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ABSTRACT 

 

Hybrid simulation is a widely accepted laboratory testing approach that partitions a proposed 

structure into numerical and physical substructures, for a space- and cost-effective testing method. 

Structural elements that are expected to remain in the linear elastic range are usually modeled 

numerically, while computationally intractable nonlinear elements are tested physically. The loads 

and conditions at the boundaries between the numerical and physical substructures are imposed by 

servo-hydraulic actuators, with the responses measured by loadcells and displacement transducers. 

Traditionally, these actuators impose boundary condition displacements at slow speeds, while 

damping and inertial components for the physical specimen are numerically calculated. This slow 

application of the boundary conditions neglects rate-dependent behavior of the physical specimen. 

Real-time hybrid simulation (RTHS) is an alternative to slow speed hybrid simulation approach, 

where the responses of numerical substructure are calculated and imposed on the physical 

substructure at real world natural hazard excitation speeds. Damping, inertia, and rate-dependent 

material effects are incorporated in the physical substructure as a result of real-time testing.  

For a general substructure, the boundary interface has six degrees-of-freedom (DOF); 

therefore, an actuation system that can apply multi-axial loads is required. In these experiments, 

the boundary conditions at the interface between the physical and numerical substructures are 

imposed by two or more actuators.  Significant dynamic coupling can be present between the 

actuators in such setups. Kinematic transformations are required for operation of each actuator to 

achieve desired boundary conditions. Furthermore, each actuator possesses inherent dynamics that 

needs appropriate compensation to ensure an accurate and stable operation.  

Most existing RTHS applications to date have involved the substructuring of the reference 

structures into numerical and physical components at a single interface with a one-DOF boundary 

condition and force imposed and measured. Multi-DOF boundary conditions have been explored 

in a few applications, however a general six-DOF stable implementation has never been achieved. 

A major research gap in the RTHS domain is the development of a multi-axial RTHS framework 

capable of handling six DOF boundary conditions and forces, as well as presence of multiple 

physical specimens and numerical-to-physical interfaces.  

In this dissertation, a multi-axial real-time hybrid simulation (maRTHS) framework is 

developed for realistic nonlinear dynamic assessment of structures under natural hazard excitation. 

The framework is comprised of numerical and physical substructures, actuator-dynamics 

compensation, and kinematic transformations between Cartesian and actuator/transducer 

coordinates. The numerical substructure is compiled on a real-time embedded system, comprised 

of a microcontroller setup, with onboard memory and processing, that computes the response of 

finite element models of the structural system, which are then communicated with the hardware 

setup via the input-output peripherals. The physical substructure is composed of a multi-actuator 

boundary condition box, loadcells, displacement transducers, and one or more physical specimens. 

The proposed compensation is a model-based strategy based on the linearized identified models 

of individual actuators. The concepts of the model-based compensation approach are first validated 

in a shake table study, and then applied to single and multi-axis RTHS developments.   

The capabilities of the proposed maRTHS framework are demonstrated via the multi-axial 

load and boundary condition boxes (LBCBs) at the University of Illinois Urbana-Champaign, via 

two illustrative examples. First, the maRTHS algorithm including the decoupled controller, and 

kinematic transformation processes are validated. In this study, a moment frame structure is 
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partitioned into numerical beam-column finite element model, and a physical column with an 

LBCB boundary condition. This experiment is comprised of six DOFs and excitation is only 

applied in the plane of the moment frame. Next, the maRTHS framework is subjected to a more 

sophisticated testing environment involving a multi-span curved bridge structure. In this second 

example, two LBCBs are utilized for testing of two physical piers, and excitation is applied bi-

directionally. Results from the illustrative examples are verified against numerical simulations. 

The results demonstrate the accuracy and promising nature of the proposed state-of-the-art 

framework for maRTHS for nonlinear dynamic testing of structural systems using multiple 

boundary points.  
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Chapter 1 

 

INTRODUCTION 

1.1 Motivation  

In the past 20 years, natural hazards mitigation has experienced increased focus and investment. 

In 2004, the National Science Foundation (NSF) instituted the George E. Brown Jr. Network for 

Earthquake Engineering Simulation (NEES) to develop innovative solutions and enhance the 

design and construction practices for minimizing earthquake- and tsunami-induced damages. 

NEES stretched over 15 facilities across the U.S., in laboratories well-equipped with shake tables, 

a tsunami wave basin, geotechnical centrifuges, and a variety of field-testing equipment. During 

the 10-year operation of NEES, earthquake engineering education and research saw huge strides 

and generated large volumes of literature. Following the conclusion of NEES, the natural hazards 

engineering community looked for new programs, research funding opportunities, and a broader 

research focus via inclusion of other forms of natural hazards. In the years since, the Natural 

Hazards Engineering Research Infrastructure (NHERI) was founded as the national research 

infrastructure with multiple focuses (e.g., earthquake and wind research).  

With the looming consequences of climate change, threats of natural hazards in major urban 

centers, energy issues, current COVID-19 pandemic, and global recession, the need to develop 

new strategies to rehabilitate and rebuild of our aging civil infrastructure is more important than 

ever before. The goal of new infrastructure efforts should be the creation of resilient and 

sustainable communities. Traditional civil infrastructure approaches should be complemented with 

multi-hazard considerations focusing on mitigation and resilience.   

Historically, engineers have relied on numerical (e.g., finite element) modeling, quasi-static 

(cyclic), and shake table testing for assessment of element and system level interactions. Numerical 

modeling has seen rapid growth in recent years. With advances in computational hardware, parallel 

computing, and increases in affordability and availability of supercomputers, engineers and 

researchers have the unprecedented ability to develop sophisticated finite element models. 

However, predictions of numerical models are only as good as the assumptions on which they are 

based, and although numerical modeling can be extremely accurate for elastic systems, nonlinear 

predictions are often inaccurate.  Therefore, physical testing is often desired for exploration of the 

non-trivial phenomena in structures and materials.  

1.2 Experimental testing 

From early verifications of the Hooke’s law to identification of the most sophisticated material 

constitutive models and structural behaviors, experimental testing is deeply interwoven in the 

science of  structures. Not only are experiments useful in uncovering new physical phenomena and 

validating existing theories, but also serve in establishing reliability metrics and building 

confidence in engineering solutions. Experimental vibration testing of structural systems can be 

classified into two main categories: (i) field testing, and (ii) laboratory testing.  
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Field vibration testing strategies can be classified as forced and unforced vibration tests. 

Forced testing involves installation of a vibration generator (e.g., shaking machine or actuators) 

for providing prescribed excitation to the structure of interest (Chopra 2011). Unforced strategies 

rely on naturally induced vibrations (e.g., ambient, wind and vehicular). The relationships between 

the input forces and the sensors provide a basis for evaluation of a variety of structural parameters, 

including damping and natural frequencies (Juang and Pappa 1985; Peeters and Roeck 1999). The 

fundamental limitation of field vibration testing is that structures cannot be pushed beyond the 

elastic range, and nonlinear properties stay concealed. In addition, occupants and owners of 

structures (e.g., municipalities) are often reluctant to have properties vibration tested, as operations 

may be affected by testing.  

Laboratory tests are often more desirable as they provide a more controlled environment for 

experimental testing. For nonlinear performance assessments useful for earthquake and wind 

engineering, structures are tested at either: 

i. slow speeds (e.g., quasi-static testing), or 

ii. fast speeds (e.g., shake table and fast cyclic testing), 

with slow speed testing intended to suppress inertial effects and focus only on stiffness forces.  

In quasi-static or slow cyclic testing, an actuator imposes a predefined displacement or force 

history on a structural element of interest. The performance of the structure is assessed under cyclic 

load reversals and amplitude variations. Quasi-static testing is a popular method for identifying 

the nonlinear backbone curves and hysteretic behaviors of structures and materials, and the slow 

nature of the method allows researchers to observe the damage propagate on the specimen. The 

obvious limitation the quasi-static method is that inertial effects are ignored, and materials and 

structures with high degrees of rate-dependence must be tested using alternative methods. Fast 

cyclic testing is an alternative, where the cyclic loading is fast enough to engage inertial 

(acceleration) effects. Some literature is devoted to exploring the dependence of common building 

materials (e.g., steel and concrete) to the rate of loading (Chae et al. 2017; Malvar and Ross 1998; 

Murray et al. 2014). Another limitation of the quasi-static test method is that structural elements 

are tested independently, and system level interactions are not considered, as shown in Fig. 1.1. In 

addition, the cyclic loading of the structure bears no resemblance to forces sustained by the 

structure under natural hazard excitation. 
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(a) Reference structure     (b) Quasi-static testing 

Figure 1.1 Quasi-static testing subject to predefined displacement trajectory 

Understanding and engineering structures to withstand natural hazards requires researchers 

to have the dynamic experimental tools necessary to replicate recorded excitations. Researchers 

typically use shake table test to subject structures to synthetic and historical earthquakes as a basis 

for assessing structural performance (Luco et al. 2010; Reinhorn et al. 2004). The earliest form of 

a shake table was a hand-powered device built in Japan in the 1890s (Severn 2011). Until the first 

ever ground motion was recorded (i.e., Long Beach – 1933), shake tables were mostly simple 

mechanical devices that imposed simple cyclic displacements to the base of a structure (Severn et 

al. 2012). With the advent of strong motion seismometers, electromechanical and servo-hydraulic 

shake tables were developed to reproduce synthetic and pre-recorded earthquakes. Shake tables 

were developed for scaled and full-sized structures. Significant developments were made in the 

form of the 7.6m×12m shake table in San Diego and the 20m×15m E-Defense shake table in 

Japan, both capable of testing full-scale structures (Luco et al. 2010; Ohtani et al. 2004).  

Shake table actuators have physical characteristics such as friction, frequency-dependence, 

nonlinearities (Rea et al. 1977), and more sophisticated phenomena like control-structure 

interaction (CSI), which refers to the dynamic coupling between actuators and test structure (Dyke 

et al. 1995; Zhao et al. 2005). A wide body of literature is available discussing the different control 

strategies for compensation of shake table dynamics to ensure accurate replication of pre-recorded 

ground motions (Fletcher 1990; Gao et al. 2011; Phillips et al. 2014; Spencer and Yang 1998; 

Stoten and Shimizu 2007; Twitchell and Symans 2003).  

Although shake table testing is the most complete and accurate method for assessment of 

seismic behavior of structures, the method faces many challenges and limitations:  

i. large shake tables are few, expensive to build and operate, and inaccessible to most 

researchers and engineers, 

ii. small shake tables are limited to small specimen, which must be designed using 

complex similitude laws and results may not extrapolate to results of equivalent full-

scale tests,  

iii. shake table actuators have their own dynamics which need to be compensated in order 

to accurately replicate historical ground motions, and  
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iv. although one or few structural elements may be of interest, the entire structure must 

be built and tested as shown in Fig. 1.2. 

 

Figure 1.2 Shake table testing replicating historical earthquake 

From the discussion on the traditional testing techniques so far, it is evident that material 

rate-dependent phenomena are primary reasons why fast testing techniques are desirable in some 

instances. The next section discusses the physics of rate-dependence.  

1.3 Material rate-dependence 

In general, the hysteretic behaviors of materials and structural systems tend to vary between quasi-

static and dynamic load scenarios. Experimental evidence has demonstrated that under dynamic 

loading, the elastic modulus remains largely the same, while the load capacity (i.e., height of the 

hysteresis) tends to grow (Campbell 1954; Cristescu 1967; Goldsmith 1960). The loading rate is 

often described by the measure of strain rate experienced by the structures and materials. 

For hybrid simulation applications, the challenge in classifying material strain rate-

dependence is twofold: (i) if the rate-sensitive load capacity increase happens at typical loading 

frequencies of natural hazard excitations, and (ii) whether the rate-dependence makes a significant 

enough difference to run experiments at real-time speeds, instead of slowed-down speeds. Real-

time testing poses additional experimental challenges, which may not be desirable if rate-

dependence is insignificant. Nevertheless, strain-dependence is an important consideration for 

both theoretical and experimental constructs. 

Strain rate dependence of commonly used structural materials include steel, concrete, and 

masonry have been widely studied. Chang and Lee (1987) studies the A36 structural steel under 

monotonic and cyclic loading conditions with strain rate range of 10−1/sec to 10−6/sec. Faster 

strain rates corresponded to increased yield capacity and longer plastic plateaus. Strain rate effects 

were found to be more significant under monotonic loading than for cyclic loading. Chang et al. 

(1989) applies the endochronic plasticity model for evaluation of strain-rate effects on inelastic 

behavior of structural steel under earthquake loading. At extreme strain rates of > 10−6/sec, such 

as impact loading scenarios, mild steel was found to have yield strengths of around 2000 MPa 

(Singh et al. 2008). When a ball projectile is impacted with a steel plate, the depth of surface 

penetration is correlated with the yield strength of the steel. The yield strength was demonstrated 

to be sensitive to the velocity of the ball projectile. Murray et al. (2014) highlight the yield and 

ultimate strength increase in steel reinforcement bars for A572-50 and A992 steels. A572-50 
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exhibits yield strength increases of up to 35% and ultimate strengths of up to 20%. A992 steel 

exhibits yield strength increases of up to 45% and ultimate strengths increases of up to 20%. 

Thereby, high strain rates have been shown to drastically change the yield capacity of structural 

steel.  

Concrete materials have also been the subject of several material rate-dependence studies. 

Malvar and Ross (1998) offers a literature review on the effects of strain rate on tensile strength 

of concrete. A bilinear function of the strain rate is improved to describe dynamic amplification 

data based on Comité Euro-International du Béton Model Code report. Zhou and Hao (2008) 

compares numerical models and experimental results for compressive behavior of concrete. Strain 

rate effects amplify the dynamic increase factor (DIF) of compressive capacities for strain rates of 

< 200/sec. A secondary amplification is also suggested to be induced by inertial confinement 

effects at strain rates of > 1000/sec. Chen et al. (2013) suggests that although DIF is observed in 

flexural strength, the direct tensile strength of concrete is more sensitive to increases in strain rate 

than flexural strength. Ghannoum et al. (2012) performs cyclic testing on reinforced concrete 

columns at slow and fast speeds. Cyclic speeds of up to 1,016 mm/s were investigated, with higher 

cyclic loads resulting in lateral load capacity increases of up to 33%.   

Few literatures in the hybrid simulation are also devoted to exploration of the material rate-

dependence. Shing and Mahin (1988) developed a single degree-of-freedom (DOF) numerical 

model for hybrid simulation to study the effects of DIF in the strength of seismically excited 

structures. The maximum strain rate sustained by the structure is 0.1/sec, which translates to a 

monotonic DIF of 40%. Two significant parameters are highlighted pertaining to rate-dependence 

of materials: (i) natural frequency of structure, and (ii) characteristics of the excitation. A multi-

DOF structure with high natural frequencies coupled with a high frequency excitation may result 

in strain rate induced increases in capacity. Chae et al. (2017) studied the rate dependency of 

reinforced concrete piers subject to slow-speed and real-time hybrid simulation tests. Small 

increases in capacity were exhibited along with increases energy dissipation. The bridge structure 

considered in these hybrid simulation tests experienced an average reduction of 5% in the 

maximum displacements. 

Although countless studies have illustrated rate-dependence of steel and reinforced concrete 

building materials, the discussion on the significance of such phenomena under seismic and wind 

loads is not a settled one. Existing studies and literature are few and limited in scope. In addition, 

available results fail to demonstrate significant rate-dependence at seismic and wind loading rates, 

and their repeatability is not verified. 

On the other hand, high performance structural systems such as seismic isolation devices, 

passive energy dissipation devices, and semi-active and active control systems possess significant 

rate-dependent physics. Seismic isolation devices include elastomeric and rubber bearings and 

sliding friction pendulums devices. Passive energy dissipation devices include metallic, friction, 

viscoelastic, tuned mass, tuned liquid dampers. Semi-active and active control systems involve 

active mass dampers and bracing systems, variable stiffness or damping systems, MR dampers and 

smart materials. Because these systems are rate-dependent, real-time testing may be a more 

suitable testing method.  

Another time-dependent material behavior is the stress relaxation phenomenon. Stress 

relaxation describes the decrease in the structural stress levels while a constant strain is maintained. 

In slow-speed slow speed testing, hold-ramp-hold algorithms impose displacements on the 

physical specimen (Carrion and Spencer, Jr. 2007). Because the extended time-scale of 

conventional slow speed testing, and the potentially long durations of hold, stress relaxation may 
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happen in the physical specimen. Stress relaxation calculations may vary for different materials, 

but generally speaking, it follows a logarithmic pattern with most of the relaxation happening 

immediately. Temperature and stress levels also affect the relaxation process (Ashter 2014). 

Stress relaxation was reported in Chang and Lee (1987) for 10-minute holds. This relaxation 

was less significant in the strain-hardening zone as compared to the plastic plateau range. In 

addition, with changing strain rates, a unique stress-strain curve was not identified. This may be 

attributed to stress relaxation under slowly changing strains. Mosqueda et al. (2004) observed 

force/stress relaxation for 5-second holds. Continuous testing was proposed as an alternative to 

ramp-hold testing to avoid relaxation.  

1.4 Single-axis hybrid simulation 

Hybrid simulation is an alternative to the quasi-static and shake table test methods, for examining 

the response of structures. A hybrid test is typically comprised of both numerical (e.g., finite 

element analysis) and physical substructures. The objective of the hybrid simulation method is to 

overcome the limitations of quasi-static testing in incorporating system-level interactions into the 

experiment and need to test a complete structure in the shake table method.  

The first hybrid simulation tests were developed in 1969 by Hakuno et al. (1969). A single-

degree-of-freedom (SDOF) equation of motion was programmed into an analog computer and a 

physical specimen was tied to an electromagnetic actuator. The analog computer solved the 

equation of motion and the restoring forces generated from the physical specimen are used in the 

next time step. Takanashi et al. (1975) utilized a digital computer with a magnetic drum to solve 

the equation of motion and the loading task (e.g., servo-hydraulics). Servo-hydraulic actuators 

were moved slowly in small increments to achieve good tracking between target and executed 

displacements. Computers were still quite primitive at the time and establishing the first hybrid 

simulation took 2 years of development (Nakashima 2020). In the U.S., work on hybrid simulation 

begin in the 1980s with Hanson and McClamroch (1984).  Mahin and Shing (1985) implemented 

full-scale hybrid simulation test and validated results via comparisons with analytical studies.  

A major challenge with hybrid simulation is ensuring that the actuators accurately tracked 

the target boundary conditions. Small errors can accumulate, propagate into large and inaccurate 

hybrid simulation results (Shing and Mahin 1983). The first form of online compensation method 

for ensuring actuators correctly and accurately tracked boundary conditions is introduced in 

Nakashima and Kato (1987). The earliest attempts made at developing implicit and explicit 

numerical integration schemes for ensuring an accurate and stable hybrid simulation came next 

(Dermitzakis and Mahin 1985; Nakashima et al. 1990; Shing et al. 1991).  

The basic procedure for executing a hybrid simulation experiment for a structure subject to 

earthquake loading is shown in Fig. 1.3, and can be summarized in four steps: 

1. At each time step, the ground motion excites the numerical substructure. 

2. Within the numerical substructure, the displacements at the boundary condition with 

the physical specimen are computed. 

3. A control algorithm ensures that the physical boundary condition can be achieved 

with sufficient accuracy. 

4. Physical execution is complete via actuators, and restoring forces are recorded and 

returned to the numerical model for the next time step.  
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(a) Numerical substructure and controller   (b) Physical substructure 

Figure 1.3 Hybrid simulation of the reference structure 

Hybrid simulation is typically executed at slow speeds with a ramp-hold loading procedure. 

Many developments allowed for the flexibility to pause and resume the loading during the 

simulation. The advantage of such capability is for researchers to observe the damage and 

structural behavior. Naturally, slow rate of loading results in dynamic structural behaviors to be 

ignored, and hybrid simulation is not an appropriate method for materials with significant rate-

dependent hysteresis. Many studies have noted small rate-dependence in common structural 

materials like steel and concrete (Fan et al. 2014; Ghannoum et al. 2012; Li and Li 2012). 

Therefore, hybrid simulation may be sufficient for steel and concrete. 

The next wave of developments came in the form of fast and real-time hybrid simulation 

(RTHS). Early efforts to capture rate-dependence, resulted in increases in the speed of hybrid 

simulation to one-fifth of the speed of the actual earthquake (Takanashi and Ohi 1983). The 

actuator and velocity-control capacities at the time did not yet allow for a real-time test. RTHS 

requires rapid discrete-time implementation of embedded and data acquisition systems, numerical 

integration and actuator execution. The first successful RTHS test was demonstrated in Nakashima 

et al. (1992) for a base isolated structure with a viscous damper. Velocity and acceleration physics 

of the specimen were automatically incorporated as a result of the real-time testing.  

The consequence of the real-time implementation is that stability of the RTHS may be 

jeopardized when the closed-loop delay is too large. Experimental time delays in RTHS translate 

into negative damping. When the closed-loop system does not possess sufficient damping and 

friction to turn the overall system damping positive, instability can occur. Delays in RTHS 

experiments stem from actuator dynamics, computation, and communication processes. Actuators 

are complex electro-mechanical devices that possess many unwanted behaviors. Computational 

delays are due to the effort necessary for time-stepping integration algorithms. Communication 

delays are associated with the digital and analog signal processing, and exchange of signals 

between different machines and hardware. Unless a controller is designed to compensate for these 

closed-loop delays, instability is likely to occur. A controller receives the target boundary 

conditions (e.g., displacements or accelerations) and sends command signals to actuators for 

execution.   

Hybrid simulation to this point was conducted by imposing a displacement target boundary 

condition. Another type of hybrid simulation that is performed in real-time is the effective force 
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testing (ETF) method. The computed inertial force introduced as a result of the relative 

acceleration of the mass with the ground in the numerical model, is imposed by the actuator. 

Therefore, the traditional displacement control is not necessary for this method (Dimig et al. 1999; 

Thewalt and Mahin 1987; Zhao et al. 2005).  

Researchers have adopted RTHS testing for a variety of structural engineering research 

applications. Horiuchi et al. (1996) performs RTHS on an energy absorber physical specimen and 

compares results with the shake table method. Polynomial extrapolation techniques are used for 

actuator compensation. The limitation of this approach is that the order of the proposed polynomial 

and the overshoot of the actuators when tracking high velocity contents. Carrion et al. (2009) 

studies a semi-actively controlled structure with a magnetorheological (MR) damper, using the 

RTHS method. The MR damper and a single servo-hydraulic actuator makes up the physical 

substructure in this development. A viscous damper is physically tested in Chae et al. (2013). The 

adaptive time series (ATS) compensator is proposed, where the coefficients of a second-order 

compensator are updated using a least-square algorithm to minimize closed-loop time delays. This 

is a time domain compensator and does not provide the predictability of frequency-domain 

compensators. Additionally, guarantees of parameter convergence and robustness of design are 

not provided. Asai et al. (2013) proposes a smart outrigger system for tall buildings using clipped 

optimal semi-actively controlled MR dampers. A feedforward controller is used for compensation. 

Ou et al. (2015) performs RTHS on an MR damper as well. An 𝐻∞ controller is used for the 

compensation action. 𝐻∞ controllers are best utilized when closed-loop uncertainties are 

quantifiable. Measurements of uncertainty are not readily available when physical experiments are 

involved. Ashasi-Sorkhabi et al. (2015) utilizes a tuned liquid damper for RTHS testing and 

compares the results of shake table and substructured configurations. Zhang et al. (2017) partitions 

a 15-story building structure into a 9-story numerical and 5-story physical substructures. An inter-

story isolation layer is introduced in the 10th floor along  with an MR damper device for vibration 

reduction. A model-based compensation techniques, based on Phillips et al. (2014), is incorporated 

for dynamic compensation of the actuators. For further reading of single-axis RTHS applications, 

reader can see Ahmadizadeh et al. (2008), Chen and Ricles (2010), Gao et al. (2011), Jung et al. 

(2007), Maghareh et al. (2013), Mercan and Ricles (2009), Nakata et al. (2019), Reinhorn et al. 

(2003), Shao et al. (2011), Wu et al. (2006), and Zhu et al. (2017). 

1.5 Multi-axis hybrid simulation 

Three-dimensional (3D) and multi-axis tests are important for realistic evaluation of structures and 

materials. In the context of hybrid simulation, 3D numerical models interact with multi-axial 

boundary conditions (actuator assemblies) to deform the physical specimens. The corresponding 

3D restoring forces are then returned to the numerical model. The Load and Boundary Condition 

Box (LBCB) at the University of Illinois Urbana-Champaign, shown in Fig. 1.4, is an example of 

a multi-axial boundary condition designed for multi-axial hybrid simulation applications.  
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Figure 1.4 Load and Boundary Condition Box (LBCB) 

Multi-axial hybrid simulation has been explored over the last 15 years and is realized 

typically through one or more multi-actuator boundary interfaces. A physical specimen is equipped 

with several individual actuators or a rigid multi-axial boundary device (e.g., LBCB), as shown in 

Fig. 1.5. The Multi-Axial Subassemblage Testing (MAST) system at the University of Minnesota 

is another multi-axial boundary device that has key quasi-static capabilities (French et al. 2004). 

Elnashai et al. (2005) describes the hybrid simulation capabilities at the Newmark Civil 

Engineering Laboratory at the University of Illinois, and describes examples for use of the large- 

and small-scale LBCBs of the multi-axial full-scale substructured testing and simulation (MUST-

SIM) facility. Frankie et al. (2013) implements hybrid simulation on a curved four-span bridge 

using the MUST-SIM facility, where the piers of the bridge are physically tested, and the deck is 

numerically evaluated. The results from the curved bridge simulation are compared to analytical 

simulations for verification. Murray and Sasani (2016) performs hybrid simulation on a reinforced 

concrete frame structure under pulse type ground motions. This study evaluated shear failures in 

pre-1970s RC frame structures. A 10-story structure was considered, and despite immediate failure 

of the physically tested columns, the building structure did not undergo collapse. Stathas et al. 

(2017) introduces hybrid simulation for bridge pier uplifting under transverse seismic loading 

conditions. A two-span bridge is considered, where the pier is physical and the decks are 

numerically evaluated. Hashemi et al. (2017) introduces the MAST system at the Swinburne 

University and its 6 DOF application to an RC column. Carbon fiber reinforcement polymer 

(CFRP) is used to repair the column. A comparative study of the undamaged and damaged columns 

concludes that CFRP repair of damaged columns can restore the resistance capacity and ductility 

of earthquake-damaged columns. Sadeghian et al. (2017) performs multi-axial hybrid simulation 

of a shear-critical reinforced concrete frame. Modeling of such RC columns for accurate 

reproduction of damage patterns are discussed. A vast body of literature is designated to the multi-

axial and multi-actuator hybrid simulation framework. This framework is however unable to 

reproduce real-time 3D results because loads are imposed at slow speeds. 

The multi-axial real-time hybrid simulation (maRTHS) adds complications involving 

actuator coupling and dynamics. Unless appropriate steps are taken toward decoupling and control 

of the multi-actuator system, inaccuracies and instabilities may result. Blakeborough et al. (2001) 

is the first example of RTHS with a coupled two-actuators system, used for a 2-DOF RTHS 

experiment. Darby et al. (2002) used the same two-actuator configuration and introduced a 

polynomial extrapolation algorithm for actuator compensation. In both developments, actuators 

are compensated independently.  
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Other literatures in this domain explore increases in the number of DOFs and use of more 

sophisticated controllers for actuator dynamics and coupling compensation. Wallace et al. (2005) 

proposes an adaptive polynomial forward prediction algorithm for multi-actuator RTHS. Jung et 

al. (2007) performs maRTHS using two actuators (e.g., 2-DOF) and explores discrete feedforward 

and phase lead compensation. Bonnet et al. (2007) investigates the effects of highly stiff actuator 

coupling. A stiff 3-DOF mass-spring system is studied with actuators installed at either ends. The 

stiffer the mass-spring system is, the harder the job of controlling the actuators. A minimal control 

synthesis with a modified demand compensator is introduced, with adaptive feedforward and 

feedback gains. Phillips and Spencer (2013) proposes a coupled model-based controller for an 

experimental setup with three actuators. Coupled and decoupled control of the experimental setup 

are evaluated. Chae et al. (2014) implements a multi-DOF ATS compensator.  

Many of the presented developments have involved individually attached actuators to a 

common physical specimen, as shown in Fig. 1.5(b), instead of a rigid boundary condition device, 

per Fig. 1.5(a). Control and manipulation of a rigid multi-axial boundary condition requires a 

framework that considers the kinematic transformations necessary between actuator and Cartesian 

frames of reference. Actuators bound by a rigid boundary condition tend to have dynamic 

coupling, where the movement of one actuator resulting in the movement of other actuators. 

Fermandois and Spencer (2017) introduces an maRTHS framework as a tool for addressing 

rigid boundary condition devices like the LBCB and the MAST. The general architecture for this 

maRTHS framework involves directing target displacement obtained from a numerical 

substructure through an outer-loop controller, to computer control signal for LBCB execution. 

Feedback forces from the physical execution of the boundary condition movements are returned 

to the microcontroller responsible for the numerical computations, thus closing the overall RTHS 

loop.  

 

(a) Rigid multi-axial boundary condition  (b) Several individual actuators 

Figure 1.5 Multi-actuator setups 

A model-based outer-loop controller is proposed for this framework which addresses the 

dynamic coupling that exists between the LBCB actuators. Following system identification of the 

actuators, transfer function models of the individual actuator channels are developed. Through 

kinematic transformations, the actuator transfer function models are converted to Cartesian 
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coordinate transfer models. Next, feedforward and feedback controllers are designed according to 

the model-based controller architecture proposed in Phillips and Spencer (2013). 

Data acquisition is conducted through the onboard loadcells, which are installed in the axis 

of each actuator, and external potentiometers that monitor the moving platform of the LBCB. 

External potentiometers are used instead of the onboard Linear Variable Differential Transformers 

(LVDTs). LVDT use can result in inaccurate measurements when LBCB casing and reaction wall 

undergo elastic deformations. Fig. 1.6, illustrates the small-scale LBCBs and the external 

potentiometers used in the Fermandois and Spencer (2017) study.  

 

Figure 1.6 Small-scale LBCB and external potentiometers 

Kinematic transformations are necessary when dealing with multi-axial boundary points. In 

the maRTHS framework, external potentiometer measurements are converted from potentiometer 

to Cartesian coordinates. The transformation from axial to Cartesian coordinates is obtained 

through forward kinematic transformation. By converting the potentiometer measurements to 

Cartesian coordinates, direct comparison is made between prescribed Cartesian displacements and 

rotations computed from the numerical model. Since the reference and measured displacements 

are in Cartesian coordinates, the corresponding outer-loop control task is performed in Cartesian 

coordinates. Because of the significant coupling that exists in the Cartesian frame of reference, the 

Cartesian compensator described in the maRTHS procedure is a multi-input multi-output (MIMO) 

coupled controller.  

The illustrative example in Fig. 1.7 is provided, which entails a moment frame with one 

column substructured physically and the remainder substructured numerically. Only the 

translational DOF of the inertial mass is considered in this experiment. Earlier studies on the 

release of the rotational DOFs were found to cause instability problems. It was later discovered 

that the MIMO controller used for the dynamic compensation of the LBCB was not authoritative 

and robust enough. Tuning and optimization of MIMO controllers is a challenging task.  
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(a) Numerical substructure   (b) Physical substructure 

Figure 1.7 Multi-axis RTHS of a moment frame 

1.6 Actuator compensation 

Simulating natural hazard excitations in laboratories require actuators capable of reproducing 

dynamic behaviors. Accurate replication of prescribed trajectories is desirable for purposes of 

repeatability and comparison with numerical studies. Shake table testing and real-time hybrid 

simulation are experimental methods where accurate replications of prescribed trajectories are 

critical. Both testing methods take advantage of electro-mechanical or servo-hydraulic actuators 

for imposing forces or movements. Actuator dynamics, however, result in undesirable phase shifts 

and amplitude variations in the experimental response. Therefore, compensation techniques have 

been proposed throughout the literature to cancel out some of the dynamics from actuators.  System 

or actuator dynamics in control theory is often referred to as a plant dynamic. 

1.6.1 Shake table compensation 

Researchers use shake tables to subject structures to synthetic and historical records as a basis for 

assessing structural performance (Luco et al. 2010; Ohtani et al. 2004; Reinhorn et al. 2004). Shake 

tables and structures have a combined dynamic that is coupled and referred to herein as the shake 

table-structure dynamics. Unless appropriate compensation is provided for the shake table-

structure dynamics, the shake table will not be able to sufficiently reproduce the prescribed motion 

accurately.  

