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Abstract 

Tangent operators and design sensitivities are derived for transient nonlinear coupled prob
lems. The solution process and the formation of tangent operators are presented in a systematic 
manner and sensitivities for a generalized response function are formulated via both the direct 
differentiation and adjoint methods. The derived formulations are suitable for finite element 
implementations. Analyses of systems with materials that exhibit history dependent response, 
may be obtained directly by applying the analyses of transient nonlinear coupled systems. Rate
independent elasto-plasticity is investigated as a case study and a problem with an analytical 
solution is analyzed for demonstration purposes. 

1 Introduction 

Efficient and accurate design sensitivity formulations based on both the direct differentiation 

and the adjoint methods have been developed over the last fifteen years. These methods 

replace the traditional finite difference method which is prohibitively expensive for practical 

applications, particularly when the number of design parameters is large; additionally it 

may be inaccurate due to round-off or truncation errors [1, 2]. On the other hand, the 

computations associated with the explicit sensitivity methods require only a small fraction 

of the original analysis cost. Unfortunately, unlike the finite difference method which is 

straightforward to implement, these explicit methods usually require laborious derivations. 

Moreover, their formulations are dependent upon the class of the boundary-value problem 

being solved. 
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Analytic design sensitivity analysis formulations for linear systems are well established 

[3, 4, 5]. However, the development of analytic design sensitivity analysis formulations 

for nonlinear systems is an area of on-going research. Several works formulate sensitivity 

expressions for steady-state uncoupled nonlinear systems (cf. [6, 7, 8, 9, 10, 11, 12, 13, 14, 

15]). Design sensitivity analyses for transient uncoupled systems are addressed in [2, 16, 17, 

18, 19, 20, 21). Sensitivity analyses for steady-state coupled systems appear in [22, 23], and 

sensitivity analyses for transient coupled systems are investigated in [24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35]. 

Vidal and Haber [34] emphasize that accurate design sensitivities may be computed only 

when the design sensitivity formulation is fully consistent with the underlying simulation 

model. They also show, in the context of elasto-plastic systems, that this consistent sensi

tivity derivation necessitates the use of the algorithmic tangent operator [30, 36]. 

Here, we clearly show that the tangent operators appearing in the Newton-Raphson 

solution of nonlinear systems are required for accurate design sensitivity analyses of tran

sient coupled nonlinear problems. Sensitivities for steady-state and transient uncoupled 

nonlinear problems are initially presented. Then, the formulations are extended to steady

state and transient coupled nonlinear systems. These sensitivity expressions are formulated 

by both the direct differentiation and adjoint methods. Analyses of systems that exhibit 

history-dependent material response, e.g. plasticity, may be obtained directly by applying 

the analyses of transient nonlinear coupled systems. The direct differentiation results are 

consistent with the derivations in [30, 34]. The adjoint results are uniquely applied to the 

plasticity problem and are consistent with adjoint derivations for other coupled problems, 

e.g. thermo-elasticity [27, 31]. 

A systematic numerical approach to compute the algorithmic tangent operator is de

scribed. This approach is consistent with that of [37] and is a numerical alternative to the 

closed-form approach presented in [36), and may prove advantageous as it is compact and 

flexible, especially when complex constitutive relations are used. Furthermore, our approach 

facilitates a systematic modular computer implementation. 

We demonstrate the versatility of our general formulation by particularizing it to rate

independent elasto-plasticity. A simple one-dimensional example with an analytical solution 

is presented where the sensitivities are evaluated by the both direct differentiation and adjoint 

methods. 
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2 General Formulation 

In this section, we formulate a general approach for the primaP analysis and the subse

quent sensitivity analysis for transient nonlinear coupled problems. The primal problem is 

expressed in residual form and solved iteratively by the Newton-Raphson method. Then, 

the sensitivities are derived. Steady-state uncoupled nonlinear problems are initially studied; 

gradually, the formulation is extended to accommodate transient coupled nonlinear problems. 

For transient systems, the time domain is discretized. Both the direct differentiation and 

adjoint approaches are explored. In all cases, the sensitivities are evaluated for a generalized 

response functional. 

2.1 Steady-State Nonlinear Systems 

A steady-state nonlinear problem may be expressed in residual form as 

R(u) = O (1) 

where R is the residual and u is the unknown system response. Equation (1) is solved 

iteratively by invoking the Newton-Raphson method. If the current iterate u 1 is not a 

solution, i.e. if R(u1) =J O, then the next iterate u 1+1 is computed by equating the first

order Taylor series expansion of R about u1 to zero, i.e. 

DR 
R(u1+1) = R(u1 + 8u) ~ R(u1) + -(u1)8u = 0 

Du 
(2) 

where ~! is the tangent operator2 and 8u is the incremental response which is determined 

from the linear equation 

(3) 

Upon evaluation of the incremental response 8u, the next iterate u 1+1 is updated from the 

sum 

u 1+1 = u1 +h'u (4) 

The process of evaluating the residual Rand updating the response u continues until the 

solution converges, which for the Newton-Raphson method, is asymptotically quadratic. 

In a sensitivity analysis, the residual R and the system response u are expressed as 

functions of the design parameter vector</>, i.e. 

R(u(</>),</>) = O (5) 
1The system analysis, i.e evaluation of a systems response, is referred to as the primal analysis throughout this 

document. 
2 Here and henceforth, we assume that all tangent operators are nonsingular. 
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The design parameters may be used to describe any of the analysis model input, e.g. material 

properties, load data and shape. A general response functional is then defined as 

F(¢) = G(u(¢),¢) (6) 

This functional may be used to define cost or constraint functions in an optimization, or 

error functions in inverse and identification studies. 

The sensitivity expression is obtained by differentiating equation (6) with respect to each 

component <p; of ¢, i.e. 

DF 8G Du 8G 
-=-·-+Drp; ou Drp; 8¢>; 

(7) 

In the above equation, the derivatives i~ and ii are explicit quantities, whereas the deriva

tive JJ;. is an implicit quantity because the system response is implicitly defined through 

equation (5). 

