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Abstract:

We address a problem of numerical instability that is often encountered in finite ele-
ment solutions of distributed-parameter optimization and variable-topology shape design
problems. We show that the cause of this problem is numerical rather than physical in
nature. We consider a two-field, distributed-parameter optimization problem involving a
design field and a response field, and show that the optimization problem corresponds to a
mixed variational problem. An improper selection of the discrete function spaces for these
two fields leads to grid-scale anomalies in the numerical solutions to optimization prob-
lems, similar to those that are sometimes encountered in mixed formulations of the Stokes
problem. We present a theoretical framework to explain the cause of these anomalies and
present stability conditions for discrete models. The general theoretical framework is spe-
cialized to analyze the stability of specific optimization problems, and stability results for
various mixed finite element models are presented. We propose patch tests that are useful

in identifying unstable elements.



1. Introduction

This paper is concerned with a form of numerical instability that commonly occurs in
finite element solution procedures for distributed-parameter optimization problems. These
problems involve the optimal selection of one or more scalar or tensor-valued design fields
defined on a specified domain. For example, one might attempt to determine the optimal
thickness distribution for an elastic plate to control the local stress state or the plate’s natu-
ral frequencies. Although the physics of a given problem might imply a regular solution,
optimization procedures based on discrete models often generate anomalies in the design
field at the length scale of the numerical grid. These anomalies can take the form of
“checkerboard” distu’rbances, wherein the discrete solution for the design field alternately

overestimates and underestimates the expected continuum solution in adjacent elements.

Checkerboard anomalies are commonly observed in published solutions to variable-
topology shape optimization problems ([1]-[7]). In these problems, the goal is to deter-
mine an optimal distribution of a fixed volume of material within a candidate domain to
extremize an objective function, such as the compliance of an elastic structure, under pre-
scribed loading and support conditions. Instead of using boundary representations to
describe the structure’s geometry, it is common practice to introduce a bulk density param-
eter p such that a value of 1 denotes solid material and a value of 0 denotes void. The elas-
tic material properties are expressed as a continuous function of p (often according to a
homogenized microstructural model that arises in relaxed formulations of the topology
design problem—see [2], [3], [8]). The shape design problem then involves the determina-
tion of an optimal distribution of p (or an alternative collection of microstructural design
parameters) over the candidate domain. A penalty against intermediate values of p may be
introduced to ensure that the domain is primarily occupied by either solid material or void.

Thus, the variable-topology shape optimization shape optimization problem is commonly

treated as a distributed parameter optimization problem.

The checkerboard patterns that appear in topology design solutions are not associated

with any specific material model. They have been observed with material models derived



from rank-2 laminates ([1], [2]), from partial relaxations based on rectangular holes in

square cells ([3]-[6]), and from simple variable-density models [7].

To illustrate the problem, consider the candidate region, supports and loading cbndi-
tions shown in Figure 1. We seek the minimum compli'ance design using an optimized
rank-2 laminate to model the material properties (see [2] for details). When we discretize
the problem using 8-node quadrilateral displacement elements and a uniform density per
element, we obtain the smoothly-varying density field shown in Figure 2. (Actually, this
element is mildly unstable; see section 5 for a defailed discussion.) However, when we use
a 4-node displacement interpolation and a uniform density per element, we observe check-
erboard modes in the solution, as shown in Figure 3. Similar checkerboard modes are
observed in the numerical examples presented by Suzuki et al., who use a microstructure
model based on rectangular holes in square cells (see Figure 15 in [6]), and in the exam-

ples of Rozvany et al., who use a variable-thickness model (see Figure 11 in [7]).

Similar checkerboard anomalies have been observed by researchers in biomechanics
in studies of adaptive bone remodeling. Here the objective is to simulate a natural process
in which the density of living bone is increased or decreased in response to local, mechan-
ical stimuli. For example, Weinans et al [9] propose a model in which the time rate of

bone density is given by

p=B(W-k), )
in which B is a scalar constant, W is the strain energy density and £ is a constant corre-
sponding to a reference value of the strain energy density. An isotropic material model,
with Young’s modulus given by E = ¢p? (¢ = 100 MPa (g em3) % Y = 2) and a Pois-
son’s ratio of 0.3 was assumed. According to equation (1), the bone remodeling process
achiéves a steady state (p = 0) when thé strain energy distribution is uniform at the refer-

ence value k. This is similar to the uniform-energy-density optimality criterion for mini-
mum compliance design for a fixed volume of material. Thus, adaptive bone remodeling is -

closely related to distributed parameter optimization. Indeed, Weinans et al. also report



grid-scale, checkerboard anomalies in their finite element calculations. Similar discontinu-
ous solutions were reported by Goldstein el al. in a study of bone-ingrowth around porous-

coated implahts [10].

Jog, Haber and Bendsge suggest that the anomalies encountered in the variable-topol-
ogy design problem are related to the spurious modes that sometimes pollute mixed finite
element solutions ([1], [2]). They point out that weak formulations of ihe topology design
problem yield a mixed variatioﬁal form, involving independent displacement and density
fields, not unlike mixed formulations used to model incompfessible elasticity and Stokes
flow. They also demonsktrate that certain combinations of density and displacement inter-
polation functions generate finite element solutions that are free of grid-scale anomalies.
The observation that finite element solutions based on single-field formulations of the
desi gn problem are free of anomalies [11] provides further eﬂlidcnce that the mixed finite
element model is the source of the problem. While the numerical evidence supporting the
explanation of checkerboard designs-as spurious modes in a mixed finite element model is
strong, a detailed analysis of the problem has yet to appear in the literature. This paper
seeks to present an explanation for checkerboards (and other related anomalies) in distrib-
uted-parameter optimization problemé: based on the theory of mixed finite element meth-
ods. The theory presented here provides insight into the cause of checkerboard anomalies

as well as practical means to predict their occurrence and to avoid them.

The organization of the remainder of this paper is as follows. In Section 2, we present
the general formulation of a distributed-parameter oi)timization problem that we will refer
to in later sections of this work. We develop a mixed variational statement of the optimiza-
tion problem and compare it to mixed formulations of the Stokes problem. We also devel-
op incremental and discrete forms of the problem that are used in our subsequent analysis.
In Section 3, we review selécted aspects of the theory of mixed variational formulations.
We present stability analyses for special cases of the distributed-parameter optimization
problem in Sections 4 and 5 using the formulation developed in Section 2. Strategies for
generating stable finite element solutions are presented in Section 6. In Section 7, we

present the conclusions of this paper.



2. A distributed-parameter optimization problem

This section introduces a distributed-parameter optimization problem associated with
the minimum compliance design of an elastic continuum. The problem is first presented in
a general form to illustrate the common structure that links the special cases to be investi-
gated in subsequent sections. We begin with a statement of the governing equations and
the optimization problem. The weak forms of the stationary conditions are developed,
yielding a nonlinear mixed variational problem. Rather than analyzing the stability of the
nonlinear problem directly, we instead consider the linearized, incremental form of the

mixed variational problem and the discrete matrix equations that derive from it.

2.1. Governing equations
Let Q be an open domain whose boundary I" is composed of two open, disjoint re-
gions, I' = T, UT,. The domain Q contains a linear elastic material with a variable bulk

density specified by the function p: Q — R. (In some applications, p is a variable-thick-
ness parameter, rather than a material density.) The value of the strain energy density func-
tion for the elastic material, W (g, p) , depends on the local values of the strain and bulk

density. We assume small deformation behavior and a single, static loading case. The gov-

erning equations are:

V.-o+b =0 in Q, )]

e(u) = %[vu+ (V)] in Q, (3)
oW .

