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ABSTRACT

Modern engineering challenges motivate a transition from conventional systems that rely

on measurements of physical quantities to systems that interpret and respond to subjective

evaluations of the world. Different from engineering problems that have quantifiable objec-

tives, such as controlling a system based on noisy measurements or transmitting information

through a medium, sources that provide subjective information, which we will refer to as

“experts”, evaluate the world based on a potentially hidden rationale. Learning, inference,

and decision making based on subjective evaluations, or opinions, are not only common as-

pects of human learning but they are fundamental engineering challenges due to the hidden

uncertainty. The objective of this work is to establish fundamentals of learning from opin-

ions by addressing key problems that rely on subjective information with hidden models.

Specifically, Chapter 2 focuses on sequential consultation of experts, Chapter 3 investigates

statistical methods for opinion aggregation, Chapter 4 addresses fidelity-based error detec-

tion and mitigation, and Chapter 5 studies the impact of high-dimensional uncertainty on

networks.

Contextually, an opinion has associated costs. Consulting an expert incurs among oth-

ers, time, resource, and opportunity costs. Particularly in engineering systems, such costs

further manifest as circuit-area, system-complexity, runtime, or memory requirements. The

conventional decision-making framework with pre-allocated resources might not necessarily

capture the trade-off between the utility to be gained by consulting an expert and the as-

sociated costs. Sequential consultation of experts arises naturally in this context, where the

objective is to decide whether to consult another expert or to make a decision based on the

opinions received up to that time. In this context, the true utility of consulting another

expert does not only depend on the cost associated with consulting or the individual ex-

pertise, but it also depends on the instantaneous decision strength based on the statistics

hitherto. A fundamental challenge is to find a sequential strategy that addresses this trade-

off. In Chapter 2, we show that the strategy achieving maximum expected reward is in the

form of a sequential likelihood ratio test, where a unique threshold function depends on the

cost-performance trade-off of all future experts to be consulted.
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Reliable mathematical models for experts might be difficult to obtain or quantify, even

in some cases impossible, due to the inherent subjectivity of a task, limited insight that

training might yield for real-world encounters, or due to massively high-dimensional space

from which an expert might build a rationale for decision making. However, difficulty of

modeling does not necessarily render statistical inference implausible. It is often reasonable

to accept experts as honest-but-fallible sources of information that do not purposefully de-

ceive the decision maker. Populations comprising such experts are less subjective than their

individual constituents and a natural understanding of correctness arises: When objective

truth is not achievable, one might choose to accept the consensus of opinions as truth to the

best of one’s knowledge. This leads to an alternative notion of reliability, termed “pseudo

competence”, which in turn allows reliable statistical inference. In Chapter 3, we show that

pseudo competences can be estimated empirically on test data by centralized computation or

they can be estimated in distribution on strongly connected networks. We further show that

opinion aggregation mechanisms that use pseudo competences can, in some cases, achieve

performance comparable to decision rules that have reliable models for experts.

Experts as error-prone computational units are often subject to unknown, or high-

dimensional, failure mechanisms. However, the robustness of a computational unit can be

inferred relatively reliably from the corresponding system complexity, motivating fidelity-

based safe-guarding mechanisms against what is often called, “black swan” events; failures

that happen with low probability yet have high impact on the system. A method for jointly

testing for failure and bypassing erroneous outcomes, called algorithmic noise tolerance, uses

computational units that are robust yet of lower fidelity to safeguard the system against

high-impact errors from high-fidelity computational units, without requiring exact models

for operation or failure. In Chapter 4, we propose model-independent design principles for

algorithmic noise tolerance and address fundamental limits of distributed error bypassing.

Networks comprising stochastic components is a consequence of the uncertainty inherent

to the embedding and integration of systems into physical realizations and substrates. Due

to the massive dimensionality of assembly, fabrication, and integration processes, stochastic

modeling of such uncertainty can be prohibitive and current methods are exceedingly con-

servative, often leading to massive over-design. In Chapter 5, we investigate concentration

properties of certain network quantities for linear resistive networks for topology-preserving

uncertainty profiles without relying on exact mathematical models for componentwise or

network uncertainty. Furthermore, we quantify the effects of Johnson-Nyquist noise and

address inter-component dependence due to the integration processes.
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CHAPTER 1

INTRODUCTION

The universe is transformation: life is opinion.

Marcus Aurelius

Engineering principles designed for processing noisy measurements of physical quantities

to achieve well-defined goals might not adapt well to problems based on subjective evalua-

tions. Risk-conservative challenges including disaster detection [1], personalized medicine [2],

and autonomous driving [3] do not only rely on the ability to interpret subjective informa-

tion, but also require a robust response to the underlying subjectivity. Sources of subjective

information, often termed experts, interpret the current state of the environment, often with

a hidden rationale, and provide their subjective evaluations, or opinions, to the decision

maker. Experts are immutable sources of information in the sense that the decision maker

has limited to no initiative on how an expert generates opinions. Conceptually, the notion

of experts having hidden and immutable rationale captures a wide range of human and en-

gineering decision making scenarios, while raising several interesting engineering challenges.

The objective of this work is to establish some fundamental limits of learning from opinions

by addressing key engineering problems subject to different forms of system uncertainty.

Chapter 2 proposes the problem of determining the optimal stopping time for sequentially

consulting experts. Conventional hypothesis testing with pre-allocated resources results in

decision strategies that focus exclusively on using sources most effectively to maximize the

target reward [4]. Similarly, sequential hypothesis testing leads to strategies that effectively

make decisions based on resources gathered until the time of decision making [5]. Nonethe-

less, effective use of resources does not necessarily yield efficient use of resources when con-

sulting an expert, since acquiring an opinion, has associated costs. Contextually, in human

decision making, consulting an expert incurs, among others, time, resource, and opportu-

nity costs, where in engineering applications, this cost further manifests as, circuit-area,

system-complexity, runtime, or memory requirements, motivating a sequential consultation

process. A dynamic programming framework successfully captures a wide range of sequen-

tial decision making problems when a known reward function exists and serves as a reliable

reference point for decision making [6]. Specifically, scheduling tasks is addressed in [7], dy-

namic portfolio analysis, analogous to building subcommittees of experts, is given in [8, 9],

an abstract asset selling problem appears as an example of a stopping problem with known
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rewards [6, Section 3.4], [10]. In the sequential consultation problem, the uncertainty intro-

duced in the form of opinions creates a trade-off between expected current reward and the

expected value of future opinions as opposed to more commonly observed trade-off between

exact current reward and expected future value [6]. We first propose a stopping rule for

consulting experts that maximize the expected reward when fixed models for experts are

known. We further show that the resulting rule takes the form of a likelihood ratio test

with a threshold that depends exclusively on the reliability of future experts and the cost

associated with consulting them. We extend the results to a Bayesian framework, where the

reliability of each expert has a known probability law. The proposed strategy achieves the

maximum expected reward even when the cost of consulting yields a diminishing reward to

be acquired only upon correct decision making extending the use of conventional sequential

hypothesis testing, [5], by use of dynamic programming. Furthermore, for equally reliable

experts with unknown reliability, we show that optimal stopping time in the conventional

framework almost never depends on the underlying reliability of experts, allowing reliability

estimation for such cases, for instance [11], to be bypassed.

Chapter 3 addresses the opinion aggregation problem, where experts generate opinions

for a set of tasks with a hidden-but-fixed probability law. The proposed model-unaware,

or unsupervised, approach employs what is termed pseudo-competence, a notion of reliabil-

ity based exclusively on the collection of opinions and hence can be estimated sequentially

during operation, without needing additional training. We further propose distributed aver-

aging techniques to allow inference of local expert reliability using pseudo competences [12].

Consensus-based distributed averaging rules have been investigated in [13] with the noisy

observation case given in [14], consensus rules under communication delays and changing

topologies have been addressed in [15], and a related least-mean-square adaptive diffusion

rule is discussed in [16]. Pseudo-competences preserve certain ordering properties of the

“committee” of experts and allow adaptive, block processing, and instantaneous opinion ag-

gregation via decision rules that resemble the näıve Bayes decision rule [17], which achieves

minimum probability of error when the underlying probability law is known [4]. Unsuper-

vised opinion aggregation research in the context of social choice dates back to the essays

of marquis de Condorcet (1785) motivating the idea of vox populi and ever since has been

an active field of research, viz. [18–20]. Block-processing (off-line) decision aggregating rules

date back at least to [21], where a maximum likelihood solution was found via the expecta-

tion maximization (EM) algorithm. Several variants of the EM approach have been proposed

since then, including the GLAD algorithm [22], which estimates states while simultaneously

learning source reliabilities and task difficulties, [23], which proposes a form of spectral esti-

mation for what they term confusion matrices for each source to initialize EM, [24], which
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uses EM to aggregate soft decisions, and [25], which extends the use of EM to an on-line

setting. Alternative to EM-based approaches, [26] proposes a belief propagation (BP)-type

algorithm, [27] proposes a variational inference model and uses belief propagation and mean

field methods, [28] discusses the optimality of the belief propagation approach and [29] stud-

ies an accuracy vs. budget trade-off for the belief propagation approach. Furthermore, [30]

proposes a spectral meta-learner (SML) that uses the dominant eigenvectors of a certain

empirical covariance matrix of workers to find weights and [31] proposes the use of deep neu-

ral networks. Statistical approach to opinion aggregation brings about several advantages

over the current methods that rely on off-line iterative solutions or computationally demand-

ing mathematical techniques: First, pseudo-competence notion allows unsupervised ordering

and inference of true competences through on-line or decentralized computation, [12]; a task

which is often achieved by off-line centralized computation, as done by SML [30], or as

side-products of iterative rules such as BP or EM [24–26]. Since pseudo competence can be

estimated empirically in real time, the resulting rules have significant runtime improvements.

Furthermore, proposed unsupervised rules achieve performance of the best supervised rule

as the number of experts increase; such asymptotic optimality has only been achieved by BP

before, [28], which in addition requires a good task assignment strategy to prevent loops in

the underlying Trellis graph.

Chapter 4 investigates fault-resilient computational principles for employing error-prone

computational units as experts. The existence of such units lead to system-wide failures with

hidden statistics that can be difficult to model, owing to the dimensionality of the error-

inducing physical factors including process, temperature and voltage variations, power-to-

circuit-area ratio, electromagnetic interference among many others. At the subsystem level,

this motivates safeguarding mechanisms to provide robust, low-power solutions to mitigate

failures [32–36], and the generality of such rules has created interest in interpretation of these

ideas in a more information- and decision-theoretic framework [37, 38]. We propose a fidelity-

based testing of hypotheses with hidden models [39], which not only provides a near optimal

fault mitigation improving upon the decision-theoretic framework but also operates at single-

task regime not requiring the asymptotic guarantees similar to the information-theoretic

framework. Furthermore, we explore fundamental limits of fault-resilient distributed com-

putation in the context of discarding faulty outcomes to prevent propagation of random

failures across the network.

Chapter 5 focuses on linear noisy resistive networks with stochastic components subject

to topology-preserving uncertainty profiles. Information processing through networks with

stochastic components is a natural consequence of fabrication, assembly, and integration

uncertainties. The massive dimensionality of the underlying physical processes governing
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component and network uncertainty has led to using a minmax design philosophy relying

on Monte Carlo simulations to predict a subset of the failure space as the de facto standard.

Such a standard is not only expensive and time-consuming, but it is inherently limited in

the intuition it provides on the underlying stochasticity. Therefore, a reliable framework for

linear noisy networks with stochastic components is necessary to accurately incorporate the

impact of fabrication uncertainty into the design process. The theory of linear noisy net-

works with stochastic components has far-reaching roots: Construction of reliable computing

circuits via unreliable components was addressed in [40]. A mathematical framework for cir-

cuits using unreliable relays with static failure statistics was proposed in [41]. The noise

due to thermal agitation of individual circuit components was shown to exhibit Gaussian

statistics in [42]. The impacts of thermal noise in linear networks with deterministic compo-

nents was discussed in [43]. We investigate concentration properties of effective resistance,

mean-square branch voltage, and expected power dissipation for topology-preserving uncer-

tainty profiles, quantify the effects of Johnson-Nyquist noise and address inter-component

dependence due to the integration processes [44].

Notation

Standard notation from analysis, algebra, probability, and graph theory are employed.

Specifically, C, R, Q, Z, N denote the set of complex, real, rational, integer, and natu-

ral numbers respectively. Sets are denoted by {· · ·}, vectors are by [· · ·], and (·)c is the set

complement operator. Deterministic matrices A,B, . . . are denoted by bold, capital, under-

lined letters. Deterministic vectors are always defined as column vectors a, b, . . . denoted by

bold, lowercase, italic letters. Range space and null space operators are denoted by R (·) and

N (·), respectively. Furthermore, R (·) denotes the range of a function, complementing the

domain notation of D (·). Transpose, inverse and pseudo inverse operators are denoted by

(·)>, (·)−1, (·)†, respectively. Sign and indicator functions are denoted by sign (·) and 1 (·),
respectively. Deterministic sequences an are denoted by lowercase letters with subscript in-

dices. Absolute value of a number and the cardinality of sets and vectors are denoted by |·|.
On a Hilbert space H, ‖·‖` denotes the corresponding `-norm, in the context of matrices,

‖·‖F denotes the Frobenius norm and ‖·‖σ denotes the spectral norm. The gradient of a

function f with respect to a vector x is denoted by ∇xf = [∂f/∂x1 · · · ∂f/∂x1]>. We use the

notation ∇xf (u) to denote the gradient evaluated at some point u ∈ D(f).

Random variables defined on (Ω,F ,P) are denoted with uppercase letters X, Y, . . . ,

where Ω is the event space, F is a σ-field defined on Ω and P(·) is the probability measure.
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Random vectors X,Y, . . . are defined as column vectors and denoted with boldface, capital

letters. Samples from random variables and vectors are denoted by their lowercase coun-

terparts x, y, . . . and x,y respectively. A subtle convention that is more conceptual than

formal is followed when the samples from random vectors are not italicized: (X,x) as op-

posed to (X,x). Probability density function of a random variable X is denoted by pX(x).

Random processes X(t), Y (t), . . . are defined on (Ω,F ,P,T) with t ∈ T being the index

set. When it is clear from context, E [·] (and E· when dealing with expected norms) denotes

the expectation operator otherwise, expectation with respect to a marginal distribution, for

instance that of a random variable X, is denoted by EX [·]. The conditional probability

and expectation operators are denoted by P (· | ·), E [· | ·]. When the intersection of events

ω1, ω2 ∈ Ω are concerned, P (ω1, ω2) ≡ P (ω1 ∩ ω2). Gaussian distribution with mean µ and

variance σ2 is denoted by N (µ, σ2).

The function w(p) = log p/(1−p) ≡ log p/q for q = 1− p appears frequently. In all instances

of its use, the domain of w(·) is allowed to be [0, 1] with the convention that log 1/0 =∞ and

log 0/1 = −∞. Furthermore, variables (p, q) always obey p+q = 1 with various extensions for

instance, pi+qi = 1 for competences, p̃i+q̃i = 1 for pseudo competences, and P (·)+Q (·) = 1

for log-likelihood to probability of correctness and error mappings to name a few. However,

for all such uses, we provide explicit in-text definitions.

Graphs are denoted by G with the corresponding vertex and edge sets (V , E). The

adjacency matrix of a graph is denoted by A and the Laplacian is denoted by L. When

a quantity r(G) (random or deterministic) between two vertices i, j ∈ V is needed, double

subscript rij is used. When i, j ∈ V are connected, i↔ j ∈ E is written. Neighborhood of a

vertex i is denoted by Ni.

Indexing

Elements of deterministic matrices are referred to (A)ij in row-column form and elements

of deterministic vectors vectors are written as (a)i. Standard unit vectors are denoted by ei

such that (ei)j = 1 (i = j) and the matrix Jij , (ei− ej)(ei− ej)> is employed. In general,

for any vector x and any subset I of an index set xI = {xi : i ∈ I}, same convention applies

to random vectors XI . When a specific index, for instance i, is removed, the remaining vector

is denoted by X\i. A vector-valued random process is given as X(t) = [X1(t), . . . , XN(t)]>,

∀t ∈ T. The matrix XT
1 , [X(1), . . . ,X(T )] denotes all outcomes from t = 1 up to t = T .

We further denote the set: [N ] = {1, . . . , N}.
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CHAPTER 2

OPTIMAL STOPPING TIME FOR CONSULTING
EXPERTS

Stochastic experts are sources of information that provide subjective evaluations of the cur-

rent state-of-the-world, or opinions, without any deliberate intent to deceive their recipi-

ents [45]. The rationale behind an opinion and the concomitant proficiency of an expert

is often hidden, or difficult to model, leading to a consultation process, where a variety of

opinions are gathered prior to decision making. Different from a straightforward engineering

application of the idea vox populi, [46], with all experts fully committing to a cause, the

operational cost of consulting each expert motivates a sequential consultation process that

allows the decision maker to collect opinions until stopping upon necessity or confidence.

Many modern engineering applications, including disaster detection [1], personalized

medicine [2], and autonomous driving [3], rely on experts as sources of extrinsic information

that are accessible at an operational cost. For instance, the internet of things is conjec-

tured to be particularly rich in highly localized processing units under power, circuit area,

and latency constraints are designed to collectively address global computational tasks [47].

These networks comprise error-prone computational units that, when employed, incur oper-

ational costs in the form of communication overhead, memory requirements, or processing

power. Furthermore, physico-chemical processes, such as genomic data sequencing, operate

with remarkably high target efficiency under processing-time and material constraints [48].

Similarly, computer vision applications often employ tree-based classifiers, such as random

forests, thanks to their versatility [11]. Tree-based classifiers introduce exponential growth

of the number of available classifiers, making strategies for dynamic resource allocation nec-

essary. Such applications share an inherent trade-off between the reward associated with

achieving a task and the costs incurred in the process.

The classical framework for the Bayesian hypothesis testing often admits a probability

law on pre-allocated resources, or experts, available to a decision maker that aims primarily

to maximize a known reward [4]. Since the observation statistics is known a priori in this

framework, the decision maker uses all available opinions to maximize the reward, often

without an initiative to consult experts dynamically. In the event of model uncertainty,

randomized decision rules, which still employ all available resources, are called to action
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[4]. When the underlying probability law is unknown, or hidden, feedback-based decision-

aggregation rules are often relied upon, leading to the ideas from the literature concerning

so-called mixture of experts and boosting i.a. [7, 45]. Consequently, decision rules with

pre-allocated resources often focuses on correct decision making, potentially under model

uncertainty, with limited regard to costs associated with consulting experts.

Sequential resource allocation problems, on the other hand, often aim to maximize known

rewards in the sequential hypothesis testing [5] or in the dynamic programming framework [6].

For instance, dynamic portfolio analysis investigates how a fixed budget can be allocated

among assets, analogous to proficiency of experts, to maximize the expected return from such

assets [8, 9]. Furthermore, scheduling arguments assert that a certain order of allocating

resources, or an order of experts to be consulted, can prove to be more rewarding than

arbitrary allocations [49]. In applications including random forests, experts are available at

the nature’s behest [11]. In such cases, the decision maker faces an optimal stopping problem,

where the objective is to stop when the current reward is superior to all expected future

rewards [6, Section 3.4]. Further properties of stopping times are addressed in [50, Sections

4.8, 7.3]. Sequential resource allocation techniques often enjoy reliable information on the

current rewards to determine how to allocate resources with limited regard to the how the

resources are used.

The fundamental challenge for sequentially consulting experts is to strike the balance

between the cost of consulting experts and the reward to be a acquired from correctly aggre-

gating their opinions. Therefore, in order to find the optimal stopping time for consulting

experts, one needs to jointly consider the strength of a decision and the the cost associated

with consulting another expert. Further challenges arise when experts are generated from a

stochastic family or when they are of hidden statistics. Chapter 2 addresses these challenges:

By introducing a reward function that diminishes in the numbers of experts consulted, we

capture the trade-off between the cost consulting an expert and the decision strength to

be gained from consulting. This, in comparison to sequential hypothesis testing, [5], in-

corporates the cost of consultation into decision making directly. Furthermore, dynamic

programming framework allows us to conclude that in the classical, no-cost sequential deci-

sion making based on opinions from equally reliable experts, such as those addressed in [5,

11], unsupervised competence estimate is almost never relevant when deciding whether to

consult more experts. Finally, when experts are generated from a stochastic family, we show

that rather than estimating the underlying reliability of experts, one could iterative compute

a unique stopping rule that achieves the maximum reward in expectation.
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2.1 Background and Problem Definition

Let a binary random variable Y ∈ Y , {−1, 1} capture the true state of the world. A

stochastic expert evaluates the current state of the world and produces an opinion Xt ∈ Y .

The proficiency of an expert, often called competence, is the probability with which the

produced opinion Xt captures the current state Y :

pt = P (Xt = Y ) . (2.1)

Experts that can be described sufficiently by the condition (2.1) are often called stochastic

experts [45]. Conceptually, a stochastic expert might fail but not deceive. Furthermore, we

consider experts that generate opinions independently, which does not imply that opinions Xt

are independent but rather implies that Xt are conditionally independent given the current

state Y , that is ∀t1 6= t2 ∈ [T ]:

Xt1 − Y −Xt2 . (2.2)

Such experts neither collaborate nor purposefully mislead the decision maker as might hap-

pen in a game-theoretic framework. Non-stochastic, or adversarial, experts as they are often

referred to, are addressed extensively in [45] from the mixture of experts perspective and

in [51] from that of multi-armed bandits.

It is well-known that given opinions XT = xT of experts with competences {p1, · · · , pT}
the maximum a posteriori (MAP) decision rule:

δ∗
(
xT
)

= arg max
y∈Y

P
(
Y = y

∣∣ XT = xT
)

(2.3)

minimizes the probability of error [4]:

δ∗
(
XT
)

= arg min
δ∈DT

P
(
Y 6= δ

(
XT
))
. (2.4)

Here DT is the family of decision rules that map YT → Y . Furthermore, the optimal decision

rule (2.3) necessarily takes the form of a likelihood ratio test [4]:

T∑
t=1

Xt log
pt
qt

≷ η, (2.5)

where qt = 1− pt, ∀t and threshold η = log P(Y=1)/P(Y=−1). The likelihood ratio test in (2.5),

written in the log-likelihood form here, is also commonly called the näıve Bayes decision

rule [17] with the understanding that δ∗
(
XT
)

= 1 when the log-likelihood exceeds the

8



threshold.

Observe that the decision rule (2.3) does not take into account the margin by which the

log-likelihood might exceed the threshold. This is a direct consequence of resources being

pre-allocated and the decision maker aiming to minimize probability of error (2.4) only. The

decision maker is provided with a set of experts at no cost, or at a fixed cost that decision

maker cannot control, therefore, there is no initiative for not consulting them. The sequential

consultation of experts incorporates the cost of opinions into the decision-making framework.

2.1.1 Sequential Consultation of Experts

Conceptually, consulting an expert to obtain an opinion has associated costs, among others,

time, circuit-area, memory, computational complexity, or opportunity cost, depending on

the application. Therefore, one needs to consider not only the benefit from an additional

opinion but also the associated cost. The following reward function captures this trade-off

over the binary alphabet:

r
(
t;X t

)
= βt1

(
Y = δ

(
X t
))
, (2.6)

where the pay-off function βt is monotonically decreasing in t; βt ≥ βt+1, ∀t ∈ [T ], and is

independent of the opinions XT . Decision aggregation rule δ(·) ∈ Dt, where:

Dt =
{
δ : Y t → Y

}
is the set of rules that aggregate up to t opinions. Note that the decision rule δ(·) is chosen

at the discretion of the decision maker. Therefore, the reward function (2.6) captures a wide

range of problem setups that do not yield a reward upon failure while penalizing excess use

of resources.

Sequential consultation of experts aims to maximize the reward in expectation and hence,

the problem is cast into a dynamic programming framework. Let the value function Vt (xt)

be the maximum expected reward starting from a set of opinions X t = xt at time t:

Vt
(
xt
)

= max
τ≥t
δ∈Dτ

E
[
r (τ ;Xτ )

∣∣ X t = xt
]
. (2.7)

The maximum is taken over all future times τ and all decision rules Dτ attainable at those

times, as shown in Appendix A.1. This is different from the standard dynamic programming

setup, [6, Section 3.4] with fixed rewards that take the maximum over time alone. Further

note that the reward r (t;X t) is earned only if the decision maker decides to stop and the

aggregated opinions yield the correct outcome. The following lemma formulates the Bellman
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equation that captures this trade-off:

Lemma 2.1. The Bellman equation that correspond to (2.7) for sequentially consulting ex-

perts is as follows:

Vt
(
xt
)

= max

(
βt max

y∈Y
P
(
y
∣∣ X t = xt

)
,E
[
Vt+1

(
X t+1

) ∣∣ X t = xt
])

.

The proof is mostly technical and relies on the fact that a decision maker can aggregate

opinions optimally upon stopping via the MAP decision rule (2.3) if competences pt, t ∈ [T ]

are known – given in Appendix A.1.

Albeit achievable when competences {p1, · · · , pT} are known, or when they are known to

belong a family {P1, · · · , PT} with a probability law fP1,···,PT (·), decision maker might not

always be able to construct the MAP decision rule based on the opinions alone. Notably,

when experts have hidden competences, MAP rule cannot be constructed exactly, which

might lead to fixing a decision rule such as majority voting and designing the stopping rule

achieving the maximum reward constrained to that rule, or designing a minmax stopping

rule if the experts are known to be equally reliable.

Next, we formulate the optimal stopping rule for consulting experts when the competences

are known.

2.2 Optimal Rule for Joint Stopping and Opinion Aggregation

Let nature provide an ordered set of experts with competences {p1, · · · , pT} for consultation.