2.1.1 Direct Differentiation Sensitivities for Steady-State Nonlinear Systems 

In the direct differentiation approach, the implicit derivative JJ;. is evaluated and then the 

sensitivities are obtained from equation (7). This is accomplished by differentiating equation 

(5) with respect to the individual design parameters <p;, which, after some rearranging, yields 

fJRDu 
---
OU Drp; 

(8) 

The above equation forms a pseudo problem for the evaluation of the response sensitivity 

JJ;., resulting from the pseudo load -g!. Note here that the operator in the pseudo problem 

is identical to the tangent operator in the Newton-Raphson analysis of the primal problem 

( cf. equation (3) ). In a finite element analysis, this reappearance of the tangent operator 

allows the decomposed tangent stiffness matrix resulting from the iterative solution of u to 

be used to solve equation (8) efficiently for the implicit response sensitivity JJ;.. Hence, the 

evaluation of the derivative g;, requires only the formation of the pseudo load vector - i! 
for each design parameter rp;, followed by a back substitution using the existing decomposed 

tangent stiffness matrix. Upon evaluating all response sensitivities £;., the sensitivities for 

any number of response functionals are evaluated from equation (7). As opposed to the finite 

difference sensitivity analysis, numerical implementation of the direct differentiation method 

adds only a small fraction to the overall computational cost. 
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2.1.2 Adjoint Sensitivities for Steady-State Nonlinear Systems 

Adjoint sensitivities are obtained via the Lagrange multiplier method, where the implicit 

response sensitivity f.J~ is eliminated from equation (7). Equations (5) and (6) are combined 

to define the augmented functional 

F(cp) = G(u(cp),cp)->..(cp) · R(u(cp),¢) (9) 

where>..(¢) is the Lagrange multiplier and u is a solution to equation (1). Note here that 

F = F since R = 0 ( cf. equation (5)). Differentiation of the above with respect to the 

individual design parameters <pi yields 

aa Du aG D>.. 
-·-+---·R-
au D,/Ji acpi D</>i 

>.. (aR Du aR) 
. au D</>i + 8</Ji (10) 

Here, we note again that E! = zr since again R = 0 and ( ~! E~ + :: ) = 0 ( cf. equations 

(5) and (8)). 

To isolate the implicit response sensitivities, we separate equation (10) into two terms 

(11) 

where ~~~ and ~~~ are the explicit and implicit terms, respectively, defined as 

DFE aa ->..• aR (12) 
D</Ji a<1>i acpi 
DF1 Du. [OG _ (&Rr >-] (13) 
D</Ji D</Ji au au 

Here, (·f denotes the transpose operator. The implicit part 1lt,~ is eliminated from the 

sensitivity expression by defining the Lagrange multiplier >.., so that equation (13) equals 

zero. Once this >.. is determined, the unknown derivative £~ is eliminated from the sensitiv

ity expression and the sensitivities are evaluated from the remaining explicit quantity (i.e. 

equation (12)). Annihilation of the implicit term (cf. equation (13)) yields the following 

adjoint problem for the adjoint response (Lagrange multiplier) >.., 

( aR)T >.. = aa 
au au (14) 

where t~ is deemed the adjoint load. Once the adjoint response >.. is evaluated, the sensitivity 

expression reduces to 

(15) 
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Here, we note that the operator that appears in the adjoint problem is the transpose of 

the Newton-Raphson tangent operator used to obtain bu (cf. equation (3)). Therefore, in a 

finite element analysis, if the tangent stiffness matrix is symmetric, the decomposed tangent 

stiffness matrix resulting from the iterative solution of u may be used to solve equation 

(14) efficiently. If the tangent stiffness is not symmetric, the adjoint problem may still be 

efficiently solved by standard LU decomposition techniques ( cf. [38]). 

The adjoint method requires the solution of one adjoint problem for each response func

tional F, whereby the sensitivity is computed from equation (15). Therefore, it is very 

efficient when the number of response functionals is small compared with the number of 

design parameters. If this ratio is reversed, the direct differentiation is generally preferred. 

2.2 Transient Nonlinear Systems 

For transient nonlinear problems, the response u is a function of the time t. Additionally, 

the residual R is a function of the time t, the response u, and its time derivative3 u. 

Numerical solutions of transient problems often necessitate that the time domain be 

discretized into a finite number of steps. For a typical time step, the time derivative of the 

response u is approximated by the first-order finite difference4 

nu_ n-lu 

nu~----nt _ n-lt (16) 

where the quantities n-1u and nu refer5 to the system response at the beginning and end of 

the time step n. 

In light of the above, the residual nR, at time nt, is written as 

(17) 

where n-1 u has been evaluated at the previous time step and nu is yet to be determined. 

Here, the backward Euler integration scheme has been selected due to its inherent stability 

properties; however other schemes may also be incorporated ( e.g. the variable midpoint 

algorithm [34]). 

The Newton-Raphson process may again be used to evaluate the system response nu, 

just as in the steady-state case. Here, linearization of equation (17 yields the following linear 

equation for the incremental response bu: 

3 Higher order derivatives may be readily accommodated in this analysis. 
4 Higher order approximations may be accommodated in the analysis. 
5 Left superscripts denote the time at which the quantity is evaluated, i.e. n f = f ( nt). 
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where we have suppressed n-lu from the argument of R as it is a fixed. The new estimate 

of the system response nuI+i is updated as 

(19) 

and the process is repeated until the solution converges. 

The sensitivity analysis parallels that of the steady-state case, where the residual nR, at 

time nt, is expressed as a function of the system response at the beginning and end of the 

time step and of the design ¢,, i.e. 

(20) 

The response functional is defined here as a function of the terminal time Mt and the design 

¢,, 

F(</J) = G( Mu(¢,),¢,) (21) 

Note that the response functional could easily be defined as a function of all time nt, n = 
1, ... , M. ( cf. [3]). However, for conciseness only the terminal response is considered. 

The sensitivity is obtained by differentiating equation (21) with respect to each compo

nent c/Ji of the design parameter vector¢,, following the procedure of section 2.1, i.e. 

DF 8G DMu 8G 
-=-·--+
Dcpi i)Mu De/Ji 8cpi 

(22) 

where the response sensitivity DD:~, is an implicit quantity defined through the residual at 

time Mt, (cf. equation (20) for n = M). To resolve this unknown quantity, either the direct 

differentiation or adjoint methods may be pursued. 

2.2.1 Direct Differentiation Sensitivities for Transient Nonlinear Systems 

Recall that in the direct differentiation method, the implicit response sensitivity DD:~, is 

evaluated by differentiating the residual (equation (20) at the terminal time Mt), which 

after some manipulation becomes 

(23) 

Equation (23) forms a pseudo problem for the evaluation of the response sensitivity DD:~, 
assuming that the derivative D ;;;1u is known. Here, we note that the operator in the pseudo 

problem is the tangent operator corresponding to the Newton-Raphson iteration for time 

step M. Thus, as in the steady-state case, the evaluation of DD:~ with the finite element 

7 



method, merely requires the formation of the pseudo load vector - ( /:_"1;-u D ;;;1u + 8 a:~), 
followed by a back substitution using the existing decomposed tangent stiffness matrix. 

The derivative D;;;1u in equation (23) is assumed to be a known quantity. This poses no 

difficulty as the derivative D ;;/u may be evaluated by differentiating the residual equation 

at time M-1t, assuming that D;;;2u is known. By decrementing this process, the derivative 

i~~ is at last evaluated by noting that the design derivative of the initial condition i:~ is 

known. These results are consistent with those in [39] which are derived in the continuous 

time domain and then discretized for computations. In [39), the pseudo problem is seen to 

be transient, which is also the present case. 