0'—(.% in Q, | ()

t=c-non I, | )

u=0onT, (6)

t=tonT,. | )



e et eecwmse. u ic the displacement vector, O is the stress tensor, b is the pre-
scribed body force vector, ¢ is the traction vector, n is the unit normal vector to the surface

T, and 7 is a vector of prescribed tractions.

2.2. Optimization problem (P0)

Our objective is to find an optimal density distribution that minimizes the compliance

of the elastic structure subject to an equality constraint on the total volume of material,

jde = V, and upper and lower-bound constraints on the density, 0<p,,, sp<1. The

latter constraint derives from the interpretation that p = 1 corresponds to solid material
and p = 0 denotes void. The compliance objective may be augmented with an optional

penalty on intermediate values of density between the solid and void states. Recall that the

compliance is equal to twice the additive inverse of the potential energy ([11,[2])
M (u,p) = [W(e,p)dQ-[ (- w)dl - [ (b-u)dQ. ®)
Q , T Q

Define V, = {ue H! (Q):u=0on T} and Vp = L_ (Q), and assume that equa-

tions (3)-(5) are strictly enforced. Then the optimization problem is stated as

Problem PO:
Letp . :0<p . <1,a20and V>0 be given. Find (u*,p*) e V, % Vp‘ tﬁé{t solves
sup inf H(u,p)—x(jpdg—v)—ajp(l—p)dg
o Q ’ o) s &)

pEVp ueV,

subjectto p,. <p <1in Q; where A is the Lagrange multiplier associated with the con-

straint J'de = V.
Q



Some comments on problem PO are in order at this point. The inner inf operation is re-
sponsible for weak enforcement of the equilibrium equation (2) and the traction boundary
condition (7). The penalty term can be used to approximate a 0 — 1 integer programming
problem in p when we specify o > 0. This is useful in variable-topology shape optimiza-
tion problems where the objective is to partition Q into regions of solid material and void
([11]-[13]). Alternatively, we can set o = 0 and manipulate the strain energy density

function W to achieve an implicit penalty on intermediate densities (see Section 5).

The question of whether the functional in problem PO is linear or nonlinear in p turns
out to be a key issue in our stability analysis‘. In the former case, we must have o = 0 and
the strain energy density function must be linear in p. The optimal design of a variable-
thickness elastic plate is a common example of this class of problem (here p is understood
as a thickness parameter). Topology optimization generally involves the nonlinear case,
due either to a nonzero penalty term or a nonlinear dependence of W oﬁ p. These two cas-

es are treated in detail in Sections 4 and 5.

2.3.  Stationary conditions and the variational problem (POv)

We next present variational forms of the stationary conditions for problem P0. A solu-

tion to problem PO must solve the follbwing problem.

Problem POv:

Letp,,: 0<p,,;, <1, 020 and V>0 be given. Find (u, p) e V, XV, such that
i{.s'(v) 0dQ = [ (i-v)dT+[(b-v)dQ VveV,, (10)
T, ‘ Q

%qug—ai[(l—zp)ng = qudg Vge v, (11)
Q



subjectto p, . <p <1 in Q; where X is the Lagrange multiplier associated with the con-

straint deQ = V. The fields v and q represent, respectively, variations of the displace-
Q
ment and density fields.

- Equation (10) is the familiar virtual work equation, while equation (11) is a weak form of

the optimality criterion,

oW _ ’
%—K—a(j—Zp) ‘0', - (12)

The stationary conditions, (10) and (11), are necessary, but not sufficient, for a solution to
problem PO. Convexity of the potential energy ensures that the second-order Kuhn-Tucker
conditions are satisfied for the displacement field. However, the second-order conditions

for the density field must be checked independently (see Section 5).

It is evident that problem PO corresponds to a mixed variétioﬁalbﬁrbblem involving the
independent fields u and p. A rough analogy can be drawn betv‘v‘een‘ problcm PO and
mixed formulations of the Stokes problem [14]. That is, the dispylacement and density
fields in problem PO correspond to the velocity and pressure field in the Stokes problem.
Similarly, the equilibrium equations in the two probiems are analogous, and the optimality
condition (12) corresponds to the incompressibility constraint in the Stokes problem. It is
well known that discrete approximations of mixed variational problems may be subject to
numerical instabilities even when the continuum problem is well-behaved [15]. In particu-
lar, mixed finite element solutions to the Stokes problem can exhibit grid-scale anomalies
that are strikingly similar to those encountered in distributed parameter optimization prob-
lems. This observation motivates our analysis of checkerboard designs and other grid-
scale anomalies within the theoretical framework of mixed finite element methods, as de-

veIoped by (among others) Babuska, Brezzi and Fortin [15]. |



24. Thelinearized, incremental problem (P0i)

Although there are similarities between our distributed-parameter optimization prob-

- lem and familiar mixed variational problems, such as the Stokes problem, there are also
some significant differences. For example, problem PO is nonlinear, while the Stokes prob-
lem is linear. Since the stability theory for nonlinear mixed variational problems is less de-
veloped than the theory for linear problems, our study focuses on a linearized, incremental
form of problem P0. The incremental problem corresponds to a single step within an itera-
tive solution procedure for the nonlinear problem. If each iterative update is numerically
stable and the overall iterative process is convergent, then we can argue that the overall
scheme is well behaved. The linearized incremental form of problem POv is presented

next.

Let u° and p? represent the current estimates of the displacement and density fields,

and let du and 8p represent increments in the two fields. Carrying out the linear expan-

sion of ¢ and 9—‘1, we get
S op’ g

9 9 |
g=6 +(ae ) e (5u ”(ap ) 50, (13)
oW _ 2w ow
14
ap (ap ) (aeap ]e(au) ¥ (ap ) - 9

The superscript 0 in equatiqns (13) and (14) indicates that the quantity is evaluated at the

current estimate of the solution, (uo, pO) . The volume constraint takes the form

f (p°+8p)dQ = V. Assuming that the current density distribution Po satisfies the vol-
Q ' ‘

ume constraint, we get JSde = (. Substituting equations (13) and (14) in equations
Q

(10) and (11), and collecting all known terms on the right hand side, we obtain the follow-

ing incremental problem.

10



Problem POi:

Let pmin: 0< pmin

<1,020,V>0,u’e V, and p°e V! IpOdQ = V be given. Find
Q

(Ou, Sp) € V, XV, such that

Je‘(v) (80 ) € (du) dQ+J£‘(v) ( ) 3pdQ = (f,v) VveV, (15)
Q o€ ap

0 0
4 Q

subjectto p, . —p®<8p <1-p°, where

vy = j(i~v)dr+j(b.v)dg—je'(v)'c"dg, a”n
r Q Q

1

&)= qudmaju—zp“)qdﬂ j(—) qdQ, (18)

and A is the Lagrange multiplier associated with the constraint jSde = 0.

2.5. The discrete problem (P0d)

Our ultimate goal is to study the stability of finite element approximations to problem
P0. Accordingly, we next develop the discrete form of the incremental optimization prob-

lem. We begin by introducing the following finite element approximations for the field

‘variables in the incremental problem.

du =N, di u0=Nz‘40 v=N_»

S0 = N 5t 6 o o (19)
pP=Noop  p'=Npp q=Nyq

11



N, and dit e R are the matrix of basis functions and the incremental parameter vector
for the displacement field, while N, and 8p e R™ are the corresponding items for the

density field. The parameter vectors ° and bo contain the current estimates of the dis-

crete solution. We define the matrices A, B’ and H, and the vectors }‘ and g as

A= [B,C°B,dQ, (20)
Q
0
B'= [B! (ai) N_dQ, 21)
u ap P
Q
3 0
— t
H= j [ (3_2) + Za}NprdQ, (22)
QL\gp
f= [NiidT + [N,paQ - [Bic%aQ, 23)
f, Q Q »
A t (1] t aW 0 t
gsxjNPdQ+aj(1-2p )din—j(a—) N,dQ, 24)
Q Q Q\dp

. 3 \°. o
in which B, is the strain-displacement matrix, and c’ = (B——) is the material stiffness
€
matrix. We now present the discrete form of problem POi.

