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We outline an asymptotic theory for the dynamics of detonation when the radius
of curvature of the detonation shock is large compared to the one-dimensional steady,
Chapman-Jouguet (CJ), detonation reaction-zone thickness. The theory includes the lim-
its of near-CJ detonation, and when the normal detonation velocity is significantly below
its CJ-value. The curvature of the detonation can also be of either sign corresponding to
both diverging and converging geometries. In particular, we derive an intrinsic, partial
differential equation (PDE) for the motion of the shock surface, that is hyperbolic in char-
acter, and is a relation between the normal detonation shock velocity, shock curvature
and the acceleration of the shock along its normal. The derivation includes consideration
of additional time-dependence in the slowly-varying reaction-zone than that considered
in previous works. A simpler version of the shock evolution equation is derived in the
limit of large-activation-energy. Illustrative examples of numerical solutions of intrinsic
hyperbolic evolution equations are presented.

1. Introduction

Previous work, Stewart & Bdzil (1988), Bdzil & Stewart ( 1988), has developed an asymp-
totic theory for weakly-curved, slowly-varying detonation, that propagates near the CJ
velocity, D¢, for the explosive, and has found that the normal detonation shock velocity
D,,, is a function of the total shock curvature, . We call this relation, the D,, — k - rela-
tion, and it is a PDE for the motion of the detonation shock surface. The functional form
of the D,, — & - relation follows from an asymptotic argument and is solely determined
by the explosive material’s equation of state and reaction rate law.

In this paper, we extend the asymptotic analysis by considering additional time-
dependence which must be considered when the normal detonation shock velocity de-
viates significantly from its Chapman-Jouguet (CJ) value. The new description includes
both accelerating and decelerating detonations, and the curvature of the detonation can
be positive or negative for diverging (convex) or converging (concave) geometries. The
only restriction is that the detonation structure has an essential sonic character. This
analysis is a significant extension, and replaces the older theory where the detonation
normal shock speed is, by assumption, restricted to be near-CJ. In particular, this new
theory, re-introduces the time derivatives, which are absent in the older theory. However,
an assumption of slow-variation in time, measured on the scale of the particle transit time
through the reaction-zone, is still required to carry out a rational set of approximations,
where the one-dimensional (1D) steady structure holds to leading order.
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The asymptotic technique for analyzing the quasi-steady equations in intrinsic coor-
dinates, used in Stewart & Bdzil (1988) and elaborated on in Klein & Stewart (1993),
involves an expansion technique in the U2 — X plane, where U, is the normal velocity in
a shock-attached frame and X is a progress variable for a forward exothermic reactions.
There are essentially two layers, a Main Reaction Layer (MRL), which is a layer that
connects the desired (U,, A) integral curve to the shock boundary conditions at A = 0,
and a Transonic Layer (TSL), that connects to the singular point at the intersection
of the sonic and thermicity locus, near the end of the reaction layer, with A near 1.
Matching the expansions from either side gives the D, — k eigenvalue relation, albeit in
a somewhat tedious fashion. (When the dimensionless activation-energy is large, then
the MRL has a induction-zone (IZ) layer near the shock, and it is appropriate to con-
sider a distinguished limit that reflects how the shape changes of the shock can affect
the post-shock temperature. This analysis was recently considered for the steady case,
Yao & Stewart (1994).)

The quasi-steady eigenvalue problem, posed in section 4., can be solved numerically,
for finite k, by an iterative shooting technique that starts from the shock and integrates
towards the sonic point or vice-versa. Numerically, this procedure is found to be quite
robust. For asymptotically small curvature, the numerical shooting technique is equiva-
lent to a method of successive approximation (MSA) technique, which is an alternative to
the layer expansion technique. The MSA technique formally integrates a nearly conser-
vative form of the equations in the normal coordinate, from the shock to the generalized
CJ-point to obtain integral equations. Integral equations are then used to generate non-
singular asymptotic expansions where the first approximation is a 1D-steady state. The
procedure is general and might be useful for substantial extensions of the related theory;
specifically, complex chemistry. It would seem that in most cases that we have tried so
far, only one iteration is really all that is required to obtain the essential asymptotic re-
sults. Like the numerical approach, the technique is likely to be robust. In what follows,
we present the derivation of an unsteady detonation structure that includes acceleration
effects using the MSA technique, however we have also carried out the same calculations
using the layer expansion procedure. The details of the layer expansions can be found in
Yao (1995).

In section 2., we cite the governing equations, explain the intrinsic, shock-attached
coordinates used, and present the reduced equations that are analyzed subsequently.
Section 2. is read with the help of Appendix I and II, which give details on Betrand-
intrinsic coordinates and the reduced governing equations, respectively. Section 3. briefly
reviews the one-dimensional steady and quasi-steady states. Section 4. derives the result
for quasi-steady, near-CJ detonation and in particular uses the MSA-technique in an
integral formulation. Section 5. derives the main asymptotic results for slowly-varying,
unsteady, weakly-curved detonation and culminates in the calculation of the D,, — D,, —
- relation. Results are displayed for two representative cases, where the equation of
state and kinetics parameters correspond to models for condensed-phase and gas-phase
detonation. Section 6. separately considers the special case of large activation-energy
and derives the D,, — D,, — & - relation in the distinguished limit that shock curvature is
small on an induction length scale, which is a function of the activation-energy. Section
7. displays some simple numerical solutions that solve for the motion of the detonation
shock that obeys representative D,, — D,, — & - relations.
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2. Governing equations

A standard model of explosive materials is adopted; a compressible Euler fluid, with
exothermic reaction. The basic mechanical variables are the velocity, , the density p and
the thermodynamics pressure p. The specific volume is v = 1 /p. Chemistry is modeled in
the equation of state by introducing an exothermic chemical reaction, represented by the
progress variable, A. Specification of an equation of state (EOS) of the form e(p, p, \),
and a rate law, r(p, p, ) for ), is assumed to describe the explosive.

We will further assume the explosive has a polytropic equation of state and an Arrhe-
nius form for the reaction rate,

e= %7—17 —QA, 7(p,p,\) = k(1 — A’ e E/®/p), (2.1)
where 7 is the polytropic exponent and @ is the heat of combustion, and k, v, and E
are respectively the pre-multiplying reaction rate constant, the depletion factor and the
activation-energy. The square of the sound speed is ¢2 = vp/p. This equation of state is
the appropriate one for a description of a gaseous explosive. The polytropic equation of
state is often used to describe the expansion of explosive products by allowing v to have
artificially higher values than that usually allowed for gases, i.e. v ~ 2.5 — 3, with initial
densities that are approximately one thousand times larger than those for typical gases.
This EOS also has the advantage that a relatively large body of theoretical results exist
for it, and which include asymptotic, linear stability and resolved numerical, studies.
The Euler equations are given by

. Di -
Q£+pv{[:07 pf;f'*_vP:Oy "g_:'l'pg_'lt):(), %;\=T(p,p,/\), (22)
where D/Dt = 0/0t + @ - V. We will assume that the upstream state is quiescent
with @ = 0, density pp and ambient pressure po. For convenience, we will assume that
the lead detonation shock is sufficiently strong so that the strong-shock approximation
holds, (valid when the ratio of the shock pressure to the ambient pressure is very large,
Le. ps/po >> 1.) Also for the strong-shock approximation, the CJ detonation velocity
is given by D%, = 2(y? — 1)Q.

We now adopt the notation convention where a quantity with a tilde superscript refers
to a dimensional quantity and the quantities without a tilde are dimensionless quan-
tities that are scaled with respect to the dimensional unit, unless otherwise specified.
In particular, the length, velocity and time-scales are given by Z,,, Doy and l., /DC J
respectively. The length /,,, is taken to be a characteristic 1D, steady reaction-zone
length. In section 5., we identify /,, as the steady, plane-CJ, half reaction-zone length;
the distance from the shock to the point of half-reaction for a steady, plane-CJ det-
onation. In section 6.. we identify ¢,, as an induction-zone length, that is commen-
surate with the 1/2-reaction length. From (2.1b) we identify the dimensionless rate

constant, k = l::grz / D¢y. The density scale is gy and pressure scale is ﬁoD&JQ.‘ Con-
sequently the sound speed, reaction rate, curvature and heat of combustion appear as
c¢=¢/Dgy, 1 =7,/Dcy, K=kl q= Q/D%; =1/[2(v* - 1)].

Later, in the paper, we refer to parameters that use Erpenbeck’s scales, Erpenbeck ( 1964).
In his stability studies, Erpenbeck used the density scale, gy, the pressure scale, fy, and
the velocity scale as the quiescent sound speed, ¢. He chose the characteristic length
to be the 1/2-reaction length. Erpenbeck’s scaled activation energy and the scaled heat
release are defined by E = E/(fy/p,) and Q = Q/(Po/po), respectively.
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The (dimensionless) normal strong shock relations for an ideal gas moving into an
ambient atmosphere, reduce to _
v+1 ‘ 2 _ v—1
Ps = "7 Ps = Df‘fy——l-—l’ Upn=tp— Dy = —‘Dn?_l_—l,
Ut = 0, /\3 = 0, (23)
where the n— and ¢— subscripts respectively refer to the normal component of the shock
velocity and the tangential component(s) as defined by the shock normal.

2.1. Intrinsic geometry and shock-attached coordinates

In order to make the analysis tractable, the equation of motion must be written in a
suitable form. In what follows, we use intrinsic, shock-attached coordinates. The coor-
dinates are specifically based on Betrand curves whose coordinates are instantaneously
normal and parallel to the shock surface. Details of the transformation between Carte-
sian and the Betrand-intrinsic coordinates are described in Appendix I. For brevity, we
restrict the presentation that follows to two-dimensions (2D). In the extension to 3D,
the curvature that appears in the theory is the sum of the principle curvatures. The
shock surface can be represented quite generally in terms of laboratory-fixed coordinates
(z,v) by a function 9(z,y,t) = 0. This equation constrains the lab-coordinate position
vectors in the surface to £ = Z;(z,y,t). The shock surface can also be represented by
a surface parameterization £ = Z;(¢,t), where £ measures length along the coordinate
lines of the surface. The outward normal (in the direction of the unreacted explosive)
and unit tangent vector in the shock surface, (which form a local basis) are given by
f = V)|V, = 0&,/0¢. The total shock curvature is given by

K(€,t) =V - A. (2.4)
Finally, the intrinsic coordinates are related to the laboratory coordinates by the
change of variable given by

= fs(g’t) + n’f&(&,t), (25)
where the variables n,¢ are respectively the distance measured in the direction of the
normal to the shock wave, and the arclength measured in the shock surface along the
principle line(s) of curvature. A more complete description of the Bertrand-intrinsic
coordinates is found in Appendix I.