At each time instance t ∈ [T ], upon receiving Xt, the decision maker may decide to stop

and aggregate opinions X t, or continue consulting. The pay-off function βt, ∀t ∈ [T ], and

the competences {p1, · · · , pT}, along with their ordering, are known.

The main purpose of this section is to propose an instantaneously realizable function

f : Y t → R and a recursively realizable function ηt such that the optimal stopping time T ∗

for consulting experts takes the form:

T ∗ =
{

min
t
f
(
X t; pt

)
> ηt

(
pTt+1, β

T
t

)}
. (2.8)

Here, pt denotes past competences and
(
pTt+1, β

T
t

)
denotes future competences as well as

current and future possible pay-offs. Note that the optimal stopping time T ∗ is a random

variable, the function f (·) of opinions is past measurable, and the threshold function η (·)
is a function of future competences and pay-offs alone; independent of any opinion sample
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path xT .

A stopping rule of the form (2.8) has conceptual advantages: First, a suitable Markov

property-preserving function f : Y t → R could quantify a notion of decision strength and

hence, would not lead to an exhaustive search over the random walk Xτ
t+1, ∀τ ∈ [t+ 1, T ]

of opinions. Second, such a rule would allow the consultation process to stop as soon as the

pre-computed threshold ηt is exceeded. Furthermore, albeit not obvious from (2.8), ηt could

quantify the cost-performance trade-off for consulting more experts as well as the impact of

their ordering. These ideas are formally addressed in Sections 2.2.1-2.2.2.

Certain properties of f(·) and ηt (·) should be clear conceptually: The more past opinions

agree the larger f (·) should be. Moreover, the more competent future experts are or the

slower βt diminishes, the larger ηt (·) should be. Appendix A.2 provides a technical mo-

tivation based on Lemma 2.1 for the instantaneously realizable statistics that we propose

next.

2.2.1 Likelihood Ratio as Sufficient Statistic

Let the random process Lt represent the log-likelihood ratio without the conventional em-

phasis on a specific state y ∈ Y . Instead, let it be the log-likelihood of correct decision

making :

Lt , log
max
y∈Y

P (Y = y | X t = xt)

min
y∈Y

P (Y = y | X t = xt)
. (2.9)

The random process Lt is well-defined over the index set [T ] as long as the ordering of the

experts is fixed. As could be expected, it satisfies Lt > 0 almost surely. One should note

that (2.9) does not assume any prior distribution on the underlying state Y : If such a prior

were known, Bayes’ rule would apply. The goal of this section is to show that Lt is a Markov

process and that it provides sufficient statistics for joint stopping and decision aggregation.

Observe that given Lt = `t, the maximum probability of correct decision making for any

set of opinions X t = xt that amount to `t can be written as:

max
y∈Y

P
(
Y = y

∣∣ X t = xt
)

=
1

1 + e−`t
,

where the right-hand side is often referred to as sigmoid, logistic, or logit function. Indeed,

it is useful to define separately the mapping from log-likelihood to probability of correctness:

P (`t) ,
1

1 + e−`t
, (2.10)
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with Q (·) = 1 − P (·) being the corresponding mapping from log-likelihood to probability

of error. Note that P (Lt) ≥ 1/2 almost surely. We deviate from the standard σ (·) notation

for the sigmoid function, [52, Section 1.4.6] in order to use P (·) as the probability of correct

decision making.

Similarly, define the log-likelihood ratio of an individual expert being correct:

θt , log
max (pt, qt)

min (pt, qt)
, (2.11)

where, different from (2.9), the set {θ1, · · · , θT} is deterministic. Further note that θt is not

the likelihood of correct decision making based on Xt as it does not take into account the

prior on Y . The next lemma addresses the Markov property of Lt.

Lemma 2.2. Let a finite set of experts with log-likelihood of correctness (θ1, · · · , θT ) generate

opinions (X1, · · · , XT ) independently (Xi − Y −Xj,∀i 6= j ∈ [T ]) upon being consulted.The

log-likelihood process:

Lt = log
max
y∈Y

P (Y = y | X t = xt)

min
y∈Y

P (Y = y | X t = xt)

is a Markov process that given Lt = `t evolves with:

Lt+1 =

`t + θt+1, w.p. p̃t+1,∣∣`t − θt+1

∣∣ w.p. q̃t+1,
(2.12)

where the transition probabilities are given by:

p̃t+1 = P (θt)P (`t) +Q (θt)Q (`t) , (2.13)

where q̃t+1 = 1− p̃t+1 and P (·) = 1−Q (·) is the sigmoid function (2.10).

Proof is given in Appendix A.3. Conceptually, one can interpret P (`t) as the instan-

taneous competence of the decision maker and hence, `t as the instantaneous strength of

the decision to be made. The state transition (2.12) quantifies this notion by establishing

the probability distribution of the strength to be attained by consulting another expert.

Furthermore, the transition probabilities (2.13) indicate that the strength of decision maker

increases when the new expert agrees with the current consensus, which not only happens

when both the consensus and the new expert are correct but happens when both are incorrect

as well.

We now set f (X t; pt) ≡ Lt and next, show that the optimal stopping time for consulting

experts takes the form in (2.8) by finding the threshold ηt
(
pTt+1, β

T
t

)
.
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2.2.2 A Likelihood Ratio Test for the Optimal Stopping Time

A direct consequence of Lemma 2.2 and (A.3) in Appendix A.1 is that one can write the

Bellman equation given in Lemma 2.1 in terms of the log-likelihood process Lt:

Vt (`t) = max
(
βtP (`t) ,ELt+1 [Vt+1 (Lt+1) | Lt = `t]

)
, (2.14)

which leads to an optimal stopping time for consulting experts that takes the form:

T ∗ =
{

min
t

: βtP (`t) ≥ ELt+1 [Vt+1 (Lt+1) | Lt = `t]
}
.

Observe that, different from the opinion process of Lemma 2.1, the log-likelihood process of

Lemma 2.2 admits the expected maximum future reward to be computed ∀t ∈ [T − 1] via:

ELt+1 [Vt+1 (Lt+1) | Lt = `t] = p̃t+1Vt+1

(
`t + θt+1

)
+ q̃t+1Vt+1

(∣∣`t − θt+1

∣∣) .
Further note that when there exist finitely many experts (T <∞) the value function, upon

consulting the last expert, amounts to receiving the minimal payoff βT with a probability

determined by all available opinions. Equivalently:

VT (`T ) = βTP (`T ) = βTP (max (`T , 0)) , (2.15)

which leads to the main result of Section 2.2.2. Note that the notation (X1, · · · , XT ) rather

than {X1, · · · , XT} is used to emphasize that experts are ordered in time.

Theorem 2.1. Let a finite set of experts with log-likelihood of correctness (θ1, · · · , θT ) gener-

ate opinions (X1, · · · , XT ) independently (Xi − Y −Xj,∀i 6= j ∈ [T ]) upon being consulted.

For a non-increasing pay-off function βt, starting at X t = xt, the stopping time that maxi-

mizes the reward:

r
(
t;xt

)
= βt1

(
Y = δ

(
xt
))
,

in expectation is called the optimal stopping time for consulting experts. A decision maker

that stops consulting upon the first occurrence of the event:

Lt ≥ ηt

and uses the maximum a priori decision rule:

δ∗
(
xt
)

= arg max
y∈Y

P
(
Y = y

∣∣ X t = xt
)
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Figure 2.1: Comparison of Thresholds Acquired from Theorem 2.1 and Bellman Equation
in Lemma 2.1

for aggregation opinions achieves the maximum expected reward. Here, Lt is the log-likelihood

ratio process:

Lt , log
max
y∈Y

P (Y = y | X t = xt)

min
y∈Y

P (Y = y | X t = xt)

and starting at ηT = 0, the threshold function ηt is defined recursively via:

ηt = log max

(
P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) , P
(
ηt+1

)
δt+1 +Q

(
ηt+1

) , P
(
θt+1

)
δt+1 +Q

(
θt+1

)) , (2.16)

where, δt+1 =
βt−βt+1

βt+1
and P (·) = 1 − Q (·) is the sigmoid function (2.10). Therefore, the

optimal stopping time for consulting experts is said to be given by:

T ∗ = min {t : Lt ≥ ηt} .

Theorem 2.1 proposes a stopping rule of desired form (2.8) with decision statistics

f (X t; pt) ≡ Lt and threshold function ηt
(
pTt+1, β

T
t

)
given in (2.16). Note that ηt is not

necessarily non-negative as it captures, among others, the trade-off between instantaneous

cost for per consultation δt+1 and the likelihood θt+1 of that expert being correct. The

threshold changes monotonically in its parameters: It increases in individual likelihoods θτ ,

∀τ > t, which corresponds to |pτ − 1/2| increasing, and it decreases in rate δτ , ∀τ > t, with

which the pay-off function diminishes. A proof of Theorem 2.1 and those of some of the

properties of ηt are given in Appendix A.4. Figure 2.1 illustrates that Bellman equation in

Lemma 2.1 yields numerically the threshold function ηt from Theorem 2.1, as it should.
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It is of interest to observe that the value function Vt (`t) that underlies Theorem 2.1 takes

the form:

Vt (`t) = βtP (max (`t, ηt)) ,∀t ∈ [T ], (2.17)

for the unique threshold function ηt. Conceptually, ηt is the discounted future likelihood of

correctness ; where the discounting factor follows directly from the pay-off diminishing and

the concomitant δt+1 factor in (2.16). This complements the principle optimality as it should:

optimal stopping happens when the current likelihood of correctness exceeds the discounted

future likelihood.

Diminishing pay-off function βt is a fundamental aspect of the problem setup for deter-

mining an optimal stopping time for consulting experts. Through dynamic programming,

Theorem 2.1 concludes that the proposed version of the sequential likelihood ratio test

achieves maximum expected reward for arbitrary pay-off functions beyond the standard,

constant-payoff formulation in [5]. Nevertheless, when the pay-off is constant and hence,

when the decision maker is allowed to consult until achieving confidence, Theorem 2.1 yields

interesting insights, as discussed next.

Constant Pay-off while Consulting Non-Identical Experts

If the pay-off does not diminish, βt = βt+1 = 1, ∀t ∈ [T ], equivalently, when opinions can be

acquired at no extra cost, the threshold function ηt is given by:

ηt = log
P
(
θt+1

)
P
(
ηt+1

)
Q
(
θt+1

)
Q
(
ηt+1

) =
T∑

j=t+1

log
P
(
θj
)

Q
(
θj
) .

Recall that ηT = 0 and LT ≥ 0 almost surely, which yields that decision-maker necessarily

stops and decides whichever choice is more likely. Let Y have the uniform prior for ease of

exposition. Then, the optimal stopping time attains the simple form:

T ∗ = min

{
t :

∣∣∣∣∣
t∑
i=1

Xi log
P (θi)

Q (θi)

∣∣∣∣∣ ≥
T∑

j=t+1

log
P
(
θj
)

Q
(
θj
)} . (2.18)

Conceptually, the stopping time in (2.18) exhibits a key phenomenon: In the constant pay-off

setup, to maximize the probability of correct decision making, one should consult experts

sequentially until the remaining experts in unanimity are unable to change the current

decision. Equivalently, decision maker should compare the current decision strength to the

combined strength of the future experts. Furthermore, the decision maker employs the näıve

Bayes rule, shown in (2.5), to aggregate the available opinions. More generally, the magnitude
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of the gathered statistics determines whether the decision maker should stop consulting or

not and the corresponding sign determines which decision to make upon stopping.

Constant Pay-off while Consulting Identical Experts

If the experts are identical in their competences pi = pj = p, ∀i, j ∈ [T ], yet still generating

opinions independently, the threshold ηt takes the form:

ηt = (T − t) log
P (θ)

Q (θ)
= (T − t) log

max (p, q)

min (p, q)
.

The corresponding optimal stopping time takes the form:

T ∗ = min

{
t :

∣∣∣∣∣
(

t∑
i=1

Xi

)
log

max (p, q)

min (p, q)

∣∣∣∣∣ ≥ (T − t) log
max (p, q)

min (p, q)

}
,

which further simplifies to:

T ∗ =


1 if p ∈ {0, 1} ,

0 if p = 1/2,

min {t : Mt ≥ T − t} otherwise,

(2.19)

where the random variable Mt denotes the margin between votes, Mt =
∣∣∑t

i=1Xi

∣∣. It

important to note that the stopping rule in (2.19) is an unsupervised stopping rule in the

sense that it does not depend on the value of the competence p but on experts being identical

and whether p ∈ {1/2, 0, 1} or not.

Even though the stopping rule takes an intuitive form when the competences are known,

in practice it is a demanding constraint to meet. Next, we address the optimal stopping time

for consulting experts with hidden competences subject to a known probability law.

2.3 Bayesian Stopping Times for Consulting Experts

Let a probability law fΘT governing the log-likelihood ΘT ≡ {Θ1, · · · ,ΘT} of correctness for

the experts be given:

P (Xt = Y ) = P (Θt) .

Further allow that Θt1
⊥ Θt2

, ∀t1 6= t2 ∈ [T ] and that Θt > 0, ∀i ∈ [T ] almost surely.

Unless the consultation process was stopped previously, at each time t ∈ [T ] an expert of
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competence P (Θt) generates an opinion Xt, which is then revealed to the decision maker

without the underlying likelihood Θt = θt. In this case, the law of total probability yields

that log-likelihood process Lt takes the form:

Lt = log
max
y∈Y

EΘt [P (Y = y | X t,Θt)]

min
y∈Y

EΘt [P (Y = y | X t,Θt)]
, (2.20)

where the conditional should be understood as ordered pairs (X1, θ1) , · · · , (Xt, θt). The

purpose of this section is to show that for any such probability law fΘT , a unique threshold

for optimal stopping exists.

Theorem 2.1 establishes the existence of a unique intersection point between βt−1P
(
`t−1

)
and ELt

[
Vt (Lt)

∣∣ `t−1, θt
]

over the domain of `t−1 when the value function is given by (2.17),

as shown in Appendix A.4. Unlike the discussion in Section 2.2, in the Bayesian framework,

{θ1, · · · , θT} are not revealed to the decision maker, which leads to the expected future value

function taking the form of an ensemble average:

ELt
[
Vt (Lt)

∣∣ `t−1

]
= EΘt

[
ELt

[
Vt (Lt)

∣∣ `t−1,Θt

]]
. (2.21)

This is an immediate consequence of the law of total probability. The following lemma

helps establish whether there exists a unique intersection point between βt−1P
(
`t−1

)
and

ELt
[
Vt (Lt)

∣∣ `t−1

]
, which would yield the optimal stopping time in the form of (2.8).

Lemma 2.3. Let U be a random variable with a probability law fU (u). If ∀u : fU (u) > 0

there exists a unique intersection point x(u) satisfying h(x(u)) = g(x(u), u) then, there exists

a unique intersection point x0 such that:

h (x0) = EU [g (x0, U)] .

Proof is given in Appendix A.5. The following result is a corollary of Theorem 2.1 and

it establishes the optimal stopping time for consulting experts under a probability law fΘT .

Corollary 2.1. For a given probability law fΘT governing ΘT , there exists a unique threshold

function ηt such that:

T ∗ = min {t : Lt ≥ ηt} ,

yields the optimal stopping for consulting experts.

Let us motivate that a closed-form solution similar to that in (2.16) might not be at-

tainable for an arbitrary probability law over ΘT . Observe that value function VT (`T ) still
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attains the form in (2.15), where the expected future reward at time t = T − 1 follows from

(2.21). The Bellman equation (2.14) yields that the consulting process stops at time T − 1

if `T−1 ≥ ηT−1, where ηT−1 is the solution to:

ηT−1 = log

∞∫
ηT−1

P (ΘT ) dfΘT

δT +
∞∫

ηT−1

Q (ΘT ) dfΘT

.

One should note the similarity with (2.16) and the fact that such a threshold exists for all

ΘT . Nonetheless, ηt might not be finite as evidenced by allowing P (Θt) to be uniform over

[1/2, 1], ∀t for the no-cost formulation.

2.4 Experiments

The experiments consider T = 100 experts being consulted sequentially and the decision

maker receiving rewards that correspond to different pay-off functions βt. We consider the

following pay-off functions:

1. Linear pay-off: βt = 1− t/2T .

2. Convex pay-off: βt = γt, where γ =
T
√
t.

3. Concave pay-off: βt = 2− γt − t/T .

Note that all cost functions are normalized to ensure β0 = 1 and βT = 1/2. Figure 2.2 illus-

trates these pay-off functions and the corresponding δt functions, which might be considered

relative cost per consultation. Figure 2.2b shows that δt functions intersect at t = 57, and

∀t < 57, convex pay-off has the highest δt, followed by that that of linear pay-off and that

of concave pay-off. This carries significance as the threshold ηt is monotonic in δt.

Figure 2.3 illustrates the properties of the threshold function ηt. As stated in Section

2.2.2, the threshold function increases in θt and decreases in δt. Figure 2.3a shows that for

equally competent experts with competence p ∈ {0.5, · · · , 1} (thus monotonically ordered θ),

higher competence yields higher thresholds for stopping. One should note that Figure 2.3a

illustrates the case for convex pay-off however, the behavior persists for any cost function.

Figure 2.3b, on the other hand, illustrates the impact of δt when competences are chosen

at random: Recall from Figure 2.2b that up to time t = 57, the δt of convex pay-off is

greater than that of linear pay-off and that of concave pay-off. Figure 2.3b illustrates that

the corresponding thresholds have the correct ordering.
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(a) Pay-off Functions Used for Experiments (b) Functions δt that Correspond to Pay-off
Functions

Figure 2.2: Linear, Convex, and Concave Pay-off Functions Used for Experiments and the
Corresponding δt Functions

(a) Pay-off Functions Used for Experiments (b) Functions δt that Correspond to Pay-off
Functions

Figure 2.3: Linear, Convex, and Concave Pay-off Functions Used for Experiments and the
Corresponding δt Functions

2.4.1 The Optimal Stopping Time for Known Competences

We first address the problem setup, where competence of every expert (along with their

ordering) is known to the decision maker. The optimal stopping rule from Theorem 2.1 is

compared against a heuristic 1− α rule that stops upon the first occurrence of the event:

max
y∈Y

P
(
Y = y

∣∣ X t = xt
)
≥ 1− α.
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(a) Convex Pay-off (b) Linear Pay-off

(c) Concave Pay-off

Figure 2.4: Comparison of the Optimal Stopping Rule with Heuristic (1− α) Rules When
Competences Are Randomly Chosen

Figure 2.4 illustrates performance comparison between the expected reward of the optimal

stopping time and those from 1− α rule with α values taken from the interval [0.001, 0.25).

The optimal stopping rule outperforms all heuristic rules as expected. Importantly, the

results are shown for an arbitrary set of competences randomly drawn from the interval

[0.5, 0.9]. The performance is achieved over an average of 1000 trials, where 1000 different

tasks were chosen at random but the competences remained fixed (picked at random in the

beginning of the experiment). It appears that there exist α values that ensure comparable

performance even though it is not known how to compute them before the experiment.

Figure 2.4 shows that there are discontinuities in the performance of (1− α) rules. This

is due to competences being picked at random in the beginning of the experiment. Even

though the optimal stopping rule should (and does) outperform other stopping rules for

any set of fixed competences, one could repeat this experiment over again to capture the
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(a) Convex Pay-off (b) Linear Pay-off

(c) Concave Pay-off

Figure 2.5: Comparison of the Optimal Stopping Rule with Heuristic (1− α) Rules when
Averaged over Competences

behavior of other rules more accurately. Figure 2.5 illustrates when the previous experiment

with 100 tasks is repeated 100 times, for each new trial competences are picked at random.

As expected, the performance of heuristic rules can be observed more clearly, where the

expected reward of the optimal rule still exceed those of other, heuristic, rules.

2.4.2 The Optimal Stopping Time for Bayesian Competences

In this experiment, we allow each expert to have a competence Pi drawn from the uniform dis-

tribution over [0.5, 0.9], the competences are independent and identically distributed (i.i.d.).

The unique threshold for optimal stopping in Corollary 2.1 computed numerically. Figure

2.6 illustrates a comparison between optimal stopping threshold for known competences from

(2.16) and that for the Bayesian case. Similar to the experiment for known competences,
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(a) Convex Pay-off (b) Linear Pay-off (c) Concave Pay-off

Figure 2.6: Comparison of the Optimal Stopping Thresholds for Bayesian and Known Com-
petences

experts with random competences are consulted for 100 tasks and process is repeated for

100 times with competences being generated randomly at the beginning of each experiment.

It is important to note that when competences are chosen i.i.d. with log-likelihood process

Θ, the likelihood ratio for the Bayesian case (2.20) takes the form:

Lt =

∣∣∣∣∣
t∑
i=1

Xi

∣∣∣∣∣ log
E [P (Θ)]

E [Q (Θ)]
. (2.22)

The (1− α) rules, as well as the optimal stopping rule uses (2.22) for stopping and opinion

aggregation. Figure 2.7 illustrates that performance of the Bayesian optimal stopping rule

outperforms the heuristic rules while suffering from a performance degradation with respect

to the optimal rule for known competences, termed “sample-optimal”, which has direct access

to competences.

2.4.3 Constant Pay-off while Consulting Identical Experts

Experiments so far rely on information on competences either directly or through Bayesian

prior. Here we address equally reliable experts being consulted at no cost, which leads to

a constant pay-off for all times (βt = 1,∀t ∈ [T ]), hence aims to sequentially minimize the

probability of error. Figure 2.8 illustrates that the optimal stopping rule (2.19) outperforms

(1 − α) rules that use true competences for decision making. On one hand, this indicates

that the minimum probability of error achieving rule does not rely on the true competence

value and thus, is an unsupervised rule (competences p ∈ {0, 1/2, 1} are exceptions, as noted

in Section 2.2.2). On the other hand, it indicates the knowing competences can not improve

performance in this framework.
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(a) Convex Pay-off (b) Linear Pay-off

(c) Concave Pay-off

Figure 2.7: Comparison of the Optimal Stopping Rule with Heuristic (1− α) Rules when
Average over Competences

Figure 2.8: Constant Pay-off for Equally Competent Experts
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CHAPTER 3

UNSUPERVISED OPINION AGGREGATION

As seen in Chapter 2, the performance of decision making after consulting experts, opinion

aggregation is a key factor in applications that rely on subjective information. Even though

optimal opinion aggregation rules in various problem formulations are well-known when the

probability law governing the competence of each expert is known, it is of interest to pursue

opinion aggregation rules that do not rely on such prior information.

The opinion aggregation, has far-reaching roots: Bayesian hypothesis testing sets the fun-

damental limits of opinion aggregation provided that the complete probability law governing

the experts exists and is known to the decision maker [4]. Nonetheless, it is difficult, if at all

possible, to model reliably, over the entire application space, the probability law that under-

lies highly specialized processing units, which are often trained on limited data. The modeling

error and the concomitant performance degradation in opinion aggregation might prove to

be uncontrollable in such cases. The uncertainty in modeling, however, does not necessarily

render statistical inference of the underlying probability law implausible. Dempster-Schafer

theory addresses the Bayesian inference problem under model uncertainty by incorporating

belief and plausibility functions to substitute direct application of the probability law [53,

54]. In general, use of approximate models for reasoning is called fuzzy logic [55] and has

wide range of applications in control theory [56].

In the absence of approximate or complete probability laws, feedback is often used to learn

and mitigate the reliability of each source and the concomitant probability distribution over

opinions. The mixture of experts setup successfully aggregates opinions from potentially

adversarial experts by the use of reliable past information [45]. Similarly, boosting and other

associated meta-learning concepts use feedback, often at the expense of additional training

data, to learn and use the reliability of different strategies, or classifiers [7]. The use of

feedback is both the strength and the fundamental limitation of such strategies, as feedback

is often expensive even when it is feasible to generate. The Bayesian ideas are called to

action and a prior distribution on the underlying probability law is often assumed when

feedback is not feasible. The Bayesian approach enables the use of a rather powerful toolbox

of iterative algorithms including belief propagation, expectation-maximization, and mean-
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field methods [19, 21, 23, 25, 28]. Bayesian decision-aggregation methods are powerful to

the extent with which the prior successfully captures reality.

The existence of reliable or approximate models, feedback, or prior information fun-

damentally defines the application space on which the associated ideas can be employed,

and thus, are limited to such applications. As such, we may consider opinion-aggregation

techniques that use some form of side information as supervised rules. Conceptually, the

presence of such side information renders an otherwise vital fact obsolete: Experts aim to

achieve a common task, not to fail it, as long as a fixed probability governing how experts

produce opinions exists. The opinion-aggregation rules that rely solely on the existence of

such a probability law can therefore be considered unsupervised rules. Often a community

of experts is less subjective than its individual constituents, motivating statistical inference

to compensate the lack of supervision. The fundamental challenge is to design unsuper-

vised decision rules that reliably aggregate opinions without using side information on the

underlying, hidden, and fixed probability law governing the experts.

Chapter 3 addresses this challenge from an inherently statistical perspective. Section 3.1

provides the formal background for opinion aggregation and identifies different regimes of op-

eration. Section 3.2 introduces a novel technique for estimating, dynamically in real-time, the

reliability of each expert from a set of opinions and discusses the properties of the proposed

method. The purpose of such reliability estimation is made clear by using these estimates

to infer the unknown probability law. Section 3.4 introduces a sharp upper-bound on the

minimum probability of error achievable when the probability law is known, improving upon

the state-of-the-art. Section 3.5 proposes an unsupervised opinion aggregation rule based on

the minimum probability of error rule that uses the unsupervised reliability estimates and

investigate its fundamental limits. Section 3.6 addresses empirical extensions that aggregate

a fixed block of opinions as well as doing so adaptively in real-time. Experiments are given

in Section 3.7. The proofs are deferred to Appendix B.