Problem P0d:

Letp,,:0<p . <1,020,V>0, #%c R™and p’e R™: _[diQbO = V be given.
F .

min

Find (8i, 8p) € R™ x R’ that solves
[A Bj Sa| _ )7l 25)
B H| | 8 2

12



subject to pmin—-f)g <dppg<1- f)g; B = 1,n,; where A, B, H, f and g are defined as

above and A is the Lagrange multiplier associated with the constraint, jN deSb = 0.
Q P

The vectors f and # derive from the terms (f, v) and (g, ), respectively, and represent
the residuals of the equilibrium and optimality conditions given by equations (10) and
(11). The matrix A is the stiffness matrix, and —B' is a matrix whose c'oill;lmns"are the
pseudoload vectors corresponding to the elements of dp, as defiried in the direct differen-
tiation method of design sensitivity analysis [16]. The matrix in equation (25) is the Hes-

sian of the Lagrangian with respect to (&, p) .

The side constraints on 3p are sufficient to enforce p,,;,, <p <1in Q ’f;(:),r‘ﬁnite ele-
ment models with constant-per-element and bilinear-per-element density fields; however,
they are not sufficient for higher-order elements. In the stability analysis of Section 5, we
are concerned with the properties of the partition of the Hessian that is associated with el-
ements of 8p for which the side constraints are not active. To simplify matters, we will

henceforth assume that the side constraints are inactive for all of the density degrees of

freedom.

The remainder of this paper is devoted to a study of the stability of the discrete, incre-
mental problem (POd) within the general theoretical framework of mixed variational prob-
lems. The next section contains a brief review of the relevant theory. In section 4, we
consider the special case where H = O, which occurs whenever the functional in prob-

lem PO is linear in p. Section 5 addresses the more general situation where H may be non-

Zer0.

3.  Areview of the theory of mixed variational problems

In this section, we review results regarding the existence and uniqueness of solutions

to continuum formulations of mixed variational problems. Then we consider discrete

13



approximations of the continuum problem, typically based on mixed finite element mod-
els, and discuss the conditions under which discrete models yield a reasonable approxima-

tion to the continuum solution. We follow the development of Brezzi and Fortin [15].

3.1. Abstract formulation of a mixed variational problem

In order to treat mixed finite element formulations of the Stokes flow problem or the
standard Dirichlet problem under a general framework, Brezzi and Fortin consider the fol-

lowing abstract formulation:

Let V be a Hilbert space with the scalar product (-, -) Vs and let a (-, ) be a continuous

bilinear form on V X V. This bilinear form defines a continuous operator A : V— V' (a

prime denotes a dual space):
(Au, vy oy = a(u,v) V(u,v) e VXV. | (26)

Let Q be another Hilbert space, with scalar product (-, ) 0 and let b (v, g) be a continu-
ous bilinear form defined on V x Q. This bilinear form defines a linear operator

B:V — Q' andits transpose B : Q = V':

BV, ) xg = W B'avxv = b(,a) ¥(%,q) € VXQ. @)

Now consider the following variational problem. Let fe V' and g € Q' be given. The

problem is to find (u, p) € V x Q such that

a(u,v) +b(v,p) =, V) gy VvEV

(28)
b(u,q) =8 dgxg V4€ Q
Equations (28) can also be written as
Au+B'p=finV 29)
Bu=g in Q' .
We define the kernel of B (denoted by Ker B) as
Ker B= {ve V:Bv=0in Q'}, 30)

14



and the image of B (denoted by Im B) as

ImB={qu’:q='Bv}. 31
The followiﬁg theorem addresses the existence and uniqueness properties of the mixed

variational problem.

Theorem 1

Leta(-,-) and b (-, ) be continuous bilinear forms on V x V and V x Q. Let the
range of the operator B associated with b (-, -) be closed in Q', that is, there exists k>0

such that

b(v,q)
Sup MRS
veV Tl =Kol o, kep. (32)

If moreover a (-, +) is coercive'on Ker B, i.e., there exists o, > 0 such that

a (v, v) 20| vo||2  Vvge Ker B, (33)
then there exists a solution (u, p) to equations (28) for any fe V' and forany g € Im B.
The first element u is unique, and the second element p is defined modulo an element of

Ker B'.

3.2. Approximation using a mixed finite element method

* "We now state results corresponding to Theorem 1 for the existence and uniqueness of
solutions-to finite-dimensional approximations of problem (28); as in, for example, a
mixed finite element method. In the following development, we restrict our attention to

T

the case where the solution (u, p) is unique @(.e., Ker B = {0}).

Let V, and Q, be finite-dimensional subspaces of V and 0, respectiveiy. We are

interested in finding a solution (u wPy) IV, xQ, to

15



a(u,vy) +b (v p) = vy YVRE VY,

b qn) =8 ng o Y9€ i ' 69
Inti'oducing the basis functions ¢ and y for the spaces V), and @, we express the
fields u,,, v, p, and g, in terms of the parameter vectors &, 7, P and g as
uh=¢t:¢ p,,=wf>. %)
v, = 0¥ q,=Vq
Defining the matrices A and B, and the vectors fand g as

A;j =a (¢ja ¢,)
B;j =b (¢ja ‘l’,)

N 1 36
gi = (g’ W;)

the matrix forms of the equations (34) are given by

Y &)

or

o))
BO||p g ‘

We next state a theorem regarding the existence and uniqueness of a solution (u,, p,)
to equation (34). We first define the operator B, : V, — Q), and its transpose

B,:0,-V), as

(Bhvh’ qh)Q',, th = (vh’ Biqh)V,,xV’,, = b (vh9 qh) . (39)

We also define the kernel of B}, as

16



Ker B, = {q,€ Q,:Bjq,=0in V) }. (40)

Note that Ker B* = {0} does notimply Ker B} = {0}.
Theorem 2

Assume that a (-, -) is coercive on Ker B,. That s, there exists o, > 0 such that

Also, assume there exists a k;, such that the following inf-sup condition (known as the

Babuska-Brezzi condition) holds for any conforming mesh:

k2 ky >0, (42)

where

b(v,q,)

kh‘ = inf _ sup

= 43
4, € Oy v,eV, )

” vh" V” qh“‘Q/ (KerB;,) .

Then there exists a solution (u,, p ) to the set of equations (34). The function u,, is

uniquely determined in V,,, and p,, is uniquely determined to within an element of

Ker Bj.