The process of manipulating an acceleration signal to compensate for unwanted effects of 

shake table-structure dynamics is referred to as acceleration tracking. The Transfer Function 

Iteration (TFI) is a commonly used control method built using an inverse model of the shake table-

structure dynamics, that augments the original acceleration time-history with an error signal 

iteratively, resulting in improved tracking of the reference acceleration signal (Fletcher 1990; 

Spencer and Yang 1998). Small amplitude time-histories are used for iterative tuning of the TFI 

controller. Thereby, this method is well-suited when the dynamics of the shake table remains 

linear. When nonlinearities exist in the dynamics of the onboard structure, the shake table 

dynamics will also change due to the ongoing coupling that exists with the onboard structure. In 

addition, the TFI method may not be able to compensate for the changing dynamics of the shake 

table. 
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Early model-based controllers used the inverse of the nominal model of a shake table, to 

create a feedforward filter, for prefiltering of acceleration time-histories. Operation of a model-

based controller is typically conducted by first obtaining a model of the coupled shake table-

structure dynamics. There are numerous system identification tools including frequency-domain 

identification methods that generate accurate and predictable models of the shake tables. Twitchell 

and Symans (2003) proposes inverting the actuator model into a feedforward filter and prefiltering 

the reference signal to tackle both displacement and acceleration tracking problems. This approach 

is sensitive to structural nonlinearities and failures.  

Online model-based controllers can better compensate in acceleration tracking even when 

nonlinearities are present. Model-based controllers make use of feedforward and feedback 

controllers for trajectory control of shake tables. Stoten and Shimizu (2007) uses minimal control 

synthesis (MCS) for adaptive identification of feedforward control parameters. The tracking 

performance of the MCS is not clearly established. Gao et al. (2012) proposes an 𝐻∞ control 

approach for actuator displacement tracking. This method requires a high level of accuracy in 

identification of the plant model and uncertainties. Esparza et al. (2013) introduces model 

reference adaptive controller (MRAC) for position tracking of a two-axis shake table. This 

development was only applied to displacement signals, and acceleration tracking was not assessed. 

Application of MRAC to acceleration tracking is challenging, as the adaptive controller generates 

low frequency feedback signal, which translates into large drifts for acceleration tracking 

implementations. Nakata (2010) proposed an acceleration trajectory tracking controller (ATTC) 

based on the acceleration feedforward control concept, coupled with a displacement feedback and 

a time delay filter, to ensure displacement feedback does not interfere in the acceleration tracking. 

The shake table was tested without an onboard structure in this study and the effects of shake table-

structure interaction were thus ignored. Phillips et al. (2014) applied a similar architecture for 

acceleration tracking of a single-axis shake table, called the Model-Based Controller (MBC). 

Several different feedback configurations were studied, including feedbacks on acceleration, 

displacement and the combined. With this method, as the control authority is increased to achieve 

better tracking, stability of the shake table is jeopardized. On the contrary, as the stability is 

enhanced, the tracking becomes sluggish. In addition, the tracking performance of the MBC often 

deteriorates as changes take place in the shake table-structure dynamics, resulting in poor tracking 

robustness. The MBC is used for development of a new controller with enhanced tracking 

robustness and serves as one of the baseline control techniques used for comparison herein.  

1.6.2 Real-time hybrid simulation compensation 

The typical RTHS experiment involves numerical simulation of the linear components and 

physical testing on the components expected to behave in the nonlinear range of the structure using 

an actuation device. In the experimental partition, actuator dynamics along with computation and 

communication delays result in phase shifts and amplitude variations which need to be 

compensated. Some early compensation approaches involved polynomial extrapolation methods 

(Darby et al. 2002; Horiuchi et al. 1996). The major limitation of these approaches is the order of 

the proposed polynomial in relationship to the velocity content of the reference signal. Lower order 

polynomials result in overshoot when tracking high frequency contents and higher order 

polynomials result in oscillations when tracking low frequency contents. CSI is another 

phenomenon that has major impact on the performance of actuated systems, which time domain 

extrapolation methods fail to account for.  
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Frequency-domain controllers have proven successful for dealing with CSI. Feedforward 

inverse transfer function methods were the earliest frequency-domain approaches, which stemmed 

from system identification of a linear system, followed by offline feedforward filtering of the 

reference signal. Feedforward controllers have improved tracking of both displacement and 

acceleration reference record (Twitchell and Symans 2003). In real-time applications, inclusion of 

a feedback controller is necessary to deal with impulse-like behavior and disturbance attenuation.  

Next, Model-based techniques came about and made use of feedforward and feedback 

concepts to produce fast tracking controllers. A displacement tracking MBC combined 

feedforward and feedback controller was introduced in Carrion et al. (2009) to compensate for 

experimental dynamics and attenuate disturbances. An additional Linear Quadratic Gaussian 

(LQG) feedback loop for acceleration tracking was proposed, for improved multi-metric tracking 

(Phillips and Spencer 2013). The MBC algorithm has been used in operation of single and multi-

axis RTHS experiments (Fermandois and Spencer 2017).  Tracking accuracy of these controllers 

is largely dependent on the goodness of the identified plant model. As plant nonlinearities increase 

and modeling uncertainties develop, these linear controllers may lose robustness and lead to 

instability. Thus, some later developments shifted focus to robust and adaptive approaches to 

overcome the listed limitations of linear controllers.  

Adaptive control is an approach where the controller adapts itself to the changing dynamics 

of the plant, hence expanding the successful operational horizon of the controller. The Adaptive 

Inverse Compensation method is based on displacement tracking where the focus of the adaptation 

is on the time-varying actuator delays (Chen and Ricles 2010). A discrete-time transfer function is 

formed with proportional-integral adaptive law based on the tracking indicator (TI) proposed in 

(Mercan and Ricles 2009). The Adaptive Time Series compensator is another proposed method 

where the coefficients of a second-order compensator are updated using a least-square algorithm 

to minimize the system delay (Chae et al. 2013). An advantage of this method is that there are no 

adaptive gains, and the disadvantage is that this method was developed in the time domain, lacks 

predictability, and does not guarantee parameter convergence. An adaptive scheme was next 

proposed for the MBC with a projection adaptive law (Chen et al. 2015). The feedforward 

controller proposed is limited to a third-order transfer function and this poses a constraint when 

dealing with higher-order systems.  

1.7 Objective of the study 

The main limitations of most existing methods for assessment of structural behavior under natural 

hazard loading can be summarized via the neglection of one or more of: 

i. dynamic and rate-dependent behavior of materials,  

ii. complex three-dimensional system-level interactions,  

iii. realistic nonlinear assessment, 

iv. single substructuring interface, and  

v. cost burdens.  

There is significant intellectual merit in developing a simulation tool for testing of existing 

and new materials and structures used in the resilient and sustainable structural systems of the 

future. This dissertation will focus on advancing the multi-axial real-time hybrid simulation 

(maRTHS) technology with multiple boundary interfaces, as a natural extension to many of the 

existing contributions, namely Carrion et al. (2009), Phillips and Spencer (2013), and Fermandois 

and Spencer (2017). 
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1.8 Outline of the chapters 

The chapters in this dissertation will introduce the fundamental concepts and algorithms necessary 

for successful actuator and shake table operations, single-axis RTHS, and multi-axial RTHS.  

Chapter 2 will discuss topics fundamental towards this hybrid simulation research. A 

generalized equation of motion for modeling of dynamic systems will be presented. A background 

on control of dynamic systems will be introduced, because many compensation algorithms shall 

be discussed herein.  The governing equations of motion describing the dynamics of servo-

hydraulic actuators will be described next, with an in-depth discussion on the servo valve 

mechanisms. Then, methods for system identification of single-input, single-output (SISO) 

systems are presented. System identification is crucial in design and development of model-based 

controllers. Because multi-actuator boundary devices are useful for multi-axial testing, 

fundamentals of kinematic transformations will be presented. Lastly, several commonly used 

numerical integration schemes will be listed.  

Chapter 3 will focus on actuator dynamics and compensation. The natural dynamics of 

actuators inhibits them from tracking a prescribed trajectory in an accurately and timely manner. 

A modified actuator compensator based on the model-based controller class of actuator 

compensators will be discussed. The modified compensator will be comprised of feedforward and 

feedback LQG controllers. An adaptive expansion will also be proposed for the modified 

compensator. The application involving the ground motion acceleration tracking of a shake table 

will also be explored as a verification study.  

Chapter 4 will discuss the fundamentals of single-axis model-based RTHS. Model-based 

frameworks utilize system identified models of actuator and physical specimen dynamics. Several 

model-based applications will be studied, including: (i) RTHS for lightly-damped and highly-

nonlinear structure, (ii) RTHS of bridge vibration mitigation strategy using an MR damper, and 

(iii) virtual RTHS with adaptive compensation of a three-story steel frame. Once the success of 

the single-axis model-based strategy is demonstrated, the stage will be set for a multi-axial 

expansion of the model-based strategy. 

Chapter 5 will introduce the major contribution of this dissertation in the form of the multi-

axial RTHS. Requirements for the successful execution of multi-axial RTHS will be listed, 

including kinematic transformations, actuator compensation, multi-axis load and boundary 

devices, and computational and input-output peripherals. A simple steel moment structure will be 

excited with a ground acceleration and used for a validation study. A single physical specimen will 

be tested in this study. Out-of-plane vibrations will be ignored. 

Chapter 6 will consider maRTHS with multiple boundary interfaces and physical 

specimens. Incorporation of multiple interfaces will expand the existing applications of the RTHS 

methodology. A validation study involving a multi-span curved bridge structure will be considered 

where two of the bridge piers will be physically tested while the remainder of the structure is 

numerically modeled. The behavior of the bridge tested via the maRTHS method will first be 

compared to numerical simulation results. Next, the test specimen will be pushed in to the inelastic 

range to demonstrate that the proposed framework is capable of nonlinear dynamic testing of 

structures. In this validation study, out-of-plane capability of the maRTHS framework will be 

demonstrated.  

Lastly, Chapter 7 will provide concluding remarks regarding the developments in this 

dissertation and list future studies and research directions that the hybrid simulation community 

can explore.   
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Chapter 2 

 

CONCEPTS IN HYBRID SIMULATION 

 

2.1 Introduction 

This chapter provides the prerequisites for the technical concepts described later in this 

dissertation. The goal of this chapter is twofold: (i) breaking down real-time hybrid simulation 

(RTHS) framework into smaller subcomponents for ease of understanding, and (ii) insisting on 

some preliminary aspects, which would otherwise be overlooked. As an example, reference 

tracking and stabilization of a dynamical systems, like actuators, are possible only when certain 

conditions of observability and controllability are satisfied.  

2.2 Equation of motion 

Consider an n-story reference structure subject to some arbitrary external force 𝑓(𝑡) and ground 

motion acceleration �̈�𝑔(𝑡), shown in Fig. 2.1(a). This is representative of a 2-dimensional building 

structure subject to dynamic forces and accelerations. This n-story structure is idealized as an n-

DOF discretized finite element model (FEM) in Fig. 2.1(b). An FEM model may have any number 

of DOFs for added complexity and realism, but for the sake of establishing the abstract concept of 

substructuring of an equation of motion, only the lateral DOFs are presented.  

 

(a) 2-dimensional building structure  (b) Idealized building structure 

Figure 2.1 Reference structure 

The equation of motion for the reference structure can be described as a second-order 

differential equation, given by 
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𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑹(𝑡) = −𝑴𝜾�̈�𝑔(𝑡) + 𝑭(𝑡) (2.1) 

where 𝑹(𝑡) ∈ ℛ𝑛, 𝑪 ∈ ℛ𝑛×𝑛, and 𝑴 ∈ ℛ𝑛×𝑛 are restoring force, and the positive semi-definite 

damping and mass matrices for the reference structure. For the elastic case, 𝑹(𝑡) = 𝑲𝒙(𝑡) with 

𝑲 ∈ ℛ𝑛×𝑛 as the stiffness matrix. 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛−1(𝑡), 𝑥𝑛(𝑡)]
𝑇, �̇�, and �̈� are vectors 

of displacement, velocity, and acceleration value for the DOFs as a function of time 𝑡.  The ground 

acceleration is described as �̈�𝑔(𝑡) and 𝜾 ∈ ℛ𝑛 is an influence vector indicating the direction of the 

inertial forces. All lateral externally applied forces are described in vector form as 𝑭(𝑡) =
[𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛−1(𝑡), 𝐹𝑛(𝑡)]

𝑇.  

The damping matrix is representative of the various friction and dissipative mechanisms that 

exist in structures. Because damping is a difficult phenomenon to model, it is customary to assume 

the damping matrix as proportion of the mass and stiffness matrices (i.e., Rayleigh damping).  

𝑪 = 𝑎1𝑴+ 𝑎2𝑲 (2.2) 

where 𝑎1 and 𝑎2 are positive coefficients that are fit to predefined modal damping values of the 

structures under consideration. Modal damping is another approach for estimating the damping 

matrix, where a specific damping ratio 𝜁 is assigned to each mode individually (Chopra 2011).  

The governing equation for the reference structure is next partitioned into numerical and 

physical substructures  by breaking down the property matrices per: 

𝑹 = 𝑹𝑁 + 𝑹𝑃 ,              𝑪 = 𝑪𝑁 + 𝑪𝑃  ,              𝑴 = 𝑴𝑁 +𝑴𝑃 (2.3) 

where the subscripts N and P refer to numerical and physical substructures. The property matrices 

of the numerical and physical substructures should ideally add up to the property matrices of the 

reference structure. The new governing equations for the numerical and physical substructures are 

given by: 

𝑴𝑁�̈�𝑁(𝑡) + 𝑪𝑁�̇�𝑁(𝑡) + 𝑹𝑁(𝑡) = −𝑴𝑁𝜾�̈�𝑔(𝑡) + 𝑭(𝑡) − 𝑭𝑅(𝑡) 

𝑴𝑃�̈�𝑃(𝑡) + 𝑪𝑃�̇�𝑃(𝑡) + 𝑹𝑃(𝑡) = 𝑭𝑅(𝑡) 

(2.4) 

(2.5) 

where 𝑭𝑅(t) are the feedback forces from the physical specimen to the numerical substructure. The 

numerical substructure is typically modelled as completely elastic. Therefore, the numerical 

restoring force is simplified to just a numerical stiffness element, 𝑹𝑁(𝑡) = 𝑲𝑁𝒙𝑁(𝑡).  
A structural element of interest is selected for physical substructuring in the reference 

structure in Fig. 2.1. The boundary point between the physical and numerical substructures is 

indicated with the red circle in Fig. 2.2. Within the numerical substructure, the states (e.g., 

displacements and rotations) associated with the boundary condition with the physical substructure 

are denoted as 𝒙𝑁
𝐵𝐶(𝑡) ⊂ 𝒙𝑁(𝑡). In an ideal world, the calculated boundary conditions are perfectly 

replicated in the physical substructure, with 𝒙𝑁
𝐵𝐶(𝑡) = 𝒙𝑃

𝐵𝐶(𝑡). Upon excitation of the physical 

substructure with boundary point states (i.e., conditions), specimen forces are measured and 

applied back to the numerical substructure at the location of the boundary condition.  

In reality, a perfect match between the numerical and physical boundary conditions is very 

difficult to achieve, due to the unwanted dynamics that exist in servo-hydraulic actuators. In the 

RTHS method, compensation algorithms are incorporated into the closed-loop architecture to 

ensure that the error between the numerical and physical boundary conditions are minimized 

within a finite time, otherwise instability issues can occur. 

lim
𝑡→∞

|𝒙𝑁
𝐵𝐶(𝑡) − 𝒙𝑃

𝐵𝐶(𝑡)| = 0 (2.6) 
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(a) Closed-loop architecture of RTHS   (b) Application of RTHS to reference structure 

Figure 2.2 Real-time hybrid simulation of the reference structure 

2.3 Dynamic system control 

The job of control theory in engineering is to alter and modify the responses of dynamic systems 

or plants. The behavior of a plant may be linear or nonlinear, and deterministic or stochastic. The 

plant inputs, outputs, and states are described by the vectors 𝒖(𝑡), 𝒚(𝑡), and 𝒙(𝑡), respectively. 

The control objective is summarized as manipulation of the input signal 𝒖(𝑡) to ensure that the 

output signal 𝒚(𝑡) follows a prescribed trajectory and physical performance requirement. 

Given a linearized 𝑛-DOF building structure in Fig. 2.1, a general form for the governing 

equation can be written as 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝑭(𝑡) (2.7) 

where the input to the building structure or plant is the force vector 𝑭(𝑡) ∈ ℛ𝑛. The outputs from 

the system can be defined as the story-level accelerations �̈�(𝑡) ∈ ℛ𝑛, since displacement and 

velocity data are harder to detect via data acquisition sensors from a building structure.  

The second-order differential equation in (2.7) is next re-written as set of first-order 

differential equations, via the introduction of a new state variable 𝒛(𝑡) = [𝒙(𝑡) �̇�(𝑡)]𝑇. 

Following a series of arithmetic manipulations, the governing equation can be written as a state-

space formulation, given by 

�̇�(𝑡) = 𝑨𝑠𝒛(𝑡) + 𝑩𝑠𝑭(𝑡) 

𝒚(𝑡) = 𝑪𝑠𝒛(𝑡) + 𝑫𝑠𝑭(𝑡) 
(2.8) 

𝑨𝑠 = [
𝟎 𝑰

−𝑴−1𝑲 −𝑴−1𝑪
],      𝑩𝑆 = [

𝟎
𝑴−1],     𝑪𝑠 = [−𝑴−1𝑲 −𝑴−1𝑪],    

𝑫𝑠 = [𝟎] 

(2.9) 
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where 𝑨𝑠 ∈ ℛ
2𝑛×2𝑛,  𝑩𝑠 ∈ ℛ

2𝑛×𝑛, 𝑪𝑠 ∈ ℛ
𝑛×2𝑛, and 𝑫𝑠 ∈ ℛ

𝑛×𝑛 are state, input, output, and 

throughput matrices, respectively. 𝒚(𝑡) ∈ ℛ𝑛 is a vector of outputs (i.e., story-level absolute 

accelerations). In the state-space matrices provided in (2.9), 𝑰 ∈ ℛ𝑛×𝑛 and 𝟎 ∈ ℛ𝑛×𝑛 are identity 

and zero matrices. 

The eigenvalues and eigenvectors of the state matrix 𝑨𝑠, are described by 𝚲 ∈ ℛ2𝑛×2𝑛 and 

𝑽 ∈ ℛ2𝑛×2𝑛  respectively. An 𝑛-DOF system has 𝑛 eigenvalues which can be obtained through 

𝚲 = 𝑽𝑨𝑠𝑽
−1 = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, … , 𝜆2𝑛−1, 𝜆2𝑛]. A linear time-invariant (LTI) system is said to be 

stable when 𝑅𝑒(𝜆𝑖) ≤ 0 for 𝑖 = {1,2, … ,2𝑛 − 1,2𝑛}. For non-linear systems, the Lyapunov direct 

method may be used for proof of stability (Chen 1999). The analytical expression for the states of 

the system in (2.8) is computed via: 

𝒛(𝑡) = 𝝓(𝑡)𝒛0 +∫ 𝝓(𝑡 − 𝜏)𝑩𝑠𝑭(𝜏)𝑑𝜏
𝑡

0

 (2.10) 

where 𝒛0 = 𝒛(0) ∈ ℛ
2𝑛 are the initial conditions for the system states, and 𝝓(𝑡) ≔ 𝑒𝚲𝑡 =

𝑑𝑖𝑎𝑔[𝑒𝜆1𝑡, 𝑒𝜆2𝑡 , … , 𝑒𝜆2𝑛−1 𝑡, 𝑒𝜆2𝑛𝑡]. 

Sometimes dynamical systems are converted from time domain to Laplace domain (or 

frequency-domain). In frequency-domain differential operations are converted to algebraic 

operations, resulting in computational efficiency. Laplace transform is a one-sided improper 

integral given by: 

𝑃(𝑠) = ∫ 𝑝(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 (2.11) 

with 𝑠 as the Laplace variable. 𝑃(𝑠) and 𝑝(𝑡) are a Laplace pair (i.e., Laplace and time domain 

manifestations of the same function). A linear time-invariant dynamical system can be described 

in the Laplace domain as a transfer function. The equation of motion in (2.7) for a single-DOF 

system, given an input force 𝐹(𝑡) and output acceleration �̈�(𝑡) is written as: 

𝑮�̈�𝐹(𝑠) =
�̈�(𝑠)

𝐹(𝑠)
=

𝑠2

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (2.12) 

where 𝑘, 𝑐, and 𝑚 are the stiffness, damping, and mass parameters for the single-DOF system. The 

subscripts of the transfer function 𝑮�̈�𝐹(𝑠) describe the output-input pair, respectively. The transfer 

function for the 𝑛-DOF can be obtained by converting the state-space to a transfer function 

formulation: 

𝑮�̈�𝑭(𝑠) =
�̈�(𝑠)

𝑭(𝑠)
= 𝑪𝑠(𝑠𝑰 − 𝑨𝑠)

−1𝑩𝑠 +𝑫𝑠 (2.13) 

The state-transition matrix in Laplace-domain is defined as 𝚽(𝑠) = (𝑠𝑰 − 𝑨𝑠)
−1 =

ℒ(𝝓(𝑡)), with ℒ indicating a Laplace transform. Even before solving the differential equation, a 

transfer function can provide valuable information about the system characteristics. The numerator 

and denominator of a transfer function can be written in factored form: 

𝑮(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑎−1)(𝑠 − 𝑧𝑎)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑏−1)(𝑠 − 𝑝𝑏)
 (2.14) 

where 𝑁(𝑠) and 𝐷(𝑠) are numerator and denominator polynomials. The roots of the numerator 

and denominator, 𝑧𝑗 for 𝑗 = {1,2, … , 𝑎} and 𝑝𝑘 for 𝑘 = {1,2, … , 𝑏} and 𝐾, are termed as the zeros, 

poles, and gain of the transfer function, respectively. All zeros and poles are either purely real 

valued 𝑝𝑘 = 𝜎𝑘 , or appear in complex conjugate pairs 𝑝𝑘 = 𝜎𝑘 ± 𝑖𝜔𝑘. For a stable system, all the 
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poles must have negative real parts, otherwise the output of the system increases without bounds, 

resulting in instability.  

2.3.1 Controllability and observability 

A system of linear algebraic equations has unique solutions if and only if the rank of the system is 

equal to the number of variables in that system. Controllability and observability are important 

tests for the LTI  systems that involve ranking testing of state-space matrix combinations. 

Controllability describes whether a system can be manipulated with a control input, in a finite 

time. Observability describes whether the states of a system are observable given the available 

knowledge from the system inputs and outputs, in a finite time. These concepts are later on tied to 

controllers and estimators.  

For the 𝑛-DOF system in (2.1), the controllability matrix is given by: 

𝓒 = [𝑩𝑠 𝑨𝑠𝑩𝑠 𝑨𝑠
2𝑩𝑠 … 𝑨𝑠

2𝑛−1𝑩𝑠] (2.15) 

and if the rank of the controllability matrix is equal to the rank of the system, 𝑟𝑎𝑛𝑘(𝓒) = 2𝑛, the 

dynamical system is controllable. Similarly, an observability matrix is written as: 

𝓞 = [𝑪𝑠 𝑪𝑠𝑨𝑠 𝑪𝑠𝑨𝑠
2 … 𝑪𝑠𝑨𝑠

2𝑛−1]𝑇 (2.16) 

and if the rank of the observability matrix is equal to the rank of the system, 𝑟𝑎𝑛𝑘(𝓞) = 2𝑛, the 

dynamical system is observable.  

2.3.2 State feedback 

Full-state feedback is the simplest form of control action, used to change how a dynamic system 

(plant) behaves by moving the poles of the system. A state feedback matrix 𝑲 ∈ ℛ𝑛×2𝑛 scales the 

system states and typically gets added to the reference trajectory 𝒓(𝑡) to produce a control signal 

𝒖(𝑡) = 𝑲𝒛(𝑡) + 𝒓(𝑡). For the dynamic system in (2.1), the reference signal is 𝑭(𝑡) = 𝒓(𝑡). The 

new closed-loop state-space system with the added state-feedback is demonstrated in Fig. 2.3, and 

also expressed in (2.17). 
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Figure 2.3 State-space system with full state feedback 

�̇�(𝑡) = (𝑨𝑠 −𝑩𝑠𝑲)𝒛(𝑡) + 𝑩𝑠𝒓(𝑡) (2.17) 

Having established the concepts of controllability and stability and state-feedback, the 

following theorem needs to be stated: An LTI system is stabilizable if there exists a state feedback 

matrix 𝑲 that can ensure 𝑨𝑠 − 𝑩𝑠𝑲 is stable. All unstable modes need to be controllable for this 

condition.  

2.3.3 State observer 

The assumption so far has been that states of the dynamical system are available for feedback 

action. Measurements of states depend on availability and distribution of sensors. For instance, in 

the dynamical system in (2.1), installation of accelerometers results in the availability of the 

acceleration states. Other states like velocity and displacement are typically not available. A state 

observer or estimator will generate an estimate of the states of the plant, whether available or not. 

Development of state observers typically require advanced knowledge of the system and the 

availability of an estimate of the dynamical model. Assuming a perfect knowledge of the plant 

dynamics, the following state observer can be designed: 

�̇̂�(𝑡) = (𝑨𝑠 − 𝑳𝑪𝑠)�̂�(𝑡) + 𝑩𝑠𝒓(𝑡) + 𝑳𝒚(𝑡) (2.18) 

where �̂�(𝑡) and �̇̂�(𝑡) are estimates of the system states and their derivatives. 𝑳 ∈ ℛ2𝑛×𝑛 is termed 

as the observer gain, and the main design objective in a state observer. A dynamic system is said 

to be detectable if there exists an observer gain 𝑳 such that 𝑨𝑠 − 𝑳𝑪𝑠 is stable. All unstable modes 

must be observable for this condition (Tsai and Gu 2014).  
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Figure 2.4 State-space system with a state observer  

A major share of the discussions on dynamic system controls in this dissertation surrounds 

the control of servo-hydraulic actuators which are critical to experimental testing of structures – 

in particular, the physical testing component of RTHS.  

2.3.4 PID control 

The proportional-integral-derivative (PID) controller is a populator control algorithm that is often 

used as an inner stabilizing controller for many research and industrial control applications. 

Simplicity and ease-of-design have made PID a popular choice. The error between a reference and 

measured executed signal are computed and subjected to proportional, integral, and derivative 

gains – the three gains.   

The design objective for a PID controller is summarized in the optimization of the three gains 

𝐺𝑃, 𝐺𝐼, and 𝐺𝐷. Proportional gain reduces rise-time and the steady-state errors between the 

reference and measured signals. However, it also results in overshoot and ripple effects (i.e., 

extended settling time). Derivative gain reduces the overshoot and ripple effects. The proportional 

gain can never fully remove steady-state error; thus, an Integral control is usually included. These 

gains are increased from a zero position slowly until the desired performance between the reference 

and measured signals 𝑟(𝑡) and 𝑦(𝑡) are met. The Ziegler -Nichols rule is an attempt at developing 

heuristic tuning steps for a PID controller.  
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Figure 2.5 PID control architecture 

The command signal 𝑢(𝑡) ∈ ℛ is the summation of the error terms multiplied by their 

corresponding PID gains 

𝑢(𝑡) = 𝐺𝑃𝑒(𝑡) + 𝐺𝐼∫𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝐺𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (2.19) 

2.4 Servo-hydraulic actuators 

Servo-hydraulic actuators fulfil the important purpose of imposing boundary conditions on 

physical specimen in an RTHS test. Actuators can operate individually or in tandem to actuate one 

or more Cartesian DOFs. The LBCB device shown in Fig. 1.4 for instance has six actuators and 

can impose motion in six DOFs. Based on the principles of incompressible flow, hydraulic fluid 

pressure provides the main energy source for a series of mechanical and electrical apparatuses that 

result in extension or retraction of an actuator arm. As the flow of the hydraulic fluid is stymied, 

pressure is built up.   

The operation of a servo-hydraulic actuator begins with a hydraulic oil tank. An oil pump 

generates flow through the pressure pipe shown in blue in Fig. 2.5(a). A tank pipe, shown in red, 

returns the flow of oil into the oil tank, ensuring a closed-loop operation. A hydraulic actuator has 

two chambers: left and right as illustrated in Fig. 2.5(b).When oil flows into the right chamber is 

followed by pressure build up in the right chamber and a resultant pressure differential across the 

piston. This results in the extension of the piston rod. Similarly, oil flow into the left chamber 

corresponds to a retraction of the piston rod.   
 



24 

 

 

(a) Closed-loop hydraulic actuator  (b) Chambers of a hydraulic actuator 

Figure 2.6 Operation of a servo-hydraulic actuator 

A spool valve controls the flow of into each chamber of the actuator. Control and trigger of 

the spool valve are typically conducted in three ways: (i) manually, (ii) solenoids, and (iii) servo 

valves. A manual approach at triggering a spool valve is the simplest form but is not an option for 

real-time applications. Solenoids are inexpensive and easy to operate. High flow rates and high 

frequency operations are however not possible due to the physical limitations of solenoids. 

Electrohydraulic servo valves are another popular but more expensive options for operation of 

more powerful hydraulic actuators with a small electric signal.  

2.4.1 Servo valve 

The focus of the discussion herein is limited to two-staged electrohydraulic servo valves, similar 

to the types used in the experimental setups in later sections. These servo valves are able to convert 

low-powered electrical signals to high-precision control, high-power and low-speed hydraulic 

actuators (Changhai and Hongzhou 2014). The two-stages involved are: (i) flapper nozzle system, 

and (ii) spool valve. The servo valve receives high pressure hydraulic oil from a pump and an 

electrical signal. The job of a servo valve is to release hydraulic pressure to an actuator proportional 

to the electrical current provided (Merritt 1967).  

The mechanisms involved in the operation of a two-staged servo valve are highly precise and 

repeatable. Fig. 2.7 provides a schematic of a two-staged servo valve. Hydraulic oil supplied from 

an oil pump enters through the supply pipe and rises in the spool valve (blue region) chamber in 

stage 2. When the hydraulic actuator is intended to be at an equilibrium position, no electrical 

signal is applied to the flapper in stage 1. Hence, the flapper stays in a vertical position and oil 

flow continues through the nozzles (yellow region) to leaves through the tank return pipe. In this 

configuration, the oil pressure in the vertical columns to the left and right of the spool remain 

equal, resulting in no pressure differential and movement.  
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Figure 2.7 Two-stage servo valve and hydraulic actuator 

Now suppose the objective is to extend the piston rod by increasing the pressure in the left 

chamber of the illustrated hydraulic actuator. An electrical signal is applied to the coil windings 

around the armature in stage 1. The coil generates an electromagnetic torque. The newly 

magnetized flapper reacts with the permanent magnets and deflects from the original position. The 

flapper moves horizontally, hindering the flow through one of the nozzles. The decrease in the 

flow of oil through one nozzle results in the accumulation of pressure in the vertical chamber. This 

is also associated with a reduction in the oil pressure in the opposing vertical chamber. As a result 

of the pressure differential at the ends, the spool begins to move releasing flow into the left 

chamber. Lastly, the pressure in the left chamber of the actuator increases and the piston rod 

extends.  

A feedback mechanism exists that brings the servo valve back to equilibrium. The sliding of 

the spool results in displacement at the base of the feedback wire, which is fed back to the flapper. 

The feedback wire provides a spring force that opposes the direction of motion of the spooler. This 

spring force increases until an equilibrium state is reached. The servo valve can therefore release 

oil flow proportional to the direction and the magnitude of the current applied to the armature.  

2.4.2 Parametric modeling of hydraulic actuation 

In developing a parametric model, the major components that form a hydraulic actuator system in 

series are separated and dynamic models of each are formulated. These components include the 

testing specimen, hydraulic actuator (cylinder), servo valve, and controller. A single-DOF physical 

specimen is considered by simplifying the system in (2.1). To move the physical specimen, a piston 
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rod applies a force of 𝑓𝑝. This dynamic force engages the dynamic properties of both the actuator 

cylinder and the physical specimen.  