3.1 Background and Problem Definition

Let a set of tasks T for identifying hidden binary states Y (t) ∈ {−1, 1}, ∀t ∈ T (in the

context of classification, Y (t) is often called label or ground-truth instead) be generated

independently, Y (t) ⊥ Y (τ), ∀t 6= τ , with a uniform prior:

P (Y (t) = 1) = P (Y (t) = −1) = 1/2,∀t ∈ T. (3.1)
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Even though there exist applications that do not admit the uniform prior, such as group

testing [57], where populations are severely skewed, (3.1) is a common assumption in opinion

aggregation problems [17]. If a non-uniform prior on Y exists, standard Bayesian decision-

making principles can be used to adapt the results, see, for instance, [4].

Experts generate binary opinions Xi ∈ {−1, 1}, ∀i ∈ [N ], that identify the true state

Y (t) with some probability:

pi , P (Xi(t) = Y (t)) ,∀t ∈ T. (3.2)

The true competence pi of an expert is considered fixed across tasks. Let there be N experts

and assume that opinions are generated independently, which amounts to:

Xi(t)− Y (t)−Xj(t),∀i 6= j ∈ [N ], (3.3)

for every task t ∈ T. One should note that (3.3) does not indicate that opinions are inde-

pendent. Indeed, it is conceptually clear that opinions should be dependent for meaningful

inference as an opinion is a subjective evaluation of the current state, not an arbitrary input.

Experts that can be reliably defined by a stochastic law, as done here via (3.1)−(3.3), are

sometimes called stochastic experts to separate them from the more game-theoretic frame-

work of adversarial experts [45], a similar distinction exists for multi-armed bandits [51].

Furthermore, when pi is a function of the underlying task space T, unlike how it is defined

here, experts exhibit task-dependent competence. The Neyman-Pearson formulation of bi-

nary hypothesis testing [58] and the two-coin Dawid-Skene model [21], are examples of expert

competences changing over the task space T.

Opinion-based systems are sometimes referred to as semi-supervised systems due to the

availability of experts and the concomitant subjective information [52]. However, in the con-

text of opinion aggregation, one may consider supervision as any form of side-information

that yields inference of the underlying probability law beyond the extent that opinions alone

would allow. Formally, a supervised opinion-aggregation rule refers to a function f (·) map-

ping a set of opinions X (t) to an estimate of the true state Y (t):

Ŷ (t) = f (X (t) ;S) , (3.4)

where Ŷ (t) ∈ {−1, 1} and S denotes some form of side information. Supervised opinion-

aggregation methods require different forms of side-information S: {p1, · · · , pN} for binary

hypothesis testing [4], known subsets of {y1, · · · , yt−1} for boosting and mixture of experts [7,

45], or a priori distribution pP1,···,PN (·) on competences for Bayesian techniques; [19, 21, 23,
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25, 28] are some of the prominent examples.

Unsupervised opinion aggregation, on the other hand, refers to functions that only rely

on the existence of the underlying probability law, here, for instance, characterized by (3.1)-

(3.3). As such, they assume the form:

Ŷ (t) = f (X (t)) . (3.5)

The most prominent example of unsupervised decision aggregation is majority voting, which

is commonly accepted as the baseline for unsupervised techniques. A modern unsupervised

technique, called spectral meta learner, relies on the singular values of the empirical covari-

ance matrix of a collection of opinions [30].

Binary opinion-aggregation techniques often aim to minimize the probability of error:

min
f∈D

P (f (X (t)) 6= Y (t)) , (3.6)

where D is the family of admissible opinion-aggregation rules that depend on the problem

setup. For instance, the admissible rules comprise all, potentially randomized, decision rules

for known competences, past-measurable decision rules for feedback available from hidden

models, and functions that directly map available opinions to decisions on the corresponding

tasks in the absence of all side information.

Opinion-aggregation rules (3.4)-(3.5), and the corresponding performance metric (3.6),

are written in the form of single-task opinion aggregation, where a set of opinions are used to

make a decision Ŷ (t). We next discuss several modes of operation for unsupervised opinion

aggregation.

3.1.1 Unsupervised Opinion Aggregation

Unsupervised opinion aggregation refers to employing a function f(·) of opinions {Xi (t)} for

(i, t) ∈ N × T , where N × T ⊂ T × [N ] to identify a set of hidden states {Y (t) : t ∈ T },
directly : {

Ŷ (t) : t ∈ T
}

= f ({Xi (t) : (i, t) ∈ N × T }) . (3.7)

Note that there is no side information S as an input to the decision rule and that the subset

N×T determines the operational meaning of the opinion-aggregation rule: The function f (·)
might be fixed for all tasks T, such as majority voting [46], or it might change adaptively

in tasks. Furthermore, f (·) might process blocks of opinions (often iteratively and non-

adaptively) [19, 21, 23, 25, 28]. Formal definitions of unsupervised opinion-aggregation rules

27



are discussed next.

Instantaneous Opinion Aggregation

A fixed function directly applicable to opinions {Xi(t) : i ∈ [N ]} on any task t ∈ T, is

an instantaneous opinion-aggregation strategy. Conceptually, these rules do not require

additional memory to store past opinions. Formally, they take form Ŷ (t) = f (X (t)), as

illustrated in Figure 3.1.

Y (t)
Consulting

Experts

X1(t)
...

XN (t)

 Aggregating
Opinions
f(·)

Ŷ (t)

Figure 3.1: Instantaneous Opinion Aggregation

It is often difficult to find meaningful unsupervised rules that are instantaneous, with

a notable exception: Majority voting, denoted by fMV (X(t)), is a commonly-accepted

baseline for unsupervised rules:

fMV (X(t)) = sign

(
N∑
i=1

Xi(t)

)
, (3.8)

where ties are broken arbitrarily. It is often taken for granted that ties being broken arbi-

trarily is a direct consequence of (3.1). Indeed, if a prior pY (y) on Y (t) were known,

Ŷ = arg max
y∈{−1,1}

P (Y = y)

should be chosen in the event of a tie [4].

Conjectures of marquis de Condorcet, [46], have long been debated in the social choice

literature i.a. [18, 20, 59], revealing that majority voting is not reliable when heterogeneous

(pi ∈ [0, 1]) or arbitrarily weak (pi → 1/2) populations of experts are concerned.

Block(-Iterative) Opinion Aggregation

A strategy that processes a collection of opinions {Xi (t) : (i, t) ∈ N × T } to estimate the

corresponding states
{
Ŷ (t) : t ∈ T

}
is a block opinion-aggregation rule. Conceptually, these

rules, often iteratively, process past opinions to decide for the respective block of tasks. We
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focus on block rules that leverage all the available opinions with N = [N ] and T = T, as

illustrated in Figure 3.2.

Y (1) · · · Y (T )

Consulting
Experts X1(1) · · · X1(T )

...
. . .

...
XN(1) · · · XN(T )



Aggregating
Opinions
f(·)

Ŷ (1) · · · Ŷ (T )
Block Inference

Figure 3.2: Block(-iterative) Opinion Aggregation

Often, off-line techniques such as expectation maximization, belief propagation, or spec-

tral decomposition methods are used iteratively on a collection of opinions [19, 21, 23, 25, 28].

Specifically, belief propagation has been shown to asymptotically minimize the probability

of error for specific sparse subsets N ⊂ [N ], often referred to as task-assignment [28]. The

singular value distribution of the empirical covariance matrix of opinions has also been inves-

tigated for opinion aggregation [23, 30]. Adaptations of expectation maximization have been

proposed for adaptive block-processing and task-dependent modeling of competences [21,

25]. These methods are generally computationally expensive and they seldom yield provable

guarantees for their performance.

Adaptive Opinion Aggregation

A strategy that infers the underlying probability law sequentially from past observations is

an adaptive opinion-aggregation strategy. Formally, it has the form Ŷ (t) = ft (X(t)), as

illustrated in Figure 3.3.

These strategies often estimate and employ empirical competence estimates {p̂1, · · · , p̂N}
in the decision making process and, traditionally, they are almost exclusively formulated as

supervised opinion-aggregation strategies that have access to state feedback or additional

“meta”-training [7, 17, 45].

We propose a set of non-iterative, unsupervised decision-aggregation strategies with quan-

tifiable performance guarantees. Inspired from the näıve Bayes decision rule, which follows

from the likelihood ratio test for known competences {p1, · · · , pN}, [4, 17], we propose block-

decision aggregation rules and discuss their adaptive extension. The proposed rules employ

biased estimates of expert competences, called pseudo competences, directly.
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Y (t)
Consulting

Experts

X1(t)
...

XN (t)

 Aggregating
Opinions
ft(·)

Ŷ (t)

X1(1) · · · X1(t− 1)
...

. . .
...

XN(1) · · · XN(t− 1)

 Memory
or

Inference

Figure 3.3: Adaptive Opinion Aggregation

3.2 Unsupervised Estimation of Competences

Let the experts {X1, · · · , XN} be characterized by the probability law (3.1)-(3.3). Then,

given knowledge of the true states {Y (1), · · · , Y (T )} the true competence pi of an expert

can objectively be measured by the frequency with which the expert successfully identifies

the true state:

p̂i(T ) =
1

T

T∑
t=1

1 (Xi(t) = Y (t)) . (3.9)

The ergodicity of the process 1 (Xi(t) = Y (t)), which follows from (3.1)-(3.3), yields that

p̂i(T ) → pi as the number of tasks increases. However, an unsupervised decision maker

does not have access to Y (t) and therefore, cannot make use of these reliable competence

estimates p̂i(T ) for decision making.

Conceptually, measuring the quality of an opinion without knowing the true state, or the

ground-truth, is a commonly encountered challenge in human decision-making: One might

accept the consensus of extrinsic opinions on a task as a proxy for the truth to the best of

one’s knowledge. We define a form of opinion-based reliability, or the pseudo competence

of an expert, as the likelihood of an expert agreeing with independently-generated opinions

from other experts:

p̃i , P
(
Xi(t) = fMV

(
X\i(t)

))
,∀t ∈ T. (3.10)

As discussed in Section 3.1, majority vote is an intuitive decision rule that is often accepted

as a baseline, and it leads to the notion of agreeing with peers. Formally, the subset X\i are

the peers of the expert Xi and their collective competence under majority vote is denoted

by:

p\i , P
(
Y (t) = fMV

(
X\i(t)

))
,∀t ∈ T. (3.11)

We refer to p\i as self-excluding majority and use it as a reference point for measuring the
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pseudo competence of the corresponding expert. It follows from the law of total probability

that pseudo competence is a function of the entire committee {p1, · · · , pN} [60]:

p̃i = pip\i + qiq\i, (3.12)

where, q\i = 1 − p\i. If one chooses to accept the frequency with which an expert agrees

with peers as the empirical competence estimate for that expert:

ρ̂i (T ) =
1

T

T∑
t=1

1
(
xi(t) = fMV

(
x\i(t)

))
, (3.13)

then it is possible to infer competences, in the form of pseudo competences, in real-time.

Similar to the true competence estimates, the ergodicity of the process:

Ai(t) = 1
(
Xi(t) = fMV

(
X\i(t)

))
,

which follows (3.1)-(3.3), yields that ρ̂i (T ) → p̃i as the number of tasks increases. Fur-

thermore, (3.13) enables distributed estimation and ranking of competences on connected

networks, as discussed in Section 3.3, [12].

A key aspect of the pseudo competence is the exclusion of self-opinions X\i and the

concomitant competence of the peers p\i. Exclusion of self-opinions is rather intuitive as

an expert always agrees with itself, hence including self-opinions would bias the pseudo

competence toward5 the expert that is being measured. The collective expertise of the peers

on the other hand, is critical for pseudo competence to make sense. Conceptually, as one

should not measure the competence of an expert with the likeliness of failure, one should

not measure it by the likelihood of agreement with those who fail often.

We next address what we call good committees (pi > 1/2,∀i ∈ [N ]) and mixed committees

(pi ∈ [0, 1],∀i ∈ [N ]) to explore the conditions that would yield reliable and meaningful

inference using pseudo competences instead of true competences.

3.2.1 Properties of Pseudo Competence for Good Committees

We call a committee good if pi > 1/2, ∀i ∈ [N ] for a finite N > 2, or pi > 1/2 + ε, ∀i, for

some ε ∈ (0, 1/2) when the committee is countably infinite. Contextually, a good committee

consists of experts that generate correct opinions in general. Formally, it follows that for a

good committee, the self-excluding majority satisfies p\i > 1/2, ∀i.
Proposition 3.1 summarizes the key properties of pseudo competence for a good commit-
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(a) A Good Committee (b) A Mixed Committee

Figure 3.4: A Comparison of Pseudo Competences p̃i, (3.10), to True Competences pi, (2.1),
Self-Excluding Majority p\i, (3.11), as Reference

tee.

Proposition 3.1. For every finite committee {p1, · · · , pN} with pi > 1/2, ∀i ∈ [N ], or for

every countably infinite committee {p1, · · · , pi, · · ·} with pi > 1/2 + ε, ∀i ∈ N for some ε ∈
(0, 1/2), the pseudo competence satisfies:

1. Ordering: pi > pj ⇐⇒ p̃i > p̃j.

2. Under-estimation: 1/2 < p̃i < pi.

The pseudo competences preserve the ordering of the true competences and they are

strictly greater than 1/2 for good committees – proof is given in Appendix B.1. On the other

hand, pseudo competence penalizes the most competent experts while evaluating lower-

competence experts more accurately. Figure 3.4a illustrates this phenomenon for N = 10

experts with competences uniformly spaced over [0.5, 0.9]. A good committee ensures that(
p\i > 1/2, ∀i

)
, however, it is not necessary for a committee to be good to guarantee the same

condition. We next discuss mixed committees that ensure reliable peers for every expert.

3.2.2 Properties of Pseudo Competence for Mixed Committees

Pseudo competence not only relies on the notion that the committee, as a whole, is a suffi-

ciently competent reference point to measure the competence of each expert but also relies on

committee being robust to the absence of any individual expert in the sense that p\i > 1/2 for
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every expert. Certainly, this notion is not valid for all mixed committees: Neither reliable in-

ference of pseudo competence and nor reliable unsupervised opinion aggregation is unattain-

able when, for instance, a significant portion of the committee is unreliable (|i : pi ≤ 1/2|
is large), or the committee as a whole is indecisive

(
P
(
fMV (X) = Y

)
≈ 1/2

)
. It is rather

difficult to characterize the mixed committees that ensure reliable unsupervised inference.

Several works have proposed application-specific conditions on the mixed committees, for

instance, [18, 19, 25, 26, 28].

It is of practical interest to investigate mixed committees that are competent as a whole:

Often, a notion of consistency arises in various supervised or unsupervised learning, inference,

and decision rules, i.a. [45]. Consistency under majority vote, also known as Condorcet’s Jury

Theorem [18, 46, 59], is defined as follows.

Definition 3.1 (Consistency). A committee of experts with competences {pi : i ∈ N} is con-

sistent under majority voting if:

lim
N→∞

P
(
fMV (X1, · · · , XN) = Y

)
= 1.

An explicit characterization of consistent mixed committees is non-trivial and addressed

in [18, 20, 59]. Nonetheless, for every consistent committee, there exists a monotonically

increasing, tight lower bound aN that we call the rate of consistency:

aN = inf
n≥N

P
(
fMV (X1, · · · , Xn) = Y

)
. (3.14)

The rate of consistency determines the asymptotic performance of decision aggregation rules

that use pseudo competences. Proposition 3.2 extends the notion of under-estimation in

Proposition 3.1 to what-we-call pessimistic estimation for mixed committees.

Proposition 3.2. For every consistent committee {pi}i∈N, there exists a committee size n∗

such that ∀N > n∗ pseudo competences satisfy:

1. Ordering: pi ≥ pj ⇐⇒ p̃i ≥ p̃j.

2. Pessimism: min {p̃i, 1− p̃i} ≥ min {pi, 1− pi}.

Conceptually, pessimism property indicates that good experts (pi > 1/2) are underesti-

mated and bad ones (pj < 1/2) are overestimated – proof given in Appendix B.2. Figure

3.4b illustrates Proposition 3.2 for N = 10 experts with competences uniformly spaced over

[0.3, 0.9]. A condition for finite mixed committees to satisfy Proposition 3.2 is given by (B.1)

in Appendix B.1.
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The pseudo competence (3.10) provides a metric that can be estimated in real-time via

(3.13) and that requires no side-information beyond the existence of a probability law char-

acterized by (3.1)-(3.3). Committees that satisfy p\i > 1/2, ∀i ensure that pseudo competence

preserves the ordering of the true competences and it neither mistakes a bad expert for a

good one nor it does the opposite. Therefore, it provides a reliable unsupervised metric for

estimating the underlying probability law directly. Another advantage of pseudo competence

metric is that it admits distributed estimation, which is addressed next.

3.3 Distributed Unsupervised Estimation of Competences

Network models of opinion sources include locally generated opinions of varying reliability. In

power-constrained, low-bandwidth applications, distributed learning of nodal competences is

of interest. Consider a network modeled by a connected graph G = (V , E) comprising a finite

set of experts (X1, . . . , XN) sitting at vertices, where N = |V|. Experts are characterized

by (3.1)-(3.3), and the edge set E defines the interconnections among experts. Let A be the

adjacency matrix of the network, that is, ∀i, j ∈ V :

(A)ij = 1 (i↔ j ∈ E) .

Recall that for every pair of vertices i, j ∈ V , i↔ j ∈ E denotes being connected by an edge

and define diagonal “edge-degree” matrix Λ such that ∀i ∈ V , (Λ)ii =
∑N

k=1 (A)ik. Using

the edge-degree matrix, define the Laplacian of the network:

L = Λ−A.

Observe that for a connected graph, as is of interest here, there exists a walk from every

node to every other node and hence, L has exactly one zero-eigenvalue.

The goal is to locally aggregate opinions on tasks T and reach a consensus on the ordering

of competences when the network comprises heterogeneous experts (pi 6= pj) and reach a

consensus on an estimate when it comprises homogeneous experts (pi = p, ∀i ∈ V). Formally,

let µ(·) denote the network average; ∀a ∈ RN :

µ(a) =
1

N

N∑
i=1

ai. (3.15)

Two regimes of operation are investigated here. The first is the low task-frequency, or

“sequential regime”, where the network has time to diffuse information in-between tasks,
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hence global estimates of competence can be attained. The second is the high task-frequency,

or “batch regime”, where the network is compelled to infer competences locally. Formally,

these regimes are defined as follows:

{X(t) −→c 1µ(X(t)) −→l p̃g(t)}t∈T −→t p̃g(|T|), (3.16){
X(t) −→l p̃`(t)

}
t∈T −→t p̃`(|T|)−→c 1µ

(
p̃`(|T|)

)
. (3.17)

Here, −→c denotes distributed averaging via consensus, −→l denotes local information pro-

cessing, and −→t denotes exhausting the available tasks. An empirical competence estimates

based on global information in the sequential regime (3.16) and local information in the batch

regime (3.17) up to task t are denoted by p̃g(t) and p̃`(t) respectively.

Any consensus rule can be employed in this setup: Let D ∈ RN×N be a doubly stochastic

matrix on the network:
∑

j(D)ij = 1,
∑

i(D)ij = 1 with (D)ij ≥ 0, ∀i, j ∈ V and ∀i 6= j,

(D)ij = 0 whenever (A)ij = 0. Formally, let 1 denote the all-one column vector and note

that ∀t ∈ T, x(t) −→c µ(x(t))1, denotes the process:

x(n; t) = Dx(n− 1; t),

with x(0; t) = x(t) being the network state, or opinion pool, on a task and limn→∞ x(n; t) =

µ(x(t))1 being the average network opinion. Furthermore, such a consensus rule guarantees

strong, or almost sure (a.s.), convergence: Observe that random process X(n; t) = DnX(t)

and lim
n→∞

x(n; t) = µ(x(t)) for every sample x(t), which yields that:

lim
n→∞

X(n; t) = lim
n→∞

DnX(t) = µ(X(t)) =
1

N

N∑
i=1

Xi(t) a.s. (3.18)

An analysis of the fastest converging consensus rules is given in [13] if other consensus rules

are to be considered.

As discussed in Section 3.2, in the absence of true labels, it is often difficult, if at all

possible, to obtain an unbiased estimator for the competence of an expert. Therefore, we

propose local and global extensions of pseudo competence (3.10), which can be locally and

instantaneously estimated:

p̃gi = P
(
Xi = fMV

(
X\i
))
, (3.19)

p̃`i = P
(
Xi = fMV (XNi)

)
. (3.20)

Here, Ni = {j 6= i : i↔ j ∈ E} denotes the neighborhood of the node i excluding the node
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Figure 3.5: Correctness, Local, and Global Agreement: (a) Opinions Provided Through
a Network, (b) Correctness of Each Opinion, Blue Nodes Are Correct, (c) Agreement to
Network Consensus, Blue Nodes Agree to Global Decision, (d) Local Agreement as Defined
in (3.21), Blue Nodes Agree with Local Decision

itself, we further allow XNi = {Xj : j ∈ Ni} and X\i = {Xj : j ∈ V , j 6= i}. Observe that p̃gi
is the frequency with which an expert agrees with the global majority (when its own vote

is excluded), similarly, p̃`i is that with local majority. We note that p̃gi can be estimated via

(3.13) and similarly, P̃ `
i (t) = 1/t

∑t
τ=1 1

(
Xi(τ) = fMV (XNi(τ))

)
can be used to estimate p̃`i .

Here, the convergence in the number tasks follows from ergodicity of the agreement processes

1
(
Xi(t) = fMV

(
X\i(t)

))
and 1

(
Xi(t) = fMV (XNi(t))

)
. Figure 3.5 illustrates how the local

and global agreement might instantaneously differ.

In addition to ease of local and instantaneous estimation, both p̃`i and p̃gi have properties

that allow their use in a distributed setup, despite their bias: First, for finite graphs p̃`i ≤
p̃gi ≤ pi, ∀i ∈ V as long as pi > 1/2, ∀i ∈ V . In words, measuring the competence of an

expert by its agreement frequency to some other group of experts yields under -estimation of

its true competence. Naturally, if ∃i ∈ V such that pi = 1/2, then pi = p̃`i = p̃gi . Furthermore,

p̃g exhibits the ordering property of Proposal 3.1: pi > pj ⇐⇒ p̃gi > p̃gj . Section 3.3.1

employs this property to order competences of experts in the sequential regime. Observe

that given the agent-excluding majority vote, fMV
(
X\i(t)

)
can be represented in terms of
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the average opinion µ(X(t)) via fMV
(
X\i(t)

)
= 1 (Nµ(X(t))−Xi(t) > (N−1)/2). Therefore,

similar to local estimates p̃`(t), global estimates p̃g(t) can be updated with each incoming

task provided that the network can converge between tasks.

3.3.1 Distributed Ordering of Experts

Consider the following procedure on a heterogeneous network in the sequential regime:

X(n; t) = DnX(t),

lim
n→∞

X(n; t) = 1µ(X(t)),

V(t) = 1 (N1µ(X(t))−X(t) > (N−1)/2) ,

P̃g(t) =
t− 1

t
P̃g(t− 1) +

1

t
1 (X(t) = V(t)) .

The first step is the consensus step and the proceeding voting and agreement checks are

carried out nodally (index-wise). Observe that:

lim
t→∞

P̃g(t) = p̃g =


p̃g1
...

p̃gN

 .
Therefore, for every network with nodal experts, as a committee, preserving ordering, that

is: ∀i, j ∈ V such that pi > pj, the following holds:

lim
t→∞

P
(
P̃ g
j (t) > P̃ g

i (t)
)

= 0.

Therefore, Proposition 3.1 concludes that ordering of experts can be attained via consensus

for good committees and Proposition 3.2 concludes its extension for mixed committees self-

excluding majorities satisfy p\i > 1/2, ∀i ∈ V . Next, distributed estimation of competences

on homogeneous networks (pi = p, ∀i ∈ V) are addressed in the batch and sequential regimes.

3.3.2 Distributed Estimation via Local Updates

Conceptually, representing the true competence p by p̃`i = P
(
Xi = fMV (XNi)

)
is equivalent

to measuring the competence of each expert at a level defined by the competence of its

neighbors. Formally,

p̃`i = pNip+ qNiq.
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Here, pNi , P
(
fMV (XNi) = Y

)
denotes the neighborhood competence and qNi = 1 − pNi .

Note that p̃`i always under -estimates the true competence with a bias:

p− p̃`i = (p− q)qNi > 0,∀i ∈ V . (3.21)

The inequality follows from p > 1/2 > q. As (3.21) indicates, local estimates vary in their

reliabilities as functions of the true competence and their nodal degrees |Ni|. Consider the

batch setup updates:

Vi(t) = 1 (|XNi(t)| > |Ni|/2) ,∀i ∈ V ,

P̃`(t) =
t− 1

t
P̃`(t− 1) +

1

t
1 (X(t) = V(t)) , t ∈ {1, · · · , |T|} ,

P̃`(n; |T|) = DnP̃`(|T|),

lim
n→∞

DnP̃`(|T|) = 1µ(P̃`(|T|)).

The variance of estimator the P̃` depends on |T|, its bias, on the other hand, depends on

the local connectivity. The difference between the true competence and the network average

of local expected agreements µ(p̃`) = µ
(

limt→∞ P̃`(t)
)

, or the network estimation bias, is

given as follows:

p− µ(p̃`) = (p− q) 1

N

N∑
i=1

qNi = (p− q)µ(qN ). (3.22)

Here (qN )i = qNi . Since p > 1/2, Cramér’s theorem [60] yields that qNi ≤ exp (− |Ni| l (1/2)) =

(4pq)
|Ni|
2 , where l(a) , a log a

p
+ (1− a) log 1−a

1−p , ∀a ∈ (0, 1). Therefore, we can write that:

p− µ(p̃`)

p− q
≤ 1

N

N∑
i=1

(4pq)|
Ni|/2 =

1

N

N∑
j=1

αj(4pq)
j/2.

