-direction the
length scales associated with the modes n = 1 - 4 range from 24 down to 0.3/ (c.f. Fig.3), which
are still large, considering that the thickness of the logarithmic layer is no more than 0.2A.

These results compare well with direct numerical simulations of channel flow at low
Reynolds numbers. Sirovich, et al., (1990) give the eigenvalue spectrum for three-dimensional
decomposition of very low (barely transitional) Reynolds number (Rep = 1,500, 4" = 80).
Summing over the first four modes in the spanwise direction gives an approximate two-
dimensional decomposition that can be compared to the present results. The first six most
energetic modes are identical to those found in Table 3, but they contain rather more energy,
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Table 3: Fractional contributions of the 2-D eigenmodes to the total turbulent kinetic energy for
Rep = 5,378 and 29,935. The eigenmode indices are denoted by (k, #). The table was arranged in
a descending order of the energy contributions at low Reynolds number, Re, = 5,378. D is the
degeneracy of eigenmode in the streamwise direction.

Fractional energy, %
Order |k, n) Re,=5,378 Re,= 29,935 D
T ©, D 103 138 T
p) ©,2) 892 9.08 I
D 578 581 p)
02 492 7387 i
3 T3 3.54 378 p)
6 ©,3) 2.36 7.58 T
7 ©,%) 7.64 1,93 T
Z.D 239 2.03 y)
9 1.3 236 274 p)
T0 @z 2 .72 1.34 p)
TI 1.3 161 —T.15 y)
12 (©,3) T4T 1.25 I
T3 Z.3) 129 I3 p)
3 {1, 6) T.21 T.12 )
15 9 T.17 0.94 y)
16 (0, 6) T.15 0.50 T
T7 G, D T.1 T.0 Z
I8 @D 0.95 0.60 p)
) 3G, 2) 091 .0 )
20 G. 3 091 0.69 2z
Gmodes [(0-2,1-2) |33 37
JTmodes|(0-2,1-4) |48 50

67% versus 33% at Rep, = 5,378. At approximately twice the Reynolds number (Rep, = 2,800, n
= 180) one-dimensional POD on the half-channel domain (0 < y* < 180) gives 32% of the total
kinetic energy and 66% of the Reynolds stress in just the first three modes (Moin & Moser
1989). The dominance of the lower order modes in the direct numerical simulations was not
surprising, because the spectrum of the turbulence has a fairly small range of scales at low
Reynolds numbers. However, the relatively similar behavior of the present results at substantially
higher Reynolds numbers indicates that dominance of the large-scale modes persists, even as the
spectrum widens.

The fact that the largest-scale motions in streamwise and wall-normal directions are the
most important contributors to the turbulent kinetic energy is consistent with the early
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observations of Grant (1958) and Townsend (1958) and subsequent investigations, which were
also at moderate Reynolds numbers. The fact that these scales also carry more than two-thirds of
the total Reynolds shear stress is quite surprising, and completely at odds with the notion that the
large scales are not important to the transport of momentum and hence “inactive” (Townsend
1976). Even the first 6 modes that contain 33 - 37% of the kinetic energy contain 50 - 56% of the
Reynolds shear stress. The inescapable conclusion is that large-scale motions play a very
important role in the transport of momentum, at least for the range of Reynolds numbers
considered here.

Table 4: Fractional contributions of the 2-D eigenmodes with a domain of 24 to the total
Reynolds stress for Rey, = 5,378 and 29,935. The eigenmode indices are denoted by (k, n). The
table was arranged in a descending order of the Reynolds stress contributions at low Reynolds
number, Rej,= 5,378. D is the degeneracy of eigenmode in the streamwise direction only.

Fractional Reynolds stress, %

Order [(k, n) Kep=15,378 Rep=129,935 D
1 ©,2) 13.3 13.6 1
2 (I,I) 12.28 9.2 2
3 O, 1) 10.81 7.81 1
4 (1,2) 9.16 10.2 2
5 2, 1) 6.25 3.56 2
6 (1,3) 492 0.24 2
7 2,2) 4.3 3.95 2
8 (1,4) 3.8 3.77 2
9 2,4) 3.03 1.72 2
10 ©0,4) = 288 2.4 I
11 (€20 )) 2.69 2.76 2
12 ©0,3) 2.5 - 11.26 I
13 3.3) 2.29 1.36 2
14 3.2 2.22 395 2
15 2,3) 2.02 2.11 2
16 @1 1.73 1.57 |
17 (1,6) 1.71 1.28 2
18 4.,2) 13 1.28 2
19 3.9 1.28 0.186 2
20 (1,5) 0.734 0.254 2
G modes [(0-2,1-2) |36 30

