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The problem of locating stagnation points in the flow produced by a system of N
interacting point vortices in two dimensions is considered. The general solution, which
follows from an 1864 theorem by Siebeck, that the stagnation points are the foci of a
certain plane curve of class N-1 that has all lines connecting vortices pairwise as tangents,
is stated and proved. This necessitates developing some of the mathematical apparatus of
algebraic geometry. The case N=3, for which Siebeck’s curve is a conic, is considered in
some detail. In particular, it is shown that the classification of the type of conic coincides
with the general classification of regimes of motion of the three vortices. A similarity result
for the triangular coordinates of the stagnation point in a flow produced by three vortices
with sum of strengths zero is found. The topologically distinct streamline patterns for the
flow about three vortices are also determined, and partial results are given on the changes
between these patterns as the motion evolves for two special sets of vortex strengths. The
related problem of the location of stagnation points in a frame of reference moving with the
vortices, when these are translating uniformly, is considered and an extension of Siebeck’s
theorem to this case is stated.

1. Introduction

It is well known that the equations of motion for inviscid fluid with vorticity in two
dimensions admit various integrals arising from invariance of the equations of motion to
translation and rotation of the coordinates. In particular, the linear impulse,

P= j f Cxdx, (L1)

where { is the component of vorticity perpendicular to the flow plane, is conserved (cf.
Lamb, 1932). If the total vorticity of the flow is nonzero, this leads to the invariance of the
center of vorticity, defined as the centroid of the vorticity distribution:

Cx dx
X= o (1.2)
X

The invariance of this geometrically defined point might lead one to believe that a fluid
particle placed at this position will remain stationary, or, in other words, that there is
always a stagnation point of the flow at X. For certain simple cases, such as the motion of
two identical vortices, this is, in fact, true, and: follows from symmetry. However, in
general X is not a stagnation point.

The simplest counter-example is provided by two point vortices of unequal circulation.
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Let these be denoted I'}, T',, and let their positions in the xy-plane be considered as points

in a complex z = x + iy plane. Then the equations of motion for the vortices are

dz; _ 1 Ty . dz, _ 1 I
dt 2 Z1-Z9 ° dt 2 Zp-17Z4

(1.3)

(here and in the following overbars denote complex conjugation). It follows from (1.3), as
a special case of (1.2), that the center of vorticity,

_ Dz + 152y

Z; T+, ° 1.4)
remains constant in time. The fluid velocity (u,v) at the geometrically defined, invariant
point z_ is given by the formula
‘ 2
u—ive L ( rh .. 50 ) _ G-+ 0) g
2mi \Zc—21  Zc—Z 2mi I, Z1-23°

(1.5)

from which we see that only in the special case I'; = I', will both u and v vanish at z_.
There is, of course, a stagnation point, z, in the flow also for I'; # T, (unless I'; =

-T',; see (1.7)). Itis given by the equation

Iy , _
z.-7, T7.—=7; -0 (1.6)
i.e., by
z,= F]Z2+r221 . (17)

ry+r, -

(which should be read to imply that there is no finite stagnation point for I'y =-I")).
If we consider the geometrical midpoint of the line segment joining vortices 1 and 2,

Zn =% (21 +29), (1.8)
we have that
Zyn =% (25 +20). (1.9)

Hence, the stagnation point and the center of vorticity are symmetrically placed with
respect to the midpoint of the line joining the vortices. It follows from this that the
stagnation point moves in a circle about the center of vorticity, as do the two vortices.
Although the above example is quite elementary, it serves to sensitize us to the problem
at hand. Perusal of the literature would suggest that general results about the location and
motion of stagnation points in vortex flows are few and far between. On the other hand,
stagnation points play an important role in the advection of a passive scalar by a vortex
flow, and in the case of distributed vortices even for the dynamical evolution of the flow
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itself. Any information that we can obtain about their number, location and motion thus
seems very worthwhile.

This paper studies one of the simplest cases — the flow due to an assembly of point
vortices of arbitrary strengths. Even in this case a considerable amount of work must be
done before results of any generality emerge, and we must leave many questions
incompletely answered or largely unexplored. For point vortices the problem of locating
stagnation points is one of finding the roots of a certain polynomial. In practical terms
finding such roots at an instant in time is not a particularly difficult problem, but the issue
here is to derive general results, valid as the motion unfolds, as a function of the vortex
strengths. We state the problem in §2, and deduce a first, simple result. The main body of
the paper explains and explores a rather sophisticated geometrical characterization of the
stagnation points as the foci of a certain curve. The results arise from the geometrical
theorems of Julius Pliicker and his followers, notably an 1864 theorem by Siebeck. This
work does not seem to be known to the fluid mechanics community. Because of the use of
less familiar mathematical concepts, such as the complex projective plane, we devote §3 to
a brief ‘tutorial’ on background material that is needed for a statement and an appreciation
of Siebeck’s theorem. In §4 we then return to the vortex dynamics problem and explore
the case of flow due to three vortices on the unbounded plane in some detail. This leads
naturally in §5 to the problem of classification of the topology of streamlines in the flow
about the three vortices, and a discussion of the dynamical conditions under which this
streamline topology changes. We believe to have found all possible streamline topologies
for three vortices, and we state some results on the bifurcations of streamline pattemns using
the known solutions for three-vortex motion. However, a complete solution of the
bifurcation problem appears quite involved, and is not accomplished in this paper. In the
case of three vortices of zero total strength a curious similarity law for the location of the
single stagnation point is found, and this result determines the streamline patterns and their
evolution in this case. In §6 we extend the treatment to the problem of the streamline
pattern following a system of translating vortices in fixed, relative positions. Again, we
explore the case of three vortices in some detail. This generalizes the notion of the
‘atmosphere’ of a vortex pair first considered by Kelvin and later, for vortices of arbitrary
relative strength, by Morton (1932). Our final §7 contains some brief concluding remarks.

A preliminary account of this work was presented at the Forty-eighth Annual Meeting
of the American Physical Society, Division of Fluid Dynamics, in Irvine, CA (Aref &
Brgns 1995).

2. The general problem
Since the velocity (u,v) induced by a system of N point vortices is of the form

; 1 § Iy
u-iv= s 2 =%, (2.1)

it follows that the stagnation points are the roots of the polynomial

P(z) =1N@Ez-2)0(z-23) ... (Z—2zp) +
NE-z2)z-23)...z-z) +... + (2.2)
I'nZ-2z)(@zZ-12y) ... (2—2p_y).
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Expanding this in powers of z, the leading terms are

P(Z) = (Tl -+ Fz + ...+ FN) ZN"1 - (F122+ FIZ3 + ...+ FIZN + F2Z1 + F223
2.3)
+ ...+ FZZN + ..+ FNZI + FNZZ + ...+ FNZN—I) ZN-2 + .

Thus, if the sum of the vortex strengths does not vanish, there are N-1 roots of the
polynomial, i.e., N-1 stagnation points (although some of these may, of course, coincide).
When the sum of the vortex strengths vanishes, there are at most N-2 distinct stagnation
points.

The coefficient of zN-2 in (2.3) may be written as

N
—M 4T+ .+ T 2 zwﬁl [zq= T+ Tyt . + TNz~ Nzp),  (2.4)

a=1

where z,,, denotes the ‘midpoint’ or centroid of the positions, defined as:

1§ |
Zpn = .Na2=‘,l Zg, (2.5)

and, when the sum of strengths is non-zero, the center of vorticity, z, is the discrete vortex
counterpart of (1.2):

N
§1 Fozg

Z.= g_N__ (26)

agl Fa

The case when both the sum of strengths and the total impulse (which appears as the
numerator of (2.6)) vanish is special: In this case the coefficient of ZN-2 is zero, and there
are at most N-3 different stagnation points. We remark that the four-vortex problem,
which is in general non-integrable, is in fact integrable in this special case (Eckhardt & Aref
1988; Eckhardt 1988). There is then at most one stagnation point in the flow.

