
c© 2021 Lingling Meng



FAST ALGORITHM AND SURFACE INTEGRAL EQUATIONS FOR
TWO-DIMENSIONAL MATERIALS MODELING

BY

LINGLING MENG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Weng Cho Chew, Chair
Professor Erhan Kudeki
Professor Jose E. Schutt-Aine
Associate Professor Wenjuan Zhu



ABSTRACT

In this dissertation, a wide-band two-dimensional (2D) fast multipole algo-

rithm (FMA) with a novel diagonalization form is presented. The conven-

tional diagonalization of 2D FMA can be derived based on the interpretation

of Parseval’s theorem. The performance of FMA in the twilight zone (be-

tween the low-frequency and high-frequency regimes) is not good enough.

By scaling special functions and applying discrete Fourier transform (DFT),

the multipole expansions with dense matrices can be transformed to diagonal

matrices with stable accuracy. Therefore a broadband 2D FMA with high

efficiency and accuracy is achieved with a multi-level scheme.

Then a metasurface platform to generate structured light at second har-

monics is proposed with transition-metal dichalcogenide (TMDC) flakes.

With the aid of the electric field integral equation and impedance bound-

ary condition, the surface currents on TMDC flakes can be calculated at

fundamental frequencies. By applying three-fold rotational symmetry of the

quadratically nonlinear susceptibility of TMDC monolayer, radial (or az-

imuthal) polarization and orbital angular momentum can be generated at

second harmonics with linearly polarized and circularly polarized incident

wave at the fundamental frequency, respectively.

Finally, the radiative heat transfer between two graphene-wrapped objects

with arbitrary shapes is studied by a fluctuating-surface current formulation

derived from surface integral equations with impedance boundary conditions.

The surface conductivity of graphene can be tuned by the temperature, chem-

ical doping or electrical gating. The near-field thermal radiation can be en-

hanced due to graphene plasmonics in terahertz regime. Off resonance, the

graphene coating has a shielding effect on the dielectric bodies containing

fluctuating-current sources. This formulation can be extended to multi-body

problem and other two-dimensional materials.
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CHAPTER 1

INTRODUCTION

1.1 Introduction for Computational Electromagnetics

As computer techniques and scientific computation have developed by leaps

and bounds, numerical methods for analysis of electromagnetics (EM) prob-

lems have gradually replaced traditional calculation methods that only solve

for closed form and provide approximate solutions. These advancements have

expanded the influence of computational electromagnetics (CEM), pushing

the development of electrical engineering forward greatly [1].

In CEM, the existing numerical methods can be classified according to their

computation domain, i.e., time domain or frequency domain. In the time

domain methods, the finite-difference time domain (FDTD) method might

be the earliest developed method and is very popular in transient simulations

[2]. In the frequency domain methods, the finite element method (FEM) is

the most widely employed in industry to deal with inhomogeneous medium

problems [3]. Another powerful method is the method of moments (MoM)

or the integral equation method, which is particularly well suited to open-

region EM problems and usually formulated in the frequency domain [4, 5].

Methods in time domain may have their counterparts in frequency domain,

and vice versa. For instance, there are the finite-difference frequency domain

(FDFD), the time-domain finite element (TDFE) and time-domain integral

equation (TDIE).

Alternatively, these methods can be sorted by the forms applied to solve

the Maxwell equations, i.e., differential equation form or integral equation

form. The former solves the Maxwell’s equations in differential equation

form directly, either by applying differentiation to electric field and magnetic

field with time step (FDTD), or by using basis functions to represent elec-

tric or magnetic field with unknown coefficients to be solved (FEM). In the
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integral equation form, the solution to the original problem is expressed as

an integral equation with the Green’s function as kernel by the principle of

linear superposition.

Computational electromagnetics is never a simple research area. Instead,

it is highly interdisciplinary, combining physics, mathematics and computer

science tightly [1]. All the methods in CEM have their own merits and limits,

which require a good understanding of these methods and their appropriate

scenarios. Though the mainstream methods in CEM have been developed

into commercial simulation software or CAD tools as mature techniques,

there are still some new challenges in EM engineering as new materials emerge

and new technology is acquired.

1.2 Integral Equations and Fast Multipole Algorithm

In this section, the integral equations and fast multipole algorithm are in-

troduced briefly. Basically, there are two categories of integral equations:

volume integral equations (VIE) and surface integral equations (SIE) [4].

In VIE, the volume of the object is discretized into small volumetric sim-

plexes; therefore it can deal with inhomogeneous objects. In contrast, in

SIE only the surface is discretized and the unknowns reside on the surface of

the object. Hence, it can only solve homogeneous objects, but the workload

can be reduced greatly compared to VIE due to reduced unknown count.

Both VIE and SIE have several variations, depending on the EM problems

to be solved. Important advances in this area have overcome a lot of chal-

lenges, such as eliminating internal resonances by combining electric-field

and magnetic-field integral equations, designing appropriate basis functions

to deal with the low-frequency breakdown issue, employing pre-conditioners

in iterative solver, etc.

Both VIE and SIE have the Green’s function as the integral kernel. Due

to limited space, here we will just discuss the cases that are employed in

this dissertation, i.e., three-dimensional SIE and two-dimensional VIE. A

two-dimensional (2D) VIE for scattering problem can be expressed as:

φinc(ρ) = φ(ρ)−
ˆ
V

dρ′H
(1)
0 (ρ,ρ′)O(ρ′)φ(ρ′), (1.1)
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where H
(1)
0 (ρ,ρ′) is the Green’s function in the 2D case, and O(ρ′) = k2(ρ′)−

k2b is the contrast or object function with respect to the background medium

for representing the inhomogeneity. In Chapter 2, we will use Eq. (1.1)

to calculate Ez in the TM modes (Ez, Hx, Hy) for applications in photonic

crystals. The simplest SIE is the EFIE to the solve scattering problem of a

perfect electric conductor (PEC):

−Einc(r) = iωµ

ˆ
S

G(r, r′) · Js(r′), (1.2)

where G(r, r′) is the dyadic Green’s function and Js(r
′) is the surface current

with r′ on the inner surface of the PEC. In Chapters 3 and 4, more details

of SIE will be discussed to solve structures with two-dimensional materials.

To numerically solve the integral equations, the method of moments trans-

forms the governing equation into a matrix equation by expanding the un-

knowns with basis functions and then testing the system with testing func-

tions. Therefore, the computational complexity of O(N2) is inevitable when

calculating all mutual interactions in the Green’s function. Multi-level fast

multipole algorithm is a multi-level scheme to calculate the interactions effi-

ciently based on the addition theorem and the Green’s function. The com-

putation complexity can be reduced to O(N logN) or O(N) [1].

The 2D FMA and 3D FMA share the same interpretation of physics. The

low-frequency FMA (LF-FMA) and multi-level FMA (MLFMA, convention-

ally is applied in middle frequency) manifest two very different forms, i.e.,

multipole expansions and plane wave expansions, although both of them are

marked with the term “FMA”. The multipole expansions require high-order

multipoles to achieve certain accuracy as the frequency goes high, making

computation workload unaffordable. The plane wave expansions have low-

frequency breakdown issue due to inability to capture the evanescent waves

as the frequency goes low. As a result, LF-FMA and MLFMA can oper-

ate in their respective regimes efficiently, but are not applicable in the other

regime. Later a novel mixed-form FMA (MF-FMA) was proposed to pro-

vide a complete solution for wide-band applications. The MF-FMA contains

transformers between multipoles and plane waves [6]. Hence, it combines

both expansions into one oct-tree browsing process to cover both low and

middle frequencies efficiently. However, the accuracy in the transition region

(called the twilight zone between low and middle frequencies) is not very
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satisfactory. For 3D FMA, to expedite efficiency, a rotation technique can be

applied to multipole expansions, making the original dense matrices sparse

[7]. Therefore, multipoles with high orders can be used in the expansion and

maintain the accuracy in the twilight zone. Another novel hybridization of

the multipole and plane wave expansions for broadband simulation is pro-

posed by separating evanescent and plane waves explicitly within FMA [8].

In this dissertation, the 2D FMA is revisited and a novel diagonalization

is introduced, due to the demands in recent applications, such as photonic

crystals with inhomogeneous medium and imaging with inverse scattering

problems [9].

1.3 Surface Integral Equations for Two-dimensional

Materials

Emerging two-dimensional materials have drawn a lot of attention. Basically

they can be classified into two categories [10]. One is graphene (monolayer of

graphite), and the other is transition-metal dichalcogenide monolayer. The

former is centro-symmetric and has strong third-harmonic generation. The

latter is noncentro-symmetric and has strong second-harmonic generation.

Since they have thickness of atomic level and proper conductivity, it is best to

model the monolayer as a conducting surface. Therefore, the surface integral

equation is applicable in solving models with two-dimensional materials. We

have studied two scenarios for 2D materials according to their electrical and

optical properties with surface integral equations.

For the noncentro-symmetric material, we focus on its second-harmonic

generations since they have strong quadratically nonlinear susceptibility [11].

A metasurface platform to generate structured light at second harmonics is

designed. To simplify the modeling and exclude the effects from substrate,

the metasurface composite with TMDC flakes is suspended in the air. The

electric field integral equation with impedance boundary condition is used

to calculate the surface current on each flake at the fundamental frequency.

Then the electric currents at second harmonics are calculated by the rela-

tion between second-order currents and the electric fields at fundamental

frequency. Furthermore, the scattered electromagnetic fields at second har-

monics are obtained by the corresponding operators.
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For the centro-symmetric material, i.e., graphene, we study the radiative

heat transfer between two graphene-wrapped objects in the interest of the

graphene plasmonics in that regime. In this configuration, a PMCHWT form

with impedance boundary conditions is required for the existence of dielectric

bodies and the surface conductivity of graphene. Two kinds of the fluctuating

sources are considered: one is from the dielectric body due to the complex

permittivity, and the other is from the graphene layer due to the complex

surface conductivity. To maintain the flux reciprocity between the object of

sources and the object absorbing the power, the matrix of the system should

be symmetric. More details will be discussed in Chapter 4.

1.4 An Overview of the Dissertation

Fast algorithms and surface integral equations in computational electromag-

netics with new applications are studied in this dissertation.

In Chapter 2, a wide-band two-dimensional fast multipole algorithm (2D-

FMA) with a novel diagonalization form is presented. Invoking Parseval’s

theorem and scaling the special functions, the new 2D-FMA is highly effi-

cient and accurate for broadband. Applying the 2D-FMA into VIE (volume

integral equation), the performance has been demonstrated in the study of

photonic crystal defects and waveguides.

In Chapter 3, a metasurface platform based on transition-metal dichalco-

genide flakes is designed to generate structured light at second-harmonic fre-

quency. The electric field integral equation (EFIE) with impedance boundary

condition is introduced to calculate the surface currents at the fundamental

frequency, which will be used to obtain the scattered electric field at the

second-harmonics. Both radial and azimuthal polarizations can be generated

when the incident wave at the fundamental frequency is linearly polarized.

Orbital angular momentum with several modes can be generated when the

incident wave is circularly polarized.

In Chapter 4, we propose a PMCHWT form based method to study the

heat transfer problem for graphene-wrapped objects with arbitrary shapes.

The scattering problem for a graphene-wrapped sphere is analyzed first for

the benchmark operators established. Then the fluctuating-surface-current

formulation of radiative heat transfer for two dielectric objects is revisited.
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This formulation is extended to the scenarios when the dielectric objects

are coated with graphene layers by applying the operators verified in the

scattering problem and the two-dimensional fluctuation-dissipation theorem.

Numerical results demonstrate the reciprocity of fluxes for the two objects.

Finally we draw the conclusions in Chapter 5 and propose some possible

future work.
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CHAPTER 2

A WIDE-BAND TWO-DIMENSIONAL
FAST MULTIPOLE ALGORITHM WITH A

NOVEL DIAGONALIZATION FORM

2.1 Introduction

The fast multipole algorithm (FMA) has been proposed for two decades

since its initial version for solving coulombic interactions in large-scale parti-

cle problems [12, 13]. A lot of research has made contributions to the study

in FMA, among which the multi-level FMA with interpolation and anterpo-

lation is the most popular [1, 14], which has been extended to mixed-form

FMA and applied to dielectric problems [7, 15]. It can be used to solve prob-

lems of three billion unknowns with the advancements in parallel computer

hardware and efficient implementations [16]. Less attention is paid to the

two-dimensional (2D) FMA, since it is easier, less complicated and even less

applicable to real world situations than the 3D counterpart. A normalized

plane-wave method for 2D Helmholtz problems has been proposed for a wide-

band algorithm [17]. Recent studies in devices with dielectric materials and

imaging with inverse scattering problems require a fast and efficient algorithm

for inhomogeneous media. The 2D FMA with the plane-wave expansion has

been successfully incorporated for fast full-wave tomographic image recon-

struction, where the Helmholtz equation is solved without any approximation

[18]. However, these implementations suffer from low-frequency breakdown

and therefore cannot be employed for many ultrasound and seismic imaging

methods where the incident wave is a pulse with a wide bandwidth. Therefore

a scalable, wide-band FMA solver is highly desirable for real-world imaging

applications. Besides, the study of the 2D FMA provides insights for the

solutions to 3D case as they share the same physics.

The addition theorem applied to the Green’s function can be interpreted as

Parseval’s theorem in Fourier transform for 2D cases [1]. This naturally leads

to the two forms of FMA, i.e., multipole expansion in coordinate space and
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plane-wave expansion in Fourier space. Then the diagonalization of FMA

from a dense matrix in the multipole expansion to a diagonal matrix in the

plane-wave expansion can be taken as the transformation of a convolution

in coordinate space to an ordinary multiplication in Fourier space, which re-

duces the computational complexity greatly. The plane-wave expansion has

the low-frequency breakdown issue due to its failure to capture the evanescent

spectra. Mathematically, this issue is caused by a finite summation of Han-

kel functions with extremely large values when the argument is close to the

singularity point. Meanwhile the multipole expansion is inefficient at high

frequencies, since more higher order multipoles are required which adds an

impractical cost in the computation of dense matrices. Therefore, a twilight

zone exists between the low-frequency and high-frequency regimes, where the

FMA is not that accurate or not efficient. Similar scenarios exist in 3D case.

A broadband 3D FMA can be achieved by the enhanced mixed-form FMA

with rotation matrices in high-order multipoles [7], or by the approximated

diagonalization of the Green’s function with normalization technique [19, 20].

The spectral representation of the Green’s function can also achieve a broad-

band scheme by expressing the fields with both propagating and evanescent

parts explicitly. To find an efficient integral path in spectral representation,

it introduces direction-dependent integrals (six directions have to be consid-

ered) that require other techniques (like rotation [21], QR-algorithm [22]) or

more memory storage and operations in the FMA procedure [23].