12 modes|(0-2,1-4) |75 67
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Figure 4. Fractional Reynolds stress contributions. (a) circles, Zy <uv>&n); diamonds ,
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(b) circles, Zg ,<uv>(m; diamonds, cumulative Reynolds stress of the first K streamwise
eigenmodes, Zuy ,Zi=g.x<uv>kn). Solid symbols represent Re, = 5,378, and open symbols
represent Rey, = 29,935.

But, what about the small-scale motions, especially those in the near-wall buffer layer
where they are most active? The contribution of higher order modes to the total Reynolds shear
stresses is shown graphically in Fig. 4. For the lower modes shown in Table 4 the modes all
contribute positively, but in general the contribution of a single mode to the Reynolds stress can
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be positive or negative. Figure 4(a) gives the spectrum of total contributions to the Reynolds
stress of modes, 7, summed over all wavenumber, % and the cumulative contributions of all
modes with n < N. The lower order modes for Re;, = 5,378 actually overshoot the total mean
value up to n = 8, after which slightly negative values return the total to 100% of the total
contribution. A similar phenomenon was reported by Moin & Moser (1989). The overshoot does
not occur at the higher Reynolds number. For both cases 10 modes suffice to carry all of the
Reynolds shear stress. Figure 4(b) gives the total contribution to the Reynolds stress for different
Fourier modes, k, summed over all Karhunen-Loeve modes, », and the cumulative contributions
for k < K. The first four n modes (n =1 - 4) contribute 91 - 97%; the first four k modes (k=0 - 3)
contribute 80 - 87% of the Reynolds stress.
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Figure 5. Profiles of the fractional contributions of the first 12 eigenmodes (k=0-2,n=1 - 4)
to the kinetic energies of streamwise, LJ, and wall-normal, O, velocities. Solid symbols represent
Rep = 5,378, and open symbols represent Rep, = 29,935.

As indicated earlier the contributions inferred from the eigenvalues refer to the total
values of the kinetic energy and the Reynolds stress integrated across the channel. It is possible
for the large-scale motions to dominate the integrated value while the small-scale dominate
locally in a region such as the buffer layer. Figure 5 presents the local fractional contributions to
the total energy of the streamwise and wall-normal components by the 12 eigenmodes with k=0
-2 and n =1 - 4. Figure 6 gives the corresponding local fractional contributions to the Reynolds
stress. The contributions of these 12 modes to the fotal energy are about 50%, but this is divided
between a large contribution to streamwise kinetic energy of about 60% for y/h = 0.05 - 0.6, and
a much smaller contributions to the wall-normal kinetic energy of about 20% for y/4> (0.1 - 0.2).
Thus, most of the streamwise kinetic energy below y/A = 0.6 is large-scale, but the strong
majority of the wall-normal kinetic energy is small-scale. In the channel center contributions of
both components are approximately equal. These results are consistent with the observation that
a smaller numbers of the large-scale structures reach the centerline. In contrast Figure 6 shows
that <uv> receives strong contributions from large scales at the centerline. This suggests that the
Reynolds stress events are intermittent in the region of the centerline.

The local contributions of the 12 eigenmodes with k=0 -2 and » =1 - 4 to the local

Reynolds stress are 60 to 80%, except for the region close to the wall, Fig. 6. This implies that
the low mode (large-scale) motions are quite energetic and not 'inactive' in generating turbulence
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to the Reynolds shear stress. Solid symbols represent Ren = 5,378, and open symbols represent
Rep = 29,935.

above the buffer layer. In the near-wall region the contributions of the large-scales are much
smaller. Because of the limited spatial resolution of the measurements relative to the scales in
this region, the values shown in Figs. 5 and 6 are only estimates of the precise contributions.
Evenso, the fractional contribution to the near-wall Reynolds shear stress lies in a range of 13-
76% that is consistent with an estimate of 15% by Naguib and Wark (1999).

