Approximate Solutions for Oblique Detonations in the Hypersonic Limit
Joseph M. Powers*
University of Notre Dame
D. Scott Stewart’

University of Illinois at Urbana-Champaign

Abstract

This article describes analytic solutions for hypersonic flow of a premixed reactive ideal gas
over a wedge. The flow is characterized by a shock followed by a spatially resolved reaction zone.
Explicit solutions are given for the irrotational flow field behind a straight shock attached to a
curved wedge and for the rotational flow field behind a curved shock attached to a straight wedge.
Continuous solution trajectories exist which connect the state just past the shock to the equilibrium
end states found from a Rankine-Hugoniot theory for changes across oblique discontinuities with
energy release. The analytic results are made possible by the hypersonic approximation, which
implies that a fluid particle's kinetic energy is much larger than its thermal and chemical energy.
The leading order solution is an inert oblique shock. The effects of heat release are corrected for at
the next order. These results can be used to verify numerical results and are necessary for more
advanced analytic studies. In addition, the theory has application to devices such as the oblique

detonation wave engine, the ram accelerator, hypersonic airframes, or re-entry vehicles.
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Introduction

Renewed interest in hypersonic propulsion has spurred research involving oblique detonation
waves. The two-dimensional structure of steady reactive flow over a wedge as sketched in Fig. 1
is considered here. A uniform supersonic upstream flow encounters a wedge, inclined at angle 0,
producing an oblique shock, inclined at angle B, which initiates chemical reaction that takes place
over a finite region. We call such a structure an oblique detonation.

Among the devices where oblique detonations are a relevant concern are the oblique detonation
wave engine (ODWE). The ODWE utilizes a wedge to generate a shock wave and subsequent
combustion in a pre-mixed fuel-air mixture. The study of Pratt! et al. of oblique detonation
discontinuities, which led us to consider this problem, gives a fuller discussion of the ODWE. The
ODWE and related re-entry and non-equilibrium flow problems motivated many early
experimental, analytic, and numerical studies2-13 and more recent, primarily numerical, studies!4-
22 The ram accelerator23 is another device which may be associated with oblique detonations.

Theoretical studies of oblique detonations have been of four types, Rankine-Hugoniot
analysesl» 2.9, 19, perturbation analyses3: 7> 12, numerical analyses based on the method of
characteristics8: 13. 22, and unsteady numerical analyses14-18,20-22, Rankine-Hugoniot analyses,
such as those performed by Siestrunck?2, et al., Gross?, and more recently by Pratt! et al. and
Buckmaster and Lee20 assume that heat is released in an infinitely thin zone coincident with the
oblique shock. In assuming that the heat is released instantaneously, jump equations with heat
release are formed, and an algebraic solution for the reacted state is obtained. The analysis
presumes that a structure linking the shock state to an equilibrium end state exists.

Perturbation methods can be used to describe this structure. Similar studies have considered
vibrational relaxation of hypersonic flow over wedges with small angle (Moore and Gibson3 and
Vincenti’) and O(1) angle (Lee!2). In a related study, Clarke# considered flow slightly turned by
an expansion corner. Other related studies concern shock initiation of explosives. In these studies
a moving piston generates a shock which ignites the explosive. There is a direct analog between

one-dimensional, unsteady flow and two-dimensional steady flow over small wedge angles; this



has been called the hypersonic equivalence principle (cf. Anderson24,p. 118, or for more
background Hayes and Probstein25). When the piston generates a strong overdriven shock, the
effective heat release is small. Spence® and later Fickett26 carried out such an analysis using the
ratio of chemical to kinetic energy as the perturbation parameter and obtained exact solutions. In
fact Fickett's paper led us to consider the perturbation scheme for the present study.

Numerical solutions for nonequilibrium flow over a wedge based on the method of
characteristics have been performed by Capiaux and Washington8. Spurk13 et al., and Pandolfi?2
et al. This method can describe flow over a wedge or conel0 with large deflection, flow with
simultaneous chemical reactions, and large energy of reaction and is limited to supersonic post-
shock flows. Full unsteady numerical analyses of oblique detonations have been performed by
Fujiwaral3, et al., Wang!6, et al., Bogdanoff and Brackett14, Cambier!7-18, et al., Yungster20,
and Yungster?l, et al. In addition to the basic oblique detonation phenomena, these studies
variously consider the effects of many simultaneous reactions, viscosity, and dissociation.

In this article, we consider the configuration of Fig. 1 for an ideaiized system which retains
enough features to describe an oblique detonation. The solution is not restricted to small wedge
angles. Our goal is to describe the shape of an inert shock and the trailing two-dimensional
reactive flow field in terms of the initial flow properties, kinetic rate, and wall geometry and to
demonstrate that the complete reaction state predicted by the detailed structure analysis can in
certain cases be predicted by a reactive Rankine-Hugoniot analysis. Two cases are studied. The
first has a straight shock attached to a curved wall. The second has a curved shock attached to a
straight wall. Explicit solutions to the former have not appeared to our knowledge, though
Anderson (pp. 559-561) and Shepherd?# discuss this case. The latter is the exothermic analog to
the case discussed by Lee for endothermic vibrational relaxation. It is shown that in the curved
shock-straight wall case, that the shock curvature approaches zero far from the wedge tip in which

case the simpler straight shock solution adequately describes the flow field.