In this chapter, we focus on the 2D case due to its potential applica-

tions mentioned before. Besides, we prefer not to introduce the direction-

dependent integrals; therefore, the spectral representation in 2D case is not

considered here. To close the gap in the twilight zone, a novel diagonaliza-

tion is proposed in this work based on the aforementioned idea of Fourier

transform with scaled special functions. This is different from the deriva-

tions in [17], which inserted identities of Kronecker delta function. To clarify

the novelty of our work, it is noted that, the proposed idea to achieve a

broadband FMA is essentially different from the work in [19] (in which the

approximated formulas of Bessel functions are used), though both of them

use the normalization technique. The translators in multipole expansions are

set up as a set of Fourier coefficients with a scaling parameter, so there is

no longer a dense matrix. Then the subsequent aggregation, translation and

disaggregation are calculated in Fourier space. Since the Hankel functions
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have been normalized, the breakdown issue is overcome in the gap region

with comparable complexity in the plane-wave expansion.

This chapter is organized as follows: Section 2.2 gives the derivation of

this novel diagonalization and the numerical treatments. In Section 2.3, nu-

merical analysis is provided. The proposed broadband FMA is applied to

the volume integral equation (VIE) [24] to study the scattering of dielectric

cylinders in 2D photonic crystals. The analysis of defect modes serves as the

application in the low-frequency regime. On the other hand, the study of

wave propagation in photonic crystal waveguides plays a role in the appli-

cation for the high-frequency regime. Section 2.4 concludes the chapter and

discusses extending the algorithm to the 3D case.

2.2 Theory of Combined-form Fast Multipole

Algorithm

In this section, the conventional diagonalization in 2D FMA is briefly intro-

duced based on the interpretation of Parseval’s theorem. Then, the DFT-

FMA is proposed with scaled special functions. Afterwards, its extension to

multi-level structures and conversion to the plane-wave expansion are given.

2.2.1 Parseval’s Theorem and Diagonalization in FMA

In Fourier transform. Any arbitrary periodic function can be expressed as a

Fourier series:

F (φ) =
+∞∑

n=−∞

fne
inφ, (2.1)

where fn is the set of Fourier coefficients. Assume G(φ) is another periodic

function expressible as:

G(φ) =
+∞∑

n=−∞

gne
inφ. (2.2)

According to Parseval’s theorem, we have

+∞∑
n=−∞

fngn =
1

2π

ˆ π

−π
dφF (φ)G(φ), (2.3)
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where the horizontal bars indicate complex conjugation. Based on the above

theorems, the multipole expansion of the Green’s function can be diagonal-

ized to plane-wave expansion by Fourier transform. According to the addition

theorem, the factorization of Green’s function has the following multipole ex-

pansion [1], if ρji = ρjl′ + ρl′l + ρli:

H
(1)
0 (kρji) =

+∞∑
m=−∞

Jm(kρjl′)e
im(φjl′−π)

·
+∞∑

n=−∞

H
(1)
m−n(kρl′l)e

−i(m−n)φl′lJn(kρli)e
−inφli . (2.4)

The plane-waves for receiving and radiation patterns can be expressed as

a Fourier series:

A(φ) = eikρjl′cos(φ−φjl′ ) =
+∞∑

m=−∞

Jm(kρjl′)e
−im(φjl′−π)eim(φ−π/2) (2.5)

=
+∞∑

m=−∞

ame
im(φ−π/2) (2.6)

and

D(φ) = e−ikρlicos(φ−φli) =
+∞∑

n=−∞

Jn(kρli)e
−in(φli)ein(φ−π/2) (2.7)

=
+∞∑

n=−∞

dne
in(φ−π/2), (2.8)

where

am = Jm(kρjl′)e
−im(φjl′−π) (2.9)

and

dn = Jn(kρli)e
−in(φli). (2.10)

are the Fourier coefficients. Note that am and dn here are slightly different

from the standard Fourier coefficients, since the basis used here is ein(φ−π/2)

instead of einφ. Then the Green’s function in Eq. (2.4) is actually expressed
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by these Fourier coefficients:

H
(1)
0 (kρji) =

+∞∑
m=−∞

a∗m ·
+∞∑

n=−∞

H
(1)
m−n(kρl′l)e

−i(m−n)φl′ldn. (2.11)

The inner summation over n of Eq. (2.11) is a convolution which is a product

in Fourier space. Denote the periodic function with Hankel functions inside

Eq. (2.11) as Fourier series C(φ):

C(φ) =
+∞∑

n=−∞

H(1)
n (kρl′l)e

−inφl′lein(φ−π/2) (2.12)

=
+∞∑

n=−∞

cne
in(φ−π/2). (2.13)

Then, the product in Fourier space of the above convolution can be expressed

as:

B(φ) = C(φ)D(φ) =
+∞∑

m=−∞

( +∞∑
n=−∞

cm−ndn

)
ein(φ−π/2) (2.14)

=
+∞∑

m=−∞

bme
in(φ−π/2). (2.15)

Invoking Parseval’s theorem to Eq. (2.11), the Green’s function can be

expressed as:

H
(1)
0 (kρji) =

+∞∑
m=−∞

ambm =
+∞∑

m=−∞

am

( +∞∑
n=−∞

cm−ndn

)
=

1

2π

ˆ 2π

0

dφA(φ)B(φ) =
1

2π

ˆ 2π

0

dφA(φ)C(φ)D(φ)

=
1

2π

ˆ 2π

0

dφe−ikρjl′cos(φ−φjl′ )α̃(φ)e−ikρlicos(φ−φli), (2.16)

where

α̃(φ) =
+P∑

n=−P

H(1)
n (kρl′l)e

−inφl′lein(φ−π/2) (2.17)

=
+P∑

n=−P

H(1)
n (kρl′l)e

−in(φl′l−φ+π/2), (2.18)

11



which is C(φ) with truncation. Rewriting Eq. (2.16), the diagonalization of

multipole expansions can be achieved as

H
(1)
0 (kρji) =

1

2π

ˆ 2π

0

dφe−ik·ρjl′ α̃(φ)e−ik·ρli , (2.19)

which is also named as plane-wave expansions of the Green’s function.

2.2.2 Diagonalization with Scaled Special Functions

Although the diagonalization of the multipole expansion reduces the com-

putation cost greatly (from dense matrices to diagonal matrices), the plane-

wave expansion has the low-frequency breakdown issue. This can be ex-

plained from two factors in mathematics: One is that the summation in α̃(φ)

[Eq. (2.18)] is divergent due to the singular property of Hankel function for

small arguments. The other is the inaccuracy of extracting extremely small

values from exponential functions (as the radiation pattern in plane-wave

expansion) because of machine precision. A normalization technique can be

applied to scale the Hankel function. However, if we normalize those Fourier

coefficients, the analytical relation of Fourier pairs is not approachable. We

can use discrete Fourier transform (DFT) to calculate the periodic functions

in Fourier space numerically, by modifying am, cn and dn to standard form,

i.e.,

a
′

m = Jm(kρjl′)e
−im(φjl′−π)e−imπ/2, (2.20)

c
′

n = H(1)
n (kρl′l)e

−inφl′le−inπ/2 (2.21)

and

d
′

n = Jn(kρli)e
−in(φli)e−inπ/2. (2.22)

Furthermore, we split the normalization into two parts based on the sign

of the subscripts of Hankel functions. It is easier to see the cancellation of

12



the normalization from the multipole expansion of the Green’s function:

H
(1)
0 (kρji) =

m=P∑
m=−P

amt
−m

m+P∑
n=m−P

cm−n,m≥nt
m−ndnt

+n

+
m=P∑
m=−P

amt
+m

m+P∑
n=m−P

cm−n,m<nt
n−mdnt

−n,

(2.23)

where t is the normalization factor (0 < t ≤ 1). The value of t is de-

termined according to the asymptotic form of the Hankel function and its

maximum value for a certain argument as t = (Cmax/|HP |)1/P , where Cmax

is a preset constant used to confine the maximum magnitude of the Hankel

function within the range 0 ∼ Cmax. For instance, Cmax can be set as 1.0E2,

then the magnitude values of all the normalized Hankel functions are smaller

than 1.0E2, eliminating those extremely large values in unnormalized Hankel

functions.

To apply DFT, the normalized Fourier coefficients for the positive part are

â+m = a
′

mt
−m = Jm(kρjl′)e

−im(φjl′−π)e−imπ/2t−m, (2.24)

d̂+n = d
′

nt
+n = Jn(kρli)e

−in(φli)e−inπ/2t+n, (2.25)

ĉ+n,n≥0 =

H
(1)
n (kρl′l)e

−inφl′le−inπ/2t+n, n ≥ 0

0, n < 0
. (2.26)

For the negative part, we have

â−m = a
′

mt
+m = Jm(kρjl′)e

−im(φjl′−π)e−imπ/2t+m, (2.27)

d̂−n = d
′

nt
−n = Jn(kρli)e

−in(φli)e−inπ/2t−n, (2.28)

ĉ−n,n<0 =

0, n ≥ 0

H
(1)
n (kρl′l)e

−inφl′le−inπ/2t−n, n < 0.
(2.29)
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Now, we can write the diagonalization of normalized multipole expansions

as

H
(1)
0 (kρji) =

1

2π

ˆ 2π

0

dφF
[
â+m
]∗F[ĉ+n,n≥0]F[d̂+n ]

+
1

2π

ˆ 2π

0

dφF
[
â−m
]∗F[ĉ−n,n<0

]
F
[
d̂−n
]
,

(2.30)

where F denotes DFT. In implementation, we can use fast Fourier transform

(FFT) to accelerate the algorithm further.

2.2.3 A Scheme for Wide-band Algorithm

The DFT-FMA has the same complexity with the plane-wave expansion. It

is stable at low frequency where plane-wave expansion fails. Error analysis

for one-level multipole expansion (named as LF-FMA in convention), DFT-

FMA and plane-wave expansion can be found in Fig. 2.1 (b) where the worst

case is studied (radiation and receiving points are the diagonal vertices of the

buffer box as (a) shows).

The multi-level scheme makes the algorithm into a fast solver. Since the

singular property of Hankel function is rather sensitive with the argument

in low-frequency regime, different normalization factors should be used at

each level. For one matrix-vector product operation (MVP), the radiation

patterns start as unnormalized Fourier coefficients. During the process of

aggregation, those Fourier coefficients from the children level are normalized

in both negative and positive forms, then shifted with negative and positive

outer-to-outer (o2o) translators. Then renormalization is applied to the ag-

gregated radiation pattern, making them as unnormalized Fourier coefficients

in the parent level.

Ideally, the set of Fourier coefficients recovered from the negative normal-

ization should be equal to the set from the positive one. However, due to

the finite machine precision, the re-normalization introduces errors (see Fig.

2.2).

The recovered coefficients can be obtained accurately by combining the

left half from the positive normalization and the right half from the negative

normalization (see the black cross line in Fig. 2.2). Assume {un} is the set

14



i

j

(a)

10
-1

10
0

10
1

R
el

at
iv

e 
E

rr
o
r

10
-10

10
-5

10
0

plane-wave expan.
LF-FMA, P = 32
LF-FMA, P = 40
DFT-FMA, P = 32
DFT-FMA, P = 40

(b)

Box Size (λ)

Figure 2.1: (a) Configuration of the test for a set of point-to-point. (b)
Error comparisons for the one-level multipole expansion, DFT-FMA,
plane-wave expansion.

of Fourier coefficients in the parent level, then the o2o translation can be

expressed as the following compact form:

{un} = [S̄] · {t−n} · [F̄ ]−1 · ˜̄β+ · [F̄ ] · {d′

nt
+n}+ [Ī − S̄]

·{t+n} · [F̄ ]−1 · ˜̄β− · [F̄ ] · {d′

nt
−n}, (2.31)

where [F̄ ] and [F̄ ]−1 denote the operations of Fourier transform and inverse

Fourier transform, respectively. Symbolic matrices [S̄] and [Ī − S̄] repre-

sent the manipulation of taking the proper half parts from the negative and

positive renormalized coefficients.

A similar process happens during the outer-to-inner (o2i) translation in

the DFT-FMA. When the ratio of box size over the wavelength at a certain

level enters the middle frequency regime (for instance, the ratio of 2.0 in Fig.

2.1), no normalization is required, since the plane-wave expansion works very
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Figure 2.2: Comparison of the Fourier coefficients recovered from
DFT-FMA.

well. Then the stored Fourier coefficients are transformed to the plane-wave

form followed by the o2o shifting. Figure 2.3 shows the relative error of

the radiation pattern generated from the combined coefficients, recovered

coefficients only from the negative normalization and recovered coefficients

only from the positive normalization in reference to the analytical plane-wave

expression. It can be found that the conversion from the DFT-FMA to the

plane-wave expansion is highly accurate.

It should be noted that the disaggregation part is the transpose conjugate

of the aggregation part, and thus we can arrive at a wide-band multi-level

algorithm with high accuracy.

2.3 Numerical Results

Numerical analyses of the pure DFT-FMA and the aforementioned FMA with

combination of different forms (denoted as comb-form-FMA, in which the

DFT-FMA serves in the transition region between the multipole expansion

and the plane-wave expansion) are given in this section. Then, this new

wide-band fast technique is applied to VIE to solve the scattering problems

of dielectric cylinders in 2D photonic crystals.
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Figure 2.3: Relative error of radiation patterns generated from the
recovered coefficients in Fourier space.

2.3.1 Complexities and error analysis of DFT-FMA

First, we compare the performance of the DFT-FMA with the multipole

expansion by changing the number of levels when the leaf box size is fixed

(this changes the number of unknowns). The source points and field points

are distributed on each grid of the whole domain. A simple illustration of

the multi-level structure is given in Fig. 2.4, where only partial points are

shown. Figures 2.5 and 2.6 show the normalized memory cost and time cost

for FMA setup with the number of harmonics of 32, 40, 58. It can be seen

that the DFT-FMA reduces both the memory and time cost greatly. Larger

number of harmonics results in larger difference. The normalized time cost

in MVP is in Fig. 2.7, in which the difference between the LF-FMA and

the DFT-FMA is not as huge as the time cost in FMA setup due to the

computation of normalization and renormalization, FFT and inverse FFT

for each translation.