For the case of N vortices we may now write a generalization of Eq.(1.9). If we

denote the stagnation points by z{®, ..., z{) |, we have

Pz) = T+ T+ .. + Tz - z) ... @ - 2§\ 1). 2.7
Expanding and comparing coefficients to (2.3), we see that in general

Nz —z.=z{® +..+ z{) 4 (2.8)

which may be written

N-1
n2=:1 (zgS) - Zm) = Iy~ Z (2.9

Thus, the sum of the vectors from the midpoint to the stagnation points equals the vector
from the center of vorticity to the midpoint. In particular, for identical vortices the



On stagnation points and streamline topology in vortex flows

“midpoint and the center of vorticity coincide, and the sum of the vectors from the midpoint
to the stagnation points vanishes. For N=2 Eq.(2.9) reduces to (1.9).

Returning to the polynomial P(z) — in the form (2.2) — we see that the problem of
locating the stagnation points of a flow induced by N point vortices is equivalent to the
problem of finding the location in the complex plane of the roots of this polynomial. The
problem of locating the roots of a polynomial given through its coefficients has spawned a
large literature in mathematics, much of which will be unfamiliar to the fluid mechanics
community, and certainly was unfamiliar to us when we began this investigation. The
monograph by Marden (1949) provides a useful starting point for pursuing this literature.
We were pleasantly surprised to find that there exists a precise geometrical characterization
of the location of the stagnation points for a system of N vortices as the foci of a certain
explicitly given curve (of class N-1; we shall explain the notion of the class of a curve in
§3(b)) in the plane. The main result goes back to a paper by F. H. Siebeck (1864).
Siebeck’s work is based on the geometry of Julius Pliicker (1801-1868), and utilizes the
complex projective plane. The result is re-stated and elaborated by several later authors.
We found the account by Heawood (1906) to be one of the more useful. The present paper
arose in large measure from our attempts to understand Siebeck’s theorem and its potential
utility in determining the stagnation points of a vortex flow.

Siebeck’s theorem is one of the first results in Marden’s book - it is stated and proved
on pp.9-12 — and is, in fact, related there to the problem of finding the stagnation points of
a system of sources and sinks! While we might simply refer the reader to Marden (1949),
we feel it is appropriate to provide a quick ‘tutorial’ on the geometry of the complex
projective plane in order to introduce various concepts and establish our notation, state and
prove the theorem, and then proceed to a more detailed study of special cases. The three-
vortex problem, in particular, where the curves that arise in Siebeck’s theorem are conic
sections, deserves further elaboration. Our main contribution, then, is a detailed discussion
of the location of stagnation points in the three-vortex problem, and the attendant changes
in topology that occur in the streamline pattern as the vortices (and stagnation points) move.
There are, as we shall see, interesting connections to the general classification of three-
vortex motion given several years ago (Synge 1949, Aref 1979). For the case of three
vortices with sum of strengths equal to zero, where we have a very detailed understanding
of the motion due to the work of Rott (1989) and Aref (1989), we are led to a scaling law
for the single stagnation point, that would seem difficult to find without the formalism
pursued here. In general we may say that the merit of Siebeck’s theorem is the geometric
characterization of the stagnation points as a function of the vortex positions and strengths
that it provides. In terms of actual calculation, the extraction of roots of a low order
polynomial is a relatively trivial procedure, and efficient, direct, numerical methods for
solving this problem can easily be given. We elaborate on this statement in §7.

3. The complex projective plane and Siebeck’s theorem!

We consider the set of triples of complex numbers (x;,X5,X3) # (0,0,0). Two such
triples, (x;,X5,X3) and (y;,y,,y3), are considered to be equivalent if there exists a complex
number, c, such that (x;,X5,X3) = (cy;,€y,,cy3). Due to this equivalence relation the set of

1)  The mathematical apparatus developed here was treated by numerous authors in texts on algebraic geometry
of the last century, e.g., Salmon (1854), Ferrers (1866). These treatments are, in principle, elementary, yet often
appear rather inaccessible. Modern treatments, on the other hand, are often phrased in such general mathematical
terms as to be difficult to use for purposes of practical calculation. An important exception is Ch. 12 of the book

by Coxeter (1993), where much of the classical material is summarized using modern notation and point of view.
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triples is divided into equivalence classes. The set of equivalence classes constitutes the
complex projective plane P2. Computations in P2 are performed on representatives of the
equivalence classes, so when we use terms such as “the point (x1,X2,X3)”, we mean the
equivalence class that contains (X;,X,,X3). The equivalence of proportional triples implies
that the only algebraic expressions that are meaningful are homogeneous in the coordinates,
and thus that during calculations dropping a common factor is permitted. We shall often
designate a coordinate triple (X;,X,,X3) by the symbol (x).

For any point in P2 corresponding to a triple (X{,X,,X3) with x3#0, there corresponds a
unique “point” in the set of complex pairs C2, viz (x;/X3,Xo/X3). Thus, P2 contains C2,
but also has additional elements, viz all those triples for which x;=0. These points will be
called ideal elements of P2 or points at infinity. The usual plane, R2, viewed either as the
complex plane, C, or as the set of real pairs, is contained within C2. In order to
distinguish it from the projective plane, we shall refer to R? as the affine plane. It will be
useful to consider statements of analytical geometry in the affine plane, which is where our
vortices and stagnation points ultimately reside, as statements about entities in P2; to
perform various manipulations in P2; and then to interpret the results in the affine plane.
We need next to familiarize ourselves with the geometry in P2, and to see how to translate
results back and forth between R2 and P2.

a. Lines
In R2 a line is given by an expression of the form

ax+by+c=0 3.1

where x and y are the usual coordinates of a variable point and a, b, ¢ are certain numbers
determining the line in question. Setting x = X,/X3, y = X,/X3, and multiplying through by
X3, we obtain an equation of the form

U Xy + UsXy +u3x3 =0 3.2)

as the equation for a line in P2 (where x;, X, and x3 now are allowed to be complex). Note
that this expression is, indeed, homogeneous in the coordinates. The points on the line are
those triples (x;,X5,X3) (as representatives of equivalence classes, as discussed above) for
~ which the equation is satisfied. It is, therefore, natural to think of the triple [uy,u,,us] as
characterizing the line, and we call this triple the coordinates of the line. When we need to
make the distinction, we will refer to (x;,X,,X3) as the point coordinates (and use round
brackets), and to [u;,u,,u3] as the line coordinates (and use square brackets). Note that
[u;,u,,u4] is again determined only up to a constant of proportionality. Just as we may
read (3.2) as the equation of all the points (X;,X,,X3) on the line [u},u;,u3], we may also
read it as the equation of all the lines [u;,u,,u3] passing through the point (x;,X5,X3). In
this way we begin to see the duality of points and lines in the formulation of geometry in
the projective plane P2. All the ideal elements in P2 are on a line with coordinates [0,0,1],
the ideal line or the line at infinity.

We shall often designate a triple of line coordinates [u;,u,,u3] simply by [u], and we
shall use the convention of summing over repeated indices to write an equation such as
(3.2) in the form .
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X, = 0. (32’)

Two different lines in P2 always intersect. To find the point of intersection of
[u;,up,u3] and [vq,v,,v3] we must solve the system

u;X; + UpXy + u3x3 =0, (3.3a)
ViXiq + VypXq + V3X3 = 0. (3.3b)

It is easily seen that the solution, up to a common factor (which is unimportant), is
(XI;XZ’X3) = (U2V3 = UzVy, U3V] — UyV3, Uyvy — uZVI), (34)

and this is #(0,0,0) unless [u;,u,,u3] and [v,,v,,v3] are proportional, i.e., so long as the
lines are different. Two lines will intersect in an ideal point, i.e., u;v, — u,v; will vanish,
precisely when the lines interpreted in R2 are parallel?.

