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ABSTRACT 

 

Tornadoes are considered the most violent and dangerous wind hazards and are emerging 

as a major public concern, causing a significant amount of property loss and casualties in the past 

decades. In response, the engineering community in the United States is implementing tornado-

based design in codes and standards. To ensure robust tornado-based design, an accurate estimate 

of the near-surface (10 m above ground level) wind field is essential. However, the near-surface 

wind field of a tornado is not well understood due to lack of in-situ measurements and limitations 

of the wind speed estimation from structural damage. As a result, a method of estimating the near-

surface wind field of a tornado using tree damage, known as tree-fall analysis, is often used as an 

independent wind speed estimation method. Tree-fall analysis is exceptionally useful in forested 

areas where structural damage is limited. In addition, field observations showed similar fall 

patterns from other damage indicators (e.g., crops, traffic signs). In this dissertation, the foundation 

and applications of tree-fall analysis using different damage indicators are presented with an 

overarching goal of improving and accurately estimating the near-surface wind field of tornadoes 

using damage patterns. This dissertation covers the following topics: 1) documenting tornado 

damage, 2) improving tree-fall analysis, 3) analyzing failure wind speed of cantilever-like damage 

indicators and tornado wind field models, 4) apply tree-fall analysis to different tornadoes. 

Post-storm damage from a total of nine tornadoes was documented in detail both on the 

ground and in the air. To rapidly collect the tree-fall directions of a large-scale tornado from aerial 

photographs, a new method that can automatically detect tree damages and obtain tree-fall patterns 

is developed using an image-processing technique. The method shows a 95% accuracy of detecting 
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downed trees and 74% of the downed trees have less than 45 degrees difference in median fall-

direction from the traditional method (manually “tagging” trees). 

Tree-fall analysis analyzes the characteristics of a tornado by examining the tree-fall 

pattern generated by simulating a translating idealized Rankine vortex. Different types of tree-fall 

patterns are examined and a method to compare the simulated pattern to the observed pattern and 

calibrate the vortex parameters is introduced. Herein, the critical wind speed of a cantilever-like 

damage indicator is used as an input parameter to simulate fall patterns. Thus, the different 

influential factors and methods to estimate the critical wind speed are also examined. In addition, 

the validity of different idealized vortex models and feasibility of incorporating into tree-fall 

analysis are investigated. Possible techniques to modify the idealized vortex models to 

accommodate external effects (e.g., RFD surge, topographic effects) are presented. 

The parameters of real tornadoes are then estimated and the near-surface wind field is 

recreated using the estimated parameters. The estimated wind speeds are compared with 

independent wind speed estimates using other methods and other damage indicators. In particular, 

the near-surface wind field of the Naplate, IL tornado was estimated using different damage 

indicators (residential buildings, trees, signs). The general agreement in wind speed estimation 

supports the application of any subset of the methods. The near-surface wind field of Sidney, IL, 

and Bondurant, IA tornadoes were estimated using tree-fall analysis applied to crops. Both cases 

are possible evidence of the EF Scale method underrating the tornado intensity due to no structures 

present in the vicinity. The tree-fall patterns of Tuscaloosa, AL, and Alonsa, MB tornado show a 

general pattern of increase in tornado intensity, size, and tangential flow over time. Finally, 

empirical fragility curves of structures and trees are also established using the estimated wind 

fields, which quantify the vulnerability of structure and trees to tornadoes. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Problem Statement 

Severe windstorm is a dangerous atmospheric phenomenon and a significant natural hazard 

throughout the world. In particular, tornado is considered the most violent severe windstorm 

(Davies-Jones et al., 2001) that can cause a tremendous amount of property damage and casualties. 

Because of their violent nature, tornadoes have caused significant loss and causalities in the United 

States. During 1996–2019, the annual total loss of property and crop damage is estimated at $1.5 

billion (NOAA, 2019), and the cumulative number of casualties from tornadoes has reached nearly 

1,800 (NOAA, 2020a). The significant amount of loss and number of casualties alarmed the 

engineering community and accelerated the implementation of tornado-based design in codes and 

standards (Prevatt et al., 2012a; van de Lindt et al., 2013; ASCE, 2016). 

An accurate estimate of the near-surface wind field of these extreme wind events is an 

essential part of the tornado-based design. A considerable error can be produced in the wind-

induced load calculation as the pressure is proportional to the square of wind speed (ASCE, 2016). 

However, obtaining in-situ measurements of the near-surface wind field of a tornado is extremely 

difficult due to the destructive nature and the low predictability of tornado occurrence (Folger, 

2013). Not only the chance of capturing a tornado is slim, but it is also extremely dangerous to get 

a direct measurement of the near-surface wind speed. Moreover, most wind instruments 

(anemometers) are not designed to record wind speeds exceeding 150 mph (67 m/s) (R.M. Young, 

2020). In fact, only a few studies on a full-scale in-situ direct measurement of a tornado are 

available (Lombardo, 2017; Karstens et al., 2010). Although portable radar instruments, such as 

DOW (Doppler On Wheels), have been able to provide full-scale wind measurements (Bluestein 
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et al., 2019; Kosiba and Wurman, 2013; Refan et al., 2017; Wakimoto et al., 2018), the number of 

DOWs are limited and the near-surface wind field, at the elevation (above ground level less than 

50 m) where most engineers are interested in, are often neglected because of underlying noise in 

the measurements and beam blockage (Wurman et al., 2013; Wurman et al., 2014). As a result, the 

prevailing method for estimating the tornado wind field near the surface has been the analysis of 

data gathered in damage assessments (Edwards et al., 2013). 

A common method of estimating the near-surface wind field of a tornado is the Enhanced 

Fujita Scale (EF Scale). The method classifies a tornado mostly based on structural damage 

(McDonald and Mehta, 2006) and is widely used in practice by engineers and meteorologists 

(Edwards et al., 2013). Although the structural damage and wind speed certainly have a positive 

correlation, estimating an accurate near-surface wind field based on structural damage is much 

more complicated due to the variability and subjective judgment in construction quality and type, 

different aerodynamic effects on the shape of the structure, etc. (Doswell, 2003; Edwards et al., 

2013). As stated by Doswell and Burgess (1988), “the F-scale is a damage scale, not an intensity 

(or windspeed) scale.” Furthermore, most of the world’s tornadoes occur in rural areas where the 

population and structure density are low (Guyer and Moritz, 2003) and damage indicators (DIs) 

are lacking, making the EF-scale estimation difficult and often leading to an underrating of tornado 

intensity (Edwards et al., 2013). Structural damage indeed possesses valuable information on 

tornadoes, but the near-surface wind field should not be estimated solely based on structural 

damage if possible. Independent methods of estimating the near-surface wind field of tornadoes 

are needed to increase confidence in the near-surface wind field estimate. 
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1.2 Research Objectives 

Oftentimes, a large volume of trees or crops is damaged during a tornado event, especially 

in rural areas. Tree damage can range from thousands to millions of trees with a very limited 

number of structures, especially in forested regions (Bech et al., 2009; Beck and Dotzek, 2010; 

Blanchard, 2013; Fujita, 1989; Godfrey and Peterson, 2017; Hall and Brewer, 1959), and the EF-

scale estimation becomes difficult with a small number of structures. Although the current EF 

Scale method can provide a wind speed estimate using single tree damage (DI-27, 28) and may 

allow near-surface wind field estimate of a tornado to some extent, the wind speed estimate based 

on the damage of single trees is confined to the maximum load resistance of the tree. The maximum 

wind speed estimate that the EF-scale of trees can provide is 74.6 m/s (167 mph), incapable of 

rating intensity of EF 4 or greater tornadoes. The maximum near-surface wind speed of the tornado 

still remains in question. 

Edwards et al. (2013) suggest that the near-surface wind field of a tornado should be 

estimated in the context of a surrounding forest instead of single tree damages. As a result, a 

method of estimating the near-surface wind field of a tornado using tree damages and looking at 

the tree-fall directions or patterns as a whole rather than individual DIs as a prominent method in 

recent years (Bech et al., 2009; Beck and Dotzek, 2010; Karstens et al., 2013; Lombardo et al., 

2015). Godfrey and Peterson (2017) and Sills et al. (2021) also uses tree damage to estimate the 

EF-scale within certain areas based on the percentage of trees blown down, independent of tree-

fall directions.  

The frequent strike of tornadoes and the lack of structures in the rural area have inspired 

researchers to investigate tornadoes in crop fields (Baker et al., 2020; Fujita, 1993). Particularly, 

Fujita stresses the reliability and importance of crop damage patterns in his study of the Plainfield, 
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IL tornado of 28 August 1990 where multiple aerial photographs of various crop damage patterns 

are exhibited (Fujita, 1993). Examples of a tree-fall and corn-fall pattern after a tornado are shown 

in Figure 1.1(a) and Figure 1.1(b), respectively. The tree-fall and corn-fall patterns display a 

coherent damage pattern, which represents the airflow pattern of the tornado (Fujita, 1989; 

Karstens et al., 2013). The width of the damage and damage pattern of trees and crops contains 

important information on tornado characteristics (e.g., core size, amount of inflow, and rotation).  

 

 
         (a) tree-fall pattern       (b) corn-fall pattern 

 

Figure 1.1. Aerial photographs of (a) tree-fall pattern of Joplin, MO tornado and (b) corn-fall 

pattern of Bondurant, IA tornado. The fall directions of individual tree or a group of corns are 

annotated in arrows. 

 

 The tornado wind speed at a specific location can also be estimated using forensic analysis, 

a method where structural capacity is evaluated to calculate the wind load required for the observed 

failure. Boughton et al. (2012) applied forensic analysis to failed and non-failed road signs to 
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estimate the peak gust of the Yasi tropical cyclone. With a sufficient number of road or traffic 

signs, the same method can be applied to tornadoes and estimate the near-surface wind field of a 

tornado.   

The primary focus of this study is to broaden the knowledge of near-surface wind field 

estimation of a tornado using damage patterns by improving existing methods and understanding 

the characteristics of tornadoes and damage indicators. To accomplish this research problem, tree-

fall analysis, a method that analyzes fall directions and damage swath using an idealized vortex 

model and critical wind speed of tree, is further improved (see Chapter 4), and the critical wind 

speed of cantilever-like damage indicators (e.g. trees, crops, signs) is investigated (see Chapter 5). 

The improved method is then applied to different tornadoes using different damage indicators, and 

the near-surface wind field of these tornado events is estimated and compared to other methods to 

examine the validity of the proposed method (Chapter 7). The author aspires to benefit the 

engineering community and advance the tornado-based design eventually by providing a better 

understanding of the near-surface wind field of a tornado and filling the gaps of the current wind 

speed estimation methods. The following main objectives will be addressed in the proposed 

dissertation: 

 

1) Documentation of tornado damage. 

2) Improve the existing method of estimating of near-surface wind field of tornadoes 

using tree-fall patterns. 

3) Accurately estimate the critical wind speed of tree/crop/sign fall to be used in the 

tree-fall analysis. 
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4) Analyze different wind field models to be used in the tree-fall analysis and the 

effects of topography. 

5) Apply tree-fall analysis and determine the feasibility and accuracy of the method 

and evaluate the probability of structure and tree failure using empirical data. 

 

1.3 Document Outline 

The document is broken into chapters with tasks that will be carried out to accomplish the 

objectives. The following highlights each chapter. 

Chapter 2 discusses methods and the significance of data collection used in the analysis. 

The “conventional” damage survey (e.g., EF Scale method) and the Wind Engineering Research 

Laboratory (WERL) damage assessment for necessary for wind field estimation are reviewed. The 

process of damage survey and aerial photos converted into usable data is introduced in this chapter.  

Chapter 3 presents an automated method of tree damage and pattern identification from 

aerial photos. A new method using image processing tools is proposed and its application on 

Alonsa, MB tornado is presented in this chapter. 

Chapter 4 introduces the history of “tree-fall” analysis and the development of the 

improved tree-fall analysis.  

Chapter 5 discusses the investigation of bending moment capacity of trees, corn, and signs 

from experimental tests and analytical solutions. The critical wind speed of the three damage 

indicators that will be used in the tree-fall analysis can be found in this chapter. 

Chapter 6 gives a detailed review on different idealized vortex models and examines the 

application of each model to tree-fall analysis. In addition, the topographic effect on vortex model 

is investigated.  
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Chapter 7 presents the application of the improved tree-fall analysis to multiple tornadoes 

to estimate their near-surface wind speeds. The estimates are compared to the estimates from other 

damage indicators. Empirical fragility curves of residential buildings using the estimated near-

surface wind field are also developed in this chapter. 

Chapter 8 presents the conclusions of this study. 

Chapter 9 presents the future directions and research to further improve the tree-fall 

analysis. 
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CHAPTER 2: TORNADO DAMAGE ASSESSMENT 

 

2.1 Introduction 

Due to the lack of situ wind speed measurements near ground, a post-damage survey is 

often conducted and used to estimate the near-surface wind field of tornadoes. The damage 

inflicted by the tornado contains relevant information that correlates to the near-surface wind speed 

and direction. Thus, detailed documentation of the post-tornado damage is an essential part and 

the very first step of the near-surface wind field estimation of a tornado. In this chapter, a typical 

damage survey is briefly reviewed and the Wind Engineering Research Laboratory (WERL) 

damage survey is presented in detail. The WERL damage survey largely consists of two parts: 

ground-based survey and aerial survey. The primary focus of this chapter is to present the process 

of documenting tornado damage and compiling the collected damage information into a 

comprehensive damage map and com, which will be used in later chapters to estimate the near-

surface wind field of tornadoes. 

 

2.2 Conventional Damage Survey 

2.2.1 Enhanced Fujita Scale (EF Scale) 

The EF Scale method is commonly used to categorize the intensity of the tornado, a method 

developed to rate tornadoes based on written descriptions of damage (McDonald and Mehta, 

2006). A Degree of Damage (DOD) is determined based on the damage state, which has an 

associated wind speed range. Then, the tornado is “rated” with a number and an associated range 

of 3-sec wind gust speed (McDonald and Mehta, 2006). The EF rating and its associated 3-sec 

wind gust speed are summarized in Table 2.1. The current EF Scale method includes a total of 28 
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damage indicators (DIs). In general, the ‘official’ EF Scale ratings of tornadoes occurred in the 

United States are rated by the National Weather Service (NWS), a weather service agency of the 

United States federal government. An NWS personnel identifies one or more than one of the 28 

DIs and assigns an EF Scale rating based on the highest wind speed that occurred within the 

damage path (NWS, 2020). 

 

Table 2.1. EF Scale rating with associated wind speed ranges. 

EF scale 3-Second Gust Speed in mph (m/s) 

EF0 65-85 mph (29-38 m/s) 

EF1 86-110 mph (38-49 m/s) 

EF2 111-135 mph (50-60 m/s) 

EF3 136-165 mph (61-74 m/s) 

EF4 166-200 mph (74-89 m/s) 

EF5 Over 200 mph (over 89 m/s) 

 

2.2.2 One- and Two-family Residences (FR12) 

In common practice, the damage state and the location of the damaged one- and two-family 

residences (DI 2) are documented. The damage description of each DOD and its associated wind 

speed (expected, lower bound, and upper bound) for FR12 is summarized in Table 2.2. DI 2 is one 

of the most widely used DIs in wind speed estimation because of its abundance across the United 

States. As shown in Table 2.2, the DOD of FR12 also covers a wide range of wind speeds from 53 

mph (24 m/s) to 198 mph (89 m/s). However, only several damaged FR12s are typically 

investigated and given a DOD rating (typically EF-2 or weaker). Figure 2.1 shows an image of a 

typical damage survey of the Naplate-Ottawa, IL tornado and the EF rating by the NWS retrieved 
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from the Damage Assessement Toolki, which is an website operated by the NWS to archive the 

damage survey and general information of tornado (e.g., date and time, number of injuries and 

fatalities) and share the information to the public. Each triangle represents a survey point from an 

NWS personnel using the EF-scale method. Although the Damage Assessment Toolkit is a great 

tool to obtain general information of a tornado and provides an EF rating and may provide the 

maximum wind speed of the tornado, there are still gaps and it is insufficient for engineering design 

purpose that requires a more detailed estimate of near-surface wind field of a tornado.  

 

Table 2.2. Degree of Damage of FR12 (DI 2) with associated wind speed. 

DOD Damage Description EXPa LBb UBc 

1 Threshold of visible damage 65 (29) 53 (24) 80 (34) 

2 
Loss of roof covering material (<20%), gutters and/or awning; loss of 

vinyl or metal siding 
79 (35) 63 (28) 97 (43) 

3 Broken glass in doors and windows 96 (43) 79 (35) 114 (51) 

4 

Uplift of roof deck and loss of significant roof covering material 

(>20%); collapse of chimney; garage doors collapse inward or 

outward; failure of porch or carport 

79 (35) 81 (36) 116 (52) 

5 Entire house shifts off foundation 121 (54) 103 (46) 141 (63) 

6 Large sections of roof structure removed; most walls remain standing 122 (55) 104 (47) 142 (64) 

7 Top floor exterior walls collapsed 132 (59) 113 (51) 153 (68) 

8 Most interior walls of top story collapsed 148 (66) 128 (57) 173 (77) 

9 Most walls collapsed in bottom floor, except small interior rooms 152 (68) 127 (57) 178 (80) 

10 Total destruction of entire building 170 (76) 142 (64) 198 (89) 

a Expected wind speed in mph (m/s) 
b Lower bound wind speed in mph (m/s) 
c Upper bound wind speed in mph (m/s) 
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Figure 2.1. Image of a typical damage survey in Naplate, IL by the NWS (image retrieved from 

https://apps.dat.noaa.gov/StormDamage/DamageViewer/). 

 

2.3 WERL Damage Survey 

2.3.1 Ground-based Survey 

Despite the various types of DI in the EF scale method, gaps do exist and the structural 

integrity between nearby DIs is still questionable. Edwards et al., (2013) suggest that more damage 

indicators need to be explored and other methods should be incorporated in estimating near-surface 

wind speed. The Wind Engineering Research Laboratory (WERL) at the University of Illinois 

Urbana-Champaign conducts damage surveys that collect damage information other than just the 

EF scale DIs. In addition to residential houses, detailed information on trees, crops, and traffic 

signs are collected during the damage survey. Not only the failed ones but also the non-failed ones 

are collected as non-failed DIs can provide information on the upper bound wind speed of the 
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tornado at given locations. Documenting the location of the DI is important because the near-

surface wind speed varies between the location relative to the center of the tornado. A convenient 

and prevailing method to obtain the geolocated photographs is taking a photo using a GPS camera. 

 

2.3.1.1 Residential buildings 

For residential buildings, it is important to document the damaged structures from different 

angles and capture different views to avoid losing information. Multiple images of damaged 

residences are carefully examined, and the DOD rating that matches the damage description (Table 

2.2) the most is assigned. Example images of damaged FR12s and their DOD rating rated by the 

WERL researchers are shown in Figure 2.2 (Figure 2.2 only shows one image that best displays 

the DOD rating). For the WERL damage survey, the DOD ratings are assigned to each building 

based on consensus between researchers who surveyed the location. First, each researcher rates all 

the damaged structures independently by examining the photos without discussing with another. 

Then, the researchers discuss their DOD ratings and reach a consensus for any discrepancies. The 

residential building in Figure 2.2(a), which had more than 20% loss of roof covering, was rated a 

DOD 4 by all researchers (Table 2.2). The DOD 6 rated building in Figure. 2.2(b) is an example 

where researchers had to come to a consensus: the removed lower section of the gambrel roof 

serves as a sidewall for the habitable space but is treated as a roof structure based on construction. 

The consensus method is intended to reduce the subjectivity of rating the damaged structure.  
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    (a) DOD 4                (b) DOD 6  

 

Figure 2.2. Image of residential buildings with DOD rating after the tornado in Naplate, IL: (a) 

DOD 4 and (b) DOD 6. 

 

Once the rating is complete, the ratings of the damaged buildings are mapped on a 

geographic information system (GIS), using GPS coordinates. A damage survey map can help to 

visualize the damage extent and the gradient of damage, which can be used to estimate the 

characteristics of a tornado (e.g., damage width, tornado center, radius of maximum wind speed) 

(Lombardo et al., 2015; Prevatt et al., 2012b; Roueche and Prevatt, 2013). As an example, a total 

of 152 buildings were surveyed and assigned DOD ratings throughout the village of Naplate, IL 

as represented on the map of Figure. 2.3. The tornado center can be estimated based on the 

locations of the residences that took the most damage (red line in Figure. 2.3), and an evident 

damage gradient is shown where the DOD rating decreases further away from the estimated 

tornado center. The estimated damage width is approximately 0.35 miles (550 m) with the highest 

damage rating of DOD 8 where the exterior walls of the structure were collapsed except for some 

interior rooms (Table 2.2). However, it was suspected that the building failed at a lower wind speed 

because it had unreinforced masonry foundation walls. Thus, a lower bound wind speed of DOD 

8 was assigned (more discussion in Chapter 7). Figure 2.4 shows the DOD 8 structure with 
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unreinforced masonry foundation walls. This example demonstrates the importance of a ground-

based survey. As opposed to an aerial survey (section 2.3.3), a great level of detail, such as the 

construction type, can be obtained from the ground. 

 

 

Figure 2.3. Map of damaged residential buildings in Naplate, IL on ArcGIS with estimated tornado 

path (red line). Residential buildings (triangles) are color-coded according to its DOD rating.  

 

 

Figure 2.4. Residential rated DOD 8 due to unreinforced masonry foundation walls. 
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2.3.1.2 Trees 

Just as the residential buildings, a ground survey is important in tree damage because 

valuable information related to obtaining wind speed, but unattainable from the air, can be 

identified from the ground. In the conventional damage survey, only the tree type (Hardwood or 

softwood) and the damaged state are identified, and the wind speed is assigned according to the 

EF Scale. In the WERL damage survey, the photograph of the tree is taken standing at the root and 

aligning with the trunk as shown in Figure 2.5, in which the geographic coordinates and the 

direction of the tree-fall are recorded. Examining the directions as a whole, the fallen trees tend to 

form a pattern displaying the flow pattern of a tornado. A more detailed analysis of tree-fall 

patterns (tree-fall analysis) is discussed later in Chapter 4. In addition, the diameter at breast height 

(DBH), species of the tree, and the failure mode (e.g., snapped at the stem, uprooted) were 

documented as these tree properties have a close relationship with tree-fall risk (Cannon et al., 

2015; Cucchi et al., 2004; Peltola et al., 2000; Peterson, 2007; Peterson and Claassen, 2013). More 

detailed discussion regarding the relationship between the critical wind speed of tree-fall and the 

properties of the tree can be found in Chapter 5. The collected information will be used to calculate 

the critical wind speed of trees (Chapter 5). Although they are not collected in the WERL damage 

survey, tree height, crown height, and diameter should also be collected if possible as they also 

contribute to the tree-fall risk to the wind. The critical wind speed of trees is then used in a vortex 

model to generate tree-fall patterns and estimate the near-surface wind speed (Chapter 7).  
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Tree 

 
Species: White Pine  

DBH: 12 inch (30 cm) 

Failure mode: Uprooted 

Fall direction: 31º NE 

 

Figure 2.5. Example documentation of tree damage.  

 

Unlike the conventional damage survey, not only the failed trees are surveyed, but also 

survived trees are surveyed in the WERL damage survey. Godfrey and Peterson (2017) propose a 

method that utilizes the proportion of failed and standing trees to estimate the EF Scale of the 

tornado, in which a modified Godfrey-Peterson method will be addressed in detail in Chapter 7. 

Multiple visits to the damage-site can be very beneficial, especially when collecting information 

on survived trees due to the inaccessibility of the damaged site immediately after the tornado. 

Assuming that the standing trees are the same as the trees that survived the tornado, the information 

on standing trees is also collected: the location, DBH, and species. Mapping of the failed and 

survived trees of the Naplate, IL tornado is shown in Figure 2.6. The mapping of tree survey 

exhibits an apparent damage pattern where more trees failed near the estimated tornado center and 

more trees survived further away.  
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Figure 2.6. Map of fallen and standing trees in Naplate, IL on ArcGIS with estimated tornado 

path (red line). The fall direction of the fallen trees is shown in black arrow and the location of 

the standing trees in green circle. 

 

2.3.1.3 Crops 

Crop damages that resemble the tree-fall patterns from tornadoes were recognized by the 

WERL. The WERL realized the need for more damage indicators especially in a rural area and 

conducted damage surveys in crop fields in an attempt to apply tree-fall analysis on crop damage. 

In the ground-based crop damage survey, the fall direction of the crops in several transects 

perpendicular to the tornado center is documented using a GPS unit camera. Figure 2.7 shows the 

fall directions of soybean of the Sidney, IL tornado at five different transects on ArcGIS, 

illustrating patterns similar to tree-fall patterns where the fall directions converge to a line. An 

interesting discovery in this damage survey is the formation of convergent and divergent patterns 

of soybeans. A convergent pattern (black arrows) was identified on the northside, and a divergent 

pattern (blue arrows) on the south side of the tornado center in Figure 2.7. An up-close photograph 

of the convergent pattern with a diameter of approximately 2 m is shown in Figure 2.8. These 
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small-scale patterns, which may have been invisible from the air, also demonstrate the importance 

of a ground-based survey. The analysis of near-surface wind field on soybean field and further 

discussion of convergent and divergent pattern of the Sidney, IL tornado will be discussed in 

Chapter 6. Detailed information on aerial photos and orthomosaics will be discussed in section 

2.3.3. 

 

 

Figure 2.7. Soybean fall pattern documented at multiple transects on ArcGIS. The arrows indicate 

the fall direction of soybeans with divergent pattern (blue) and convergent pattern (black).  

 

 

Figure 2.8. Convergent pattern found in soybean damage in Sidney tornado, IL. 
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2.3.1.4 Traffic signs 

Similar to trees and crops, traffic signs fail in tornadoes in the direction of wind-blown and 

can be used to estimate the characteristics of the tornado. In addition to the failed signs, the non-

failed traffic signs of the Naplate, IL tornado were also documented as the non-failed signs can be 

used to estimate the upper bound near-surface wind speed (Boughton et al., 2012). The location of 

all traffic signs and the direction of fall for the failed signs were documented using GPS unit 

cameras. The location and fall direction of the failed signs are shown in blue arrow and the location 

of the non-failed signs is shown in gray circle in Figure 2.9. Detailed dimensions of a total of 38 

traffic signs were also documented (e.g., height above the ground and dimensions of the signages, 

thickness, and other dimensions of the sign-posts). An example image of a failed traffic sign and 

its dimensions are shown in Figure 2.10. Conveniently, the metal posts of all the traffic signs 

surveyed in the village of Naplate were identical galvanized U-channel steel. Using the dimensions 

of the traffic signs, the projected area of the traffic signs and the bending moment capacity of the 

steel posts can be calculated, which are used to estimate the critical failure wind speed of the traffic 

signs (Chapter 5). The critical wind speed of these traffics signs then can be used to compare the 

estimated wind field from other methods or to extract the Rankine vortex (RV) parameters and 

generate an independent near-surface wind field (Chapter 7).  
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Figure 2.9. Map of failed and non-failed traffics signs in Naplate, IL on ArcGIS with estimated 

tornado path (red line). The fall direction of the failed signs is shown in blue arrow and the location 

of the non-failed signs in gray circle. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Example documentation of a sign damage. 

Traffic Sign 

 
Sign type: Stop (30”×30”) / 

Speed limit (18”×24”) 

Height: 2.4 m (8 ft) 

Steel type: U-channel 

Fall direction: 174º S  
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2.3.2 Social Media Images 

As social media has become an increasingly important venue for information, it has 

become a critical medium for disseminating information during natural disasters. More recently, 

researchers have identified social media as a new source of first-hand information during and after 

these events. Social media is one of the fasted media to obtain post-disaster information; images 

extracted from social media, such as Twitter and Facebook, are often used for crisis mapping, 

analysis of public responses, and debris tracking (Middleton et al., 2013; Knox et al., 2013; 

Ukkusuri et al., 2014). Images or videos from social media, often taken immediately after the 

damage occurs, can be a valuable tool in damage surveys, helping researchers identify survey 

locations and preserving perishable data that may be obscured as cleanup and repairs begin. With 

the increase in popularity of consumer unmanned aerial vehicles (UAVs or drones), previously 

scarce low-elevation overhead video and images are commonly made available on social media. 

Data from these sources can fill in the gaps of other methods or can be used as another independent 

method to improve the estimates of tornado wind fields. 

A total of 109 images related to the Naplate, IL tornado immediately after the tornado were 

extracted manually from Twitter and YouTube. The extracted images were images of residential 

buildings and the others were images of low-rise buildings (EF Scale DI 17), metal building 

systems (DI 21), and a warehouse building (DI 23) (McDonald and Mehta, 2006). Most of the 

images were taken using UAVs. The UAV footage from social media has some advantages over 

the still images taken during the damage survey: some structures could be viewed at angles that 

are not visible from the ground, revealing or clarifying damage patterns. For example, Figure 2.11 

shows a snapshot image of a structure taken from UAV footage immediately after the Naplate, IL 

tornado (Figure 2.11(a)), and the photograph taken during the damage survey (Figure 2.11(b)). 
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The roof of the structure was covered with a tarp of the first survey, and thus the structure was 

initially rated as a DOD 4 due to the inward collapse of the garage door but was re-rated as a DOD 

6 after discovering from the social media image that a large section of the roof structure was 

removed.  

 

     
      (a) social media image            (b) damage survey image 

 

Figure 2.11. Images of the same damaged residential building (a) retrieved from social media, 

and (b) taken by the WERL during damage survey. (Image by ABC 7 Chicago and authors, 

respectively). 

 

Primarily, the social media images validated the initial damage survey assessment of 

residential buildings. However, some DOD ratings for the residential buildings were revised based 

on the additional information revealed by images obtained through social media. The UAV footage 

was exceptionally useful for estimating the damage state of the buildings that were inaccessible 

during the damage survey. Ground access for some damaged industrial buildings was restricted 

for safety and security concerns. Five damaged buildings were evaluated primarily from the UAV 

footage: four allocated within the grounds of the Pilkinton glass factory, two service buildings (DI 

21) at the LaSalle County Highway Department, and one at the LaSalle County Nursing Home (DI 

17). Of the two buildings at the glass factory, the metal roof panels had been removed on one, and 

the other was partially collapsed with significant structural damage. DOD 4 (DI 23) was assigned 
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to the former building and DOD 7 (DI 21) to the latter building. The two LaSalle County service 

buildings had roof damages with purlins buckled and were rated as DOD 5 (DI 21). A single low-

rise building at the LaSalle County Nursing Home also had significant roof damages and was rated 

as DOD 3 (DI 17) (McDonald and Mehta, 2006). A comprehensive damage survey of the Naplate, 

IL tornado including all the damage indicators (DI 2, DI 17, DI 21, DI 23, trees, and traffics signs) 

is shown in Figure 2.12. A detailed analysis of wind speed estimation and comparison of different 

independent methods suited for each damage indicator will be discussed in Chapter 7. 

 

 

Figure 2.12. Summary of the Naplate, IL tornado damage survey along with the location of LaSalle 

Co nursing home and service building. The residential buildings with their DOD rating are shown 

in triangles. Tree damage and traffic sign damage with direction are indicated with black and blue 

arrows, respectively. The estimated tornado centerline is shown with a red line. 
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2.3.3 Aerial Survey 

Documentation of damages is an essential part of the near-surface wind speed estimation 

of a tornado; the geographic coordinates and fall direction (if tree or crops) of damage indicators 

must be obtained. However, tornadoes often inflict damage to a large area, damaging thousands of 

residential buildings (Burgess et al., 2014; Kuligowski et al., 2014; Roueche and Prevatt, 2013) 

and knocking down thousands to millions of trees and crops (Fujita, 1989; Karstens et al., 2013; 

Godfrey and Peterson, 2017) and it may be infeasible to survey the entire damaged area. For 

tornadoes that damage large areas, aerial photographs are often taken and used to examine the 

extent of the damage and visualize the overall damage pattern. The georeferenced aerial imageries 

of these damage sites are obtained by flying aircrafts or Unmanned Aerial Vehicles (UAV) and 

used to access the damage. On July 18, 2018, a large volume of corns was damaged with marks of 

a tornado in Bondurant, IA; the damage survey was conducted by the WERL. For the Bondurant, 

IA tornado, a UAV was used to document the corn-fall patterns (Figure 2.13) as the damaged area 

was significantly large and thus not feasible to cover the entire area on the ground. However, the 

properties of corns, such as the spacing from one another, growth stage, diameter, and height, were 

still examined and documented on the ground. This information with the result from experimental 

testing will also be used later in Chapter 5 to calculate the critical wind speed of corns, which will 

serve as one of the input parameters in the tree-fall analysis application on cornfields.  

For larger-scale tornadoes, aircrafts are suggested whereas UAVs are more suitable for 

smaller-scale as there is a trade-off between the resolution and capturing the extent of the damage. 