Model Equations



The flow is modelled by the steady two-dimensional planar reactive Euler equations along
with constitutive and shock jump equations. Dissociation, vibrational relaxation, or other real gas
effects are not considered. It is assumed the fuel and oxidizer are premixed and can be treated as a
single calorically perfect ideal gas. A one-step Arrhenius kinetic model is used. The results are
valid in the limit in which both the heat of reaction and thermal energy of a fluid particle are small
relative its kinetic energy. An O(g) correction to the constant shocked state is found using the
reciprocal of the incoming Mach number squared as a perturbation parameter.

The following scales are used for this problem. Here the "o" subscript indicates a pre-shock
dimensional ambient condition and the "*" subscript indicates a dimensional variable.

Py u, V, P, rox* Iy,
p=— u= L v= ,P= X =

H ’ ? y =
p 2
o M, PO/po M, Po/po MP M, Po/p0 M / P o/po

The density, velocities, pressure, distances, and Mach number are p, u, v, P, x, y, and M,

(1)

respectively. In the hypersonic limit the length scale is defined by the reaction zone length when
heat release has negligible influence. For O(1) dimensionless activation energy ©, the length scale
will be shown to be of the same order as the quotient of the free stream velocity (u,=M,
(YPo/p,)1/2) and the Arrhenius prefactor r,. Here 7is the ratio of specific heats. Density, velocity,
and pressure scales have been chosen so that after the shock each is an O(1) quantity.

The dimensionless steady reactive Euler equations can be written as

) o) ; du dul op ov _ov) op
ﬁ(pu)+a—y(pV)=0, p(“§;+"ay)+§——0 Pl%x T Voy +-5}7=0,(2a,b,c)
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Egs. (2a), (2b,c) describe conservation of mass and momenta. Eq. (2d) is energy
conservation written in a form which incorporates the assumption of an ideal gas and one-step

Arrhenius kinetics. Eq. (2¢) is a rate law for Arrhenius kinetics with simple depletion. Here A is



the mass fraction of the reaction product gas, 0 <A <1, with A = 0 and A = 1 corresponding to no
reaction and complete reaction, respcctively. Other dimensionless parameters are the heat of
reaction q = p,qo/P,, the activation energy © = E p/P,, and the perturbation parameter €, defined
to be the reciprocal of the squaré: of the incoming Mach number, € = 1/ M2 = yP/p,u,2. Here q,
is the dimensional heat release and E, the dimensional activation energy. The undisturbed flow
properties are p =1, u = 71/2, v=0,P=¢,and A =0. The undisturbed flow approaches a shock
inclined at an unknown angle B, located at y,, assumed to be a function of x and attached to the
wedge. The function B(x) is chosen so that a downstream boundary condition of no mass flow
through a wall, located at y = W(x) is satisfied. With s as a dummy integration variable, the shock

location and downstream boundary condition are given by

yg = jtm[B(S)] ds, -;1 = dv(;zx) on y =W(x). (2f,g)

0

Supplementary thermal and caloric state equations can be used to determine the internal energy
¢, temperature T, and frozen sound speed c: P = pT, e = T/(y-1) - €q), c2 = YP/p. The vorticity

w, and shock curvature k are given by

,, “3p
v 9 d’y ay \’
= 2 e s s : (2h,i)
z 9dx dy dx dx

Rankine-Hugoniot Relations

Rankine-Hugoniot relations can be solved at each point in the reaction zone structure with the
degree of heat release Aq as a parameter. It is assumed here that the velocity tangent to the initial
discontinuity remains constant through the discontinuity and at all points within the reaction zone.
For a wave inclined at an angle B and the subscript "2" denoting the local state, the Rankine-

Hugoniot relations are

w/; sinB = pz(uzsinB - v,cosp ), (3a)
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g+ysinp = P, + pz(u2sin[3 - v,cosP ) ) (3b)
1/; cosp = u2cosB + vzsinB , 3c)
- - P 12, 2
8(14‘1—1)\,(1) +(’Y_1. = -—2- + v 1(u2+V2), (3d)
Y 2 P, 2y

The full solution for Egs. (3a-d) in terms of B, v, €, and q is given in gas dynamics texts for
the inert case (A = 0) and by both Gross and Pratt, et al. for the fully reacted (A =1) case. Some
pertinent results are summarized, with Pratt et al.'s nomenclature adopted. For a wedge inclined at
an angle 0, two solutions, strong and weak, exist. Consistent with the inert oblique shock
convention, the strong solution is taken to have the greater angle of inclination for a given wedge
angle. It is likely that the appropriate branch is dictated by the nature of the downstream boundary
conditions; however the necessary analysis has not been performed to determine which boundary
conditions are associated with which solution branch. Fig. 2 shows the wave angle B as a function
of the local flow angle, which for A = 1 corresponds to the wedge angle 6. The exact solution of
Egs. (3a-d) is plotted here for y = 1.4, q = 11.2, and three values of A: 0, 0.5, and 1. For A = 1,
the local minimum corresponds to a point where the Mach number in the direction normal to the
wave (M,) is sonic, analogous to a Chapman-Jouguet (CJ) detonation. For a given 0, complete
reaction solutions on the weak branch with a final M;, < 1 are called overdriven weak oblique
detonations, while those with a final M;, > 1 are called underdriven weak oblique detonations.
When both velocity components are used to define a total Mach number, most of the weak branch
is supersonic. In the hypersonic limit it will be shown the entire weak branch is supersonic.