Here, αj = |{i ∈ V : |Ni| = j}|. The Cauchy-Schwarz inequality and bounding the geometric

terms yield that:

p− µ(p̃`) ≤ p− q√
1− 4pq

 1

N

√√√√ N∑
j=1

α2
j

 . (3.23)

The second term of (3.23) quantifies the impact of network connectivity on the network

estimation bias p − µ(p̃). Naturally, on a fully connected network, the bias is minimized.

Alternatively, in the low-frequency regime the minimum bias is attainable.
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3.3.3 Distributed Estimation via Global Updates

On a network of experts with identical competences, pi = p, note that:

p̃gi = p\ip+ q\iq,

where p\i = P
(
fMV

(
X\i
)

= Y
)

is the self-excluding majority and since experts have iden-

tical competences p̃gi = p̃gj = p̃g, ∀i, j ∈ V for some p̃g. Therefore,

p− µ(p̃g) = p− p̃g = (p− q)q\i. (3.24)

Observe that p\i is a monotonically increasing function of the number of available expert N ,

as long as p > 1/2. Hence, p\i > pNi , ∀i ∈ V . Consequently,

p̃`i < p̃g < p,∀i ∈ V .

When the estimation rule (C.2) in Appendix C.2 is employed on an homogeneous network,

the competence of each expert is estimated within an identical bias that effectively depends

on the size of the network; when employed on a heterogeneous network, competences are

estimated within varying biases, yet the ordering of competences is preserved asymptotically.

3.3.4 Experiments

We have investigated the impacts of the number of tasks |T|, true competence profile p,

number of experts N , and local connectivity, defined by the network topology G on the

performance of distributed competence estimation.

Figure 3.6 demonstrates the ordering strategy given in (C.2). We allowed p ∈ [0.55, 0.95]

to be equally spaced with pi+1−pi = 0.4/N. As seen in Figure 3.6a, competence estimators p̃g

converge to distinct estimates when true competences are sufficiently separated. We observed

the impact of closely chosen true competences by increasing the number of experts on the

fixed interval: Figure 3.6b illustrates an average ordering error, which is the average absolute

distance between true and network-estimated ordering indices, as functions of N and |T|.
Figure 3.7 illustrates distributed estimation on homogeneous networks of fixed topology.

We demonstrated the difference p̃g− p̃` as a function of true competence p: Figure 3.7a illus-

trates a set of sample paths, where the network that employs nodes of competence p ≈ 0.75

exhibits the largest deviation between rules (C.2) and (C.3) setups. Figure 3.7b illustrates a

behavior that is not obvious from (3.21)-(3.24), albeit intuitive: As the connectivity of the
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Figure 3.6: Distributed Ordering of Experts on Heterogeneous Networks: (a) An Illustration
of Sample Paths vs. Number of Tasks (b) Average Ordering Error vs. Number of Tasks for
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Figure 3.7: Distributed Competence Estimation on Homogeneous Networks: (a) Sample
Paths over Number of Tasks (b) Mean-Square Distance Between p̃` and p̃g vs. True Com-
petence p

graph increases, the bias between local and global estimates diminish.

We further investigated the impact of connectivity and number of nodes on the esti-

mation performance. Figure 3.8a verifies that the bias of p̃` is mostly constrained by local

connectivity as the bias of p̃g diminishes faster than that of p̃` with the number of experts.

Figure 3.8b further verifies this notion; p̃g remains unaffected by the local connectivity while

the bias of p̃` monotonically decreases.

Section 3.4 investigates the minimum probability of error achieving opinion-aggregation
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strategy, then Section 3.5 substitutes the true probability law with in this strategy with the

pseudo probability law.

3.4 Näıve Bayes Decision Rule and Its Performance Guarantees

Consider the family D of possibly randomized decision rules that aggregate N opinions X (t)

to decide on a state Y (t). The minimum probability of error (MPE)-achieving strategy is

an instantaneous opinion-aggregation rule:

fMPE = arg min
f∈D

P (f (X) 6= Y ) .

Note that the competences {p1, · · · , pN} being fixed across all tasks t ∈ T allows task-

dependency of opinions X (t) and states Y (t) to be dropped. It is well known that the

maximum a posteriori rule achieves the minimum probability of error [4]. Therefore, the

MPE-achieving supervised opinion-aggregation strategy is given by:

fMPE (X) = arg max
y∈{±1}

P (y | X) ,
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with the corresponding likelihood-ratio test:

fMPE(X) = sign

(
N∑
i=1

Xi log
pi
qi

)
≡ fNB(X). (3.25)

The decision rule in (3.25) is often referred to as the näıve Bayes decision rule (NB) [17]. The

existence of the probability law (3.1)-(3.3) ensure that the NB decision rule is instantaneous

and that it has no bias term in the sign function.

As a direct consequence of being the maximum a posteriori rule, the probability of error

of the näıve Bayes decision rule can be written explicitly as:

P
(
fNB(X) 6= Y

)
=

1

2

∑
x∈{±1}N

min
y∈{±1}

P (X = x | Y = y) .

Even though miny∈{±1} P (X = x | Y = y) can be readily computed ∀x when {p1, · · · , pN}
is known, the sum is still intractable for large N , which motivates research for lower and

upper bounds. It has been shown that a set of lower and upper bounds can be found in the

form [17, Theorem 1]:

− logP
(
fNB(X) 6= Y

)
� Φ,

where � denotes upper and lower bounds within a constant factor. As a function of the true

competences {p1, · · · , pN}, Φ is called the committee potential, [17, 61, 62] and it is given by:

Φ (p1, · · · , pN) =
N∑
i=1

(
pi −

1

2

)
log

pi
qi
. (3.26)

The upper-bound given in [17, Theorem 1(i)] makes a use of the Chernoff bounding technique,

see, for instance, [63, Section 2.2.1], and the Kearns-Saul inequality [62, Lemma 1]. A detailed

discussion of Kearns-Saul and Berend-Kontorovich concentration inequalities for mixtures of

independent, bounded random variables is given in [63, Section 2.2.4].

Interestingly, in the case of the näıve Bayes decision rule, the subsequent use of Kearns-

Saul inequality appears unnecessary. As shown in Appendix B.3, a direct consequence of the

Chernoff bounding technique is as follows.

Theorem 3.1. Let Y ∈ {±1} be uniformly distributed, experts with competences {p1, · · · , pN},
where pi = P (Xi = Y ), generate opinions independently: Xi − Y −Xj, ∀i 6= j ∈ [N ]. Con-
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Figure 3.9: A Comparison of Upper-Bounds for Näıve Bayes Probability of Error

sider the näıve Bayes decision rule:

fNB (X) = sign

(
N∑
i=1

Xi log
pi

1− pi

)
,

where log 1
0

=∞ by convention. Then, the following tight upper-bound on the probability of

error holds:

P
(
fNB (X) 6= Y

)
≤

N∏
i=1

√
4piqi.

Theorem 3.1 is the sharpest bound attainable by the use of Chernoff bounding technique

and it is tight, as evidenced when ∃i : pi = 1, in addition to the regimes discussed in [17].

Figure 3.9 provides a comparison of upper bounds between that given in Theorem 3.1 and

that in [17, Theorem 1 (i)] for N ∈ [10, 50] experts with equally spaced competences chosen

from the interval [0.3, 0.9].

Observe that w(p) = log p/q ∈ (−∞,∞) is an unbounded function that monotonically

increases over p ∈ [0, 1]. On one hand, when competences are known reliably, w(p) ensures

that NB relies almost exclusively on highly competent experts with pi ≈ {0, 1} (note that

when competences are known, vote of an expert with p < 1/2 is necessarily flipped). On

the other hand, in empirical setups, where competences are to be estimated on set of tasks,

direct use of w(p̂) could jeopardize the robustness of opinion-aggregation rule: An expert

with arbitrary competence pi < 1 could be assigned a competence estimate p̂i ≈ 1 with

non-negligible probability and thus, an unbounded weight. Although such events become in-

creasingly improbable as the number of labeled tasks increases, for robustness, the linearized
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Figure 3.10: Comparison of the NB and the LNB Weighs and the Impact of the Balancing
Parameter

näıve Bayes (LNB) decision rule could be considered:

fLNB(X) = sign

(
N∑
i=1

Xi (pi − 1/2)

)
. (3.27)

Note that the term “linearized” in LNB refers to the linear estimation of the weights as the

first-order Taylor series expansion of w(p) around p = 1/2 is given by 4 (p− 1/2) (the positive

constant factor is dropped since it does not contribute to decision making).

Alternatively, one might focus on a practical subset of committees, one that we call

absolutely balanced committees, that excludes almost-all-knowing (p ≈ 1) and almost-ever-

lying (p ≈ 0) experts.

Definition 3.2 (Absolute Balance). A committee of experts with competences {pi : i ∈ N}
is called absolutely balanced if ∃γ ∈ (0, 1/2) such that pi ∈ [γ, 1− γ], ∀i.

Figure 3.10 illustrates the difference between weights and the impact of the balancing pa-

rameter γ on `1-norm as well as the absolute maximum of the difference between weight

vectors (when pi are equally spaced in [γ, 1 − γ]). For an absolutely balanced committee,

not only do the true competence estimates (3.9), yield robust empirical implementation of

the NB rule through direct substitution into (3.25) but they also enable the empirical use

of the LNB rule by substitution into (3.27) that exhibits similar performance to the NB

rule. In fact, for absolutely balanced committees with modest balancing parameters, the

performance difference between the NB rule and the LNB rule appears insignificant. Section

3.7 illustrates this phenomenon empirically.

Section 3.2 shows that a set of opinions can be used to estimate true competences

{p1, · · · , pN} in the form of pseudo competences {p̃1, · · · , p̃N}. Section 3.5 indeed shows that

for an absolutely balanced committee, one could achieve an unsupervised opinion-aggregation

performance that scales with the committee potential, therefore, with the performance of
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the MPE-achieving NB rule, while suffering from error due to bias between pseudo and true

competences that diminishes in the number of experts consulted.

3.5 The Pseudo Näıve Bayes Decision Rule

In the unsupervised problem setup, true competence estimates {p̂1, · · · , p̂N} are not available,

where the pseudo competence estimates {ρ̂1 (T ) , · · · , ρ̂N (T )} can be over (unlabeled) T

tasks. An opinion-aggregation rule that use pseudo competence estimates not only suffers

performance degradation due to empirical estimation error but also suffers degradation due

to the bias |pi − p̃i| as well. The goal of this section is to first propose fundamental limits

for a decision rule that has access to pseudo competences {p̃1, · · · , p̃N} directly.

Let us call the following opinion aggregation rule the pseudo näıve Bayes (PNB) rule:

fPNB(X) = sign

(
N∑
i=1

Xi log
p̃i
q̃i

)
. (3.28)

The PNB rule corresponds to assuming that the underlying probability law is characterized

by the pseudo competences {p̃1, · · · , p̃N}, where it is actually characterized by the true com-

petences {p1, · · · , pN}. The PNB rule, similar to the NB rule, is an instantaneous decision

rule. Unlike the NB rule, the PNB rule is empirically achievable without supervision.

Formally, we show that the performance of PNB rule scales with the underlying true

committee potential Φ (p1, · · · , pN) as defined in (3.26), and the performance degradation

due to the use of pseudo competences is quantified as follows:

− logP
(
fPNB(X) 6= Y

)
� (1− δ(aN , γ))Φ.

Here, δ(·) represents the performance degradation due to lack of supervision and is a bounded

function of the rate of consistency aN from (3.14) and the balancing parameter γ from

Definition 3.2. The variable δ(·) diminishes both in aN and γ due to the difference between

pseudo competences and true competences diminishing in aN and γ limiting the maximum

difference between pseudo competences and true competences.

Let us note that the performance of the PNB decision rule exhibits a similar scaling to

that of NB, as long as exclusion of any expert leaves committee reliable (p\i > 1/2, ∀i):

− logP
(
fPNB(X) 6= Y

)
� Φ̃. (3.29)
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Here, we call the term Φ̃ the pseudo committee potential:

Φ̃ =
N∑
i=1

(
pi −

1

2

)
log

p̃i
1− p̃i

.

The relation in (3.29) follows algebraically from the proof of [17, Theorem 1] by the use of

Property 3.2, as provided in the Appendix B.4.

The pseudo committee potential Φ̃ and true committee potential Φ converge at a rate

determined by the rate at which the underlying committee becomes consistent in the majority

vote. Theorem 3.2 quantifies the rate at which the performance of the PNB decision rule

scales with that of NB.

Theorem 3.2. Every absolutely balanced, consistent committee with rate aN and balancing

parameter γ satisfies:
Φ̃

Φ
≥ 1− C(1/2− γ)ρN −→N 1.

Here, ρN = (1−aN )/(aN−1/2) and C(x) is a positive function supported on x ∈ [−1/2, 1/2].

Theorem 3.2 indicates that the PNB rule is not only asymptotically optimal, but it

approaches to the performance of the optimal (supervised) decision rule that becomes con-

sistent at a rate that is faster than that of majority vote, aN . A corollary of this result can

be formulated as follows.

Corollary 3.1. A sufficient condition for any absolutely balanced committee of size N to

ensure that 1− δ ≤ Φ̃
Φ

is as follows:

1− p\i
p\i − 1/2

≤ δ

C(1/2− γ)
,∀i ∈ [N ].

Decision rules that employ some relevant statistics in a functional form that is known

to perform well are often called “plug-in” decision rules. Plug-in rules are often difficult

to analyze and are often suboptimal [64, Chapter 1]. Interestingly, despite being a plug-

in rule, the PNB rule achieves minimum probability of error asymptotically, thanks to the

construction of the pseudo competences.

The PNB rule, as defined in (3.28), is instantaneous because it uses pseudo competences

directly, which, in practice, can be estimated from opinions empirically. The manner in

which pseudo competence estimates are updated gives rise to the operational meaning of the

corresponding decision aggregation rule, as addressed in Section 3.6.
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3.6 Empirical Rules That Use Pseudo-Competences

Empirical unsupervised decision aggregation rules that use pseudo competences to process

a block of tasks are of the form:

fB(XT
1 ) = sign

(
N∑
i=1

Xiw(p̃i(T ))

)
. (3.30)

Here, T is the number of available tasks, w(·) is a weight function operating on empirical

competences estimated p̃i(t), as defined in (3.13). Note that the adaptive extension of (3.30)

is as follows:

fAt (X(t)) = sign

(
N∑
i=1

Xi(t)w(p̃i(t))

)
. (3.31)

Asymptotically, both of the empirical rules should achieve optimality at a rate close to that

of NB rule, as Theorem 3.2 indicates. The objective of Section 3.6 is to quantify the impact

of empirical estimation error.

3.6.1 Unsupervised Block Decision Aggregation Rules

Pseudo competences can be estimated dynamically in real-time or over a block of opinions.

When a block of opinions is to be processed, the performance of the corresponding empirical

PNB decision rule is determined by two factors:

1. Pseudo Competence Bias: ‖p̃ − p‖1 =
N∑
i=1

|p̃i − pi|.

2. Empirical Estimation Error: ‖ρ̂(T )− p̃‖1 =
N∑
i=1

|ρ̂i (T )− p̃i|.

Note that pseudo competence bias is the cost of operating in an unsupervised setup and it

is a hidden function of p that is fixed for a given committee. Empirical estimation error, on

the other hand, introduces a nonlinear distortion that propagates through the weights of the

decision rule.

When each expert can only be consulted for a small number T of tasks, rather coarse,

high-variance, estimates {ρ̂1 (T ) , · · · , ρ̂N (T )} are achievable, and hence the corresponding

weights might be arbitrarily larger than what they are supposed to be. In order to rectify

this non-robust behavior, a linearized version of the weights that follows from the first-order
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Taylor series expansion of log x/1−x around x = 1/2, can be used:

w(x) = log
x

1− x
= 4

(
x− 1

2

)
+

16

3

(
x− 1

2

)3

+ · · · .

The corresponding opinion aggregation rule for small number of tasks is as follows:

fLPNB(X) = sign

(
N∑
i=1

Xi(p̃i(T )− 1/2)

)
. (3.32)

It is clear that (3.32) should not suffer from estimation error as much as the empirical PNB

rule with w(p̃) = log p̃/q̃, as given in (3.30). The main challenge for such a rule is to achieve

consistency, as addressed next.

Proposition 3.3. If a committee satisfies:

1. (Näıve Bayes) limN→∞
1√
N

∑N
i=1(pi − 1/2)2 =∞,

2. (Majority) limN→∞
1√
N

∑N
i=1(pi − 1/2) ≥

√
log 2

8
,

then fL(·) is consistent: lim
N→∞

P
(
fL(X) 6= Y

)
= 0.

Proposition 3.3 shows that when arbitrarily large number of experts are consulted for

a small number of tasks each, the unsupervised empirical PNB rule becomes reliable. The

first condition of Proposition 3.3 is a direct consequence of the Hoeffding’s inequality and it

is sufficient for consistency when each expert is tested with a small number of labeled tasks

and competences are estimated via (3.9) [17, Theorem 7]. Interestingly, pseudo competences

can facilitate this consistency without the need for labeled data but at the expense of the

second condition, which is not restrictive: As discussed in Appendix B.5, it amounts to

limN→∞ P
(
fMV (X) = Y

)
> 1/2. Similar to the previous discussion on the performance

similarity between the NB and the LNB rules, Section 3.7 empirically demonstrates that

pseudo näıve Bayes and its linearized version perform similarly.

When there are sufficiently many tasks to be processed, the error due to empirically

estimating p̃ diminishes and pseudo competence bias becomes the dominant factor of per-

formance degradation. Thus, the PNB rule given in (3.28) naturally extends to a decision

rule (3.30) that empirically estimates the pseudo competence of each expert over T tasks

and applies to w (p̃i) = log p̃i/q̃i. For an arbitrary committee p ∈ [0, 1]N , the difference

between pseudo competences and true competences become unbounded for experts with

pi ≈ {0, 1}. However, for absolutely balanced committees, pseudo competence bias is nec-

essarily bounded. Lemma 3.1 quantifies the committees that limit the difference between

PNB and NB weights.
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Lemma 3.1. Let R(γ) = 2γ(1−γ)
1−2γ

, if an absolutely balanced committee satisfies for some ε > 0

min
i∈[N ]

p\i ≥
1

2
+

1

2 + εR(γ)
,

then ‖w − w̃‖1 ≤
εN
2

.

Observe R(γ) increases in γ, equivalently, committees that concentrate toward the center

of the cube [0, 1]N yield closer weights. Conceptually, this amounts to discussion on weak

classifiers; it is often easier to boost weak classifiers to form a stronger one [7]. The next

theorem jointly addresses the empirical estimation error and pseudo competence bias:

Theorem 3.3. Let a committee be consistent with rate aN , ∀δ ∈ (0, 1) define C(δ;N, T ) ,
12
T

log 8N
δ

. Then,

∀ε ∈
(

(ρNC(δ;N, T ))
1/3 ,min

{
5,

2Φ

N

})
,

and for all absolutely balanced committees with parameter γ > C(δ;N, T )
(

2√
4ε+1−1

)2

:

P
(
fB(X) 6= Y

)
≤ δ + exp

[
−(2Φ− εN)2

8Φ

]
.

Property 3.2 along with Lemma 3.1 allows fB(·) to scale similar to an empirical NB as

long as the underlying worker committee is sufficiently strong, which is captured by δ. The-

orem 3.3 borrows its empirical analysis from that of [17, Theorem 11], which quantifies the

performance of empirical NB under sufficiently long training. Albeit insightful, Proposition

3.3 and Theorem 3.3 analyze the performance of empirical PNB decisions rules for a block

of opinions. An adaptive and instantaneous extension is addressed next.

3.6.2 An Unsupervised Adaptive Decision Aggregation Rule

Let fAτ (·) be an empirical pseudo näıve Bayes decision rule:

fAτ (X (τ)) = sign

(
N∑
i=1

Xi(τ) log
ρ̂i (τ)

1− ρ̂i (τ)

)
.

We call the probability that the decision rule fAτ (·) makes the correct decision based on X(t),

that is, P
(
fAτ (X(t)) = Y (t)

)
, for some t > τ , the confidence of the adaptive decision rule.

Theorem 3.4 characterizes this notion of confidence.
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Theorem 3.4. Let δ ≥
∑N

i=1 |pi − p̃i|+
N√
τ

and define the event R(τ) as follows:

exp

(
−1

2

N∑
i=1

(
p̃i(τ)− 1

2

)
log

p̃i(τ)

1− p̃i(τ)

)
≤ δ

2
.

Then ∀t > τ , P
(
R(τ) ∩

{
fAτ (X(t)) 6= Y

})
≤ δ.

The term
∑N

i=1 |pi − p̃i| ≤
∑N

i=1(1−p\i), which diminishes with the committee potential.

The proof is given in Appendix B.7 and it borrows the analysis of [17, Theorem 13] on the

adaptive empirical näıve Bayes decision rule, which is based on the committee potential being

empirically estimated from some labeled data to control the worst case performance on the

test data. Theorem 3.4 extends this analysis to use empirical pseudo competences instead,

resulting in a real-time algorithm where the player builds an empirical pseudo committee

potential and makes decisions with dynamic confidence.

The adaptive decision aggregation rule fAτ (·) is a sequential decision making mechanism:

at any given time t ∈ [T ] the algorithm makes a decision with confidence δ if R(τ) has

happened for some τ < t otherwise, it assigns the majority vote. This allows the algorithm

to a make decisions with dynamic confidence; once a confidence level is achieved at t = τ ,

there is no need to keep updating the weights as the decision rule is finalized and algorithm

uses that fixed decision rule on the incoming data.

3.7 Experiments

First, we examine the performance of pseudo näıve Bayes decision rule in different operational

regimes including, mixed/good committees of varying size and linearized/true decision rules.

Then, we compare the performance of PNB decision rule to spectral meta learner (SML) [30],

expectation maximization (EM) [19, 25], and belief propagation (BP) [26].

3.7.1 Comparison between the PNB and NB Rules

In the first set of experiments, pseudo-random tasks and experts that satisfy (3.1)-(3.3) are

generated in MATLAB. In order to compare the performance of näıve Bayes decision rule to

its linearized and unsupervised counterparts, we consider a committee of experts with sizes

varying from N = 10 to N = 75 with competences equally spaced in the intervals [0.15, 0.9]

for the mixed-committee case and from [0.5, 0.9] for the good-committee case. Figure 3.11

compares the performance of NB to that of PNB, as defined in (3.28) and converged over
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(a) A Good Committee (b) A Mixed Committee

Figure 3.11: A Performance Comparison between Näıve Bayes Rules and Their Unsupervised
Counterparts

Figure 3.12: A Performance Comparison between the PNB Rule and Other Opinion-
Aggregation Rules

T = 1e + 6 tasks. The objective of such large of tasks is to observe the fundamental

operational tendencies: Figure 3.11a indicates that in the case good committees, where the

probability of error of majority vote starts around 0.1, the performance difference between

PNB and NB are negligible, which is to be expected as pi > 1/2 for every expert. In the case

of a mixed committee with majority vote error varying in the interval (0.4, 0.37) for every

committee size, the performance difference with PNB and NB rules is evident. However,

linearization does not seem to introduce a significant performance degradation, as expected.

Furthermore, one should note that performance improvement in the mixed case is due to

majority voting performance becoming more robust to individual perturbations, formally, it

tends to p\i ≈ P
(
fMV (X) = Y

)
for all experts.

51



3.7.2 Comparison with Other Opinion-Aggregation Rules

We consider 1000 iterations of the following setup: 150 tasks are evaluated by experts of

pseudo-random competences from the range [0.5, 1]. The number of experts range between

[3, 31]. PNB rule is compared against the SML, EM, and BP algorithms. Figure 3.12 illus-

trates that PNB rule shows similar performance with other, more computationally expensive,

opinion-aggregation rules.
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CHAPTER 4

FAULT-TOLERANT COMPUTATION

Often what is called soft information (non-binary valued opinions) is available from compu-

tational sources that are of high performance, yet prone to difficult-to-model failure statis-

tics, such as those due to component degradation, process/temperature and voltage varia-

tions, and similar power-reliability trade-offs. Computational units prone to random failures

with unknown statistics capture a wide array of such models. For fault-detection or fault-

mitigation circuitry, unknown operation and failure statistics creates the challenge of testing

hypotheses (fault/no fault) with unknown statistics to detect and bypass faulty readings. A

system-level idea, one that is often called “algorithmic noise tolerance” (ANT), is a robust

framework to test such hypotheses through the use of low-fidelity, robust estimation units

that safeguard the potentially faulty main unit [33]. Section 4.1 extends the use of ANT to

detect and bypass failures for arbitrary main, failure, and calibration statistics based on a

contextual fidelity-ordering.

The objective of ANT-like statistical error compensation techniques is to jointly detect

and bypass failures of error-prone units. As such, such techniques result in the use of an

additional low-resolution calibration unit. Conceptually, each source having its own safe-

guarding mechanism, such as ANT, is equivalent to each expert from Chapter 3 rethinking

its opinions based on a compass, much like Captain Jack Sparrow’s, that tilts slightly toward

to the true state. On the other hand, a distributed system provides a reliable framework to

locally detect faults based on soft information in a manner similar to local pseudo compe-

tence estimation. Section 4.2 employs this notion to propose a network averaging technique,

through discarding faulty sources locally.