2.2. Reduced equations in the shock-attached frame

The governing equations are transformed from a representation in (x,y,t)-coordinates
to (n,&,t)-coordinates according to coordinate transformation (2.5). The calculations
required are straightforward but lengthy. In particular we note, that the normal shock
velocity and curvature are only function of £ and ¢, i.e. D,, = D,,(&,t) and & = s(£, t).

Let Up = un — Dy, be the relative normal velocity in the shock-attached frame. Ap-
pendix II shows that under the assumption that the scaled curvature, x — 0, and that
the structure of the flow immediately behind the shock, (n < 0,n ~ O(1) ), has weak
transverse variations, that the transverse velocity ug can effectively taken to be zero,
then the following reduced equations are accurate to O(x). We take these equations to
be the starting point for the analysis that follows.

op O .
2t o (pUy) = —kp(Uy, + Dy,), (2.6)
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ou, . oU, 10p :
— - = 2.7
ot Do+ Un on  pon 0 27)
Oe Ge p (9p op
Z U, 2 (% g 9P 2.
ot +U"8n 02 (Bt +0 an) 0 (28)
o)) 1))

Next we present the same equations in a quasi-conservative form by placing all the
terms where the curvature explicitly appears, and the time-dependent terms on the right-
hand side. The right-hand side is associated with small corrections to the essentially, 1D,
steady flow. We use the notation (), = 0/0t|n,e. We further assume that the time-
dependence of the flow is slowly-varying so that 9 /0t ~ o(1) as k — 0. As mentioned in
Appendix II, for the purpose of further calculation, we replace D, by its approximation,
D, ;, and write

a(pl,
(g ) = —kp(Upn + Dy) - Pt (2'10)
n
A(pU2 +
_(p_é;l,*p) = —p,tUp — kpUp (Uy, + Dy) - P(Un,i + Dny), (2.11)

% (2Un + —~—7_ 1C —q)\) = —(Un,t +Dn,t)
1 1 py Y P

- AL i —qght). 2.12
Un<7—1p Y =120 q/\’> (212)

The rate equation can be written as

12)) r A t
= = 2.
on U, U, (2.13)
The master equation
(c? - Ug)%—[ﬁl— =qr(y—1) — kc®(Uy, + Dy) +Up(Upt + Dy g) — %, (2.14)

is an alternative form of the energy equation, that is used as an auxiliary equation, but is
not independent. These equations describe the flow and must satisfy the (strong) shock
boundary conditions at n = 0.

2.3. The generalized CJ conditions

Wood and Kirkwood (1954) first pointed out the essential character of the nonlinear
eigenvalue problem that defines the relation between curvature and the normal detonation
speed. In particular, they argued that the ordinary differential equations of the quasi-
steady, diverging, near-CJ, detonation had to obey both the shock relations and the
" generalized CJ conditions”, at a sonic point near the end of the reaction-zone. This
arises simply from the basic properties of the Euler equations, and the master equation
exhibits the special character of the sonic point. Suppose the flow has a sonic point that

n=c-Ul=0, (2.15)
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then equation (2.14) is satisfied at that point, in general, only if, the right hand side,
vanishes simultaneously at that point, i.e.

qr(y~1) = KA(Un + D) + Un(Up s + Dy y) — % =0. (2.16)

The pair of conditions (2.15) and (2.16) taken together are called the ”generalized CJ-
conditions”.

3. One-dimensional steady and quasi-steady states

When the time derivatives and curvature are absent, the conservation laws, given in
the preceding section can be integrated to obtain the Rankine-Hugoniot (RH) relations

pUp = —D,, (3.1)
1 2 C2 _ 1 2
Ui+ —aA=3Da (3.3)

The solution of this algebraic system for Uy,,v = 1/p and p in terms of A and D,, is

y—£ = y-—£ 21+4¢

U, = -D, ) = ) =D, R 3.4
y+u "TyF0 P y+1 (34)
where
£=4/1-)/D,2
Also the sound speed squared and the sonic parameter are given by
2 2 7 2 2 D,*
=Dy ———(Hv -1+, n=c"-U*= Ly —4). 3.5
=00+ -0 69)
The distribution of the reaction is given by the integral
A .
n= / %df\, (3.6)
o T

which can be inverted to obtain A(n,t), where time appears parametrically. Note that
sonic parameter 7 is proportional to £, hence the flow is sonic where £ = 0, or whenever
Dz =\

If the flow is steady and the detonation is overdriven with D,, > 1, then £ > 0 for all
0 <AL If D, =1, the CJ-case, then £ = 0, when A = 1. If the wave is underdriven,
D,, < 1, and the sonic point exists for A = D? < 1 with incomplete combustion at
the sonic point. An underdriven 1D detonation cannot be a steady wave throughout
all space, however it may still be quasi-steady in some regions. The steady relations
formally derived for D, < 1 can be used if some portion of the wave, is quasi-steady;
for example, between the shock and the sonic point. As we will see this possibility
leads to the descriptions of unsteady detonation that travels at sub-CJ velocities that
have a simple description in the region between the shock and sonic point. Overdriven
detonation may also have a sonic character, so long as D,, is close to one.
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4. Quasi-steady, near-CJ, curved detonation

Here we briefly review the essential aspects of the theoretical results for quasi-steady,
near-CJ, curved detonation. The emphasis is on illustrating the eigenvalue relation
between the normal detonation velocity D,, and the curvature x. These appear in
Stewart & Bdzil (1988), Klein & Stewart (1993), and most recently in Yao & Stewart (1994),
for large-activation-energy. Layer asymptotics are used to derive the results, with asymp-
totic descriptions near the shock, in the main reaction layer and near the sonic point,
~ and the D,, — k - relation is found as a consequence of matching the expansions. However
in our review, we present a new technique that obtains the previous formulas, based on
approximation to integral equations rather than differential equations.

The mathematical character of the structure problem is described simply in the U2 — X
- plane. For the reduced equations, (2.10)-(2.12), set 8/8t = 0, and divide the master
equation (2.14), by mass equation (2.10) to obtai ‘

dUn _ Up®  Uyl(y — 1)gr — 62U, + D,)]

4.1)
dX ™ r(c?2 — U2) ’ (4.1)
subject to the shock boundary condition
v-—1
=———D,. 2

The reduced Bernoulli’s equation (2.12) is integrated to obtain the following expression
for c?,

2 (=10 A
c’ = T(Dn Un) + m

The integral curves in the U2 — ) - plane are governed by the locus ®,7 and r equal to
zero. When the shock is convex, with x > 0, there is a saddle point at the intersection of
n=c?-U2=0and ® = (y—1)qr— #c(Up+ Dy) = 0. Integral curves leaving the shock
point Up = —(y —1)/(y + 1)D,, at A = 0, for fixed D,, (say), without a precise value of
K, do not pass through the saddle point and have unphysical structure. Hence there is
a unique (eigenvalue) relation between D,, and x to accommodate passage through the
saddle singular point.

Calculation of the D,, — & relation can be carried out in a very simple way as follows.
First we find an integrating factor for (4.1) that corresponds to the plane case for k = 0.
This corresponds to multiplying the above equation (4.1) by the factor —(y + 1)(c? —
U?Z)/U2 and recombining the result to obtain an equation equivalent to (4.1),

(4.3)

d [_/\_ (v*-1)D2

d _ 20+ D) Un + Dy)
dx | U, U, N )

rU,

Note that if the above equation, with x = 0 is integrated, with the integration constant
evaluated at the shock, one obtains precisely the result that can be obtained from the
Rankine-Hugniot relations (3.1) - (3.3), which is quadratic in U, and expresses conser-
vation of energy throughout the wave structure.

Now integrate (4.4) from the shock to the singular point at A\ = Acy to obtain the
result at the CJ-point

+(v+ 1)2Un} (4.4)
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AcJ (v -1)D2
Uy (Un)os

Acy 2
2%(y + 1) / CUn + D) 5. (4.5)
0 rUp

We obtain a correction to the plane value of U,, (i.e. x = 0 value), by an iterative
procedure that uses the 1D, quasi-steady CJ solution, (with U, = —(y — €)/(v + 1),
=7y —-01+2)/(y+1)? and £ = /1 - ]X), as a first approximation in the integral
in (4.5), that results in the new approximation

2+ (7 +1)*(Un)os +27Dp(y +1) =

A (v? )
(USJCJ * Un)es 2+ (y+1)2(Un)cs +2v(y +1)Dp =
= 2k(y + 1), (4.6)
where
. 1 Aca (1 +£)2
=G+ / OR (4.7)

Enforcing the sonic condition with ¢ = U2, in Bernoulli’s equation (4.3) obtains the
condition

W2or = T2+ 2o, (48)

Using this result in (4.6) to eliminate (U2)cy, and dropping O(x?)-terms obtains the
formula

D2 = \gy — 2k¥2 D, 1. (4.9)
The D,, — k relation is found once A\gy is estimated. This estimate comes from the

application of the thermicity condition, ¢(r)cs(y — 1) = &(c®)cs[(Un)cs + Dp] which
shows that for D,, close to one and k small,

Aes=1— (k)Y +... . ‘ (4.10)
Using this result in formula (4.9) obtains

D,=1-ry’I - (z k)Y, (4.11)

where z, = 272/ {(,), +1)%kgy], and where ko = ke?/<*© is the leading order value of
state-dependent reaction rate pre-multiplier, evaluated at the 1D, CJ-state.

