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Very large-scale motions in the form of long regions of streamwise velocity fluctuation are
observed in the outer layer of fully developed turbulent pipe flow over a range of Reynolds
numbers. The pre-multiplied, one-dimensional spectrum of the streamwise velocity
measured by hot-film anemometry has a bi-modal distribution whose components are
associated with large-scale motion and a range of smaller scales corresponding to the main
turbulent motion. The characteristic wavelength of the large-scale mode increases through
the logarithmic layer, and reaches a maximum value that is approximately 12-14 times the
pipe radius, one order of magnitude longer than the largest reported integral length scale,
and more the 4-5 times longer than the length of a turbulent bulge. The wavelength
decreases to approximately two pipe radii at the pipe centerline. It is conjectured that the
very large-scale motions result from the coherent alignment of large-scale motions in the
form of turbulent bulges or packets of hairpin vortices.

[ PACS number 47.27.Nz]

I. INTRODUCTION

The existence of energetically significant large-scale structures in turbulent wall flow was first
recognized by Townsend', who observed that the long tail on the temporal correlation of the
streamwise velocity component measured by Grant > implied correspondingly long structures in the
streamwise direction. The long correlation tails occur not only in the buffer layer, where the
visualizations of Kline, et al.’ revealed low speed streaks, but also throughout the logarithmic layer
and into portions of the wake region. Subsequent investigations*® indicate that one type of large-

scale motion in the boundary layer occurs in the form of turbulent bulges having mean streamwise
extent of approximately 2-38 and spanwise extent of approximately 1-1.58 where & is the

boundary layer thickness. These bulges, which are generally referred to as large-scale motions, or
LSM’s, are now widely interpreted to be the motions responsible for the long correlation tails in
Grant’s? experiments. (See for example the reviews of Cantwell’ and Robinson®). It has also been
shown that the turbulent bulges have steeply inclined leading fronts and more gradually sloped
backs, and that the downstream back of a bulge is separated from the front of the adjacent upstream

bulge by a sharp crevice in the potential flow® '°.
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Particle image velocimetry experiments in the turbulent boundary layer reveal long, growing
zones of relatively uniform low streamwise momentum in the outer region, especially in the
logarithmic layer'. These structures may be related to turbulent bulges, but two features suggest
that the relationship is not a simple correspondence. First, the zones of uniform momentum have
much more streamwise coherence in the lower half of the boundary layer than in the upper half.
Second, two zones of uniform momentum often co-exist, one above the other in the lower half of
the boundary layer, showing that they do not coincide one-for-one with turbulent bulges. Zhou, et
al.'7"* conclude that the uniform momentum zones are formed by the streamwise alignment of
hairpin or cane vortices in packets that grow and generate new hairpins as they propagate
downstream. The induced flow associated with each vortex has low streamwise momentum, and
the summation of the induced flow fields from all of the aligned hairpins creates a long streak of

low momentum fluid. The PIV observations in these experiments were limited to 1.20, and the
hairpin packets often exceeded this length, leaving their maximum extent undetermined. More
recent work using PIV measurements spanning 38 indicates that the hairpin packets may be

associated with the formation of bulges, but that several packets, at various stages of growth can
exist within one bulge".
A recent model of wall turbulence'® recognizes the need to extend earlier hairpin vortex

models'” ® by incorporating one set of large-scale eddies. Its length scale was set equal to o,

corresponding to the length of a turbulent bulge. The large-scale motion is necessary to model
correctly all components of the Reynolds stress tensor and to improve the model’s prediction of the
wake structure. Much of the justification for adding the large-scale component to the model and for

scaling it on 8 comes from inspection of turbulence spectra which indicate a low-wavenumber

component that corresponds, presumably, to the long tail on the correlation function.

While most of the available studies of large-scale motions have concentrated on the turbulent
boundary layer, there is evidence that large-scale motions of a broadly similar nature also exist in
turbulent pipe flow. Measurements of temporal correlation in pipe flow show a long tail on the
correlation function that is similar to that observed in the boundary layer'®*’. In pipe flow the
longitudinal integral length scale of the streamwise velocity, Ly, measured from two-point
correlations or estimated from temporal correlations using Taylor’s hypothesis and the local mean
velocity, is approximately 0.5-1R, where R is the pipe radius. In comparison, the integral length

scale of the boundary layer is approximately 0.53. Thus, there is an approximate correspondence
between the boundary layer thickness and the pipe radius that can be used to compare the sizes of
large-scale structures found in these flows. The large-scale motions in pipe flow are undoubtedly

influenced by the constraints imposed by the geometry of the pipe (as opposed to the unconfined
geometry of a boundary layer). But, the close similarity of mean properties measured in the lower
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half of the pipe radius and the boundary layer thickness suggests that these differences are not
great. Since the integral length scales are similar, it would not be surprising to observe large-scale
motions as large as 2 -4R in pipe flow, in analogy to the bulges that occur in the boundary layer.