4.1 Fidelity-Based Testing of Hidden Hypotheses

Chapters 2-3 provided the interpretation of experts as sources of binary opinions. However,

power-to-area-constrained computational units often produce non-binary readings while suf-

fering random failures that are only partially captured by additive noise models. Further-

more, such failures are often functions of operational dynamics and hence, difficult to model
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Figure 4.1: Generalized Model for ANT Architecture

reliably. Unless mitigated, such errors diffuse through the network reducing the overall per-

formance, as addressed in Section 4.2. Therefore, it is of interest to develop safeguarding

mechanisms of such non-binary experts that do not only detect failures but also bypass the

corresponding faulty outcomes.The system-level idea called algorithmic noise tolerance em-

ploys a low-resolution yet robust calibration unit to detect and bypass randomly occurring

failures and has been shown to be analogous to Gaussian CEO problem for certain noise

profiles [37, 38]. There has been a set of heuristic rules established in practice that can be

explained with the fidelity-based framework as illustrated in Figure 4.1.

4.1.1 Problem Definition

Let data D(X) depend on a random variable X, and let the purpose of the computation be

to generate X̂ = f(D) with a loss function ` : R2 → R+ measuring the performance. Here,

we propose a mixture model that incorporates fidelity-ordered main, calibration and failure

statistics to generalize the additive noise model of [34, 37, 38].

The ANT architecture is modeled as consisting of three computational units, henceforth

called blocks: a main block that comprises a good block producing an outcome G and a bad

one that produces B, which models intermittent failure of the main computational path, and

a calibration, or so-called ugly, block producing U , modeling the lower-fidelity alternative,

should it be decided that the main block has failed, as seen in Figure 4.1. Intuitively, the

main block produces M = G, when there is no hardware failure, and produces M = B when

there is a failure. The ANT decision mechanism can use the calibration block U to detect

hardware failures and bypass them by switching between M and U .
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Formally, the generalized model for ANT allows the main block to switch modes of opera-

tion back and forth between the good block and the bad block. Let an independent Bernoulli

random variable F of parameter p ∈ (0, 1), determine the hardware failure, the following

mixture model characterizes the main block:

M = GF̄ +BF. (4.1)

Here, F̄ = 1 − F and a failure happens when F = 1. We allow each block to be statisti-

cally independent, that is, given the hidden variable X, outcomes G,B,U are conditionally

independent from one another:

G−X −B,

G−X − U,

B −X − U,

equivalently, pGBU |X = pG|XpB|XpU |X , [60]. This assumption is similar to the independence

of estimation error and hardware error in [34, 38] and to the independence of noise in

different branches in [37]. The triplet (G,B,U) is conditioned on the hidden variable X and

the conditional probability density functions pG|X , pB|X and pU |X represent the statistical

characteristics of the main block, the main block under hardware failure and the calibration

block respectively. These distributions represent the computational properties of respective

blocks under uncertainties due to process, temperature and voltage variations, which are

commonly unknown or too costly to model [33].

The ANT decision rule, denoted by δANT (·), operates on the branch outcomes, (M,U),

to make a decision between them: δANT (M,U) ∈ {M,U} ≡ {G,B,U}. The block with

lower expected loss is understood to have higher fidelity :

E` (G,X) < E` (U,X) < E` (B,X) . (4.2)

The purpose of ANT is to use the calibration random variable U to determine whether a

failure (F = 1) has happened, or not (F = 0), and bypass the main block with the calibration

block when it does. If pG|X and pB|X , were known a priori, likelihood ratio would provide

a sufficient statistic for testing whether a failure has occurred or not, and the Neyman-

Pearson rule could be built upon it [4]. Instead, the ANT architecture builds statistics using

the pair (M,U) ≡ ({G,B} , U). In Section 4.1.2, we introduce the ANT decision rule on an

arbitrary metric space and define a measure of performance as the regret with respect to the

optimal-yet-unattainable oracle decision rule.

55



4.1.2 Performance Criterion for ANT

ANT builds decision statistics from the pair (M,U) to test whether M ∼ G or M ∼ B and

bypasses the main block when M = B appears more likely. Let d(·, ·) be a distance measure

defined on R satisfying the axioms in [65]. A general ANT decision rule has the following

form:

δANT (M,U) =

M if d(M,U) ≤ τ,

U if d(M,U) > τ.

Intuitively, the ANT decision rule “favors” the main computational unit when it passes a

“calibration check”, otherwise it uses the calibration unit to bypass the main unit that is

“flagged” with hardware failure.

Now consider an oracle that has access to reliable information on when a hardware failure,

F , occurs. Such an oracle minimizes its loss via the following decision rule:

δO(M,U ;F = f) =

M if f = 0,

U if f = 1.

In practice, information on F is not easily, if at all, available. However, it serves as a

useful benchmark for measuring the performance of ANT. We propose a conservative measure

of performance by defining the regret of ANT as the expected loss suffered from using the

ANT decision rule, δANT , against that of the oracle decision rule δO:

RANT (τ) = E`
(
δANT (M,U), X

)
− E`

(
δO(M,U ;F ), X

)
.

A more intuitive form for RANT (τ), follows from the independence of F and the total law of

probability, [60].

Proposition 4.1. For any triplet (G,B,U) of computational units, the regret of ANT sat-

isfies:

RANT (τ) = p̄RUGΦGU
d (τ) + pRBUF

BU
d (τ). (4.3)

Here, p̄ = 1 − p, Rαβ , E` (α,X) − E` (β,X), where (α, β) ⊂ {G,B,U}, ΦGU
d ,

P (d(G,U) > τ) and FBU
d , P (d(B,U) ≤ τ), when the distance metric is known from con-

text, we drop the subscript. The regret in (4.3) shows that when a hardware failure happens

with probability p, the ANT “misses” it with probability FBU
d (τ), and allows performance

degradation RBU and hence, suffers a regret of pRBUF
BU
d (τ). Similarly, with probability

ΦGU
d (τ), ANT raises a “false alarm” during normal operation that happens with probabil-

ity (1− p), and switches back to U , degrading performance by RGU , and thus, suffering a
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regret p̄RUGΦGU
d (τ). Note that RUG and RBU are functionals of `(·, ·), where ΦGU

d (τ) and

FBU
d (τ) are functionals of d(·, ·). In Section 4.1.3, we explore the connection between these

functionals and quantify a fidelity-based characterization of the regret.

4.1.3 Fidelity-Based Characterization

The regret of ANT is a mixed functional of the distance measure d(·, ·) used to build the

decision statistics and the loss function `(·, ·) that determines the fidelity of a computational

unit. On a Hilbert space, H, the distance measure is given by:

d(M,C) = ‖M − C‖ ,

where ‖·‖ is the norm associated with H, [65]. This section explores the fundamental limits

for the regret of ANT for fidelities defined by any C-bi-Lipschitz loss function on a Hilbert

space, H. That is, ∀ {M,C} ⊂ {G,B,U}:

1

C
‖M − C‖ ≤ |`(M,X)− `(C,X)| ≤ C ‖M − C‖ . (4.4)

If ∃τ : RANT (τ) = 0, then ANT is regret-optimal, that is, it operates with no regret. The

fidelity ordering in (4.2) yields that:

RANT (τ) = 0 ⇐⇒ ΦGU
d (τ) = FBU

d (τ) = 0. (4.5)

This follows from positivity of p, p̄, RGU and RBU and it yields the following statistical

necessary condition.

Proposition 4.2. A necessary condition for (4.5) is E ‖U −G‖ < E ‖B − U‖. Furthermore,

E`(G,X) < E`(U,X) < 1
2C2+1

E`(B,X) implies E ‖U −G‖ < E ‖B − U‖.

The relation E`(G,X) < E`(U,X) < 1
2C2+1

E`(B,X) allows ΦGU
d (τ) and FBU

d (τ) to be

bounded in terms of fidelities rather than expected distances.

Proposition 4.3. Any ANT rule inheriting its distance measure from the Hilbert space H
on which (G,B,U) are defined satisfy the following properties for any C bi-Lipschitz loss

function:

1. Distance to Regret: E ‖B − U‖ ≥ 1
CR

BU and E ‖G− U‖ ≤ CΣGU , where ΣGU ,

E`(G,X) + E`(U,X).
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Figure 4.2: Universal Bounds vs. Performance of ANT for Different Error Statistics: (a-b)
Bias-Introducing Hardware Failure, (c-d) “Burying Noise” (High-Variance) Hardware Failure

2. Chernoff Bound: log ΦGU(τ) ≤ −(τ−CΣGU)
2

τ+CΣGU and logFBU(τ) ≤ −
(
τ−R

BU
/C
)2

2R
BU
/C

, ∀τ ∈(
CΣGU , RBU/C

)
.

Here, ΣGU = E`(G,X) + E`(U,X). We note that the Chernoff bound is not generally

sharp, however, it lends the necessary tool for our fidelity-based analysis to be universal,

which we demonstrate in Section 4.1.4.

4.1.4 Experiments

We propose a Gaussian mixture with G ∼ N (X, σG), U ∼ N (X, σU) and the bad-block

either introducing a bias B ∼ N (X + µB, σB) or introducing a large-variance noise. We
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compare the performance of ANT to that of the oracle over the range of τ values and

demonstrate that the Chernoff bounds that we propose in observation 2, indicate accurately

when the performance of ANT is optimal.

The experiment specifications are as follows: Figure 4.2 (a)-(b) demonstrate the setup,

where the bias that the “bad” block introduces is the main source of distortion as, X is

distributed uniformly on (0, 10), σG = 10, σB = σU = 20 with µB = 40. Figure 4.2 (c)-

(d) illustrates the case, where the “bad” block has large variance: σG = 10, σU = 15, yet

σB = 1.5e + 3. Figure 4.2 (a)-(c) indicate that as σB increases, the performance of ANT

deteriorates as the performance of the ANT no longer achieves that of oracle, as expected

from Proposition 4.2.

The use of calibration unit U in the ANT architecture not only allows fault-detection,

but also bypassing of such erroneous outcomes by the output from the calibration unit. We

next investigate the performance of an oracle rule that has no access to a calibration unit

and thus, chooses to discard a faulty outcome rather than bypassing it.

4.2 Fault-Rejecting Averaging

Let a set of error-prone computational units {Mi : i ∈ [n]} provide opinions of the form:

Mi = GiF̄i +BiFi,

where, similar to Section 4.1, the failure Fi is a Bernoulli random variable independent

from (Gi, Bi). We allow Fi to be independent and identically distributed across different

units. The goal is to discover the fundamental limits for fault-rejecting averaging, denoted

by µ(M; δ), where upon detecting a failure, say F̂i = δ (M) = 1, via some decision rule δ(·),
output Mi from the unit marked as faulty, is discarded. Formally:

µ(M; δ) =
1∣∣∣{i : F̂i = 0

}∣∣∣
∑
i:F̂i=0

Mi. (4.6)

Note that (4.6) is a random average of random variables and our focus is the expectation

and the variance of µ(M; δ). First note that mean and variance of a computational unit

determines the mean-square error since,

E
[
|X − µ(X)|2

]
= (E [X − µ(X)])2 + Var (µ(X)) .
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We first explore the performance of the oracle decision rule: δO(Mi) = Fi in order to explore

the impact of fault rejecting directly.

4.2.1 Network Average with Oracle Fault Detector

Observe that as long as an oracle detects the failures via δO, the following network average

can be achieved:

µO(M) =
1

|{i : Fi = 0}|
∑
i:Fi=0

Gi. (4.7)

Since Fi is modeled as independent from (Gi, Bi), the network average in (4.7) is a random

average of random variables, where the number of random variables averaged, the random

variable N = |{i : Fi = 0}| is independent of G. It is important, however, to note that when

N = 0, there does not exist any µO(M). Therefore, we first address an abstraction, where N

independent and identically distributed reliable sources (Gi) are mixed, where N ≥ 1 almost

surely.

Proposition 4.4. Let Gi be independent identically distributed sources and let N ≥ 1 a.s.

and N be independent of {G1, · · · , GN}. Then, the mean and variance of the random average

of random variables A = 1
N

∑N
i=1Gi are:

E [A] = E [G] ,

Var (A) = E [1/N] Var (G) .

Observe that Proposition 4.4 is consistent with averaging over a constant number of

sources. The purpose of Proposition 4.4 is mostly to build intuition; random number of

random variables can be averaged and the variance of the result is determined by the expected

averaging size E [1/N]. However, Proposition 4.4 does not yet capture averaging of outcomes

from faulty sources Mi in form (4.7). Since Fi is a Bernoulli random variable ∀i ∈ [n], there

is non-zero probability that the average is not defined. If one chooses to abstain in the event

of all sources being faulty, one can ensure that fault-rejecting averaging is well-defined.

Proposition 4.5. Let {G1, · · · , Gn} be independent and let each source be subjected to an

independent failure Fi with probability pF = 1 − qF (identical for every source). Define

N =
∥∥F̄∥∥

1
, which is a Binomial random variable with parameters (qF , n). Refusing to

answer in the case of total network failure (N = 0) yields:

Ẽ
[
µO(M)

]
=

1

n

n∑
i=1

E [Gi] .
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Furthermore, if E [Gi] = 0, ∀i, then:

Ṽar
(
µO(M)

)
= Ẽ [1/N]

(
1

n

n∑
i=1

Var (Gi)

)
,

where Ẽ[·] and Ṽar(·) denotes expectation and variance with respect to the 0-rejecting modified

distribution (C.4).

The exact expression for Ṽar
(
µO(M)

)
in the case of biased sources (E [Gi] 6= 0) is given

in (C.6). As it should, mean and variance of the average µO(M) is consistent with a deter-

ministic average.
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CHAPTER 5

NETWORKS WITH STOCHASTIC COMPONENTS

All circuit components have uncertainties inherent to the underlying fabrication process

that, in large networks, change the overall circuit response unpredictably. In the absence

of a robust and general model to incorporate individual component uncertainties and the

concomitant stochastic thermal noise characteristics, under-simulating from the massively

high-dimensional experiment space via Monte Carlo techniques and over-designing the final

product against potentially undiscovered faults have become de facto standard. Such prac-

tices not only cost simulation time, excess circuit area and power, but they also provide a

partial understanding of the underlying uncertainty and of ways to exploit it. This chap-

ter investigates the impact of component uncertainties in linear resistive networks, where

individual elements are subject to Johnson-Nyquist noise.

Fabrication of integrated circuits as well as assembly of discrete circuit components are

subject to variability inherent to the physics of the underlying production techniques. The

resulting stochasticity is observable at the ensemble level as final products with the same ini-

tial design exhibit varying performance characteristics, potentially outside the original design

specifications. Unpredictable impacts of such variability and the consequential cost incurred

in mass production due to yield motivate the search for a robust and general framework that

incorporates fabrication stochasticity as a part of the design process. The fabrication process

is massively high-dimensional, comprising the complete set of factors that govern product

variability. Hence, it is often difficult, if at all feasible, to build quantitative relationships

between fabrication processes and proceeding ensemble of products.

In the absence of a robust and reliable framework to incorporate fabrication stochas-

ticity, a minmax design philosophy is established in practice: Monte Carlo simulations are

employed, often ad hoc, to explore a subspace of the massively high-dimensional fabrication

space. Design principles based on fault tolerance and robustness to process variations are

relied upon to compensate potentially undiscovered variabilities at the expense of increased

circuit area and power consumption. These practices increase the simulation and testing

time significantly, contributing to the aforementioned production costs. Under-simulating

and over-designing devices provide limited insights into the underlying sources of uncertainty
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and ways to compensate for them.

The massive dimensionality of fabrication uncertainty and topology-dependent propa-

gation of resulting doubly-stochastic thermal noise processes are fundamental challenges of

modern circuit design. State-of-the-art circuit simulators, on the other hand, commonly em-

ploy static models for circuit elements to simulate an abstraction of the network response [66].

Their use of fast matrix methods and piecewise linearization, allows them to capture a large

family of non-linear circuit characteristics, while operating within the principles of linear

network theory. This work addresses the impact of component stochasticity on linear noisy

networks to build a framework that incorporates fabrication stochasticity into design process.

We discuss stochasticity in linear resistive networks due to the variations in individual

components and the Johnson-Nyquist noise exhibited in each resistive element. The analysis

applies to both circuit topologies constructed from discrete components on a fabricated

circuit board, as well as resistive networks within an integrated circuit. We follow a graph

theoretic framework to investigate the concentration of the overall network response around

its designed mean as well as its ensemble mean in terms of individual component stochasticity

and network topology. In particular, we discuss effective resistance, power dissipation, and

mean-squared branch voltages on arbitrary fixed circuit topologies.

5.1 Linear Resistive Networks with Stochastic Components

Given any linear resistive network, there exists an equivalent weighted graph G = (V , E , g),

where V represents nodes of the circuit and E represents edges with weights being conduc-

tances g. We assume that the every subgraph of edges is connected, equivalently, there is

a single circuit of interest. Furthermore, without loss of generality, we allow a unique con-

ductance gij to exist ∀i ↔ j ∈ E . When there are multiple components connecting vertices

i, j ∈ V , they can be replaced by a single resistor with equivalent conductance. Appendix

D.4 demonstrates how branch statistics are modified in such a case.

Our purpose is to investigate how properties of a linear resistive network of fixed topology

concentrates around its circuit-ensemble and designed mean when subjected to component

stochasticity and the Johnson-Nyquist noise. We use the term circuit property, and denote

it by h(G;G), to collectively refer to quantities such as effective resistance reff
ij (for any

i, j ∈ V), total effective resistance, σ, average power dissipation, E [P ], mean-squared branch

voltages, E
[
V 2
ij

]
(for i ↔ j ∈ E), and so on. Conceptually, the designed mean of a circuit

property, ET [h(g;G) | g], is the expected network response when there is no fabrication

uncertainty (g = EG [G], being the designed circuit parametrization, is decided during the
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design process). Ensemble mean of a network, EG [ET [h(G;G) | G]], on the other hand, is

the expected response over the fabricated circuits. Formally, we pursue bounds of the form:

P (h(G;G)− ET [h(g;G) | g] > ε) ≤ f(ε;G), (5.1)

P (h(G;G)− EG [ET [h(G;G) | G]] > ε) ≤ f(ε;G). (5.2)

When a concentration result of form (5.1) is shown, we say that the circuit property concen-

trates around its designed mean, when a result of form (5.2) is shown we say that concentrates

around its circuit ensemble mean, or simply, ensemble mean. We do not pursue concentration

results of form f(ε;G, pG) as statistics of the fabrication process is seldom, if at all, known.

Instead, we seek results of form f(ε;G) for bounded fabrication variabilities that preserve

topology.

The analysis presented here extends from assembly of discrete components subject to sta-

tistically independent fabrication variability to integration through processes such as lithog-

raphy, chemical deposition and so on, that result in spatially correlated network components.

To that end, we introduce mixing matrices Φ for resistances R (Γ for conductances G):

Mixing matrices Φ,Γ ∈ R|E|×|E| contain coefficients that measure the dependence between

random variables {Rij}i↔j∈E and {Gij}i↔j∈E respectively. For integrated circuits, mixing

matrices should be interpreted as the spatial correlation between components as a result of

the integration process. When a mixing matrix, say Φ, is available, we pursue concentration

results of form f(ε;G,Φ). Johnson-Nyquist noise is the response of a conductor to thermal

agitation and it has been shown to exhibit Gaussian statistics with variance depending on

the operation temperature and the conductor under excitement [42]. Formally, a branch

current Iij becomes a Gaussian random variable, Iij ∼ N
(
gij, 2ktg

2
ij

)
, where t is the opera-

tion temperature in degrees Kelvin and k is the Boltzmann constant. Hierarchical structure

between Johnson-Nyquist noise and the fabrication process is noteworthy: after the circuit

is fabricated, the thermal noise takes over the resulting circuit. In other words, the thermal

noise process is conditioned on the fabrication process. Section 5.2 quantifies the impact of

the thermal noise. Next, we introduce the graph theoretic techniques that we employ.

Consider a fixed circuit topology G = (V , E) of a linear resistive network with the corre-

sponding weighted adjacency matrix C containing conductances : (C)ij , gij1 (i↔ j ∈ E),

∀i, j ∈ V . Here, gij = 1/rij corresponds to branch resistances rij. Consider Λ, a diagonal

matrix with entries (Λ)ii =
∑|V|

k=1 (C)ik and define the Laplacian L of the network:

L = Λ−C.

It has been shown that the effective resistance between any pairs of nodes in the circuit,
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which is the resistance shown to a potential applied these nodes, is a distance metric on such

a graph [67, 68]. The effective resistance reff
ij between any pairs of nodes i, j ∈ V , has the

following form:

reff
ij = (ei− ej)

>L†(ei− ej) = (L†)ii + (L†)jj − 2(L†)ij. (5.3)

When necessary, we explicitly emphasize that effective resistance is a function of the branch

conductances by writing reff
ij (g) (when branch conductances are random, reff

ij (G)). We write

reff
ij (g) as a function of conductances, although we take derivatives with respect to resistances

when necessary.

Furthermore, the total effective resistance, the sum of effective resistances between all

pairs of nodes, characterizes power dissipation and mean-square voltages across branch re-

sistances [68, 69]. We denote the total effective resistance by Σ and write it as a function of

conductances when necessary:

Σ =
∑
i<j

reff
ij .

When the branch conductances are random variables, we use Σ(G) to denote the resulting

random variable. Total effective resistance is related to the spectrum of the graph that

represents the circuit, expected power dissipation, mean-square voltages across branches,

and network criticality [68, 69]. Notably, Σ can be represented as follows:

1

|V|
Σ = tr (L†) =

|V|∑
i=2

1

λi
. (5.4)

Here, {λi} are eigenvalues of the Laplacian L. A proof of (5.4) can be found in, for instance,

[68, 69]. A comprehensive survey on the extensions and applications of algebraic graph

theory for circuit analysis appear in [67].

In this section, we investigate linear resistive networks with stochastic components in the

absence of Johnson-Nyquist noise and propose concentration results around the designed

mean h(E [G] ;G) and ensemble mean E [h(G;G)] (whether the expectation E [·] is with

respect to R or to G is stated explicitly below). We allow topology-preserving bounded

perturbations on the branch conductances: P (Gij ∈ [`ij, uij]) = 1 for some uij > `ij > 0.
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We define two diagonal matrices of use in hindsight:

(P)i↔j∈E =
uij − `ij
`ij

, (5.5)

(D)i↔j∈E =
uij − `ij
uij`ij

. (5.6)

When we refer to the fabrication process, we assume that support (u, `) and mixing matrices

Γ, Φ are known.

A dimension-dependent bound the concentration of the effective resistance between any

two nodes of a linear resistive network with resistances of bounded support follows from the

monotonicity of the effective resistance.

Proposition 5.1. Let branch conductances Gij, be statistically independent, bounded random

variables, then, ∀a, b ∈ V:

P
(∣∣∣reff

ab (G)− EG

[
reff
ab (G)

]∣∣∣ > ε
)
≤ 2 exp

− 2ε2

|E|
∣∣∣reff
ab (`)− reff

ab (u)
∣∣∣2
 .

Dimensionality dependence in Proposition 5.1 is undesirable. Instead, one can exploit the

relation between the circuit topology and the support of the resistance process to propose a

sharper bound. The matrix P is defined in (5.5).

Theorem 5.1. Let branch conductances Gij, be statistically independent bounded random

variables, then, effective resistance concentrates around its ensemble mean: ∀a, b ∈ V:

P
(∣∣∣reff

ab (G)− EG

[
reff
ab (G)

]∣∣∣ > ε
)
≤ 2 exp

− 2ε2∣∣∣geff (`)>P∇greff
ab (`)

∣∣∣2
 .

A corollary of Theorem 5.1 has a weaker form that connects it back to Proposition 5.1.

Corollary 5.1. The following (weaker) bound follows:

P
(∣∣∣reff

ab (G)− EG

[
reff
ab (G)

]∣∣∣ > ε
)
≤ 2 exp

(
− 2ε2

|Preff (`)|2

)
.

Here, reff (`) takes values over the edges of the graph. A second corollary characterizes

how the effective resistance concentrates around its designed mean as well.
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Corollary 5.2. Let branch resistances Rij, be statistically independent bounded random

variables, then, effective resistance concentrates around its designed mean: ∀a, b ∈ V:

P
(
reff
ab (G)− reff

ab (ER [G]) > ε
)
≤ exp

− 2ε2∣∣∣reff (`)>P∇rreff
ab (`)

∣∣∣2
 .

Theorem 5.1 considers a fabrication process, where discrete components are assembled

by assuming independent conductance statistics. When spatial dependence due to an inte-

gration process is taken into account, one should consider the statistical dependence among

components. Formally, let the matrix D be as defined in (5.6):

Theorem 5.2. Let branch resistances Rij, ∀i ↔ j ∈ E be bounded random variables, with

the mixing matrix Φ. Then, ∀a, b ∈ V:

P
(
reff
ab (G)− ER

[
reff
ab (G)

]
> ε
)
≤ exp

− ε2

2 ‖Φ‖2 ER

∣∣∣D∇rreff
ab (R)

∣∣∣2
 .

The proof follows from modifying [70, Eqn. 2.15] for an arbitrary compact domain.

We provide an outline in the Appendix D.2. The concentration around its designed mean

reff
ab (ER [G]) follows from the concavity of reff

ab (g) with respect to r, [69], similar to Corollary

5.2. Formally:

P
(
reff
ab (G)− reff

ab (ER [G]) > ε
)
≤ exp

− ε2

2 ‖Φ‖2 ER

∣∣∣D∇rreff
ab (R)

∣∣∣2
 .

Next, we investigate the concentration of the total effective resistance around its ensemble

mean:

Theorem 5.3. Let branch resistances Rij, ∀i↔ j ∈ E be bounded random variables, with the

mixing matrix Φ. Then, ∀a, b ∈ V, the total effective resistance of the circuit concentrates

around its ensemble mean:

P (Σ(G)− ER [Σ(G)] > ε) ≤ exp

(
− ε2

2 ‖Φ‖2 ER |D∇rΣ(R)|2

)
.