4.3 Velocity fields of the large-scale flows

We turn now to the question of determining the flow patterns associated with the large-
scale energetic modes. To be specific, we shall seek the structure of the flows that create the
contributions from the first twelve modes, containing about one-half of the kinetic energy, and
two-thirds of the Reynolds shear stress. The individual eigenfunctions cannot, by themselves,
describe the structure of an eddy, because eddies are composed of many modes. This is
especially clear for homogeneous turbulence in which the eigenfunctions are simple
irigonometric waves. Lumley’s (1970) characteristic eddy method attempts to define a single
characteristic eddy by projecting the modal structure on a shot noise model of randomly scattered
eddies, but this approach suffers from a fundamental ambiguity in which the phases of the
complex eigenfunctions are left undetermined (Min & Moser 1989). This problem does not arise
if one simply phrases the question as one of determining the structure of the eddies that
contribute to certain modes, for then the phases of each mode are found directly by projecting the
instantaneous velocity fields onto the group. For the present work, this approach is particularly
appropriate, because we have already the modes that are of interest. Of course, other groups of
modes could also be identified, but they would be associated with different questions.

4.3.1 Vector structure of the modes

Although individual modes cannot fully describe an eddy, their structure is of interest,
nonetheless, as the components of the complete structure. From equations (3) and (6) the
component of the fluctuating velocity component associated with the (k, ») mode is

(k,m)

17 (x,3) = Rea®” Re y,*"(x,9) ~ Im " Imy, " (x,). (192)
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It is easy to show that the vectors for the imaginary eigenfunctions are the real eigenfunction

vectors y " =(p*", ¥ with a /2 phase shift, corresponding to a dimensional spatial shift

of Ly/4k. Then the (k, n) mode component of the velocity is

1 (x,y) = Rea™ Rey,*"(x,y) - Ima™"” Rey, " (x ~ 1/ 4k,y) (19b)

The eigenfunctions can be presented in a vector form, since the two components y; and ¥, are
related to velocity components u; and u,. A real eigenfunction vector can be defined as

Rey™ (x,y)= Rey (v, 1), Rep,(6y)> (202)
= Refp " (x.)e”™ |Re[4,“"(x,39¢”™ ). (20b)

From (19b) the modal velocity can be constructed from a linear combination of the vector field
of the real eigenfunction and the vector field of the real eigenfunction shifted by 1/4k. Thus, it
suffices to consider the vector fields given by equation (20).

Figure 7 presents the real eigenfunction vector fields for eigenmodes k=0, 1 withn =1,
2, and 3 for Rey, = 5,378. Every other vector has been removed to show the patterns more clearly.
Because of homogeneity in the streamwise direction the structure of each eigenfunction is

sinusoidal with phase 8(x) =27kx. The structure in the inhomogeneous wall-normal direction is

determined by the wall-normal eigenfunctions, ¢{6")(y), c.f Eq. (20) and Fig. 3. Recall that the
eigenfunction vectors of the & = 0 modes represent the projection of all modes having
wavelengths longer than the fundamental wavelength of the domain, 3.24. They are independent
of x, but the projected wall-normal component does not vanish, so the £ = 0 modes still
contribute to the Reynolds shear stress. The (0, 1) and (0, 3) modes are symmetric with respect to
the centerline, while the (0, 2) mode is anti-symmetric.

The eigenfunction vector fields of the ¥ = 1 modes in Fig. 7 are once-periodic in 3.2A.
They show motions like ejections (second-quadrant Q2 events) and sweeps (fourth-quadrant Q4
events) that are strong in a region inclined at about 35° to the wall. These motions contribute
positively to the net mean Reynolds shear stress, the amount depending on the phase relationship
between the u- and v- eigenfunctions. In Figs. 7(d) and (f) one can discern a recurring pattern
consisting of an inclined Q2 event (along the locus of the straight line) in the lower half of the
channel lying under a clockwise rotating motion (highlighted by the ellipse), and an inclined Q4
event lying under a counter-clockwise rotating spanwise vortex (highlighted by the second
ellipse). The Q2 and Q4 flows create a stagnation point and an associated inclined shear-layer.
The combination of a rotation about the spanwise direction, an inclined region of Q2 vectors with
a local maximum Q2 event and the shear layer created by a weaker upstream Q4 event has been
identified by Adrian, Meinhart and Tomkins (1999) as the signature of a flow pattern that carries
large amounts of Reynolds shear stress and occurs frequently in turbulent boundary layers. They
argued that these signatures are associated with flow in the central x-y plane of hairpin-like
vortices inclined in the streamwise direction. The hairpin paradigm was used in a loose, generic
sense to include hairpin, horseshoe and cane-like structures having the general shape of quasi-
streamwise leg of concentrated vorticity inclined to the wall and turning over in the spanwise
direction near its top (to account for the spanwise vortex observed in the x-y plane). The Q2
;:lvgzntg with local maxima were associated with vortex induction of the head and legs of the

airpin.
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Since the purpose of the present paper is not to discuss the relevance of the hairpin paradigm, we
shall refer to the flow pattern described above as the "signature of a characteristic Reynolds
stress event”.