Some compbnents of p, might not be uniquely determined if Ker B;, is larger than

Ker B' (ie., Ker B} # {0} ). These components appear as spurious modes in the solu-
tion. The key requirement for stability and convergence of the solution is that k, should
remain bounded away from zero (k, 2 k, > 0) in the limi.t: léjf."mesh réﬁnement; ie., as

h — 0, where h is a measure of the size of an element. Nofe that satisféction of the inf-sup
condition does not guarantee a unique solution for p,, uﬁless, Ker B}, = {0} .Insome
cases (e.g., when A is coercive on Ker B and Ker B, c Ker B), u, remains a good

approximation to u, even though spurious modes are present in p A

.17



There are three strategies to deal with the possibility of spurious modes in the discrete
solution. In the first strategy, we restrict our attention to finite element models that gener-

ate a unique solution. That is, we avoid spurious modes altogéther. If n, and n, denote the

dimensions of the vectors # and P, then the requirements for obtaining a unique solution

can be summarized as
i) A is positive definite in Ker Bj; and

i) rank B = np.'

| Reduirements ( i) and (ii) above are diScrcte versions of the coercivity condition (equation
(41)) and the inf-sup condition (equation (42)) when Ker Bﬁz = {0} . The inequality

no<n, is obviously a necessary condition for requirement (ii) to hold.

In the second strategy, we use a finite element model for which Ker sz # {0}, but
which still satisfies the coercivity and inf-sup conditions. Thus, spurious modes might

appear in the solution for p,, but the u,, solution is nonetheless a good approximation to
the continuum solution u. Furthermore, p, is a good approximation to the continuum

solution p within an element of Ker B If spurious modes do appear in the p, solution,

they can be filtered out using a postprocessing scheme [15]. In a few special cases, such as
the bilinear velocity/ constant pressure element for the Stokes problem, reasonable results
can be obtained by the postprocessing technique described above, even though the partic-
ular element does not satisfy the inf-sup condition [14]. However, in gene_:ral, elements

which do not satisfy the inf-sup condition are unreliable. The requirements for a unique

solution (u,, p,) € V), x Q,/Ker B}, can be summarized as

i) A is positive definite in Ker B; and

i) gelm B.

18



In the third strategy, an augmented functional is introduced to stabilize the problem
without affecting the solution. Hughes et al. present a Petrov-Galerkin formulation of the
Stokes problem that stabilizes certain elements types which are unstable within the frame-

work of the classical Galerkin formulation [17].

Unfortunately, even though the Stokes problem and problem P0i are both linear varia-
tional problems, the theoretical framework developed above for the Stokes problem can-
not be applied directly to problem POi. This is due to a fundamental difference between the
structure of the two problems: the density fields p? and 8p in problem POi must be in
L_ () to ensure that the integrals in equations (15) and (16) are bounded, while in the
Stokes problem we requiré the pressure field to be in L, (L2) . Since L, (L) is nota Hil-
bert space, the theoretical results presented above do not apply directly to problem POi.
However, the struéture of the discrete problem POd is identical to that of equation (38)
when the functional in problem P0 is linear in p, so that H = O. The following section is

devoted to a study of this special case.

4. Optimization problems with linear dependence on the distributed design
parameter

We now consider optimization problems for which the design functional has a linear
dependence on the distributed design parameter p. This implies that o« = 0 and that the
strain energy density is a linear function of p. These restrictions ensure that we obtain

H = O in the discrete form of the incremental problem.

The compliance optimization of a variable-thickness elastic plate is a common appli-

‘cation that is compatible with this restricted model. To illustrate, suppose that one dimen-

sion of the candidate domain, denoted ¢,;,,,

and representing the maximum permissible

thickness of the plate, is much smaller than the other dimensions of Q. The thickness of

the plate can be represented by the function, ¢ (p) = pt

allow*

That is, p is a distributed

design parameter representing the thickness of the plate, normalized with respect to Lallow:

19



A differential volume is expressed as dV = pdQ. We assume a design-independent elas-
ticity tensor C to obtain an effective strain energy density function (i.e., the strain energy

per unit volume in Q) that is linearin p: W = ge‘ Ce. In keeping with this physical inter-

pretation, we shall refer to this simplified problem as the variable-thickness design prob-

lem.

The following section describes the specialization of the development presented in
Section 2 to the variable-thickness design problem. We describe the cause of the spurious
modes that can generate grid-scale anomalies in finite element solutions to the incremental
problem in Section 4.2. We also discuss the behavior of various finite element models. In
Section 4.3, we describe a “patch test” that is useful for testing the stability of specific

mixed finite element models for the variable-thickness problem.

4.1. Formulation of the variable-thickness design problem
We seek a density distribution, p : Q — R, which minimizes the compliance of the

structure such that the total volume of material equals a specified value V. The variable-

thickness design problem is obtained by substituting o = 0 and W (g, p) = %S’Ca into
problem PO.

Problem P1:

Letp,,;,:0<p,,, <1 and V>0 be given. Find (&, p*) € V,xV, that solves

sup inf %j(epre)dQ—j(i-u)dr—j(b-u)dQ-xUde—VJ
pe Vp ueV, Q T Q Fo}

(44)

subjectto p, . <p <1in Q; where A is the Lagrange multiplier associated with the con-

straint, Ide =V.
Q

20



The variatiohal, incremental and discrete forms of the variable-thickness problem are ob-
tained by making the corresponding substitutions into problems POv, POi and POd. Ulti-

mately, we obtain the discrete, incremental form of the variable-thickness problem:

Problem P1d:

:0<

min’

Let p

pmin

<1,7>0,2"e ®™ and p° e R™: prin)o = V be given. Find
Q

(8@, 5p) € R™ x R™ that solves

a1
op g |

subjectto p, . — pg <dpp<1- f)g; = 1, ny; where
A= [B,CB,p%Q, | (46)
Q
B'= [B,CB,i°N,dQ, “7)
Q
J= [Nidr+ [NbdQ - B, 48)
f, Q ‘
A t _ 1 A0 .
2= ?»J;diQ EBu , 49)

and A is the Lagrange multiplier associated with the constraint, JN deSf)o = 0.
Q

Note that & = o corresponds to the uniform-strain-energy-density optimality condition,

1 .
3 (€9 'Ce® = A. Let n, and n, be the dimensions of 8p and 8, respectively. Then the

conditions for obtaining a unique solution to equation (45) are summarized as

i) A is positive definite.
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ii) rank B' = rank B = N

Clearly, nosn, is a necessary condition for (i) to hold. If B is not full rank, then spurious

modes from Ker B’ can pollute the incremental solution. However, if requirement (i) is
met, then the displacement solution can still be a reasonable approximation to the continu-
um solution. In physical terms, the spurious modes can be understood as design perturba-

tions that generate zero pseudoloads and, therefore, zero changes in the displacement field.

4.2. The cause of spurious modes and the behavior of specific finite element models

We now describe the cause of spurious modes in the density solution, based on the two
conditions presented above. First, we show that the coercivity requirement (condition ())

is easily satisfied. The material stiffness matrix C is positive-definite, so A is positive-def-
inite, provided that we satisfy 0<p, . < p¥ in Q. Satisfaction of the coercivity condition
then follows from the positive-definiteness of A . Therefore, we need only verify condition
(ii) to demonstrate the stability of a particular mixed finite element model. Note that B'is

a function of the current displacement estimate #°. This dependence results from the non-

linear nature of problem P1, and does not occur in the Stokes problem. Thus, a particular
mixed finite element model is stable if B is full rank for all admissible 2°; it is unstable if
there exists a #° for which B' is rank deficient. Although it is straightforward to determine
the rank of B’ for a specific choice of 7%, it is difficult to formulate general results for an

arbitrary il Thus, it is far more difficult to establish the general stability of a finite ele-

‘ment model for problem P1 than it is for the analogous Stokes problem.

We will use the singular value decomposition to investigate the rank of B’. The singu-

lar value decomposition of B’ is given by [18]

B' = USV', | (50)
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where S is a pseudo-diagonal matrix containing the singular values of B,and U and V

are matrices containing the left and right singular vectors respectively. B’ is

rank-deficient when r < o in which r = rank B. Assuming that the singular values are

arranged in descending order in S, the last n, — r columns of V (corresponding to the

p
n, —r zero singular values of S) form a basis for Ker B’. These vectors, when they are

present, are associated with the source of spurious modes in solutions to problem P1d.