The error analysis can be found in Fig. 2.8 with the number of levels

as 4. Similar to the error of the one level case (see Fig. 2.1) in previous

section, the plane-wave expansion has the low-frequency breakdown issue

and the LF-FMA is inefficient in the middle frequency regime. However, the

comb-form-FMA works well for the whole range of frequency. Note that,

the accuracy of comb-form-FMA is slightly lower than the LF-FMA. This
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Figure 2.4: Multi-level structure for two-dimensional fast multipole
algorithm. Partial points are shown here.
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18



10
4

10
5

10
-2

10
-1

10
0

P = 32, LF-FMA

P = 40, LF-FMA

P = 58, LF-FMA

P = 32, DFT-FMA

P = 40, DFT-FMA

P = 58, DFT-FMA

Number of Unknowns

N
o
rm

al
iz

ed
 T

im
e 

fo
r 

F
M

A
 S

et
u
p

Figure 2.6: Normalized time cost for FMA setup in the LF-FMA and the
DFT-FMA.

10
4

10
5

10
-3

10
-2

10
-1

10
0

P = 32, LF-FMA

P = 40, LF-FMA

P = 58, LF-FMA

P = 32, DFT-FMA

P = 40, DFT-FMA

P = 58, DFT-FMA

Number of Unknowns

N
o
rm

a
li

z
e
d
 T

im
e
 f

o
r 

M
V

P

Figure 2.7: Normalized time cost for MVP in the LF-FMA and the
DFT-FMA.

19



10
-1

10
0

10
1

10
-10

10
-5

10
0

plane-wave expan.

LF-FMA, P = 32

LF-FMA, P = 40

Comb-form-FMA, P = 40

Leaf Box Size ( )

M
ax

im
u
m

 V
al

u
e 

o
f 

th
e 

R
el

at
iv

e 
E

rr
o
r

Figure 2.8: Maximum relative error for the plane-wave expansion, the
LF-FMA and the comb-form-FMA. For the comb-form-FMA, the number
of harmonics is 40.

is because the machine precision of the inverse FFT cannot recover those

extremely small values in the radiation pattern (or the receiving pattern).

Overall, the comb-form-FMA can achieve a wide-band algorithm with high

accuracy and less computation cost.

2.3.2 Defect modes in photonic crystals

The defect modes are the localized states in the band gap that can be gener-

ated by a point defect. To verify that the proposed DFT-FMA works well in

the low-frequency regime, we apply it to the VIE to identify the defect modes

in 2D photonic crystals (on x−y plane). Here the TM modes ({Ez, Hx, Hy})
are studied as an example. All the modes can be excited by an incident

plane wave along a non-symmetric direction of the crystal [25]. We choose

the incident angle of the plane wave to be 60◦ to excite all the modes. The

2D photonic crystals with a defect at the center can be found in Fig. 2.9 (a),

containing GaAs rods with the permittivity of 11.56. The radii of the defect

rod and the regular rod are 0.6a and 0.2a, where the lattice length a is 1µm.

Note that, for our simulation, a supercell approach is adopted. In FMA, the

ratio of the box size over the wavelength at the leaf level is set as 0.025 with

the resolution of the grids as 0.0025. The number of levels is 7. By choosing
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the normalized frequency ωa/2πc to be 0.2970, 0.3190, 0.3345 and 0.3916, we

can excite quadrupole (odd-odd), quadrupole (even-even), monopole (second

order) and hexapole (even-odd) (see Fig. 2.9 (b)-(e) where Ez is plotted).

The “odd/even-odd/even” represents the properties of symmetry to axes x

and y. The results match the data from [25] well.
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Figure 2.9: (a) Illustration of photonic crystals with a centered defect. (b)
Mode 1: quadrupole (odd-odd). (c) Mode 2: quadrupole (even-even). (d)
Mode 3: monopole (2nd order). (e) Mode 4: hexapole (even-odd).

2.3.3 Photonic crystal waveguide

Now we study the application of this broadband algorithm in the long wave-

length regime. The photonic crystal waveguide with a sharp bend proposed
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in [26] is studied to observe the high transmission of light. Similarly, the

TM modes are analyzed in this scenario. The configuration of the photonic

band-gap waveguide is given in Fig. 2.10 (a). The radius of the GaAs rods

is 0.18a, where a is the lattice constant.

In the setup of FMA, the ratio of the box size to the wavelength (λ)

is 0.04 at the leaf level. The number of levels is 8, therefore the whole

computation domain is 5.12λ× 5.12λ. A point source is placed at the center

of the input port. Highly efficient transmission can be achieved when the

normalized frequency ωa/2πc is set as 0.353. It is consistent with the results

in [26]. Figures 2.10 (b)-(d) show the energy of the field, the incident field

and the total field in the waveguide, respectively. Combined with previous
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Figure 2.10: (a) Illustration of photonic waveguide structure. (b) Energy
plot. (c) Incident wave by a point source. (d) Total field.

simulations, we can see that the broadband FMA can work well in both

sub-wavelength and long wavelength problems.
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2.4 Conclusion

In this chapter, a novel diagonalization for 2D FMA is proposed to achieve

a highly efficient and accurate broadband FMA. Numerical analyses of the

proposed FMA with the applications in photonic crystals demonstrates its

performance completely. The derivation, based on Parseval’s theorem, pro-

vides insights for 3D FMA, in which the spherical harmonic transform can

be taken as the counterpart of Fourier transform.
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CHAPTER 3

SECOND-HARMONIC GENERATION OF
STRUCTURED LIGHT BY

TRANSITION-METAL DICHALCOGENIDE
METASURFACES

3.1 Introduction

It is well known that plane waves have independent degrees of freedom includ-

ing frequency, amplitude, polarization, and phase. Fundamentally different

from plane waves, structured light has inhomogeneous and correlated ampli-

tude, polarization and phase. As additional degrees of freedom, the spatially

inhomogeneous fields occur at the subwavelength scales of nano-optics due

to the strong spin-orbital coupling, when polarized photons interact with

inhomogeneous media [27]. Structured light including Hermite-Gaussian

and Bessel beams [28, 29], Laguerre-Gaussian beams [29, 30] with helical

phasefront carrying orbital angular momentum (OAM), and radially and az-

imuthally polarized vector beams [31, 32] brings novel functions to optical

nano-devices and advances important applications in optical and quantum

manipulation, microscopy, imaging, sensing, and communications [33]. For

example, the radially polarized beam has been applied to high-resolution

imaging attributed to its tighter focusing spot [34]. It can also be used in

trapping nanoparticles since the beam exerts a larger longitudinal force on

the particles [35]. Moreover, single-molecule localization microscopy [36] and

a particle exchanger [37] employ the azimuthally polarized beam. Addition-

ally, recent studies show potential applications of structured light in opti-

cal communications to gain communication channels through ‘mode-division

multiplexing’ [38, 39].

One of the tools to generate structured light is based on bulk materials and

volumetric structures [40, 41, 42, 43, 44]. However, the diffraction effect often

makes on-chip integration of these bulk devices impossible. Alternatively, a

metasurface [45, 46, 47] that is a planar structure locally modifying the spatial

pattern of light in reflection or transmission offers inspiring solutions to tackle
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the problem. It not only opens new paradigms for generating structured

light at fundamental and high harmonics [48, 49, 50], but also deepens the

physical understanding of linear and nonlinear spin-orbit interaction of light

at subwavelength scales [51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Metasurfaces

based on van der Waals materials have been reported for controlling light

in linear optics [61, 62]. Most previous work on nonlinear generation of

structured light is based on geometric configuration of the meta-atoms (like

split resonant rings, U-shaped resonators, etc). Very recently, the nonlinear

generation of structured light by hybridized metasurfaces of two-dimensional

(2D) materials and plasmonic nanostructures is reported in [63, 64].

In this chapter, we propose a 2D material based metasurface platform to

generate structured light at second harmonics. The meta-atoms of the meta-

surface are the transition-metal dichalcogenide (TMDC) flakes exhibiting

the anisotropic second-order susceptibility and three-fold rotation symmetri-

cal crystalline structure. The TMDC monolayer has strong second-harmonic

generation (SHG) due to absence of inversion symmetry. The WS2 adopted

in this work has effective bulk quadratic nonlinear susceptibility comparable

to that of GaAs (a medium with strong bulk SHG) in visible regime [10].

Using identical meta-atoms with tailored translations and orientations, the

metasurfaces could generate radially and azimuthally polarized beams and

vortex beams carrying OAM at second-harmonic frequencies. Different from

[63, 64], we make use of all-TMDC flakes to generate a variety of structured

light, which allows for ultra-thin metasurface designs. This characteristic

can satisfy the requirements for ultra-compact sources of structured light in

many evolving applications [39]. Furthermore, the TMDC based metasur-

face is compatible with a CMOS fabrication process [65, 66]. Therefore, the

metasurface composed of TMDC flakes may become a competitive platform

for generation of structured light at second harmonics.

This chapter is organized as follows: Section 3.2 gives the derivation of

the three-fold rotational symmetry of the second-harmonic generation for

TMDC monolayer. The electric field integral equation (EFIE) is introduced

to calculate the surface currents at fundamental frequency, which will be used

to obtain the scattered electric field at second harmonics. In Section 3.3, the

design procedure for the metasurface platform is provided. Structured light

(radial polarization, azimuthal polarization, orbital angular momentum) at

second harmonics is achieved. Section 3.4 concludes the design of metasurface
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and discusses the potential applications.

3.2 Theory and Methods

In this section, we provide the derivation of the three-fold rotational symme-

try of the second-harmonic generation for TMDC monolayer. The electric

field integral equation is applied to demonstrate this property numerically.

3.2.1 Second-harmonic generation of TMDC monolayer

The 2D TMDCs are semiconducting materials which render themselves par-

ticularly suitable for use in nanoscale light management in optical and opto-

electronic devices. They have noncentrosymmetric atomic lattices, and thus

allow even-order nonlinear optical processes. The crystalline structures of the

TMDC with odd number of layers belong to the D3h space group showing

the three-fold rotational symmetry and quadratically nonlinear susceptibility

tensor with a single nonzero element [10, 67, 68]:

χ(2) ≡ χ(2)
xxx = −χ(2)

xyy = −χ(2)
yyx = −χ(2)

yxy, (3.1)

where x is the armchair direction and y is the zigzag direction (see the inset in

Fig. 3.1 (b) ‘Top view’). It is experimentally reported that the TMDC mono-

layer has the maximum strength of SHG at normal incidence [68]; therefore,

the design in this work will focus only on monolayer structures.

Figure 3.1 (a) presents the configuration of the TMDC monolayer flattened

on a transparent and thin substrate (aluminum oxide or silicon oxide film),

illuminated by normal incident-wave propagating along the −z direction.

If the wave has a linear polarization vector êω, then the generated second-

harmonic wave E(2ω) polarized at a given direction ê2ω can be expressed

as:

E(2ω) · ê2ω = Cê2ω · χ(2) : êωêω, (3.2)

where ω is the fundamental frequency, 2ω is the second-harmonic frequency,

and C is a certain constant related to the local-field factors determined by the

local medium. The êω can be decomposed to Ex,ω = cos(φ) and Ey,ω = sin(φ),
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Top view

(a)

(b)

Figure 3.1: (a) Side view of the TMDC monolayer at the xoy plane. The
incident plane wave propagates along the −z direction. (b) Top view. The
polarization angle with respect to the armchair direction (i.e. x axis) is
denoted as φ.

where φ is the angle between the incident wave polarization and the x axis

(the armchair direction is aligned with the x axis). According to Eq. (3.1)

and Eq. (3.2), the components along x and y can be expressed as:

Ex,2ω = Cχ(2)
xxx cos(φ) cos(φ) + Cχ(2)

xyy sin(φ) sin(φ)

= Cχ(2)[cos2(φ)− sin2(φ)] (3.3)

and

Ey,2ω = Cχ(2)
yyx sin(φ) cos(φ) + Cχ(2)

yxy cos(φ) sin(φ)

= −2Cχ(2) sin(φ) cos(φ). (3.4)
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If we choose the analyzer (ê2ω) pointing to the fundamental polarization

vector, then the component parallel to the analyzer at second-harmonic fre-

quency is:

E‖(2ω) = Ex,2ω cos(φ) + Ey,2ω sin(φ)

= Cχ(2)[cos3(φ)− sin2(φ) cos(φ)− 2 sin(φ) cos(φ) sin(φ)]

= Cχ(2) cos(3φ). (3.5)

The number 3 is a critical characterizer for the anisotropic nonlinear suscep-

tibility with the three-fold rotational symmetry. In the same fashion, the

perpendicular component can be derived as:

E⊥(2ω) = −Ex,2ω sin(φ) + Ey,2ω cos(φ)

= Cχ(2)[− cos2(φ) sin(φ) + sin3(φ)− 2 sin(φ) cos(φ) cos(φ)]

= −Cχ(2) sin(3φ). (3.6)

Note that, in all discussions, the right-hand rule is applied. The above per-

pendicular component satisfies Ê‖ × Ê⊥ = ẑ.

3.2.2 Electric field integral equation for TMDC monolayers

We use the electric field integral equation (EFIE) with the impedance bound-

ary condition to calculate the surface current on the TMDC monolayer at

the fundamental frequency [5, 7]. In our theoretical model, it is reasonable

to ignore substrate effects because its relative permittivity is small enough

that it does not affect the polarization of the induced surface current at the

fundamental frequency, and the nonlinear response from the substrate is suf-

ficiently weak compared to the TMDC monolayer in visible regime [69] (e.g.,

h-BN, which is usually used as the substrate in experiments). The integral

equation can be expressed as:

Lω(r, r′) · Js,ω(r′)− 1

σs
{Js,ω(r)} = −Einc(r), (3.7)

where integration is implied over repeated variables. Here Js,ω is the surface

electric current, σs is the surface conductivity at the fundamental frequency

and Einc is the incident electric field. More explicitly, the operator L repre-
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sents

Lω(r, r′) = iωµ

ˆ
S

(
Ī +
∇∇
k2
) eik|r−r

′|

4π|r− r′|
, (3.8)

where Ī is identity matrix, µ is the permeability of air, k is the wavenumber

in air at the fundamental frequency, and S is the surface of the monolayer.

After a geometrical discretization of the TMDC flake with triangular patches,

the surface current can be expanded with Rao-Wilton-Glisson (RWG) basis

functions (two adjacent triangles straddled as one edge basis function). Let

{Λn(r)} be a RWG basis function, so that the surface current Js,ω(r) can be

written as Js,ω(r) =
∑

n Jω,nΛn(r) for N coefficients {Jω,n}. Testing the in-

tegral equation with the same basis functions (Galerkin’s method), Eq. (3.7)

can be converted into a representation of matrix-vector product:[
Lω −

1

σs
G

]
· Jω = g, (3.9)

where

[Lω]mn = 〈Λm(r),Lω(r, r′)Λn(r′)〉, (3.10)

[G]mn = 〈Λm(r),Λn(r′)〉, (3.11)

[Jω]n = Jω,n, [g]n = 〈Λm(r),−Einc(r)〉. (3.12)

Here, 〈·, ·〉 denotes the unconjugated inner product 〈f, g〉 =
´
f(r)g(r)dr,

and G is also called Gram matrix for RWG basis.