Similarly, we may show that there is just one line through two different points (x) =
(X1,X9,X3) and (¥) = (¥1,y2.y3). For this line, [u] = [u;,u,,u5], must satisfy

UiX] + UyXy + UgX3z = 0, (3.53)

ulyl + U2yZ + U3)’3 = 0. (3.5b)
Hence k

[ug,up,u3] = [X3y3 — X3Y2, X3¥1 — X1¥3, X1¥2 — X2¥1], (3.6)

and this is #(0,0,0) unless (x) and (y) are proportional, i.e., unless they correspond to the

same point in P2. We see the duality between a line through two points and a point at the
intersection of two lines.

b. General curves: order, class and tangents
Let us consider a general algebraic curve F(x;,X,,X3)=0, where F is some
homogeneous polynomial in its three variables. If F is of degree n, we say that the curve is
of order n. A line in the projective plane will intersect a curve of order n in n points.
Using the homogeneity of F, viz F(Ax;,AX,,Ax3) = O for any A, we differentiate with
respect to A and set A = 1 to obtain:

OF 1 =0,

ox; %= (3.7

or, in “vector notation,” x * VF = Q.
On the other hand, the tangent to the curve at (x) is the line connecting (x) to an

infinitesimally close point on the curve (x + dx). This line is [u] = [x x dx]. But (x + dx)
is also on the curve, so F(x + dx) =0=F(x)+ dx e VF+ ..., or dx * VF = 0. It follows
from this an_d the preceding result, x ¢ VF = 0, that [x X dx] = [VF] (recall that a constant

2) We may also use the notation of vectors in 3D, e.g., by thinking of the incidence relation (3.2) as a ‘scalar
product’ uex = 0, and the intersection of two lines [u] and [v] as being the point (uxv). We show in (3.6) that the
line connecting (x) and (y) is [xxy].
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of proportionality may be dropped). Thus, the line [u] = [VF] = [%g] is the tangent to the
curve at point (X).

We may also consider an expression of the form ®[u;,u,,u3] = 0, where ® is some
homogeneous polynomial in its three variables. The lines that satisfy this equation will in
general have an envelope, which is a curve in the plane. If @ is of degree m, we say that
this curve is of class m. Through any point in the projective plane there will be m
tangents to a curve of class m.

Again, by homogeneity
92 u=0, . | (3.8)
orue Ve =0.

A point on the curve, (x), arises by finding the intersection of two infinitesimally close
tangents [u] and [u + du]. The point of intersection of these two lines is (x) = (u X du).
But <I>[li +du]=®[u]+due VP +..=0,0r dueVd =0. It follows from this and the
preceding result, u * V® = 0, that (u X du) = (V®) (a constant of proportionality may
again be dropped). Thus, (x) = (V®) = (%%) is the point of tangency of the tangent [u].

The preceding considerations show us how to get the equation in line coordinates of a

curve given in point coordinates and vice versa. Thus, to get the equation of the curve

®[u] = 0 in point coordinates, write out the derivative, %% , solve the three equations x =

%%3 for the u’s in terms of the x’s, and substitute the result into ®[u;,u,,u3] = 0.

Similarly, to get the equation of the curve F(x) = 0 in line coordinates, write out the

derivative, —3%, solve the three equations u = %g for the x’s in terms of the u’s, and

substitute the result into F(x;,X,,Xx3) = 0.

c. Conics

A conic (or conic section) in R2 is given by a quadratic polynomial in the coordinates x
and y. Again setting X = X,/X3, Y = X,/X3, and multiplying through by x3, we arrive at a
homogeneous quadratic form in x;, X,, and x;. We may write this point conic in R? as

F(Xl,Xz,Xg,) = ainin =0 (39)

The conic is singular if the determinant of the symmetric coefficient matrix vanishes. It is
in general a curve of order 2. In order to classify the conic we need to consider the sign of
the determinant of the minor 2‘;: 2;2] The conic is an ellipse, parabola or hyperbola
according as this determinant is positive, zero, or negative.

The tangent to the conic at () is, according to subsection b, a line with coordinates

ui = aIJXJ. (3.10)
If we solve these equations for the x’s in terms of the u’s, and then substitute the result into

U1Xq + UsXsy +U3X3 = 0, (31 1)
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“we obtain the equation of the conic in line coordinates:
(I)[ul,U2,U3] = aijuin =0, (312)

where ay; is the cofactor of ;; in the determinant of the matrix {a;;}. Thus, the conic is
also a curve of class 2. In general, the order and the class of a curve are not identical.
Pliicker established general relations between order, class, and other characteristic
numbers, such as the number of singularities on the curve. For non-singular curves the
relation between order, n, and class, m, is n = m(m-1). Hence, the order typically grows
much more rapidly than the class. Order and class have the same value for n=m=2.

d. Circles, circular points at infinity

So far the results obtained have had a pleasing duality between points and lines, but
have not been terribly surprising. Consideration of a circle and its intersections with the
ideal line provides unexpected answers.

Consider a circle in the affine plane

(x—a)2+(y-b)2=r2 (3.13)

Homogenize the expression as before to obtain
(xq — ax3)? + (X, — bx3)? = (1X3)?, (3.149)

a “circle” m P2, Now consider the intersection of this circle with the line at infinity, i.e.,
with points for which x5 = 0. The equation for such points is

x?+x3 =0. . (3.15)

There are two solutions, (1, i, 0) and (1, —i, 0), regardless of the parameters a, b and r of
the circle. These two points, usually designated I and J, respectively, are called the
circular points at infinity. All circles pass through these two points.

A line is called isotropic if it passes through a circular point at infinity. Thus, except
for the line at infinity, [0,0,1], which passes through both I and J, isotropic lines have

coordinates of the form [u;,uy,u3] = [1,+1,u3].

e. Foci
An ellipse in the affine plane, situated and oriented appropriately, has the equation

2

+15 =1, (3.16)

nuxw
OIS

with a>b. The two foci are at ( ¢,0), where ¢ = ¥ aZ—b2. Homogenizing the equation
for the ellipse we find

, x?  x2
F(X1,X2,X3) = ;%+F%-x§ =0 (3.17)
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as the point equation in P2. Using the procedure outlined in subsections b and ¢ we find
the line equation to be

®[u,,uy,u5] = a%u? + qu% ~-u3 =0. (3.18)

As an illustration of this formalism we prove the result that the product of the distances
of the foci from a tangent is the same for all tangents (and thus equal to the square of the
minor axis of the ellipse): Let u;x + uyy + uz = 0 be a tangent to the ellipse. The distances
of the foci from this line are (u;c + u3)/y/u? +u? , respectively. The product of distances
is then (u3 — u?c?)/(u? +uj), which equals b2 when [u},u,u5] satisfies (3.18). A similar
argument holds for a hyperbola. It follows from replacing b by ib in the preceding.

We now inquire whether the ellipse has any isotropic tangents, i.e., whether

®[1,1i,u5] = 0 can be satisfied for any choice of u;. Substitution into the equation gives
u; = 2c. Thus, there are four isotropic tangents:

[t,] = [Lic]; [t] = [1,i,—~]; [t3] = [1,-ic]; [ty] = [1,-1,—¢]. (3.19)
These four lines intersect pairwise in four points (besides I and J):
(X13) = (=, 0, 1); (X14) = (0, ic, 1); (Xp3) = (0, —ic, 1); (Xp4) = (¢, 0, 1). (3.20)

We see that two of these points are in the affine plane, precisely at the focal points of the
ellipse. This is a general result: The focal points of a conic are the real intersections of the
isotropic tangents.

Let us write this out for the parabola: Start from y = kx2; homogenize to kx?—x,%3= 0.
The line equation is: u?— 4k u,us; = 0. There are two isotropic tangents, [1,i,—4] and
“"iﬁtjE]; the line at infinity is also a tangent. There is, thus, just one finite point of
intersection, (O’:ﬁz ,1), which, indeed, corresponds to the focus of the parabola in the affine

plane.
In the general case, for a curve of class m, one defines the foci to be the intersections of

the isotropic tangents. Except for degeneracies, there will be m?2 foci for such a curve. Of
these m will be real and m2 — m complex.

In general, we must solve the equation ®[1,%i,u3] = 0 to find the isotropic tangents.
Assuming @ is real, i.e., a polynomial in u;,u,,u; with real coefficients, we see that if u; =
-z = —(x + iy) is a solution of ®[1,i,~z] = 0, then z* = x—iy will solve ®[1,-i,-z*] = 0.
The intersection of the two lines [1,i,—(x + iy)] and [1,-1,—(x—iy)] is easily calculated to be
(x,y,1), a finite, real focus. All the real foci may be found in this way, and we have the

result that for a real equation of class m the foci in the affine plane, thought of as the
complex z-plane, may be found from the equation

P[1,i,-z] =0. 3.21)

It is this result, due to Pliicker, that Siebeck exploits in his theorem, since the challenge is
now simply to write the equation for the roots/stagnation points in such a way that it can be
reinterpreted as determining the foci of a curve of the appropriate class.