UAVs are particularly useful in visualizing the damage path, damage width, and the damage 

pattern of crops because they can fly much closer to the ground and provide much higher 

resolution. Once a series of georeferenced aerial photographs are obtained from aircrafts or UAVs, 
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the georeferenced images are then “stitched” together into a composite image, creating an 

orthomosaic map. Orthomosaics are geometrically corrected images using 3D point clouds, points 

containing the X, Y, Z position, and the color information, which can be generated using 

commercial software such as, OpenDroneMap, Agisoft, DroneMapper, etc. Figure 2.13(a) and 

Figure 2.14(a) show parts of the orthomosaic of the Bondurant, IA tornado taken by a UAV and 

that of the Joplin, MO tornado taken by an aircraft. In addition to UAVs, LiDARs can also be a 

great supplement in post-storm damage assessments as they can provide visuals of inaccessible 

places and preserve the damage information in great detail. These remote sensing techniques are 

frequently used in forensic investigations and are already in use for post-storm damage surveys 

(Radhika et al., 2015; Womble et al., 2017; Womble et al., 2018) 

 

 
(a) orthomosaic      (b) annotated corn-fall 

 

Figure 2.13. Corn-damage documentation of Bondurant, IA tornado: (a) orthomosaic of corn 

damage and (b) the corn-fall pattern annotated. 
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(a) orthomosaic          (b) annotated tree-falls and damaged buildings 

 

Figure 2.14. Digital conversion of (a) residential building and (b) tree damage of Joplin, MO 

tornado on ArcGIS.  

 

Once orthomosaics are created, images of damage indicators then can be converted into 

informative digital data and documented on a GIS. The damaged buildings are converted to 

polygons (geolocation and damage state) as shown in Figure 2.14(b). The fallen trees (Figure 

2.14(b)) and crops (Figure 2.13(b)) were converted to digital vectors (geolocation and direction). 

Figure 2.14 shows the digital conversion of damaged residential buildings into damage-based 

color-coded polygons and the digital conversion of tree damage images into vectors (yellow 

arrows) of the Joplin, MO tornado. The building footprint polygons, usually publically available 

on the online GIS database or USGS, are colored based on the severity of the residential buildings: 

in this example, 1) green is light damage, 2) yellow is medium damage, 3) orange is heavy to 

totaled damage, and 4) red is demolished. The tree-fall vectors are drawn from the root of the tree 

into the direction of the tree fallen. In the National Institute of Standards and Technology (NIST) 

report, the damage state of approximately 7,500 damaged residential buildings and the fall 

direction of approximately 5,000 trees were determined on the Joplin, MO tornado (Kuligowski et 

al., 2014). Additional 2,000 trees were identified by the WERL researchers. In the same way, the 

corn damage pattern can be manually documented as shown in Figure 2.13(b). Instead of tagging 
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individual corn, the orthomosaic is divided into small grid boxes and the direction of a group of 

fallen corn stalk is annotated in each box. 

Once all damage indicators are annotated on the GIS map, the damage pattern and damage 

width of the entire damage site can now be visualized. Figure 2.15 shows the aerial photograph 

and annotation of the damaged buildings and trees of the Joplin, MO tornado. The tree damage 

also exhibits a pattern where the trees have fallen in the opposite direction of the translation of the 

tornado (the tornado translated from west to east) and converge near the center of the tornado. 

These damage patterns of the tornado are later analyzed and used to estimate the near-surface wind 

speed of real-case tornadoes (Chapter 7).  

 

 
 

Figure 2.15. Tree-fall (yellow arrow) and building damage (colored polygon) pattern of Joplin, 

MO tornado.  
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2.4 Summary 

Chapter 2 presents the detailed process of data collection necessary for estimating the near-

surface wind speed of a tornado. The data collection can be largely divided into two parts: 1) 

ground-based damage survey and 2) aerial survey. The ground-based damage survey can provide 

detailed information about the damage indicators that are unobtainable from air. The information, 

such as construction quality, diameter and type of trees and, and the dimension of signs, is valuable 

information that can be used to help estimate the more accurate near-surface wind speed of the 

tornado. Aerial photographs are also beneficial for visualizing the damage pattern of larger-scale 

tornadoes and crop damage.  

The data collection mostly includes documenting the damage of residential buildings, trees, 

crops, and signs. To assess the damage, the Damage of Degrees (DOD) of residential buildings 

and the fall direction of cantilever-like DIs are documented in this study. Images and videos 

obtained from social media can also be used as supplementary data. The damage pattern of the DIs 

exhibits a distinct pattern that can be used to analyze the tornado characteristics. A summary table 

of all the damage surveys conducted and aerial photographs collected is shown in Table 2.3. The 

table includes all the tornadoes discussed in this study. 
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Table 2.3. EF scale rating with associated wind speed ranges. 

City/State or 

Province 
Date/Year 

EF rating 

by NWS 
Data collection type Damage indicators 

Tuscaloosa, AL 27 April, 2011 EF-4 Aerial photograph Tree, residential building 

Joplin, MO 22 May, 2011 EF-5 Aerial photograph Tree, buildings 

Sidney, IL 9 September, 2016 EF-2 Ground-based survey Crop (soybean) 

Albany, GA 22 January, 2017 EF-3 Ground-based survey Tree, residential building 

Naplate, IL 28 February, 2017 EF-3 Ground-based survey 
Tree, residential building, sign, 

etc.  

Jacksonville, AL 19 March, 2018 EF-3 Aerial photograph Tree, residential building 

Bondurant, IA 19 July, 2018 EF-2 Aerial photograph Crop (corn) 

Alonsa, MB 3 August, 2018 EF-4* Aerial photograph Tree 

Cookeville, TN 3 March, 2020 EF-4 

Ground-based survey 

and aerial 

photograph 

Tree, residential building 

*Rated by Environmental Canada 

 



30 

 

CHAPTER 3: AUTOMATED TREE-FALL PATTERN IDENTIFICATION 

 

3.1 Introduction 

For tornadoes that damage large areas, aerial photographs are often taken and used to 

examine the extent of the damage and visualize the overall tree-fall pattern. In the past, high-

resolution aerial photographs and Geographic Information System (GIS) software have been the 

primary tools to document the tree-fall patterns (Karstens et al., 2013; Lombardo et al., 2015). A 

non-exhaustive total of 10,300 trees and 94,500 trees were identified on the Joplin, MO and 

Tuscaloosa-Birmingham, AL tornado, respectively, in Karstens et al. (2013). Furthermore, a total 

of 130,000 downed trees have been “tagged” for the Great Smoky Mountains National Park, TN, 

and Chattahoochee National Forest, GA tornadoes (Godfrey and Peterson, 2017). Tediously, the 

geographic coordinates and fall direction of each individual tree image have been identified and 

converted to digital vectors manually in the past. The tree “tagging” process requires an excessive 

amount of manpower and time, and thus an automated process is essential to increase the efficiency 

of the near-surface wind field estimation process. With the recent development of advanced image 

processing techniques and remote sensing technology, many studies identifying tree stems and 

classifying different species in the forest from aerial photographs have been established (Dralle 

and Rudemo, 1996; Key et al., 2001; Mallinis et al., 2008; Sugumaran et al., 2003). More recently, 

other methods using image processing and remote sensing have been extended and applied to 

automatically detect damage and debris after severe windstorms. Chehata et al. (2014) apply the 

image segmentation technique to extract the difference in the parameters of the multispectral pre-

and post-storm images and detect the damaged areas. Radhika et al. (2012) identify the path of 

tornado-borne debris using texture-wavelet analysis. Radhika et al. (2015) and Womble et al. 
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(2007) detect building damages after windstorms in the satellite images by applying feature 

extraction technique such as edge detections and classification using Artificial Neural Network 

(ANN) and using the RGB distribution difference and correlation of pre-and post-storm images, 

respectively. These techniques are also applied to the tree damage assessment in hurricanes, where 

Barnes et al. (2007) adopt an image-driven data mining approach to detect tree damages and 

Szantoi et al. (2012) utilize the RGB color filter and image recognition tools, such as edge detection 

and line detection technique, to identify downed trees and debris. The various proposed image 

processing tools, such as the RGB color filter and line detection technique, are also used in this 

study to identify trees from aerial photographs. Although the preceding studies provide great tools 

and insight in detecting trees, no studies determining the fall direction of downed trees 

automatically have been established in the past. In this chapter, a semi-automated tree-fall pattern 

detection method using an RGB filter and line detection technique and its accuracy on the Alonsa, 

MB tornado will be discussed.  

 

3.2 Methodology 

The semi-automated tree-fall pattern identification process broadly consists of four parts: 

1) separation of the stems and leaves using RGB color filter, 2) Object detection and noise object 

filter, 3) Line detection using Hough transformation, and 4) Tree-fall direction determination based 

on relative position vector. A flow chart of the entire identification process including the 

MATLAB functions used in the analysis is shown in Figure 3.1. The detailed process of each part 

will be discussed in the corresponding section. For the processing tool, the MATLAB 2017a Image 

Processing Toolbox (MathWorks, 2019) was used. Note that the image processing algorithm is 

highly dependent on the resolution of the image and it is recommended to use an image with at 



32 

 

least 20-cm resolution. A sample of the same images with different resolutions was tested; the 

accuracy of fall direction dropped significantly for images lower than 20-cm resolution as the 

shape and integrity of the trees in the image started to be compromised.   

 

 

Figure 3.1. Flow chart of the automated tree-fall direction identification process from aerial photo 

to the tree-fall direction. 

 

3.2.1 Separation of Stems and Leaves Using RGB Color Filter 

In image processing, image filtering changes the range (i.e. the pixel values) of an image 

and alters the colors of the image. An RGB-based color filter, commonly used in image processing 

practice to extract specific colors from an image, is applied to extract pixels associated with trees 

in the aerial photographs. Using the color difference in the image, an RGB color filter can be 
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utilized to even separate the stem (including the branches) and leaf pixels. Though, the RGB color 

image can be alternatively represented and processed in other color spaces, such as HSI (Hue, 

Saturation, Intensity), HSV (Hue, Saturation, Value), YIQ (Luminance, In-phase, Quadrature), etc. 

(Chien and Tseng, 2011). In this study, the RGB-based color filter is used because the aerial 

imageries were acquisitioned in the RGB color model. According to Chien and Tseng (2011), 

distortions may occur during the transformation from RGB to HSI color space, which may cause 

several undesirable phenomena. In the RGB filter process, the image is first converted to digital 

numbers (DNs), in which each pixel consists of three channels: red, green, blue. DN is defined by 

a number between 0 to 255 that represents the “intensity” of light where 0 represents black (no 

light) and 255 represents white (very bright light). To extract specific pixels, any pixels in which 

DNs fall within the predetermined ranges of DN for all three channels are selected, and the selected 

pixels are converted to binary numbers where 1 is presented as white (activated) and 0 is 

represented as black (non-activated), creating a black-and-white binary image (Szantoi et al., 

2012). In general, the DN ranges can be selected by looking at the DNs of a specific pixel and the 

overall DN distribution. For example, the DNs of a “red” pixel in the left figure in Figure 3.2 

(original image), are 203, 23, and 25 for R-, G-, and B-channel, respectively. From the DNs of the 

“red” pixel, an upper bound and lower bound of DN that contains most of the “red” pixels can be 

decided for each channel. To extract the pen from the original image, an RGB color filter is applied 

with DN ranges of 160-220, 0-40, and 0-40 for R-, G-, and B-channel, respectively, and the 

selected pixels are converted to a binary image.  
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Figure 3.2. RGB color filter illustration, where the histogram of the DN of all the pixels in the 

original image is shown and the pixels that represent the red pen are selected (red lines in the 

histogram) and converted to a binary image. 

 

After the RGB color filter is applied, an additional filter that removes “small objects” and 

background noise using a simple algorithm used for detecting objects in a binary image is applied 

to the image to eliminate noise. Pixels are considered part of the same object if their edges or 

corners touch (i.e. two adjacent pixels are both activated along the horizontal, vertical, or diagonal 

direction). The specific process of applying an RGB filter to trees and separating the stem and leaf 

pixels will be discussed in the application section (section 3.3.2).  

 

3.2.2 Object Detection and Noise Objects Filter 

One major disadvantage of the RGB color filter is that any pixels that have a similar color 

as the target object (e.g. trees in this study) would be selected though they are not part of the target 

object. Thus, additional filters are required to remove any non-target objects that bypass the noise 

filter described in section 3.2.1. In this filter, the size and distinguished shape of the trees are used 

to decide whether the object detected should be considered a tree or a non-tree object. The trees 
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have a finite size, in other words; a finite number of pixels in the aerial photographs. Utilizing the 

object detection algorithm, a simple filtering approach of setting a threshold for a maximum 

number of pixels in the detected objects can be used to filter out any large non-target objects. Such 

large objects include roads, large parts of earth, greenhouses, and roofs of commercial buildings 

that have similar colors as the trees.  

Although the above filtering method is effective for objects that are much larger than trees, 

it cannot filter out smaller objects. Using the difference in the shape between trees or a group of 

trees and objects, another threshold filter can be applied to filter out smaller non-tree objects, such 

as objects include roofs of residential houses and vehicles. In general, these smaller non-tree 

objects have a relatively monotone color and thus show a very “concentrated” area in a binary 

image, whereas trees or a group of trees are less dense as shown in Figure 3.3(b) and (e): the ratio 

of activated pixels (shown in yellow) to the non-activated pixels (black) within the red boundary 

of trees in Figure 3.3(b) is less than the ratio of the roof in Figure 3.3(e). Using this concaved-

shape characteristic of tree stems due to the presence of branches, the noise objects can be 

distinguished from trees. For all the objects detected, the boundary of the objects can be determined 

using an -shape. In computational geometry, an -shape is often used to define and capture the 

“shape” of a given set of points in a plane, where “shape” is defined as the complements of all 

closed discs (i.e., discs with radii of -1/) that contain all the points (Edelsbrunner et al., 1983; 

Edelsbrunner and Mücke, 1994). Figure 3.3.B and E show examples of the -shape boundary (red 

line) and activated pixels (yellow) of objects detected from Figure 3.3(a) and (d), respectively. 

Depending on the alpha value, or a shrink factor (S) as defined in MATLAB, the boundary of the 

object can be tightened or loosened, where S = 0 corresponds to the smallest convex set of the 

points and S = 1 corresponds to the tightest single-region boundary around the points. An example 
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of how the boundary tightens as the shrink factor increases is shown in Figure 3.3(c) and (f). Once 

the -shape is defined and the algorithm returns the vertices of the objects, the vertices are used to 

calculate the area of the boundary of objects, and the “density” of the activated pixels within the 

boundary can be determined. The “density” (D) is expressed as the ratio of the number of activated 

pixels to the area of the boundary; that is, for an object with D = 1.0, every pixel within the -

shape boundary of the object is activated. Due to their shape characteristics, the trees have many 

“holes” or “empty spaces”, resulting a relatively low value of “density” (D = 0.11 for S = 0; and 

D = 0.49 for S = 1.0, shown in Figure. 3.3(c)), whereas the noise objects such as roofs have a 

relatively “concentrated” area with high density (D = 0.66 for S = 0; and D = 0.98 for S = 1.0, 

shown in Figure 3.3(f)). As illustrated in Figure 3.3(c) and (f), the boundary of the object is loose 

for low shrink factor and tight for high shrink factor, in which the difference between the “density” 

of the group of trees and the roof is greatest when the shrink factor is defined as 0.5. Thus, a 

“density” threshold can now be introduced removing non-tree objects. Note that the “density” 

threshold would depend on the value of the shrink factor (S). If a higher S was used, the threshold 

would also need to be higher as the boundary of the trees would be tighter and subsequently 

increase the “density”. Thus, the threshold value should change accordingly if a different shrink 

factor is used. Using a shrink factor that maximizes the difference in the “density” between the 

trees and other objects is recommended but not necessary. 
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(a)        (b)         (c) 

 

 
(d)      (e)         (f) 

 

Figure 3.3. Examples of α-shape boundaries with different shrink factor of detected objects and 

trees: (a) original image with trees, (b) object detected (yellow) and α-shape boundary of a group 

of trees (red), (c) α-shape boundary of trees with S = 0 (red dotted line), S = 0.5 (yellow solid-line), 

S = 1.0 (purple dashed-line), (d) original image with a roof, (e) object detected (yellow) and the α-

shape boundary of roof (red), (f) α-shape boundary of roof with different shrink factors. 

 

3.2.3 Line Detection Using Hough Transformation 

Once the noise objects are filtered out, the down trees are identified in the binary image by 

detecting lines using the Hough transformation. The binary images are divided into smaller grid 

boxes and the Hough Transformation is applied to determine the slope of the downed trees. Hough 

transformation, a technique widely used in image processing and computer vision that extracts 

features, such as lines and circles (Ballard, 1981), is applied to the stem pixels to detect lines in 

the binary image and determine the slope of the tree stems. Because of its automatic nature, the 

Hough transformation has broad applications, including biomedical image segmentation, pattern 
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recognition, machine learning, autonomous car, etc. (Cheng et al., 1989; Fu and Mui, 1981; Rosten 

et al., 2010; Urmson et al., 2008). Other edge techniques, such as Canny filter, Sobel filter, and 

wavelet-based transform, can also be a great tool to extract lines (Aydin et al., 1996; Canny, 1986; 

Sobel, 1978; Torre and Poggio, 1986; Zhang et al., 2009). However, the Hough transformation 

was used in this study to extract the lines of trees as the Hough transformation can directly provide 

the geometric information of the detected feature, specifically the slope of the line in this study, 

whereas other edge detection techniques can only detect the outlines of an image and further 

complicated analysis or algorithm is required to automatically extract the geometric information. 

To enhance the line detection process using Hough transformation, two morphological operations 

are performed beforehand: 1) one that bridges a gap between unconnected pixels in a binary image 

by changing the 0-valued pixels to 1 if their neighbor pixels are nonzero and not connected (Figure. 

3.4(a)), and 2) another that fills a hole that changes the 0-valued pixels to 1 if the 0-valued pixels 

are surrounded by 1-valued pixels (Figure 3.4(b)). Performing these two operations fills any gaps 

or holes within the stems made from the color filtering and subsequently increases the chance of 

detecting lines when the Hough transformation is applied. This process is repeated until the image 

no longer changes.  

 

                   
         (a) bridge operation              (b) fill operation 

 

Figure 3.4. Illustration of pixel morphological operations: (a) bridge operation that bridges a gap 

between unconnected pixels and (b) fill operation that fills a hole surrounded by activated pixels. 
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Once the morphological operations are performed, the Hough transformation can now be 

applied to detect lines. In the Hough transformation, a straight line can be defined as the following 

equation: 

 

𝜌 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃)                                                        (3.1) 

 

where  is the angle (from -90 to 90, and counter-clockwise is positive) of its normal and  is 

the distance from the origin (Duda and Hart, 1972) as shown in Figure 3.5(a). An example line 

with  = 45 and  = 2√2 in Figure 3.5(a) consists of an infinite number of points (x1,y1; x2,y2; 

x1,y3;…), in which all the straight lines that pass through each point can be represented in a - 

plane as shown in Figure 3.5(b). In other words, every line in the x-y plane can be represented as 

a unique point in the - plane. The point in Figure 3.5(b) that the three curves intersect results the 

line that includes all three points in the x-y plane. Using this analogy, a binary image, which can 

be regarded as a group of points in the x-y plane, can also be transformed to points in - plane, 

and the points with many overlaps, or local maxima, are identified as lines in the image. In the 

application of identifying the tree-fall pattern, a high maximum number of local maxima, or peaks, 

should be decided to ensure capturing a wide range of  and , i.e., tree-fall directions. 

Furthermore, a minimum line length and a minimum distance between lines can be optionally 

added in the MATLAB function, which is recommended since the trees have a finite height and 

spacing with each other. After the Hough transformation is applied, the median of the angles () 

of lines in the grid box is determined assuming that the trees within the same grid box fall in the 

relatively same direction. The median slope of tree stems (𝜃𝑚𝑒𝑑) is determined rather than the slop 

of individual tree stem because identifying and differentiating the stems and branches of one tree 
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from the other is difficult. Differentiating the leaf and stem pixels of one tree from the others is 

even more difficult which is necessary for identifying the individual tree-fall direction of the 

downed tree. Furthermore, some trees may fall downwind depending on the strength of the trees, 

which may produce outliers within the grid box. As the average value can be sensitive to outliers, 

the median value is used to represent the prevailing wind direction, which produced a better result 

than the average value. 

 

 
(a)                  (b) 

 

Figure 3.5. Illustration of Hough transformation: (a) points (x1, y1), (x2, y2), (x3, y3) on a line in x-y 

plane with angle () and distance from origin (), and (b) curves in - plane that pass through (x1, 

y1), (x2, y2), (x3, y3) points. The intersection of all three curves represents the line in the x-y plane. 

 

3.2.4 Tree-fall Direction Determination Based on Relative Position Vector 

Even after obtaining the median angle, the question of which direction the trees have fallen 

remains unsolved; e.g. whether the trees have fallen towards either side of the median slope of the 

trees. The median tree-fall direction (𝑣̅𝑚𝑒𝑑) is then determined, using the relative position of the 

leaves from the stems. The relative position vector of each leaf pixel with respect to each stem 
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pixel within a certain distance (rthresh) can be determined, and the average relative position vector 

(𝑤̅𝑎𝑣𝑔) is calculated as shown in Eq. (3.3).   

 

𝑟 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2                                                   (3.2) 

𝑤̅𝑎𝑣𝑔 = (
∑ ∑ (𝑥𝑗 − 𝑥𝑖)

𝑀
𝑗=1

𝑁
𝑖=1

𝑁 +𝑀
,
∑ ∑ (𝑦𝑗 − 𝑦𝑖)

𝑀
𝑗=1

𝑁
𝑖=1

𝑁 +𝑀
)  for 𝑟 ≤ 𝑟𝑡ℎ𝑟𝑒𝑠ℎ                     (3.3) 

 

where xi, yi and xj, yj represent the x and y-coordinate of all the stem and leaf pixels, respectively, 

and N and M are the total number of pixels for each of them. Initially, the approximate size of the 

tree branches can be used for rthresh. However, a more detailed analysis can be done to increase the 

accuracy of 𝑤̅𝑎𝑣𝑔, in which an example is shown in section 3.3. Once the 𝑤̅𝑎𝑣𝑔 is obtained, the 

median tree-fall direction (𝑣̅𝑚𝑒𝑑) is decided by taking the minimum difference between the 𝑤̅𝑎𝑣𝑔 

and either end direction of the 𝜃𝑚𝑒𝑑 ((90 + 𝜃𝑚𝑒𝑑) or − (90 − 𝜃𝑚𝑒𝑑)). The differences (d1, d2) 

are calculated using the inverse cosine of the dot product of the two vectors as shown in the 

following: 

 

𝑑1 = cos
−1 (

𝑤̅𝑎𝑣𝑔 ∙ [cos(−(90 − 𝜃𝑚𝑒𝑑)) , sin(−(90 − 𝜃𝑚𝑒𝑑))]

|𝑤̅𝑎𝑣𝑔| ∙ |cos(−(90 − 𝜃𝑚𝑒𝑑)) , sin(−(90 − 𝜃𝑚𝑒𝑑))|
)                (3.4) 

𝑑2 = cos
−1 (

𝑤̅𝑎𝑣𝑔 ∙ [cos((90 + 𝜃𝑚𝑒𝑑)) , sin((90 + 𝜃𝑚𝑒𝑑))]

|𝑤̅𝑎𝑣𝑔| ∙ |cos((90 + 𝜃𝑚𝑒𝑑)) , sin((90 + 𝜃𝑚𝑒𝑑))|
)                    (3.5) 

 

Thus, the 𝑣̅𝑚𝑒𝑑 is decided as (90 + 𝜃𝑚𝑒𝑑) if d2 is smaller than d1, and −(90 − 𝜃𝑚𝑒𝑑) if vice versa. 

An example illustration of tree-fall direction determination is shown later in section 3.3. The 
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median fall direction is calculated instead of the individual tree-fall direction because identifying 

and differentiating the leaf and stem pixels of one tree from the others is extremely difficult as 

mentioned before. In addition, although the value may be different from the median value and the 

average tree-fall direction is used to define the tree-fall pattern and estimate the near-surface wind 

speed in tree-fall analysis, both measurements represent the prevailing wind direction. 

 

3.3 Application 

3.3.1 General Information and Aerial Imagery of Alonsa, MB Tornado 

On the 3 August 2018, a tornado occurred and traveled from the forest in the southwest of 

Alonsa into Lake Manitoba with a path length of 12.5 km and a maximum width of 800 m. The 

georeferenced aerial photographs of the post-damage of Alonsa, MB tornado (EF 4) were taken 

ten days after the tornado by the Northern Tornadoes Project (Sills et al., 2020). Over the forest 

west of Alonsa, MB, a plane flew approximately 300 m (1000 ft) above the entire length of the 

tornado track, producing a total of 26 orthomosaics with a combined length of 13,000 m (42,650 

ft) and width of 8,000 m (26,245 ft), and a pixel resolution of 5-cm (about 2-in). 

 

3.3.2 Application to Alonsa, MB Tornado 

The semi-automated tree-fall pattern identification technique is applied to the Alonsa, MB 

tornado, a heavily forested area in the west of Alonsa, MB where the tornado traveled and damaged 

a countless number of trees. The general framework described in section 3.2 is applied to the 

Alonsa, MB tornado with specific input parameters and the result is shown in this section. For 

illustration purpose, a part of the Alonsa, MB aerial photo is chosen and used as an example 

throughout the section. The photo and its location with respect to the entire tornado track are shown 
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in Figure 3.6. The image is divided into 500×500-pixel (25×25-m) grid boxes with the 

corresponding number. 

 

 
(a) 

 

 
(b) 

 

Figure 3.6. The location of the example image with respect to the entire tornado track: (a) example 

tree-fall image of the post-damage Alonsa, MB tornado, and (b) tornado occurred location in 

Manitoba and estimated tornado center and damage extent. 
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First, the tree stems and leaves in Figure 3.6(a) are separated using an RGB color filter. 

DN ranges of 85-255 (both leaves and stems) and 145-255 (stems), respectively, for all three 

channels are selected. The binary images of IM-79790 are shown with both leaves and stems 

(Figure 3.7(a)) and with just the stems (Figure 3.7(b)) after applying the RGB color filter. For the 

noise filter, any objects detected with the number of pixels less than 50 are considered as noise 

and removed from the image (Figure 3.7(c) and (d)). Finally, the binary image with the stems alone 

(Figure 3.7(d)) is subtracted from the image of the leaves and stems together (Figure 3.7(c)), 

resulting in an image with just the leaves (Figure 3.7(e)). Therefore, the ranges of DN for stems 

and for leaves become 145-255 and 85-145, respectively, for all three channels. To avoid any 

overlaps in classifying pixels, the ranges are selected such that there are no overlaps. Figure 3.7(f) 

shows the final image of extracting and separating the leaves (red) and stems (blue) from IM-

79790. Note that the range of DN and noise filter pixel size of 50 are determined manually based 

on trial and error and a different range may result in a better outcome. A general guideline for 

noise filter pixel size is to keep increasing the pixel size until a noticeable amount of stem or leaf 

pixel is removed. Significant removal of stem-leaf pixels will affect the tree-fall direction 

calculation. Regarding the DN range selection process, although more advanced filtering 

processes, such as vector median filtering and Euclidean distance transformation, may improve 

the accuracy over a range of colors (Astola et al., 1990; Barni et al., 2000), the manually 

determined color range has proven its effectiveness in this study, and thus no such advanced color 

filtering process was applied. 
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                  (a)        (b)            (c)   

 

 
                  (d)        (e)            (f)  

 

Figure 3.7. Illustration of tree detection using RGB filter and separating leaf and stem pixels of 

IM-79790: (a) tree binary image after RGB filter (DN: 85-255), (b) stem binary image after RGB 

(DN: 145-255), (c) tree binary image after noise filter, (d) stem binary image after noise filter, (e) 

leaf binary image after subtracting (d) from (c), (f) final image after RGB, noise filter where red 

and blue denotes the leaves and stems, respectively. 

 

After the RGB color filter, non-tree large objects are removed from the binary image of 

Alonsa, MB tornado. Based on a random sampling of 7,890 objects that are detected as trees, the 

maximum pixel size of these trees is 11,772. Thus, a threshold of 12,500 pixels is established, 

removing any object that consists of more than 12,500 pixels from the binary image. Then, the 

“density” filter was applied with a shrink factor of 0.5. For the Alonsa, MB tornado, the “density” 

of a total sample of 115 detected trees has a mean value of 0.383 and a standard deviation of 0.081, 
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in which the distribution of the “density” of trees is shown in Figure 3.8. Based on the distribution 

of the “density” of the detected trees, the filter threshold is set as D = 0.65, the mean value plus 

three standard deviations. In other words, any object detected with “density” greater than 0.65 is 

removed from the binary image. Once the large objects are removed, the binary images are divided 

into smaller images (500500-pixel): a total of 166,400 grid boxes, each having corresponding 

image numbers from 000000 to 166399 (e.g. Figure 3.6(a)). The grid box size of 500500-pixel 

(25 m2) is decided as 2.5 times the height of the trees (approximately 10 m) so that the size is small 

enough that the assumption of trees falling in the relatively same direction is not violated but large 

enough that a sufficient number of trees are present within the grid box. A minimum of three trees 

within each grid box should be used to generate a relevant median value.  

 

 
 

Figure 3.8. Distribution of “density” (D) of 115 detected trees. The thick dashed line represents 

the mean D and the thin dashed line represents the value of three standard deviations above the 

mean. 

 

In the application of Hough transformation to the Alonsa, MB aerial photo, the maximum 

number of peaks (number of local maxima) is set to 700 based on the analysis similar to Figure 

3.8 using the number of peaks. For randomly chosen 192 grid boxes, the mean number of peaks is 
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217.2 with a standard deviation of 140.7, setting the maximum number of peaks to mean plus three 

standard deviations. Furthermore, thresholds of a minimum length of 20 pixels and a minimum 

distance of 2 pixels between lines are applied. With a 5-cm resolution aerial photo, it is assumed 

that the trees would have a minimum length of 20 pixels (1 m) and a minimum of 2 pixels (0.01 

m) distance from each other. Figure 3.9(a) shows the result of applying the Hough transformation 

to the stem binary image of IM-79790 (Figure 3.7(d)). The green lines represent all the lines 

detected with a minimum length of 20 pixels. After the Hough transformation is applied, the 

median of all the angles of the line in the grid box is determined. The median slope (𝜃𝑚𝑒𝑑) from 

the Hough Transformation is 51.2° ((2) in Figure 3.9(b)), which means the tree-fall direction 

becomes either in the northeast direction (128.8° in meteorological coordinate, Figure 3.9(b)-(2)) 

or southwest direction (308.8° in meteorological coordinate, Figure 3.9(b)-(3)). Using the leaf and 

stem pixels and applying Eq. 3.3, the 𝑤̅𝑎𝑣𝑔 is calculated as 149.7° for IM-79790 (Figure 3.9(b)-

(4)). 

 

 
(a)          (b)              (c)  

 

Figure 3.9. (a) lines detected from binary image of trees after applying Hough transformation, (b) 

illustration of the median slope, the average tree-fall direction, the relative position vector, and d1 

and d2 of the binary image, and (c) annotated averaged tree-fall directions of IM-79790 determined 

from d1 and d2. 
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Lastly, the relative position vector of leaf pixel (red in Figure 3.9(c)) with respect to each 

stem pixel (blue in Figure 3.9(c)) within the distance (rthresh) of 20 pixels (1.0 m) is determined. 

The rthresh of 20 pixels is decided based on 50 randomly selected grid boxes. The “true” tree-fall 

directions within each grid box are pre-determined manually (“tagged” manually and then 

averaged), and the difference in the angle between the “true” tree-fall direction and the 𝑤̅𝑎𝑣𝑔 is 

calculated for all 50 samples. The mean and standard deviation of the difference between the two 

and the percentage error for different distances are summarized in Table 3.1. The error is defined 

as the percentage of how many 𝑤̅𝑎𝑣𝑔’s calculated are correctly estimated out of the 50 samples. 

Based on the mean, standard deviation, and error, the rthresh of 20 pixels is decided to be used. 

Using the rthresh = 20 pixels, the d1 and d2 (𝜃𝑚𝑒𝑑 = 51.2, 𝑤̅𝑎𝑣𝑔 = 149.7°) becomes 171.5° and 8.5°, 

respectively, from Eq. 3.4 and 3.5 (Figure 3.9(b)). Choosing the smallest of two, 𝑣̅𝑚𝑒𝑑 results to 

be 141.2° (128.8° in meteorological coordinate). Figure. 3.9(b) shows the final annotated tree-fall 

direction for IM-79790 and Figure 3.10 shows the final annotated tree-fall directions of each grid 

box of Figure 3.6(a).  
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Table 3.1. The difference between the average relative position vector (𝑤̅𝑎𝑣𝑔) and the “true” tree-

fall average direction and the error using different distance (r). 

 

Distance (Pixel) Mean Difference (°) SD Difference (°) Error (%) 

5 39.62 34.32 10 

10 36.62 28.25 6 

15 32.03 28.02 4 

20 32.90 26.98 2 

25 31.82 31.54 4 

30 32.90 26.29 4 

35 39.40 33.72 10 

40 41.65 36.80 10 

45 47.15 40.58 14 

50 51.48 43.83 12 

 

 
 

Figure 3.10. Tree-fall directions annotated for each grid box of Figure 3.6(a) using the proposed 

semi-automated tree-fall identification method. 