For the convenience of numerical computation, the E-field at fundamental

frequency E(ω) is calculated at the center of each triangular patch. Once the

current coefficients on RWG edges are obtained, the E-field at fundamental

frequency E(ω) on each triangular patch can be calculated. Then the surface

current at the second-harmonic frequency is calculated by:

Js,2ω · ê2ω = ê2ω · σ(2)
s : E(ω)E(ω). (3.13)
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The σ
(2)
s is the component of second-harmonic surface conductivity tensor:

σ(2)
s = −iε0(2ω)χ(2), (3.14)

where χ(2) is the second-harmonic susceptibility in Eq. (3.1). The scattered

electric field at second harmonics is calculated by:

Esca(2ω) = L2ω{Js,2ω}. (3.15)

Note that Js,2ω is discretized on each triangular patch numerically, while the

L2ω is established on edge basis of RWG. Therefore, the Gram matrix G

in (3.11) is applied to convert the Js,2ω to edge basis expansion before the

calculation of Eq. (3.15).
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Figure 3.2: (a) Polar plot for the second-harmonic intensity of the parallel
component. (b) Polar plot for the second-harmonic intensity of the
perpendicular component. The “EFIE-SHG” results (second-harmonic
generation by electric field integral equation) agree well with the
“Analytical” solutions: I‖,2ω ∝ cos2(3φ) and I⊥,2ω ∝ sin2(3φ). The
three-fold rotation symmetrical crystalline structure generates a
characteristic six-fold polar pattern for the second-harmonic intensities.

The surface conductivity and the second-order surface susceptibility χ(2) of

the TMDC monolayer can be found in [10], where WS2 material is adopted

in our calculation. The dimension of the TMDC monolayer is 2 µm × 2 µm

under the plane wave illumination with the wavelength of 800 nm. Then

we apply Eq. (3.2) to obtain the E-field at the second-harmonic frequency.

By rotating the monolayer and keeping the incident wave polarized along

the x direction, the far-field second-harmonic intensities as a function of φ

are calculated for both parallel component and perpendicular component
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(here we choose the analyzer ê2ω to be the same as êω, i.e., the x direction).

Equations (3.5) and (3.6) result in the intensities of parallel part I‖,2ω ∝
cos2(3φ) and the perpendicular part I⊥,2ω ∝ sin2(3φ). Figures 3.2 (a) and

(b) show the results calculated by the EFIE solver, which are consistent with

the analytical expressions, and the experimental data as well [67], validating

the accuracy of the model.

3.3 Metasurfaces for Structured Light Generation at

Second Harmonics

In this section, the design procedure for the metasurfraces platform is dis-

cussed for the generation of radial polarization, azimuthal polarization and

orbital angular momentum.

3.3.1 Generation of radially and azimuthally polarized beams

Figure 3.3 sets the global coordinate system as (x, y) and the local coordinate

system of the TMDC flake as (x′, y′), where x′ is the armchair direction. The

center of the square flake is placed at the position where the polar angle is

α, and the polarization angle between x′ and x is φ.

Figure 3.3: Rotated single TMDC flake with the local coordinates of
(x′, y′), where x′ is the armchair direction. The incident plane wave has a
fixed polarization along the x axis.

Assuming Ex,ω and Ey,ω are the two components of the incident wave at

the fundamental frequency, then the Ex′,ω = Ex,ω cos(φ) + Ey,ω sin(φ) and
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Ey′,ω = −Ex,ω sin(φ) + Ey,ω cos(φ). According to Eq. (3.1) and Eq. (3.2),

Ex′,2ω and Ey′,2ω can be expressed as:

Ex′,2ω = Cχ(2)
{

[cos2(φ)− sin2(φ)]Ex,ωEx,ω +

4 sin(φ) cos(φ)Ex,ωEy,ω + [sin2(φ)− cos2(φ)]Ey,ωEy,ω
}
(3.16)

and

Ey′,2ω = Cχ2
{

2 sin(φ) cos(φ)Ex,ωEx,ω +

2[sin2(φ)− cos2(φ)]Ex,ωEy,ω − 2 sin(φ) cos(φ)Ey,ωEy,ω
}
.

(3.17)

By vector decomposition, the Ex,2ω and Ey,2ω in the global system can be

derived as:

Ex,2ω = Ex′,2ω cos(φ)− Ey′,2ω sin(φ)

= Cχ2[cos(3φ)Ex,ωEx,ω + 2 sin(3φ)Ex,ωEy,ω

− cos(3φ)Ey,ωEy,ω] (3.18)

and

Ey,2ω = Ex′,2ω sin(φ) + Ey′,2ω cos(φ)

= Cχ2[sin(3φ)Ex,ωEx,ω − 2 cos(3φ)Ex,ωEy,ω

− sin(3φ)Ey,ωEy,ω]. (3.19)

Therefore, the nonlinear conversion between the second-harmonic electric

field (E-field) and the incident fundamental E-field can be linked by a Jones

matrix, i.e.:

[
Ex,2ω

Ey,2ω

]
= Cχ(2) ·R ·

Ex,ωEx,ωEx,ωEy,ω

Ey,ωEy,ω

 , (3.20)
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with

R =

[
cos(3φ) 2 sin(3φ) − cos(3φ)

sin(3φ) −2 cos(3φ) − sin(3φ)

]
, (3.21)

where 3φ is a geometric phase-like or Pancharatnam-Berry phase-like factor

[70, 71] due to the anisotropic nonlinearity of the TMDC material showing

three-fold rotational symmetry for its crystalline structure. Assuming the

incident wave is polarized along the x direction, i.e. Ey,ω = 0, and letting

Ex,ω = 1, then the parallel component of the second-harmonic generation

(SHG) is E‖(2ω) = Ex,2ω = cos(3φ), and the perpendicular component is

E⊥(2ω) = Ey,2ω = sin(3φ). Therefore, the resultant polarization will be

pointed at the radial direction in the global system if:

tan(α) =
Ey,2ω
Ex,2ω

= tan(3φ). (3.22)

(i) (ii) (iii)

(iv) (v) (vi)

Figure 3.4: Normalized radiation pattern of a single TMDC flake rotated
10◦ to achieve polarization pointing to the direction of 30◦ at second
harmonics. The incident fundamental pump is an x polarized plane wave
propagating along the −z direction. (i)-(iii) correspond to the side lengths
of 35 nm (0.044λ), 70 nm (0.088λ), 140 nm (0.175λ) at the fundamental
frequency with wavelength λ of 800 nm; (iv)-(vi) correspond to the side
lengths of 35, 70, 140 nm at second-harmonic frequency. Color bar indicates
the intensity of the normalized radiation pattern.

Figure 3.4 shows the normalized radiation pattern of a single TMDC flake

rotated 10◦ to achieve the polarization pointing to 30◦ at second-harmonic
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frequency for three side lengths of the flake, under the normal incident plane

wave polarized along the x axis at the fundamental frequency. It can be

found that in the sub-wavelength regime, the flake can be regarded as a dipole

both at the fundamental frequency and the second-harmonic frequency, with

polarization pointing to x axis and 30◦, respectively. Increasing the size of

the flake will be advantageous since it will increase the intensity of generated

fields. However, if the dimension of the flake is too large, the radiation

pattern at second harmonics will no longer be a dipole [Fig. 3.4 (vi)]. In the

following discussion, the side length of the flake as a meta-atom is set as 35

nm to demonstrate the design approach.

Figure 3.5: Schematic illustration of a TMDC metasurface for generating
the radially polarized beam.

In order to achieve the radial polarization, which is cylindrically symmet-

ric, each square flake is centered on a circle’s circumference. Figure 3.5

illustrates a schematic pattern of the proposed metasurface for generating

the radially polarized beams. The wavelength of incident E-field is 800 nm

and the radius R of the circle is 100 nm. The meta-atoms are placed at the

cylindrical coordinates of (R, 2πn/N), where n = 0, 1, ..., N −1 and N = 12.

The corresponding angles of rotation for each flake should be 2πn/(3N) by

Eq. (3.22). However, this orientation configuration results in an asymmetric
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metasurface structure on the whole and thus lowers the performance of the

radially polarized beam generated (see Fig. 3.6).

Figure 3.6: Schematic illustration of the metasurface with original rotating
angles.

Exploring the three-fold rotational symmetry of the nonlinear response, for

instance, instead of rotating 10◦ centered at (R, 30◦), the flake is rotated by

130◦. The 120◦ incremental rotation does not change the polarization state of

SHG. Similarly, for those flakes that break the symmetry, the rotating angle

is added by 2π/3 or 4π/3 (see Fig. 3.7). Figure 3.8 shows the transverse

Figure 3.7: Schematic illustration of metasurface with modified rotating
angles.

E-field distribution at the plane of z = −400 nm with x and y ranging from
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−0.8 µm to 0.8 µm. A radially polarized beam with a polarization singularity

can be clearly seen at the second-harmonic frequency.

Figure 3.8: Second-harmonic E-field of the radially polarized beam at the
plane of z = −400 nm. Color bar and arrows indicate the normalized
intensity and the direction of polarization for electric field on the plane,
respectively.

Figure 3.9 shows the azimuthally polarized beam generated at second har-

monics through rotating each flake by (2πn/N+π/2)/3. In the same fashion,

the rotating angle is adjusted by adding 2π/3 or 4π/3 when needed. One

can see the vortex-like polarization structure with a singularity at the beam

center (the E-field is plotted on the plane of z = −200 nm with x and y

ranging from −1.0 µm to 1.0 µm).

The polar angle α, rotating angle φ and modified rotating angle φ′ for

radial polarization and azimuthal polarization are given in Tables 3.1 and

3.2, respectively.

Table 3.1: Rotating angles for radial polarization

α 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

φ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦

φ′ 0◦ 130◦ 140◦ 270◦ 40◦ 50◦ 180◦ 310◦ 320◦ 90◦ 220◦ 230◦
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Figure 3.9: Second-harmonic E-field of the azimuthally polarized beam at
the plane of z = −200 nm. Color bar and arrows indicate the normalized
intensity and the direction of polarization for electric field on the plane,
respectively.

Table 3.2: Rotating angles for azimuthal polarization

α 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

φ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦

φ′ 150◦ 40◦ 50◦ 180◦ 310◦ 320◦ 90◦ 220◦ 230◦ 0◦ 130◦ 140◦

3.3.2 Generation of orbital angular momentum

In this section, we provide the derivation in generation of orbital angular

momentum (OAM) when the vertically incident plane wave with the left-

circular polarization (LCP) illuminates the flake, shown in Fig. 3.10. The

LCP plane wave is normalized as:

|L〉 =
1√
2

(
1

i

)
. (3.23)

With the LCP illumination, the electric field along the x′ and y′ at the

fundamental frequency can be expressed as:

Ex′,ω =
1√
2

[cos(φ) + i sin(φ)] =
1√
2
eiφ (3.24)
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Figure 3.10: Rotated single TMDC flake with the local coordinates of
(x′, y′), where x′ is the armchair direction. The incident plane wave is
left-circularly polarized.

and

Ey′,ω =
1√
2

[− sin(φ) + i cos(φ)] =
i√
2
eiφ. (3.25)

Then the second-harmonic components along the x′ and y′ are obtained by

Eq. (3.1) and Eq. (3.2) (here the parameters Cχ(2) are omitted):

Ex′,2ω =
1

2
ei2φ − −1

2
ei2φ = ei2φ (3.26)

and

Ey′,2ω = − i
2
ei2φ +

−i
2
ei2φ = −iei2φ. (3.27)

Back to the global system, the Ex,2ω and Ey,2ω have the following expressions:

Ex,2ω = Ex′,2ω cos(φ)− Ey′,2ω sin(φ)

= ei2φ cos(φ) + iei2φ sin(φ) = ei3φ (3.28)

and

Ey,2ω = Ex′,2ω sin(φ) + Ey′,2ω cos(φ)

= ei2φ sin(φ)− iei2φ cos(φ) = −iei3φ. (3.29)

The radial component Eρ is chosen to demonstrate the generation of orbital

angular momentum since eilα is the set of eigenstates for the Helmholtz equa-

tion in the cylindrical coordinates. For a flake centered with polar angle α,
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Eρ,2ω is expressed as:

Eρ,2ω = Ex,2ω cos(α) + Ey,2ω sin(α)

= ei3φ cos(α)− iei3φ sin(α) = ei3φ−iα. (3.30)

By choosing proper φ, the expression to generate OAM can be established

as:

Eρ,2ω = Cχ(2)ei3φ−iα = Cχ(2)eilα, (3.31)

where l is the topological charge of the OAM beam to be generated. The

nonlinear spin-orbital interaction can be seen from the supposition of the

geometric phase factors, originating from the relation between the circular

polarization and rotations of two coordinate frames of (x′, y′) and (x, y),

which are equivalent to the translations and orientations of the anisotropi-

cally nonlinear meta-atoms. We choose to focus on Eρ is because {eilα} is the

set of eigenstates for the Helmholtz equation in the cylindrical coordinates.

From Eq. (3.31), the rotating angle of each flake is φ = (l + 1)α/3, where

α = 2πn/N , n = 0, 1, ...N−1 and N = 12. To achieve l = 1 mode, φ = 2α/3;

l = 2, φ = α; and l = 3, φ = 4α/3. The three-fold rotational symmetry is

also explored here to modify the design. Figure 3.11 (a)-(c) show the phase

distributions for the OAM modes of l = 1, 2, 3 on a plane of z = −200 nm (x

and y ranging from −1.25 µm to 1.25 µm), with the corresponding Fourier

decompositions depicted at (d)-(f), respectively. When the topological charge

l = 1, 2, the desired vortex mode is dominant and the purity of the vortex

beam is high. However, regarding the case of l = 3, the amplitude of l = 1

mode is comparable to that of the l = 3 mode. The emerging of l = 1

mode is due the mutual coupling between each flake with the rotating angle

2πn/9, which is double of πn/9, the rotating angle for l = 1. For higher-order

OAM modes with l > 3, the mutual coupling and the three-fold rotational

symmetry of the TMDC crystals give rise to more quasi-degenerate modes.

The wavefronts of Ez,2ω for OAM l = 1 and l = 2 modes are plotted in

Fig. 3.12 (a)-(b) and are helical. Since l = 3 mode includes l = 1, it is not

shown here. For comparison, the wavefronts of Ez,2ω for radial polarization

is given in Fig. 3.12 (c), which is similar to that of azimuthal polarization.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.11: (a,b,c) Phase distributions of the second-harmonic Eρ
component for the OAM modes of (a) l = 1; (b) l = 2; (c) l = 3. (d,e,f)
Fourier decomposition of the second-harmonic Eρ component for the OAM
modes of (d) l = 1; (e) l = 2; (f) l = 3.
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(a) (b) (c)

Figure 3.12: Wavefront plot. (a) OAM mode of l = 1; (b) OAM mode of
l = 2; (c) Radial polarization.

