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Abstract

We give an extension of the level set formulation of Osher and
Sethian, which describes the dynamics of surfaces that propagate un-
der the influence of their own curvature. We consider an extension
of their original algorithms for finite domains that includes boundary
conditions. We discuss this extension in the context of a specific ap-
plication that comes from the theory of Detonation Shock Dynamics
(DSD). We give an outline of the theory of DSD which includes the
formulation of the boundary conditions that comprise the engineering
model. We give the formulation of the level set method, as applied to
our application with finite boundary conditions. We develop a numer-
ical method to implement arbitrarily complex 2-D boundary condi-
tions, and give a few representative calculations. We also discuss the
dynamics of level curve motion and point out restrictions that arise
when applying boundary conditions.
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1 Introduction

1.1 Detonation Shock Dynamics (DSD)

Detonation Shock Dynamics (DSD) is an asymptotic theory that describes the evolution
of a multi-dimensional, curved, near-Chapman-Jouguet (CJ) detonation shock in terms of
an intrinsic evolution equation for the shock surface. A complete mathematical model of
detonation [14], consists of the compressible Euler equations, an equation of state with a
reaction progress variable and a reaction-rate law. These equations admit a one-dimensional
(1-D), steady traveling wave solution that corresponds to a detonation with a distributed,
finite width reaction zone. The structure calculation for this zone consists of a system of
ordinary differential equations (ODEs) that contain a critical point within the zone. These
together with the shock conditions serve to define the normal speed of the detonation, Dc,.
The CJ detonation is the detonation whose speed corresponds to a sonic state at the end of
the reaction-zone. The steady solution is called the ZND solution.

The shock evolution equations of DSD-theory are derived from an asymptotic theory that
assumes the curved shock has a large radius of curvature compared to the characteristic,
1-D reaction-zone length, and that the important dynamic time scale is slow compared
to the transit time for particles through the reaction-zone [1], [8]. The simplest form of
the intrinsic surface evolution equation, derived from DSD-theory, obtains a relation for
the normal detonation shock velocity, D,, as a function of the local total shock curvature,
Kk = K1 + kg (the sum of the principle curvatures and twice the mean curvature).

In our notation, the shock normal is chosen to point in the direction of the unreacted
explosive and the curvature, x, is defined to be positive when the shock is convex. We
call this intrinsic (material dependent) relation between D, and &, the D, — k relation.
Physically, positive curvature corresponds to a diverging detonation in which the shock is
convex shape, and D, is below the plane CJ value, D¢y, for £ > 0. When the curvature
has the opposite sign, x < 0, the shock has a concave shape and D, lies above D¢;. The
physical justification for modeling the shock dynamics in such a simple way is as follows.

In the streamwise direction, the reaction-zone that supports the detonation resembles
the classical ZND structure. Although the reaction-zone is not strictly steady for multi-
dimensional detonation, it continues to have the property that the shock is only influenced by
the subsonic region between the sonic curve and the detonation shock curve. This insulation
of the shock from the vast region that follows the reaction-zone leads, in the limit of weak
shock curvature (measured relative to the distance from the shock to the sonic curve), to the
result that the normal detonation speed D, is a function of the shock curvature x (under
the assumption of sufficiently slow dynamics).

Although the shock is insulated from the far-field ﬂow in the streamwise direction, the
reaction-zone provides a path by which disturbances can propagate in the direction transverse
to the shock-normal direction. In particular, the disturbance generated at the edge of the
explosive, where the high-pressure detonation products expand to low pressure, propagates



through the reaction-zone in the transverse direction leading to a substantial decrease in the
pressure of the reaction zone, even far from the edge. More than any other influence, these
lateral rarefactions from the edge of the explosive control the speed and hence the shape and
location of the detonation shock.

For the purpose of this paper we assume a fundamental D, — k relation exists, one
that passes through x = 0 at D, = D¢, and is monotonic, for both positive and negative
curvatures. The extension of the D, — x for negative curvature, has some experimental
and numerical confirmation, [4], [5]. The dynamics of this surface then is wholly described
as propagating under the influence of its’ curvature. In [2], Osher and Sethian developed
a numerical method to solve for the motion of such surfaces, originally dubbed PSC for
“Propagation of Surfaces under Curvature”. Now the methods are more commonly known
as level set (LS) methods. We turn to a brief description of their work next.

1.2 The level set algorithm of Osher and Sethian

Osher and Sethian, [2], discussed a novel and powerful imbedding concept that has an under-
lying simplicity for the calculations that we are concerned with in this paper, and for front
tracking in general. Specifically they considered the motion of a surface under the influence
of a D, — k relation. They pointed out some of the difficulties of attempting a numerical
solution of surface dynamics that uses algorithms based on surface parameterizations. These
difficulties include the corresponding loss of accuracy due to the bunching of nodes in regions
where the front experiences a convergence, which results in a loss of stability of the method.
Also, in regions of expansion, nodes diverge, and new nodes must be added to maintain
stability. Rezoning is thus an essential feature of such methods. Furthermore, there is the
logical complexity in the programming required to handle complex, and perhaps, unforeseen
interactions, when sections of shock merge or break apart.

For a physical simulation that uses an underlying surface parameterization method, a
separate and independent description of the topology of each disparate segment of the shock
surface must be carried along with all the rules that give the details for extinguishing old
segments, and creating new ones. A programmer who deals with the issues of trying to write
reasonably robust code for engineering applications must confront a difficult task with these
methods. These issues are especially important, when the tracking algorithm is to be used
as a subroutine in part of a larger application code that solves problems with great system
complexity.

The LS methods use instead a formulation where the surface of interest is imbedded in a
field of one higher dimension, in the physical space of the application. The surface of physical
interest is found by taking a subset of the field, specifically a constant value of a field function
which defines a level-contour in 2-D or a level-surface in 3-D. Thus for a 2-D application,
the level curves are imbedded in 2-D field, and for 3-D, the level surfaces are imbedded in
a 3-D field. In particular, one solves for the dynamics of the level curves, ¥ = constant
where all the level curves obey the D, — & relation. The level curves of physical interest
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Figure 1: Schematic of level surface and the projection of level-curves in the x, y-plane at an
instant in time. Also shown are the normal and tangent to the level curve, ¥ = 0.

for the application are the ones that evolve from the initial configuration of the physical
problem, where the level-constant is used to identify the physically relevant surface, during
its evolution. The curve/surface of interest 1 = 0 is then the object of a contour search of
the full field of ¢ (x,y, 2, t).

Figure 1. shows a time snapshot of a representative 2-D level surface, ¥(z,y,t) and
its’ projection onto the z,y-plane. The imbedding relies on the contouring being uniquely
defined, such that a single value of ¥(z,y,t) is obtained for each point (z,y) at a given
instant of time.

‘While it might seem that additional computation is required to represent a 2-D surface
by a solving for a 3-D field, in fact, the gain in logical simplicity leads to computations
that are very efficient and accurate. These advantages easily override any perceived increase
in computational cost. We came to this conclusion in the course of developing numerical
methods for our applications, having first used surface parameterization methods in 2-D, [6],



and having realized the limitations of our formulation and methods for our 3-D applications.
In engineering applications for explosive materials, boundaries represent interfaces be-
tween the explosive and its confinement at the edge. The typical application has a charge
of explosive material of finite dimension. At the boundaries of the charge, the explosive is
adjacent to inerts or other reactive material. Detonation propagation from initiating centers
into space wholly comprised of unreacted explosive, is of interest, but it can be regarded as
a special, ideal case. Therefore, the boundary conditions at the interfaces represent the con-
finement of the detonation shock since they (along with the initial conditions) determine the
evolution of the detonation shock. For our purposes, the LS method must address physical
boundary conditions and fit neatly into existing engineering code infra-structures.

1.3 Outline of the papei'

In Section 2, we present a self-contained discussion of the engineering application of DSD,
which includes the formulation of the boundary conditions. In particular we include very
specific D, — & relations and boundary conditions that are relevant in explosive engineering
problems. None the less, our formulation here is quite general.