50 

 

In order to reduce the computational cost, a sample of 30,000 leaf pixels and 15,000 stem 

pixels are randomly selected for any grid box that contains more than 30,000 leaf pixels or 15,000 

stem pixels instead of processing all the pixels. In other words, M and N become 30,000 and/or 

15,000, respectively, in Eq. 3.3. Note that the sample pixel number is decided based on 

computational memory (16 GB). Depending on the availability of the computational memory of 

the user, the user may choose a different sample number, though the user should note that the result 

may change significantly if the sample number is too low. The result between using the 

30,000/15,000 randomly selected pixels and using all the pixels for the 50 samples shows an 

average of 0.5-degree difference. The ratio between the two is kept as two because the number of 

pixels of the leaf was approximately double that of the stem in general for all sub-images. 

The proposed method is applied to the entire tornado track. Figure 3.11 shows two transects 

of the tree-fall pattern identified (yellow arrows) using the semi-automated method and the 

estimated tornado centerline (black line). The tornado centerline is estimated based on the most 

intense damage based on the aerial photographs (Lombardo et al., 2015). The detected tree-fall 

patterns of the two transects exhibit patterns similar to the general tree-fall patterns (red arrows) 

(Chapter 4). More detailed analysis of estimating the near-surface wind speed of the Alonsa, MB 

tornado using tree-fall analysis is discussed in Chapter 7. 
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Figure 3.11. Observed (yellow arrows) tree-fall pattern identified from the semi-automated method 

and simulated general (red arrows) tree-fall pattern of two transects from Alonsa, MB tornado. 

Red boxes indicate the location of each transect with respect to the tornado track. The observed 

pattern figures are rotated with respect to the tornado translational direction. 

 

3.4 Error Assessment 

Error assessments are performed to ensure the accuracy of identifying trees and 

determining the median tree-fall direction. For error assessment, four orthomosaics are randomly 

chosen, and a total of 14,923 trees are manually “tagged” in ArcGIS, meaning the tree image 

receives an electronic label with its tree-fall direction and geographic coordinates, and used to 

evaluate the accuracy of the automated tree-fall identification method. Two types of errors are 

defined and assessed: 1) tree-fall identification error and 2) tree-fall direction error. The tree-fall 

identification error is evaluated based on the percentage error of false positives and true negatives. 

Then, the median tree-fall directions using the automated method and using the conventional 

manual tree-fall “tagging” method are compared to evaluate the tree-fall direction error. 
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3.4.1 Tree-fall Identification Error 

For the four orthomosaics chosen, a total of 3,271 grid boxes are used to determine the 

tree-fall identification error. Each grid box is evaluated into four categories: 1) true positive 

(correct labeling: downed trees detected when there are), 2) false negative (incorrect labeling: no 

downed trees detected where there are), 3) false positive (incorrect labeling: downed trees detected 

when there are none), and 4) true negative (correct labeling: no downed trees detected when there 

are none), in which the error of each grid box was determined one-by-one manually. Table 3.2 

shows a conventional contingency table of the tree-fall identification method. Some verification 

metrics, commonly used in forecasting, are used to evaluate the quality of the identification method 

(NOAA, 2020b). Using the values in Table 3.2, the equation and value of each metric are 

summarized in Table 3.3. The Probability of Detection (POD) and the Critical Success Index (CSI) 

are 0.946 and 0.852, respectively, with a False Alarm Ratio (FAR) of 0.104. The overall accuracy 

(Gold et al., 2020) of the method is 0.953. The overall accuracy represents the effectiveness of 

correctly identifying both positives and negatives. The method shows a promising result in 

identifying the trees. 

 

Table 3.2. Contingency table of tree-fall identification. 

Trees Detected 

Trees Observed 

Yes No 

Yes 
889 

(True Positives) 

103 

(False Positives) 

No 
51 

(False Negatives) 

2,228 

(True Negatives) 
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Table 3.3. Equation and value of verification metric on tree-fall identification error. 

Metric Equation Value 

POD TP / (TP + FN) 0.946 

FAR FP / (TP + FP) 0.104 

CSI TP / (TP + TN+FP) 0.852 

Accuracy (TP+FN) / (TP + TN+FP+FN) 0.953 

 

3.4.2 Tree-fall Direction Error  

The tree-fall direction error is calculated by comparing the automated method with the 

conventional method, using the 14,923 manually “tagged” trees that amounted to a total of 1,032 

grid boxes. All the manually “tagged” downed trees within the same grid box are grouped together 

and their median fall direction is determined. Then, the median tree-fall directions of the automated 

method and the conventional method of the 1,032 grid boxes are compared by calculating the 

difference in the tree-fall direction for each grid box. Figure 3.12 shows the histogram of the 

differences for all 1,032 grid boxes, in which 39% of them have a difference of less than 10 degrees 

and about 73% of them have a difference of less than 45 degrees. A difference of 160 degrees or 

greater has a relatively large proportion (12%) as shown in the distribution. However, this result 

is encouraging and implies that the automated method is able to estimate the median slope of the 

tree-falls (𝜃𝑚𝑒𝑑 ) adequately, but the estimation in the median tree-fall direction ( 𝑣̅𝑚𝑒𝑑 ) is 

inadequate for those particular grid boxes as the error in average relative position vector (𝑤̅𝑎𝑣𝑔) is 

large. Improving the estimation of leaves location with respect to the stems, perhaps separating 

leaves from one tree to another though may be challenging, may increase the accuracy of tree-fall 

direction significantly. Furthermore, although the error may seem large, the overall tree-fall pattern 

obtained using the semi-automated method exhibited a compatibly similar pattern to the general 
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tree-fall pattern (Chapter 4). Hence, such error may not affect the near-surface wind field 

estimation considerably. If necessary, an additional algorithm can be developed that flags the grid 

boxes with a tree-fall that is significantly different from the neighboring grid boxes. The tree-fall 

direction in the grid box can be inspected and changed the direction manually if in fact labeled 

incorrectly.  

 

 
 

Figure 3.12. Histogram of difference in tree-fall direction between the manual “tagging” method 

and the automated method. 

 

3.4.3 Limitations 

The semi-automated method developed in this study has a few limitations. In the tree-fall 

identification process, the method often works inadequately when the number of downed trees in 

a grid box was small. Some large pieces of earth that have a similar color to the tree stems were 

not filtered out from the “density” threshold. Additionally, near the edge of the tornado damage 

path, some foliated trees, which were not downed but only the leaves were blown off, were 

detected as downed trees. In the tree-fall direction determination process, the error between the 
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semi-automated and the manual “tagging” method was large when the tree-fall directions were not 

consistent, which violates the assumption of the trees within the same grid box falling in the 

relatively same direction. Furthermore, the median tree-fall direction ( 𝑣̅𝑚𝑒𝑑 ) was incorrectly 

estimated when the number of leaf pixels detected was high. With a high number of leaf pixels, 

there is a large overlap of leaves among trees, which often results in a miscalculation in the relative 

position vector. Furthermore, the automated method may not be able to capture small-scale 

phenomena (e.g. sub-vortices) within the tornado because the method can only determine the 

prevailing wind direction within the grid box.  

In addition, although the proposed method may have shown a comparable result, the 

method was developed based on the tornado post-damage aerial photographs in Alonsa, MB, 

which is a heavily forested area with fairly uniform species of trees. Thus, some input parameters 

used in this study may have to be adjusted for other post-damage imageries. For tornadoes occurred 

in urban areas or areas with a diverse species of trees, the proposed method may not perform 

adequately due to excessive noise objects, and thus additional and more complex filters may be 

required to obtain compatible results. For different tree types, the stem and leaf would have a 

different color so the DN range must be adjusted accordingly. Particularly, for evergreen trees, 

such as pine trees, that have a large crown area, the stems may not be entirely visible in the image 

which would require an alternative way to detect the slope of the tree. An edge detection technique 

may be a better approach for obtaining the tree-fall slope. For the edge detection technique, the 

minimum resolution of the image may be lower as it seems to reserve the shape of the trees even 

in a lower resolution image. Although the proposed method was effective for the Alonsa, MB 

tornado, image processing may not be the most practical solution for broader applications. In deep 

learning, a convolutional neural network (CNN) is widely used to analyze visual imageries and 
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extract patterns. Potentially, CNN with a sufficient number of trained images of downed trees 

could be an alternative and a more generalized method for automatically detecting tree-fall 

patterns. Sills et al. (2020) have used deep learning technique for detecting downed trees and has 

shown preliminary result with potential for improvement. 

 

3.5 Summary 

This chapter introduces a semi-automated method of identifying tree-fall patterns from an 

aerial photograph using image processing techniques. The method specifically extracts the central 

tendency of the fall direction and location of a group of trees. The general framework is first 

developed and then applied to a specific case, the Alonsa, MB tornado. The general framework is 

described as following:  

 

1) The downed trees are detected using an RGB color filter and defining different ranges 

of digital number (DN) enables separating the stem and leaf pixels.  

2) The object detection tool is used to remove any noise and objects other than trees. The 

“density” of the detected objects is defined using the number of activated pixels within 

the boundary of the objects to filter out additional noises. 

3) The Hough transformation is applied to identify lines in the stems, in which the median 

tree-fall direction is determined based on the relative position of the leaf pixels to the 

stem pixels and the median slope of the lines obtained from the Hough transformation.  

 

The above identification method is applied to the Alonsa, MB tornado with specific input 

parameter values, and the tree-fall directions are identified. The error is assessed by a manual 
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process and comparing the result to the manual “tagging” method. Following are the findings from 

the error assessment: 

 

 The proposed method demonstrated a great result in identifying downed trees in each 

grid box.  

 The error assessment in the tree-fall direction shows less accurate but still comparable 

results in determining the tree-fall direction, where 59% of the estimated trees had a 

difference less than 20 degrees and 74% had a difference less than 45 degrees.  

 The directional error was high for grid boxes with a high number of leaf pixels. With a 

high number of leaf pixels, there is a large overlap of leaves among trees, which often 

results in a miscalculation in the relative position vector. Due to the incorrect estimation 

of the relative position vector, a relatively high percentage of fall-direction had a 

difference greater than 160-degree.  

 Although the proposed method may require additional work and improvement, it is still 

able to capture the pattern that can be used in the tree-fall analysis, and it demonstrates 

a great capability in the automation of tree damage assessment, which can be very 

beneficial in near-surface wind field estimation of tornadoes in heavily forested areas.  
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CHAPTER 4: TREE-FALL ANALYSIS INTRODUCTION 

 

4.1 General History and Development of Tree-fall Analysis 

Johannes Letzmann, who was a pioneer of tornado research and influenced by Alfred 

Wegener, attempted to construct a composite wind field of a translating vortex by superposing the 

rotational and translational velocities. Consequently, Letzmann determined the tornadic wind field 

and created hand-drawn hypothetical forest damage patterns (Peterson, 1992), which became the 

foundation of the tornado wind field modeling using tree-fall patterns and influenced many modern 

tornado researchers in reconstructing tornadic wind fields. For example, combining a tree 

resistance to wind model by Peltola et al. (1999) and a tornado wind field model, Holland et al. 

(2006) adopted Letzmann's model and generated analytical tree-fall patterns that could be used to 

assess the storm characteristics. More recently, other researchers have compared the analytical 

patterns to the actual observed patterns and estimated the near-surface wind field of various 

tornadoes (Bech et al., 2009; Beck and Dotzek, 2010; Karstens et al., 2013; Lombardo et al., 2015). 

Other methods of estimating the near-surface wind field using tree damage, but independent of the 

tornado vortex model, have also been developed. Godfrey and Peterson (2017) estimated the 

probability of trees blown down at different wind speeds based on the wind resistance model by 

Peltola and Kellomäki (1993) and determined the EF-scale of forest damage. Another vortex 

independent method developed by the Northern Tornado Project (NTP) and called the ‘forest box 

method’ uses a ‘population-based’ approach that assigns an EF scale using the percentage of 

snapped and/or uprooted trees along the tornado damage path (Sills et al., 2020). 

Tree-fall analysis is exceptionally useful in estimating the near-surface wind speed of a 

tornado in heavily forested regions where the number of structures is very limited (Godfrey and 
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Peterson, 2017). The tree damage from tornadoes in these regions can range from thousands to 

millions (Bech et al., 2009; Beck and Dotzek, 2010; Blanchard, 2013; Fujita, 1989; Godfrey and 

Peterson, 2017; Hall and Brewer, 1959), often displaying the full extent of the tornado damage. 

Moreover, tree-fall analysis using an idealized vortex model can recreate the near-surface wind 

field with the time history of wind speed and direction (Lombardo et al., 2015) as opposed to 

structural damage where only the maximum wind speed can be estimated. Besides, using the 

idealized vortex model, the near-surface wind field can be determined by the damage pattern with 

or without the knowledge of the critical wind speed of tree-fall (Beck and Dotzek, 2010; Karstens 

et al., 2013; Lombardo et al., 2015). Despite the advantages, the tree-fall analysis also has some 

limitations. First, the presence of trees is critical, and too little damaged trees may not able to 

provide an estimation. The 20 May 2013 Moore, OK EF-5 rated tornado was a case where a 

consistent tree-fall pattern was lacking due to a relatively small sample of trees (Burgess et al., 

2014). A full damage pattern or at least a transect showing the full extent of the tree damage is 

needed (Beck and Dotzek, 2010; Karstens et al., 2013; Lombardo et al., 2015). Secondly, the 

estimated wind field uses an analytical vortex model, which is an approximation derived from 

idealized conditions (Gillmeier et al., 2018; Rankine, 1882), whereas radar observations show that 

the wind field of tornadoes is much more complicated in reality (Doviak and Zrnić, 1993; Refan 

et al., 2017; Wurman, 2002; Wurman and Gill, 2000; Wurman et al., 2014). Moreover, tree-fall 

patterns are occasionally influenced by external factors, such as Rear Flank Downdraft (RFD) 

wind or underlying topography, which is not accounted for in the current tree-fall analysis methods 

(Karstens et al., 2013; Godfrey and Peterson, 2017). To enhance these limitations, the idealized 

vortex models and topographic effects are examined in Chapter 6. 
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A consistent modification and fine-tuning of tree-fall analysis over the past decades by 

other researchers has proven a large demand for tree-fall analysis due to various reasons discussed 

in Chapter 1. The author also recognized great potential in tree-fall analysis and a wide range of 

applications: tree-fall analysis is not limited to trees but is also applicable to other cantilever-like 

damage indicators (e.g., crops, signs). Recognizing the potential, the tree-fall analysis is further 

improved by determining the critical wind speed of other damage indicators (Chapter 5). In this 

chapter, the general process of tree-fall analysis using a vortex model is presented. A modification 

of the output comparison method and substituting averaged critical wind speed of tree with 

fragility functions are also presented. Moreover, generic tree-fall patterns and interaction plots, 

which can be used to estimate initial input parameters, are produced in this chapter. Although tree-

fall analysis can be modified using the critical wind speed of other damage indicators as mentioned 

before, the critical wind speed (Vc) will be referred to the critical wind speed of trees in this chapter 

for the purpose of presenting the process of tree-fall analysis. 

To summarize the entire process of tree-fall analysis with corresponding chapters, a 

schematic drawing of the tree-fall analysis process is shown in Figure. 4.1. The tornado damage 

pattern is first obtained through ground surveys and aerial photos (Chapter 2 and 3). The observed 

tree-fall pattern is compared to the generic tree-fall patterns produced and ‘classified’ in this 

chapter, in which the generic tree-fall patterns can be used to estimate initial input parameters. 

Based on the ground survey information gathered, the critical wind speed of the damage indicators 

is obtained (Chapter 5). An idealized vortex model is used to simulate a tornado and tree-fall 

pattern (Chapter 6). The observed pattern is then compared to the simulated patterns and the input 

parameters are iterated until the outputs of both observed and simulated patterns ‘match’. Finally, 
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the near-surface wind field is reproduced with the “best-matched” parameters (Chapter 7). A 

detailed explanation of each step is discussed in the following subsections and other chapters.  

 

 

Figure 4.1. General process of tree-fall analysis. 

 

4.2 Methodology 

4.2.1 Rankine Vortex Model and Tree-fall Analysis Inputs 

4.2.1.1 Rankine vortex wind profile 

In the tree-fall analysis, an idealized vortex model is used to simulate the numerical tornado 

wind field and tree-fall patterns. Although there are several different idealized vortex models 

(discussed in detail in Chapter 6) and any idealized vortex models can be used, a Rankine vortex 

(RV) model (Rankine, 1882), which is a simple vortex model that is widely used to describe the 

wind distribution of tornadoes and hurricanes, is generally used in the tree-fall analysis (Bech et 

al., 2009; Beck and Dotzek, 2010; Karstens et al., 2013; Lombardo et al., 2015). The horizontal 
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wind speed distribution of an RV model has two regions: 1) a core region where the rotational 

wind velocity increases until the radius of maximum wind speed (RMW) and 2) an outer region 

with exponential decay of velocity beyond RMW, as shown in Figure. 4.2. In the equation, the 

rotational wind speed (Vrot) at different radii (r) is described as following: 

 

𝑉𝑟𝑜𝑡(𝑟) = 𝑉𝑚𝑎𝑥 (
𝑟

𝑅𝑀𝑊
)
𝜑

     for 𝑟 ≤ 𝑅𝑀𝑊 

𝑉𝑟𝑜𝑡(𝑟) = 𝑉𝑚𝑎𝑥 (
𝑅𝑀𝑊

𝑟
)
𝜑

     for 𝑟 > 𝑅𝑀𝑊                                       (4.1) 

 

where φ is the decay exponent and Vmax is the maximum speed at RMW. Typically, φ = 1.0 has 

been used in Letzmann’s work and other studies (Beck and Dotzek, 2010). However, recent studies 

suggest that the decay exponent ranges between 0.5 and 0.8 based on Doppler radar data of 

tornadoes (Bluestein, 2007; Kosiba and Wurman, 2010, Wurman and Alexander, 2005). Thus, 

typically, a range of 0.5 to 1.0 is used for the input value during the simulation. An example of a 

normalized RV model with different exponent values is shown in Figure. 4.2. Thus, the tree-fall 

analysis requires three parameters from the Rankine vortex model: Vmax, RMW, and φ. Although 

the RV model is commonly used to approximate the tornado wind field, one should note that the 

model produces an idealized wind field. Near-surface tornadic wind fields are often asymmetric 

due to surface interaction and instability (Refan et al., 2017; Refan and Hangan, 2018). Thus, 

further improvement in the near-surface wind fields is accommodated in Chapter 6.  
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Figure 4.2. Rotational wind speed profiles at different exponent decay normalized by the maximum 

velocity and the radius of maximum wind speed. 

 

4.2.1.2 Tornado wind field and wind components 

Although mobile Doppler radar measurements suggest a stronger tangential component 

than the radial component even on the lowest elevations (Wurman and Alexander, 2005), it is 

noteworthy that the radial and vertical velocities measured by the Doppler radar observations are 

inadequately resolved near the surface (Karstens et al., 2013; Refan et al., 2017) and a significant 

radial component is often observed in tree-fall patterns (Karstens et al., 2013; Lombardo et al., 

2015). Hence, the rotational wind speed (Vrot) of tornado near-surface is decomposed into two 

components: the radial component (Vr) and tangential component (Vθ), as shown in Figure 4.3. 

The magnitudes of Vr and Vθ are determined by alpha (α), which is the angle between Vrot and Vr, 

and are defined by following: 

 

𝑉𝑟 = 𝑉𝑟𝑜𝑡cos (𝛼) 

𝑉𝜃 = 𝑉𝑟𝑜𝑡sin (𝛼)                                                                (4.2) 
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The Vrot can be described as purely radial and tangential at α = 0° and α = 90°, respectively. 

Although it is weak, an outflow is occasionally present in a tornado (Kosiba and Wurman, 2010; 

Refan et al., 2017) and represented by α greater than 90°. Thus, the amount of inflow in the tornado 

is determined by the α parameter. As the Vrot is derived from the Rankine vortex model, by 

definition (Eq. 4.2), the magnitude of both Vr and Vθ follows the wind profile of the RV model 

(Potvin et al., 2009). Figure 4.3 illustrates the wind direction of each grid point at different α 

parameters. The black circle represents the tornado center.  

 

 

Figure 4.3. Wind direction at each grid point at different α values. 

 

Adding the translation speed of the tornado (VT) to the Vrot yields the resultant wind speed 

(𝑉̂) in the wind field at any radius. Figure 4.4 illustrates the wind components and the resultant 

wind speed at a specific radius. Typically, constant translational speed is assumed in the analysis 

for simplicity and the storm motion of the parent convective storm obtained from radar or ground 

observation is used as a proxy for the translational speed of the tornado (Beck and Dotzek, 2010; 

Lombardo et al., 2015). However, if available, one may use a time-varying translational speed. 

Karstens et al. (2013) estimated and used the translational speed of two tornadoes (Joplin, MO, 
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and Tuscaloosa-Birmingham, AL tornado) at different times based on the tornado vortex signature 

(TVS) positions.  

The Vmax and VT of the tornado parameters can be combined into a new informative 

parameter: Gmax, which is the ratio between Vmax and VT: 

 

𝐺𝑚𝑎𝑥 =
𝑉𝑚𝑎𝑥
𝑉𝑇

                                                                  (4.3) 

 

Gmax value represents the magnitude of the rotational velocity in the tornado compared to the 

translational velocity, which has a great effect on the tree-fall pattern (section 4.3.1). The 

maximum resultant wind speed (𝑉̂) can be derived from Gmax and VT. For a point where r = RMW 

and the VT vector is aligned with the Vmax, the magnitude of two vectors can be summed to 

determine 𝑉̂: 

 

𝑉̂ = 𝑉𝑚𝑎𝑥 + 𝑉𝑇 = 𝐺𝑚𝑎𝑥 ∙ 𝑉𝑇 + 𝑉𝑇 = 𝑉𝑇(𝐺𝑚𝑎𝑥 + 1)                                (4.4) 

 

The maximum wind speed of the simulated tornado can be quickly calculated with Eq. 4.4. An 

example simulated wind field of a translating tornado with one set of RV parameters (VT = 13.4 

m/s (30 mph), Gmax = 4.5, RMW = 482 m (0.3 miles), α = 45°, φ = 0.55) is shown in Figure 4.4. 

Note that the translation direction of the tornado is left to right and that wind speed below 65 mph 

(below EF-0) is not colored. The point of maximum overall wind speed (𝑉̂) is also shown. 
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Figure 4.4. A translating tornado vortex on a grid (left); and wind components (Vr, Vθ, and VT) and 

the resultant wind speed (V) at a specific point (right). 

 

4.2.1.3 Critical wind speed of tree-fall parameter 

Another parameter used in the tree-fall analysis is the critical wind speed of tree-fall (Vc), 

which is the wind speed at which the tree falls. Depending on the damage indicator (cantilever 

type: tree, crop, sign) used in the “tree-fall” analysis, the critical wind speed of the damage 

indicator shall be used. By introducing the critical wind speed value, a “hypothetical” tree-fall at 

each grid point can be generated. It is assumed that the tree falls in the direction of wind blowing 

at the instant when V (Figure 4.4) exceeds the Vc as the tornado vortex translates over the domain. 

The Vc can be determined using tree properties obtained in ground surveys as mentioned in the 

mechanistic tree risk model by Peltola and Kellomäki (1993) and Peltola et al. (1999). In addition 

to trees, the Vc of various crops has been modeled and tested in agricultural fields (Berry et al., 

2003; Sterling et al., 2003; Baker et al., 2014), which can enable the application of tree-fall analysis 

in agricultural areas. The theoretical and experimental analysis of obtaining the Vc of trees, crops, 

and signs will be discussed in detail in Chapter 5. Typically, a single average value of Vc is used 

in the analysis, suggested by Beck and Dotzek (2010), due to the uncertainties and variability of 
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the tree characteristics; a sample of failed trees is collected and their average Vc is calculated 

(Chapter 5). However, in case the tree property information is unobtainable and the Vc value is 

unknown, the Vc can be treated as a random variable.  

 

4.2.2 Model Outputs and Comparisons 

4.2.2.1 Tree-fall pattern outputs 

As shown in Figure 4.1, the simulated tree-fall pattern must be compared to the observed 

pattern in the tree-fall analysis. In order to make an accurate comparison, numerically defined 

outputs of the tree-fall pattern are necessary. Example outputs are damage width (DW), damage 

ratio (DR), and mean direction (MD); an illustration of these outputs is shown in Figure 4.5. Note 

that the tree-fall pattern of Figure 4.5 is produced by the translating tornado vortex in Figure 4.4 

with Vc = 38 m/s (85 mph) with a grid spacing of 0.1 km and an average spacing of 0.3 km is used 

for the MD. The DW is the total width of the tree damage, and DR is the ratio of the DW on either 

side of the confluence line (CL) in a given transect: 

 

𝐷𝑅 =
𝐷𝑊2
𝐷𝑊1

                                                                   (4.5) 

 

where DW2 and DW1 are the DW on the north and south side of the CL, respectively (Figure 4.5). 

The confluence line is defined as the estimated location where the tree-fall pattern converges to a 

line parallel to the tornado translating motion. However, the tree-fall pattern may not always 

converge, causing the DR to be indeterminate and thus may not be the most appropriate output to 

use in some cases. As the DR may be undefined in some cases, an additional output, MD, is 
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introduced. MD is the average tree-fall angle within certain spacing or bin, which can be used for 

tree-fall patterns without a confluence line.  

 

 

Figure 4.5. Tree-fall pattern produced by the translating tornado vortex in Figure 4.4 with Vc = 38 

m/s (85 mph); Illustration of output DW, DR, and MD. 

 

4.2.2.2 Comparison of outputs 

The outputs of the observed pattern also need to be defined to compare with the simulated 

pattern. The outputs of the observed pattern are determined the same way the outputs of the 

simulated pattern are determined. In a transect, the DW is determined by the extent of the tree 

damage, and the DR is determined by the location of where the tree converges and Eq. 4.5. Note 

that the outputs of the observed tree-fall pattern must be defined in a transect perpendicular to the 

translational direction of the tornado so that the comparison between the simulation and 

observation is consistent. An example of the observation outputs (DW, DR, and MD), using the 

tree-fall pattern of the Joplin, MO tornado, is shown in Figure 4.6. To estimate the average angle 

of tree-fall, a minimum of three trees within each bin in the transects shall be used to generate an 
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average value at the central point of the bin for both the observed and simulated tree-fall. To satisfy 

the minimum requirement for the average fall direction, a bin size of 500×500 m was used for the 

example in Figure 4.6.  

Once the outputs of the observed and simulated pattern are determined, the “best-matched” 

combination of parameters can be ascertained by comparing the outputs (DW, DR, and MD) of the 

two patterns. As opposed to scalar outputs (DW, DR), MD is a directional output and thus the 

cosine of the angle between the simulated and observed direction vector (i.e. unit vector) can be 

used for comparison. The cosine of the difference in angle is computed as shown in Eq. 4.6. 

 

𝑐𝑜𝑠(𝛽) =
𝑣𝑜̅̅ ̅ ∙ 𝑣𝑠̅
|𝑣𝑜̅̅ ̅| ∙ |𝑣𝑠̅|

= 𝑣𝑜̅̅ ̅ ∙ 𝑣𝑠̅                                                     (4.6) 

 

Beta (β) denotes the angle between (𝑣̅𝑜) and (𝑣̅𝑠). Index o and s represent the observed and 

simulated, respectively. Since (𝑣̅𝑜 ) and (𝑣̅𝑠 ) are both unit vectors as they only represent the 

direction, the denominator in the fraction is one and the final product of cos(β) becomes a simple 

dot product of two vectors. The dot product is one if the vectors are parallel with each other and 

zero if they are perpendicular to each other.  
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Figure 4.6. Illustration of the observation outputs using transects of tree-fall pattern of tree-fall 

Joplin, MO tornado.  

 

In general, multiple transects perpendicular to the tornado track at different locations are 

selected. For the comparison, a root-mean-square error (Erms) can be used to quantify the difference 

between the observed and the simulated pattern:  

 

𝐸𝑟𝑚𝑠 = √∑((1 −
𝐷𝑊𝑖,𝑠
𝐷𝑊𝑖,𝑜

)

2

+ (1 −
𝐷𝑅𝑖,𝑠
𝐷𝑅𝑖,𝑜

)

2

+ Σ(cos(𝛽𝑖,𝑗) − 1)2)               (4.7) 

 

where i represents the index of the transect and j represents the index of each bin in the transect. 

The DW and DR are normalized by the observed outputs. Using the Erms value, the “best-matched” 

parameters, input parameters that best describes the observed tornado, then can be determined. 
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In the initial process of parameter determination, an approximate range of the parameters 

is first estimated based on the overall tree-fall pattern (section 4.3.1) and interaction plots (section 

4.3.2). The initial range of estimated parameters is then prescribed into the vortex model that 

generates different tree-fall patterns with different outputs. With Eq. 4.7, the error between the 

observed pattern and many different simulated patterns is calculated. This process is iterated until 

the parameter combination with the lowest Erms value is determined. Finally, the wind field that 

“best” represents the actual tornado wind field can be generated using the “best-matched” 

parameters. Real-life applications of the tree-fall analysis are discussed later in Chapter 7. 

There are other methods of comparing the observed and simulated patterns in other studies. 

Bech et al. (2009) and Beck and Dotzek (2010) compared the overall tree-fall pattern from the 

tornado to the simulated pattern. Although this method may be valid, one should take caution as 

different combinations of parameters can produce similar patterns. A more detailed comparison 

method was developed by Karstens et al. (2013), normalizing the averaged tree-fall directions by 

subtracting the estimated tornado translation direction. The mean cross-section of the normalized 

direction plots for observed and simulated was then compared.  

 

4.3 Tree-fall Patterns and Outputs 

4.3.1 Generic Tree-fall Patterns and Outputs 

4.3.1.1 Tree-fall patterns using average Vc 

Different combinations of the RV and Vc inputs can produce different tree-fall patterns with 

different outputs, in which different distinctive patterns are investigated and “classified” in this 

section. Examples of tree-fall pattern simulated with parameters of a generic tornado (VT = 13.4 

m, RMW = 322, φ = 0.5, Vc = 38 m/s) and an assumed Vc, and their outputs are illustrated in this 
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section. Figure 4.7 shows that the generic tree-fall pattern changes significantly with Gmax and 

alpha (α). In case of a “high Gmax” (generally 4.0-6.0), the rotational speed of the tornado is much 

greater than its translation speed and thus the trees are more likely to fall inward, towards the center 

of the vortex and the opposite direction of translation. Typically, these “backward-falling” tree-

fall patterns (relatively high Gmax) are found in the aftermath of tornadoes corresponding to EF 4 

or greater). On the other hand, a “low Gmax” (generally 1.0-3.0) suggests a relatively higher 

translational speed and/or weaker rotational wind speed. Thus, “forward-falling” trees are 

produced where the trees are more likely to fall in the direction of translation for the same Vc. 

These types of tree-fall patterns are commonly found in tornadoes corresponding to EF 3 or less. 

Examples of tree-fall patterns with two different Gmax values are shown in Figure 4.7(a) and 4.7(b).  

As the Gmax increases from 3.0 (Figure 4.7(a)) to 4.5 (Figure 4.7(b)) with a constant α = 0°, an 

apparent change of tree-fall pattern and an increase in damage width (DW) are noticed. If the VT is 

unchanged, Eq. 4.4 implies that an increase in Gmax results in an increase Vmax, therefore causing 

more trees to fall. On the other hand, the damage ratio (DR) is unaffected by the change in Gmax 

(Figure. 4.7(a)-(b)). With the confluence line located along the center of the tornado for both Gmax 

= 3.0 and Gmax = 4.5, the DR becomes 1.0 for both cases, as the DW on the south and north side of 

the confluence line are the same. It is important to note that the general range of “low Gmax” and 

“high Gmax” and the tree-fall pattern that they produce may vary because the tree-fall patterns 

(backward or forward falling patterns) are highly dependent on VT and Vc. For example, the tree-

fall patterns may still show a “forward falling” pattern even with a “high Gmax” if the VT is small. 

However, a “typical” tree-fall pattern is produced using VT and Vc estimated from Joplin, MO 

tornado as a reference (Karstens et al., 2013; Lombardo et al., 2015). 
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                (a)     (b)            (c)      (d)              (e)  

 

Figure 4.7. Examples of tree-fall patterns with different Gmax (a-b) and α (b-e).  

 

The alpha (α) parameter also contributes significantly to the tree-fall pattern. As α increases 

from 0° to 90°, the simulated vortex flow changes from a pure radial flow to a pure tangential flow. 

Unlike Gmax parameter, α has a great effect on the DR due to the change in the vortex flow and 

little effect on the DW. It is evident that the DR increases significantly from 1.0 to 21 (Figure 

4.7(b)-(d)) whereas the DW hardly changes. As α increases, the tangential flow increases and the 

confluence line starts to shift north of the tornado center, causing the DR to increase drastically. 