The formula (4.11) agrees precisely with the results found in Stewart & Bdzil (1988)and
Klein & Stewart (1993), derived for 0 < v < 1. Appendix III has details about the lim-
iting form of the formulas for v < 1, and includes the logarithmic dependence on x for
v = 1. Results for the limit of large activation-energy are contained within section 6.
Importantly, all the results found in the previous papers are contained in our formula
derived here. Note that, only one iteration of the proper integral formulation of the
problem posed in the U, — X plane is needed. This procedure stands in contrast to the
more complex expansion techniques of the previous works.
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5. Slowly-varying, unsteady, weakly-curved, detonation

Here we add the effect of the normal acceleration of the detonation shock, and calculate
its influence on the dynamics of the detonation shock. In particular, we derive an evo-
lution equation for the motion of the shock surface in terms of intrinsic time-derivative
of the normal shock velocity, D,,, the shock normal velocity D, and the curvature «; a
D, — D,, — k-relation. While we are still considering slow-time variation, on the scale of
the particle transit time through the reaction- zone of the detonation, we distinguish the
results derived here as containing more time-dependence than that considered previously.
Hence the description is distinguished as slowly-varying, unsteady in contrast to the older
theory for which the new time-dependent effects are absent . When it is appropriate to
neglect the shock normal acceleration term and set D,, = 0, the previously derived D,, —k
relation is recovered. . ,

We start by integrating equations (2.10) - (2.12) from n = 0 to the CJ point, ncy,
and apply the strong shock boundary conditions to obtain integral equations. The first
approximation to the solution is the 1D, quasi-steady CJ solution, and it is used to
approximate the integral residual terms on the right hand side of the integral equations,
which in turn yeild higher-order approximations. For the purpose of generating the
corrections, we assume that the detonation velocity and the state has the explicit form

Dy =D+ kD (5.1)
and '
’Y"“‘e 7 'Y—e / 21+e 7
=_D —_—_— = —_— .
U, ———7+1—I—ﬁU,vwa+lr—lv-/-w,p D,y+1+/€p, (5.2)

where £ = /1 — A\/D2. To keep notation to a minimum, a * subscript refers to the leading
order approximation and a prime superscript is associated with the correction to that
approximation, e.g., U, = U, (¢, D) +xU’. We represent the leading order approximation
to Dy, (Dy)«, by a plain D, where it would appear. All that is assumed for now, in
the various expansions (illustrated by the expansion for Up) is that the correction term
kU’ ~ o(U) as k — 0. The resulting approximation to the integral equations listed
below, have been further simplified by using the first approximation in the integrals on
the right hand side of (2.10 ) - (2.12). Finally we also use the rate equation (2.13) to
change the independent variable of integration from n to the progress variable A to obtain
equations for the approximations of p, U, pand D,

n
U + Dn(t) = / [~5pu(Us + D) — p, 4]dn (5.3)
0
n .
pUZ +p— D2(t) = — / [(o« —1)D ¢ — sD(U, + D)]dn, (5.4)
0
1 4 e? 1 9.\ /n Dx ¢t D 1=
§Un -+ o 1 — q)\ - §Dn(t) = A [——5 - (1 + —U—*)D,t]dn (55) ’

One calculates the approximate state at the ClJ-point, ncy, where \ = AcJ, to obtain
an approximation to the fluid state there. In particular, it is necessary to calculate the
integrals,

ncJ n P
/ (psx,t) dn, and/ = i
0 o D
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This is done most conveniently using Liebnitz’s rule, which we illustrate with the integral
over p.:. Rewrite the integral as

- rmog 8 oy Ancy ; ‘
L an= 2 ([ pudn) - (00c, 2202 (5.6)

In turn, 8(ncy)/8t is estimated from differentiating with respect to time, the integral of
the distribution of n, i.e.

a0 e e

If we use the rate equation (2.13) to convert the first integral on the right hand side of
(5.6), we combine the result to get

ngcJy Acs ,
/0 (px,t) ARt = % {/0 ELMUnd/_\} ) (5.8)

T—/\’t

Finally, if we use the expressions for p. and U,, (which contain implicit time depen-
dence through D), and neglect A, then one finally obtains

ncJ 9 Acy ¢
/0 p*,tdﬁz 5‘5 .DA ;d)\ .D,t. (59)

By evaluating (5.3) - (5.5) at the CJ-state we obtain a set of Rankine-Hugoniot-like
conditions that determine approximations to the CJ-state,

(pUn)cs = —Dn + KI1D* + J1 Dy, (5.10)
(pUZ)cs +pes = Dn® — kI,D®* + 1, DD, (5.11)
1, o c; D,? ‘
-2-(Un)CJ + N — 1 - qACJ = T - (Il + JQ)DD,t, (512)
where the reaction rate integrals Iy, I3, J;, J2 are given by
1 At (148) 1 /ch (y=0(1+2)
I = dX\, I, = 0 2ldA,
Gl o gy,

/\cJ — /\CJ
0 0 T

(v+1)2 T
_ 1d(DL) 1 d(D%L3)
Jl = 5 dD 5 J2 = _EE—TD_ (5.13)

The formal algebraic solution of equations (5.10) - (5.12) subject to the sonic constraint
that ¢ = U,%, in fact determines the state pcs, (Un)cs, pos and a condition on the speed
D, in the same way as is obtained for the simplest case of a steady, plane, CJ wave.
For our present purpose the algebra for the states, is solved simply in a few steps. Step
one uses the mass equation (5.10) to replace p in favor of U,. Step two divides equation
(5.11) by p, uses the replacement of p in terms of U, from the previous step, and replaces
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p/p by ¢*/~. Now the sonic condition ¢ = U2 can be used to obtain an equation for U,
alone; which is quadratic, but has the common factor U,,. The relevant root is the other
factor which obtains the solution for U,

U — v [D?2—kI,D®+ I,DD ]
" v+1 [D,—kLD2—JDy]
An important consequence of the factorization (from the application of the sonic condi-
tion) is that the CJ state is linear in the perturbation to the leading order state. The
result for U,,, and the sonic condition ¢ = U,% can then be used in the remaining equation
(5.12) to obtain condition on D,,, which in fact is a condition on D, Dy, k and Agy,

(5.14)

2 2 [D,,zl - iiIng +11DD’t]2 P2
Dn=Acs+7 { [Dn — k[ D2— Dz ~n |
+2(y?* = 1)(I; + J1)DD,, = 0. (5.15)

One can write the formal expressions for pcy and pcs by back substitution.

The algebratic solutions to this point are formal and are further reduced by only
retaining the first corrections in the curvature, £ and the unsteadiness represented by
D ;. Thus we obtain the reduced expression for the states at the CJ-point

’)’ ’)’ Dt. ot
= — 4+ — ((2I; — L .
vey 7+1+7+1[(I1»I2)D+(I1+2J1)D]a (5.16)
Y Y ’ 2
= p_ — L,)D .
(Un)cs 1P poan [vnp + 61— L)D?* + (I + J1)D,] (5.17)
2 ' o )
— 'I__
poy = po + P [£(2D' — I,D )+ 5LD,], (5.18)
2nN2 2
- +2 D'+ (I, - I,)D I + J1)D,], 5.19
(c)cs G T ['i( + (I = 2)D*) + (I + J1)D 4] (5.19)

and a reduced (D — D, — K — A¢y)-relation,

D} — Aoy + 26y (11 — I;)D? + 2DD [(v* — 1)(I1 + J2) + ¥ (I + 1)) =0.  (5.20)

In most respects, equation (5.20) is the key result and holds generally for slowly-
varying, weakly-curved detonation structure that has a sonic character. The result is
not restricted to Dy, close to one, and D,, may differ from its CJ-value (one), by an O(1)
amount. Also when D; = 0, D = 1, and Agy ~ 1, one recovers the D,, — x formulas
discussed in the previous section. Also, D, can be greater than one provided that D,, ~ 1,
and the formula (5.20) still applies. This corresponds to a slightly overdriven detonation,
and section 6. discusses this case in the context of large-activation-energy. While the
above formula is quite revealing and contains much of the information needed to write
down the evolution equation, the condition imposed by the thermicity condition must be
considered, and that is discussed next.

5.1. The thermicity condition

If Dy, is appreciable different and below one (i.e. to sub-CJ), the balance in the ther-
micity condition (2.16) at the generalized CJ-point, is between the reaction and time-
dependence, (unlike the near-CJ case where it is between curvature and reaction). Recall
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that the flow approaches sonic when ¢ = \/1 — A/D? — 0. Thus £ = 0 corresponds to
Acy = D? to leading order; however a finer estimate is required in order to obtain closure.
The leading order result, leads to an important conclusion. If D < 1, then Agy < 1, thus
the reaction rate at the sonic point (r)cy, is necessarily O(1), and cannot be balanced by
the small curvature term xc?(U,, + D, ), found in the thermicity condition (2.16). Thus
the reaction must be balanced by local unsteadiness, which can be induced by the sonic
character of the flow.
For the purpose of analyzing the state in the thermicity condition we write

Dn=D+kD' +..., \gg=D*-XN+..., (5.21)
where the order of A’ ~ O((D,;)?), and is to be confirmed by the analysis. Thus a

finer estimate for £ near the sonic point is £ = /A /D?. The balance of reaction and
unsteadiness is illustrated in the derivative £;. From the definition of £ one finds

1 1 A
bi=-—=|—= =D, ). .
=7 ( Mt ,t) (5.22)
This formula shows that £; can be O(1) if the flow is quasi-steady, and the flow state is
close to sonic, i.e. £; can be calculated as the ratio of two small terms. Since £ ~ VN
near the sonic-point, we use the definition of £; to obtain an independent formula that

can be used to estimate X,

N = D? [ ! (~ Ades |, pp t)] ’ >0 (5.23)

(t)csD? 2 ’ -
This formula suggests that when D < 1 and (£;)cs ~ O(1), that A ~ O[(A )4, (D)%,
and can be neglected if the time-variation is sufficiently slow, if 9/0t ~ O(k) (say).
When D — 1, X can still be small, consistent with Acy — 1, provided that (£+)cs — 0.
This last property is shown from the leading order thermicity condition, expressed at the
generalized CJ-point, which is a balance of reaction and time-dependence, and gives the
leading order condition,

a(y = Vres = 2D2(Ty"_':1T(£,t)CJ- (5.24)