Note that the reflectional symmetry with respect to the centerline in Fig. 7(e) results in
regions of inclined Q2 and Q4 events that do not lie under a transverse vortex. Instead, the
pattern looks like an in-plane convergence toward a three-dimensional saddle point with out-of-
plane flow.

The eigenvector fields of the Rex = 29,935 flow are very similar to those in Fig. 7 for Rep,
= 5.378. One pattern, a (3,1) mode presented in Fig. 8(a), demonstrates the similarity that is
typical of the other modes. The higher order (2,2) mode in Fig. 8(b) illustrates the increased
layering that occurs in the y-direction as the modal order increases.

4.3.2. Velocity fields of the energetic, large-scale motion

. To sample the types of eddies structures that are characterized by the low order
eigenmodes, we have projected various snapshots of instantaneous fluctuating flow fields onto
the 12 eigenmodes (k = 0 - 2, n = 1- 4). Representative samples of the random velocity fields
taken from the data sets for each Reynolds number are shown in Fig. 9(a) and 10(a). The
corresponding projected flow fields are displayed in Fig. 9(b) and 10(b). This procedure would
fail to yield a clear picture of the eddies characterized by these modes if no such eddies were
present in the sample realizations. However, Table 5 shows that the magnitudes of the Fourier
coefficients |a® | for each projection are comparable to the root-mean-square values, as given
by the square root of the eigenvalues. Therefore, eddies that are typical of the first twelve modes
were present in each sample. (The phases of the Fourier coefficients for each random realizations
are different, reflecting the dynamical behavior of the eigenmodes.) The projected fields in Fig.
9(b) and 10(b) each clearly contain two structures that possess all of the elements of the signature
of a characteristic Reynolds stress event, as described above. A Q2 ejection of fluid from the
wall with length scale of at least 500 viscous wall units (1.6h) in the streamwise direction and a
strong:Q4 motion of fluid from the outer region of the channel can be seen in the lower half of
Fig. 9(b) for the lower Reynolds number. The Q2 and Q4 motions meet each other and generate a

stagnation point/shear layer that extends from y+ =100 to 200 with an inclination angle of about
30° to 40° to the wall, in a manner very similar to that discussed above for the eigenmodes. A
similar pattern coming down from the top wall appears to provide the Q4 motion for the
downstream eddy on the lower wall.

The scales of the patterns in Fig. 9(b) are of the order of the channel height, but this is not
very large in terms of the viscous length scale at the lower Reynolds number. The projection of
the higher Reynolds number velocity field in Fig. 10(b) offers much more convincing evidence
that these structures do scale with the outer length scale. Two signatures of large-scale
characteristic stress event can be seen, one attached to the bottom wall and one attached to the
top wall. To demonstrate further the similarity between large eddies at high and low Reynolds
numbers, a second Rep = 29,925 field is projected onto the lowest twelve modes in Fig. 10(c).
This random snapshot is remarkably similar to the field in Fig. 9(b). The streamwise scales of the
large motions exceed 2,000 viscous wall units, about 24, and their vertical size is about one
channel half-height or & = 1,414. Projection onto the first six modes instead of the first twelve
modes has no qualitative effect and relatively little quantitative effect on the vector fields.
Examination of the full data sets reveals that projections containing patterns that meet all of the
criteria for the signature of a characteristic stress event occur over one-half of the time. Given
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Table 5: The phases, %", and amplitudes, |a%")|, of the weighting coefficients, a*™, used in
the projections of the two instantaneous realizations on to 12 eigenmodes for the two Reynolds
numbers. The square roots of the corresponding eigenvalues are listed for a comparison.
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Figure 10. (a) An instantaneous turbulent fluctuating velocity field from PIV measurements at
Rep = 29,935; (b) The projection onto the first 12 eigenmodes (k=0 -2, n=1 - 4). (c) The
projection of another flow field onto the same first 12 eigenmodes (k=0-2,n=1 -4).
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(L. 1) -0.973 0.414 0.370 -0.240 0.466 0.404
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that the eddies have random spanwise locations relative to the fixed plane of the PIV data the
high frequency with which the signatures are observed indicates that these structures are indeed
characteristic of the large scale fields. ‘