10
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f. Siebeck’s theorem
Returning to Eq.(2.2) we wish, then, to write P(z) in the form ®[1,i,-z]. We set

Lolug,us,u3] = —Xgu — Yol — U3, (3.22)
where the o’th vortex is at X+ iy, S0 that Ly[1,i,—z] = z — z,, and consider

(I>[u1,u2,u3] = F1L2[u1,u2,u3]L3[u1,u2,u3] vee LN[ul,uZ,u3] +
F2L1[ul,llz,U3]L3[u1,u2,U3] LN[ul,u2,ll3] + ...+ (323)
FNLI[ul,uz,u3]L2[u1,u2,u3] LN_I[ul,uz,u3] =0.

This polynomial is constructed such that the term with pre-factor I', contains the product of

all Lg[u] except B=a.. Clearly this is a polynomial equation in the u’s of degree N-1, i.e.,
it defines a curve of class N—1. All coefficients are real (cf. (3.22)), so that the equation
for the real, finite foci is

®[1,1,-z] =P(z) =0. (3.24)

Thus, the stagnation points may be interpreted as the real foci of the curve given by (3.23).
Furthermore, the curve has all the lines connecting the vortices pairwise as tangents.

For the liné through vortices o and B has coordinates (cf. (3.6))

[Uop] = [Ya — Ypr ~ (Ko — Xp): Xa¥p — XpYal, (3.25)
and both

Loluggl = —Xo(Yo — ¥p) + YalXo — Xp) — (Xa¥p — XpYo) (3.26a)
and |

Lgluggl = —Xp(yo, — ¥p) + Yp(Xa — Xp) — (Xa¥p — XY o) (3.26b)

vanish. Since every term in ® contains at least one of these as a factor, it follows that
CI)[uaB] =0 (3.27)

for all pairs (a.,). All the lines connecting vortices pairwise are thus tangent to (3.23).
The points of tangency may be found from the developments in subsection b. We are

instructed to differentiate @ with respect to u;, u,, and u;, and substitute the line
coordinates, [ug], for the tangent in question. Calculating d0®/du; we note that we only

need to differentiate the terms containing I', and I'g — all the other terms will vanish when
we substitute [uaB], since they will contain an undifferentiated factor L, or Lg. We find:

32 fu,g1 = - Coxp+ Ty TT, Lo 0289
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S lugpl =~ Cayp+ Tpye) TT Lofuag]; (3:28b)
92 [ugg) =~ (T + Tp) I Ly[oag] (3.28¢)

Dividing out the common factor (the product of all L, with Y+ a, B evaluated for the line
coordinates [uaB] — this quantity is non-zero unless three vortices are on a line), we see that
the point of tangency is the point

T zg+Tgz
S) _ o™~ BTa
268 = ~To+T, (3.29)

in the affine plane. This is the stagnation point for the flow produced by the two vortices o

and P ignoring all the others.

This completes the proof of Siebeck’s theorem, which in our context reads: The
stagnation points of the flow induced by N point vortices on the infinite plane are the foci
of the curve (3.23) of class N-1, that touches each line connecting two vortices at the
stagnation point of the flow produced by these two vortices ignoring all others.

We now turn to particular cases.

4. The case of three vortices
Let us first note that the case of two vortices is trivial. Siebeck’s curve has the equation

(T1xp + Toxpuy + Ty, + Doy uy + T+ Tus =0, 4.1)

in line coordinates. This is the equation for the point (1.7), the coordinates of which
appear as the coefficients of uy,u,,u3, i.e., (4.1) is the equation for all lines passing
through this point (a curve in line coordinates of class 1 corresponds to a curve in point
coordinates of order 0). Alternatively, the stagnation point is determined by setting
[u;,u,,u5] = [1,i,~z] in (4.1), which just gives the result (1.7).

The case of three vortices is considerably richer. We know that the stagnation points
are the foci of a conic (a curve of class 2), and we need to choose coordinates that facilitate

the discussion of this curve. Let the vortices be located at z, = F,a +ing. a=1,2,3;
(here we use Greek letters for the cartesian coordinates of the vortices in order to avoid
confusion with the coordinates x;, X,, and x3 in P2). Assuming the vortices are not
collinear, we may introduce new coordinates (X;,X5,X3) in P2 via the equations

X1 = & X, + EX, + E3Xs, (4.2a)
Xg = M1 Xy + NpXy + M3X3, | (4.2b)
X3 = Xl + X2 + X3. (4.20)

Any finite point in P2, i.e., any point with x;#0, will then have coordinates (X;,X,,X3)
with a sum that is different from zero. Since we are allowed to rescale, we choose to work

with triples (X,X5,X3) that either have X; + X, + X3 = 1, or that correspond to points on
the line at infinity, i.e., have X; + X, + X3 = 0. The benefit of this convention is that

12
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'(X,X,,X3) for a real triple may be interpreted as the triangular coordinates of a point in
the plane based on the triangle spanned by the three vortices3. Thus, if a point P in the
plane is connected to the vortices 1, 2 and 3, and the ratio of the areas of A23P, A31P, and
A12P to A123 itself, all calculated as signed quantities depending on orientation, are
denoted X;, X, and X3, respectively, we always have X;+ X,+ X3 = 1. The construction
is illustrated in Figure 1 for a case in which A12P, A23P and A123 (and thus X, and X3)
are all positive, whereas A31P (and thus X)) is negative.

A point (§,1) in the affine plane corresponds to (€,m,1) in P2, and has triangular
coordinates

X, = - + — + = ’ °
:1 1M2 =GNt GoN3 — 63Nz + 63Ny — SiM3 ; (4.32)
X, = - + - + - .

2 M2 =EN+EMN;—EM +&N; -§M;3° “ 3b)
X3 = = +Sn—-cnp+en; — . (4.3c)

M2 — Nyt N3 — G3MN2 + 6Ny —GiMls

There is a corresponding transformation of line coordinates:

Ul = ﬁlul + Ny + us, (443)
U2 = &2‘11 + MNauy + us, (4.4b)
Uj = &3uy + M3up +us, (4.4¢)

to ensure that u;x; + uyx, +u3x; = Ui X + UpX, + U3Xs.

Figure 1: llustration of the definition of triangular coordinates of an arbitrary point P relative
to the vortex triangle 123. The regions I, II, and III, discussed in the text, are indicated.

The inverse transformation is

— Un,-U,n+Un3-Usm,+Usn, —U
Uy =
1 M2 =GN+ SN — SN2 +6My -GNy (4.5a)
— §,U,-&U+EU-EU, +E3U, - &, U
U, =
27 Mm-S+ &My — G, +55M; — &M (4.5b)
= 6Ny~ &Ny JUs +(E;N;5 - ENy)U, +(Eany —&M3)U
Uy = . .
3 M2 =GN+ GoMN3 —G3N2 + 631Ny — 6 M3 (4.5¢)

3) The treatise by Ferrers (1866) is concerned with trilinear and triangular coordinates and their geometrical
applications; for an elementary discussion of applications of such coordinates in fluid mechanics see Aref (1992).
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The line at infinity has coordinates [U;,U,,Us] = [1,1,1], and thus corresponds to the
“unphysical” condition that X;+ X+ X3 =0.

The triangular coordinates of the vortices are, of course, (X) = (1,0,0) for vortex 1;
(0,1,0) for 2; (0,0,1) for 3. The line coordinates of the sides are [U] = [0,0,1] for the side

12; [1,0,0] for 23; [0,1,0] for 31. In these coordinates the expression for @ simplifies
considerably, as is seen by comparing (4.4) to (3.23). The line conic becomes

I,U,U; + LU U3 + T3U,U, = 0. 4.6)
Differentiating we find the point conic as follows:

X, =T,U;+ 30Uy X, =T3U0; +T1Us; X3 = U, +I,U;. 4.7
Solving these for the U’s in terms of the X’s gives

2F2F3U1 = —F1X1 + F2X2 + F3X3;
2F3F1U2 = F1X1 - F2X2 + F3X3; ’ (48)
2F1F2U3 = FIXI + F2X2 - F3X3.