In Section 3, we give a brief explanation that derives the PDE for the LS function in the
interior of the explosive domain, as applied to our applications with finite boundaries. We
describe the numerical algorithm that is used (following Osher and Sethian for the most part)
and in particular discuss in detail the interior differencing, initial conditions, the differencing
used for the boundary conditions and extensions to 3-D. Also, the concept of a “burn table”
is introduced, which is most useful for explosive and possibly other applications, when it is
known that the front passes, at most, one time past any fixed, Eulerian point. In Section 4,
we discuss the numerical stability and accuracy of the scheme.

In Section 5, we present a series of examples found in explosives engineering problem.
We examine the response of an initially planar CJ detonation to the three most common
types of flows generated by the interaction of detonations with the edge of an explosive. The
three problems are: 1) the sudden loss of confinement at a straight edge (referred to here as
the ratestick problem), 2) the formation of a “Mach” reflection when a detonation enters a
converging channel, and 3) the diffraction of a detonation produced when entering a diverging
channel. Finally, in Section 6, we discuss some formal mathematical issues regarding the
nature of the imbedding of the level-curves, and their relative motion under the action of
boundary conditions.

2 Detonation Shock Dynamics

As mentioned in the introduction, Detonation Shock Dynamics is the name given to a body
of multi-dimensional theory that describes the dynamics of “near-Chapman-Jouguet” deto-
nations. Its name follows from Whitham’s theory of “Geometrical Shock Dynamics,” because
of the similarity of the mathematical structure of the theories. The engineering application
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Figure 2: A snapshot of the z,y-plane, showing a diverging and a converging detonation.
For a diverging detonation, the transverse dimension of the region of chemical-energy release
is smaller than the dimension of the region of shock surface that it supports (the detonation
speed falls below D¢y). For a converging detonation the reverse is true and the detonation
speed exceeds Dg¢y.

of DSD was originally set forth in two papers, [20] [8]. The simplest result of DSD theory is
that under suitable conditions, the detonation shock in the explosive propagates according
to the simple formula

D, = D¢y — a(k), (1)

where D,, is the normal velocity of the shock surface, D¢y is the 1-D, steady, Chapman-
Jouguet velocity for the explosive, and a(x) is a function of curvature &, that is a material
property of the explosive. Figure 2 illustrates the sign of the curvature for a typical detona-
tion shock. A sketch of a typical D,, — k relation is shown in Figure 3.

2.1 Boundary Conditions

We have formulated a set of model DSD boundary conditions that involve the angle that the
local shock normal, 7, makes with the outwards pointing normal vector of the boundary,
i, which we refer to as w. Equivalently w is the angle between the tangent to the edge and
the tangent to the shock. See Fig. 4. The condition to be applied depends on the flow type
as witnessed by an observer riding with the point of intersection of the local shock and the
edge. The boundary conditions are formulated [21] by an analysis of the local singularities
admitted by the Euler equations and the results are summarized in this section.

The flow type is characterized by the local sonic parameter, S evaluated at the shock
in the detonation reaction-zone and as measured by an observer moving with the point of
intersection of the detonation shock and the material interface

S=C%— (U,)? — D2cot?*(w) (2)
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Figure 3: The D,, — & relation for a typical condensed phase explosive after Bdzil et. al.’s
calibration of PBX 9502, [4]
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Figure 4: Definition of the angle, w, and the normals, 7 and 7.

where C is the sound speed in the explosive, U, is the explosive particle velocity in the
shock-normal direction and D, is the detonation normal speed. When & < 0, the flow is
locally supersonic at the edge and no boundary condition is applied. The application of no
boundary condition is, in practice, the application of a continuation boundary condition,
where information flows from the interior to the exterior of the domain. More will be said
about the numerical implementation of the continuation boundary condition in Section 3.3.
When S > 0, the flow is locally subsonic and the presence of the edge influences the reaction-
zone. The form of the boundary condition for the S > 0 case is determined by the properties
of the inert material that is adjacent to the explosive.

The problem geometry and the various cases, supersonic, sonic and subsonic, that are
modeled correspond to a steady flow in the reference frame of the shock/edge intersection
point. Figures 5-7 show instantaneous time snapshots of the interaction between the ex-
plosive and inert. The explosive induces a shock into the inert (labeled inert shock), which
typically generates a reflected wave into the explosive (labeled either the reflected shock or the
limiting characteristic depending on whether the reflected wave is a shock or a rarefaction,
respectively).

Figure 5 corresponds to a supersonic flow, & < 0. As previously mentioned, no boundary
condition is applied irrespective of the degree of confinement that the inert provides to the
explosive. The shock reflected into the explosive does not influence the detonation shock.
As the angle w is increased to the value w; where S = 0, the flow in the explosive turns sonic
and therefore can sense the degree of confinement that the adjacent inert provides.

Figure 6 shows two cases, labeled as 1 and 2, that correspond to different degrees of
confinement provided by the inert. For these cases, the pressure decreases towards the
right of the explosive sonic locus. Case 1 corresponds to weak confinement, for which the
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Figure 5: DSD boundary conditions. A snapshot of the z,y-plane showing the supersonic
type of explosive/inert boundary interaction. The magnitude of w controls the type of
interaction that occurs. Fig. 5 corresponds to a supersonic flow in the explosive, measured
relative to an observer riding with the shock/edge intersection point.
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Figure 6: DSD boundary conditions. A snapshot of the z,y-plane showing the sonic type of
explosive/inert boundary interaction. The magnitude of w controls the type of interaction
that occurs. Fig. 6 corresponds to a sonic flow in the explosive, measured relative to an
observer riding with the shock/edge intersection point.



€ Material

Detonation .Shock Forward

characteristic

surpueans

20Nl

sonic | surface

----"""‘"-—-...“‘n
end of reacu"gz; Zone

Figure 7: DSD boundary conditions. A snapshot of the z, y-plane showing the subsonic type
of explosive/inert boundary interaction. The magnitude of w controls the type of interaction
that occurs. Fig. 7 corresponds to a subsonic flow in the explosive, measured relative to an
observer riding with the shock/edge intersection point.

pressure induced into the inert is considerably below the detonation pressure at the edge.
The influence of the confinement propagates into the explosive no farther to the left than
the limiting characteristic labeled 1. The subsonic part of the reaction-zone remains totally
unaffected by the confinement, and the flow remains sonic at the shock/edge intersection
point. The detonation propagates as if it were totally unconfined.

As the degree of confinement is increased further, the drop in pressure in going from
the explosive to the inert becomes less, until at some critical degree of confinement the
influence of the inert extends up to the limiting characteristic labeled 2. At this critical
degree of confinement, the detonation continues to propagate as if it were unconfined. Any
further increase in the confinement destroys the sonic isolation of the reaction-zone from the
influence of the confinement and leads to the case shown in Fig. 7.

If for the angle wy, corresponding to S = 0, the pressure induced into the confining inert
is greater than the pressure in the explosive, then the flow that develops is that shown in
Figure 7. The reflected wave can now enter into the subsonic part of the reaction-zone. This
results in an increase in pressure in the reaction-zone and the concomitant increase of the
normal shock velocity, D,. The angle w increases until the pressure in the inert and reaction
zone balance. Since the flow in the explosive is subsonic, a reflected shock is not generated
in the explosive. The value of w at the point of pressure equilibrium is w,. The value of w,
is a constant that depends only on the specific explosive /inert pair. It is easily calculated
from a shock polar analysis, assuming no reflected wave in the explosive.

10



2.2 Summary

In summary, the boundary interaction has the following properties: i) When the flow in the

~explosive is supersonic (i.e., w < w; ), no boundary condition is applied. This corresponds to
a continuation condition. ii) When the flow turns sonic w = ws, two cases can arise. a) The
pressure induced in the inert is below that immediately behind the detonation shock and the
confinement has no influence on the detonation. The sonic boundary condition is applied,
w = ws. b) The pressure induced in the inert is above that immediately behind the detonation
shock. The angle w increases (i.e., w > ws) until the pressure in the inert and explosive are
equilibrated. This angle w = w, is the equilibrium value for the angle and is regarded as a
material constant that is a function of the explosive /inert pair. Thus the boundary condition
recipe can be summarized as follows: 1) A continuation boundary condition is applied for
supersonic flows and 2) when the flow becomes either sonic or subsonic, w is bounded from
above by a critical angle w, (unique for each explosive/inert pair) that is determined using
the above discussion.