Eventually, the confluence line for α = 90° becomes undefined and the DR is no longer applicable 
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(Figure 4.7(e)). Note that the DR is highly sensitive to the grid spacing. Using a fine grid spacing 

(at least DW to grid spacing ratio of 5:1) is suggested as a more accurate DR will result though a 

prolonged computational time is expected. A grid spacing of 0.1 km was used for Figure 4.7. Note 

that the tornado vortex is moving from left to right (blue arrow) and the parameters not shown in 

the title are kept constant. The confluence line is indicated in red line and the fall directions are 

labeled at x = 0 where 0 is due the true south and increases clockwise. A more detailed analysis of 

outputs tendency is discussed in section 4.3.2. Chen and Lombardo (2019) also provides an 

analytical solution of tree-fall patterns and great examples demonstrating how tree-fall patterns 

change with input parameters. 

In Fujita (1993), various corn damage patterns: “comma-shaped”, “swirling”, “Eye-shaped” 

patterns, are introduced to illustrate the characteristics of tornadoes and downbursts using crop 

damage. It is perceived that some of these crop patterns that Fujita emphasizes in his study 

resemble the tree-fall pattern, which can also be produced numerically and used to describe the 

characteristics of tornadoes. Figure 4.8 shows examples of tree-fall patterns generated at the 

beginning of the tornado simulation. Represented by a black arrow, Figure 4.8(a) resembles the 

“comma-shaped”, and Figure 4.8(b) resembles the “swirling” pattern of crop damage in Fujita 

1993. Alpha (α) = 45º and α = 90° were used for the “comma-shaped” pattern and the “swirling” 

pattern, respectively. All the other parameters used for the simulation are the same as in Figure 4.4 

and Figure 4.7. These patterns may also be used to estimate tornadoes in the early stage and may 

have some application in tornadogenesis although further detailed investigation is necessary. 
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         (a) “comma-shape” / α = 45°                  (b) “swirling” / α = 90° 

 

Figure 4.8. Examples of the simulated fall pattern in the beginning of the tornado that resembles 

(a) “comma-shape” and (b) “swirling” pattern.  

 

4.3.1.2 Tree-fall patterns using fragility function 

Empirical or analytical tree fragility curves can be also used in a replacement of a single 

Vc value, in which tree fragility function is a probability function of tree failure at a given wind 

speed. The fragility function can quantify the vulnerability of trees and may also be used in tree-

fall analysis to produce a more realistic tree-fall pattern. It can be useful in a situation where the 

damaged tree information is unavailable and thus the critical wind speed of tree-fall is 

unobtainable. Figure 4.9 shows an empirical tree fragility curve developed using empirical data: 

wind field estimated from the tree-fall patterns (Lombardo et al. 2015) and the tree damage (both 

failed/non-failed) of 22 May 2011 Joplin, MO tornado.  
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Figure 4.9. Empirical tree fragility curve of the Joplin, MO tornado and the parameters of 

lognormal cumulative distribution function. 

 

To simulate a tree-fall pattern using an empirical tree fragility, the probability of failure is 

assigned based on the maximum wind speed the grid point experiences and the fragility function, 

and the tree-fall (fail/not fail) in each grid point is decided using a binomial distribution and the 

probability of failure. For example, if the maximum velocity at a grid point is 80 m/s, the 

probability of failure of the “hypothetical” tree at the grid point is 90 percent. A further detailed 

process of building empirical tree fragility curves is presented in Chapter 7. Figure 4.10 shows the 

comparison between the tree-fall pattern using the single Vc and using the tree-fragility. A tornado 

is simulated with the following parameters: VT = 13.4 (30 mph), Gmax = 4.5, RMW = 322 m (0.2 

miles), α = 20°, Vc = 38 m/s (80 mph), φ = 0.5. Figure 4.10(a) and 4.10(b) exhibit the generic tree-

fall pattern and tree-fall pattern using the Joplin, MO tornado tree fragility, respectively. The 

damage width and pattern are consistent over the X distance for Figure 4.10(a) whereas the damage 

width and tree-fall pattern somewhat vary for Figure 4.10(b). Although there are some scattered 

tree-falls around the central tree-fall patterns in Figure 4.10(b), both patterns show roughly similar 

DW and converge near Y = 0.2 km. Although the tree-fall pattern simulated with the Joplin fragility 
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curve may display a more realistic tree-fall pattern and demonstrate great potentials, more fragility 

curves are necessary to make a generalization and to be incorporated in the tree-fall analysis. 

 

 
        (a) generic tree-fall pattern   (b) tree-fall pattern using fragility function 

 

Figure 4.10. Tree-fall patterns of (a) generic tree-fall pattern and (b) Joplin, MO tree fragility. 

 

4.3.2 Interaction between Parameters 

Different combinations of input parameters interact with each other differently and 

therefore produce different outputs. The interaction effect between parameters is important in the 

iteration process; how the outputs change with parameters must be determined to reduce the error 

and eventually reach the “best-match” parameters. The relationships between different parameters 

and their interaction effects are shown in Figure. 4.11. The plots exhibit regression lines of the 

percentage change of the outputs (DW, DR) over the percentage change of different inputs. In 

Figure. 4.11(a), it is evident that the DW increases as Gmax and VT increase, but decreases as φ and 

Vc increase. As a result, a rapid increase in slope is noticed as Gmax increases and Vc decreases. 

Intuitively, a lower Vc would result in an increase in DW since more trees would fall due to lower 

critical tree-fall wind speed. Figure 4.2 illustrates a slower wind speed decay for lower φ, resulting 
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in a wider DW. A higher Gmax and VT contributes to a higher maximum resultant wind speed (𝑉̂) 

(refer to Eq. 4.3), thus a simultaneous increase in both Gmax and VT increases the DW significantly. 

Although the DW interaction is rather intuitive, the DR interaction is much more complicated and 

less intuitive because the DR is very sensitive to the confluence line (CL), which may not always 

exist. Furthermore, the position of the CL is dependent on the tree-fall pattern and the size of the 

DW on the south and north side (referred to as DW1 and DW2 in Figure. 4.7), which are also 

dependent on the total DW. The interaction plots of the DR with different Gmax, α, and Vc are shown 

in Figure 4.11(a). One apparent notice is that the DR increases significantly as α increases (as also 

shown in Figure 4.7). For a low α (top row of Figure 4.11(b), the slopes are rather flat, indicating 

that Gmax, RMW, and Vc do not contribute significantly, but the interaction effects take place and 

the other parameters begin to contribute to the change in DR more as α increases. The DR shows 

great sensitivity to the change in RMW for a high Gmax and α and a low Vc (blue line in bottom 

right figure of Figure. 4.11(b) displaying almost a 120 % increase (large negative slope), but shows 

very little sensitivity for other combinations. The direction of the relationship between the DR and 

RMW also changes from positive to negative as the Gmax increases from decrease of -33.3 % 

increase of 33.3 % for α = 50 % increase and Vc = 0 % increase (red line in bottom row of Figure 

4.11(b), and changes from negative to positive as the Gmax increases from decrease of -33.3 % 

increase of 33.3 % for α = 50 % increase and Vc = 17 % increase (yellow line in bottom row of 

Figure 4.11(b). This demonstrates the complexity and the interaction of parameters. Thus, the 

interaction plots are beneficial for the initial estimate or adjustment of parameters, but shall not be 

used to estimate the exact outputs of the tree-fall patterns. The outputs of the tree-fall shall be 

calculated from the actual pattern. Note that these trends are valid only within the range of the 

parameter change and thus estimation outside of the parameter range should not be extrapolated. 
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Also, note that the reference parameters to percentage change are: (1) VT = 13.4 m/s (30 mph), 

Gmax = 4.5, φ = 0.8, Vc = 26.8 m/s (60 mph) (Figure 4.11(a)); and (2) Gmax = 4.5, Vc = 26.8 m/s (60 

mph), α = 30°, RMW = 563 m (0.35 miles) (Figure 4.11(b)). The following parameters are fixed 

for each plot: (1) α = 15°, RMW = 482 m (0.3 miles) (Figure 4.11(a)); and (2) φ = 0.8, VT = 13.4 

m/s (30 mph) (Figure 4.11(b)).The trend and exact values are also subject to change for different 

reference parameters, but the general trend should be similar. These interaction plots can be useful 

for general interpretation of the RV and other parameters.  

 

 
(a) percentage chagne in DW 

 

Figure 4.11. Interaction plots of (a) DW and (b) DR.  
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Figure 4.11. (continued) 

 
(b) percentage chagne in DR 

 

4.4 Summary 

 This chapter introduces the tree-fall analysis, which utilizes the patterns of fallen trees 

during a tornado event and characterizes the patterns. The method simulates a translating Rankine 

vortex (RV) with its associated parameters and generates a tree-fall pattern with a critical wind 

speed of tree-fall (Vc) value. Many different tree-fall patterns can be generated using different 

combinations of input parameters. The important parameters typically used in the tree-fall analysis 

are summarized in Table 4.1. The simulated patterns are then used to match the observed tree-fall 

pattern of an actual tornado. The patterns are numerically defined (outputs), and the outputs of the 

simulated pattern are compared to the observed pattern. The process is iterated until the RMS error 

reaches the minimum value and the “best-matched” parameters can be determined. Using the 
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estimated parameters, the near-surface wind field map of the tornado can be reconstructed and 

used as an independent method of wind speed estimation from structural damage.  

 

Table 4.1. Summary of general input parameters used in the tree-fall analysis. 

Parameter Description Key points 

VT Tornado translational speed Obtain typically from storm vector of the parent storm; strong 

positive correlation with DW 

Gmax Ratio between Vmax and VT Positive correlation with EF rating in general; significant effect 

on tree-fall pattern and strong positive correlation with DW  

RMW Radius of maximum wind speed Determine location of strongest wind; positive correlation with 

DW 

φ Wind profile decay exponent Ranges between 0.5 to 1.0 based on radar observation; positive 

correlation with DW 

α  Angle between Vrot and Vr Determine the amount of inflow in the tornado; significant effect 

on tree-fall pattern and strong positive correlation with DR 

Vc Critical wind speed of tree-fall Can be replaced with critical wind speed of other damage 

indicators (crop, sign); negative correlation with DW 
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CHAPTER 5: TREE/CROP/SIGN MODULE 

 

5.1 Introduction 

Tree damage is also included in the EF Scale as damage indicators 27 and 28 for softwood 

and hardwood trees. However, the EF scale guidance on wind speed estimation based on trees, 

both TH and TS, has several flaws. According to Peterson (2003), the ratio of uprooted trees to 

snapped trees increases with an increase in wind speed, but the EF scale guidance shows the 

opposite (Edwards et al., 2013). The EF scale also fails to take the tree property, such as the trunk 

diameter and species, into account (Edwards et al., 2013), which certainly has an effect on the 

critical wind speed that the tree fails (Peterson, 2003). Even though the EF Scale for trees (DI 27, 

28) exists and may allow estimating the wind speed of the tornado to some extent, single tree 

damage cannot provide wind speeds of an intense tornado (EF 4 or 5 tornado) due to the limitation 

of tree resistance because the maximum wind speed of the EF-scale of trees is 74.6 m/s (167 mph). 

Thus, a more detailed analysis of estimating the critical wind speed of tree-fall is necessary. 

 In this chapter, not only the critical wind speeds (Vc) of tree-fall but also crop-fall and sign-

fall are investigated using a load-resistance framework, which is shown in Figure 5.1. The wind 

loading is calculated based on the wind speed, the projected area, and the aerodynamic and 

dynamic properties. The resistance, which is highly dependent on the size, the material properties, 

and the geometry, is obtained either analytically or experimentally. If the loading is greater than 

the resistance, a failure occurs. In fact, this framework presented is applicable to any cantilever-

like damage indicators and used to estimate the bounds of a near-surface tornadic wind speed, 

potentially very useful in forensic engineering. In addition, tree-fall analysis using a single average 
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Vc can also be an independent Vc estimation method, which will be discussed in more detail in 

Chapter 7. 

 

 

Figure 5.1. General framework of load-resistance model of a cantilever-like damage indicator. 

 

5.2 Critical Wind Speed of Tree-fall 

5.2.1 Introduction on Critical Wind Speed of Tree-fall 

 Although the intensity of the majority of the tornadoes is estimated based on structural 

damage, tree damage is used in some cases (Peterson, 2003). In forested areas where no buildings 

are present, often tree damage is the only damage indicator and becomes exceptionally important. 

However, the current EF Scale method on estimating the wind speed based on tree damage (DI-

27, 28) has many shortcomings: it does not account for the tree properties, such as the diameter, 

height, and species of the tree. Nonetheless, many studies have shown that the properties of trees 

highly affect the stability and damage of trees (Peterson, 2003; Peterson, 2007; Cannon et al., 

2015; Cucchi et al., 2004). Moreover, the current EF scale can only estimate wind speed up to 75 

m/s (167 mph) as mentioned in Chapter 2. Edwards et al. (2013) suggest that the variations in the 
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tree should be accounted for in the EF scale and a better understanding of tree failure in wind is 

necessary.  

As mentioned in Chapter 4, the Vc of tree-fall is an essential parameter in tree-fall analysis. 

Tree-fall analysis, which uses aggregate information on tree damage, can overcome the EF scale 

limitation and estimate wind speeds of tornadoes associated with the EF 4 and 5 range. With the 

tree information collected in damage surveys or from aerial photos, a more accurate Vc of tree-fall 

can be estimated and used to improve near-surface estimates of tornado wind speed. 

 

5.2.2 Literature Review 

5.2.2.1 HWIND model 

An analytical solution of Vc of tree-fall is based on the mechanistic tree stability model by 

Peltola and Kellomäki (1993) and Peltola et al. (1999). Many studies have used the Peltola model, 

known as commonly known as the HWIND model, as the base for determining the Vc of tree-fall 

(Beck and Dotzek, 2010; Godfrey and Peterson, 2017; Holland et al., 2006). The two major forces 

in the HWIND model are the wind and gravity force (Figure 5.2), which causes the overturning 

moment. The mean horizontal wind profile (𝑈̅) is determined by the Logarithmic Law boundary 

layer, which is expressed as follows: 

 

𝑈̅(𝑧) =
𝑢∗
𝑘
log (

𝑧 − 𝑧ℎ
𝑧𝑜

)                                                         (5.1) 

 

where z is the height, 𝑢∗ is the friction velocity, k is the von Karman’s constant, which is around 

0.4, zh is the zero-plane displacement, and zo is the roughness length. Alternatively, a simpler mean 

wind speed profile, the Power Law, can also be used. The Power Law is written as:  
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𝑈̅(𝑧) = 𝑈̅10 (
𝑧

10
)
𝛼

                                                             (5.2) 

 

where 𝑈̅10 is the mean wind speed at 10-m height, and α is the power-law exponent. Note that the 

power-law exponent, α, is different from the α in Chapter 4. Figure 5.3 shows the vertical profile 

of the horizontal wind using the Logarithmic Law with zo = 0.5 m, used for very rough terrain 

(e.g., mature regular forest), and the Power Law with α = 0.25 for Exposure B (ASCE, 2016). Both 

profiles match very well; the Power Law is commonly used for engineering purposes (Holmes, 

2015). Note that the horizontal wind velocity from both the Logarithmic Law and the Power Law 

is a mean wind speed (𝑈̅). However, trees normally fail at an extreme value (gust wind) and thus 

the mean wind speed needs to be adjusted for the extreme wind loading (Peltola et al., 1999). The 

Power Law mean wind speed profile can be adjusted using a 3-s gust-speed power-law exponent: 

𝛼̂ = 1/7 for Exposure B (ASCE, 2016). The gust wind speed profile shows a “flatter” profile than 

the other profiles as shown in Figure 5.3. Since the vertical profile of the horizontal wind of a 

tornado still remains elusive and very little is known especially near the ground, the gust wind 

speed (𝑈̂) profile is assumed for a tornado. Using the gust wind speed profile, the wind-induced 

force (F1) at different height then can be calculated: 

 

𝐹1(𝑧) =
1

2
∙ 𝐶𝑑 ∙ 𝜌 ∙ 𝐴(𝑧) ∙ 𝑈̂(𝑧)

2                                                 (5.3) 

 

where Cd is the drag coefficient, ρ is the air density, and A is the projected frontal area of the tree. 

In addition to the wind-induced force, a force due to gravity acts on the tree (Figure 5.2). The 

gravitational force (F2) is obtained simply by the green mass and gravitational constant: 
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𝐹2(𝑧) = 𝑀(𝑧) ∙ g                                                               (5.4) 

 

where M is the green mass of the stem and crown and g is the gravitational constant. The HWIND 

model divides the tree into a 1-m segment and obtains the 1-m increment forces. 

 

 

Figure 5.2. Illustration of the forces (wind, gravity) exerted on a tree that causes overturning 

moment (Peltola and Kellomäki, 1993). 

 

 

Figure 5.3. Comparison of the mean wind speed profile using Logarithmic Law for very rough 

terrain and Power Law for Exposure B. 
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The total overturning moment at the base of the stem is then obtained by summing the 

moments caused by the 1-m segment gravitational force and the horizontal deflection (x), and 1-

m segment wind-induced force and the height of the tree. Thus, the total overturning moment 

equation can be written as:  

 

𝑇(𝑧) = 𝐹1(𝑧) ∙ 𝑧 + 𝐹2(𝑧) ∙ 𝑥                                                     (5.5) 

𝑇𝑡𝑜𝑡𝑎𝑙 = (𝐹1(𝑧) ∙ 𝑧 + 𝐹2(𝑧) ∙ 𝑥)                                                 (5.6) 

 

where the T(z) is the 1-m segment overturning moment, and Ttotal is the total overturning moment 

exerted on the base of the tree. Pennala (1980) assumes the bending of the stem is directly 

proportional and inversely proportional to the wind force and the stem’s stiffness, respectively, 

and expresses the horizontal deflection as: 

 

𝑥(𝑧) =
𝐹1 ∙ 𝑎

2 ∙ ℎ ∙ (3 −
𝑎
ℎ
−
3𝑙(𝑧)
ℎ
)

6𝐸𝐼
                             𝑓𝑜𝑟 𝑧 ≥ 𝑎 

𝑥(𝑧) =
𝐹1 ∙ 𝑎

3 ∙ (2 −
3(𝑙(𝑧) − 𝑏)

𝑎 +
(𝑙(𝑧) − 𝑏)3

𝑎3
)

6𝐸𝐼
     𝑓𝑜𝑟 𝑧 < 𝑎                     (5.7) 

 

where x is the horizontal deflection from wind at each height (z), a is the distance from ground 

level to the crown center, h is the height of the tree, l(z) is the distance from the tree top, E is the 

elastic modulus, I is the area moment of inertia of the stem, and b is the distance between the crown 

center and the top of the tree.  
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 Typically, tree failures are categorized into two: 1) uprooting and 2) stem breakage. 

Uprooting is highly dependent on the weight and strength of the soil. The supporting moment of 

the total root-soil plate anchorage (RSsup) is defined as: 

 

𝑅𝑆𝑠𝑢𝑝 =
g ∙ 𝑀𝑎𝑠𝑠 ∙ 𝑅𝑆𝑚𝑒𝑎𝑛

𝐴𝑟𝑠𝑤
                                                     (5.8) 

 

where Mass is the fresh mass of the root-soil plate, RSmean is the mean depth of the root-soil plate 

volume, and Arsw is the proportion (%) of the root-soil weight of the total belowground anchorage 

by Coutts (1986). If the total overturning moment (T) exerted on the tree exceeds the RSsup, an 

uprooted tree failure would occur. The stem breakage failure is highly correlated to the diameter 

at breast height (DBH) of the tree. In other words, the larger trees would have larger resistance to 

stem breakage. The maximum overturning moment that a tree can stand without the stem breaking 

(STEMres) is expressed as: 

 

𝑆𝑇𝐸𝑀𝑟𝑒𝑠 =
𝜋

32
𝑀𝑂𝑅 ∙ 𝐷𝐵𝐻3                                                    (5.9) 

 

where MOR is the modulus of rupture. A tree is assumed to break at the stem if the total 

overturning moment (T) exceeds the STEMres.  

From Eq. 5.3 and 5.4, the exerting overturning moment is expected to increase as the tree 

size increases due to an increase in projected frontal area (A) and mass (M). However, the RSsup is 

more depended on the root-soil weight (Eq. 5.8) as opposed to the size of the tree. Though, the 

weight of the root-soil would increase as the DBH increases because larger trees would have larger 

and deeper root systems. On the other hand, the STEMres increases exponentially (Eq. 5.9) as the 
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tree size increases. Naturally, it can be speculated that an uprooting failure is more likely to occur 

than stem breakage for larger trees, which is often observed in the field.  

 

5.2.2.2 Winch tests 

 Oftentimes, it is difficult to obtain accurate resistance parameters (e.g., Mass, Arsw, MOR) 

during a damage survey. The critical overturning moment (Mcrit) of trees can be used instead within 

the windthrow risk models (Nicoll et al., 2006), in which the resistance overturning moment of 

trees is obtained by performing a winch test. Winch test measures the force to take down trees with 

a load cell and calculates the Mcrit of the trees. Many studies often conduct winch tests to simulate 

the action of wind and investigate the effects of tree properties (e.g., species, size) on the Mcrit of 

trees (Nicoll et al., 2006; Cannon et al., 2015; Cucchi et al., 2004; Moore, 2000; Peltola et al., 

2000; Peterson and Claassen, 2013; Ruel, 2000). Peltola et al. (2000) measured the Mcrit of trees 

to obtain the MOR. Cucchi et al. (2004) performed a winch test on Maritime pines (softwood) to 

determine if the overturning moment differs within a stand (trees inside the stand and edge trees 

near the border exposed to prevailing winds) and for different soil condition (wet soil and dry soil). 

The result suggested that the Mcrit of the trees on the edge of the stand (edge trees) is stronger than 

that of the trees within the stand (inner trees) possibly due to the larger root system developed for 

edge trees. The Mcrit of trees on dry soil was greater than that of trees on wet soil, with a ratio of 

snapped to uprooted trees of 1:1.3 and 1:7.3 for the trees on dry soil and wet soil, respectively. 

Moreover, Peterson and Claassen (2013) performed a winch test on western cottonwoods and 

valley oaks (hardwood) and suggested that the Mcrit is not significantly influenced by the moisture, 

density, or texture of the soil. Cannon et al. (2015) performed a winch test on loblolly pines, or 

Pinus, (softwood), tulip poplars, or Liriodendron, (hardwood), and other hardwood trees. They 
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discovered that the Mcrit was significantly influenced by tree size and failure mode (uproot, stem 

breakage), but the Mcrit did not differ between species. Figure 5.4 shows the pooled regression of 

the Mcrit vs. stem mass of all species. Though, studies of tree damage surveys after catastrophic 

wind events have shown greater damage to coniferous (softwood) than deciduous (hardwood) trees 

(Foster, 1988; Peterson, 2007). Cannon et al. (2015) suggested that wind force acts differently on 

different species, and the differences in the projected frontal area and drag coefficient (discussed 

in section 5.2.2.3) that influence the wind-induced force are the factors that cause the difference 

in damage.  

 

 

Figure 5.4. Regression line and confidence bounds of critical turning moment (N-m) vs. stem mass 

(kg) for all species pooled (Cannon et al., 2015). 

 

 In this study, the regression analyses from Cucchi et al. (2004) and Cannon et al. (2015) 

are used to obtain the Mcrit of trees instead of the analytical Mcrit from the HWIND model due to 

the following reasons: 1) difficulty of obtaining tree and soil properties in the damage site needed 

for calculating the Mcrit, 2) simplicity, 3) generalization of the Mcrit among tree species. Although 
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Cannon et al. (2015) and Peterson and Claassen (2013) suggest that the stem mass predicts the 

Mcrit better than other regressors, such as DBH3, DBH2 × h, and tree mass, it is often very difficult 

to measure the stem mass in the field without cutting and weighing the tree. The linear regression 

of the Mcrit vs. DBH2 × h (Figure 5.5) is used to calculate the Vc of tree-fall because it was not 

feasible to measure the stem mass during the damage survey. The regression line for edge trees on 

wet soil, which mostly uprooted, from Cucchi et al. (2004) and the uprooting regression line from 

Cannon et al. (2015) produced a comparable result, supporting the statement from Cannon et al. 

(2015) that the Mcrit is less influenced by species. The difference between the two lines is that the 

regression line from Cannon et al. (2015) passes the origin assuming that a tree with a zero DBH 

would have a zero Mcrit, whereas the regression line from Cucchi et al. (2004) does not. 

 

 

Figure 5.5. Linear regressions of Mcrit vs. DBH2 × h of trees on various conditions.  

 

5.2.2.3 Drag coefficient 

 Drag coefficient is one of the essential parameters in finding the Vc of tree-fall (discussed 

in more detail in section 5.2.3). It is a non-dimensional number that quantifies the drag of an object 
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and is highly dependent on the geometry of the object (Holmes, 2015). While other parameters 

such as DBH, height, and projected frontal area, can be collected or measured during the survey 

both from ground and aerial, the drag coefficient is obtained from testing by measuring the force 

acting on the tree. The drag coefficient is defined as the following equation:  

 

𝐶𝑑 =
2𝐷

𝜌𝑈2𝐴
                                                                 (5.10) 

 

where D is the drag force measured. It is noteworthy that the drag coefficient equation (Eq. 5.10) 

can be used to estimate, not only for trees but also the Cd of any object. In a wind tunnel, the 

horizontal drag force can be directly measured with a force balance, and the projected frontal area 

is determined photographically (Mayhead, 1973). In Mayhead (1973), a variety of commercial 

coniferous trees were tested and found a difference in the drag coefficient among species possibly 

due to the flexibility (or stiffness) of the tree, amount of foliage, and the variations in the 

morphology. Rudnicki et al. (2004) tested three morphologically different coniferous trees and 

investigated the drag coefficient and the amount of frontal area reduction with increasing wind 

speed. Vollsinger et al. (2005) investigated the drag coefficient and the frontal reduction of 

deciduous trees. They discovered that the drag coefficients of deciduous trees were significantly 

less than those of common conifers due to flexible branches and reconfiguration of leaves in high 

wind speed, and thus using drag coefficients for conifers in replacement of drag coefficients for 

hardwoods would lead to significant overestimation of drag. Cao et al. (2012) examined the effects 

of porosity, view angle, and turbulence intensity on drag and found out that the crown porosity 

had much effect whereas the view angle and turbulence intensity did not. Drag coefficient can also 

be estimated using field measurement. Kane and Smiley (2006) measured the drag of juvenile Red 
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maple trees by placing the trees on the back of a moving truck and estimated the drag coefficient. 

Koizumi et al. (2010) and Koizumi et al. (2016) estimated the drag coefficient using a strain gauge 

on a high wind day although the number of sample trees was very small. Table 5.1 summarizes 

the result of drag coefficients on various coniferous and deciduous trees collected from various 

works of literature. Note that many of the drag coefficients listed in Table 5.1 are extrapolated 

values.  

  Based on the literature review of drag coefficient of different species of trees, it can be 

concluded that the drag coefficient varies with species due to the variation in stiffness, foliage, and 

morphology. The drag coefficient of all the species cannot be possibly estimated and reviewed in 

this section. Though, replacing the drag coefficient of the same type (coniferous or deciduous) and 

species with similar morphology and amount of foliage listed in Table 5.1 may be a good substitute 

for all other species, and is used in the calculation of Vc of tree-fall. 
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Table 5.1. Summary of drag coefficients of various coniferous and deciduous trees  

Type (coniferous/deciduous) Species Cd  Velocity (m/s) Reference 

Coniferous (softwood) Grand fir 0.36* 30.5 Mayhead (1973) 

 Corsican pine 0.32* 30.5 Mayhead (1973) 

 Douglas fir 0.22* 30.5 Mayhead (1973) 

 Western redcedar 0.22 20.0 Rudnicki et al. (2004) 

 Norway spruce 0.35* 30.5 Mayhead (1973) 

 0.59* 30.0 Koizumi et al. (2016) 

 Sitka spruce 0.35* 30.5 Mayhead (1973) 

 0.40* 26.0 Mayhead et al. (1975) 

 Scots pine 0.29* 30.5 Mayhead (1973) 

 0.35* 26.0 Mayhead et al. (1975) 

 Western hemlock 0.14* 30.5 Mayhead (1973) 

  0.47 20.0 Rudnicki et al. (2004) 

 Lodgepole pine 

 

0.20* 30.5 Mayhead (1973) 

 0.34* 26.0 Mayhead et al. (1975) 

 0.47 20.0 Rudnicki et al. (2004) 

Deciduous (hardwood) Poplar  0.10* 30.0 Koizumi et al. (2010) 

 White birch 0.14* 30.0 Koizumi et al. (2016) 

 Paper birch 0.15 20.0 Vollsinger et al. (2005) 

 Black cottonwood 0.17 20.0 Vollsinger et al. (2005) 

 Red alder 0.22 20.0 Vollsinger et al. (2005) 

 Bigleaf maple 0.26 20.0 Vollsinger et al. (2005) 

 Trembling aspen 0.28 20.0 Vollsinger et al. (2005) 

 Red maple 0.59 20.0 Kane and Smiley (2006) 

*Drag coefficient extrapolated to the specific velocity 
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5.2.3 Projected Frontal Area 

 Directly obtaining the projected frontal area of a tree (A) from a ground-based damage 

survey is very challenging, thus it should be estimated indirectly. The projected frontal area equals 

the sum of the stem frontal area and crown frontal area. While measuring the DBH of trees is 

relatively easy in a ground-based damage survey, obtaining the measurement of height, crown 

height, and crown width (or crown diameter) is often difficult due to inaccessibility in a damage 

site. These other dimensions can be predicted from the past studies which have predicted 

dimensions of different trees, such as height and crown height, based on the DBH and the growth 

rate of the tree (Bechtold, 2003; Curtis, 1967; Dawkins, 1963; Feldpausch et al., 2011; Hemery et 

al., 2005; Hökkä, 1997; Mamoun et al. 2012; Mamoun et al. 2013; Nowak, 1990; Peper et al., 

2001). The crown frontal area can be calculated assuming a triangular shape where the crown 

height is the height of the triangle and crown width is the base of the triangle (Rudnicki et al., 

2004). Thus, the crown frontal area (Acrw) can be written as Eq. 5.11. 

 

𝐴𝑐𝑟𝑤 =
ℎ𝑐𝑟𝑤 ∙ 𝐷𝑐𝑟𝑤𝑛

2
                                                    (5.11) 

 

where hcrw is the crown height and Dcrw is the crown diameter. The stem frontal area is the total 

area of the stem from the ground up to the crown, but the stem of the tree tapers off with height, 

forming a trapezoidal shape. Taper linear equations of 34 different tree species across the Southern 

United States were developed by Larsen (2017). The diameter (d) at any height (z) of the tree is 

expressed in a linear equation: 

 

𝑑(𝑧) = 𝐷𝐵𝐻 + 𝑝𝑏(𝑧 − 𝑏ℎ)                                                   (5.12) 
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where pb is the taper rate, which can be found in Larsen (2017), and bh is the breast height (1.4 m 

or 4.5 feet). Using the area of a trapezoid, the stem frontal area (Astem) becomes: 

 

𝐴𝑠𝑡𝑒𝑚 = (ℎ − ℎ𝑐𝑟𝑤) ∙ (𝐷𝐵𝐻 − 𝑝𝑏𝑏ℎ + 𝑝𝑏(ℎ − ℎ𝑐𝑟𝑤))                           (5.13) 

 

By adding the crown frontal area and the stem frontal area, the total frontal can be written as Eq. 

5.14. 

 

𝐴 = 𝐴𝑐𝑟𝑤 + 𝐴𝑠𝑡𝑒𝑚 =
ℎ𝑐𝑟𝑤 ∙ 𝐷𝑐𝑟𝑤

2
+ (ℎ − ℎ𝑐𝑟𝑜𝑤𝑛) ∙ (𝐷𝐵𝐻 − 𝑝𝑏𝑏ℎ + 𝑝𝑏(ℎ − ℎ𝑐𝑟𝑤))           (5.14) 

 

However, there are a lot of assumptions and uncertainties are involved in this process of estimating 

the total frontal area, especially if the h, hcrw, and Dcrw are estimated based on the DBH alone. 

Moreover, Kane and Smiley (2006) discovered that assuming a triangular frontal shape 

overestimated the drag coefficient of red maple by 14 %.  

A more accurate way of obtaining the frontal area is through an aerial survey if available. 

By using photogrammetry and image processing tools, the frontal area of trees in aerial 

photographs can be estimated by multiplying the pixel count with pixel size. The number of pixels 

of the frontal area can be extracted as the same image processing technique used in Chapter 3. A 

demonstration is shown with a sample tree from the Alonsa, MB tornado aerial photograph. The 

sample image of the tree is cropped from the aerial photograph (Figure 5.6(a)). The RGB color 

filter is applied to the sample tree (Figure 5.6(b)) and then the noise filter is applied (Figure 5.6(c)). 

