
c© 2009 Charles Davis

MULTIPLE-ELEMENT CONTINGENCY SCREENING

BY

CHARLES DAVIS

B.S., Louisiana Tech University, 2002
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor Thomas J. Overbye, Chair
Professor Peter W. Sauer
Professor David Nicol
Professor Alejandro Dominguez-Garcia
Dr. Santiago Grijalva

ABSTRACT

The main focus of this work is to efficiently determine the double-outage

contingencies that threaten the operation of the power system. This work is

necessary because enormous numbers of double-outage contingencies exist for

even relatively small systems, and new standards require system operators to

begin considering more than single-outage contingencies. Without an efficient

method for predicting the severe contingencies, the entire set of double-outage

contingencies has to be solved, and this means solving many millions of

contingencies. Several algorithms are presented to detect double-outage

contingencies that result in violations. The algorithms use varying amounts of

information. However, at most they use linear sensitivities, line limit

information, and line flow information. The output of the screening algorithms

is compared to the full set of results for the double-outage contingency analysis,

solved using the dc power flow. The results show that, even using a very limited

amount of information about the system, it is possible to predict a very high

percentage of the double-outage contingencies that result in violations.

ii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LINEAR ANALYSIS . 6
2.1 Linear Analysis . 6
2.2 LODF Derivation . 13

CHAPTER 3 CONDITION NUMBERS 19
3.1 Introduction . 19
3.2 Analysis of Linear Sensitivities . 22

3.2.1 Single-outage sensitivities 22
3.2.2 Double-outage sensitivities 24

3.3 Metric of Outage Coupling . 27
3.4 Condition Number Statistics . 30
3.5 Large-System Distribution . 33

3.5.1 Large-system statistics . 34
3.5.2 Large-system largest κ . 36

3.6 Conclusion . 37

CHAPTER 4 REVIEW OF CONTINGENCY SELECTION 39
4.1 Contingency Selection . 39
4.2 Contingency-Ranking Methods 45

4.2.1 Penalty function methods 46
4.2.2 Sorted-matrix ranking . 47

CHAPTER 5 LARGE-CASE CONTINGENCY ANALYSIS RESULTS . 49
5.1 Large-Case Single-Outage Contingency Analysis 52
5.2 Double-Outage Contingency Analysis 55

5.2.1 Analysis of large PI values 59
5.2.2 PI contingency list . 64
5.2.3 Filtered PI contingency list 64

5.3 Sorted-Matrix Ranking . 64

iii

5.3.1 Per-line analysis . 65
5.3.2 Per-contingency analysis 69

5.4 Conclusions . 71

CHAPTER 6 CONTINGENCY SELECTION ALGORITHMS 73
6.1 Introduction . 73
6.2 Screening Algorithms . 75

6.2.1 Impact-tracking structure construction 76
6.2.2 ITS contingency selection algorithm 78
6.2.3 Condition numbers and the ITS 80
6.2.4 IEEE 14-bus example system 81

6.3 Incorporation of Line Flow and Limit Information 83
6.3.1 Incorporation of line flow information 84
6.3.2 Incorporation of line limit information 86
6.3.3 Combination of limit and flow information 89

CHAPTER 7 LARGE-SYSTEM SCREENING RESULTS 93
7.1 ITS Results . 94
7.2 FTS Results . 96
7.3 LTS Results . 97
7.4 OTS Results . 99
7.5 Ranking Results . 101

7.5.1 PI ranking results . 101
7.5.2 Sorted-matrix ranking results 104

7.6 Tracking Structure Statistics . 108
7.7 Conclusions . 110

CHAPTER 8 WEAK-ELEMENT IDENTIFICATION 112
8.1 Introduction . 112
8.2 Weak-Element Characterization 113
8.3 Example System . 115
8.4 Large System . 119
8.5 Conclusions . 121

CHAPTER 9 LINEAR FLOW BOUND 122
9.1 Flow Bound Derivation . 123

9.1.1 Double-outage flow bound 124
9.2 IEEE 14-Bus Test Case Results 128

CHAPTER 10 GEOMETRY SHADER FLOW VISUALIZATION 133
10.1 Introduction . 133
10.2 Flow Arrow Background . 135
10.3 Traditional Flow Arrow Generation 137
10.4 GPU Background . 142
10.5 Geometry Shader Flow Arrow Generation 143

iv

10.6 Implementation . 145
10.7 Timing Results . 148
10.8 Conclusion . 154

CHAPTER 11 CONCLUSION . 155

APPENDIX A LARGE SYSTEM DETAILS 157

REFERENCES . 158

AUTHOR’S BIOGRAPHY . 164

v

LIST OF TABLES

3.1 Condition number statistics . 30
3.2 Condition number distribution . 32
3.3 Condition number statistics . 35
3.4 Condition number distribution . 36

5.1 Major violation summary . 53
5.2 Largest 10 PI values . 59
5.3 Violations contributing to PI of 86.09 61
5.4 Violations contributing to PI of 55.62 62
5.5 Violations contributing to PI of 35.69 62
5.6 Violations contributing to PI of 55.62 69

6.1 IEEE 14-bus LODF matrix . 83
6.2 Base case flows on lines with OTS rows 91

7.1 ITS screening results . 95
7.2 ITS screening results . 95
7.3 ITS screening results . 96
7.4 FTS screening results . 97
7.5 FTS screening results . 97
7.6 FTS screening results . 97
7.7 LTS screening results . 98
7.8 LTS screening results . 98
7.9 LTS screening results . 98
7.10 OTS screening results . 100
7.11 OTS screening results . 100
7.12 OTS screening results . 101
7.13 ITS screening results . 102
7.14 ITS screening results . 102
7.15 FTS screening results . 102
7.16 FTS screening results . 103
7.17 LTS screening results . 103
7.18 LTS screening results . 103
7.19 OTS screening results . 104
7.20 OTS screening results . 104

vi

7.21 ITS screening results . 105
7.22 ITS screening results . 106
7.23 FTS screening results . 106
7.24 FTS screening results . 106
7.25 LTS screening results . 107
7.26 LTS screening results . 107
7.27 OTS screening results . 107
7.28 OTS screening results . 108
7.29 ITS size data . 109
7.30 FTS size data . 109
7.31 LTS size data . 109
7.32 OTS size data . 110

8.1 Weak-element row metrics for the ITS 117
8.2 Weak-element entry metrics for the ITS 118
8.3 Weak-element row metrics for the OTS 118
8.4 Weak-element entry metrics for the OTS 119

9.1 Table of signs . 128

10.1 IEEE 118 bus-case timing results 151
10.2 European case timing results . 152

vii

LIST OF FIGURES

2.1 Power conservation at bus i . 9
2.2 Matrix structure of (2.11) . 13
2.3 Impact on line α for the outage of line β 14
2.4 Transfer simulating outage of line β 15

3.1 System islands connected by tie lines 20
3.2 Condition number distributions 31
3.3 PDF near κ = 1.0 . 32
3.4 Topology near 3-150 and 7-131 . 33
3.5 Distribution of condition numbers 34
3.6 Distribution of condition numbers near 1.0 35
3.7 Topology at bus 29539 . 37

4.1 Sorted matrix ranking . 47

5.1 PI distribution . 58
5.2 PI density . 58
5.3 Topology at bus 25181 . 60
5.4 Violations per contingency histogram 63
5.5 Number of violations per line . 66
5.6 Number of violations per line, close-up 67
5.7 Cumulative percent overload per line 67
5.8 Cumulative percent overload per line, close-up 68
5.9 Number of violations per contingency 70
5.10 Number of violations per contingency, close-up 71

6.1 Impact-tracking structure . 76
6.2 IEEE 14-bus one-line diagram . 82
6.3 IEEE 14-bus ITS . 82
6.4 FTS for the IEEE 14-bus test case (1 MW cutoff) 86
6.5 LTS for the IEEE 14-bus test case (0.01) 88
6.6 OTS for the IEEE 14-bus test case 90

8.1 IEEE 14-bus ITS . 116
8.2 OTS for the IEEE 14-bus test case 117

viii

9.1 Maximum error . 129
9.2 Error vs. line index . 130
9.3 Error vs. flow bound . 131
9.4 Error distribution . 132

10.1 One-line diagram using text fields 135
10.2 One-line diagram using flow arrows 136
10.3 Sections of a transmission line . 139
10.4 Geometry shader – generated flow arrows 148
10.5 Geometry shader – generated flow arrows 149
10.6 Color and size textures . 149
10.7 IEEE 118-bus case with CPU-generated flow arrows 150
10.8 IEEE 118-bus case with GPU-generated flow arrows 151
10.9 European case with CPU-generated flow arrows 153
10.10European case with GPU-generated flow arrows 153

ix

CHAPTER 1

INTRODUCTION

Over the past decade, the electric industry in the United States has changed

drastically. Deregulation and the introduction of markets have changed the way

the power system is owned and operated. Open access to the transmission

system has given independent power producers access to the bulk transmission

system. Previously, utilities owned both transmission and generation, which

meant that they had the ability to plan for generation and transmission

together [1]. They also were also able to control access to their transmission

networks [2].

Deregulation has changed both the planning and operation of the power

system [3]. Utilities have lost direct control of their transmission networks. Since

the adoption of the Energy Policy Act of 1992, utilities have been forced to

allow independent power producers access to their transmission networks. Order

888 from the Federal Energy Regulatory Commission (FERC) opened up

transmission networks to third-party power transfers [4]. Combined with a low

rate of investment in the transmission system, these changes in network usage

have resulted in a network that is increasingly stressed. To address this issue,

the North American Electric Reliability Corporation (NERC) has introduced

standards requiring that operators assess system performance under multiple

outages [5]. Processing multiple outages, however, is quite computationally

intensive, and there are still technical challenges to overcome when processing

the huge number of potential events. As multiple outages begin to be

1

considered, the size of the contingency list grows rapidly. In particular,

list size =

(
L

k

)
=

L!

k!(L − k)!
(1.1)

where L is the number of branches in the system and k is the number of outaged

lines.

For the double-outage case (k = 2), the binomial coefficient can be expanded

to (
L

2

)
=

L(L − 1)

2
=

L2 − L

2
(1.2)

For the triple-outage case,

(
L

3

)
=

L(L − 1)(L − 2)

6
=

L3 − L2 + 2L

6
(1.3)

Continuing along these lines, it is easy to show that for k simultaneous outages,

O(Lk) power flow solutions are required. For power systems, the number of lines

tends to scale linearly with the number of buses (i.e., L ≈ 1.5 · n), where n is the

number of buses in the system. Using this relation, we can convert O(Lk) to a

function of n, the number of buses in the system:

O(Lk) = O((1.5n)k) = O((1.5)knk) = O(nk) (1.4)

According to [6], solving the power flow with Newton’s method requires

O(n1.4) computations, and solving the power flow using linear methods requires

O(n1.2) computations. Combining the results from [6] with (1.4) gives the total

computational effort for solving k simultaneous outages. The computational

effort to solve multiple-outage contingency analysis using Newton’s method is

CEN = O(n1.4) · O(nk) = O(nk+1.4) (1.5)

2

and the computational effort using linear methods is

CEL = O(n1.2) · O(nk) = O(nk+1.2) (1.6)

For the double-outage case, the computational complexity is O(n3.4) when

Newton’s method is used and O(n3.2) when linear methods are used. Thus,

solving every double-outage contingency is quite computationally intensive, to

the point of being intractable for even relatively small systems, even when linear

methods are used. It is the goal of this dissertation to reduce the necessary

computations by taking advantage of the fact that most lines in the system are

weakly coupled. An algorithm is presented that removes the need to consider

contingencies that do not impact each other.

The algorithm works in two parts. First, a reduced system model is

constructed based on single-outage line outage distribution factor (LODF)

values. Then, the reduced system model is used to create a contingency list that

contains every double-outage contingency that appears in the reduced model

structure. This contingency list is much smaller than the list containing every

double-outage. Initial results show that the reduced list is only a few percent of

the size of the initial double-outage contingency list. This means that the

algorithms can effectively screen out most of the double-outage contingencies,

leaving only the ones that impact each other above a given threshold.

Several algorithms to reduce the computational burden of processing multiple

contingencies are presented in Chapter 6. These algorithms use several different

methods to generate a list of serious double outages. The algorithms use varying

amounts of information about the system. The simplest ones use only the

system topology information to determine which lines in the system are tightly

coupled. The results of the screening algorithms are compared against the (dc)

3

contingency analysis results for a 5395-bus section of the North American

Eastern Interconnect. Details for the large case can be found in Appendix A.

Background on contingency-ranking methods is presented in Chapter 4. The

results from the large-case contingency analysis are presented in Chapter 5.

Contingency screening is the main focus of this work. However, there are

several other results presented in this dissertation. Chapter 3 discusses a metric

for measuring the coupling of a multiple-outage contingency. The metric is

useful for examining and detecting the conditions when linear sensitivities fail.

The metric approaches infinity in the event that a system island forms, and the

reasons for this are examined. In the event that the outaged lines are completely

decoupled, the metric is 1.0. This indicates the special case where superposition

will work to approximate flow changes using linear sensitives. The statistical

distribution of the condition numbers are examined for the IEEE 300-bus test

case and the large case described in Appendix A. The distributions show that

the larger the system the less the outages interact with each other. This result is

expected because, in larger systems, the lines can be expected to impact each

other less. For example, a line in Florida could be expected to have little impact

on a line in Wisconsin. The special case when this observation breaks down is

also explored. The metric is also very closely related to the screening algorithms

based on the impact-tracking structure.

The algorithms that are used to generate lists of serious contingencies also

create information that can be used for weak-element identification. A

weak-element in a power system is a line or a transformer that is prone to limit

violations. Because the algorithms work by identifying which lines impact each

other, the information can also be used for weak-element identification. Lines

that are heavily impacted by a large number of lines are likely to be important

to the operation of the system. Chapter 8 discusses methods for weak element

4

identification and characterization using the tracking structures generated by

the screening algorithms.

The mathematics for a bound on the change in flow for the linear sensitives

are developed in Chapter 9. This chapter develops the flow bound using matrix

and vector norms. Numerical results are presented for the IEEE 14-bus case.

An advanced technique for flow arrow visualization is presented in Chapter 10.

Chapter 10 presents a new implementation for efficiently generating a large

number of flow arrows, which are used to indicate the direction and magnitude of

line flows on a one-line diagram. The implementation uses the geometry shader,

a new feature on graphical processors, to generate flow arrows in parallel without

burdening the central processor of the computer. Timing results are presented

showing that, on modern hardware, the geometry shader method is faster than

traditional methods. Finally, conclusions are presented in Chapter 11.

5

CHAPTER 2

LINEAR ANALYSIS

2.1 Linear Analysis

Linear analysis has a long history in power systems analysis. It has been used

for at least 45 years to approximate the power system state quickly without the

computational expense of solving the full ac power flow [7]. The speed and

relatively accurate results of linear methods make them popular for on-line use.

The NERC operations manual defines flowgates using linear sensitivities for

monitoring the system state [8]. Their efficiency makes them useful for

large-scale problems such as available transfer capability calculations [9], [10].

The fundamental basis for power system sensitivities consists of the power

flow equations, a nonlinear set of equations that expresses the conservation of

complex power at every bus [11]. The power flow equations simply state that the

sum of the complex power at a bus must be equal to zero. They can be

expressed as a real and imaginary equation. The real equation,

f p
i (θ,V) = −P g

i + P l
i +

∑

k∈C

|Vi||Vk| (gik cos(θik) + bik sin(θik)) = 0 (2.1)

represents the conservation of real power flow at a bus, and

f q
i (θ,V) = −Qg

i + Ql
i +
∑

k∈C

|Vi||Vk| (gik sin(θik) − bik cos(θik)) = 0 (2.2)

6

represents the conservation of reactive power at a bus, where Vi is the voltage at

bus i and θi is the angle at bus i. Together, the voltages and angles describe the

state of the system. In other words, the system can be completely described if

all the bus voltage magnitudes and angles are known. The admittance values are

parameters that are determined by transmission line geometry or transformer

properties. In the power flow equations above, gij is the real part of the complex

admittance on the line between bus i and bus j, and bij is the imaginary part of

the complex admittance on the line between bus i and bus j. The generation

values are treated as controllable inputs because the generator’s output is a

controllable quantity, and the load values are usually treated as a given,

reflecting the fact that the load in a power system is an aggregate value from

many uncontrollable customers.

Together the angles and voltages are concatenated to form a state vector

x = [V θ]T (2.3)

The boldface V and θ are used to denote vectors of bus voltages and bus angles.

Every bus where the voltage is a free (i.e., not controlled to a specific value by a

generator or other voltage control device) variable has a voltage entry in the V

vector, and every bus where the angle is a free variable has an entry in the θ

vector. The only bus where the angle is fixed is the slack bus. Once the state

variables have been solved for, all other system quantities (e.g., line flows) can

be found. The line admittance are parameters in the power flow.

The controllable quantities may also be collected into a vector, which is

usually called u. The controllable quantities are typically generation, so a

7

typical control vector may look like

u = [P g
i · · ·P g

j]T (2.4)

where P g
i and P g

j represent the real power generation at bus i and bus j.

Reactive generation is not included in the vector of controls because the reactive

generation varies as needed to control the voltage. It is not controlled directly.

Using the x and u notation, the power flow equations may be written as

f(x,u) = 0 (2.5)

The boldface denotes that each of the elements is a vector. The vector f is a

vector of the real and reactive power flow equations given in (2.1) and (2.2):

f(x,u) =




f p
i

f q
i


 = 0 (2.6)

An example bus is shown in Figure 2.1. This figure illustrates the

conservation of power at bus i. The power flow equations state that the complex

power at bus i must sum to zero. This requires that the power injected by the

generator P g
i + jQg

i , withdrawn by the load P l
i + jQl

i, and supplied by the two

lines connected to bus i must equal zero.

One feature of the power flow that makes it hard to deal with is that it is a

nonlinear problem. This means that iterative techniques must be used to arrive

at a solution. Solving the nonlinear power flow is usually done using Newton’s

method [12], [13], because it has good convergence characteristics and works well

with sparse matrices. However, Gauss-Seidel and other algorithms have been

applied in the past [14] because of their simplicity and memory efficiency.

8

i

P+jQi i

l l

P+jQi i

g g

j k
θV

j j
θV

k k

θV
i i

Figure 2.1: Power conservation at bus i

To avoid the difficulties of nonlinear systems, the power flow can be reduced

into a linear system, which has many desirable mathematical properties. In

particular, for a connected power system, there is always a solution and the

solution can be calculated by solving a linear system. The dc assumptions

provide the justifications for reducing the power flow equations into a linear

system [13], [15]. The dc assumptions are

• There are no resistive losses.

• Bus voltages are close to 1.0 pu.

• Angle differences across lines are small.

These assumptions usually hold for ordinary power systems under ordinary

conditions. Of course, there are no guarantees.

The first assumption, that there are no resistive losses in the system, means

that the gij term in the power flow becomes zero, which causes (2.1) to reduce to

f p
i (x) = −P g

i + P l
i +

∑

k∈C

|Vi||Vk| (bik sin(θik)) (2.7)

The assumption that the bus voltages are close to 1.0 pu removes the voltages

9

from (2.1), which further reduces the power flow equations to

f p
i (x) = −P g

i + P l
i +

∑

k∈C

(bik sin(θik)) (2.8)

Finally, the assumption that the angle differences across lines are small allows

the application of the small-angle approximation; i.e. sin(θik) ≈ θik. Application

of the small-angle approximation removes the sine term from the power flow

equation to give

f p
i (x) = −P g

i + P l
i +

∑

k∈C

(bik · θik) (2.9)

The equation above is written for a single bus. However, the conservation of

power at every bus can be written as a matrix equation. When the conservation

of power is written as a matrix equation, the dc power flow equations are

produced:

Bθ = P (2.10)

The linear system of equations can be used as a basis for the derivation of

sensitivities. Many useful sensitivities have been developed taking this approach.

A formal approach for analyzing distribution factors is presented in [16]. This

paper derives distribution factors, starting with the system Z-bus matrix, and

compares the results to previous treatments [17].

One useful type of sensitivity tells how line flows respond to a change in

generation dispatch. Power transfer distribution factors (PTDFs) are the linear

sensitivities of line flows (f) to a point-to-point transfer of power

(T(i,j)) [18], [19]:

pα, (i, j) =
∆fα

T(i,j)

=
1

xα

aαB
−1aT

(i,j) (2.11)

where α denotes the line whose flow is being altered by the transfer; i and j are

the buses where the injection and withdraw take place. The symbol aα denotes

10

a row vector containing a 1 and −1 at the from and to positions of line α, and

a(i,j) is a row vector containing a 1 and −1 at positions i and j, respectively. In

practice, PTDFs are used to approximate the change in flow on a transmission

line caused by a change in injection and withdraw. It should be noted that for

an injection across a radial line, the total amount of the transfer must flow over

the radial line. This means that

pα,α =
∆fα

Tα

= 1.0 (2.12)

when line α is a radial line. This observation is extended in [20] to say that the

sum of PTDFs over a topological cut is 1.0. In other words, the sum of PTDFs

over any set of lines connecting two islands in the system is 1.0. This fact can be

used to detect radial lines quickly.

At first glance, it would appear that calculating four values of B−1 requires

the factorization of B and two forward-backward solutions — one to obtain each

column. However, the structure of the a vectors allows the calculation to be

even faster. The fact that the a vectors’ only nonzero entires are a 1 and a −1

means that we are essentially subtracting two columns from each other in the

inverse, which can be done with one forward-backward solution that uses the

entire a vector (with both a 1 and a −1) instead of a single element at a time.

Thus, calculation of a PTDF value requires the factorization of the B matrix as

well as a single forward-backward solution. The process can be further improved

by the use of fast-forward and fast-backward techniques [21] to calculate the

four values needed from the inverse of B.

In fact, this process can be easily adapted to give much more than a single

PTDF value. Again, this can be realized with the help of Figure 2.2, which

shows that the forward-backward solution process results in a vector – not just

11

two single values. The only thing that is needed to convert this vector of values

into a vector of PTDF values are the line impedances. So, if we define

X =




x1 · · · 0

0
. . . 0

0 · · · xL




= diag(x1, . . . , xL) (2.13)

to be an L × L diagonal matrix of line impedance values and

A =




a1

...

aL




(2.14)

to be an N × L incidence matrix (where L is the number of lines in the system

and N is the number of buses), then the scalar expression (2.11) can be

extended to

P = XAB−1a(i,j) (2.15)

which gives a vector of PTDF values on every single line for a transfer from

bus i to bus j.

Another important set of sensitivities can be built from PTDFs. Line outage

distribution factors (LODFs) are linear sensitivities of line flows to the

preoutage flow on an outaged line (β) [18]:

dα,β =
∆fα,β

fβ

=
pα,β

1 − pβ,β

(2.16)

LODFs can be used to calculate the change in flow on line α after the outage of

line β:

∆fα,β = dα,βfβ (2.17)

12

Figure 2.2: Matrix structure of (2.11)

It can be observed that when line β is radial,

pβ,β = 1.0 (2.18)

which results in

dα,β = ∞ (2.19)

Thus, for radial lines, the self-PTDF value is 1.0 and the LODF value calculated

using (2.16) is ∞. However, to have physical meaning, the LODF for any line

onto itself must be −1.0 (−dβ,β = 1). This is because an open line must have

zero flow.

2.2 LODF Derivation

The matrix M accounts for the fact that outages affect each other. If this is not

the case, then the change in flows can be calculated using superposition. In the

single-outage case, the equation for the change in flow (2.31) involves only scalar

quantities. The following section begins with a LODF derivation for the

13

fα

fβ

original flow

flow from outage

fα∆

Figure 2.3: Impact on line α for the outage of line β

single-outage case. Then the derivation is extended for a more general

multiple-outage case.

The derivation of single-outage LODFs begins with the definition of an LODF

(2.16). By definition, an LODF is the change in flow on line α as a percentage of

the preoutage flow on line β. This is illustrated in Figure 2.3. A useful

expression for the LODF in terms of PTDFs can be derived by assuming that

the transfer that simulates zero flow on line β, Tβ, is known. This transfer is the

transfer that causes line β to appear open to the rest of the system. This

transfer is illustrated in Figure 2.4. The transfer across line β also affects the

flow on line β, which may be calculated using

fnew
β = fβ + pβ,βTβ (2.20)

where fnew
β is the flow on line β after it has been altered by the transfer.

The next step is to use the conservation of power at one terminal bus of

line β. The conservation of power is preformed at the circle in Figure 2.4. By

14

newfβ

TβTβ

Figure 2.4: Transfer simulating outage of line β

summing the power coming into and going out of this surface, we can write

Tβ = fβ + pβ,β · Tβ (2.21)

Now, the change in flow on line α can be written in terms of PTDFs:

∆fα,β = pα,β · Tβ (2.22)

After this is done, (2.21) can be solved for fβ to obtain

fβ = Tβ − pβ,β · Tβ (2.23)

Finally the expressions for fβ and ∆fα can be substituted into the definition of

LODF (2.16) to give

dα,β =
∆fα

fβ

=
pα,β

1 − pβ,β

(2.24)

which is the the final expression for a LODF in terms of PTDFs.

To extend the single-outage derivation to the multiple-outage case, we

consider the impact of line β and line δ on line α. Transfers to simulate outages

will result in altered flows (f̃β,f̃δ). The altered flows are unknown, and they

impact each other. However, using the tilde notation, a system of equations can

be written and solved for the altered flows. In this case, we write the equation

for f̃β assuming that the altered flow f̃δ is known, and vice versa. This gives a

15

system of equations

f̃β = fβ + dβ,δf̃δ (2.25)

f̃δ = fδ + dδ,β f̃β (2.26)

This system of equations can be rewritten in matrix form to give



fβ

fδ


 =




1 −dβ,δ

−dδ,β 1






f̃β

f̃δ


 (2.27)

Now we can solve the above equation for the altered flows to get



f̃β

f̃δ


 =




1 −dβ,δ

−dδ,β 1




−1 

fβ

fδ


 (2.28)

The final step is to apply these results to contingency analysis. To simulate

the change in flows due to the outage of line β and line δ, multiply the adjusted

flows by the sensitivities onto the line of interest. For example, to calculate the

change in flow on line α, the adjusted flows are multiplied by the LODFs of the

outaged lines onto line α:

∆fα =

[
dα,β dα,δ

]


f̃β

f̃δ


 (2.29)

If the expression in (2.28) for the altered flows is substituted into (2.29), then

the expression for the change in flows can be written as

∆fα =

[
dα,β dα,δ

]



1 −dβ,δ

−dδ,β 1




−1 

fβ

fδ


 (2.30)

16

Linear sensitivities have been extended to approximate changes due to

multiple-line outages [18], [22]. The formulation in [23] results in a simple

matrix equation for postoutage flow,

∆fα = LαM
−1F (2.31)

where M ∈ R
k×k is a matrix of LODF values relating the outaged lines to each

other, Lα ∈ R
1×k is a row vector relating the outaged lines to line α, and

F ∈ R
k×1 is a vector of preoutage flows.

The matrix M compensates for multiple-line outages. For the double-outage

of line β and line δ, M can be expressed as

M =




1 −dβ,δ

−dδ,β 1


 (2.32)

The vector Lα is

Lα = [dα,β dα,δ] (2.33)

and F contains the preoutage flows on lines β and δ,

FT = [fβ fδ] (2.34)

If these values are substituted into (2.31), then ∆fα can be written as

∆fα = [dα,β dα,δ]




1 −dβ,δ

−dδ,β 1




−1


fβ

fδ


 (2.35)

For a single-line outage that results in islanding, the LODF value goes to ∞.

Similar behavior is seen for multiple-line outages. When the outage of multiple

17

lines results in islanding, the matrix M becomes singular. This behavior is

explored in detail in Chapter 3.

The presentation above expresses the change in flow for single (2.17) or double

outages (2.35). However, there is no limit to the number of outaged lines that

this methodology is able to handle. The expression (2.31) can be scaled to

arbitrary dimensions by simply expanding the number of outaged lines to be

considered.