Substituting these expressions in the equation for the line conic gives the equation for the
point conic in area coordinates:

(T X2+ (X% + (['3X5)2 = 2T 1o X X, + 2151 3X0X 5 + 2T, X3X. (4.9)
This equation may also be written

(WTX; + yTXp + VXWX +VTaXy — yT3X3) %  (4.10)
WTX; - VI2X, +VTX)EVTX +yTX,; +4/T3X3) =0,

i.e, as

frlxl i ﬁ2X2 i JF3X3 = 0. . (4.11)

The points of tangency with the triangle spanned by the vortices are

- I D ).
e = 0. 758 T )

_(_T3 N
X3 = (TFT—I’ 0, T:T"‘—IT)’ 4.12)
r r
0= (s Ty )
We see that the three lines,
F1X1 = F2X2 = F3X3, (413)

or, in line coordinates,
[U] = [[',-T,, 0} [Ty, 0, T3]; [0, Tp,-T551, (4.13%)

14
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connect the vortices to the points of tangency on the opposite sides (4.12). They are
concurrent in the point T with coordinates
(x(D, XD, X{P) = (0,003,030, T T/ T, + Tl + Tal), (4.14)

(which is at infinity if the harmonic mean of the vortex strengths vanishes).

Figure 2: Relative situation of vortices (1, 2 and 3), Siebeck’s conic with center C, the three points of
tangency, X9, X3, X3, and the point of concurrency, T, of 1X,3, 2X31, and 3X;,.
The lines 1C, 2C and 3C bisect X31X9, X5X53, and X53X31, respectively.

The conic (4.9) is, except for a change in notation, the same as was considered in an
earlier analysis of three-vortex motion (see Aref, 1979, Eq.(14)). It follows, therefore,
that the classification of the nature of the conic that has the stagnation points as foci in terms
of the values of the vortex strengths is exactly the classification of the motion itself found in
the earlier work?. In particular, the stagnation point conic is

an ellipse if NI I+ T, +155) > 0;
aparabolaif T'1+T,+T3=0; (4.15)
a hyperbolaif T I')I'; (T +T,+13)<0.

The type of this conic depends only on the vortex strengths, and thus is invariant in time
(except for the degeneracy that occurs when the vortices are on a line and the conic
collapses to a line segment). Indeed, the equation of the inscribed conic in triangular
coordinates, (4.9), is invariant with respect to the shape of the vortex triangle, and thus a
fortiori the classification, (4.15), of whether it is an ellipse, a parabola or a hyperbola will
be invariant with respect to the evolution of that triangle in time as the motion unfolds.

4)  The formal way to decide this is to write out the coefficient matrix of the quadratic (4.9), convert back to
variables X;, X5, x3 via (4.2) and consider the determinant of the appropriate minor (cf. the text following

Eq.(3.19)).
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Figure 3: Geometry of the midpoint, M, center of vorticity, V, and center of Siebeck’s conic, C.
Note that M, V and C are collinear and CM:MV = 1:2. Thus, AMPC is similar to AM1V,
the lines CP and 1V being parallel.

Our results thus far establish several qualitative differences between the two elliptic, the
parabolic and the hyperbolic cases regarding the location of stagnation points. We divide
the plane into regions according to the lines connecting the vortices pairwise. Without loss

of generality we may restrict consideration to the case I'; > I, > 0, since other choices of
signs follow by re-labelling of indices and/or by reflection in the flow plane. Then, in

Fig.1, the stagnation points in the elliptic cases will either both be in region I (when I'; >
0), or will both be in region IIT (when I'; < 0) since the ellipse will be situated in one of

these two regions (see Fig.2 for an example of the I'; < 0 case). In the hyperbolic case
there will be one stagnation point in region II and one in region III since the hyperbola will
have a branch in each of these two regions. Thus, in the hyperbolic case, so long as the
vortices are not collinear, there must always be two distinct stagnation points, whereas in
the elliptic case the two stagnation points can coincide when the ellipse degenerates to a
circle (criteria for when this happens are developed below). In the parabolic case, the
single stagnation point will always be in region III since this is where the parabola will be
located. This immediate consequence of the geometric characterization of stagnation points
is considerably less transparent if one simply proceeds with finding the roots of the
polynomial (2.2) algebraically. For the case of positive vortex strengths the Gauss-Lucas
theorem (cf. Marden, 1949, Ch.II) implies that the stagnation points must lie within the
triangle spanned by the vortices. The location as foci of an inscribed ellipse is clearly much
sharper.
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In the elliptic and hyperbolic case let the triangular coordinates of the two stagnation
points be (X;,X,,X;) and (X,,X,,X3), respectively. From (2.8) we deduce that

o . I+Iy o _ Iz3+I'y | ¢ _ I'i+Iy
X1+Xl— TITFZ—_ST&;, X2+X2— T\I—_’_irlz—_'_r\g, X3+X3— r1—+1-\2—+r\; (4.16)

Thus, the center of the conic in Siebeck’s theorem has triangular coordinates

© x© x©O) = [__T2+T3 I3+1 I +1 )
(X317, X522 X3 )‘(2(r1+r2+r3)’ AT, +T,+Ty) AT, + o+ 1)) 417

These coordinates are again invariant both with respect to the actual configuration of the
vortices (shape of the triangle) and with respect to the motion. It is easy to verify that the
line connecting vortex 1 to the center, C, bisects the line connecting the points of tangency
(X37) and (X;,), with corresponding results by permutation of indices. Figure 2
summarizes the relative situation and role of the points of tangency, and the points T and C
introduced thus far. It is important not to confuse the point T (point of concurrency of lines
connecting vortices to points of tangency) and the point C (center of Siebeck’s conic).
Since C, the center of Siebeck’s conic, is situated at the midpoint of the line joining the
two stagnation points, we note from (2.9) that this point must be on the line through the
centroid of the vortex configuration and the center of vorticity. Alternatively, we may note

that the line [U] = [I',-I"3,I'3-T";,I'-T',] passes through the centroid, (X) = (1,1,1), the
center of vorticity, (I'y,I',,I'3)/(I'j+ I'y+ I'3), and the point C, Eq.(4.17). Designating the

complex position of C by z©, and recalling our earlier definitions of z,, and z_ (see §2),
we have:

29=3z,-1z. (4.18)

This relation shows, further, that the centroid splits the line segment connecting the center
of the conic to the center of vorticity in the ratio 1:2. Since the centroid itself splits each
median in the vortex triangle in this ratio, the following construction of the point C presents
itself (Fig.3): From the instantaneous vortex triangle construct the centroid as the point of
concurrency of its medians. From the vortex positions and the vortex strengths determine
the center of vorticity. Draw the line, £ through the centroid and the center of vorticity (this
is [I'y-I'3,I'3-I"1,I'1—I',] — we list the coordinates so that the construction can be verified
algebraically). Join any vortex, e.g., 1 as shown in Fig. 3, to the center of vorticity,
producing a line £ (coordinates: [0,-I'3,I",]). Through the midpoint of the opposite side
in the vortex triangle (coordinates: (0,1,1)) draw the line /” parallel to £ (in this case
parallel to [0,—I'3,I';] — this gives the line [I')—I'3,I'y+ I'3,—(I',—-I'3)]; ‘parallelism’ in
triangular coordinates means that these two lines intersect on the line [1,1,1]). The point C
is then found at the intersection of [ and /” (i.e., at the intersection of
[T, 13-, I'-T,] and [T,—T'3,T,+ T's,—(T'5-T3)], as is easily verified).

From the result on the product of the distances of the foci from a tangent (see §3,
subsection e, following (3.18)) we have
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&g& = 2(—2—2)2—2 = E}ﬁ—, (4.19)
dz; d3; di;

where dy,, dy; and d3; are the lengths of the sides of the triangle (using an obvious

notation). The common value of the expressions in (4.19) is positive in the elliptic case

and negative in the hyperbolic case. Combining (4.16) and (4.19) we see that the

triangular coordinates of the stagnation points of three vortices must solve the system of

equations

é; (T + T+ )X, — (T + T3)}X,

izl' (T + T+ T3)X, — (M3 + T X, = (4.20)
'&'1;22' (T + Ty + Ty)X5 = (T + T)}Xs,

with
X+ Xy + X5 = 1. (420"

Ferrers (1866, Ch.VI §33) finds equations equivalent to (4.20) using the theory of
reciprocal polars.)