5. Conclusions

Turbulent flow fields in the outer region of flow through a rectangular channel at Re, =
5,378, and Rep, = 29,935 have been measured in the streamwise-wall-normal plane and analyzed
by two-dimensional proper orthogonal decomposition. The scaling of the outer flow structures
was found to be only approximately the same for the two Reynolds numbers. The measurements
at the larger Reynolds number reveal a slightly larger contribution from smaller scale motions.
This can be seen by comparing the eigenmodes in Tables 3 and 4 and the correlation functions in
Figs. 1 and 2.

There are two principle results. First, the low order eigenmodes that carry much of the
turbulent kinetic energy are large-scale motions having wavelengths equal to or longer than 3.2A.
Second, these large-scale motions also carry most of the Reynolds stress. The six eigenmodes, (0
-2, 1 - 2), carry 33% of the energy and 56% of the Reynolds shear stress at Rep = 5,378; they
carry 37% of the energy and 50% of the Reynolds shear stress at Repn = 29,935. The inclusion of
6 additional modes [(2, 1), (1, 3), (2, 2), (1, 4), (2, 4), (0, 4)] captures 48% and 50% of the energy
for the two Reynolds numbers, respectively, and 67%and 75% of the respective Reynolds shear
stresses. At low Reynolds number there is little difference between the large and small structures,
and the fact that the first few modes carry much of the Reynolds stress is not surprising. For
example, in the flow studied by Moin & Moser (1989) At = 180, and the small-scale motions
having length of order 100 viscous units are of the same size as those spanning the channel. At
Reynolds number of 5,378 and most especially at 29,935 the large scales truly are much larger
than the small scales, e.g. AT = 1,414. Hence, the low modes are very large, and it is surprising
that they carry so much Reynolds stress. That the large-scale motions are highly active in the
transport of streamwise momentum implies that the Reynolds stresses are far from being a local
phenomenon, which has significant ramifications regarding the modeling of the Reynolds shear
stress using Boussinesq eddy viscosity or other gradient transport models. It is interesting to note
that a discussion of the possibility of large-scale motions constituting -an important transport
mechanism can be found in Hinze (1975).

At both Reynolds numbers the energy associated with the normal velocity is carried by
motions that are significantly smaller than the scale of the largest streamwise motions. For
example at the higher Reynolds number the streamwise motions extend 2 - 4h, while the largest
wall-normal motions extend 0.34. Since the Reynolds shear stress is also carried by the large-
scale u-component flows, this implies that the v-component of the flows associated with
Reynolds shear stress is not very energetic. It is difficult to imagine a turbulent motion whose u-
component extends over a region much longer that that of the v-component. One such motion is
the vortex packet discussed by Adrian e al. (1988, 1999). It consists of long regions of
coherently aligned hairpin-like eddies. The largest of the individual eddies reach a significant
fraction of the layer thickness, about 0.34, and the length of the packets reaches 2 -4h. Within a
packet, the individual eddies coherently induce a region of negative streamwise momentum,
which, because of their coherent alignment, becomes a negative u-fluctuation almost as long as
the packet. The induced flow is nearly parallel to the wall, i.e. it has little v-energy. Thus, within
an individual eddy the u- and v-components may have similar scale, but the assembly of them
has a much longer scale. The short v-correlation is associated with individual eddies; while the
long u-correlation is associated with the coherent induction of many aligned eddies.
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A comparison of the eigenmodes with actually observed flow fields shows that individual
modes do not represent eddy structures. Their contributions to the flow field are best seen by
projecting instantaneous realizations of the flow on to the eigenmodes. By doing this for the first
twelve modes that contain one-half of the kinetic energy, it is found that large structures have a
signature in the x-y plane that has been identified herein as the signature of a characteristic
Reynolds stress event. These projected patterns have sizes on the order of the channel height.

This work was supported by ONR N00014-99-1-0188, NSF ATM95-22662, and NSF
CTS 92-00936.
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Figures of cross-correlations for the two Reynolds numbers
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