18

CHAPTER 3

CONDITION NUMBERS

Linear sensitivities are popular methods for approximating the change in power

system quantities after a change in the system. This chapter examines the

formulas that are used to calculate line outage distribution factors (LODFs) for

both single and double outages. Studying these formulas shows cases where they

break down. In particular, the formulas fail when system islanding occurs. This

happens for both single- and multiple-line outage sensitivities. The reasons

islanding causes the formulas to fail are studied in depth, and comments are

made about the use of linear sensitivities in these cases. A metric of interaction

— a measure of how close the system is brought to islanding by a particular

outage — is developed based on the analysis. The metric is proposed as a useful

method of categorizing line outages, and it is used in later chapters as a tool to

help rank contingencies. Statistics are presented for the IEEE 300-bus case and

a large system based on a North American utility. In both cases the statistics

show that the distribution of the condition numbers indicates that most double

outages are nearly decoupled.

3.1 Introduction

Linear methods have been used for at least 45 years to approximate the change

in power system state quickly without the computational expense of solving the

full ac power flow [7]. As discussed in detail in Section 2.1, LODFs are the linear

19

System Island

li
n

e
β

li
n

e
δ

F
δ

System Island

F
β

Figure 3.1: System islands connected by tie lines

sensitivities of line flows to a line outage [18]. Per the definition of LODF (2.16),

they provide a metric of the impact a line outage has on the other lines in the

system. Using LODFs as a metric, it is possible to determine efficiently which

lines impact each other in the system.

Typically, LODF values tend to decay as the distance from an outaged line

increases. However, this tendency does not hold in all cases. In particular, the

tendency of LODFs to decay breaks down in the event of islanding. In the event

of islanding, it is possible for the outage of one line to have a large impact on

another distant line. Consider the case illustrated in Figure 3.1. Figure 3.1

shows two system islands connected by two tie lines. In the event that one line

outages, all the power must flow on the other line because of the conservation of

power. The conservation of power must hold for the entire system, which

includes both system islands. It does not matter how far (geographically or

electrically) the two lines are from each other. Because the net load in the two

systems is constant, the outage of one line between the islands will result in the

entire transfer shifting to the other line. Figure 3.1 illustrates two lines

20

connecting two system islands, so the outage of one line will result in power

being forced onto the second line to maintain the balance of power. This

situation can be extended to more than two outages by treating the outage of

every line until the second to last line normally (i.e., with LODFs and OTDFs).

The last two lines then form a situation like the one shown in Figure 3.1.

The operation of the power grid has changed dramatically over the past

decade. Deregulation has changed the way the system is owned and

operated [1]. Considering the impact of multiple outages has become more

relevant after the introduction of new NERC standards setting performance

requirements in the event of multiple outages [5]. These standards are intended

to ensure the reliability of the system in the new deregulated environment.

Considering multiple outage contingencies is common for certain special cases.

System operators maintain a list of contingencies, and it is not uncommon for a

contingency definition to involve more than one piece of equipment. They know

from experience the outages that will threaten their systems. The metric is

proposed as a quick way to search exhaustively for coupled contingencies.

The analysis in this chapter is based on the linear analysis material presented

in Chapter 2. Section 3.2 examines the special cases where the formulas for

calculating linear sensitivities fail and the definitions must be applied to achieve

reasonable results. Section 3.3 introduces a measure of outage coupling.

Section 3.4 presents statistical data from the IEEE 300-bus test case [24].

Statistical data from a large system are presented in Section 3.5, and conclusions

are presented in Section 3.6.

21

3.2 Analysis of Linear Sensitivities

The application of linear sensitivities for contingency analysis has certain

caveats. For example, the singularity in

dα,β =
pα,β

1 − pβ,β

(3.1)

occurs when the self-PTDF (pβ,β) value is 1. Traditionally, this is handled by

the application of the LODF definition (2.16) to arrive at sensible results. In

this section the situations are examined in which these caveats appear for both

the single- and double-outage cases, and this analysis is used to make statements

about the use of these sensitivities in these situations.

3.2.1 Single-outage sensitivities

In the scalar case (i.e., single-line outage), the equation for the change in flow on

a line for an outage of another line is given in

∆fα = dα,βfβ (3.2)

which can be written in terms of PTDFs as

∆fα =
pα,β

1 − pβ,β

fβ (3.3)

By examining this equation, it may be observed that ∆fα → ∞ as pβ,β → 1.0.

This may be interpreted in terms of system topology for the case when the

self-PTDF value is 1.0. In this case, the fact that the self-PTDF value is 1.0

indicates that a transfer from one end of the line to the other must flow entirely

across that line. There is no alternate path for power to flow on. In other words,

22

the line is radial.

In practice, when this situation is encountered, the typical approach is to

resort to the definition of an LODF (2.16) and use the fact that the line is radial

to say that the self-LODF must be −1 and that the other LODFs are 0. Using

−1 is equivalent to saying that the outage of this line will zero its flow. Setting

the other LODF values to zero says that this line will not impact any other lines

when it outages. By doing this, we have created a situation in which

equation (3.2) may still be used to be used to calculate the change in flows.

However, there is a problem with this approach. Namely, we are not

considering the fact that the system load or generation is changing when the

radial line is opened. Except in the special case that the flow on the radial line

is zero, the outage of the radial line will result in a generation imbalance within

the power system island. Generation will no longer equal load. Instead of

applying the definition, the mathematics seem to suggest that the LODF value

is undefined in the event of islanding.

Simply setting the self-LODF to −1 and the others to 0 will not account for

the imbalance. In order to predict the effects of the outage on the line flows

correctly, the generation response must be modeled. The important

characteristic of this case is not that a line has been outaged. Instead, the

important characteristic is that some load or generation has been lost. This

means that modeling flow changes cannot be done realistically without modeling

the generation’s response to an outage.

In the normal use of distribution factors (i.e., without islanding), the

conservation of power is maintained. The net power within an island does not

change. In reality there will be a small change caused by the change in losses as

power flows are redistributed. However, this change is typically small, which is

one reason the dc sensitivities tend to work well.

23

In the case that a radial line is outaged, a load or generator is disconnected

from the system. In this event, there is a net change in the island’s load or

generation, and conservation of power is no longer satisfied. This suggests that

modeling the system redispatch must be done to simulate the outage of a radial

line.

3.2.2 Double-outage sensitivities

In the double-outage case we consider the matrix equation for the change in flow

on line α written for the outage of line β and line δ,

∆fα = [dα,β dα,δ]




1 −dβ,δ

−dδ,β 1




−1


fβ

fδ


 (3.4)

If we expand this expression using (3.1) to put it in terms of PTDFs,

∆fα =

[
pα,β

1−pβ,β

pα,δ

1−pδ,δ

]



1
−pβ,δ

1−pδ,δ

pδ,β

1−pβ,β
1




−1 

fβ

fδ


 (3.5)

we can repeat the analysis preformed for the scalar case. Examining

Equation (3.5) it is clear that strange behavior will arise in the event that

pβ,β = 1.0 or pδ,δ = 1.0. In these cases, the matrix M becomes extremely ill

conditioned. In fact, as the self-PTDF approaches 1.0, the matrix approaches

singularity. Thus, we can conclude that this formula will not apply in the event

one of the outaged lines is radial. It is not too surprising to discover that

double-outage sensitivities do not work when single-outage sensitivities fail.

A more interesting result may be had by examining the case when two lines

connect two islands in the system outage, as illustrated in Figure 3.1. In this

case, the conservation of power requires that the net flow between the islands

24

remain the same. This requires that the line that remains in service pick up the

amount of power flow necessary to maintain conservation of power when the

other is outaged. It may be recalled from the LODF derivation in Section 2.2

that the conservation of power is used in the derivation of the LODF from

PTDF values.

In terms of LODFs, the requirement is that the LODFs of two lines in

Figure 3.1 onto each other will be 1.0. If the matrix M is evaluated with these

values, we get

M =




1 −1

−1 1


 (3.6)

which is clearly singular. Right-multiplying by any vector of the form [1 1] will

result in a zero. In this case, Equation (3.4) cannot be evaluated, because M−1

does not exist.

The outage of these two lines is analogous to the outage of a radial line for the

single-outage case. When both lines outage, there will be an imbalance in load

and generation in the island (except in the special case that the net flow across

the lines is zero).

We can put the analysis in terms of PTDFs,

M =




1
−pβ,δ

1−pδ,δ

pδ,β

1−pβ,β
1


 (3.7)

to examine why the matrix M becomes singular when an island forms in the

system. After putting M in terms of PTDFs, we can make use of the fact that

the sum of PTDFs is 1.0 for a cutset [20], [22]. For our analysis, the cutset is the

two lines connecting the two islands in the system.

Because the conservation of power must hold, a transfer from one island to

25

the other will flow entirely on one line if the other is outaged. Since we are

simulating outages using transfers, this is important to keep in mind. It means

that the transfer simulating the outage of line β can flow only on line δ and vice

versa, as illustrated in Figure 3.1. This gives

pδ,β + pβ,β = 1 (3.8)

and

pβ,δ + pδ,δ = 1 (3.9)

which is simply a statement that a transfer from one island into the other will

flow on the lines connecting the two. This fact was originally observed in [20].

Now, we can examine the determinant of M to explore the origins of the

singularity.

det(M) =
1

1 − dβ,δdδ,β

(3.10)

In terms of PTDFs, the determinant of M is

det(M) =
1

1 − pβ,δ

1−pδ,δ

pδ,β

1−pβ,β

(3.11)

We can find the origin of the singularity by looking at the denominator of the

determinant and using the expressions (3.8) and (3.9) above. The denominator

of the determinant is

1 −
(

pδ,β

1 − pβ,β

)(
pβ,δ

1 − pδ,δ

)
(3.12)

Singularity will arise whenever this quantity is zero. If we solve the expressions

in (3.8) and (3.9) for pδ,β and pβ,δ and substitute into (3.12), we arrive at

1 −
(

1 − pβ,β

1 − pβ,β

)(
1 − pδ,δ

1 − pδ,δ

)
(3.13)

26

which will give us zero in the denominator of the determinant. This will clearly

cause M to be singular.

From this analysis, we have shown that in the event of islanding, the

determinant of M will be zero, indicating that the matrix is singular. Also, we

have examined the reason for this. The determinant becomes zero because of the

conservation of power. Enforcing this constraint requires that a transfer from

one island to another flow through the lines connecting them. In the special case

that the lines connecting the two islands are outaged, cancellation occurs in the

determinant. This result has been shown for the double-outage case. However, it

is true for any number of outages. Any time the sum of PTDF values is 1.0, the

matrix M will be singular. This is because the sum of PTDF values equaling 1.0

indicates islanding.

3.3 Metric of Outage Coupling

The analysis in Section 3.2 indicates that the matrix M is singular in the event

that a system island forms. This section extends this observation to develop a

measure of coupling between outages. The coupling between outages refers to

the impact the outaged lines have upon each other. This information is reflected

in the off-diagonal values of M (the diagonal values are always 1.0).

This section proposes the condition number of M as a metric of outage

interaction. The condition number is suggested because the condition number

can be thought of as a distance to singularity [25], [26], and, as the previous

section discussed, islanding and singularity are linked. The condition of the

matrix M can be thought of in power system terms as the distance to islanding.

In other words, the larger the condition number of M, the closer the contingency

brings the system to islanding.

27

The condition number of M is defined as

κ(M) =
||M||
||M−1|| (3.14)

If the condition number is evaluated using the 2-norm, then (3.14) becomes

κ2 =
σmax(M)

σmin(M)
(3.15)

where σmax and σmin are the maximum and minimum singular values. For the

case that M is a 2-by-2 matrix, there is a simple closed-form expression for the

condition number evaluated using the 2-norm,

κ2 =
1 +

√
dδ,βdβ,δ

1 −
√

dδ,βdβ,δ

(3.16)

Evaluating this expression is quite efficient for a single outage. It requires only

one multiplication, one division, and one square root calculation.

As mentioned above, M becomes singular when a contingency causes the

formation of an island in the system. This results in the maximum possible

condition number for the matrix M, κ(M) = ∞ . The lowest possible condition

number for the matrix M corresponds to the case when the outages are

completely decoupled, i.e., when the off-diagonal terms of M are zeros. In this

case, M is the identity matrix, and the condition number is 1.0.

It can be noted that, in the event that M is the identity matrix, (3.4) reduces

to

∆fα =

[
dα,β dα,δ

]



1 0

0 1




−1 

fβ

fδ


 (3.17)

28

which is the same as

∆fα =

[
dα,β dα,δ

]


fβ

fδ


 (3.18)

This is the special condition under which superposition works to calculate flow

changes. When the outages are completely decoupled, M and M−1 are the

identity matrix, so the change in flow can be calculated by simply adding the

LODF–flow products:

∆fα = dα,βfβ + dα,δfδ (3.19)

The off-diagonal terms in M will be identically zero only in the event of the

outage of two radial lines. However, they will be close to zero for outages that

have small LODF values onto each other.

One useful observation that follows from this analysis can be made by noting

that the denominator of Equation (3.16) can provide a quick way to check for

islanding resulting from a double outage. In the event that the product of the

off-diagonal LODF values is 1.0,

dδ,β · dβ,δ = 1 (3.20)

the denominator of (3.16) is zero, which results in a condition number of infinity,

which is associated with islanding. Thus, to check for islanding, we can simply

check to see whether the product of the off-diagonal LODF values is 1.0.

The condition number gives a metric indicating the degree of coupling of the

individual outages involved in a double-outage contingency. The larger the

condition number, the more the outages interact. A condition number close to

1.0 indicates that the outages have only a small impact on each other. As the

condition number of the matrix M approaches infinity, the system comes closer

to islanding. The following sections examine the statistical distributions of the

29

condition numbers for two different systems.

3.4 Condition Number Statistics

Using the IEEE 300-bus test case [24], condition numbers were calculated using

the 2-norm for every double-outage contingency that does not result in island

formation. For the 411 lines in the IEEE 300-bus test case, there are 84,255

double-outage contingencies.

Table 3.1: Condition number statistics

Max. κ2 29.63
Min. κ2 1.00
Avg. κ2 1.060

Std. dev. κ2 0.4313

Some statistics for the IEEE 300-bus double-outage condition numbers are

given in Table 3.1. The statistics show that the minimum condition number is

1.0, and the average value is very close to 1.0, indicating that most matrices are

nearly perfectly conditioned; i.e., the off-diagonal values are very near 0. This is

significant because it means that, even for a relatively small system, most

outages are essentially decoupled. In larger systems, the amount of interaction

could be expected to be even smaller.

The probability density function (PDF) and cumulative distribution function

(CDF) were also calculated for the data set, denoted by F (x) and P (x),

respectively. The PDF shows where in the distribution the values tend to

cluster, and the CDF shows what percentage of values fall below a given value.

Plots of the CDF and PDF are shown for the IEEE 300-bus case in Figure 3.2.

The plots show that the condition numbers are clustered near 1.0, indicating

that most outages have weak interactions. A detail of the PDF around 1.0 is

30

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Condition Number Density

0 5 10 15 20 25 30
0.85

0.9

0.95

1

1.05

x

P
(k

<
x)

Condition Number Distribution

Figure 3.2: Condition number distributions

shown in Figure 3.3. The detail illustrates how quickly the condition number

distribution decays. In fact, 92.3% of the data points are between 1.0 and 1.1.

The bottom graph in Figure 3.2 shows the CDF (the integral of the PDF).

The CDF answers the question, What is the probability that a condition

number is greater than a given value x? Several points from the CDF are listed

in Table 3.2. The data in this table can be used to study how condition numbers

are distributed versus κ(M). For a selection of κ(M) = 2.258, 99% of

contingencies will have a condition number that is smaller.

The maximum condition number for any outage that does not result in

islanding occurs for the outage of the lines 3-150 and 7-131. The topology

around these two lines is shown in Figure 3.4. The two outaged lines are tie lines

between System 1 and System 2.

31

1 1.02 1.04 1.06 1.08 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

P
D

F

Figure 3.3: PDF near κ = 1.0

Table 3.2: Condition number distribution

P (x) x
0.64 1.001
0.80 1.016
0.90 1.064
0.95 1.193
0.99 2.258

The M matrix created by the outage of 3-150 and 7-131 is

M =




1 −0.942

−0.927 1


 (3.21)

which has the maximum condition number of any outage, κ(M) = 29.63. An

examination of the topology (Figure 3.4) around the outages reveals the reason.

The two lines 3-150 and 7-131 connect System 1 and System 2, two areas within

the IEEE 300-bus test case. There are connections between System 1 and

System 2 through the other areas, but 3-150 and 7-131 are the only two direct

connections. The two outaged lines serve as the primary connections between

32

System 1

System 2

75 6

1
2 3

9

1011

12

0.0030 pu

0.0090 pu

0.0530 pu

0.0520 pu

0.0060 pu

0.0520 pu

0.0090 pu

0.0390 pu

0.0290 pu

0.0390 pu

0.0270 pu 0.0890 pu

131

150

0.01 pu

0.01 pu

130

0.01 pu

0.02 pu

Figure 3.4: Topology near 3-150 and 7-131

the two areas, so power from one of the outaged lines will redistribute onto the

other and vice versa. The two lines are operating in a parallel capacity.

The empirical results show that the condition numbers are distributed very

close to 1.0. This means that the vast majority of outages are essentially

decoupled. In general, the larger the system, the more the distribution can be

expected to be even more heavily weighted around 1.0. This is because, in larger

systems, the impact of lines upon each other is smaller.

3.5 Large-System Distribution

The condition numbers were calculated for a much larger 5395-bus 7616-line

case from a large North American utility. The distributions from the larger case

display the same behavior as the distributions from the IEEE 300-bus test case.

As can be seen in Figure 3.5, the distribution of condition numbers is weighted

very heavily toward 1.0. This is reflecting the fact that most outages are nearly

decoupled. The off-diagonal LODF values are nearly 0.0 for the majority of

33

double outages.

Figure 3.6 shows a close up of the density plot near κ = 1.0. It can be seen

that the density decays very quickly away from κ = 1.0. In fact, the density for

the large case decays in a very similar way to the density for the IEEE 300-bus

test case.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Condition Number Density

0 200 400 600 800 1000 1200 1400 1600
0.8

0.85

0.9

0.95

1

1.05

x

P
(x

)

Condition Number Distribution

Figure 3.5: Distribution of condition numbers

3.5.1 Large-system statistics

As with the distribution plots, the statistics for the large system (Table 3.3) are

very close to the values for the IEEE 300-bus test case. For both cases, the

average is very near 1.0. Surprisingly, the standard deviation is larger for the

large case. This is unexpected because the distribution for the large case is more

clustered around 1.0, which can be seen by examining the distribution tables for

each case. The larger condition number is most likely explained by the larger

number of high-value condition numbers in the large case. Indeed, the most

34

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Figure 3.6: Distribution of condition numbers near 1.0

glaring difference between the IEEE 300-bus test system statistics and the

large-case statistics is the largest condition number value. The largest condition

number for the large case is 50 times larger. The double-outage contingency that

results in this large condition number is examined below.

Table 3.3: Condition number statistics

Max. κ2 1500.3
Min. κ2 1.00
Avg. κ2 1.0046

Std. dev. κ2 0.4976

Table 3.4 contains values for the cumulative distribution function for the

large-case condition numbers. Upon examining these values, it is immediately

clear that the condition numbers are very heavily clustered around 1.0. The first

row in the table indicates that 92.05% of the condition numbers have a value

less than 1.0015. This is a much stronger clustering than was seen in the

IEEE 300-bus case. For the IEEE 300-bus test case, only 64% of the condition

numbers have a value less than 1.001. The difference in the distributions can be

35

explained by the system size. The IEEE 300-bus system is small compared to

the 5395-bus large case. In the smaller case, a higher percentage of the outages

will interact with each other because everything is closer together. In the larger

case, everything is farther apart electrically and geographically.

Table 3.4: Condition number distribution

P (x ≤ κ) x
0.9205 1.0015
0.9735 1.0075
0.9943 1.0975
0.9995 1.9971
0.99998 10.0035

3.5.2 Large-system largest κ

The largest condition number for the large system is 1500.33. This condition

number occurs for the outage of the line connection bus 18027 to bus 29539 and

the line connecting bus 29537 to bus 29539. The M matrix formed by this

double outage is

M =




1 −0.99882

−0.998515 1


 (3.22)

and the condition number of M is 1500.33, which is quite large. An examination

of the system topology around the outaged lines gives insight into the large

LODF values and resulting condition number. The topology at bus 29539 is

shown in Figure 3.7. Clearly, these two lines are connected to the same bus (bus

29539), and the outage of one of these lines results in a large distribution of flow

onto the other line.

36

Bus: BUS29539 (29539)
Nom kV: 161.00

 BUS18027

CKT 1

 BUS29235

CKT 1

 BUS29537

CKT 1

Figure 3.7: Topology at bus 29539

3.6 Conclusion

This chapter examines the cases when the formulas for linear sensitivities break

down and fail to give reasonable results. The cause of the breakdown can be

traced to islanding of the system. In particular, enforcing the conservation of

power results in singularity in M when the outages result in islanding. The

results were presented for the double-outage case. However, they are extensible

to higher dimensions. Whenever the sum of PTDFs across a group of lines is

1.0, M will be singular. The observation that the sum of PTDFs over a cutset is

1.0 was first made in [20]. This chapter connects that observation to the

singularity of M and proposes the condition number as a metric of interaction.

The condition number was proposed as a metric of interaction after an

examation of the behavior of M. The metric measures the distance of the

matrix M to singularity. In terms of system topology, the metric can be thought

of as a measure of the distance to islanding or a measure of the coupling of the

outages. The larger the condition number, the more coupled the outages. An

examination of the largest condition number for the IEEE 300-bus case showed

37

that the outaged lines impacted each other heavily and provided the only direct

connection between two sections of the system.

To examine the behavior of the condition number, statistics were examined for

the IEEE 300-bus case and a large case representing a portion of the eastern

interconnect. For each case, the metric was calculated for every double-outage

contingency. In both cases, the distribution of the condition numbers was found

to be very heavily weighted around 1.0, the lowest possible condition number.

This is especially true for the large case. For the large case, 92.05% of the

double-outage contingencies have a condition number less than 1.0015,

indicating that most of the double-outage contingencies behave almost as

independent outages, which could be expected for a large case. In a large case, it

is unlikely that two randomly chosen outages will have a large impact on each

other because, in all likelihood, they will be seperated by a large distance both

geographically and electrically. Condition numbers provide insight into the

operation of screening algorithms. The condition number is used as a tool to

analyze the operation of a screening algorithm in Section 6.2.3.

38

CHAPTER 4

REVIEW OF CONTINGENCY SELECTION

4.1 Contingency Selection

Power system operators are continuously monitoring their systems. Periodically

contingency analysis is run to assess the security of the system. The on-line

contingency analysis uses a list of predefined events and a state estimator model.

The list of events is determined ahead of time and contains the likely events that

could cause overloads or equipment damage. Since these studies are performed

on-line, the size of the list is very important. The larger the size of the

contingency list, the longer it will take to perform the contingency analysis. On

the other hand, the list must be thorough enough to capture every significant

event. The challenge with contingency selection is to accurately select the

dangerous events while not including innocuous events. To accomplish this,

contingency selection algorithms rank contingencies in order of severity, where

severity is a function of the magnitude of the postcontingent violation. If the

contingencies are correctly ranked, then evaluating the serious contingencies is

simply a matter of starting with the most serious contingency and stopping

when no further violations are found.

This section presents a literature review of the previous work in contingency

selection. It should be noted that contingency selection and contingency

screening are not the same. Contingency screening — as the term is used in this

dissertation — is a complementary process to contingency selection.

39

Contingency selection selects bad contingencies, and contingency screening

removes contingencies that need not be considered as a multiple-outage event.

By removing contingencies from consideration, contingency screening eliminates

a large fraction of contingencies from ever needing to be considered. Research

into contingency selection began in the late 1970s and was a subject of interest

into the early 1990s. By the late 1990s, fewer research papers on contingency

selection were being published. This decrease seems to be because the

improvements in computers made it possible to handle single outages efficiently,

so there was no longer any real need for contingency selection. Recently,

however, NERC has introduced standards requiring the consideration of multiple

outages. Even with the most powerful modern computers, dealing with every

multiple-outage contingency is intractable.

Contingency selection describes the method of determining which

contingencies are important enough to add to the on-line contingency list. The

initial work was done in [27]. The approach was to define a performance index.

For line flows, the performance index is defined as

PIMW =

L∑

l=1

Wl

2n

(
fα/fMax

α

)2n
(4.1)

where fα is the real power flow on-line l, fMax
α is the real power flow limit, n is

an exponent that penalizes the overload, and Wl is a non-negative weighting

coefficient. Although most work focused on real power indices, indices are also

defined for voltage and reactive power limits. These indices are used to rank

contingencies in order of severity. The more severe the limit violation, the larger

the performance index will be, indicating a serious contingency. The weighting

coefficients can be used to weight various type of equipment or known problem

lines. For example, a 69 kV line may be given a lower weighting coefficient than

40

a 500 kV line because the 500 kV line is judged to be more important to the

operation of the system.

Of course, to evaluate these performance indices (PIs), the value of the flows

must be known. To avoid this calculation, which involves actually solving the

contingency analysis, the authors of [27] make the observation that, to rank

contingencies, only the relative change in PI with respect to outages needs to be

known. Based on this insight, the authors develop a method based on the

sensitivities of the performance index (4.1). The authors do mention distribution

factors as an efficient way to screen contingencies. However, they deem it

unsuitable because it does not allow for the detection of voltage violations. They

note that some misorderings occur in their numerical tests, but they believe this

is not important as long as the ordering trend is generally correct. It may be

noted at this point that the numerical examples were calculated for small

systems (the largest contained 29 buses).

In [28] the methods of [27] are applied to the much larger American Electric

Power (AEP) system. The results indicated that the methods in [27] had a

tendency to misclassify contingencies. Important contingencies were missed, and

unimportant ones were added to the list. In an attempt to improve the

performance of the PI sensitivity methods, the sensitivities were modified to use

second-order terms. However, the results were still unreliable. Better results

were obtained using the dc power flow to calculate the performance indices for

line flows. Solving the dc power flow requires one forward and backward solution

of the factored B matrix. Of course, the dc power flow is unable to handle

voltage violations, and no mention was made of generator outages.

The problems with the initial work are addressed in [29]. This method also

uses PI sensitivities. However, the performance index sensitivities are presented

in the form of a Taylor series expansion, and an accurate approximation is

41

presented. The new approximation gives better results than considering only the

first-order terms, at the expense of computational time. A methodology for

evaluating the effectiveness of a contingency selection algorithm is also presented

in [29]. In particular a capture rate, rN , is defined as “the fraction of worst N

contingencies appearing in the first N entries in the ranking.” A capture rate of

1.0 means that all of the worst contingencies are listed first in the ranking.

There is also an analysis of the problems that can occur with using the

performance index sensitivities. First, the authors identified the problem of

masking. This phenomenon occurs when several lines are loaded near their

limits. The performance index sensitivities appear the same as for an overloaded

line (interestingly, this means that the more heavily loaded the system, the

worse the method will perform). The authors also identified the error introduced

by using only first-order terms to predict the performance index as a source of

misclassification. The adapted method in [29] performs much better than the

initial work [27]. In fact the adapted method works as well as the dc load flow,

and results were presented for much larger systems than were presented in [27].

The experimental system in [29] has 239 buses and 380 branches.

Shortly after the publication of [29], the authors of [28] published a work in

which they further developed the idea of using the dc load flow for contingency

selection. The dc load flow requires one forward/backward solution of the

factored B matrix. The authors compared this to higher-order sensitivity

methods and conclude that the dc power flow has the same accuracy with

equivalent computational complexity [30]. There are also some comments on the

masking problem in [30]. In particular, the authors propose using two different,

complementary performance indices to deal with the masking problem.

Work on contingency screening was continued in [31]. In [31] the previous

work is evaluated, and new algorithms are proposed to calculate the

42

performance index sensitivities for single and multiple outages. This is the first

mention of ranking contingencies with more than one element outage in the

literature. The PI sensitivities are developed for single-branch outages,

secondary outages, and multiple-line outages. Secondary outages are outages

caused by the occurrence of some other outage [32].