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝑓𝑝(𝑡) (2.19) 

where 𝑚 = 𝑚𝑠 +𝑚𝑝, 𝑐 = 𝑐𝑠 + 𝑐𝑝, and 𝑘 = 𝑘𝑠, with subscripts 𝑠 and 𝑝 referring to specimen and 

piston rod components of mass, damping and stiffness. The stiffness of the actuator here is 

expected to dominate the stiffness of the hydraulic actuator (Carrion and Spencer, Jr. 2007). The 

specimen is assumed to stay in the linear elastic range in (2.19). A transfer function model of the 

equation of motion is achieved by converting to Laplace domain 

𝑮𝑥𝑓(𝑠) =
𝑋(𝑠)

𝐹𝑝(𝑠)
=

1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (2.20) 

The physical principal behind deriving the dynamic equation for a hydraulic actuator is the 

flow continuity principle. Flow continuity is a form of the law of conservation of mass that of 

course appears in fluids. For a given volume of fluid with volume and density of 𝑉 and 𝜌, and 

input and output flows 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 and densities 𝜌𝑖𝑛 and 𝜌𝑜𝑢𝑡 shown in Fig. 2.8(a) the following 

relationship is established 

𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 =
𝑑𝑉

𝑑𝑡
+
𝑉

𝜌

𝑑𝜌

𝑑𝑡
 (2.21) 

 

(a) Control volume for continuous flow  (b) Hydraulic actuator 

Figure 2.8 Schematics for continuity flow relationships 

Next, the bulk modulus of elasticity for fluids 𝛽 =
𝑑𝑝
𝑑𝜌

𝜌

 is considered, with 𝑑𝑝 defining a 

differential change in pressure, and 𝑑𝜌, the differential change in density of the object, in order to 

remove the density terms in (2.21).  

It is also important to incorporate the flow directions into relationship (2.21) as the 

extension/retraction behavior of hydraulic actuators matters. By considering actuator motion in 

one direction only, (2.21) simplifies to the given 

𝑞𝑖(𝑡) = 𝐴𝑖𝑣(𝑡) +
𝑉𝑖
𝛽

𝑑𝑝𝑖(𝑡)

𝑑𝑡
 (2.22) 

where A is the internal area of the piston, 𝑣 is the fluid velocity, 𝑉 is the volume of the chamber, 

and 𝑖 specifies which chamber (e.g., 1 for left and 2 for right). So far, the continuity assumption 

has assumed a perfect flow without any leakage. However, leakages exist in the form of external 

leakage: from actuator lining to the drain, and internal leakage: across the piston. The total load 
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flow, hence, includes volumetric flow, leakage flow, and compressibility. Combing equation 

(2.22) for 𝑖 = {1,2} and given that 𝑉𝑡 = 𝑉1 + 𝑉2, the following relationship is arrived at 

𝑞𝐿(𝑡) = 𝐴�̇�(𝑡) + 𝐶𝑙𝑝𝐿(𝑡) +
𝑉𝑡
4𝛽
�̇�𝐿(𝑡) (2.23) 

where 𝑞𝐿 =
𝑞1+𝑞2

2
 is the total load flow, 𝐴 is the area of the piston (assumed equal on both sides), 

�̇� is the velocity of the piston, 𝐶𝑙 is the total leakage coefficient, and 𝑝𝐿(𝑡) = 𝑝2(𝑡) − 𝑝1(𝑡) is the 

load pressure (Merritt 1967). The force applied by the piston rod is 𝑓𝑝(𝑡) = 𝐴𝑝𝐿(𝑡). Expressing 

the first-order dynamics in the Laplace domain 

𝑮𝑝𝑞(𝑠) =
𝑃𝐿(𝑠)

𝑄𝐿(𝑠) − 𝐴𝑠𝑋(𝑠)
=

1

𝐶𝑙 +
𝑉𝑡
4𝛽
𝑠
 

(2.24) 

The characteristics of a three-land four-way spool valve similar to those in Fig. 2.7 are 

considered next with the objective of expressing load flow as a function of load pressure and 

displacement of spool from the neutral position. A total of 11 nonlinear algebraic equations must 

be solved simultaneously, which can be tedious. By confining the operational horizon of the valve 

to the vicinity of the neutral position, a Taylor series expansion of the load flow equation 

approximated per 

𝑞𝐿(𝑡) ≔
𝜕𝑞𝐿
𝜕𝑥𝑣

𝑥𝑣(𝑡) +
𝜕𝑞𝐿
𝜕𝑝𝐿

𝑝𝐿(𝑡) (2.25) 

where the first partial derivative is defined as the flow gain 𝐾𝑞
′ ≔

𝜕𝑞𝐿

𝜕𝑥𝑣
 and the second partial 

derivative is the flow-pressure coefficient 𝐾𝑐
′ ≔ −

𝜕𝑞𝐿

𝜕𝑝𝐿
. 

The dynamics of a servo valve are quite difficult to model due to the complex physical 

geometry of the various spools and oil chambers. Pressure flow inside the chambers of a servo 

valve spool are inherently nonlinear (Mu and Li 2011). Many researchers have used first-order 

models for describing dynamics of servo valves (Carrion and Spencer, Jr. 2007; Qian et al. 2014). 

Merritt (1967) derived a third-order model, Kim and Tsau (2000) proposed a fifth-order model, 

and Changhai and Hongzhou (2014) proposed a seventh-order model. For the sake of simplicity, 

a first-order model of servo valve dynamics used per 

𝑮𝑥𝑖(𝑠) =
𝐾𝑠𝑣
1 + 𝜏𝑠

 (2.26) 

where 𝐾𝑠𝑣 is the servo valve gain, 𝜏 is the model time constant, and 𝑠 is the Laplace variable.  

The linearized dynamics of the physical specimen in (2.20), actuator pressure in (2.24), servo 

valve flow in (2.25), and spool valve motion in (2.26) are combined to formulate the closed-loop 

dynamics of the complete servo-hydraulic and specimen system in Fig. 2.9 and fourth-order system 

in Eqs . (2.27-2.32). A proportional controller with a gain of 𝐺𝑝 is assigned to the error term 𝑒(𝑡) 

between the control and measured signals 𝑢(𝑡) and 𝑥(𝑡).  



28 

 

 

Figure 2.9 Closed-loop dynamics of servo-hydraulic and specimen system 

𝑮𝑥𝑢 =
𝑎1

𝑏5𝑠4 + 𝑏4𝑠3 + 𝑏3𝑠2 + 𝑏2𝑠 + 𝑏1
 (2.27) 

𝑎1 = 4𝛽𝐾𝑝𝐾𝑞𝐴 

𝑏1 = 4𝛽𝐾𝑐𝑘 + 4𝛽𝐾𝑝𝐾𝑞𝐴 

𝑏2 = 4𝛽𝐾𝑐 + 𝑉𝑡𝑘 + 4𝛽𝐴
2 + 4𝛽𝐾𝑐𝑘𝜏 

𝑏3 = 4𝛽𝐾𝑐𝑚+ 𝑉𝑇𝑐 + 4𝛽𝐴
2𝜏 + 4𝛽𝐾𝑐𝑐𝜏 + 𝑉𝑡𝑘𝜏 

𝑏4 = 𝑉𝑡𝑚+ 4𝛽𝐾𝑐𝑚𝜏 + 𝑉𝑡𝑐𝜏 

𝑏5 = 𝑉𝑡𝑚𝜏 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The dynamic coupling between the physical specimen and the actuator is described by a 

natural velocity feedback. This phenomenon is described as control-structure interaction in (Dyke 

et al. 1995). The parametric model identified in (2.27) is capable of capturing this phenomenon for 

a single-DOF specimen. With the introduction of system identification and nonparametric 

modeling in later sections, natural velocity feedback for higher-DOF structures are incorporated 

into the linearized model of the servo-hydraulic actuator and structure system.  

A parametric model, also known as a white-box model, must be fit to a physical model. 

Manufacturer specifications provide accurate estimates of many of these parameters. Optimization 

algorithms for parameter identification may be used because of the finite-dimension of the 

parameter space (i.e., finite number of unknowns). The linear least-square approach is a simplest 

form of parameter estimator. Tidwell et al. (2009) uses a nonlinear least-square approach, and Qian 

et al. (2014) uses a genetic algorithm approach for identification of the parameters. The limitation 

of parametric modeling is that the exact structure of the dynamical system must be known.  

2.4.3 Nonparametric modeling of hydraulic actuation 

Nonparametric modeling differs from parametric in that input-output relationships for dynamical 

systems are not based on predetermined explanatory parameters (e.g., flow coefficients). These 

models are also termed black-box because the structure of the physical process is completely 

“black” or unknown. The benefit of nonparametric modeling is that it is applicable to the physical 

specimen with unknown performance tested via the RTHS method. Important design and 
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performance considerations for identification procedures include choice of excitation signals, data 

sampling, measurement and sensing, and pre-filtering and treatment of data. The modeling tool 

must be appropriate for the physical system (i.e., linear vs. nonlinear modeling).  

 

Figure 2.10 System identification of plant dynamics 

Modeling of a dynamic process is two-step process: i) choice of mathematical representation 

for the model, ii) choice of optimization tool to minimize the error between model output and 

measured signal. Given the control and measurement signals 𝑢(𝑡) and 𝑥(𝑡), a mathematical model 

of the plant dynamics is identified by minimizing the error between the actual and predicted 

measurement signals, 𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡), as illustrated in Fig. 2.10.  

Classical modeling approaches include polynomial fitting, autoregressive (ARX) models, 

state-space and frequency-domain fitting. Kim et al. (2005) presents a modeling tool based on 

frequency-domain experimental data and offers the graphical tool MFDID, shown in Fig. 2.11, for 

visualization of the fitted data. MFDID is used for system identification in later sections. The plant 

dynamics is idealized as a linear polynomial transfer function model and then optimized in three-

steps: 

1. estimation of plant model via the linear least-square method, 

2. improvement using Steiglitz-McBridge method, and 

3. final optimization via the Levenberg-Marquardt method.  

 

Figure 2.11 MFDID 
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Statistical identification tools like artificial neural networks and fuzzy models have also been 

proposed for describing the dynamics of actuator-structure systems (Jelali and Kroll 2004). He and 

Sepehri (1999) used neural networks for describing the dynamics of servo-hydraulic actuators with 

a mass attached to the piston rod. Neural networks were shown to accurately estimate the nonlinear 

behaviors of hydraulic actuators. Lastly, between black-box and white-box modeling, if there are 

any physical insights available into the plant dynamics, gray-box modeling techniques can be 

utilized.  

2.5 Frequency-domain system identification 

System identification is the process of developing mathematical models of a plant dynamics via 

measurements of input and output signals. For example, the table acceleration in a shake table test 

is the input signal and the story accelerations from the onboard structure are output signals. After 

post-processing of measurement data, a model of the structure is selected, and an optimization 

algorithm is applied to fit the response of the plant to the model. The final step of system 

identification is to verify the model against the actual plant.  

In a dynamic system, the outputs at the current time are dependent on the instantaneous 

inputs, and the all the past inputs and behaviors. Although many different system identification 

tools are available for developing dynamic models as discussed in the previous section, the focus 

of this section is on frequency domain system identification. As the name suggests, measurements 

in time domain must first be converted to the frequency domain. A time domain signal ℎ(𝑡) is 

converted to frequency domain via Fourier transform as described by 

𝐻(Ω) = ℱ[ℎ(𝑡)] 

= ∫ ℎ(𝑡)𝑒−𝑖Ω𝑡𝑑𝑡
∞

−∞

 
(2.34) 

for −∞ < Ω < ∞, where Ω ≔ 2𝜋𝑓 is the angular frequency, 𝑓 is the harmonic frequency, and ℱ 

indicates Fourier transforms. The inverse Fourier transform converts frequency-domain signals 

back to time domain: 

𝐻(Ω) = ℱ−1[𝐻(Ω)] 

=
1

2𝜋
∫ 𝐻(Ω)𝑒𝑖Ω𝑡𝑑𝑡
∞

−∞

 
(2.35) 

with Eqs. (2.34) and (2.35) termed as Fourier transform pairs. The Fourier transforms of signals 

are often used to find the power of a signal distributed with frequency. An auto-spectral density 

function (also called power spectral) is given by 

𝑆ℎℎ(Ω) = |𝐻(Ω)|
2 (2.36) 

Similarly, the cross-spectral density function is defined as 

𝑆ℎ𝑔(Ω) = |𝐻
∗(Ω)𝐺(Ω)| (2.37) 

where the superscript ∗ signifies a complex conjugate.  
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2.5.1 Frequency response function 

A frequency response function (FRF) conveys valuable information about the dynamics of a plant, 

including gain and phase as a function of frequency, resonant frequencies, and damping factors. 

The FRF of a plant is obtained using Fourier transforms of signals, spectral densities, and 

excitation. Random and sine-sweep excitations are popular options as they cover a whole 

bandwidth of frequencies. Other forms of excitations used for resonance analysis, like Hammer 

impact testing, may also be used for acquiring the FRF. An FRF contains both gain and phase 

details of the plant dynamics. Per Fig. 2.12, given an excitation 𝑥(𝑡) and a response 𝑦(𝑡), an FRF 

𝑯(Ω) is expressed by 

𝑋(Ω) = 𝑯(Ω)𝑌(Ω) (2.38) 

where 𝑋(Ω) and 𝑌(Ω) are transform pairs of 𝑥(𝑡) and 𝑦(𝑡), respectively. 

 

Figure 2.12 Plant response subject to excitation 

Two commonly used methods for acquiring the FRFs of single-input single-output plants are 

the 𝑯1(Ω) and 𝑯2(Ω) methods. The 𝑯1(Ω) is an FRF estimation approach where the output is 

expected to be noisier than the input, 𝑤(𝑡) ≫ 𝑣(𝑡). The influence of uncorrelated noise in the 

output is reduced via averaging.  

𝑯1(Ω) =
𝑆𝑥𝑦(Ω)

𝑆𝑥𝑥(Ω)
 (2.39) 

The 𝑯2(Ω) is the second approach where the input is expected to be noisier than the output, 

𝑣(𝑡) ≫ 𝑤(𝑡). The influence of uncorrelated noise in the input is reduced by averaging. The 𝑯2(Ω) 
is more commonly used, as it is subject to less resolution-bias errors.   

𝑯2(Ω) =
𝑆𝑦𝑦(Ω)

𝑆𝑦𝑥(Ω)
 (2.40) 

The coherence function measures the extent to which an optimum linear least-square 

relationship can predict the output 𝑦(𝑡) from the input 𝑥(𝑡). Mathematically, the coherence 

function is equivalent to the ratio between the cross-spectral density between the input and output 

signals, and the corresponding auto-spectral densities for each input and output term, given per 

𝛾𝑥𝑦(Ω) =
|𝑆𝑥𝑦(Ω)|

2

𝑆𝑥𝑥(Ω)𝑆𝑦𝑦(Ω)
 (2.41) 

with 𝛾𝑥𝑦 always satisfying 0 ≤ 𝛾𝑥𝑦 ≤ 1. When the value of the coherence function is one, the 

relationship between input and output signals are perfectly linear. Presence of noise, nonlinearities, 

and other input (or multiple input) signals result in reduction in the value of coherence function. 

A coherence value of zero indicates that the two signals are completely unrelated (Berndat and 

Piersol 2010).  
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Lastly, the system identification toolbox MFDID discussed in Section 2.4 is applied to the 

FRF data for fitting transfer function models.  

2.6 Kinematic transformation 

Multi-axial boundary point devices are mechanical manipulators made up of several prismatic 

servo-hydraulic actuators and connected by rotational ball joints. The number of servo-hydraulic 

actuators are typically equal to the number of degrees of freedom that the boundary condition 

assembly can operate in (Tsai 1999). For instance, a 6-DOF boundary condition assembly has six 

actuators. Each prismatic actuator is a simple prismatic device that extends and retracts in 1-DOF. 

The actuators are driven by hydraulic fluid pressure described by mechanisms in Section 2.4. 

Actuators are pinned to a fixed base at one end, and a moving platform at the other end. The fixed 

base is typically attached to a rigid reaction wall, and the moving platform is attached to the 

physical specimen. Examples of multi-axial testing facilities with load and boundary point devices 

are demonstrated in Figs. 2.13 and 2.14.  

For hybrid simulation applications, the moving platform may be required to impose 

displacements and forces onto a physical specimen. The boundary condition assemblies possess 

mechanical components and sensing devices that allow them to measure the displacements and 

forces as well, like displacement transducers and loadcells. Controllers are used for the operation 

of the hydraulic actuators. Inner control loops via PID control (see Section 2.3) ensure stability 

and outer model-based controllers provide accurate tracking for reference boundary condition 

trajectories to track. Computational hardware including single-tasking microcontrollers and host 

personal computers (PCs), provide the high-speed real-time computation and control commands 

necessary for successful operation of the boundary point devices.  

 

(a) MAST at the University of Minnesota  (b) MAST at the Swinburne University 

Figure 2.13 Multi-axial testing facilities 

Kinematics of boundary condition devices must be understood for successful use of these 

assemblies. Kinematics is the science of motion that deals with the geometry of position and force 

variables with respect to time. There are two types of kinematics transformations that are of 

importance in this dissertation: forward kinematics and inverse kinematics. Forward kinematics 

considers the strokes in each individual actuator and sensing device for deriving the position and 

orientation of the moving platform. Inverse kinematics uses the available desired positions of the 
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moving platform to calculate what the strokes of individual actuators need to be to achieve the 

desired motion of the moving platform.  

 

Figure 2.14 Load and Boundary Condition Boxes at the University of Illinois at Urbana-

Champaign 

2.6.1 Basics of kinematics 

A Cartesian coordinate system is employed for studying the kinematics of boundary condition 

boxes, where every point in a 3D space is described via a three-axis frame of reference (i.e., 𝑥, 𝑦, 

and 𝑧). The frame of reference is termed fixed frame and moving frame, when in the original 

position and orientation and when moved, respectively. Because boundary condition boxes are 

typically very rigid, the scope of the motions described herein are limited to rigid body motion, 

which include translation and rotation. A vector 𝒗 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
𝑇
describes the motion of the fixed 

frame origin 𝑂 to a new position 𝑂′. A second vector 𝒃 = [𝑏𝑥, 𝑏𝑦, 𝑏𝑧]
𝑇
defines the relative location 

of the point of interest 𝑃 to the moving frame origin 𝑂′.  

 

Figure 2.15 3D Cartesian motion 

Three moving frame rotations (roll, pitch, and yaw) are possible about the fixed frame. 

Rotations around the 𝑥, 𝑦, and 𝑧 axes are represented by Euler angles and are termed 𝜃𝑥, 𝜃𝑦, and 

𝜃𝑧. The counter-clock-wise direction around each axis is the positive rotation. The action of each 

rigid body rotation is presented mathematically as a matrix. 𝑨𝜃𝑥, 𝑨𝜃𝑦 , and 𝑨𝜃𝑧 are three successive 

rotation matrices about the reference frame. These matrices are multiplied to create a combined 

rotational matrix 𝑨(𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) = 𝑨𝜃𝑥𝑨𝜃𝑦𝑨𝜃𝑧.  
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𝑨𝜃𝑥 = [

1 0 0
0 𝑐𝜃𝑥 −𝑠𝜃𝑥
0 𝑠𝜃𝑥 𝑐𝜃𝑥

],   𝑨𝜃𝑦 = [

𝑐𝜃𝑦 0 𝑠𝜃𝑦
0 1 0

−𝑠𝜃𝑦 0 𝑐𝜃𝑦

],    𝑨𝜃𝑧 = [
𝑐𝜃𝑧 −𝑠𝜃𝑧 0
𝑠𝜃𝑧 𝑐𝜃𝑧 0
0 0 1

] (2.42) 

where 𝑐 and 𝑠 are cosine and sine operators. The matrix 𝑨 contains 9 terms, but rotation can be 

described by three rotational DOFs. The matrix multiplication in (2.42) is not commutative, and 

the order of operation is important. The relationship between the position vectors and rotation 

matrix help describe the position of the point 𝑃 with reference with the fixed frame per 

𝒂 = 𝒗 + 𝑨𝒃 (2.43) 

where 𝒂 = [𝑎𝑥, 𝑎𝑦, 𝑎𝑧]
𝑇
. The rigid motions can be represented in a single homogeneous 

transformation matrix with the form given by 

𝑯 = [
𝑨 𝒗
𝟎 1

] (2.43) 

where 𝟎 = [0 0 0]𝑇. In addition, the vectors 𝒂 and 𝒃 are augmented to the form 

𝒂′ = [
𝒂
1
]                 𝒃′ = [

𝒃
1
] (2.44) 

2.6.2 Serial manipulators 

Serial manipulators are a class of open-loop robots with a series of actuated joints extending from 

a fixed base to a moving platform or end effector. The relative motion for each actuator (e.g., 

motor) is controlled individually to achieve a prescribed final position for the end effector. Fig. 

2.16 illustrates an 𝑛-DOF serial manipulator with a fixed base and an end effector. The frame of 

reference at the fixed base is referred to as the fixed frame, and each actuator has its own moving 

frame.  
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Figure 2.16 𝒏-DOF serial manipulator 

The forward kinematics path in a serial manipulator involves user specified strokes in 

prismatic actuators and rotations in revolute actuators, to achieve some final end effector position. 

Most actuators are either prismatic or revolute. Hence, a joint variable is considered as input into 

the homogeneous transformation matrix: 

𝑞𝑖 = {
𝜃𝑖  ∶ revolute actuators
  𝑣𝑖  ∶ prismatic actuators

 (2.45) 

and since most actuators are either prismatic or revolute the homogeneous transformation matrix 

becomes a function of a single joint variable 𝑯𝑖 = 𝑯𝑖(𝑞𝑖). Note, that the matrix 𝑯𝑖 is not a constant 

and is updated at each time instant for a moving end effector (Spong et al. 2005). The homogeneous 

transformation matrices are next multiplied to achieve a transformation matrix denoted by 𝑇𝑖𝑗, 

given by 

𝑻𝑖𝑗 = 𝑯𝑖+1𝑯𝑖+2…𝑯𝑗−1𝑯𝑗     if   i < j 

𝑻𝑖𝑗 = 𝑰   if  i = j 

𝑻𝑖𝑗 = (𝑻𝑖𝑗)
−1
    if    j > i 

(2.46) 

The transformation matrix between the fixed frame and the end effector summarizes the 

forward kinematics in serial manipulators and is described by 

𝑻0𝑛 = 𝑻1𝑻2…𝑻𝑛−1𝑻𝑛 (2.47) 

The matrix 𝑻0𝑛 = 𝑡𝑖𝑗  for 𝑖 = {1,2,3} and 𝑗 = {1…4}, has 12 entries which are nonlinear 

trigonometric equations. Because the forward kinematic relationships are non-trivial and complex 

nonlinear functions of joint variables, inverting the kinematics problem is a challenging task. The 

inverse kinematic problem for a serial manipulator involves solving for the closed form 

relationship 

𝑞𝑘 = 𝑓𝑘(𝑡11, … , 𝑡34)    for 𝑖 = 1,… , 𝑛 (2.48) 
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In instances when solving a closed-form solution is computational expensive and not 

manageable within a finite time, numerical approximations are possible. In a serial manipulator, 

forward kinematics is fairly straightforward and inverse kinematics is very tricky to solve. For 

applications of RTHS, iterative numerical approximations are often not appropriate. Next, several 

solutions may exist for inverse kinematics problems. Physical laws need to be considered to rule 

out unfeasible and unrealistic solutions.   

2.6.3 Parallel manipulators 

Parallel manipulators are a class of closed-loop robots with multiple actuator arms controlling a 

single moving platform. Because the loads experienced by the moving platform are shared between 

the actuators, parallel manipulators have large load-carrying capacities. This quality is very 

attractive for experimental testing applications in structural engineering where high load capacity 

boundary point devices are desired. The boundary condition devices illustrated in Fig. 2.13 and 

Fig. 2.14 are both examples of parallel manipulators.  

A schematic of a generalized parallel manipulator is presented in Fig. 2.17. A Cartesian fixed 

frame of reference is selected in arbitrary position, and a moving frame is selected on the moving 

platform. For RTHS applications, the location choice for the moving frame should fall at the 

centroid of the attachment with the physical specimen. The linear strokes of the prismatic limbs 

(e.g. actuators) result in displacement and rotation of the moving platforms. For some prescribed 

Cartesian motion at the moving frame, an inverse kinematic transformation can calculate the 

necessary stroke of each actuator A translation vector 𝒗 describes the motion of the moving frame 

relative to the fixed frame. The vectors 𝒂𝑖 and 𝒃𝑖 ∈ ℛ
3, denoting the fixed and moving joint 

locations of the 𝑖-th actuator, respectively, are drawn from the frames of reference to the center of 

rotation of each spherical joint.  

 

Figure 2.17 𝒏-DOF parallel manipulator 

Three rotational matrices from (2.42), describe the rotational motion of the moving platform. 

Through the matrix multiplication 𝑨(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) = 𝑨𝜃𝑥𝑨𝜃𝑦𝑨𝜃𝑧 , the combined rotational matrix is 
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obtained. The Cartesian motion is described via the vector 𝒘 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧}
𝑇
. Through 

addition and subtraction of vectors, the below formulation is formed 

𝒔𝑖 = 𝒗 + 𝑨𝒃𝑖 − 𝒂𝑖 

𝜆𝑖 = |𝒔𝑖| = 𝑓𝑖(𝒘) 

(2.49) 

 

where 𝒔𝑖  is the vector representation of the actuator length, 𝜆𝑖 is the total length of the actuator for 

some prescribed Cartesian motion at the moving base, and 𝑓𝑖 is a nonlinear function describing the 

relationship between 𝜆𝑖 and 𝒘.  

The forward kinematic transformation is the process through which actuator measurements 

are used to calculate the Cartesian motion in the moving platform. This process is described by an 

implicit equation, which must be solved through iterations until convergence is achieved. In 

parallel manipulators, the inverse kinematics is a straightforward and the forward kinematics is a 

challenging transformation. Solutions to forward kinematic problems are typically approximated 

via linearization around a stationary operation position. A first-order Taylor expansion of (2.49) 

around the equilibrium point, 𝒘 = 𝟎, results in 

�̇� = 𝑱�̇� (2.50) 

where 𝑱 ∈ ℛ𝑛×𝑛 is the Jacobian matrix and �̇� ∈ ℛ𝑛×1 and �̇� ∈ ℛ𝑛×1 are derivatives of the earlier 

described terms. The Jacobian describes the relationship between incremental changes in the 

actuator lengths and incremental changes in Cartesian motion. Next, a linearized forward 

kinematics is formulated via a discrete-time solution to (2.50). This approximation is generally 

more accurate for smooth Cartesian motions and during operations closer to the equilibrium 

position. For an 𝑛-DOF parallel manipulator: 

𝑱 =

[
 
 
 
 
𝜕𝜆1
𝜕𝑤1

⋯
𝜕𝜆1
𝜕𝑤𝑛

⋮ ⋱ ⋮
𝜕𝜆𝑛
𝜕𝑤1

…
𝜕𝜆𝑛
𝜕𝑤𝑛]

 
 
 
 

 (2.51) 

𝒘𝑘+1 = 𝒘𝑘 + 𝑱
−1(𝝀𝑘+1 − 𝝀𝑘) (2.52) 

where 𝑘 is the discrete time steps.  

2.7 Numerical integration 

A damped dynamical system with nonlinear restoring force behavior is described by the equation 

of motion 

𝑴𝑁�̈�(𝑡) + 𝑪𝑁�̇�(𝑡) + 𝑹𝑁(𝑡) = 𝑭(𝑡) − 𝑭𝑅(𝑡) (2.53) 

where 𝑴𝑁 is a positive definite mass matrix, 𝑪𝑁 is a non-negative definite damping matrix, and 

𝑹𝑁(𝑡) is a vector of nonlinear restoring forces. Analytical solutions to equations of motion, which 

are second-order differential equations, are typically difficult to solve, instead numerical 

integration algorithms are employed for estimation of the responses of dynamical systems. 

Because dynamical systems are time-dependent systems, every point in time must be described by 

𝑡 = 𝑡𝑖+1 = 𝑑𝑡(𝑖 + 1) (2.54) 
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where 𝑑𝑡 is a time increment. 

Implicit and explicit schemes are two classifications of numerical integration methods. When 

the states 𝒙(𝑡𝑖+1) are estimated based on available quantities in former and current time steps, the 

integration is said to be explicit. When the states are embedded in a set of coupled equations, and 

iterative solutions are required, the integration is said to be implicit. Explicit methods are always 

conditionally stable, because when the time step is too large, numerical errors increase and 

instability may ensue. Implicit methods on the other hand tend to be unconditionally stable. For 

RTHS applications, explicit integration methods are preferred as implicit solutions are complex to 

program and require significantly more computational effort and time. The implications of 

choosing a numerical integration algorithm are felt in the accuracy and stability of the evaluations. 

Time steps are generally selected to be much smaller than the natural period of the dynamical 

system.  

Consider the motion of a particle using Newton’s law 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) and 

𝑑𝑣

𝑑𝑡
= 𝑎(𝑡) (2.55) 

by utilizing the Taylor series expansion, the following relationships are arrived at for 𝒙(𝑡) =
𝒙𝑖+1 and 𝒗(𝑡) = 𝒗𝑖+1 

𝒙𝑖+1 = 𝒙(𝑡𝑖 + 𝑑𝑡) = 𝒙𝑖 + 𝒗𝑖𝑑𝑡 +
1

2
𝒂𝑖𝑑𝑡

2 + 𝑶(𝑑𝑡3) 
(2.56) 

𝒗𝑖+1 = 𝒗(𝑡𝑖 + 𝑑𝑡) = 𝒗𝑖 + 𝒂𝑖𝑑𝑡 + 𝑶(𝑑𝑡
2) (2.57) 

where 𝑶(𝑑𝑡2) and 𝑶(𝑑𝑡3) are the higher-order terms.   

2.7.1 Euler algorithm 

The Euler algorithm is when only the first-order terms (e.g., 𝑶(𝑑𝑡)) are considered. An algorithm 

is said to be of the 𝑛𝑡ℎ order when error term is of the order 𝑶(𝑑𝑡𝑛). This algorithm has limited in 

accuracy and stability due to its simplistic form given by 

𝒙𝑖+1 = 𝒙𝑖 + 𝒗𝑖𝑑𝑡 (2.58) 

𝒗𝑖+1 = 𝒗𝑖 + 𝒂𝑖𝑑𝑡 (2.59) 

2.7.2 Central difference algorithm 

In the central difference algorithm, velocity term does not appear in the right-hand-side when 

integrating the equations of motion. This algorithm has been implemented for RTHS use in several 

studies (Carrion and Spencer, Jr. 2007; Horiuchi et al. 1999; Nakashima et al. 1992). The new 

approximations for the displacement and derivative terms are 

𝒗𝑖 ≈
𝒙𝑖+1 − 𝒙𝑖−1

2𝑑𝑡
 

(2.60) 

𝒂𝑖 ≈
𝒙𝑖+1 − 2𝒙𝑖 + 𝒙𝑖−1

𝑑𝑡2
 

(2.61) 
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𝒙𝑖+1 = (
1

𝑑𝑡2
𝑴𝑁 +

1

2𝑑𝑡
𝑪𝑁)

−1

{
2

𝑑𝑡2
𝑴𝑁𝒙𝑖 + (−

1

𝑑𝑡2
𝑴𝑁 +

1

2𝑑𝑡
𝑪𝑁)𝒙𝑖−1 − 𝑹𝑁 − 𝑭𝑅

+ 𝑭} 

(2.62) 

The step-by-step procedure begins with mass, damping, and stiffness matrices formulated 

for the numerical substructure. The displacement, velocity, and acceleration values are then 

initialized {𝑥0, 𝑣0, 𝑎0}. Relationships (2.60)-(2.62) are incorporated to compute time steps 1 

through 𝑛. Nakashima et al. (1992) used a forward difference methodology, which Wu et al. (2006) 

incorporated to produce the operator-splitting algorithm.  

2.7.3 Newmark-𝜷 algorithm 

The Newmark-𝛽 method is a more generalized finite difference method, where for a selection of 

𝛽 and 𝛾 parameters, the performance of the approximation is altered. For a linear structure, some 

force vector 𝑷0 = 𝑭0 −𝑹𝑁,0 − 𝑭𝑅,0, and initial conditions 𝒙0 and 𝒗0 

𝒂0 =
𝑷0 − 𝑪𝑁𝒗0 −𝑲𝑁𝒙0

𝑴𝑁
 

(2.63) 

𝒃1 =
1

𝛽𝑑𝑡2
𝑴𝑁 +

𝛾

𝛽𝑑𝑡
𝑪𝑁     𝒃2 =

1

𝛽𝑑𝑡
𝑴𝑁 + (

𝛾

 𝛽
− 1)𝑪𝑁 

𝒃3 = (
1

2𝛽
− 1)𝑴𝑁 + 𝑑𝑡 (

𝛾

2𝛽
− 1)𝑪𝑁 

(2.64) 

Calculations at each time step (𝑖 = 0, 1, 2…) follow per 

�̂�𝑖+1 = 𝑷𝑖+1 + 𝒃1𝒙𝑖 + 𝒃2𝒗𝑖 + 𝒃3𝒂𝑖 (2.65) 

𝒙𝑖+1 =
�̂�𝑖+1

𝑲𝑁 + 𝒃1
 (2.66) 

𝒗𝑖+1 =
𝛾

𝛽𝑑𝑡
(𝒙𝑖+1 − 𝒙𝑖) + (1 −

𝛾

𝛽
)𝒗𝑖 + 𝑑𝑡 (1 −

𝛾

2𝛽
)𝒂𝑖 (2.67) 

𝒂𝑖+1 =
1

𝛽𝑑𝑡2
(𝒙𝑖+1 − 𝒙𝑖) −

1

𝛽𝑑𝑡
𝒗𝑖 − (

1

2𝛽
− 1)𝒂𝑖 (2.68) 

Special cases of the Newmark-𝛽 method involve when 𝛾 =
1

2
 and 𝛽 =

1

4
, for the constant 

average acceleration methods, and 𝛾 =
1

2
 and 𝛽 =

1

6
, for the linear acceleration method. The 

Newmark method is similar to the explicit central difference method when 𝛾 =
1

2
 and 𝛽 = 0. 