There are many analogs between one-dimensional Zeldovich-von Neumann-Doering (ZND)
detonation theory, described in detail by Fickett and Davis28, and oblique detonation theory.
Unfortunately, inert oblique shock theory and ZND theory suggest two conflicting interpretations
of the terms "strong" and "weak". The analogs in both the theory and nomenclature are described

here. Strong and overdriven weak oblique detonation reaction paths for fixed shock angle f3 are



sketched in Fig. 2. In both the unreacted gas is shocked from O to N with no heat release within
the infinitely thin shock. The shock induces exothermic reaction, giving rise to pressure, density,
and velocity changes in the direction normal to the shock, while the velocity tangent to the shock
remains constant through both the shock and reaction zone. The reaction proceeds to completion at
Sonal =1polar. From N to S the local Mach number normal to the shock is subsonic. For a
unique value of B, the reaction terminates at C, where the local Mach number normal to the shock
is sonic. In this model with one-step irreversible kinetics, there is no path from the shocked state
N to the underdriven weak point W. We speculate that with more complex models, such as those
with competing exothermic and endothermic reactions, eigenvalue detonations could provide a path
from N to W, which suggests that weak underdriven oblique detonations are possible. The
families of partially-reacted oblique detonation polars are analogous to partially reacted Hugoniot
curves of ZND theory. The line of constant J is analogous to the Rayleigh line in ZND theory.
The labels O, N, S, W, and C are those used by Fickett and Davis for ZND detonations. In the
adopted nomenclature, strong and overdriven weak solutions are analogous to ZND theory's
strong solutions; underdriven weak solutions are analogous to ZND theory's weak solutions. This
description is consistent with that of Anderson and Shepherd. As inferred in these references, it is
possible to construct an oblique detonation solution by forming a one-dimensional ZND solution,
which in general must be obtained numerically, and adding a constant velocity component in the
direction normal to the detonation. In subsequent sections, simple explicit overdri\;ren weak and
strong solutions will be constructed for the spatial distribution of all variables, requiring no
numerical integration. These solutions will exhibit all the features described here.

For our present purposes, we give a solution, parameterized by the product mass fraction A,
valid in the hypersonic limit. Though not illustrated in Fig. 2, it can be shown that in the
hypersonic limit the complete reaction polar approaches the inert polar, the turning point C
approaches the vertical axis, and that near the origin, the inert polar approaches the curve 0 =
2B/(y+1). In this limit, overdriven weak and strong solutions are available in a range O(g) < <

/2. The asymptotic solution valid as € — 0 is
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The leading order terms, which will be denoted by the subscript "s", in Egs. (4a-d) represent the
inert oblique shock solution in the hypersonic limit. Thus for example the leading order pressure
and density are Pg and pg, respectively. The angle 0 given in Eq. (4d) represents the local flow
angle and for A = 1, the wedge angle. The O(g) correction terms account for corrections away
from the hypersonic limit and for chemical reaction effects. For y> 1, exothermic reaction, q >0,
and 0 < B < m/2, the bracketed terms in Eqs. (4a-d) are strictly positive. Thus exothermic reaction
and finite Mach number effects tend to decrease the pressure, decrease the density, increase the
velocity magnitude, and broaden the angle between the discontinuity and solid surface.

A maximum wedge angle 6, dependent only on v in the hypersonic limit, is implied by Eq.
(4d). At leading order this equation can be written as a quadratic equation in sinf. The
discriminant of this quadratic provides a condition for real solutions which restricts the wedge
angle to be below a maximum value. Wedge angles greater than the maximum give rise to a
detached bow shock. In the hypersonic limit, the corresponding conditions on the wedge and

shock angles 0 and B for an attached shock are

(5a,b)



For vy = 1.4 this corresponds to 8 <45.6° and B < 67.8°. The CJ wedge angle, which provides a
lower bound on 0 for a structure with a lead shock followed by a one-step reaction, is O(€) in the
hypersonic limit; Pratt et al. give a complete determination away from the hypersonic limit.

The inert oblique shock solution suggests a more convenient coordinate system[(x,y)—(€,n),
(u,v)—(U,V)] in which the unit position and velocity vectors are parallel to the leading order shock
and wall. It will be seen that as a result of this choice first integrals of the leading order product
mass fraction equation and O(g) streamwise momentum equation can be obtained. In addition, the
shock and wall boundary conditions are transferred to = 0, 1 = 0, respectively. The appropriate

linear transformations and inverse transformations are

X = §cosG+ncosBs, y = Esinf+1 sinBS, u= UcosG+VcosBs, V= Usin6+VsinBS,

x sinf -y cosf_ _y cosB-x sin6 U= u sinf_-v cosf_ vy cos0-u sin6

9 b 9

sinq sinol sino sino

where & and U are the distance and velocity, respectively, measured parallel to the wall, and 1 and
V are the distance and velocity measured parallel to the straight shock found in the hypersonic limit
(see Fig. 1). Here B is the leading order shock angle and o is defined as the angle between the
leading order inert shock and wedge; ot =, - 6. The direction parallel to the wall is called the
streamwise direction and the direction parallel to the shock the transverse direction.