The new methods of evaluating sensitivities, presented in [31], were evaluated

on the IEEE 30-bus case. The results indicate that the use of distribution

factors yields better results. The capture rate is 1.0 for the LODF-based

performance indices. However, the capture is only 0.8 when the sensitivity of the

performance index is used for single-branch outages. For secondary outages, the

results are the same. Because of the small size of the system, it is difficult to

draw any authoritative conclusions about double-branch outage sensitivities.

However, these outages did tend to have high performance index sensitivities,

which causes them to be highly ranked.

The one good thing about the sensitivity methods presented in [31] is their

speed. They are significantly faster than even calculating the LODF values. The

analysis of the various screening algorithms shows that calculating the

performance indices using LODFs has a computational order of NC · t, where

NC is the number of contingencies and t is the time for one forward/backward

solution time. The fastest PI sensitivity method has a computational order of

3 · t. The speed is the justification the authors use to recommend the use of the

PI sensitivity methods.

An analysis of the performance index methods with improvements in

calculation can be found in [33]. There a broad overview of the PI sensitivity

methods is presented as well as a discussion of the computational characteristics

of each algorithm. A derivation for the change in flows using linear sensitivities

is presented. These derivations are then applied to calculate the performance

43

indices for line and generator outages. Because the sensitivities are based on the

system B matrix, voltage violations cannot be handled. The methods are quite

efficient, but they assume that the inverse of B is available. This means that

most of the computational effort is spent at the beginning of the process

calculating the inverse of B. The explicit use of B−1 also means that the

method can be applied only to relatively small systems. For larger systems, the

memory requirements will be prohibitive.

The performance indices based on the formulation in (4.1) are dependent

upon the value of the weights. None of the work mentioned so far discusses the

selection of the weights except to say that they can be used to weight critical

lines more. A more systematic approach for selecting the weighting values is

presented in [34]. The work in [34] tests contingency selection algorithms and

develops a theory for selecting weights and thresholds. The work in [35] extends

this work, fixing some of the issues with the parameter selection method.

Voltage violations were first mentioned in the first paper on contingency

selection [27], but the performance indices for real power flows became the focus

of attention for quite some time. However, there was still work being done to

rank contingencies using voltage- and reactive power–based metrics as well. A

good review of early contingency selection algorithms, including voltage- and

reactive power–based indices, is presented in [36]. More recent work using

voltage nose curve sensitivities is presented in [37]. Some early work to consider

the impact of reactive power on contingency selection was done in [38]. In that

work the first iteration of the ac power flow is used to calculate a PI for voltage

and reactive power. In [39] an algorithm is presented for voltage contingency

selection. The algorithm is based on a systemwide performance index that

penalizes deviations from the desired system voltage profile. Work was done to

extend contingency screening to include voltage violations [40]. The method

44

starts by identifying buses where a significant change in voltage is likely to occur

and creating a voltage subnetwork, screening out buses where a voltage change

is not likely. Then an efficient process is used to determine the voltage at the

voltage-sensitive buses. A contingency selection algorithm based on reactive

power changes at buses after a contingency is presented in [41].

Several more exotic nonlinear techniques have been applied to the problem of

contingency selection over the years. For example, in [42] decision theory is

applied to contingency selection. In [43] and [44] neural networks are applied to

the contingency selection problem. A more recent contingency-ranking

algorithm based on neural networks is presented in [45]. An interesting method

of contingency selection based on substation topology is proposed in [46]. This

method begins to take into account the actual likelihoods of multiple outages.

4.2 Contingency-Ranking Methods

Contingency ranking provides a method to measure the severity of a contingency.

In general, the more severe the contingency, the higher the ranking. This chapter

discusses several contingency-ranking methods. Traditional contingency-ranking

methods, as developed by Wollenberg in the late 1970s [27], are presented first.

These methods use pentalty functions to calculate a performance index (PI),

which is typically composed of a weighted sum of limit violations. The PI

methods were not particularly successful at contingency slection, but they do

provide an attractive method to aggregate the results from contingency analysis

in order to indicate the severity of a contingency. This chapter also presents

another method based on organizing the contingency analysis results into a

matrix, which can then be used to calculate line-based or contingency-based

metrics. The line-based metrics are described in [47] and [48] as aggregate

45

contingency overload (ACO) values. These methods are applied to contingency

analysis results in order to determine which contingencies are most severe.

4.2.1 Penalty function methods

Traditional penalty function methods are rather simple. As discussed in

Section 4.1, they were initially chosen because of their appealing form and

because it is relatively easy to compute PI sensitivities. The PI sensitivities

formed the basis for early contingency-ranking algorithms [27]. The idea was to

calculate the sensitivities for the performance indices, which can be very

efficently computed, in order to rank contingencies without approximating or

calculating postcontingent flow values. While these methods were fast, they

tended to be highly inaccurate [28]. Other methods of computing the

performance index sensitivies were tried [30] [29], but eventally the methods were

shown to have the same computational requirements as the dc power flow [33].

When used for ranking contingencies, the results are assumed to be available.

When used for ranking, the traditional PI methods sum a performance index

over the violations. For every violating line, sum the performance index. The

performance index has the form

PIMW =
∑

l∈V

Wl

2n

(
fα/fMax

α

)2n
(4.2)

as originally given in (4.1). The difference is that the sum is now only over V,

the set of violations. For simplicity, the weighting function was chosen to be 0.5

and n was picked to be 1.0, corresponding to the choices in the literature.

46

Figure 4.1: Sorted matrix ranking

Substituting these values gives the expression for the PI as

PIMW =

L∑

l=1

(
fα/fMax

α

)2
(4.3)

4.2.2 Sorted-matrix ranking

Sorted-matrix ranking a a new method that is useful for organizing the results

from extremely large data sets. The idea behind sorted-matrix ranking is to

organize the contingency results in a matrix as shown in Figure 4.1. One

dimension of the matrix has a number of entries equal to the number of lines in

the system. The other dimension has a number of entries equal to the number of

contingencies. When a violation occurs, an entry is made in the matrix. For

large systems, the matrix is too large to visualize. For example, a system with

7616 lines and 200 000 violations would require a monitor with a resolution of

7616 by 200 000 in order to represent each violation as a single pixel. These

resolutions are well beyond the capabilities of modern monitors.

However, there is still a way to get meaningful information out of the matrix.

47

Creating an aggregate quantity by summing the violations along the rows and

the columns gives a per-line and a per-contingency measure of severity [48]. By

examining the distributions for these metrics, we can see the “shadows” on the

axes. These “shadows” can be expressed as aggregate values on a per-line and a

per-contingency basis. The values entered into the matrix are the percent over

load values. These values are the amount a line is over limit as a percentage.

For line α, the percent over limit can be written as

POL =
fα

fmax
α

(4.4)

The POL values can be summed over contingencies (columns in Figure 4.1) or

over lines (rows in Figure 4.1) to give a per-line or a per-contingency value. The

line aggregate overload can be written as

LAG =
∑

k∈Contingencies

POLk (4.5)

The contingency aggregate overload can be written as

CAG =
∑

k∈Lines

POLk (4.6)

The first obvious advantage in organizing the data this way is that line-based

data can be generated. The PI methods offer no information about how often a

line overloads. This information is lost when the sum is performed. The fact

that the sorted matrix maintains the line information means that the sorted

matrix may be used for weak-element identification as well as severe contingency

identification.

48

CHAPTER 5

LARGE-CASE CONTINGENCY ANALYSIS

RESULTS

This chapter presents the contingency analysis results for a large 5395-bus

7616-line section of the North American Eastern interconnect. Details about this

case can be found in Appendix A. By presenting the ranking methods for the

large case, a baseline for comparison is provided for the contingency screening

results presented in Chapter 6. In other words, this chapter uses the full

contingency analysis results to determine what contingencies threaten the

system. The unprocessed contingency analysis results are discussed, and the

contingency-ranking methods discussed in Chapter 4 are used to process the

results further. The most severe contingencies are examined to see what types of

situations result in a severe contingency. The purpose of applying the techniques

in Chapter 6 to the contingency analysis results for the large case is to determine

which of the contingencies are the most serious. Knowing the “worst of the

worst” is useful when evaluating the effectiveness of the screening algorithms.

The severity of a contingency depends upon many factors. For example, the

system topology and the system loading level will both play a large role in

determining whether or not a contingency threatens the overall security of the

system. Since the purpose of this chapter is to determine which contingencies

are the most significant, it is necessary first to conceptually define the criteria

for a significant contingency. By describing the conditions for a severe

contingency, it becomes possible to process the contingency analysis results into

a list of contingencies that threaten the system. This list of severe contingencies

49

serves as a way to check the results of the contingency-screening algorithms.

In loose language, a significant contingency is a contingency that threatens

the safe operation of the system. A significant contingency threatens the bulk

transmission system. For our purposes, we are less concerned with the

distribution and subtransmission system. To take this into account, filtered

contingency lists are created along with contingency lists based on the full

contingency analysis results. To filter out the minor lines, only lines with a limit

of 100 MW or more are used. This filtering alone removes 47.4% of the lines in

the system from consideration. However, it should be noted that only 70% of

the lines in the system have a specified limit over zero.

Significant contingencies should also occur within the region that the model

can accurately simulate. In other words, lines at the edge of the system, where

the external system has been equivalenced, are neglected. There are 915 lines in

the system that have been flagged as having been generated when the external

system was equivalenced. They are the connections between the system of

interest and the external system.

The magnitude of an overload also an important factor in determining the

severity of an overload. Clearly, the larger the magnitude of an overload on a

line, the more severe the contingency is. For most lines in the system, a nominal

limit is specified along with an emergency limit. The emergency limit is a

relaxed limit at which the line can be operated during emergency conditions.

However, the emergency limit can be used only for a short period of time (on

the order of 30 minutes). System operators must correct the overload quickly to

avoid damaging the line or transformer. To summarize, severe contingencies

• Result in violations on important lines

• Do not occur on lines created by the equivalencing process

50

• Violate the emergency rating

The methods in Chapter 4 are designed to identify the most severe

contingencies. For example, the PI-based methods quadratically penalize the

percent overload. This is intended to create a large performance index for a

severely violating contingency.

The chapter begins by presenting the single-outage contingency analysis

results for the large case. The single-outage results are important to consider

because they will show up in the double-outage contingency analysis. In other

words, a single line whose outage results in a violation will also create violations

when combined with most of the other lines in the system. This means that the

contingencies with violations for a single outage will also show up in the

double-outage results. The reasons for the most severe single-outage

contingencies are also examined.

After the single-outage analysis, the results of the double-outage contingency

analysis are discussed for the large case. As mentioned above, the case has 7616

lines, which means that there are 7616 single-outage branch contingencies and

28 997 920 double-outage events involving lines and transformers. All

contingencies for the single-outage and double-outage cases were solved using

the dc power flow. The branch limit violations were recorded, and the results are

ranked. The contingencies that result in islanding are not considered as part of

the result set. The results will be ranked using the methods described in

Chapter 4. These results will provide a baseline for evaluating the contingency

selection algorithms presented in Chapter 6.

51

5.1 Large-Case Single-Outage Contingency Analysis

Before considering the double-outage violations, it is a good idea to see what

single-outage contingencies result in violations, because these contingencies will

inevitably also cause violations in the double-outage analysis. There are no base

case violations in the system. However, there are 81 single-outage contingencies

that result in violations. There are 116 total violations. The violations have

limit violations between 271.5% and 100.04%. Of the 7616 single-outage

contingencies, 739 result in islanding.

The worst violation occurs for the outage of the line 759 to 758 circuit 99. In

this case two lines act in parallel to connect a generator to the system. When

the line 759 to 758 circuit 99 is outaged, all of the generator’s output is forced to

flow through the parallel path, which has a much lower limit. In real life, this

outage is not likely to cause problems, because the circuit 99 identifier indicates

that the branch was created by the equivalencing process. This means that this

outage is at the edge of the system under study. Because they were created by

the equivalencing process, circuit 99 lines are not considered in the contingency

analysis results.

The second highest postcontingent violation (207.8%) occurs for the outage of

the 345/138 kV tranformer connecting bus 2702 to 2704. In this scenario, the

outage of the transformer causes the overload of two lines serving load at

bus 27157. The outage results in two overloads that occur on relatively small

lines. A 22 MW capacity is overloaded to 45.72 MW, and an 80 MW capacity

line is overloaded to 82.79 MW.

A similar scenario is seen in many cases that result in large postcontingent

violations. In fact, most violations occur on lines with low limits. Ninety-two of

the limit violations occur on lines with a limit below 100 MW. In most

52

situations, the loss of such a small line would not threaten the overall security of

the overall bulk transmission system. However, if not dealt with properly, these

contingencies have the potential to result in the loss of load or a cascading

outage, so it is still important to flag these violations.

Along with the numerous violations on small lines, there are several cases in

which large lines are overloaded in the event of an outage. There are nine

contingencies that result in overloads on lines with limits of 400 MW. These

violations occur on four different lines. However, they are all relatively small

overloads. The limit is not violated by much. Table 5.1 has a listing of the

major violations, where a major violation is defined as an overload on a line

with a limit of at least 100 MW. All of the violations on the 400 MW lines are

less than 0.2%, so for all practical purposes, these lines are being operated right

at their limit. These violations are probably not a serious threat to the

operation of the system because these lines could be operated at emergency

ratings for quite some time. Also, the violations are so minor that a small

redispatch of the generation could probably fix the problem.

Table 5.1: Major violation summary

From Bus To Bus Limit Used Circuit Violations Max % Overload
57062 40122 400 1 2 100.1
56794 40122 400 1 2 100.2
57062 40121 400 1 2 100.1
56794 40121 400 1 2 100.1
31436 31437 386 1 1 122.9
53139 53170 335 1 2 113.2
31023 33362 249 1 1 112.9
33351 33352 249 1 1 112.8
53154 53170 247 1 1 100.0
27618 33352 223 1 1 102.5
27093 27380 126 1 4 146.9
27045 27380 126 1 2 124.9
25783 40007 112 1 1 108.0

53

The more serious violations occur on the lines with limits between 112 MW

and 386 MW. In these cases, the violations are significantly over the line’s

rating. In the worst case, the outage of line 27093 to 27045 circuit 1 results in an

overload of 146.9% on the line from 27096 to 27380. In this scenario, the outage

of line 27093 to 27045 circuit 1 results in an overload on a line connected to the

same bus. Both these lines are supplying power from generators at this bus to

the rest of the system. When the line outages, there is no longer enough

transmission capability to get the power from the generators out to the rest of

the system. The overload can be fixed by reducing the output at the nearby

generators. In practice, there is most likely a special protection scheme that

forces the generators to lower their outputs in the event that one of the four

contingencies that overload this line occurs. Both the system operators and the

operators of the generator should be very aware that an outage at the interface

between the generator and the system will result in the generator being forced

to operate at reduced capacity.

The next most serious violation is 124.9% on the line from 27045 to 27380

circuit 1 for the outage of the line from 27093 to 27380 circuit 1. This

contingency is very similar to the one that results in the 146.9% overload, and

the solution — backing down generation at Bus 27093 — should be the same.

The outage of the line from 27323 to 27370 circuit 1 also resuts in an overload

on the line from 27045 to 27380 circuit 1.

The 122.9% violation is a similar situation. One line connecting a generator to

the rest of the system outages, and the resulting flow redistribution results in an

overload. The other violations for the outage of a single line all follow the same

pattern, and they all stem from the redistribution of flows from the generator at

bus 53139.

In summary, the single-outage contingency analysis shows problems that affect

54

small lines and generators. Most of the violations occur on small lines that carry

only a relatively small amount of power. The outages that affect larger lines

involve the redistribution of flows away from generators. Typically, the outage of

one of multiple lines connecting a generator to the system results in an overload

in another line connecting the generator to the system. These situations should

be easily fixable by a relatively minor redispatch. Simply backing down the

generators that no longer have adequate transmission capacity to supply their

power to the grid should relieve the overloads. However, since any information

about these schemes is absent from the case, these contingencies must still be

considered important.

5.2 Double-Outage Contingency Analysis

The ultimate goal is to be able to tell which contingencies threaten the system

in order to provide a way to gauge the accuracy of the screening results. The

screening process can be said to be successful if the algorithm correctly picks out

the severe contingencies without flagging a large number of nonthreatening

events as potentially dangerous. For completeness, the double-outage

contingency analysis is divided into two sections. The first section discusses the

full set of data. All of the violations are considered, no matter how small the

line is on which they occur. The second section considers a filtered set of data,

from which the smaller elements (violations on lines with a limit of 100 MW or

less) have been removed.

The double-outage contingency analysis yields a huge amount of data. One of

the biggest challenges in dealing with nearly 29 million contingencies is

processing the data into a useful form.

For the double-outage contingency set, there are 549 119 contingencies that

55

result in violations. There are a total of 791 092 violations. The contingencies

that result in islanding are removed from the results as was done with the

single-outage results. When the results are filtered by removing the violations on

lines with limits less than 100 MW, there are a total of 112 049 contingencies

that result in violations. This is 20.4% of the contingencies that resulted in

violations before the data were filtered, indicating that most of the violations

occur on lines with limits less than 100 MW.

Another important set of double-outage contingencies to consider are the

contingencies that result in violations only when both lines are outaged. If only

one or the other of the lines is outaged, there are no resulting violations. A list

of these violations can be constructed using the single-outage results along with

the double-outage results. By searching the single-outage contingency analysis

results while processing the double-outage contingency analysis results, it is

possible to see whether one of the lines involved in the double-outage

contingency also results in a violation when it is outaged by itself. When the

large-case results are examined, there are 1851 double-outage contingencies that

have violations only when both elements are outaged.

To process these data and determine which contingencies threaten the system,

contingency-ranking methods are applied. First, the PI methods [27] are applied

to the data to determine the severe contingencies. The contingencies are also

ranked using the method in [48], which generates an index by building a matrix

of the lines and contingencies and summing the rows and columns.

The traditional PI methods sum a performance index over the violations. For

every violating line, sum the performance index. The performance index has the

form

PIMW =
L∑

l=1

Wl

2n

(
fα/fMax

α

)2n
(5.1)

56

as originally given in (4.1). The weighting function was chosen to be 0.5 and n

was picked to be 1.0, corresponding to the choices in the literature. Substituting

these values gives the expression for the PI as

PIMW =

L∑

l=1

(
fα/fMax

α

)2
(5.2)

Performance indices range between 0.5 and 3.24. The double-outage

contingency analysis was solved using PowerWorld Simulator [49]. Every

contingency that resulted in a violation was recorded along with the line the

violation(s) occurred on and the magnitude(s) of the violation(s). For every

single contingency that resulted in violations, the performance index (PI) was

evaluated. The analysis results in 613 236 contingencies with violations. The

minimum performance index is 1.0, and the maximum performance index is 86.

Figure 5.1 has a plot of the distribution of the performance indices. The

distribution shows that most of the performance indices are less than 10. The

average PI is 2.29, and the standard deviation is 1.68. Table 5.2 is a table of the

largest PI values.

Table 5.2 shows that the maximum performance indices decay rapidly. This

trend can be shown in more detail in the density plot of the PI values, which is

shown in Figure 5.2. The density plot was created from 613 236 PI values, which

were calculated from the contingency analysis results. This figure shows how the

PI values are clustered, i.e., what the most common PI values are. The largest

value is 86.09, which is the largest horizontal value the density plot takes. The

smallest horizontal value is 1.0, which corresponds to the smallest PI value. The

density plot (Figure 5.2) clearly shows that the PI values are clustered near 1.0,

with most of the values falling between 1 and 7. The PI values in Table 5.2

extend over most of the horizontal range [88.09, 16.9] in Figure 5.2, indicating

57

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

x

P
(x

)

Figure 5.1: PI distribution

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

F
(x

)

Figure 5.2: PI density

58

that these are by far the most extreme values. The low value of the density plot

– the nearness of the plot to the horizontal axis – shows that there are very few

values in this range.

Table 5.2: Largest 10 PI values

PI rank PI value Line 1 Line 2
1 86.09 25388 to 25181 26557 to 25181
2 55.62 27618 to 33352 31023 to 33362
3 35.69 27313 to 27002 27323 to 27002
4 32.1 34182 to 34206 34182 to 34206
5 21.65 757 to 758 758 to 759
6 21.26 757 to 759 760 to 40114
7 18.63 758 to 759 27323 to 27370
8 17.61 758 to 759 25388 to 25181
9 17.49 25388 to 25181 27323 to 27370
10 16.9 465 to 26943 758 to 759

5.2.1 Analysis of large PI values

The next several paragraphs study some of the contingencies that result in the

largest PI values in depth. In particular, the contingencies that have the highest

three PI values are explored. The violations are listed, and the reasons for the

large PI values are considered. The topology around the contingent lines is

shown to give insight about why the PI values are so high.

The maximum performance index for a double-outage contingency occurs for

the outage of the line connecting bus 25388 to bus 25181 and the line from

bus 26557 to bus 25181. These two lines are both connected to the same bus

(25181), which has one other line connected to it as well as 120.9 MW of load.

The topology near this bus is shown in Figure 5.3. The contingent lines are are

drawn using dashed lines, and the lines with violations are drawn with pie charts

showing their precontingent loading. Clearly, in this situation the outage of the

two contingent lines will force the load to be served by the third line, which has

59

Figure 5.3: Topology at bus 25181

a limit of 40 MW, and this will result in a large overload. In fact, the ac solution

will diverge if an attempt is made to solve this contingency. The topology shown

in Figure 5.3 gives insight as to why the contingency results in so many severe

violations. The oneline diagram in Figure 5.3 shows the topology around the

contingent and violating lines. Note that there are other lines connecting these

buses to the rest of the system. The first observation that can be made is that

the violating lines and the contingent lines are very near to each other. In fact

the two contingent lines (drawn with dashed lines) are both connected to the

same bus. The violating lines are also nearby.

The two contingent lines are serving a load pocket composed of bus 25820 and

bus 25181. When these lines are outaged, the power to serve the load must be

supplied along the path from bus 25526 to bus 40012 to bus 25820, and this

path does not have sufficient capacity to supply the load pocket. The other

violations are more difficult to explain. However, the single outage of bus 25181

to bus 26557 results in violations on the line from bus 27364 to bus 27157 and

the line between bus 26987 and bus 27294. The overloads are caused because

the outage forces more power to flow along these lines in order to continue

serving the load. The overload of the line between bus 25198 and bus 25520 is

60

unique because it is the only overload that is heavily dependent upon the outage

of both lines. All of the other overloads occur (or nearly occur) when only one of

the contingent lines is open. This overload appears to be because the two lines

are joining two coupled areas of the system, and the outage of both lines forces

the power flows between the coupled areas onto the line between bus 25520 and

bus 25198.

The violations that result from the outage of the line from bus 25388 to

bus 25181 and the line from bus 26557 to bus 25181 are listed in Table 5.3.

There are six violations that are included in the largest PI value. The PI was

calculated using (5.2), so each of the violations in Table 5.3 contributed to the

final PI value of 86.09. However, the largest overload value, 663%, results in a

contribution PI value of 43.96. If this violation were considered alone, it would

result in the third higest PI in the system. The second most severe violation

(598%) for this outage contributes 35.82 to the PI value. The rest of the

violations contribute 6.32 collectively. The two largest violations dominate the

PI calculations.

Table 5.3: Violations contributing to PI of 86.09

Violating Line Flow(MW) Limit(MW) Overload(%) Nominal voltage(kV)
25526 to 40012 165.75 25 663 138
40012 to 25820 155.6 26 598.44 69
27294 to 26987 48.29 32 150.91 138
27364 to 27157 26.79 22 121.77 138
25520 to 25198 226.05 186 121.53 138
27093 to 27380 130.82 126 103.83 138

The second largest PI value (55.62) result from the outage of the line

connecting bus 27618 to bus 33352 and the line connecting bus 31023 to bus

33362. The five violations that contribute to this PI value are listed in Table 5.4.

The largest violation for this contingency results in a line loaded at 565.15% of

its limit, which results in a contribution of 31.94 to the PI value. The second

61

largest violation is 441.17%. This violation contributes 19.46 to the PI value.

The other violations contribute 4.22 to the PI value.

Table 5.4: Violations contributing to PI of 55.62

Violating Line Flow(MW) Limit(MW) Overload(%) Nominal voltage(kV)
33356 to 264 237.36 42 565.15 69

33361 to 33356 247.06 56 441.17 161
27555 to 27619 68.42 50 136.84 161
33351 to 33352 280.74 249 112.75 161
33352 to 33353 258.4 249 103.77 161

The third largest PI value is significantly smaller than the largest two values.

The PI value is 35.69. This PI value is 50.4 less than the largest PI and 19.93

less than the second largest value. The third largest PI value results from

violations from the outage of the line connecting bus 27313 to bus 27002 and the

line connecting bus 27323 to bus 27002. The violations created by this

contingency are listed in Table 5.5. The 570.62% overload contributes 32.56 to

the PI, and the 176.99% overload contributes 3.13.

Table 5.5: Violations contributing to PI of 35.69

Violating Line Flow(MW) Limit(MW) Overload(%) Nominal voltage(kV)
27157 to 27364 125.54 22 570.62 138
570 to 27157 141.59 80 176.99 138

Several conclusions can be drawn from the examination of the large PI values.

First, it may be observed that the largest PI values result from extremely large

overloads. This makes sense because (5.2) penalizes overloads quadratically.

These large overloads or violations that result in large PI values tend to

dominate the PI calculation. The large-overload contributions are larger than

99% of the PI values. It does not appear that there are large numbers of small

violations that are combining to form a large PI value. The largest number of

violations caused by any single contingency is 7, and the corresponding PI value

62

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

VC

N
um

be
r

of
 ti

m
es

 V
C

 a
pp

ea
rs

Figure 5.4: Violations per contingency histogram

is only 9.86, which is above average but far from the largest value. A histogram

of the number of violations per PI is shown in Figure 5.4. This histogram shows

the number of violations per contingency for each of the contingencies that cause

violations. The masking problem mentioned in [29] does not appear to be a

problem for this system. There is no case in which a large number of small

outages add to a large PI.

In summarizing the information given by the largest PI values, it is useful to

ask, “What is the PI telling us about the contingency?” To answer the question,

it may first be observed that the PI method penalizes overloads quadratically

and the number of overloads linearly. Large overloads are heavily penalized,

whereas the additional violations only add incrementally to the final PI value.

This means that the masking problem would require a large number of

violations to appear as large as a single large limit violation. The data show

that this does not happen. It may also be useful to observe that if the PI is

calculated summing over all lines, the value would be swamped. Even if the lines

63

are only loaded at a fraction of their limits, summing 7616 small values swamps

out the contributions from the violating elements.

5.2.2 PI contingency list

The ultimate goal of using the ranking method is to tell which contingencies are

the worst. Since the only lines that have a PI value are lines with violations, in

some sense they are all severe contingencies. The PI method allows for

discriminating between the severity of the contingencies.

By examining the PI data, it can be found that 90% of the contingencies with

violations have PI values less than 4.02. This value is chosen as the threshold

between severe and not severe. There are 62 785 contingencies with PI values

greater than 4.02. In terms of the distribution plots, this selection criterion picks

out the contingencies that fall to the right of the value 4.02 in the distribution

plots.

5.2.3 Filtered PI contingency list

A contingency list may also be produced using the filtered PI data (the data

from which contingencies with violations on lines less than 100 MW have been

removed). When a list is constructed using the same 90% criterion, the

threshold PI value is 4.1056. When the contingeinces that have PI values greater

than 4.1056 are selected, the resulting contingency list has 49 504 elements.

5.3 Sorted-Matrix Ranking

The idea behind sorted-matrix ranking is to organize the contingency results in

a matrix as shown in Figure 4.1. One dimension of the matrix is equal to the

64

number of lines in the system. The other dimension is equal to the number of

contingencies. Entries are made into the matrix when a violation occurs. When

a violation occurs, an entry is made into the matrix. For large systems, the

matrix is too large to visualize. For example, a system with 7616 lines and

700 000 violations would require a monitor with a resolution of 7616 by 700 000

in order to represent each violation as a single pixel. These resolutions are well

beyond the capabilities of modern monitors. Therefore, instead of looking at

pictures, the aggregate values are used. In particular, the distributions for the

CAG and the LAG are used to analyze the contingency analysis results on a

per-line and a per-contingency basis.