Mahin and Shing (1985) demonstrates that in some cases the Newmark algorithm is less sensitive 

to experimental error than the central difference algorithm for a hybrid simulation example. For 

nonlinear systems, this method is augmented with additional features per (Chopra 2011).  
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2.7.4 HHT-𝜶 algorithm  

The Hilber-Hughes-Taylor- 𝛼 (HHT-𝛼) is an implicit method that allows for second-order 

convergence and energy dissipation through numerical damping. The finite difference equations 

in (2.66) and (2.67) are adopted and the equation of motion is modified with a parameter 𝛼, which 

describes numerical lag in damping, restoring forces and external forces.  

𝑴𝑁𝑎𝑖+1 + (1 + 𝛼)𝑪𝑁𝒗𝑖+1 − 𝛼𝑪𝑁𝒗𝑖 + (1 + 𝛼){𝑭𝑅,𝑖+1 + 𝑹𝑁,𝑖+1}

− 𝛼{𝑭𝑅,𝑖 + 𝑹𝑁,𝑖} = (1 + 𝛼)𝑭𝑖+1 − 𝛼𝑭𝑖 

(2.69) 

where 𝛼 is a damping parameter. The three parameters 𝛼, 𝛽,and 𝛾 used as inputs for the HHT-𝛼 

algorithm are computed per 

𝛼 ∈ [−
1

3
, 0],         𝛽 =

(1−𝛼)2

4
,        𝛾 =

1

2
− 𝛼 (2.70) 

For nonlinear systems, Newton-type iterative procedures are added to the HHT-𝛼 method to 

solve the equation of motion. Jung et al. (2007) proposed a modified Newton approach using the 

initial structural stiffness to compile hybrid simulation with the HHT-𝛼 method.  

2.7.5 Runge-Kutta algorithm 

The Runge-Kutta algorithms are a class of implicit and explicit numerical integration methods. A 

first-order Runge-Kutta algorithm is defined for a first-order differential equation given by 

�̇�(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) (2.71) 

for which the time-stepping is procedure is the Euler algorithm presented earlier or 

𝑘𝑖
𝐼 = 𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) 

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + 𝑘𝑖
𝐼𝑑𝑡 

(2.72) 

(2.73) 

A second-order Runge-Kutta (or mid-point) algorithm begins with (2.72) to estimate the 

derivative at 𝑡 = 𝑡0. Next, (2.73) is modified for the intermediate estimate of the time function at 

𝑡 = 𝑡0 +
𝑑𝑡

2
, per 

𝑦1 (𝑡0 +
𝑑𝑡

2
) = 𝑦(𝑡0) + 𝑘0

𝐼
𝑑𝑡

2
 

(2.74) 

𝑘𝑖
𝐼𝐼 = 𝑓 (𝑦𝑖 (𝑡𝑖 +

𝑑𝑡

2
) , 𝑡𝑖 +

𝑑𝑡

2
) 

(2.75) 

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + 𝐾𝑖
𝐼𝐼𝑑𝑡 (2.76) 

with (2.75) and (2.76) describing the general procedure for the second-order Runge-Kutta after the 

initial time step.  

The development of the fourth-order Runge-Kutta follows from the second-order procedure 

and is not covered in detail here. Both the second-order and fourth-order procedures can be varied  

𝑘𝑖
𝐼 = 𝑓(𝑦(𝑡𝑖), 𝑡𝑖),     𝑘𝑖

𝐼𝐼 = 𝑓 (𝑦(𝑡𝑖) + 𝑘𝑖
𝐼 𝑑𝑡

2
, 𝑡𝑖 +

𝑑𝑡

2
), (2.77) 
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𝑘𝑖
𝐼𝐼𝐼 = 𝑓 (𝑦(𝑡𝑖) + 𝑘𝑖

𝐼𝐼 𝑑𝑡

2
, 𝑡𝑖 +

𝑑𝑡

2
),      𝑘𝑖

𝐼𝑉 = 𝑓(𝑦(𝑡𝑖) + 𝑘3𝑑𝑡, 𝑡𝑖 + 𝑑𝑡) 

The fourth-order Runge-Kutta algorithm presented in (2.77) has been used extensively in 

hybrid simulation (Carrion et al. 2009; Carrion and Spencer 2007c; Drazin and Govindjee 2017; 

Fermandois and Spencer, Jr. 2018; Friedman et al. 2015; Phillips and Spencer 2013; Silva et al. 

2020).  

2.7.6 Dormand-Prince algorithm 

The Dormand-Prince is an explicit numerical integration algorithm for solving equations of 

motion, and an expansion to the Runge-Kutta method (Dormand et al. 1987). Both Dormand-

Prince and Runge-Kutta are applicable to nonlinear systems. The fifth- and eight-order Dormand-

Prince algorithms are highly stable and use current values of states and their derivatives. The 

method uses multiple functions evaluations per step of integration. Dormand-Prince integration 

algorithms are widely popular for MATLAB users (MathWorks n.d.). This algorithm has been 

implemented in several hybrid simulation applications (Chen et al. 2015; Najafi et al. 2020; Najafi 

and Spencer 2019).  

2.8 Summary 

The physical and mathematical tools for the ultimate objective of this dissertation, multi-axial 

RTHS testing, were outlined in this chapter. Modeling of dynamical systems requires an 

understanding of the mathematical representations necessary, in the form of an equation of motion. 

Manipulation of dynamical systems requires knowledge of control theory. Servo-hydraulic 

actuator and structural specimens are the primary dynamical systems of interest presented in this 

work. Frequency domain mathematics are presented as system identification is largely conducted 

in this domain throughout this literature. Kinematics of robotics and actuated systems were shown 

to be largely non-trivial to model and manipulate. Hence, the notion of kinematic transformation 

was developed and discussed. And lastly numerical integration algorithms were presented for 

solving the equations of motion.  
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Chapter 3 

 

ACTUATOR COMPENSATION 

 

3.1 Problem statement 

Actuator delays can result in instabilities in the closed-loop interaction between the numerical and 

physical substructures in RTHS experiments. Compensation strategies are an essential component 

of the RTHS methodology, in an attempt to recover some of the actuator delays. Many 

compensation strategies have limitations in their abilities to sufficiently recover actuator delays, 

and thus performance and stability of the RTHS loop is compromised. In this chapter, an effort is 

made to develop compensation strategies that have excellent tracking and stability performance. 

The developments will later be incorporated in the multi-axial RTHS framework proposed in 

future chapters.  

A modification is proposed to the MBC proposed by (Carrion et al. 2009). The new 

architecture is referred to as the modified Model-Based Controller (mMBC). Like its predecessor, 

the mMBC uses feedback and an inverse model controller designed using the identified model of 

the actuator-structure system. When the control authority is increased to achieve better tracking, 

stability of the MBC is jeopardized. The new mMBC provides better tracking performance, 

tracking robustness, and stability predictability A stability condition is proposed for the model-

based class of controllers to demonstrate the tracking robustness of the mMBC.  

Next, an adaptive augmentation of the mMBC is introduce, and labelled as the Adaptive 

Model Reference Control (aMRC) with the objective of improving the tracking abilities of 

actuators through adaptation, while maintaining robustness. The proposed aMRC architecture is 

wrapped around the mMBC. The aMRC takes advantage of the model-reference idea to drive to 

track the desire performance embedded in the reference model. An adaptive projection algorithm 

is featured, with bounded output to prevent the adaptive parameter from drifting. At its core, the 

proposed adaptive algorithm is an integral controller, which ensures that steady-state errors 

induced by uncertainties and nonlinearities are dissipated.  

3.2 Setpoint tracking 

A setpoint is a desired target value to reach and maintain for a dynamic system. Two classes of 

setpoint problems in control theory include: (i) disturbance rejection, and (ii) reference tracking. 

In a disturbance rejection problem, the compensator attempts to maintain a constant equilibrium 

state while rejecting process disturbances and noise. In a reference tracking problem, the 

equilibrium state may be constantly evolving, and the goal of the compensator is to ensure that the 

plant follows the new equilibrium state. In reality, the job of the compensator is often both 

disturbance rejection and reference tracking.  
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Figure 3.1 Disturbance rejection 

 

Figure 3.2 Reference Tracking 

Shake tables are used as an attempt to replicate historic and synthetic ground accelerations, 

for experimental testing of onboard structures. In order to have repeatability and for comparison 

with numerical simulations, the shake table must accurately replicate a prescribed acceleration 

record. However, shake tables possess inherent dynamics which alter the desired characteristics of 

the acceleration records executed on the onboard structure. Reproducing an acceleration time-

history thus necessitates real-time comparisons of the reference and measured accelerations and 

manipulation of control signals in what is commonly referred to as an acceleration tracking 

problem.  

In real-time hybrid simulation, displacement and acceleration are often the preferred forms 

of imposing a boundary condition on a physical specimen (Zhang et al. 2017). Force tracking may 

be desired when imposing structural self-weighting on the physical specimen, or if the effective 

force testing method is used. In many applications, force and displacement tracking may be 

enforced simultaneously.   

3.3 Modified model-based control 

The mMBC is developed using a linearized transfer function model of actuator-structure dynamics. 

The transfer function model should closely match the frequency response function (FRF) of 

actuator-structure setup. In this section, the architecture of the mMBC is described for tracking of 

displacement and its derivatives (e.g., acceleration). The mMBC manipulates a prescribed 

reference signal and commands a control signal to an actuator for execution.  

3.3.1 Feedforward control 

Feedforward or inverse controllers are dynamical systems designed as the inverse of the nominal 

plant dynamics. The goal of this controller is to reconstruct the reference signal such that unwanted 

plant dynamics are cancelled out in the executed signal. The model used in the feedforward 

controller is determined from the nominal plant dynamics obtained through system identification. 

The amplitude and bandwidth of the excitation during system identification should reflect the 

experimental conditions and intended use of the model. The feedforward control employed is 

cascaded with a lowpass filter. 
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Since actuator-structure dynamics (i.e., plant) are described by strictly proper transfer 

functions, with more poles than zeros, as discussed in Section 2.4, the inverse must be an improper 

system. Multiplication with a lowpass filter will add the necessary poles for a proper and causal 

realization. Lowpass filters also serve in canceling high frequency dynamics which are often 

inaccurately identified in the nominal model. The inverse model is obtained per 

𝑭(𝑠) = 𝑷−1(𝑠)𝑳(𝑠) (3.1) 

where 𝑷(𝑠) is the plant or actuator-structure dynamics, 𝑳(𝑠) is the lowpass filter and 𝑭(𝑠) is the 

feedforward controller. The cutoff frequency and order for the lowpass filter are the only two 

design considerations and vary depending on experimental setups. The lowpass filter must have 

enough poles to make the inverse controller proper. The multiplication of the plant and 

feedforward controller result in the lowpass filter, which will be referred to as an augmented plant 

in this dissertation.  

3.3.2 Feedback control 

Feedback control can further compensate for tracking errors and provide tracking robustness in the 

presence of nonlinearities and noise. Feedback control refers to a large class of controllers each 

with their own advantages, like the 𝐻∞ (Ou et al. 2015). In this development, the LQG feedback 

controller is used. The proposed output feedback LQG is designed based on the augmented plant 

with and without noise 

𝑳(𝑠) =
𝑦(𝑠)

𝑞(𝑠)
= 𝑷(𝑠)𝑭(𝑠) = 𝑪𝐿(𝑠𝑰 − 𝑨𝐿)

−1𝑩𝐿 +𝑫𝐿 (3.2) 

�̇�(𝑡) = 𝑨𝐿𝒙(𝑡) + 𝑩𝐿𝑞(𝑡) + 𝑭𝑤(𝑡) 

𝑦(𝑡) = 𝑪𝐿𝒙(𝑡) + 𝑣(𝑡) 
(3.3) 

where 𝑨𝐿, 𝑩𝐿, 𝑪𝐿 and 𝑫𝐿 are the state-space realizations of the lowpass filter or augmented plant, 

𝑞(𝑠) in Laplace-domain or 𝑞(𝑡) in time domain is the sum of the feedback controller outputs added 

back to the reference signal. The system in (3.2) is the augmented plant without noise, and the 

system in (3.3) is the augmented plant with noise. The combined use of the feedforward control, 

plant dynamics, and feedback control are illustrated in Fig. 3.1. 𝒙(𝑡) is a vector of state from the 

augmented plant and 𝑤(𝑡) and 𝑣(𝑡) represent process and observation noise. The reference and 

measured signals are denoted as 𝑟(𝑡) and 𝑦(𝑡), respectively, and the control signal sent to the plant 

for execution is labeled as 𝑢(𝑡). In the previous MBC development, the feedforward control served 

in prefiltering the reference signal, but has been moved into the feedback loop in this modified 

development. 

 

Figure 3.3 mMBC architecture 
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Considering the augmented plant in (3.3) to be both controllable and observable, the 

proposed mMBC utilizes an LQG controller, which minimizes the expected value of a quadratic 

cost function, weighting the signal 𝑞(𝑡) and states 𝒙(𝑡). 

𝐽𝐿𝑄𝐺 = 𝔼{∫ (𝒙𝑇(𝑡)𝑸𝒙(𝑡) + 𝑞𝑇(𝑡)𝑅𝑞(𝑡))𝑑𝑡
∞

0

} (3.4) 

where 𝔼 denotes expected value, and 𝑸 and 𝑅 are weighting parameters, which are positive 

semidefinite and positive definite, respectively. The LQG controller assumes that the process and 

observation noises are Gaussian, white, zero-mean and stationary processes, and covariance 

matrices 𝑾 and 𝑽 are positive definite (Datta 2003).  

𝔼[𝑤(𝑡)𝑤𝑇(𝑡)] = 𝑾𝛿(𝑡 − 𝜏)       𝔼[𝑣(𝑡)𝑣𝑇(𝑡)] = 𝑽𝛿(𝑡 − 𝜏) (3.5) 

where 𝛿(𝑡 − 𝜏) is the Dirac Delta function as a function of time. In stochastic systems where the 

process and observation noise are Gaussian, the optimal feedback solution is separable into a linear 

quadratic estimator (LQE) or Kalman estimator and a linear quadratic regulator (LQR): 

1. Linear quadratic estimator – obtain the matrix feedback 𝑲𝐿𝑄𝑅 

𝑲𝐿𝑄𝑅 = 𝑅−1𝑩𝐿
𝑇𝑿𝐿𝑄𝑅 (3.6) 

where 𝑿𝐿𝑄𝑅 is the solution to the following algebraic Riccati equation 

𝑿𝐿𝑄𝑅𝑨𝐿 + 𝑨𝐿
𝑇𝑿𝐿𝑄𝑅 + 𝑸− 𝑿𝐿𝑄𝑅𝑩𝐿𝑅

−1𝑩𝐿
𝑇𝑿𝐿𝑄𝑅 = 0 (3.7) 

2. Linear quadratic estimator – obtain the observer gain 𝑳𝐿𝑄𝐸 

�̇̂�(𝑡) = (𝑨𝐿 − 𝑳𝐿𝑄𝐸𝑪𝐿)�̂�(𝑡) + 𝑩𝐿𝑞(𝑡) + 𝑳𝐿𝑄𝐸𝑒(𝑡) (3.8) 

where the observer gain is calculated by 𝑳𝐿𝑄𝐸 = 𝑿𝐿𝑄𝐸𝑪𝐿
𝑇𝑽−1, with 𝑋𝐿𝑄𝐸 as the solution to the 

following algebraic Riccati equation 

𝑨𝐿𝑿𝐿𝑄𝐸 + 𝑿𝐿𝑄𝐸𝑨𝐿
𝑇 − 𝑿𝐿𝑄𝐸𝑪𝐿

𝑇𝑽−1𝑪𝐿𝑿𝐿𝑄𝐸 + 𝑭𝑾𝑭
𝑇 = 0 (3.9) 

Taking advantage of the separation principle and the regulator and estimator matrices, the 

following feedback controller is obtained 

�̇̂�(𝑡) = (𝑨𝐿 − 𝑩𝐿𝑲𝐿𝑄𝑅 − 𝑳𝐿𝑄𝐸𝑪𝐿)�̂�(𝑡) + 𝑳𝐿𝑄𝐸𝑒(𝑡) 

𝜇(𝑡) = −𝑲𝐿𝑄𝑅�̂�(𝑡) 
(3.10) 

The transfer function of the feedback controller can be written as 

𝑲(𝑠) =
𝜇(𝑠)

𝑒(𝑠)
= −𝑲𝐿𝑄𝑅(𝑠𝑰 − 𝑨𝐿 + 𝑩𝐿𝑲𝐿𝑄𝑅 + 𝑳𝐿𝑄𝐸𝑪𝐿)

−1
𝑳𝐿𝑄𝐸 (3.11) 

The dynamics of the LQG system are dependent on the plant it controls. First, a state 

estimator based on the augmented plant is obtained and applied to the error signal, to estimate the 

states of the augmented plant. Next, the estimated states are multiplied by the optimal LQR gain 

𝑲𝐿𝑄𝑅 to obtain the feedback signal 𝜇(𝑡). For optimization of the feedback controller, the weighting 

terms 𝑸 and 𝑅 are gradually adjusted until the error between the reference and measured signals 

are minimized.  
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3.4 Modified architecture 

The architecture difference between the MBC and mMBC is distinguishable in how the inverse 

model and feedback controllers are assembled. The output of the inverse model and feedback 

controllers are summed to formulate the control signal under the original architecture. In the 

mMBC, the output of the feedback controller is added back to the reference signal, per Figure 3.4. 

The feedback filter is designed on the basis of the inverse model and plant forming a combined 

augmented plant, idealized as a lowpass filter. This difference has important implications on the 

tracking robustness of the mMBC.  

 

(a) MBC      (b) mMBC 

Figure 3.4 Original and modified model-based architectures 

𝑮𝑀𝐵𝐶(𝑠) =
𝑦(𝑠)

𝑟(𝑠)
=
𝑷(𝑠)(𝑭(𝑠) + 𝑲(𝑠))

1 + 𝑷(𝑠)𝑲(𝑠)
  (3.12) 

𝑮𝑚𝑀𝐵𝐶(𝑠) =
𝑦(𝑠)

𝑟(𝑠)
=
𝑷(𝑠)𝑭(𝑠)(1 + 𝑲(𝑠))

1 + 𝑷(𝑠)𝑭(𝑠)𝑲(𝑠)
 (3.13) 

For a reference signal, 𝑟(𝑡), and a measurement signal, 𝑦(𝑡), the closed-loop system is 

denoted as 𝑮(𝑠). 𝑦(𝑠) and 𝑟(𝑠) are Laplace representations of the reference and measurement 

signals. For some stable 𝑷(𝑠), 𝑲(𝑠) and 𝑭(𝑠), the internal stability of the closed-loop system 

depends on the denominator or left-half plane closed-loop poles. The difference between the 

architectures of MBC and mMBC is demonstrated in the denominators of the closed-loop transfer 

functions in (3.12) and (3.13), respectively. 

3.4.1 Stability condition 

The closed-loop stability is evaluated in this section, by assessing the denominator of the transfer 

functions in Equations (3.12) and (3.13). Let 𝑻 serve as a stable operator and 𝑲 be a stable feedback 

controller, where ‖𝑲‖∞ ≤ 1. Then, (𝑰 + 𝑻𝑲)−1is non-singular if ‖𝑻‖∞ < 1. In other words, if 
‖𝑻𝑲‖∞ ≤ ‖𝑻‖∞‖𝑲‖∞ < 1, then (𝑰 + 𝑻𝑲) is invertible. The mathematical backgrounds for these 

conditions are discussed in Dullerud and Paganini (2000). 

The stability condition for the MBC is the existence of a non-singular (1 + 𝑷(𝑠)𝑲(𝑠))
−1

. 

Similarly, the stability condition for the mMBC is the existence of a non-singular 

(1 + 𝑳(𝑠)𝑲(𝑠))
−1

. The re-routing of the feedback signal has resulted in the presence of the inverse 

model controller as an additional stabilizing module in the denominator of the closed-loop transfer 

function.  
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Applying the norm conditions to (3.13), as discussed in the appendix, for some feedback 

controller, where ‖𝑲(𝑠)‖∞ ≤ 1, the mMBC closed-loop characteristic equation (1 +

𝑳(𝑠)𝑲(𝑠))
−1

is non-singular when ‖𝑳(𝑠)𝑲(𝑠)‖∞ ≤ ‖𝑳(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1. Since ‖𝑳(𝑠)‖∞ = 1, 

the mMBC guarantees stability. Additional conditions for this stability are: (i) the specified bound 

on the infinity norm for the feedback controller, and (ii) assumption on lack of plant model 

uncertainty. Applying the norm condition to (3.12) with ‖𝑲(𝑠)‖∞ ≤ 1, ‖𝑷(𝑠)‖∞ may have any 

arbitrary gain. Hence, the stability condition ‖𝑷(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1 cannot be guaranteed. 

Therefore, certainties in the robustness of the MBC system don’t exist.  

These norm bounds formulate a sufficient stability condition. Necessary conditions are exact 

and dependent on numerous physical parameters including the reachability of desired states. Due 

to the sufficient only nature of the stability condition discussed in this paper, the controller may 

remain stable even when the stability norm threshold is exceeded.  

3.5 Adaptive model reference control 

The proposed aMRC controller is an augmentation on the mMBC controller discussed in Section 

3.2. A reference model 𝑴(𝑠) is introduced, loaded with the intended behavior of the plant. An 

adaptive law 𝑨(𝑠), is used to calculate an adaptive variable 𝜃(𝑡). Fig. 3.5 illustrates the complete 

aMRC loop. The aMRC is built on the 𝐿1 adaptive control architecture. The control law feature of 

the 𝐿1 is omitted to speed up the tracking performance. The assumptions, theorems, and proofs 

relevant to the response of the 𝐿1 are provided in (Cao and Hovakimyan 2009).  

 

Figure 3.5 aMRC architecture 

3.5.1 Reference model 

The reference model developed in this adaptive scheme serves to drive the performance of the 

plant along the trajectory set by the reference model. Upon successful adaptation, the output 

trajectory of the plant converges to the output of the reference model. An ideal reference system 

representing perfect tracking is a unity-gain zero-phase system. The implication of this ideal 

system is that the reference signal will match the output signal, both in amplitude and phase.  
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In reality, controlled actuator systems should perform as a lowpass filter, as high frequency 

attenuation is inevitable due to physical limitations. The cutoff frequency 𝑓𝑐 (Hz) for the lowpass 

filter should be a realistic selection based on the performance limitations of the actuator. The 

reference model is hence represented as a first-order lowpass filter 

𝑴(𝑠) =
2𝜋𝑓𝑐

𝑠 + 2𝜋𝑓𝑐
 (3.14) 

3.5.2 Adaptation law 

The adaptation law herein is responsible for the adaptive estimate that is continuously updated to 

change the controller behavior. The objective of the adaptation law in the proposed algorithm is to 

minimize steady-state errors that emerge when plant nonlinearities or unmodeled dynamics exist. 

Integral controllers have proven effective in minimizing steady-state errors. The integral control 

concept is used here in the adaptation law for fast and smooth attenuation of the steady-state errors. 

Integral controllers however are prone to drifting problems, where the calculated control parameter 

grows unbounded. A projection algorithm is thus introduced which addresses the drifting problem 

by limiting the calculated adaptive parameter to a prescribed bound. The projection algorithm used, 

ensures a bounded and smooth adaptive parameter estimate (Cao and Hovakimyan 2009).  

Let 𝑓(𝜃) be a convex smooth function, the subset 

Ω0 ≔ {𝜃 ∈ ℛ𝑛|𝑓(𝜃) < 0} (3.15) 

is convex. 𝑓(𝜃) maps ℛ𝑛 to ℛ and is defined as 

𝑓(𝜃) = (𝜃^𝑇 𝜃 − 𝜃_max ^2)/(𝜖𝜃_max ) (3.16) 

where 𝜃𝑚𝑎𝑥 the maximum bound set on 𝜃 and 𝜖 is the exceedance tolerance on the bound. 𝜃 is the 

adaptive estimate and the outcome of the adaptation law. 𝜀(𝑡) is the error between the plant and 

the reference model outputs, 𝜀(𝑡) = 𝑦(𝑡) − 𝑦𝑚(𝑡). For an adaptive gain Γ, the projection operator 

on 𝜀 is formulated per  

�̇� = Γ𝑃𝑟𝑜𝑗(𝜃, 𝜀)

≔

{
 

 
Γ𝜀                                                    if 𝑓(𝜃) < 0,…………………

Γ𝜀                                                    if 𝑓(𝜃) > 0, and ∇𝑓𝑇𝜀 ≤ 0,

Γ𝜀 − Γ
∇𝑓

‖∇𝑓‖
⟨
∇𝑓

‖∇𝑓‖
, 𝜀⟩ 𝑓(𝜃)    if 𝑓(𝜃) ≥ 0, and ∇𝑓𝑇𝜀 > 0.

 
(3.17) 

The adaptive law is denoted by 𝑨(𝑠) in Fig. 3.5. The projection algorithm of the adaptive 

law in (3.17) at its core is simply an integral controller when 𝑓(𝜃) < 0. The projection operator 

subtracts a vector normal to the boundary of the convex set, such that a smooth transformation is 

obtained from the original vector 𝜀(𝑡). When 𝑓(𝜃) ≥ 0, the normal component of 𝜀 is attenuated 

until the 𝑃𝑟𝑜𝑗(𝜃, 𝜀) is tangential to the boundary. This ensures the estimated parameter remains 

smooth and bounded. By definition, the projection operator does not alter the integral action in 

formulating 𝜃, unless the maximum bound set for the adaptive estimate is approached. Fig. 3.6 

illustrates a convex set and the action of the projection operator.  
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Figure 3.6 Projection Operator 

The reference model and the adaptation law are major components in the design of the aMRC 

algorithm. In the design of an aMRC compensator, if the cutoff frequency of the reference system 

is set too low, the controller tracking will be sluggish. If the cutoff frequency is too high, the 

adaptation law will not be able to compensate for high frequency contents appropriately and high 

frequency noise will appear in the output of the plant dynamics. While designing a reference 

model, a good practice is to start off with a moderately low cutoff frequency and increase gradually 

to optimize the tracking performance and ensure stability. Similarly, the adaptation gain should be 

gradually increased to enhance the tracking performance.  

3.6 Numerical evaluation 

This section evaluates the proposed mMBC and aMRC compensation algorithms for a reference 

tracking problem. A second-order dynamical system is introduced, where the model of the system 

used for developing compensation strategies is perturbed. The discrepancy between the real plant 

and nominal (identified) model are intentionally created to evaluate each controller in the presence 

of modeling uncertainty.  A 5-second chirp signal with a frequency bandwidth of 0 – 10 Hz is 

selected as the reference excitation. Four compensation techniques are evaluated as part of this 

analytical study: (i) feedforward, (ii) MBC, (iii) mMBC, and (iv) aMRC. 

𝑮(𝑠) =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2
 (3.18) 

where 𝜔𝑛 and 𝜁 are the natural frequency and damping ratios of the system, respectively. This 

second-order dynamic is representative of single-DOF dynamical system. The real plant is denoted 

as 𝑷(𝑠) and the nominal model is denoted by �̂�(𝑠).  
𝑷(𝑠) = {𝑮(𝑠)|𝜔𝑛 = 50, 𝜁 = 0.5} (3.19) 

�̂�(𝑠) = {𝑮(𝑠)|𝜔𝑛~𝑈[45,50], 𝜁~𝑈[0.25,0.75]} (3.20) 

where the parameters 𝜔𝑛 and 𝜁 are distributed uniformly, with 𝑈[𝑎, 𝑏], and 𝑎 and 𝑏 as the lower 

and upper bounds for the parameter.  

The numerical simulations are conducted for a duration of 5 seconds with an Dormand-

Prince RK8 integration scheme (Dormand et al. 1987). The performance and feasibility of each 

compensator is assessed between reference and output signals 𝑟(𝑡) and 𝑦(𝑡) respectively, with the 

unitless root-mean-square error (RMSE) and maximum error (MAXE) evaluation criteria.  
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑟(𝑖) − 𝑦(𝑖))

2
 𝑛

𝑖=1

∑ (𝑟(𝑖))
2
 𝑛

𝑖=1

 (3.21) 

𝑀𝐴𝑋𝐸 =
max|𝑟(𝑖) − 𝑦(𝑖)|

max|𝑟(𝑖)|
 (3.22) 

where at step 𝑖, 𝑟(𝑖) and 𝑦(𝑖) are the reference and output (measured) signals respectively, and 𝑛 

is the total data point count.  

 

(a) Amplitude 

 

(b) Phase 

Figure 3.7 FRF of the plant and 100 nominal models 

A suite of 100 nominal models are obtained by randomizing the natural frequency and 

damping ratios per the upper and lower bounds provided in (3.20). This process creates variations 

or modeling uncertainties between the dynamics of the plant in (3.19) and nominal models (3.20). 

The FRF of the plant and nominal model variations are presented in Fig. 3.5. A compensator which 

consistently produces good tracking performance under a wide degree of modeling uncertainties 

is said to have good tracking robustness.  

Compensators require intricate tuning to optimize their performance. The general tuning 

procedure and control design for each of the compensators are presented below: 

• Feedforward: nominal model in (3.20) is inverted and multiplied with a second-order lowpass 

filter with a cutoff frequency of 50 Hz. 

• MBC: nominal model in (3.20) is used for design of a Kalman state estimator and an LQR 

gain. The estimator and regulators are tuned until the error between the reference and 

measurement signals are minimized. The feedforward controller from earlier is then applied to 

complete the MBC compensator.  
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• mMBC: real plant in (3.19) and feedforward controller from earlier are cascaded to create an 

augmented plant. State estimator and feedback regulator are designed based on the augmented 

plant and tuned until the error between the reference and measurement signals are minimized. 

• aMRC: the mMBC compensator is augmented with a reference model and an adaptive law. 

The cutoff frequency on the reference model is set to 𝑓𝑐 =300 Hz and the gain on the adaptive 

law is set to Γ = 200.  

The control-plant systems are next subject to the chirp signal in Fig. 3.8. This process is 

repeated for each of the 100 randomized nominal plants. 

 

Figure 3.8 5-second chirp signal 

Fig. 3.9 illustrates the synchronization plots for one simulation. A 1:1 diagonal line in a 

synchronization plot implies perfect tracking. As demonstrated, incorporation of feedforward and 

MBC compensators is not enough to cancel out the high frequency oscillations observed in the 

synchronization plots. The mMBC offers a more rigorous feedback action as noted by the major 

improvement in the tracking. Integration of the adaptive law in the form of the aMRC, bears no 

significant results however, when the tracking is already excellent.  