Figure 8 shows a time history of the evolution of the angle w(t) along the edge of confine-
ment that corresponds to a typical application. Figure 8(a) shows a detonation interacting
with an edge at three different times, t,,t,,¢5. At time. 11, the shock/edge intersection is
highly oblique and the supersonic (continuation) boundary condition applies. At time ta,
it is assumed that the intersection angle first becomes sonic, w = ws. If the confinement
is heavy enough, a rapid acoustic transient can take place and a rapid adjustment to the
equilibrium value, w,, can occur. After that adjustment, shown at ¢; (say), the angle remains
at w = w, which corresponds to that for the explosive/confinement pair. The right hand
portion of Fig. 8(a) shows the time history of the shock interaction at the edge. The value
of w(t) is determined by the solution for w < ws. Once wy is attained, a rapid jump to w,
occurs and from then on w = w, applies. This is shown in the right hand portion of the
figure. If the confinement were sufficiently weak, no jump to w, would be needed, and the
angle would simply remain at w,. This is shown by the broken line.

Figure 8(b) shows a different scenario. It is assumed that the detonation is initially flat
and w = /2. For heavy confinement, a rapid acoustic transition to w = w, is assumed to
occur and then maintained from then on. If the confinement is sufficiently light, then the
transition is from w = m/2 to w = w;. Again this is shown in the broken line.

3 The Level Set Method and Numerical Implemen-
tation

Here we outline the LS method, explain its application and utility as a tool for computing
the dynamics of propagating interfaces, and explain the numerical method used to solve the

resulting partial differential equation (PDE).
First, notice that a surface (or the shock in DSD) is a subset with a dimension one lower
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than the space it travels in. The LS method with applied boundary conditions solves for a
field function 9(z,y, z,t) that depends on physical space and time, and the field identifies
surfaces of constant values of 9. The surface 1(z,v, z,t) = 0, is typically identified with
the surface of physical interest. Therefore, the computational task involves computing a
field in space-time, and then exhibiting the surface of interest by searching for the special
surface 1 = 0. Since a level curve is given by 9(z,, z, t) = constant, it follows that its total
derivative is zero, i.e.

0y ouds ovdy dwds_

ot Oz dt Oydt dzdt

where the time derivatives, dz/dt and so on, are the components of the surface velocity 5,

defined by that particular level curve. In coordinate independent form the above equation is
o

5 T V¥ Dix) = 0. (3)

We choose the outward surface normal 7 to be positive in the direction of outward propaga-
tion. (In our physical application the detonation shock propagates from the burnt explosive
towards the unburnt explosive and the positive normal points into the unburnt material.) In
terms of the LS function, the normal is given by 7 = 61/1 / WQ/JI The total curvature satisfies
the relation

K=Ki+ke=V-h (4)

Using D -7 = D,, and Vb - 1 = |V4] in (3) obtains a Hamilton-Jacobi-like equation for the
LS function that we mainly use in the following discussions

oy =

o+ Da(w)[F9] = 0. 5
The curvature « is simply related to the level-set field by using the definition of the

curvature from (4) and by then carrying out the indicated differentiations. For example, for

two-dimensions and for Cartesian coordinates, the curvature is given by

T W ©

In summary, the shock, (i.e. the surface of physical interest) is assigned the level 1 = 0,
while the unburnt material has ¢ > 0 and the burnt material has 1 < 0. A unique way to
specify 9 initially is to choose 9 = signed minimum distance from the initial shock surface.
Equation (5) is then a partial differential equation for the LS function 1), that is to be solved
subject to its initial data. :

The solution of the PDE with initial and boundary conditions, generates the field ¢(z, y, 2, t),
and the location of the shock is then simply found by search for the level surface P = 0.
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This is easily done by creating a table of arrival times of the shock across the computational
grid. We call this the burn table. Numerically generating a burn table will be discussed in
Section 3.5.

3.1 Interior Differencing

Here we give a brief description of the numerical method we use for solving the LS equation
(5), on a fixed Eulerian finite difference grid. For the interior algorithm, we follow Osher
and Sethian, [3]. The time advance of the LS equation

% + Desl 9|~ a9 =0, ™)
is operator split into two steps. First, ¢ is advanced using the sub-operator, Lp, defined
by the first and third terms in equation (7). This is then followed by the advance for the
sub-operator, Ly, defined by the first and second terms in equation (7). The motivation
for this operator splitting is related to the fact that Ly is a hyperbolic operator and Lp is
a “nearly parabolic” operator. We consider these issues more fully in Section 6. Different
numerical methods are thus appropriate for these different type operators. The differencing
for each of the three terms in (7) is now considered separately.

For the time derivative, we use simple, first-order, forward Euler differencing

n+l __ 'n,
T ®)
ot At
where ¢ and j represent the z and y node and n represents the time level in the usual way.
Higher order Runge-Kutta type schemes can be used and have been derived in [2] and [3].
The first-order spatial derivatives in the second term in (7) are calculated using a com-
bination of upwinding and essentially nonoscillatory (ENO) interpolation. In the following
text, first-order interpolation is equivalent to first-order differencing and second-order inter-
polation is equivalent to second-order differencing. Let’s consider first a 2-D problem using
upwinding and first-order interpolation. We need to approximate ]V?,[Jl and thus 1, and
1. First, we construct four linear interpolants between node 7; and it’s four surrounding
nodes, Y41 Yit1; Vit and 9¥7;_;. Define the usual forward and backward difference
operators

I 1i— i o __ o\ 1
i+1,5 i,J — /N i,J i—1,7
Dtyr. = ELi ) Doy, = 2Tl
z /w?"] AZE ’ T T Az ’
i —h7 Jeg—T 1L
D+¢n~ — ¢i,j+1 1,J D—dﬂz_ — ] 101,;—1
Yy ) Ay ’ Yy ) Ay

Next we combine these differences to define the following first-order upwind difference
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IVl = [ £ (DF2,) + f; (Dy 4%,
+EH (DY) + £y (Dy )]z, 9)
where

2 3 +,/n 2 : — /T2
+oy J a5 DI <0 - _{a, if D97 >0
fo(a) = {O, otherwise Iz (@) = 0, otherwise

f;(a)={a’2’ if D} ?Tfj<0 f‘(a):{a2’ iny‘v,b?j>O
0, otherwise 4 0, otherwise

To achieve second-order spatial accuracy, a quadratic interpolant with three nodes is
used. For each of the four directions, there are two choices for the interpolant. For example,
consider the linear interpolant between ¥;; and ¥i41,;- To construct a quadratic interpolant,
another node, either ¢ ; ; or 9, ;, is used. The choice is made by picking the node which
gives the smallest second derivative in magnitude. If the second derivatives are of opposite
sign, then the second-order correction is taken to be zero. This same procedure is used in
the other three directions resulting in the following second-order scheme

- Az . - n n
V46| = [ (D iy — = min mod(D; D, Df DX yy;))
A y
+f5 (D7 y?; + —;-min mod(D; Dy 4, D D5 yr,)

1,57

n Ay . — Iyt n
£ (D iy = S min mod(D; D yfy, Df DY)

- - N Ay : N— 1)—a/T -\ 1
+f, (D i + — min mod (D, D, 47, D;Dy H)IER (10)

where the min mod function is defined by
a, if|a| < |b| and ab >0

min mod(a, b) =4qb, if|b] <|a| and ab >0
0, otherwise.

The third term in (7) is essentially a diffusion term, and we use second-order central differ-
ences to calculate x, and thus a(x). Central differences are also used to calculate |V in

. this term.