5.3.1 Per-line analysis

The following paragraphs examine the double-outage contingency results for the

large case on a per line basis. In other words, we will examine the LAG values

calculated for every contingency that results in at least one violation. The data

show that a large number of the violations appear on just a few lines, which is

interesting because it indicates that these lines are weak points in the system.

The data set is examined using several different filters. The filters cause lines

with a nominal limit below a specified threshold to be ignored. For example, if

the threshold is set to 100 MW, data on lines with a limit below 100 MW are

filtered out and not considered in the analysis.

Figure 5.5 contains the number of violations per line for various levels of

filtering (this is essentially an unnormalized distribution plot). There are four

lines in Figure 5.5 corresponding to no filtering and to removing data for lines

with limits less than 100 MW, 200 MW, and 300 MW. Figure 5.5 shows that an

extraordinary number of violations occur on some lines. There are 280 727

65

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of lines

V
io

la
tio

ns
 p

er
 li

ne

unfiltered
< 100 MW
< 200 MW
< 300 MW

Figure 5.5: Number of violations per line

violations that occur on line 4468, which connects bus 27289 to bus 27153. The

figure of 280 727 violations represents 31.82% of the total number of unfiltered

violations. The average percentage over limit is 21.1%. Line 4468 has a limit of

240 MW, and a base case loading of −71.5 MW.

Figure 5.6 shows a close-up view of Figure 5.5. The close-up view shows more

detail around the origin. This makes it easier to see the effect that the filtering

has. Unsurprisingly, the filtering lowers the total number of violations, which

explains why removing more data from consideration lowers the values of the

plots. As the filtering limit is increased, more data is removed because only lines

with larger limits are still included.

Figure 5.7 contains plots of the cumulative percent overload, i.e., the

percentage over limit, summed for a line over all violations. This corresponds to

summing the columns in Figure 4.1. The data in Figure 5.7 are closely related to

the data in Figure 5.5, so it is not surprising that the plots are similar.

Figure 5.7 shows that there are about 175 lines with very large cumulative

percent overload values. The curves in Figure 5.8, a close-up version of

66

0 10 20 30 40 50
0

1

2

3

4

5
x 10

4

Number of lines

V
io

la
tio

ns
 p

er
 li

ne

unfiltered
< 100 MW
< 200 MW
< 300 MW

Figure 5.6: Number of violations per line, close-up

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
x 10

6

Number of lines

C
um

ul
at

iv
e

pe
rc

en
t o

ve
rlo

ad

unfiltered
< 100 MW
< 200 MW
< 300 MW

Figure 5.7: Cumulative percent overload per line

67

0 50 100 150
0

0.5

1

1.5

2
x 10

6

Number of lines

C
um

ul
at

iv
e

pe
rc

en
t o

ve
rlo

ad

unfiltered
< 100 MW
< 200 MW
< 300 MW

Figure 5.8: Cumulative percent overload per line, close-up

Figure 5.7, show a large difference between the filtered and the unfiltered data.

The clustering of the curves for the 100 MW and the 200 MW filters is also

much easier to discern. The 100 MW threshold curve shows a large spike near

the vertical axis. The filtering seems to cut the top off the spikes near the

vertical axis. If the unfiltered and the 100 MW filter curve are examined, it can

be seen that the 100 MW curve is much lower. This means that the lines with a

cumulative line overload value tend to have lower limits. The trend continues for

the curve corresponding to the 200 MW cutoff value, which has an even lower

peak.

In examining the violations in a per-line basis, it is also interesting to see how

the filtering affects the total number of violations. Table 5.6 contains the

number of violations for varying the cutoff. From examining this table, it is clear

that most of the violations occur on lines with low limits. Removing lines with

limits below 100 MW removes 714 658 violations from the data set. It can also

be observed that there are three plateaus in the data. For limits between

68

100 MW and 200 MW the number of violations is between 113 804 and 167 608,

and for limits between 250 MW and 400 MW the values are in the tens of

thousands (60 691 to 83 602). Finally, for lines with large limits (450 MW to

500 MW) the number of violations stays constant at 48.

Table 5.6: Violations contributing to PI of 55.62

Violations Lower limit (MW)
882 266 none
167 608 100
114 328 150
113 804 200
83 602 250
83 598 300
68 336 350
60 691 400

48 450
48 500

The per-line aggregates are very useful for determining what lines are weak in

the system. In the large case studied here, a single line has over 30% of the

violations, and they are significant violations. The average overload is over 20%,

meaning that on average this line is overloaded over 120% of its limit. Clearly,

this is a weak element in the system. As the figures of the per-line aggregate

overload and the number of violations on a line are considered, it is easy to see

that the nearer the vertical axis, the weaker the line.

5.3.2 Per-contingency analysis

The previous section discussed the LAG values, which are calculated for a line

by summing over the contingencies. This section examines the CAG values.

These values are calculated for a contingency. They indicate the aggregate

overload for all lines in the system that a contingency causes. The trends in

these data match the trends in the line-based aggregate values. However, the

69

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
5

0

5

10

15

20

25

30

35

40

Number of contingencies

V
io

la
tio

ns
 p

er
 c

on
tin

ge
nc

y

unflitered
> 100 MW
> 200 MW
> 300 MW

Figure 5.9: Number of violations per contingency

number of violations caused by a single contingency is much lower. The

maximum number of violations caused by any single contingency is 39. These

violations are caused for the outage of the line from bus 464 to bus 483 and the

line from bus 99900 to bus 99997.

Figure 5.9 contains a sorted plot of the number of violations per contingency.

As mentioned above, a single contingency results in 39 violations, which

corresponds to the far left-hand side of the figure. This figure shows that very

few contingencies result in a large number of violations. As the plot of the

unfiltered data shows, the number of violations per contingency quickly drops to

4. The curves for the filtered data have a maximum value of 2, indicating that

the contingencies that result in large numbers of violations impact low-limit

lines. A close-up view of Figure 5.9 can be found in Figure 5.10. An

examination of the vertical axis of the close-up view shows that there are a few

contingencies that have 5 violations on lines with limits of 100 MW or more.

The main difference between the various filtering thresholds is the number of

70

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

Number of contingencies

V
io

la
tio

ns
 p

er
 c

on
tin

ge
nc

y

unflitered
> 100 MW
> 200 MW
> 300 MW

Figure 5.10: Number of violations per contingency, close-up

contingencies. The plots show that the higher the filtering threshold, the smaller

the number of violations caused by a single contingency.

To generate a list of severe contingencies from the sorted-matrix results, a list

was created by picking out the contingencies with the highest CAG values.

Specifically, the contingencies that had CAG values in the top 50 percentile were

chosen to form the list of severe contingencies. This list contains 986

contingencies. Of course, this list is not a complete list of contingencies that

threaten the system — every contingency that results in a violation does that —

but the list does capture the most severe contingencies selected by the

sorted-matrix ranking method.

5.4 Conclusions

This chapter examined the single-outage and double-outage contingency results

for the large case. The point of this chapter is examine the results and determine

which double-outage contingencies threaten the system. The single-outage

71

results are included because they will also show up in the double-outage results.

Several methods were used to develop lists of severe double-outage contingencies.

The first approach is to create a list that contains every double-outage

contingency that results in violations. This is the most conservative method,

and it does not differentiate between the severities of contingencies. Several

other techniques are applied to the full list of results in order to determine which

contingencies are the “worst of the worst.” The methods described in Chapter 4

were used to pick out the worst contingencies from the full set of contingencies

that cause violations. These lists provide the basis for judging the effectiveness

of the screening algorithms developed in Chapter 6.

72

CHAPTER 6

CONTINGENCY SELECTION ALGORITHMS

6.1 Introduction

Considering multiple-outage contingencies is becoming increasingly important

because of the way the transmission grid is being used today. In the deregulated

environment, the transmission system is being utilized in ways the designers

never contemplated. Combined with continual load growth, the change in

system operations has resulted in a transmission system that is increasingly

stressed. One way this is being dealt with is through the introduction of new

standards requiring system operators to meet performance requirements in the

event of multiple-element outages [5].

This chapter explores the use of several algorithms to reduce the

computational burden of processing the large number of multiple-outage

contingencies. These algorithms use differing amounts of information about the

system to generate lists of potentially severe contingencies. At one extreme, only

topology information is used. At the other extreme, it is assumed that line limit

and flow data are also available. The various algorithms are presented in turn,

and the properties of each algorithm are discussed.

The algorithms function in two parts. The first part generates a structure

that keeps track of the impact of the lines upon each other. The impact-tracking

structure (ITS) is created using only linear sensitivities to measure the impact of

lines upon each other. The flow-tracking structure (FTS) is created by

73

quantifying the impact on a line using the flow change that results from an

outage. The limit-tracking structure (LTS) is created by measuring the impact

of an outage using the percentage change in line limit resulting from an outage.

The overload-tracking structure (OTS) records entries based on a padded

distance to limit violation. Each of these tracking structure is described in detail

in the following sections.

The second stage of the algorithm generates a list of unique contingencies

from the tracking structure. Two basic techniques are used to generate the list

of contingencies. The first method works by generating the combinations of the

row elements in the tracking structure and removing the nonunique elements.

The reasoning behind this method is that the resulting list of contingencies will

contain all the double-outage combinations that impact a given line. The second

method, used only with the OTS, works by generating the combinations of the

tracking structure entries with every other line in the system. The logic behind

this method is that, when a single outage brings the system very near to a

postcontingent violation, that outage will also create a violation when it is

paired with an outage of most of the other branches in the system.

The algorithms are applied to the large case, and their success is judged

against the full contingency analysis results discussed in Chapter 5 as well as

other sets of serious contingencies that were flagged using several

contingency-ranking methods. The results of the screening algorithms are

compared to two sets of results for each ranking method. One set is based on a

filtered set of contingency results, and the other is based on the complete

double-outage contingency analysis results.

The results show that the OTS is very good at detecting double-outage

contingencies that result in violations from what are essentially the single-outage

contingency analysis results. The other algorithms perform much worse,

74

although, the ITS is good at detecting double-outage contingencies in which a

violation occurs only when both lines are outaged. Finally, conclusions about

the strengths and weaknesses of the various algorithms are discussed.

The screening algorithms are broken into two separate parts. The first part

generates a tracking structure, and the second part generates a list of

contingencies. The ITS, FTS, and LTS all use the same contingency generation

algorithm. The OTS uses a different method to generate a list of contingencies

from the tracking structure. The goal of all these algorithms is to processes

double-outage contingencies while avoiding the O(n3.2) computational order.

This chapter begins with an introduction of the ITS screening algorithm,

which is based on single-outage LODF values. The connection between the ITS

screening algorithm and the condition number of M is discussed. After the ITS

screening algorithm is demonstrated for a small case, the algorithm is modified

through the introduction of new information. The inclusion of differing amounts

of information results in the FTS, LTS, and OTS screening algorithms. The

results of the screening algorithms are discussed in Chapter 7.

6.2 Screening Algorithms

The ITS screening algorithm is broken into two separate parts, described in the

following subsections. The goal of these algorithms is to processes double-outage

contingencies while avoiding the O(n3.2) computational order mentioned in the

introduction. To reduce the computational time, a structure is built using

single-outage LODF values, which only requires the computation of L2 LODF

values, and has a computational order of O(n2.2). The structure tracks the lines

that impact each other while ignoring the lines with little influence. This takes

advantage of the fact that most lines in a large system have little impact on each

75

other. By neglecting the lines with little impact on each other, a very sparse

structure that tracks the impact of lines onto each other is generated.

6.2.1 Impact-tracking structure construction

The impact-tracking structure (ITS) is a structure designed to track the impact

of lines onto each other. The structure is composed of a list of lists. Every

branch in the system has a list that contains the lines whose outage has the

ability to change the flow on that branch. The LODF is used as the measure of

impact. This structure is illustrated in Figure 6.1.

line a line b line d line g
 da,b da,d da,g

line b line a line d
 db,a db,d

line d line a line b line g line h
 dd,a dd,b dd,g dd,h

line g line b line d line h

 dg,b dg,d dg,h

line h line d line g

 dh,d dh,g

Figure 6.1: Impact-tracking structure

The algorithm for constructing the ITS is given in Algorithm 1. The

algorithm is a modification of single-outage contingency analysis using LODFs.

The algorithm calculates the LODFs for the outage of every line in the system

and records the values above a given threshold. Single-outage contingency

analysis would also use the flow and limit information to calculate a

postcontingent flow. The result is a structure in which every line in the system

is associated with a list of lines that impact it.

76

The threshold d∗ is a an input parameter that specifies a lower bound for

recording an impact. Values below d∗ are not added to the ITS. Varying the

value of d∗ will change the number of elements that are added to the ITS. The

larger the value of d∗, the fewer values are added to the ITS. The size of the ITS

will impact the amount of time it takes to generate a contingency list. The

impact on the run time is discussed further below.

Input: List of lines, LODF threshold d∗

Output: ITS
foreach Line α do

foreach Line β do

if α 6= β then

Calculate dα,β if |dα,β| ≥ d∗ then
Add entry at Row α for line β;

end

end

end

end

Algorithm 1: ITS construction algorithm

It may be noted that an ITS with a larger value of d∗ can be generated from

an ITS with a lower cutoff value by simply removing the elements with an

LODF below the new cutoff. This fact can be used to eliminate the need to

repeatedly calculate the L2 LODF values required to construct the ITS. The

trade-off is a larger ITS. In the most extreme case, d∗ may be set to zero. In this

case, every one of the L2 LODF values will be recorded. This will result in an

extremely large ITS and the algorithm to generate the contingency list will

become extremely slow (although the result can be anticipated: the algorithm

will simply return every double-outage contingency). Engineering judgment,

knowledge of the system, and the study requirements must be used to choose an

appropriate value for d∗. For the studies presented in this paper, the NERC

flowgate cutoff of 5% [50] was used as a lower bound for d∗. For a well-chosen

value of d∗, the ITS is a very sparse structure, which reflects the fact that the

77

outage of a line typically affects only a few lines in a large system.

A sample of the tracking structure is shown in Figure 6.1. This figure

illustrates how each line is associated with a list of lines, which have been added

based on their LODF values. Only lines whose impact is larger than the

threshold are added to the list. For example, the first row shows that line α is

impacted only by three other lines (line β, line δ, and line γ). This means that

only these three lines impact line α above the cutoff threshold. Although the

outage of other lines in the system would impact the flow on line α, the amount

of the impact — measured using LODF values — is small.

6.2.2 ITS contingency selection algorithm

Once the ITS has been constructed, contingency selection is a two-step process.

First, every possible double-outage contingency is generated for each row of the

ITS. Second, the nonunique outages are removed from the list. When the

algorithm terminates, a list of flagged contingencies has been generated in which

every contingency generated by the process involves lines that both impact a

third line. The list is dubbed FL for flagged list. The algorithm for generating

FL from the ITS is given in Algorithm 2. This algorithm is also used for

generating contingencies from the flow-tracking structure and the limit-tracking

structures.

Input: Impact-Tracking Structure ITS
Output: List of Flagged Contingencies FL
foreach Row r in the ITS do

Generate all combinations of the elements in r;
Add combinations to FL;

end

Remove nonunique elements from FL.
Algorithm 2: List generation algorithm

For the example ITS shown in Fig. 6.1, generating the combinations for the

78

first row would generate (
3

2

)
= 3 (6.1)

double-outage contingencies. For the entire structure, generating the

combinations of each row results in 14 double-outage contingencies. However,

these 14 contingencies are not unique, because the same contingency shows up

more than once. For example, the contingency involving line β and line γ is

generated for the first and third rows. This means we must remove the

nonunique elements from the flagged list.

Removing the nonunique elements from the list FL is the final step in the

screening algorithm. There are several approaches to remove the non unique

elements. However, care must be taken to choose an efficient method. A naive

approach can easily result in a factorial time algorithm to remove the nonunique

elements, and this must be avoided.

One efficient approach is to sort the list, then pass through once recording

unique elements. Sorting is a heavily studied problem in computer science, and

many efficient sorting algorithms exist [51]. The final pass-through, in which the

nonunique elements are removed, is clearly linear time.

Another even more efficient approach is to use data structures that allow only

unique elements to be inserted. These structures are maintained in a sorted

state, so the sorting and comparing mentioned above is automatically performed

upon insertion to the structure. When an item is added, a binary search is used

to determine whether the item already exists in the structure. If the element is

not already in the structure, it is added. Otherwise, it is discarded. The

searching can be done efficiently because the structure is maintained in a sorted

state. This kind of structure is known as a sorted associative container [52]. A

standard implementation of this type of container is distributed as part of the

79

standard template library (STL) [53].

To examine the computational effort of generating the list of flagged

contingencies, we need to know the average row length of the ITS, because it

will determine the number of outages generated by the combinatorics, which in

turn determines the number of insertion operations needed. If we define average

row length to be R, then generating every double-outage combination has a

computational effort O(R2). Insertion into a sorted associative container is

O(log(R)) in the worst case [52], and there will be R2 insertions. This gives a

computational complexity of O(log(R2). Using the properties of logarithms,

O(log(R2) = O(2 log(R)) (6.2)

In practice, the computational effort to run Algorithm 2 depends on the choice

of d∗, which is ultimately what determines R. There is no simple relationship

between d∗ and R, although it can be observed that as d∗ decreases, R increases.

6.2.3 Condition numbers and the ITS

The condition number was developed as a metric of the interaction of outaged

lines in Chapter 3. This section discusses the relationship between the ITS and

the condition number. The ITS is closely related to the condition of M. In fact,

the ITS is an algorithm that is guaranteed to generate every contingency with a

condition number above a given threshold. The threshold is given by

κ∗ = κ







1 −d∗

−d∗ 1





 (6.3)

Thus, picking the value of d∗ picks κ∗. With this in mind, it can be seen that the

ITS screening algorithms are really a contingency number–based screening

80

algorithm. The ITS screening algorithms are more efficient because they do not

require the calculation of every condition number, but the results are the same

as those of filtering by the condition number. The condition number also gives

some insight to the behavior of the ITS screening algorithm. As discussed in

Chapter 7, the ITS screening algorithm is good at detecting double outages that

result in violations only when both elements are outaged. These types of

violations tend to occur in situations where the outaged lines have an impact on

each other, and the condition number is a way of measuring the interaction of

the outaged lines.

6.2.4 IEEE 14-bus example system

The IEEE 14-bus test case [24] was chosen to illustrate the screening algorithms

because it is small enough to be manageable and large enough that all the lines

do not impact each other. The IEEE 14-bus test case has 20 lines, which are

given unique names in Fig. 6.2. These names are used to identify lines in the

impact-tracking structure, shown in Figure 6.3. They are also used in Table 6.1

to identify lines in the LODF matrix. A one-line diagram for the IEEE 14-bus

system is shown in Figure 6.2.

The algorithms presented in Section 6.2 were applied to the IEEE 14-bus test

case system. The impact-tracking structure that is generated is shown in

Figure 6.3. For this particular structure the LODF cutoff, d∗, is 10%.

The ITS construction algorithm can be illustrated using LODF values for the

IEEE 14-bus system, given in Table 6.1. The first row, corresponding to line 1,

contains the LODF values for the outage of lines 2, 3, 4, 5, 6, and 7. For

example, row 1, column 3 contains dline 3, line 1. The algorithm works by

proceeding down the row and adding an entry to the list corresponding to the

81

slack

1

2

3

4

5

6

7

89

1011

12 13 14

line 19

line 20

li
n
e
 1

7

li
n
e
 1

6

line 18
line 11

li
n
e
 1

3

line 12

li
n
e
 6

line 3

line 7

line 4

line 5li
n
e
 1

line 2

li
n
e
 9li

n
e
 1

0

li
n
e
 8

li
n
e
 1

5

line 14

Figure 6.2: IEEE 14-bus one-line diagram

line 20
line 8

0.196

line 9

0.142

line 10

-0.398

line 11

-0.346

line 12

-0.132

line 13

0.405

line 15

0.196

line 16

-0.405

line 17

1

line 18

-0.405

line 19

-0.132

line 19
line 11

0.654

line 12

-1

line 17

0.222

line 20

-0.222

line 18
line 7

0.141

line 8

-0.296

line 9

-0.215

line 10

0.602

line 11

-0.176

line 13

1

line 15

-0.296

line 16

-1

line 17

0.508

line 20

-0.508

line 17
line 8

-0.196

line 9

-0.142

line 10

0.398

line 11

0.346

line 12

0.132

line 13

-0.405

line 15

-0.196

line 16

0.405

line 18

0.405

line 19

0.132

line 20

1

line 16
line 7

0.141

line 8

-0.296

line 9

-0.215

line 10

0.602

line 11

-0.176

line 13

1

line 15

-0.296

line 17

0.508

line 18

-1

line 20

-0.508

line 15
line 7

0.149

line 8

-1

line 9

0.643

line 10

0.635

line 11

0.108

line 13

0.378

line 16

-0.378

line 17

-0.313

line 18

-0.378

line 20

0.313

line 13
line 7

-0.141

line 8

0.296

line 9

0.215

line 10

-0.602

line 11

0.176

line 15

0.296

line 16

1

line 17

-0.508

line 18

1

line 20

0.508

line 12
line 11

0.654

line 17

0.222

line 19

-1

line 20

-0.222

line 11
line 8

0.152

line 9

0.111

line 10

-0.309

line 12

0.868

line 13

0.315

line 15

0.152

line 16

-0.315

line 17

0.778

line 18

-0.315

line 19

0.868

line 20

-0.778

line 10
line 7

-0.234

line 8

0.492

line 9

0.357

line 11

-0.171

line 13

-0.595

line 15

0.492

line 16

0.595

line 17

0.492

line 18

0.595

line 20

-0.492

line 9
line 8

0.508

line 10

0.365

line 13

0.217

line 15

0.508

line 16

-0.217

line 17

-0.179

line 18

-0.217

line 20

0.179

line 8
line 7

0.149

line 9

0.643

line 10

0.635

line 11

0.108

line 13

0.378

line 15

-1

line 16

-0.378

line 17

-0.313

line 18

-0.378

line 20

0.313

line 7
line 1

-0.494

line 2

0.494

line 3

-0.515

line 4

-0.676

line 5

0.605

line 6

-0.515

line 8

0.415

line 9

0.301

line 10

-0.843

line 11

-0.144

line 13

-0.502

line 15

0.415

line 16

0.502

line 17

0.415

line 18

0.502

line 20

-0.415

line 6
line 1

-0.169

line 2

0.169

line 3

-1

line 4

0.285

line 5

0.207

line 7

-0.248

line 5
line 1

-0.478

line 2

0.478

line 3

0.337

line 4

0.442

line 6

0.337

line 7

0.474

line 4
line 1

-0.353

line 2

0.353

line 3

0.455

line 5

0.433

line 6

0.455

line 7

-0.518

line 10

0.106

line 3
line 1

-0.169

line 2

0.169

line 4

0.285

line 5

0.207

line 6

-1

line 7

-0.248

line 2
line 1

1

line 3

0.208

line 4

0.272

line 5

0.361

line 6

0.208

line 7

0.292

line 1
line 2

1

line 3

-0.208

line 4

-0.272

line 5

-0.361

line 6

-0.208

line 7

-0.292

Figure 6.3: IEEE 14-bus ITS

82

Table 6.1: IEEE 14-bus LODF matrix

line 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

1 -100 100 -16.9 -35.3 -47.8 -16.9 -49.4 -1.8 -1.0 2.8 1.7 0.3 0.9 -1.8 -1.7 -1.1 -1.7 0.3 1.1

2 100 -100 16.9 35.3 47.8 16.9 49.4 1.8 1.0 -2.8 -1.7 -0.3 -0.9 1.8 1.7 1.1 1.7 -0.3 -1.1

3 -20.8 20.8 -100 45.5 33.7 -100 -51.5 -1.9 -1.1 2.9 1.8 0.3 0.9 -1.9 -1.8 -1.2 -1.8 0.3 1.2

4 -27.2 27.2 28.6 -100 44.2 28.6 -67.6 -2.4 -1.4 3.8 2.3 0.3 1.2 -2.4 -2.3 -1.5 -2.3 0.3 1.5

5 -36.1 36.1 20.7 43.3 -100 20.7 60.5 2.2 1.3 -3.4 -2.1 -0.3 -1.1 2.2 2.1 1.4 2.1 -0.3 -1.4

6 -20.8 20.8 -100 45.5 33.7 -100 -51.5 -1.9 -1.1 2.9 1.8 0.3 0.9 -1.9 -1.8 -1.2 -1.8 0.3 1.2

7 -29.2 29.2 -24.8 -51.8 47.4 -24.8 -100 14.9 8.6 -23.4 -14.1 -2.1 -7.3 14.9 14.1 9.3 14.1 -2.1 -9.3

8 -2.9 2.9 -2.5 -5.2 4.8 -2.5 41.5 -100 50.8 49.2 29.6 4.4 15.2 -100 -29.6 -19.6 -29.6 4.4 19.6

9 -2.1 2.1 -1.8 -3.8 3.5 -1.8 30.1 64.3 -100 35.7 21.5 3.2 11.1 64.3 -21.5 -14.2 -21.5 3.2 14.2

10 6.0 -6.0 5.1 10.6 -9.7 5.1 -84.4 63.5 36.5 -100 -60.2 -8.8 -30.9 63.5 60.2 39.8 60.2 -8.8 -39.8

11 3.6 -3.6 3.0 6.3 -5.8 3.0 -50.2 37.8 21.7 -59.5 -100 9.0 31.5 37.8 100 -40.5 100 9.0 40.5

12 0.4 -0.4 0.3 0.7 -0.6 0.3 -5.5 4.1 2.4 -6.5 6.7 -100 86.8 4.1 -6.7 13.2 -6.7 -100 -13.2

13 1.0 -1.0 0.9 1.8 -1.7 0.9 -14.4 10.8 6.2 -17.1 17.6 65.4 -100 10.8 -17.6 34.6 -17.6 65.4 -34.6

15 -2.9 2.9 -2.5 -5.2 4.8 -2.5 41.5 -100 50.8 49.2 29.6 4.4 15.2 -100 -29.6 -19.6 -29.6 4.4 19.6

16 -3.6 3.6 -3.0 -6.3 5.8 -3.0 50.2 -37.8 -21.7 59.5 100 -9.0 -31.5 -37.8 -100 40.5 -100 -9.0 -40.5

17 -2.9 2.9 -2.5 -5.2 4.8 -2.5 41.5 -31.3 -18.0 49.2 -50.8 22.2 77.8 -31.3 50.8 -100 50.8 22.2 100

18 -3.6 3.6 -3.0 -6.3 5.8 -3.0 50.2 -37.8 -21.7 59.5 100 -9.0 -31.5 -37.8 -100 40.5 -100 -9.0 -40.5

19 0.4 -0.4 0.3 0.7 -0.6 0.3 -5.5 4.1 2.4 -6.5 6.7 -100 86.8 4.1 -6.7 13.2 -6.7 -100 -13.2

20 2.9 -2.9 2.5 5.2 -4.8 2.5 -41.5 31.3 18.0 -49.2 50.8 -22.2 -77.8 31.3 -50.8 100 -50.8 -22.2 -100

column every time the LODF value exceeds the threshold, d∗ = 10%. Thus, for

the first row of Table 6.1, there are entries made in the lists of line 2, line 3,

line 4, line 5, line 6, and line 7. When this process is repeated for every line, the

final product is the ITS.

The ITS for the IEEE 14-bus case with d∗ = 10% is shown in Figure 6.3. The

average length of a row is 8.5. The shortest row is 3 (for line 12 and line 19),

and the longest row is for line 7. The fact that the row corresponding to line 7 is

is so long indicates that most outages on the system impact line 7. In fact, after

examining the LODF values, it can be seen that most outages affect line 7

strongly. The length of row 7 indicates that it is a central line in the system.