In contrast to what might be expected from the foregoing arguments, the results of the present
study demonstrate the existence of a new type of large-scale motion that is much longer than the
LSM’s that correspond to bulges or hairpin packets. These very large-scale motions, or VLSM’s,
are prominent within the logarithmic layer of turbulent pipe flow. Evidence for the VLSM’s is
based on extensive measurements of the turbulent power spectrum of the streamwise velocity
fluctuation in a fully developed turbulent pipe flow at Reynolds numbers ranging from 33,800 to
115,400. The turbulent spectra are interpreted to consist of two modes, one of them representing
large-scale motions. The wavelength associated with the middle of the large-scale range varies as a
function of Reynolds number and radial position of the pipes.

II. EXPERIMENTAL APPARATUS AND METHODS

The pipe flow facility was a 17m long Plexiglas pipe having diameter 2R= 127mm. Air from a
blower passed through a settling chamber, a honeycomb, and a grid before it entered the pipe. The
grid flattened the initial velocity profile and reduced the inlet length required for the flow to become
fully developed. All measurements were made with a single hot-film probe located two diameters
upstream of the open exit from the pipe, corresponding to 134 diameters of development length.
The characteristics of the flow in this apparatus, including measurements of the complete time-
delayed correlation tensor, have been documented thoroughly by Lekakis®. The pipe apparatus
produces flow whose mean properties are consistent with the results of numerous other pipe flow
experiments, to within normal standards of experimental comparison. Therefore, we consider the
present flow to be representative of typical pipe flows.

The parameters of the experiments are given in Table 1, where U, is the centerline velocity and
u. is the friction velocity determined directly from the pressure drop measured by wall pressure
taps located at 37 and 100 diameters downstream of the pipe inlet in a region of fully developed

flow. Two devices measured the pressure difference: an inclined manometer for high velocities and

an electronic pressure transducer with resolution £0.0001 mm H20 for low velocities.

~ The streamwise velocity was measured by a 25.4um diameter platinum hot-film sensor (TSI

1210-20) operated by a TSI model 1750 constant temperature anemometer at 1.7 overheat ratio.
The frequency response of the sensor, determined by a square wave test, was greater than 35 kHz.
The signal from the anemometer was direct-coupled to preserve the low frequency contént, and
low-pass filtered for anti-aliasing prior to sampling with a 12-bit A-D converter (National
Instrument Lab PC+). A LabView virtual instrument program was used to acquire data and
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calculate the power spectral density function ®,, (@) using a FFT algorithm and a Hanning
window, where @ =27f is the radian frequency. Ensembles of 100 records, each record

containing 16,384 samples taken at the frequency listed in Table 1, were used to estimate the

power spectrum at each of 35 radial locations.

To transform the spectral argument from frequency, ®, to streamwise wave number, K;(y),

Taylor's hypothesis of frozen turbulence was used, ie., k,=2nf/U(y), wherein the local

convection velocity is assumed to be equal to the local mean velocity U(y). It is understood that
Taylor's hypothesis is not accurate for the very large-scales considered here; however, the time-
delayed correlation should decay faster than the two-point spatial correlation due to evolution of the
turbulent eddy structures as they pass over the probe, so wavenumber spectra derived from
frequency spectra must indicate less low wavenumber energy than true wavenumber spectra.
Hence, wavelengths determined from the frequency spectra by Taylor’s hypothesis are
underestimated; but this underestimate only strengthens the principal conclusion of this paper,
which is that the very large-scale motions exist that are substantially longer than expected.

The possible influence of an organ pipe effect has been examined carefully. A sharp resonant
peak did appear at 29.5Hz, which is the estimated organ pipe frequency in all of the measurements.
However, the relative power was small (0.9 % at the lowest Reynolds number and 0.013 % at the
highest Reynolds number). Moreover, changing the organ pipe frequency relative to the
turbulence spectrum had no discernible effect on the broad-band spectrum.

IIll. Results and Discussion

Fig. 1 shows a typical frequency spectrum of the streamwise velocity after conversion into a

normalized wave-number spectrum, CD“(klR)/uf using Taylor's hypothesis; The location of the

measurement, y/R = 0.084 (corresponding to y' =132) lies above the buffer layer and in the lower
portion of the logarithmic layer. The spectrum appears to possess a 'S power law, as observed by

Perry and co-workers'” '®, and it may possess a short region of k™? power law. It is generally
similar to spectra obtained in other pipe flows, and in channel flow and boundary layers.