We demonstrate below that the process of optimization itself can generate a a° that

makes B rank-deficient for some finite element models. First we review the performance

of selected finite element models for the variable-thickness optimization problem.

Table 1 summarizes our numerical experience with certain mixed finite-element mod-
els for the compliance optimization problem. In the displacement interpolation column,
Q4, Q8 and Q9 represent four-node, eight-node and nine-node quadrilateral displacement
elements. In the density interpolation column, Q4 and Q4D represent bilinear continuous
and bilinear discontinuous interpolations, respectively. UD represents a piecewise uniform
density model that is discontinuous across element boundaries. Checkerboard patterns
appear when the Q4/UD element is used with the rank-2 microstructure model, but they do
not appear when this element is used in the variable-thickness problem. The latter model is

stable. (See Section 5 for further discussion of the unstable rank-2 microstructure model.)

We use a 2 X 2 Gauss quadrature integration scheme for the Q4 and Q8 elements and a
3 x 3 Gauss quadrature Scheme for the Q9 elements. The same integration scheme is used
for formulating the stiffness matrix and in the update scheme for the density field (see [1],
[2] for details of the numerical algorithm). The use of inconsistent integration schemes can
lead to spurious modes in elements that are otherwise stable. In particular, the use of a
2 x 2 integration scheme for the discrete form of the equilibrium equation and a one-point
integration scheme for the discrete optimality criterion can result in checkerboard modes

when the Q4/UD element is used to model problem P1.

23



Uniform energy density distributions have a special significance in compliance optimi-
zation problems, since solutions to problem P1 feature uniform energy density distribu-
tions in regions where the upper and lower bound constraints on the density field are
inactive. The uniform energy density condition is only enforced in a weak sense in dis-
crete formulations, and is not necessarily satisfied in a pointwise fashion. In iterative solu-
tion procedures, the critical uniform energy density distributions are not achieved until the

final stages of the solution process.

In cases involving unstable finite element models, it is commonly observed that the
design field is well behaved and free of anomalies during the early iterations of the solu-
tion process. During this phase, the solution remains fegular and appears to be converging
to a reasonable approximétion of a continuous optimal design. However, just when the
- solution approaches the expected optimal design, spurious modes develop and the solution

‘becomes unstable. Based on this numerical experience, we conjecture that weak satisfac-

tion of the uniform energy density optimality criterion in the later iterations (i.e., g = 0)

leads to a displacement Solution #° that makes B’ rank-deficient for unstable finite ele-
‘ment models. That is, the necessary conditions for a solution to the optimization problem
are 'sufﬁéieht to cause a singUlar system matrix. According to this conjecture, an unstable
finite element model could produce stable design increments in the early stages of an iter-
ative 6pﬁmization procedure when the optimality criterion is not satisfied. However, we
would expect to see spurious modes develop in the later iterations, as the solution con-

“verges to the optimal design.

As an example, consider a rectangular domain of unit thickness subjected to a

linearly-varying traction as shown in Figure 4. The material properties are

E =21x10" psi and v = 0.25. The structure is discretized usinga 5 x 4 mesh. We
specify a volume fraction of 45%. Note that the upper and lower bound constraints on the
density field (0 <p <1) are inactive everywhere in the optimum design. If we use a Q4/

UD element model, which our numerical experience shows to be stable, the lowest singu-

lar value of the matrix B’ stays bounded away from zero as the energy density becomes
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uniform in the later iterations (see Figure 5). However, if we use the Q4/Q4 model, a com-
bination which is known to be unstable, the lowest singular value tends to zero in the later

iterations, as shown in Figure 6. In Figures 5 and 6, S,,;, represents the lowest singular

min

value of B’ at a given iteration, (S ) ; represents the lowest singular value for the initial

min

design, and E is a measure of the optimality criterion residual given by

}\,J'NdeQ - J‘%StceNdeQ
Q Q

B A [NppdQ i B=1n, 1)
Q

We have so far been unable to demonstrate that every displacement solution that satis-

fies the weak optimality condition will generate a rank-deficient matrix B’ for an unstable
element model. However, we can demonstrate that the conjecture holds for a regular grid
of Q4/Q4 elements whenever the optimal design involves a uniform strain state (as in the
above example). Of course, a uniform strain state satisfies the uniform energy density cri-

terion. We next present a proof of this special case of the conjecture.

We assume a uniform grid of Q4/Q4 elements and a uniform strain field, B uico. The

matrix B’ is rank-deficient if there exists a density increment dpe V, such that

[8pdQ = 0 and
Q

v [B,CB,2°8pdQ = 0 Vv'e R™. (52)
Q

We now demonstrate the existence of a spurious mode pattern that satisfies the volume

constraint locally within each element, and which makes B rank-deficient. If x and y
denote the element natural coordinates, then an arbitrary increment of the density field in a

given element can be represented as 8p = a,; +a,x + asy +ayxy, in which g; is a scalar

constant. Each row of Bf‘ has the polynomial form

25



[ (by+Dyy) (b3 +byx) (bs+bex+byy)]. (53)
The term CB u&O in equation (52) is a 3 x 1 vector of constants, since the strain state is

uniform by assumption. Hence, each component of the vector BLCB uz‘to is of the form
C1+Cpx +c3y. 54)

If we set a; = a, = a3 = 0, then we have ISpa’Q = 0 and we see that 8p = a,xy is
Q

~ orthogonal over every element domain to each component of the vector B;CBuitO, given

by equation (54). This proves condition (52), and hence the singularity of B’ forall &°
that generate uniform strain states. The spurious mode 8p = a,xy corresponds to the

“saddle” form instability shown in Figure 7. The plus signs denote positive perturbations

- to the density field, while the negative signs denote negative perturbations.

A similar analysis can be applied to the Q8/Q4 element, which numerical experience
shows to be stable. Under the assumptions of a regular mesh and a constant strain field,
each component of the vector B;CB uilo for the Q8/Q4 element is of the form (compare

with equation (54))

Ci+ex+ ey +euxy+ 65x2 + 06y2. (55)
Design perturbations of the form a,xy are not orthogonal to the function given in (55), so

there is no spurious mode similar to the one described for the Q4/Q4 model. Of course,
this argument does not constitute a proof of the stability of the Q8/Q4 element. Nonethe-

less, our numerical experience (Table 1) shows this element to be stable.
As a practical matter, we would like to have a simple test to determine whether a
mixed finite element model for problem P1 is stable or unstable. A single example of a

spurious mode, for a specific grid configuration and displacement vector flo, is sufficient
to show that a given model is unstable in general. However, it is much more difficult to

show that a model is generally stable, since one has to show that spurious modes do not

26



exist for all possible combinations of grids and strain states. Therefore, it would be desir-
able to identify critical grid configurations and strain states which can be expected to gen-
erate spurious modes for unstable elements. We have found that all elements which we

have identified as unstable (based on our numerical experience) generate a rank-deficient

matrix B’ when applied on a regular grid to a uniform state of strain. We conjecture that
these two conditions constitute a critical case which can be used to discriminate between
stable and unstable elements. This conjecture is the basis of the “patch test” described in
the following section. Experience with the Stokes problem [15] and the variable-topology
design problem supports the conjecture that spurious modes are more prone to develop on

regular grids than on distorted meshes.