With these transformations Eqs. (2a-i) can be written as follows:

d %)
—\pU)+——\pv) =0, (72)
o (pu) an(p )

('a‘U‘+COSOL—) V{-— + cosoL )+22 = 0, (7b)

g o |

ou , 9V du oV} oP
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Here Q(&) is a function found by transforming the function W(x) to &-1 space. It is assumed that

all variables can be written in a regular expansion, uniformly valid in a region bounded within O(1)

distances from the wedge tip, in which € is taken to be a small parameter:

P= Ps+eP'+O(e2), p= ps+£p'+0(82), U= Us+eU'+O(eZ), K= 81('+0(82),
V=ev+O@), P=B+ep+OE), A= A+O(E), Q=eQ+OE’), 0 =ew '+OE ()

The asymptotic shock conditions and definitions of supplementary constants U, A, B, C, D, E,

and F, are given next. The O(€) correction accounts for finite Mach number and shock curvature.
UOm =U, +¢(B +Cpm) +0ed,  vom = e(A +DBM) + 0,

POM) = P_+e(E+EB(M) + 0D,
U = 2.2 =‘/:Y-\/72+2YCOSZBS +1’ Al 2y cosp
s =V U s v+ 1 (’Y'l)Sinzﬁs
- 2\[';\/72+27c0s2ﬁs + 1’ _ 2\/;\/72+ZYCOSBS +1
| (Yz - 1)Sin2133 tanf (72 - 1)
2,/; (ycosZBs + 1)
(72— 1) sin]3S

At leading order the forcing term in the energy equation (7d) is zero, and Egs. (7a-d,f-i) are

b

9

) 2ysin2f
g Y21 g s ©)

y+1 (y+1)

2

satisfied by the constant inert oblique state: P=Pg, U=U, V=0, p =pg, B =B, Q= 0, 0, =0,
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k =~ 0. Eq. (7¢) however has a non-trivial solution at leading order, Ag = 1 - exp(- £/Uy). After the
shock the reaction commences, and heat is released at the rate dictated by the local post shock
conditions. In the leading order approximation, the heat release does not affect the flow properties.
As a result the reaction rate, which in general is a function of density, pressure, and extent of
reaction, varies only as the extent of reaction in the reaction zone. The dimensional leading order
reaction zone length is only a function of the post-shock velocity and the Arrhenius prefactor. As
the post shock velocity is of the same order as the undisturbed velocity, and y and B, are O(1), the
dimensional reaction zone length is estimated as L = O(uO/ro). For different ordering schemes (for
instance ® = O(1/g)) the reaction zone length would be a function of the activation energy also, but
would change at most by a constant factor as the Arrhenius term is constant at O(1) in the
hypersonic limit.

At O(g) heat release influences flow field. Eqs. (7b-d) can be written compactly by using the
solution for A4 to substitute for A in Eq. (7d) and using Eq. (7a) to replace density derivatives by

velocity derivatives in Eq. (7d).

o’ V') ap ou’ v} op
p U | —+ cosa o =0, psUs cosa + —_— +3;]- =0, (10a,b)

s7s\ g x| ot 9 ot
aP' 9}_]_' .al 'g/Us
USE-PYPS( % o (v-1) pae - (10c)

At this order the initial conditions, to be applied just past the shock, are U'=B+Cp', V'=A+Df',
and P'=E+Ff'. The shock angle B'(n) is chosen so the downstream boundary condition is
satisfied. At O(g), the shock location &g and downstream boundary condition are given by

§ = -—£ }B'(s )ds, V' =Us% on 1 =Q'). (10d.¢)

S .
sino 5
The equations are uncoupled from the O(€) density; consequently, the mass equation, which fixes

the density, is unnecessary when calculating the pressure and velocity fields. The linear constant
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coefficient equations and initial and boundary conditions can thus be written as a complete set of
five coupled equations (10a-€) in the five unknowns P', U', V', and B, and either (1) or Q(&).

ight Shock-Curv 1 Solution

By specifying the shock position &g as straight line attached to a curved wall of as-yet
unknown shape Q(&), a solution to Egs. (10a-¢) can be obtained. Two simplifying features of the
solution distinguish it from the more complicated case of a curved shock attached to a straight wall.
The flow field is irrotational and only a function of the streamwise coordinate &, while the curved
shock-straight wall solution is both rotational and a function of both spatial variables & and 1. The
solution obtained in this section can also describe the flow field in the curved shock-straight wall
problem in the limit as 1 — oo, described in a later section. In this limit the curvature of the shock
approaches zero; thus, the analysis of this section is appropriate.

With the assumption of no O(g) shock deflection, B'(n) = 0. The shock location and shock
conditions simplify to & =0, U' =B, V' = A, and P' = E. With the constant post-shock Mach
number defined as M2 = pU2/(YP,) = (y2+2ycos2Bg+1)/[2Y(y-1)sin2B,], the following velocity

and pressure fields satisfy Eqgs. (10a-c):

M (y-1
. . (y )q [l_e'wS] on =\/72+27c052BS +1|-(1_e-§’Us )q+ﬂ_ . (11a)
US (I—Mz sinzoc) \/;sinzﬁs '- vl

(“Y+l)cos[3S
\/; sin2[3S

V' =-

MS (Y- 1)cosaq 'WS]+A _
- = -

U (I-M2 sinza)
S S

o Py M (v- 1)sin2aq[ -§/Us]+E _ _(7_1){(1_6@%)@73_} 110)

)L 2y
(lf{m )‘“'ﬁ, (11b)

1-e
1-M§ sinzoc L +1

The solution (11a-c) is written in two forms. The first form, given in terms of the shocked state,
can easily be shown to satisfy Eqs. (10a-c) and initial conditions by direct substitution. The

second form is found by using the definitions in Eq. (9) to evaluate the constants which appear in

the first form in terms of more basic parameters. With the second form it is seen that as & — oo
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that the pressure perturbations exactly match those predicted at O(g) by the Rankine-Hugoniot
analysis (4a). It can further be shown by using Eqgs. (11a,b) to determine the velocity perturbation
magnitude and the mass equation (7a) to determine the density perturbation that as § — e these
variables exactly match values predicted by the Rankine-Hugoniot analysis (4b,c) at O(g).