The structure of the spectrum in Figure 1(a) is easier to interpret=when plotted as the
wavenumber times the spectrum, Figure 1(b). The usual reason for pre-multiplying the spectrum
by the wavenumber is to create a logarithmic plot in which equal areas under the curve correspond

to equal energies. The other reason is to reveal the region of kl'l power law behavior. When
viewed in this way the spectra of wall turbulence also exhibit an interesting structure that allows for

a different interpretation. In particular, there is a peak at low wave number (labeled A) followed by
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a region of relatively constant wave number (which Perry and co-workers attribute to the k-1
power law region of the matching layer), and then a rapid decrease that begins at the low frequency
end of the inertial subrange. We interpret the shape of the complete spectrum to be a summation of
two modes: a low wave number mode labeled A and the high wave number mode labeled B. This
shape is quite typical of the measurements found in Perry and Abell”, Bullock, et al.”* and
Lekakis® for pipe flow and Perry, Henbest and Chong'® for boundary layers. The separation of
the spectrum into two separate modes cannot, of course, be carried out uniquely, but for the
purpose of illustrating the bimodal interpretation, dashed lines have been sketched in Figure 1(b) to
approximate two modes whose sum would correspond to the observed total curve.

It can be shown that the two modes scale on inner and outer variables, respectively. The plot in
Fig. 2, which uses dimensionless coordinates based on the viscous length scale, clearly shows that
the high wavenumber component scales with inner variables, independent of Reynolds number.
The corresponding plot in terms of outer variables, Fig. 3 shows that the low wavenumber mode
scales much more closely with outer variables than inner variables. In, particular, the locations of
the maxima of the low wavenumber component are insensitive to the Reynolds number. These
observations support the interpretation of the spectrum as consisting of two modes: a low
wavenumber mode that scales with outer variables, and a high wavenumber mode that scales with
inner variables. This interpretation is useful because it gives physical significance to the low
wavenumber maxima that occur in the pre-multiplied spectra. However, the bimodal interpretation
is not essential, because the wavenumber at which a low wavenumber maximum occurs can be
determined independently of the existence of a bimodal distribution. _

The mode shapes vary with radial location and Reynolds number, as illustrated by the spectra
in Figure 4 for Re=115,400. At some radial locations it is difficult to distinguish a high
wavenumber mode, but it is always possible to identify the low wavenumber mode by the
maximum in the pre-multiplied spectrum (indicated by the arrows). We use the location of the

maximum, 27t/Amax to indicate the scale of the very large-scale motions, Apax.

Figure 5 plots the values of the wavelength Apax versus distance from the wall for varying
Reynolds numbers. Over the range of Reynolds numbers in this study there is a generally
consistent trend for Apay to begin at a value less than 2 pipe radii near the wall, increase rapidly to

values between 12-14 pipe radii between 0.25R<y<0.45R, and then to decrease to approximately 2
pipe radii at the center of the pipe. Analysis of the pipe data of Perry and Abell*, Bullock, et al.*
and Perry et al.'® yields results consistent with the present experiments. (The data of Perry et al.'®
in Fig. 5 are shown as a straight line because of the large number of data involved.) A Reynolds
number effect occurs in Fig. 5 above y/R >0.3. The wavelength at the lowest Reynolds number

drops abruptly from its maximum value of 10R at y/R=0.25, but at the two higher Reynolds
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numbers the corresponding drop does not occur until approximately y/R=0.4. The similarity of the
two curves at the two higher Reynolds numbers suggests that the flow may approach an
asymptotic state for Reynoldsrnumbers exceeding 50,000-100,000.

The most interesting aspect of Figure 5 is the extraordinarily large extent of the very large-scale

motion in the streamwise direction. The peak value of Amax, approximately 12-14R, is much

larger than any value previously reported for the large scales. For comparison, the integral length
scale L, increases monotonically in y and reaches a maximum value of approximately 0.5-1R". In

contrast, Amax has a non-monotonic distribution with a peak value 12-28 times larger than the

maximum value of L;; For further comparison, the average turbulent bulge in a boundary layer is

approximatély 2-3 boundary layer thickness long, corresponding approximately to 2-3R in pipe
flow. The maximum value of Amax is 4-5 times bigger. Since the term “large scale motion” or

LSM now commonly refers to the bulges in boundary layers, we will refer to the longer motions
identified here as "very" large-scale motions, or VLSM's. The region in which the VLSM's occur
extends from roughly the top of the buffer layer to y/R~0.25-0.4. It contains the entire logarithmic

region of the mean velocity profile.

The distribution in Fig. 5 suggests that the length scale measured by analysis of the spectra is
associated with two different large-scale phenomena. One has length of order 2R and spans much
of the region from the wall to the centerline. The other has length up to 14R, and it is
concentrated around the logarithmic region.