4.3.  The patch test for problem P1

We now describe a patch test for problem P1, based on the conjecture of the previous

section, which can be used to discriminate between stable and unstable mixed finite ele-

ment models. The test involves checking the full-rank condition for B under the (suspect-

- ed) critical conditions of a uniform stress state on a regular grid.

To test the stability of a particular mixed finite element model, we subject a regular
grid of elements with a uniform density distribution to three different stress states: i) uni-

form uniaxial stress G, if) uniform uniaxial stress G, and iii) uniform shear stress Tay*
These test conditions correspond to uniform strain states that also satisfy the weak uni-

form energy density optimality condition. It can be shown that if B’ is full rank under each

of the above stress states, then it must be full rank for all uniform stress states. We solve

the singular value problem, given by equation (50) for each of the three states. If B’ is

rank deficient for any of them, then the element is unstable and the columns of V corre-
sponding to the zero singular values of S identify spurious modes that might pollute the
density solution. If B’ is full rank (r = np) in all three casés, then the element is stable,

provided our conjecture is true.
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Results for the patch test on selected element models under the three uniform stress

states are summarized in Table 2. These tests were carried out on a 5 X 4 mesh of square
elements. The notation “FR” designates elements for which B’ is full rank under all three

of the test stress states; “RD” identifies elements for which B’ is rank deficient under at
least one of the test loading conditions. The three numbers below the “RD” entries indi-
cate the number of zero singular values (i.e., the number of spurious modes) for each test
loading case. The different number of spurious modes for the 6, and O, cases are due to
the non-square mesh. Note that there are more spurious modes for the uniaxial stress cases
than there are for the shear loading case. It is not necessary to carry out the patch test for
the Q4/Q4D element, since it violates the necessary condition, n, < n,. Based on these
results, one would expect the Q4/Q4, Q4/Q4D and Q8/Q4D elements to generate spurious
modes and the remaining elements to give stable solutions. This is indeed found to be the

case in our numerical experience, as summarized in Table 1.

Figure 7 shows the single spurious mode for problem P1 generated by the singular val-
ue decomposition in the uniform-shear-stress patch test for the unstable Q4/Q4 element.
Within each element, this spurious mode has the same saddle form, p = kxy, that we

identified in our proof of the instability of this element in section 4.2.

5.  Optimization probiems with nonlinear dependence on the distributed design
parameter

We now consider the general case in which the design functional in problem PO is a
nonlinear function of the distributed design parameter p (H # O). This nonlinearity arises
whenever o > 0 or the strain energy density W is a nonlinear function of p. We analyze

the stability of discrete models and propose a patch test to identify unstable elements in
Section 5.1. In Section 5.2, we present examples applications and explain the behavior of

specific finite elements in the context of the theory presented in Section 5.1.
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5.1.  Conditions for the stability of solutions to problem POd

In what follows, we assume that a strict optimum exists for the continuum problem PO.

Note that problem PO need not necessarily be a saddle-point problem. Denoting the dis-

crete version of the design functional in equation (9) by L, the Kuhn-Tucker conditions

for a strict optimum of problem POd are

Stationary conditions:

oL
— =o, 56
P 0 (56)
dL
& _ . (57)
dp
Second-order conditions:
2 .
aA—LA— is positive definite, (58)
oo
g,
—— is negative definite. (59)
dpdp

The stationary condition with respect to & (equation (56)) yields the usual equations of

equilibrium (i.e., the discrete version of equation (10)). The stationary condition with re-
spect to P yields the discrete version of the weak optimality criterion (11). Note that equa-
tion (57) involves the total derivative of L with respect to P, which is equal to the partial

derivative of L with respect to p when equation (56) is satisfied.

The matrix E; Zj in equation (45) is the Hessian of L with respect to the vector

2

(@, p) . Thus, the matrix is identical to the stiffness matrix A. In most applications,

o
the stiffness matrix is positive definite and the second-order condition given by (58) is au-

tomatically satisfied. Equation (59) is the critical condition governing the stability of finite
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2

element models. To evaluate the total derivative , we introduce the linear coordinate

A A

dpdp

HEH!
p' p

where P is a nonsingular matrix given by

transformation:

P= [l A‘lBj. ©61)
0 I

The Hessian matrix in the transformed system is given by

[A 0} = p[A Blp, ©
OH B H

where H' = H—BA™'B’. The transformation (62) ensures that the original and trans-

formed Hessians are equivalent matrices. Recalling that the columns of —B’ are the

pseudoload vectors corresponding to the elements of 8D (i.e., -B' = Ag-%), we see that

the transformation (60) defines the vector 8u' so as to cancel the part of 8@ induced by

A
'

3p. In other words, a—u = 0. This has the effect of uncoupling 8u' and 8p', as seen in
p :

A

equation (62).
Working in the transformed system, we have iA = —ai— ana iA = ? since
. Jdn 9y ap  ap'
%' = 0. Accordingly,
aZLA _ 9L __4 63



2 2 -
d,\L,. _ aAL - (64)
dpdp  9p'dp'

Therefore the second-order conditions for a strict optimum solution to problem POd

are given by

A is positive definite, (65)
H' is negative definite. ' (66)
The first condition is aufomatically satisfied in most applications, as explained above. If H

is positive definite, equation (66) is clearly violated if n, > n,. We assume that A is posi-
tive definite and that n, < n, from here on. Equation (66) is the key requirement for stabil-
ity of discrete solutions. If H is negative definite, then equation (66) is clearly satisfied,

since ~-BA™!B’ is at least negative semidefinite. The implication is that when H is nega-

tive definite, all finite element models (with ny<n, and A positive definite) are stable!

Unfortunately, in most distributed parameter optimization problems and especially prob-
lems involving topology optimization, H is positive definite. Then, to achieve a stable
model, the discretization must be such that H' is negative definite in the vicinity of the op-
timum solution. However, H' need not be negative definite everywhere since the condi-

tions given by equations (65) and (66) only pertain to the optimum solution.

The stability conditions presented in Section 4 for problem P1 are consistent with con-

ditions (65) and (66) for the general problem P0. Since H = O in problem P1 and A is as-

sumed positive definite, H' = —BA™'B’ is negative definite if and only if B is full rank.
If B is rank deficient at a stationary point, then H' is rank deficient and a strict optimum
solution is not obtained. The rank deficiency implies a lack of uniquenéss for the density
field in the incremental problem; however, the incremental displécemeﬁt field is uniquely
determined. This is in contrast to the case in which H' has one or'more'positive eigenval-
ues at a stationary point, a condition which implies that the stationary pt)int is not an opti-
mum in the discrete problem. In some cases, the positive eigenvalués a'ré an artifact of a

particular finite element discretization and do not reflect the nature of the underlying con-
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tinuum problem. This situation can trigger spurious modes in the discrete solution which
generate a lower value of the objective function than the expected discrete representation
of the continuum solution. Note that in contrast to the case where H = O, these spurious

modes involve both the density and displacement fields.

We now describe a patch test to detect spurious modes for the case where H # O. The
test attempts to identify elements for which H' is not negative definite at a known opti-
mum point of the continuum problem. The test involves checking the eigenvalues of H'
for a regular grid of planar elements subjected to three uniform stress states: ) uniform

uniaxial stress ©_, if) uniform uniaxial stress Oy and iii) uniform shear stress Ty The

continuum optimum design (i.e., the uniform design field that satisfies the volume con-
straint) is assigned to each element. If any non-negative eigenvalues are detectéd, then the
element is unstable. We conjecture that a regular grid and the three uniform stress fields
comprise the critical cases for detecting spurious modes. Under this conjecture, any ele-
ment for which all of the eigenvalues of H' are negative in all three cases is assumed to be
stable in general. Although we do not have a proof for this conjecture, our numerical expe-
rience indicates that the proposed patch test is effective—all elements which appear to be
stable in practice pass the test; while all elements which have been observed to generate

spurious modes also exhibit positive eigenvalues in the patch test.