Even though the background noise is removed using a noise filter, some earth noise still needs to 
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be removed. Using the object detection function, the binary image (Figure 5.6(c)) can be separated 

into different objects and just the tree pixels can be selected (yellow pixels in Figure 5.6(d)). Refer 

to Chapter 3 for the detailed procedure and algorithm of extracting tree pixels. The crown and stem 

are differentiated at bottom of the branches (Figure 5.6(e)). The number of pixels then can be 

counted for DBH, h, hcrw, Astem, Acrw, which can be converted to actual heights and areas. With the 

resolution being 5-cm, the DBH, h, hcrwn, Astem, and Acrw are equaled to 25 cm (5 pix × 5 cm/pix), 

8.6 m (172 pix × 5 cm/pix), 4.3 m (86 pix × 5 cm/pix), 1.16 m2 (463 pix × 25 cm2/pix), and 7.14 

m2 (2856 pix × 25 cm2/pix), respectively. Thus, the total frontal area of the sample tree becomes 

8.3 m2. Note that all of the dimensions extracted using image processing are dependent on the 

number of pixels, which is highly sensitive to the digital number (DN) range, so a careful selection 

of DN range is necessary (refer to Chapter 3). 

 

 
          (a)           (b)    (c)      (d)      (e) 

 

Figure 5.6. Tree dimensions extraction process from an aerial photograph. 

 

5.2.4 Sensitivity Analysis 

As shown in section 5.2.2.1, the analytical solution of Vc of tree-fall is very complicated 

and contains lots of parameters, and thus lots of uncertainties are present. In order to find out which 
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parameters affect the Vc of tree-fall more and focus the attention on the more “important” 

parameters, a sensitivity analysis is performed. For the sensitivity analysis, the Power Law is used 

to generate a wind profile instead of the Logarithmic Law. The area moment of inertia of the stem 

(I) is calculated as π/64×DBH3 (Peltola and Kellomäki, 1993) and the linear regression of uprooted 

trees from Cannon et al. (2015) was used to obtain the Mcrit instead of using Eq. 5.8 for RSsup for 

the reasons stated in section 5.2.2.2. The sensitivity analysis produced very little difference using 

the linear regression of snapped trees. Figure 5.7 shows the result of sensitivity analysis of the 

HWIND model with the following reference values: Cd = 0.3, α = 0.143, W = 4.5 N, DBH = 64 

cm, h = 20 m, A = 177 m2, hcrw = 16 m, and E = 7.86 GPa, where W is the weight of the tree.  

 

 

Figure 5.7. Sensitivity analysis of the HWIND model.  

 

 Sensitivity analysis shows Vc is strongly influenced by the drag coefficient (Cd), the 

projected frontal area (A), and the DBH. The A and Cd exhibit a negative correlation with Vc. Larger 

trees would have more surface area for the wind to act on and a larger drag coefficient would 

produce greater wind-induced force, subsequently decreasing the Vc. The sensitivity analysis 
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implies that DBH is the most sensitive to Vc. Thus, an accurate measurement of DBH is suggested 

in damage surveys. The DBH shows a strong positive correlation with Vc since the Mcrit is 

proportional to the square of DBH. On the other hand, elastic modulus (E), weight (W), power-law 

exponent (α), and the crown height (hcrw) are much less sensitive than the other parameters. 

 

5.2.5 Critical Wind Speed of Tree-fall Estimation 

5.2.5.1 Application on Naplate, IL tornado ground-based survey 

 The critical wind speed of tree-fall in the village of Naplate, IL is determined using the 

HWIND model and the tree information collected during the damage survey (Chapter 2). Although 

the HWIND requires more tree property information, such as h, hcrw, and A, such property 

information was unobtainable due to the clean-up and repair process in the damage site; only the 

DBH and species of the failed tree were documented. Despite the large uncertainty in the estimate, 

therefore, other unobtained properties were estimated using the DBH relationship studies 

mentioned in 5.1.3. 

For the failed trees, all of them failed by uprooting except a few that had broken branches, 

and most of them were Elm and White pine trees. Because the Naplate, IL tornado occurred in 

February, the deciduous trees were defoliated. Another visit to the village of Naplate, IL took place 

in June and most trees that survived the tornado were identifiable as a Maple tree; out of the 186 

surveyed trees, 110 trees (59 %) were Maple trees. Based on the species similarities, a Cd of 0.20 

(Lodgepole pine) is used for the White pine trees and 0.22 (Red alder) is used for Elm trees. For 

all the other trees, a Cd of 0.26 (Bigleaf maple) is used assuming that the unidentifiable trees were 

Maple trees. Although the Red maple tree Cd (0.59) is also included in Table 5.1, a more 

conservative Cd is used. The Mcrit is estimated using the regression lines from Cucchi et al. (2004) 
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and Cannon et al. (2015). The linear regression of edge trees on wet soil is used for Cucchi et al. 

(2004) because the trees in the village of Naplate, IL were sparsely scattered, and thus a stronger 

root system is assumed to be developed. Moreover, all of the damaged trees were failed by 

uprooting, which matches the observation described in Cucchi et al. (2004). The uprooted 

regression line is used for Cannon et al. (2015). Note that the two regression lines show a very 

comparable result, except that the regression line from Cucchi et al. (2004) does not pass the origin 

(Figure 5.5).  

Figure 5.8 shows the Vc vs. DBH using Mcrit regression lines from Cucchi et al. (2004) 

shown in red symbols and Cannon et al. (2015) shown in black symbols. For the same DBH, the 

White pine tree has the highest Vc most likely due to the largest drag coefficient. Using the Mcrit 

regression line from Cucchi et al. (2004) and Cannon et al. (2015) showed very little difference 

for trees with larger DBH (> 40 cm), but a significant difference for trees with smaller DBH (< 20 

cm). For trees using the Cucchi et al. (2004) regression with DBH under 20 cm, the Vc decreases 

exponentially as DBH increases. This behavior is often observed in the field where smaller juvenile 

trees (small DBH) survive a tornado than larger older trees likely due to smaller projected frontal 

areas. Perhaps using a Mcrit regression line that does not cross the origin is a more appropriate 

measurement. The mean and standard deviation of Vc using Mcrit value from Cucchi et al. (2004) 

are 35 m/s (78 mph) and 7.2 m/s (16 mph), respectively. Overall, the Vc displays a consistent 

pattern where the Vc increases with DBH rather consistently because the other parameters (e.g., h, 

hcrw, A, Mcrit) were estimated based on regression lines of DBH. The estimation does not show a 

realistic behavior and may not be feasible. As mentioned previously, the variation in tree property 

and dimension is considerably large, which is not reflected in Figure 5.8. Thus, a more accurate 

estimation, or a direct measurement, of tree dimensions (other than just DBH) is highly 
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recommended during damage surveys. Note that the all points shown in Figure 5.8 are fallen trees 

in Naplate, IL, and the shape of points represents different estimation methods. 

 

 

Figure 5.8. Critical wind speed of tree-fall of the Naplate, IL tornado. 

 

5.2.5.2 Application on Alonsa, MB tornado aerial survey 

The critical wind speed of tree-fall of the Alonsa, MB tornado is also determined using the 

HWIND model and the tree information extracted from the aerial photographs. The aerial 

photographs of tree damage show that the majority of the trees failed in stem breakage. According 

to the Manitoba forest observatory, most of the trees were Trembling Aspen, Balsam Poplar, and 

other hardwood species. Thus, a drag coefficient of 0.28 (Trembling Aspen) is used in the 

calculation of Alonsa, MB tornado Vc. A total of 41 trees are sampled, in which out of 41 samples, 

four of them failed by uprooting and the rest failed by stem breakage. It is important to note that a 

complete-random sampling was infeasible and only isolated trees were selectively chosen because 

it is very challenging to separate a single tree among overlapping fallen trees. The h, hcrw, A, and 
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DBH of the sampled trees are estimated using the image processing technique (section 5.2.3), and 

the Mcrit value is estimated using Cannon et al. (2015). The estimated Vc vs. DBH is shown in 

Figure 5.9 with a mean and standard deviation of 47.5 m/s (106 mph) and 12.5 m/s (28 mph), 

respectively. A much higher Vc (about 30 mph greater mean Vc) is estimated for the Alonsa, MB 

tornado compared to the Vc for Naplate, IL tornado. However, a higher Vc is perhaps expected for 

the Alonsa, MB tornado because most trees in the Alonsa, MB tornado (Trembling Aspen and 

Balsam Poplar) were tall and slender trees, which have less projected frontal area (Wang et al., 

1998), and also failed by stem breakage. Alternatively, an error may have occurred due to selective 

sampling of isolated trees. According to Cucchi et al. (2004), the Mcrit of edge trees of the forest is 

much greater than that of inner trees because the roots grow deeper into the ground developing a 

stronger anchoring system. Another possible source of error is the estimation of the projected 

frontal area. An incorrect selection of DN range and removal of noise pixels may significantly 

underestimate the area, which is inversely correlated with the Vc. An independent method of 

estimating the Vc by treating the Vc as a random variable in tree-fall analysis can be used to compare 

the Vc estimation using HWIND method (Chapter 7). 
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Figure 5.9. Critical wind speed of tree-fall of the Alonsa, MB tornado. 

 

5.3 Critical Wind Speed of Corn-fall 

5.3.1 Introduction on Critical Wind Speed of Corn-fall 

 In addition to trees, crops are also susceptible to wind damage. For the past decades, a 

significant loss of crop damage from thunderstorms and tornadoes occurred in the United States: 

an average of 70 million dollars annual loss (NOAA, 2018). Due to wind lodging of crops from 

the wind hazards, the crop yield reduces considerably (Berry and Spink, 2012; Carter and 

Hudelson, 1988; Cleugh et al., 1998). The majority of the tornadoes in the United States damage 

agricultural areas, in which a large portion of the cropland is used to grow corn (USDA, 2020). In 

fact, corn damage from tornado has been frequently observed in the past (Eshelman and Standford, 

1977; Fujita 1993; Forbes and Wakimoto, 1983; Guyer and Moritz, 2003; Meng and Yao, 2014). 

However, the wind speed estimation of these tornadoes poses a challenge due to the lack of 

structures in these regions (Guyer and Moritz, 2003), and the corn damage, oftentimes, is the only 

damage observed in the field. With the lodging wind speed of crop or the Vc of crop-fall, the near-
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surface wind speed estimation of tornadoes in cropland can be done using tree-fall analysis. Yet, 

very little is known about the lodging wind speed of crop and more studies is surely needed. 

Although certainly there are other crop damages caused by tornadoes, only the lodging wind speed 

of corn will be examined in this section due to the availability of data in this study.  

To properly investigate the corn damage by tornadoes, an estimation of lodging wind speed 

of corn, in which lodging is defined as the permanent deformation of the stem from its original 

vertical position in consequence of insufficient strength in flexure leading to buckling (Gardiner 

et al., 2016), is needed. In the past years, there have been a few studies of the development of 

mechanical lodging models of wheat and cereal (Berry et al., 2003; Berry et al., 2004) and 

experimental investigation of model parameters of wheat (Sterling et al., 2003). More recently, a 

generalized crop lodging model has been developed where the model can be applied to a wide 

range of crops (Baker et al., 2014). The Vc of corn-fall is obtained through the analytical model 

and the result from experimental tests.  

 

5.3.2 Experimental Tests on Corn 

Although a few analytical models of crop lodging have been developed, not many 

experimental works have been conducted on corn. To estimate the bending moment capacity of 

corn stalks at the base, a series of 3-point bending moment tests on corn at different stages was 

carried out. Bending moment capacity is generally considered the most appropriate strength 

measurement in stalk lodging (Robertson et al., 2017), in which a 3-point bending moment test is 

often used to measure the bending moment capacity on corn (Al-Zube et al., 2018; Robertson et 

al., 2014, Robertson et al., 2017). All of the past studies measured the bending moment capacity 

of the corn at the harvest stage. Though, it has been reported that tornadoes occur across all months 
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and seasons (NOAA, 2020c), and thus damage can occur all around the year. An experimental test 

of measuring the bending moment capacity of corn at different growth stages was conducted to 

understand the bending moment capacity relationship with the growth stage and the size of the 

corn. 

A sample of corn was collected from a local cornfield grown by the Department of Crop 

Science at the University of Illinois Urbana-Champaign. A total of 10 sets of tests with 12-20 

samples each time were conducted from mid-July to early November. Following the guidelines of 

the past studies on measuring the bending moment capacity on corn, the bending moment capacity 

of corn from growth stage V9 to R6 was measured. In general, corn starts to be susceptible to wind 

damage at stage V8 (Thelen, 2017), in which the canopy height reaches about 0.6 m (24 in). Refer 

to Ransom and Endres (2020) for a detailed description of different corn growth stages. The force-

displacement curve of the sample corn was recorded at 10 Hz, in which the force was measured 

with a 2,2240-N (500-lb) load cell at a 50 mm/min loading rate. The nominal bending moment for 

each corn was calculated from the nominal force with a moment arm of 23 cm (9 in). The loading 

point was generally 18 to 23 cm (7-9 in) above the base, and displacement is defined as positive 

moving downward. Figure 5.10 shows the experimental setup of the 3-point bending moment test 

on a corn stalk.  
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Figure 5.10. Experimental setup of a 3-point bending moment test on a corn stalk. 

 

With the maximum force measured (Pmax), the critical bending moment (Mcrit) can be 

calculated using the following equation:  

 

𝑀𝑐𝑟𝑖𝑡 =
𝑃𝑚𝑎𝑥𝐿

4
                                                             (5.15) 

 

where L is the span length (or the moment arm) (AISC, 2017). According to Robertson et al. (2015) 

and Robertson et al. (2017), the loading position (on the node or internode) and orientation 

(perpendicular to the major or minor axis) have significant effects on the bending moment 

capacity. Although the loading position and orientation were recorded in the experiment, the Mcrit 

was not differentiated by these factors to include a variety of failure modes and all the Mcrit values 

were included in the analysis of the Vc of corn-fall. However, differentiating them may help 

understand the failure mechanism of corn and may be worthy of future study. Figure 5.11 shows 

examples of the force-displacement curve of a corn stalk. The force-displacement curve showed 

two general behaviors: 1) a sudden drop in the force after the force reaches Pmax (Figure 5.11(a)), 
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in which this type of failure is defined snapping, 2) a gradual decrease of force after the point of 

Pmax (Figure 5.11(b)), in which this type of failure is defined as creasing. Note that the scale is 

different for the two figures. A possible reason for different failure modes is the randomly 

distributed local imperfections in material or geometry (Robertson et al., 2015). 

 

 
          (a) snapping         (b) creasing 

 

Figure 5.11. Force-displacement curves and image of corn (a) snapping and (b) creasing. 

 

The corn was grouped by the growth stage of the corn that was collected on each test day. 

A box plot of the recorded bending moment capacity (Mcrit) for a different group of growth stage 

is shown in Figure 5.12, where the median value is the red central mark, the 25th and 75th 

percentiles are the edges of the blue box, the most extreme data points without the outliers are on 

the whisker, and the outliers (red “+”) extend outside of +/–2.7 standard deviations from the mean 

value assuming a normal distribution. The mean diameters (blue circle) of each test sample are 

also shown in Figure 5.12. The bending moment capacity showed a wide variation where the 

bending strength was as low as 5 N-m and as high as 53 N-m for some growth stages. The box 

plot of the bending moment at the growth stage of R3-4 and R4-5 showed similar values with the 
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result from Robertson et al. (2014). The maximum Mcrit occurred at the growth stage of R3-4, but 

the highest median value occurred at the growth stage of R4-5. In general, the Mcrit increased in 

the early stage as the diameter increased until growth stage R4-5, and then decreased again as the 

diameter decreased. The bending moment capacity of a crop is a function of radius cubed (Baker 

et al., 2014). Although the relationship was not examined in this study, the stalk diameter is 

theorized to have a significant positive correlation with Mcrit. 

 

 

Figure 5.12. Box plot of bending moment capacity of corn overlaid with the mean diameter at 

various growth stages.  

 

5.3.3 Critical Wind Speed of Corn-fall Estimation 

Using the bending moment strength and corn dimensions obtained from the 3-point 

bending moment test, the critical lodging wind speed of corn is calculated with different crop 

lodging models. Berry et al. (2003) and Baker et al. (2014) models are adopted to back-calculate 

the critical lodging wind speed of corn using the bending moment capacity directly measured 
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instead of the analytical bending moment value. Although the analytical bending moment capacity 

can be obtained from the generalized crop lodging model (Baker et al., 2014), the analytical 

bending strength still requires an estimate of stem yield stress and stem wall thickness, which are 

still unknown for most crops. With a proper and careful experimental procedure, a more accurate 

and realistic value of the bending moment capacity may be obtained. The Vc of a generalized crop 

is defined as (Baker et al., 2014): 
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      (5.17) 

 

where μ is the mass of the unit area, g is the gravitational constant, X is the height of the center of 

mass, n is the number of stems per plant, p is the number of plants per unit area. E is the Young’s 

modulus of the stem, I is the second moment of area of the stem, ωn is the radial natural frequency, 

X is the height of the center of mass, σ is the stem yield stress, a is the stem radius, t is the stem 

wall thickness, ACF is the plant drag area, x is the distance up the stem from the ground, l is the 

length of the stem, Iu is the turbulence intensity, θ is the damping ratio. Detailed derivation can be 

found in Baker et al. (2014). Using the bending moment capacity measured from the 3-point 

bending test, Eq. 5.17 can be replaced with:  
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      (5.18) 

 

Although the entire derivation is not shown, Eq. 5.18 still follows the load-resistance framework 

presented in Figure 5.1. It is important to note that the 𝑈̅ is defined as an hourly mean wind speed, 

but the wind that causes the crop to lodge is the gust, not the mean wind (Joseph et al., 2020). 

Thus, an hourly wind speed to effective gust conversion is necessary; the conversion factor can be 

found from Berry et al. (2003): 

 

𝑉𝑔

𝑈̅
= 1 + 0.42𝐼𝑢 × ln (

3600

𝜏
)                                                (5.19) 

 

where Vg is the gust speed and τ is the effective loading period. A suitable averaging time (effective 

loading period) should be considered due to the fluctuation in wind loading, which is defined as 

4.5×height/mean velocity and taken as 0.3 seconds for crops suggested by Baker (1995). Joseph 

et al. (2020) further examined the dynamic and aerodynamic parameters for corn, oats, and oilseed 

rape and estimated the crop lodging speed with the Baker et al. (2014) model. Most of the dynamic 

and aerodynamic parameters of corn were taken from Joseph et al. (2020): ωn = 0.7 Hz × 2π, θ = 

0.11, Iu = 0.59. All the other parameters were measured directly from the sample except that the 

ACF was measured directly. The frontal area was calculated by multiplying the diameter and the 

height of the corn stalk and then adding the total leaf area. The total leaf area is estimated from the 

product of an average leaf area of corn, 268 cm2 (McKee, 1964), and the number of leaves on each 

corn stalk. The ACF is then obtained by multiplying the mean drag coefficient of corn for the entire 
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canopy of Cd = 0.17 from Wilson et al., (1982). Figure 5.13 shows the result of the Vc of corn-falls 

at different growth stages at the corn height of 2.5 m. The Vc of growth stage V9 exhibits relatively 

high wind speed compared to the rest due to small height and project frontal area. However, it is 

suspected because younger corn has a smaller projected area and height. From field observations, 

root lodgings where the roots are pulled out of the ground have been observed more frequently for 

younger, more flexible corn (Thelen, 2017). Although the result showed a comparable result with 

Joseph et al. (2020), a full-scale validation is essential for future work.  

 

 

Figure 5.13. Critical gust wind speed range of corn at different growth stages. 

 

5.4 Critical Wind Speed of Sign-fall 

5.4.1 Introduction on Critical Wind Speed of Sign-fall 

The tornado wind speed at a specific location can also be estimated using forensic analysis, 

a method where structural capacity is evaluated to calculate the wind load and wind speed required 

for the observed failure. Forensic analysis can be applied to building failures, as described in 
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Coulbourne and Miller (2012) which investigates the performance and failure of school buildings 

after the 2011 Joplin, MO tornado in detail. Boughton et al. (2012) applied forensic analysis to 

failed and non-failed road signs at different locations to estimate the peak gust of the Yasi tropical 

cyclone. 

In general, traffic signs are engineered, following standardized guidance (IDOT 2016). The 

material properties and dimensions are relatively well-known compared to trees. In the Tropical 

Cyclone Yasi report, both failed and non-failed road signs are used to estimate the peak gust of a 

cyclone (Boughton et al., 2012), where the failed traffic signs were used to estimate the lower 

bound wind speed and the non-failed signs for the upper bound wind speed, using the bending 

moment capacity. The same method can be applied to estimate the wind speed bounds of a tornado. 

The failure wind speed of the traffic signs is calculated using the bending moment capacity of the 

steel post and the area of the signage, assuming the failure mode is yielding at the base of the steel 

post. The Vc of these traffics signs then can be used to extract the Rankine vortex (RV) parameters 

and generate an independent near-surface wind field (Chapter 7). However, the number of traffic 

signs found in the damage survey is usually much less than the number of trees, and a ground-

based damage survey is usually necessary (Boughton et al. 2012; Rhee and Lombardo 2018) 

because traffic signs are hard to identify from aerial photos of large-scale tornadoes. In the case of 

a large-scale tornado, the aerial photograph is often acquired by flying aircraft and forced to trade 

off the resolution for a larger area. 

 

5.4.2 Experimental Tests on Traffic Sign 

 The bending moment capacity of the steel posts can be estimated in two different ways: 

measuring the bending moment capacity of sample steel posts and an analytical solution of the 
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bending moment capacity. In general, two types of U-channel steel posts are used for traffic signs, 

specified by the Illinois Department Of Transportation (IDOT) (IDOT, 2016). Samples of steel 

posts were given by the La Salle County Highway Department and tested at the Newmark Civil 

Engineering Laboratory at the University of Illinois Urbana-Champaign to measure the bending 

moment capacity from a three-point bending moment test. Figure 5.14 shows the experimental 

setup of the 3-point bending moment test on a steel post. The maximum force (Pmax) that caused 

Type B steel post to bend was 14.6 kN as shown in the force-displacement curve (Figure 5.15). 

The maximum bending moment capacity (Mmax) can be calculated using Eq. 5.15. With a span 

length of 800-mm (32-inch), the bending moment capacity was calculated to be 2,960 N-m. 

 

 

Figure 5.14. Experimental setup of the 3-point bending moment test and dimensions and properties 

of Type B steel post. 
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              (a) force-displacement diagram                      (b) failure mode of U-channel 

 

Figure 5.15. Three-point bending moment result of Type B steel post: (a) force-displacement curve 

and (b) image of failure mode. 

 

Although Boughton et al. (2012) assume that a plastic hinge is formed at the base and uses 

the plastic moment capacity of the steel post, the bent images of U-channel steel post  (Figure 2.11 

and  Figure 5.15(b)) suggest that U-channel steel post failed in Lateral Torsional Buckling (LTB) 

and the steel post did not reach the full plastic state (AISC, 2017). The difference in failure mode 

is caused by the difference in the cross-section of the sign poles. A simpler and faster approach to 

obtain the bending moment capacity is through an analytical solution. The analytical solution for 

the yield bending moment (My) and plastic bending moment (Mz) is calculated as follows: 

 

𝑀𝑦 = 𝐹𝑦 ∙ 𝑆𝑥                                                                      (5.20) 

𝑀𝑧 = 𝐹𝑦 ∙ 𝑍𝑥                                                                      (5.21) 

 

where Fy is the yield strength of the steel, Sx is the elastic section modulus, Zx is is the plastic 

section modulus of the steel post (AISC, 2017). The Mz may be used if the steel posts forms a fully 



115 

 

plastic hinge for any type of steel. Although the above equations may be used for simplicity, more 

detailed equations for various unbraced lengths (Lb) and bending coefficients (Cb) can be used and 

found in AISC (2017), but additional material properties must be known. With the yield strength 

(Fy) of 410 MPa (60 ksi) (Steel Gr 60) and section modulus (Sx) of 5.6 mm3 for Type B (IDOT, 

2016), the bending moment capacity of 2,310 N-m was obtained. As expected, the yield bending 

moment from the analytical solution is less than the Mmax estimated from the experimental result. 

One should note that the failure limit state depends on the geometry and may be different for 

different types of metal posts. Although the plastic bending moment was not used for the U-

channels because they did not reach a full-plastic state, one can use Eq. 5.20 or Eq. 5.21 to estimate 

the bending moment capacity of a sign post if a plastic hinge is formed (Boughton et al., 2012). 

The analytical solution allows rapid estimation of bending moment capacity given the material 

properties are known. The estimated maximum bending moment capacity (Mmax) is used later in 

this section to estimate the critical wind speed of traffic signs. The maximum bending moment 

capacity was assumed to be the same for all the traffic signs with Type B steel post. 

 

5.4.3 Critical Wind Speed of Sign-fall Estimation 

 Once the bending moment capacity of the traffic sign-post is obtained, the Vc of the traffic 

signs can be determined. The Vc at different locations then can be used to estimate the near-surface 

wind field of Naplate, IL tornado. The Vc is calculated from the net wind force exerted on the 

traffic sign and the wind-induced moment applied at the base of the sign (Boughton et al., 2012). 

The peak net wind load (Fn) and moment (Mw) exerted on the traffic sign-post including any 

number of signs is obtained by the following Eqns:  
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2𝐶𝐹,𝑛𝐴𝑖) ∙ 𝑙𝑖]                                 (5.23) 

 

where ρ is the air density, Vc is the critical wind speed (3-s gust velocity at the centroid), CF,n is 

the net drag coefficient (ASCE, 2016), Ai is the area of each plate on a traffic sign, and li is the 

distance from the base of the steel post to the centroid of each plate. The CF,n of rectangular 

signboard varies with the aspect ratio, clearance ratio, and wind direction (Cook, 1990; ESDU, 

1989; Letchford, 2001). Notably, Letchford (2001) found that the CF,n is almost constant for wind 

directions within ±45° normal to the sign plate.  Note that a 3-s gust speed is assumed for the Vc 

in Boughton et al. (2012). Thus, unlike the Vc of tree and crop, a mean wind speed conversion is 

not required. Considering the traffic sign fails when the wind-induced moment exerted exceeds 

the bending moment capacity (Mw ≥ Mmax), the Vc of the traffic sign becomes: 

 

𝑉𝑐 ≥ √
𝑀𝑚𝑎𝑥

∑[(
1
2𝜌𝐶𝐹,𝑛𝐴𝑖) ∙ 𝑙𝑖]

                                                   (5.24) 

 

Note that the Mmax can be replaced with the analytical solution, My or Mz, depending on the 

availability and the failure limit state of the sign pole.  

In the Naplate, IL tornado, a total of 37 traffic signs were surveyed and their Vc was 

estimated. Out of the 37 surveyed traffic signs, a total of 9 signs had failed, and 28 signs had 

survived. Figure 5.16 shows the map of the surveyed traffic signs of Naplate, IL tornado with their 

estimated Vc. From the surveyed map, a rough idea of the near-surface wind field of Naplate, IL 
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can be estimated. The maximum wind speed of the tornado, which occurs near the tornado center, 

can be estimated. The traffic signs with Vc estimated greater than 55 m/s (123 mph) and 50 m (164 

ft) or less away from the estimated tornado center are labeled (lower bound in a red box and upper 

bound in a blue box) in Figure 5.16. Assuming that the wind direction is within  ±45° normal to 

the sign plate, the maximum lower bound Vc is 47 m/s (106 mph) and the maximum upper bound 

Vc is 64 m/s (142 mph), which are approximately 35 m (115 ft) away north and 40 m (130 ft) away 

south from the estimated tornado center, respectively. Hence, from the bounds of the Vc of the 

traffics signs, it can be speculated the maximum near-surface wind speed of Naplate, IL tornado 

was greater than 47 m/s (106 mph) but less than 64 m/s (142 mph). The time-varying CF,n due to 

directionality and estimation of the entire tornado wind field using the Vc of all traffic signs will 

be discussed in Chapter 7. 

 

 

Figure 5.16. Map of the critical wind speed of traffics signs of Naplate, IL. 
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5.5 Summary 

 This chapter summarizes the process of estimating the critical wind speed of three different 

damage indicators: trees, corn, and traffic signs. The estimation of Vc can be used individually to 

estimate the tornado intensity, or as an input parameter in the tree-fall analysis. The following 

points are the summary of the Vc estimation for different damage indicators:  

 For estimating the Vc of trees, the HWIND model was used and modified such that the 

vertical profile of horizontal wind represents a gust profile instead of a mean profile. Also, 

the Mcrit of the tree was directly obtained from Cucchi et al. (2004) and Cannon et al. (2015) 

using DBH2 × h. The Vc estimation of tree-fall in the village of Naplate, IL showed that the 

linear regression line of the Mcrit that does not pass the origin showed a more realistic 

behavior. 

 Input parameters for the HWIND, such as the height, crown height, and projected frontal 

area, can be estimated using the DBH relationship or using image processing technique 

(discussed in Chapter 3) if the aerial photographs are available. Estimation using the DBH 

relationship did not reflect the behavior of variation in the trees whereas the estimation 

using the image processing technique did chapter variational behavior. However, the image 

processing technique may have overestimated the Vc of tree-fall in the forest of Alonsa, 

MB. 

 A sample of commercial hybrid corn at different growth stages was collected and a 3-point 

bending moment test is performed to measure the Mcrit of corn.  

 The Vc of corn-fall at different growth stages is estimated using a generalized crop lodging 

model from Baker et al. (2014) and the direct measurement of bending moment capacity. 
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The hourly mean wind speed from the generalized crop lodging model is then converted to 

a 3-s gust wind speed by multiplying a gust factor.  

 To estimate the Vc of traffic signs, the Boughton et al. (2012) method is adopted. Instead 

of the plastic moment, the yield moment is assumed and used since the traffic sign posts 

(U-channel) in Naplate, IL were presumed to fail in LTB.  
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CHAPTER 6: WIND FIELD MODULE 

 

6.1 Introduction 

A wind field model is an essential part of the tree-fall analysis. In Chapter 4, the modified 

Rankine vortex model is used to simulate the wind field of a tornado. However, there are other 

idealized vortex models that are often used to represent a tornado wind field. The question of 

whether one performs better than the other still remains in question. In this chapter, the different 

characteristics of vortex models are first reviewed. Their compatibility is examined by comparing 

the models to radar observations and the feasibility in tree-fall analysis by generating tree-fall 

patterns using each model. Tree-fall analysis is not limited to idealized vortex models but can also 

incorporate other models. Other tree-fall patterns are generated and examined using other wind 

field models (asymmetric vortex model and downburst models). The second part of Chapter 6 

investigates the effect of topography on wind fields and on the tree-fall pattern. The tornado 

dynamic response to topography and the ESDU topographic speedup factor is added to the 

modified Rankine vortex model and the tree-fall pattern is compared to the tree-fall pattern 

generated from the wind fields of a Large Eddy Simulation (LES).  

 

6.2 Wind Field Models  

6.2.1 Idealized Vortex Models 

In fluid dynamics, a vortex is defined as a region of air or fluid revolving around an axis, 

in which the flow field of the fluid can be acquired by solving the Navier-Stokes-Equations (NSE) 

(Ting and Klein, 1991). A tornado is defined as a violently rotating, narrow column of air (Davies-

Jones et al., 2001) and has a similar flow structure as a vortex. Although the structure of a tornado 
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is much more complex, the wind field of a tornado is simplified and often described by a vortex 

flow. The velocity equations of a vortex are derived from the NSE and imposing ideal conditions, 

in which the vortex is called an idealized vortex (Gillmeier et al., 2018).  

Many studies on physical testing (Church et al., 1979; Church et al., 2004; Haan et al., 

2008; Natarajan and Hangan, 2012; Gillmeier et al., 2018; Refan et al., 2018) and numerical 

simulation (Bodine et al., 2016; Ishihara et al., 2011; Lewellen and Lewellen, 2007; Lewellen et 

al., 2000, Nolan, 2012; Noland et al., 2017) of a tornado-like vortex have shown that the structure 

of the vortex varies with swirl ratio (S). The definition of swirl ratio varies, but generally swirl 

ratio is a function of the ratio between tangential and radial velocity (Baker and Sterling, 2017; 

Natarajan and Hangan, 2012; Kuai et al., 2008). For weak swirl ratios, a one-cell vortex (Figure 

6.1(a)) is formed where an intense inward flow ascends while rotating about a vertical axis. As the 

swirl ratio increases, a downdraft develops along the rotating axis and a vortex breakdown (Figure 

6.1(b)) occurs aloft. The vertical position of the vortex breakdown moves downward as the swirl 

ratio increases and the breakdown bubble touches the ground, forming a two-cell vortex (Figure 

6.1(c)). For very high swirl ratios, the vortex can split and form a multi-vortex structure (Figure 

6.1(d)). These vortex structures have also been observed in tornadoes by Doppler radar instruments 

(Agree et al., 1975; Refan et al., 2017; Wurman, 2002; Wurman et al., 2014). 