In finite element applications, the response sensitivities i;~, for n = l, ... , M, are eval

uated simultaneously with the primal analysis, to reduce the computational cost. Upon 

convergence of the Newton-Raphson iterations, for each time step, the pseudo load vectors 

are formed and back substituted using the existing decomposed tangent stiffness matrix 

to evaluate the response sensitivity i;~. The process is repeated at each time step until 

the terminal response sensitivity ~:~ is evaluated. Then, the sensitivity is computed from 

equation (22). 

2.2.2 Adjoint Sensitivities for Transient Nonlinear Systems 

Recall that the objective of the adjoint method is to eliminate the implicit response sensitivity 

DD:~ from the sensitivity expression ( cf. equation (22) ). By following the Lagrange multiplier 

method, equation (20) for all time nt, n = l, ... , M, and equation (21) are combined to 

form the augmented functional 

F(</>) = G(Mu(<j)),<P) _M>.(<jJ). MR(Mu(</J), M-1u(</J),<P) 

_M-i>.(<j)). M-iR(M-iu(</J), M-2u(</J),<P) 

M 

= G(Mu(</J),<P) _ L n>.(<jJ). nR(nu(</J), n-iu(</J),<P) 
n=i 

(24) 

where, i >.( <jJ ), 2 >.( <jJ ), ... , M >.( <jJ) are the Lagrange multipliers which are actually the dis

cretized solution of a transient adjoint problem at times nt, n = l, ... , M. Again F = F 
· th 'd 1 1 · nR - 0 f - 1 2 M d DF - DF · · since e resi ua s equa zero, 1.e. - or n - , , ... , , an D</>; - D</>; since again 
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nR = 0 and ~~~ = 0 (cf. equations (20) and (23)). Differentiatation of equation (24) yields 

(25) 

where equation (20) is used above to eliminate the g~ terms and ~~7 contains the explicit 

t h 'l D 1Fr D 2Fr DMfrr t · th · 1· ·t t·t· · erms w 1 e D</>; , D</>; , ••• , D</>; con a1n e imp 1c1 quan 1 1es, 1.e. 

(26) 

and 

(27) 

The implicit system derivatives ~~~, ~:~, ... , DD:~, are eliminated from the sensitivity 

expression by selecting the appropriate 1">..(</>), 2">..(</>), .•. , MA(</>) to annihilate the implicit 

quantities DD1
: 1, D;:,, ... , D ~:'. From this process, we obtain the following set of adjoint 

problems: 

M (a MR )TM")._ 8G 
EJMu aMu 

M-l (aM-lR)T M-1")._ 
aM-1u 

- ( a MR ) T MA 
8M-lu 

(28) 

2 (a 2 R)T 2_\ 
8 2u 

_ (8 3 R)T 3_\ 
8 2 u 

1 (8 1R)T l_\ 
8 1U 

_ (8 2R )T 2_\ 
a 1u 

Upon solving equations (28) for the adjoint responses 1 .\, 2 .\, .•• , M .\, the sensitivity ex

pression reduces to 

(29) 
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----~----------------------------~---------

Note here that the operators that appear in the adjoint problems of equations (28) are the 

transposes of the tangent operators of the Newton-Raphson solution procedure. 

The evaluation of the adjoint sensitivities proceeds as follows: After the transient primal 

analysis is concluded, the adjoint response MA for the last time step is computed from 

the first of equations (28). Next, the adjoint response M-l A of the previous time step 

is computed from the second of equations (28). This process continues regressively until 

all adjoint responses are computed. Then, the sensitivities are computed from equation 

(29). The regressive computation of the adjoint response is consistent with the terminal 

adjoint problems in [3]. This is a consequence of the convolution operator used in transient 

variational statements [4, 40]. The use of nonuniform time steps in the continuous time 

domain approach of [41] causes complications; however, in the discrete approach shown 

here, no such complications arise. 

For numerical applications, the adjoint method requires storage or recomputation of the 

converged decomposed tangent operators and the derivatives ~:!, ~:!, ... , /~1;--u, for every 

time step because the solution u must be determined for all time before the adjoint analysis 

may begin. This increases either the computation or storage cost. However, when the design 

parameters significantly outnumber the response functionals, the adjoint method may still 

be preferred. 

2.3 Steady-State Coupled Nonlinear Systems 

Here, we consider steady-state nonlinear coupled systems which are expressed in residual 

form as 

R(u, v) 

H(u, v) 

0 

0 

(30) 

(31) 

where R and H are residuals that must be simultaneously satisfied, and u and v are response 

fields. 

The solution to the coupled problem may be achieved by assembling the residuals R and 

H into a single global residual R , as 

where 

R (U ) = [ R( u, V) l = 0 
H(u, v) 

and then following the analysis of section 2.1. 
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Another way to solve the coupled problem is to uncouple it by treating the response v 

as a function of the system response u. Then, the residuals of equations (30) and (31) are 

rewritten as 

R(u, v(u)) 

H(u, v(u)) 

0 

0 

(34) 

(35) 

The solution of equations (34) and (35) is obtained by implementing the Newton-Raphson 

process in two nested iterative loops. In the outer loop, equation (34) is linearized yielding 

the following expression for the response correction 8u: 

(36) 

However, before equation (36) may be solved, both the system response v(u1) and the 

derivative ~~ ( u1) must be determined. 

The evaluation of v(u1) is performed in the inner loop by solving equation (35) for v(u1) 

via the Newton-Raphson process where the current iterate u1 is fixed. Linearization of 

equation (35) about the current iterate vJ(u1), for a fixed u1, yields the following equation 

for the incremental response 8v: 

(37) 

where ~~ is deemed the dependent tangent operator. Upon evaluating the incremental 

response 8v, the next iterate vJ+l(u1) is computed from 

(38) 

The Newton-Raphson subiterations are repeated for this inner loop until they converge to 

the solution v(u1). 

Once v( u1 ) is determined, the derivative Z: ( u1 ) is obtained by differentiating equation 

(35), i.e. 

8H aH Dv 
-(u1 , v(u1)) + -(u1 , v(u1))-(u1) = 0 
au av Du 

(39) 

whereupon z~ ( u 1) is computed from 

Dv (aH )-i aH -(u1) = - -(u1 v(u1)) -(u1 v(u1)) 
Du av ' au ' 

(40) 

Note here that the dependent operator ~!(u1, v(u1)) has been previously decomposed in 

the computation of the incremental response fJv ( cf. equation {37) ). Thus, ~~ ( ui) may he 

efficiently computed by a series of back substitutions. 
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Upon evaluation of v(u1) and ~;(u1 ) the inner loop is completed. Equation (40) is then 

substituted into equation (36) to obtain 

-R(u1 , v(u1)) (41) 

where the term in brackets is deemed the independent tangent operator. The system response 

is then updated from the sum 

u1+1 = u1 +ou (42) 

The iteration-subiteratitm process is repeated for each iterate u1 , until equation (34) con

verges ( cf. figure ( 1)). 