5.2.  Example applications for the general case of problem PO

We now present a number of applications in which the Lagrangian exhibits a nonlinear
dependence on p to illustrate the general case of problem PO where H # 0. In particular,
we focus on formulations that are commonly used in variable-topology shape optimiza-
tion. We discuss the behavior of various finite element discretizations for each application

and illustrate the use of the patch test described in the previous section.

The penalized variable-thickness design problem

Our objective is to obtain a solution to the variable-topology design problem that con-

sists primarily of solid and void material. We select a penalty parameter, o > 0, in problem
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PO to approximate a 0-1 integer version of the variable-thickness optimization problem. -

p

Although the compliance remains linear in p (W = EetCe), the quadratic form of the

penalty term generates a non-zero matrix H. The matrix equations for the penalized prob-
lem are given by equation (25), with A, B’ and f given by equations (46)-(48), and H and
g given by

— t
H =20 gj} NN, dQ, (67)

N} —

g = xjN{,dQ— Bif’mj (1-2p%) NLdQ. (68)
Q Q

Solutions to the unpenalized variable-thickness problem will, in general, contain re-

gions where p_. < p < 1. As the parameter o is increased, the penalty on intermediate

min
values of p becomes stronger. Eventilally, for a » 0, the upper and lower bound con-
straints on p are active almost everywhere in Q. In this case, a solution to the continuum

problem PO does not exist, since V, is not closed under the introduction of fine-scale

oscillations in p [8]. Assuming that o is small enough to ensure the existence of a contin-
uum solution, the stability of a discrete model is determined by the signs of the eigenval-
ues of H'. A model which is stable for the unpenalized problem can be unstable under
penalization. For example, the Q4/UD element, which is stable for problem P1, presents a
checkerboard mode when the penalty term is added. Rozvany et al. [7] also report check-

erboard modes for the Q4/UD element for the penalized variable-thickness problem.

An implicit penalty on intermediate densities

Sometimes the material model is manipulated to obtain an implicit penalty on interme-
diate values of p, as an alternative to the explicit penalty in the previous example. We set
0. = 0 and define the strain energy to have a nonlinear dependence on p, the latter feature

leading to a nonzero H. Mlejnek and Schirrmacher introduce an artificial relationship be-

tween the elastic modulus and the density of the form [19]
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Ceffective = ppC > (69)

in which p > 1. In this model, the implicit penalty derives from the fact that extreme val-
ues of p provide a larger specific stiffness than intermediate values. This model is similar
to the one used by Weinans et al. in their simulation of bone remodeling [9]. The matrix

equations for this model can be derived using equations (20)-(25), with the strain energy

density given by W (g, p) = %S‘pPCS and o = 0.

For p < 1, extreme values of p are penalized and a continuum solution to problem PO
is guaranteed to exist. We also have that H' is guaranteed to be negative definite in the dis-
crete problem, so that any reasonable finite element model will be stable. The case p = 1
corresponds to the unpenalized variable-thickness problem discussed in Section 4. For
p > 1, a continuum solution might or might not exist. In particular, the solution will not
exist for large values of p (similar to the case o » 0 in the previous example). Of particu-
lar interest is the case where p is greater than 1 but small enough to guarantee the exist-
ence of a continuum solution. Now H is positive definite, so H' might be indefinite. We

must examine the eigenvalues of H' to determine the stability of a given discrete model.

We carried out numerical studies of the Q4/UD and Q8/UD elements for p = 1.01
and p = 1.05. For p = 1.01, both elements generated smooth, stable solutions in our tri-
al optimization problems. Consistent with this result, both elements passed the patéh test
(that is, H' is negative definite for all three uniform stress states) for p = 1.01. For
p = 1.05, the Q8/UD element was stable in éll trials, but the Q4/UD element exhibited
spurious modes in some, but not all, cases. The patch test results were consistent with
these findings: the Q8/UD element passed the patch test for all three stress states, while the
Q4/UD element presented a positive eigénvalue in the uniaxial stress cases. It is worth
noting that the Q4/UD model nonetheless generates stable solutions and a negative defi-
nite H' under a uniform isotropic stress state. Thus, the stability of a given element under

a fixed value of p is shown to be problem-dependent.
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The relaxed, variable-topology design problem using rank-2 microstructures

A well-posed form of the variable-topology design problem is obtained by expanding
the design space to include periodic, perforated microstructures and using homogenization
methods to compute effective material propérties [8]. Rank-2 microstructures are known
to attain the optimal energy bounds, so the design can be restricted to this class of micro-
structures without loss of generality. The introduction of a perforated microstructure natu-
rally defines a bulk density p; homogenization and analytical optimization of the
microstructure automatically generates an efféctivc strain energy density W as a function
of p (see ([1], [2] for details). Solid and void conditions are realized in the microstructure;

no attempt is made to suppress intermediate values of p. The relaxed form of the variable-

topology design problem corresponds to problem PO, with o = 0 and W (g, p) given by

E (e?+2ee, (1-p+vp) +€2)
2(1=-v) (2-p+vp)
E(e2-2ee,(1-p-vp) +&2)
2(1+v) 2= p-vp)

mode-I: W(g, p) =

mode-II: W(e, p) = 3 (70)

mode-III: W(e, p) = %pEﬁf

where €, and €,; are the principal strains defined such that gy > len" ,and E and v are the

Young’s modulus and Poisson’s ratio. The modes are identified using the ratio k = £;/€;

as

+k

mode-I: 1T<p£1, R (71)
11—k
mode-II: m<p£l, ; e (72)

1+k 1-%

T=v iy R

mode-1III: 0 < p <min (

A continuum solution to the relaxed problem is known to exist [8]. Therefore, any fail-
ure to achieve a negative definite H' matrix in the vicinity of the optimum can be attribut-

ed to spurious modes that arise as artifacts of the discretization. The Lagrangian is linear
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in p in mode-III regions, so H = O and the analysis of Section 4 applies. The functional
is nonlinear in p in mode-I and mode-II regions, and H is positive definite. Thus, it is pos-

sible that H' will have some non-negative eigenvalues, indicating the presence of spurious

modes. We next report the results of our numerical investigation of this case.

Previous numerical studies found that the Q8/UD, Q9/UD, Q8/Q4 and Q9/Q4 ele-
ments are stable for the rank-2 model, while the Q4/UD, Q4/Q4, Q4/Q4D, Q8/Q4D and
Q9/Q4D elements are not ([1], [2], [20]). (The Q4/UD element suffers checkerboard
modes, the Q8/Q4D and Q9/Q4D elements suffer saddle modes as in Figure 8. The Q4/
Q4, Q8/Q4, Q9/Q4 elements also exhibit spurious modes. The Q4/Q4D element violates

n, < n,.) We carried out the patch test with a uniform isotropic loading (to ensure mode-II

p

conditions) and a uniform shear (to ensure mode-I conditions). Surprisingly, our patch
tests produced some positive eigenvalues for all of the elements considered, indicating
that none of these elements are stable! This finding prompted us to run more stringent tests
on the Q8/UD, Q9/UD, Q8/Q4 and Q9/Q4 elements. We increased the number of optifni-
zation iterations relative to our previous experiments in which these elements appeared to
be stable. Indeed, spurious modes did eventually appear in the solutions for all of these
elements. However, they did not appe‘ar until after the design had apparently converged
and after many more iterations than were néeded to produce spurious modes in the Q4/
UD, Q4/Q4, Q4/Q4D, Q8/Q4D ahd Q9/Q4D elements. This suggests that the Q8/UD, Q9/
UD, Q8/Q4 and Q9/Q4 elements are only mildly unstable, a notion that is supported by
the fact that thcyv generate positive eigenvalues in the patch test that are smaller in magni-
tude than those produced by the other elements. Although the discovery of unstable modes
for these elements is cause for some concern, they might still be useful in practice since
the spurious modes are not easily activated. We next present an explanation of the finding
that spurious modes typically do not devélop until after the discrete solution appears to

converge to a reasonable approximation of the continuum solution.