 

 
   (a) one-cell vortex     (b) vortex breakdown        (c) two-cell vortex       (d) multi-vortex 

 

Figure 6.1. Change in vortex structure as swirl ratio increases (adopted from Davies-Jones, 1982).  
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In general, Rankine (Rankine, 1882), Burgers-Rott (Burgers, 1948; Rott, 1958), and 

Sullivan (Sullivan, 1959) vortex models are the most commonly used idealized vortex models to 

describe the wind field of a tornado (Gillmeier et al., 2018). Because of the simplicity, the Rankine 

vortex (RV) model, sometimes referred to as the Rankine-combined vortex model, is the most 

commonly used vortex model in tree-fall analysis (Bech et al., 2009; Beck and Dotzek, 2010; 

Holland et al., 2006; Karstens et al., 2013; Lombardo et al., 2015). The Rankine vortex model used 

in each study is modified and may be slightly different from one another. In this dissertation, the 

RV model is modified by varying the decay exponent and assuming that the radial component 

follows the same velocity profile as the tangential component as mentioned in Chapter 4. Refer to 

Eq. 4.1 in Chapter 4 for the radial and tangential velocity fields of the modified RV model used in 

this chapter. More recently, Baker and Sterling (2017) developed a complete three-dimensional 

vortex model. All the idealized vortex models assume a steady-state, incompressible flow and 

neglect the gravitational force, but differs in the assumption of viscosity. 

 

6.2.1.1 Burgers-Rott vortex model 

Another idealized vortex model that fits the tangential velocity profile of one-cell tornadoes 

is the Burgers-Rott model (Wood and Brown, 2011). Some Doppler radar observations have shown 

that the viscous one-celled Burgers–Rott vortex (BRV) model fits the tangential velocity profile 

of one-celled tornadoes better than the Rankine vortex model (Bluestein, 2007; Tanamachi et al., 

2007; Kosiba and Wurman, 2010). The BRV model assumes a viscid flow and the following 

degrees of freedom: 1) the tangential velocity (Vθ) is only dependent on the radial distance (r), 2) 

the vertical velocity (Vz) is solely and linearly dependent on the vertical distance (z), and 3) the 
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radial velocity (Vr) is solely and linearly dependent r as a result of assumption 1 and 2 (Gillmeier 

et al., 2018). The NSE reduces to the following expressions (Wood and Brown, 2011): 

 

𝑉̅𝜃(𝑟̅) =
1.4

𝑟̅
(1 − exp(−1.2564𝑟̅2))                                             (6.1) 

𝑉̅𝑟(𝑟̅) = −𝑎̅𝑟̅                                                                   (6.2) 

𝑉̅𝑧(𝑧̅) = 2𝑎̅𝑧̅                                                                    (6.3) 

𝑎̅ =
2𝜈

𝑉𝜃,𝑚𝑎𝑥𝑅𝑀𝑊
                                                              (6.4) 

 

where 𝑉̅𝑟 is the Vr normalized by the Vθ,max, 𝑉̅𝑧 is the vertical velocity normalized by the Vθ,max, and 

𝑧̅ is the vertical distance normalized by the RMW, and v is the kinematic viscosity of air.  

 

6.2.1.2 Sullivan vortex model 

Sullivan (1959) obtained the exact solutions of the NSE of a steady, viscous two-cell vortex 

(Wood and Brown, 2011), in which the air flows downward in an inner cell close to the axis and 

rises in the surrounding outer cell (Davies-Jones and Wood, 2006). The Sullivan vortex (SV) 

model follows the same assumption as the BRV assumption except that the SV model assumes 

that the Vz is dependent on both the r and the z (linearly), and the Vr is only dependent on the r. 

The velocity equations of the SV model can be expressed as (Gillmeier et al., 2018):  

 

𝑉̅𝜃(𝑟̅) =
1

𝑟̅

𝐻(𝑥)

𝐻(∞)
   where 𝑥 = 𝑟̅2                                                (6.5) 

𝐻(𝑥) = ∫ exp (−𝑥′ + 3∫
1

𝑥′′
(1 − exp(−𝑥′′))𝑑𝑥′′

𝑥′

0

𝑥

0

)𝑑𝑥′                        (6.6) 
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𝑉̅𝑟(𝑟̅) = −𝑎̅𝑟̅ +
2𝑏𝜈

𝑟̅
(1 − exp(−𝑟̅2))                                          (6.7) 

𝑉̅𝑧(𝑟̅, 𝑧̅) = 2𝑎̅𝑧̅(1 − 𝑏 exp(−𝑟̅
2))                                                (6.8) 

 

where b is the shape factor that enables solutions for two-celled vortex structures. Wood and White 

(2011) developed a new parametric model to depict a realistic-looking tangential wind profile of 

tornadoes and dust devils; the tangential velocity equation is simplified to:  

 

𝑉̅𝜃(𝑟̅) = 𝑟̅
2.4[0.3 + 0.7(𝑟̅7.89)]−0.435                                             (6.9) 

 

Wood and Brown (2011) further modified the SV model and developed a modified SV model that 

represents a two-cell vortex structure with a broader downdraft region:  

 

𝑉̅𝜃(𝑟̅) = 𝑟̅
10[0.091 + 0.909(𝑟̅22)]−0.5                                       (6.10) 

 

This velocity profile, which will be referred to as the modified SV model, has been shown to fit 

the tangential velocity profile of a dust devil measured by a mobile Doppler radar in Bluestein et 

al. (2004).  

 

6.2.1.3 Baker vortex model 

In addition to the three vortex models, a three-dimensional vortex model has been recently 

developed by Baker and Sterling (2017), which is referred to as the Baker vortex model (Gillmeier 

et al., 2018). The Baker vortex (BV) model provides a more generalized form that can produce 

velocity fields of both a one-cell and two-cell vortex. The BV model assumes an inviscid flow 
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with all the velocity being a function of both 𝑟̅ and 𝑧̅ and a boundary condition where the radial 

velocity starts at zero at (𝑟̅ = 0, 𝑧̅ = 0), reaches a maximum value at (𝑟̅ = 1, 𝑧̅ = 1), and then falls 

back to zero at (𝑟̅ = 0, 𝑧̅ = ∞). This gives the BV model an advantage over BRV and SV model in 

that the radial component exhibits a more realistic behavior. The velocity equations of the 

generalized BV model can be expressed in the form of:  

 

𝑉̅𝜃(𝑟̅, 𝑧̅) =
𝐾𝑟̅𝛾−1[ln(1 + 𝑧̅𝛽+1)]𝛾/(𝛼+1)

(1 + 𝑟̅𝛼+1)𝛾/(𝛼+1)
                                         (6.11) 

𝑉̅𝑟(𝑟̅, 𝑧̅) = −
(1 + 𝛼)(1 + 𝛽)𝑟̅𝛼𝑧̅𝛽

𝛼𝛼/(1+𝛼)𝛽𝛽/(1+𝛽)(1 + 𝑟̅𝛼+1)(1 + 𝑧̅𝛽+1)
                            (6.12) 

𝑉̅𝑧(𝑟̅, 𝑧̅) =
𝛿(1 + 𝛼)2𝑟̅𝛼−1ln (1 + 𝑧̅𝛽+1)

𝛼𝛼/(1+𝛼)𝛽𝛽/(1+𝛽)(1 + 𝑟̅𝛼+1)2
                                       (6.13) 

𝑆 = 𝐾
𝛾(𝛾−1)/(𝛼+1) [ln(2)]𝛾/(𝛼+1)

𝛾𝛾/(𝛼+1)
                                              (6.14) 

 

where K is a constant related to the swirl ratio; δ is the ratio between the vertical and horizontal 

length scales (δ = zm/rm); α, β, and γ are parameters that allow for different shapes of the velocity 

profile. For the BV model, a realistic assumption of the radial velocity is first assumed, and then 

the tangential and vertical velocity distributions are derived through the momentum equations and 

continuity equation, respectively. Thus, unlike other vortex models, the velocities are normalized 

by the maximum radial velocity (𝑉̅𝜃 = Vθ/Vr,max; 𝑉̅𝑟 = Vr/Vr,max; 𝑉̅𝑧 = Vz/Vr,max) and the distances are 

where the Vr,max (Vr (rm, zm) = Vr,max) occurs (𝑟̅ = r/rm; 𝑧̅ = z/zm). In the BV model, the swirl ratio 

(S) is defined as the ratio between the maximum tangential velocity and the maximum radial 

velocity (S = Vθ,max/Vr,max), and γ is defined as 𝑟̅2 = 𝛾 − 1 at Vθ,max; γ ˂ 1 would be physically 

unrealistic. The Vθ of the BV model also exhibits an unrealistic behavior where the velocity 
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increases to infinity for 𝑧̅ = ∞. It is assumed to be realistic for heights relatively close to the ground 

where surface roughness affects the magnitude of the velocity. In the BV model, a two-cell vortex 

is simulated by adding velocity fields of a downdraft with no swirl. The downdraft is assumed a 

downwards vertical velocity and an outward radial velocity near the vortex core. Because the 

downdraft is assumed to have no swirl, the tangential velocity is assumed zero. The radial (𝑉̅𝑟,𝑑) 

and vertical velocity (𝑉̅𝑧,𝑑) equations for the downdraft are written as: 

 

𝑉̅𝑟,𝑑(𝑟̅, 𝑧̅) =
4𝑟̃𝑧̃

(1 + 𝑟̃2)(1 + 𝑧̃2)
                                                (6.15) 

𝑉̅𝑧,𝑑(𝑟̅, 𝑧̅) =
−4𝛿ln (1 + 𝑧̃2)

(1 + 𝑟̃2)2
                                                   (6.16) 

 

where 𝑟̃ = 1/𝜀𝑟𝑟̅  and 𝑧̃ = 1/𝜀𝑧𝑧̅ with scaling factors, 𝜀𝑟  and 𝜀𝑧 , for 𝑟̅  and 𝑧̅, respectively. By 

adding the downdraft velocity profiles (Eq. 6.15-16) to the vortex velocity profiles (Eq. 6.11-13), 

the velocity profile of a two-cell vortex can be obtained. Figure 6.2. represents the normalized 

velocity profiles of a two-cell vortex at 𝑧̅ = 1 with a downdraft within the core (α = 4, β = 1, γ = 2, 

S = 1, δ = 1, εr = 0.3, εz = 1). The velocity profiles of Figure 6.2(c) exhibit a similar structure as 

Figure 6.1(c). Note that the velocity equations are non-linear, and the superposition of the 

downdraft flows onto the vortex profiles violates the consistency of the NSE. However, the result 

of adding the two shows a reasonable representation of a two-cell vortex structure, which has some 

merit for engineering purposes. Despite many studies that attempted to solve the NSE, there has 

not been a model that can represent the velocity profiles of a multi-vortex structure. 
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            a) one-cell vortex            b) downdraft                     c) two-cell vortex  

(sum of (a) and (b)) 

 

Figure 6.2. Velocity profiles of a one-cell vortex (a), downdraft (b), and two-cell vortex (c) derived 

from the BV model (Baker and Sterling, 2017) 

 

6.2.1.4 Tangential velocity profile comparison 

 Unlike the radial and vertical velocity, the tangential velocity profile shows a more realistic 

shape for all vortex models mentioned before. In this section, the tangential velocity profiles of 

the idealized vortex are compared. Figure 6.3 shows a comparison of the normalized Vθ of the 

modified RV, BRV, SV, and modified SV model. The modified RV model has an advantage over 

others where the shape of the profile can be varied with decay exponent (phi) but has a 

discontinuity at 𝑟̅ = 1 whereas the other models show a smoother curve. The Vθ profile of the BRV 

model and the RV model with φ = 0.5 has a wider profile than the rest, meaning that the wind 

speed at the same radius is higher and could cause wider damage. The Vθ profile of SV and 

modified SV model resembles the profile of a two-cell vortex structure (Figure 6.1(c)) where the 

velocity becomes zero or close to zero near 𝑟̅ = 0 because the outward radial velocity of the 

downdraft pushes the tangential velocity further away from the center. The modified SV model 

has a very flat region within the core with a very sharp gradient of velocity change. 
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Figure 6.3. Comparison of the tangential velocity profiles of different idealized vortex models. 

 

With three different shape parameters (α, β, and γ), the BV model can produce a variety of 

different Vθ profiles. Figure 6.4 shows the normalized Vθ of the BV model at 𝑧̅  = 1 with different 

α and γ parameters. A swirl ratio (S) and β parameter of one is assumed, although the β value does 

not affect the result because 𝑧̅ = 1. As suggested before, a γ value of at least two is used. The effect 

of α and γ parameter on the shape of the Vθ profile is shown in Figure 6.4(a). A Vθ profile of a one-

cell vortex is produced with a γ value of two, and the Vθ profile starts to resemble the profile of a 

two-cell vortex as γ increases. The α parameter affects the rate of velocity change; the velocity 

increases inside the core and decreases outside the core more abruptly as α increases. The BV 

model holds a great versatility such that it can produce a Vθ profile very similar to other models as 

shown in Figure 6.4(b) where the BV model is fitted to the BRV, SV, and modified SV model.  
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     a) BV model with different shape parameters        b) BV model fitted to other models 

 

Figure 6.4. Different shapes of tangential velocity profile of BV model and comparison to other 

vortex models.  

 

6.3 Vortex Model Radar Comparison and Tree-fall Patterns 

6.3.1 Full-scale Radar Comparison  

 While Gillmeier et al. (2018) provides a great review of idealized vortex models, a full-

scale validation is necessary to examine the sustainability of the model. Full-scale 3-D wind field 

measurements of multiple tornadoes were collected using DOWs (Doppler on Wheels) and 

compiled in Refan et al. (2017), which can be used to verify or calibrate the idealized vortex 

models. A total of 9 volumes (volumetric samples from radar) of azimuthally averaged wind field 

are compiled from five different tornadoes: two volumes from Spencer, SD 1998 (F4), one from 

Stockton, KS 2005 (F1), one from Clairemont, TX 2005 (F0), two from Happy, TX 2007 (EF0), 

and three from the Goshen County, WY 2009 (EF2) tornado. Since most engineers are interested 

in the near-surface wind field, the radar data is examined at the lowest elevation above ground 

level (40-50 m). The radar data below this elevation is unavailable because the wind field close to 
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the ground is difficult to obtain with radar instruments as mentioned in Chapter 1. Table 6.1 

summarizes the nine volumes of the tornado wind field data set from Refan et al. (2017).  

 

Table 6.1. Summary of the tornado radar data set. 

Name of Tornado, Volume # 

(Abbreviation) 
Vθ,max

a (m/s) zmin
b (m) rmax

c (m) zmax
c (m) Vortex Structure 

Clairemont, V1 (Clr v1) 36.3 40 96 200 Vortex breakdown 

Happy, V1 (Hp v1) 39.0 50 160 50 Single-celled 

Happy, V2 (Hp v2) 37.9 50 160 250 Touch-down 

Goshen Co, V1 (GC v1) 42.2 47 150 47 Two-celled 

Goshen Co, V2 (GC v2) 42.0 40 150 160 Vortex breakdown 

Goshen Co, V3 (GC v3) 42.9 41 100 41 Two-celled 

Spencer, V1 (Sp v1) 60.2 51 192 51 Two-celled 

Spencer, V2 (Sp v2) 64.1 51 208 51 Two-celled 

Stockton, V1 (Stc v1) 50.7 43 220 43 Single-celled 

aVθ,max is the maximum tangential velocity in the entire volume. 
bzmin is the lowest height available. 
crmax and zmax are the radial distance and elevation at where Vθ,max occurs. 

 

To examine the validity of the idealized vortex model, the radar measured wind speed of 

each component from Refan et al. (2017) are fitted and compared to the idealized vortex models: 

1) modified RV model (RV), 2) BRV model, 3) SV model (SV1), 4) modified SV model (SV2), 5) 

BV model (BVrad), and 6) modified BV model (BVtan). Due to the effect of centrifuging of debris 

and hydrometeors at low-level, the Ground-Based Velocity Track Display (GBVTD) method, 

which is a method used to extract the 3D flow field of a tornado from Doppler radars (Lee et al., 

1999), introduces a mathematical bias in the radial and vertical velocity (Nolan, 2013). As stated 
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in section 6.2.1.3, the BV model is formulated around the radial velocity and the tangential velocity 

and distance are normalized by the Vr,max, and the radius at which the Vr,max occurs. Because of the 

mathematical bias in the radial velocity, the fitted BV model produced significant errors in some 

cases. Thus, the BV models normalized by Vθ,max, and the radius at which the Vθ,max occurs (BVtan) 

are also produced as suggested by Baker and Sterling (2018). In Baker and Sterling (2018), the 

BV model is modified such that velocity components are formulated around and normalized by 

the tangential velocity and the RMW at which the Vθ,max occurs. Since the RV, BRV, SV1, and SV2 

models are not a function of 𝑧̅, the velocities and radii are normalized by Vθ,max and RMW at the 

lowest height. Furthermore, only the tangential wind components of the vortex models are 

compared just as Refan et al. (2017) because the least-squares fit did not converge or performed 

very poorly for the radial and vertical components perhaps due to the bias in the wind speed 

estimate. To test the goodness of fit, the root-mean-square error (RMSE) is determined for each 

fit. The RMSE measures the differences between the observed value and the value predicted by 

the model (Eq. 6.17). 

 

𝑅𝑀𝑆𝐸 = √
∑(𝑉𝑖,𝑟𝑎𝑑𝑎𝑟 − 𝑉𝑖,𝑓𝑖𝑡)

2

𝑁
                                              (6.17) 

 

where Vi,radar is the wind speed value estimated by the radar at different radii, Vi,fit is the wind speed 

value estimated by model fit at the corresponding radius, and N is the total number of radar 

observations at the lowest elevation. A lower RMSE value represents a better fit.  

Figure 6.5 shows the tangential wind speed of the nine volumes at the lowest height and 

the vortex models fitted to the radar data, using a nonlinear least-squares fit method (Coleman and 
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Yi, 1994; Coleman and Yi, 1996). Table 6.2 summarizes the RMSE values between the tangential 

wind speeds of each radar sets to the fitted vortex models. Among the six vortex models, the BVtan 

model produced the “best” fit (lowest RMSE) for all nine volumes of radar sets. Having multiple 

shape factors that allow different profile shapes may be the most appropriate way to handle 

engineering models and better for providing realistic azimuthally averaged wind fields. For the 

same reason, the BVrad model also produced comparable fits in some cases as shown in Figure 

6.5(a), (b), (d), (e), and (g). However, the least-squares fit was much worse in the other cases 

because the Vr,max occurred at a much higher height and/or outer radius. For example, the (rm, zm) 

occurred at (960 m, 900 m) and (784 m, 280 m) for Hp v2 and Sp v2, respectively. This large error 

may have been caused by an error in the radial velocity due to the centrifuging effect. The fits of 

the RV and BRV models were better than the SV models but worse than the BV models. 

Comparing the two models, the RV model performed slightly “better”: five of the RV fits had 

lower RMSE than the BRV model. The figures suggest that the RV model is more flexible in terms 

of the shape of the wind profile, but the BRV model fits better in terms of the continuity and 

curvature of the wind profile. Although the vortex structure of GC v1, GC v3, Sp v1, and Sp v2 

displays a two-celled vortex structure, both SV1 and SV2 models show relatively poor fits for all 

nine volumes. However, one should note that the least-squares fit is estimated at least 40 m above 

ground level and the core size could be much broader at lower heights as shown in Figure 6.1(c), 

in which the SV models may produce a much better fit. Table 6.3 shows the estimated parameters 

for each idealized vortex model using the least-squares fit. Note that there are no parameters to be 

fitted for BRV and SV models.  
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     (a)                   (b) 

 

 
     (c)                   (d)  

 

 
     (e)                   (f) 

 

Figure 6.5. Tangential wind speed profile of radar data sets and fitted models: (a) Clr v1, (b) Hp 

v1, (c) Hp v2, (d) GC v1, (e) GC v2, (f) GC v3, (g) Sp v1, (h) Sp v2, and (i) Stc v1. 
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Figure 6.5. (continued) 

 

 
     (g)                   (h) 

 

 
     (i) 

 

 

 

 

 

 

 

 

 



135 

 

Table 6.2. RMSE between radar measured tangential wind speed and fitted vortex models. 

 Clr v1 Hp v1 Hp v2 GC v1 GC v2 GC v3 Sp v1 Sp v2 Stc v1 

RV 2.35 2.71 2.25 4.95 2.96 4.23 6.73 2.84 2.23 

BRV 3.27 2.17 1.70 4.64 2.52 5.42 10.0 3.66 3.79 

SV1 7.42 6.46 5.85 6.58 4.90 8.73 13.4 12.3 6.95 

SV2 10.6 10.77 10.2 9.15 9.77 11.6 19.1 20.4 13.2 

BVrad 0.91 0.69 6.24 2.00 2.08 5.97 3.69 9.00 4.50 

BVtan 0.84 0.51 0.73 1.96 1.34 1.59 4.01 1.8 2.88 

 

Table 6.3. Estimated idealized vortex model parameters using least-squares fit.  

 
RV 

φ 

                               BVrad 

      K                 γ                 α                β 

                               BVtan 

      K                 γ                 α                β 

Clr v1 0.43 0 3.27 0.07 -17.0 3.48 2.59 0.21 -1.31 

Hp v1 0.56 18.4 2.73 1.19 3.00 3.04 2.01 1.73 -0.56 

Hp v2 0.63 0.04 1.62 -1.00 -1.64 2.10 1.71 1.34 3.00 

GC v1 0.65 0.12 4.53 1.47 -16.7 2.43 2.77 2.34 3.00 

GC v2 0.79 42.8 5.39 1.08 3.00 3.10 2.49 2.62 -0.35 

GC v3 0.55 1.33 1.11 -1.00 -2.03 3.24 2.16 0.97 3.00 

Sp v1 0.46 26.2 3.23 0.67 3.00 3.64 2.56 0.95 3.00 

Sp v2 0.53 2.47 1.24 0.01 -2.92 2.27 2.02 1.52 3.00 

Stc v1 0.65 4.25 1.47 2.84 3.00 1.79 2.06 2.43 3.00 
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6.3.2 Tree-fall Patterns of Idealized Vortex Models 

 In Chapter 4, the modified RV model is used to produce tree-fall patterns and estimate the 

near-surface wind field. One great advantage of tree-fall analysis is that different vortex models 

other than the RV model can be also used to generate tree-fall patterns that may be more realistic. 

In this section, the tree-fall pattern produced from other idealized vortex models is presented and 

compared. In order to compare the tree-fall patterns of other idealized vortex models to the Rankin 

vortex model in Chapter 4, the same parameters and Vθ,max used in Figure 4.4 and Figure 4.5 are 

used to simulate the tornado wind field and tree-fall patterns: VT = 13.4 m/s (30 mph), Vθ,max = 42.5 

m/s (95 mph), RMW = 482 m (0.3 miles), Vc =  38 m/s (85 mph). Note that the tornado “dropped” 

is at x = -1.6 km (-1 mile) and traversed until the center reaches x = 1.6 km (1 mile) for all 

simulations. In addition, it is important to increase the kinematic viscosities by very large orders 

of magnitude to ensure reasonable magnitudes of radial velocity (Davies-Jones and Kessler, 1974; 

Refan et al., 2017). If a realistic value of kinematic viscosity of air (~10-5 m2/s at 20 °C) is used, 

the radial velocity component of the BV and SV models becomes negligibly small. Figure 6.6 

presents the tree-fall patterns generated using the BRV and SV model with a viscosity of 650 m2/s, 

a much larger viscosity to generate a meaningful amount of radial flow. In Figure 6.6, a tree-fall 

pattern on the backside of the tornado is observed for both Figure 6.6(a) and 6.6(b). With no 

boundary conditions imposed in Eq. 6.2 and Eq. 6.7, the magnitude of Vr increases infinitely with 

r for BRV and SV model, generating infinite tree-falls beyond certain radial distance. Note that 

the Vr profile of the SV model becomes the same as that of the BRV model if the shape factor (b) 

is zero. Moreover, the tree-fall patterns display a swirling pattern only on the south side of the 

tornado because the translational speed is added on the south side and subtracted on the north side. 
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For both cases, the Vr near the tornado center is too small (even with unreasonably large viscosity) 

that the tree-fall pattern is unaffected by Vr and dominated by the Vθ. 

Figure 6.6 exhibits unrealistic tree-fall patterns, suggesting that the radial velocity profiles 

of the BRV and SV models are inadequate to be used in the tree-fall analysis. Regardless of the 

uncharacteristic tree-fall pattern, a decrease in Damage Width (DW) between the tree-fall patterns 

of BRV and SV model because the decay rate of Vθ profile of the SV is much greater than that of 

BRV model (Figure 6.3). The tree-fall pattern of the modified SV model is not shown because the 

pattern shows very little difference from the tree-fall pattern of the SV model; the trees fall in the 

outer region as the Vc is assumed as 38 m/s (85 mph) despite the significant difference of the Vθ 

profile in the core region. 

 

 
    (a) BRV model           (b) SV model, b = 1 

 

Figure 6.6. Tree-fall patterns using (a) BRV model and (b) SV model. 

 

The physically unrealistic boundary condition of the radial velocity of BRV and the SV 

models results in an unrealistic tree-fall pattern on the backside of the tornado, which would have 

caused damage in the entire domain if the tornado was simulated until further down in the X-
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direction. Though it is possible to produce more realistic-looking tree-fall patterns, similar to the 

generic tree-fall pattern with α = 90° (Figure 4.7(e)), using the BRV and SV models if the near-

surface tornado wind field is simulated with a very small v. However, it will result in a negligible 

amount of radial velocity whereas the tree-fall patterns observed in the field suggest that there is a 

significant radial inflow near the ground. An alternative way of producing realistic tree-fall 

patterns using the BRV and SV models is to use the tangential wind profile of the BRV and SV 

model for the radial wind profile, just as the modified RV model. Figure 6.7 shows the tree-fall 

patterns of RV, BRV, SV, and modified SV models assuming that the radial wind profile follows 

the tangential wind profile. The same input parameters of Figure 4.4 are used: VT = 13.4 m/s (30 

mph), Gmax = 4.5, α = 45°, RMW = 482 m (0.3 miles), Vc = 38 m/s (85 mph), and φ = 0.55 (only 

for RV). Note that the tornado vortex is moving from left to right as indicated in blue arrow and 

the confluence line is indicated by the red line. The tree-fall patterns of BRV, SV, and modified 

SV model exhibit a similar overall pattern as the RV tree-fall pattern but DW and DR vary. The 

DW of SV and modified SV model is much smaller than that of RV and BRV model because of a 

narrower velocity profile (Figure 6.3). The wider the velocity profile is, the velocity that reaches 

the critical wind speed of tree-fall (Vc) extends further away from the tornado center, resulting in 

a wider DW. The DR of SV and modified SV model is much greater than that of the RV and BRV 

model. Despite the decrease in DW on both north and south sides of the confluence line, the DR is 

greatly affected by the decrease in the north side DW, resulting in a significant increase in DR. 

Although the DW and DR of the RV model differ greatly from other models in Figure 6.7, the 

modified RV model has a decay exponent (φ) that can be changed and produce similar outputs 

without changing the other parameters (e.g., VT, Gmax, RMW), demonstrating the advantage of a 

flexible model with shape factor (φ). 
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Figure 6.7. Comparison of tree-fall pattern of BRV, SV, and modified SV model to the RV model. 

 

Figure 6.8 presents the tree-fall patterns generated using the BV model with different α and 

γ parameters, assuming 𝑧̅ = 1. To simplify the BV model, the radial component of the downdraft 

(Vr,d) was not considered. As the same boundary condition is assumed for the Vr profile of the BV 

model where Vr = 0 at r = 0 and r = ∞, the tree-fall patterns of the BV model show a more realistic 

and similar pattern to the tree-fall pattern in Figure 4.5 and no tree-falls was observed on the 

backside of the tornado. Multiple shape parameters of the BV model allow versatile wind profiles, 

which can produce more tree-fall patterns. As γ increases, the core size increases and the Vθ profile 

widens, increasing the DW. Note that Figure 6.4(a) is normalized by RMW, which occurs at 

different radii for different shape parameters. On the other hand, DW has a negative correlation 

with α and β. Although β has much less influence on DW; the DW decreases significantly as α 

increases but decreases only slightly as β increases. The DR relationship seems to be much more 
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complicated than the DW. As mentioned in Chapter 4, the input parameters interact with each other, 

complicating the output relationship. To understand the relationship between the outputs (DW, DR) 

and the input parameters of the BV model, detailed interaction analysis (see section 4.3.2) is 

necessary.  

 

 
(a) γ = 2 

 

Figure 6.8. Tree-fall patterns of BV model with different shape factors. 
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Figure 6.8. (continued) 

 

 
(b) γ = 4 

 

6.4 Other Wind Field Models 

6.4.1 Asymmetric Vortex Model 

6.4.1.1 Asymmetric vortex wind field 

In general, a stationary vortex model is assumed to be axisymmetric in tornado wind field 

modeling. However, studies have shown that some tornadoes exhibit a large asymmetry in the 

wind field even with the translation speed subtracted, possibly due to the additive effects of 

forward or rear flank downdraft (Doviak and Zrnić, 1993; Wurman and Gill, 2000) and surface 

interaction and instability (Refan et al., 2017; Refan and Hangan, 2018). The idealized vortex 

model can still be applied to such scenarios with some modifications to accommodate the external 

effects. One way to compensate to divide the idealized vortex model into quadrants and generate 

wind fields with different parameters at different quadrants. The divided quadrant parameters may 
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be able to generate a more realistic tree-fall pattern for some tornado cases. To illustrate the 

concept, an example of the divided wind fields using the RV model with different parameters is 

shown in Figure 6.9. Note that wind speed below 29 m/s (65 mph, EF 0) is not colored. The 

quadrant number is defined as follows: 1) Quadrant I (QI) is the northeast plane, 2) QII is the 

northwest plane, 3) QIII is the southwest plane, and 4) QIV is the northeast plane of the tornado 

center. The tornado wind field of Figure 6.9 is simulated with the same parameter used in Figure 

4.3, except the φ is divided as φQI = 0.6, φQII and φQIV = 0.55, φQIII = 0.5. Such tornado may represent 

a possible scenario where the tornado is traversing over a region with different terrains on different 

sides of the tornado. However, further study is necessary to examine which parameter is affected 

by the external factor.  

 

 
 

Figure 6.9. A translating tornado vortex with different RV parameters used in each quadrant.  

 

In Chapter 2, convergent and divergent patterns of soybean are shown in Figure 2.7. It is 

speculated that these patterns possibly indicate the formation of multiple vortices. Moreover, many 
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studies have confirmed the existence of multiple vortices or small-scale vortices within a large 

vortex (Agee et al., 1975; Bluestein and Pazmany, 2000; Fujita, 1970; Pauley and Snow, 1988). 

Wurman (2002) was able to obtain radar images of a multi-vortex tornado using DOW and analyze 

them in more detail. Despite the existence of multi-vortex tornadoes, the wind field of a multi-

vortex tornado remains elusive and no analytical model of a multi-vortex tornado has been 

developed as mentioned in section 6.2.1.3. 

 

6.4.1.2 Asymmetric vortex tree-fall patterns 

 In this section, an example application and the tree-fall pattern of an asymmetric vortex 

model are presented. As mentioned in section 6.4.1.1, an asymmetric wind field is formed in some 

cases possibly because of the additive effect of rear flank downdraft (RFD) where the rear flank 

downdraft wraps around the backside of the tornado. This can be simulated using an asymmetric 

wind field and increasing the tangential wind speed on the southwest side (QIII) of the tornado. 

To replicate a RFD surge, an asymmetric tornado wind field is simulated in Figure 6.10 with VT = 

13.4 m/s (30 mph), Gmax = 4.5, RMW = 482 m (0.3 miles), Vc = 38 m/s (85 mph), and varying α 

and φ. QIII is simulated with αQIII = 45° and φQIII = 0.58, and the rest of the quadrants with α = 0° 

and φ = 0.6. On the south side of the simulated tree-fall pattern of Figure 6.10, tree-fall directions 

resulted from RFD surge pointing northwest (southwesterly wind) are observed. Only wind speed 

contour greater than 38 m/s (85 mph) is colored, and wind speed below the critical wind speed of 

tree-fall, Vc = 38 m/s (85 mph), is not colored. It is important to stress that the wind field division 

is a simple engineering fix, and strictly the discontinuity violates the NSE equations. Figure 6.11 

shows a southeasterly wind direction on the very south side of the track from Alonsa, MB tornado, 

a possible RFD surge influenced tree-fall pattern, similar to the simulated pattern in Figure 6.10. 
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Figure 6.10. Asymmetric tornado wind field with RFD surge (αQIII = 45°, φQIII = 0.58) and 

associated tree-fall pattern. 

 

 

Figure 6.11. Possible RFD surge influenced tree-fall pattern from Alonsa, MB tornado. Blue arrow 

indicates the translation direction and estimated tornado center. 
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6.4.2 Other Windstorm Models 

 The tree-fall analysis can be applied to not only tornadoes but also to other windstorms 

with sufficient tree-fall as long as tree (or crop) damage is present. By substituting the tornado 

vortex model with other wind storm models, such as the downburst model (Holmes and Oliver, 

2000) and the tropical cyclone model (Holland et al., 2010), the tree-fall pattern and near-surface 

wind field of other windstorms can be produced. With a sufficient number of damaged trees, the 

tree-fall analysis can be applied the same way, and the near-surface wind field of other windstorms 

can be estimated. Because hurricanes are simulated with vortex models, only downburst models 

will be addressed in this section. 