For the sensitivity analysis, the response fields u and v are defined as functions of the 

design cp. The residuals of equations (30) and (31) are then rewritten as 

R(u(cp), v(cp),</>) = 0 (43) 

and 

H(u(</>),-v(cp), </>) = O (44) 

and the response functional becomes 

F(</>) = G(u(cp), v(cp),cp) (45) 

As in section 2.1, the sensitivity expression is obtained by differentiating equation ( 45) 

with respect to each design parameter </>i, i.e. 

DF 8G Du 8G Dv 8G -=-·-+-·-+D</>i 8u D</>i 8v D</>i 8</>i 
(46) 

where now the response sensitivities JJ: and JJ; are implicitly defined through equations 

(43) and (44). 

2.3.1 Direct Differentiation Sensitivities for Steady-State Coupled Nonlinear Systems 

As in the direct differentiation sensitivity analysis for uncoupled systems, the objective here 

is to compute the sensitivity analytically by evaluating the implicit response sensitivities g: 
12 



Ul 

(DH)-1 

8v = - av H 

Yes 

<5u =-(BR_ BR (8H)-i 8Hl-i R 
au av av au 

Yes 

u,v 

End 

Figure 1: Newton-Raphson iteration-subiteration process. 
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and JJ;. To this end, we differentiate the residual equations (43) and (44) with respect to 

each design parameter <Pi, i.e. 

aRDu oRDv oR 
--+--+-=0 
OU D</>i av D</>i a¢i 

(47) 

and 

aHDu aHDv aH --+--+-=O 
au D</>i av D<fai a¢i 

(48) 

The implicit derivative JJ;; is determined by rearranging equation ( 48) as 

Dv (aH)-i [oH Du aH] 
D</>i = - av au D</>i + o</>i 

(49) 

where the operator ~1; is the dependent tangent operator used in the Newton-Raphson 

subiteration process for the evaluation of the incremental response 8v ( cf. equation (37)). 

Here, JJ; is deemed the dependent response sensitivity as it is dependent on the derivative 

_ ;J~ as seen through equation ( 49). 

Substituting equation (49) into equation (47) we obtain the following expression for the 

independent response sensitivity ;J~: 

[aR 8R (aH)-l aH] Du [BR BR (aH)-l 8H] 
OU av 8v au D</>i = 8</>i av av O<pi 

(50) 

where the left-hand side bracketed operator is the independent tangent operator of equation 

( 41 ). Upon evaluation of the independent derivative ;J~, the dependent derivative .:J; is 

computed from equation (49), and then the sensitivity is evaluated from equation (46). In 

finite element applications, for each design parameter the direct method requires two pseudo 

load formations and two back substitutions using the existing decomposed tangent opera

tors. This sensitivity formulation is consistent with the coupled thermoelastic and contact 

sensitivity formulations of [22, 42]. Finally, note that the order in which the dependent and 

independent pseudo problems are solved is reversed that of the primal incremental problems. 

2.3.2 Adjoint Sensitivities for Steady-State Coupled Nonlinear Systems 

The augmented functional F for the adjoint sensitivity method is obtained by combining 

equations ( 43) through ( 45) and introducing two Lagrange multipliers ..X and , , i.e. 

F(cp) - G(u(<f> ), v(</>), <p) - ..X(</>) · R(u( <p ), v(</>), <p) - ,( <p) · H(u( <p ), v( </>), <p) (51) 
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Differentiation of the above equation with respect to the design parameter </Ji, gives 

(52) 

The explicit and implicit quantities in equation (52) are isolated, i.e. 

DF DFE (DFr) (DFr) 
D</Ji = D</>i + D</>i .\ + D</>i 1 

(53) 

where 

(54) 

and 

(55) 

and 

(56) 

Here %~ is the explicit quantity and ( ~!~) .\ and ( ~!~) 1 are the implicit quantities. 

The implicit sensitivity quantities ( ~!;) .\ and ( ~!;) ,' are equated to zero to eliminate 

the unknown response sensitivities _g~ and _g~, from the sensitivity expression, by following 

the adjoint approach of the previous sections. This yields the following coupled adjoint 

problem for the Lagrange multipliers.\ and ,: 

fJG 
fJu 

fJG 
fJv 

(57) 

(58) 

The adjoint problem is uncoupled by treating the dependent adjoint response , as function 

of the independent adjoint response .\, i.e. 1 = 1 (.\). Rearrangement of equation (58) then 

yields the dependent adjoint problem 

(59) 
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where the left-hand side operator above is the inverse transpose of the dependent Newton

Raphson tangent operator (cf. equation (37)). Substitution of equation (59) into equation 

(57) yields the following independent adjoint problem for .X: 

[8R _ 8R (8H)-i 8H]T .X = [8G _ [(8H)-i 8H]T 8G] 
8u 8v 8v 8u 8u . 8v 8u 8v (60) 

In the above equation, the left-hand side operator is the transpose of the independent 

Newton-Raphson tangent operator (cf. equation (41)), and the right-hand side term forms 

the independent adjoint load. Upon evaluation of the independent adjoint response .X, from 

equation (60), the dependent adjoint response 1 is computed by forming the dependent ad

joint load ( ~~ - ( ~~) T .X) and evaluating equation (59). Once .X and , are evaluated, the 

sensitivity expression for the adjoint method is reduced to equation (54). This adjoint sensi

tivity formulation is consistent with the thermoelastic sensitivity formulation of [23]. Again, 

note the solution order of the dependent and independent adjoint problems is reversed that 

of the primal incremental problems. 

For finite element applications, the tangent stiffness matrices for the adjoint problems 

are the transposes of the Newton-Raphson tangent stiffness matrices of the primal analysis. 

Therefore, for every response functional, the adjoint method requires two formations of 

the adjoint load vectors and two back substitutions using the existing decomposed tangent 

stiffness matrices. 

2.4 Transient Coupled Nonlinear Systems 

For transient coupled systems, the residuals nR and nH at time nt are expressed as 

(61) 

and 

(62) 

As in section 2.3, the responses n-lu and n-1v are known quantities and equations (61) and 

(62) are solved for nu and nv. Now, by suppressing the n - 1 terms for conciseness and 

by following the analyses of the previous sections, the system is uncoupled by treating the 

response nv as function of the response nu. Then, equations (61) and (62) are rewritten as 

(63) 

and 

(64) 
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This system is now solved for nu and n v by applying the iteration-subiteration method 

presented in section 2.3. 