Figure 9 presents a problem in which checkerboard instabilities appear with the rank-2

model for both the Q8/UD and the Q9/UD elements. The solution first appears to converge
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rapidly to the continuum solution, then remains roughly the same for a number of itera-
tions, but ultxmately diverges in the later iterations. (It is interesting to note that similar be-
havior is reported in studies of adaptive bone remodeling [9].) The continuum solution is
well approximated after about 20 iterations, but the checkerboard instabilities are clearly
evident only after approximately 150 iterations. H' is indefinite throughout the iteration
history for both element types. Thus spuﬁous modes could develop at any time. However,
the magnitude of the gradient of the Lagrangian in the unstable subspace (defined by the
eigenvectors associated with the positive eigenvalues of H') remains small and the spuri-
ous modes do not part1c1pate significantly in the solution until the later 1terat10ns Note
that the mechanism that delays the appearance of spurious modes here is dlstmct from the
one which is operative in the H = O case, where H' becomes rank-_deﬁcient only when

the solution approaches the continuum optimum.

- Figure 10 illustrates this behavior for the Q8/UD element applied to the problem

shown in Figure 9. We introduce the parameter ¢ to measure the magnitude of the projec-

tion of the gradient vector d* into the unstable subspace at iteration k:

n, 172
2
[2: (d"mg) }

_ Lg=n |
T 4

The index B ranges over ., the number of positive eigenvalues of H'. The corresponding
eigenvectors o)’é are assumed to be normalized to unit magnitude. In Figure 10, we see

that ¢ remains small until the later iterations.

6. Strategies for obtaining stable solutions

We now discuss three strategies for obtaining solutions to the compliance optimization
problem that are free of spurious modes. The first strategy involves a postprocessing oper-

ation to filter out spurious modes, the second employs stable finite element models which
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exclude spurious modes, while the third involves modifying the functional to ensure the

stability of a given finite element model.

Bendsge, Diaz and Kikuchi [21] describe a post-processing scheme for the Q4/UD ele-
ment that attempts to filter out the spurious checkerboard mode using an operator which
acts over a patéh of four neighboring elements. This effectively introduces a type of
“super” element to the finite element formulation, and is similar to the scheme introduced
by Johnson and Pitkaranta for Stokes flow problems ([15], pg. 211). Since an inf-sup con-
dition similar to equation (42) has not been formulated for the optimization problem, a

mathematical justification for this scheme is not yet available.

An alternative strategy is to use a stable finite element model, such as the Q4/UD ele-
ment for problem P1 or the Q8/UD element for the implicit penalty model (if p is not too
large). We have yet to find an element type which is stable for the relaxed form of the vari-
able-topology design problem under all loading conditions, but the instability of the Q8/
UD, Q9/UD, Q8/Q4 and Q9/Q4 elements is very mild; these elements perform as though

stable for all practical purposes.

A third possibility is to modify the Lagrangian in problem PO to ensure that H' is neg-
ative definite in the vicinity of the optimum solution without affecting the stationary points
of the functional. We have yet to pursue this possibility, but Petrov-Galerkin formulations
[17] and augmented Lagrangian methods [22] are possible means to achieve this goal.
This approach would allow greater flexibility in the choice of discrete function spaces for
distributed-parameter optimization problems, leading to more efficient and rhore robust

finite element models.

7. Conclusions

The central thesis of this work is that the theory of mixed variational problems pro-
vides a useful framework for understanding the cause of grid-scale anomalies in distribut-
ed-parameter optimization problems. However, the analysis of mixed finite element

models for these problems is complicated by their nonlinear nature. For a simple material
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model (e.g., the variable-thickness model), it is possible to reduce the problem to a form
similar to that of the Stokes problem by considering an incremental formulation. However,
the structure of the incremental formulation is not identical to that of the Stokcs problem,

since the density field p is constrained to be in L_,, which is not a Hilbert space. A criteri-
on similar to the inf-sup condition for the Stokes problem, but based on the L_, space, is

needed to prove the convergence of finite element approximations. Whether such a criteri-
on can be formulated remains an open question. Although the standard theory does not
apply to the incremental continuum problem, the structure of the corresponding matrix

equations is identical to the form of those encountered in the Stokes problem.

Although we do not have a convergence proof for the discrete variable-thickness
design problem, we can explain the cause of instabilities for certain element types. We
have proposed a patch test based on the matrix equations of the discretized incremental
formulation. Our experience shows that spurious modes do not develop in unstable models
until the design approaches the optimum—even when the optimal strain distribution is not
- uniform. This suggests that it might be possible to demonstrate that weak satisfaction of
the uniform-energy-density optimality criterion is sufficient to make the B matrix rank-

deficient in unstable elements.

For the more general case of problem PO, in which the design functional is a nonlinear
function of the density parameter p, the H' matrix governs the stability of finite element
models. Even when a continuum solution exists, there might be discrete models for which
H' is not negative definite in the vicinity of the optimum solution, a condition that sup-
ports the occurrence of spurious modes. A patch test, similar to the one proposed for the
variable-thickness design problem, can identify unstable elements. However, for both ver-
sions of the patch test, a proof that the patch test conditions are indeed critical is needed to
demonstrate conclusively that an element which passes the patch test is generally stable.
Nonetheless, our numerical expefience shows the patch tests to be reliable in predicting

the stability properties of specific mixed finite element models.
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Displacement interpolation
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Table 1 Stability of mixed finite elements for Problem P1.
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Table 2 Rank condition of mixed finite element models for problem P1.
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Figure 1 A rectangular design domain with a distributed load.
The domain thickness is 1 in.; w = 2.4 x 10* psi,
E =21x10" psi and v = 0.25.
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Figure 2 The bulk density distribution for the problem shown in Figure 1, obtained with
8-node displacement elements and uniform density per element.
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Figure 3 An unstable checkerboard solution for the problem:shown in Figure 1, obtained
- with 4-node displacement elements and uniform density per element.
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Figure 4 A rectangular domain subjected to a linearly-varying, distributed load
(w = 2.4 x10* psi).
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Figure 5 The lowest singular value of the matrix B’ and the parameter Z as a function of
the iteration number for the Q4/UD element.
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Figure 6 The lowest singular value of the matrix B and the parameter Z as a function of
the iteration number for the Q4/Q4 element.
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Figure 7 The spurious saddle mode for the Q4/Q4 element in problem P1.
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Figure 8 The spurious discontinuous saddle mode for the Q8/Q4D and the Q9/Q4D
elements in problem PO for the rank-2 microstructure model.
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Figure 9 A square domain subjected to linearly-varying, distributed loads.
The thickness is 1.0 in. and the maximum and minimum load intensities are

1.12x 10° psiand 1.00 x 103 psi, respectively.
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Figure 10 The parameter ¢ as a function of the iteration number for the Q8/UD element
with the rank-2 microstructure model for the problem in Figure 9.
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