3.4 Conclusion

In conclusion, the proposed TMDC metasurface converts fundamental plane

waves to versatile structured light at second-harmonic frequencies. The gen-

erated structured light includes radially and azimuthally polarized beams (by

linear-polarized plane waves) and vortex beams carrying different orders of

OAM modes (by circular-polarized plane waves). The anisotropically nonlin-

ear susceptibility with three-fold rotation symmetrical crystalline structure

makes the TMDC meta-atoms more flexible in the control of spatial struc-

tures of light at short wavelengths, which extends the spectral bandwidth of

operations in optical communication or other light manipulation. The trans-

lations and orientations of each anisotropically nonlinear meta-atom produce

geometric phase at second harmonics, which can be understood as a charac-

teristic of nonlinear spin-orbital interaction. Moreover, both the monolayer

and multilayered TMDCs can be patterned on flat and curved substrates

and integrated on-chip with other plasmonic and photonic nanostructures,

presenting a bright outlook for the applications to next-generation optical

and optoelectronic devices.
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CHAPTER 4

FLUCTUATING-SURFACE-CURRENT
FORMULATION OF RADIATIVE HEAT

TRANSFER FOR GRAPHENE-WRAPPED
OBJECTS

4.1 Introduction

Radiative heat transfer between two bodies separated by a subwavelength

gap is called near-field radiation. The heat transfer rates in this regime

can be enhanced beyond the constraint of the Planck law (which governs far-

field heat transfer) due to the tunneling of evanescent electromagnetic waves.

These enhancements have been observed in a number of recent experiments

[72, 73], which can be potentially applied in areas including thermal imaging,

thermal circuit elements, energy conversion and non-contact cooling. The de-

velopment in experiments has sparked the theoretical studies of the radiative

heat transfer in the aspects of mathematical and computational techniques.

The fluctuating-surface-current formulation of radiative heat transfer based

on surface integral equations (SIE) was first proposed in [74] to calculate the

heat flux between objects with arbitrary shapes. Before that, the model-

ing was focused on the simple parallel-plate structures. A good overview of

computational electromagnetics methods to study near-field heat transfer is

given in [75], which covers the partial-wave scattering method, SIE and the

finite-difference time domain method.

The enhancement mentioned above can be several orders of magnitude in

materials that support surface electromagnetic modes. Graphene plasmonics

has been proven to be an alternative platform for strong near-field radiation

enhancement [76, 77, 78, 79]. Among these works, most configurations are

still two parallel planar structures which have explicit expressions for the heat

flux spectrum [80, 81, 82]. Or the graphene nanodisk dimers are studied by

semianalytical model under electrostatic approximation [83]. The potential

applications include thermal plasmonic interconnects [84], heat flux splitting

[85] and ultrafast radiative cooling [86]. Graphene is a monolayer of carbon

42



atoms arranged in a hexagonal lattice with remarkable optical and electrical

properties [87]. Several numerical methods have been proposed to study the

electromagnetic phenomena of graphene-based structures [10, 88]. Compared

to modeling the graphene layer as a thin volume, it is more accurate to treat it

as a conducting surface. The surface integral equation (SIE) formulation has

the inherent advantage of capturing the layer feature of graphene. Therefore,

the fluctuating-surface-current formulation of radiative heat transfer based on

SIE can be extended to the configurations of graphene-wrapped objects with

arbitrary shapes. This will provide a possibility to study the heat transfer

for combinations of different bulk materials with graphene layer.

This chapter is organized as follows: Section 4.2 gives the derivation of

the surface integral equations (SIE) with impedance boundary condition for

a graphene-wrapped object. In Section 4.3, the fluctuating-surface-current

formulation of radiative heat transfer between two graphene-wrapped objects

is derived. Section 4.4 concludes this formulation for different scenarios and

discusses the potential applications.

4.2 Surface Integral Equations for a

Graphene-wrapped Object

In this section, the surface integral equations (SIE) are established for a

graphene-wrapped object. The scattering problem of a graphene-wrapped

sphere is solved to validate the SIE derived.

4.2.1 Basic equations for electric and magnetic fields

The graphene coating is modeled as a conducting surface due to its atomic

thickness. As illustrated in Fig. 4.1, the domain of the electromagnetic field

is divided into the interior of the dielectric domain V2, the external domain

V1 and the interface S. Surfaces S+ and S− are imaginary surfaces that

are just large enough to contain S and small enough to be enclosed in S,

respectively. The surface conductivity σs is introduced by graphene coating.

By invoking the Love’s equivalence principle [89] for the exterior medium,

the region V2 is filled up with the same material of the region V1. The equiv-

alent electric and magnetic currents (J1,M1) defined on the external surface
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Figure 4.1: Illustration of the Love’s equivalent principle for a scattering
problem of a graphene-wrapped object with homogeneous dielectric
material.

S+ produce the total electromagnetic field (Etot
1 ,Htot

1 ) in the region V1, and

null field in the region V2. The equivalent surface currents are the discon-

tinuities of the fields on the boundary S+, and according to the boundary

condition they can be written as:{
J1 = n×Htot

1

M1 = −n× Etot
1

, (4.1)

where n is the outer normal of the surface. Similarly, by invoking the Love’s

equivalence principle for the interior medium, the region V1 is filled up with

the same material of the region V2. The equivalent surface currents (J2,M2)

positioned on the interior surface S− generate the total electromagnetic field

(Etot
2 ,Htot

2 ) in the region V2 and null field in the region V1. According to the

boundary condition, they can be defined as:{
J2 = −n×Htot

2

M2 = n× Etot
2

. (4.2)
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Consequently, the surface integral equations for electric field become:

r ∈ V`, Etot
` (r)

r /∈ V`, 0

}
= Ei

`(r) + iωµ

ˆ
S+

dS ′G(r, r′) · J`(r′)

− ∇×
ˆ
S+

dS ′G(r, r′) ·M`(r
′), (4.3)

where the subscript ` = 1, 2 denotes the exterior or interior region, and Ei
`

represents the source field in region V`. For scattering problems, Ei
` is the

incident electric field, i.e. Einc, and Ei
2 = 0. In this section, only scattering

problems are discussed.

Using operator notations, Eq. (4.3) can be expressed more compactly as:

r ∈ V`, Etot
` (r)

r /∈ V`, 0

}
= Ei

`(r) + L`E(r, r′) · J`(r′) +K`E(r, r′) ·M`(r
′), (4.4)

where integral over repeated variables is implied. More explicitly, the oper-

ators are:

L`E(r, r′) = iωµ`G(r, r′) = iωµ`

(
I +
∇∇
k2`

)
g`(r, r

′) (4.5)

K`E(r, r′) = −∇×G(r, r′) = −∇g`(r, r′)× I, (4.6)

where

g`(r, r
′) =

eik`|r−r
′|

4π|r− r′|
, ` = 1, 2. (4.7)

The subscripts E of the above operators indicate that they are generating

electric field from either electric current or the magnetic current respectively.

Similarly, the integral equations for magnetic field can be written as:

r ∈ V`, Htot
` (r)

r /∈ V`, 0

}
= Hi

`(r) + L`H(r, r′) ·M`(r
′) +K`H(r, r′) · J`(r′),(4.8)

where the integral over repeated variables is implied. The Hi
` is the incident

magnetic field , i.e. Hinc, and Hi
2 = 0. The operators relevant to magnetic
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field are

L`H(r, r′) = iωε`G(r, r′) =
1

η2`
L`E(r, r′) (4.9)

K`H(r, r′) = ∇×G(r, r′) = −K`E(r, r′), (4.10)

where η` =
√
µ`/ε` and ` = 1, 2.

Due to the surface conductivity of graphene, denoted as σs, the tangential

component of the electric field is continuous while the tangential compo-

nent of the magnetic field is discontinuous. According to Eq. (4.1) and Eq.

(4.2), the exterior and interior equivalent surface currents have the following

relation: {
J1 + J2 = n× (Htot

1 −Htot
2 ) = Jσ

M1 + M2 = −n× (Etot
1 − Etot

2 ) = 0
, (4.11)

where Jσ = σsE1t = σsn ×M1 and E1t denotes the tangential component

Etot
1 on the boundary.

By applying the exterior and interior integral equations given in Eq. (4.4)

and Eq. (4.8) to the boundary conditions in Eq. (4.11) for both electric field

and magnetic field, a PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai)

formulation with impedance boundary is obtained:

n× [L1E(r, r′) · J1(r
′) +K1E(r, r′) ·M1(r

′)− L2E(r, r′) · J2(r
′)

−K2E(r, r′) ·M2(r
′)] = −n× Einc(r) (4.12)

n× [K1H(r, r′) · J1(r
′) + L1H(r, r′) ·M1(r

′)−K2H(r, r′) · J2(r
′)

−L2H(r, r′) ·M2(r
′)]− σsn×M1(r) = −n×Hinc(r), (4.13)

where the incident field Einc and Hinc have been moved to the other side.
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4.2.2 Principal value integrals and system matrix
representation

In last section, the surface integral equations for electric field and magnetic

field have been established. In addition, the boundary condition for graphene

coating (a conducting surface) indicates that J1+J2 = Jσ and M1+M2 = 0.

The gradient on the Green’s function in operator K makes the integral more

singular, and the principal value integral method can be used to evaluate this

singular integral [5]. The operator K′ denotes the principal value integral in

the following discussion.

On surface S+, the singular integral can be expressed as:

n×K1H(r, r′) · J1(r
′) = n×K′1H(r, r′) · J1(r

′) +
1

2
J1(r), (4.14)

and

n×K1E(r, r′) ·M1(r
′) = n×K′1E(r, r′) ·M1(r

′)− 1

2
M1(r). (4.15)

On surface S−, the sign in front of the currents changes due to the integral

path in the principal value integral:

n×K2H(r, r′) · J2(r
′) = n×K′2H(r, r′) · J2(r

′)− 1

2
J2(r), (4.16)

and

n×K2E(r, r′) ·M2(r
′) = n×K′2E(r, r′) ·M2(r

′) +
1

2
M2(r). (4.17)

Taking the principal value integral considered in Eq. (4.12), the integral

equation can be rewritten as:

n× [L1E(r, r′) · J1(r
′) +K′1E(r, r′) ·M1(r

′)− L2E(r, r′) · J2(r
′)

−K′2E(r, r′) ·M2(r
′)]− 1

2
[M1(r) + M2(r)] = −n× Einc(r). (4.18)

By applying −n× on both sides of Eq. (4.18), and due to the properties of
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Rao-Wilton-Glisson (RWG) basis functions, it can be further simplified as:

L1E(r, r′) · J1(r
′) + [K′1E(r, r′) +K′2E(r, r′)] ·M1(r

′)− L2E(r, r′) · J2(r
′)

= n× n× Einc(r) = −Einc
t (r), (4.19)

where Einc
t is the tangential component of Einc on the boundary.

Similarly, for Eq. (4.13), after employing principal value integral it can be

expressed as:

n× [K′1H(r, r′) · J1(r
′) + L1H(r, r′) ·M1(r

′)−K′2H(r, r′) · J2(r
′)

−L2H(r, r′) ·M2(r
′)] +

1

2
[J1(r) + J2(r)]− σsn×M1(r)

= −n×Hinc(r). (4.20)

Since J1 + J2 = Jσ = σsn ×M1 and M2 = −M1, the Eq. (4.20) can be

simplified as the following equation after applying −n× on its both sides:

K′1H(r, r′) · J1(r
′) + [L1H(r, r′) + L2H(r, r′)] ·M1(r

′)− 1

2
σsM1(r)

−K′2H(r, r′) · J2(r
′) = n× n×Hinc(r) = −Hinc

t (r), (4.21)

where Hinc
t is the tangential component of Hinc on the boundary.

Combing Eq. (4.19), Eq. (4.21) and the relation between currents, the

integral equations to be solved for the whole system can be expressed as a

matrix-vector form Cx = b:

C =

L1E K′1E +K′2E −L2E

K′1H L1H + L2H − 1
2
σs −K′2H

I −σsn× I I

 (4.22)

x =

 J1

M1

J2

 , b =

−Einc
t

−Hinc
t

0

 , (4.23)

where x is the vector of unknowns and b is the vector of excitation (here

(r, r′), (r) and (r′) are omitted for brevity).

In the discussion of radiative heat transfer later, the unknown currents

should be reduced to the interior equivalent surface currents, i.e., J2 and

M2, when the fluctuating-current sources are considered inside the object. In
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addition, the signs of J2 and M2 are flipped for the convenience of derivation.

Therefore the system equation becomes:

C =

L2E K′2E +K′1E L1E

K′2H L2H + L1H − 1
2
σs K′1H

−I −σsn× I I

 (4.24)

x =

 J2

M2

J1

 , b =

−Einc
t

−Hinc
t

0

 , (4.25)

where

J1 = J2 + σsn×M2. (4.26)

With the aid of basis functions and the Galerkin’s method, J1 can be repre-

sented by J2 and M2 numerically.

Assume

J2(r) =
N∑
n=1

J2nfn(r), M2(r) =
N∑
n=1

M2nfn(r), (4.27)

where fn(r) is a known as basis function (RWG is used in the whole discus-

sion), while J2n’s and M2n’s are the unknown expansion coefficients to be

sought in scattering problems. The above equations can be written com-

pactly:

J2(r) = F
T

(r) · I2J , M2(r) = F
T

(r) · I2M , (4.28)

where

[F(r)]n = fn(r), [I2J ]n = J2n, [I2M ]n = M2n. (4.29)

The superscript T denotes the transpose of a matrix (actually F is a vector

here).

Similarly, J1 can be expressed as

J1(r) =
N∑
n=1

J1nfn(r) = F
T

(r) · I1J

=
N∑
n=1

J2nfn(r) + σsn×
N∑
n=1

M2nfn(r)

= F
T

(r) · I2J + σsn× F
T

(r) · I2M . (4.30)
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By testing Eq. (4.30) with the same set of functions as in Galerkin’s method,

a matrix-vector product form to find J1n can be written as:

GM · I1J = GM · I2J + σsOX · I2M , (4.31)

where

[GM ]mn = 〈fm, fn〉 (4.32)

[OX ]mn = 〈fm,n× fn〉. (4.33)

〈f ,g〉 =

ˆ
f(r) · g(r)dr. (4.34)

The matrix GM is the Gram matrix of RWG basis functions. Therefore,

I1J = I2J + σsG
−1
M ·OX · I2M . (4.35)

Taking Eq. (4.35) back to Eq. (4.24) and Eq. (4.25), the system matrix-

vector form with testing and basis functions becomes:

C =

(
L2E + L1E K′2E +K′1E + σsL1E ·G

−1
M ·OX

K′2H +K′1H L2H + L1H − 1
2
σsGM + σsK′1H ·G

−1
M ·OX

)
(4.36)

x =

(
I2J

I2M

)
, b =

(
VE

VH

)
, (4.37)

where

VE = −〈f ,Einc
t 〉, VH = −〈f ,Hinc

t 〉. (4.38)

Note that in Eq. (4.36), we keep using the same notations of L and K′ for

brevity, which include both testing and basis functions.