The sensitivity analysis of transient coupled nonlinear systems follows that of sections 

2.2 and 2.3. The residuals of equations (61) and (62) are rewritten as 

(65) 

and 

(66) 

and the response functional F is defined as6 

(67) 

The sensitivity expression is obtained from 

(68) 

where DD:~ and DD:~ are the implicit response sensitivities. 

2.4.1 Direct Differentiation Sensitivities for Transient Coupled Nonlinear Systems 

To evaluate the implicit derivatives 1b;; and 1b;;, we express the derivative DD:~ in terms 

of the derivative D_;;~, by differentiating equation ( 66) · for n = M, i.e. 

where ~~~ is the dependent tangent operator and the right-hand side bracketed term forms 

the dependent pseudo load. 

Differentiation of equation (65) and use of equation (69) yields 

6 Again, F may be defined on all time, but a terminal expression is assumed here for conciseness (cf. section 2.2). 
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In the above independent pseudo problem for the response sensitivity ~:~, the left-hand 

side bracketed operator is the independent tangent operator and the right-hand side forms 

the independent pseudo load. Once DD:~ is evaluated, ~:~ is determined from equation (69) 

after which the sensitivity is computed from equation (68). The formation of the pseudo 

loads requires the computation of the derivatives D;;;1u and D;;/v, which is obtained by 

following the transient direct differentiation process discussed in section 2.2.1. 

Finite element application of the direct differentiation method follows from section 2.2.1. 

It requires two back substitutions using existing decomposed stiffness matrices of the primal 

analysis, for each time step and for each design parameter. This sensitivity formulation is 

consistent with the rate.:.independent elasto-plastic sensitivity formulation of [34]. 

2.4.2 Adjoint Sensitivities for Transient Coupled Nonlinear Systems 

In the adjoint sensitivity formulation, equations (65), (66) and (67) are combined to form 

the augmented response functional 

M 

F(</>) = G(Mu(</>), Mv(</>),</>)- L n_x. nR(nu(</>), n-lu(</>), nv(</J), n-lv(</>),</>)-
n=l 

M 

L n'Y. nH(nu(</J), n-lu(</J), nv(</J), n-lv(</>),</>) (71) 
n=l 

where n.\_ and n,y are arbitrary Lagrange multipliers. 

Differentiation of equation (71) with respect to the design parameters </>i yields the fol

lowing sensitivity expression: 

(72) 

where 1J:!7 is explicit and ( DDn[1) .\ and ( D;;[c) 'Y are implicit terms, defined as 

(73) 

18 



and 

(Q:fr) Def,; A _ [1A. a1R + 1""'. a1H + 2A. a 2R + 2""'. a 2H] D 1u 
a1u I a1u a1u 1 8 1u Def,; 

(Q:fr) -Def,; "'f 
_ [1A. a1R + 1""'. a1H + 2A. a 2R + 2""'. a 2 H] D1v 

a1v I a1v a1v 1 8 1v Def,; 

(~) -
Def,; A 

(~) 
Def,; "'/ 

_ [2A. 8 2R + 2""'. 8 2 H + 3A. 8 3R + 3""'. 8 3H] D 2v 
8 2v 1 8 2v 8 2v 1 8 2v Def,; 

(74) 

( DM-lft'r) 
Def,; A 

_ [M-lA. aM-lR + M-1 . aM-lff +MA. aMR 
aM-1u "Y .3M-1u .3M-1u 

M aMH ] DM-1u + "Y. aM-1u Def,; 

( DM-lF'r) 
Def,; "'/ 

[M-1A aM-1R M-1 aM-1H MA aMR 
- . aM-ly + "Y. aM-ly + . aM-ly 

M aMH] DM-1v + "'f. 8M-ly Def,; 

( DMft'1 ) 
Def,; A 

_[MA. aMR + M • aMH _ a MG] DMu 
aMu "Y aMu aMu Def,; 

( DMF,) 
Def,; "'/ 

_[MA. aMR + M • aMH_ aMa] DMv 
aMv "Y aMv · · aMv Def,; 

19 



The above yields the following adjoint problems for nA and n,, n = l, ... , M: 

[aMR _ aMR (aMH)- 1 aMH]T MA=_ 
&Mu &Mv aMv &Mu 

[( aMH)-l aMH] T 8G 8G 
aMv aMu aMv + &Mu M 

M,v = _ (aMH)-T [(aMR)T MA_ 8G] , aMv aMv aMv 

M-1 

_ (aM-1H)-T [(aM-1R)T M-lA 8M-1y 8M-1y + 
( a MR ) T M ( a MH ) T M ] aM-1v A+ aM-1v , (75) 

2 

_ (a 2 H)-T [(a 2 R)T 2A + (a 3R)T 3A + (8 3H)T 3....,] a2v a2v a2v a2v , 

1 

_ (a 1H)-T [(a 1R)T lA + (a 2R)T 2A + (a 2H)T 2,v] a1v a1v a1v a1v , 

Again the operators for the adjoint problems are the transposes of the independent and 

dependent Newton-Raphson tangent operators used for the primal analysis. 

Upon solving for the adjoint responses from equations ( 75)), the sensitivities are computed 

from the analytic sensitivity term (cf. equation (73)). The solution of the adjoint problems 

( cf. (75)) proceeds in a regressive manner as in the transient nonlinear adjoint sensitivity 

analysis discussed in section 2.2.2. 

The adjoint method for transient coupled systems has the same computational advantages 
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and disadvantages discussed for the transient nonlinear system. It requires recomputation 

or storage of the tangent operators and system response which increases either computation 

expense or storage requirements. 

3 Rate-Independent Elasto-plasticity 

Primal and sensitivity analyses of systems that exhibit history-dependent material response 

may be obtained directly from the previously discussed analyses of transient nonlinear cou

pled systems. To exemplify the proceeding analyses, rate-independent elasto-plasticity is in

vestigated. The equilibrium and constitutive relations form the independent and dependent 

residuals for the analyses. Sensitivity expressions are derived for a general response func

tional via both the direct differentiation and adjoint methods. Finally, a one-dimensional, 

single degree-of-freedom problem is studied to illustrate the analyses. 

3.1 P rimal Analysis 

Here, the equilibrium and constitutive equations are uncoupled by applying the solution 

process presented in section 2.4 for transient coupled nonlinear systems. A spatial domain 

V is considered, with boundary A, comprised of two complementary subsurfaces Au and At, 

with prescribed displacement and traction, respectively. A numerical solution is obtained 

by discretizing the time domain into M intervals and incorporating the backward Euler 

time integration scheme. Quasi-static loading is assumed, and therefore inertia effects are 

neglected. 

The equilibrium condition is enforced at each time step n, i.e. 

in V (76) 

where T and b are the stress tensor and body force fields, respectively. 