At the next order of approximation, the thermicity condition (2.16) contains the un-
steady terms U; and p; which are found approximately by differentiating the respective
leading order approximation to U and p, to obtain

¥ D
U = — D i) ceey
(Ut)cs poa ,t+,y+1(,t)CJ+
2D D?
(Rt)CJ = pors lD’t + Py 1(f,t)c,]+... . (5.25)

For the present purpose, we assume that the reaction rate can be expressed as depletion
factor times a state-dependent rate constant of the general form, = (), ¢2), and expand
appropriately. To simplify notation in what follows, the subscript CJ or a plain variable,
without a sub- or super- script, will identify the leading order, or leading order CJ-state,
and a prime super-script will be used to define the correction to the state. Expansion
of the thermicity condition (2.16) in a straightforward manner obtains the perturbation
condition
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a(y = D[=(r\)esX + (T,cé)CJ(c2)’] - n(cz)cJ731 -3 z1)2 DD,
= 14 U' - Drv'] =0 5.26
+ﬁy—+—1(,t)‘CJ[’i — Drv'] =0, ’ (5.26)
where
(ra)es = —v(r)cs/(L= D), (ra)es=0(r)cs/[ (o). (5.27)

The c2-perturbation is known from the U 2-perturbation, (c?)! = 2Uq kU’ ; the expression
for (£+)cs is calculated from (5.24), and the U- and v-perturbations at the CJ-state
were previously determined from the RH algebra, (5.17) and (5.16) are listed here for
convenience: KU’ = —[y/(y+1)] [sD’ + k(I — I,)D? + (Ii+J1)Dy)] and kv’ = [y/(y+
DI[(2 — IL)D + (I, + 2J;) D, /D] .

The correction to the thermicity condition, (5.26) is a linear relation in the quantities
N,&D', D4 and . A second linear relation follows simply from the sonic condition (5.20).
By substituting the expansions for D;, and A¢y into (5.20), with the limit of integration
in the integrals taken to be Acy = D2, one obtains

2DD'k + XN +26y*(Iy — L)D® + 2DD 4[(v? — 1)(I; + J2) +9*(Iy + J1)] = 0. (5.28)
The solution of (5.26) and (5.28) for M and kD’ , obtains

r__Bbi—2Dby . (r)csbi + by

S i = ACJA T 02 5.29
B+2D(rn )y " B +2D(r,\)cs (5:29)
where
B=—(r) [i_w ” 0 ] (530
¢/ 2D (Y +1)2(hes ]’ '
where by and b, are
b1 =buik +b12 Dy, by = byyk + bya Dy, : (5.31)
with the coefficients
b = —29*(I - I,) D?, (5.32)
biz = =2Dy* (I + J1) + (v2 — 1)(I1 + o)), (5.33)

| s_ 7’ 1 ‘ 27 0
b21 =2D°— +7‘CJD[§(3.[1 - 2[2) - 2D “(Il — 12)64—'], (534)

(v +1)? (y+1)2 CJ
baa=6D—_ 170 Lo Lgpy 2D2—72—(11 L2, (5.35)
Y+1 D2 (v+1)? ¢,

An independent equation for X is obtained from (5.23), and is needed in order to
calculate a uniform approximation to the Dy, — Dy, — k-relation, for D close to and below
one. This is reflected in the fact that while )\ is generally small and can be neglected for
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D < 1; it strictly cannot be neglected in the limit D — 1. Note that in (5.23), (A +)cJ
appears, and can be estimated from the rate equation as

N\ _ (Mes _ [P o)
(at)CJ = "oy JD, where J —/0 W—d/\' (5.36)

Using the above estimate and the expression for (£)¢y from (5.24) in (5.23) obtains an
estimate for A’ in terms of D and D

, _ G(D) 2 _ 2y TCy i 2
N = 2B 07 where a(0) = [ (24 522 5)] - e

Finally, we use the above result, (5.37) and the definition of D, = D 4+ xD’, in (5.29
a, b) to rewrite them as two relations between D4, Dy, & (in terms of the parameter D)

C\D?% + C3D + C3k =0, (5.38)
[b21 + (7 2)cabii)k + [bez + (7 2 )cabai]D
D. =D , J = 5.39
n=Dt B +2D(rx)cy (5:39)
where
G
CI(D) = 2_(B + 2D(T’/\ )CJ)a
¢
Cg(D) = —Bbig + 2Dbss,
C3(D) = 2Dbg; — Bby;. (5.40)

5.2. Intrinsic evolution equation

As the D,, — k-relation in the original theory was reduced to finding a curve for the
response of the detonation in a D,, — x plane, it is useful to regard the D, — D, — k-
relation as a surface in a D, — D,, — & - space. The surface is determined by eliminating
the parameter D from (5.38) and (5.39) in favor of D, D, and . Also we note that to
the order that is calculated here, the derivative D ; = 0D/0t|(¢ n) represents the intrinsic
derivative D,,, hence we replace D ; by D,.

Note that by elimination of D from (5.38), (5.39), for D < 1, one generates a D, —
D,, — k-relation, that uniformly allows for values of D,, below one and D,, close to one.
D, may be in the range from less than one, to slightly greater than one. D, is not
allowed to be greater than one by an O(1) amount. The restriction that maximum of D,
can only be slightly greater than one, follows from the loss of the sonic character of the
flow if the wave is strongly overdriven. For an overdriven flow D > 1, the flow behind
the complete reaction point is subsonic, and in the most general case, one must solve the
Euler equations in combination with the conditions presented by the completely reacted
reaction-zone. Because of the appearance of the rate integrals Iy, I3, J1, Jo, etc., the
general case for all D < 1, is somewhat complicated and requires numerical evaluation
to display the results. Indeed the composite description of the surface has two distinct
branches, as we will illustrate in section 5.2.2., for D < 1 and section 5.2.3. for D ~ 1.
But the formula presented here can be used to generate the D, — D, — x-relation as a
surface, for finite but small x and D,,.



Dynamics of Multi-Dimensional Detonation 15

5.2.1. Hyperbolicity and local stability

The branches of the D,, — Dy, — k-relation must be checked to ensure that. it cor-
responds to a hyperbolic PDE. This additional classification criterion derives from a
frozen-coefficient analysis of the intrinsic PDE, and can be summarized as follows. Sup-
pose that a differentiable relation exists of the form, F(Dn, D,,, k) =0, and that we are
interested in the character of the evolution of the shock surface in a neighborhood of the
starred values, (Dy,)*, (Dy,)*, (k)*. Only for the purpose of analyzing the local dynamics
at small-times, we consider a local Cartesian coordinate system along the normal, and
tangent to the normal. Let x be in the tangential direction, and let ¢ be a displace-
ment along the shock along the normal. Then we further assume that the shock is now
described by the expansions

Dy =Dn)*+¢s+..., D, =Dp)* +ds+..., K=K —¢aze+..., . (541)

Insertion of the expansion (5.41) into , F(D,, D,, k) = 0, and the neglect of higher order
terms leads to the linear PDE,

ok \"* Ok \* / |
- (aDn)Dn D1t = (8_5;) 5. bt + Gz =0. (5.42)

where we used the identities

(8F/0D,)* /(0F [0K)* = —(0k/0D,)*, (9F/OD,)"/(0F [OK)* = —(8k/OD,)".

The condition for hyperbolicity that follows is simply that at each point on the surface

that
( Or ) <0. (5.43)
aDn D,

The local stability of spatial disturbances depends on the sign of the term (0k/8D,)}, .
This follows from the dispersion relation, which is found by substituting ¢ = exp[\t+i kw'],
into (5.42) and deriving the quadratic for A(k). One obtains the conclusion

oD, < 0 stable

( Ok >Dn {> 0 unstable - (5.44),
In previous works, where D,, is absent, the stability of the corresponding D,, — &-
relation obeys that of the heat equation and the condition shown in (5.44) applies. In
particular the under-side of the D,, — &, curve, where 0Dy, [0k > 0, incorrectly was
thought to be necessarily unphysical, since it corresponded to instability. In general, the
response is only locally unstable, and nonlinear evolution consistent with the underlying
hyperbolic dynamics, is possible. In particular, for sub-CJ , detonation in the presence of
positive curvature, shock acceleration is possible, which allows for the nonlinear growth
and acceleration of convex portions of the shock. This is likely to be a key ingredient in

the growth and propagation of detonation cells.

5.2.2. Sub-CJ detonation: D < 1

When D, is significantly below one, (D < 1), then X' ~ O[(D,;)?] and we may neglect
it. The balance in the thermicity condition is only between reaction and time-dependence.
D, is accurately described to leading order by D. Then equation (5.29 a) shows with



16 Jin Yoo and D. Scott Stewart

(X set equal to zero) that the surface is represented by 8b; = 2D, bs (with D,, replacing
D). This equation can be re-expressed as

Dy + A(Dy)k =0, (5.45)
where

A(Dy) = Cs5(Dy,)/Ca(Dy) (5.46)

Note that A(D,,) > 0, hence by classification theory, the intrinsic PDE, is guaranteed to
be hyperbolic. ' '

Importantly, as D — 1, for D < 1, the limit of this branch of the surface is tangent

to a plane, that is only a linear D,, — k relation. Note that as D — 1, B — 0 and the

evolution equation reduces to simply, bs = 0 (with D = 1) or '

. "Y _ ‘
Dn+ gy =0 (5.47)

Notice that D,, =0 corresponds to k = 0 for all D,.

5.2.3. Near-CJ detonation: D ~ 1

The other limiting branch of the surface is found by starting with the limit D — 1. The
balance in the thermicity condition can be between reaction and time-dependence and
curvature effects. As a result of the influence of curvature, the surface can be dependent
on the depletion factor v.