The box plots in Fig. 3.10, Table 3.1, and 3.2 provide graphical and numerical results from 

the 100 simulations of the chirp signals for each compensator. The redlines and the bottom and top 

lines in the blue boxes indicate the median, 25th quartile and 75th quartile results respectively, for 

the RMSE and MAXE error indicators. The dashed lines extending from the box are whiskers of 

the box plot and indicate upper and lower extremes of the error data. The mMBC and aMRC 

compensators result in smaller errors compared to Feedforward and MBC algorithms. Note that 

although the improvements offered by the adaptive augmentation from the mMBC to the aMRC 

was not significant or observable for a single simulation in Fig. 3.9, the aMRC results in better 

tracking and more consistent (narrower box and whiskers) results. Therefore, the aMRC has the 

best tracking robustness followed by mMBC.  
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(a) Feedforward 

 

(b) MBC 

 
(c) mMBC 

 
(d) aMRC 

Figure 3.9 Synchronization plots 
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(a) MAXE    (b) RMSE 

Figure 3.10 Box plots for the error indicators 

Table 3.1 MAXE error variation 

Compensator Lower adjacent 25th percentile Median 75th percentile Upper adjacent 

FF 0.274 0.406 0.490 0.610 0.724 

MBC 0.275 0.406 0.495 0.617 0.731 

mMBC 0.023 0.056 0.077 0.093 0.210 

aMRCs 0.021 0.042 0.052 0.065 0.098 

 

Table 3.2 RMSE error variation 

Compensator Lower adjacent 25th percentile Median 75th percentile Upper adjacent 

FF 0.158 0.266 0.326 0.406 0.522 

MBC 0.163 0.263 0.320 0.409 0.530 

mMBC 0.012 0.041 0.056 0.072 0.131 

aMRCs 0.010 0.023 0.029 0.040 0.068 
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3.7 Shake table control 

For experimental validation of the tracking abilities of the proposed controllers, a shake table setup 

is selected with an onboard structure. The aim of this study is to provide acceleration tracking for 

the shake table. The aMRC compensator is not included in this study, as adaptive compensation 

results in low frequency control signals. A low frequency acceleration signal translates to large 

displacements, which exceed the stroke capacity of a shake table. Several ground motions are 

selected and the capabilities of the mMBC are compared to some of the existing compensation 

techniques.  

3.7.1 Experimental setup 

The experimental setup in this study consists of a 1-DOF Quanser II shake table, a 

45 cm × 45 cm table operated on a linear ball bearing and powered by a 400 W DC Motor with 

an onboard 1000 LPR IP 40 relative encoder. The motor is operated with a Kollmorgan Silverline 

H-344-H-0600 amplifier. The operational frequency bandwidth of the shake table is 0 − 20 Hz 

with a stroke length of ± 3”, (Dyke and Caicedo 2002). An NI CompactRIO 9073 controller is 

used along with the LabVIEW real-time module, to manage the controller programming. An 8-

channel m+p VibPilot is used for data acquisition. Acceleration measurements are obtained with 

a PCB 3701G3FA3G capacitive accelerometer. The numerical and control interfaces are operated 

at a sampling frequency of 200 Hz. 

 

Figure 3.11 Two-story structure onboard a shake table 

To test the capabilities of the proposed controller, additional features are added to the shake 

table setup to achieve several phenomena including nonlinearity and modeling uncertainty. The 

two-story frame structure in Fig. 3.11 discussed in Wang et al. (2015) and Phillips et al. (2014) is 

mounted on the shake table throughout this experimental study. The structure’s modes were 

experimentally identified to have natural frequencies of 1.73 Hz and 4.64 Hz with respective 

damping ratios of 0.4% and 0.2%. The identified mass and stiffness matrices are presented below: 

𝑴 = [
25.11 0
0 23.40

] 𝑘𝑔               𝑲 = [
15400 −8300
−8300 8300

]𝑁/𝑚 (3.23) 
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3.7.2 System identification of a single-axis shake table 

A bandlimited white noise with a frequency bandwidth of 0-30 Hz and an RMS value of 2 mm 

was used to excite the shake table and specimen. Figure 6 presents the FRF from command signal 

to shake table measured acceleration for different proportional gains (p-gain). When p-gain is too 

high, distinct poles are formed resulting in harmonic behavior and sometimes instability. When p-

gain is too low, the shake table becomes too slow for the acceleration tracking purposes. 

Established tuning approaches for PID controllers including the Ziegler-Nichols method, tend to 

predict smaller gains, leading to sluggish acceleration tracking performance. For the structure and 

shake table presented in Fig. 3.12, a p-gain value of 3 resulted in the best model for acceleration 

tracking. 

 

(a) Amplitude 

 

(b) Phase 

Figure 3.12 FRF of shake table for different p-gains 

Next, wooden braces are added to each story of the structure. System identification is then 

conducted to capture the added stiffness due to the wooden braces. The aim for adding these braces 

is to demonstrate how different controllers react to a physical change (i.e. wooden braces 

breaking). Braces are built from Balsa wood with a length of 9.5”, width of ½ ", thickness of 
3

16
”, 

and width of 3” at the supports. Presence of the braces implies greater stiffness in both floors, and 

higher natural frequencies of 1.89 Hz and 5.17 Hz for the two modes.  

Following system identification, a linearized transfer function for input voltage and output 

acceleration is identified with 7 poles and 7 zeros, using the frequency domain identification tool 

MFDID, discussed in (Kim et al. 2005). This toolbox fits the FRF data with the closest matching 

transfer function model. All of the zeros reside in the left-hand plane or on the imaginery axis to 

ensure stability when the transfer function model of the shake table is inverted to produce an 
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inverse model controller. The transfer function is presented in (3.24) and in graphical form in Fig. 

3.13. The FRF for the setup with braces and without braces and the transfer function for the setup 

with braces are demonstrated in this figure. To ensure drifting is avoided due to the double 

integration in the inverse model implementation, input ground motions are highpass filtered to 

attenuate low frequency contents. A second-order butterworth highpass filter with a cutoff 

frequency of 0.25 Hz is used for prefiltering of earthquake time histories before experimenting.   

𝑷(𝑠)

=
1.667 (𝑠2)(𝑠 + 0.603)(𝑠2 + 0.577𝑠 + 130)(𝑠2 + 1.609𝑠 + 1041)

(𝑠 + 0.922)(𝑠2 + 0.511𝑠 + 121.4)(𝑠2 + 2.106𝑠 + 1000)(𝑠2 + 19.13𝑠 + 2007)
 

(3.24) 

 

(a) Amplitude 

 

(b) Phase 

Figure 3.13 FRF and transfer function models of shake table 

3.7.3 Ground motion 

Acceleration records from strong motion sensors are unique to the geography and individual site 

conditions. Assessing the performance of the shake table with different acceleration records offers 

different challenges to the control task. Many ground motions possess higher frequency contents 

but are shorter in duration, while others have lower frequency contents with higher durations. 

Three ground motions are selected and presented in Fig. 3.14, which include: (i) El Centro – 1940, 

(ii) Kobe – 1995, and (iii) Northridge – 1994.  Due to limited stroke lengths of the shake table, the 

ground motion accelerations are scaled in amplitude and highpass filtered. 
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(a) El Centro 30% 

 

(b) Kobe 50% 

 

(c) Northridge 40% 

Figure 3.14 Original and filtered ground motion accelerations 

3.7.4 Tracking performance 

Three different ground motion inputs are commanded to the shake table setup and reference-to-

measurement signal tracking capabilities of the compensation techniques are evaluated. In this 

experimental study, the shake table is loaded with a two-story frame structure without the added 

braces, while the dynamic model used in the design of the controllers is derived from the identified 

two-story frame structure with the added braces. In addition, a roof-level Nonlinear Energy Sink 

(NES) device is mounted on the two-story frame, which adds nonlinearities to the shake table 

through CSI. The intent of this experiment is to test the controller behavior in the presence of 

nonlinearity and unmodeled dynamics.  

Tracking performance of 4 controllers are evaluated via the RMSE and MAXE criteria 

between reference and output accelerations in both time and frequency domains. These include: 

(i) Feedforward, (ii) TFI, (iii) MBC, and (iv) mMBC. The ideal controller is one which consistently 

realizes the smallest 𝑅𝑀𝑆𝐸. Fig. 3.15 demonstrates the time domain acceleration tracking response 
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for the El Centro earthquake PGA-scaled at 30%. Both reference and measured acceleration 

records have been post-processed with a 5th order lowpass filter with a cutoff frequency of 20 Hz, 

to reduce high frequency noise contents.  

 

(a) Feedforward – time history 
 

(b) Feedforward – synchronization plot 

 

(c) TFI (3 iter.) – time history 

 

(d) TFI (3 iter.) – synchronization plot 

 

(e) TFI (6 iter.) – time history 

 

(f) TFI (6 iter.) – synchronization plot 
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(g) MBC – time history 

 

(h) MBC – synchronization plot 

 

(i) mMBC – time history 

 

(j) mMBC – synchronization plot 

Figure 3.15 Acceleration tracking and synchronization plots for the 30% El Centro 

The results of the RMSE and MAXE quantitative evaluation criteria in (3.21) and (3.22), in 

time- and frequency-domain, are presented in Tables 3.3-3.5. Each tracking experiment is repeated 

three times and the performance criteria presented are for the average of the three performances. 

This is to account for the variability that may exist in these results. The feedback parameters of 

MBC and mMBC are optimized for the minimization of the tracking error. The results of the TFI 

technique are demonstrated for 3 iterations and 6 iterations. The iterative tuning of the TFI method 

amplifies high frequency contents as indicated by the results. The mMBC technique demonstrates 

the least overshoot in the output acceleration. This is attributed to the authoritative feedback design 

of the mMBC.  
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Table 3.3 Time domain RMSE performance for different ground motions 

Controller Type 
Time domain RMSE  

El Centro Kobe Northridge 

Feedforward 0.930 1.242 0.945 

TFI (3 iter.) 1.054 1.396 1.093 

TFI (6 iter.) 1.160 1.332 1.169 

MBC 0.870 1.376 0.951 

mMBC 0.803 1.128 0.784 

 

Table 3.4 Time domain MAXE for different ground motions 

Controller Type 
Time domain MAXE  

El Centro Kobe Northridge 

Feedforward 0.550 0.786 0.611 

TFI (3 iter.) 0.743 0.840 0.797 

TFI (6 iter.) 0.790 0.843 0.791 

MBC 0.432 0.843 0.665 

mMBC 0.402 0.688 0.584 

 

Table 3.5 Frequency domain RMSE performance for different ground motions 

Controller Type 
Frequency domain RMSE  

El Centro Kobe Northridge 

Feedforward 1.121 1.386 1.004 

TFI (3 iter.) 1.208 1.722 1.030 

TFI (6 iter.) 1.154 1.392 1.001 

MBC 1.101 1.731 0.957 

mMBC 0.706 1.004 0.559 

3.7.5 Tracking robustness 

Tracking robustness is the evaluation of the tracking ability of a controller under changing 

dynamics of the plant. A controller that becomes unstable under changing plant dynamics will 

clearly lack tracking robustness. A tracking robustness study hence requires analysis of both the 

tracking and stability properties of a controller. The stability performance of a feedforward 

controller is arbitrary and easy to analyze. With a stable plant and a stable feedforward controller, 

this method needs no further stability analysis. TFI is an iterative expansion of the feedforward 
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technique and its stability is dependent on the initial iteration. Therefore, in this section the focus 

of the stability performance is on the two model-based controllers. Addition of feedback control 

makes stability analysis difficult, particularly when changes in dynamics of the shake table are 

expected. The stability condition discussed earlier is further elaborated in this section.  

Stability assessment of the discussed model-based controllers requires limiting feedback 

gains to ‖𝑲(𝑠)‖∞ ≤ 1. From an engineering perspective, an infinitely large feedback gain cannot 

be stabilizing. Thus, limiting the gain of the feedback controller for stability performance analysis 

is necessary. Having bounded the feedback gain, the limits that may exist on the plant gain must 

be studied. In the case of the MBC, the term plant refers to the coupled shake table and structure 

dynamics, and for the mMBC, refers to the cascaded use of the inverse model controller and the 

shake table and structure dynamics. A plant may have arbitrary gains over different frequency 

ranges and the amplitude of the gain is subject to change due to nonlinearities and changing plant 

dynamics. Understanding the operational frequency of the shake table helps determine what 

frequency range to study, when calculating the plant norm. In most shake tables, the frequency 

content of the input signal provides a good estimate of the operational frequency bandwidth of the 

shake table. Fig. 3.16 presents the power spectral densities (PSD) of three different ground 

motions. This PSD plot highlights the energy distribution at various frequencies. An important 

observation is that the majority of the energy of the listed ground motions is concentrated in the 0 

- 10 Hz frequency range. Hence, stability conditions and norm calculations are assessed over this 

frequency bandwidth. 

 

Figure 3.16 Power spectral density for ground motions 

The goal of a feedback controller, particularly in tracking type problems, is to enhance the 

tracking abilities of the control system (i.e. amplitude and phase compensation). Feedback control 

induced instability happens when, by increasing the gain of the feedback, instead of observing 

improvements, the tracking abilities start to deteriorate and soon diverge into complete 

instabilities. Alternatively, instability may occur for a constant feedback gain, but with large 

nonlinearities or sudden changes of plant dynamics due to yielding or brittle failures of structural 

components onboard the shake table. The time domain performances of the shake table for the 

MBC and mMBC compensation methods are presented in Fig. 3.17, showing the tracking quality 

for increasing values of feedback gain. The El Centro ground motion was used in this robustness 

analysis.   

With the MBC technique, the plant norm is calculated as ‖𝑷(𝑠)‖∞ = 3.84 for the frequency 

range 0 – 10 Hz. Referring to the MBC stability plot, the RMSE value begins an upwards increase 

at ‖𝑲(𝑠)‖∞ ≈ 0.3. The stability norm condition ‖𝑷(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1, derived mathematically 

is observed to be violated, in Fig. 3.17, roughly when this upward trend begins and tracking 

approaches instability. When the mMBC is used, the augmented plant norm is ‖𝑳(𝑠)‖∞ = 1. For 
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increasing values of ‖𝑲(𝑠)‖∞, not only is stability maintained, but the RMSE criterion decreases, 

which corresponds to a tracking enhancement.   

 

(a) MBC 

 

(b) mMBC 

Figure 3.17 RMSE performance of model-based controllers vs. feedback gain for 30% El 

Centro 

The mMBC achieves enhanced tracking for feedback gains satisfying ‖𝑲(𝑠)‖∞ ≤ 1, 

implying predictability in the stability performance of this control architecture. The MBC, 

however, does not have this predictive property. In the mMBC, the inverse model controller 

combines with the shake table dynamics in the stabilizing effort, while in the MBC, the entire 

stabilizing effort is burdened onto the shake table dynamics. The feedback controller in mMBC is 

designed based on a lowpass filter plant design, which typically results in fewer feedback states. 

However, in the feedback component of the MBC technique, there are at least as many states as 

there are in the presumed model of the shake table dynamics. Feedback on a smaller number of 

states is more stable from a computational perspective as well. 

The tracking abilities of the discussed controllers are already demonstrated in the presence 

of unmodeled dynamics. The next step is to demonstrate the tracking robustness of the model-

based controllers in the presence of sudden changes of dynamics during the test. This is achieved 

by installing Balsa wood braces, selecting a ground motion strong enough, and allowing the braces 

to break during the experiment. The El Centro ground motion, PGA-scaled to 70% was used for 

this purpose. An additional second order Butterworth highpass filter with a cutoff frequency of 1.5 

Hz is applied to ensure shake table stroke limit is not reached.  
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Figure 3.18 Two-story frame structure with failed braces 

After the initial impulse at the 6 second mark, one or more braces failed, seen in Fig. 3.18, 

resulting in changes in the natural frequencies of the two-story frame. Since the response of the 

two-story frame is coupled with the response of the shake table through CSI, this change in natural 

frequency translates to a change in the dynamics of the shake table. Fig. 3.19 demonstrates the 

response of each model-based controller in the presence of brace failure. The MBC tends to unwind 

and is unable to bring the shake table acceleration to a zero equilibrium. The PSD for MBC output 

indicates a peak at around 5 Hz. The mMBC technique is capable of tracking the reference signal 

and stabilizing the new dynamics. The mMBC filters should be designed such that the stability 

norm condition is well below the stability condition threshold, to allow unmodeled behaviors to 

be accommodated throughout the experiments.  
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(a) MBC time domain     (b) MBC frequency domain 

 

(c) mMBC time domain    (d) mMBC frequency domain 

Figure 3.19 Model-based controller responses to changing dynamics 

The stability criterion for the mMBC algorithm is next schematically described, for before 

and after brace failure in Fig. 3.20. Under an elastic circumstance and prior to brace failure, the 

augmented plant behaves as a lowpass filter. Fig. 3.20(a) presents the lowpass filter 𝑳(𝑠) along 

with the LQG feedback controller 𝑲(𝑠). As mentioned earlier, stability can be guaranteed when 

(1 + 𝑳(𝑠)𝑲(𝑠))
−1

is nonsingular, which corresponds to ‖𝑳(𝑠)𝑲(𝑠)‖∞ < 1. This stability criterion is 

represented by the black dashed line in Figure 14(a). When ‖𝑳(𝑠)𝑲(𝑠)‖∞ is close to zero, the feedback 

action is minimal, and tracking is poor. When ‖𝑳(𝑠)𝑲(𝑠)‖∞ is close to 1, the feedback action is strong, but 

the stability limit can be breached if there are changes to the dynamics of the shake table and specimen. For 

particular feedback controller shown, the feedback gain was designed to be conservative to allow for 

changes in dynamics of the physical setup.  
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(a) Stability criterion before brace failure  (b) Stability criterion after brace failure 

Figure 3.20 Amplitude plots for the stability criterion 

In Fig. 3.20(b), 𝑷𝑑(𝑠) describes the dynamics of the system after braces are damaged. The 

new augmented plant is now described via 𝑷𝑑(𝑠)𝑭(𝑠). Due to the sudden failure in the brace 

elements, new peaks appear in the stability criterion (i.e., black dashed-line). The mMBC provides 

the foresight and predictability for the stability limit of the closed-loop dynamics. Designers can 

develop an mMBC controller with sufficient space between the stability limit and the stability 

criterion to allow for dynamic changes and, hence avoiding instabilities.  

3.8 Summary 

In this chapter, different control strategies were examined for compensation of unwanted actuator-

structure dynamics. First, the concept of reference tracking for shake table and real-time hybrid 

simulation (RTHS) applications were described. Displacement, acceleration, and force are 

examples of reference tracking problems that were discussed. The modified Model-Based Control 

(mMBC) compensator was proposed as a modification to the Model-Based Control (MBC) already 

used in shake table and RTHS applications. The modified compensator has improved tracking 

performance, stability robustness, and stability predictability. An adaptive augmentation of the 

mMBC was proposed, called the adaptive Model Reference Control (aMRC). This algorithm is 

comprised of an adaptive law and a reference model. The adaptive law forces the plant to behave 

like the reference model. A projection algorithm is proposed for the adaptive law, which prevents 

adaptive parameter drifting.  

The tracking abilities of the proposed mMBC and aMRC algorithms were next numerically 

and experimentally evaluated. A single-DOF numerical simulation compared four compensation 

strategies, determining that the mMBC and aMRC had the best tracking robustness. A shake table 

setup with an onboard structure was considered for acceleration tracking. The aMRC algorithm 

was excluded from the acceleration control problem, as the adaptive law generates low frequency 

contents which result in high amplitude displacements. Three other shake table compensation 

techniques were evaluated and the mMBC was determined to have the best tracking robustness 

and stability predictability.  
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Chapter 4 

 

SINGLE-AXIS REAL-TIME HYBRID SIMULATION 

 

4.1 Problem statement 

Real-time hybrid simulation (RTHS) is an alternative to the traditional hybrid simulation, which 

offers benefits of real-time testing (i.e., material rate-dependence can be accommodated) and 

substructuring (i.e., cost and space savings). Physical execution happens at real-world speeds and 

numerical integration is conducted explicitly at frequencies of 200 Hz or higher. The experimental 

capabilities and computational requirements are increased due to the rapid nature of the RTHS.  

One of the challenges in RTHS is that researchers set higher than realistic (artificial) damping 

values to the numerical substructure to achieve stable execution. The stability and accuracy of an 

RTHS experiment are often jeopardized by the presence of unwanted actuator-structure dynamics, 

resulting in closed-loop delays. Model-based RTHS eliminates the need for the added artificial 

damping and results in a stable performance. This RTHS formulation addresses the challenges of 

unwanted actuator-structure behavior via model-based compensation methods (Carrion et al. 2009; 

Phillips and Spencer 2013; Zhang et al. 2017).  

Another challenge with RTHS surrounds the question of the accuracy of the method. A 

number of publications in the recent years have investigated and compared the performances of 

shake table and various RTHS methods, as a means to validate the latter. Ashasi-Sorkhabi et al. 

(2015) studied the dynamic performance of a spring-mass system coupled to a tuned liquid damper. 

The displacement response of the full- and sub-structured test configurations were evaluated and 

demonstrated to be closely matching. Damping of the analytical substructure was set to a high 

value of 6.3%.  Lamarche et al. (2010) conducted shake table and RTHS testing of a two-story 

reinforced concrete frame. Similar results were observed in the displacement response for the 

shake table and RTHS tests in both the linear- and nonlinear-range. However, validated methods 

for testing lightly-damped and highly-nonlinear structures don’t appear to be available.  

This section outlines the model-based RTHS method for single-axis testing, as a 

steppingstone for the multi-axial RTHS development to be described in later chapters. Several 

applications involving lightly-damped and highly-nonlinear structural systems are then explored.  

4.2 Model-based real-time hybrid simulation 

The RTHS method partitions the dynamics of a reference structure into two or more components. 

The fundamental components are typically numerical and physical substructures, and a boundary 

interface. The numerical substructure is comprised of governing equations, state-space 

formulations, or more sophisticated finite element analysis (FEA) models. The physical 

substructure is the structural element of interest whose nonlinear hysteresis is the focus of the 

research. There exists a correspondence between the boundary conditions and forces in numerical 

and physical substructures, as if the entire experiment was one continuous reference structure. 

Since, it is impossible for a computer and a structural element to directly communicate the physical 
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laws at the boundary conditions, actuators and sensors are utilized to fill in the gaps. The boundary 

point for a single-axis RTHS experiment is often enforced just one servo-hydraulic actuator and 

one or more sensors, per Fig. 4.1. 

 

Figure 4.1 Schematic of a single-axis RTHS  

The single-axis model-based RTHS framework presented herein employs the mMBC 

compensator developed by Najafi and Spencer (2020), which has excellent tracking and robustness 

capabilities, making it a suitable choice for RTHS applications. In setting up the framework, two 

types of model-based compensations are considered: (i) displacement tracking, and (ii) 

acceleration tracking, as shown in Fig. 4.2. The excitation considered here is an earthquake ground 

acceleration for demonstrative purposes. The choice of input excitation is arbitrary.   

 

(a) RTHS with displacement tracking   (b) RTHS with acceleration tracking 

Figure 4.2 Model-based RTHS architecture 

After excitation of the numerical substructure, displacements or accelerations at the boundary 

with the physical substructure are computed. The signal that exits the numerical substructure is 

referred to as the reference or target signal. The mMBC compensator may be used in both 

displacement and acceleration reference tracking problems. Output of the compensators is a 

control signal 𝑢(𝑡), sent for physical execution via an actuator. Once, the physical substructure is 

deformed, onboard sensors including accelerometers, displacement transducers, and loadcells 

obtain the measurement signal 𝑦(𝑡) and feedback force 𝐹𝑅(𝑡).  
Throughout this section, three applications of single-axis RTHS are explored. First, a 

validation study of model-based RTHS for a lightly-damped and highly-nonlinear structural 

system is presented, where the results of RTHS experiments are evaluated via comparisons to 

shake table tests. Next, an RTHS framework with the aMRC compensator is presented with 
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application to the benchmark control problem discussed in Silva et al. (2020). Lastly, a study of 

magnetorheological dampers for mitigation of train-induced bridge vibrations is presented.  

4.3 Model-based RTHS for lightly-damped and highly-nonlinear 

structures 

With the objective of conducting model-based RTHS on a structural system with light damping 

and high degree of nonlinearity, the two-story structure from Section 3.7 is selected. The two-story 

frame shown in Fig. 4.3 behaves as a shear building, since the floor slabs are considerably stiffer 

than the columns. The structure is lightly damped, possessing damping ratios of 0.20% and 0.36% 

for the first two modes, respectively, when the NES is locked, the damping is 0.45% and 0.38% 

when the NES is unlocked.  

 

Figure 4.3 Two-story steel frame with track NES 

The NES mass, shown in Fig. 4.4, moves along a vertically nonlinear path described by the 

shape of the track ℎ(𝑥𝑛), where 𝑥𝑛 is the horizontal displacement of the mass. Due to this 

geometric nonlinearity, the restoring forces of the NES are identified per the nonlinear equation 

below and shown in Fig. 4.5.  

Γ = ([ℎ′(𝑥𝑛)]
2�̈�𝑛 + ℎ

′(𝑥𝑛)ℎ
′′(𝑥𝑛)�̇�𝑛 + ℎ(𝑥𝑛))𝑚𝑛 

(4.1) 

 

Figure 4.4 NES device 
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Figure 4.5 Track NES hysteretic relationship for different excitation frequencies 

The two-story steel frame and NES are modeled with a three-DOF governing equation of 

motion with ground acceleration as the input excitation. 

𝑚1�̈�1(𝑡) + 𝑐1�̇�1(𝑡) + 𝑐2(�̇�1(𝑡) − �̇�2(𝑡)) + 𝑘1𝑥1(𝑡) + 𝑘2(𝑥1(𝑡) − 𝑥2(𝑡))

= −𝑚1�̈�𝑔(𝑡) 
(4.2) 

𝑚2�̈�2(𝑡) + 𝑐2(�̇�2(𝑡) − �̇�1(𝑡)) + 𝑘2(𝑥2(𝑡) − 𝑥1(𝑡)) − 𝑐𝑛�̇�𝑛(𝑡) − Γ(t) = 𝑚2�̈�𝑔(𝑡) (4.3) 

𝑚𝑛�̈�𝑛(𝑡) + 𝑐𝑛�̇�𝑛(𝑡) + Γ(t) = −𝑚𝑛 (�̈�2(𝑡) + �̈�𝑔(𝑡)) (4.4) 

where 𝑚𝑖, 𝑐𝑖, and 𝑘𝑖 are the mass, damping, and stiffness parameters, �̈�𝑖(𝑡), �̇�𝑖(𝑡), and 𝑥𝑖(𝑡) are 

relative acceleration, velocity, and displacement terms of the 𝑖𝑡ℎ story, and 𝑐𝑛 is the damping of 

the NES. 𝑚𝑛 is the mass of the NES at 2.457 kg. �̈�𝑛(𝑡) and �̇�𝑛(𝑡) describe the acceleration and 

velocity terms for the NES, relative to the second-floor mass. �̈�𝑔(𝑡) is the ground acceleration. The 

schematic of the numerical realization for the two-story frame with the track NES device is 

presented in Fig. 4.6.  

 

Figure 4.6 Shake table testing: two-story steel frame with a track NES device 

4.3.1 Shake table testing result  

The selected two-story steel frame with onboard track NES device is shake table tested as a 

benchmark for comparison with RTHS results in later sections. The proposed experimental study 
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is conducted on a Quanser Shake Table II. An NI CompactRIO 9073 controller completes the task 

of stabilizing the shake table via a proportional-derivative controller. Numerical integration and 

compensation action are computed on a dSPACE DS1103PPC microcontroller with a sampling 

rate of 1kHz. A 4th order Runge-Kutta integration algorithm is used. The development environment 

for the dSPACE controller consists of the Matlab/Simulink software suite and the ControlDesk 

program which converts algorithms to the C programming language and compiles them on the 

microcontroller.  

Measurement of the horizontal displacements at the story levels in the discussed steel frame 

is a challenging task. Linear displacement measurement tools like linear variable differential 

transformers (LVDTs) possess small amounts of friction, which can offset experimental results. 

To solve this issue, vision-based displacement measurement techniques are incorporated.  

A 60 frame-per-second camera is used to record the behavior of the building during the 

duration of a ground motion acceleration. Black and white square patterns are installed on the 

structural components for detection via a vision-based algorithm, per in Fig. 4.7. Base (i.e., shake 

table) displacement is measured via the onboard optical encoder. 

PCB353B33 piezoelectric accelerometers are used for acceleration measurements. The 

accelerometers are installed at each story, on the NES, and on the shake table for acceleration 

feedback and compensation purposes. Following the data acquisition from the shake table testing 

procedure, results are synchronized and prepared for the model-based RTHS validation study. 
 

 

Figure 4.7 Two-story steel frame with track NES device 

The two-story steel frame with the track NES device is excited with a PGA-scaled 30% 1940 

El Centro earthquake, shown in Fig. 4.8. This original ground acceleration was sampled at a 100 

Hz from recording station no. 6, was upsampled to 1000 Hz for this study. The mMBC is used for 

compensation during the shake table testing and provides better tracking than many existing 

methods. Details pertaining to tracking control and operation of the shake table and two-story steel 

frame are presented in Najafi and Spencer (2020).   



71 

 

 

Figure 4.8 30% PGA-scaled 1940 El Centro earthquake 

Nonlinearities in the dynamics of the shake table device result in small performance 

variations in every experiment. These variations are presented in Fig. 4.9, along with the minimum 

and maximum values. To study these variations, results for 10 experiments are presented. Next, 

the structure is partitioned and tested via the RTHS method.  

 

(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.9 Variations in the displacement and acceleration responses for 10 repeated shake 

table tests 
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4.3.2 Real-time substructuring 

Before conducting RTHS in the laboratory, the structure of interest is substructured and a 

numerical model identified.  To this end, the two-story frame structure is partitioned into two 

substructures. The two-story frame is numerically modeled while the NES device is physically 

tested. The proposed RTHS substructuring is demonstrated in Fig. 4.10.  

 

Figure 4.10 RTHS testing: substructuring of the two-story frame with track NES 

[
𝑚1 0
0 𝑚2

] {
�̈�1(𝑡)

�̈�2(𝑡)
} + [

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

] {
�̇�1(𝑡)

�̇�2(𝑡)
} + [

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

] {
𝑥1(𝑡)

𝑥2(𝑡)
}

= − [
𝑚1 0
0 𝑚2

] {
1
1
} �̈�𝑔(𝑡) − {

0
1
} 𝐹𝑅 

(4.5) 

where 𝐹𝑅 is the hybrid simulation restoring force, estimated using the acceleration data from the 

track NES shown in Fig. 4.4, and given by 

𝐹𝑅 = 𝑚𝑛�̈�𝑛,𝑎𝑏𝑠(𝑡) = 𝑚𝑛 (�̈�𝑛(𝑡) + �̈�2(𝑡) + �̈�𝑔(𝑡)) (4.6) 

The two-DOF equation of motion for the two-story frame is next converted to state-space 

format for simulation purposes 

[
�̇�𝑁(𝑡)

�̈�𝑁(𝑡)
] = [

𝟎 𝑰
−𝑴−1𝑲 −𝑴−1𝑪

] [
𝒙𝑁(𝑡)

�̇�𝑁(𝑡)
] + 𝑩�̈�𝑔(𝑡) + 𝑮𝐹𝑅 (4.7) 

𝑦1(𝑡) = [0 1 0 0] [
𝒙𝑁(𝑡)

�̇�𝑁(𝑡)
] + 𝑥𝑔(𝑡) (4.8) 

𝑦2(𝑡) = [−𝑴−1𝑲(: ,2) −𝑴−1𝑪(: ,2)] [
𝒙𝑁
�̇�𝑁
] (4.9) 

where 𝑀, 𝐶, and 𝐾 are mass, damping, and stiffness matrices of the two-story frame and 𝑥𝑁 =
[𝑥1 𝑥2]𝑇. Also, the input vectors are described as 𝑩 = [0 0 −1 −1]𝑇 and 𝑮 =
[0 0 −[0 1]𝑴𝑇]𝑇. The outputs of the numerical substructure are described as 𝑦1(𝑡) and 

𝑦2(𝑡), which represent the second-story displacement and acceleration, respectively.  

In the proposed setup, the boundary condition between the numerical and physical 

substructures is defined by the absolute motion of the second story. A shake table is used to actuate 

the physical substructure. By replicating the absolute motion of the second floor, the shake table 

ensures that the NES device undergoes the same inertial forces, as it would if the complete 
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structure was tested. Actuator compensation is provided in the form of the mMBC for displacement 

and acceleration control.  

The physics of the NES mass is largely determined by the inertial behavior of this device, as 

stiffness and damping properties are insignificant. Since the inertial behavior is directly 

proportional to the acceleration of the mass, it makes sense to control the acceleration behavior of 

the boundary condition, in order to ensure an accurate RTHS experiment.  

A high-fidelity model of the two-story steel frame is next obtained via extraction of natural 

frequencies and mode shapes, and a particle swarm optimization (PSO) algorithm for model 

parameter optimization. The two-story frame structure (i.e., without the NES device), is installed 

on a shake table and excited with a BLWN voltage signal. Acceleration responses of the stories 

are recorded during this excitation. Time- and frequency-domain relationships between the input 

BLWN signal and recorded floor accelerations are used for the model identification. The process 

for modeling of the two-story steel frame involves the two steps: (i) parameter estimation, and (ii) 

parameter optimization.  