3.2 Initial Conditions

The LS function, 1, must be defined initially at ¢ = 0 where 9(z, y, t = 0) = 0 represents the
initial shock locus. We choose 9(x,y,t = 0) to be the signed distance from the initial shock
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locus, with 9 (z,y,t = 0) positive in the unburnt material and v (z,y,t = 0) negative in the
burnt material. Thus the normal, 7, points into the unburnt material. For example, two
initially expanding cylindrical shocks with radii = r located at (z1,y1) and (x2,y2) would be
given by

P(z,y,t = 0) = minfy/(z — 21)2 + (y — 91)? — 1, /(& — 22)2 + (y — 12)2 — 7],

while two collapsing cylindrical shocks at the same location and radii would be given by

¥(z,9,t = 0) = maxlr — \/(z — 21)2 + (y — )27 — /(& — 22)> + (v — 92)7.

3.3 Boundary Conditions

Three types of boundary conditions have been implemented into our LS formulation. These
are symmetric (perfectly reflecting), non-reflecting (inflow/outflow), and angle (physical)
boundary conditions. The formulation uses two levels of ghost nodes to enforce the particular
boundary conditions. The symmetric boundary condition is trivially satisfied by reflecting
the values of ¢ from the interior to the exterior. For example if z = 0 is a symmetry plane
and 9, is at z =0, then 97, ; = ¢7; and Y2, ; = (A

The non-reflecting boundary conditions are applied by using quadratic extrapolation.
This is equivalent to keeping the second derivative along the normal to the boundary as a
constant. The upwinded first-order spatial derivatives do not need to have ghost nodes, since
they look in the proper direction. However, ghost nodes are used in the calculation of the
second order derivatives and the curvature at the boundary. For example, if non-reflecting
boundary conditions are applied at z = 0, then ¥7, ; = 3¢g,; — 3¢Y7, + Py, ete.

3.3.1 Implementation of angle boundary conditions

Of the three boundary conditions, angle boundary conditions need the most attention. A
class of physical boundary conditions within DSD theory concerns detonation waves inter-
acting with inert boundaries were described in Section 2.1. For each inert-explosive pair,
two angles are needed to define the boundary conditions at an interface. These are the sonic
angle, w,, and the steady state angle, w,.

In general, the location of the inert-explosive interface, where angle boundary conditions
need to be applied, can be quite complex. Unfortunately, it is not always simple to find
a computational grid (body-fitted grid) whose boundaries coincide with the physical inert-
explosive interface. Next we develop an internal boundary (IB) method to numerically treat
these boundary conditions for arbitrarily complex interfaces on a uniform (A = Az = Ay)
2-D Cartesian grid. In spirit, this method is similar to the Cartesian boundary method of
Leveque [16] and others [17], [18], although the mathematical boundary conditions being
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applied are quite different. It will be shown that angle boundary conditions involve spatial
derivatives of the LS function, ¢ (which are similar to Neumann boundary conditions.) The
mathematical boundary conditions, and the corresponding numerical implementation are
given next.

First, define a new (non—evolvmg) level set function, ¢(z,y), such that ¢(z,y) = 0 at
the inert-explosive interface. The function ¢(z,y) is defined at computational grid points
as ¢;; (where again ¢ and j correspond to the z-location and y-location, respectively). We
define ¢ to be the signed distance function from the inert-explosive interface, with ¢ negative
in the explosive and ¢ positive in the inert. To enforce the angle boundary conditions on
the interior of the computational domain, an array of (i, ) nodes near ¢ = 0 will be used.
We call this array of nodes the internal boundary (IB) nodes. These IB nodes are found
in the following manner. Sweep through the grid, and if at a (7,7) node ¢;; > 0 and if
at any of the eight surrounding nodes one of the following conditions is true, ¢;y1; < 0,
Gi-1; <0, @ijy1 <0, dij1 <0, igri41 <0, dic1 i1 <0, imijrr < 0 or Pigy -1 <0,
then the (%, j) node is an IB node. This is analogous to computationally finding the ¢ = 0
contour. This search for internal boundary points is only done once at the beginning of the
computation. The angle boundary conditions will be enforced by specifying #;; at these
IB nodes. Furthermore, the interior differencing of Section 3.1 only needs to be applied at
nodes where ¢; ; < 0, since the others correspond to inert regions.

The inert-explosive interface normal, 7, at an IB node is given by

R R R ¢
Ty = Npgl + Npyy) = —— 11
b = Mgl + Ny ] 2 ) (11)
which is approximated by second-order central differences at IB nodes. For each IB node,
a locally rotated orthogonal stencil is defined which is lined up with the inert-explosive
interface normal, 7y, and inert-explosive interface tangential unit vector, #, = Npyl — Mg J-
The coordinates associated with the 7, and #, directions are 1 and &, respectively. See Fig.
9. Since, the angle boundary condition will involve spatial derivatives of the LS function,
1, we need to know values of 9 at the discrete points, labeled P, associated with each IB
node. These points are given by :

P = (¢ij— D)y Py = (dij — 20)My

P3 = (d)‘t,] - 3A)ﬁb P4 = Afb P5 = —A'Eb

Values of 1 at these rotated stencil points, P;, P, Ps, Py, Ps, are given by second-order
accurate bilinear interpolation. At every timestep, the following algorithm is applied:

Step 1: Quadratically extrapolate 1) from the mterlor to the IB nodes along
the 7, direction.
Step 2: Check if interaction at each IB node is subsonic or supersonic.
Step 3: Apply angle boundary condition to all IB nodes which have a subsonic interaction.
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Figure 9: Schematic of internal boundary condition stencil. e interpolated stencil points,
O internal boundary node (i,j), o point where boundary condition is to be applied.
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Quadratic extrapolation is accomplished by solving

i = 3¢p, — 3Up, +¥p, (12)

at all IB nodes. In general, ¥p,,%¥p,, ¥p, can be dependent on IB nodes. For example, in
Fig 9, ¥p, will be a linear combination of the three interior values ;1 ;_1, ¥;i—1,;, ¥ ;-1 and
the IB node value 1; ;. Therefore, (12) will result in a system of linear equations, where
the number of equations and unknowns is equal to the number of IB nodes. This system is
solved by the following iterative method: View (12) as 1 ; = Fi(1;;). Start with an initial
guess for each 1/;°, say the value of 1 ; at the old timestep. Evaluate Fj( 75°°%), and set

i = (1= w)f* +wF (%) (13)

%7

where w < 1 for the iterative method to converge. Repeat (13) until max (|47 — 475°|) <

€A. The values w = 0.9 and € = 10~ work well and typically converge in ten iterations or
less. Note that the number of equations being solved iteratively is of the order (N,N,)'/?
where N, and N, are the number of z and y grid points, so the algorithm is relatively
inexpensive compared to the interior scheme.

To check if an interaction at an IB node is subsonic or supersonic, an approximation for
the angle, w, between the shock normal, 75, and the inert-explosive interface normal, 7, is
needed. The vector, 73, is given from (11) and the normal 7, is given by

fo=—Y1_p e

+ t
T RN I

¥n

Approximations to the derivative terms in (14) are needed at the point where the bound-
ary condition is to be applied, see Fig. 9. Taylor series expansions reveal the following
approximation

and therefore w is given by

COSW = Mg - Ny = (14)

P, — 4P + 3% Yp, — 20 + i
¢n=¢2 15A1 Vis _ Yr ZI; ¢J¢i,j , - (15)
where ¢; ; appears in (15) since it is the signed distance from the node (i,j) to the location
where the boundary condition is to be applied. See Fig. 9. A central difference approxima-
tion to ¢ is

¢P4 - ¢P5

Ye=—5x (16)
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Equation (14), together with (15) and (16), gives an approximation to cosw at the boundary
point corresponding to the IB node. If cosw > cosw, then the interaction is supersonic, else
the interaction is subsonic. _

All IB nodes, which have subsonic interaction, must have the angle at the boundary point
set to w = w,. Therefore we need to solve

¥n

cosw, = Ty -4'7“13 =
Solving for the derivative, 1, yields

Py = coswe(¥f ese® we) /2. (17)
Substitution of (15) and (16) into (17), and solving for 1; ; yields

b = & we((Yp, — ¥p,)? csc® we)'/? — A*(4hp, — 4p,) + Adi;(2¢p, — 49p,)
A 3A2 — 2A¢i’j .