To illustrate this branch, note that as D — 1 that (r,x)cs — oo. Then (5.29 b) reduces
to the limit kD’ = b;/2. Then if we replace kD’ = D,, — 1, we obtain a second branch
of the surface that is only valid near D, D,, ~ 1;

Dp =1-ry*(Iy — I) — Du|(v* = 1)(I1 + J2) + ¥* (I + J1)]- (5.48)
In the case when the integrals I, etc. are constants, (which is the case for finite-
activation-energy ), then the above equation is also a plane in the D,, — D,, — & - plane.
The Dy, — D,, — k-plane found in this limit is also shown to be a hyperbolic PDE, however
with a different transverse wave speed than for the branch D < 1. Also, classification
theory shows that the PDE has a damped character due to the sign of the linearized
term that is proportional to D,, — 1. In the absence of D, the PDE is classified as a
parabolic PDE, which corresponds to the quasi-steady D,, — k-relation found by setting
D, =0. ;

5.2.4. Combined formulas: D <1

One can use the formulas (5.38) and (5.39) to construct a uniform composite approx-
imation to the D,, — D,, — k- relation that is valid for D,, both near and below one. We
replace D; by D,, and rewrite (5.38) by

C1(D)D? + Cy(D)D,, + C3(D)k = 0. ‘ (5.49)

One can choose a value of D < 1 and &, and then uses (5.49) to calculate D,,; or
assume a value of D and D,, and uses (5.49) to calculate k. Then with the values of
D, & and D fixed, one uses formula (5.29b) to calculate kKD’ and hence D,, = D + kD',
thus generating a (Dn,Dn,fs)—triad. Thus for a set of equation of state and kinetics
parameters, one can generate plots of the D, — D,, —k - surface as well as contours in the
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D,, — & plane for fixed D,, (say); albeit the required integrals that appear in the formulas
must in general be done numerically. ]

The condition for hyperbolicity, that (8x/8D,)p, < 0, must be checked, and the
boundaries of this inequality form are used to discard spurious regions and identify the
boundaries of the relation. In general, if we solve (5.49) for D,,, we obtain

4010314,
cz -
We have selected the - branch for v/A, which is a choice consistent with the requirement
of the analysis that D,, ~ o(1). Also, simply from the definitions of C; and Cj, one can
show that in the limit as D — 1, that both C,, Cs are finite and positive. Thus in an
entire neighborhood of the surface with D = 1, these coefficients are positive. Also one
can show that as D — 1, C; — —o00. Thus the surface must contain the limiting point
D, =0,D,=1and k=0 for D = 1. We take the implicit derivative of equation (5.49)
with respect to D,,, holding D, fixed, ( where D, is approximated by D), and find

Do=-2(1_VA), A=1- (5.50)
201 . :

ok Cz
35, = G \/Z. (5.51)
Thus we find that the boundaries of the response surface (where the derivative changes
sign), are defined by the conditions C; = 0, C5 = 0, and A = 0. For D < 1, A is strictly
bounded from zero, and is approximated by A ~ 1, for sufficiently small k. However for
D ~ 1, the boundary A = 0 is described by k = C3/4C;Cs.

5.3. Ezamples for a condensed ezplosives and for gaseous explosives

We display the D, — D, — k - relation for two important cases; one that models a
condensed explosive, and one that models a gaseous explosive mixture. The polytropic
(ideal) equation of state is accurate in a quantitative sense only for gaseous mixtures.
The use of the polytropic EOS for condensed explosives provides a useful, analytically
tractable model that can generate the correct magnitudes for detonation speeds and
states, however the equation of state in the unreacted explosive is poorly modeled. The
condensed-phase model has been used by us in the past for the purpose of analytical test-
ing of numerical schemes and qualitative predictions about detonation shock dynamics,
Stewart & Bdzil (1991).

In order to generate model results for qualitative and numerical testing purposes for
a representative condensed-phase explosive, it is important to choose parameters that
reflect the reacted products behind the detonation shock and to display the results in
physical units. Representative parameters are y = 3, an initial density o = 2 gm/cc,
a heat of combustion Q = 4 x 10° Joules/Kg. The corresponding CJ detonation speed,

from the strong shock approximation shows Doy = \/2(y2 - I)Q = 8 Km/sec. The

depletion parameter v is chosen to be 1/2. The pre-multiplying rate constant & controls
the size of a steady 1/2-reaction length, but typically one chooses it to correspond to
a typical reaction zone length in a condensed explosive, which can range from 1/10 to
a few millimeters. The value k = 2.5147 usec corresponds to a steady half-reaction-
zone length, £;/5 = 1mm. When the activation-energy E is taken to be zero, the rate
integrals, I, I, J1, J2,J can be carried out analytically, and those exact integrals are
listed in Appendix IV.

Figure 1 (a) shows a surface plot of the D, — D,, — & - relation, for the condensed
explosive case (y = 3,v = 1/2,0 = 0), generated from the formulas of previous section.
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The surface is plotted in a space that has D,, in the vertlcal direction, & in the horizontal
x - direction, and D,, in the out of plane - direction. Contours of constant D,, are shown
and labeled in the surface. For all the plots section, the 1/2-reaction length is used to
scale the curvature. '

The surface has a tent shape with a distinct fold near D, = 1, which seperates the
two branches of the surface, D < 1 and D ~ 1. The plane D,, = 0, intersects the surface
along the surface along the D,, — k -relation for £ > 0. Also the plane intersects the
surface along the vertical line D,, =0,k =0 for all D,,. Thus in the surface, the contour
D,, = 0 has a discontinuous derivative exactly at D, = 1. The segment of the surface
that is related to the branch D ~ 1, is completely visible in the surface plot and can be
reasonably well-fit by a-plane given by the equation -

63.6 Dy, + (Dy — 1) +8.355 = 0. (5.52)

The segment of the surface near D,, =1 on the branch D < 1, is well-approximated by
the D,, — k-relation given by (5.47). The surface is terminated by the view box on the
left side of the plot. The lower portion of the surface is terminated by the view box. The
left edge of the surface for £ < 0 correspond to the hyperbolic boundary A=0.

Figure 1(b) shows the projection of the surface onto the D, — & - plane, with the
contours of D,, indicated. For this case, where the activation energy is zero, increasing
negative curvature is associated with decreasing values of D. This is not the case for
large-activation-energy.

Figures 2(a,b) and figures 3(a,b) show a similar set of plots of the D, — D, — k-
surface, for a gaseous equation of state with v = 1.2. Figures 2(a,b) are drawn with
zero activation-energy (8 = 0), and a depletion factor v = 1. Figures 2(a,b) appear
qualitatively similar to those of the condensed case (for v = 3) shown in figures 1(a,b).
In particular, we note that D,, decreases with increasing negative curvature in the neigh-
borhood of D,, = 1. In contrast, figures 3(a,b) are drawn for a non-zero activation-energy
with Erpenbeck’s scaled activation-energy E = 16 ( 6 = 4/11). One sees the appearance
of both hyperbolic boundaries C, = 0 and A = 0. The most striking difference is that
D,, increases above 1 for negative s in the neighborhood of D, = 1. This property of
the surface is preserved in the distinguished limit of large activation-energy considered
in the next section.

6. The limit of large-activation-energy and small-curvature and
slow-evolution

Here we seperately consider a distinguished limit of large-activation energy and small-
curvature and slow-evolution. We derive the D, — D,, — & - relation under the assumption
that the normal acceleration effects and the curvature effects modify the quasi-steady
reaction-zone at the same order. For large-activation-energy the reaction-zone is an
induction-zone, followed by a thin heat-releasing reaction-zone. This analysis follows our
work in Yao & Stewart (1994), where we calculated the Dy, — & - relation in the absence
of the D,-terms. There we assume that the small-curvature is measured on a typical
induction-zone length scale for the plane-CJ detonation, and is specifically O(1/6) on
that scale. Deviations of the normal detonation velocity of O(D,, — 1) are assumed to be
of the same order; and as a consequence, the analysis shows that the D,, — k-relation is
multi-valued in D,, for a limited range of x, and that a critical pair [(Dn)ecr, Ker] €Xists
such that for £ > k¢, no asymptotic solution of this type exists.

By the arguments of section 5.2.1., the D, — s-relation (which is an intrinsic PDE for
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the motion of the shock surface) is a parabolic PDE. For D, > (Dy, Jer and 0 < K < Kep,
the slope, 8D,,/0k < 0 and the PDE is parabolic with a positive diffusion coefficient,
hence the shock dynamics can be regarded as locally stable. However for D, < (Dn)ery
for 0 < K < Ker, the slope 8D, /0k > 0, and the PDE is parabolic with a negative
diffusion coefficient and the local dispersion relation shows the instability commonly
associated with the backwards heat equation.

The effect of increasing the activation-energy ¢ in the formulas of section 5., does not
show the evidence of the same turning point in the projected D, — « plane. This is
explained by the fact that the large-activation-energy limit there corresponds to the se-
quential limit # — oo(x — 0). This limit thus, does not reflect the large changes that the
curvature can have on an induction-zone which is sensitive to temperature perturbations.
This is in contrast to the distinguished limit carried out in Yao & Stewart (1994), where
the curvature scales with activation-energy, such that its effect is felt in the induction-
zone. The distinguished limit considered here in section 6. leads to an explicit closed
form of the D, — D,, — k- relation which is expressed simply, and is tractable for further
analysis. We present this relation as a model for the shock dynamics of near-CJ detona-
tions that ultimately can describe certain features of the dynamics of cellular detonatlon,
as we explain in section.7.

The distinguished limit can be described from the formulas of the previous section as
follows. If we assume that D,, is close to one and that Ac can be replaced by one, then
(5.20) simplifies to

Dn=1-7*(I1 = L)k = [(v* = 1)(I1 + J2) + ¥*(I + J1)| Dn, (6.1)

where the integrals Iy, I3, Jy, J2 are over the reaction-zone structure, from the shock to
the sonic point. However due to the appearance of the reaction rate in the denominator
of the integrand, the dominant contribution to the integrals comes near the shock, in the
induction-zone, since there the reaction is the smallest. If the dynamics of the evolution
is assumed to be such that shock acceleration terms occur at the same order as the
curvature terms (which is our premise) then the integrals will depend on the normal
acceleration as well. Evaluation of the contributions to the integrals from the normal
acceleration terms, are then inserted back into (6.1) and the explicit form of the evolution
equation is obtained. What follows next is a detailed derivation.