In the parabolic case the first term in the curly brackets in (4.20) vanishes, and for the
single stagnation point we have simply’®

X, =k dZ: ILX, =k d%; TWX;=k d3. S@21)
1*1 23 24372 31 3433 12

Here k is the common value of the expressions in (4.20), and we have used that the vortex

strengths sum to zero. Multiplying by I',I'3, I'sI'}, I'jT',, respectively, adding and using
(4.20’) we obtain:

k= s rlrzr% > (4.22)
['Tpd 3 + Tol'adys + Tslydsy
Thus, the triangular coordinates of the stagnation point in this case are
I,Td 2, Td3, Ty T,d ]
(X(xs), X(zs)’ ng)) — ( 283023, 13118931, 10 2 12) (4.23)

7 2 T
I Todip +Tol3dgs + Tal'ds,

We notice that the denominator is a constant of the motion (cf. Aref, 1979). Hence, we
have the result that in the parabolic case the triangular coordinates of the stagnation point,
each scaled by the square of the corresponding side in the vortex triangle, are constant

during the motion.® This result strikes us as being quite remarkable, since the

5)  One might worry that (4.21) arises from (4.20) by using (4.16), and this condition is ambiguous when one
focus is at infinity. However, an independent derivation shows that (4.21) are, indeed, the correct equations for
the focus in the parabolic case.

6) When the denominator in (4.23) vanishes, there is no finite stagnation point, as may also be seen from the
explicit solution that is available for this case (Rott 1989; Aref 1989).
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stagnation point is not invariant in an Eulerian or Lagrangian sense, and does not, in
general, have a fixed position relative to the vortices.

Another way to state the result (4.23) arises from the expressions X(IS) = h(ls) d,3/2A,

etc., where h(ls) denotes the distance of the stagnation point from the side 23. Substituting
this form for the triangular coordinates into (4.23), we obtain

S S S X
(hg ) 1 b >) 2A ([,T, Ty, Ty T,) (4.24)

dy3’ d31° dip) T T T,d5 + Tlydg + Tlyd2

Hence, (4.23) implies that the dimensionless ratio of the distance of the stagnation point
from a side to the length of that side varies proportionally to the vortex triangle area.

It is not difficult to show (cf. Ferrers, 1866, Art.6) that the equation for the
circumscribed circle of the vortex triangle is

d5X X, + dA X, X5 + di XX, = 0. ' (4.25)

We see that the stagnation point (4.23) is situated on this circle.
In the elliptic and hyperbolic cases we need to consider the full quadratic equations
(4.20) to determine the triangular coordinates of the two stagnation points. Setting the

common value of the expression (4.20) to —k(I"j+ I'y+ I'3), we find
X; = X0+ /(XO)-kd3,
X, = XO 4/ (XO)-kd? , | (4.26)
Xy = X4/ (XO - kdf .

Thus

£/ (XOP-kad + v/ (XOP-kdd + v (XOF-kdd =o0. @27)

This equation is of the form (4.11). Hence, squaring twice we obtain an equation of the
form (4.9) regardless of the combination of signs used in (4.27). This equation is

K2 (dh+dys +dgy —2d hd s - 2d 3dF - 2dAd ) -
2k [d5{(XPV= (XPP- (PP} + a{(xPP- x D= x9)} + @.28)
| a{(x )~ (xO- (x P+
(XY (X)) - 2Ax PP 2x QP (D)= 2Ax PP ) =o.
The coefficient of k2 is (4A)2 by Hero’s formula for the area of a triangle. The constant

term can be simplified to ~I';T’,I3/(T'j+ [y+ I'3)3. The coefficient of k is

— {d (T Ty-T5Z) + d 5(T,5-T Z) + d 3 (03T -T,3) } /22, (4.29)
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where the shorthand Z = I'j+ ')+ I'; has been used.
It is clear from these equations — even without pausing to sort out the signs in (4.26) —
that k, in general, will be a function of the vortex separations that is not dynamically

invariant. Indeed, it is easy to see that the only combinations of I'y, I';, I'; for which

(4.29) is a constant of the motion are I'; = I'; = £ I'; (and even in these cases k depends on
the vortex triangle area A). Hence, we do not expect a counterpart of the similarity law
(4.23) in the general case.

5. Streamline topology :

The instantaneous streamline pattern of the flow is determined by the location of the
vortices and by the stagnation points. The latter are the points at which streamlines
intersect. For the case of two point vortices it is not difficult to see that the flow topology
must be invariant as the motion proceeds. For the location of the vortices and the
stagnation point simply rotate rigidly about the center of vorticity, and so the entire
streamline configuration must also rotate about this point.

For two vortices, with the sum of their circulations different from zero, there are three
possible streamline topologies with a single stagnation point, as indicated in Fig.3.

(@) (b) (c)

Figure 3: Streamline topology for the flow about two vortices with non-zero net circulation. There is one
stagnation point. Flow about (a) two positive vortices; (b) a vortex of either sign with the sum of
strengths positive; (c) a vortex of either sign with the sum of strengths negative.

5.1 Streamline topologies for three vortices

For three vortices the situation is richer. The vortices move relative to one another, and
a stagnation point will move relative to the vortices. The nature of the stagnation point as a
fixed point of the flow is clear enough, however: Since it is in a potential flow, the two
intersecting streamlines at a stagnation must always form a right angle.

Let us first consider the elliptic and hyperbolic cases for which there are two stagnation
points. Since the sum of the vortex strengths is different from zero, the far-field velocity at
any instant is like the flow due to a single vortex of strength equal to this sum. In
particular, no streamlines go off to infinity. It then follows that the streamlines must form a
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Figure 4: Streamline topology for flow about three vortices with non-zero net circulation, T4+ 0.

The derivation of the different cases is discussed in the text. Patterns (a)-(f) have no heteroclinic loops and

are the ‘generic’ cases. Patterns (g)-(k) have one heteroclinic loop, (1) has three. Streamline topologies a,
e, f, g, j, and k are for the elliptic cases; b, c, d, h, i, | are for the hyperbolic case.
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pattern in which the two stagnation points are connected, either to themselves or to each
other, and a simple enumeration of the topological possibilities accounts for the different
types of flow.

Borrowing from the dynamical systems nomenclature we designate a streamline loop
connecting a stagnation point to itself as a homoclinic loop, and we designate two
streamline segments connecting two stagnation points as a heteroclinic loop. Heteroclinic
loops occur only if the streamfunction of the flow takes the same value at both stagnation
points. This will not generally be the case, and so signifies a special vortex configuration
at which a bifurcation of the streamline pattern takes place. The typical streamline topology
will consist solely of homoclinic loops.

In order to find these, we return to Fig.3 and consider the pattern 3(a) or 3(b) to be
‘substituted’ for either positive vortex in 3(a). This gives the streamline topologies in
Fig.4(a),(b). In generating from Fig.3(b) a possible streamline topology for three vortices
our sign convention dictates that the pattern 3(a) can be substituted for the positive vortex,
leading to Fig.4(c), but not the pattern 3(b), since that would produce a pattern with two
negative vortices. However, the pattern 3(c) can be substituted for the negative vortex in
3(b) leading to Fig.4(d). Again, in Fig.3(c) we may substitute 3(a) for the positive vortex,
producing Fig.4(e), or 3(c) for the negative vortex, producing Fig.4(f). All these
configurations have four homoclinic loops, and exhaust the possibilities for patterns with
all homoclinic loops.

If we start from Fig.3(a) and somewhere along either homoclinic loop ‘pinch off” a
new homoclinic loop, we produce the streamline topologies in Figs.4(g) and (h) depending
on whether the ‘pinched off’ loop is outside or inside one of the existing homoclinic loops.
A similar transformation applied to Fig.3(b) — where we are only allowed to place a loop
outside the positive vortex loop or inside the negative vortex loop, since we otherwise
would produce a second negative vortex — yields Fig.4(i) and a repeat of Fig.4(h). From
Fig.3(c) we similarly produce Figs.4(j) and (k). All these configurations have two
homoclinic loops and one heteroclinic loop. Conversely, by letting a homoclinic loop in
Figs.4(g-k) shrink to a point (if allowed by the presence of the remaining two vortices) we
reproduce one of the streamline topologies from Fig.3. Finally, Fig.4(1) shows the single
possibility when there are no homoclinic loops. These 12 streamline patterns are the only
ones possible for three vortices on the infinite plane when the sum of strengths is non-zero.
By considering the sense of the far-field flow in these diagrams we see that
Figs.4(a,e,f,g,j.k) correspond to elliptic cases, whereas Figs.4(b,c,d,h,i,]) correspond to
hyperbolic cases.