(18)

Now, the values v¥p,,¥p,, ¥p,, ¥p, appear on the right hand side of (18) in a nonlinear
way. But this system of nonlinear equations can be solved by viewing (18) as ¥ j = Fa(vi;),
“and applying the same iterative technique as before (but with F; replaced by F5.)

3.4 Extensions to Th'ree Dimensions

Extensions of the LS method described in the previous sections to three dimensions is rel-
atively straight forward. Since each term in the hyperbolic part is treated separately (i.e.
approximations to ¥, ¥, and 1,), only an additional term in the approximation to |§1/)|
will be needed. The parabolic terms in the LS formulation in three-dimensions can again
be calculated using second-order central differences, just as in two-dimensions. Using the
signed distance function as initial conditions works in three-dimensions as well. Reflect-
ing boundary conditions are simply applied in three dimensions. Non-reflecting boundary
conditions are also easily applied by using quadratic extrapolation in the interface normal, -
fiy, direction. The same methodology of 3.3.1 can be applied in 3-D to enforce arbitrarily
complex boundaries. , ‘

3.5 Creating a burn table

For a D, — k relation such that D, is always greater than zero, any initial wave will only cross
2 node once. This follows from fact that ¢, = —Dp (k)| V4| < 0, and is hence monotonically
decreasing in time. So, instead of saving several 9(z, y,t) arrays in time, and taking contours
at ¥(z,y,t) = 0, it is more efficient to create a burn table. A burn table is just a record
of wave arrival times as a function of space, t,(z,y). This is accomplished numerically by
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checking each node to see if it’s value of 1 changes sign after each timestep. If it has, then
the 9 (z,y,t) = 0 contour has passed the node, and linear interpolation in time is used to
record the burn time.

4 N umerical-Stability and Accuracy

In this section, we investigate the stability restrictions placed on the numerical algorithms
described in Section 3. Accuracy of the algorithms is also examined by making compar-
isons with an exact solution. Since the numerical algorithms are explicit in time, certain
restrictions on the timestep are required to ensure numerical stability. As one might expect,
the hyperbolic operator will have a CFL type restriction, c;At/Az < 1, while the “mostly
parabolic” operator will have a restriction like cpAt/Ax? < 1.

Since (7) is nonlinear, classical methods for determining the stability of difference equa-
tions can not be used. We will first obtain the timestep restriction for the first-order hy-
perbolic part of the operator, consisting of (8) and (9), by requiring that the scheme be
monotone. Then a timestep restriction for the second-order parabolic part of the operator,
consisting of (8) with central differenced curvature terms, will be found by a frozen coefficient
analysis. Then, we will give the timestep required for a general D,(k).-

We briefly describe the timestep restriction for the D, = Dgy case, with first-order
accurate differences (9) and no curvature dependence. The resulting PDE is hyperbolic,
and has the property of being monotone. Monotonicity implies the following (see [15] for
details): If two sets of initial data are given (say in 2-D), 1y (z,y,t = 0) and Yoz, y,t = 0),
such that v,(z,y,t = 0) > #1(z,y,t = 0) for all z and y, then for all time and space,
¥o(2,y,t) > P1(z,y,t). A scheme which has this property is called a monotone method.
Denote the solution of our difference equation as zj)zfjl = H(z,b,fj), where the function H is
given from (8) and (9). Obviously, H will depend on Az and At. To ensure that a numerical
scheme is monotone, we require that

0
—Hg,) >0

for all 4,7, k, L.

Carrying out all the possible forms of H (which depend on the upwinding) gives the
following CFL restriction on a uniform grid

2DC JAt

el < 1
Az 1 (19)
in 2-D, and
\/6DC JAt -
e e
Ax =1 (20)
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in 3-D. In general, monotone schemes are limited to first-order accuracy. But the first-order
stability results can be used for the second-order scheme, since the second-order scheme
reduces to first-order in non-smooth regions (although the second-order scheme will not
strictly be monotone).

Now, we consider the problem of determining the timestep restriction due only to the
curvature dependent terms, i.e. (8) and central differenced curvature terms. Also assume a
linear dependence on the curvature. Then the level set equation becomes:

a%m?ﬁg - 2¢xy¢m'¢’y + d’yy‘p?n
V2 + 9] ’

where « is a positive constant. Notice the above can be rewritten as

Y =

P = a(azd’ma‘ - 2a’b¢my + b2¢yy) y (21)

where a2 + b2 = 1. For the purposes of this discussion, we assume that a and b are constants
and carry out the standard von Neumann stability analysis on the resulting linear operator.
The timestep restriction for the “linearized” curvature dependent term is

2At|a|
—<1
(Az)* ~
in 2-D, and
4Atlal
—_—
| (Az)* ~
in 3-D. Thus, for the linear D,(k) = Doy — ak, the timestep restriction is
2DcsAt  2At|of
<1 22
Az + (Az)? — (22)

in 2-D, and

V6D At , 4ol
Az (Bx)?

in 3-D. The above timestep restriction can be used for a nonlinear D,(k), by replacing the
constant, ||, in (22) or (23), with max(|0a/0k]).

Next, we demonstrate that (8) and (10) with central differenced curvature dependent
terms gives second-order convergence. Although the truncation error of this scheme is
O(At) + O((Az)?), we expect second-order convergence since for stability At o (Azx)? as
Az — 0. We demonstrate the convergence properties of the above algorithm by comparison
with an exact solution. '

" The example problem will be an expanding quarter circle, whose center is at the origin
and has with initial radius, 7 = 0.2. The numerical domain willbe 0 <z <land 0 <y <1,

<1 | (23)
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with symmetry conditions at = 0 and y = 0, and non-reflective conditions at x = 1 and
y = 1. We take D, = 1 — .1k, to test the second-order ENO/upwinding scheme. For error
analysis purposes we use the error measured on the discrete L; norm,

E, = Z |t§mact _ t?umericall Az Ay
0]

The exact solution is obtained by noticing that the problem is really one-dimensional, with
the velocity of the front being only a function of the radius (k = 1/r), and integrating the
resulting ODE for the radius as a function of time. This gives t§***(z,y) = v/22 + 2 — 0.2+
1log[(.1—+/2% +y?)/(.1—.2)] (with /22 + y% > 0.2) Table I shows the error, E;, for several
Az = Ay’s. The timestep was taken to be 0.8 of the maximum allowed by (22). Also shown
is the calculated numerical order of accuracy, R.. Notice that second-order convergence is
achieved.

TABLE I: Numerical Accuracy for expanding circle with D, = 1 — .1k.

Az = Ay E1 Rc
1/40 1.14 x 1073
1/80 3.26 x 107* 1.81
1/160 870 x 1075 1.91
1/320  2.16 x107° 2.01

5 Comparison of DNS and Level Set solution of DSD

Here, we make comparisons of DSD theory with the direct numerical simulation (DNS) of
detonations. The direct numerical simulations were carried out with the Los Alamos code
CAVEAT [19]. CAVEAT is based on a second-order Godunov-type shock capturing scheme,
which can be used in either Eulerian or Lagrangian mode. Of particular interest is the
location and subsequent dynamics of the detonation front. Next, we give the mathematlcal
formulation of the detonatlon model used in the DNS.

5.1 Compressible Reactive Euler Equations

DSD and CAVEAT both have the reactive compressible Euler equations as the basic model
for studying detonations. These are:

Dp, o
E-va"u—() ,
Di -
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De  D(1/p)

ot P pe 0
DA _ r(p, p, \) 24
Dt - pa pa ’ ( )
with the ideal equation of state
D
e=———-Q\ ,
p(y—1)

where @ is the heat of detonation, ) is the reaction progress variable (A = 0 for unreacted
material, and A = 1 for completely reacted material), and r is the reaction rate. For our
comparison, we take

r=2.5147sec (1 — \)3 |

as the rate law and use Q = 4mm?/us®, v = 3 and upstream conditions p, = 107G Pa,
po = 2gm/jcc and @ = 0. These parameters were chosen to mock up a condensed phase
explosive with the ideal equation of state. These parameters give Doy = 8mm/us, and a
steady-state 1-D reaction-zone length of 4mm. For this model, DSD theory gives a Dy(k)
relation shown in Fig. 10, see [1].