6.1. Scaling

The characteristic reaction-zone length is explicitly identified as the induction-zone length
of the plane-CJ detonation, commensurate with the 1/ 2—react10n length found in the limit
of large-activation-energy, ., = k~'D¢jexp[f/c2]/6, where 2 =2y(y-1)/(y +1)2.
Therefore the reaction rate is written as

r= %exp[ﬂl/cﬁ —1/c?)]. (6.2)

We specifically assume evolution on time scale

t
T = 5 . (6.3)

The curvature is assumed to be small on the induction length scale,

K =

| X

, where & ~ O(1). (6.4)
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Note that the curvature is allowed to be a (slow) function of the transverse coordinate &
(whose dependence is not shown) and the slow-time 7. The induction-zone is a zone of
small-depletion, whose independent spatial variable is taken to be

7 z=0\ . (6.5)
Finally, we expand the detonation velocity D,, and the state as

D, =1+&D'(r)+71D(1)+...,

1
U::;l'?-l‘l‘ﬂ],(T,Z)ﬂ-..., |
U= —l——l‘-I-I‘ZU'(T 2)—1—7 ity +
poa , poag ey |
4 .
D} +... .
p= 7+1+ﬁp(7,z)+7[7+1 }+ , (6.6)
and it follows that
2 =24 r(P (r,2)+T [4D’(7(7+ 1)2)] +... | (6.7)
The linearized shock conditions require that at z =0
(1,0 =0, U'(r,0) = ~ 221D/, of(r,0) = ——D. (6.8)
’ b b ’Y+ 1 k] b ’Y+ 1

The expansions given by (6.6) reflect small corrections to the constant state behind
the shock of order x and 7. The induction-zone is assumed to subjected to a curvature
perturbation and slow-acceleration of the same magnitude. The acceleration terms in
the expansions (proportional to 7) are consistent with velocity changes induced by a
slowly-accelerating shock. In partlcular, it follows from (6.6 a) that

(6.9)

and

w_o U _ Dy-1 o D 4 8 _ Dyly-1)
ot 7 ot 6y+1" 0t Oy+1 ot 6 (y+1)2

Given the scalings and expansion introduced above, one can obtain a closed system
of two equations from the master equation and Bernoulli’s equation for the velocity
perturbation U’ = [U + (y)/(y + 1)]/~ and the sound speed squared perturbation, y =

8(c® — c2). Note that in the induction-zone, to leading order the ratio of the curvature
to the rate is given by

(6.10)

r
and the master equation in the induction-zone becomes

——0(c —c2)/ch _ Iﬁ:e—y/c (6.11)

JoU 1
"oz T T 2(v+ 1)

—y c‘f 7(7 ) ( 1) 2
+2e7Y/ [2 CERT +3(7+1)2D] (6.12)
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Similarily Bernoulli’s equation reduces to

vy—1_08U’ 1 oy 1 —yset (1 =3) -
-k - — =2e" V% 2D,
7+1’€6z Yy-10z 2(y2-1) € (vy+1)2
From these two equations we can eliminate 49U’/dz and obtain a single first order
equation for y, :

(6.13)

% = o+ RBe Y/, (6.14)

where we identify

2B e =D =1 -2)

=20 8 6.15
2y 17 CEE AR CFSE (619)

At the shock, we have y(0) = 2¢26(D, —1) .

The solution for y subject to the shock boundary condition is
y=az+cin (0 - f%ge“az/cg) , (6.16)
where ‘
B , [(7 +1)° ]

0 —k— =exp |——=0(D, - 1)]|. 6.17

What remains is integral asymptotics, applied to the integrals Iy, I, J; and J,, which
can be summarized as follows. Because of the appearance of the inverse reaction rate in
the integrals, and since the rate is by assumption, exponentially large onee appreciable
reaction occurs, it follows that J; ~ 0, and I;(y +1)/2 ~ (I; — I)(y + 1)2/4 ~ —Jo(y +
1)2/[4(y = 1)] ~ I, where

| % .
I= / —d\ ~ / e™V/%dz, (6.18)
o7 0

Using the approximation for the sound speed squared perturbation for y in (6.16) then
obtains :

= c—g[ln(a) —In(o — ﬁe—ﬁ-)] (6.19)
kB a’’
Inserting these results back into (6.1) obtains the explicit evolution equation
H B ‘
(D, —1) = B[En(a) —In(o — /‘6&-)]. (6.20)
where
42 2(4y - 3)
fip = A[r— (4y ) py. (6.21)

(r+1? " v+1
Now using the definitions of # and D, we rewrite (6.20) as

k= 5%6(2/65—ﬂ/u)9(1?n—1)[1 — elP/W6(Dn=1)] (6.22)
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where
4y? 2(4y —3) .
_ 4 Y Y
Kp = Cg o+ 1)2n+ po Dy,], (6.23)
and
Yy 1) Yy =D(ry—-2) ;
=4 8 D,,. .2
w0 S A e " (6.24)

Note that when D,, is absent, we obtain the D,,—x-relation, calculated in Yao & Stewart (1994).

£b8(Dn—1)

= {1 — ab(D,—1)

p=—"g (1= ), (6.25)

where A

_(8y  _GHDon 2 0+ DEy-))
“= (#>Dn=o - 4~3 , b= c2 a= W’ (6.26)
and
—1)3

g= S -1 (6.27)

B-Mr+1)¥
Figures 5(a,b) show two representations of the D, — D,, — & - relation in the limit of
large-activation-energy. Figure (5a) shows a surface plot of the surface in the D,—D,—x
- space, and figure (5b) shows D,, — & curves taken at different values of D,.

It can be shown that the evolution equation (6.22) is hyperbolic. In addition at a
point on the surface where 8D,, /9x| b, <0, the dispersion relation corresponds to stable
growth of local disturbances, while for D,,/0k|p_ > 0, corresponds to unstable growth
of local disturbances. The dispersion relation derived from the frozen coefficient analysis
only yields information about character of the evolution for short time, from some as-
sumed initial configuration of the detonation shock and does not predict the consequence
of the nonlinear evolution. However the instability indicated, corresponds to a situation

" where the detonation shock experiences positive normal acceleration in the presence of

positive curvature. One can envision circumstances where a convex portion of the det-
onation shock, which has normal velocity below D¢y, accelerates and becomes more
highly convex, and we have seen that property in the numerical solutions to (6.22).

7. Numerical experiments

Here we present the results of some two-dimensional numerical experiments and com-
parisons that use D,, — D, — k - relations. The numerical solution of the intrinsic PDEs
shown here were carried out in collaboration with T. Aslam, and employ a level-set
technique that follows the work of Osher & Sethian (1988). The numerics are described
briefly in Stewart, Aslam, Yao & Bdzil (1994), and will be discussed seperately, in sub-
sequent papers. The main points to be demonstrated here, concern the qualitative dif-
ferences between the detonation shock dynamics predicted by a D, — D, — k-relation
and those corresponding to a D,, — k-relation, and their prediction of detonation shock
dynamics observed in physical experiments.
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7.1. Differences between hyperbolic and parabolic evolution

Our first example illustrates the qualitative difference between the hyperbolic D,, — D, —
k-relation and the corresponding parabolic D,, — k-relation, for the parameters of the
condensed phase model, discussed in Section 5.3. and illustrated in Figure 1(a) and (b).
We restrict attention to the branch of the response surface for D ~ 1, approximated by
" (5.52). We display the results of the first numerical experiment, in length and time unit
of millimeters (mm) and microsec psec, respectively, and in these units (5.52) becomes

D, =8—66.8% — 7.95D,, , , ' (7.1)
with the corresponding D,, — k-relation

D, =8-66.8% . (7.2)

A slab with a half-width of 50 mm and length of 400 mm was used for the experiments.
At time t = 0, a plane, CJ-shock is assumed at z = 0 mm. Solutions for the shock
dynamics in finite domains, require boundary conditions to be applied at edges for all
time. At the bottom edge (y = 0 mm), we assumed an angle boundary condition, and in
particular the angle between the outward normal of the confining edge and the normal to
the shock was taken to be 45 degrees. At the top edge (y = 50 mm), the confinement was
assumed to be perfect and corresponds to a symmetry (or reflection boundary conditions),
and the angle between the outward normal of the confining edge and the normal to the
shock was set to 90 degrees.

Figures 6(a,b) show combined contour and line plots that show features of the numeri-
cal solution the initial-boundary value problem defined above. Figure 6(a) corresponds to
a numerical solution of the D, — & -relation defined by (7.2) and figure 6(b) corresponds
to that defined by (7.1). The different grayscale contours, separated by lines that run
roughly along the axis of the slab, indicate the value of the detonation velocity recorded
at a fixed Eulerian point in the slab, at the time that the detonation shock crosses the
point. Dark regions correspond to lower normal detonation velocity and lighter regions
higher values. The shock positions also shown at various times, at equal time intervals
of 3.6 usec, and cut transversely to the lines of constant D,. ,

The most obvious difference between the two simulations, is illustrated by the relax- -
ation towards an axial steady state, of an initial plane-CJ shock, in response to the edge
boundary condition applied at y = 0 mm. The relaxation of the solution D,, — k- re-
lation from plane- CJ to its axial, steady-state in response to a step change in slope, is
via local, self—Simila{ relaxation, characteristic of the heat equation. This is seen in the
curves of constant D, where, y ~ /z. In contrast, the hyperbolic character of solution
to (7.1) is seen by the curves of constant D, with, y ~ z, that is the consequence of
the self-similarity of the local wave equation that governs in the early transient. Also
for the example shown, the relaxation for the D,, — k-relation, shown in figure 6(a), is
accomplished quickly in the first 100 mm (say), while an obvious transient still persists
in the solution of the D,, — D,, — s-relation, even at 400 mm, four slab thicknesses wide.
The constant D,, contours show the evidence of multiple wave reflections of the initial
disturbance off the confinement boundaries. The shapes of the axial, steady shock loci
are different in the two cases, which is due to the effects of the normal acceleration, D,,.