There are four degenerate cases in which there is only a single stagnation point, where
three streamline branches divide the plane into six sectors each of opening angle /3. They
can be determined by drawing the three streamline segments close to the degenerate
stagnation point, and then connecting these segments to form loops in all possible ways
(consistent with our sign convention on vortex strengths). The resulting four patterns are
shown in Fig.5.

There is a simple algebraic condition, which follows from Eqgs.(4.16) and (4.18), for
when such degeneracy occurs. In the elliptic case the stagnation points can coincide
without the vortices becoming collinear, because Siebeck’s conic — which is an ellipse in

this case — can degenerate to a circle. Thus, setting (X;,X,,X3) = (X,,%,,X5) =
(XSC), x©, X)), we find the condition

22



On stagnation points and streamline topology in vortex flows

(r2+ r3)2 _ (r3 +r1)2 _ (I‘, + r‘l)2’ (5'1)‘
dy3 ds; dj, ,

which determines the shape of the vortex triangle. Since I'i+T'3 and I'y+I'5 are of the
same sign in this case, (5.1) may be written

L+l T+l 04T (5.2)
da3 d dy; |

where the sign in the last term is the sign of I'y. Thus, if the vortices form an equilateral
triangle, the two stagnation points will coincide if I'y =I', =T'3, but also if Iils=
1:1:(=3). In the former case we get the streamline pattern Fig.5(a), in the latter Fig.5(d).

()

(d)

Figure 5: Streamline topology for flow about three vortices with non-zero net circulation, I'y+Ip+I'3 # 0
in the degenerate cases with a single stagnation point.

In the hyperbolic case the two stagnation points (alias foci of a hyperbola) can only
coincide if the vortices are collinear. Hence, the patterns in Fig.5(b) and (d) must arise
from collinear vortices. In particular, in the collinear state the negative vortex 3 must
always be situated between the positive vortices 1 and 2 in order for a degenerate stagnation
point to arise.
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The streamline patterns for the parabolic case can be thought of as limiting forms of the
elliptic patterns in Fig.4(e), (), (j) and (k). These four forms are shown in Fig.6.

\/\/

¢

¢
:

(

\
{
\

o
¢

'/
\

p ——

(c) (d

Figure 6: Streamline topology for flow about three vortices with zero net circulation, I'j+I',+I'3 = 0, in
which case there is a single stagnation point.

In all cases it must be kept in mind that the diagrams of Figs.4-6 give the possible
streamline topologies without regard to scale (and the angles that arise between streamline
branches at a stagnation point must be 7t/2). When actual values are substituted for the
vortex strengths, and the diagrams are accurately constructed, the relative size of the
various loops may be quite different from what is shown in Figs.4-6. We have plotted
some correctly scaled streamline patterns for given vortex strengths in Fig.7.

The construction of the different streamline topologies assures that all the topologies
identified in Figs.4-6 will actually occur for suitable choices of vortex positions and
strengths. Indeed, it should be possible to produce all of them with the three vortices
situated on a line. However, predicting the positions and strengths of three vortices to
produce a given pattern is not a simple matter, and some patterns are found much more
readily than others.

5.2 Change of streamline topology

It is natural to inquire into the dynamical conditions under which the streamline
topology either is invariant or changes during the motion of the three vortices. This
question is of some interest, as we shall see, although the physical relevance of the answer
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is not particularly clear, since an instantaneous streamline is not a material curve. A general
discussion seems difficult and we are content to consider the special cases I') =, =% T73.

(b)

(d)

®

Figure 7: Streamline patterns to scale for certain combinations of vortex strengths and positions. In each
case vortices are placed on the x-axis. We list the ratio of vortex strengths from left to right, I'}:T'5:T'3, the

coordinates (x,X7,X3), and the comparison panel in Fig.4: (a) 5:3:4, (-2,0,1), cf. Fig.4(a); (b) (-1):1:1,

(-1,0,2), cf. Fig.4(c); (c) 1:(-4):1, (-1,0,2), cf. Fig.4(f); (d) 1.863785...:2:3, (~1,0,2), cf. Fig.4(g);
(e) 2.244066...:(—4):1, (-1,0,2), cf. Fig.4(j); (f) 5:(=3):4, (=2,0,2), cf. Fig.4(l).

First, for the case of identical vortices, consider the symmetrical configurations in
which the vortices form an isosceles triangle. Assume the vortices numbered such that
vortex 3 is situated on the perpendicular bisector of the side 12. Then, if vortex 3 is far
from 12, the streamline topology must clearly be of the type shown in Fig.4(a) with both
stagnation points on the perpendicular bisector of 12 itself (by symmetry). On the other
hand, if vortex 3 is on or close to the line 12, the streamline topology must be that of
Fig.4(g), with the stagnation points located symmetrically on either side of the

25



Hassan Aref & Morten Brons

perpendicular bisector of 12. It is clear that for such configurations the streamfunction
assumes the same value at both stagnation points. Thus, considering the family of
isosceles triangles that arise as vortex 3 is moved along the bisector of 12, we see that there
is exactly one point at which the streamline pattern changes from the topology in Fig.4(a) to
that of Fig.4(g). At this cross-over point the streamline topology is that of Fig.5(a), which
occurs precisely when the vortices form an equilateral triangle.

Figure 8: “Phase diagram” for three identical vortices (cf. Aref, 1979)
with the three bifurcation lines shown.

Now, let us connect these purely kinematical results to the dynamic problem of the
motion of three identical vortices. In Fig.8 we have reproduced the “phase diagram” from
Aref (1979; Fig.2) which summarizes the relative motion of the three vortices. The
distance of a point in this diagram from the three sides of the equilateral triangle represents
the square of the corresponding side in the vortex triangle in the plane of motion. As the
vortices move, this “phase point” negotiates one of the curves in the diagram shaped as a
“rounded triangle”. Because of the triangle inequality, the only physically accessible region
of the diagram in Fig.8 is the interior of the circle shown (see Aref, 1979, for additional
details). The three line segments radiating out from the centroid of the triangle in Fig.8
correspond to configurations for which the streamline topology is of the type shown in
Fig.4(g) (the two equal sides in the isosceles triangle of vortices are shorter than the third
side). As the vortices move about, the “phase point” in Fig. 8 will either intersect all three

of these radial lines (when 1<8<2 in the notation of Aref, 1979), or will not intersect them
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" at all (when 6>2). In the former case, the streamline topology is generally that of Fig.4(a),
but three times per period it bifurcates, changing for an instant to that of Fig.4(g) as the
vortices form an obtuse-angled, isosceles triangle, and then returning to the pattern Fig.4(a)
but with two different vortices in the “figure eight” streamline loop. In the second case, the
streamline topology is always that of Fig.4(a), and the vortices surrounded by the “figure
eight” streamline pattern are always the same two vortices.

It is interesting to note that the orientation of the vortex triangle is invariant in the
former case (i.e., when the streamline topology undergoes repeated bifurcations), but
switches every time the vortices become collinear in the latter case (although the streamline

topology remains the same). In the special case 8=1 the vortices rotate rigidly as an

equilateral triangle and the streamline topology is that of Fig.5(a). For 6=2 the vortices are
either collinear and uniformly spaced, rotating as a rigid body, in which case the streamline
topology is that of Fig.4(g), or they will asymptotically approach such a state, and during
the approach the streamline topology will be that of Fig.4(a).

For the case of three identical vortices the inscribed ellipse with foci at the stagnation
points of the flow is known as the Steiner ellipse, and may be approached in a more
elementary way than through the general theory set out in §4. We refer the reader to
Schoenberg’s (1982) book (in particular Ch.7 §4). Schoenberg quotes and proves an 1888
theorem by van den Berg (which is a special case of Siebeck’s theorem).