Other aspects of the description of an oblique detonation deduced from consideration of the
Rankine-Hugoniot analysis are confirmed. The velocity tangent to the shock wave, V; =Ugcoso+
g[U'cosa+V'] is a constant, while the velocity normal to the shock wave, V =Ugsinoi+ €[U'sina]
varies with distance. Using the mass equation to determine density variation, and using this in
conjunction with the velocity component normal to the shock wave allows the Mach number
normal to the shock wave, M, to be determined. It is seen fory > 1 that M, is initially subsonic,
increases as chemical reaction occurs, but for O(1) heat release ¢, remains subsonic. The structure

of Vi, Vy,, and M2 given below:

\/_ (y-1)sin -1 U, 2
Vt=s/;cosBS + 0(82), Vn = —Y—Y—-——Bi + e—y—— (1+e S )q +_Z' +O(e2)
y+1 v/;sinBS -1
2
- Dy-1 1 4
1\/[2n _r1, 8&——)—%—)[(1 - ew‘)q + —] + O(e2). (11d,e,f)
2y 4y%sin"B_ -1

In light of Eqgs. (11d,e,f), the idea that an oblique detonation can be described by superimposing a
constant velocity field onto a one-dimensional detonation structure is confirmed. This could be
more directly exhibited by choosing an orthogonal coordinate system oriented to the shock; the
method used here is chosen so that this simple case can be examined in the same way as the
straight wall-curved shock case, for which the present formulation is advantageous.

A wall shape consistent with this flow field can be found by determining the streamline which
passes through the origin. Streamlines are defined by the differential equation, given here in both
the Cartesian and transformed coordinate system, valid at all orders, dx/u = dy/v, d&/U = dn/V.

The now determined velocities are substituted into this equation and the condition 1(0) = 0 is taken
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so that the wall streamline passes through the origin. These substitutions and subsequent

integration yield an expression for the wall shape perturbation:
(Y+ 1) cos[fiS I-C-UU’ ok 2(’Y+1) cos|3S 13
i 4 u |
¥ sin Bs S ('Y - l)sinZBs \/ yz+2700s2[3S +1

QE) = (11g)

From Eq. (11g) it is seen that a far-field non-uniformity exists. When & = O(1/e) the leading order
terms are of the same order as terms at the following order. That is for distances far from the
wedge tip (§ = O(1/e)), the wall is deflected by an O(1) distance. The solution is thus only
uniformly valid in a spatial domain bounded by O(1) distances from the wedge tip. Finally, it is
seen from the definitions of vorticity and shock curvature that both are zero for this flow field.

Results are given for a) a strong oblique detonation inclined at B = m/2.12 and b) an
overdriven weak oblique detonation inclined at B = /3. In both cases q = 11.2 and € = 0.0237
(Mg = 6.5). Both paths of the reaction are sketched in Fig. 2, proceeding from N to S. All results
can be returned to Cartesian space by use of the transformations (6). Streamlines are plotted in
Fig. 3a,b. The streamline which passes through the origin gives the shape of the wall. Other
streamlines are formed by translating the wall streamline such that the streamlines begin at the
shock. The dimensionless pressure, streamwise and transverse velocities, Mach number normal to
the shock, and product mass fraction are plotted versus streamwise distance in Fig. 4a,b. The
more powerful shock of the strong oblique detonation gives rise to short relaxation zones relative
to the overdriven weak oblique detonation.

Though the issue of what boundary conditions are necessary for a well-posed, stable solution
has not been addressed, analogs with inert flow offer plausible suggestions. For external flow
over a finite wedge, the far-field disturbance must be a Mach wave, which suggests that the near-
field solution should be the overdriven weak solution so that the proper matching can occur. The
strong oblique detonation may be appropriate for an internal duct flow with a sufficiently high back
pressure and walls which are parallel to the streamlines. The analog here is a normal shock

standing in a one-dimensional duct.
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Straight Wall-Curved Shock Solution
The more difficult problem posed by Egs. (10a-¢), namely finding the shock shape and

reactive flow field associated with a straight wall is now considered. In this problem the
downstream boundary condition is given by the known wall shape and is specified so that on the
wall there is no transverse velocity component, i.e. V' =0 onn = 0. To accommodate the shock

boundary condition, a change of variables so that the shock is located at { = 0 is advantageous:

{=¢E+-% JQB(s)ds . (12)
sinot ¢

With this transformation, the linear partial differential equations (10a-c) remain unchanged in form
at O(g); that is they may be written in terms of { by simply replacing & by { at every occurrence.
The shock conditions are to be applied at £ =0.

The transformed momentum equation (10a) can be integrated with respect to {. An arbitrary
function of M arises as a result which is fixed in terms of the arbitrary shock shape function B'(n)
when the shock conditions are applied. The integrated equation is written below so that pressure is
given as a function of the velocities and shock shape (the constants G and H are defined below the
pressure equation).