7.2. Aspects of detonation cells

Our second example, draws from our experience developed in carrying out numerical
solutions to (6.22). But first we mention some aspects of the observations of multi-
dimensional detonation cells, seen in experimental systems, such as those observed by
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Strehlow Liaugminas Watson & Eynman (1967), in dilute Hydrogen-Oxygen explosive
mixtures. In a typical experiment, a long, rectangular channel is used to contain an
unreacted, explosive mixture of Hydrogen/Oxygen gas, diluted by Argon (say). The
mixture is ignited at a closed-end and is allowed to propagate down the tube. As it
propagates, the detonation shock, instead of being plane, has a set of disjoint cells, which
are made up of segments of the detonation shock that travel at different normal velocities,
and correspond to quite different shock pressures. The segments of the detonation shock
are resolved by shock/shock interactions that may be regular, or may lead to Mach-stem
formation and growth. In the case of a regular reflection, the triple point maintains,
while in the case of Mach-stem growth, the point of interaction becomes two triple points
connected by a bridge that grows in width. Thus the cellular detonation shock front can
be characterized simply as a network of triple points that are connected to smooth shock
fronts.

In the physical experiment, the inside of the tube is lined with a foil that is covered
with a soot, typically from kerosene burned in air, which is scraped away by the high
pressure detonation shock that intersects the tube wall. In particular, the loci of the wall
motion of the triple points is easily recorded in this technique, since they are associated
with the highest pressures in the flow.

A conjecture we made, was that numerical solutions to (6.22), might show evidence of a
self-sustained cellular detonation front, similar to those seen in the experiment described
above. Then a single evolution equation, necessarily of hyperbolic character, could be
used to describe the motion of the cellular detonation front. The attempt at this time to
verify this conjecture is incomplete, especially in regards to the question as to whether
the cellular solutions of (6.22) are self-sustained. It is likely that modifications to (6.22)
are required that included faster transients, and that (6.22) contains the leading terms
in an appropriate expansion. But we have been able to verify that certain aspects of
cellular behavior are found.

Our experience in working with (6.22), shows that it apparently admits weak solutions
with continuity of the shock locus, but with discontinuities in the shock slope. The points
of the intersection, where the shock slope is discontinuous, between different, otherwise
smooth shock segments, then would correspond to the location of triple points, in an
experiment. In our numerical experiment, the channel was hundred of units long and
wide, measured in half-reaction lengths, The side walls of the channel were assumed to
be reflecting. Typically we took the initial shape of the shock to be a sine wave in the
width. It is necessary to give the initial velocity of the wave, for the hyperbolic PDE,
and in most of our experiments we took D,, to be one or less than one. The subsequent
evolution was calculated numerically. At each point in the domain of the channel, the
value of the arrival time of the shock and the value of D,, was recorded, similar to that
in the first experiment.

The transient evolution, found in the numerical experiments, displayed many features
that are common to cellular detonation. In particular, as the shock evolved from the
sinusoidal initial data, it quickly formed sharp shock/shock cusps at points that would
correspond to triple points. These points moved side to side on the shock front as the
shock moved forwards. When the triple points collided with the side wall, they were
reflected back into the channel, as would be expected in the physical experiment. For
many of the experiments we tried, cells would form quickly and the number of cells,
(counted from the patterns that the triple points made as they propagated down the
channel), would persist. However by varying the spatial frequency of the initial sinusoidal
shape of the shock and the initial velocity, we did find cases where the frequency of the
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initial data was not preserved. In these cases, cells quickly merged and were absorbed
by larger cells, that then persisted.

We also found that the shock complex would flatten in time and we suspect that the
solution may ultimately dissipate to nearly a plane wave, moving at D,, = 1, in the limit
of large time. This issue however is not trivially resolved by increasing the numerical

 resolution, and is still under investigation. Thus our question of self-sustainabililty is not
resolved and the evolution predicted by (6.22) may only need to be modified to describe
such behavior.

Also as a test, we tried to roughly match the aspect ratio of the cells seen in physical
experiments, with those of the simulation. We could do this if we took an artificially
high value of v = 1.9 and a very large-activation-energy. But even then the transverse
wave speed of the triple points (which can be calculated approximately from a linear
analysis of (6.22), produced cells that were quite long, compared to representative phys-
ical experiment, with aspect ratios of length to width of 2 or more. One difficulty in
making this comparison directly from solutions to (6.22), is the use of the strong shock
approximation, which strictly breaks down as v — 1. Thus we might not expect our
formulas to be very accurate for realistic values of v = 1.2 or 1.4. We have not precisely
reproduced the geometry of the physical experiment and included fully accounted for
three-dimensional effects of the experiment, in order to make the comparisons.

We also observed that when we found cell-like behavior, that most of the time, the
shock sampled the D, — D, — k-relation where it was approximately described by a -
simpler D, — k-relation. And we were able to verify that one could generate qualitatively
similar solutions, whose triple points made similar patterns to those generated for (6.22)
with a simple D, — x-relation. Figure 7 shows the result of a numerical solution of a
dimensionless D,, — -relation, given by

D, = —(0.65)%, (7.3)
in a channel 400 wide and 700 long. The initial shock position was taken to be Tshock =
20[1 + cos(2my/100)]. The initial shock velocity was taken to be D,, = 1. We varied the
constant of proportionality of a D,, — k-relation (0.65)2 so as to control the observed cell
aspect ratio and make it match a cell-pattern in Strehlow Liaugminas Watson & Eynman ( 1967).
Figure 7 shows a combined contour and line plots that show features of the numerical
solution to the initial-boundary value problem defined above. The grayscale contours
indicate the value of the detonation velocity recorded at a fixed Eulerian point in the
slabs, at the time that the detonation shock crosses the point. Dark regions correspond
to lower normal detonation velocity and lighter regions higher values. The shock position
are shown as broken lines at at equal time intervals. The triple points of the solution,
defined by the intersection of connected shocks that form the shock surface, form in the
vicinity of £ = 50 and subsequently trace out the diamond-spade patterns on the side of
confining walls, like those that are recorded on smoke-foil records taken in experiments
in gases, when cellular detonation is observed.

8. Appendix I: Betrand-Intrinsic Coordinates

The shock surface can be represented quite generally in terms of laboratory-fixed co-
ordinates (z,y) as ¥(z,y,t) = 0. This equation constrains the lab-coordinate position
vectors in the surface to £ = Z; . The normal to the surface is chosen to be positive
in the direction of the unreacted explosive and can always be calculated by the formula
f = V1p/|Vip]. The shock surface can be represented by a surface parameterization
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Z = Ts(,t), where £ measures length along the coordinate lines of the surface. The unit
vector in the shock surface, tangent to it, is defined by { = 9, /9¢. The total curvature
of the surface is given by V- 7 = k(&,t). For the present purpose, it is sufficient to
assume that a straight line intersects the shock surface, and that the intersection point
defines the instantaneous origin for the intrinsic coordinate system. ' '
The intrinsic coordinates are related to the laboratory coordinates by the change of
variable given by ‘

= j’s(g,t) + nﬁ’(&v t)7 (81)
The Frenet formulas in 2D are

~

ot 5, i (8.2)

55 = —KnN, 3—5 =
and reflect the fact the intrinsic coordinate system is locally orthogonal. X

Notice that in 2D, one can define the angle, ¢ between the edge line and the normal 7,
and the derivative of the angle ¢, with respect to the arclength £ defines the curvature
k = 0¢/0¢. Then normal and tangent unit vectors are related to the Cartesian basis by
fi = sin(¢)és + cos(P)éy, t = cos(9)é, — sin(@)éy . It is a straightforward matter to
relate arclength, angle coordinates to laboratory coordinates.

The equations of motion are transformed from a representation in (x,y,t)-coordinates
to (n,&,t)-coordinates according to coordinate transformation (8.1). The calculations
required are straightforward but lengthy. Here we give the essential results needed.
More details can be found in Lee, J (1992), Stewart (1993) and Yao (1995). In what
follows, in regards to fixed quantities in partial differentiation, & refers to (z,y), and ¢
refers to (&, n).

The V operator is given by

1 0 .0
1+ nk O€ "on

By using the definition of the velocity in the intrinsic coordinates @ = ugf + uph , we
calculate the divergence V-4, and @- V as

V=t (8.3)

_6un+ 1 8u]’ﬂ,.§ ue o0 . 0 (8.4)

{ —
on  1+4+nk 3 N 1+nn8§+u"3n'
The time derivative in the lab-fixed coordinates is related to that in the shock-attached
coordinates by (8/8t)z = (8/0t)¢+(0n/0t)z (8/0n)+(9¢/0t)z (9/0E), where (On/0t)z =
—D,, is the negative of the normal component of the shock surface velocity and, (9¢/9¢)Z =
B, when evaluated at n = 0, is the instantaneous rate of increase or decrease of arclength
along the shock. Thus we write

1} 15} o] 7]

Next we derive the kinematic relations which gives a differential condition on B, in
particular, which we later use to estimate the asymptotic order of certain terms in the
transformed equations, for small curvature. Differentiating the change of variable formula
(8.1) with respect to t, holding &- fixed (and using the chain rule and Frenet formulas)
obtains,

[nun +
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() (3) 5o (), omicn

Next we differentiate (8.6) with respect to £, holding n and ¢ -fixed, and use the Frenet
_formulas to obtain a vector equation, whose # and t - components are

. [0t ¢ oD, 1
- (—a—t)f—n(—a—t—)i— 0 (8.7)

9 1+nk
£) 1, 0% _
[(1 + 1K) (8t +n6t = kDp. (8.8)
Equation (8.7) can be further simplified. By dlﬁerentlatmg (8.7) by ¢, and by using the
result that 8/0¢[h- (5f/0t) &l = —0k/0t, one obtains an expression for Ok/dt. Then using

that formula in (8.8), one obtams the simple expression

o [[o¢ n  0Dn|

In particular, (8.9) can be used to estimate the size of B = (8¢/6t)z.
When specialized to the surface n = 0, the kinematic relations (8.7) and (8.9) describe
the evolution of the surface, itself and reduce to the kinematic surface relations

8 [[o¢ . of o¢ oDy,
@) (D-0),-% om

9. Appendix II: Reduced Governing Equations

The governing equations in Bertrand-intrinsic coordinates follow from a straightfor-
ward application of the formulas of Appendix I. If we define U,, = u,, — D,,, the governing
equations are written as:

Op p(Un + Dy)

at ain (pUn) = = 1+ns B, (©1)
%-{-D +U88U +%%——Rz, (92
% 102 = g, (9.3)

% + Ung—z- - [% (g—’t’ + Ung%) = —Ry, - (949)
%#Un% =r— R, | (9.5)

where

Ry =-—F 20 u€)+[ S ]8” (9.6)

T 1l+nk 0 1+nk ag’
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Ry = [1 :f'sm + B] %ugi —ud— :n + B%Ug— — Bugk, (9.7)
Rs = [1 -:—Lﬁnﬁ -I—B] B +u5(un) +Bunl‘i+ %Tﬁg—z, (9.8)
s e

Rs = [1_:‘5% ]‘Z—’;. (9.10)

Notice that in equation (9.2), that D, = (8Dn/6t) + BOD,,/9¢, appears explicitly,
which is the intrinsic time derivative of D,, along the shock normal.