The first steps for reasonably accurate parameter estimations are listed below: 

1. Estimate the story masses and formulate mass matrix, 𝑴.  

2. Identify the natural frequencies 𝜴 = [𝜔1 𝜔2]𝑇, via a peak-picking strategy. 

3. Use the FRF phase relationships to estimate the mode shapes, 𝚽 = [𝚽1 𝚽2]. 

4. Calculate the diagonal modal mass and stiffness matrices, �̂� = 𝑑𝑖𝑎𝑔{�̂�1, �̂�2} and �̂� =

𝚽𝑇𝑴𝚽 = 𝑑𝑖𝑎𝑔{�̂�1, �̂�2}, via �̂�𝑖 = �̂�𝜔𝑖
2 for 𝑖 ∈ {1,2}. 

5. Convert the stiffness matrix from modal to general stiffness coordinates, 𝑲. 

𝑲 = 𝚽−𝑇�̂�𝚽−1 (4.10) 

6. Estimate the modal damping ratios 𝜁𝑖, for 𝑖 ∈ {1,2}, by fitting the model to the peaks 

of the FRF plots. 

In the next step, the parameter estimates identified earlier are optimized, such that the 

numerical model of the two-story frame more accurately resembles the real physical performance. 

PSO uses a nature-inspired swarming strategy (i.e., bird flocking) and uses primitive mathematical 

operators to create an inexpensive computational tool (Kennedy and Eberhart 1995). Optimizing 

a structural model requires evaluation of multiple parameters. The evolutionary programming of 

the PSO algorithm is suitable for handling combinatorial optimization problems.  

The PSO model begins by assigning a swarm of a particles to each optimization variable. A 

population of 𝑑 random particles with a uniform distribution between the two boundaries
lb and

hb

, and a position 𝑥𝑖,𝑗~𝑈[𝑏𝑙, 𝑏ℎ], and a velocity 𝑣𝑖,𝑗 for 𝑖 ∈ {1, … , 𝑑}, where 𝑗 is iteration count, are 

at first initialized for each variable. For the proposed structural model in eq. (4.5), the optimization 

variables are selected as 𝑘1, 𝑘2, 𝑚1, 𝑚2, 𝜁1, and 𝜁2. Each particle moves iteratively in the search-

space and remembers its own optimal position 𝑃𝑖
𝐿. The best position amongst all swarm particles 

are next stored in 𝑃𝑖
𝐺 . During each iteration, the velocity is updated per: 

𝑣𝑖,𝑗+1 = 𝐼𝑇𝑗 + 𝐶𝑇𝑗 + 𝑆𝑇𝑗 (4.11) 

𝐼𝑇𝑗 = 𝑤𝑣𝑖,𝑗 (4.12) 

𝐶𝑇𝑗 = 𝑐1𝑟1(𝑃𝑖
𝐿 − 𝑥𝑖,𝑗) (4.13)  

𝑆𝑇𝑗 = 𝑐2𝑟2(𝑃𝑖
𝐺 − 𝑥𝑖,𝑗) (4.14) 

where 𝐼𝑇𝑗 is an inertial term, 𝐶𝑇𝑗 is a cognitive term, and 𝑆𝑇𝑗  is a social term. 𝑟1 and 𝑟2 are 

uniformly distributed random vectors ~𝑈[0,1]. 𝑤 is the inertial weight, 𝑐1 is the self-adjustment 
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weight, and 𝑐2 is the social-adjustment weight. The new position for each iteration is determined 

per below 

𝑥𝑖,𝑗+1 = 𝑥𝑖,𝑗 + 𝑣𝑖,𝑗+1 (4.15) 

Therefore, a particle can optimize its course based on the past experiences of itself and other 

swarm particles.  

The standard deviation (SD) between the measured and numerically computed first and 

second story accelerations, 𝑎𝑒𝑥𝑝 and 𝑎𝑛𝑢𝑚, are used to develop the cost function in this optimizing 

algorithm. Minimizing this cost function results in a reduction of errors between measured and 

numerically calculated accelerations. The SD is formulated per 

𝑆𝐷 =
√∑ (𝑎𝑒𝑥𝑝(𝑘) − 𝑎𝑛𝑢𝑚(𝑘))

2
𝑛
𝑘=1

𝑛
 

(4.16) 

where 𝑛 is the data point count.  

The parameters of the two-DOF system described in (4.15) are next identified via the two-

step process. The experimentally identified FRFs and fitted numerical models of the first and 

second story accelerations are shown in Fig. 4.11 and 4.12. The PSO in step 2 assists in improving 

the accuracy of the structural model. 

 

(a) Amplitude      (b) Phase 

Figure 4.11 First story acceleration FRF 

 

(a) Amplitude      (b) Phase 

Figure 4.12 Second story acceleration FRF 

The acceleration and displacement responses of the numerical model subjected to the El 

Centro 30% earthquake and are compared with the experimental results in Fig. 4.13.  



75 

 

 

(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration   (d) Second story acceleration 

Figure 4.13 Time domain responses of the two-story structure – experimental and 

numerical results 

The PSO algorithm is initialized with 𝑑 = 200 swarm particles for each of the 6 structural 

parameters. Table 1 presents the predicted structural parameters after the estimation and 

optimization steps. This table also presents the lower and upper boundary values for the 

initialization of the swarm particles. The evolution of the swarm particles is demonstrated in Fig. 

16, over the course of 15 iterations. These particles rarely converge to a single value due to the 

presence of an inertial term which ensures that their velocity is never converged to zero. 

Nevertheless, the position with the most optimal cost function is recorded and used.  
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(a) 𝜁1      (b) 𝜁2 

 

(c) 𝑘1      (d) 𝑘2 

 

(e) 𝑚1     (f) 𝑚2 

Figure 4.14 Evolution of the swarm particles assigned to each variable 

Table 4.1 Identified parameters for two-story steel frame 

Parameters 
Step 1 

(Parameter estimation) 
𝑏𝑙 𝑏ℎ 

Step 2 

(Parameter optimization) 

𝑚1 (𝑘𝑔) 25.1 22.5 27.5 24.98 

𝑚2 (𝑘𝑔) 23.4 20.7 25.3 24.31 

𝑘1 (𝑁/𝑚) 7100 6390 7810 7238 

𝑘2 (𝑁/𝑚) 8300 7470 9130 8236 

𝜁1 (%) 0.250 0 1 0.196 

𝜁2 (%) 0.250 0 1 0.359 

 

4.3.3 Shake table and model-based RTHS comparison 

The mMBC is developed using a linearized transfer function model of the shake table and 

structural system. The process for system identification, and frequency response function fitting 

are described in Section 3.7. Transfer function models of the shake table-structure interaction are 

used in the development of feedforward and feedback controllers.  

  System identification is conducted on the experimental substructure, which includes the 

shake table with the onboard NES device. A bandlimited Gaussian white noise (BLWN) with a 
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frequency range of 0 – 30Hz and an RMS amplitude of 0.2V is applied to the shake table and the 

realized displacements and accelerations are recorded.  

Next, the time domain results are transformed to frequency-domain to obtain frequency 

response functions (FRFs) for: (i) target displacement – measured displacement 𝑷𝑑𝑑(𝑠), and (ii) 

target displacement – measured acceleration 𝑷𝑑𝑎(𝑠), transfer systems. The FRFs are fitted with 

transfer function models which are presented in (4.17) and (4.18), per the process in Section 2.5. 

The bode plot of the experimental FRFs and identified transfer models are shown in Fig. 4.15 and 

4.16. 

 

(a) Amplitude      (b) Phase 

Figure 4.15 𝑷𝒅𝒅(𝒔) transfer system 

 

(a) Amplitude      (b) Phase 

Figure 4.16 𝑷𝒅𝒂(𝒔) transfer system 

𝑷𝑑𝑑(𝑠) =
𝑑𝑜𝑢𝑡(𝑠)

𝑑𝑖𝑛(𝑠)
=

4.67𝑒6

𝑠4 + 167𝑠3 + 1.14𝑒4𝑠2 + 2.81𝑒5𝑠 + 4.67𝑒6
 (4.17) 

𝑷𝑑𝑎(𝑠) =
𝑎𝑜𝑢𝑡(𝑠)

𝑎𝑖𝑛(𝑠)
=

1.18𝑠4 + 479.1𝑠3 + 4.83𝑒4𝑠2

𝑠4 + 126.6𝑠4 + 2.05𝑒4𝑠3 + 1.09𝑒6𝑠2 + 2.93𝑒7𝑠 + 4.3𝑒8
 (4.18) 

The feedforward controller for displacement tracking is designed by cascading the inverse 

of the transfer system in (4.17) with a fourth-order Butterworth lowpass filter with a cutoff 

frequency of 50 Hz. The feedforward controller for acceleration tracking is designed by cascading 

the inverse model of (4.18) with first-order Butterworth lowpass filter with a cutoff frequency of 

50 Hz.  

Tracking performance results between the target and measured signals are evaluated next for 

displacement control and acceleration control mMBC RTHS schemes. The time histories of the 

reference and measurement signals are presented in Fig. 4.17 (a) and (c). Tracking is qualitatively 

assessed via the synchronization plots in Fig. 4.17 (b) and (d). This x-axis displays the target signal 

and y-axis refers to the measured output signal.  
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Table 4.2 summarizes unitless 𝑹𝑴𝑺𝑬 and 𝑴𝑨𝑿𝑬 error indicators from (3.21) and (3.22). 

Control type 
Error index 

MAXE RMSE 

Displacement 0.1549 0.1587 

Acceleration 0.3055 0.3432 

 

 

(a) Displacement control tracking  (b) Displacement control synchronization 

 

(c) Acceleration control tracking   (d) Acceleration control synchronization 

Figure 4.17 Tracking and synchronization plots of the proposed mMBC compensator 

The performance and variations in the behavior of the two-story structure subject to a ground 

motion excitation are examined using both shake table testing and model-based RTHS in this 

section. The variables relevant to this study are the first and second story relative displacements 

and absolute accelerations. Particular attention is paid to the second story motions, as this floor 

formulates the boundary condition between the physical and numerical substructures. 

Due to the nonlinear behavior of the actuator (i.e., shake table), variations exist in the 

performance of the RTHS experiments. Therefore, 10 experiments are conducted for the 

evaluation of the displacement control RTHS and another 10 for the acceleration control RTHS. 

The RTHS experiments are next compared to the 10 shake table tests conducted earlier. Every 

shake table and RTHS experiment is cross evaluated using the RMSE criterion and the results are 

displayed in the RMSE bar charts in Fig. 4.18 and 4.19.   

Experimental results are post-processed through synchronization and low- and highpass 

filtering. In all experiments, the measured data are synchronized with their corresponding input 

ground motion. Since the ground motions are identical between all experiments, synchronization 

is conducted by matching the input ground motions. Next, measured data are post-processed with 
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a second-order Butterworth lowpass filter with a cutoff frequency of 15 Hz, and a second-order 

Butterworth highpass filter with a cutoff frequency of 0.5 Hz.  

 

Figure 4.18 RMSE median and 

interquartile range for displacement 

results 

 

Figure 4.19 RMSE median and 

interquartile range for acceleration results 

 

(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.20 Shake table and RTHS variational comparison – Displacement control 
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(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.21 Shake table and RTHS variational comparison – Acceleration control 

4.4  RTHS of bridge vibration mitigation using an MR damper 

In general, high-speed railway bridges are expected to have a limited vibration performance, as 

excessive high frequency deflections may result in uncomfortable train rides for passengers, or 

even risk structural damage (Wang et al. 2003). Damping devices may be used for dissipation and 

vibration reduction. The major questions with damping devices are where and how to install them 

on existing and new bridges. In many bridges, the depth of the deck section is deep enough to 

create a large distance between the flange surface and neutral axis of the deck. In such bridges, 

installation of a diagonal damper between the abutment and the bottom flange of the deck can 

result in satisfactory damping performance, as a large neutral axis depth means noticeable 

horizontal movements in the bottom flange and engagement of the damping device.  

A magnetorheological (MR) damper is a semi-active damping device comprised of a metal 

cylinder with a piston and rod, magnetorheological oil, an electromagnetic coil, and pressurized 

gas. As the piston rod is extended or retracted, the MR oil flows from one chamber of the cylinder 

to the other, across the damper piston. By applying an electric charge to the electromagnetic coil, 

the flow properties of the oil are across the piston are changed. In simple terms, with an increase 

in the current passing through the coil, the oil grows thicker, and thus the resistance of the flow 

across the piston increases. This is a useful property for a damper, as the friction characteristics of 

the damper may be altered in real-time for semi-active control purposes. In the study proposed in 

(Tell et al. 2019), an MR damper is used as a supplemental dissipation device for high-speed 

railway bridges. The RTHS method was selected for testing of the bridge-damper system, because 

real-time testing is necessary for understanding rate-dependent behaviors of dampers. 
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The model-based RTHS framework is applied for studying the behavior of a high-speed 

railway bridge with an added MR damper. The position of the MR damper is illustrated relative to 

the bridge deck in Fig. 4.22. In this study, the MR damper is physically substructured, and the 

bridge deck and train load are numerically modeled. A servo-hydraulic actuator and LVDT handle 

the boundary condition force-displacement.  

 

Figure 4.22 Simply supported bridge deck and damping device  

A simply supported bridge deck is modeled with an Euler-Lagrange assumption. The 

governing equations of the system are modeled per  
𝑑

𝑑𝑡

𝜕𝒯

𝜕�̇�𝑖
−
𝜕𝒯

𝜕𝑞𝑖
+
𝜕𝒱

𝜕𝑞𝑖
= 𝑓𝑖(𝑡) (4.19) 

where 𝒯 and 𝒱 are the kinetic and potential energy relationships (Craig and Kurdila 2006). 𝑞𝑖 is 

the 𝑖𝑡ℎ generalized coordinate and 𝑓𝑖 is the 𝑖𝑡ℎ generalized force. By assuming the general shape 

of the bridge modes, the transverse deflection of the deck is expressed as 

𝑣(𝑥, 𝑡) =∑𝜓𝑖(𝑥)𝑞𝑖(𝑡)

𝑁

𝑖=1

 (4.20) 

where 𝜓𝑖 is the assumed 𝑖𝑡ℎ mode shape and 𝑁 is the total number of modes considered. The 

equation of motion of the bridge deck using the assumed mode method simplifies to 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒒(𝑡) = 𝑭 (4.21) 

with 𝑴 ∈ ℛ𝑁×𝑁, 𝑪 ∈ ℛ𝑁×𝑁, and 𝑲 ∈ ℛ𝑁×𝑁 as the mass, damping, and stiffness matrices, and 𝑭 ∈
ℛ𝑁 containing the external forces.  

4.4.1 Real-time substructuring 

The physical and numerical substructures are depicted in Fig. 4.23. As a highspeed train with a 

velocity of 𝑉 passes through the bridge deck, a dynamic force of 𝐹(𝑡) is exerted. The deformation 

of the bridge deck results in extension and retraction (stroke) of the MR damper rod. The stroke is 

computed as 𝑟(𝑡) as sent to the model-based compensator. The compensator sends a control signal 

𝑢(𝑡) to servo-hydraulic actuator for execution. The LVDT onboard the hydraulic actuator records 

the measured stroke and reports back to compensator for feedback action. The measured 

experimental force 𝐹𝑅(𝑡) is returned to the numerical substructure for a closed-loop RTHS.  

The experimental setup is comprised of a double-ended servo-hydraulic actuator with load 

and stroke capacities of 556 kN and ± 152.4 mm. The hydraulic power supply is rated at 1000 psi 
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in both directions. The actuator houses an onboard LVDT, a 445 kN-rated loadcell, and is 

supported by several rigid brackets to ensure accurate displacement measurement.  

The servo-hydraulic actuator is operated with a Shore Western analog controller. The 

embedded system is comprised of a dSPACE DS1103PPC control board with onboard memory 

and processing of 1 GHz, input-output peripherals with 16-bit resolution, and the ControlDesk 

graphical user interface. Numerical models and compensation algorithms are developed on 

MATLAB/SIMULINK and converted into C source code for compilation on the dSPACE 

controller. A Topward 3303D power supply unit is used to command static voltage to the MR 

damper. Figure 4.24 provides a schematic of the experimental hardware. 

 

Figure 4.23 Model-based RTHS for rail-way bridge 

 

Figure 4.24 Experimental hardware and communication signals 
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4.4.2 System identification and tracking results 

System identification of the actuator-MR damper setup is next conducted to develop a linearized 

nominal actuator model for use in the mMBC compensator. A bandlimited white noise with a 

frequency of 0-40 Hz ad RMS amplitudes of 0.1V and 0.15V are applied to the actuator. The 

current supply to the MR damper is also varied between 0A to 2A. The FRF between the reference 

and measured signals are displayed in Figure 4.25.  

A 6-pole transfer function model of the actuator system is identified and used for the mMBC 

compensator:  

𝑷(𝑠) =
𝑦(𝑠)

𝑟(𝑠)

=
2.414𝑒13

𝑠6 + 306.7𝑠5 + 1.495𝑒5𝑠4 + 2.922𝑒7𝑠3 + 5.429𝑒9𝑠2 + 5.055𝑒11𝑠 + 2.53𝑒13
 

(4.22) 

 

(a) Amplitude     (b) Phase 

Figure 4.25 Experimental FRF and identified nominal actuator model 

For perfect displacement tracking between reference and measured signals, a 0-𝑑𝐵 amplitude 

and 0-degree phase are desired. However, this is unachievable due to physical realities of actuation. 

The proposed mMBC algorithm reduces the phase slope (delay) and improves the amplitude 

tracking as demonstrated in Figure 4.26. Delay reduction results in less negative damping and a 

more stable and accurate RTHS (Horiuchi et al. 1996).  

 

(a) amplitude      (b) phase 

Figure 4.26 Frequency response function with and without mMBC control 
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4.4.3 Vibration mitigation results 

The Banafjäl bridge in Sweden is used in this study. A finite element model of the bridge is 

developed for the numerical substructure of the experiment. The train loading applied on the bridge 

is based off of the Eurocode High-Speed Load Models (HSLM). The HSLM-A4 is selected for 

simulation of a moving train load. The response of the bridge is considered for varying train 

velocities and current levels in the MR damper.  Fig. 4.27 illustrates the maximum acceleration 

and displacements in the bridge, 𝐴𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥, as a function of the train velocity. As the current 

level is increased, the damping action in the MR damper becomes more rigorous. Therefore, a 

significant reduction is observed at the resonance speed of the bridge structure. Fig. 4.28 and 4.29 

demonstrate the bridge performance for a train traveling at a velocity of 169 km/hr with an MR 

damper with current levels of 0.0 𝐴 and 2.0 𝐴. 

 

(a) Acceleration performance   (b) Displacement performance 

Figure 4.27 Maximum bridge acceleration and displacement as a function of train velocity 

 

(a) Acceleration performance   (b) Displacement performance 

Figure 4.28 Mid-span bridge response with 𝑰 = 𝟎. 𝟎 𝑨 and 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 = 𝟏𝟔𝟗 𝒌𝒎/𝒉𝒓 
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(a) Acceleration performance   (b) Displacement performance 

Figure 4.29 Mid-span bridge response with I=2.0 𝑨 and Velocity=169 𝒌𝒎/𝒉𝒓 

4.5  Virtual RTHS with adaptive compensation 

A virtual RTHS study is completed using the benchmark control problem for RTHS of the three-

story steel frame defined in (Silva et al. 2020). The objective of the benchmark problem is to gather 

control techniques developed in the RTHS domain, for comparison and provide valuable lessons 

for future developments. The benchmark problem poses a three-story structure, which is 

seismically excited and evaluated using the RTHS technique. In this framework, a first-story 

moment frame is experimentally evaluated as the rest of the structure is numerically simulated. 

The physical component is attached to a hydraulic actuator and the combined transfer function is 

presented per 

𝑷(𝑠) =
2.13𝑒13

29.12𝑠5 + 1.26𝑒4𝑠4 + 8.42𝑒6𝑠3 + 2.33𝑒9𝑠2 + 5.44𝑒11𝑠 + 2.17𝑒13
 (4.23) 

with 𝑷(𝑠) as a 5-pole plant. For some control signal in Laplace domain 𝑢(𝑠), an output signal of 

𝑦(𝑠) is obtained. The plant is perturbed with a time-varying nonlinear signal 𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 

which contains all uncertainties and disturbances. The disturbance signal 𝑑(𝑠) is assumed to be 

continuous and bounded. The disturbance is assumed to be additive for the purpose of control 

design per below 

𝑦(𝑠) = 𝑷(𝑠)(𝑢(𝑠) + 𝑑(𝑠)) (4.24) 

A controller is next used to cancel out the unwanted dynamics due to actuator-structure 

interaction. In this analysis, three compensation techniques are studied: (i) PI control with a phase-

lead compensator, (ii) MBC, and (iii) aMRC. The performances of these controllers are presented 

in terms of the evaluations criteria presented as part of the benchmark control problem.  

4.5.1  Summary of the benchmark problem 

The three-story steel frame reference structure in Fig. 4.30 is partitioned into numerical and 

physical substructures and evaluated with the RTHS technique. The new equation of motion for 

the three-story frame is presented below 
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𝑴𝑛�̈�𝑛(𝑡) + 𝑪𝑛�̇�𝑛(𝑡) + 𝑲𝑛𝒙𝑛(𝑡)

= −𝑴𝑟𝜾�̈�𝑔(𝑡) − (𝑴𝑝�̈�𝑝(𝑡) + 𝑪𝑝�̇�𝑝(𝑡) + 𝑲𝑝𝒙𝑝(𝑡)) 
(4.24) 

where 𝑴𝑛, 𝑪𝑛, and 𝑲𝑛 are the numerical and 𝑴𝑝, 𝑪𝑝, and 𝑲𝑝 are the physical mass, damping, and 

stiffness matrices. The states 𝒙𝑛 and 𝒙𝑝 belong to the numerical and physical substructures and 

𝑀𝑟 is the reference mass of the complete frame.  

 

Figure 4.30 Three-story steel frame reference structure 

To investigate the performance of the RTHS substructures, four variations on the 

substructuring configurations are evaluated. These configurations vary the choice of the reference 

floor mass and modal damping values. In addition to the nominal plant, several actuator and 

stiffness parameters are evaluated probabilistically to simulate modeling uncertainties and referred 

to as perturbation cases. Details on the substructuring configurations and perturbation cases are 

demonstrated in Fig. 4.31.  

 

Figure 4.31 Substructuring of the three-story steel frame 

4.5.2 Evaluation criteria 

Per the companion paper, nine quantitative evaluation criteria are concerned to assess the 

performance of the proposed aMRC algorithm. Criteria 𝐽1 − 𝐽3 evaluate the input-output tracking 

ability of the controllers and 𝐽4 − 𝐽9 evaluate the performance accuracy of the RTHS relative to 

the reference structure.   
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As a brief summary, 𝐽1 assesses the time-delay (ms) between reference and measurement 

signals. 𝐽2 evaluates the tracking error via the normalized root-mean-square (RMS). 𝐽3 is a 

normalized peak tracking error measure. Next, 𝐽4 − 𝐽6 are the normalized RMS errors between the 

reference structure and substructured system floor displacements. Lastly, 𝐽7 − 𝐽9 are the 

normalized peak tracking errors between the reference structure and substructured system floor 

displacements. These criteria are evaluated for the three controllers described.  

 

(a) PI + Phase-lead   (b) MBC   (c) aMRC 

 

(d) Errors 

Figure 4.32 Partition configuration 4: Control input-output tracking for the nominal plant 

4.5.3 Virtual RTHS results 

Next, the responses of the virtual RTHS and reference system simulations are compared and 

analyzed. For each controller, time-histories of the floor displacements are visually inspected, and 

qualitative assessment is provided. The evaluation criteria are presented along with the 

performance of the controllers for each criterion.  

Fig. 4.32 illustrates the tracking abilities for each controller along with the input-output 

errors. The phase-lead compensator feature of the PI controller amplifies high frequency contents, 

resulting in a noisy measurement. This controller demonstrates the largest steady-state error. 

Incorporation of the model-based filters into the RTHS, have resulted in enhanced tracking 

performance. The MBC has improved tracking relative to the PI compensator. The aMRC 

demonstrates the fastest tracking ability with the smallest noise feed-through. The choice of 

adaptive gain and cutoff frequency for reference model vary the tracking performance of the 
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aMRC. A unity-gain zero-phase reference model is selected for the most rigorous feedback action 

in this case. 

 

(a) Floor 1 

 

(b) Floor 2 

 

(c) Floor 3 

Figure 4.33 Partition configuration 4: RTHS vs. reference displacements for the nominal 

plant 

Fig. 4.33 compares the RTHS performance relative to the reference structure for each 

controller. Due to the larger phase lag produced by the PI technique, RTHS results have an inherent 

overshoot and produce larger displacement envelopes relative to the reference model. The aMRC 

however, closely tracks the reference behavior. The performance of the aMRC for configurations 

1–3 are shown Fig. 4.34–4.36. The proposed controller demonstrates excellent tracking between 

the reference and RTHS formulations for all four configurations.  
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(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.34 Partition Configuration 1: RTHS vs. reference tracking for the nominal plant 

 

(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.35 Partition Configuration 2: RTHS vs. reference tracking for the nominal plant 

 

(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.36 Partition Configuration 3: RTHS vs. reference tracking for the nominal plant 

The aMRC is shown in action in Fig. 4.37. The behavior of the adaptive parameter is 

demonstrated when the plant is perturbed. The adaptive action grows proportional to the steady-
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state error. For example, steady-state errors tend to be largest at peak displacement amplitudes and 

the adaptive parameter is amplified as well.   

 

(a) Reference tracking    (b) Adaptive parameter 

Figure 4.37 Adaptive parameter for the perturbed configuration 

Fig. 4.38 provides a visual illustration of the evaluation criteria introduced earlier. Tables 

4.3-4.5 list the numerical values associated with the nine evaluation criteria. Table 4.2 provides a 

more direct comparison of the evaluation criteria for the partition configuration 1. From these 

results, the aMRC compensation offers the best tracking performance. The adaptation mechanism 

is quick in canceling out steady-state errors caused by modeling uncertainties. When the aMRC is 

used, there are no major increases in the evaluation criteria errors when perturbations are added to 

the plant. The PI and MBC controllers experience increased error quantities when the plant is 

perturbed, however. The aMRC method enhances tracking even in the presence of modeling 

uncertainties or perturbations, and therefore illustrates the best tracking robustness. 
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(a) 𝐽1    (b) 𝐽2    (c) 𝐽3 

 

(a) 𝐽4    (b) 𝐽5    (c) 𝐽6 

 

(a) 𝐽7    (b) 𝐽8    (c) 𝐽9 

Figure 4.38 Evaluation Criteria 
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Table 4.2 Partition configuration 1: evaluation criteria for nominal case 

 

Table 4.3 PI evaluation criteria 

 

Table 4.4 MBC evaluation criteria 
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Table 4.5 aMRC evaluation criteria 

 

4.6 Summary  

This chapter introduced a single-axis model-based real-time hybrid simulation (RTHS) 

framework. Concepts of numerical and physical substructure and boundary condition were 

discussed along with two types of tracking compensation: displacement and acceleration. The 

modified Model-Based Controller (mMBC) and adaptive Model Reference Controller (aMRC) 

were proposed for compensation action of actuator-structure dynamics. Three applications for 

single-axis model-based RTHS were presented: 

1. Lightly-damped and highly-nonlinear structures 

2. Vibration mitigation of high-speed railway bridges 

3. Virtual RTHS for a control benchmark problem 

When the reference signal from the numerical substructure is a displacement signal, both the 

mMBC and aMRC are applicable for compensation action. When the reference signal is 

acceleration, only the mMBC is applicable, as the aMRC for acceleration tracking can result in 

large actuator strokes. Results demonstrate the successful application of the model-based RTHS 

method in accurately reproducing the behavior of a reference structure. 
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Chapter 5 

 

MULTI-AXIAL REAL-TIME HYBRID SIMULATION 

 

5.1 Problem statement 

In this chapter, a multi-axial RTHS (maRTHS) framework is introduced for realistic and three-

dimensional assessment of structural performance under dynamic loading. The framework is 

comprised of numerical and physical substructures, along with kinematic transformation layers 

and an actuator compensation scheme based on the mMBC. At each time step, the target motion 

of the boundary interface is calculated by the numerical substructure and enforced via an boundary 

condition device. When the physical specimen deforms, restoring forces are measured via the 

loadcells onboard the LBCB, and returned to the numerical substructure. The compensation task 

herein is performed in actuator coordinates as a means to overcome the limitations of Cartesian 

control seen the previous maRTHS development. To demonstrate and verify the capabilities of the 

new maRTHS framework in overcoming the earlier challenges, an illustrative example consisting 

of a steel moment frame is provided. In this example, one column is tested physically while other 

elements are computed numerically. 

5.2 Multi-Axial RTHS framework 

The dynamic response of a reference structure may be represented via a second-order equation of 

motion (EOM) 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝒇(𝒙, �̇�) = 𝑭(𝑡) (5.1) 

where 𝑡 is time, �̈�(𝑡), �̇�(𝑡), and 𝒙(𝑡) are the acceleration, velocity, and displacement vectors, and 

𝑴 and 𝑪 are matrices representing the mass and damping properties of the reference structure, and 

𝒇 represents the linear and nonlinear restoring forces properties of the reference structure, 

respectively. In this formulation, 𝑭(𝑡) represent the external forces imposed on the reference 

structure, like inertial forces induced by earthquake accelerations.  

Instead of testing structural systems as a whole, only components of interest are physically 

tested, and the remaining components are built into computational models. The physical and 

numerical components are linked via actuators which enforce the desired displacements calculated 

by the numerical model, and sensors which measure the restoring forces. The EOM for the 

numerical model is given by 

𝑴𝑁�̈�𝑁(𝑡) + 𝑪𝑁�̇�𝑁(𝑡) + 𝒇𝑁(𝒙, �̇�) = 𝑭(𝑡) − 𝑭𝑅(𝑡) (5.2) 

where the subscript “N” describes the parameters of the numerical substructure. 𝑭𝑅(t) represents 

a vector of measured feedback forces from the loadcells in physical substructure. Alternatively, 

feedback forces maybe estimated from the dynamical parameters of the physical substructure.  

The displacement-based maRTHS framework proposed herein is divided into four 

components: (i) numerical substructure, (ii) numerical to physical (N2P) transformation, (iii) 
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physical substructure, and (iv) physical to numerical (P2N) transformation. The architecture of the 

maRTHS loop is illustrated in Fig. 5.1. 

 

Figure 5.1 Proposed maRTHS framework 

At each time step, the numerical substructure is excited by the ground acceleration, �̈�𝑔, and 

produces the Cartesian target boundary conditions. The 𝑁2𝑃 transformation converts target 

boundary conditions in Cartesian coordinates to actuator control signals for the experimental 

substructure to execute. The experimental substructure is comprised of the physical specimen, the 

LBCB and all onboard sensors. The experimental data which may include displacement, velocity, 

and acceleration behaviors of the physical specimen, denoted by 𝒙𝐸, �̇�𝐸, and �̈�𝐸, respectively, 

which are either directly measured or estimated. The 𝑃2𝑁 transformation converts measured 

actuator forces to Cartesian restoring forces, which are returned to the numerical substructure to 

close the maRTHS loop.  

5.2.1 Load and Boundary Condition Boxes at the University of Illinois 

To demonstrate the capabilities of the proposed maRTHS algorithm, an LBCB device is used for 

experimental validation in this study. The LBCB, shown in Fig. 5.2, is a loading platform 

consisting of six hydraulic actuators, two in the X-direction, 3 in the Y-direction and one in the Z-

direction, each equipped with inline load cells and linear variable differential transducers (LVDT). 

The Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility at the 

University of Illinois at Urbana-Champaign offers multiple LBCB devices capable of imposing 

loading and boundary conditions in 6-DOFs on structural specimens (Elnashai et al. 2005). 

Multiple LBCBs can be used together for the evaluation of the same specimen in different 

configurations for investigation of more complex structures. The LBCB is particularly useful for 

hybrid simulation testing due to its modularity and 6-DOF loading at the connection point with the 

physical specimen.   
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(a) Full-scale LBCBs  (b) 1/5th-scale LBCBs 

Figure 5.2 LBCB devices at the MUST-SIM facility 

The MUST-SIM facility also offers 1/5th-scale LBCBs, shown in Fig. 5.2(b), for small-scale 

and proof-of-concept studies prior to testing in the large-scale facility. A 1/5th-scale LBCB is used 

for the experimental validation in this study. The actuators are supported by low-friction bearing 

on both sides and housed by a rigid box frame that can be attached to the ground or a reaction wall 

in different orientations. The rigidity of the box frame is important for accurate assessment of 

specimen deformation. The extension and retraction capacities and stroke limits in each direction 

are listed in Table 1 for a rated pressure of 3000 psi for the hydraulic power supply (HPS).  