4.2.3 Numerical results

In this section, the radar cross section (RCS) and scattering cross section

(SCS) efficiency of a graphene-wrapped dielectric sphere are provided as

benchmarks for the surface integral equations derived in the previous sec-

tion.

The surface conductivity of graphene is frequency dependent, which can

be derived by random-phase approximation [83], consisting of intra-band and
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inter-band conductivities, expressed as:

σs = σintra + σinter, (4.39)

where

σintra =
i

ω + i/τ

q202kBT

π~2
ln

[
2 cosh

EF
2kBT

]
(4.40)

σinter =
q20

4π~

[
H

(
~ω
2

)
+ i

4~ω
π

ˆ ∞
0

H(ξ)−H(~ω/2)

(~ω)2 − 4ξ2
dξ

]
, (4.41)

with

H(ξ) = sinh
ξ

kBT

[
cosh

EF
kBT

+ cosh
ξ

kBT

]−1
. (4.42)

In the above expressions, q0, ~, kB, EF , τ , and T are electron charge, re-

duced Plank constant, Boltzmann constant, Fermi energy, electron-phonon

relaxation time, and temperature, respectively.

Figure 4.2 shows the surface conductivity of graphene with T = 300 K,

τ = 0.1 ps for different Fermi energies (EF = 0.3, 0.35, 0.4 eV). The imagi-

nary part of the surface conductivity of the graphene is positive in the tera-

hertz regime, which indicates a “metallic” type nature that can support local

surface plasmons. We will show the resonant peaks in the scattering cross

section efficiency.

To compare the results of RCS calculated with Mie series for a multi-layer

sphere, an effective permittivity is introduced:

ε(ω) = ε0

(
1 +

iσs
ε0ωheff

)
, (4.43)

where ε0 is the permittivity in vacuum and heff is the effective thickness of

the graphene layer (here heff = 0.33 nm). Figure 4.3 shows the effective

permittivity corresponding to the surface conductivity shown in Figure 4.2.

Figure 4.4 shows the RCS of a graphene-wrapped sphere with radius of

500 nm and wavelength of 5 µm. The dielectric constants of the sphere and

the background are both 2.25. Obviously, the simulation from SIE has good

accuracy compared to analytical solutions.
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Figure 4.2: Surface conductivity of graphene at T = 300 K and τ = 0.1 ps.
The “Re[σs]” and “Im[σs]” denote the real and imaginary parts of σs.

The scattering cross section efficiency is also calculated for different radii

of the sphere and various Fermi energies. The results in Figs. 4.5 and 4.6

are consistent with the data from [90] which are calculated by Mie series.

The surface plasmon resonances are red-shifted with enhanced peaks as the

radius goes large, and blue-shifted with enhanced peaks as the Fermi energy

is increased.

In summary, the proposed SIE with impedance boundary condition for

a graphene-wrapped dielectric object has been validated by simulations of

RCS and SCS. The relation between interior and exterior equivalent surface

currents will be introduced in the discussion of the radiative heat transfer

when graphene is involved.
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Figure 4.3: Surface conductivity of graphene with T = 300 K and τ = 0.1
ps. The “Re[ε]” and “Im[ε]” denote the real and imaginary parts of ε.

angle (degree)
0 50 100 150

R
C

S 
(d

B
)

-50

-40

-30

-20

-10

0

Mie - RCS E plane
SIE - RCS E plane
Mie - RCS H plane
SIE - RCS H plane

Figure 4.4: A comparison of the simulated RCS and Mie series results on
the electric field plane (E plane) and the magnetic field plane (H plane).
Parameters used for graphene conductivity are T = 300 K, τ = 0.1 ps, and
EF = 0.4 eV.
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Figure 4.5: Scattering cross section efficiency of the graphene-wrapped
dielectric sphere as a function of the incident wavelength for different radii
of the sphere at Fermi energy EF = 0.3 eV. The relative permittivity of the
background and the dielectric sphere is 2.25. T = 300 K, τ = 0.1 ps.
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Figure 4.6: Scattering cross section efficiency of the graphene-wrapped
dielectric sphere as a function of the incident wavelength for different Fermi
energies at a fixed sphere radius R = 100 nm. The relative permittivity of
the background and the dielectric sphere is 2.25. T = 300 K, τ = 0.1 ps.
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4.3 Radiative Heat Transfer between

Graphene-wrapped Objects

In this section, the flux of radiative heat transfer (RHT) is derived based on

surface integral equations. The fluctuating-currents form for the flux of RHT

between two dielectric objects is revisited. Afterwards, this methodology is

extended to the scenarios of the objects with graphene coating.

4.3.1 Fluctuating-currents form for radiative heat transfer
between dielectric objects

The radiative heat transfer between two objects 1 and 2 at local temperatures

T1 and T2 can be written as [91, 92]

H =

ˆ ∞
0

dω[Θ(ω, T1)−Θ(ω, T2)]Φ(ω), (4.44)

where

Θ(ω, T ) =
~ω

e~ω/(kBT )−1
(4.45)

is the Planck energy per oscillator at temperature T , and Φ is an ensemble-

averaged flux spectrum into object 2 due to random currents in object 1.

Physically object 2 has random currents inside too; however, the reciprocity

explains that the same Φ for flux flows into object 1 due to sources in object 2

[93, 94]. This reciprocity can be interpreted as the symmetry of heat transfer,

which has been proved by trace formulas in terms of the scattering operators

of the individual object [95]. The problem remaining is to compute Φ. The

fluctuating surface current formulation of radiative heat transfer proposed

in [74] is the first work to apply surface integral equations to compute Φ

for homogeneous dielectric objects with arbitrary shape. The derivation is

revisited here, and a supplementary form is provided.

In the previous section, the surface integral equations Eq. (4.4) and Eq.

(4.8) have been established for general-purpose which can be extended to

two objects here. Different from scattering problems, the source fields come

from the interior instead of exterior in the discussion of radiative heat trans-

fer. Consider the system illustrated in Fig. 4.7, consisting of two dielectric

objects 1, 2 with homogeneous mediums (V1 and V2 with temperatures T1
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and T2), separated by a lossless medium V0 by two interfaces S1 and S2, re-

spectively. For a dielectric object with homogeneous medium, the tangential

fields on the boundary are continuous. Therefore, we can reduce the equiv-

alent surface currents on interior and exterior surfaces of one object to only

one set: (J1,M1) on S1 and (J2,M2) on S2.

Figure 4.7: Schematic depicting two disconnected dielectric objects 1 and 2,
described by surfaces S1 and S2, and held at temperatures T1 and T2,
respectively. Equivalent surface currents (J1,M1) and (J2,M2) are defined
on S1 and S2, respectively. The background medium V0 is lossless.

Similar to Eq. (4.4) and Eq. (4.8), by applying equivalence principle, the

surface integral equations inside objects 1 and 2 can be written as:

1

2
Et
`(r) = Ei

`(r)− L`E(r, r′) · J`(r′)−K′`E(r, r′) ·M`(r
′), r ∈ S−` (4.46)

1

2
Ht
`(r) = Hi

`(r)− L`H(r, r′) ·M`(r
′)−K′`H(r, r′) · J`(r′) r ∈ S−` , (4.47)

where the subscript ` = 1, 2 indicates which object the equations refer to;

and the superscripts t and i represent total and source fields, respectively.

Notice that the principal value integrals are applied here. Therefore only half

the total field is remaining on the left-hand side for both Eq. (4.46) and Eq

(4.47). A more compact form can be written as:

1

2

(
Et
`

Ht
`

)
=

(
Ei
`

Hi
`

)
− Z` ·

(
J`

M`

)
, (4.48)
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where

Z` =

(
L`E K′`E
K′`H L`H

)
, ` = 1, 2. (4.49)

Between objects 1 and 2, both (J1,M1) and (J2,M2) contribute to the

total fields in the background region V0. Therefore, the surface integral equa-

tions on S1 and S2 for exterior V0 can be expressed as:

1

2

(
Et

0

Ht
0

)
=

(
Ei

0

Hi
0

)
+ Z0 ·

(
J1

M1

)
+ Z0 ·

(
J2

M2

)
, (4.50)

where

Z0 =

(
L0E K′0E
K′0H L0H

)
. (4.51)

Note that the detailed elements in Z0 are dependent on which surface the

testing functions are applied to. The tangential fields are continuous at the

surface of each object; therefore, combining Eq. (4.48) and Eq. (4.50) results

in two sets of integral equations on S1 and S2:

(Z0,11 + Z1,11) ·

(
J1

M1

)
+ Z0,12 ·

(
J2

M2

)
=

(
Ei

1t − Ei
0t

Hi
1t −Hi

0t

)
(4.52)

Z0,21 ·

(
J1

M1

)
+ (Z0,22 + Z2,22) ·

(
J2

M2

)
=

(
Ei

2t − Ei
0t

Hi
2t −Hi

0t

)
, (4.53)

where Ei
`t and Hi

`t denote the tangential components of Ei
` and Hi

` with

` = 0, 1, 2. The subscripts i, j in Z0,ij, Z1,ij and Z2,ij indicate that the

testing functions are from surface Si and the basis functions are from surface

Sj when the problem is numerically solved.

For the convenience of derivation, the above integral equations are con-

verted to matrix-vector product form with testing and basis functions ap-

plied. Similar to Eq. (4.27) - (4.29), the surface currents can be expanded

as:

J`(r) =
N∑
n=1

J`nf`n(r), M`(r) =
N∑
n=1

M`nf`n(r), ` = 1, 2, (4.54)
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where f`n(r) is known as the basis function (RWG is used in the whole dis-

cussion) on surface S`, and J`n’s and M`n’s are the unknown expansion co-

efficients. After testing the system equations, Eq. (4.52) and Eq. (4.53) can

be converted as

(Z0 + Z1 + Z2) ·


I1J

I1M

I2J

I2M

 =


V1E −V0E,1

V1H −V0H,1

V2E −V0E,2

V2H −V0H,2

 , (4.55)

where

Z0 =

(
Z0,11 Z0,12

Z0,21 Z0,22

)
, Z1 =

(
Z1,11 0

0 0

)
, Z2 =

(
0 0

0 Z2,22

)
, (4.56)

with

[Z`,ij]mn = 〈fim,Z`,ij, fjn〉, ` = 0, 1, 2 (4.57)

[I`J ]n = J`n, [I`M ]n = M`n ` = 1, 2 (4.58)

[V`E]m = 〈f`m,Ei
`t〉, [V0E,`]m = 〈f`m,Ei

0t〉, ` = 1, 2. (4.59)

The subscripts ij in Z indicate that the testing functions are from surface Si

and the basis functions are from Sj. The 〈·, ·〉 is defined as (exactly same as

Eq. (4.34))

〈f ,g〉 =

ˆ
f(r) · g(r)dr, (4.60)

and we will not repeat its definition. The right-hand side of Eq. (4.56) is not

calculated explicitly which will be discussed later. To compute the heat flux

between the two objects, first we assume the fluctuating currents only exist

in the dielectric body of object 1, which means that only V1E and V1H are

non-zero on the right-hand side of Eq. (4.56). We rewrite Eq. (4.56) as

W
−1 · x = s, (4.61)

where

W
−1

=

(
W11 W12

W21 W22

)−1
= Z0 + Z1 + Z2 (4.62)
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x = [I1J I1M I2J I2M ]T , s = [V1E V1H 0 0]T . (4.63)

The flux spectrum from a single dipole source si (six-component volume

electric and magnetic currents) in object 1 into object 2 can be expressed as

Φsi = −1

2

‹
dS2 Re (E2 ×H∗2) · n

= −1

4

‹
dS2 Re [E2 · (H∗2 × n) + (n× E2) ·H∗2]

=
1

4

‹
dS2 Re [E2 · J∗2 + H∗2 ·M2]

=
1

4

‹
dS2 Re [J∗2 · E2 + M∗

2 ·H2] ,

(4.64)

where the superscript ∗ denotes the complex conjugate, and J2 = n ×H2,

M2 = −n×E2 on surface S2. The “Re” means the real part of the variable.

Meanwhile, E2 and H2 can be expressed by J2 and M2 from the interior

integral equation for object 2 (described in Eq. (4.48)). Notice that there is

a 1
2

factor on the total fields in Eq. (4.48). Therefore, a 2 factor is included

below when converting Eq. (4.64) to a matrix form numerically:

Φsi = −1

2
Re
(
x†2 · Z2,22 · x2

)
= −1

2
Re
(
x† · Z2 · x

)
= −1

2

[
x† · (symZ2) · x

]
= −1

2

[
s† ·W† · (symZ2) ·W · s

]
= −1

2
Tr
[
s† ·W† · (symZ2) ·W · s

]
= −1

2
Tr
[
s · s† ·W† · (symZ2) ·W

]
,

(4.65)

where

x2 = [I2J I2M ]T , symZ =
1

2

(
Z + Z

†)
. (4.66)

The superscript † denotes the conjugate transpose of a matrix, and the “Tr”

means the trace of a matrix. The total flux spectrum is

Φ = 〈Φsi〉 = −1

2
Tr
[
〈s · s†〉 ·W† · (symZ2) ·W

]
, (4.67)

where an ensemble-average 〈· · ·〉 over all sources si and polarizations in

V1 is involved. The fluctuation-dissipation theorem for the current-current
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correlation function is given as

〈si(r) · s∗i (r′)〉 =
4

π
ωImχ(r, ω)δ(r, r′), (4.68)

where the dependence on the Planck energy distribution Θ(ω, T ) has been

omitted, which has been factored out into Eq. (4.44). The Imχ denotes the

imaginary part of the material susceptibility tensor (6 × 6)

Imχ =

(
Imε 0

0 Imµ

)
, (4.69)

which is related to material absorption. By employing the above current-

current correlation, a detailed derivation in [74] shows that the ensemble-

average 〈s · s†〉 in Eq. (4.67) can be expressed as

〈s · s†〉 = − 4

π
symZ1. (4.70)

Therefore, the total flux spectrum can be expressed as a compact form:

Φ =
2

π
Tr
[
symZ1 ·W

† · (symZ2) ·W
]

=
2

π
Tr
[
symZ1,11 ·W

†
21 · (symZ2,22) ·W21

]
,

(4.71)

where W21 is given in Eq. (4.62), which relates the incident fields on the

surface of object 2 to the equivalent currents on the surface of object 1.