 

6.4.2.1 Downburst wind field 

 A downburst is a strong ground-level wind system caused by a strong downdraft of air that 

burst outward radially on contact with the ground (Wilson and Wakimoto, 2001), often producing 

damaging winds. Fujita was first to discover and recognize the importance of a downburst event 

that another type of damaging other than tornadic or straight-line wind existed. Downburst event 

is highly divergent and associated with curved or straight winds (Fujita, 1981). As a result, many 

downburst events have been surveyed both on grounds and air, showing diverging damage patterns 

(Fujita, 1981; Fujita, 1989; Fujita, 1993), and also have been recorded on Doppler radar (Wilson 

and Wakimoto, 2001; Hjelmfelt, 1988). Later, Holmes and Oliver (2000) developed an empirical 

of a downburst calibrates with Hjelmfelt (1988) radar measurements. The radial profile of a 

downburst is also divided into two regions and can be expressed as:  
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𝑉𝑟(𝑟) = 𝑉𝑟,𝑚𝑎𝑥 exp (−
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)          for 𝑟 ≤ 𝑅𝑀𝑊              (6.18) 

 

where t is the time variable, T is a time constant, and R is a radial length scale. The radar 

observations from Hjelmfelt (1988) suggest 50% of the RWM. The region of r ≤ RMW is called 

the stagnation region where the radial velocity increases approximately linearly with r. In the outer 

region, the radial velocity decreases as shown in Figure 6.12. 

 

Figure 6.12. Radial wind speed profile of a downburst normalized by Vr,max and RMW. 

 

6.4.2.2 Downburst tree-fall patterns 

Using the Holmes and Oliver model (HO model) presented in section 6.4.2.1, a downburst 

wind field and tree-fall pattern can be simulated. The velocity profile changes over time because 

of the time variable in the downburst model. Consequently, the downburst tree-fall pattern changes 

as the downburst traverses unlike the tree-fall pattern of a tornado even though constant parameters 

are assumed. Figure 6.13 shows the wind field of a translating downburst and the tree-fall patterns 
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generated with Vc = 38 m/s (85 mph). The downburst is simulated from -1.6 km (-1 mile) to 1.6 

km (1 mile) with VT = 13.4 m/s (30 mph), Gmax,d = 4.5, RMW = 482 m (0.3 miles), R = ½RMW, 

and T = 100 s where Gmax,d is defined as the ratio between the Vr,max and the VT. Because the damage 

width of the tree-fall pattern from a downburst is not consistent along the x-axis, the outputs must 

be defined differently from the tree-fall patterns of a tornado (Chapter 4). In Figure 6.13(b), outputs 

for a downburst are defined. DW1 is defined as the greatest DW in the direction perpendicular to 

translation, DW2 is defined as the DW in the direction of translation, and MD is the mean direction 

of tree-fall at DW1. If the outputs of the observed tree-fall pattern of a downburst are determined, 

the output comparison method described in section 4.2.2.2 can be applied to estimate the 

parameters and the near-surface wind field of a real case downburst.  

As shown in Figure 6.13(b), a tree-fall pattern diverging away from the center is observed. 

This diverging pattern is the primary feature of a downburst, which is commonly used to 

distinguish between a tornado and a downburst. Although a large-scale diverging pattern (not to 

be confused with a small-scale divergent pattern shown in Figure 2.7) can be produced from a 

tornado with α = 90° as illustrated in Figure 4.7(e), this pattern would require a tornado with a very 

small magnitude of radial component compared to the tangential component. Therefore, another 

difference between the tree-fall pattern of tornado and downburst is that the diverging pattern in 

tornadoes would have significant directional changes (or swirling pattern), whereas the diverging 

pattern in downbursts would have fewer directional changes (relatively straight-line wind) and be 

symmetric about the center. Yet, the tree-fall patterns from field observations show converging 

tree-fall patterns, suggesting that the radial component is significant. More observed tree-fall 

patterns from a tornado will be discussed in Chapter 7.  
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(a) wind field of a downburst 

 

                     
(b) tree-fall pattern of a downburst 

 

Figure 6.13. Illustration of (a) a translating downburst wind field and (b) its associated tree-fall 

pattern. 

 

6.5 Topographic Effects on Tornado Wind Field  

Although most documented tornadoes occur in the Great Plains where the terrain is rather 

flat, a considerable number of tornadoes occur in mountainous regions in the southeast of the 

United States (Karstens, 2012). In fact, there have been many studies showing tornadoes occurring 

in mountainous regions with significant topography, which caused a large amount of tree damage 

(Bech et al., 2009; Beck and Dotzek, 2010; Cannon et al., 2016; Forbes 1998; Fujita, 1989; 

Karstens, 2012). In mountainous regions with complex terrain, the topography has a dramatic 

influence on the vortex structure and near-surface wind field of a tornado. The topography effect 
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is an especially complex phenomenon because the topography influences not only the dynamics 

of a tornado but also the localized wind flow. Because of the considerable change in the tornado 

dynamics and the local wind, the damage severity in regions of topography varies significantly 

more than on the flat surface. Despite the significant influence, not much is known regarding the 

effects of topography on tornadoes. In this section, how the topographic features of an idealized 

3D hill affect the Rankine vortex parameters and the localized wind flow will be investigated in 

an attempt to incorporate the terrain effects in tree-fall analysis. The changes in RV parameters 

and the localized speed-up factors estimated using ESDU 91043 will be applied to a control 

simulation and generate tree-fall patterns. The tree-fall patterns will then be compared to the tree-

fall pattern produced from the LES simulation. 

 

6.5.1 Literature Review on Topographic Effects on Tornadoes 

Nese and Forbes (1998)’s tornado risk model suggested that the ratio between the chance 

of a tornado striking a mountainous region and a non-mountainous region was much smaller than 

the ratio between the chance of an EF 2 tornado striking a mountainous region and a non-

mountainous region. Based on the statistical evidence and over 40 damage surveys in mountainous 

regions, Forbes (1998) suggested that terrain mainly affects the structure of the tornado rather than 

the location of occurrence; the vortex diameter and the structure change as the tornado ascends 

and descends the hills. In Forbes (1998), four key points regarding the topographic effects on 

tornadoes are suggested based on field observations: 1) the damage swaths of tornadoes frequently 

contracts in width and intensify on downward slopes by vortex stretching, 2) a very intense swirl 

occurs at a spot on the downhill slope or at the base of the mountain, 3) the tornado intensity 

usually weakens on the uphill slope, and 4) often an intense tornado core re-emerges at the next 
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hilltop plateau. Cannon et al. (2016) investigated the change in the severity of forest damage 

caused by tornadoes in mountainous terrain and also showed evidence that tornado severity 

diminishes and strengthens as tornadoes travel upslope and downslope, respectively.  

A few studies have been developed to understand the topographic effect using numerical 

and experimental simulation. Lewellen (2012)’s numerical study has become the foundational 

study of topographic effects on tornadoes. In his study, a large set of tornado-like vortices (over 

250) were simulated using a high-resolution Large Eddy Simulation (LES) model over several 

different topographic features (e.g., ridges, valleys, hills) to investigate the changes in tornado 

path, structure, and intensity over different topographic conditions. His numerical simulations 

suggested that tornadoes are expected to weaken when ascending slopes and strengthen when 

descending slopes due to the topographic influence on corner flow swirl ratios, and also supported 

Forbes (1998)’s findings, particularly the tendency toward vortex reorganization on the uphill 

slope with an intense track appearing at the ridge top. In Nasir and Bitsuamlak (2018), a numerical 

tornado-vortex was traversed over 3D hills (steep and shallow hill) and the Fractional Speed-Up 

Ratio (FSUR), which is the ratio between the wind speed with and without the presence of the hill 

at a specific location, for each hill is calculated. The study shows a maximum FSUR as high as 2.5 

for a steep hill. More recently, Satrio et al. (2020) conducted a more extensive numerical study 

using LES with a medium-swirl background vortex to investigate the effects of surface terrain in 

more detail. Their study found that the surface terrain resulted in an overall increase in 10-m 

horizontal winds and induced path deviations, vortex contraction/expansion, which were 

consistent with findings from Lewellen (2012). As the vortex crests the top of the hill, it acts to 

expand the near-surface vortex and contract as it descends. In Karstens (2012), an experimental 

tornado simulator was used to simulate a tornado-like vortex over an idealized 2D ridge and 
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escarpment. For both topographic models, a deviation of the vortex from the geometric centerline 

was observed by tracking the minimum surface pressure. Additionally, weakening of the vortex 

was observed near the crest of the two idealized models. On the other hand, an intensification 

occurred just before ascent and/or during and just after the descent. This finding was supported by 

the observations of tree-fall from the Little Sioux, IA Scout Ranch tornado over a 2-D ridge as 

shown in Figure 6.14. Figure 6.14 shows less severely damaged trees on the ridge crest line than 

those in the valleys on either side of the ridge. A clear gradient of tree damage along the tornado 

track also supports the finding of rapid vortex intensification while descending the ridge.  

 

 

Figure 6.14. Oblique aerial image of the Little Sioux, IA Scout Ranch tornado over a 2-D ridge 

(Karstens, 2012) 

 

6.5.2 ESDU Topographic Factor 

 As mentioned before, not only the vortex structure but the localized wind flow is also 

influenced by the topography. A general guideline on topographic effects on localized wind and 

the ABL topographic speed-up factor (KL) can be found in ASCE 7-16. However, more detailed 

methods are presented for estimating the KL for hills, embankments, escarpments, and valleys in 
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ESDU 91043: Mean wind speeds over hills and other topography, a manual developed by 

Engineering Science Data Unit (ESDU). The ESDU 91043 methods are derived from solving the 

NSE and calibrating against both full-scale and wind-tunnel measurements (ESDU, 1991). The 

methods can account for three-dimensional effects, wind inclination to the ridgeline, and effects 

of flow separation on steep topography. Moreover, irregular-shaped hills with bulges and 

depressions can be treated in this method.  

 In general, when the wind blows over a hill in an ABL condition, the wind decelerates near 

the foot of the hill before ascending and then accelerates as it moves over the hill. The magnitude 

of acceleration increases then decreases near the crest of the hill. The flow is again decelerated on 

the downwind side near the end of the hill, and then the wind eventually returns to the same 

conditions as for the undisturbed wind upstream of the hill. Figure 6.15 illustrates the general wind 

speed variation over a hill in a one-dimensional sense.  

 

 

Figure 6.15. Illustration of wind speed variation near the ground over a hill (ESDU, 1991) 

 

  The ESDU 91043 uses the equivalent embankment method, which converts a hill into an 

“equivalent” embankment, and the KL factor is defined as the following: 
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𝐾𝐿 = 1 + ∆𝐾𝐿2𝑑𝑓𝑎𝑟 + ∆𝐾𝐿3𝑑                                                  (6.19) 

 

where ΔKL2d is fractional KL for two-dimensional topography, far is the correction factor for effect 

on ΔKL2d of three-dimensional topography, and ΔKL3d is fractional KL for three-dimensional 

topography. The three-dimensional effect is accounted as part of the flow over the central part of 

the hill is deflected around the sides, which requires a reduction in the speed-up factor over the 

central part of the hill span near the crest and an increase in the speed-up factor towards the sides. 

In section 6.5.3, the topographic factor on a tornado will be investigated by examining the LES 

simulations of a tornado over an idealized sinusoid 3D hill. The speed-up factor of the same 3D 

sinusoid hill (height of 50 m and length of 1000 m) used in the LES simulation is calculated in this 

section. Figure 6.16 shows the equivalent embankment of the 50-m hill and the one-dimensional 

KL of the 50-m hill at 10 m Above Ground Level (AGL). The one-dimensional KL profile in Figure 

6.16(b) displays a similar pattern as the speed-up factor shown in Figure 6.15, where the flow 

decelerates on both sides near the base of the hill and accelerates as the wind ascends and descend 

the hill. Figure 6.17 shows the KL of the 50-m hill in a two-dimensional plane along the X-direction. 

The detailed process of obtaining the KL will not be discussed in this section as it is not the primary 

focus of this study, but it can be found in ESDU 91043.  
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        (a) equivalent embankment of 50-m hill        (b) KL of 50-m hill 

 

Figure 6.16. Illustration of (a) equivalent embankment of 50-m hill and (b) one-dimensional KL of 

the 50-m hill 

 

 
 

Figure 6.17. Two-dimensional KL of the 50-m hill along the X-direction. 

 

6.5.3 LES Simulation over Idealized Three-Dimensional Hill 

 One of the numerical simulations of Satrio et al. (2020) is used to examine the topographic 

effects on a tornado-like vortex over an idealized hill and incorporate topographic effects in the 

tree-fall analysis. Figure 6.18 shows the maximum 10 m AGL horizontal velocity of a tornado-

like vortex with a translating speed of 10 m/s and the underlying topographic features (five 
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consecutive 3D sinusoid hills with a width of 1 km), where the black contour lines represent the 

elevation of the hills. The results show an increase in horizontal wind speed on the uphill and in 

the gap segment of 50-m hills and 100-m hills. In this section, the 50-m hill simulation is used to 

estimate the changes in RV parameters of the tornado-like vortex as the vortex translates over the 

hills, in which the changes in the RV parameters define the changes in the vortex structure (e.g., 

vortex compression, stretching). The tree-fall pattern generated using the RV model and using LES 

simulation is compared to evaluate the potential of applying tree-fall analysis over terrains. Note 

that the hills in the simulations are very idealized compared to the terrains in reality.  

 

 

Figure 6.18. Maximum horizontal wind speed for (a) 25-m hill, (b) 50-m hill, and (c) 100-m hill 

(Satrio et al., 2020). 

 

6.5.3.1 Change in tornado dynamics 

 Before examining the change in RV parameters of the LES simulation, the tornado center 

must be first estimated to accurately estimate the RV parameters. As observed in many other 
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studies (Karstens, 2012; Lewellen, 2012; Satrio et al., 2020), the path deviation of tornado center 

is a prevalent feature of a vortex as it traverses over terrain. The center of the vortex was estimated 

by tracking the location of minimum pressure (Karstens, 2012). However, in the case of the Satrio 

et al. (2020) simulation, the minimum surface pressure did not yield the vortex center due to the 

presence of sub-vortices pressure perturbation. Thus, instead, the geometric centroid of pressures 

below 15th percentile was used to estimate the vortex center. Figure 6.19 shows the estimated 

vortex center as the vortex traverses over 3D hills.  

 

 

Figure 6.19. Estimated vortex center as the vortex traverses over idealized 3D hills. 

 

Once the vortex center is estimated, the localized speed-up effect in the LES simulation 

must be removed in order to estimate the RV parameters. Thus, the wind field of the tornado-like 

vortex is first divided by the ESDU topographic speed-up factor, KL, obtained from section 6.3.2. 

For each time step the vortex translates, each wind component (wind velocity in X and Y direction) 

of the 10 m AGL wind field at each grid point is divided by the corresponding directional KL, in 

which the continuous KL of five consecutive 50-m hills in (a) X-direction and (b) Y-direction is 

shown in Figure 6.20. Then, the RV parameters of each time step are estimated based on the 

azimuthal average of the horizontal wind speed. The Vmax and RMW are estimated based on the 

maximum value of the azimuthally averaged horizontal wind speed and the radius at which the 
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Vmax occurs. The decay exponent (φ) and α (angle between Vrot and Vrad) are estimated by curve-

fitting the azimuthally averaged horizontal wind speed and averaging the angle between Vrot and 

Vrad of all grid points. Figure 6.21 illustrates an example estimation of φ and α of the tornado-like 

vortex at one time-step. Note that the KL is wind is blowing in the same direction as indicated in 

6.16 for each direction, and the KL contour maps would be flipped horizontally and vertically for 

X-direction and Y-direction, respectively, if the wind blows from the opposite direction. 
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(a) X-direction 

 

 
(b) Y-direction 

 

Figure 6.20. Continuous KL of five consecutive 50-m hills in (a) X-direction and (b) Y-direction.
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(a) horizontal wind speed fitted to RV model      (b) estimated alpha contour 

 

Figure 6.21. Illustration of (a) φ and (b) α estimation of LES simulated tornado-like vortex. 

 

 Figure 6.22 shows the estimated change in RV parameters of the LES simulation as the 

vortex translates over the 50-m hills, where the blue and green region indicate uphill and downhill 

regions, respectively, and the black dotted line indicates the crest of the hill. Dotted points are the 

individual estimated RV parameter at the estimated tornado center, and the smoothed curves are 

laid over. The change in RV parameters in Figure 6.22 suggests a change in the vortex structure. 

As the vortex climbs uphill, the vortex expansion can be observed by the increasing tendency of 

RMW and the decreasing tendency of φ. As a result of vortex expansion, the vortex weakens, 

indicated by the decreasing tendency of Gmax, due to conservation of angular momentum. As the 

vortex moves downhill, the vortex is intensified with increasing Gmax and contracts with decreasing 

RMW and increasing φ, narrowing the vortex. A more pronounced pattern is exhibited in the 

change of α where α is at the lowest (about 40°) when the vortex center is in the crest and reaches 

the highest (about 60°) when the vortex center is in the valley. This result is surprising because the 

valley flow would cause the more radial flow into the tornado, causing α to decrease. The possible 

source of error may have been caused from azimuthal average of α.  
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(a) Gmax in red, RMW in blue 

 

 
(b) α in red, φ in blue 

 

Figure 6.22. Estimated RV parameters of the LES simulation translating over 50-m hills: (a) Gmax and RMW and (b) α and φ.
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6.5.3.2 Tree-fall pattern over idealized 3D hills 

 Using the RV parameters extracted from section 6.3.3.1 and the ESDU topographic speed-

up factors, a near-surface (AGL 10 m) wind field of a tornado translating over consecutive 3D hills 

can now be simulated with an RV model, and the tree-fall pattern can be generated by setting a 

critical wind speed of tree-fall (Vc). Figure 6.23 displays (a) the tree-fall pattern from the LES 

simulation and (b) the tree-fall pattern using the RV model with Vc = 40 m/s. The two tree-fall 

patterns show moderately comparable agreement. Especially, when the vortex traverses over the 

first hill, a gradual decrease in the DW is observed on the uphill in both figures. Although the 

vortex is expanded, the DW (damage severity) is lessened because of the decrease in Gmax (vortex 

weakening). Then, the DW starts to increase to near the crest of the hill. However, the DW 

decreases again for the RV simulation, whereas the DW continues to increase through the valley 

for the LES simulation. Other studies have shown that the most intense winds and severe damage 

tend to occur in between the hills or in the lowest valley (Cannon et al., 2016; Satrio et al., 2020), 

which is shown in Figure 6.23(a), but not in Figure 6.23(b). Another major discrepancy can be 

found in the location of the confluence line (CL) and thus in the DR. A south shift of CL and a 

reduction of DR are observed both uphill and in the valley for the LES simulation. However, they 

are only observed on the downhill side for the RV simulation. A possible reason for discrepancies 

between the two models is that the formation of sub-vortices in the valley, which are not 

represented in the RV model. LES simulations have shown formation of sub-vortices in the uphill 

due to relatively strong radial wind shears and in the valley due to vortex contraction (Satrio et al., 

2020). Perhaps, the asymmetric RV model would have to be used in this case, avoiding azimuthal 

averaging. Due to the formation of sub-vortices, rapidly (but often temporally) increasing the 

horizontal wind, it is speculated that the DW is increased and the location of the CL and DR are 
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also largely affected, which is not captured in the tree-fall pattern of the RV model. As stated in 

section 6.5.1, the topographic effects on tornado is a very complex subject, and more study is 

necessary to accurately quantify the changes in the vortex structure and improve the localized 

speed-up factors. However, a moderately comparable tree-fall pattern between the LES simulation 

and the RV model has shown a great potential of incorporating topographic effects in the tree-fall 

analysis using the ESDU speed-up factor. 
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(a) LES simulation 

 

 
(b) RV model 

 

Figure 6.23. Tree-fall pattern of (a) LES simulation and (b) RV model with Vc = 40 m/s. 
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6.6 Summary 

In this chapter, different idealized vortex models that can be used in the tree-fall analysis 

are first reviewed and the tangential wind velocity profiles of the different vortex models are 

compared to the full-scale radar observations from Refan et al. (2017) to evaluate the goodness of 

fit of each model. The tree-fall patterns are also generated using different idealized vortex models 

and compared to the control tree-fall pattern (RV model). Topographic effects on tornado 

dynamics and localized wind flow and the application of topographic effects in tree-fall patterns 

are also investigated using ESDU speed-up factors and the LES simulation from Satrio et al. 

(2020). The following points are the important findings from this chapter: 

 Due to multiple-shape factors, the wind profiles of the BV model best-fits the tangential 

velocity profile of the full-scale radar data although the tangential velocity should be 

normalized by the Vθ,max as suggested by Baker and Sterling (2018). 

 The tangential velocity components of the SV and modified SV models did not match well 

with the full-scale radar data, even the two-celled structure vortex.  

 The tree-fall pattern of the BRV and SV models produced unrealistic tree-fall patterns due 

to the unrealistic boundary condition, whereas the tree-fall pattern of the RV and BV 

models produced realistic tree-fall patterns. This implies that the boundary condition 

assumption of Vr = 0 at r = 0 and r = ∞ that Baker and Sterling (2017) imposes is valid at 

least near the ground where trees are present. 

 The modified vortex model and other windstorm models can replicate tree-fall patterns 

caused by external factors, such as RFD surge and terrain effects, and other windstorms.  
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 The estimated RV parameters from the LES simulation over 3D sinusoid hills supported 

the findings of other numerical and experimental studies where the vortex expands in the 

uphill and contracts on the downhill.  
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CHAPTER 7: TREE-FALL ANALYSIS APPLICATION AND COMPARISON 

 

7.1 Introduction 

In this chapter, the tree-fall analysis is applied to estimate the near-surface wind field of 

five different tornado cases using the methodology described in previous chapters. The observed 

tree damage patterns acquired from Chapter 2 and Chapter 3 are compared to simulated tree-fall 

patterns using the methodology described in Chapter 4. The critical wind speed (Vc) values 

estimated from Chapter 5 are also used as input parameters of tree-fall analysis. Although other 

idealized vortex models are introduced in Chapter 6, the Rankine vortex (RV) model is used in 

this chapter because the number of variables in the Baker vortex model is too many, and the RV 

parameter has proven its effectiveness in Chapter 6. Not only tree damage is used to estimate the 

near-surface wind field, but tree-fall analysis is also applied to soybean and cornfields and 

compared to the EF scale rating rated by the NWS to examine the feasibility of tree-fall analysis 

on agricultural fields. In addition to tree-fall analysis, the Godfrey and Peterson (2017) method has 

been adopted and applied to the Naplate, IL tornado using both fallen and standing frees, and other 

methods are also used to estimate using damage indicators other than trees. Independent wind 

speed estimates of the Naplate, IL tornado using multiple methods are compiled and a comparison 

is made for cross-validation. Finally, empirical fragility curves of Joplin, MO and Naplate, IL 

tornado for residential buildings and trees are produced using the estimated near-surface wind field 

from the tree-fall analysis. 
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7.2 Near-surface Wind Field Estimation 

7.2.1 Naplate, IL Tornado 

7.2.1.1 Wind field estimation based on tree damage 

 The tree damage of the 28 February 2017 Naplate, IL tornado was collected during a 

ground-based damage survey (Chapter 2). Based on the tree-fall pattern from the damage survey, 

the tree-fall analysis (Chapter 4) was used to estimate the near-surface wind field of the Naplate, 

IL tornado, in which the damage survey map that shows fallen trees and standing trees is shown 

in Figure 2.6. Two different methods of utilizing tree damage are discussed in this section: 1) the 

tree-fall analysis method, and 2) the modified Godfrey and Peterson method. The two methods are 

different such that the tree-fall analysis uses the tree-fall direction of the fallen trees, whereas the 

modified Godfrey and Peterson method uses the proportion of fallen and standing trees.  

 For the tree-fall analysis, tree-fall directions and the tornado center must be identified as 

the tree-fall patterns are generated by simulating the near-surface wind field. The documented tree-

fall directions and the estimated tornado center are shown in Figure 2.6. Refer to section 2.3.1.1 

and section 2.3.1.2 for detailed tree damage survey and estimation of tornado center. From the 

tree-fall directions and the estimated tornado centerline, an approximate range of RV parameters 

(Gmax and α) was first estimated. In Figure 2.6, a tree-fall pattern of the damaged trees (black arrow) 

that generally points toward the direction of the tornado translation (red arrow) can be observed. 

The tree damage pattern roughly resembles the tree-fall pattern in Figure. 4.7(a), and a low Gmax 

(1.0-3.0) can be estimated based on this observation. Furthermore, the damage map shows an 

approximate confluence line slightly above the centerline and a DW on the northside 

approximately half of the DW on the southside, which translates to a DR of two. Based on Figure 

4.7(b) and (c), it can be speculated that the α is less than 30° and greater than 0°. In the parameter 
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estimation process, a storm motion of 23 m/s (51 mph), estimated by the Storm Prediction Center 

(SPC, 2017), was used for the translational speed, and the DW, DR, and MD with an average bin 

of 100×100 m was used for the output comparison method. Through multiple iterations, the “best-

matched” parameters that had the minimum Erms (Eq. 4.7) were selected and the near-surface wind 

field with a maximum wind speed of 58 m/s (129 mph; EF-2) was recreated using the “best-

matched” parameters as shown in contour in Figure 7.1. Note that the tree-fall analysis assumes 

wind speed at 10 m height with open terrain (Lombardo et al., 2015). The resulting “best-matched” 

parameters yielded less than a 4% difference in the DW and DR. The “best-matched” parameters 

estimated from the tree-fall analysis are listed in Table 7.1, and the normalized RV profile (grey 

line) using the estimated parameters is shown in Figure 7.5. For the Naplate, IL tree-fall analysis, 

the Vc was treated as a random variable and iterated until the minimum Erms was reached. The 

minimum Erms yielded a Vc of 34 m/s, which is very well compared to the mean Vc estimated using 

the HWIND model in section 5.2.5.1 of Chapter 5 (mean Vc of 35 m/s). The comparable result 

between two independent methods provides some level of validity for both methods. 

 

 

Figure 7.1. Tree-fall directions and near-surface wind field estimation of Naplate, IL using tree-

fall analysis.  
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Adopted and modified from Godfrey and Peterson (2017), the near-surface wind field of 

the Naplate, IL tornado was estimated also using a “modified” Godfrey-Peterson method. In 

Godfrey and Peterson (2017), the damage site is divided into smaller grid boxes and assigns EF 

scale rating for each grid box based on the percentage of fallen trees using the probability of failure 

functions generated by the Peltola and Kellomäki (1993) tree stability model. The study areas used 

by Godfrey and Peterson (2017) are heavily forested: Great Smoky Mountains National Park 

(GSMNP) and Chattahoochee National Park (CNP) where the trees were densely populated, and 

sufficient numbers of trees were present within 100 × 100 m (330 × 330 ft) grid boxes. On the 

other hand, the village of Naplate is a residential area with the trees loosely spaced with a much 

smaller total number of trees. Hence, the Godfrey-Peterson method was modified using strips (i.e., 

long, narrow rectangles) parallel to the tornado instead of centerline boxes, assuming that the 

characteristics of the tornado remained constant for a path length of approximately 850 m (red line 

in Figure 7.2). Applying the strip method, a minimum number of five trees within strips was used 

and resulted in a spacing of 50 m strips. In other words, the width of the strips had to be 50 m to 

ensure at least five trees were contained within each strip. Figure 7.2 displays the damage survey 

map, showing the locations of the fallen trees (red circle) and the standing trees (green circle), 

overlaid with corresponding EF rating for each strip. The maximum standing to fallen tree 

percentage for 50 m strips was 50 %, which yields a possible maximum wind speed of 53 m/s (116 

mph; low-end EF 2) (Figure 7.2) based on the tree fragility of tree-failure function by Godfrey and 

Peterson (2017). The Godfrey and Peterson (2017) method adopted the Peltola and Kellomäki 

(1993) model, which assumes wind speed at 10 m height and a roughness length of 0.20 m 

corresponding to a suburban terrain by Holmes (2015). Note that the probability function was built 
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based on the trees in GSMNP and CNP forest, in which the species may be very different from the 

trees in Naplate.  

 

 

Figure 7.2. Documentation of fallen trees and standing trees and near-surface wind field estimation 

of Naplate, IL using the “modified” Godfrey-Peterson method. 

 

7.2.1.2 Wind field estimation based on residential building damage 

 Among the 152 damaged DI 2 structures collected during the ground-based damage survey 

(Chapter 2), the two highest ratings were DOD 8 and DOD 7, and the maximum wind speed was 

estimated based on these two highest rating structures. Although the expected wind speed of DOD 

8 and DOD 7 is 68 m/s (152 mph) and 59 m/s (132 mph), respectively (McDonald and Mehta, 

2006), both structures had unreinforced masonry foundation walls (see Figure 2.4) and a lower 

wind speed was speculated than the expected wind speed. This example demonstrates and stresses 

the importance of careful and detailed field observation of construction quality and type during 

post-disaster damage surveys. Due to the poor construction quality of the structures, the lower 

bound wind speed was assigned to the two structures: 57 m/s (127 mph) for the DOD 8 rated 
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structure and 51 m/s (113 mph) for the DOD 7 rated structure. Assuming that the other DI 2 

structures were in average condition, the expected wind speed of 55 m/s (122 mph) was assigned 

to all DOD 6 structures. Therefore, the maximum wind speed estimation based on the DI 2 

structures was 57 m/s (127 mph) corresponding to an EF-2 rating tornado. It is important to note 

that the EF Scale method assumes “standardized” wind speed conditions (i.e., 10 m height, open 

terrain, 3-s gust) (Lombardo et al., 2015). 

 Estimating the tornado wind speed and the Rankine vortex parameters can be also done 

using a more detailed structural damage analysis. Notably, Roueche and Prevatt (2013) were also 

able to extract the parameters of an RV model using residential buildings (FR12). Instead of rating 

the tornado based on a single damaged structure, the Roueche and Prevatt (2013) method utilizes 

an aggregate of structures to estimate the tornado wind speed characteristics by grouping the 

damaged buildings into the corresponding EF Scale groups and fitting the parameters of the RV 

model to the EF-Scale-based wind speeds. For the Naplate tornado, the damaged residential 

buildings (DI 2) were grouped into DODs instead of the EF Scale to ensure more points to be fitted 

to the RV curve. Figure 7.3 depicts a box plot of the minimum (i.e., perpendicular) distance from 

the residential building to the tornado path (D) for each DOD group. The box plot assumes a 

normal distribution and shows the median (red center mark), the 25th and 75th percentiles (edges 

of the blue box), the most outer data points (whisker) inside of +/–2.7 standard deviations from the 

mean value, and outliers (red “+”) that extends outside of +/–2.7 standard deviations. Because only 

one structure was rated for DOD 5, DOD 7, and DOD 8, the buildings rated DOD 5 through 8 

were grouped into DOD 5-8. Then, the expected value of each DOD was fitted to the RV model 

with an RMW of 18 m estimated based on the mean value of the distance from the tornado path to 

DOD 5-8 damaged buildings. The translational speed of a tornado (VT) is often hard to estimate. 
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Hence, the storm motion vector from radar observation is often used as a proxy for the translational 

speed of a tornado (Beck and Dotzek, 2010). The storm motion of the Naplate, IL tornado was 

estimated at 23 m/s (52 mph) by the Storm Prediction Center (SPC) (SPC, 2017) and was used as 

the tornado translational speed. An approximate VT can also be estimated from the Tornado Vortex 

Signature (TVS) if the radar data is available (Karstens et al., 2013). Assuming the expected wind 

speed of DOD 5-8 (55 m/s or 122 mph) is the maximum wind speed (sum of maximum rotational 

wind speed and the translational speed), the maximum rotational wind speed would become 31 

m/s (70 mph) and subtracting the VT from the maximum wind speed, the maximum rotational wind 

speed (Vmax) is estimated at 31 m/s (70 mph), which yields a Gmax of 1.35. Then, the decay exponent 

(φ) was estimated by fitting the RV model to the points of the DOD group as shown in Figure 7.4. 

The estimated RV parameters from the residential buildings are shown in Table 7.1. Note that 

Figure 7.3 and Figure 7.4 are both shown in distance normalized by the estimated RMW. 

 

 

Figure 7.3. Boxplot of damaged residential buildings (DODs) for the Naplate, IL tornado. 
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Figure 7.4. Decay exponent estimate of normalized RV model from residential buildings (DI 2), 

and comparison to other methods. 

 

7.2.1.3 Wind field estimation based on sign damage  

As mentioned in Chapter 5, the RV parameters and the near-surface wind field can also be 

estimated using the upper bound and lower bound critical wind speed traffic signs (Vc). Similar to 

how the wind speed indicators were used to calibrate and adjust the Holland wind field model 

(Holland, 1980) in Boughton et al. (2012), the critical wind speed velocity of failed and non-failed 

traffic signs were used to estimate the Rankine vortex parameters of the Naplate, IL tornado. Using 

the same iteration process of the tree-fall analysis, a series of tornadic wind fields with a translation 

speed of 23 m/s (52 mph) and different combinations of RV parameters, the failed traffic signs are 

simulated based on the critical wind speed obtained in Chapter 5. However, unlike the traditional 

tree-fall analysis, the wind direction must be considered in the Vc because the Vc of traffic signs is 

very sensitive to wind direction as opposed to trees and crops.  Whether the wind is blowing normal 

to the flat-side of the sign plate or on the side, the wind load can vary significantly as the net drag 

coefficient (CF,n) varies with wind direction (see section 5.4.3). Therefore, when simulating the 
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tornadic wind field, the CF,n becomes a function of direction and CF,n changes with the wind 

direction as the tornado traverses over: the net wind load (Fn) is zero when the angle between the 

sign plate and the wind direction is 0° (the wind direction and the sign plate is parallel) and, Fn is 

the greatest when the wind direction and sign plate are within +/- 45° perpendicular to each other. 