P'=-p U (U' + cosal V') +G+p U H B'(M), (13)

2 1/'; sinZBs

G= P Ug (B+cosocA) +E=1, H=C+Dcoso+ F__. .
Py Ug (y+1)\/ P+2yc0s2B, +1

Eq. (13) can be used to determine the partial derivatives of pressure in terms of velocity derivatives

and the shock curvature. These results are then substituted into Egs. (10a,b) to give

' ' U’ ' '
(_8_\_/_ - B_I_I_) + cosa, (_'"‘ - 91) = - Hm, (14a)
oL  am o an dn
aw v (o av) (r1)a (g
T +§47(ac+an)" 2 oo ) o
S
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Eq. (14a) can be rewritteh in terms of vorticity and shock curvature as ®,' = -Hx'(n)/sinct =
4y12cosBgk'(M)/(y2-1); consequently, 0w',/0¢ = 0. Thus for, ¥ > 1, 0 < B < w/2, and k'=dB'/dn
> 0, corresponding to a shock which bends away from the wedge, a strictly positive vorticity,
generated at the shock front and proportional to the shock curvature, is convected along streamlines
and remains constant on the streamlines. The local shock curvature will be seen to be dependent
on the heat release, material properties, and undisturbed conditions.

Eqgs. (14a,b) are rewritten in characteristic form, using the associated definitions of the

characteristics A, A_, and constants a,, a,, by, b,, and ¢;:

C AU C v U
al[a—U + ?»;—] + bl{ﬂ + X+ —1l=-H¥M) + c,e ¢ ° (15a)
oC on oC on |
' [ - /Us
az[ﬂj- A —] [av - Hrm-ce L ash
oC i
cosa + sinot / z - coso - sinct /
* M sin oc 1 M sinZo
a, = coso. - sinot | / - = COSOl + SinaL /M
Mi sinot coso M sino cosot Mz Y- l)smoc

by = IS, b, = IS ¢ = q.
JM -1 JM -1 Up M -1

The characteristics are real for sonic or supersonic post-shock Mach number, M¢2 > 1, and under

this condition can be shown to be strictly negative. It can also be shown by setting M2 =
(72+2'ycosZBS+1)/[2'y(y-l)sinzﬁs] 2 1 that the condition for an attached shock (5b) is necessary and
sufficient for real characteristics. The characteristic form suggests another variable change which
facilitates integration of Eqs. (15a,b); let 1 and m be defined such that 1=7 - A,{, m=n-A.L.

Under this change of variables, Eqs. (15a,b) are written as follows:
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Am-2Al -(m-1) 1
aU, avv H \ ...i___-. Cl e——— —
“am v T N e [T °"P( Ak Us)’ e
+ - - + - .
Am-Al -(m-1) 1
ou' . V' H - “ e
—_— —_— = — ' . 16b
Ha +by ol Y « A A ¥ A A exp( 7\.+-7»_ US) (160
+ - - + -

Eqgs. (16a,b) can be integrated with respect to m and 1 respectively to form the following equations

in which f(1) and g(m) appear as arbitrary functions:

H 7»+m -Al -(m-1) _1_
alU' + blv' = - T B’ _7L+-T - ClUS exp ?"+' A Us + f(1). (17a)
+ .
H K+m -1 -(m-1) __L
aZU' + b2V' = - x_ B —;\:T + CIUS exp 7»+— A Us + g(m). (17b)

Next the shock conditions are used to express the functions f and g in terms of the shock shape
function B'. At the shock front { = 0, and, correspondingly, 1 = m. The parameter t is defined so

thatt=1=m=mnat { =0. By applying the shock conditions, it is found that

ft) = al(B +CBO) + bl(A +DR(®) + -}?—B‘(t) +c,U_, (182)
<+
gn) = az(B +CPO) + bZ(A +DP©) + {iB'(t) -c U . (18b)

The shock angle perturbation B' is determined by applying the wall boundary condition. For

N =0, s is defined such that1 = s, m = (A/A,)s. Setting V' =0 onm =0 in Eqgs. (17a,b) yields

s
H —_—
a U = - = B'(0) - c,U_ exp ( AU ) + (s), (19a)
+

A

H L .
a,U = - = B'(0) +c¢,U exp(k+Us ) tyo St (19b)

+
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If the streamwise velocity is eliminated from Egs. (19a,b) and Egs. (18a,b) are used to write the

functions f and g in terms of J', a single equation can be written with the function ' as the only

unknown. This equation along with definitions of constants A;, A,, A3, A4, and As is

A S
AR x S+ AP + Agexp ( AU ) *ABO+A; =0, (20)
+
A H a2H
A1=_1_+aaC+abD A - T+a1a2C+a2le,
7» +
Ay=Ugc (a +a ) = (a2/7»+- al/?») 0,A = A(a1b2 a2b1) (a1+ az).

Equations of this class are also found by Spence, Lee and Fickett. To evaluate this function, each

term in Eq. (20) is expanded in a Taylor series about s = 0:

n
co )\« n n A
- | A B'G) d"B'(s) 3
(A1+A2)ﬁ!(0) + Z S' A )\' - +A2 - + n +A3+A5=0
n=] n: dS dS }\’ U
+s (21)
To satisfy Eq. (21) for all s, it is required that
Agths 4B A
B'(0) = - =—> and =- . 22)
A1 + A2

n n n n
ds o) (Alk_ + A2k+)