Alternatively, we can derive a new formula of the flux based on the expan-

sion coefficients of the surface currents (defined in Eq. (4.54)), which are the

unknowns in the system matrix equation (Eq. (4.62)). More explicitly, the

60



expansion coefficients are expressed as

I2J =

W ·


V1E

V1H

0

0




3

= WE,21 · s1 (4.72)

I2M =

W ·


V1E

V1H

0

0




4

= WH,21 · s1, (4.73)

where s1 = [V1E V1H ]T , and WE,21, WH,21 are the corresponding matrix

blocks in W. Then, the flux spectrum Φsi can be expressed as:

Φsi = −1

2

‹
dS2 Re(E2 ×H∗2) · n (4.74)

= −1

2

‹
dS2 Re [(n× E2) ·H∗2] = −1

2

‹
dS2 Re [M2 · (n× J∗2)] (4.75)

= −1

2

∑
m,n

Re(M∗
2mJ2n)〈fm,n× fn〉 (4.76)

= −1

2
Re
(
s†1 ·W

†
H,21 ·OX2 ·WE,21 · s1

)
(4.77)

= −1

2
Re
{

Tr
[
s1 · s†1 ·W

†
H,21 ·OX2 ·WE,21

]}
, (4.78)

where OX (defined in Eq. (4.33)) is a matrix composed of the inner product

of basis function and n cross basis function. The subscript 2 in OX means

the basis functions are on the surface of object 2. Similarly, the total flux

spectrum can be derived as

Φ = 〈Φsi〉 = −1

2
Re
{

Tr
[
〈s1 · s†1〉 ·W

†
H,21 ·OX2 ·WE,21

]}
=

2

π
Re
{

Tr
[
symZ1,11 ·W

†
H,21 ·OX2 ·WE,21

]}
.

(4.79)

The above expression for the total flux spectrum is not as elegant as that in

Eq. (4.71), but it is a more straightforward derivation which will be adopted

in the cases involving graphene coating. In addition, the step of derivation

from a single source to the ensemble-average formula will be omitted in the

next sections.
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The flux spectrum of two silicon spheres with radius of 800 nm, separated

by a 200 nm vacuum gap, is calculated as a benchmark of our solver. The

dielectric functions of the silicon spheres are shown in Fig. 4.8 for T1 = 400

K and T2 = 300 K (data obtained from [75]). Numerical results in Fig. 4.9

show the equivalence of these two expressions, i.e., Eq. (4.71) and Eq. (4.79),

which are consistent with the results in [75].
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Figure 4.8: The dielectric function of two 1020 cm−3 n-doped silicon spheres
(T1 = 400 K and T2 = 300 K).

4.3.2 Discussion for system with graphene coating

In this section, the radiative heat transfer between two graphene-wrapped

objects is discussed. Different from the previous case, the magnetic field

becomes discontinuous on the surface due to the surface conductivity of

graphene. Consider the system illustrated in Fig. 4.10, consisting of two

dielectric objects 1, 2 with graphene coatings (σs1 and σs2) and homoge-

neous media (V1 and V2 with temperatures T1 and T2), separated by a lossless

medium V0 by two interfaces S1 and S2, respectively.

Between objects 1 and 2, the surface integral equations on S1 and S2 for
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Figure 4.9: The flux spectrum of two silicon spheres with radius of 800 nm,
separated by a 200 nm gap. One is held at T1 = 400 K and the other is at
T2 = 300 K. ‘Formula 1’ and ‘Formula 2’ refer to Eq. (4.71) and Eq. (4.79)
with the factor of Plank energy per oscillator Θ(ω, T1)−Θ(ω, T2) included.
‘Ref’ is obtained from [75], which is also calculated based on surface
integral equation.

exterior V0 are expressed as:

1

2

(
Et

0

Ht
0

)
=

(
Ei

0

Hi
0

)
+ Z0 ·

(
J+
1

M+
1

)
+ Z0 ·

(
J+
2

M+
2

)
, (4.80)

where Z0 is defined in Eq. (4.51). The discontinuities of the tangential

magnetic field on the surfaces can be expressed as:

Ht
0t −Ht

1t = Jσ1 × n = σs1E
t
1t × n = σs1M1 (4.81)

Ht
0t −Ht

2t = Jσ2 × n = σs2E
t
2t × n = σs2M2. (4.82)

To build the system matrix with the discontinuities of magnetic field, some

mathematical manipulations are applied here. First, we expand Et
1t with

RWG functions, and denote Et
1n’s as the expansion coefficients. By testing
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Figure 4.10: Schematic depicting two disconnected dielectric objects 1 and
2, described by surfaces S1 and S2, and held at temperatures T1 and T2,
respectively. The graphene coating for each object is denoted by the surface
conductivity, i.e., σs1 and σs2. Here (J+

1 ,M
+
1 ) and (J+

2 ,M
+
2 ) are the

exterior equivalent surface currents, while (J1,M1) and (J2,M2) are the
interior equivalent surface currents for each object. The background
medium V0 is lossless.

the left-hand side of Eq. (4.81) and Et
1t with RWG function fm, we have

〈fm,Ht
0t −Ht

1t〉 = σs1〈fm,Et
1t × n〉 = −σs1

∑
n

〈fm,n× fn〉Et
1n (4.83)

〈fm,Et
1t〉 =

∑
n

〈fm, fn〉Et
1n. (4.84)

Rewriting the above two equations in matrix representation, we have

Vt
0H −Vt

1H = −σs1OX · It1E (4.85)

Vt
1E = G1M · It1E, (4.86)

where

[Vt
0H ]m = 〈fm,Ht

0t〉, [Vt
1H ]m = 〈fm,Ht

1t〉 (4.87)

[Vt
1E]m = 〈fm,Et

1t〉, [It1E]n = Et
1n. (4.88)

Just as a reminder, here GM is the Gram matrix of RWG basis functions

(defined in Eq. (4.32)), and OX is a matrix composed of the inner product of

basis function and n cross basis function, given in Eq. (4.33). Furthermore,
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we have

Vt
0H −Vt

1H = −σs1OX1 ·G
−1
M1 ·Vt

1E. (4.89)

Therefore, on the surface of object 1, the tangential components of the total

fields from exterior and interior can be linked as(
I 0

σs1OX1 ·G
−1
M1 I

)
·

(
Vt

0E

Vt
0H

)
= TL1 ·

(
Vt

0E

Vt
0H

)
=

(
Vt

1E

Vt
1H

)
, (4.90)

where

TL` =

(
I 0

σs`OX` ·G
−1
M` I

)
, ` = 1, 2. (4.91)

The same scenario applies to the relation of the fields on the surface of object

2.

Second, we reduce the equivalent surface currents to the interior sets, i.e.,

(J1,M1) and (J2,M2). In Section 4.2, the relations between exterior and

interior equivalent surface currents have been derived (Eq. (4.26)):

J+
1 = J1 + σs1n×M1, M+

1 = M1

J+
2 = J2 + σs2n×M2, M+

2 = M2.
(4.92)

Similar to Eq. (4.35), the relations between the corresponding expansion

coefficients can be numerically written as(
I+1J
I+1M

)
= TR1 ·

(
I1J

I1M

)
(4.93)(

I+2J
I+2M

)
= TR2 ·

(
I2J

I2M

)
, (4.94)

where

TR` =

(
I σs`G

−1
M` ·OX`

0 I

)
, ` = 1, 2. (4.95)

Notice that TL is not the transpose of TR, because O
T

X = −OX and G
T

M =

GM . This is important which we will discuss later.
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Combining the exterior integral equation with interior integral equations

for each object, the matrix formula of the system equation can be written

as:

(
TL1 · Z0,11 ·TR1 + Z1,11

)
·

(
I1J

I1M

)
+ TL1 · Z0,12 ·TR2 ·

(
I2J

I2M

)

=

(
V1E

V1H

)
−TL1 ·

(
V0E,1

V0H,1

)
(4.96)

TL2 · Z0,21 ·TR1 ·

(
I1J

I1M

)
+
(
TL2 · Z0,22 ·TR2 + Z2,22

)
·

(
I2J

I2M

)

=

(
V2E

V2H

)
−TL2 ·

(
V0E,2

V0H,2

)
,

(4.97)

where I`J , I`M , V`E, V`H , V0E,` and V0H,` with ` = 1, 2 have been defined

before (Eq. (4.58) and Eq. (4.59)).

To adopt the expression of the ensemble-average source for electric body in

[74], i.e., Eq. (4.70), we need to formulate the equations maintaining symme-

try in the original electromagnetics problem. This is a key to guarantee the

symmetry of heat transfer between the two objects for reciprocal material.

In fact, we can make the problem complex symmetric by transforming M, H

to iM, iH. Then the operator composed with dyadic Green’s functions and

the transformer matrices (TR,TL) are formulated as

Z =

(
LE iK′E
iK′E LH

)
(4.98)

TR = T =

(
I −iσsG

−1
M ·OX

0 I

)
(4.99)

TL = T
T

=

(
I 0

iσsOX ·G
−1
M I

)
. (4.100)
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The system matrix-vector product formula (Eq. (4.96) and Eq. (4.97))

can be expressed as:

Z ·


I1J

iI1M

I2J

iI2M

 =


V1E −V0E,1

iV1H − iV0H,1 − iσs1OX1 ·G
−1
M1 ·V0E,1

V2E −V0E,2

iV2H − iV0H,2 − iσs2OX2 ·G
−1
M2 ·V0E,2

 , (4.101)

where the impedance matrix Z is

Z =

(
T
T

1 · Z0,11 ·T1 + Z11 T
T

1 · Z0,12 ·T2

T
T

2 · Z0,21 ·T1 T
T

2 · Z0,22 ·T2 + Z22

)
= W

−1
. (4.102)

Therefore we can follow the procedure in previous section to compute the

heat flux spectrum from dielectric body of object 1 to the dielectric body of

object 2 with graphene coatings. Also if σs1 and σs2 are zeros, Eq. (4.101) is

restored to Eq. (4.55) derived in last section without graphene coating. How-

ever, since the surface conductivity of the graphene is complex, the graphene

layer is also radiating and absorbing energies. In the following section, we

will first examine the fluctuation dissipation theorem in a two-dimensional

material. Then we will apply this relation to calculate the radiative heat flux

contributed from the graphene coating.

4.3.3 Fluctuating-currents form for radiative heat transfer
between graphene-wrapped dielectric objects

To derive the current-current correlation function for two-dimensional (2D)

material, first we write the current-current correlation function for volume

currents explicitly as

J`(r, ω)J∗m(r′, ω) =
4

π
ωΘ(ω, T )δ(r− r′)Im[ε(r, ω)]ε0δ`m, (4.103)

where the overline denotes an ensemble average, and `,m = 1, 2, 3 denote

the spatial directions. Here Θ(ω, T ) is the Planck energy per oscillator at

temperature T given in Eq. (4.45).
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To reduce the dimension to 2D, the following relations can be applied:

J`(r, ω) = Js,`(ρ, ω)δ(z) (4.104)

δ(r− r′) = δs(ρ− ρ′)δ(z) (4.105)

Im[ε(r, ω)] = Im
[
i
σs(ρ, ω)

ε0ω

]
=

Re[σs(ρ, ω)]

ε0ω
δ(z). (4.106)

Therefore, Eq. (4.103) is reduced to

Js,`(ρ, ω)J∗s,m(ρ′, ω) =
4

π
Θ(ω, T )δs(ρ− ρ′)Re[σs(ρ, ω)]δ`m. (4.107)

In Section 4.3.2, the “fluctuating” current sources inside graphene are not

included in the system equation. To be consistent, (J1,M1) and (J2,M2)

are used to denote the interior equivalent surface currents for objects 1 and

2. Accordingly, (J+
1 ,M

+
1 ) and (J+

2 ,M
+
2 ) are the exterior equivalent surface

currents. Besides, Js1 and Js2 are the fluctuating surface currents in graphene

layers of object 1 and 2, respectively. These surface currents can be related

as:

J+
1 = J1 + σs1n×M1 + Js1, M+

1 = M1

J+
2 = J2 + σs2n×M2 + Js2, M+

2 = M2.
(4.108)

Similar to Eq. (4.93) and Eq. (4.94), the relations between the corresponding

expansion coefficients can be numerically written as(
I+1J
I+1M

)
= TR1 ·

(
I1J

I1M

)
+

(
Is1

0

)
(4.109)(

I+2J
I+2M

)
= TR2 ·

(
I2J

I2M

)
+

(
Is2

0

)
. (4.110)

The discontinuity relations of tangential magnetic fields (Eq. (4.81) and

Eq. (4.82)) on the surfaces of each object also need to be modified as:

Ht
0t −Ht

1t = (Jσ1 + Js1)× n = σs1M1 + Js1 × n (4.111)

Ht
0t −Ht

2t = (Jσ2 + Js2)× n = σs2M2 + Js2 × n. (4.112)

In the same fashion as Eq. (4.90), the tangential components of the total
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fields from exterior and interior can be linked as(
I 0

σs1OX1 ·G
−1
M1 I

)
·

(
Vt

0E

Vt
0H

)
= TL1 ·

(
Vt

0E

Vt
0H

)
=

(
Vt

1E

Vt
1H −OX1 · Is1

)
.

(4.113)

By introducing the terms of fluctuating surface currents in graphene into

Eq. (4.96) and Eq. (4.97), the matrix formula of the system equation is

updated as:

(
TL1 · Z0,11 ·TR1 + Z1,11

)
·

(
I1J

I1M

)
+ TL1 · Z0,11 ·

(
Is1

0

)

+ TL1 · Z0,12 ·TR2 ·

(
I2J

I2M

)
+ TL1 · Z0,12 ·

(
Is2

0

)

=

(
V1E

V1H

)
−TL1 ·

(
V0E,1

V0H,1

)
−

(
0

1
2
OX1 · Is1

) (4.114)

TL2 · Z0,21 ·TR1 ·

(
I1J

I1M

)
+ TL2 · Z0,21 ·

(
Is1

0

)

+
(
TL2 · Z0,22 ·TR2 + Z2,22

)
·

(
I2J

I2M

)
+ TL2 · Z0,22

(
Is2

0

)

=

(
V2E

V2H

)
−TL2 ·

(
V0E,2

V0H,2

)
−

(
0

1
2
OX2 · Is2

)
.