6.3 Incorporation of Line Flow and Limit Information

The screening algorithm discussed in Section 6.2 is purely based on the topology

of the system, meaning that the only pieces of information needed to preform

the screening algorithm are the line status and impedance values. The

incorporation of line limit and flow information can improve the screening

algorithm because it allows for differentiation between small, lightly loaded lines

83

and large, heavily loaded lines. This section adapts the screening algorithm to

use line limit and flow information. Examples based on the IEEE 14-bus test

case are presented to illustrate the operation and output of the tracking

structure construction algorithms. Results of the screening algorithms from each

algorithm are presented in Chapter 7 for the large system.

6.3.1 Incorporation of line flow information

The ITS construction algorithm (Algorithm 1) given in Section 6.2 works by

calculating the LODF for the outage of every line and building a list for each

line that records the lines that impact it above a given threshold. These impacts

are measured with LODFs, which by definition are the changes in flow on a line

as a percentage of the preoutage flow of the outaged line (2.16). Thus,

multiplying the LODF by the preoutage flow on the outaged line gives the

change in flow on the line of interest (2.31).

When these values are recorded in the ITS, they are recorded as LODFs. If

line flow information is available, then replacing the ITS entries with flow

changes becomes possible. Thus, Algorithm 1 is altered to become the

flow-tracking structure (FTS) construction algorithm, given in Algorithm 3. It

should be noted that the flow changes are calculated before entry into the FTS.

This means that it is not possible to simply multiply the values in the ITS by

the line flow values to generate the FTS. Doing so would require storing the full

L × L LODF matrix.

The FTS construction algorithm builds a list of lines whose outage will affect

the flow on the line of interest above a certain MW amount. This is theorized to

provide a better gauge of the impact of the actual effect the outage of a line has,

because it measures an actual change in flow. For example, a lightly loaded line

84

Input: List of lines
Input: Flow change threshold f ∗

Input: Line Flows
Output: FTS
foreach Line α do

foreach Line β do

if α 6= β then

Calculate dα,β; Calculate ∆fα; if ∆fα ≥ f ∗ then
Add entry at Row α for line β;

end

end

end

end

Algorithm 3: FTS construction algorithm

may show up prominently in the ITS because it has high LODF values onto

other lines. In the FTS, the outage of a lightly loaded line will not show up

because the LODF-flow product will be low. However, it should be noted that

the values in the FTS are single-outage flow changes: the flow change is

calculated using the single-outage (scalar) LODF and the base case flow values.

As with the ITS, there is no knowledge of the effect of double outages in the

FTS.

The algorithm for generating a list of contingencies from the FTS is the same

as the one used by the ITS screening algorithms. In other words, the list of

contingencies is generated by generating the combinations of the elements in the

row lists and removing the nonunique elements, as given in Algorithm 2. The

use of this algorithm is based on the same intuition that lies behind the ITS.

The FTS for the IEEE 14-bus test case [24] is shown in Figure 6.4. This FTS

was generated using a 1 MW cutoff, meaning that a change of less than 1 MW

(predicted using the LODF and the base case flow) was not included in the

structure. Compared to the ITS for the IEEE 14-bus test case, the FTS for a

1 MW change is noticeably broader. The average row length is 10 for the FTS in

85

Figure 6.4. However, the maximum row length is the same in both cases. For

both the ITS and the FTS, the row corresponding to line 6 has a length of 16.

Thus, the fact that line 6 is impacted by many outages is detected by both

structures.

line 20
line 1

0.0175

line 7

0.057

line 8

0.055

line 9

0.0229

line 10

-0.175

line 11

0.0298

line 12

-0.0102

line 13

-0.0615

line 15

0.055

line 16

-0.0212

line 17

0.0943

line 18

0.0153

line 19
line 7

0.0127

line 8

0.0122

line 10

-0.039

line 12

-0.0779

line 13

0.116

line 15

0.0122

line 17

0.021

line 20

-0.0125

line 18
line 1

-0.0265

line 2

0.0128

line 3

-0.0129

line 4

-0.013

line 7

-0.0863

line 8

-0.0832

line 9

-0.0346

line 10

0.265

line 11

0.0735

line 13

-0.0312

line 15

-0.0832

line 16

-0.0523

line 17

0.0479

line 20

-0.0287

line 17
line 1

-0.0175

line 7

-0.057

line 8

-0.055

line 9

-0.0229

line 10

0.175

line 11

-0.0298

line 12

0.0102

line 13

0.0615

line 15

-0.055

line 16

0.0212

line 18

-0.0153

line 20

0.0564

line 16
line 1

-0.0265

line 2

0.0128

line 3

-0.0129

line 4

-0.013

line 7

-0.0863

line 8

-0.0832

line 9

-0.0346

line 10

0.265

line 11

0.0735

line 13

-0.0312

line 15

-0.0832

line 17

0.0479

line 18

0.0379

line 20

-0.0287

line 15
line 1

-0.028

line 2

0.0135

line 3

-0.0136

line 4

-0.0137

line 7

-0.0911

line 8

-0.281

line 9

0.103

line 10

0.28

line 11

0.0278

line 13

0.0192

line 16

-0.0198

line 17

-0.0295

line 18

0.0143

line 20

0.0177

line 13
line 1

0.0136

line 7

0.0444

line 8

0.0427

line 9

0.0178

line 10

-0.136

line 11

0.0232

line 12

0.0676

line 15

0.0427

line 16

-0.0165

line 17

0.0733

line 18

0.0119

line 19

0.014

line 20

-0.0439

line 12
line 7

0.0127

line 8

0.0122

line 10

-0.039

line 13

0.116

line 15

0.0122

line 17

0.021

line 19

-0.0161

line 20

-0.0125

line 11
line 1

0.0265

line 2

-0.0128

line 3

0.0129

line 4

0.013

line 7

0.0863

line 8

0.0832

line 9

0.0346

line 10

-0.265

line 13

0.0312

line 15

0.0832

line 16

0.0523

line 17

-0.0479

line 18

-0.0379

line 20

0.0287

line 10
line 1

0.044

line 2

-0.0212

line 3

0.0214

line 4

0.0216

line 5

-0.0143

line 7

0.143

line 8

0.138

line 9

0.0575

line 11

-0.0437

line 13

-0.0303

line 15

0.138

line 16

0.0311

line 17

0.0464

line 18

-0.0225

line 20

-0.0278

line 9
line 1

-0.0161

line 7

-0.0523

line 8

0.143

line 10

0.161

line 11

0.0159

line 13

0.011

line 15

0.143

line 16

-0.0113

line 17

-0.0169

line 20

0.0101

line 8
line 1

-0.028

line 2

0.0135

line 3

-0.0136

line 4

-0.0137

line 7

-0.0911

line 9

0.103

line 10

0.28

line 11

0.0278

line 13

0.0192

line 15

-0.281

line 16

-0.0198

line 17

-0.0295

line 18

0.0143

line 20

0.0177

line 7
line 1

-0.775

line 2

0.373

line 3

-0.377

line 4

-0.38

line 5

0.251

line 6

0.12

line 8

0.117

line 9

0.0485

line 10

-0.372

line 11

-0.0369

line 13

-0.0255

line 15

0.117

line 16

0.0262

line 17

0.0391

line 18

-0.019

line 20

-0.0234

line 6
line 1

-0.265

line 2

0.127

line 3

-0.732

line 4

0.16

line 5

0.0858

line 7

0.151

line 10

0.0223

line 5
line 1

-0.75

line 2

0.361

line 3

0.247

line 4

0.248

line 6

-0.0785

line 7

-0.29

line 8

0.0134

line 10

-0.0427

line 15

0.0134

line 4
line 1

-0.554

line 2

0.267

line 3

0.334

line 5

0.18

line 6

-0.106

line 7

0.317

line 8

-0.0146

line 10

0.0467

line 15

-0.0146

line 3
line 1

-0.265

line 2

0.127

line 4

0.16

line 5

0.0858

line 6

0.233

line 7

0.151

line 10

0.0223

line 2
line 1

1.57

line 3

0.152

line 4

0.153

line 5

0.15

line 6

-0.0483

line 7

-0.179

line 10

-0.0263

line 1
line 2

0.755

line 3

-0.152

line 4

-0.153

line 5

-0.15

line 6

0.0483

line 7

0.179

line 10

0.0263

Figure 6.4: FTS for the IEEE 14-bus test case (1 MW cutoff)

6.3.2 Incorporation of line limit information

The next evolution in refining the screening algorithm is to add line limit

information. This goes one step beyond the flow-tracking structure, which

considers only flow information. The addition of line limit information allows

the relative impact of a flow change to be gauged. When the limit information is

added, the impact can be considered in terms of a percentage change in line

limit. The change in flow as a percentage of the affected line’s limit can be

86

written as

gα,β =
∆fα,β

Lα
(6.4)

which can be evaluated using LODFs as

gα,β =
dα,βfβ

Lα
(6.5)

where line β is the outaged line, and line α is the impacted line.

This changes the screening algorithm to the one shown in Algorithm 4. This

formulation adds an entry into the tracking structure when the change (as a

fraction of the line flow limit) is greater than the specified value l∗. The end

result of Algorithm 4 is the limit-tracking structure (LTS). The LTS for the

IEEE 14-bus test case is shown in Figure 6.5.

Input: List of lines
Input: Change threshold l∗

Input: Line Flows
Output: LTS
foreach Line α do

foreach Line β do

if α 6= β then

Calculate dα,β; Calculate ∆gα; if ∆gα ≥ l∗ then
Add entry at Row α for line β;

end

end

end

end

Algorithm 4: LTS construction algorithm

The algorithm for generating the list of contingencies from the LTS is given in

Algorithm 2. This is the same algorithm that is used for the ITS and the FTS,

and the intuition remains the same. Algorithm 2 works by generating a list of

double-outage contingencies in which each element of the double-outage pair

impacts a third line. By generating the combinations of the row entries, the list

87

of contingencies is made up of lines that both have an impact on a third.

The LTS for the IEEE 14-bus test case was calculated using flow limits of

100 MW on every line. This limit was chosen arbitrarily because the test case

has no limits. Realistic power system cases include limit information. However,

for illustrative purposes, picking a limit will suffice.

line 20 line 1
0.0175

line 7
0.057

line 8
0.055

line 9
0.0229

line 10
0.175

line 11
0.0298

line 12
0.0102

line 13
0.0615

line 15
0.055

line 16
0.0212

line 17
0.0943

line 18
0.0153

line 19 line 7
0.0127

line 8
0.0122

line 10
0.039

line 12
0.0779

line 13
0.116

line 15
0.0122

line 17
0.021

line 20
0.0125

line 18 line 1
0.0265

line 2
0.0128

line 3
0.0129

line 4
0.013

line 7
0.0863

line 8
0.0832

line 9
0.0346

line 10
0.265

line 11
0.0735

line 13
0.0312

line 15
0.0832

line 16
0.0523

line 17
0.0479

line 20
0.0287

line 17 line 1
0.0175

line 7
0.057

line 8
0.055

line 9
0.0229

line 10
0.175

line 11
0.0298

line 12
0.0102

line 13
0.0615

line 15
0.055

line 16
0.0212

line 18
0.0153

line 20
0.0564

line 16 line 1
0.0265

line 2
0.0128

line 3
0.0129

line 4
0.013

line 7
0.0863

line 8
0.0832

line 9
0.0346

line 10
0.265

line 11
0.0735

line 13
0.0312

line 15
0.0832

line 17
0.0479

line 18
0.0379

line 20
0.0287

line 15 line 1
0.028

line 2
0.0135

line 3
0.0136

line 4
0.0137

line 7
0.0911

line 8
0.281

line 9
0.103

line 10
0.28

line 11
0.0278

line 13
0.0192

line 16
0.0198

line 17
0.0295

line 18
0.0143

line 20
0.0177

line 13 line 1
0.0136

line 7
0.0444

line 8
0.0427

line 9
0.0178

line 10
0.136

line 11
0.0232

line 12
0.0676

line 15
0.0427

line 16
0.0165

line 17
0.0733

line 18
0.0119

line 19
0.014

line 20
0.0439

line 12 line 7
0.0127

line 8
0.0122

line 10
0.039

line 13
0.116

line 15
0.0122

line 17
0.021

line 19
0.0161

line 20
0.0125

line 11 line 1
0.0265

line 2
0.0128

line 3
0.0129

line 4
0.013

line 7
0.0863

line 8
0.0832

line 9
0.0346

line 10
0.265

line 13
0.0312

line 15
0.0832

line 16
0.0523

line 17
0.0479

line 18
0.0379

line 20
0.0287

line 10 line 1
0.044

line 2
0.0212

line 3
0.0214

line 4
0.0216

line 5
0.0143

line 7
0.143

line 8
0.138

line 9
0.0575

line 11
0.0437

line 13
0.0303

line 15
0.138

line 16
0.0311

line 17
0.0464

line 18
0.0225

line 20
0.0278

line 9 line 1
0.0161

line 7
0.0523

line 8
0.143

line 10
0.161

line 11
0.0159

line 13
0.011

line 15
0.143

line 16
0.0113

line 17
0.0169

line 20
0.0101

line 8 line 1
0.028

line 2
0.0135

line 3
0.0136

line 4
0.0137

line 7
0.0911

line 9
0.103

line 10
0.28

line 11
0.0278

line 13
0.0192

line 15
0.281

line 16
0.0198

line 17
0.0295

line 18
0.0143

line 20
0.0177

line 7 line 1
0.775

line 2
0.373

line 3
0.377

line 4
0.38

line 5
0.251

line 6
0.12

line 8
0.117

line 9
0.0485

line 10
0.372

line 11
0.0369

line 13
0.0255

line 15
0.117

line 16
0.0262

line 17
0.0391

line 18
0.019

line 20
0.0234

line 6 line 1
0.265

line 2
0.127

line 3
0.732

line 4
0.16

line 5
0.0858

line 7
0.151

line 10
0.0223

line 5 line 1
0.75

line 2
0.361

line 3
0.247

line 4
0.248

line 6
0.0785

line 7
0.29

line 8
0.0134

line 10
0.0427

line 15
0.0134

line 4 line 1
0.554

line 2
0.267

line 3
0.334

line 5
0.18

line 6
0.106

line 7
0.317

line 8
0.0146

line 10
0.0467

line 15
0.0146

line 3 line 1
0.265

line 2
0.127

line 4
0.16

line 5
0.0858

line 6
0.233

line 7
0.151

line 10
0.0223

line 2 line 1
1.57

line 3
0.152

line 4
0.153

line 5
0.15

line 6
0.0483

line 7
0.179

line 10
0.0263

line 1 line 2
0.755

line 3
0.152

line 4
0.153

line 5
0.15

line 6
0.0483

line 7
0.179

line 10
0.0263

Figure 6.5: LTS for the IEEE 14-bus test case (0.01)

The LTS was created for the IEEE 14-bus case with a change in flow as a

percentage of line limit of 1%. In other words, if the outage of a line resulted in

a change in flow that was at least 1% of the line’s limit, the outage was added to

the LTS. The LTS for the IEEE 14-bus test case is shown in Figure 6.5. The

rows of the LTS in Figure 6.5 are made up of circles that contain a line identifier

88

and the change in flow as a fraction between 0 and 1 of the impacted line’s limit,

where 0 indicates no impact and 1 indicates a change equal to the line’s limit.

6.3.3 Combination of limit and flow information

From examining the LTS, it is fairly simple to see how the structure can be

extended to include line flow information, and indeed the incorporation of flow

information along with limit and sensitivity data is the final enhancement to

Algorithm 1. Adding line flow information allows for finer discrimination

because it allows for the detection of the instances when an outage actually

reduces the flow on a line. Using current line flow information also allows us to

know how close a line is to overload in the base case, which in most cases also

indicates how likely the line is to overload in the event of an outage.

The structure that is built is dubbed the overload-tracking structure (OTS).

The OTS construction algorithm is given in Algorithm 5. The algorithm accepts

a list of lines in the system, the current line flows, and an overload threshold

value, o∗, as inputs. The overload threshold is a margin away from a

single-outage postcontingent overload. In other words, specifying an overload

threshold value of 5% means that outages that result in a flow of 95% of rated

limit will be included in the OTS. An o∗ value of 10% indicates that outages

that result in a flow of 90% of rated limit will be included in the OTS. The final

output of Algorithm 5 is the OTS.

The OTS for the IEEE 14-bus test case is given in Figure 6.6. The OTS was

generated using an overload threshold value (o∗) of 10%. The rows of the OTS

contain a line identifier and the postcontingent flow as a percentage of the line’s

limit. Again, since there are no line limits in the IEEE 14-bus test case, a limit

of 100 MW was used for every line. Each circle contains a line identifier and the

89

Input: List of lines
Input: Flow change threshold o∗

Input: Line Flows
Output: OTS
foreach Line α do

foreach Line β do

if α 6= β then

Calculate dα,β; Calculate ∆fα; if ∆fα ≥ o∗ then
Add entry at Row α for line β;

end

end

end

end

Algorithm 5: OTS construction algorithm

predicted change in flow for the outage of the line identified in the circle. In

other words, when the line identified in the circle is outaged, the postcontingent

flow — calcluated using linear sensitivites — on the line that the row belongs to

is the other value in the circle. The overload threshold value, o∗, means that

values less than 100% can be included in the OTS, which explains the enries in

the 90s on the second row.

line 7 line 1
139

line 3
98.9

line 4
99.1

line 10
98.3

line 6 line 3
96.5

line 3 line 6
96.5

line 2 line 1
232

line 3
90.7

line 4
90.8

line 5
90.5

line 1 line 2
232

line 3
142

line 4
142

line 5
142

line 6
162

line 7
175

line 8
156

line 9
157

line 10
160

line 11
157

line 12
157

line 13
157

line 15
156

line 16
157

line 17
157

line 18
157

line 19
157

line 20
157

Figure 6.6: OTS for the IEEE 14-bus test case

The most striking feature of the OTS is its size. It is much smaller than any

of the other tracking structures. The length of the rows is also different from

those in the the other tracking structures. The longest row for the OTS is the

first row, corresponding to line 1. The longest row for the other tracking

structures is the row corresponding to line 7. The average row length is only 1.4

(note that the zero-length rows are not shown). However, there is still a lot of

information in the OTS. In fact, if the o∗ value is 0, the OTS shows the

90

single-outage contingency analysis results. For larger values of o∗, the OTS

contains the lines that are close to a postcontingent violation. The length of the

first row and the fact that none of the postcontingent flow values is less than 100

mean that every contingency (except for the radial line 14) results in an overload

on line 1. This is because the base case flow on line 1 is 156.9 MW. It is

violating in the base case.

The other four OTS rows are a little more interesting. They do not violate the

100 MW limit in the base case. The base case flows for the lines with rows in

the OTS are given in Table 6.2. As mentioned before, the base case flow on

line 1 violates the 100 MW limit. However, the base case flows on line 2, line 3,

line 6, and line 7 are all well below the limit. That makes these lines interesting.

The fact that they have rows in the OTS means that they have outages that

bring them to within the overload threshold value, o∗, of violating their limits. A

careful look at the postcontingent flows in the OTS shows that line 2 and line 7

have contingencies that result in violations. For line 2, the outage of line 1

results in an overload of 232%. For line 7, the outage of line 1 results in an

overload of 139%.

Table 6.2: Base case flows on lines with OTS rows

Line From bus To bus Circuit Base case flow (MW)
line 1 1 2 1 159.9
line 2 1 5 1 75.5
line 3 2 3 1 73.2
line 6 4 4 1 -23.3
line 7 5 5 1 -61.2

The overload-tracking structure uses a different algorithm for generating the

list of contingencies from the tracking structure. The motivation behind using a

different tracking structure is the desire to capture more contingencies. The

91

algorithm is given in Algorithm 6. This algorithm generates a list of

contingencies by combining the entries in the tracking structure with the other

lines in the system. This is designed to capture the single-outage contingencies

that result in violations when they are paired with other lines in the system.

Input: Overload Tracking Structure OTS
Output: List of Flagged Contingencies FL
foreach Row r in the ITS do

foreach Element e in row r do
Generate combination of e with every other line in the system

end

end

Remove nonunique elements from FL.
Algorithm 6: List generation algorithm for the overload-tracking structure

The insight behind combining the entries in the OTS with every other line in

the system can be seen by realizing that the OTS essentially contains the

single-outage contingency analysis results. For a threshold (o∗) of 0, the OTS

contains the lines whose outage results in a violation in the single-outage

contingency analysis. Increasing the value of o∗ pads the results, but the

intuition is the same. Combining the lines that resulted in a violation for the

single-outage contingency analysis with every other line in the system is

assuming that the single outage violation will persist in the double-outage

violations.

92

CHAPTER 7

LARGE-SYSTEM SCREENING RESULTS

The screening algorithms in Section 6.2 were each applied to a 5395-bus,

7616-line system based on a large North American utility. Considering every

double-line outage in the system results in a contingency list with 28 997 920

events. The goal of these algorithms is to generate lists of contingencies that

capture the severe contingencies without including a large number of innocuous

events.

The results from the screening algorithms are compared against several lists of

severe contingencies. The most exhaustive list includes every contingency that

results in a violation. This list contains 546 557 contingencies that result in

violations. Thus, the perfect contingency-screening algorithm would generate the

546 557 contingencies in this list with no extras. Since this list includes many

contingencies that result in violations only on relatively small lines, another list

of contingencies was generated by removing the contingencies that result in

violations only on lines with limits less than 100 MW. This list is approximately

one-fifth the size of the unfiltered contingency list. It contains 112 049 elements.

Another list of interest is the list of double-outage contingencies that result in

violations only when both of the elements are outaged. This list is referred to as

the double-violation list, and it contains 1851 contingencies.

The results of the screening algorithm, as well as information about the

tracking structures, are presented for the different screening algorithms. The

results show that the ITS algorithms are the best for detecting the contingencies

93

in the double-violation list and that the OTS algorithms are very good at

detecting severe contingencies in general.

7.1 ITS Results

This section discusses the contingency-screening results generated by the

impact-tracking structure algorithms described in Section 6.2. The results of the

screening algorithm as well as information about the ITS are presented for five

different values of d∗. The minimum value was selected to be 5%, based on the

NERC threshold for transaction curtailment [50]. The threshold value is varied

from the minimum 5% to 25% in increments of 5%. This is done to examine the

behavior of the screening algorithm as its key parameter is varied.

The experimental results show that the screening algorithms do, in fact,

screen out a very high percentage of the double-outage events. Also, it is clear

that the larger the value of d∗, the fewer contingencies are flagged. This is to be

expected because the ITS for a larger threshold value is a subset of an ITS with

a smaller d∗. In other words, increasing d∗ can only remove entries from the ITS.

Unfortunately, the algorithm fails to capture a large number of severe

contingencies.

Table 7.1 contains the screening results for the ITS screening algorithms,

comparing them against the full list of severe contingencies. The table contains

the number of severe contingencies captured, the number of extra (nonsevere)

contingencies generated by the algorithm, the number of missed severe

contingencies, and the percentage of contingencies captured. The percentage is

calculated by dividing the number captured by the total number of severe

contingencies. For example, the 6.6% captured for the d∗ value of 0.05 is

94

calculated as

%captured = 100 · 36 153

546 557
= 6.6% (7.1)

Examining Table 7.1, it is clear that the ITS based algorithms fail to capture

a large number of severe contingencies. For the most conservative value of d∗,

only 6.6% of the severe contingencies are captured.

Table 7.1: ITS screening results
Full violation list

d∗ Captured Extra Missed Captured (%)
0.05 36 153 1 374 307 511 966 6.6
0.10 13 877 514 485 534 242 2.5
0.15 7 038 274 220 540 181 1.3
0.20 4 790 168 124 543 329 0.87
0.25 2 909 113 858 545 210 0.053

Table 7.2 contains the results of comparing the ITS algorithms’ results against

the filtered list of severe contingencies. These results are actually worse than the

results in Table 7.1 in the sense that a lower percentage of the severe

contingencies is captured.

Table 7.2: ITS screening results
Filtered violation list

d∗ Captured Extra Missed Captured (%)
0.05 5 777 1 404 683 106 272 5.2
0.10 2 539 525 823 109 810 2.3
0.15 1 388 279 870 110 661 1.2
0.20 837 172 077 111 212 0.75
0.25 583 116 184 111 466 0.52

The results of the ITS screening algorithms is compared to the

double-violation list in Table 7.3. These results show more promise. The

algorithms capture between 30.6% and 66.5% of the contingencies in the

double-violation list. While these values may not sound particularly high,

capturing the contingencies in the double-violation list is difficult, and the ITS

95

algorithms have the best performance in this area. The reason that the ITS

performs well at generating contingencies in the double-violation list is the way

that the list of contingencies is generated from the ITS. The list is generated by

taking the combinations of the elements in the ITS rows. This generates a list of

double-outage contingencies in which each line of a contingency impacts a line

above the d∗ threshold.

Table 7.3: ITS screening results
Double violation list

d∗ Captured Extra Missed Captured (%)
0.05 1 230 1 409 230 621 66.5
0.10 1 016 527 346 835 54.9
0.15 785 280 473 1 066 42.4
0.20 653 172 261 1 198 35.3
0.25 567 116 200 1 284 30.6

7.2 FTS Results

The FTS algorithms work by building a tracking structure, where the threshold

for entry is based on the change in flow resulting from an outage. The LTS was

generated using four different threshold values, from 5 MW to 30 MW.

The results of the FTS algorithms are compared against three different sets of

contingency analysis results. The results are compared against the full

contingency analysis set in Table 7.4. Table 7.5 contain the FTS screening

results compared to a filtered set of contingency analysis results, and Table 7.6

compares the screening results against the double outages that result in

violations only when both lines are outaged.

The performance of the FTS algorithms is pretty poor for the full results set

and the filtered results set. The percentage of captured contingencies is rather

small. For the full contingency analysis results set, only 4.55% of the

96

contingencies that result in violations are caught by the algorithm. Even fewer

(4.25%) of the contingenceis that result in violations are detected.

Table 7.4: FTS screening results
Full violation list

f ∗ captured extra missed captured (%)
0.05 24 963 488 878 52 156 4.55
0.10 10 601 187 724 537 518 1.93
0.20 3 622 61 408 544 497 0.66
0.30 1 983 29 771 546 136 0.36

Table 7.5: FTS screening results
Filtered violation set

f ∗ captured extra missed captured (%)
0.05 4 758 509 083 107 291 4.25
0.10 2 076 196 249 109 973 1.85
0.20 892 64 138 111 157 0.80
0.30 553 31 201 111 496 0.49

The FTS screening algorithm results are much better when the results are

compared to the double-violation list. Around half of the double-outage

contingencies that result in violations only when both lines are outaged are

caught by this algorithm.

Table 7.6: FTS screening results
Double violation list

l∗ Captured Extra Missed Captured (%)
0.05 930 512 911 921 50.24
0.10 615 197 710 1 236 33.23
0.20 333 64 697 1 518 17.99
0.30 252 31 502 1 599 13.6

7.3 LTS Results

The LTS algorithms work by constructing a tracking structure based on the

amount of change as a percentage of the lines limit. The LTS was generated

97

using four different threshold values from 0.05 to 0.20 in steps of 0.05. A 0.05

threshold value indicates that the outage of a line results in a change of 5% with

respect to the impacted line’s limit. In other words, when an outage occurs, the

impacted line sees a change in flow of at least 5% of its limit.

The results of the LTS screening algorithms can be found in Table 7.7,

Table 7.8, and Table 7.9. In general, these algorithms perform in a similar

manner to the ITS algorithms. The algorithms have very poor performance

when compared to the lists of severe contingencies.

Table 7.7: LTS screening results
Full violation list

l∗ Captured Extra Missed Captured (%)
0.05 10 115 69 668 538 004 1.85
0.10 3 883 17 822 544 236 0.71
0.15 1 832 6 765 546 287 0.33
0.20 1 033 3 123 547 086 0.19

Examining Table 7.8, it can be seen that the results of the LTS algorithms

perform even worse when compared to the filtered list of contingencies.