5.2 Numerical examples and comparisons

As stated previously, we can obtain the dynamics of the detonation front by solving the
compressible, reactive Euler equations with a DNS. Unfortunately, information like the det-
onation shock speed, curvature of the shock front, etc. are not directly available from a DNS.
But, since the fluid begins to react just after it passes through the inert shock (detonation
front), and the reaction progress is monotone, we may approximate the front location as the
level-curve (contour) A = 0.01, say. And for problems with quiescent upstream conditions,
we know that the detonation shock front will pass a fixed Eulerian point at most only once.
So then it is possible to create a DNS burn table, by sweeping over the computational grid
and searching for grid points where the quantity (A — 0.01) changes sign from one time level
to the next. Again, linear interpolation in time can be used to get an accurate estimate of
the burn time, tPV5(z,y). Once we have this DNS burn table, important quantities such
as shock speed, curvature, etc. may be found. For example, the shock speed is given by
D,, = 1/|Vty|. The front locations are given simply as contours of tfV5(z, y), and curvature
of the shock front is given by (6) with ¢, replacing 9. All the problems we consider represent
difficult tests for DSD, since the deviation of D,, from D¢y is large. Next we give results
from the DNS/DSD comparison.

The first example is a ratestick problem. A ZND detonation wave, initially at x = 5mm
(and traveling to the right), is used to initiate the unburnt explosive material located at
z > bmm, 0 < y < 40mm. An inert confining material (with @ = 0, p, = 1.5gm/cc,
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Figure 10: D, (k) law for ideal equation of state model
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v = 1.4) is located in the region 40mm < y < 46mm. Perfect confinement (reflection) is
applied at y = Omm. CAVEAT is run in Lagrangian mode to handle this multi-material
problem. Also, Az = Ay = .2mm, which puts roughly twenty cells in the reaction zone.
Wawve fronts at various times, along with a spatial history of the detonation velocity are shown
in Fig. 11(a). Notice the slowing of the detonation front at the inert interface, y = 40mm.
This sends a disturbance along the lead shock (and through the subsonic portion of the
reaction zone) which propagates into the interior of the ratestick. T his, in turn, affects the
axial propagation speed and shape of the detonation wave.

Figure 11(b) shows the level set solution to the DSD problem with D, (x) given in Fig.
10, and w,; = w, = 54.7°, and Az = Ay = Imm. The shock front is slowed since the angle
boundary condition is applied at y = 40mm. Notice that the DSD solution calculates the
front shapes well, compared to the DNS. It also captures the axial velocity, and angle at the
interface well.

For comparison sake, the Huygens (D, = 8mm/us) solution is given in Fig. 11(c). A
comparison of wave fronts is given in Fig. 11(d). Obviously, the Huygens solution doesn’t
predict any velocity deficit, nor does it calculate the correct wave shapes.

The second example is a converging channel problem with perfect confinement along the
walls. A ZND detonation wave, again located initially at = 5mm, encounters a 20° ramp.
Once the detonation reaches the ramp, a compressive wave is reflected downwards, and
the detonation velocity increases as a result. See Fig. 12(a) for wave front and detonation
velocity plots. Note that the detonation front is broadly curved, and no “Mach”-like reflection
appears.

Figure 12(b) shows the DSD solution with a linear extrapolation for the converging
branch (D, = 8mm/us — (66.8mm?/us)k). Here, w, = 90° and ws = 54.7°. Notice how well
the DSD solution reproduces the shock fronts. Also shown is the Huygens solution in Fig.
12(c), and comparison of wave fronts in Fig. 12(d).

The final comparison is a diverging channel problem with perfect wall confinement. This
is the same as the previous problem, but the channel diverges at 45°. When the detonation
shock diffracts around the corner, a rarefaction wave is propagated out from the wall, and
the detonation velocity decreases as a result. See Figure 13(a). Notice, at about 19us, the
curvature of the detonation front is decreasing and the front begins to accelerate.

Figure 13(b) shows the DSD solution. Notice, again, how well the DSD results compare
with the DNS. Figure 13(c) shows the Huygens result. A comparison of shock fronts is given
in figure 13(d).

5.3 3-D Seven-point detonation in PBX9502

We demonstrate the ability of a level set formulation to easily handle 3-D multiple front
interaction with the following example. We use the D, (k) relation from Fig. 3, in a cube
with length 64mm. Initially, there are seven spherically expanding detonations, six in an
hexagonal pattern, and one in the center. See Fig. 14. The spherical detonations merge,
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Figure 11: Ratestick Example. (a) Direct Numerical Simulation, (b) Detonation Shock
Dynamics, (c) Huygens Construction, (d) Comparison of shock front locations at 1, 5.4, 9.8,
14, 18.6, 23 us
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Figure 12: Converging Channel Example. (a) Direct Numerical Simulation, (b) Detonation
Shock Dynamics, (c) Huygens Construction, (d) Comparison of shock front locations at 1,

5.8, 10.6, 15.4, 20.2, 25 us
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Figure 13: Diverging Channel Example. (a) Direct Numerical Simulation, (b) Detonation

Shock Dynamics, (c) Huygens Construction, (d) Comparison of shock front locations at 1,
5.4, 9.8, 14, 18.6, 23 us '

29



Figure 14: Seven-point detonation, shock front locations at 0, 3, 6 us

then intersect the edges of the cube, and eventually burn out of the domain.

6 Imbedding and relative motion of the level-surface
curves

Here we discuss the imbedding of a level curve of interest (the shock) and the dynamics of
the relative motion of the level curves in the same family. We do this to develop insight
into 1) why the imbedding idea of the LS method algorithm works so well for a monotonic
D, (k) relation, and 2) to point out restrictions that arise when trying to extend LS method
to include boundary conditions at edges. Boundaries are nearly always present in explosive
applications. In large measure, the boundary conditions force the evolution of the level curve
in our DSD problems. -

To uniquely identify the physical shock, requires that neighboring level curves not cross
each other in a finite time. A crossing of the level curves leads to non-uniqueness in
D,(z,y,t). Then the problem of the propagation of the level curves in z, y-space, described
by (5), is not uniquely posed. In this section we discuss three topics related to imbedding.

In Sec. 6.2 we describe some of the properties of the level-set equation and show how
DSD front theory derived in [8] is contained in the LS method formulation. This discussion is
focused on exposing the mathematical properties of the multivariable, second-order spatial
operator that appears in the LS PDE. The operator type (i.e., whether it is elliptic or
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parabolic) is sensitive to the spatial direction. In turn, this defines the operator type of the
fully time dependent LS PDE (i.e., whether it is parabolic or hyperbolic). This discussion
leads naturally to our demonstrating how DSD front theory, a parabolic theory, is contained
in the LS formulation of the problem.

In Sec. 6.3 we derive an auxiliary PDE for the level-curve spacing. This PDE is used
to study the motion of level curves relative to one another. We use |V4|~! to measure the
local relative spacing of the level curves. A qualitatively interpretation for this choice is that
regions of large gradients in the smooth level-set function correspond to a high-density of
curves (i.e., closely spaced level curves). This at least motivates the name “distance function”
for the quantity d(z,y,t) = ]§¢|’ and why we derive an auxiliary PDE for d.