(4.115)

Now we modify the system matrix to be symmetric by changing M to iM

and H to iH. The general version of Eq. (4.114) and Eq. (4.115) in complex

symmetric fashion is written as (all the items containing sources have been

moved to the right-hand side)

Z ·


I1J

iI1M

I2J

iI2M

 = V + R1 · Is1 + R2 · Is2, (4.116)

69



where

V =


V1E −V0E,1

iV1H − iV0H,1 − iσs1OX1 ·G
−1
M1 ·V0E,1

V2E −V0E,2

iV2H − iV0H,2 − iσs2OX2 ·G
−1
M2 ·V0E,2

 (4.117)

(4.118)

R1 =


L0E,11

iK′0E,11 + i1
2
OX1 + iσs1OX1 ·G

−1
M1 · L0E,11

L0E,21

iK′0E,21 + iσs2OX2 ·G
−1
M2 · L0E,21

 (4.119)

(4.120)

R2 =


L0E,12

iK′0E,12 + iσs1OX1 ·G
−1
M1 · L0E,12

L0E,22

iK′0E,22 + i1
2
OX2 + iσs2OX2 ·G

−1
M2 · L0E,22

 . (4.121)

Therefore, if only the fluctuating sources inside the graphene coating of

object 1 are considered, the expansion coefficients of the equivalent surface

currents on the inner surface of object 2 can be expressed as

I2J = [Z
−1 ·R1]3 · Is1 = WsE,21 · Is1 (4.122)

iI2M = [Z
−1 ·R1]4 · Is1 = WsH,21 · Is1, (4.123)

where the subscripts 3 and 4 denote the corresponding blocks of the matrix,

and the subscript s in W is used to distinguish from previous definitions (Eq.

(4.72) and Eq. (4.73)) in which the sources are from dielectric body.

Similar to the derivations in Eq. (4.74), the flux absorbed by the dielectric
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body of object 2 is calculated as follows:

Φsi = −1

2

‹
dS2 Re(E2 ×H∗2) · n

= −1

2

‹
dS2 Re[(n× E2) ·H∗2] = −1

2

‹
dS2 Re[M2 · (n× J∗2)]

= −1

2

∑
m,n

Re(M∗
2mJ2n)〈fm,n× fn〉

= −1

2

∑
m,n

Im[(−iM2m)∗J2n]〈fm,n× fn〉

= −1

2
Im
(
− I†s1 ·W

†
sH,21 ·OX2 ·WsE,21 · Is1

)
=

1

2
Im
{

Tr
[
Is1 · I†s1 ·W

†
sH,21 ·OX2 ·WsE,21

]}
.

(4.124)

The total flux spectrum is an ensemble-average of Φsi over all sources Js1

and polarizations in surface S1. Therefore, we need to find the ensemble-

average of Is1 ·I†s1 in Eq. (4.124), denoted as a matrix C = 〈Is1 ·I†s1〉. And Is1

is the vector of the expansion coefficients of the surface fluctuating currents

Js1 in the graphene layer. Therefore, we have

Js1(r) =
∑
n

Js1,nfn(r) (4.125)

[Is1]n = Js1,n (4.126)

[C]mn = 〈Js1,mJ∗s1,n〉. (4.127)

By testing Eq. (4.125) with basis functions and employing the fluctuation-

dissipation theorem derived in Eq. (4.107), we have

F · Js1 = GM1 · Is1, [F]m = fm (4.128)

〈F · Js1 · J†s1 · F
T 〉 = F · 〈Js1 · J†s1〉 · F

T
=

4

π
Re[σs1(ω)]F · FT

=
4

π
Re[σs1(ω)]GM1

= 〈GM1 · Is1 · I†s1 ·G
T

M1〉 = GM1 · 〈Is1 · I†s1〉 ·G
T

M1

= GM1 ·C ·G
T

M1,

(4.129)
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where we assumed the surface conductivity as a constant over the surface

and omitted the Planck energy Θ(ω, T ) which has been factored out into Eq.

(4.44). The Gram matrix GM1 is relevant to the basis functions on surface

S1 and GM1 = G
T

M1. Therefore

C =
4

π
Re[σs1(ω)]G

−1
M1. (4.130)

The total flux spectrum then is expressed as

Φ = 〈Φsi〉 =
1

2
Im
{

Tr
[
〈Is1 · I†s1〉 ·W

†
sH,21 ·OX2 ·WsE,21

]}
=

2

π
Im
{

Re[σs1(ω)]Tr
[
G
−1
M1 ·W

†
sH,21 ·OX2 ·WsE,21

]}
.

(4.131)

Now we have established the expression of total flux spectrum due to

fluctuating-current sources in graphene layer absorbed by the dielectric body

of object 2 since only the interior surface currents in object 2 are considered.

In the next section, different scenarios of the sources and the bodies to absorb

the flux will be discussed in the next section.

4.3.4 Discussion

In previous sections, the expressions of total flux spectrum for fluctuating-

current sources in both dielectric body and graphene layer have been estab-

lished respectively. A general matrix equation of the system is given in Eq.

(4.116) with an imaginary unit i multiplied to M and H.

A. Sources from dielectric body

When the sources are from the dielectric body of object 1, s1 is non-zero

while Js1 is zero. Both the dielectric body and the graphene layer of object

2 absorb the flux radiated from object 1. The expansion coefficients of the
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interior surface currents in object 2 are expressed as:

I2J =

W ·


V1E

iV1H

0

0




3

= WE,21 · s1 (4.132)

iI2M =

W ·


V1E

iV1H

0

0




4

= WH,21 · s1 (4.133)

with s1 = [V1E iV1H ]T . According to the relations between interior and

exterior surface currents, the expansion coefficients of the exterior surface

currents on object 2 are expressed as:

I+2J = I2J + σs2G
−1
M2 ·OX2 · I2M

=
[
WE,21 + σs2G

−1
M2 ·OX2 · (−i)WH,21

]
· s1

(4.134)

I+2M = I2M = WH,21 · s1. (4.135)

Then the total flux spectrum from object 1 to object 2 can be expressed

as:

Φ1→2 = −1

2

‹
dS2 Re(E2 ×H∗2) · n

= −1

2

‹
dS2 Re[M+

2 · (n× J+∗
2 )]

= −1

2

∑
m,n

Re(M+∗
2mJ

+
2n)〈fm,n× fn〉

= −1

2

∑
m,n

Im[(−iM+
2m)∗J+

2n]〈fm,n× fn〉

= − 2

π
Im
{

Tr
[
symZ1,11 ·W

†
H,21 ·OX2 ·WE,21

]}
+

2

π
Re
{
σs2(ω)Tr

[
symZ1,11 ·W

†
H,21 ·OX2 ·G

−1
M2 ·OX2 ·WH,21

]}
.

(4.136)

In the last line of the above equation, the first term corresponds to the flux

absorbed by the dielectric body of object 2 while the second term represents
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the flux absorbed by the graphene layer of object 2. A more compact form

for the first term has been given in Sec. 4.3.1 with validation of equality

to the above one. Therefore, the total flux spectrum due to the fluctuating

currents in dielectric body of object 1 can also be expressed as:

Φ1→2 =
2

π
Re
{

Tr
[
symZ1,11 ·W

†
21 · symZ2,22 ·W21

]}
+

2

π
Re
{
σs2(ω)Tr

[
symZ1,11 ·W

†
H,21 ·OX2 ·G

−1
M2 ·OX2 ·WH,21

]}
,

(4.137)

where W21 = [WE,21 WH,21]
T .

B. Sources from graphene layer

Now we assume the fluctuating currents only exist in the graphene layer

of object 1. Hence Js1 is non-zero while s1 is zero.

Similar to the process of deriving Eq. (4.136), the total flux spectrum can

be derived as:

Φ1→2 = − 2

π
Re
{

Re[σs1(ω)]Tr
[
G
−1
M1 ·W

†
s,21 · symZ2,22 ·Ws,21

]}
− 2

π
Re
{

Re[σs1(ω)]σs2(ω)Tr
[
G
−1
M1 ·W

†
sH,21 ·OX2 ·G

−1
M2 ·OX2 ·WsH,21

]}
,

(4.138)

where Ws,21 = [WsE,21 WsH,21]
T ; and WsE,21, WsH,21 are defined in Eq.

(4.122) and Eq. (4.123). The first and second terms correspond to the flux

absorbed by the dielectric body and graphene layer of object 2, respectively.

C. Summary for the formulation of flux spectrum

Here we list the flux spectrum separately for each pair. All fluctuating
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currents are from object 1.

Φd1→d2 =
2

π
Re
{

Tr
[
symZ1,11 ·W

†
21 · symZ2,22 ·W21

]}
(4.139)

Φd1→g2 =
2

π
Re
{
σs2Tr

[
symZ1,11 ·W

†
H,21 ·OX2 ·G

−1
M2 ·OX2 ·WH,21

]}
(4.140)

Φg1→d2 = − 2

π
Re
{

Re[σs1]Tr
[
G
−1
M1 ·W

†
s,21 · symZ2,22 ·Ws,21

]}
(4.141)

Φg1→g2 = − 2

π
Re
{

Re[σs1]σs2Tr
[
G
−1
M1 ·W

†
sH,21 ·OX2 ·G

−1
M2 ·OX2 ·WsH,21

]}
,

(4.142)

where the subscripts “d” and “g” denote dielectric body and graphene layer,

respectively. The (ω) in σs1 and σs2 is omitted for simplicity.

Now we check the reciprocity of the flux spectrum in our derivations. The

flux absorbed by object 2 due to sources in object 1 should be equal to the

flux absorbed by object 1 due to sources in object 2. It is easy to check the

case of dielectric body to dielectric body due to the symmetry in Eq. (4.139).

That is

Φd2→d1 =
2

π
Re
{

Tr
[
symZ2,22 ·W

†
12 · symZ1,11 ·W12

]}
=

2

π
Re
{

Tr
[
symZ1,11 ·W

†
21 · symZ2,22 ·W21

]}
= Φd1→d2.

(4.143)

However it is not straightforward to prove the reciprocity of the flux be-

tween dielectric body and graphene layer mathematically. The flux spectrum

from the dielectric body of object 2 to the graphene layer of object 1 can be

expressed by interchanging the indices in Eq. (4.140):

Φd2→g1 =
2

π
Re
{
σs1Tr

[
symZ2,22 ·W

†
H,12 ·OX1 ·G

−1
M1 ·OX1 ·WH,12

]}
.

(4.144)

Similarly, the flux spectra from the graphene layer of object 2 to the dielectric

body and the graphene layer of object 1 can be expressed by interchanging
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the indices in Eq. (4.141) and Eq. (4.142) respectively. They are:

Φg2→d1 = − 2

π
Re
{

Re[σs2]Tr
[
G
−1
M2 ·W

†
s,12 · symZ1,11 ·Ws,12

]}
(4.145)

Φg2→g1 = − 2

π
Re
{

Re[σs2]σs1Tr
[
G
−1
M2 ·W

†
sH,12 ·OX1 ·G

−1
M1 ·OX1 ·WsH,12

]}
.

(4.146)

We will demonstrate Φd1→g2 = Φg2→d1, Φg1→d2 = Φd2→g1 and Φg1→g2 =

Φg2→g1 numerically.

Figure 4.11 (a)-(d) are the flux spectra for the above expressions between a

graphene-wrapped sphere and a graphene-wrapped cylinder with Θ(ω, T1)−
Θ(ω, T2) included. The sphere with radius of 400 nm is held at T1 = 400 K,

while the cylinder is held at T2 = 300 K. The dielectric properties are the

same as the case for two silicon spheres in Fig. 4.8. The surface conductivity

of the graphene is calculated by (4.39) with EF = 0.6 eV and τ = 0.6

ps. The total flux spectrum between the two objects is given in Fig. 4.12,

compared with the case without graphene. The peak is slightly blue shifted

with graphene layer.

Figure 4.13 shows the flux of two graphene-wrapped dielectric spheres with

ε = 2.25 as a function of their separation d, in which the wavelength is 11

µm. Large enhancement in the near field region is observed. Parameters for

graphene surface conductivity are EF = 0.5 eV, τ = 0.01 ps, T = 300 K.

The flux spectrum with d = 50 nm is given in the inset. The resonant peak

is due to graphene plasmonics.
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(a) (b)

(c) (d)

Figure 4.11: Reciprocity check for the expressions of the flux spectrum
between two graphene-wrapped silicon objects with different shapes: a
sphere and a cylinder separated by 200 nm.
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Figure 4.12: Total flux spectrum between the two graphene-wrapped silicon
objects: sphere and cylinder. The blue-dashed line corresponds to the case
without graphene coatings for comparison.

Figure 4.13: Flux spectrum between the two graphene-wrapped dielectric
spheres as a function of their separation d at wavelength λ = 11 µm. The
radius of the sphere is 100 nm. Inset: flux spectrum with d = 50 nm.
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4.4 Conclusion

In this chapter, the fluctuating-surface-current formulation of radiative heat

transfer has been extended to study the scenarios with graphene-wrapped

objects. It can be restored to the case of pure dielectric objects by setting

the surface conductivity as zero. Actually, this expression is not restricted to

graphene only. For a thin object coating with complex surface conductivity,

for example, the monolayer of transition-metal dichalcogenide discussed in

Chapter 3, the expression is still valid. Therefore, more combinations of

different materials with different shapes can be explored in this area.
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CHAPTER 5

CONCLUSIONS

In this dissertation, we establish a novel two-dimensional (2D) fast multipole

algorithm which has high accuracy and efficiency in broadband. Combining

it with the 2D volume integral equation, the solver can handle the simula-

tions of devices built with photonic crystals and imaging algorithms with

inverse scattering problems. Then we design a metasurface platform com-

posed of transition-metal dichalcogenide (TMDC) flake to generate struc-

tured light at second harmonics, in which the electric field integral equa-

tion with impedance boundary condition is employed. The monolayer of

transition-metal dichalcogenide has strong quadratic nonlinear susceptibility

in visible regime with three-fold rotation symmetrical crystalline structure.

Radial polarization and azimuthal polarization can be achieved at second-

harmonic generation with the incidence of linear polarized plane-wave at

the fundamental frequency. This platform can also generate orbital angular

momentum of lower orders at second harmonics with the incidence of circu-

lar polarized plane-wave at the fundamental frequency. After the analysis

of TMDC, we propose a fluctuating-surface-current formulation of radiative

heat transfer for graphene-wrapped objects by surface integral equations with

impedance boundary conditions. This generalized form can be restored to

the scenarios of pure dielectric objects without graphene coatings.

Future work can be done in establishing the surface integral equations

for the configurations in which the coating of the 2D materials covers part

of the object, for instance, graphene patch antennas and the TMDC meta-

surface with substrates. The nonlinear analysis of graphene is also another

interesting topic, since graphene has large third-harmonic generation. More

applications can be explored with the optical properties of the 2D materials

and complex geometric configurations.
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