Table 7.8: LTS screening results
Filtered violation set

l∗ Captured Extra Missed Captured (%)
0.05 1 726 78 057 110 323 1.5
0.10 642 21 063 111 407 0.57
0.15 328 8 269 111 721 0.29
0.20 209 3 947 111 840 0.19

Table 7.9: LTS screening results
Double violation list

l∗ Captured Extra Missed Captured (%)
0.05 1 003 78 780 848 54.2
0.10 515 21 190 1 336 27.8
0.15 341 8 256 1 510 18.2
0.20 208 3 948 1 643 11.2

98

7.4 OTS Results

The standout among the screening algorithms is the OTS algorithms. The OTS

algorithms are most different from the previous algorithms in the way that the

list of contingencies is generated. Instead of generating a list from the

combinations of the tracking structure rows, the OTS generates a list of

contingencies by combining the OTS entries with the other lines in the system.

The insight behind this can be seen by considering a percent overload, o∗, value

of 0. For a percent overload value of 0, entries are made in the OTS whenever a

single-outage contingency results in a violation. The OTS contingency

generation algorithm works because the single-outage violations also result in

violations when they are outaged along with (most) other lines in the system.

The results in Table 7.10 show that the OTS algorithms do a very good job of

predicting the double-outage contingencies that will result in violations. It does

this by using a padded version of the single-outage contingency analysis results

and predicting that a single outage that creates a violation will also create a

double-outage violation. Using this method, 99.72% of the double-outage

contingencies that result in violations from the single-outage contingency

analysis alone are captured, and with very few extra contingencies. Solving

598 504 contingencies will result in capturing over 99% of the double-outages

with violations. This is only 2.06% of the total number of double-outage

contingencies. As the padding is increased, the number of captured contingencies

increases. However, beyond a certain point the number of extra contingencies

explodes. As can be seen by examining the last two rows in Table 7.10, changing

the value of o∗ from 0.050 to 0.075 resulted in the number of extra contingencies

increasing by a factor of ten. There is only one missed contingency; however

capturing this many contingencies comes at the expense of creating a

99

contingency list that contains nearly all of the double-outage contingencies.

Table 7.10: OTS screening results
Full violation list

o∗ Captured Extra Missed Captured (%)
0.000 546 557 51 947 1 562 99.72
0.025 547 025 126 794 1 094 99.8
0.050 548 118 276 683 653 99.88
0.075 548 770 27 739 966 1 99.9998

Table 7.11 compares the contingency screening results against the filtered

violation list generated by the full contingency analysis. The results are very

good. The percentage captured is slightly lower than the full set of violations.

However, the number of missed contingencies is lower. This result indicates that

the OTS screening algorithms are capable of detecting the double-outage

contingencies that result in violations on lines with limits over 100 MW. This

means that the results are not being skewed by a large number of violations on

small lines.

Table 7.11: OTS screening results
Filtered violation list

o∗ Captured Extra Missed Captured (%)
0.000 111 459 487 045 590 99.473
0.025 111 800 562 019 249 99.778
0.050 111 867 712 282 182 99.838
0.075 112 048 28 176 036 1 99.9991

Detecting double contingencies that only result in violations when both lines

are out is an area of relative weakness for the OTS screening algorithms. As

Table 7.12 shows, the performance of the algorithms is not as good as it is when

the results are compared against the full violation set and the filtered violation

list. However, the performance is not particularly bad when compared with the

results of the other screening algorithms.

100

Table 7.12: OTS screening results
Double violation list

o∗ Captured Extra Missed Captured (%)
0.000 0 598 504 1 851 0
0.025 468 673 351 1 383 25.28
0.050 909 823 240 942 49.11
0.075 1 555 28 286 529 296 84.0

7.5 Ranking Results

This section compares the results of the contingency-screening algorithms with

the lists of serious contingencies developed in Chapter 5. The goal is to gauge

the performance of the screening algorithms with respect to detecting severe

contingencies.

7.5.1 PI ranking results

The contingency screening results for the screening algorithms are compared to

the list of severe contingencies identified by the PI contingency-ranking method.

Two lists were generated using the PI method. One list is based on applying the

PI contingency-ranking methods to the full contingency analysis results. This

list, referred to as the PI full list, has 62 785 entries. The second list was

generated by using the PI ranking methods on the filtered set of violations —

violations on lines with limits less than 100 MW were removed.

The results of the ITS screening algorithms, compared to the lists of severe

contingencies generated by the PI ranking methods, are given in Table 7.13 and

Table 7.14.

Table 7.15 contains the results of FTS screening algorithms compared to the

severe contingency set generated from the full set of contingency analysis results

ranked using the PI methods. These results show that the FTS screening

algorithms capture only a few percent of the severe contingencies. At best, the

101

Table 7.13: ITS screening results
PI full list

d∗ Captured Extra Missed Captured (%)
0.05 4 358 58 427 58 427 6.941
0.10 1 926 60 859 60 859 3.068
0.15 1 088 61 697 61 697 1.732
0.20 810 61 975 61 975 1.29
0.25 485 62 300 62 300 0.773

Table 7.14: ITS screening results
PI filtered list

d∗ Captured Extra Missed Captured (%)
0.05 3 872 1 406 588 45 632 7.8215
0.10 1 794 526 568 44 710 3.624
0.15 1 021 280 237 48 483 2.0625
0.20 759 172 155 48 745 1.5332
0.25 449 116 318 49 055 0.907

algorithm managed to capture 5.605% of the severe contingencies.

Table 7.15: FTS screening results
PI full list

f ∗ captured extra missed captured (%)
0.05 3 519 510 322 59 266 5.605
0.10 1 535 196 790 61 250 2.45
0.20 524 64 506 62 261 0.8346
0.30 314 31 440 62 471 0.500

The results in Table 7.16 show the performance of the FTS screening

algorithms when compared against the filtered list set of contingency results. By

comparing the values in Table 7.16 to the results in Table 7.15, it can be seen

that the FTS screening algorithms perform slightly better on the filtered result

set. This is a slightly more encouraging result. However, the overall capture rate

is still dismal. In the best case, the FTS screening methods managed to capture

6.788% of the severe contingencies.

The results for the LTS screening algorithms are given in Table 7.17 and

Table 7.18. These results are even worse than the FTS screening results. The

102

Table 7.16: FTS screening results
PI filtered list

f ∗ captured extra missed captured (%)
0.05 3 356 510 458 46 148 6.788
0.10 1 498 196 827 48 006 3.026
0.20 515 64 515 48 989 1.040
0.30 305 34 119 49 199 0.616

LTS screening results show the same behavior as the FTS results. The

algorithms fail to capture many severe contingencies, but the method performs

slightly better for the list of filtered contingencies.

Table 7.17: LTS screening results
PI full list

l∗ Captured Extra Missed Captured (%)
0.05 1 702 78 081 61 083 2.71
0.10 820 20 885 61 965 1.31
0.15 435 8 162 62 350 0.693
0.20 290 3 866 62 495 0.462

Table 7.18: LTS screening results
PI filtered list

l∗ Captured Extra Missed Captured (%)
0.05 1 605 78 178 47 899 3.242
0.10 790 20 915 48 714 1.596
0.15 414 8 183 49 090 0.836
0.20 275 3 381 49 229 0.556

The OTS screening results show a large departure from the other screening

algorithms. The OTS screening algorithms work very well. The results of the

OTS screening algorithms are compared in Table 7.19 to the unfiltered list of

severe contingencies identified by the PI-ranking methods. The OTS screening

results are compared to the filtered list of contingencies in Table 7.20. The

results given in both tables are very strong. However, the performance of the

OTS screening algorithms is slightly better for the filtered list of contingencies.

103

Both tables show capture results over 99%. Increasing the threshold o∗ does

increase the capture rate slightly at the expense of increasing the number of

extra contingencies. However, the performance is always good. In the worst

case, only 0.193%, a total number of 121, of the contingencies are missed.

Table 7.19: OTS screening results
PI full list

o∗ Captured Extra Missed Captured (%)
0.000 62 664 535 840 121 99.807
0.025 62 688 611 151 117 99.814
0.050 62 669 761 480 116 99.815
0.075 62 727 28 225 357 58 99.908

Table 7.20: OTS screening results
PI filtered list

o∗ Captured Extra Missed Captured (%)
0.000 49 395 549 109 109 99.7798
0.025 49 399 624 420 105 99.7879
0.050 49 400 774 749 104 99.7899
0.075 45 454 28 238 630 50 99.899

7.5.2 Sorted-matrix ranking results

The sorted-matrix ranking techniques discussed in Chapter 5 are applied to the

full contingency analysis results for the large case in order to generate lists of

severe contingencies. The sorted-matrix techniques are applied to two sets of

contingency analysis results. One set of data contains every violation, while the

other set is filtered to remove the violations that occur on lines with a limit of

less than 100 MW.

The lists of severe contingencies were made by examining the distributions of

the contingency aggregate values. Distribution plots for these values are given in

Chapter 5. The goal of applying the sorted-matrix methods is to develop a list

104

of the most severe contingencies. In order to make a list of the most serious

contingencies, the contingencies that fall in the upper 50% of the distribution

are selected. The unfiltered list has a total number of 290 875 double-outage

contingencies when the lower 50 percentiles are removed, and the filtered list has

a total number of 56 212 double-outage contingencies. The screening results are

compared to the two lists for each of the screening algorithms.

The results of the ITS screening algorithms are compared to the sorted-matrix

ranking results in Table 7.21 and Table 7.22. The results show that the ITS

screening algorithms do a poor job of detecting the contingencies flagged by the

sorted-matrix ranking method. For the unfiltered list the best capture rate is

only 6.54%, and the number of extra contingencies is quite large. The list of

contingencies generated by the ITS screening algorithm is much larger than the

list of contingencies flagged by the sorted-matrix ranking method and only a few

percent of the severe contingencies are detected. The screening results are

compared aginst the filtered sorted matrix list in Table 7.22. These results are

slightly better than the results in Table 7.21, but still only a few percent of the

serious contingencies are detected.

Table 7.21: ITS screening results
Sorted matrix list

d∗ Captured Extra Missed Captured (%)
0.05 19 015 1 391 445 271 860 6.54
0.10 7 552 520 810 283 323 2.60
0.15 3 994 277 264 286 881 1.37
0.20 2 799 170 115 288 076 0.962
0.25 1 611 115 156 289 264 0.554

Table 7.23 compares the results of the FTS screening algorithms to the

sorted-matrix list of severe contingencies. The FTS results are compared against

the sorted-matrix filtered list of severe contingencies in Table 7.24. The capture

rates are low for both sets of contingencies. According to these results, the FTS

105

Table 7.22: ITS screening results
Sorted matrix filtered list

d∗ Captured Extra Missed Captured (%)
0.05 4 247 1 406 213 51 965 7.555
0.10 1 907 526 455 54 305 3.393
0.15 1 093 280 165 55 119 1.944
0.20 631 172 283 55 581 1.123
0.25 458 116 309 55 754 0.8148

is not an effective way of detecting severe contingencies. These results agree with

the results for the FTS algorithms for the other lists of severe contingencies.

Table 7.23: FTS screening results
Sorted matrix list

f ∗ Captured Extra Missed Captured (%)
0.05 13 967 499 874 276 908 4.80
0.10 5 891 192 434 284 984 2.03
0.20 1 899 63 131 288 976 0.653
0.30 1 011 30 743 289 864 0.348

Table 7.24: FTS screening results
Sorted matrix filtered list

f ∗ Captured Extra Missed Captured (%)
0.05 3 669 510 172 52 543 6.53
0.10 1 641 196 684 54 571 2.93
0.20 703 64 327 55 509 1.25
0.30 448 31 309 55 767 0.792

The list of contingencies generated by the LTS screening algorithms are

compared to the list of serious contingencies generated by the sorted matrix

methods in Table 7.25 and Table 7.26. These results are similar to the results of

the LTS algorithms when they are compared to the other lists of severe

contingencies. The LTS does a poor job of detecting severe contingencies. The

capture rates are very low. In fact, the LTS has the lowest capture rates of any

of the screening algorithms.

106

Table 7.25: LTS screening results
Sorted matrix list

l∗ Captured Extra Missed Captured (%)
0.05 5 906 73 877 284 969 2.30
0.10 2 463 19 242 288 412 0.847
0.15 1 266 7 331 289 609 0.435
0.20 768 3 388 290 107 0.264

Table 7.26: LTS screening results
Sorted matrix filtered list

l∗ Captured Extra Missed Captured (%)
0.05 1 377 78 406 54 835 2.45
0.10 485 21 220 55 727 0.863
0.15 238 8 359 55 974 0.423
0.20 156 4 000 56 056 0.278

The OTS screening algorithms are very good at detecting the severe

contingencies detected by the sorted-matrix ranking method. The results for the

unfiltered sorted-matrix list are given in Table 7.27, and the screening algorithm

results is compared to the results of the sorted-matrix ranking applied to a

filtered data set in Table 7.28. The OTS is again the standout algorithm. It has

very high capture rates, meaning that it is very good at detecting the

contingencies that the sorted-matrix ranking method flagged as severe. The

other algorithms tend to perform poorly.

Table 7.27: OTS screening results
Sorted matrix list

o∗ Captured Extra Missed Captured (%)
0.000 290 666 307 838 209 99.928
0.025 290 678 383 141 197 99.932
0.050 290 692 533 457 183 99.937
0.075 290 874 27 997 210 1 99.9997

107

Table 7.28: OTS screening results
Sorted matrix filtered list

o∗ Captured Extra Missed Captured (%)
0.000 56 065 542 439 147 99.738
0.025 56 083 617 736 129 99.771
0.050 56 106 768 043 106 99.811
0.075 56 211 27 739 966 1 99.9998

7.6 Tracking Structure Statistics

Along with the results from the various screening algorithms, information about

the tracking structures was collected. The information includes the size (i.e., the

number of nonzero entries), the number of rows with at least one entry, the

number of rows with no entries, the maximum length of any row, and the

average row length. The average row length is calculated by dividing the

number of entries by the total number of rows. The total number of rows is

equal to the number of lines in the system, since there is a row for each line in

the system. Also, the number of nonzero rows and the number of zero-length

rows should add to equal the number of lines in the system.

The size data for the ITS is given in Table 7.29. The size information shows

that the larger the value of d∗, the fewer entries are made in the ITS. This

makes sense because raising the value of d∗ means that a line must have a

greater LODF value to be entered into the tracking structure. The size decreases

very rapidly as the threshold, d∗, increases. The average row and maximum row

length also decrease rapidly.

The size data for the FTS and the LTS are shown in Table 7.30 and

Table 7.31, respectively. The sizes of these two data structures is small

compared to the size values for the ITS. These two structures are considered

together because they are so similar. In both cases, the size of the structure

decreases with an increase in the threshold value. Also, the entries in the

108

Table 7.29: ITS size data

d∗ ITS size Avg. row length Max. row length Nonzero rows
5% 284 507 37 339 6 326
10% 150 853 19 180 6 191
15% 100 105 13 96 6 099
20% 72 260 9 67 6 018
25% 55 560 7 49 5 929

tracking structure are fairly well distributed. This is indicated by the large

number of nonzero rows.

Table 7.30: FTS size data

f ∗ FTS size Avg. row length Max. row length Nonzero rows
0.05 148 266 19 244 6 097
0.10 74 781 9 150 5 495
0.20 33 616 4 89 4 291
0.30 20 283 2 54 3 585

Table 7.31: LTS size data

f ∗ LTS size Avg. row length Max. row length Nonzero rows
0.05 41 995 5 122 4 571
0.10 16 575 2 55 4 058
0.15 8 631 1 34 3 179
0.20 4 903 0 25 2 248

Information for the OTS is shown in Table 7.32. The size information shows

that it has some unique properties compared to the other tracking structures.

First, the size of the OTS increases as the amount of padding, o∗, increases.

This is because the more padding is added, the more entries are made into the

tracking structure. Also, the size of the OTS is very small. There are only

13 056 entries in the largest case. This is much smaller than the other tracking

109

structures. Examining the number of nonzero rows, it can be seen that the

entries in the OTS appear at only a few rows.

Table 7.32: OTS size data

o∗ OTS size Avg. row length Max. row length Nonzero rows
0.000 113 0.015 35 48
0.025 130 0.017 38 56
0.050 159 0.021 49 61
0.075 13 056 1.710 6424 76

The size information about the various screening algorithms gives insight into

the inner workings of the various algorithms. For example, the run time of the

ITS, FTS, and LTS list generation algorithms is dependent upon the lengths of

the rows in the various tracking structures, because the list of contingencies is

generated by taking the combinations of the entries in a row. The run time of

the list generation portion of the OTS screening algorithm is dependent on the

OTS size because the contingency list is generated by taking the entries in the

OTS in combination with every line in the system.

7.7 Conclusions

This chapter compares the results of several screening algorithms against the

results of the full contingency analysis for the large system. The incremental

algorithms — the ones that slightly extend the amount of information available

— show rather poor performance. At best they are able to capture only a few

percent of the double-outage contingencies that result in violations. However,

there are two standout algorithms that perform quite well. The ITS screening

algorithms do the best job of detecting double-outage contingencies that result

in violations only when both lines are outaged. This seems to be because the

110

ITS screening algorithms do a good job of detecting contingencies that both

impact a third line. The OTS does a very good job in general. The list

generated by the OTS screening algorithms is only 2% of the size of the

complete list of double-outage contingencies, yet it is able to detect over 99% of

the double-outage contingencies that result in violations.

111

CHAPTER 8

WEAK-ELEMENT IDENTIFICATION

The screening algorithms are based on generating tracking structures that track

the impact of a line outage on the other lines in the system using several

different metrics. Knowing how lines impact each other in a power system can

be useful for more than generating contingency lists. For example, knowing that

the outage of every line in the system heavily impacts some line gives some

information about that line. Thus, the information in the tracking structures

can be used for other applications. One natural application is weak-element

identification.

8.1 Introduction

In a power system a weak element is a line or transformer that is likely to

become overloaded. Weak elements are identified using contingency analysis.

The more often the element has a violation in the contingency analysis, the

weaker it is. The fact that a line frequently violates in the contingency analysis

suggests that the system would benefit from its upgrade. Identifying weak

elements is important because these elements will result in constraints in

operation. If there are multiple elements whose outage results in the overload of

a particular line, then in order to operate the system safely, those elements must

be operated well below their limits in order to make sure that their outage does

not result in an overload. In other words, the presence of weak elements forces

112

the underutilization of other parts of the transmission system. This chapter

examines the use of the tracking structures for identifying weak elements in the

system. The tracking structures were introduced in Chapter 6. A tracking

structure is a list of lists, where every line in the system is assigned a list that

contains the lines whose outage impact it. Each list entry has two pieces of data:

(1) the line whose outage results in an impact, and (2) the amount of the impact,

I. This chapter develops metrics of a lines weakness based on the tracking

structure for the impact-tracking structure and the overload-tracking structure.

8.2 Weak-Element Characterization

The idea behind building a tracking structure is to keep track of the lines that

impact each other. This type of information is also useful for weak-element

identification. Several factors characterize the weakness of a particular element.

For example, does a single outage result in a 400% overload, or do 100 outages

result in a 101% overload? These types of characterizations can be made by

examining different aspects of the tracking structures. The list below contains

the parameters that characterize the weakness of an element based on the

tracking structure.

• Frequency of appearance in the tracking structure, F

• Length of row in the tracking structure, L

• Maximum row entry, M

• Average row entry, A

• Average value per entry, E

113

The tracking structure contains enough information to say which elements are

likely to cause problems and which elements are likely to have problems. The

elements that are likely to cause problems will appear in the lists for many lines.

Thus, the frequency at which a line appears in the tracking structure indicates

how likely the outage of that line is to cause violations. In a similar manner, the

magnitudes of the entries in the tracking structures give an indication of how

much an outage is likely to impact other lines. The length of a row in the

tracking structure gives an indication of how many lines in the system impact a

given line. The more entries in a line’s row, the more outages impact that line.

The fact that many outages impact a single line indicates that that line is

important to the system. The maximum entry in a row indicates the greatest

impact that any outage has on that line. For the ITS, the impact is measured

with LODF values. The OTS measures impact with change in flow as a

percentage of the line’s limit. The average tracking structure row entry gives an

indication of how much each outage impacts a line.

The metrics can be broadly divided into two groups: row-based metrics and

entry-based metrics. The row-based metrics calculate values on a per row basis,

and the entry-based metrics calculate values based on the entries into the

tracking structures.

Each of these metrics can be given a precise mathematical definition. The

frequency of appearance for a line α, Fα, is defined as the number of times a line

shows up in a tracking structure. The frequency is calculated by counting the

number of times line α appears in the tracking structure. The length of a row in

the tracking structure for line α, Lα, is simply the number of elements in the

row for line α. The maximum tracking structure entry for line α’s row is the

114

maximum of the absolute values of the impact values in the structure:

Mα = max
row α

|I| (8.1)

The average is similarly the average impact, I, for a row

Aα =

∑
row α |I|
Lα

(8.2)

The average value per entry, E, is an element-based metric that is used to

characterize the outage of a line on the rest of the system. The average value

per entry is calculated by finding the average magnitude of the entries in the

tracking structure for a particular line. For example, if line α has six entries in a

tracking structure, then E is calculated by finding the average magnitude of the

six entries.

8.3 Example System

The IEEE 14-bus test case [24] is used as the sample system for illustrating the

various methods of characterizing weak elements. The case has 14 buses and 20

lines. Detailed information about the 14 bus case can be found in Chapter 6,

which contains a one-line diagram as well as the matrix of LODF values for the

14-bus case. The ITS for the IEEE 14-bus test case is shown in Figure 8.1. This

tracking structure was generated with a d∗ of 0.10.

At first glance, it may be observed that the ITS for the IEEE 14-bus test

system is broad and tall. With the exception of the radial line 14, every line in

the system has several entries in its row. Thus, this ITS indicates a large degree

of interaction between the lines in the system.

The row-based metrics for the ITS are given in Table 8.1. The longest row in

115

line 20
line 8

0.196

line 9

0.142

line 10

-0.398

line 11

-0.346

line 12

-0.132

line 13

0.405

line 15

0.196

line 16

-0.405

line 17

1

line 18

-0.405

line 19

-0.132

line 19
line 11

0.654

line 12

-1

line 17

0.222

line 20

-0.222

line 18
line 7

0.141

line 8

-0.296

line 9

-0.215

line 10

0.602

line 11

-0.176

line 13

1

line 15

-0.296

line 16

-1

line 17

0.508

line 20

-0.508

line 17
line 8

-0.196

line 9

-0.142

line 10

0.398

line 11

0.346

line 12

0.132

line 13

-0.405

line 15

-0.196

line 16

0.405

line 18

0.405

line 19

0.132

line 20

1

line 16
line 7

0.141

line 8

-0.296

line 9

-0.215

line 10

0.602

line 11

-0.176

line 13

1

line 15

-0.296

line 17

0.508

line 18

-1

line 20

-0.508

line 15
line 7

0.149

line 8

-1

line 9

0.643

line 10

0.635

line 11

0.108

line 13

0.378

line 16

-0.378

line 17

-0.313

line 18

-0.378

line 20

0.313

line 13
line 7

-0.141

line 8

0.296

line 9

0.215

line 10

-0.602

line 11

0.176

line 15

0.296

line 16

1

line 17

-0.508

line 18

1

line 20

0.508

line 12
line 11

0.654

line 17

0.222

line 19

-1

line 20

-0.222

line 11
line 8

0.152

line 9

0.111

line 10

-0.309

line 12

0.868

line 13

0.315

line 15

0.152

line 16

-0.315

line 17

0.778

line 18

-0.315

line 19

0.868

line 20

-0.778

line 10
line 7

-0.234

line 8

0.492

line 9

0.357

line 11

-0.171

line 13

-0.595

line 15

0.492

line 16

0.595

line 17

0.492

line 18

0.595

line 20

-0.492

line 9
line 8

0.508

line 10

0.365

line 13

0.217

line 15

0.508

line 16

-0.217

line 17

-0.179

line 18

-0.217

line 20

0.179

line 8
line 7

0.149

line 9

0.643

line 10

0.635

line 11

0.108

line 13

0.378

line 15

-1

line 16

-0.378

line 17

-0.313

line 18

-0.378

line 20

0.313

line 7
line 1

-0.494

line 2

0.494

line 3

-0.515

line 4

-0.676

line 5

0.605

line 6

-0.515

line 8

0.415

line 9

0.301

line 10

-0.843

line 11

-0.144

line 13

-0.502

line 15

0.415

line 16

0.502

line 17

0.415

line 18

0.502

line 20

-0.415

line 6
line 1

-0.169

line 2

0.169

line 3

-1

line 4

0.285

line 5

0.207

line 7

-0.248

line 5
line 1

-0.478

line 2

0.478

line 3

0.337

line 4

0.442

line 6

0.337

line 7

0.474

line 4
line 1

-0.353

line 2

0.353

line 3

0.455

line 5

0.433

line 6

0.455

line 7

-0.518

line 10

0.106

line 3
line 1

-0.169

line 2

0.169

line 4

0.285

line 5

0.207

line 6

-1

line 7

-0.248

line 2
line 1

1

line 3

0.208

line 4

0.272

line 5

0.361

line 6

0.208

line 7

0.292

line 1
line 2

1

line 3

-0.208

line 4

-0.272

line 5

-0.361

line 6

-0.208

line 7

-0.292

Figure 8.1: IEEE 14-bus ITS

the ITS corresponds to line 7. This is an indication that line 7 is an important

line to the system. On nearly every other line in the system, an outage has an

impact on line 7. The average value per entry for line 7 is 0.48, meaning that

there is a large impact for most outages. The maximum impact from any single

outage is 0.843 for line 7. The maximum average impacts occur for line 19 and

line 12. Each has an average, A, of 0.5245. The maximum impact is 1.0, and

this occurs for many lines. The value of 1.0 indicates that the outage results in

the outaged line’s flow transferring entirely to the line.

The entry-based metrics for the ITS are shown in Table 8.2. These metrics

count the number of times an entry is made into the ITS. For example, line 20

has 12 entries into the ITS. This means that the outage of line 20 impacts 12

separate lines. Based on this metric, line 20 and line 7 have the most impact on

the rest of the system. The largest value for the average entry is 0.533. This

value occurs for the entries on line 19 and line 4. This indicates that on average,

116

Table 8.1: Weak-element row metrics for the ITS

Line L A Max
20 11 0.341 1.00
19 4 0.524 1.00
18 10 0.474 1.00
17 11 0.341 1.00
16 10 0.474 1.00
15 10 0.429 1.00
13 10 0.474 1.00
12 4 0.524 1.00
11 11 0.451 0.868
10 10 0.451 0.595
9 8 0.298 0.508
8 10 0.429 1.00
7 16 0.484 0.843
6 6 0.346 1.00
5 6 0.424 0.478
4 7 0.381 0.518
3 6 0.346 1.00
2 6 0.390 1.00
1 6 0.390 1.00

the outage of these lines has the most impact on the rest of the system.

The OTS for the IEEE 14-bus test system is shown in Figure 8.2. The

tracking structure was generated using an o∗ value of 10%, meaning that outages

that result in a postcontingent flow that is within 10% of a line’s limit are added

to the list.

line 7 line 1
139

line 3
98.9

line 4
99.1

line 10
98.3

line 6 line 3
96.5

line 3 line 6
96.5

line 2 line 1
232

line 3
90.7

line 4
90.8

line 5
90.5

line 1 line 2
232

line 3
142

line 4
142

line 5
142

line 6
162

line 7
175

line 8
156

line 9
157

line 10
160

line 11
157

line 12
157

line 13
157

line 15
156

line 16
157

line 17
157

line 18
157

line 19
157

line 20
157

Figure 8.2: OTS for the IEEE 14-bus test case

The row-based metrics for the OTS are shown in Table 8.3. The first striking

feature about the row metrics is the fact that there only a few of them. This

117

Table 8.2: Weak-element entry metrics for the ITS

Line Count E
20 12 0.455
19 4 0.533
18 10 0.520
17 12 0.455
16 10 0.520
15 10 0.385
13 10 0.520
12 4 0.533
11 11 0.278
10 11 0.499
9 10 0.298
8 10 0.385
7 12 0.252
6 6 0.454
5 6 0.362
4 6 0.372
3 6 0.454
2 6 0.444
1 6 0.444

reflects the fact that most rows of the OTS have no entries. It is also apparent

that the few rows that do have entries are relatively short. The exception is the

row corresponding to line 1, which has 18 entries.