Infinitesimal deformations are assumed so that the strain-displacement relation reduces 

to 

(77) 

where u is the displacement vector field and V is the spatial gradient operator. Furthermore, 

the total strain tensor e is expressed as a sum of its elastic part eE and plastic part ep, as 

(78) 

The constitutive relations consist of the plastic strain and internal variable evolution 

laws and the stress response, which are shown here in both their continuous and discrete 
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• 7 • versions , 1.e. 

ne n-lep + 1n €p di in V p 
n-1 

~ n-lep + (n,\ _ n-1,\) f(n-r, np) in V (79) 

np n-lp + 1n p di in V 
n-1 

~ n-lp + (n,\ _ n-1,\) h(n-r, np) in V (80) 

n'T n-l'T + C [e(nu) - e(n-1u) - 1~1 ep dt] in V 

~ n-l'T + C [e( nu) - e( n-lu) - nep + n-lep] in V (81) 

where ,\ is the plastic multiplier, f is the plastic flow vector, p is the m-dimensional internal 

variable vector whose components describe internal dissipation mechanisms, h is the hard

ening relation vector that governs the evolution law of p, and C is the elastic constitutive 

tensor. 

The Kuhn-Tucker complementary conditions determine whether elastic behavior, loading, 

n_eutral loading or unloading occurs and are given in continuous and discrete form by 

0 < ,\ 

0 > Y(-r,p) 

0 > Y(n'T, np) 

0 ,\ Y(-r,p) 

0 (n,\ _ n-1,\) Y(n-r, np) 

where Y is the yield function. 

The boundary conditions are 

in V 

in V 

in V 

in V 

in V 

·in V 

on Au 

on At 

(82) 

(83) 

(84) 

(85) 

where t is the traction vector which is related to the stress tensor T, through the Cauchy 

relation 

t = T·Il OD. A (86) 
7 Henceforth, vector notation [43] is used to represent the stress and strain tensor fields. 
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Here, n is the unit outward normal to the surface A. For a detailed presentation of plasticity 

theory see [44, 45, 46]. 

The principle of virtual work yields the following variational form for the governmg 

equation: 

f e(u.)n-rdV= f u.nbdV+ f untPdA 
lv lv }At 

(87) 

where u is any kinematically admissible displacement field. 

The transient coupled nonlinear system of equations (77) - (87) is solved with the finite el

ement method by discretizing the spatial domain V, and introducing Gaussian quadratures 

to evaluate all spatial integrals in equation (77). Then, the Newton-Raphson iteration~ 

subiteration process of section 2.4 is performed. The independent residual vector ( cf. equa

tion (63)) is formed from equation (87) by assembling the element residual vectors which in 

turn are evaluated by summing over the Gauss points [47], i.e. 

nR= L ( L nft) 
elements Gauss points 

(88) 

where ( ·) denotes quantiti~s evaluated at the Gauss points. Here, n.R = 0 is solved at the 

global level by performing the summations of equation (88). However, n H = 0 will be 

solved at the local level, i.e. at the Gauss point. Therefore, we have many nH problems, 

one at each Gauss point in the mesh. In essence, in the primal analysis, we minimize nR by 

averaging over the elements via the Galerkin method, whereas we minimize nH at discrete 

points in the mesh via the collocation method. For this reason only Gauss point quantities 

are discussed in the remainder of this section. 

For each element Gauss point, the residual nft is expressed8 as 

nn(nu, n-iu, nv, n-lv) = BT n'T wJ - NT nb wJ - NT nt wj (89) 

where nu is the N-degree-of-freedom element nodal displacement vector and N and B are 

the usual matrices which, when combined with nu, interpolate the displacement and strain, 

respectively, at the element Gauss points. Finally, J and j are the volume and area metrics 

and w is the weighting function. 

The array n v, is defined at each Gauss point and is comprised of the plastic strain, 

internal variable vector, stress and plastic multiplier response fields, i.e. 

(90) 

8 Henceforth, the () is dropped with the understanding that all quantities are either evaluated or defined at the 
element Gauss point with the exception of the nodal quantities nu and n-1u. 
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If elastic behavior or unloading occurs, then nv reduces to nv = [ nr] and the dependent 

residual nH is formed from equation (81), i.e. 

nH = n-lT + C [B nu - B n-1u] - nT = 0 (91) 

The above linear equation is trivially solved for nr. However, if neutral loading or plastic 

loading occurs, equations (79), (80), (81) and (84) are used to form the dependent residual 

nH for the Gauss point, 

nH(nU, n-tu, nv, n-1v) = [ :i i = o 
nH>. 

where 

nHeP n-1ep + (n.\ _ n-1.\) f(nr, np) _ nep 

nHp n-lp + (n.\ _ n-1.\) h(nr, np) _ np 

nHr n-lT + C [B nu - B n-lu - nep + n-lep] - nT 

nH>. - Y(nr, np) 

(92) 

(93) 

(94) 

(95) 

(96) 

The independent tangent operator ( cf. equation ( 41)) is computed in a manner analogous 

to the independent residual ( cf. equation (88) ), i.e. 

( [anR anR (anH)- 1 anH]) L L -n --n -n -n 
elements Gauss points 8 U 8 V 8 V 8 U 

(97) 

where 
anR 
anu ONxN (98) 

anR 
[ 0Nx6 ONxm BTwJ ONxl ] anv (99) 

[ 06xN l anH DmxN 
anu CB 

01xN 

(100) 

and 
anHei! anHei! anHei! anHei! 
anep anp anr an>. 

anH 
anHp anHp anHp anHp 
anep anp anr an>, 

anv anHr anHr anHr anHr 
anep anp anr an). 

anH-,, anH-,, anH-,, anH-,, 
anep anp anr an). 
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-I6x6 (n,\ _ n-1,\)_Qf_ 
a np 

( n ,\ _ n-l ,\) __Qf_ 
onT f 

Omx6 (n,\ _ n-1,\) oh _ I (n,\ _ n-1,\) oh h anp mxm onT 
(101) 

-C 06xm -I6x6 06xl 

01x6 
8Y 8Y 0 anp anr 

It is emphasized here that equations (89) and (97) cannot be evaluated until the local residual 

problem nH = 0 is solved at the Gauss point to first determine nv(nV1) and _g:~(nV1). 

After the summations of equation (97) are evaluated, the independent tangent stiffness is 

used in equation ( 41) to evaluate 8U. Note that this analysis is entirely equivalent to the 

analytical consistent tangent operator approach in (36] and the numerical approach in (42]. 

3.2 Sensitivity Analysis 

Both the direct differentiation and adjoint methods are presented for the sensitivity analysis 

(cf. sections 2.4.1 and 2.4.2). The computation of the pseudo and adjoint load vectors and 

evaluation of the pseudo or adjoint response, respectively is first discussed. Then, the explicit 

derivative quantities are addressed. 