Table 5.1 Force and stroke capacities of the 1/5th-scale LBCB 

Actuator 

Direction 
X Y Z 

Retraction 

Force 

18.9 kN 4.2 kip 28.0 kN 6.3 kip 9.3 kN 2.1 kip 

Extension 

Force 

31.1 kN 7.0 kip 46.7 kN 10.5 kip 15.6 kN 3.5 kip 

Displacement ± 53.0 mm ± 2.09 in ± 25.4 mm ± 1.00 in ± 25.4 mm ± 1.00 in 

The LBCBs were designed for quasi-static, cyclic and slow-speed hybrid simulation testing. 

In addition, recent  developments have focused on slow-speed hybrid simulation implementations 

on the LBCBs ((Kim et al. 2011; Kwon et al. 2005; Mahmoud et al. 2013; Nakata et al. 2010)). 

The intended use of the LBCBs for real-time implementation as described by this paper, requires 

development, and use of appropriate actuator compensation and kinematic transformations to 

address the dynamics of the LBCB.  

5.2.2 Kinematic transformation 

For completeness, this section briefly reviews the kinematic transformations that are employed to 

control the LBCBs.  The states of a parallel manipulator like an LBCB can be specified either in: 

(i) actuator coordinates; or (ii) Cartesian coordinates. Fig. 5.3(a) presents a schematic of the 

relationship between the stroke of the ith actuator and Cartesian motion of the moving platform 

onboard an LBCB. A Cartesian reference frame is selected on the fixed based, denoted by 𝑹𝒇, and 

another is selected on the moving platform, denoted by 𝑹𝒎. The location of the 𝑹𝒎 corresponds 

to the location of the attachment with the center of the physical specimen. The linear strokes of the 

prismatic limbs result in displacement and rotation of the moving platform. For some prescribed 
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Cartesian motion at 𝑹𝒎, an Inverse Kinematic Transformation (IKT) calculates the necessary 

stroke of each actuator. A translational vector 𝒗 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧} ∈ ℝ
3 describes the motion at 𝑹𝒎 

with reference to 𝑹𝒇. The vectors 𝒂𝑖 ∈ ℛ
3 and 𝒃𝑖 ∈ ℛ

3 , denoting the fixed and moving joint 

locations of the i-th actuator, respectively, are drawn from the Cartesian reference frames to the 

center of rotation of each spherical joint. The actuators and their labels are demonstrated in Fig. 

5.3(b). 

The Cartesian motion is described via the vector 𝒘 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝜃𝑥, 𝜃𝑦, 𝜃𝑧}
𝑇
. Through 

addition and subtraction of vectors, the below formulation is formed 

𝒔𝑖 = 𝒗 + 𝑨𝒃𝑖 − 𝒂𝑖 (5.3) 

𝜆𝑖 = |𝒔𝑖| = 𝑓𝑖 (𝒘) (5.4) 

The Forward Kinematic Transformation (FKT) reverses the formulation in (5.3) and (5.4), 

by using actuator measurements to calculate the Cartesian motion in the moving platform. A 

linearized forward kinematics is presented in discrete time in (5.5) and (5.6). For an LBCB 

𝑱 =

[
 
 
 
 
𝜕𝜆1
𝜕𝑤1

⋯
𝜕𝜆1
𝜕𝑤6

⋮ ⋱ ⋮
𝜕𝜆6
𝜕𝑤1

…
𝜕𝜆6
𝜕𝑤6]

 
 
 
 

 (5.5) 

𝒘𝑘+1 = 𝒘𝑘 + 𝑱
−1(𝝀𝑘+1 − 𝝀𝑘) (5.6) 

where 𝑘 is the discrete-time steps.  

 

(a) Kinematics    (b) Actuator orientations 

Figure 5.3 Actuator kinematics for an LBCB 

5.2.3 N2P and P2N transformations 

The 𝑁2𝑃 block shown in the Fig. 5.1 is described in more detail in Fig. 5.4. This transformation 

receives Cartesian target and measured external potentiometer signals and calculates the actuator 

control signals. The inverse kinematic transformation for target signals, Target IKT, converts these 

displacements to actuator coordinate target signals, 𝒓(𝑡) = {𝑟𝑋1 , 𝑟𝑋2 , 𝑟𝑍, 𝑟𝑌1 , 𝑟𝑌2 , 𝑟𝑌3}
𝑇
. External 
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potentiometers are used for displacement measurements of the moving platform of the LBCB. 

These measurements are transformed via a 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 process to obtain Cartesian 

measurements and an 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐼𝐾𝑇 to obtain actuator coordinate displacement measurements, 

𝒚(𝑡) = {𝑦𝑋1 , 𝑦𝑋2 , 𝑦𝑍, 𝑦𝑌1 , 𝑦𝑌2 , 𝑦𝑌3}
𝑇
.  

 

Figure 5.4 Numerical to physical (N2P) transformation 

Next, a decoupled controller provides the necessary compensation for each of the six 

actuators independently. The term decoupled highlights the mMBC compensation in action in each 

actuator independent of other actuator channels. Actuator control signals are lastly transmitted to 

the LBCB for execution. The decoupled control concept is a unique aspect of the proposed 

maRTHS scheme, as it empowers the use of single-input single-output (SISO) type controllers 

which are easy to design and typically have performance guarantees. In the previously developed 

maRTHS scheme, actuators were compensated in Cartesian coordinates using a multi-input multi-

output (MIMO) controller, which is hard to tune and stabilize. The requirement for MIMO 

controllers stemmed from the large degree of coupling between the actuators in Cartesian 

coordinates. By switching to actuator coordinate controls, the proposed framework aims to solve 

the challenges of MIMO Cartesian control, namely, the tuning and stability challenges.  

Meanwhile, the P2N block transforms actuator forces, measured from the onboard load cells 

in-line with the actuators, to Cartesian restoring forces. This process is completed via the Force 

Transform block, shown in Fig. 6. Force transformation assumes a static equilibrium between 

internal actuator forces and external specimen forces. The static equilibrium is solved through the 

principle of virtual work. The Jacobian matrix 𝑱1 is required in this formulation to build a 

linearized kinematic relationship between Cartesian and actuator coordinates. Next, loadcell 

measurements 𝑭𝑎𝑐𝑡(𝑡) are transformed to Cartesian forces 𝑭𝑐𝑟𝑡(𝑡) via the force Jacobian 𝑱1
𝑇 per 

below:  

𝑭𝑐𝑟𝑡(𝑡) = 𝑱𝟏
𝑻𝑭𝑎𝑐𝑡(𝑡) (5.7) 

where 𝑭𝑐𝑟𝑡(𝑡) = {𝐹𝑥, 𝐹𝑦, 𝐹𝑧 , 𝑀𝑥, 𝑀𝑦, 𝑀𝑧}
𝑇
 are the measured forces in Cartesian coordinates. The 

measured Cartesian forces are in fact the feedback forces that are returned to the numerical 

substructure, thereby 𝑭𝑅(𝑡) = 𝑷𝑐𝑟𝑡(𝑡).  
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Figure 5.5 Physical to numerical (P2N) transformation 

5.2.3 Decoupled controller: actuator dynamic compensation 

The dynamics of actuators introduce significant lag in the RTHS system, which may result in loss 

of accuracy, as well as potential instability. Thus, controllers used in RTHS experiments must be 

designed specifically to compensate for the amplitude and phase discrepancies between target and 

measured signals. In this paper, a decoupled control technique is introduced for compensation of 

the actuator dynamics, per Fig 5.4. The term “decoupled” implies that each actuator onboard the 

LBCB is compensated independent of other actuators, as shown in Fig. 5.6.  

The mMBC is the actuator compensation technique of choice for this decoupled strategy. 

The architecture of this controller provides specifications for the use of feedforward and feedback 

filters to ensure controller has good tracking and robustness properties. The mMBC is applied to 

each actuator channel independently, as shown in Fig. 5.6. When designing a linear controller for 

a nonlinear process, the linear controller must be designed to sufficiently account for modeling 

errors and process nonlinearities. The performance of the proposed controller must be evaluated 

for small and high amplitude actuator displacements to ensure satisfactory performance. Najafi 

and Spencer, Jr. (2020) provide more extensive discussions on this controller and its tracking and 

robustness properties.  

 

Figure 5.6 Architecture of the decoupled controller 

In this development, the 𝑁2𝑃 and 𝑃2𝑁 transformations are introduced for the operation of 

an LBCB device for an maRTHS experiment. The 𝑁2𝑃 transformation converts Cartesian target 
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signals to actuator target signals and the mMBC controller compensates for each actuator channel 

independently to create actuator control signals. Independent control of actuators is aimed at 

overcoming the challenges of Cartesian actuator control discovered in the previous maRTHS 

development (Fermandois and Spencer 2017). Next the 𝑃2𝑁 blocks transform actuator coordinate 

forces to Cartesian restoring forces. The 𝑁2𝑃 and 𝑃2𝑁 blocks combined, formulate the links 

between the numerical and physical substructures.  

5.3 Experimental setup 

To verify the propose maRTHS framework, an experimental study is envisioned involving a small-

scale LBCB and a steel moment frame. This section describes the physical setups for a verification 

study. A three-DOF dynamical model is used to represent the steel moment frame, with two 

rotational and one translational DOFs, as shown in Fig. 5.7. This model assumes axial 

deformations are negligible. The moment frame is partitioned into a physical column and 

remaining components are numerically modeled. The physical column is designed from a 31.75 

mm round steel section with a height of 457 mm. The natural frequencies of the complete structure 

are 1.58, 3.63, and 10.95 Hz. The mass and stiffness properties of the numerical substructure are 

provided below: 

𝑴𝑁 =
𝐸𝐼

ℎ
[

12 0 6ℎ
0 ℎ2 ℎ2/2

6ℎ ℎ2/2 5ℎ2
]             𝑲𝑁 =

𝑚ℎ

420
[
1836 0 22ℎ
0 64ℎ2 −48ℎ2

22ℎ −48ℎ2 68ℎ2
] (5.7) 

where 𝐸 = 200,000 MPa, 𝐼 = 102,354 mm4, ℎ = 457 mm and 𝑚 = 0.0091 kg/mm. The 

natural frequencies of the numerical substructure are 1.09, 2.65, and 10.50 Hz. A nominal 

proportional damping ratio of 5% is assumed for this model. The 1940 El Centro acceleration 

record with two intensity measures (10% and 30% PGA-scaled) are considered to excite the 

moment frame structure in the elastic and nonlinear ranges, respectively. The 30% PGA-scaled El 

Centro earthquake is shown in Fig. 4.8. The restoring force and moment at DOFs 1 and 2 are 

denoted by 𝐹𝑥 and 𝑀𝑧, and the displacement and rotation are denoted by 𝑈𝑥 and 𝑅𝑧, respectively, 

in Fig. 5.7.  

 

(a) Numerical substructure   (b) Physical substructure 

Figure 5.7 Numerical and physical substructuring of the steel moment frame 
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5.3.1 Experimental setup 

A Shore Western computer manages the servo-control of the hydraulic actuators. The HSP has a 

capacity of 10 gallons per minute. A dSPACE microcontroller comprised of a DS1103 PPC 

controller board with an onboard PPC 70GX processor clocking at 1 GHz, which offers 20 analog 

input and 8 analog output channels with a 16-bit resolution, is used for compilation of numerical 

models and communication with external devices. Numerical models, control techniques and 

integration algorithms are developed on the MATLAB/SIMULINK platform on a separate host 

PC and compiled into a C source code and uploaded onto the dSPACE microcontroller. The 

management of the maRTHS experiments are carried out via the ControlDesk software. 

External potentiometers are attached to the moving platform of the LBCB for accurate 

measurements of the executed boundary conditions. External potentiometers are preferred over the 

onboard LVDTs as reactional wall deflections can introduce errors to LVDT measurements 

(Chang et al. 2014). Fig. 5.8 provides a schematic of the proposed experimental setup. 

 

Figure 5.8 maRTHS hardware and physical setup 

5.3.2 System identification and kinematic assembly 

System identification is necessary for this framework, because of the use of the model-based 

compensation technique. The experimental substructure, which includes the LBCB attached to the 

physical specimen, is system identified. This process is initiated by commanding a mutually-

uncorrelated bandlimited white noise (BLWN) to individual actuators and measuring their 

respective displacements. The six actuators onboard an LBCB device are labeled as 𝑋1, 𝑋2, 𝑍, 𝑌1, 

𝑌2 and 𝑌3, corresponding to the primary direction of the actuator in Cartesian space. The BLWN 

signals have a frequency bandwidth of 0 – 50 Hz and a root-mean-square (rms) amplitude of 5 mm 

in the X and Z axes and 2 mm in the Y axis. The rms amplitude of the bandlimited white noise 

must reflect the intended use of the actuator. The physical specimen is attached to the LBCB during 

the system identification. The effects of control-structure interaction are captured in this process, 

as the physical specimen is constrained by the LBCB. Thus, a natural velocity feedback from the 

specimen will cause a change in the dynamical properties of every actuator on the LBCB.  
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The target and measured results are next transformed from time to frequency domain. The 

sampling frequency, NFFT and window type are set to 1000Hz, 8192 and Hanning with 50% 

overlap, respectively. A system of six-by-six frequency response functions (FRFs), where row "𝑖" 
pertains to target signal in actuator "𝑖"  and zero command in all other actuators. Column "𝑗" 
describes the FRF of the measured displacement of actuator "𝑗", due to the target in actuator "𝑖". 
The experimentally obtained FRFs of the LBCB actuators are fitted with a transfer matrix model. 

A linear time-invariant transfer function with 6 poles and zeros at infinity create the best fit for the 

diagonal terms of the transfer matrix: 

𝑷𝑖(𝑠) =
𝛼0,𝑖

𝑠6 + 𝛽5,𝑖𝑠5 + 𝛽4,𝑖𝑠4 + 𝛽3,𝑖𝑠3 + 𝛽2,𝑖𝑠2 + 𝛽1,𝑖𝑠 + 𝛽0,𝑖
 (5.8) 

where 𝛼𝑘,𝑖 and 𝛽𝑘,𝑖 are the numerator and denominator coefficient of the transfer function models. 

The six-by-six system of FRF’s and the corresponding transfer matrix model are presented in Fig. 

5.9. The off-diagonal terms in are indicative of the dynamic coupling that exist between different 

actuators onboard an LBCB device.  

From Fig. 5.9(a), the off-diagonal terms are deemed negligible due to the sufficient amplitude 

reduction between the target and measured displacement signals. In Fig. 5.9(b), off-diagonal 

phases often have a low signal-to-noise ratio, indicating the weak correlation between the target 

and measured displacement signals. Thereby, system identification is only conducted for on-

diagonal terms. The important implication of this assumption in the design of the proposed 

maRTHS framework is that target and measured signals, and compensation are handled in actuator 

coordinate since dynamic coupling is weak in this frame of reference. SISO compensators are 

suitable for decoupled and weakly coupled systems. On the other hand, dynamic coupling tends to 

be significant when addressing multi-actuator loading assemblies in a Cartesian reference frame 

as was done in (Fermandois and Spencer, Jr. 2018). The proposed framework is applicable to 

multi-axial boundary conditions where the dynamic coupling in actuator coordinates is light.  
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(a) FRF Amplitudes 

Figure 5.9 System of FRFs for an LBCB device 
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(b) FRF phases 

Figure 5.10 (cont.) System of FRFs for an LBCB device 

Identification of the kinematic relationships is another important component of an maRTHS 

experiment. Determining the vectors in (5.4) and the Jacobian in (5.6) requires acquisition of 

accurate geometric quantities (i.e., dimensions) of the LBCB device and physical specimen. The 

Jacobian matrix associated with the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 process is labeled 𝑱2. To obtain this 

Jacobian matrix, first the three-dimensional vectors in (5.3) need to be calculated between a 

potentiometer frame of reference and the Cartesian frame of reference. The potentiometer frame 

of reference is chosen as the base of the physical specimen in this example. Next, the total lengths 

of the potentiometers are formulated per (5.4) and linearized about the equilibrium position to 

obtain the 𝑱2 matrix. This process is repeated for the LVDT to Cartesian frames of reference to 

obtain the Force Transform labeled as 𝑱1 matrix. Both Jacobian matrices 𝑱1 and 𝑱2 formulated for 

use in the Force Transform and Potentiometer FKT processes are presented below 
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𝑱1 =

[
 
 
 
 
 
−1.00 0.02 −0.01 0.06 3.85 0.50
−1.00 0.02 0.00 −0.06 −3.85 0.50
0.00 0.07 1.00 1.85 1.69 −0.13
−0.02 1.00 0.01 0.00 0.04 −3.54
−0.05 1.00 0.01 3.38 0.10 5.01
−0.04 1.00 −0.04 −2.84 0.07 4.83

 

]
 
 
 
 
 

   𝑱𝟐

=

[
 
 
 
 
 
−0.94 −0.32 0.11 −0.82 2.18 −0.60
−0.92 −0.32 0.19 0.44 −1.64 −0.59
−0.01 −0.24 0.97 −1.99 −0.66 −0.18
−0.11 −0.99 0.05 −0.06 0.09 1.64
−0.02 −0.98 0.20 −2.53 −0.61 −3.31
−0.02 −0.99 0.11 2.19 −0.43 −3.35

 

]
 
 
 
 
 

 

(5.9) 

The elements of the Jacobian 𝑱1 describe the relationship between the actuator forces and the 

Cartesian forces. Meanwhile, the Jacobian 𝑱𝟐 represents the correspondence between the 

potentiometer strokes and the Cartesian motion. These Jacobians are not symmetric because the 

positions of the actuators and the potentiometers with reference to the physical specimen are not 

symmetric. The translational and rotational elements in 𝑱1 and 𝑱2 are in units of mm and radians, 

respectively. 

5.4 Experimental verifications 

This section aims to verify the proposed maRTHS development through an illustrative example 

involving a steel moment frame in Fig. 5.7.   

5.4.1 Deformation of reaction wall and LBCB fixture 

The target displacements may be different than the displacements imposed on the specimen due to 

deformations of the reaction wall and LBCB, which can negatively affect the hybrid simulation. 

Reaction wall deflections were observed in prior hybrid simulation experiments conducted on the 

large-scale facility described in Section 5.2 (Chang et al. 2014). To test the magnitude of these 

deflections on the small-scale MUST-SIM facility, LED markers are installed on the reaction wall 

and the 1/5th-scale LBCB frame. The locations of the LED markers are illustrated in Fig. 5.10. The 

blue markers are intended for measurements of the LBCB frame and orange markers are intended 

for the reaction wall.  

In this study, a Krypton K600 camera is used to measure the displacements of the LED 

markers in Cartesian space with an accuracy of ± 0.02mm. An maRTHS experiment with a 30% 

El Centro earthquake is executed, and the deformations indicated by the LEDs are recorded. The 

vertical deformation in blue marker #2 and out-of-plane deformations in the orange marker #6 are 

presented in Fig. 5.11. The maximum deflections in the orange markers are obtained and plotted 

in Fig. 5.12. The blue dashed lines represent the extrapolations of the lateral deformations to the 

base of the reaction wall. 
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Figure 5.11 Configuration of the LED markers 

 

(a) Vertical deformation of blue LED #2 

 

(b) Out-of-plane deformation of orange LED #6 

Figure 5.12 Displacements of in blue LED #2 and orange LED #6 

 

Figure 5.13 Maximum out-of-plane deformation in orange LED markers 
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These deformations are deemed significant as a ratio of the physical specimen deformations. 

To avoid measurement inaccuracies induced by LBCB and reaction wall deformations, external 

potentiometers are provisioned and used to measure the displacements of the moving platform. 

These potentiometers are connected to the moving platform of the LBCB at one end, and the fixed 

floor of the experimental setup, at the other end. The potentiometer deformations are converted to 

Cartesian measurements via 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 and then converted to corrected LVDT 

measurements via 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐼𝐾𝑇.  

 

(a) 𝑌1 actuator   (b) 𝑌2 actuator   (c) 𝑌3 actuator 

Figure 5.14 LVDT and Potentiometer measurements of the vertical (Y-axis) actuators 

Fig. 5.13 demonstrates the target, LVDT and external potentiometer measurements. The 

LVDT measurement from actuator 𝑌1 points to a noticeably larger displacement than the 

potentiometer measurement. This observation highlights the incorporation of LBCB frame and 

reaction wall deformations to the LVDT measurements. The external potentiometers provide more 

accurate measurements since LBCB frame and reaction wall deformations are avoided. Another 

important observation is that actuator 𝑌1 is confronted with the high axial stiffness, due to its close 

proximity with the steel column. As a result, a larger lag is observed between the target and 

external potentiometer signals for this actuator. An actuator with a higher force capacity, or a 

physical specimen with a smaller axial stiffness can overcome the observed lag and result in a 

more accurate 𝑌1 tracking.  

Lastly, the potentiometer measurements converted to Cartesian coordinates are validated via 

comparisons to reference measurements from a Krypton camera. The camera is directed at the 

front face of the LBCB and LEDs are installed on the moving platform of the LBCB. The moving 

platform executes sinusoidal translations in the 𝑋- and 𝑍-axes, respectively, and rotation about the 

𝑍-axis. Next, Cartesian deformations are calculated from external potentiometer readings and 

compared to Krypton measurements. The results for the X-translation and Z-rotation presented in 

Fig. 5.14(a)-(b) demonstrate accurate tracking. The Z-translation results shown in Fig. 5.14(c) 

suffer from inaccuracies due to the nonuniform vertical translation as a result of the flexural 

deformations in the moving platform during experiments. The Jacobians discussed earlier assume 

that the moving platform is rigid and does undergo flexural deformation. Therefore, the use of the 

Jacobians to calculate Cartesian motion will result in minor errors in the 𝑌 translation calculations, 

when the flexural deformation in the moving platform is large.  
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(a) 𝑋 Translation   (b) 𝑍 Rotation   (c) 𝑌 Translation 

Figure 5.15 Potentiometer and Krypton camera measurements 

5.4.2 Tracking performance of compensation techniques 

This section assesses the tracking performance of the mMBC compensator proposed in the 

previous sections, which is critical to ensuring the integrity of the maRTHS. Three compensation 

scenarios are considered for comparison: (i) no control, (ii) feedforward (FF) control, and (iii) 

mMBC. Next, open-loop maRTHS experiments are conducted and the tracking ability of each 

controller is assessed. The open-loop execution implies that restoring forces are set to zero and 

stability is assured while the tracking performance of each compensation scenario is considered.   

Two evaluation criteria are used for assessment of the tracking performance of each 

compensation scenario: the normalized root-mean-square error (𝑅𝑀𝑆𝐸) and normalized maximum 

error (𝑀𝐴𝑋𝐸) per (3.21) and (3.22), respectively. These criteria should be minimized for a better 

tracking performance.  

Following open-loop executions of the maRTHS with a 10% PGA-scaled El Centro 

earthquake, the tracking performance of the compensation scenarios are listed in Tables 5.2–5.4. 

Inclusion of an FF compensator results in better tracking performance compared to the 

uncontrolled scenario. Addition of the feedback controller to formulate the mMBC compensator 

further minimizes the evaluation criteria. Tracking in the Z actuator appears to be poor, however, 

the displacement of this actuator is quite small (~ 0.1 mm). Thus, even small errors are amplified 

by the tracking criteria. Fig. 5.15 illustrates the synchronization plots in Cartesian coordinates for 

DOFs 1 and 2, identified in Fig. 5.7. A 1: 1 diagonal line in these figures implies perfect tracking. 

Use of the FF and mMBC compensators reduces the area in the tracking loop, thereby reducing 

negative damping that can render a closed-loop RTHS unstable (Horiuchi et al. 2000). These 

results show that although feedback control serves in improving tracking, most of the 

compensation is brought about by the FF controller.  

Table 5.2 RMSE tracking performance of actuators 

Compensation 

scenario 

𝑅𝑀𝑆𝐸 

𝑋1 𝑋2 𝑌1 𝑌2 𝑌3 𝑍 

No control 0.159 0.198 0.242 0.168 0.198 3.623 
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FF 0.102 0.148 0.086 0.110 0.113 3.534 

mMBC 0.095 0.137 0.083 0.098 0.099 3.221 

Table 5.3 MAXE tracking performance of actuators 

Compensation 

scenario 

𝑀𝐴𝑋𝐸  

𝑋1 𝑋2 𝑌1 𝑌2 𝑌3 𝑍 

No control 0.173 0.186 0.215 0.151 0.152 3.843 

FF 0.111 0.126 0.101 0.109 0.127 3.608 

mMBC 0.101 0.113 0.093 0.104 0.119 3.077 

Table 5.4 Tracking performance in Cartesian coordinates 

Compensation 

scenario 

𝑅𝑀𝑆𝐸  𝑀𝐴𝑋𝐸  

𝐷𝑂𝐹 1 
DOF 

2 

DOF 

1 

DOF 

2 

No control 0.195 0.214 0.190 0.184 

FF 0.155 0.109 0.130 0.144 

mMBC 0.115 0.098 0.099 0.142 

 

 

(a) DOF 1 (No Control)   (c) DOF 1 (FF)   (e) DOF 1 (mMBC) 
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(b) DOF 2 (No Control)   (d) DOF 2 (FF)   (f) DOF 2 (mMBC) 

Figure 5.16 Tracking performance of compensation scenarios for Cartesian coordinates - 

10% El Centro 

5.4.3 maRTHS results 

Next, the maRTHS loop is closed (i.e., the restoring forces are fed back into the numerical model) 

to enable maRTHS execution. The behavior of DOFs 1-3 of the steel moment frame are used for 

evaluation in this section. DOFs 1, 2 and 3 represent the horizontal translation of the beam in the 

X-direction, rotation at the top-right beam-column attachment about the Z-axis, and the rotation at 

the top-left beam-column attachment about the Z-axis, respectively, as shown in Fig. 5.7. A 

numerical model of the whole (reference) structure is first used for comparison and validation of 

the maRTHS test. This comparison is conducted in the linear elastic range for a 10% El Centro 

excitation. Next, the maRTHS is executed for a 30% El Centro excitation and the physical 

specimen is driven into the nonlinear range. The results of DOFs 1-3 and the force-displacement 

hysteretic response at DOFs 1 and 2 indicate a successful implementation.   

In the linear elastic range, the results of the maRTHS test of the moment frame are compared 

to predicted response from a numerical model. A 10% El Centro excitation is introduced to the 

moment frame structure and the responses of DOFs 1-3 are presented in Fig. 5.16. The 

performance of the maRTHS experiment is observed to be closely matching that of the numerical 

simulation, thereby verifying the accuracy of the maRTHS results in the linear range. The 

differences observed in DOF 2, as shown in Fig. 5.16(b), may be associated to the imperfections 

in the compensation action of the boundary condition.  
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(a) DOF 1 

 

(b) DOF 2 

 

(c) DOF 3 

Figure 5.17 Numerical simulation and maRTHS of the steel moment frame - 10% El 

Centro 

 

(a) DOF 1 

 

(b) DOF 2 

 

(c) DOF 3 

Figure 5.18 maRTHS behavior of the steel moment frame - 30% El Centro 

 

(a)  𝐹𝑥 vs. 𝑈𝑥 (DOF 1)    (b) 𝑀𝑧 vs. 𝑅𝑧 (DOF 2) 

Figure 5.19 Hysteretic responses at DOFs 1 and 2 - 30% El Centro 

A 30% El Centro excitation is used to push the moment frame structure into the nonlinear 

range. The results for the performance of DOFS 1-3 for this nonlinear maRTHS experiment are 
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provided in Fig. 5.17.  The hysteretic (i.e., force-displacement) responses of DOFs 1 and 2 are 

presented in Fig. 5.18. The results presented describe the evolution of the deformation parameters 

𝑈𝑥 and 𝑅𝑧, and force parameters 𝐹𝑥 and 𝑀𝑧 as demonstrated in Fig. 5.7. 

Closed-loop delays in RTHS can be interpreted as negative damping which can render 

experiments unstable. Instability may ensue unless the combined damping in the numerical and 

physical substructures is large enough. Therefore, delay compensation is an important feature of 

any RTHS implementation. The damping ratio of the numerical substructure has been set to 5% 

up to this point. To explore the effectiveness of the delay compensation action, the damping of the 

numerical substructure is varied from 𝜁 = 2 − 10%, where 𝜁 is the damping ratio. The 

corresponding maRTHS results are presented in Fig. 5.19. The boundary condition translation 

along the X-axis and rotation around the Z-axis, pertaining to DOF 1 and 2 are displayed. These 

results demonstrate a smooth and stable performance for the specified range of damping ratios. 

With the inclusion of the mMBC compensator in the maRTHS loop, the closed-loop delays and 

negative damping effects are reduced.   

 

(a) Translation along X-axis (DOF 1) 

 

(b) Rotation along Z-axis (DOF 2) 

Figure 5.20 maRTHS results under different damping scenarios - 10% El Centro 
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These results illustrate improvements over the previous development discussed in  

(Fermandois and Spencer 2017). The stability of the rotational DOF 2, at the top of the physical 

column, was discovered to be highly sensitive in the previous development and the decision was 

made to neglect it. This DOF however was included with the proposed maRTHS implementation, 

thus providing a more realistic substructuring selection. The previous development also condensed 

out the Y-translation controller, as the Cartesian feedforward controller was numerically singular 

due to the high axial stiffness of the physical specimen. None of the Cartesian directions are 

condensed out in this approach. Lastly, good tracking and stability are displayed by the maRTHS 

framework, even when the physical specimen is pushed into the nonlinear response region.  

5.5 Summary 

A novel framework for multi-axial real-time hybrid simulation (maRTHS) testing is proposed in 

this chapter. This development aims to provide a viable alternative to shake table and hybrid 

simulation with realistic dynamic and three-dimensional characteristics. This framework is divided 

into four steps, namely: (i) numerical substructure; (ii) numerical-to-physical (𝑁2𝑃) 

transformation; (iii) physical substructure; and (iv) physical-to-numerical (𝑃2𝑁) transformation. 

The 1/5th-scale Load and Boundary Condition Box (LBCB) device at the University of Illinois at 

Urbana-Champaign is used for experimental verification of the proposed framework.  

The experimental verification is comprised of a steel moment frame, which is partitioned 

into physical and numerical substructures and evaluated via the proposed maRTHS algorithm. At 

every time step, the response of a beam-column model is numerically evaluated on a 

microcontroller for a given ground excitation. The 𝑁2𝑃 transforms the Cartesian target boundary 

conditions (i.e., displacements and rotations) from the numerical substructure to actuator control 

signals for the LBCB to execute. This process involves several layers of kinematic transformations 

and a decoupled actuator compensation scheme. Once control signal has been executed, restoring 

forces measured by the load cells in-line with the actuators are transformed via the 𝑃2𝑁 

transformation to Cartesian restoring forces and returned to the numerical substructure.  

The actuator compensation in this framework is conducted in a decoupled manner, with each 

actuator channel compensated independently. The decoupled control scheme creates ease of design 

and enables utilization of SISO type controllers, like the modified model-based compensator 

(mMBC), which has good tracking and robustness behaviors. Three compensation scenarios are 

studied experimentally: (i) no control; (ii) feedforward; and (iii) mMBC. By comparison, the latter 

demonstrates the best tracking performance. A range of damping values were assigned to the 

numerical substructure to ensure that the compensation is robust, and instability caused by closed-

loop delays are prevented. The results from the maRTHS test conducted in the linear range are 

compared to a numerical simulation for verification. Lastly, results from the maRTHS test with 

the physical specimen pushed into the nonlinear range demonstrates successful and stable 

implementation of the proposed maRTHS framework.  
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Chapter 6 

 

MULTI-BOUNDARY INTERFACE MULTI-AXIAL REAL-TIME 

HYBRID SIMULATION 

 

6.1 Problem statement 

For many practical engineering and research applications, maRTHS with more than one boundary 

interface and physical substructure may be necessary. In this chapter, a framework for maRTHS 

employing substructuring at multiple boundary interfaces is proposed; the framework also enables 

simulation of systems with multiple physical substructures. After substructuring the reference 

structure, kinematic and force transformation, and actuator compensation algorithms are 

introduced to connect each physical element with the numerical model. The mathematical and 

analytical basis for the proposed maRTHS framework are first presented, addressing the following: 

(i) scalability for higher degrees-of-freedom (DOFs); (ii) multiple boundary interfaces; (iii) 

successful decoupled compensation for delays in large number of actuators; and (iv) incorporation 

of out-of-plane boundary condition motions and forces. The maRTHS framework is subsequently 

applied to a multi-span curved bridge structure with two LBCBs testing the physical piers. The 

bridge under consideration is a four-span, curved deck, and asymmetric structure loaded via a bi-

directional ground motion. Steel physical substructures are employed herein for ease of analysis 

and repeatability.  