Eq. (22) contains sufficient information to express the shock angle perturbations as a Taylor series

expanded about s = 0. Evaluating this series at s =1 and adding the result to the leading order

solution allows the total shock deflection angle to be written as
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B = B e| A i—l(l) 1 0

n =B -e| — U | ——|+0c
S AHA, TP AN+ AN
n

A
=By-e A+A Z( 1)( )exp —| [|+o@. @)
Ux A,

The second form, given in terms of an expansion of exponentials, is obtained from the first form
by expanding the term 1/(A;A" + A,A,"™) in an infinite series and evaluating each term in terms of
an exponential. For convergence, it is required that IA_/A,l < 1 and |A; /A5l < 1. This is confirmed
by the definition of A_and A,. Due to the complicated algebraic forms, it is difficult to find explicit
conditions for IA; /A,l < 1; however numerical evaluation for specific cases showed that the
condition was always satisfied. For 1 > 0 the arguments of the exponentials are in Eq. (23) are
negative; consequently, the exponentials are < 1. The series can thus be bounded, and application
of the Weierstrass M-test shows that the series converges absolutely and uniformly.

By examining the first form of the series, it can be shown that the shock angle perturbation
can be expressed as the sum of a constant and the product of heat release q and a function of 1, f
and y. This is because the term (A3+Aj5)/(A;+A5) is independent of q, while the term Ajz is
proportional to q. From the second form it seen that the shock angle perturbations converge to a
limiting value as M approaches infinity. This limiting value of the shock perturbation is given
below in terms of A;, A,, and As, and also in terms of more fundamental parameters.

A ~ (y+1) cosB 1+12_._1_

A1+A

= 24)
2 sin_ ('y cos2B_ + 1) 2y

Biee) = -

It is not expected that this expression matches an equivalent expression predicted from Rankine-
Hugoniot analysis. This is because the Rankine-Hugoniot analysis assumes a constant velocity
tangent to the original shock while the tangential velocity changes throughout the reaction zone in

the straight wall-curved shock problem.
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Integration and differentiation, respectively, of Eq. (23) give &g and k explicitly:

n

n n
U A Al & nf A A A
s 5 ‘_T.L 3 +§: AL =+ - 2
= + — +0(e“)
S sinal Arth, US) Ay n=0( )(AZ) A o UA A
s +

<+

n

| A & VY A
ki =-e—=2—) (1) |==] exp| _n_|—=| |+0ED. (25ab)
AUAM J RS s
0 + USX+ +

2 s +n=

The shock curvature can be shown to be a product of the heat release q and a function of 1, B, and
Y. The curvature has a maximum value at 1 = 0 and approaches zero as 1 approaches infinity. The
vorticity, equal to the curvature at this order, is maximum along the wall and confined to a layer of
O(1) thickness next to the wall. This vorticity layer is equivalent to an entropy layer (cf. Lee or
Capiaux and Washington). Perturbations of shock curvature and deviations of the shock angle
perturbation from its initial perturbation, both scaled by heat release, are plotted versus the distance
along the shock wave 1 in Fig. 5 for y= 1.4, B; = n/3.

With knowledge of the function ', it is possible to construct all other flow field variables. To
construct the velocity field, Eq. (18a) is used to evaluate f(t) at t = 1 and Eq. (18b) is used to
evaluate g(t) at t = m. The results are substituted into Egs. (17a,b) so that U' and V' are written as
functions of 1 and m. Then 1 and m can be eliminated in favor of { and 1 so that Egs. (19a,b) may

be written in the form given next. Definitions of the functions Ry({,n) and Ry({,n) follow.

a, U’ +b V' = RI(C,n), a2U' +b2V' = R2(§,n), (26a,b)

H
e - Lo, enl-00, )

+

H
(alB +b,A+c, U ) + B'(“ ; x+§) ( a,C+b D+ x_)’

+
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H
RZ(C:T\) = “?"—B'(ﬂ) +C1US exp(-C/lJS )+

(2,3+0,8-¢,, )+ p(n-2.2) (azc +b,D+ xi)

Egs. (26a,b) may be uncoupled to form explicit expressions for the velocities:

g o PREWBREGD R R G
a,b,-a b, ’ 8Dy - 3,0 |

With the known U', V', and B, Eq. (13) can be used to determine the pressure field.

The shock shape and streamlines for a representative straight wall-curved shock problem are
plotted in Fig. 6. Parameters for this case, chosen so the shock curvature can be visually
identified, are q = 11.2, 0 = w/4.197, y= 1.4, and € = 0.01. Although in principle it is possible to
determine an analytic expression for the streamlines since the velocity field is known, the algebra is
lengthy. As such the streamlines can be determined by converting the velocity field, U({,n),
V(g,n) given by Egs. (27a,b) to Cartesian space u(x,y), v(x,y) and numerically integrating the
streamline equation. (To return to physical space, one must first use Eq. (12) to translate the shock
position and then systematically use the definitions of &, {, and 1] to write equations in terms of x
and y. In practice it is easier to generate solutions in {-7 space and associate each {1 point with
a point in x-y space.) For each streamline the shock position is used as the initial condition. On
the scales shown in Fig. 6, the streamlines appear to be straight lines parallel to the wedge. In
actuality, except for the streamline which passes through the origin, all streamlines have curvature.

There is a continuous variation of the shape of the streamlines depending on their point of
origin on the shock. The streamlines are most flat and nearly parallel to the wedge near the wedge
in the region with maximum vorticity. As one travels up the shock, streamline curvature increases
and shock curvature decreases. Consequently, the vorticity carried on streamlines diminishes with
distance from the wedge tip. For all streamlines, except for the streamline coincident with the

wedge tip, the initial angle of the streamline is greater than the wedge angle, but relaxes
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monotonically to the wedge angle as £ — oo. Streamlines farthest from the wedge tip suffer the
most deflection from a corresponding inert streamline. Far from the wedge tip the shock has zero
curvature; the angle of shock inclination can be determined from Eq. (24). Streamlines in this
region are described by the irrotational analysis described earlier in this article.