A corollary of Theorem 5.3, characterizes the average power consumption of the circuit

when a random current J is injected to the network. Following the example in [69], we allow

E [J | G = g] = 0 and E [JiJj | G = g] = 1 (i 6= j), ∀i, j ∈ V to be injected to the network,
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which results in power dissipation P (g) = J>L†(g)J that obeys the following corollary:

Corollary 5.3. The expected dissipated power in a resistor network concentrates around its

designed mean:

P (E [P (G)]− ER [E [P | G]] > ε) ≤ exp

(
− (ε |E|)2

2 ‖Φ‖2 ER |D∇rΣ(R)|2

)
.

Theorem 5.3 and Corollary 5.3 can be modified, using Jensen’s inequality similar to what

is done in Corollary 5.2, to incorporate designed means Σ (ER [G]) and E [P (ER [G])] instead

of their ensemble counterparts.

Finally, we investigate the mean-square voltages appearing across each resistor. Unlike

Theorems 5.2-5.3, the next result employs concavity of ∇greff
ij (g), ∀i↔ j ∈ E .

Theorem 5.4. Let branch conductances Gij, ∀i↔ j ∈ E be bounded random variables, with

mixing matrix Γ. Then, ∀i ↔ j ∈ E, the mean-square voltage E
[
V 2
ij(G)

]
appearing across

the branch resistor concentrates around its ensemble mean:

P
(
E
[
V 2
ij(G)

]
− EG

[
E
[
V 2
ij

∣∣ G
]]
> ε
)
≤ exp

(
− (ε |E|)2

2 ‖Γ‖2 EG |`>P∇gΣ(G)|2

)
.

Linear resistive networks exhibit concentration phenomena over varying circuit proper-

ties when they are subjected to bounded fabrication uncertainty. In the next section, we

incorporate Johnson-Nyquist noise into the concentration results on effective resistance.

5.2 Linear Noisy Networks with Stochastic Components

Post-fabrication, circuits are subject to Johnson-Nyquist noise and the impacts of thermal

noise on the concentration properties of the effective resistances around their designed and

ensemble means are investigated here.

A key fact about Johnson-Nyquist noise is of use: When all resistances in a linear resistive

network (of deterministic components) are subject to thermal noise, the effective resistance

between any two nodes is subject to the thermal noise that would operate on the equivalent

resistance [43]. Formally, ∀i, j ∈ V , when a fixed current I flows into node j and flows out

of node i, the potential has Gaussian statistics with

Vij ∼ N
(
Ireff

ij , 2kt
)
. (5.7)
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Let a Gaussian random variable T ∼ N (0, 2kt). The distribution in (5.7) is useful for

characterizing the impact of fabrication stochasticity: For any (sample) circuit parametrized

with G = g, the potential observed from the sample circuit under thermal noise, denoted

by Vij(g; T ), obeys:

Vij(g; T ) = Vij(g) + T.

Over the ensemble of the circuit fabrication process, Vij(G; T ) has a joint distribution

over G and T and it obeys Vij(G; T ) = Vij(G) + T . Hence, for every sample circuit g,

ET [Vij(G; T ) | G = g] = Vij(g), yielding that:

EG [ET [Vij(G; T ) | G]] = EG [Vij(G)] .

Therefore, deviation of Vij(G; T ) from its designed and ensemble means, collectively denoted

by µ are of the form:

|Vij(G; T )− µ| = |V ij(G) + T − µ| .

Let us allow a unit current to be applied so that we can investigate reff
ij (G; T ) rather than

V ij.

P
(∣∣∣reff

ij (G; T )− µ
∣∣∣ ≥ ε

)
= P

(∣∣∣reff
ij (G) + T − µ

∣∣∣ ≥ ε
)
,

=

∫ ∞
−∞

P
(∣∣∣reff

ij (G) + α− µ
∣∣∣ ≥ ε

)
dPT (α),

≤ P (|T | ≥ ε) +

∫ ε

−ε
P
(∣∣∣reff

ij (G)− µ
∣∣∣ ≥ ε− α

)
dPT (α).

The argument in the integral above can be bounded using the results from Proposition 5.1,

Theorems 5.1-5.2, and their corollaries, depending on whether µ is the ensemble mean or

designed mean. One-sided results are handled similarly.

Chapter 5 discusses the impact of fabrication variability and thermal noise on linear

resistive networks. Due to the massive dimensionality of the fabrication process, we addressed

fabrication processes that preserve circuit topology by introducing variability on a compact

support. We proposed concentration bound for circuit properties such as effective resistance,

total effective resistance, average power dissipation, and mean-square branch voltage around

the corresponding circuit-ensemble mean and designed mean values. We further addressed

the impact of Johnson-Nyquist noise, using the hierarchical structure between fabrication and

thermal noise processes. We leave topology altering fabrication uncertainty as an exciting

open problem.
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CHAPTER 6

CONCLUSION

This dissertation addressed the problems of sequential consultation, opinion aggregation,

error detection and mitigation, and quantifying the impact of component uncertainty in

the absence of error model, observation statistics, or feedback. The problems of interest

spanned from component uncertainty at the circuit-level to computational uncertainty at

the systems-level, and eventually to uncertainty due to a large, and potentially, unknown

set of factors at the architecture-level. The use of a variety of subjective evaluations of the

world to deduce objective information emerged as the overarching theme of this work.

The sequential consultation problem was addressed in the dynamic programming frame-

work, allowing cost-dependent stopping times that are not easily attained in the conventional

sequential-probability-ratio formulation. Specifically, the magnitude of the log-likelihood

process proved sufficient for stopping the consultation process, complementing the use of

its sign for decision making. We provided a closed-form expression for the optimal stop-

ping threshold, quantifying the impact of the cost function. Furthermore, the results from

model-dependent optimal stopping extended naturally to the Bayesian framework with the

theoretical guarantees on the existence of a unique Bayesian threshold supported the nu-

merical computation of the Bayesian optimal stopping threshold. Interestingly, the cost-free

consultation of equally-reliable experts, which aims to minimize the probability of error

directly, admitted an unsupervised consultation strategy. Overall, the agreement among ex-

perts was quantified and used in a manner to ensure cost-efficient sequential acquisition of

subjective information.

The unsupervised opinion aggregation problem was addressed from a statistical perspec-

tive that allowed instantaneous, computationally efficient, and distributed inference. The

notion of agreement among experts emerged as a key tool for statistical inference of relia-

bility in the absence of opinion-generation models, opinion statistics, or feedback. In the

pursuit of an effective use of what-was-called “pseudo” competences, an interesting concen-

tration inequality emerged, guaranteeing the sharpest attainability by the use of Chernoff

bounding technique. Furthermore, pseudo competence, as a measure of reliability, which

can be inferred in an unsupervised framework, was shown to preserve the true ordering of
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the competences, allowing block and adaptive aggregation of opinions. Therefore, the agree-

ment among experts were used to facilitate reliable and computationally efficient opinion

aggregation.

A set of fault-tolerant computational principles were addressed to limit the impact of

low-probability yet high-impact failures, also commonly known as the “black swan” events,

at the systems level. The decision-theoretic interpretation of what is called “algorithmic

noise tolerance” was shown to provide model-independent framework for failure detection

and error mitigation. Specifically, in the presence of a robust computational unit, fidelity

ordering proved to be an effective way model-independent inference. We further addressed,

failure-rejected averaging and discovered the fundamental limits of averaging reliable outputs

from an error-prone computational unit. The notion of agreement among computational

units allowed model-independent, or unsupervised in that sense, detection of failures.

The impact of component uncertainty due to fabrication, assembly, and integration pro-

cesses was quantified by the use of concentration of measure inequalities. These processes

were considered to have hidden statistics due to the difficulty of gathering relevant data

in practice. When discrete component uncertainty with no statistical inter-component de-

pendence was concerned, the effective resistance was shown to have bounded differences in

terms of the individual resistances. The inter-component dependence, spatial dependence

in particular, was addressed by using the concavity of the effective resistance. Furthermore,

the impact of the Johnson-Nyquist noise in the proposed framework was quantified over the

ensemble of circuits.

Several new challenges arose. First, a conceptually meaningful question remains: How

one would sequentially consult experts if one could choose the competence of the next ex-

pert? Next, although it was shown that pseudo competence is sufficient to identify the

most competent expert in the centralized and distributed frameworks, it was not shown here

precisely how one would use pseudo competences for unsupervised exploration and exploita-

tion. Finally, a spectral approach for linear noisy circuits with stochastic components is

worth considering to complement to finite-circuit-size analysis presented here.

Information is often available indirectly and the reliability of information depends on a

large set of factors that cannot always be modeled reasonably. However, the subjectivity

of information does not necessarily render objective inference implausible. This dissertation

established a set of ideas that allow such inference.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Lemma 2.1

Proof. The expected future reward given that opinions X t = xt have been observed is called

the value function (2.7), and it is given as follows:

Vt
(
xt
)

= max
τ≥t
δ∈Dτ

E
[
r (τ ;Xτ )

∣∣ X t = xt
]

= max
τ≥t

max
δ∈Dτ

E
[
βτ1 (δ (Xτ ) = Y )

∣∣ xt] . (A.1)

The separation (A.1) of the joint maximization over stopping times τ > t and opinion

aggregation rules δ ∈ Dτ follows the family decision aggregation rules being well-defined

under the filtration Ft = σ (Y t), the smallest σ-algebra containing Y t. Equivalently, it

follows since the decision maker cannot employ δ ∈ Dτ \Dt at any time t < τ . Observe that:

max
δ∈Dτ

E
[
βτ1 (δ (Xτ ) = Y )

∣∣ X t = xt
]

= βτ max
δ∈Dτ

EXτ
t+1

[
E
[
1 (δ (Xτ ) = Y )

∣∣ xt, Xτ
t+1

] ∣∣ xt] ,
= βτ max

δ∈Dτ
EXτ

t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] .
The first equality follows from what is sometimes called tower property [60], which is marginal-

ization with respect to Xτ
t+1, followed by the total law of probability. Recall that the pay-off

function βτ is independent of the opinions ∀τ ∈ [T ]. Then, the following equality holds:

max
δ∈Dτ

EXτ
t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] = EXτ
t+1

[
max
δ∈Dτ

P (δ (Xτ ) = Y | Xτ )

∣∣∣∣ xt] . (A.2)

The first inequality (≤) follows since maximum of the average is dominated by the average

of maxima:

max
δ∈Dτ

EXτ
t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] ≤ EXτ
t+1

[
max
δ∈Dτ

P (δ (Xτ ) = Y | Xτ )

∣∣∣∣ xt] .
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For the second equality (≥), observe that the following holds:

max
δ∈Dτ

EXτ
t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] ≥ EXτ
t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] , ∀δ ∈ Dτ .
Allowing δ∗τ = arg maxδ∈Dτ P (δ (Xτ ) = Y | Xτ = xτ ), ∀τ ≥ t yields (A.2). Conceptually,

this amount to a simple rationale: when the optimal opinion-aggregation rule is achievable

∀τ ∈ [T ], it must be applied at all times for optimal stopping. Further note that since δ∗τ is

indeed the MAP rule:

max
δ∈Dτ

EXτ
t+1

[
P (δ (Xτ ) = Y | Xτ )

∣∣ xt] = EXτ
t+1

[
max
δ∈Dτ

P (δ (Xτ ) = Y | Xτ )

∣∣∣∣ xt] ,
= EXτ

t+1

[
max
y∈Y

P (y | Xτ )

∣∣∣∣ xt] .
Note that we write P (Y = y | Xτ ) ≡ P (y | X t) for brevity and for emphasizing the random

variables Xτ
t+1 over which the expectation is taken. Then, the value function can be written

as:

Vt
(
xt
)

= max
τ≥t

EXτ
t+1

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt] . (A.3)

When competences are known, βτ maxy∈Y P (y | xτ ) is a deterministic function of xt and since

for a fixed ordering of experts X t is a Markov process due to (2.2), the asserted Bellman

equation follows. Nonetheless, in order to briefly explain the equality between (A.3) and the

Bellman equation, note that:

EXt+1

[
Vt+1

(
X t+1

) ∣∣ xt]
= EXt+1

[
max
τ≥t+1

EXτ
t+2

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt+1

] ∣∣∣∣ xt]
= max

τ≥t+1
EXτ

t+1

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt] .
The first equality follows directly from the value function (A.3) being evaluated at time t+1.

For the second equality, observe that (≥) follows from expectation of maxima dominating

the maximum of the expectation and (≤) follows from maximum of expected future rewards

dominating all future rewards and hence, by letting:

τ ∗ = arg max
τ≥t+1

EXτ
t+1

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt+1

]
.

A more detailed treatment for the Bellman equation for stopping a Markov process under

known rewards can be found in [6, Section 3.4].
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A.2 Motivation for Instantaneously-Realizable Statistics

Let us first remark that the notation Xt has been chosen deliberately to denote a new expert

being consulted at a discrete time instance t ∈ [T ]. As such, we refer to t ∈ [T ] as time

rather than the next expert consulted for ease of presentation.

Observe that Lemma 2.1 yields that optimal stopping happens at time t given the opinions

X t = xt if:

βt max
y∈Y

P
(
y
∣∣ xt) ≥ E

[
Vt+1

(
X t+1

) ∣∣ xt] = max
τ≥t

EXτ
t+1

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt] . (A.4)

Note that EXτ
t+1

[βτ maxy∈Y P (y | Xτ ) | xt] is defined over the opinion process Xτ
t+1, the prob-

ability distribution of which coincides with that of a weighted random walk with up to 2τ−t

possible outcomes at each time τ > t. Therefore, computing (A.4) over all sample paths

Xτ
t+1 = xτt+1 is challenging, and in its current form it yields limited insight into how optimal

stopping and opinion aggregation problems are coupled. Here, we motivate the log-likelihood

process Lt to address these computational and conceptual issues.

The expected reward at time τ , ∀τ > t, given that X t = xt is as follows:

EXτ
t+1

[
βτ max

y∈Y
P (Y = y | Xτ )

∣∣∣∣ X t = xt
]

= βτEXτ
t+1

[
max
y∈Y

P
(
Xτ
t+1

∣∣ y, xt)P (y | xt)
P
(
Xτ
t+1

∣∣ xt)
∣∣∣∣∣ xt
]
.

Let PXτ
t+1|Xt=xt be the conditional probability distribution of Xτ

t+1 given X t = xt and write

the expectation explicitly:

EXτ
t+1

[
max
y∈Y

P (y | Xτ )

∣∣∣∣ xt] =

∫
max
y∈Y

P
(
Xτ
t+1

∣∣ y)P (y | xt)
P
(
Xτ
t+1

∣∣ xt) dPXτ
t+1|Xt=xt ,

=
∑

xτt+1∈Yτ−t
max
y∈Y

P
(
xτt+1

∣∣ y)P (y | xt)
P (xtτ | xt)

P
(
xtτ
∣∣ xt) ,

=
∑

xτt+1∈Yτ−t
max
y∈Y

P
(
xτt+1

∣∣ y)P (y ∣∣ xt) .
Note that the number of sample paths xτt+1 increases (up to) exponentially in τ − t. Since

P (y | xt) is not a function of future sample paths xτt+1, one might interpret the summation

above as the superposition of future probabilities of correct decision making defined with

respect to the current probability of correct decision making. In order to observe this relation,
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recall that the MAP decision (2.3) and note that:

δ∗(xτ ) = arg max
y∈Y

P
(
xτt+1

∣∣ y)P (y ∣∣ xt) =

δ
∗(xt) if

P(xτt+1 | Y=δ∗(xt))
P(xτt+1 | Y 6=δ∗(xt))

>
min
y∈Y

P(y | xt)
max
y∈Y

P(y | xt) ,

−δ∗(xt) otherwise,

(A.5)

where the term −δ∗(xt) follows from δ∗(xt) ∈ Y = {±1}. The relation in (A.5) yields that

whether a decision y∗t is changed or not is determined by a likelihood ratio test between

the current and future likelihoods. This motivates the random process Lt that captures log-

likelihood of correctness in (2.9). Appendices A.3-A.4 use (A.5) to formulate Lt and discuss

its properties in detail.

A.3 Proof of Lemma 2.2

Proof. Since opinions are generated independently on a given task (Xi − Y −Xj), one could

note that an incoming opinion is conditionally independent from all of the past opinions.

Formally, Xt+1 is conditionally independent from X t,
(
Xt+1 − Y −X t

)
, which leads to:

Lt+1 = log
max
y∈Y

P
(
Xt+1

∣∣ y)P (y | X t)

max
y∈Y

P
(
Xt+1

∣∣ y)P (y | X t)
.

Note that this equation follows from the Bayes’ rule and it holds for any prior on Y . There-

fore, Lt+1 can be written as:

Lt+1 =


Lt + log

P(Xt+1 | Y=δ∗(Xt))
P(Xt+1 | Y 6=δ∗(Xt))

if δ∗(X t+1) = δ∗(X t) ,

log
P(Xt+1 | Y 6=δ∗(Xt))
P(Xt+1 | Y=δ∗(Xt))

− Lt if δ∗(X t+1) 6= δ∗(X t) .

Observe that the event of whether a decision is changed by an incoming opinion is charac-

terized by (A.5). Given that Lt = `t, δ
∗(X t+1) = δ∗(X t) if:

log
P
(
Xt+1

∣∣ Y = δ∗(X t) , `t
)

P
(
Xt+1

∣∣ Y 6= δ∗(X t) , `t
) > −`t,

which directly follows from substituting τ = t + 1 in (A.5), conditioned on Lt = `t, and

writing it for random variables X t+1 rather than sample opinions xt+1.

More importantly, observe that log
P(Xt+1 | Y=δ∗(Xt), `t)
P(Xt+1 | Y 6=δ∗(Xt), `t)

is a random variable with distri-
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bution:
log

pt+1

qt+1

w.p. P
(
Xt+1 = δ∗

(
X t
) ∣∣ Lt = `t

)
,

− log
pt+1

qt+1

w.p. P
(
Xt+1 6= δ∗

(
X t
) ∣∣ Lt = `t

)
.

Let us denote the probability of an incoming opinion Xt+1 agreeing with the current decision

δ∗(X t) given that Lt = `t by:

αt+1 , P
(
Xt+1 = δ∗

(
X t
) ∣∣ Lt = `t

)
. (A.6)

Hence, ᾱt+1 , P (Xt+1 = δ∗(X t) | Lt 6= `t) = 1 − αt+1 is the probability of disagreeing.

Consequently, the random process Lt+1 can be written as:

Lt+1 =



`t + log pt+1

qt+1
w.p. αt+11

(
log pt+1

qt+1
> −`t

)
,

`t − log pt+1

qt+1
w.p. ᾱt+11

(
log pt+1

qt+1
< `t

)
,

−`t − log pt+1

qt+1
w.p. αt+11

(
log pt+1

qt+1
< −`t

)
,

−`t + log pt+1

qt+1
w.p. ᾱt+11

(
log pt+1

qt+1
> `t

)
.

Depending on whether pt+1 > 1/2, Lt simplifies further. Specifically, when pt+1 > 1/2:

Lt+1 =


`t + log pt+1

qt+1
w.p. αt+1,

`t − log pt+1

qt+1
w.p. ᾱt+11

(
log pt+1

qt+1
< `t

)
,

−`t + log pt+1

qt+1
w.p. ᾱt+11

(
log pt+1

qt+1
> `t

)
.

Similarly, when pt+1 < 1/2:

Lt+1 =


`t + log pt+1

qt+1
w.p. αt+11

(
log pt+1

qt+1
> −`t

)
,

`t − log pt+1

qt+1
w.p. ᾱt+1

−`t − log pt+1

qt+1
w.p. αt+11

(
log pt+1

qt+1
< −`t

)
.

Recall the definition of θt+1 in (2.11) observe that both cases can be written in the form:

Lt+1 =

`t + θt+1, w.p. p̃t+1,∣∣`t − θt+1

∣∣ w.p. q̃t+1,

where (p̃t+1, q̃t+1) are some transition probabilities (not yet proven to be in the form (2.13)).
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It is sufficient to show that:
p̃t+1 = max

(
αt+1, ᾱt+1

)
,

q̃t+1 = min
(
αt+1, ᾱt+1

)
,

and that αt+1 is a deterministic function of
(
`t, θt+1

)
to conclude that Lt is a Markov process.

In order to formulate αt+1 explicitly, first note that for any sample path xt that satisfies

Lt = `t the following holds:

`t =
max
y∈Y

P (y | xt)

min
y∈Y

P (y | xt)
=

P (Y = δ∗(xt))

P (Y 6= δ∗(xt))
.

Therefore, one can conclude:

P
(
Y = δ∗

(
xt
))

= P
(
Y = δ∗

(
X t
) ∣∣ Lt = `t

)
,

which yields by (2.10) that for all such set of opinions xt:

P (`t) = P
(
Y = δ∗

(
X t
) ∣∣ `t) = max

y∈Y
P
(
y
∣∣ xt) .

The rest follows from the law of total probability:

αt+1 = P
(
Xt+1 = δ∗

(
X t
) ∣∣ Lt = `t

)
,

= P
(
Xt+1 = δ∗

(
X t
) ∣∣ Y = δ∗

(
X t
)
, `t
)
P
(
Y = δ∗

(
X t
) ∣∣ `t)

+ P
(
Xt+1 = δ∗

(
X t
) ∣∣ Y 6= δ∗

(
X t
)
, `t
)
P
(
Y 6= δ∗

(
X t
) ∣∣ `t) ,

= P (Xt+1 = Y )P
(
Y = δ∗

(
X t
) ∣∣ `t)+ P (Xt+1 6= Y )P

(
Y 6= δ∗

(
X t
) ∣∣ `t) ,

= pt+1P (`t) + qt+1Q (`t) .

In order to conclude that the transition probabilities have the form given in (2.13), first

note that the following relation holds:

pt+1 ≷ 1/2 ⇐⇒ αt+1 ≷ ᾱt+1,

which follows from P (`t) > Q (`t), see (2.9)-(2.10), via:

αt+1 ≷ ᾱt+1,

pt+1P (`t) + qt+1Q (`t) ≷ qt+1P (`t) + pt+1Q (`t) ,

(pt+1 − qt+1)P (`t) ≷ (pt+1 − qt+1)Q (`t) .
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Further note that when pt+1 > 1/2, P
(
θt+1

)
= pt+1 and hence, the probability of agreement

is:

αt+1 = P
(
θt+1

)
P (`t) +Q

(
θt+1

)
Q (`t) .

Similarly, when pt+1 < 1/2, P
(
θt+1

)
= qt+1 and hence, the probability of disagreement is:

ᾱt+1 = P
(
θt+1

)
Q (`t) +Q

(
θt+1

)
P (`t) ,

which concludes that p̃t+1 = max
(
αt+1, ᾱt+1

)
takes the from in (2.13). Finally, given that

Lt = `t, Lt+1 is independent of all past likelihoods Lτ , τ < t therefore, it is a Markov process

with its state-transition given in (2.12).

A.4 Proof of Theorem 2.1

Let us start with a preliminary lemma about the relation between the sigmoid function P (·),
transition probabilities (p̃t+1, q̃t+1) and states `t+1 ∈

{
`t + θt+1,

∣∣`t − θt+1

∣∣}.

Lemma A.1. The following equalities hold:

p̃t+1P
(
`t + θt+1

)
= P

(
θt+1

)
P (`t) ,

q̃t+1P
(
`t − θt+1

)
= Q

(
θt+1

)
P (`t) ,

q̃t+1P
(
θt+1 − `t

)
= P

(
θt+1

)
Q (`t) .

Proof of Lemma A.1. Direct substitution of (2.10) into P (·) terms in (2.10) yields that:

p̃t+1 =
[
P
(
θt+1

)
P (`t) +Q

(
θt+1

)
Q (`t)

]
=

1 + e−(`t+θt+1)

(1 + e−`t)
(
1 + e−θt+1

) . (A.7)

Similarly, the following holds:

q̃t+1 =
[
Q
(
θt+1

)
P (`t) + P

(
θt+1

)
Q (`t)

]
=

e−`t + e−θt+1

(1 + e−`t)
(
1 + e−θt+1

) . (A.8)
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Therefore, the expressions (A.7)-(A.8) yield that:

p̃t+1P
(
`t + θt+1

)
= p̃t+1

1

1 + e−(`t+θt+1)
=

1

(1 + e−`t)
(
1 + e−θt+1

) = P
(
θt+1

)
P (`t) ,

q̃t+1P
(
`t − θt+1

)
= q̃t+1

1

1 + e−(`t−θt+1)
=

e−θt+1

(1 + e−`t)
(
1 + e−θt+1

) = Q
(
θt+1

)
P (`t) ,

q̃t+1P
(
θt+1 − `t

)
= q̃t+1

1

1 + e−(θt+1−`t)
=

e−`t

(1 + e−`t)
(
1 + e−θt+1

) = P
(
θt+1

)
Q (`t) .

Next, we prove Theorem 2.1 by backwards induction from t = T . The proof relies on

Lemma 2.2, and makes use of Lemma A.1.

Proof of Theorem 2.1. First, observe that the value function in (A.3) can be written as:

Vt
(
xt
)

= max
τ≥t

EXτ
t+1

[
βτ max

y∈Y
P (y | Xτ )

∣∣∣∣ xt] = max
τ≥t

ELt [βτP (Lτ ) | Lt = `t] ≡ Vt (`t) .

The second equality follows from the definition of Lτ in (2.9) and the expectation being

taken with respect to the likelihood process E [Lτ ] · is a direct consequence of Lemma 2.2.

The corresponding Bellman equation is written as:

Vt (`t) = max
(
βtP (`t) ,ELt+1 [Vt+1 (Lt+1) | Lt = `t]

)
.