Our use of a distance function d(z,y,t), shares both similarities and differences with
previous work. Sussman, Smereka and Osher [9] introduced |V (¢)| as a “distance function”
with which to measure the spacing of level curves. Sussman et. al. use (1 — |V|) to drive
a continual renormalization of 1(z, y,t) such that |[V4| = 1. This renormalization is used to
inhibit the formation of large gradients in 9(z,y;t), which otherwise occur and destroy the
solution quality. Unlike their work, we use d(z,y,t) as a passive observer of the evolution
of Y(z,y,t). In a series of papers by Evans and Spruck [10] and [11], the evolution of the
level-curve spacing, for problems where D. (n) —kK, is studied with a “distance function”
of a different type. Their distance function d is also a passive variable. It measures the
signed, minimum normal distance from a given level curve to some nearby point fixed in
space. Points ahead of the curve are signed positively and those behind with a negative
sign. In our earlier discussions, we used this same distance function to set up initial data for
¥(z,y,t = 0). By differencing two such oppositely signed distances, the separation of two
level curves is followed with a variable w = d1 — dy. The evolution equation they get for w
is similar in form to the one we derive. In spirit at least, our discussion follows Evans and
Spruck [10]. The advantage of ]Vzﬁl ~! as a distance function in our application, rests with
the ease with which DSD boundary conditions can be expressed with this d.

Our application is the first to use level-set methods for problems with real boundary
conditions (i.e., not simply using continuation conditions). In Sec. 6.4, we use this auxiliary
PDE for d(z,y,t) to demonstrate how DSD-type boundary conditions influence the spacing
of the level curves near boundaries. To illustrate the issues, we consider the most difficult
boundary situation vis-a-vis the convergence of level curves; the expansion (i.e., diffraction)
of detonation around a corner (see Fig. (16)). Like the LS equation, the d-equation is
of mixed parabolic/hyperbolic type. To simplify the analysis of this system, we introduce
a small amount of additional “diffusion” to the d-equation, to obtain a strictly parabolic
equation for a “viscosity” subsolution (i.e., an equation for a lower bound on d). Using
the existing literature on parabolic PDE’s, we show via a maximum prm(:lpal that d(z,y,t)
remains bounded away from zero.

We begin our discussion by dealing with some simple mathematical preliminaries.
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Figure 15: Geometry of the space of level curves, showing the definition of the local normal
and tangent vectors and shock normal angle Q(x,y,t). The normal distance between two
“neighboring” level curves C, and C, + 6C is d(z,y,1).

6.1 Preliminary Calculations

In this section we introduce the normal and tangent vectors to a level curve at a fixed
Eulerian point and the corresponding directional derivatives. We then derive two auxiliary
PDE’s by taking the gradient of the LS equation to obtain equations for the magnitude
and phase of the gradient vector, Vw Refer to Fig. 15 for a description of the coordinate
geometry. Given a level curve 9(z,y,t) = constant, the instantaneous normal and tangent
vectors at a fixed Eulerian point are obtained by taking the total derivative

from which we get the slope of a level curve
dy  Ys
i tan(f) . (26)

The angle 6(z,y,t) is defined as the angle between the shock normal and the y-axis, where .
6(z,y,t) is increasing in the clockwise dlrectlon In terms of this angle, the normal and
tangent to a level curve are

VU _ @) + cos(0);, i = P Ye) _ cosioni — sin(0);, (27)

|Vl V|

n
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from ‘which the directional derivatives normal and tangent to a level curve are

a-V( )=sin(9)(: )y +cos(8) (), , £-V()=cos(®)( ),—sin(®)( ),. (28)

The equations for the auxiliary variables that we seek are obtained by taking the gradient
of Eq. (26)

Vi, = Vb, tan(6) + 1, sec?() V), (29)
and subsequently constructing
£V (IVyl) = [Vyla-V(6), (30)
and the gradient of the level-set equation
2 (IV9]), + 8V (0), + V¥V (Dn) + DV ([V9]) =0, (31)
where we have used

Vo =alVy|  (A); = i(0),. (32)

Equation (31) is a vector equation. The tangential component yields an equation for the
evolution of the shock-normal angle, #

(0), + Dpi- V(8) = —£- V(D,,), (33)

while the normal component yields an equation for the evolution of |Y77,b|

(IV4l), + Dair- V(IV9]) = —[V| - V(Dn) . (34)

The shock normal angle, 6(z,y,t), and |§¢| represent the phase and magnitude of V.
They describe how the local orientation and “slope” of the level surface is changing. In the
next subsections, we use these equations to show how the level-set formulation relates to our
previous description of DSD theory and how the spacing between level curves evolves. We
restrict our developments to a linear D, (k)-law

Dy(k) = Doy — ak, (35)

where « is a positive constant.
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6.2 Properties of the Level Set Equation

Inserting Eq. (35) for D,(x) in Eq. (5), obtains

Wi+ Dot V() = aL(y) =0, (36)
where L£(v) is the curvature and the operator L is given by

L( ) = alla—;+2a1zaj;y+az2§;,
= V() -a-V(a-V( ) +a-V O (E-V( ),
= £V(EV( )+E-VO (R-V( ), (37)

and the coefficient a;; are the elements of the real, symmetric array

A=t ()

Vel v
= 1—sin®(f)  —sin(6) cos(6)
B ( —sin(f) cos(d) 1 —cos*(f) > T (38)

Now for all real vectors £ = (&1,&2) it follows that since A is real and symmetric that
&r. A-£>0, that is

e b1y — &avb)’
2056 = " g 2 %)

is positive semidefinite for { # 0. From the theory of partial differential equations [7], it
follows that £( ) is not strictly elliptic and therefore Eq. (36) is not uniformly parabolic.
From Eq. (39), we see that £( ) is parabolic (i.e., Eq. (39) is zero) in the direction normal
to the level curve, y — § = (z — ) cot(6), where (Z,§) denotes an Eulerian point on the level
curve. Parabolicity of Eq. (36) requires that Eq. (39) be positive definite. Thus Eq. (36) is
of a hybrid type, and is only parabolic along level curves. Further, when o is identically zero,
Eq. (36) becomes strictly hyperbolic; the eikonal equation of geometrical optics. Thus we
see that the curvature related terms, those proportional to «, describe effects that propagate
only along level curves.

Turning to Eq. (33) for the evolution of 6(z,y, t), we can now understand how our earlier
DSD work [8], which obtained a front theory for the detonation shock that is parabolic, is
imbedded in the LS formulation. To see this, we examine the connections that exist between
the DSD front equation, boundary conditions, and Eq. (36).

The DSD boundary condition is a condition on the angle §. From the orthogonality of
the normal # and tangent ¢ vectors, Eqs. (27-28), it follows that at every point in space
. V(¢) = 0, and consequently
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e cos(8) — 1, sin(6) = 0. (40)

If 6 is prescribed at the edge as in DSD theory, Eq. (40) is then the LS boundary condition
for the DSD problem.

The equation for the evolution of the shock-normal angle, 6 is

(6), + Dt - V(0) = - - V(Dy,). (41)

Since D, (k) is a linear function and & is given by

k=1-V(0), (42)

from Egs. (28), (42) it’s clear that Eq. (41) contains only 6 as a dependent variable, which

with the boundary condition on 8, constitutes a totally self-contained, nonlinear problem for
9 .

(0)c + Do~ V(60) = o - V (- 9(0)) . (43)
Using Eq. (37), we can also write Eq. (43) as

(0)¢ + Deyiv - V(0) = aL(h). (44)

Equation (43) is equivalent to the parabolic PDE, derived in [8], that describes the
evolving shape of the detonation front. The operator on the left corresponds to the rate
of change of # as one travels with the level curve as it expands normal to itself. These
changes are driven by the variations in # that “diffuse” along the level curve as controlled by
of -V (f . 6(9)) Thus our DSD model, for which the variations in the wavefront 8 depend

only information from the front, is contained in Eq. (5). Next we show that |V| ™! is related
to the local spacing between the level curves.