Table 8.3: Weak-element row metrics for the OTS

line L A max
7 4 108.825 139
6 1 96.5 96.5
3 1 96.5 96.5
2 4 126 232
1 18 160 232

The element-based metrics for the OTS are given in Table 8.4. These values

give information about how often a line appears in the OTS and the value

118

associated with that entry. Line 3 has the most appearances in the OTS,

meaning that an outage on this line is more likely than one one any other line to

result in a near overload. The average entry value, E, for line 3 is 107.0,

meaning that on average the outage of line 3 results in an overload of 107%.

Table 8.4: Weak-element entry metrics for the OTS

Line Count E
20 1 157.0
19 1 157.0
18 1 157.0
17 1 157.0
16 1 157.0
15 1 156.0
13 1 157.0
12 1 157.0
11 1 157.0
10 2 129.2
9 1 157.0
8 1 156.0
7 1 175.0
6 2 129.3
5 2 116.3
4 3 110.6
3 4 107.0
2 1 232.0
1 2 185.5

8.4 Large System

The metrics for weak-element identification were calculated for the large case

described in Appendix A. The metrics were calculated for tracking structures

built with two of the most successful parameter values. The ITS was

constructed using a threshold, d∗, of 0.05. The OTS was constructed using a

threshold, o∗, of 0.05. These two threshold values were the most successful at

119

generating contingency lists that captured contingencies with a list of limited

size. Statistics for these structures can be found in Chapter 5. The screening

results for the large case can also be found in Chapter 5. There are too many

lines in the large system to present the metrics for each line. However, the

metrics can be examined to determine the weakest elements in the system. This

section discusses the weakest elements in the large system based on the metrics

discussed in this chapter.

The row-based metrics for the ITS show that the longest row has 339 entries.

These entries are on the row corresponding to line 5428. This indicates that a

large number of lines impact line 5428. The average value per entry for line 5428

is 0.131, indicating that outages of many other lines have a substantial impact

on line 5428. The maximum impact of any line on line 5428 is 0.618.

The element-based metrics for the ITS show that line 4370 makes 156

appearances in the ITS, the most for any line or transformer. The average

magnitude for an entry in the ITS for line 4370 is 0.14, meaning that the outage

of this line has an average LODF value of 0.14 onto the other lines in the system.

This line could be considered a critical element because it affects so many other

branches in the system. The maximum average entry is 1.0, indicating that

there are parallel lines in the system that impact only each other.

The maximum row length in the OTS is 49 elements. The line corresponding

to this row is line 4477. The fact that this line has 49 entries in its row indicates

that there are 49 separate contingencies that result in overloads or near

overloads on this line. The average value for an entry on this row is 114.8, which

is well over the value of 100 that indicates an overload. The largest value in this

row is 208, meaning that there is one outage that results in a postcontingent

flow that is over twice the limit of line 4477. The weakness of line 4477 can be

put into perspective by considering the next longest row in the OTS. The next

120

longest row in the OTS has 10 entries, so the row corresponding to line 4477 is

almost 5 times longer. The second longest row belongs to line 4234.

There are 109 lines that have entries in the OTS for the large system. The

most any element appears in the OTS for the large system is 5 times. Line 4667

has five entries in the OTS, meaning that the outage of this line results in more

overloads than any other line in the system. The average value for an entry for

line 4667 is 127.1, and the maximum value is 171. Line 974 has the largest

average entry value, 232.5.

8.5 Conclusions

This chapter presents several methods of identifying critical elements in a power

system. The methods break down to row-based metrics, which characterize how

the system affects a line, and element-based metrics, which describe how a line

affects the rest of the system. The metrics were presented for the two most

successful screening algorithms: the ITS and the OTS. The ITS and OTS

tracking structures are based on different information and they give different

characterizations of weakness. The ITS is based on LODF values, so the ITS

metrics characterize lines based on the impacts they have on each other. The

OTS incorporates a padded version of single-outage contingency analysis results.

The OTS seems to be a better indicator of an element’s weakness. The results

from the OTS are much more definitive. Line 4477 is the weakest element in the

system. The ITS results are not as clear-cut.

121

CHAPTER 9

LINEAR FLOW BOUND

In Chapter 2 an expression for the change in flow was found for the outage of

one or more lines. This chapter examines the expression for change in line

flow (2.31) and uses matrix and vector norm properties to find a bound on the

change in flow. The bound may be expressed in terms of the maximum singular

value of the inverse of M, the norm of the vector of preoutage flows, and the

norm of the vector of LODF values onto the line of interest.

First, the bound is derived for an arbitrary number of outages. Then an

analytical expression for the bound is found for the double-outage case. The

analytical flow bound is compared to the expression for the change in line

flow (2.31) to examine the possible sources of error. Empirical results comparing

the flow bound with (2.31) are presented for the IEEE 14-bus and the

IEEE 118-bus test cases. Statistics are presented for each test case, and

maximum error cases examined.

The test case results show that the flow bound works. There are no cases in

which the change calculated using (2.31) is greater than the bound on the

change. The test case results also show that the error is roughly uniformly

distributed among the lines.

The flow bound is an interesting analytical result. In simplified form, it can be

used as a quick prescreen for the change in flow. However, the calculation may

be slower than simply evaluating (2.31) to find the change in flow, which limits

the use of the flow bound for practical purposes.

122

9.1 Flow Bound Derivation

This section derives an upper bound on the change in flow. The bound is based

on analysis of the linear methods developed in Chapter 2. The analysis begins

by taking the 2-norm of (2.31):

||∆fα||2 = ||LαM
−1F||2 (9.1)

Then, using a consistent norm (i.e., a norm that obeys the submultiplicative

property ||AB|| ≤ ||A|| · ||B||, which includes the p-norms [25]), we can convert

the equality into an inequality

||∆fα||2 ≤ ||Lα||2||M−1F||2 (9.2)

If F is rewritten as F
||F||2
||F||2

, then the submultiplicative property may be applied

to the right-hand side of the previous inequality, and the factors may be grouped

by parentheses. This causes the rightmost factor in the right-hand side of (9.2)

to become ∥∥∥∥
(
M−1 F

||F||2

)
(||F||2)

∥∥∥∥
2

≤
∥∥∥∥M

−1 F

||F||2

∥∥∥∥
2

‖F‖2 (9.3)

which we may substitute back into the original expression to give

||∆fα||2 ≤ ||Lα||2
∥∥∥∥M

−1 F

||F||2

∥∥∥∥
2

‖F‖2 (9.4)

This expression may be simplified because F
||F||2

is a unit vector. If a consistent

norm is applied to the right-hand side of the previous expression, then the F
||F||2

may be discarded to give

||∆fα||2 ≤ ||Lα||2
∥∥M−1

∥∥
2
‖F‖2 (9.5)

123

At this point it may be recognized that the 2-norm of the inverse of M,

||M||2, is the square root of the largest eigenvalue of (M−1)
T

(M−1) [25], which

is of course the largest singular value of M−1. Using σmax (M−1) to represent the

largest singular value of M−1, we can write the flow bound as

||∆fα||2 ≤ ||Lα||||F||σmax(M
−1) (9.6)

9.1.1 Double-outage flow bound

The expression in (9.6) gives a general-form upper bound on the flow change

when using linear sensitivities in terms of the pre-outage flows, the LODFs onto

the lines of interest, and the singular values of the matrix M−1.

The above expression works for any number of outages. From this point

forward, the focus will be on the double-outage case. For the double-outage

case, M is a 2 × 2 matrix that can be written as

M =




1 −dβ,δ

−dδ,β 1


 (9.7)

where the outaged lines are line β and line δ. If we are interested in the impact

on line α, then Lα can be written as a 1 × 2 vector that contains the LODFs of

the outaged lines onto the line α:

Lα =

[
dα,β dα,δ

]
(9.8)

F is a 2 × 1 vector that contains the preoutage flows on the outaged lines:

F =




fβ

fδ


 (9.9)

124

Substituting these values into the expression for the flow bound (9.6) and

evaluating the 2-norm gives

||∆f ||2 ≤
(√

d2
α,β + d2

α,δ

)(√
f 2

β + f 2
δ

)
σmax

(
M−1

)
(9.10)

Since (9.10) depends upon the singular values of M−1, we will now focus on

finding the singular values of the inverse of M. We will begin by finding the

expression for M−1. For the double-outage case, M is a 2 × 2 matrix whose

inverse can be written as

M−1 =




1
1−dβ,δdδ,β

dβ,δ

1−dβ,δdδ,β

dδ,β

1−dβ,δdδ,β

1
1−dβ,δdδ,β


 (9.11)

Now that we have an expression for M−1, we can find the singular values by

calculating the square roots of the eigenvalues of

T =
(
M−1

)T (
M−1

)
(9.12)

Substituting in for M−1 gives

T =




1
1−dβ,δdδ,β

dβ,δ

1−dβ,δdδ,β

dδ,β

1−dβ,δdδ,β

1
1−dβ,δdδ,β




T 


1
1−dβ,δdδ,β

dβ,δ

1−dβ,δdδ,β

dδ,β

1−dβ,δdδ,β

1
1−dβ,δdδ,β


 (9.13)

which can be reduced to

T =
1

(−1 + dβ,δ · dδ,β)
2




1 + (dδ,β)
2 dβ,δ · dδ,β

dβ,δ · dδ,β 1 + (dβ,δ)
2


 (9.14)

Now that we have found an expression for T, we need to find the eigenvalues of

125

T, which can be found by solving

det(λI −T) = 0 (9.15)

which can be expanded to

(
−λ +

√
1 + d2

β,δ

(−1 + dβ,δ · dδ,β)
2

)(
−λ +

√
1 + d2

δ,β

(−1 + dβ,δ · dδ,β)
2

)
− dβ,δ + dδ,β

(−1 + dβ,δ · dδ,β)
= 0

(9.16)

which can be expanded to

−1 + dβ,δ · dδ,β + λ2(−1 + dβ,δ · dδ,β−)λ(−2 + d2
β,δ + d2

δ,β)

−1 + dβ,δ · dδ,β

(9.17)

which, when solved for λ, gives eigenvalues of

λ1 =
2 + d2

β,δ + d2
δ,β − (dβ,δ + dδ,β)

√
4 + (dβ,δ − dδ,β)2 (dβ,δ + dδ,β)

2 (−1 + dδ,β · dβ,δ)
2 (9.18)

and

λ2 =
2 + d2

β,δ + d2
δ,β + (dβ,δ + dδ,β)

√
4 + (dβ,δ − dδ,β)2 (dβ,δ + dδ,β)

2 (−1 + dδ,β · dβ,δ)
2 (9.19)

The singular values can be found by taking the square roots of the eigenvalues.

Thus, σ1 =
√

λ1 and σ2 =
√

λ2. This finally allows the flow bound to be

expressed as

||∆f ||2 ≤
(√

d2
α,β + d2

α,δ

)(√
f 2

β + f 2
δ

)
max (σ1, σ2) (9.20)

The right-hand side of 9.20 is an upper bound on the change in flow. For

convinence, it is refered to as B.

Since the signs on the individual LODF values dδ,β and dβ,δ may be positive or

126

negative, it is not possible to know ahead of time which of the singular values

will be greater. However, the difference between (9.18) and (9.19) can be taken

to determine which of the values is greater. Subtracting (9.18) from (9.19) gives

λ1 − λ2 = −

√
4 + (dβ,δ − dδ,β)

2(dβ,δ + dδ,β)

(−1 + dβ,δdδ,β)2
(9.21)

which will be positive in the event that λ1 is greater than λ2 and negative in the

event that λ2 is greater than λ1.

Now, we may use the fact that LODF values must be between 1 and −1 to

determine the cases when λ1 is greater than λ2 and vice versa. First, note that
√

4 + (dβ,δ − dδ,β)
2 should always be real, because (dβ,δ − dδ,β)

2 is always less

than 4. The denominator of (9.21) should always be greater than or equal to

zero. In the extreme case that both LODF values are 1.0, the denominator will

be zero. However, in that case, the matrix M is singular and its inverse does not

exist. This degenerate case, which is associated with islanding, is discussed in

detail in Chapter 3. So, for nonislanding cases, the denominator will always be

positive. Thus, the determining factor in the sign is

− (dβ,δ + dδ,β) (9.22)

When (9.22) is positive, λ1 is the largest eigenvalue and
√

λ1 is the largest

singular value. When (9.22) is negative λ2 is the largest eigenvalue, and
√

λ2 is

the largest singular value. Table 9.1 has a breakdown of the sign of (9.22) with

respect to the possible signs of the LODF values, which can be used to

predetermine the maximum singular value instead of calculating both values and

comparing them. This can save considerable computational effort.

127

Table 9.1: Table of signs
dδ,β < 0 dδ,β = 0 dδ,β > 0

dβ,δ < 0 + + + if dβ,δ > dδ,β

dβ,δ = 0 + –
dβ,δ > 0 + if dδ,β > dβ,δ – –

9.2 IEEE 14-Bus Test Case Results

The flow bound described in Section 9.1.1 was calculated for every double

outage for the IEEE 14-bus test case [24]. For the IEEE 14-bus test case there

are 190 double outages, which are generated from the double-outage

combinations of the 20 lines in the system. The flow bound is compared to the

predicted change in flow using linear methods (2.31).

The error between the flow bound ||∆f ||2 and the predicted change in dc flow

fdc is defined as

e = ||∆f ||2 − |∆fdc| (9.23)

The absolute value of the flow change calculated using (2.31) is taken for

comparison with the flow bound. Although the change in flow may have any

sign, the flow bound must be positive. So, to compare the values, the absolute

value of the flow bound is used in (9.23). It may be noted that e should always

be positive because the flow bound should always be greater than the actual

change. Also, the closer the error is to 0, the tighter the flow bound.

For the experimental data, the minimum value of error is 0.0, and the

maximum value is 163 MW. The maximum error occurs on the line from bus 2

to bus 3 for the outages of the line from bus 1 to bus 2 and the line from bus 3

to bus 4. These lines are shown highlighted in Figure 9.1. The outaged lines are

highlighted in red. The line on which the maximum error occurs is highlighted

in blue.

128

1

2

3

4

5

6

7

89

1011

12 13 14

Figure 9.1: Maximum error

For the maximum error case, the L vector is

L = [−0.169 − 1.0] (9.24)

the f vector is

f = [147.9 − 24.15]T (MW) (9.25)

and M is

M =




1 0.208

0.169 1


 (9.26)

Using these values the flow bound (9.6) can be evaluated as

||∆f ||2 = 187.15 MW (9.27)

which is much larger than the actual change in flow calculated using dc methods,

||∆fdc||2 = 24.15MW (9.28)

The flow bound on the other lines for the outage of the lines between bus 1

129

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

180

Line Index

E
rr

o
r

(M
W

)

Figure 9.2: Error vs. line index

and bus 2 and the line between bus 3 and bus 4 is much tighter, which indicates

that the error in the flow bound is caused by a factor other than the matrix M.

To explore the behavior of the flow bound, several relationships were explored.

Figure 9.2 shows a plot of error versus line index. This plot shows that the error

is roughly uniformly distributed among the lines. This indicates that the error is

coming from all the lines, meaning that there is no particular line contributing a

large fraction of the error. Aside from the conclusion that the error is roughly

uniformly distributed, the most interesting feature of Figure 9.2 is the fact that

line index 13 has very small errors. Line index 13 corresponds to the line

between bus 7 and bus 8, which is a radial line that connects a generator bus to

the system. The fact that the line is radial and the generator output is 0.0 MW,

meaning the line has no flow, are the reasons the error is so small.

130

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

Flow bound (MW)

E
rr

o
r

(M
W

)

Figure 9.3: Error vs. flow bound

Figure 9.3 shows a more interesting graph. Figure 9.3 shows a scatter plot of

the error versus the flow bound. This plot has the interesting feature that the

data lie entirely below the y = x line. This is a graphical indication that the

error is always less than the flow bound. This should be expected, because

having points above the y = x line would indicate that the error, e, is greater

than the flow bound, which would mean that ||fdc|| would have to be negative.

Another interesting feature in Figure 9.3 are the parallel lines that seem to

appear.

Figure 9.4 shows plots of the error density and the error distribution. These

plots show that error is fairly well distributed over a wide range. This is

indicated in the density plot by the fact that the value near 0 is small — only

around 0.06. The distribution shows the integral of the density plot, so the fact

that the error is widely distributed is indicated by the slowness with which the

curve approaches 1.0.

131

0 50 100 150 200
0

0.05

0.1

Error (MW)

F
(x

)

Error Density

0 50 100 150 200
0

0.5

1

1.5

Error (MW)

P
(e

 <
 x

)

Error Distribution

Figure 9.4: Error distribution

132

CHAPTER 10

GEOMETRY SHADER FLOW

VISUALIZATION

10.1 Introduction

This chapter introduces an efficient means of visualizing line flow information,

which can be useful for visualization of real-time information and speeding up

existing one-line diagrams. Rendering speed is one of the bottle necks for

wide-area visualization, and large numbers of flow arrows can negatively impact

the rendering speed of a one-line diagram. This chapter focuses on speeding up

one of the most computationally intensive parts of a modern power system

visualization: generating flow arrows. Generating large numbers of flow arrows

is one of the most time-consuming processes involved in rendering a one-line

diagram because of the sheer number of them that can be visible. Using

traditional techniques, the position of each flow arrow must be calculated every

time the screen is rendered, and large diagrams can have millions of flow arrows.

This means millions of positions must be calculated and their proper vertices

sent out to be rendered. While flow arrows are the specific case discussed in this

chapter, the techniques are applicable to other power system one-line objects

(e.g., pie charts). The techniques can also be applied to other types of

visualizations entirely. For example, the visualization techniques can also be

adapted to visualize contingency information, such as the information in the ITS.

The methods discussed in this chapter utilize a new feature in modern

graphics hardware known as a geometry shader to generate line flow symbols

133

quickly. Introduced in the GeForce 8 series graphics cards from Nvidia,

geometry shaders are a new feature that allow new vertices to be created after

vertices have been transformed [54]. Before the introduction of the geometry

shader, the vertex shader could move and color a vertex, but it could not create

new vertices. The ability to create new vertices is ideal for the generation of flow

arrows because the burden of positioning each flow arrow can be moved onto the

graphical processing unit (GPU). Drawing flow arrows becomes a matter of

enabling a shader and redrawing the transmission lines.

The advantage of using a GPU to generate the flow arrows is that it has the

ability to generate many flow arrows in parallel, which is much quicker than

determining the flow arrow size, speed, and direction on the central processing

unit (CPU) before they are drawn. A detailed comparison of the two algorithms

is discussed later in this chapter.

The ultimate objective of this research is to increase the operational

awareness of power system operators, which was cited as one cause of the

August 2003 blackout [55]. The increase in rendering speed allowed by these

methods allows for more frequently updated graphics. This does more than

simply improve user experience. It allows new sensor data, such as the

measurements being generated by phasor measurement units (PMUs), to be

incorporated into power system visualizations in real-time.

The speed of new sensors such as PMUs means that the rendering speed of

power system visualization is becoming more important. PMUs report data

roughly 60 times faster than the traditional supervisory control and data

acquisition (SCADA) systems. SCADA systems retrieve new data roughly every

two seconds, while PMUs are capable of reporting new measurements 30 times

per second. The work in [56] combines traditional SCADA data with PMU data

to create real-time displays, and the work in [57] uses GPU techniques to

134

Figure 10.1: One-line diagram using text fields

dramatically speed up the generation of power system contours, which are a very

powerful technique to display power system information [58]. The work

presented in this chapter is another step toward having one-line displays capable

of advanced visualization techniques rendered at interactive rates.

10.2 Flow Arrow Background

In traditional power system visualizations, line flows are listed as text fields

alongside a line. The sign of field gives the direction of the flow, which depends

on the definition of the line, and the magnitude of the field tells how much

power is flowing on the line. The flow as a percentage of the line’s limit may also

be included. Figure 10.1 shows a one-line diagram that uses text fields to

indicate line flows. This type of display has all the necessary information;

however, it is difficult to get a picture of the overall behavior of a system by

looking at a one-line digram using only text fields to describe the flow. This is

because it takes a large amount of attention and concentration from the

operator to read and interpret the line flow fields and form a picture of what is

happening in the system. Flow arrows were introduced as a way to quickly

135

Figure 10.2: One-line diagram using flow arrows

convey information about how power is flowing in the system [58]. Flow arrows

give an impression of the direction of power flow without the need to examine

the signs of text-based fields [59]. Flow arrows are now used in either static or

animated form on most one-line diagrams. Figure 10.2 shows a one-line diagram

that uses flow arrows to indicate the direction of line flows. By comparing

Figure 10.2 and Figure 10.1, it becomes clear that it is much easier to tell line

flow directions and relative magnitudes on the diagram using flow arrows. The

work in [60] presents a human factors evaluation of the use of flow arrows.

Typically, the size and speed of flow arrows are proportional to the amount of

power flowing on the transmission line. Also, flow arrows are usually colored to

indicate the line’s nearness to its limit. For example, a flow arrow may be

colored red to indicate that the flow on that line has exceeded its limit. Orange

is usually used to indicate that the line is approaching its limit, and green

represents nominal operation. So far, we have described several parameters that

affect the flow arrow visualization that are all a function of the flow through the

line, which may be calculated using power flow software or provided from

measurements in the field.

The relevant flow arrow parameters are defined as follows:

136

• Flow arrow size, S

• Flow arrow direction, D

• Flow arrow density, ρ

• Flow arrow color, C

10.3 Traditional Flow Arrow Generation

The traditional process for generating flow arrows is to set the parameters based

on the line’s current flow value and limit. Then, the flow arrow positions are

determined along the transmission line, and the arrows are drawn. The

traditional algorithm is written below in Algorithm 7. A couple of practical

observations can be made about the traditional flow arrow generation algorithm.

First, the algorithm will scale with the number of branches in the system.

Second, most of the work will be done calculating positions and drawing flow

arrows.

Input: Line flow information
Input: Line limit information
Input: Line geometry
Output: Graphical flow arrows
foreach Transmission line do

Determine flow arrow parameters from flow and limit information
foreach Line Section k do

Calculate number of flow arrows to draw, Nk

for i = 1 to Nk do
Calculate position
Draw flow arrow

end

end

end

Algorithm 7: Traditional flow arrow generation algorithm

A line section is a part of a transmission line defined by two vertices — the

137

normal geometric definition of a line segment. A transmission line typically has

several sections. The determination of the flow arrow parameters can be done in

several ways. However, the computation to determine these parameters should

be relatively minimal. Most of the work in the algorithm is done in calculating

the positions and drawing the flow arrows. Calculating the positions can be

relatively computationally intensive because the rotation of the arrows to match

the line can involve sine and cosine calculations. The speed with which flow

arrows can be drawn depends upon the memory bandwidth, which will

determine how quickly the flow arrow vertices can be sent into the video card.

For modern systems, this should not be a bottleneck. However, it should be

noted that since OpenGL uses immediate-mode rendering — objects are drawn

as soon as the command is issued — the time waiting to send the flow arrow

vertices into the video card will be spent idling. Thus, for most implementations

using modern hardware, the slowest part of drawing the flow arrows is

calculating their positions.

A typical transmission line configuration is shown in Figure 10.3. This

transmission line has three sections, and each section has a different length.

Section 1 has length l1, section 2 has length l2, and section 3 has length l3. In

general a line may have any number of sections, but 3 is a good number for

illustrative purposes. Algorithm 7 can be used to place flow arrows along the

length of this line.

The first step is to determine the flow arrow parameters from the flow and

limit information for the line. This will determine the flow arrow size, S, the

flow arrow direction, D, the flow arrow density, ρ, the flow arrow color, C, and

the flow arrow speed, v. For the execution of the rest of the algorithm, the most

important parameter is ρ, because it determines the number of flow arrows in a

line section.

138

l1
l2l2

l3

0.6

0.4

1.0

3.8

7.8

4.2

1.0

Figure 10.3: Sections of a transmission line

For a given line section k, the number of flow arrows in that section can be

calculated using the length of the line section, lk, the length of the flow arrow

head, a, and the length of the arrow shaft from the point of one arrow head to

the tail of the next, b. Here it should be noted that ρ is the length of one

complete flow arrow

ρ = a + b (10.1)

Mathematically the number of flow arrowheads in a section can be written as

Nk = bρ · lkc + dρ · lk − bρ · lkc
a

e (10.2)

This equation says that the number of flow arrowheads in section k is the

integer part of the density–length product, plus one more if there is enough

room at the end for another arrowhead. The second term uses

ρ · lk − bρ · lkc (10.3)

to calculate the mantissa (i.e., the decimal part) of the density–length product.

139

By dividing the mantissa by the length of a flow arrowhead, a, it can be

determined whether there is enough room on the section to fit another flow

arrowhead. Taking the ceiling will give 1 if there is enough room. Otherwise, the

ceiling function will return 0.

For the illustration in Figure 10.3, the length of the first line section l1 is 3.8,

and ρ = 1.0. This density corresponds to the length of the flow arrowhead itself

as well as the length of the spacing in between the flow arrowheads. As shown

on the figure, the length of the flow arrowhead is 0.6, and there is a distance of

0.4 between the end of one arrowhead and the beginning of another. By

evaluating (10.2), the number of flow arrowsheads that fit in this section can be

found. Evaluating the first term of (10.2) gives

b1.0 · 3.8c = 3.0 (10.4)

and evaluating the second term gives

dρ · lk − bρ · lkc
a

e = d3.8 − 3.0

0.6
e = 1.0 (10.5)

Finally, combining the terms gives the number of flow arrowheads that fit in the

first section:

N1 = 3.0 + 1.0 = 4.0 (10.6)

So, as shown in Figure 10.3, it is possible to fit four flow arrowheads on the first

section. The same process can be repeated to find the number of flow arrowheads

on the other two sections. However, there is a small complication. In order to

keep the distance between the flow arrows constant, the flow arrowheads on the

140

following sections must be drawn with an offset. The offset can be calculated as

ok+1 = lk − L(Nk) (10.7)

where ok+1 represents the offset into the next line section, and L(Nk) is a

function that calculates the distance required to draw Nk flow arrowheads from

the tail of the first arrowhead to the tip of the last arrowhead. The distance

function L(Nk) can be written as

L(Nk) = Nk · a + (Nk − 1) · b (10.8)

For the example shown in Figure 10.3, the distance function can be evaluated as

L(4) = 4 · 0.6 + (4 − 1) · 0.4 = 3.6 (10.9)

This gives a total offset into the next section of

o2 = 3.8 − 3.6 = 0.2 (10.10)

This means that when the flow arrows are drawn on the next section, the first

flow arrowhead will begin at 0.2 instead of 0, where 0 is understood to mean the

beginning of the line section.

Once the number of flow arrows per section is known, the inner part of the

flow arrow generation algorithm can be executed. The execution time of the

inner loop will be proportional to the number of flow arrows that need to be

generated, which is in turn directly proportional to the line length. It is this

part (the inner loop) of the algorithm that can be implemented using the

geometry shader.

141

10.4 GPU Background

The traditional rendering pipeline described in [61] is based on fixed operations.

For example, the lighting calculations were done by custom hardware that was

designed to do lighting calculations very quickly. In this architecture, a fixed

operation was done by a chip and passed down the graphics pipeline to the next

chip. This type of fixed architecture has the advantage of being fast, but it is

not very flexible. The graphics pipeline has slowly become more flexible over

time. It is now possible to use a small program to replace the custom hardware

in the pipeline [62]. For example, a small lighting program can be written to

replace the “lighting chip.” These small programs are referred to as shaders

because they are traditionally used to calculate the shading that would result

from lighting and other effects. This capability adds a lot of flexibility. With the

addition of programmable shaders, developers are no longer restricted to the

hardware-provided functionality. They are free to customize selected steps in the

pipeline. For example, shaders allow the addition of new lighting models. The

first two programmable shaders to be added were the vertex and fragment

shaders. A vertex shader acts on a vertex. It is able to alter the position and the

color of the vertex. A fragment shader determines the color of the pixels —

more generally known as fragments — on the screen. The newest type of shader,

called the geometry shader, has the ability to actually create vertices, which

makes it well suited to the generation of flow arrows. A line can be sent to the

geometry shader, which can then emit vertices representing flow arrowheads.