It is sufficient to show that the value function is of the form:

Vt (`t) = βtP (max (`t, ηt)) ,∀t ∈ [T ],

where ηt is given in (2.16). We argue by mathematical induction.

Note that at time t = T , the value function yields the expected payoff:

VT (`T ) = βTP (`T ) = βTP (max (`T , 0)) ,

which follows since LT ≥ 0 almost surely. Hence, the base step of the induction follows

trivially.

Inductive argument is constructed backwards starting from t = T . Assume that:

Vt+1

(
`t+1

)
= βt+1P

(
max

(
`t+1, ηt+1

))
, (A.9)
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for some ηt+1 ∈ R and observe that the expected future value at time t can be written as:

ELt+1 [Vt+1 (Lt+1) | `t] = βt+1

[
p̃t+1Vt+1

(
`t + θt+1

)
+ q̃t+1Vt+1

(∣∣`t − θt+1

∣∣)] ,
= βt+1

[
p̃t+1P

(
max

(
`t + θt+1, ηt+1

))
+ q̃t+1P

(
max

(∣∣`t − θt+1

∣∣ , ηt+1

))]
.

It is useful to address the cases where ηt+1 ≷ θt+1 separately. If −∞ < ηt+1 < θt+1, one can

write:

ELt+1 [Vt+1 (Lt+1) | `t] = βt+1


p̃t+1P

(
`t + θt+1

)
+q̃t+1P

(
`t − θt+1

)
1
(
`t ≥ θt+1 + ηt+1

)
+q̃t+1P

(
ηt+1

)
1
(
θt+1 − ηt+1 ≤ `t < θt+1 + ηt+1

)
+q̃t+1P

(
θt+1 − `t

)
1
(
0 ≤ `t < θt+1 − ηt+1

)

 ,

= βt+1


P
(
θt+1

)
P (`t)

+Q
(
θt+1

)
P (`t)1

(
`t ≥ θt+1 + ηt+1

)
+q̃t+1P

(
ηt+1

)
1
(
θt+1 − ηt+1 ≤ `t < θt+1 + ηt+1

)
+P

(
θt+1

)
Q (`t)1

(
1 ≤ `t < θt+1 − ηt+1

)

 .

The first equality follows from (A.9) and the second equality follows from Lemma A.1.

Therefore, the value function can be written as:

Vt (`t) = max

βtP (`t) , βt+1


P (`t)1

(
`t ≥ θt+1 + ηt+1

)
+
[
P
(
θt+1

)
P (`t) + q̃t+1P

(
ηt+1

)]
×1
(
θt+1 − ηt+1 ≤ `t < θt+1 + ηt+1

)
+P

(
θt+1

)
1
(
0 ≤ `t < θt+1 − ηt+1

)


 .

Clearly, ∀`t ≥ θt+1 + ηt+1, the value function Vt (`t) = βtP (`t) as βt ≥ βt+1. For other

values of `t, first observe that:

βtP (`t) ≷ βt+1

[
P
(
θt+1

)
P (`t) + q̃t+1P

(
ηt+1

)]
⇐⇒ `t ≷ log

P
(
θt+1

)
P
(
ηt+1

)
βt−βt+1

βt+1
+Q

(
θt+1

)
Q
(
ηt+1

) .
Define the relative cost for consulting per expert:

δt+1 ,
βt − βt+1

βt+1

≥ 0

and note that:

log
P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) ≤ θt+1 + ηt+1,
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with equality if and only if βt = βt+1. Finally,

βtP (`t) ≷ βt+1P
(
θt+1

)
⇐⇒ `t ≷ log

P
(
θt+1

)
δt+1 +Q

(
θt+1

) .
It appears that Vt (`t) = βtP (`t) when either of the following conditions are satisfied:

`t > log
P
(
θt+1

)
P
(
ηt+1

)
βt−βt+1

βt+1
+Q

(
θt+1

)
Q
(
ηt+1

) ,
θt+1 − ηt+1 > `t > log

P
(
θt+1

)
δt+1 +Q

(
θt+1

) .
A key observation yields that these conditions yield a unique threshold:

P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) ≷
P
(
θt+1

)
δt+1 +Q

(
θt+1

) ⇐⇒ ηt+1 ≷ log

(
1 +

δt+1

Q
(
θt+1

)) ,
⇐⇒ log

pt+1P
(
ηt+1

)
δt+1 + qt+1Q

(
ηt+1

) ≷ θt+1 − ηt+1.

In words, the equivalence above indicates that the likelihood is compared to the dominant

threshold in each interval, which formally yields that when −∞ < ηt+1 < θt+1:

ηt = log max

(
P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) , P
(
θt+1

)
δt+1 +Q

(
θt+1

)) .
A similar behavior manifests itself when ηt+1 > θt+1. Observe that:

ELt+1 [Vt+1 (Lt+1) | `t] = βt+1

 p̃t+1P
(
max

(
`t + θt+1, ηt+1

))
+q̃t+1P

(
max

(
`t − θt+1, ηt+1

))
1
(
`t ≥ θt+1

)
+q̃t+1P

(
ηt+1

)
1
(
1 ≤ `t < θt+1

)
 ,

= βt+1


p̃t+1P

(
`t + θt+1

)
1
(
`t ≥ ηt+1 − θt+1

)
+p̃t+1P

(
ηt+1

)
1
(
`t < ηt+1 − θt+1

)
+q̃t+1P

(
`t − θt+1

)
1
(
`t ≥ ηt+1 + θt+1

)
+q̃t+1P

(
ηt+1

)
1
(
θt+1 ≤ `t < ηt+1 + θt+1

)
+q̃t+1P

(
ηt+1

)
1
(
`t < +θt+1

)

 .
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Lemma A.1 yields that the value function in this case attains the following form:

Vt (`t) = max

βtP (`t) , βt+1


P (`t)1

(
`t ≥ ηt+1 + θt+1

)
+
[
p̃t+1P

(
ηt+1

)
+ pt+1P (`t)

]
×1
(
ηt+1 − θt+1 ≤ `t < ηt+1 + θt+1

)
+P

(
ηt+1

)
1
(
1 ≤ `t < ηt+1 − θt+1

)


 .

Similar to the previous discussion, observe that:

βtP (`t) ≷ βt+1P
(
ηt+1

)
⇐⇒ `t ≷ log

P
(
ηt+1

)
δt+1 +Q

(
ηt+1

) .
Furthermore, the following equivalence holds:

P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) ≷
P
(
ηt+1

)
δt+1 +Q

(
ηt+1

) ⇐⇒ θt+1 ≷ log

(
1 +

δt+1

Q
(
ηt+1

))

⇐⇒
P
(
θt+1

)
P
(
ηt+1

)
δt+1 +Q

(
θt+1

)
Q
(
ηt+1

) ≷ ηt+1 − θt+1,

which indicates that as long as ηt+1 ≥ θt+1:

ηt = max

(
pt+1P

(
ηt+1

)
δt+1 + qt+1Q

(
ηt+1

) , P
(
ηt+1

)
δt+1 +Q

(
ηt+1

)) .
Consequently, at any time t ∈ [T ], for all competences and competence orderings {θ1, · · · , θT},
and non-increasing pay-off functions βt, (2.16) establishes a recursively computable fixed

(with respect to the likelihood) threshold and it determines the optimal stopping time.

A.5 Proof of Lemma 2.3

Proof of Existence. Formally one aims to prove that if ∀u: fU (u) > 0, ∃x such that h(x) =

g(x, u) then, ∃x0 : h (x0) = E [U ] g (x0, U). We argue by the contrapositive of the statement:

If ∀x, h (x) > E [U ] g (x, U) then, h(x) > g(x, u), ∀u: fU (u) > 0. Let A be a set with

P (U ∈ A) = ε > 0 and note that ∀x:

E [U ] g (x, U) =

∫
A
g (x, U) dfU +

∫
Ac
g (x, U) dfU .
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Here, Ac is the set complement of A. Similarly,

h(x) = h(x)P (U ∈ A) + h(x)P (U ∈ Ac) .

Since h (x) > E [U ] g (x, U), ∀x, it follows that:

h(x)− 1
P(U∈A)

∫
A
g (x, U) dfU

−h(x) + 1
P(U∈Ac)

∫
Ac
g (x, U) dfU

>
P (U ∈ Ac)
P (U ∈ A)

> 0,

over the set

{
x : h(x) 6= 1

P(U∈Ac)

∫
Ac
g (x0, U) dfU

}
. Therefore, ∀x the following holds:

h(x) >
1

P (U ∈ A)

∫
A

g (x, U) dfU ,

which yields that h(x) > g(x, u), ∀u : fU(u) > 0 by allowing the probability of A to be

arbitrary.

Proof of Uniqueness. Argue uniqueness – We argue by contradiction. Assume that ∃x1 6=
x2 such that h(xi) = E [U ] g(xi, U) for i ∈ {1, 2}.

83



APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Proposition 3.1

Proof of Part (1)-Ordering. Consider any pairs of experts (Xi, Xj) for i 6= j, and allow

ηi = 1 (Xi = Y ). Observe that ηi ⊥ ηj,∀i 6= j are Bernoulli random variables with parameter

pi, denoted by B(pi). Successive application of the law of total probability yields that:

p̃i = P
(
Xi = fMV

(
X\i
))

=
∑
ηi

P
(
Xi = fMV

(
X\i
) ∣∣ ηi)P (ηi)

=
∑
ηi,ηj

P
(
Xi = fMV

(
X\i
) ∣∣ ηi, ηj)P (ηj | ηi)P (ηi) .

Observe that P (ηj | ηi) = P (ηj) due to the conditional independence of opinions (hence the

independence of opinion generation ηi). A similar extension of p̃j yields that:

p̃j =
∑
ηi,ηj

P
(
Xj = fMV

(
X\j
) ∣∣ ηi, ηj)P (ηi)P (ηj) .

Since the rest of the committee is arbitrary, yet fixed, the following conditional probabilities

are equal:

P
(
fMV

(
X\i
)

= Y
∣∣ Xj = Y

)
= P

(
fMV

(
X\j
)

= Y
∣∣ Xi = Y

)
,

P
(
fMV

(
X\i
)
6= Y

∣∣ Xj 6= Y
)

= P
(
fMV

(
X\j
)
6= Y

∣∣ Xi 6= Y
)
,

and piqj − pjqi = (pi − pj). Therefore, the ratio between the differences between pseudo

competences and true competences are given by:

p̃i−p̃j/pi−pj = (B.1)[
P
(
fMV

(
X\j
)

= Y
∣∣ Xi 6= Y

)
− P

(
fMV

(
X\j
)
6= Y

∣∣ Xi = Y
)]
.
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As long as (B.1) is positive, pseudo competence preserves ordering. We now show that (B.1)

is monotonically increasing in pi ∈ (1/2, 1), ∀i and the minimum is zero. Observe that total

law of probability yields that ∀n ∈ [N ]:

∂

∂pk
P

(
N∑
i=1

ηi ≥ n

)
=

∂

∂pk

[
pkP

(∑
i 6=k

ηi ≥ n− 1

)
+ qkP

(∑
i 6=k

ηi ≥ n

)]

= P

(∑
i 6=k

ηi ≥ n− 1

)
− P

(∑
i 6=k

ηi ≥ n

)
. (B.2)

Therefore,

∂

∂pk
P

(
N∑
i=1

ηi ≥ n

)
= P

(∑
i 6=k

ηi = n− 1

)
≥ 0, (B.3)

∂

∂pk
P

(
N∑
i=1

ηi ≤ n

)
= −P

(∑
i 6=k

ηi = n

)
≤ 0. (B.4)

Consequently, P
(
fMV

(
X\j
)

= Y
∣∣ Xi 6= Y

)
decreases in pi for any expert, where the

probability P
(
fMV

(
X\j
)
6= Y

∣∣ Xi = Y
)

increases. Therefore,

min
p

pi>1/2

p̃i − p̃j
pi − pj

= lim
p→1/2

p̃i − p̃j
pi − pj

= 0,

which yields that p̃i > p̃j ⇐⇒ pi > pj, if pi > 1/2, ∀i.

Conceptually, (B.3)-(B.4) dictate that increasing the competence of an expert necessarily

decreases the probability of error for majority vote. One should note that this does not

contradict the discussion in Section 3.2 as the consistency of majority vote is concerned with

adding a new expert, which does not ensure any monotonicity, instead of increasing the

competence of an expert, which, as shown, does ensure monotonicity.

Proof of Part (2). Observe that p\i > 1/2 for all finite good committees with pi > 1/2, ∀i.
Then, equation (3.12) yields that:

p̃i − pi = pip\i + (1− pi)(1− p\i)− pi
= (1− 2pi)(1− p\i) < 0, (B.5)

p̃i − 1/2 = (pi − 1/2)p\i + (1/2− pi)(1− p\i)

= (pi − 1/2)(2p\i − 1) > 0. (B.6)
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Hence, if pi > 1/2, ∀i, then 1/2 < p̃i < pi.

B.2 Proof of Proposition 3.2

Proof of Part (1). Equation (B.1) indicates that any committee satisfying

P
(
fMV

(
X\j
)

= Y
∣∣ Xi 6= Y

)
> P

(
fMV

(
X\j
)
6= Y

∣∣ Xi = Y
)

preserves ordering. For every consistent committee, ∃N∗ such that ∀N > N∗

P

(∑
k 6=i,j

ηk >

⌊
N − 2

2

⌋)
> P

(∑
k 6=i,j

ηk <

⌈
N − 2

2

⌉)
,

which yields that pseudo competence preserves ordering for consistent mixed committees.

Proof of Part (2). For every consistent committee, ∃N∗ such that ∀N > N∗, p\i > 1/2.

Recall equations (B.5)-(B.6), which yield that:

1/2 < p̃i < pi if pi > 1/2,

1/2 > p̃i > pi if pi < 1/2,

1/2 = pi = p̃i if pi = 1/2.

Therefore, min {p̃i, 1− p̃i} ≥ min {pi, 1− pi} for consistent mixed committees.

B.3 Proof Theorem 3.1

Proof Theorem 3.1. Let wi = log pi/qi. Chernoff bounding technique yields that [63, Section

2.2.1]:

P
(
fNB (X) 6= Y

)
≤ e−tΦE

[
exp

(
−t

N∑
i=1

wi (ηi − pi)

)]
.

Observe that the expectation is with respect to ηi ∼ B (pi):

E
[
e
−t
∑
i
wi(ηi−pi)

]
= pie

−qiwit + qie
piwit.
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Therefore, the probability of error for the NB rule:

P
(
fNB (X) 6= Y

)
≤ e−tΦ

∏
i

(
pie
−qiwit + qie

piwit
)

= exp (−tΦ +
∑

i log (pie
−qiwit + qie

piwit))︸ ︷︷ ︸
,−tΦ+φ(t;p)

. (B.7)

The derivative of −tΦ + φ(t;p) is given as follows:

∂

∂t
(φ(t;p)− tΦ) =

∑
i

wi

[
−piqie−qiwit + piqie

piwit

pie−qiwit + qiepiwit
− (pi − 1/2)

]
=
∑
i

wi
2

[
−pie−qiwit + qie

piwit

pie−qiwit + qiepiwit

]
,

which yields that (B.7) is minimized when t = 1 since:

−pie−qi log
pi
qi + qie

pi log
pi
qi = −pi

(
pi
qi

)−qi
+ qi

(
pi
qi

)pi
= −qiqipipi + pi

piqi
qi = 0.

Hence,

P
(
fNB (X) 6= Y

)
≤ exp (−Φ + φ(1;p))

= exp

(
−Φ +

∑
i

log 2qi

(
pi
qi

)pi)

= exp

(∑
i

log 2
√
qipi

)
,

yielding the asserted bound.

It is important to note that this bound is the sharpest possible using Chernoff bounding

technique and it is a direct consequence of the weight function w(p) = log p/q.

B.4 Proof of Theorem 3.2

Proof of Theorem 3.2. Let εi = pi − 1/2, hence p̃i = 1/2 + 2εiε\i and observe that

p̃i
1− p̃i

=
4εiε\i + 1

1− 4εiε\i
=

1 + 2εi + (1/2ε\i − 1)

1− 2εi + (1/2ε\i − 1)
.
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Then, the ratio of the weights of PNB and NB decision rules are as follows:

1 ≥
log

4εiε\i+1

1−4εiε\i

log 2εi+1
1−2εi

=
log

1+2εi+(1/2ε\i−1)
1−2εi+(1/2ε\i−1)

log 1+2εi
1−2εi

,

≥ 1− (1/2ε\i − 1)
4εi

(1− 4ε2
i ) log 1+2εi

1−2εi︸ ︷︷ ︸
C(|εi|)

.

The inequality follows from the Taylor series expansion of log 1+a+x
1−a+x

with respect to variable

x around x = 0, which corresponds to ε\i ≈ 1/2. Observing that ε\i ≥ a(N)− 1/2, ∀N, i and

C(εi) ≡ C(|εi|) is monotonic in |εi| yield that:

Φ̃

Φ
=

∑N
i=1

(
εi log

4εiε\i+1

1−4εiε\i

)
∑N

i=1 εi log 2εi+1
1−2εi

≥ 1− C(1/2− γ)
1− a(n)

a(n)− 1/2
. (B.8)

B.4.1 Proof of Corollary 3.1

Proof of Corollary 3.1. Similar to the proof of Theorem 3.2, consider the ratio in (B.8) and

observe that:

C(1/2− γ) (1/2ε\i − 1) ≤ δ, ∀i,

ensures that Φ̃
Φ
≥ 1− δ. Change of variables ε\i = p\i − 1/2 concludes proof.

B.4.2 Proof of Equation (3.29)

The following proof is based on [17, Theorem 1]. We go over the algebraic manipulations

necessary in order to prove (3.29). We first show that:

P
(
fPNB(X) 6= Y

)
≤ exp

(
−Φ̃

2

)
. (B.9)

Observe that allowing w(p̃i) ,
p̃i

1−p̃i and ξ , 1 (Xi = Y ) ∼ B(pi):

P
(
fPNB(X) 6= Y

)
= P

(∑
ξiw(p̃i)− E

[∑
ξiw(p̃i)

]
≤ −

∑(
1

2
− pi

)
w(p̃i)

)
.

88



Subsequent application of Kearns-Saul inequality yields (B.9). The use of Kearns-Saul in-

equality yields sufficiently sharp bounds for the performance of NB (and PNB) decision rules

and it is discussed in detail [17]. Next, a lower bound is needed:

P
(
fPNB(X) 6= Y

)
≥

3/4

1 + exp
(

2Φ̃ + 4
√

Φ̃
) .

Let ηi , 21 (Xi = Y )− 1 and observe that:

E
[∑

ηiw(p̃i)
]

=
∑

(pi − qi)w(p̃i) = 2Φ̃,

Var
(∑

ηiw(p̃i)
)

=
∑

piqiw(p̃i)
2 ≤ 4Φ̃.

The upper bound on the variance is not straightforward. It follows from w(p̃i) ≤ w(pi)

(which holds ∀i such that p\i > 1/2 and from consistency ∀N > N∗ for some N∗ it holds ∀i)
and [17, Lemma 4]. The rest follows from observing that:

exp(
∑

ηiw(p̃i)) =
∏
i:ηi=1

p̃i
1− p̃i

∏
i:ηi=−1

1− p̃i
p̃i

,

and repeating the exact same steps as the proof of [17, Theorem 1(ii)], which we will not

repeat here (the fact that min {p̃i, 1− p̃i} ≥ min {pi, 1− pi} is useful).

B.5 Proof of Proposition 3.3

Proof of Proposition 3.3. The proof follows from the Hoeffding’s inequality, since for any

weighted mixture:

P

(
N∑
i=1

wiηi < 0

)
≤ exp

− 8

N

(
N∑
i=1

εiwi

)2
 .

The definition of the pseudo-competence (3.10) and wi = (p̃i − 1/2) yield that the following

is sufficient for the consistency of the rule (3.32):

1√
N

N∑
i=1

2ε2
i ε\i →∞⇒ P

(
fL(X) 6= Y

)
→ 0.
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Similarly by allowing wi = 1, ∀i, the following is sufficient for a committee to be not asymp-

totically weak under majority vote:

1√
N

N∑
i=1

εi ≥
√

log 2

8
⇒ exp

− 8

N

(
N∑
i=1

εi

)2
 ≤ 1

2
,

which ensures that ∃N∗ such that ∀N > N∗, ε\i ≥ δ > 0, ∀i, yielding that:

N∑
i=1

2ε2
i ε\i ≥ δ

N∑
i=1

2ε2
i →∞,

as long as limN→∞
1√
N

∑N
i=1(pi − 1/2)2 = ∞, which concludes that empirical PNB decision

rule is consistent.

B.6 Proof of Theorem 3.3

Proof of Lemma 3.1. Consider |wi − w̃i| for an absolutely balanced committee; the following

holds ∀pi ∈ (γ, 1− γ):∣∣∣∣log
1 + 2εi
1− 2εi

− log
4εiε\i + 1

1− 4εiε\i

∣∣∣∣ ≤ (1/2ε\i − 1)
4εi

(1− 4ε2
i )
≤ (1/2ε\i − 1)

1/2− γ
γ(1− γ)

.

As long as the right hand side is upper bounded by ε
2
, ‖w − w̃‖1 <

εN
2

.

Proof of Theorem 3.3. This proof is an extension of [17, Theorem 11]. Consider the follow-

ing:

|w · η − w̃(T ) · η| = |w · η − w̃ · η + w̃ · η − w̃(T ) · η| ,

≤ |w · η − w̃ · η|+ |w̃ · η − w̃(T ) · η| ,

≤ ‖w · η − w̃ · η‖1 + ‖w̃ · η − w̃(T ) · η‖1 .

The first inequality follows from the triangle inequality and the second inequality follows

from the Hölder’s inequality, then, [17, eqn. (41)] yields that:

P (w̃(T ) · η ≤ 0) ≤ P (w · η ≤ εN) + P (‖w · η − w̃ · η‖1 + ‖w̃ · η − w̃(T ) · η‖1 > εN) .

As long as a committee satisfies the condition in Lemma 3.1, this upper-bound boils down
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to:

P (w̃(T ) · η ≤ 0) ≤ P (w · η ≤ εN) + P (‖w̃ · η − w̃(T ) · η‖1 >
εN/2) .

Now, [17, Corollary 10] yields that ∀δ ∈ (0, 1) and ∀i ∈ [N ] as long as

T min {p̃i, (1− p̃i)} ≥ 3

(
4√

4ε+ 1− 1

)2

log
8N

δ
, (B.10)

the probability that empirical pseudo weights deviate from pseudo weights are bounded:

P
(
‖w̃ · η − w̃(T ) · η‖1 >

εN

2

)
< δ.

Finally, by Property 3.2, min {pi, (1− pi)} satisfying (B.10) yields that:

P
(
fH(X) 6= Y

)
≤ δ + exp

[
−(2Φ− εN)2

8Φ

]
.

Observe that Lemma 3.1 and eqn. (B.10) are connected to consistency and absolute balance

conditions respectively. Therefore, consider a consistent committee with rate a(N) and

observe that Lemma 3.1 holds as long as:

εR(γ)

2
> ρ(N). (B.11)

Observing that (B.10) is merely absolute balance condition with γ = 3
T

log 8N
δ

(
4√

4ε+1−1

)2

,

plugging into (B.11), and taking Taylor series expansion yields (a long algebraic manipulation

that we skip here) yields that Lemma 3.1 holds as long as:

ε >

(
ρ(N)

12

T
log

8N

δ

)1/3

.

Defining C(δ;N, T ) = 12
T

log 8N
δ

concludes the proof.

B.7 Proof of Theorem 3.4

Proof of Theorem 3.4. Due inter-worker and inter-task independence, the empirical pseudo

näıve Bayes decision rule at any given time, τ ∈ [T ] evolves in a well-defined filtration.
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Hence, fHτ , the empirical decision rule using weights w̃(τ), obeys ∀t ∈ (τ + 1, ..., T ):

P
(
R(τ) ∩

{
fH(X(t > τ) 6= Y )

})
= PXτ

1 ,η
(R(τ) ∩ {w̃(τ) · η ≤ 0}) ,

= EXτ
1

[1 (R(τ))Pη (w̃(τ) · η ≤ 0)] .

It is important to observe that as long as the tasks are static, these probabilities are a function

of τ and the committee profile p. Let η̃τ be a random vector with elements distributed

independently with Bernoulli p̃i(τ) and denote ∆(τ) ,
∑N

i=1 |pi − p̃i(τ)| In other words, it is

a random vector with a pseudo committee profile. A standard tensorization result from [17,

71] yields:

|Pη (w̃(τ) · η ≤ 0)− Pη̃τ (w̃(τ) · η̃τ ≤ 0)| ≤ ∆(τ).

Then ∀τ ∈ [T ], Pη̃τ (w̃(τ) · η̃τ ≤ 0) is the probability of error for the näıve Bayes decision

rule of committee strength Φ̃(τ) ,
∑N

i=1

(
p̃i(τ)− 1

2

)
log p̃i(τ)

1−p̃i(τ)
. Therefore, from [17]:

Pη̃τ (w̃(τ) · η̃τ ≤ 0) ≤ exp

(
−1

2
Φ̃ (τ)

)
.

Hence, Pη
(
w̃HS(τ) · η ≤ 0

)
≤ ∆(τ) + exp

(
−1

2
Φ̃ (τ)

)
. Then, by the triangle inequality with

a mean absolute deviation estimate from [17, 61], we see that:

EXτ
1

[∆(τ)] ≤
N∑
i=1

|pi − p̃i|+
N√
T
.