In the direct differentiation method, the independent pseudo loads ( cf. equation (70) ), 

are formed by assembling the element pseudo load vectors which are evaluated by summing 

over the Gauss points, in a manner analogous to the formation of the independent residual 

(cf. equation (88)). Upon evaluating the derivative 88~~, via a back substitution using the 

previously decomposed independent tangent stiffness matrix, the derivative ~;; is computed 

at each Gauss point by forming the dependent pseudo loads (cf. equation (69)) followed by 

a back substitution using the previously decomposed dependent tangent stiffness matrices. 

In the adjoint method, the independent adjoint response n A is computed by forming the 

independent adjoint load vector ( cf. equation (75)) followed by a back substitution using the 

transpose of the previously decomposed independent tangent operator. Next, the dependent 

adjoint response n, is evaluated at each Gauss point (cf. equation (75)) by forming the 

dependent adjoint load followed by a back substitution using the transpose of the previously 

decomposed dependent tangent bperator. 

h 8 nR 8 nR 8 nH d 8 nH .r h Q . d T e operators c)n-1u, an-1y) an-1u, an an-ly 1or eac auss pmnt are compute as 

(102) 
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-------------~------------------------------------

0Nx(6+m+6+1) (103) 

[ O,xN l OmxN 

CB 
01xN 

(104) 

l6x6 06xm 06x6 -f 

Omx6 Imxm Omx6 -h 
(105) 

C 06xm l6x6 06xl 

01x6 01xm 01x6 0 

The quantities ~~, ~~, nB_?u, n8_?v, ii, 88:~ and 88:~ depend on the choice of the 

response functional G, and the parameterization <p. For a general case, see [34]. In the 

following example, a few possibilities are presented. 

3.2.1 Existence Issues in Sensitivity Analysis 

It is well known that the existence of sensitivities is not always guaranteed. For example, 

problems with repeated eigenvalues have only directional derivatives ( cf. [3]). The plasticity 

problem is also prone to the nonexistence issue when design changes result in transitions from 

elastic to plastic material behavior and vice-versa. In this transitional case, only directional 

sensitivities exist. For example, at a given material point, a positive design change may 

induce plastic behavior while a negative change may induce elastic behavior. Non-existence 

issues are present in continuous formulations for all points which just contact the yield 

surface, i.e. those points for which neutral loading occurs, where ,\ and Y are equal to zero 

in equation (84). However, in finite element applications, the elastic-plastic transition is 

monitored only at the Gauss points so that these neutral loading points are less apt to be 

encountered. Furthermore, due to the numerical precision, it is extremely unlikely that the 

condition .\ and Y equal to zero will be exactly satisfied. Rather, the majority of the Gauss 

points which undergo a transition from the elastic to plastic regions in a given load step 

are placed well into the plastic regime. Therefore, design perturbations, whether positive 

or negative, will still result in plastic behavior at the Gauss point, so the Frechet derivative 

exists, i.e. there is no need to consider directional derivatives for the numerical computations. 

Directional derivatives have been used in sensitivity analyses to monitor the transition 

points in simple structures [28, 29]. However, this approach is not practical for large systems 
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as it places severe restrictions on the load step size. Furthermore, our numerical experience 

has shown that special treatment for transition points is not necessary to compute accurate 

sensitivities [34], again because so few points are precisely at the transition point. Finally, 

we note that these existence issues arise in all analyses which contain discontinuities but, 

for numerical computations are ignored. For example, accurate senstitivities are calculated 

for nonlinear conduction problems with piecewise linear conductivity material model, again 

without any special treatments of the transition points [20, 21]. 

3.3 Analytical Example 

p 

Figurn 2: One-dimension single dergee-of-freedom two bar system. 

The one-dimension single degree-of-freedom system illustrated in figure 2 is studied to demon

strate the formation of the tangent operators and the design sensitivities for small deforma

tion elasto-plasticity. The primal analysis for this example is presented in a continuous time 

domain in [48]. The two bars have lengths L1 , L2 and cross-sections A1 , A2 respectively, 

where f;- = 2 and t = 2. The bars are constrained at the edges and are connected ~t the 

mid-node where the axial load P, is applied. The mid-node axial displacement U comprises 

the single independent degree-of-freedom. Both bars consist of the same material with yield 

function 

(106) 

Here, Ty is the initial yield stress, E is the elastic modulus, k is a material coefficient (k = 
1/4), and Tp and ev = f epdt are the equivalent plastic stress and strain, respectively9 

r. = If;; v - y 2SiSi (107) 

9 Summation convention is enforced on repeated indices. 
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and 

where Si are the deviatoric stress components 

Si = { Ti - ½ ( Tt + T2 + T3) 

Ti 

for z 

for z 

From equation (106), the internal variable vector p becomes 

1,2,3 

4,5,6 

(108) 

(109) 

(110) 

The only non-zero stress component is T1 due to uniaxial behavior; therefore, the equivalent 
stress becomes 

where sign is defined as 

sign(•)= { + 
for 

for 

> 0 

< 0 

By using associative plasticity, the fl.ow vector is given by the normality rule 

[8Y]T 
f = BT = sign( T1) 

(111) 

(112) 

(113) 

Substitution of equation (113) into equation (79) yields €p2 = €p3 = -½cp1 and cp4 = €p5 = 
€p6 = 0. Then, by using equations (79), (80), (108) and (113) the hardening vector h, is 
given by 

h = [1] (114) 

The primary response quantities reduce to U and A as well as q1 , T1 and cp1 which will 

be denoted as q, T and cp henceforth, for conciseness. All response fields are, at most, linear 

functions of the spatial variables so that a single point quadrature evaluates the spatial 

integrals of equation (87) exactly. For the center Gauss point and mid-node degree-of
freedom, 

N = [½] (115) 
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and 

(116) 

where the+ and - in± above and henceforth refer to the left and right bar, respectively. The 

volume metric becomes J = A2L and the weight function becomes w = 2. The equilibrium. 

residual nR for the left bar is given by 

(117) 

and for the right bar it is given by 

nR = [-A2 nT - n P] (118) 

If a bar is undergoing elastic deformation, the response vector nv is comprised solely by 

the stress component nr, i.e. 