Figs. 7, 8, and 9 show contours of reaction progress, vorticity, and pressure (A, ®,, and P)
for the conditions of Fig. 6. Fig. 7 reflects the fact that reaction progress A varies only with
streamwise position €. Fig. 8 illustrates the vorticity field w,, a function of 1| only. Figs. 7 and 8
illustrate the well-known result that the post-shock flow is characterized by a reaction layer parallel
to the shock and a vorticity layer parallel to the wedge. In these layers the flow relaxes to an
irrotational equilibrium core flow. Fig. 9 shows the pressure field, which is a function of both &
and M. As 1 increases, the pressure increases due to the increasing shock angle.

Discussion

In this section the present and future value of this study are discussed. We believe the present
value lies in giving explicit analytic verification of many previously expressed ideas regarding
oblique detonations which, as seen in the following paragraphs, can advance the discussion of
oblique detonations. The future value of this study lies in its utility as an analytic benchmark for
‘evaluating numerical schemes designed to describe the interaction of non-equilibrium,
multidimensional, compressible, shock-laden flows with solid geometries. Such numerical
schemes are necessary for the design of any realistic hypersonic device.

First, for the problem of this article, it is legitimate to describe the flow as both a shock-
induced combustion and an oblique detonation. It is clear that exothermic reaction is initiated by
the shock and can thus be called shock-induced combustion. Furthermore it is clear that the
reaction influences the shock. In the cases studied in which the flow is supersonic, disturbances
due to chemical reaction propagate downstream along spatial characteristics. One family of these
characteristics reaches back to influence the shock wave. As such these waves share with one-

dimensional detonations the property that chemical reaction effects propagate downstream to



23

influence the lead shock wave. In this sense, and given the close resemblance to oblique shocks, it
is appropriate to call these waves oblique detonations.

Second, a heuristic argument based on one-dimensional ZND theory, which shows for fixed
shock angle and one-step irreversible kinetics there is no solution trajectory from the shocked state
to the weak underdriven state, has been presented for excluding waves over wedges with wedge
angle less than a CJ wedge angle. However, based on analogs with many cases from one-
dimensional theory28, we speculate that under special circumstances, such as a kinetic scheme
characterized by one exothermic and one endothermic reaction, that weak underdriven oblique
detonations could exist. It is possible to offer other plausible heuristic arguments to exclude weak
underdriven waves. These arguments often appeal to hydrodynamic stability theory as it has been
applied to non-reactive systems. However, a rigorous determination of the regimes of
hydrodynamic stability of oblique detonation waves has never been performed. Such an analysis
would involve perturbing the steady solution in space and time and examining under what
conditions the disturbance grows. Only recently was the stability of the plane one-dimensional
detonation unambiguously resolved?’. In addition hydrodynamic stability analysis of inert oblique
shocks reveals instabilities for both inviscid and viscous flow models30. Thus at present one
should use caution in discussion of the stability of these waves. In this light it is more proper to
identify those waves which have been identified, i.e. weak overdriven oblique detonations and
strong oblique detonations, as steady solutions rather than stable solutions. In a related stability
question, the issue of what boundary conditions are necessary for a well-posed problem has not
been addressed. While it is clear that solutions can be constructed for flow fields which are
spatially elliptic (the strong case) and spatially hyperbolic (the overdriven weak case), it is not yet
established that these solutions are insensitive to small changes in the boundary conditions.

It is also noted that the steady analysis admits a continuum of solutions for incoming Mach
numbers greater than the CJ Mach number; the CJ conditions provide only a lower bound on the

incoming Mach number and do not specify the unique flow field solution. For steady oblique
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detonations over a fixed wedge, the flow field is specified by the wedge geometry, heat release,
fluid properties, and incoming flow conditions, and in general is not a CJ flow field.

Finally it is suggested that these results be compared to other results. We know of no
experimental study which reports hypersonic reaction zone observations, which are difficult, or
report measurements of reaction-induced shock deflection. Current published numerical solutions
generally employ more complicated kinetic models, include viscous transport, or model real gas
effects such as dissociation, all of which make direct comparisons difficult and in some cases
meaningless. For example, the calculations which show the greatest promise for comparisons are
given by Cambier et al.17, cases 2 and 4. These cases model hydrogen-air combustion over a 31°
and 26.5° wedge at incoming Mach numbers of 3.8 and 5, respectively for a 60% stoichiometric
mixture ratio with reaction zone lengths on the order of centimeters. For their case 2 at M = 3.8,
near the CJ Mach number of 3.38, an additional 5° shock angle deflection, which can be detected
in their Figure 5 is attributed to chemical energy release. For the M = 5 case 4, it is difficult to
detect any shock deflection. The authors suggest that the effects of dissociation at the higher Mach
numbers are balancing the effects of heat release. Because case 2 is too near the CJ solution for the
hypersonic limit to be appropriate, because in case 4 dissociation is likely important, and
additionally because rough estimates indicate that for hydrogen or hydrocarbon fuels, the linear
analysis is valid only for much leaner mixtures, even qualitative comparisons are tenuous. A study
is underway which will allow direct comparisons of numerical solutions and the approximate
solutions of this article.
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