This concludes the proof.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proof of Proposition 4.1

Proof of Proposition 4.1. The proof is a direct calculation of the terms E`
(
δO(M,U ;F ), X

)
and E`

(
δANT (M,U), X

)
. Observe that:

E`
(
δO(M,U ;F ), X

)
=

∫
E
[
`
(
δO(M,U ; f), X

) ∣∣ F = f
]
dF = p̄E` (G,X) + pE` (U,X) ,

which is a direct consequence of genie decision rule having access to reliable failure informa-

tion. The ANT decision rule on the other hand:

E`
(
δANT (M,U), X

)
=

∫
E
[
`
(
δANT (M,U), X

) ∣∣ F ] dF
= p̄E

[
`
(
δANT (M,U), X

) ∣∣ F = 0
]

+ pE
[
`
(
δANT (M,U), X

) ∣∣ F = 1
]

= p̄E`
(
δANT (G,U), X

)
+ pE`

(
δANT (B,U), X

)
= p̄ [E` (G,X)P (d(G,U) ≤ τ) + E` (U,X)P (d(G,U) > τ)]

+ p [E` (U,X)P (d(B,U) > τ) + E` (B,X)P (d(B,U) ≤ τ)] .

Therefore, the regret of the ANT rule is given by:

RANT (τ) = E`
(
δANT (M,U), X

)
− E`

(
δO(M,U ;F ), X

)
= p̄ (E` (U,X)− E` (G,X))︸ ︷︷ ︸

RUG

P (d(G,U) > τ)︸ ︷︷ ︸
ΦGUd (τ)

+ p (E` (B,X)− E` (U,X))︸ ︷︷ ︸
RBU

P (d(B,U) ≤ τ)︸ ︷︷ ︸
FBUd (τ)

.
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C.2 Proof of Proposition 4.2

Proof of Proposition 4.2. Recall that the necessary and sufficient condition for RANT (τ) = 0

is:

ΦGU(τ) = P (‖G− U‖ > τ) = 0 = P (‖B − U‖ ≤ τ) = FBU(τ). (C.1)

A necessary condition for (C.1) is that ∃τ such that E ‖U −G‖ ≤ τ ≤ E ‖B − U‖. This is

because if ∃τ :

P (‖G− U‖ > τ) = 0⇒ E ‖U −G‖ =

∫ ∞
0

P (‖G− U‖ > t) dt

=

∫ τ

0

P (‖G− U‖ > t) dt ≤ τ,

P (‖B − U‖ ≤ τ) = 0⇒ E ‖U −B‖ =

∫ ∞
0

(1− P (‖B − U‖ ≤ t)) dt

=

∫ τ

0

dt+

∫ ∞
τ

P (‖B − U‖ > t) dt ≥ τ.

Therefore, if ∃τ such that ΦGU(τ) = FBU(τ) = 0, then E ‖U −G‖ ≤ τ ≤ E ‖B − U‖. The

sufficient condition follows as:

E ‖B − U‖ ≥ 1

C
E |`(B,X)− `(U,X)| ≥ 1

C
E`(B,X)− 1

C
E`(U,X), (C.2)

E ‖G− U‖ ≤ CE |`(G,X)− `(U,X)| ≤ CE`(G,X) + CE`(U,X), (C.3)

where, the first inequalities of (C.2)-(C.3) follow from the definition of C bi-Lipschitz loss

functions (4.4) and the second inequalities follow from the triangle inequality. Then,

E` (G,X) < E` (U,X)⇒ E ‖G− U‖ < 2CE`(U,X),

1

2C2 + 1
E` (B,X) > E` (U,X)⇒ E ‖B − U‖ ≥ 2CE`(U,X),

yield that as long as E` (G,X) < E` (U,X) < 1
2C2+1

E` (B,X).
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C.3 Proof of Proposition 4.3

Proof of Proposition 4.3. Distance to regret relations follow from (C.2)-(C.3). Recall the

Chernoff bounds:

P (X ≥ (1 + δ)E [X]) ≤ exp

(
− δ2

2 + δ
E [X]

)
,

P (X ≤ (1− δ)E [X]) ≤ exp

(
−δ

2

2
E [X]

)
.

The rest algebraically follows from observing that:

E [X] < a < τ ⇒ (τ − E [X])2

τ + E [X]
>

(τ − a)2

τ + a
,

E [X] > b > τ ⇒ (τ − E [X])2

2E [X]
>

(τ − b)2

2b
.

C.4 Proof of Proposition 4.4

Proof of Proposition 4.4. Consider the s-transform of FA(s) of the random average A:

FA(s) = E
[
e−s

1
N

∑N
i=1Gi

]
= EN

[
E
[
e−s

1
N

∑N
i=1Gi

∣∣∣ N = n
]]

= EN
[
[FG (s/N)]N

]
=
∑
n≥1

[FG(s/n)]n pN (n) .

The moments of A can be acquired by differentiation [72], the mean is calculated as follows:

E [A] = − d

ds
FA(s)

∣∣∣∣
s=0

= −
∑
n≥1

d

ds
[FG(s/n)]n

∣∣∣∣
s=0

pN (n) .

Further note that:

d

ds
[FG(s/n)]n

∣∣∣∣
s=0

= n [FG(s/n)]n−1
∣∣
s=0︸ ︷︷ ︸

=1

d

ds
FG(s/n)

∣∣∣∣
s=0︸ ︷︷ ︸

=−E[G]/n

= −E [G] ,
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yielding that E [A] = E [G]. The second moment is calculated next, but first observe that:

d2

ds2
[FG(s/n)]n

∣∣∣∣
s=0

= (n(n− 1))[FG(s/n)]n−2
∣∣
s=0

(
d

ds
FG(s/n)

)2
∣∣∣∣∣
s=0︸ ︷︷ ︸

=(E[G]/n)2

+ n [FG(s/n)]n−1
∣∣
s=0

d2

ds2
FG(s/n)

∣∣∣∣
s=0︸ ︷︷ ︸

E[G2]/n2

= E [G]2 +
E [G2]

n
− E [G]2

n
= E [G]2 +

Var (G)

n
,

which yields by [72, page 101] that:

Var (A) =
d2

ds2
FA(s)

∣∣∣∣
s=0

−
[
d

ds
FA(s)

]2
∣∣∣∣∣
s=0

=
∑
n≥1


d2

ds2
[FG(s/n)]n

∣∣∣∣
s=0︸ ︷︷ ︸

E[G]2+
Var(G)
n

−
[
d

ds
[FG(s/n)]n

]2
∣∣∣∣∣
s=0︸ ︷︷ ︸

E[G]2

 pN (n) .

Consequently, Var (A) = Var (G)E [1/N].

C.5 Proof of Proposition 4.5

Proof of Proposition 4.5 (First Moment). First, let V = [N ] and observe that I = {i : Fi = 0}
is the set active agents and |I| ∼ F(qF ; |V|). With probability p

|V|
F , |I| = 0, in which case the

random average, and hence its s-transform is not defined. Define the probability measure

derived from pI (l):

p̃I(l) =
1

1− p|V|F
pI (l) ,∀l ≥ 1, (C.4)

which allows a well-defined average almost always. For the rest of the proof, we will allow

that Ẽ [·] ≡ E [·] and Ṽar (·) ≡ Var (·) for notational clarity. Even though Gi are not i.i.d.,
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s-transform of µO(M) ≡ A (this is also for notational clarity) has a closed form:

FA(s) = E

[
exp

(
−s 1

|I|
∑
i∈I

Gi

)]
= EI

[
E

[
exp

(
−s 1

|I0|
∑
i∈I0

Gi

) ∣∣∣∣∣ I = I0

]]

= E

[∏
i∈I

FGi (s/|I|)

]
. (C.5)

Observe that:

d

ds

∏
i∈I0

FGi (s/|I0|)

∣∣∣∣∣
s=0

=
∑
i∈I0

d

ds
FGi (s/|I0|)

∣∣∣∣
s=0︸ ︷︷ ︸

=−E[Gi]
|I0|

∏
j∈I0\i

FGj (s/|I0|)

∣∣∣∣∣∣
s=0︸ ︷︷ ︸

=1

.

Furthermore,

d

ds
FA(s)

∣∣∣∣
s=0

=
∑

I0:|I0|>0

d

ds

∏
i∈I0

FGi (s/|I0|)

∣∣∣∣∣
s=0

p̃I(I0) = −
∑

I0:|I0|>0

1

|I0|
∑
i∈I0

E [Gi] p̃I(I0),

which yields for p̃I(I0) that:

E [A] =
∑

I0:|I0|>0

p̃I(I0)
1

|I0|
∑
i∈I0

E [Gi] .

Observe that by the law of total probability:

p̃I(I0) =

|V|∑
l=1

p I | |I| ( I0 | l) p̃|I| (l) =

|V|∑
l=1

1(|V|
l

) p̃|I| (l) .
The fact that p I | |I| ( I0 | l) = 1/(|V|l ) is a property of the binomial distribution; every random

vector F̄ is equally likely conditioned on its norm
∥∥F̄∥∥

1
= |{i : Fi = 0}|, which extends to

heterogeneous failure probabilities non-trivially. As long as
∥∥F̄∥∥

1
∼ F(qF ; |V|),

E [A] =

|V|∑
l=1

1(|V|
l

) p̃|I| (l) 1

l

∑
I0:|I0|=l

∑
i∈I0

E [Gi]︸ ︷︷ ︸
(|V|−1
l−1 )

∑
i∈V E[Gi]

=

|V|∑
l=1

p̃|I| (l)︸ ︷︷ ︸
=1

1

|V|
∑
i∈V

E [Gi] =
1

|V|
∑
i∈V

E [Gi] .
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It is worth noting that the same derivation for probability distributions on I that are not

induced from a Binomial random variable and almost always non-empty yields that

E [A] =
∑
I0

1

|I0|
∑
i∈I0

E [Gi] pI (I0) .

Proof of Proposition 4.5 (Second Moment). The second moment calculations follow simi-

larly to those of first moment calculations from (C.5). Observe that:

d2

ds2

∏
i∈I0

FGi (s/|I0|)

∣∣∣∣∣
s=0

=
∑
i∈I0

d2

ds2
FGi (s/|I0|)

∣∣∣∣
s=0︸ ︷︷ ︸

E[G2
i ]

|I0|2

∏
j∈I0\i

FGj (s/|I0|)

∣∣∣∣∣∣
s=0︸ ︷︷ ︸

=1

+ 1 (|I0| > 1)
∑
i 6=j∈I0

d

ds
FGi (s/|I0|)

d

ds
FGj (s/|I0|)

∣∣∣∣
s=0︸ ︷︷ ︸

E[Gi]
|I0|

E[Gj]
|I0|

∏
k∈I0\i,j

FGk (s/|I0|)

∣∣∣∣∣∣
s=0︸ ︷︷ ︸

=1

=
∑
i∈I0

E [G2
i ]

|I0|2
+ 1 (|I0| > 1)

∑
i 6=j∈I0
|I0|>1

E [Gi]E [Gj]

|I0|2
,
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which yields that:

E
[
A2
]

=
∑

I0:|I0|>0

p̃I(I0)

∑
i∈I0

E [G2
i ]

|I0|2
+
∑
i 6=j∈I0
|I0|>1

E [Gi]E [Gj]

|I0|2


=

|V|∑
l=1

1(|V|
l

) p̃|I| (l) ∑
I0:|I0|=l

∑
i∈I0

E [G2
i ]

l2
+ 1 (l > 1)

∑
i 6=j∈I0
l>1

E [Gi]E [Gj]

l2


=

|V|∑
l=1

1(|V|
l

) p̃|I| (l) ∑
I0:|I0|=l

[∑
i∈I0

E [G2
i ]

l2

]
︸ ︷︷ ︸

(|V|−1
l−1 ) 1

l2

∑
i∈V E[G2

i ]

+

|V|∑
l=1

1(|V|
l

) p̃|I| (l)1 (l > 1)
∑
I0:|I0|=l

 ∑
i 6=j∈I0
l>1

E [Gi]E [Gj]

l2


︸ ︷︷ ︸

(|V|−2
l−2 ) 1

l2

∑
i 6=j∈V E[Gi]E[Gj ]

= Ẽ [1/|I|]
1

|V|
∑
i∈V

E
[
G2
i

]
+

|V|∑
l=1

l − 1

l
p̃|I| (l)1 (l > 1)

1

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj]︸ ︷︷ ︸
≡C

.

Observe that:

|V|∑
l=1

l − 1

l
p̃|I| (l)1 (l > 1) C, =

|V|∑
l=1

p̃|I| (l)1 (l > 1) C −
|V|∑
l=1

1

l
p̃|I| (l)1 (l > 1) C,

=

|V|∑
l=1

p̃|I| (l)1 (l > 1) C

−
|V|∑
l=1

1

l
p̃|I| (l)1 (l > 1) C + Cp̃|I|(1)− Cp̃|I|(1),

=

|V|∑
l=1

p̃|I| (l) C −
|V|∑
l=1

1

l
p̃|I| (l) C

= C − CẼ [1/|I|] .
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Therefore,

E
[
A2
]

= Ẽ [1/|I|]
1

|V|
∑
i∈V

E
[
G2
i

]
+ (1− Ẽ [1/|I|])

1

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj] ,

= Ẽ [1/|I|]
1

|V|
∑
i∈V

Var(Gi) + Ẽ [1/|I|]
1

|V|
∑
i∈V

E [Gi]
2

+ (1− Ẽ [1/|I|])
1

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj] .

And hence,

Var (A) = E
[
A2
]
− E [A]2

= Ẽ [1/|I|]
1

|V|
∑
i∈V

Var(Gi) + Ẽ [1/|I|]
1

|V|
∑
i∈V

E [Gi]
2

+ (1− Ẽ [1/|I|])
1

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj]−
1

|V|2
∑
i,j∈V

E [Gi]E [Gj] ,

= Ẽ [1/|I|]
1

|V|
∑
i∈V

Var(Gi) + Ẽ [1/|I|]
1

|V|
∑
i∈V

E [Gi]
2 −

1/|V|

|V|
∑
i∈V

E [Gi]E [Gj]

+ (1− Ẽ [1/|I|])
1

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj] +
1− 1/|V|

|V| (|V| − 1)

∑
i 6=j∈V

E [Gi]E [Gj] .

Consequently, the variance of the average takes the following form:

Var (A) = Ẽ [1/|I|]
1

|V|
∑
i∈V

Var(Gi) (C.6)

+
(
Ẽ [1/|I|]− 1/|V|

) 1

|V|
∑
i∈V

E [Gi]

E [Gi]−
1

|V| − 1

∑
j∈V\i

E [Gi]

 .
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APPENDIX D

PROOFS FOR CHAPTER 5

D.1 Proof of Theorem 5.1 and Its Corollaries

Proof of Theorem 5.1 employs McDiarmid’s inequality, hence the first step is to show that

reff
ab has bounded differences [63]. First, the proof of Proposition 5.1 is given below:

Proof of Proposition 5.1. This proposition is a consequence of the compact support of the

fabrication process. Formally, let g\ij be the conductance vector when only the branch

conductance gij for some i ↔ j ∈ E is replaced by some g′ij. Then, ∀g, g\ij ∈
∏

k↔l∈E
[`kl, ukl],

the following bound holds: ∣∣∣reff
ab (g\ij)− reff

ab (g)
∣∣∣ ≤ reff

ab (`)− reff
ab (u).

Hence, the proposition follows.

For Theorem 5.1, we first employ Meyer’s relation, a version of Woodbury’s identity for

pseudo-inverse:

Lemma D.1 (Meyer’s Relation, [73]). Let c ∈ R(A), c ∈ R(A>) and (1 + dTA†c) 6= 0.

Then, (
A + cd>

)†
= A† −

(
1 + d>A†c

)−1
A†cd>A†.

Proof and extensions of Lemma D.1 are given in [73]. As it is stated here, Lemma D.1

is only valid for changes at the branch conductances that preserve circuit topology, not for

addition and or severance of edges since ∀i, j ∈ V such that i↔ j /∈ E , (ei − ej) /∈ R(L).

Lemma D.2 (Derivative of Effective Resistance). For a given circuit topology G, ∀a, b ∈ V,

and ∀i↔ j ∈ E, the derivative of the effective resistance is given by:

∂

∂gij
reff
ab = −

(
∆ab
ij

)2
and

∂

∂rij
reff
ab =

(
∆ab
ij

rij

)2

. (D.1)
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where, ∆ab
ij is a function of the original circuit. Explicitly:

∆ab
ij ,

reff
aj + reff

bi − r
eff
ai − r

eff
bj

2
, (D.2)

which is bounded and symmetric over the connected nodes: ∆ab
ij ≤ min

{
reff
ij , r

eff
ab

}
and ∆ab

ij =

∆ij
ab,∀i↔ j, a↔ b ∈ E.

Proof of Lemma D.2. First, let us show that the definition in (D.2) is not arbitrary; observe

that:

∆ab
ij =

[
(L†)ai + (L†)bj − (L†)aj − (L†)bi + 0 ·

(
(L†)aa + (L†)bb + (L†)jj + (L†)ii

)]
=

1

2

[
reff
aj + reff

bi − r
eff
ai − r

eff
bj

]
. (D.3)

Therefore, we define:

∆ab
ij = (ea − eb)>L†(ei − ej),

which yields that ∆ab
ij = ∆ij

ab provided (ei − ej) ∈ R(L) and (ea − eb) ∈ R(L), equivalently,

i ↔ j, a ↔ b ∈ E . Since the effective resistance is a distance on a graph, the triangle

inequality on (D.2) yields that ∆ab
ij ≤ reff

ab and ∆ab
ij ≤ reff

ij .

Let L(ρij) , L + ρij(ei − ej)(ei − ej)> denote the Laplacian of a circuit acquired by

changing a branch conductance without changing the circuit topology: gij → gij + ρij.

Formally, (ei − ej) ∈ R(A), therefore, by Lemma D.1:

L(ρij)
† = L† − ρij

1 + ρijr
eff
ij

L†(ei − ej)(ei − ej)>L†.

Using (5.3), we can deduce that:

reff
ab (ρij)− reff

ab = (ea − eb)>
(
L†(ρij)− L†

)
(ea − eb) (D.4)

=
−ρij

1 + ρijr
eff
ij

(ea − eb)>L†JijL†(ea − eb).

From the definition of the derivative, we conclude that:

∂

∂gij
reff
ab = lim

ρij→0

reff
ab (ρij)− reff

ab

ρij
= −

(
∆ab
ij

)2
.

For the derivative with respect to branch resistance rij, change of variables from rij → rij+h

to gij → gij −
hg2ij

1+hgij
yields (D.1).
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Lemmata D.1-D.2 are sufficient to prove that the effective resistance reff
ab between any

two nodes a, b ∈ V has bounded differences over topology-preserving changes in the branch

resistances/conductances.

Lemma D.3 (Bounded Difference Property). Let reff
ab (g\ij) be the effective resistance between

nodes a, b ∈ V when only the branch conductance gij for some i↔ j ∈ E is replaced by some

g′ij. Then,

sup
g′ij∈[1/uij ,1/`ij ]

g∈
∏

k↔l∈E
[1/ukl,1/`kl]

∣∣∣reff
ab (g\ij)− reff

ab (g)
∣∣∣ ≤ pij.

Here, pij ,
uij−`ij
`ij

∣∣∣geff
ij (`) ∂

∂gij
reff
ab (`)

∣∣∣.
Proof of Lemma D.3. From (D.2)-(D.4), we can deduce that

∣∣∣reff
ab (g\ij)− reff

ab (g)
∣∣∣ =

∣∣∣∣∣ g′ij − gij
1 +

(
g′ij − gij

)
reff
ij (g)

∣∣∣∣∣
∣∣∣∣ ∂∂gij reff

ab (g)

∣∣∣∣
=

∣∣∣∣∣ g′ij − gij
geff
ij (g) + g′ij − gij

∣∣∣∣∣
∣∣∣∣geff
ij (g)

∂

∂gij
reff
ab (g)

∣∣∣∣ .
Now observe that for every branch i↔ j ∈ E with a conductance gij, g

eff
ij (g) = gij + nij for

some nij ≥ 0, which follows reducing the remaining circuit down to its effective conductance.

Therefore, ∣∣∣∣∣ g′ij − gij
geff
ij (g) + g′ij − gij

∣∣∣∣∣ =

∣∣∣∣ g′ij − gijg′ij + nij

∣∣∣∣ ≤ uij − `ij
`ij

.

The last inequality follows from nij ≥ 0. Finally, using the fact that geff
ij (g) and ∂

∂gij
reff
ab (g)

are nondecreasing in g, we conclude the effective resistance is of bounded difference.

Proof of Theorem 5.1. Given the bounded differences, pij, McDiarmid’s inequality follows.

Corollary 5.1 follows from Theorem 5.1 and the upper bound from Lemma D.2:

Proof of Corollary 5.1. Using ∆ij
ab ≤

(
reff
ij

)2

yields that

∣∣∣∣geff
ij (g)

∂

∂gij
reff
ab (g)

∣∣∣∣ ≤ ∣∣∣∣−geff
ij

(
reff
ij

)2
∣∣∣∣ = reff

ij .

The rest follows from McDiarmid’s inequality.
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Corollary 5.2 shows that how the end-products of the fabrication processes concentrate

around their designed mean reff
ab (E [G]).

Proof of Corollary 5.2. Observe that reff
ab (g) is a concave function of resistance r, which

follows from (D.1) and also stated in [69]. By Jensen’s inequality, it follows that ∀a, b ∈ V :

reff
ab (ER [G]) ≥ ER

[
reff
ab (G)

]
.

Therefore, for any fabrication event, the following holds:

reff
ab (G)− reff

ab (ER [G]) > ε⇒ reff
ab (G)− ER

[
reff
ab (G)

]
> ε.

Hence, Corollary 5.2 follows with the modification of the denominator follows from (D.1)

with rij
∂
∂rij

reff
ab = gij

∂
∂gij

reff
ab , ∀a, b ∈ V .

D.2 Proof of Theorem 5.2

Proofs of Theorems 5.2-5.4 utilize [70, Corollary 3]. We have modified their result to incor-

porate arbitrary compact-support concave functions. The modified result is as follows:

Corollary D.1 (Modified Corollary 3, [70]). For any smooth concave function f defined

on
∏n

i=1[`i, ui] for ui > `i, for any random vector X supported on that domain with mixing

matrix Γ, and for ε > 0,

P (f(X)− EX [f(X)] ≥ ε) ≤ exp

(
− ε2

2 ‖Γ‖2 EX |D∇xf |2

)
.

Modifications for the Proof of Corollary 3, [70]. Employing the natural upper bound for the

absolute index-wise distance, |xi − yi| ≤ 1 (xi = yi) for x,y ∈ [0, 1]n yields [70, Corollary

1, Equation (2.14)]. Instead, one can use |xi − yi| ≤ |ui − `i|1 (xi = yi) on an arbitrary

compact set and propose a modified version of [70, Equation (2.25)] for any smooth concave

function: ∫
f dQ−

∫
f dP ≤ d2 (Q,P )

(∫
|B∇f |2 dP

)1/2

. (D.5)

The matrix B is a diagonal matrix with (B)ii = (ui − `i). Given (D.5), the proof in [70]

follows directly.

Proof of Theorem 5.2. Concavity of effective resistance with respect to branch resistances

allows direct use of Corollary D.1 that yields Theorem 5.2.
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D.3 Proofs for Theorems 5.3-5.4

Theorems 5.3-5.4 are consequences of total effective resistance and its rather interesting

properties. We first prove Theorem 5.3. Followed by results from [69] about total effective

resistance, without proof, we conclude Corollary 5.3 and Theorem 5.4.

Proof of Theorem 5.3. Since the total effective resistance is a concave function of the re-

sistances r, [69] (also a direct consequence of (D.1)), Theorem 5.3 follows from Corollary

D.1.

Lemma D.4 (Power Dissipation, [69]). Let a random current be injected J into a (deter-

ministic) circuit G, then, the expected dissipated power is E [P ] , E
[
JL†J

]
= 1
|V|σ.

Proof of Corollary 5.3. Direct application of Lemma D.4 and Theorem 5.3 yields Corollary

5.3.

Lemma D.5 (Mean-square Branch Voltages, [69]). A deterministic circuit G = (V , E , g)

excited by a randomly injected current as in Lemma D.4, satisfies ∀i↔ j ∈ E:

∂

∂gij
Σ(g) = − |V|E

[
V 2
ij

]
.

The proof of Theorem 5.4. The proof employs concavity of ∇gσ in g, which follows alge-

braically from:

(ea − eb)>
∂L†/2

∂gij
(ea − eb) = (ea − eb)>L†JijL†(ea − eb).

Repeated application of this formula yields that ∇gΣ is concave in g. The rest follows from

Corollary D.1 with a modification of the denominator:
(
`>P

)
i↔j = uij − `ij is the length of

the support for the conductance gij.

D.4 Multiple Components on a Single Branch

In a linear noisy resistive network with deterministic components, multiple resistors between

any two nodes can be replaced with their equivalent resistance. As a proof of concept,

let a fabrication process yield statistically independent resistances R1 and R2 with known

densities pR1 (r1) and pR2 (r2) respectively. When a fixed potential V is applied to the nodes

that these resistances connect, the ensemble average currents EF [Is] (for series connection)
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and EF [Ip] (for parallel connection) exhibits Gaussian statistics with ς =
√

2kt,

E [Is] ∼ N

(
V

∥∥∥∥pS(s)

s

∥∥∥∥
1

,

(
ς

∥∥∥∥pS(s)

s

∥∥∥∥
2

)2
)
,

E [Ip] ∼ N

V ∑
i∈{1,2}

∥∥∥∥pRi(ri)ri

∥∥∥∥
1

, ς2
∑
i∈{1,2}

∥∥∥∥pRi(ri)ri

∥∥∥∥2

2

 ,

where pS (·) = pR1 (·) ∗ pR2 (·), linear convolution of the individual densities. Even when

component stochasticity is present, any two nodes might be considered to be connected by

a unique component.
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