(119) 

and the residual nH becomes 

(120) 

(121) 

[±A] (122) 

(123) 

[ -1 ] (124) 

(~!f = [ -1 l (125) 

If a bar is undergoing plastic deformation, the response vector nv and the residual 

are given by equations (90) and (92), respectively, where 

nHeP - [ n-lep + sign( r1)( n ,\ - n-1.\) - nep] 

[ n-lp + (n.\ _ n-1.\) _ nP] 

[ n-1,, + E (±nu ~n-lu _ nep + n-lep) _ nr] 

sign(ri)nr - (ry + kEnq) 
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Th h anR anR anH anH (anH)-l en, t e operators anu, anv, anu, anv, and anv become 

(Q•Hr 
8nv -

[ 0 ] 

[o o ±Ao] 

-1 0 

0 -1 

-E 0 

0 sign( r1 ) 

0 

-1 

1 

0 

0 -kE sign(r1 ) 0 

-k sign( r1 )k 

sign( r1 ) -1 
1 

l+k Ek -sign( r1 )Ek 

sign( r1 ) k 

1 
-E 

-sign( r1 )¾ 

-k 

-sign(r1 )-¼J 

(130) 

(131) 

(132) 

(133) 

-sign( ri)-¼J 

1 -E 

sign( r1 ) 
(134) 

1 
-E 

Three load steps are applied, which successively induce initial plastification of the right 

bar, initial plastification of the left bar and further plastification of both bars. The results 

are denoted in table 1 and agree with those in (48]. 

Left bar Right bar 
P/(A1Ty) UE/(TyL1) TjTy EpE/Ty TjTy EpE/Ty 

0 0 0 0 0 0 
5/2 1/2 1/2 0 -1 0 
17/5 1 1 0 -6/5 -4/5 

4 8/5 28/25 12/25 -36/25 -44/25 

Table 1: Primal analysis results 

30 



3.3.1 Sensitivity Analysis 

The terminal mid-node displacement 3U is defined as the response functional F, i.e. 

F(</>) = G(3u(</>), </>) = 3U(</>) (135) 

and the initial yield stress Ty is chosen as the single design parameter, i.e. </> = Ty. Addi

tionally the load P is defined as a function of the initial yield stress Ty, i.e. 1 P = !A1 Ty, 

2 P = 1; A1 Ty and 3 P = 4A1 Ty, to avoid the existence issues in the sensitivity analysis re

garding transitions from the elastic and plastic regions ( cf. section 3.2). Zero sensitivities 

for all initial conditions are assigned. 

For the response functional considered, ;;t 1, ;Z = 0 and ~~ = 0. The explicit 

sensitivity 8 ;f for the left bar becomes 

8 nR = [0] (136) 
8</> 

and for the right bar, 

8 1R 
[;A1] (137) 

8</> 

8 2R 
[1; A1] (138) 

8</> 

8 3R 
= [4A1] (139) 

8</> 

For a bar with only elastic deformation, the explicit sensitivity 8 ;;i becomes 

a;: = [ o] (140) 

d h anR anR anH d anH 1 an t e operators an-1u, an-lyl an-lU an an-lyl equa 

8nR 
= [0] (141) 

{)n-IU 

{)nR 
·[0] (142) [Jn-ly -

{)nH 
[=F1] (143) 

[Jn-lU 

[JnH 
[ 1 ] (144) 

[Jn-ly 
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For a bar undergoing plastic deformation, the explicit sensitivity 8 ;-:,i becomes 

(145) 

d h anR anR anH d anH l an t e Operators a n-l U ! a n-ly, & n-l U l an & n-ly equa 

onR 
[ 0 ] an-lU (146) 

anR 
[ 0 0 0 0 ] 8n-1y (147) 

&nH 

[ +i] an-lU - (148) 

1 0 0 -sign(r1 ) 

0 1 0 -1 
onH 

&n-ly E 0 1 0 (149) 

0 0 0 0 

Implementation of the direct differentiation method follows from section 2.4.1. First, the 

implicit derivatives 887! and 88n</>v are computed and then, the sensitivity f;: is evaluated 

from equation (68). The computed values of the implicit derivatives are denoted in table 2. 

Substitution of 88
3l and 80

3
; into equation (68) yields f;: = t~- for the sensitivity. This 

sensitivity value equals that obtained by differentia~ing the analytical result 3U = ~ Li;;u ( cf. 
table 1). 

The sensitivity is also computed with the adjoint method ( cf. section 2.4.2). The terminal 

adjoint problem is solved for the adjoint responses nA and n, (cf. equation (75)), and the 

sensitivity is computed from equation (73). The computed adjoint responses n A and n, 
are presented in table 3. As expected, the adjoint sensitivity is identical to the direct 
differentiation and analytical sensitivity results. 
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Left bar Right bar 

Time step n nnu nnv 
D,t, D,t, 

1 l.h [½] [-1] 2E 

4 1 
-sE 

4 1 

1.h 
sE 

2 [1] E 
6 

-5 

4 1 
sE 

12 1 44 1 
25E -25E 

12 1 44 1 

§.h 25E 25E 
3 5E 

28 36 
25 -25 

12 1 44 1 
25E 25E 

Table 2: Direct differentiation analysis results 
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I 11 n, II Left bar J.y Right bar I 
Time step n " 

_.fu_ lli 
5 5 

.fu_ lli 

[b] 
5 5 

3 
.fu_ _lli 
5E 5E 

_.1.fu_ _fil:;i 
5E 5E 

lli 
5 

lli 

[~] 5 
2 [O] 

_lli 
5E 

0 

1 [OJ [f¼] [-~] 

Table 3: Adjoint analysis results 
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4 Conclusion 

A general approach for analysis and analytic design sensitivity analysis of transient coupled 

nonlinear problems is presented. The general approach is initially developed for steady-state 

uncoupled nonlinear systems, extended to transient uncoupled and steady-state coupled. 

nonlinear systems, and finally derived for transient coupled nonlinear systems. 

A systematic numerical procedure for constructing consistent tangent operators, which 

are necessary for a quadratically convergent solution algorithm, is discussed. This is an 

efficient alternative to the closed-form approach in [36], especially when complex constitutive 

relations are used. The necessity of the consistent tangent operator is also shown in regard 

to the evaluation of accurate sensitivities. 

Both direct and adjoint sensitivity methods are discussed. A detailed description of an ad

joint sensitivity method is presented for transient systems. The method requires the solution 

of an adjoint transient terminal-value problem. Since the definition of the adjoint terminal

value problem depends on the solution of the original initial-value problem, the sensitivity 

analysis cannot be performed simultaneously with the primal analysis. This complication 

increases either the computational expense or storage requirements. It appears, therefore, 

that the direct differentiation method is more suitable for transient systems. However, ifthe 

number of functionals for which design sensitivities are desired is much less than the number 

of design parameters, the adjoint approach may still be preferred. 

The general framework for deriving tangent operators and analytic sensitivity expres

sions, discussed in section 2, is easily particularized to accommodate various problem classes. 

This versatility is demonstrated in section 3 by specializing the transient coupled formula

tion to rate-independent elasto-plasticity. A one-dimensional elasto-plastic example with 

an analytical solution is presented, where the s.ensitivities are evaluated by both the direct 

differentiation and adjoint methods. 
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