In addition, it is necessary to write down two independent energy equations, that can
be used to replace the n-momentum and energy equations respectively; these are essen-
tially a streamwise Bernoulli’s equation and what has been called the master equation,
Bdzil (1981). Bernoulli's equation is given by

2
9 [U L2 CQ_qA]z G

an | 2 v-1 ot
1 1 10p p v 9p oA R3
U, {'y 1,5 Aaoim m| TR (9-11)
The master equation is written as
c2(Uy + D) ou, 0D, (9p

ou,

2 2y 9Un

-U)— = -1) - R, (9.12
E UG =D sy P ) v t R 012
where R = — [ypRy — uR2 + (7 — 1)(R4 + ¢Rs)). '

Next we argue for the form of the reduced equations, that for our needs, must be valid
in the asymptotic sense in a region near the shock n < 0 with n ~ O(1), as the shock
curvature k — 0. Specifically we consider the size of the terms that comprise R; through
Rs.

We assume that the dimensionless shock curvature, is small. Let the order of magnitude
of the curvature be measured by €2, where 0 < ¢ << 1. We also assume that transverse
spatial variation of the structure of the flow field behind the shock is weak, and is
characterized by the scaled transverse variable,

¢ =€ (9.13)
Therefore in the governing equations we assume that 0/0¢ = €98/8¢ = O(e).

It follows from (8.9), and from the estimates D,, ~ O(1), k ~ O(€?), that one obtains an
estimate for B = (8¢/8t)z ~ O(e). If one first supposes that ug ~ O(e) and 9p/9¢ ~ o(e),
then R3 is o(e). Equation (9.3), with R3 = 0, is the O(¢) equation for ug, which can
be integrated on its characteristic. Combined with the shock boundary condition that
ue = 0 at n = 0, one find that ug = 0 to O(e). Thus we are led to finer estimate that
ug ~ o(e).

The terms R, through Rs are o(e?) = o(k), if one makes the modest assumption that
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52~ ol T2 ~ole), ol 38 ~ 009 (0.14)

which can be guaranteed, given the previous assumption on the explicit scaling for &, for
any expansion of the reaction-zone structure where the O(1) terms are not functions of
" &, and hence functions of at most n and ¢.

Note that no assumptions have been made so far, regarding the asymptotic nature of
the time variation, and its relation to the order of . However, if we further assume, that
we have slow-time variation in the shock-attached frame, and make only the assumption
that (8/0€)g ~ o(1), then the intrinsic derivative D, is approximated as (0D, /0%) et

o(k).

10. Appendix III: Limitihg form of the steady Dn — K- frelation L

Here we consider only the integral asymptotics of the result stated in section 4., in the-
limit as v — 1. Let

Aoy =1—(z*k)", (10.1)
and D,, given by
D,=1- %(z_*(e)l/” — kY2, (10.2)
where ’
I=l - ]ACJ (L+0° (10.3)
I O S | g

where £ = /1 — A. Note that in order to properly calculate the contribution to the
integral I, when v — 1, one breaks the integral from 0 to \ into a contribution from 0.to -
1 and 1 to A¢y. Hence for v < 1, one does the second integral, and combines the result
to obtain in the formula for D,, ’

2 1 2
0% (1+2¢)
D,=1-k d\
" (v +1)? /0 r T ,
For the case that v = 1, we can also get a formula with logarithmic contribution that is
identical the result in Stewart & Bdzil (1988), Klein & Stewart (1993). To demonstrate

this, without loss of generality, we take the rate multiplier to be equal to 1, and let
(0) = y(1 +£)(y — £)/(y + 1)2, write the result above as

1”_ ” (2*K)Y7 + o(kV/¥). (10.4)

2 1
_ Y 201 _ y\—v( 0/ 9/¢%(0)
D,=1—-Kgk—— 1+0)*(1 =X - d\
n= 1o n s [P - - o)
* pl * * \1/v
Kz 5 — 1| 2%k v(z*k)
— 1 -1 (1 =XN)"Yd\-= — . .
5 /0(( P (A=) - o - ] (10.5)
Now we evaluate the last two terms: The term
1/1((1 +O? D1 -A)dr= L, 2 10.6
2 Jo T 4-20 " 3—2° (10.6)

with v = 1, is equal to 5/2.
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We also rewrite

* PEIRY Y3
1 26 y(z*R)? - 1 [(z*n)l/"-l- (10.7)

2 ( 1-v 1—-v 2
which can be evaluated with L'Hospital’s rule as » — 1, and which generates a logarithm.
Finally we obtain

2K — (z*n)l/"]

1—v

2 1 : ' 1
Dp=1-k [3;* + (#1)5 /0 (14021 =\ (e - e—*’/C’“’))dA] + 52" Kln(2"K).
L (10.8)

11. Appendix IV: The integrals with the simplest rate law ( zero
activation-energy

First we calculate the integrals for D = 1 and r = (1 — \)*:

Il=(7i1)<1i;/+3—22u)’ (11.1)
b= (v +1 1)2(1 z vt 2:57——2;) T2 i o) (11.2)
N (e Rl ) -3
L= (3—_251—/7 (11.4)

Note that integral J doesn’t contribute to G(D) when D = 1, because that rc; = 0.
For the case that D is away from 1 ,to calculate those integrals, we first define some

simpler integrals, with £ = /1 —-\/D?

11 le E le2 l£3
Ko =2D? / —-d¢, Ky =2D? / ~dt, K, =2D? f —d¢, K3 =2D? / —de,
o T o T o T o T

_ (11.5)
For r = (1 - A)” = (1 — D% + £2D?)”, we have:
Ko = —2D2—F[1/2 v,3/2,D?/(D? —1)] (11.6)
0= (1 —D2)V Uy ) = ’ .

Ki= (1 (1-D?)1), (11.7)
K= g5(1— D/ F[3/2,0,5/2, D*/(D* - 1), (113)

1 1-(1-D?%2" o 1—(1—D%H)1-v
Km0 D)7 (11.9)

where F(a,b, ¢, z) is the hypergeometic function defined by the series
L) ~=T(a+n)(b+n)z"

Fabe,2) = & > — (11.10)

@T®) 2~ Tl+n) nl
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Thus we obtain

1

I = ——(K; + K»), 11.11
L= (4 K) (11.1)
1
L= —(vK — 1)Ky — K3), 11.12
2 (’7+1)2(’y 1+(7 ) 2 3) ( )
1
Is = ——— (7K — K3), 11.13
3 (7_1_1)2(”! 2 — K3) ( )
Iy = Ky (11.14)
1
= ——(Kp —vKy). 11.15
‘ 7+1( o —7K1) ( )
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FIGURE 1 (a). Surface plot of the D,, — Dy, — k-relation for the condensed-phase case,
with y =3,v =1/2. The curvature &, is scaled with respect to the 1/2- reaction length.

Contours of constant D,, are shown and labeled.
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FIGURE 1 (b). Projection of the D,, — D,, — s-relation to the D,, — k -plane, for the
condensed-phase case. The branch D ~ 1 is transparent, and the branch D < 1 is shown
in gray-scale. Contours of D,, are indicated by the labels.
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FIGURE 2 (a).Surface plot of the D,, — D,, — x-relation for the gas-phase case, with
7 = 1.2,v = 1, with zero activation-energy. The curvature &, is scaled with respect to

the 1/2- reaction length. Contours of constant D,, are shown and labeled.
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FIGURE 2 (b). Projection of the D,, — D,, — k-relation to the D,, — & -plane, for the
gas-phase case, with zero activation-energy. The branch D ~ 1 is transparent, and the
branch D < 1 is shown in gray-scale. Contours of D,, are indicated by the labels.
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FIGURE 3 (a). Surface plot of the D,, — D,, — x-relation for the gas-phase case, with
7 = 1.2,v = 1, and activation-energy, 6 = 4/11, (E = 16), The curvature &, is scaled
with respect to the 1/2- reaction length. Contours of constant D,, are shown and labeled.
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(a) D,-x - relation
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(b) bn—Dn-K - relation

FIGURE 5. The top figure (a), corresponds to the solution of the D,, — & - relation
of equation (7.2). The bottom figure (b) corresponds to a solution of the D, -D, — &
relation given by (7.1). The gray-scale records values of D, at a fixed point when the
shock crosses it. The first shock position from the left is at 3 1 sec, and the time intervals
between subsequent shocks is 3.61 sec.
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FIGURE 6. Corresponds to the numerical solution of the D,, — s-relation given by
(7.3). The gray-scale records values of D,, at a fixed point when the shock crosses it.
The shock position is show by the broken line, and is spaced at equal time intervals. The
boundaries that define the patterns correspond to discontinuous jumps in the value of
D,, across portions of the shock.
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