6.2 Multi-boundary multi-axis real-time hybrid simulation 

In most RTHS implementations to date, only a single boundary interface and a single physical 

specimen have been the subject of the study. In many applications however, physical testing of 

multiple boundary interfaces and specimen may be of interest. Several multi-axial boundary 

interface devices, comprised of actuators and sensors, are required for such simulations. The goal 

here is to extend the maRTHS framework proposed in Najafi et al. (2020) for simulations with 

multiple physical substructures. 

In seismic applications of maRTHS, with each integration time step a ground acceleration 

�̈�𝑔(𝑡) serves as the input excitation into the test. As the numerical substructure is excited, the 

deformation values at the boundary interface with where the physical substructure would be 

positioned in the reference structure are computed and termed as the target. The target boundary 

condition 𝒘𝑖(𝑡) for the 𝑖𝑡ℎ physical substructure is obtained in a Cartesian coordinate from the 

finite element model. Steps involving kinematic transformations and actuator compensation next 

prepare the target signal for execution in the physical substructure. 

A transformation 𝑁2𝑃𝑖 is responsible for converting target boundary condition to actuator 

control signal 𝒖(𝑡). After physical execution (i.e., deformation of physical specimen by actuators), 

loadcells record actuator forced 𝑭𝑎𝑐𝑡(𝑡). A transformation 𝑃2𝑁𝑖 converts actuator forces to 

Cartesian feedback forces 𝑭𝑐𝑟𝑡(𝑡) for use in the numerical substructure. In addition, relevant 
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physical data 𝒙𝑃, �̇�𝑃, and �̈�𝑃 are recorded from the experimental setup. A schematic of the 

proposed maRTHS framework for multiple physical substructures is presented in Fig. 6.1. In some 

experiments, the physical substructures may directly interact, while in others the physical 

interaction is through coupling in the numerical substructure.  

 

Figure 6.1 Proposed multi-boundary interface maRTHS framework 

6.3 Experimental Setup Requirements 

Multi-axial simulations are typically realized with actuated devices such as the LBCBs at the 

MUST-SIM laboratory at the University of Illinois at Urbana-Champaign, per Fig. 5.2. Each box 

can be used together or individually, and configured at different orientations, per Fig. 6.2. The six 

actuators of an LBCB are labeled as 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3, and 𝑍.  

To measure forces, six loadcells are necessary, installed in-line with the axis of the actuators. 

To measure the executed deformations, displacement transducers in the form of six linear variable 

differential transducers (LVDTs) or six linear potentiometers are used. To allow for the 

input/output (I/O) peripherical devices (e.g., loadcells), embedded systems (e.g., servocontroller 

and microcontroller) must have sufficient I/O channels for connectivity. Servocontrollers are 

responsible for Each actuator control channel requires a digital-to-analog (DA) channel from the 

microcontroller to the servocontroller, and from the servocontroller to the actuator for execution. 

The displacement transducer and loadcells each require an analog-to-digital (AD) channel from 

the microcontroller to the servocontroller, and from the servocontroller to the actuator for 

measurements. 
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Figure 6.2 Two LBCBs used on a shared physical specimen 

For an maRTHS test with 𝑛 boundary interfaces, the peripheral device requirements are: 6𝑛 

loadcells, 6𝑛 displacement transducers (LVDT or linear potentiometer), and 6𝑛 actuator command 

channels. The servocontroller r and microcontroller must have the I/O connectivity interface for 

6𝑛 DA channels and 12𝑛 AD channels.  

6.4 Reference model development 

A multi-span curved bridge is selected as the reference structure for the experimental verification 

of the proposed maRTHS framework. This selection is made as a natural extension to the 

developments made in the multi-axial slow-speed hybrid simulation testing done as part of the 

CABER program at the MUST-SIM facility at the University of Illinois at Urbana-Champaign 

(Abdelnaby et al. 2012; Chang et al. 2014; Elnashai et al. 2005; Frankie et al. 2013).  

6.4.1 Multi-span curved bridge  

An asymmetric four-span reinforced concrete curved-bridge is partitioned into a numerical deck 

and physical piers for slow-speed hybrid simulation. The numerical component is modeled via 

finite element analysis in Zeus-NL (Abdelnaby et al. 2012). The two outer physical piers are tested 

at a 1:3 scale using the full-scale LBCBs, while the inner pier is tested at a 1:20 scale using the 

1/5th scale LBCB. Details of the abutments, input excitation, and restraints are also modeled 

numerically (Frankie 2013). The simulation coordinator integrating the numerical and physical 

substructures together is the UI SIMCOR (Kwon et al. 2005).  

The reference structure discussed in the CABER program is a 400 ft long curved bridge with 

a curvature of 1/660 ft. The four-spans are 75 ft (22.9 m), 150 ft (45.7 m), 100 ft (30.5 m), and 75 

ft (22.9 m) respectively. The piers of the bridge are 28.5 ft (8.7 m), 37.5 ft (11.4 m), and 22.5 ft 

(6.9 m), respectively. The piers are designed at 48 in. (1220 mm) round reinforced concrete 

elements with 28 #10 reinforcement bars, and #5 stirrups. The deck is idealized as a 60 in. (1.52 

m) by 81 in. (2.06 m) transverse beam.  
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(a) Reference structure    (b) Real-time substructuring 

Figure 6.3 Illustrative curved bridge example 

In this study, a reference structure is envisioned with similar geometry to the structure studied 

previously. Structural steel is used instead of reinforced concrete for repeatability and since this is 

a proof-of-concept study. The new reference structure is designed with a scale of 1:20 compared 

to the original CABER bridge. The new bridge is 20 ft (6.1 m) long with a curvature of 1/33 ft 

(1/10.1 m), as illustrated in Fig. 6.3(a). For ease of modeling and construction, round sections are 

appropriated for all numerical and physical components. The bridge deck is modeled as a round 

steel section with a diameter of 2.8 in. (71 mm). The supports at both ends of the curved deck, 

restrain the bridge in the rotational and the 𝑌 direction.  The piers are dimensioned per Table 6.1. 

Fig. 6.3(b) provides an illustration of the real-time substructuring of the reference bridge into 

numerical and physical substructures, and two multi-axial boundary interfaces. 

Table 6.1 Bridge pier dimensions 

Pier Simulation Diameter (in. / mm) Length (in. / mm) 

1 Physical 1.25 / 31.75 18.0 / 457.2 

2 Physical 1.25 / 31.75 21.5 / 546.1 

3 Numerical 2.00 / 50.80 13.5 / 342.9 

 

6.4.2 Model development 

A three-dimensional finite element model (FEM) of the reference structure is first formulated in 

MATLAB. The curved deck of the bridge is idealized via 16 linearized segments per Fig. 6.4. 

Development of a MATLAB-based numerical model is critical to the maRTHS implementation, 

as well-established FEM tools such as Abaqus and SAP2000 are not integrable with real-time 

testing hardware. Development of an accurate numerical model for the reference structure is a 

challenging task, due to the three-dimensional nature of the bridge and coupling present between 

out-of-plane and torsional moments in the curved deck.  
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Figure 6.4 Linearized segments of the curved deck 

The SAP2000 software was selected for verification of the MATLAB-based numerical 

model. Table 6.2 lists the dominant eigen modes, and natural frequencies identified in the 

SAP2000 and MATLAB models. Due to the out-of-plane flexibility of the curved bridge, most of 

the dominant eigen modes are lateral and vertical vibration modes. Fig. 6.5 compares a total of 30 

eigen modes and the corresponding identified natural frequencies. Fig. 6.6 illustrates the first six 

mode shapes for the curved bridge structure. In this figure, the wireframe and the color-coded 

frame indicate the at-rest position and mode shape of the bridge. Results indicate that the 

MATLAB-based numerical model is similar to the SAP2000 model in dynamic performance.  

Table 6.2 List of dominant eigen modes and natural frequencies 

Natural 

Frequency 

(Hz) 

1 2 3 4 5 6 7 8 9 

Mode Lateral Lateral Lateral Lateral Vertical Vertical Lateral Vertical Lateral 

SAP2000 0.5235 0.6536 1.1027 1.2616 1.3312 1.4644 2.1894 3.0756 3.1976 

Numerical 

Model 
0.5260 0.6545 1.0919 1.2581 1.3270 1.4650 2.1864 3.0048 3.327 

 

 

Figure 6.5 Comparison of 30 eigen modes 
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(a) Mode 1: lateral 0.5235 Hz  (b) Mode 2: lateral 0.6536 Hz  (c) Mode 3: lateral 0.9067 Hz 

 

(d) Mode 4: lateral 0.7927 Hz  (e) Mode 5: vertical 1.3312 Hz  (f) Mode 6: vertical 1.4644 Hz 

Figure 6.6 Mode shapes 

6.5 Experimental validation 

In this section, the proposed multi-boundary interface maRTHS framework is validated by 

simulating the illustrative example involving the multi-span curved bridge structure. Following an 

introduction of the experimental platforms and hardware used, the structure is subjected to a bi-

directional ground motion. The results for the elastic range are first compared to numerical 

simulation results. The amplitude of the ground motion is next increased until nonlinear behavior 

is achieved in the physical substructure.  

6.5.1 Experimental setup 

The numerical substructure and compensation algorithm are programmed in the real-time 

MATLAB-Simulink programming environment, on a host PC. Upon compilation, the MATLAB 

program is converted into a C-language source code and sent to a microcontroller. The graphical 

user interface based on the Simulink environment are displayed in Appendix A. The Speedgoat 

performance real-time target machine with a 4.20GHz processor is the microcontroller of choice 

in this implementation. Appropriate I/O driver block interface for Simulink real-time are provided 

by the Speedgoat software library. For the I/O peripherals, two Speedgoat IO133 modules are 

installed on the performance real-time target machine, each with 68 pins. Two 1/5th scale LBCBs 

are used in this study. Operation of each LBCB requires 17 pins which include 6 analog outputs 

for commanding the actuators, and 13 analog inputs (six loadcells, six external potentiometers, 

one reference potentiometer). The two LBCBs used herein are labeled LBCB #1 and LBCB #2.  

Two Shore Western servo-controllers handles the operations of the two LBCBs and the 

corresponding Moog G631 2-stage servo valves and hydraulic actuators. A proportional controller 
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programmed in the servo-controller ensures the stability of all actuators. The stroke limits and 

force capacities of the actuators are discussed in Najafi et al. (2020). The Speedgoat 

microcontroller and Shore Western servo-controllers communicate via analog I/O terminal boards. 

Fig. 6.7 provides a schematic of the experimental hardware used for this study.  

 

Figure 6.7 Experimental hardware used for maRTHS study 

Each actuator onboard the LBCB possesses an inline displacement transducer in the form of 

linear variable differential transformers (LVDTs). However, as Najafi et al. (2020) demonstrated, 

the deformations in the reaction wall and frame of the LBCB result in displacement measurements 

from LVDTs to be skewed. Therefore, external potentiometers are installed between the top of the 

physical specimen and base of the reaction wall to ensure more accurate displacement 

measurements. LBCB #1 uses Celesco CLWG-150-MC4 potentiometers, while LBCB #2 uses 

Celesco CLP-200 Potentiometers.  

The Interface WMC-3000 loadcells are used with each actuator axis. Each loadcell has a 

capacity of 3 kips. The capacity of the loadcells to measure forces in the 𝑌 direction is about 9 

kips. For the steel piers to axially deform by 1 mm, a force of 77.9 kips is required. Therefore, to 

avoid damaging the loadcells, the 𝑌 direction displacements are truncated out of the model at the 

locations of the boundary interfaces.   

6.5.2 System identification 

The updated maRTHS framework uses a model-based control technique to compensate for the 

dynamics of the actuators. Because of the decoupled nature of the controller, each actuator is 

compensated independent of the other actuators. A system identification procedure is also 

necessary to obtain the nominal actuator model necessary for the development of the model-based 

controller.  

A single-input single-output (SISO) identification procedure is employed here, where each 

of the six actuators onboard an LBCB are subjected to bandlimited white noise (BLWN) signal 
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with a 0–50 Hz bandwidth, and a root-mean-square amplitude of 2 mm. The system identification 

procedure involves sending the BLWN target signal to actuator 𝑖, while the displacements of 

actuator 𝑗 is recorded. Each time domain input-output pair 𝑟𝑖 and 𝑦𝑗 is converted to frequency 

domain to obtain 𝑅(𝜔) and 𝑌(𝜔) at frequency 𝜔, respectively. The frequency response function 

(FRF) of the input-output pair is obtained per (2.40). 

Data acquisition is completed at a sampling rate of 1000 Hz, NFFT of 8192, and a Hanning 

window with 50% overlap. The frequency-domain fitting tool MFDID is next employed for fitting 

transfer function models to the FRFs identified (Kim et al. 2005). A six-pole transfer function 

model is used to describe the FRFs given by (5.8). Figs. 6.8 and 6.9 summarize the amplitude and 

phase plots for the six-by-six FRF systems of the two LBCBs used in this study. The off-diagonal 

terms or coupling between the actuators are deemed to be small and ignored for the purposes of 

system identification. Hence, the MFDID tool is only used for the on-diagonal terms. Tables 6.3 

and 6.4 describe the coefficients of the numerators and denominators of the nominal transfer 

function models fitted to the FRF plots. The coefficients for the transfer function of  actuator 𝑷𝑋1 

of LBCB #1 are presented in Tables 6.3 and 6.4 and illustrated schematically in the top-left block 

of Figs. 6.8 and 6.9.  

 

(a) Amplitude 

Figure 6.8 System of FRFs for an LBCB #1 device 
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(b) Phase 

Figure 6.9 (cont.) System of FRFs for an LBCB #1 device 
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(a) Amplitude 

 

(b) Phase 

Figure 6.10 System of FRFs for an LBCB #2 device 
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Table 6.3 Numerator and denominator coefficient of the transfer function - LBCB #1 

Actuator ID 𝛼0,𝑖 𝛽0,𝑖 𝛽1,𝑖 𝛽2,𝑖 𝛽3,𝑖 𝛽4,𝑖 𝛽5,𝑖 

𝑮𝑋1 5.403𝐸12 6.264𝐸12 1.536𝐸11 2.175𝐸9 1.631𝐸7 9.685𝐸4 279.2 

𝑮𝑋2 4.340𝐸12 5.220𝐸12 1.344𝐸11 2.057𝐸9 1.562𝐸7 9.612𝐸4 272.5 

𝑮𝑌 4.291𝐸12 6.244𝐸12 1.340𝐸11 1.851𝐸9 1.346𝐸7 8.694𝐸4 242.7 

𝑮𝑍1 2.004𝐸12 4.522𝐸12 1.599𝐸11 2.498𝐸9 2.020𝐸7 1.120𝐸5 332.2 

𝑮𝑍2 1.191𝐸13 1.222𝐸13 2.597𝐸11 3.330𝐸9 2.405𝐸7 1.261𝐸5 352.0 

𝑮𝑍3 1.036𝐸13 1.123𝐸13 2.343𝐸11 2.972𝐸9 2.090𝐸7 1.151𝐸5 310.1 

 

Table 6.4 Numerator and denominator coefficient of the transfer function - LBCB #2 

Actuator ID 𝛼0,𝑖 𝛽0,𝑖 𝛽1,𝑖 𝛽2,𝑖 𝛽3,𝑖 𝛽4,𝑖 𝛽5,𝑖 

𝑮𝑋1 4.375𝐸12 4.992𝐸12 1.328𝐸11 2.041𝐸9 1.579𝐸7 9.690𝐸4 278.2 

𝑮𝑋2 2.710𝐸12 3.543𝐸12 9.736𝐸10 1.659𝐸9 1.330𝐸7 8.847𝐸4 253.4 

𝑮𝑌 8.595𝐸12 1.060𝐸13 2.125𝐸11 2.688𝐸9 1.815𝐸7 1.050𝐸5 273.1 

𝑮𝑍1  2.194𝐸12 5.201𝐸12 1.623𝐸11 2.461𝐸9 1.898𝐸7 1.098𝐸5 303.1 

𝑮𝑍2 1.149𝐸13 1.374𝐸13 2.779𝐸11 3.468𝐸9 2.341𝐸7 1.233𝐸5 321.5 

𝑮𝑍3 1.153𝐸13 1.406𝐸13 2.755𝐸11 3.359𝐸9 2.269𝐸7 1.207𝐸5 316.5 

 

6.5.3 Kinematic transformations 

The Jacobian matrices 𝑱𝑑 and 𝑱𝛿 for the Force Transform and Potentiometer FKT processes are 

identified for LBCB #1 and #2, from the linearization of the nonlinear functions in (6.1) and (6.2). 

Elements of the Jacobian 𝑱𝑑 describe the linearized relationship between the forces in actuator 

coordinates to forces in Cartesian coordinates. Elements of Jacobian 𝑱𝛿 described the linearized 

relationship between the potentiometer strokes and Cartesian displacements and rotations. The 

units for these Jacobians are 𝑚𝑚 for the displacement terms and 𝑟𝑎𝑑 for the rotational terms.  

𝑱𝑑,1 =

[
 
 
 
 
 
−1.00 0.02 −0.01 0.06 3.85 0.50
−1.00 0.02 0.00 −0.06 −3.85 0.50
0.00 0.07 1.00 1.85 1.69 −0.13
−0.02 1.00 0.01 0.00 0.04 −3.54
−0.05 1.00 0.01 3.38 0.10 5.01
−0.04 1.00 −0.04 −2.84 0.07 4.83

 

]
 
 
 
 
 
  
 𝑱𝛿,1

=

[
 
 
 
 
 
−0.94 −0.32 0.11 −0.82 2.18 −0.60
−0.92 −0.32 0.19 0.44 −1.64 −0.59
−0.01 −0.24 0.97 −1.99 −0.66 −0.18
−0.11 −0.99 0.05 −0.06 0.09 1.64
−0.02 −0.98 0.20 −2.53 −0.61 −3.31
−0.02 −0.99 0.11 2.19 −0.43 −3.35

 

]
 
 
 
 
 

 (6.1) 
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𝑱𝑑,2 =

[
 
 
 
 
 
0.94 −0.34 0.03 −0.75 −2.05 0.82
0.94 −0.34 0.04 0.65 1.93 0.82
0.00 −0.31 0.95 −2.46 0.67 0.21
−0.01 −1.00 0.05 −0.08 −0.09 −1.86
0.00 −1.00 0.04 −2.18 0.15 3.33
0.00 −1.00 0.04 2.05 0.14 3.33

 

]
 
 
 
 
 

   

𝑱𝛿,2 =

[
 
 
 
 
 
1.00 0.06 0.04 0.27 −3.73 −1.15
0.99 0.10 0.06 −0.20 2.57 −0.99
−0.01 0.10 1.00 1.32 2.45 −0.23
−0.01 1.00 −0.02 0.15 0.06 3.90
−0.03 1.00 −0.02 2.85 −0.01 −5.04
−0.02 1.00 −0.02 −2.90 −0.18 −5.20

 

]
 
 
 
 
 

 

(6.2) 

6.5.4 Multi-boundary maRTHS results 

A 1940 El Centro earthquake acceleration record is applied bi-directionally as the ground 

excitation to the multi-span curved bridge structure. The ground accelerations are applied in the 𝑋 

and 𝑍 directions and are illustrated in Fig. 6.10. Scales of 5% and 2.5% is applied to the 

acceleration records in the 𝑋 and 𝑍 directions, respectively, for the initial elastic range study and 

numerical verification. The scales are next set to 20% and 2.5% in the 𝑋 and 𝑍 directions, 

respectively, to push the physical specimen into the nonlinear hysteresis range. The amplitude in 

the 𝑍 direction is limited to 2.5% to prevent large amplitude actuation in the 𝑍 direction.  

 

(a) 𝑋 direction    (b) 𝑍 direction 

Figure 6.11 1940 El Centro ground acceleration 

The results presented herein focus on the hysteretic and tracking behavior of the boundary 

conditions. A hysteretic study focuses on the force-deformation relationship in the structural 

element of interest. A tracking study assesses how accurately the actuated setup is able to replicate 

the prescribed trajectory without major delays. The boundary points as illustrated schematically in 

Fig. 6.3(b) are the column caps of the physical piers.  

To check the quality of the actuator target displacement tracking during the LBCB 

executions, the two evaluation criteria RMSE and MAXE per (3.21) and (3.22), respectively, are 

used. Table 6.6 summarizes the tracking performance of the LBCB execution in Cartesian 

coordinates. Three compensation scenarios are considered: (i) No control, (ii) Feedforward, and 

(iii) mMBC. For this comparison, the maRTHS loop is left open with feedback forces to zero. This 

step is necessary as the no control scenario leads to an unstable execution in the closed-loop 

maRTHS. Results demonstrate that feedforward and mMBC compensation can drastically reduce 

the tracking error. The rotational DOF 𝑅𝑌 corresponds to the torsional DOF of the physical 
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specimen, inclusion of compensation worsens the tracking behavior. The torsional DOF is very 

stiff and difficult to control, and compensation methods introduce noise in this channel.  

Table 6.5 Tracking performance in Cartesian coordinates 

LBCB LBCB #1 LBCB #2 

Channel 𝑈𝑋 𝑈𝑍 𝑅𝑋 𝑅𝑦 𝑅𝑍 𝑈𝑋 𝑈𝑍 𝑅𝑋 𝑅𝑌 𝑅𝑍 

No Control 
RMSE 0.231 0.310 2.436 0.871 0.568 0.251 0.158 0.587 0.551 0.337 

MAXE 0.198 0.297 2.460 0.616 0.520 0.200 0.117 0.411 0.462 0.360 

Feedforward 
RMSE 0.162 0.175 1.932 0.937 0.370 0.121 0.130 0.611 0.601 0.258 

MAXE 0.130 0.174 2.184 0.723 0.370 0.074 0.120 0.391 0.547 0.291 

mMBC 
RMSE 0.153 0.107 2.030 0.940 0.336 0.112 0.127 0.588 0.573 0.262 

MAXE 0.122 0.108 2.428 0.737 0.314 0.076 0.115 0.434 0.567 0.254 

Figs. 6.11-6.16, demonstrate the tracking synchronization plots for the DOFs for LBCB #1 and 

LBCB #2. A 1:1 line is illustrative of perfect tracking in this figure. Incorporation of the mMBC 

generally results in better tracking performance.  

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.12 Tracking synchronization plots for LBCB #1 - No Control 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.13 Tracking synchronization plots for LBCB #2 - No Control 

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.14 Tracking synchronization plots for LBCB #1 – Feedforward 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.15 Tracking synchronization plots for LBCB #2 - Feedforward 

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.16 Tracking synchronization plots for LBCB #1 – mMBC 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.17 Tracking synchronization plots for LBCB #2 - mMBC 

Fig. 6.17-6.20 illustrates the deformation and force results of numerical simulation and 

maRTHS tests in the 5 directions for both LBCBs. The small amplitude ground motions are used 

for this comparison to ensure that the physical testing stays in the elastic range. The mMBC 

algorithm is employed for this implementation. By comparing maRTHS results to the numerical 

simulations, the accuracy of the execution proposed maRTHS framework is verified.  

 

(a) 𝑈𝑋       (b) 𝑈𝑍 
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(c) 𝑅𝑋       (d) 𝑅𝑌 

 

(e) 𝑅𝑍 

Figure 6.18 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #1 

DOFs 

 

(a) 𝑈𝑋       (b) 𝑈𝑍 
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(c) 𝑅𝑋       (d) 𝑅𝑌 

 

(e) 𝑅𝑍 

Figure 6.19 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #2 

DOFs 

 

(a) 𝐹𝑋       (b) 𝐹𝑍 
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(c) 𝑀𝑋       (d) 𝑀𝑌 

 

(e) 𝑀𝑍 

Figure 6.20 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #1 

forces 

 

(a) 𝐹𝑋       (b) 𝐹𝑍 
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(c) 𝑀𝑋       (d) 𝑀𝑌 

 

(e) 𝑀𝑍 

Figure 6.21 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #2 

forces 

Fig. 6.21-6.22 illustrate the hysteretic behaviors of the physical piers connected to LBCB #1 

and LBCB #2. The amplitude of the bi-axial ground motion is increased to ensure that nonlinearity 

is achieved in the physical piers. The proposed maRTHS framework is capable of handling 

sophisticated nonlinear dynamical behaviors as demonstrated in Fig. 6.20-6.21 and may be 

attractive for a variety of experimental tests and simulations.  
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(a) 𝑈𝑋 − 𝐹𝑋  (b) 𝑈𝑍 − 𝐹𝑍  (c) 𝑅𝑋 −𝑀𝑋 

 
(d) 𝑅𝑌 −𝑀𝑌  (e) 𝑅𝑍 −𝑀𝑍 

Figure 6.22 Hysteretic behaviors of LBCB #1 

 
(a) 𝑈𝑋 − 𝐹𝑋  (b) 𝑈𝑍 − 𝐹𝑍  (c) 𝑅𝑋 −𝑀𝑋 

 
(d) 𝑅𝑌 −𝑀𝑌  (e) 𝑅𝑍 −𝑀𝑍 

Figure 6.23 Hysteretic behaviors of LBCB #2 
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6.6 Summary 

A multi-axial real-time hybrid simulation (maRTHS) framework was proposed for use with 

multiple boundary interfaces and physical substructures. In the previous developments, out-of-

plane dynamical behaviors were not considered, and hence this study was an opportunity to 

introduce higher degrees of freedom and out-of-plane motions to ensure that the maRTHS 

methodology is capable handling increased dynamical sophistications.  

A multi-span curved bridge structure was then studied to validate the framework. The deck 

and one of the bridge piers were modeled numerically, while two piers are tested physically. Steel 

is used as the material for the physical and numerical substructures for ease of design and 

repeatability. Several studies were conducted including an actuator tracking study in the Cartesian 

frame of reference, maRTHS versus pure numerical simulation while the structure remains in the 

elastic range, and lastly a nonlinear dynamic test. The proposed maRTHS framework proved to be 

successful in capturing realistic nonlinear dynamic behavior of structural systems.  
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Chapter 7 

 

CONCLUSIONS AND FUTURE STUDIES 

 

7.1 Conclusions 

In this dissertation, key algorithms were presented as part of a multi-axial real-time hybrid 

simulation (maRTHS) framework with substructuring at multiple boundary interfaces, for 

nonlinear dynamic testing of structural systems. The proposed framework allows the acquisition 

of the three-dimensional behaviors of structures, execution at real speeds of natural hazard 

excitations, and substructuring of reference structures into numerical and physical components for 

cost and space savings. Some of the algorithms discussed herein include compensation approaches 

for reducing the unwanted dynamics of actuators, system identification strategies, kinematic 

transformations for converting in-axis actuator forces and strokes to Cartesian coordinates, and 

computational resources and laboratory requirements for successful implementation of maRTHS 

framework. 

On path towards the development of a compensation strategy for the maRTHS framework, a 

modified Model-Based Control (mMBC) actuator compensation strategy was proposed with 

excellent tracking and stability properties. Following system identification of the physical setup 

(i.e., actuator and physical specimen), feedforward and feedback controllers are developed and 

tuned for optimal tracking performance and stability. In the new modified framework, the 

feedforward controller is moved into the feedback loop, and the feedback compensator is designed 

based on the combined action of the feedforward controller and plant dynamics. The small-gain 

theorem was used to demonstrate the predictability and enhanced stability of the mMBC strategy.  

The mMBC was next incorporated in single-axis real-time hybrid simulation and shake table test 

demonstrations for validation.  

The mMBC was next augmented with an adaptive model reference control loop to create the 

adaptive Model Reference Control (aMRC). In this development, a reference model is designed as 

a lowpass filter. The mMBC tries follow the trajectory predicted by the reference model. Whenever 

the mMBC prediction is not matching the reference model, the adaptive feature kicks in to 

compensate. An integral control adaptive law with projection algorithm was proposed for rapid 

adaptation and prevention of drifting. The aMRC was incorporated into a virtual RTHS benchmark 

problem and evaluated against several other compensation strategies.  

A one-boundary interface maRTHS framework was next developed. In this framework, 

actuator and Cartesian signals measured in the physical substructure and calculated by the 

numerical substructure are related via forward and inverse kinematic processes. The actuator 

compensation takes place in actuator coordinates in a decoupled manner, where each actuator is 

compensated independent of the others. The mMBC algorithm was used for actuator coordinate 

compensation. Decoupled compensators are considerably easier to tune and optimize than multi-

input multi-output coupled compensators. Actuator and sensor measurements and commands were 

converted to Cartesian coordinates via several kinematic transformation steps. Inverse kinematics 

converted Cartesian signals to actuator signals, and forward kinematics converted actuator and 

displacement transducer signals to Cartesian signals. Force kinematics converted in-axis loadcell 
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measurements to Cartesian forces and moments. This framework was executed on a steel moment 

frame structure where one column of the frame is physically tested, while the remainder of the 

structure is numerically modeled. In this experiment, out-of-plane excitations were not considered.  

Finally, the maRTHS framework was augmented to incorporated multiple boundary 

interfaces and multiple physical specimen. In this augmented framework, each boundary interface 

has its own kinematic transformation and decoupled actuator control steps. The experimental 

setups necessary for conducting maRTHS with high DOFs are also noted. For the validation of the 

multi-boundary maRTHS, a multi-span curved bridge structure was selected. Two piers were 

tested physically while the remainder of the structure remained nonlinear. The maRTHS 

framework with multiple boundary interfaces is a promising experimental technique for examining 

the nonlinear dynamical behavior of structures, and is useful for studying structural behavior under 

natural hazard excitation.  

7.2 Future studies 

7.2.1 Mixed-mode control 

In Section 3.2, the concept of setpoint tracking was introduced with a focus on displacement and 

acceleration signals. In some experiments, such as the effective force testing method, the setpoint 

is a force signal that needs to be tracked. In many structural engineering experimental applications 

however, displacement and force need to be tracked at the same time. An example of such 

application is observed in earthquake engineering applications where a lateral load is applied on 

the physical specimen of the interest, while a gravitational downward force is needed to simulate 

the self-weight of the structure. Self-weight has confinement effects on certain materials (e.g., 

reinforced concrete), and should be considered for seismic applications. Future research should 

focus on efficient methods for incorporating deformation and force signals into a combined mixed-

mode control strategy.  

7.2.2 Kinematic transformation algorithms 

In Section 2.6, 5.2, and 6.5, the forward and inverse kinematic transformations for parallel 

manipulators were listed. In such devices, it was mentioned that the forward kinematic 

transformation computation is challenging task, and hence linearization was made about the 

equilibrium position. Linearized approximations can deviate from the true solution of the nonlinear 

system of equations as the states of the manipulator deviate farther from the equilibrium position. 

Future research should consider higher-order approximations of the nonlinear system of equations 

or solve the system of equations in a computationally efficient manner.  

7.2.3 Machine learning uses in hybrid simulation 

Machine learning algorithms are computational tools that learn and improve through experience. 

Training data are used to program and optimize models of systems. The predictive abilities of 

machine learning algorithms have proven very attractive in the recent years. Machine learning 

algorithms have huge untapped potentials in the hybrid simulation domain. With applications in 
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actuator compensation, nonlinear numerical modeling, and real-time system identification of the 

physical system, machine learning can help solve non-trivial dynamical problems.  

7.2.4 Stability guarantees studies 

Instability problems are a common occurrence when dealing with actuated setups and dynamical 

speeds. Real-time hybrid simulation in particular is prone to many different forms of instabilities 

as a result of closed-loop delays. Therefore, in the recent years many researchers have used 

mathematical theorems from control theory such as the small-gain theory, like in Section 3.4, and 

phase and gain margin analyses to try and predict the stability behavior of a closed-loop RTHS 

system. However, because many of these RTHS systems are nonlinear and hard to model, stability 

predictors are not always successful. Future studies should identify newer and more complete ways 

of designing RTHS systems that are stable.  
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APPENDIX A: GRAPHICAL USER INTERFACE 

 

 

Figure A.1 Graphical user interface (dashboard) for execution of experiments 
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Figure A.2 Closed-loop real-time hybrid simulation program 
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Figure A.3 Numerical substructure 
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Figure A.4 Physical substructure including input-output channels 
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Figure A.5 Compensation options 
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Figure A.6 Modified Model-Based Control (mMBC) compensation 
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Figure A.7 Feedforward compensation 



154 

 

 

Figure A.8 Earthquake excitation and state-space model 
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Figure A. 9 Kinematic transformation for Cartesian target signals 
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Figure A.10 Smooth-stop for emergency stops 
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