Once the existence of the very large-scale components of the streamwise velocity is recognized,
it is easy to see them in the time history of the signal. The data in Fig. 6., taken on the centerline of
the pipe, is a fypical example. For reference, the values of 2R/U=0.025 seconds and 15R/U=0.2

seconds are indicated on the figure. The 2R-long motions occur in the form of groups of more
rapid oscillations. For example between 0.25 <t<0.27s there is a group of 6 oscillations about a
low velocity excursion, and between 0.28<t<0.31 there is a group of 4 oscillations about a high
velocity excursion. Examples of very large-scale motions occur between 0<t<0.14s, and between
0.06<t<0.36s, the later corresponding to 23R. This behavior, with proper accounting for changes -
of the mean velocity, is observed in all of the time histories we have examined.

IV. A Physical Model

The foregoing results make a compelling case for the existence of very large-scale motions in
pipe flow. While the data are not sufficient to definitively explain the underlying fluid mechanical
mechanisms that create these motions, there are enough clues to at least formulate a conjecture. In
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time histories such as Fig.6 the rapid fluctuations have periods less than 5ms, which corresponds
to about 400 viscous length scales. This is within a factor of two of the length of the low-speed
streak associated with an individual hairpin vortex", making it plausible to interpret the rapid
oscillations as the signature of the passage of individual hairpins. The rapid oscillations occur in
groups of 3-10 whose durations are of the order of 2R/U, indicating that the hairpins occur in
groups that are approximately 2R long, on average. These properties closely resemble those of the
hairpin packets that have been identified in earlier investigations'*". (The work of Tomkins"
indicates that mature packets of hairpins and bulges in the boundary layer appear to be parts of the
same motion, so it is not, perhaps surprising that the length of a typical group in the present study
is approximately equal to the mean length of a bulge.) Beyond this scale, there is, quite evidently, a
mode with average wavelengths of the order of 15R/U.

A simple hypothesis that avoids asserting that the VLSM constitutes a new type of turbulent
motion is to conjecture that the VLSM is a consequence of spatial coherence between bulges or
between packets of hairpins. In this picture, the packets line up so that the low momentum flow in
the lower part of each packet fits together with the flows in the other packets to form a much
longer structure. The VLSM's are associated with the zones of uniform low momentum found in
the boundary layer in each packet'"'*'*. These zones extend up to about one-half of the boundary
layer thickness, and they are believed to be the consequence of hairpin vortices aligning in the
streamwise direction to create large streams of low momentum fluid'" '>'°. The packets and the
associated hairpin packets are sketched in Fig. 7. If there is a correlation of the motion between
turbulent bulges so that they do, in fact, align, then the final result would be regions of low
momentum flow that would extend over several packet lengths, consistent with the results obtained
here. In this conceptual model, the VLSM’s are not a new type of eddy, but merely the
consequence of coherence in the pattern of hairpin packets.

IV.SUMMARY AND CONCLUSIONS

It has been shown that streamwise energetic modes in turbulent pipe flow have wavelengths
that range between 2 and 12-14 pipe radii. These wavelengths are a lower bound on the actual
wavelength because they have been inferred from frequency spectra, which suffer from lost
correlation due to convection velocity of the components in various values. In comparison, the
streamwise extent of large-scale turbulent bulge motions in boundary layers is approximately two
boundary layer thicknesses. The very large-scale motions are longest in the lower half of the
boundary layer. It is conjectured that the great streamwise extent of the VLSM is a consequence of
large-scale motions associated with packets of hairpin eddies (Zhou, et al."z‘”) aligning coherently
so that the low momentum flow from the lower half of one is passed on to the next, and so on over
a span of many LSM’s. Thus, the hairpins align coherently in packets that are about 2R long, on
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average, forming the LSM’s, and then the packets align coherently to form the very large-scale

motions.
An important ramification of these observations is that numerical simulations of wall turbulence

may need to use longer computational domains than has been the accepted practice. Recent work

123

by Komminaho, et al.” on very long roll cell structures in low Reynolds number DNS of plane

Couette flow speaks to this same problem.
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Table 1. Experimental Conditions

Re=Ug 2RV 33,800 66,400 115,400
U, (m/s) 712 8.10 14.08
ug (m/s) 0.201 0.373 0.60 ¢
Low-pass filter (kHz) 2.0 5.0 10.0
Sampling rate (kHz) 4.0 10.0 20.0
y*=v/ ug (mm) 0.06 0.032 0.02

‘ 1058 1984 3175

Rt=R/ y*
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Figure 1(a) Typical power spectrum of the streamwise velocity at y/R=0.084 (y" = 132) plotted
in conventional log-log coordinates. Rep= 66,400. For reference ‘C’ denotes the start of the
inertial subrange.
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Figure 1(b). Pre-multiplied power spectrum using the same data as in (a). Dashed lines indicate
the approximate shapes of the high wavenumber and low wavenumber modes, and ‘A’ and ‘B
denote the locations of their respective maxima.
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Figure 2. Pre-multiplied spectra made dimensionless using inner variables correlate at high
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