6.3 The Distance Function

To track how the distance between nearby level curves evolves, we introduce a measure of
this distance called the “distance” function, d(z,y,t). Referring to Fig. 15, two nearby level
curves are pictured whose LS values differ by the small amount §C. Pick a point on the level
curve 9(z,y,t) = C, at time t, labeled with = Z and y = 4. Then express 9 on the level
curve ¥ = C, + 6C as an expansion about Z,§

W(&,§,t) + V() - dF = C, + 6C . (45)

Therefore, it follows that the normal distance, ci(i:,@, t) from Z,3 on curve C, to curve
C, + 6C, is given by
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6C
IV (2, 9,1)|
If we assume that initially the curves are labeled by their separation, then 6C = (7 - dF),,
and |V|™! is the scaled distance between nearby curves

A dif = (46)

d=|Vy|™". | (47)

We refer to the d(z,y,t) defined by Eq. (47) as the “distance” function. Returning to
Eq. (34), finds that it describes the evolution of this distance function. Recognizing that
D, = D¢y — ak and k =t - V(6) allows us to rewrite the right hand side of Eq. (34) as

A+ V(D,) = —an -V (£-V(0)) , (48)
which on using the commutation rule
7V (EVO) =89 (2-V0) - (7-V0) - (£-90)°, (49)
and Egs. (30), (47) and the definition of level-curve curvature, can be written as
= c el o 1, = \2
A-(D)=ali ¥ (Et . V(d)) 4 (E ~V(d)> 12, (50)
and then simplified to
LS | Py 2
n~V(Dn)=a(3t-V(t~V(d))+n> . (51)

Substituting Eqgs. (51), (47) into Eq. (34), then yields

(d)e + Dnv- V(d) = o (k2d +£-V (- V(d))) . (52)

Equation (52) is a linear PDE in d(z,y,t) that can be used to follow the evolution of the
distance between level curves. Although the coefficients of this equation depend on the solu-
tion of the LS equation, properties like the sign of the term x2d and the sign and magnitude
of the coefficients appearing in £ - V (f - V( )) (all of which are bounded by -1 and 1) are
known. Because these coefficients have “nice” properties, we are able to get general results
about the solution without actually solving the parent LS equation.

The boundary condition for the d-equation follows directly from Eq. (30) by replacing
V4| by 1/d

t-V(d)+dr-V(0)=0. (53)
Recall that for our problem, ﬁﬁ(@) is prescribed at the edge by the DSD boundary condition.
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Equation (53) is of the form of a linear, Dirichlet-Neumann boundary condition; a stan-
dard form of boundary condition for an equation like Eq. (52). This allows us to get
important, general results concerning how d(z,y,t) responds to DSD boundary conditions.

We conclude this section by describing how the various terms appearing in Eq. (52)
contribute to changing d(z,y,t). For the Huygens problem, for which o = 0 and D,, = D¢y,
d(z,y,t) is simply advected through space at the constant speed D¢y. Thus the spacing of
the level curves stays fixed. Since D,, is know apriori, there are really no issues concerning
imbedding here.

When a > 0, two terms drive changes in d(z, y,t). The term (k2d) acts as a “source” that
leads to increases in d(z, y,t). The term (¢-V(£-V(d))) serves to “diffuse” any concentrations
of d(z, y,t) that develop, out in the direction of the level curve. This term acts so as to flatten
any variations in d(z,y,t). If for the moment we consider problems for which ¥(z,y,0)
depends only on r = /22 + 92 and not on #, then the “diffusive” term disappears and
d(z,y,t) increases for problems in which either the level curves converge on r = 0 or expand
outwards. When symmetry is lost, the “diffusive” term acts to diminish the action of (x2d),
by spreading concentrations of d(z,y, t); it does not act as a sink.

In the next section, we discuss the mathematical properties of Eq. (52) and how boundary
conditions influence d(z,y,t). For this purpose, we adopt a Cartesian coordinate represen-
tation and render the coefficients in Eq. (52) explicit

() + Dy - V(d) = o (s%d + L(d)) , (54)
where £( ) is given by Eqgs. (37 -38).

6.4 DSD Boundary Conditions and Imbedding

The principal DSD boundary condition is the angle boundary condition; the angle between
the outward normals to the shock and the HE boundary is constant. It follows from the
distance function boundary condition of Eq. (53)

£-V(d)+dn-V(0) =0, (55)

that in regions where 7 - 6(9) # 0, the distance function can have a nontrivial gradient
at the boundary. In locations where 6 experiences rapid changes along the boundary, like
where the confinement changes or the explosive has a corner, either £- ﬁ(d) can become large
or d(z,y,t) could go to zero, or both. To illustrate the most difficult boundary issue that
confronts us, we consider the diverging channel problem, with a finite radius of curvature
transition section, shown in Fig. 16.

For this problem, the DSD boundary condition sets the angle between the edge and the
level curves to 90°. If we construct d(z,y, 0) so that it satisfies this edge boundary condition
initially, then (6(z,,t))edqge = (0(2,9,0))eage and the time derivative in Eq. (43) is zero
along the edge, so that
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y<0

Figure 16: The diverging channel problem with an infinite confinement wall. The angle
boundary condition requires that the level curves be normal to the wall.

(at -DVn(n)> d ='(ﬁ.§(9)>edge, (56)

For the problem shown in Fig. (16),

(- 6((9))6@e =r;1>0, (57)

in the region where 6,44 is changing and zero elsewhere. From Eq. (57) it follows that
(at - ﬁ(m) /Dhp)edge > 0 for this problem. Therefore, if (at - 6(&))6@6 > 0 then (Dp)edge = 0,
while if (af - 6’(&))6@6 < 0 then (Dp)egge < 0. In any event, (Dp)eqge Temains bounded so
that & remains bounded. Consequently, the “source” term (k2d) that appears in Egs. (52)
and (54) will remain bounded.

The analysis of the PDE for the distance function, Eq. (54) and the boundary condition
Eq. (53) for the problem of Fig. (16), is most easily carried forward by first modifying Eq.
(54). The change we make is to take the operator £( ), which is not strictly elliptic, and
make it so. Following Evans and Spruck [10], we make £( ) elliptic by adding a small term
€2 to |V9|? to get a slightly different operator

2 82 62

0
L( )= aeuﬁ +20%97—+a

0z0y 228—?,/2 ’ (58)
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where ) .
€

A=A+ | =———|T-A), 59

<|V¢l2+62)( ) (59)

and where

()= >+(ﬁ£:§>(v2( -2 ). (60)

From Eq. (37) we see that V2( ) — L( ) is the second-order directional derivative in
the normal direction. Recall that £( ) corresponds to diffusion only along level curves.
Think of the €2 as adding a small amount of “diffusion” to Eq. (54) in the direction normal
to the level curve. This allows d(z,y,t) to “diffuse” in all directions, which contributes to
further decreases in d. Thus we see that the O(e?) term in Eq. (60) serves to regularize the
parabolic character of £( ) in the direction normal to the level curves, thereby producing a
strictly elliptic operator

2 _ 9 9 )
2, s = (flwzllwglz%) iwleue? ((glegwfiwy) ) >uE+e),  (61)

where p is a positive constant.
- Replacing £( ) in Eq. (54) by £¢( ) and using £¢( ) > £( ), it follows from the work
of Crandall, Ishii and Lions [12], that the resulting equation
(d); + Desh - V(d) — aL(dS) — ar?d* =0 (62)
defines the “viscosity” subsolution of Eq. (54), where

d*(z,y,t) < d(z,y,t) . (63)
Equation (62) with x? bounded, together with the boundary condition
(t- V(df))edge + (d)edge (- 6(9))6@6 =0 , (64)
where (7 - V(6))eage = 75 or 0, and the initial condition
de(x) y, 0) Z 0 M (65)

constitutes a strictly parabolic, linear problem [7]. Since the problem is parabolic, it satisfies
a maximum principal (i.e., the maxima and minima occur only on the boundaries). Using

this fact, Pao [13] has proved a Positivity Lema which states that in the entire problem
domain

d(z,y,t) >0 , (66)
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unless d*(z,y,t) is identically zero. The proof relies only on % in Eq. (62) being bounded
and

(A-¥V(©) >0, (67)

edge —
in Eq. (64). In the limit € — 0, we have

PI% d*(z,y,t) — d(z,y,t) >0 . (68)

Thus, even though we expect that d(z,y,t) becomes small at the sharp corner that results
when r, — 0, it follows that d(z,y,t) # 0. Although problems can be expected with
numerical solution algorithms when d(z,y,t) becomes small due to grid resolution effects,
the mathematical description of d near the boundaries remains well posed.
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