The case of three vortices with circulations I'; = 'y = —T'; proceeds similarly. We are
in the hyperbolic case, and so a priori we expect to have several possibilities for the
instantaneous streamline pattern, viz the cases labelled b,c,d, h,iand! in Fig.4.
However, simple inspection shows that of these only ¢ and 1 are possible. The reason is
~ that in all the other patterns one can find a loop encircling a positive vortex and the negative
vortex such that the circulation integral around it is apparently non-zero. This is, of course,
impossible since the negative vortex exactly cancels either of the positive vortices. Now
we proceed as above. Consider configurations with all three vortices on a line. If vortex
3, the negative vortex, is far away from vortices 1 and 2, the streamline pattern clearly must
be of the type in Fig.4(c) with both stagnation points on the line through the vortices. If
vortex 3 is situated somewhere between vortices 1 and 2, we find a streamline pattern with
the topology of Fig.4(1), and the stagnation points will be symmetrically positioned above
and below the line through the vortices. We shall not elaborate the correspondence with the
regimes of motion established in the earlier analysis of this problem (Aref, 1979, Fig.4).

6. The ‘atmosphere’ of a translating vortex system

A related problem, in which the role of stagnation points is also important, is the size
and shape of the “atmosphere” of a translating vortex system, i.e., the fluid region carried
along by a translating vortex pair, first discussed by Thomson (1867). In this problem we
are concerned with the number and location of stagnation points in a frame of reference
following the vortices, which are in steady translation. We briefly show how the
methodology of the preceding sections can be applied to this problem.

If V is the (complex) velocity of translation, we have for the vortex positions the
system of equations

1 Bz’i I8y | (6.1)

2mi §='1 Zo,— 2
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and we wish to solve for the stagnation points in a frame following the vortices, i.e., find
the z for which

1 § Ty
VE= s 27T (6.2)

The situation we are considering implies that the sum of the vortex strengths vanishes, as is
easily seen from (6.1) by multiplying it by I, and summing on a.
From (6.1) we find, furthermore, that

N
2mi V* (Q +iP) = a,%:, Eizﬂ = %3 Tolps (6.3)

where Q and P are the (real) components of the linear impulse:

N
Q+iP= a§1 | (6.4)

Since the vortex strengths sum to zero, we may re-write the right hand side of (6.3) as

B %agl Fi.

Thus, recalling the developments in §3, we are led to consider the curve of class N
given by the equation

N
Ylu] = (%agl 1"3) L;[u]L,[u] ... Ly[u] + (Qu; + Pu,) ®[u] = 0. (6.5)

According to (6.2), (6.3) and §3 the focal points of this curve, i.e., the solutions of

Y[1,i,—z] = 0, are the stagnation points that we seek.
It is clear that all the lines connecting vortices pairwise are tangents to the curve:

Yuypl=0 by the same argument that we used for the vanishing of ®@[ugg]. It is also

clear that the derivatives 0'¥[u,g)/du;, i=1,2,3, equal (Qu; + Pu,) d®/du; evaluated for

[u]=[u,p]. Hence, the points of tangency are, once again, the points 2§} from (3.29).
Considering the coefficient of the term of order N-1 in the stagnation point (or focal

point) equation ¥[1,i,-z] = 0, we see that since the sum of the strengths vanishes, we have
the analog of (2.9) that

N
2, @ -z) =0, (6.6)

where the stagnation points and the midpoint are defined as before but now refer to the
situation of a uniformly translating vortex configuration, and the condition of zero velocity
in that frame of reference.

a. Two vortices
Consider vortices 1 and 2 with strengths I’y =-T', =T, positions x; =x, =0,y; =
—y, =Y. Thus, Q=0and P=2I'Y. An easy calculation gives
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Plu] = 2(u+3Y%u3). 6.7)

This is a singular (line) conic, consisting of two bundles of lines. In one bundle are all
lines of the form [u,v,—i¥3 Yv]; in the second all lines of the form [u,v,i»/?T Yv]. Another
way of characterizing these line bundles is to note that all the lines in the former bundle
pass through the point C, with coordinates (0, i¥3Y,1); all the lines in the second pass
through C_ with coordinates (0, —iv3Y,1).

To find the ‘foci’ of this singular conic we ask which lines in either bundle pass
through the circular points at infinity (see §3(d)). The coordinates of the four lines IC, and
JC, are:

IC, : [i~1,i¥3Y] ; JC, 1 [H,-1,i¥3Y]
(6.8)
IC_:[i,-1,-iv¥3Y] ; JC_:[-i,-1,-i¥3Y]

The two ﬁriite points of intersection of these four lines are the affine points (iﬁ Y,O), ie.,

precisely the forward and rear stagnation points of the vortex pair “atmosphere.” The
vortices and either stagnation point form an equilateral triangle.

b. Three vortices , ,
We again adopt triangular coordinates, X;, X,, X3, based on the triangle spanned by
the vortices and the conjugate linear coordinates U, U,, Us, as in §4. We then have

L;[u] = -U;, i=1,2,3. Also, since &u; + nyu, + uz = U;, i=1,2,3, we see that
Qul + Pu2 = FIUI + F2U2 + F3U3. ) v | (69)
Thus, WY[U] = 0 becomes

(T Tyt T+ T5T)DU,U,Us +
(6.10)
(T;U+ ToUp+ T3U)([TU,U, + T,U,U, +T5U, Uy =0,

This is the equation of a curve of class 3. It has three distinct, real foci, in general, and

these are the stagnation points in the co-moving frame. ; '
From the solution of the three-vortex problem (Aref, 1979; Rott, 1989, Aref 1989) we

know that for the translating configurations the three vortices must be at the vertices of an

equilateral triangle. Let @ = €i?™3 and let vortex a=1,2,3 be at z, = a @, i.e., vortex 1 is

at z;=a, vortex 2 at z,=aw*, and vortex 3 at zz=a. We introduce the notation
Yo=T1+L0"+0*" ; n=0,1,2, (6.11)
such that g, v;, Y, are the components of the discrete Fourier transform of 'y, Ty, T'5.

Clearly, y,=0 and v, Y, are complex conjugates; also, Q + iP = awy;.
Note that
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T =Ti+T3+ I3 -T[,-T,l-T500 = %(I‘% +T3+T3), (6.12)

where the last expression follows from v = F% + 1“% + 1"% +2IN Ty + 21,3+ 21051 = 0.
The equation determining the stagnation points is

W[1,i,z] = {117, (23 - 23) + 2wy (a0 2 + a20%Y,) =0, (6.13)
or, with { = z/a,
G +3(nMp)o*+2=0. (6.14)

Since 7; and 7, are complex conjugates, the coefficient of { is always of modulus 1. In the
special case I';=I",= —T'3/2 the ratio /Y, = ® and Eq.(6.14) becomes simply

B+3(+2=0. (6.15)

The solutions to (6.14) may be found by elementary methods. It may be worth noting
that the three stagnation points are always distinct.”

7. Concluding remarks

Determining the number, nature and location of stagnation points for a system of
point vortices is, clearly, one of the simplest problems of its kind. The stagnation points in
this case are the roots of a certain polynomial, and calculating them for a given
configuration of vortices of known strengths is, in principle, elementary. However, a
geometrical characterization of the location of stagnation points, and an understanding of
how they move when the strengths and/or positions of the vortices are changed, leads to
less familiar mathematical problems, and tools such as the algebraic geometry developed by
Pliicker and Siebeck a century ago and the use of the complex projective plane appear to be
useful. The most interesting result that we have obtained is for the case of three vortices of
zero net circulation, where a “similarity law” for the location of the single stagnation point
emerges.

The approach of this paper does not appear to be particularly useful if the number of
vortices is large, since the order of the polynomial giving Siebeck’s curve is then
unmanageably large, and the best one can do is probably to determine all stagnation points
numerically at every step of the motion. For a small number of vortices, on the other hand,
the algebraic-geometric specification of stagnation points presented here is as precise as one
can hope to achieve.

The location of stagnation points is intimately connected with the topology of the
streamline pattern of the flow induced by the vortices. The possible streamline topologies
can be found by the process illustrated here for three vortices of assembling such patterns
by substituting for a vortex in a pattern for N vortices one of the patterns for two vortices

(Fig.3) and thus arriving at a streamline pattern for N+1 vortices. For simple choices of
the vortex strengths it was possible to describe transitions between different streamline

7)  The vanishing of the discriminant of the cubic (6.14) implies that ('yll'yz)3= -1, i.e, v/v, = -1, 0, —0*,
and each of these three possibilities implies that one of the vortex strengths vanishes.
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.topologies as the vortices move.
Taken together the results of this paper provide some guidance in determining the
stagnation points and streamline topology for a small number of vortices.
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