A good background on the development of the graphics pipeline can be found

in [62]. GPUs were developed to relieve the CPU of the need to manipulate

pixels directly, and they have been growing in power and versatility since their

introduction in the 1990s [62]. Geometry shaders are currently supported only

142

by the OpenGL shading language (GLSL) [63] and DirectX 10 [64].

GPUs have been greatly increasing in power. In terms of raw floating-point

operations per second (flops), modern GPUs have more computing capability

than CPUs. However, this power comes with a big caveat. The algorithm must

be parallelizable in order to run efficiently on the GPU. GPUs have been

designed to perform the calculations needed to render a graphical image, and

these calculations are very parallelizable [64].

Along with the high-level limitations of GPU computation, there are limits on

the capability of the geometry shader. For example, there is a limit on the

number of vertices that the geometry shader can emit [54]. This means that a

long line must be divided into pieces if the flow arrows are going to be drawn

down its entire length. The limit for emitted vertices on the development

hardware (GeForce 8800) is 128. Depending upon the type of flow arrow (a

simple triangle or a barbed arrowhead), the number of flow arrows that can be

emitted is 42 or 21. Two triangles (a total of six vertices) are needed generate a

barbed arrowhead because of the geometry shader’s limited output types.

10.5 Geometry Shader Flow Arrow Generation

The geometry shader acts on a per-primitive basis. Primitives are selected types

of geometries (e.g., lines, triangles, quadrangles) that OpenGL uses to draw

objects. For the purposes of generating flow arrows, the geometry shader is set

to output triangles and accept lines. At present, geometry shaders accept only

two vertices from a line at a time [54]. This means that the geometry shader is

restricted to acting on a section of a line at a time. However, this is not a

significant problem, because the geometry shader is able to replace the inner

loop of the traditional flow arrow generation algorithm. This allows the

143

algorithm to execute in parallel. For each section of the line, the geometry

shader makes all the flow arrows for that line in parallel. This allows for a more

efficient process of generating flow arrows.

Input: Line flow information
Input: Line limit information
Input: Line geometry
Output: Graphical flow arrows
Enable Geometry Shader
foreach Transmission line do

Determine flow arrow parameters from flow and limit information
foreach Line Section k do

Calculate number of flow arrows to draw, Nk

Draw line section
end

end

Disable Geometry Shader
Algorithm 8: Geometry shader flow arrow generation algorithm

The difference between the traditional algorithm (Algorithm 7) and

Algorithm 8 is that the inner part of the loop has been replaced. Instead of

calculating positions and sending those positions to the GPU for rendering,

Algorithm 9 sends two vertices defining a line section, and the geometry shader

generates the flow arrows on the GPU.

The algorithm that executes on the GPU is given in Algorithm 9. The

geometry shader program is a relatively simple program, which is a common

feature among all shader programs. A vertex program executes for every vertex,

and a fragment executes for every fragment. Since there are usually large

numbers of vertices and fragments, keeping the programs simple helps to keep

rendering speeds fast.

144

Input: Time t
Input: Offset o
Input: Number of flow arrows N
Input: Line vertex v1

Input: Line vertex v2

Input: Color texture CT
Input: Parameter texture PT
Output: Triangles for flow arrows
Calculate direction of line d = v2 − v1

Calculate length of line mag = ||d||
Normalize direction n̂ = d

||d||

Define 4 vertices for a barbed flow arrow
k = 0
while k < N do

Look up vertex color in CT
Set position Emit back vertex
Look up vertex color in CT
Emit front vertex
Look up vertex color in CT
Emit center vertex
Look up vertex color in CT
Emit back vertex
Look up vertex color in CT
Emit front vertex
Look up vertex color in CT
Emit center vertex

end

Algorithm 9: Geometry shader

10.6 Implementation

There are several practical details that must be considered when implementing a

geometry shader. The first question is whether the method makes sense for the

application. In this case, the analysis above shows that the geometry shader is

appropriate for generation of flow arrows. In other words, the geometry shader

offers advantages over traditional methods for flow arrow generation. The

limitations of the geometry shader must also be considered. The limitations on

the input and output primitives should be considered. For the flow arrow

application, the geometry shader can accept only a line segment (i.e., two

145

vertices). It is not able to accept a line strip or list of vertices. This limits the

scope of the work that can be done in the geometry shader. Any calculation

that requires knowledge above the line segment scope can not be done in the

geometry shader. This is why the number of flow arrows per line section is

calculated on the CPU instead of inside the geometry shader. There is not

enough information inside the geometry shader to do this calculation. The

addition of new input parameters would remove this obstacle. The output type

is a triangle strip, which fits very well with the flow arrow generation application

because flow arrows are essentially stylized triangles.

Another practical consideration is getting the program parameters into the

geometry shader. The driver passes the vertex information to the geometry

shader when the shader program is enabled, but the flow arrow parameters still

need to be set. This means that information needs to be sent into the geometry

shader on the GPU. Information can be passed into the geometry shader in a

number of ways. There are several built-in variables to which the geometry

shader has access in GLSL that can be used to pass information into the

geometry shader. For example, texture coordinates can be accessed in the

geometry shader after being set in the main program. It is also possible to pass

information directly into the shader program using uniform and varying

variables. The difference between them is that a uniform variable has a constant

value throughout the execution of the geometry shader, while a varying variable

is allowed to change [62].

The geometry shader also has access to several texture units, which can be

used to store precomputed values that can be used to enhance the digram. For

example, the textures can be used to store a color map, which can be used to

change the color of the flow arrows as the relative flow. Textures may also be

generated at run time to pass information into the geometry shader. Though

146

texture generation may be a timeconsuming process, the use of textures is best

suited to lookup tables such as the previously mentioned color map. If the flow

on a transmission line is a certain percentage of that line’s limit, then the

texture can be used to tell what color the flow arrow should be. The same idea

can be used for flow arrow sizes. By knowing what the flow on a line is as a

percentage of its limit, the geometry shader can determine the size and color of

the flow arrow based on textures. The two textures that are used to store this

information are called the color texture (CT) and the parameter texture (PT).

The color texture contains a color map, and the parameter texture stores the

other parameter values such as size.

Since the geometry shader acts on a section of the line at a time, the

implementation presented here cannot handle flows that are not uniform

throughout that section. Thus, this method — as it is presented here — cannot

show a line consuming Vars, where the reactive line flow is entering on both

ends of the line. It should be possible, however, to extend the implementation to

fit the flow arrows in an hourglass-shaped envelope. This is left as future work.

The flow arrows shown in Figure 10.4 were generated in the geometry shader

using Algorithm 8 and Algorithm 9. Generating these flow arrows was done by

passing in the number of flow arrows per section and the offset. Texture

coordinates were used to pass this information into the geometry shader.

Percentage line flow is also passed into the geometry shader using texture

coordinates. The time, which is used to calculate offsets for animating the flow

arrows, is passed in using a uniform variable.

Figure 10.5 shows a European system with flow arrows generated on the GPU.

The size and color of the flow arrows are determined by texture lookups. This is

an example of using the texture coordinates to set the flow arrow parameters.

When each transmission line is drawn, a texture coordinate is set, which tells

147

Figure 10.4: Geometry shader – generated flow arrows

the geometry shader where to look inside a texture to find the color and the size

of the flow arrows. The textures used when generating this image are shown in

Figure 10.6. These textures were used to set the color and the size of the flow

arrows. The size texture is very dark because all of the values it contains are

relatively small, and values close to 0 appear black. The color and size values

could be passed to the geometry shader using uniform variables. However, the

use of textures minimizes the amount of information that needs to be passed

between the CPU and the GPU, and minimizing this communication improves

performance.

10.7 Timing Results

This section compares the geometry shader–based flow arrow generation

algorithms with the traditional CPU-based flow arrow generation techniques.

The results are presented for two different test cases: the IEEE 118-bus test case

and a 1254-bus case representing the European power system. These cases are

described in further detail below. The performance of the GPU flow arrow

148

Figure 10.5: Geometry shader – generated flow arrows

Figure 10.6: Color and size textures

generation techniques is discussed for each of the test cases. Finally, conclusions

about the algorithms’ performance are discussed.

The tests were preformed using two different hardware configurations. The

core system consists of an Intel Core 2 Quad CPU running at 2.6 GHz with 6 GB

of random access memory. One configuration uses a GeForce 8800 GTS graphics

card. The card has 320 megabytes of memory and has a core GPU clock rate of

1.35 GHz. This graphics card is among the first generation of graphics cards to

149

Figure 10.7: IEEE 118-bus case with CPU-generated flow arrows

support geometry shader functionality. It has 96 stream processors, meaning

that it has 96 programmable processors to dedicate to parallel shader

operation [65]. The second configuration uses a more powerful GeForce GTX

295 with 895 MB of memory and a total of 480 processor cores. The number of

processor cores is important because these are the “small processors” that will

work in parallel to generate the vertices that constitue flow arrows. Clearly, the

GeForce GTX 295 has a strong advantage in the number of processor cores.

The IEEE 118-bus test case has 186 transmission lines. The IEEE 118-bus

case makes a good test system because it is moderately sized. It is not so large

as to overwhelm the capabilities of either flow arrow generation algorithm.

Figure 10.7 shows the one-line diagram with flow arrows generated by the CPU.

Figure 10.8 shows the same one-line diagram with flow arrows generated by the

geometry shader. The first observation about these figures should be that they

are visually identical.

The timing results for the two algorithms are given in Table 10.1. The frame

rate in frames per second (fps) is calculated using an average over 1000 frames.

Timings were taken for both hardware configurations described in the

150

Figure 10.8: IEEE 118-bus case with GPU-generated flow arrows

introduction. Examining these results, it can be seen that for the older GeForce

8800 the two algorithms have very very similar performance. The CPU-based

algorithms is faster by about 4.5%, but the results are not strikingly different.

Both algorithms preform very quickly. The reason the performances of the

CPU-based algorithms and the GPU-based algorithms seem to be so similar for

the GeForce 8800 is the limited number of processor cores on the GPU that can

be dedicated to flow arrow generation. This hypothesis is supported by the

timing results from the GeForce GTX 295, which has a vastly larger number of

GPU processor cores. As can be seen in Table 10.1, the GPU-based flow arrow

generation algorithm is significantly faster than the CPU-based algorithm. The

GPU-based algorithm runs about 2.4 times faster than the CPU flow arrow

generation algorithm on the GeForce GTX 295.

Table 10.1: IEEE 118 bus-case timing results

Oneline only (fps) CPU (fps) GPU (fps)
GeForce 8800 GTS

2673.3 761.5 398.4
GeForce GTS 295

3616.0 755.6 1270.5

151

The European test case has 1254 buses and 1944 transmission lines, so it is

about 100 times larger than the IEEE 118 bus-test case in terms of the number

of flow arrows. The fact that the European case is relatively large makes

interactive rendering rates a challenge. However, the size makes it a good

representation of a wide-area visualization.

The results of the CPU- and GPU-based flow arrow generation algorithms are

shown in Figure 10.9 and Figure 10.10, respectively. Again, the results are

visually identical. The timing results are presented in Table 10.2. The results

show that the CPU-based flow arrow generation algorithms are actually about

twice as fast as the GPU-based flow arrow generation on the older GeForce 8800

hardware. However, on the modern GeForce GTX 295, with significantly more

processing cores, the GPU-based generation is significantly faster. As with the

118-bus test case results, generating flow arrows on the GPU with the GeForce

GTX 295 is about 2.4 times faster than generating the flow arrows on the

GeForce 8800. The fact that the modern hardware is much faster than the

CPU-based algorithm indicates that the geometry shader is well suited to flow

arrow generation, because the geometry shader is able to take advantage of the

rapidly increasing power in the GPU.

Table 10.2: European case timing results

Oneline only (fps) CPU (fps) GPU (fps)
GeForce 8800 GTS

681.2 156.5 72.0
GeForce GTS 295

651.9 155.9 318.6

152

Figure 10.9: European case with CPU-generated flow arrows

Figure 10.10: European case with GPU-generated flow arrows

153

10.8 Conclusion

This chapter discussed the use of the geometry shader to visualize flow arrows.

The application of geometry shaders to flow arrows works well because it is easy

and efficient to generate flow arrows in parallel (on the graphics card).

Arguably, generating flow arrows in this method is even easier than the

traditional techniques. At least the application code is simpler, and the

geometry shader code is the same for every line.

The timing results showed that the geometry shader flow arrow generation

method outperforms the CPU-based algorithm on modern hardware by a

significant margin. For the 1944-line European case, generating flow arrows

using the geometry shader is twice as fast as doing so on the CPU. Although the

results are much worse for older hardware, the fact that GPUs have been

increasing in power exponentially means that future graphics processors will be

even more powerful, and the geometry shader flow arrow generation algorithm is

very well suited to future applications.

The geometry shader may also be applied to a large number of power system

visualization applications. For example, it should be relatively straightforward

to generate buses in the geometry shader. Generating buses could be done by

storing the bus position, size, and orientation in memory on the graphics card

and using the geometry shader to access these values and generate the buses

very efficiently.

154

CHAPTER 11

CONCLUSION

The main focus of the work in this dissertation was the development of

contingency-screening algorithms capable of processing double-outages.

However, contributions are also made in the areas of analysis and visualization.

The screening algorithms presented in this thesis are very capable. The

screening algorithms were evaluated against the full results of the double-outage

contingency analysis. Also, various methods are used to generate lists of severe

contingencies against which the results of the screening algorithms are checked.

The results in Chapter 6 show that they are capable of capturing 99.4% of the

double-outage contingencies without including a large number of unimportant

events. The various algorithms have different strengths. The overload tracking

structure (OTS) algorithms are very sucessful at predicing double outages that

will result in violations. However, they are not as strong at detecting double

outages that will result in violations only when both lines are outaged. This

turns out to be a difficult class of contingencies to capture. The impact-tracking

structure (ITS) algorithms are the most successful at capturing this type of

contingency. This appears to be because the ITS is designed to generate

double-outage contingencies in which both lines impact a third.

The examination of the matrix M revealed the reasons that the matrix

becomes singular in the event of islanding. The insights from this analysis

inspired the use of the condition number of the matrix M as a measure of the

coupling of the lines involved in a double outage. Distributions of this metric

155

show that — as expected — most outages in a large power system involve lines

that are nearly decoupled. Analysis was also done to study an upper bound on

the flow predicted by the linear methods. The flow bound provides an

interesting analytical tool to study the equation for the linear change in flow,

and if some approximations are made, it can be made faster to evaluate than the

actual equation for linear change.

Work was done to exploit the parallel capabilities of modern graphics

processors to generate flow arrows efficiently. This work allows for the

generation of flow arrows at interactive rates for large one-lines, which has the

potential to increase situational awareness. The timing results show that the

GPU-based methods are significantly faster on modern hardware.

156

APPENDIX A

LARGE SYSTEM DETAILS

The large system represents a portion of the North American Eastern

Interconnect with 5395 buses and 7616 lines. The model contains 735 generators

and 3443 loads, and there are 214 switched shunts in the system. The load in

the system is 126 GW and 103 GVAR. The case is a winter case from a summer

peaking system. There are a total of 28 997 920 double-outage contingencies

involving lines and transformers.

157

REFERENCES

[1] M. Shahidehpour, W. Tinney, and Y. Fu, “Impact of security on power
systems operation,” Proceedings of the IEEE, vol. 93, no. 11, pp. 2013–2025,
2005.

[2] R. Christe, B. Wollenberg, and I. Wangensteen, “Transmission management
in the deregulated environment,” Proceedings of the IEEE, vol. 88, pp.
170–195, 2000.

[3] D. Shirmohammadi, B. Wollenberg, A. Vojdani, P. Sandrin, M. Pereira,
F. Rahimi, T. Schneider, and B. Stott, “Transmission dispatch and
congestion management in the emerging energy market structures,” IEEE
Transactions on Power Systems, vol. 13, no. 4, pp. 1466–1474, Nov. 1998.

[4] Federal Energy Regulatory Comission (FERC), “Order no. 888,” 2006.
[Online]. Available:
http://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp

[5] North American Electric Reliability Corporation (NERC), “System
performance following loss of two or more bulk electric system elements
(category c),” 2007. [Online]. Available:
ftp://www.nerc.com/pub/sys/all\ updl/standards/rs/TPL-003-0.pdf

[6] F. L. Alvarado, “Computational complexity in power systems,” IEEE
Transactions on Power Apparatus and Systems, vol. 95, no. 4, pp.
1316–1323, Nov. 1976.

[7] A. H. El-Abiad and G. W. Stagg, “Automatic evaluation of power system
performance – effects of line and transformer outages,” AIEE Transactions
on Power Apparatus and Systems, vol. 81, pp. 712–716, Feb. 1963.

[8] North American Electric Reliability Corporation (NERC), “Nerc operating
manual,” 2007. [Online]. Available:
http://www.nerc.com/∼oc/operatingmanual.html

[9] G. Ejebe, J. Waight, M. Santos-Nieto, and W. Tinney, “Fast calculation of
linear available transfer capability,” IEEE Transactions on Power Systems,
vol. 15, no. 3, pp. 1112–1116, Aug. 2000.

158

[10] S. Grijalva, P. W. Sauer, and J. D. Weber, “Enhancement of linear atc
calculations by the incorporation of reactive power flows,” IEEE
Transactions on Power Systems, vol. 18, no. 2, pp. 619–624, May 2003.

[11] J. J. Grainger and W. D. Stevenson Jr., Power System Analysis. New
York, New York: McGraw Hill, 1994.

[12] W. Tinney and C. Hart, “Power flow solution by newton’s method,” IEEE
Transactions on Power Apparatus and Systems, vol. PAS-89, no. 11, pp.
1449–1460, Nov. 1967.

[13] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Transactions on
Power Apparatus and Systems, vol. 93, no. 3, pp. 859–869, May 1974.

[14] J. Ward and H. Hale, “Digital computer solution of power-flow problems,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-75, no. 3,
pp. 398–404, Jan. 1956.

[15] K. Purchala, L. Meeus, D. Van Dommelen, and R. Belmans, “Usefulness of
dc power flow for active power flow analysis,” in IEEE PES General
Meeting, vol. 1, Jun. 2005, pp. 454–459.

[16] P. Sauer, “On the formulation of power distribution factors for linear load
flow methods,” IEEE Transactions on Power Apparatus and Systems, vol.
100, no. 2, pp. 760–770, Feb. 1981.

[17] C. MacArthur, “Transmission limitations computed by superposition,”
AIEE Transactions on Power Apparatus and Systems, vol. 80, pp. 827–831,
Dec. 1961.

[18] A. J. Wood and B. F. Wollenberg, Power Generation Operation and
Control. New York, NY: John Wiley and Sons, 1996.

[19] North American Electric Reliability Corporation (NERC), Transmission
Transfer Capability: A Reference Document for Calculating and Reporting
the Electric Power Transfer Capability of Interconnected Electric Systems.
NERC, 1995.

[20] S. Grijalva, “Complex flow-based non-linear atc screening,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, Jul.
2002.

[21] W. Tinney, V. Brandwajn, and S. Chan, “Sparse vector methods,” IEEE
Transactions on Power Apparatus and Systems, vol. 104, no. 2, pp.
295–301, Feb. 1985.

[22] T. Guler and G. Gross, “Detection of island formation and identification of
causal factors under multiple line outages,” IEEE Transactions on Power
Systems, vol. 22, no. 2, pp. 505–513, May 2007.

159

[23] C. M. Davis, T. J. Overbye, and J. D. Weber, “Index of cascadeability
using linear contingency evaluation,” in Proc. North American Power
Symposium, Moscow, ID, Aug. 2004, pp. 329–336.

[24] U. of Washington, “Power system test case archive,” 2007. [Online].
Available: http://www.ee.washington.edu/research/pstca/

[25] G. H. Golub and C. F. VanLoan, Matrix Computations. Johns Hopkins
University Press, 1996.

[26] J. Rice, “A theory of condition,” SIAM Journal of Numerical Analysis,
vol. 3, pp. 287–310, 1966.

[27] G. C. Ejebe and B. F. Wollenberg, “Automatic contingency selection,”
IEEE Transactions on Power Apparatus and Systems, vol. 98, no. 1, pp.
97–109, Jan. 1979.

[28] G. Irisarri, D. Levner, and A. Sasson, “Automatic contingency selection for
on-line security analysis - real-time tests,” IEEE Transactions on Power
Apparatus and Systems, vol. 98, pp. 1552–1559, Sep. 1979.

[29] T. Mikolinnas and B. Wollenberg, “An advanced contingency selection
algorithm,” IEEE Transactions on Power Apparatus Systems, vol. 100,
no. 2, pp. 608–617, Feb. 1981.

[30] G. Irisarri and A. Sasson, “An automatic contingency selection method for
on-line security analysis,” IEEE Transactions on Power Apparatus and
Systems, vol. 100, pp. 1838–1844, Apr. 1981.

[31] S. Vemuri and R. Usher, “On-line automatic contingency selection
algorithms,” IEEE Transactions on Power Apparatus and Systems, vol. 102,
no. 2, pp. 346–354, Feb. 1983.

[32] “IEEE Standard Terms for Reporting and Analyzing Outage Occurrences
and Outage States of Electrical Transmission Facilities,” IEEE, Piscataway,
NJ, 1987.

[33] B. Stott, O. Alsac, and F. Alvarado, “Analytical and computational
improvements in performance-index ranking algorithms for networks,”
International Journal of Electrical Power and Energy Systems, vol. 7, no. 3,
pp. 154–160, Jul. 1985.

[34] T. Halpin, R. Fischl, and R. Fink, “Analysis of automatic contingency
selection algorithms,” IEEE Transactions on Power Apparatus and
Systems, vol. 103, no. 5, pp. 938–945, May 1984.

[35] L. Fink, K. Carlsen, R. Fischl, and H. Puttgen, “Power system security
assessment,” in 23rd IEEE Conference on Decision and Control, vol. 23,
Dec. 1984, pp. 478–480.

160

[36] A. Ekwue, “A review of automatic contingency selection algorithms for
online security analysis,” in Third International Conference on Power
System Monitoring and Control, Jun. 1991, pp. 152–155.

[37] S. Greene, I. Dobson, and F. L. Alvarado, “Contingency ranking for voltage
collapse via sensitivities from a single nose curve,” IEEE Transactions on
Power Systems, vol. 14, no. 1, pp. 232–240, Feb. 1999.

[38] F. Albuyeh, A. Bose, and B. Heath, “Reactive power considerations in
automatic contingency selection,” IEEE Transactions on Power Apparatus
and Systems, vol. 101, no. 1, pp. 107–112, Jan. 1982.

[39] G. Irisarri, S. Hodges, and A. Sasson, “AEP automatic contingency
selector: Branch outage impacts on load bus voltage profile,” IEEE
Transactions on Power Systems, vol. 1, no. 6, pp. 37–44, May 1986.

[40] G. C. Ejebe, H. P. V. Meetern, and B. F. Wollenberg, “Fast contingency
screening and evaluation for voltage security analysis,” IEEE Transactions
on Power Systems, vol. 3, no. 4, pp. 1582–1590, Nov. 1988.

[41] J. Zhu and G. Xu, “Approach to automatic contingency selection by
reactive type performance index,” Proceedings of the IEEE, vol. 138, pp.
65–68, 1991.

[42] R. Fischl, T. Halpin, and A. Guvenis, “The application of decision theory
to contingency selection,” IEEE Transactions on Circuits and Systems,
vol. 29, no. 11, pp. 712–723, Nov. 1982.

[43] R. Fischl, M. Kam, J. Chow, and S. Ricciardi, “Screening power system
contingencies using a back-propagation trained multiperceptron,” in IEEE
International Symposium on Circuits and Systems, vol. 1, May 1989, pp.
486–489.

[44] J. Chow, R. Fischl, M. Kam, H. Yan, and S. Ricciardi, “An improved
hopfield model for power system contingency classification,” in IEEE
International Symposium on Circuits and Systems, vol. 4, May 1990, pp.
2925–2928.

[45] K. Lo, L. Peng, J. Macqueen, A. Ekwue, and D. Cheng, “Fast real power
contingency ranking using a counterpropagation network,” IEEE
Transactions on Power Systems, vol. 13, no. 4, pp. 1259–1264, Nov. 1998.

[46] Q. Chen and J. McCalley, “Identifying high risk n-k contingencies for online
security assessment,” IEEE Transactions on Power Systems, vol. 20, no. 2,
pp. 823–834, May 2005.

[47] S. Grijalva and A. Visnesky Jr., “Spatial representation of the effect of new
generation on network security,” in IEEE PES General Meeting, Oct. 2004,
pp. 144–149.

161

[48] S. Grijalva and A. Visnesky Jr., “The effect of generation on network
security: spatial representation, metrics, and policy,” IEEE Transactions on
Power Systems, vol. 21, no. 3, pp. 1388–1395, Aug. 2006.

[49] PowerWorld Corporation, “Powerworld,” 2009. [Online]. Available:
http://www.powerworld.com

[50] NERC, “Nerc iro-006-03 reliability coordination transmission loading
relief,” 2006. [Online]. Available:
ftp://www.nerc.com/pub/sys/all updl/standards/IRO-006-3.pdf

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Boston, MA: McGraw Hill, 2001.

[52] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference
Guide, 2nd ed. Addison Wesley, 2001.

[53] SGI, “Standard template library programmer’s guide,” 2007. [Online].
Available: http://www.sgi.com/tech/stl/index.html

[54] P. Brown and B. Lichtenbelt, “Ext geometry shader4,” 2007. [Online].
Available:
http://www.opengl.org/registry/specs/EXT/geometry shader4.txt

[55] U.-C. P. S. O. T. Force, “Final report on the august 14th blackout in the
united states and canada,” 2004. [Online]. Available:
https://reports.energy.gov/

[56] R. Klump, R. Wilson, and K. Martin, “Visualizing real-time security
threats using hybrid SCADA/PMU measurement displays,” in Proc. 38th
Annual Hawaii International Conference on System Sciences (HICSS
2005), Jan. 2005.

[57] J. Tate and T. Overbye, “Contouring for power systems using graphical
processing units,” in Proc. 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), Jan. 2008, p. 168.

[58] J. Weber and T. Overbye, “Voltage contours for power system
visualization,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp.
404–409, Feb. 2000.

[59] M. Laufenberg, “Visualization approaches integrating real-time market
data,” Power Systems Conference and Exposition, IEEE PES, pp.
1550–1555, vol.3., Oct. 2004.

[60] D. Wiegmann, G. Essenberg, T. Overbye, and Y. Sun, “Human factor
aspects of power system flow animation,” IEEE Transactions on Power
Systems, vol. 20, no. 3, pp. 1233–1240, Aug. 2005.

162

[61] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming
Guide, 5th ed. Reading, MA: Addison Wesley, 2005.

[62] R. Fernando and M. Kilgard, The Cg Tutorial. Boston, MA: Addison
Wesley, 2003.

[63] R. J. R. et. al., OpenGL Shading Language, 2nd ed. Boston, MA: Addison
Wesley, 2006.

[64] H. Nguyen, Ed., GPU gems 3. Nvidia, 2008.

[65] Nvidia Corporation, “Geforce 8800,” 2009. [Online]. Available:
http://www.nvidia.com/page/geforce 8800.html

163

AUTHOR’S BIOGRAPHY

Charles Davis (Matt) was born in Hot Springs, AR, on May 6, 1980, to Tom and

Suzan. He has one younger brother, Andrew, and one younger sister, Beth.

Matt attended Louisiana Tech University in Ruston, LA, where he received a

B.S. in electrical engineering, summa cum laude, in May 2002. He then received

an M.S. in electrical engineering from the University of Illinois at

Urbana-Champaign in August 2005, applying linear factors for power system

security. Matt’s research interests are in power system security, computation,

and visualization. He has published four conference papers.

Matt has worked part-time at PowerWorld Corporation since starting

graduate school, where he as worked on several projects involving power system

modeling, security and visualization. During the 2005-06 academic year Matt

received the Grainger Outstanding Power Engineering Student Award.

164