As the simulated tornado translates over time, the wind direction and the critical wind speed of 

each traffic sign are updated each time step; and if the wind speed at the location of the traffic sign 

exceeds the critical wind speed, the direction of the traffic sign fall is recorded. Then, the number 

of signs that failed, and the direction of the failed signs in the observation and simulation were 

compared and the error was calculated. Since the number of failed traffic signs is much smaller 

than the trees, the DW and DR are not a good measurement of simulation outputs. Thus, the error 

between the observation and the simulation is modified as follows:  

 

𝐸𝑁 = (
𝑁𝑜𝑏𝑠 − 𝑁𝑠𝑖𝑚

𝑁𝑜𝑏𝑠
)
2

                                                          (7.1) 

𝐸𝛽 = (
∑(cos(𝛽𝑗,𝑜𝑏𝑠) − cos(𝛽𝑗,𝑠𝑖𝑚))

2

𝑁𝑜𝑏𝑠
+
∑(sin(𝛽𝑗,𝑜𝑏𝑠) − sin(𝛽𝑗,𝑠𝑖𝑚))

2

𝑁𝑜𝑏𝑠
)             (7.2) 

𝐸𝑡𝑜𝑡𝑎𝑙 = √𝐸𝑁 + 𝐸𝛽                                                               (7.3) 

 

where Nobs, Nsim, βobs, and βsim indicate the number and the fall-direction of each failed sign in 

observation and simulation, respectively. EN and Eβ are the error in the number of failed signs and 

the error in the fall-direction between the observation and simulation, respectively. As the standard 

tree-fall analysis, the RV parameter combination that results in the minimum total error (Etotal) is 

considered the best-match parameters, which are used to generate the near-surface wind field. The 
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maximum wind speed from the sign simulation was 58 m/s (130 mph). The wind speed was 

estimated at the centroid of the sign plate with an average height of 2.3 m and assuming suburban 

terrain. The critical wind speed is normally adjusted to the 10 m height and open terrain wind 

condition in Boughton et al. (2012). However, further adjustment was not carried out. The detailed 

estimated parameters are listed in Table 7.1, and the normalized RV profile using the estimated 

parameters is shown in Figure 7.4 and Figure 7.5 (light grey line). 

 

7.2.1.4 Wind field estimation based on social media images 

The social media images were also used to assess the damage of metal and low-rise 

buildings and estimate the near-surface wind speed of the Naplate, IL tornado. For the two metal 

LaSalle County service buildings (DI 21) that were given DOD 5 rating, an expected wind speed 

of 53 m/s (118 mph) was assigned and the expected wind speed of 45 m/s (101 mph) was assigned 

to the DOD 3 rated LaSalle County Nursing Home (DI 17). For the two Pilkington glass factory 

buildings (Figure 2.12), the expected wind speed is 46 m/s (103 mph) for the (upwind) structural 

steel industrial building (DI 23, DOD 4) and 64 m/s (143 mph) for the (downwind) metal building 

(DI 21, DOD 7). This estimated wind speed difference is surprising because (1) the two buildings 

are located only 30 m (100 ft) apart and (2) the upwind building with the lower wind speed estimate 

is more than double the size of the second building and located in a position which would likely 

shelter the second building from the maximum wind speeds (the translation direction). In addition, 

the condition and build quality of the downwind building is unknown while the upwind building 

was observed to be of very recent construction with no signs of corrosion. It seems most reasonable 

to estimate that the wind speed near this pair of buildings was of a magnitude that could explain 

both levels of damage, approximately 55 m/s (122 mph) — near the lower bound estimate of the 
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downwind DI 21 building and at the upper bound of the upwind structural steel building. As stated 

before, it is important to stress that structural damage is a function of many different factors. The 

difference in building height and internal pressure between the two buildings could have caused a 

large difference in wind speed estimation. However, the EF Scale method assumes wind speed at 

10 m height and open terrain as mentioned before and does not account for these factors, which is 

one of the limitations of wind speed estimation based on structural damage. Moreover, an intense 

localized damage pattern may suggest debris impact, a multi-vortex tornado (Fujita, 1970), or 

changes in tornado characteristics due to the presence of obstacles (Satrio et al., 2020). The 

ongoing work of Satrio et al. (2020) discovered that the wind intensifies and forms a small vortex 

on the downwind side when a tornado-like vortex traverses over a large building, which may 

explain the large difference between the two Pilkington glass factory buildings. 

 

7.2.1.5 Wind speed comparison between different methods 

 The estimated wind speed values from each method are compiled and compared in this 

section. Table 7.1 shows the RV parameters predicted from the residential buildings (DI 2) using 

Roueche and Prevatt (2013) method, the tree-fall analysis, and the traffic sign analysis; Figure 7.4 

shows the normalized wind profile using the estimated RV parameter. Since the residential 

buildings cannot provide any wind directional information unless a debris analysis is performed, 

the α value cannot be determined. The Gmax parameter resulted in the smallest difference because 

the three methods estimated a similar maximum wind speed value. However, the RWM and φ 

estimated from the residential buildings showed a large difference from the other two methods. 

The RMW estimated from the residential buildings was very low compared to the other methods. 

Since the distance from the tornado center (D) is normalized by the RMW, the D/RMW 
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consequently increases, causing the data points to spread out and the phi value to decrease 

significantly. It is believed that this may have resulted due to a small number of damaged structures 

and the narrow width of the storm compared to the size and spacing of the residential buildings. 

With a larger number of samples, the RV parameter estimation may have been more reasonable 

just as the Tuscaloosa, AL and Joplin, MO tornado in Roueche and Prevatt (2013). Alternatively, 

it may be erroneous to use and estimate the RMW by the minimum distance from the damaged 

structure to the tornado path in the Roueche-Prevatt method. Assuming a minimum distance to 

estimate the RMW implies that the maximum wind speed occurs perpendicularly south of the 

tornado center and equates to an alpha of 90°, which is significantly different from the alpha 

estimated by other methods. The estimated RV parameters for the tree-fall analysis and traffic sign 

analysis showed much better agreement with each other.  

 

Table 7.1. “Best-matched” RV parameters of Naplate, IL tornado estimated from different 

methods. 

 

RV 

Parameters 

“Best-matched” value 

Residential 

buildings 

Tree-fall 

analysis 

Traffic sign 

analysis 

Gmax 1.35 1.5 1.5 

alpha (α) - 27.5 16 

RMW (m) 18 95 85 

phi (φ) 0.25 0.75 1.0 

 

 The maximum wind speed estimated from each method is 57 m/s (127 mph), 58 m/s (129 

mph ), 52 m/s (116 mph), 58 m/s (130 mph), and 55 m/s (122 mph) for residential buildings, tree-
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fall analysis, Godfrey-Peterson, traffic sign analysis, and the social media images (DI 17, DI 21, 

DI 23), respectively. The maximum wind speed estimated from all methods corresponds to the EF 

2 category and shows good agreement. The estimated wind speeds with the corresponding method 

are summarized in Table 7.2. One should note that the wind speed estimation from sign analysis 

is made at the height of the centroid of sign plates (average of 2.3 m), much lower than the height 

estimated for all other methods (10 m). Assuming an Atmospheric Boundary Layer (ABL), the 

wind speed at 10 m would be much. However, the vertical wind profile of a tornado is not well 

understood and thus the wind speed at 10 m should not be hastily assumed. Furthermore, the 

maximum lower and upper bound of wind speed estimated from the traffic signs was 47 m/s (106 

mph) and 64 m/s (142 mph) (see section 5.4.3). The maximum wind speed estimated from all other 

methods falls well within the bounds of wind speed estimated from traffic signs. Figure 7.5 shows 

the estimated wind speed profile using four different methods: DI 2 (square), tree-fall analysis 

(grey line), Godfrey-Peterson (rectangle), and traffics sign analysis (light grey line). All four wind 

speed profiles show a good agreement with an apparent pattern where the wind speed in the south 

side extends further out with a stronger wind speed than the north side of the tornado due to the 

additive effect of wind speeds (Vrot + VT) on the south side and subtraction of wind speeds (Vrot – 

VT) on the north side of the tornado. Specifically, alpha (α) values of 27.5 and 16 degrees were 

estimated from the tree-fall analysis and traffic sign analysis, respectively. A noticeable difference 

between the estimation from the residential buildings (DI 2) and the others is that the DI 2 wind 

speed profile is much narrower than the rest. The difference may have been caused by treating the 

signs and trees as point objects whereas buildings have a much greater areal extent. Perhaps, the 

difference emerged from the wide variation in the distance from the tornado especially for the 

lower DODs (Figure 7.3), which may be due to the complex factors affecting the damage state of 
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the structures, such as the subjective judgment of EF Scale, construction quality, aerodynamic 

effects, roof shape, etc. (Doswell, 2003; Edwards et al., 2013). In fact, numerous cases have been 

observed in the fields where a difference in the structural damage state was great between adjacent 

buildings. 

 

 

Figure 7.5. Comparison of the estimated wind speed profile of Naplate, IL tornado using different 

methods. 

 

Table 7.2. Summary of maximum wind speed of Naplate, IL tornado estimated. 

Damage Indicator Method Max. Wind Speed Assumed Terrain Type Height 

DI 2 EF Scale 57 m/s (127 mph) Open 10 m 

DI 2 Roueche-Prevatt method 55 m/s (122 mph) Open 10 m 

Tree Tree-fall analysis 58 m/s (129 mph) Open 10 m 

Tree Godfrey-Peterson method 52 m/s (116 mph) Suburban 10 m 

Traffic Sign Traffic sign analysis 58 m/s (130 mph) Suburban Avg. 2.3 m 

DI 17, DI 21, DI 23 EF Scale (Social media) 55 m/s (122 mph) Open 10 m 
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All five methods yielded a maximum wind speed lower than the peak wind speed of 69 

m/s (155 mph) estimated by the National Weather Service (NWS) from the conventional damage 

survey (NWS, 2017). The peak wind speed of 69 m/s seems to be estimated based on the DOD 8 

rating (total destruction of building) of metal building systems (DI 21), as opposed to DOD 7 rated 

by the WERL. This example demonstrates the difference in the subjective judgment of the EF 

scale method. The multiple wind speed estimates of the Naplate, IL tornado underscores the 

importance of a thorough comprehensive damage survey that documents different damage 

indicators and allows multiple independent estimates using different methods. The general 

agreement in the wind speed estimation using different approaches provides more confidence in 

the estimation and also supports the application of any subset of the methods depending on the 

circumstances and data availability 

 

7.2.2 Sidney, IL Tornado Soybean Damage 

On 9 September 2016 near Sidney, IL, an EF-2 rated tornado traversed over a large field 

of mature soybeans and corns (NWS, 2016), and intriguing crop damage patterns that resembled 

tree-fall patterns were noticed and a damage survey was conducted by the WERL. The soybean 

fall directions (red arrows) are shown in Figure 7.6, in which the detailed ground survey is 

addressed in section 2.3.1.3. An interesting discovery in this particular damage survey was the 

formation of convergent and divergent patterns of soybeans. More discussion on these patterns can 

be found in section 6.4.1.1. A tree-fall analysis was applied to the soybean field based on the 

soybean-fall direction collected during the ground-based survey. Low Gmax (1.0-3.0) and α (0-20) 

were presumed initially as the larger scale soybean-fall pattern pointed toward the direction of the 

tornado translation and the damage on the south and north side of the confluence line was roughly 
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the same. The SPC recorded a storm motion of 15 m/s (34 mph) (SPC, 2016), which was used in 

the soybean-fall analysis. A random variable is assumed for the Vc of soybean because little is 

known about the Vc of soybean. If possible, the generalized crop lodging model can be used instead 

to calculate the soybean Vc (Baker et al., 2014). Only the DW and DR were used for output 

comparison, and the MD was not used due to the infeasibility of collecting a sufficient number of 

soybean fall directions in a ground-based survey. The tree-fall analysis on the Sidney, IL soybean 

field resulted in the “best-matched” parameters shown in Table 7.3. Figure 7.6 shows the simulated 

soybean-fall pattern (yellow arrow) and the resulting wind field (contour) with a maximum wind 

speed of 49 m/s (110 mph; EF 1), using the “best-matched” parameters. Considering the height of 

the soybeans (1.2 m on average) are much lower than the standard height for wind measurement 

(10 m), the maximum wind speed of the Sidney, IL tornado at 10 m may be greater than 49 m/s 

(110 mph).  

 

 
 

Figure 7.6. Observed soybean-fall pattern (red arrows) compared to simulated fall pattern (yellow 

arrows) and the near-surface wind field (contour) estimation of Sidney, IL tornado. 
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Table 7.3. “Best-matched” parameters of Sidney, IL tornado. 

Parameters “Best-matched” value 

Gmax 2.2 

alpha (α) 5.0 

RMW (m) 12.5 

phi (φ) 0.65 

Vc (m/s) 36 

 

Because no structure was present in the vicinity, an EF 0 was rated in this particular 

location according to the NWS (NWS, 2016), whereas the maximum wind speed was estimated at 

49 m/s (110 mph; EF 1) based on the crop-fall analysis. This supports the observation that EF-

scale estimation is often underrated in agricultural areas and suggests that improvement of EF-

scale or other means of wind speed estimation is essential. The patterns between the simulated and 

observed in Figure 7.6 show good agreement though the outputs (DW and DR) produced up to 40% 

difference for some transects. Possible discrepancies could have been inherited incorrect 

estimation of translation speed (VT) and critical wind speed of soybean lodging (Vc). The mean 

storm motion predicted by the NWS was used as the translational speed in the simulation. However, 

possibly the averaged translational speed at the surveyed area was significantly different from the 

mean storm motion. Treating the translational speed as a random variable could be possibly 

improved the estimation (section 7.2.5.3). Moreover, the Vc of soybean is still unverified due to a 

lack of knowledge, in which the estimation from the tree-fall analysis could be unreliable. A Vc 

analysis of soybean should be considered using the generalized crop lodging model (Baker et al., 
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2014). Despite the complexity, crop-fall analysis demonstrates a potential tornadic near-surface 

wind field estimation in agricultural areas. 

 

7.2.3 Bondurant, IA Tornado Corn Damage 

A tornado outbreak occurred on July 19, 2018, in central Iowa, in which one of the 

tornadoes (EF-2) touched down near Bondurant, IA, and damaged large fields of corn (NWS, 

2018). Georeferenced orthomosaics were constructed using UAS based aerial 2D images collected 

following the event and the corn-fall directions were annotated (see section 2.3.3, Figure 2.13). 

Figure 7.7 presents the annotated corn-fall directions (yellow arrows) and the estimated tornado 

center (blue arrows), where the tornado center is estimated based on the most significant corn 

damage. The corn-fall pattern shown in Figure 7.13 resembles the generic tree-fall of Figure 4.7(a). 

The forward falling corn-fall pattern suggests a low Gmax (1.0-3.0) and the confluence line being 

close to the estimated tornado center (DR ≈ 1; Figure 7.8) suggests α close to zero.  

 

 

Figure 7.7. Observed corn-fall pattern and estimated tornado center of Bondurant, IA tornado. 
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 Initially, a total of 12 transects were selected, and the corn-fall directions within the 12 

transects were normalized based on the estimated tornado center. However, the corn-fall patterns 

showed fairly a consistent damage width and corn-fall directions throughout the track. With an 

average DW of 80 m, the difference between the minimum and maximum DW was less than 20 m. 

Thus, the corn-fall patterns of twelve transects were averaged into a single transect. Assuming that 

the tornado characteristic remained constant at the surveyed area, the averaged corn-fall direction 

in a single transect (shown in Figure 7.8(a) in blue arrows) was used to estimate the near-surface 

wind field of the Bondurant, IA tornado. The ground-based damage survey of the cornfield in 

Bondurant, IA showed that the growth stage of the corn was in between R4 and R6. Thus, a random 

variable between 12 m/s (lower bound) and 24 m/s (upper bound) of Vc was used as the input 

parameters, where 12 m/s (27 mph) is one standard deviation below the mean Vc of corn at R5-6 

and 24 m/s (54 mph) is one standard deviation above the mean Vc of corn at R4-5 (see section 

5.3.3, Figure 5.13). The mean storm motion of 13 m/s (29 mph) was used as a proxy of the 

translational speed of the tornado (SPC, 2018). Table 7.4 shows the result of the estimated “best-

match” parameters of the Bondurant, IA tornado. The “best-match” parameters suggest that it was 

a very narrow tornado with very little rotation, or tangential velocity component, at least near the 

surface based on that RMW and α were estimated to be very small. Figure 7.8(a) shows the corn-

fall pattern generated using the estimated RV parameters, which shows a good agreement with the 

observed pattern. However, the simulated corn-fall directions on both far south and north sides 

have a more westerly component compared to the observed pattern. This may imply that assuming 

a constant VT on the entire domain is invalid and a modification may be necessary where the VT 

decreases after a certain distance away from the tornado center. In other words, the VT wind 

component would have a smaller VT further away after a certain distance away from the tornado 
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center. Furthermore, a Vc of 24 m/s (54 mph) was estimated, which is the upper bound Vc of corn 

estimation for R4-5. This may also imply that the Vc of corn using the generalized crop lodging 

model (Baker et al., 2014) is underestimated, and a higher Vc may have been estimated from the 

corn-fall analysis if the bounds were greater. The corn-fall analysis yielded a maximum wind speed 

of 43 m/s (96 mph; EF1). Figure 7.8(b) shows the near-surface wind field of the Bondurant, IA 

tornado using the “best-match” parameters. For the same reason as the Sidey, IL tornado, the 

Bondurant, IA tornado was also rated an EF 0 at the damage location (NWS, 2018), which is lower 

than the 43 m/s (96 mph; EF 1) maximum wind speed estimated from the crop-fall analysis: 

another possible evidence of EF-scale method not being able to properly rate the tornado intensity 

due to lack of structures in rural areas.  

 

 
    (a) corn-fall patterns               (b) wind field contour 

 

Figure 7.8. Comparison of (a) corn-fall patterns between observation and simulation and (b) near-

surface wind field of Bondurant, IA tornado. 
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Table 7.4. “Best-matched” parameters of Bondurant, IA tornado. 

Parameters “Best-matched” value 

Gmax 2.3 

alpha (α) 3.0 

RMW (m) 20 

phi (φ) 0.7 

Vc (m/s) 24 

 

7.2.4 Tuscaloosa, AL Tornado 

The wind distribution within a tornado is very complex due to its continuously varying 

structure. The tornado wind field varies spatially and temporally and thus tornado wind field 

models should be able to capture these variations in wind components (Banik et al., 2007). These 

changes in wind components often result in a change in tree-fall pattern along the track, which 

suggests spatially and temporally varying RV parameters in the tree-fall analysis. For example, the 

27 April 2011, Tuscaloosa-Birmingham, AL tornado translated through the city of Tuscaloosa 

(approximately 12 km) and caused severe structural and tree damage (NWS, 2011). A series of 

aerial photographs were acquired by the National Oceanic and Atmospheric Administration 

(NOAA) Remote Sensing Division, which are made available online by the Nation Geodetic 

Survey (NGS) (https://storms.ngs.noaa.gov/). The approximate ground sample distance (GSD) is 

0.35 m per pixel. Approximately 6,000 fallen trees in the city of Tuscaloosa were converted to 

digital vector on ArcGIS. Along the tornado track in the city, a significant change in tree-fall 

patterns was noticed, indicating spatially varying RV parameters as the tornado translated from 

southwest to northeast. Figure 7.9 displays the digitally converted tree-fall direction and the 
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tornado track with the analyzed transects. The tree-fall directions normalized by the direction of 

the tornado track were determined and color-coded as the denoted range in the legend. An apparent 

increase in the DW and change in tree-fall direction can be noticed along the tornado track. Early 

in the track, the trees appear to fall more perpendicular to the tornado track. Most of the normalized 

tree-fall direction within the range of 0°-45° and 315°-360° (red) and 135°-225° (blue), suggesting 

a strong radial flow. However, as the tornado translates along the track, a more rotational pattern 

starts to form as more trees start to fall within the range of 225°-315° (black) near the center of the 

tornado track and 135°-225° (green) near the most south of the DW, indicating stronger tangential 

flow than earlier. Note that the normalized tree-fall direction is 0 due south with respect to the 

direction of the tornado track, increasing counter-clockwise. The increase in DW and DR, 

indicating growth of tornado size and increase in rotation (tangential flow), suggests that the 

tornado matured over time as it traversed. The tornado track can be divided into multiple sections 

or transects and analyzed individually. This can provide a detailed analysis of how the tornado 

characteristics and the near-surface wind field changed over time. The same tree-fall analysis 

method applied in the previous sections can be applied to determine them. A more detailed analysis 

of the near-surface wind field of a tornado with spatially and temporally changing RV parameters 

will be discussed in section 7.2.5.3. As shown on the top right corner of Figure 7.9, the tornado 

exited the city and entered a mountainous region with significant terrain, in which the near-surface 

wind field of the tornado is influenced by the topographic variation. The zoomed-in damage map 

displays a similar damage pattern examined in Chapter 5 where a number of trees that fell in the 

direction of the mountain ridges are noticed and more tree damage in the valley and less tree 

damage on the top of the hills are observed.  
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Figure 7.9. Tree-fall pattern and change in outputs of the Tuscaloosa, AL tornado. 

 

7.2.5 Alonsa, MB Tornado 

7.2.5.1 Initial parameter estimation  

 The tree-fall pattern obtained from the semi-automated tree-fall direction identification 

method (Chapter 3) is used to estimate the near-surface wind field of the Alonsa, MB tornado. A 

preliminary estimation was made based on Figure 3.11. Figure 3.11 shows two transects of the 

tree-fall pattern identified (yellow arrows) using the semi-automated method and the estimated 

tornado centerline (black line). The detected tree-fall patterns of the two transects exhibit patterns 

similar to the generic tree-fall pattern (see section 4.3.1.1; Figure 4.7). The tree-fall directions are 

oriented more towards the tornado translation for transect (1) similar to Figure 4.7(a), and in the 

opposite direction for transect (2) similar to Figure 4.7(c). The former pattern suggests a relatively 
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low rotational speed and thus a relatively low Gmax parameter, and the latter pattern suggests a 

relatively high rotational speed with a greater Gmax value. Based on the location of the confluence 

line and the DR, an estimation of alpha (α) of 0 to 5 degrees and 10 to 20 degrees can be made for 

transect (1) and transect (2), respectively, indicating significant radial inflow with little tangential 

flow and increasing tangential flow as the tornado matures. Also, in between transect (1) and 

transect (2), “transition” tree-fall patterns, a mix of forward-falling and backward-falling tree-falls, 

were observed. Judging from the tree-fall patterns, it can be speculated that the tornado grew and 

intensified as it translated north-east (Figure 7.10), similar to the Tuscaloosa, AL tornado. 

 

 
 

Figure 7.10. Orthomosaics of Alonsa, MB tornado and estimated center line and tree damage 

extent with tornado maturity stage annotated. 

 

Before the iteration and parameter estimation process, non-tornadic tree-falls were 

removed and tree-fall directions with the large error were fixed manually. In the histogram of 

difference in tree-fall direction between the manual “tagging” method and the automated method 
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(Figure 3.12), 12% of the identified tree-falls had a difference in the tree-fall directions greater 

than 160º, which suggests that the median slope of the tree-falls was adequately estimated but the 

estimation in the median tree-fall direction was inadequate. As mentioned in section 3.4.2, an 

additional algorithm is applied which flags any grid box that has significantly large errors from 

the neighboring grid boxes. The tree-fall directions in these grid-boxes were inspected and the 

direction was changed 180º manually if the tree-fall direction is labeled incorrectly. Moreover, the 

automated tree-fall identification method cannot distinguish non-tornadic tree-falls from tornadic 

tree-falls, yet. Because the main interest lays in the near-surface tornadic wind field estimation, 

the non-tornadic tree-falls were subjectively identified and removed manually in order to avoid 

non-tornadic tree-falls to the estimation of the tornadic near-surface wind field. Refer to section 

6.4 for application of tree-fall analysis and possibility of wind field estimation of non-tornadic 

events. Non-tornadic tree-falls that were removed include possible indications of microbursts and 

RFD surges, which were determined based on the tree-fall directions that show the flow 

characteristics of a downburst and an RFD. As shown in Figure 6.13(b), a downburst event 

produces a diverging tree-fall pattern due to straight-line flow characteristics (Fujita, 1981); any 

small-scale diverging patterns, which were observed especially on the far north side of the tornado 

track, were removed. Numerous westerly or southwesterly tree-falls were identified on the far 

south side, which could have been caused by the RFD surges (see Figure 6.10 and Figure 6.11). 

Converging tree-fall patterns, similar to the Sidney, IL tornado, were also identified on the far 

south side of the tornado and removed. It has been known that RFD can also induce airflow near 

the ground and enhance wind on the south side of the tornado track, which could produce 

temporarily enhanced sub-vortices. This phenomenon has been observed in the LES simulation 
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(Satrio et al., 2020). Moreover, as the non-tornadic tree-falls were being removed, false-positive 

tree-falls were also identified and removed together.  

 

7.2.5.2 Wind field estimation using single VT and Vc 

Based on the preliminary results and Figure 7.10, the tree-fall patterns suggest a clear 

indication of the growth of tornado intensity, which affects the estimated RV parameters. The 

transect methods with multiple transects at different locations along the tornado track (see section 

4.2.2.2) were applied to capture the change in the core size and intensity. In addition to the two 

transects in Figure 3.11, four more transects with different DW and tree-fall patterns were selected 

with a bin size of 50×200 m (height × width). A larger averaged width was used to reduce the 

variation of the tree-fall directions. Figure 7.11 shows the observed tree-fall patterns of the six 

transects normalized in the translational direction. The Y distance is the distance in the Y direction 

with respect to the estimated tornado center. As mentioned before, transect #1 shows a forward 

falling tree-fall pattern, transects #4-8 show a backward falling tree-fall pattern, and transect #2 

shows a “transition” tree-fall pattern. 

 

 

Figure 7.11. Observed tree-fall patterns of eight transects of the Alonsa, MB tornado.  

 

With the initial Gmax and α estimation from the preliminary result and the Vc estimation 

(47.5 m/s) using the HWIND model from Chapter 5 (see section 5.2.5.2), an independent RV 
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parameter estimation for each transect was made based on the minimum Erms. For the first set of 

iterations, the VT was treated as a random variable, which converged to a single value of 17 m/s 

(38 mph). Notably, the VT estimation of 17 m/s (38 mph) complemented the mean storm motion 

vector, which is estimated at 18 m/s (40 mph) (COD, 2018). As a result, the second set of iterations 

was made using the converged single VT value of 17 m/s (38 mph). The estimated RV parameters 

and the maximum wind speed for each transect using a fixed VT and Vc are summarized in Table 

7.5. The total maximum wind speed was 88 m/s (198 mph) occurred at transect #4, rating the 

Alonsa, MB tornado at a high-end EF 4 tornado. Figure 7.12 shows the change in RV parameters 

as the tornado travels, which suggests the evolution of the tornado. Each transect is represented in 

a circle. Based on Figure 7.12, a general increase in all parameters can be observed, suggesting a 

steady growth of tornado intensity and size as the tornado traversed over the forest of Alonsa, MB. 

As suggested by the preliminary results, an increase in alpha (α) is observed until the tornado 

intensity reached at the strongest (i.e., highest maximum wind speed) at transect #4 and then the 

estimated α decreases, indicating an increase and a decrease in the tangential velocity after transect 

#4. Overall, the “best-matched” parameters match the expectation of the preliminary result. Using 

the “best-matched” parameters, the near-surface wind field of the Alonsa, MB tornado is recreated 

as shown in Figure 7.13. The RV parameters were changed at the midpoint of each transect. 
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Figure 7.12. Change in “best-matched” RV parameter estimation of Alonsa, MB tornado. 

 

 

Figure 7.13. Estimated near-surface wind field of Alonsa, MB tornado. 
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Table 7.5. “Best-matched” RV parameters and the maximum wind speed of Alonsa, MB tornado 

at different transects with constant VT (17 m/s) and Vc (47.5 m/s). 

 

Transect # Gmax α (º) RMW (m) φ Max WS* 

1 3.5 5 90 0.5 76.4 (171) 

2 3.7 0 110 0.6 79.8 (179) 

3 3.5 10 150 0.5 76.4 (171) 

4 4.2 32.5 140 0.8 88.3 (198) 

5 4.0 22.5 180 0.7 84.9 (190) 

6 4.2 20 190 0.8 88.3 (198) 

*Maximum wind speed at each transect in m/s (mph). 

 

7.2.5.3 Wind field estimation using varying VT and Vc   

Instead of using a fixed Vc obtained using HWIND model, another set of parameter 

estimation was made treating the Vc as a random variable in order to verify the Vc estimation using 

the HWIND method and include more uncertainties. Since the VT converged using a fixed Vc, the 

VT was also treated as a random variable. Table 7.6 shows the “best-matched” RV parameters and 

the maximum wind speed of Alonsa, MB tornado with random variables VT and Vc. The estimation 

shows an overall decrease in the maximum wind speed with a total maximum wind speed of 84.4 

m/s (189 mph) but the general trend of the increase in parameters and the total maximum wind 

speed occurring transect #4 was comparable to the result of the parameter estimation with fixed 

VT and Vc. The overall small decrease of VT and Vc in the random variable method may suggest 

that the estimation of Vc using HWIND method was slightly overestimated. Despite the 

discrepancy in the magnitude, the trend of maximum wind speeds between the two methods shows 

a good agreement in Figure 7.14. Both methods rate the Alonsa, MB tornado at a high end of EF-

4 category, which is what the tornado was rated by the NTP (Sills et al., 2020). The NTP conducted 
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a ground-based damage survey and discovered several homes destroyed with slab swept clean. 

Despite EF-5 rating damage states, the tornado was rated an EF-4 due to the construction quality. 

Furthermore, large trees were ripped off from the ground and traveled a far distance, and vehicles 

were lifted off from the ground (Sills et al., 2020). The tree-fall analysis and the NTP ground-

based damage survey both suggest that the Alonsa, MB tornado was indeed a strong tornado.  

 

 

Figure 7.14. Total maximum wind speed comparison between constant VT, Vc method and random 

variable VT, Vc method. 

 

Table 7.6. “Best-matched” RV parameters (percent change from Table 7.5) and the maximum 

wind speed of Alonsa, MB tornado at different transects with random variable VT and Vc. 

 

Transect # VT 
a Gmax α b RMW c φ Vc 

a Max WS a 

1 15.6 (-8%) 3.2 (-9%) 10 (100%) 90 (-) 0.50 (-) 40.0 (-16%) 65.7 (-14%) 

2 14.7 (-14%) 4.2 (+14%) 0 (-) 120 (+9%) 0.55 (-8%) 47.5 (-) 76.7 (-4%) 

3 16.5 (-3%) 3.1 (-11%) 10 (-) 130 (-13%) 0.50 (-) 40.0 (-16%) 67.8 (-11%) 

4 16.5 (-3%) 4.1 (-2%) 30 (-8%) 140 (-) 0.80 (-) 45.0 (-5%) 84.4 (-4%) 

5 17.4 (+2%) 3.4 (-15%) 22.5 (-) 180 (-) 0.95 (36%) 37.5 (-21%) 76.7 (-10%) 

6 15.2 (-11%) 4.1 (-2%) 20 (-) 180 (-11%) 0.9 (-11%) 37.5 (-21%) 77.5 (-12%) 

a Maximum wind speed at each transect in m/s. 
b alpha(α) in degree (º). 
c Radius of maximum wind speed in m. 
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The tree-fall analysis selects the RV parameters based on the minimum Erms and provides 

one independent estimate of the near-surface wind field. However, uncertainties still exist in the 

methodology (Roueche et al., 2018). Table 7.7 provides the uncertainty range of each RV 

parameter and the maximum wind speed at each transect. The uncertainty is quantified by 

calculating the mean (μ) and standard deviation (σ) of the set of parameters that produced Erms 

within 10% of the minimum Erms. These uncertainty ranges of parameters can be used to produce 

multiple near-surface wind fields and include epistemic uncertainties in building fragility functions 

(Roueche et al., 2018). 

 

Table 7.7. Uncertainty range of RV parameters (within 10% of minimum Erms) of Alonsa, MB 

tornado with random VT and Vc at different transects. 

 

Transect # 

VT (m/s) Gmax α (º) RMW (m) φ Vc Max WS* 

μ σ μ σ μ σ μ σ μ σ μ σ μ σ 

1 15.5 2.52 3.30 0.20 7.83 2.99 92.0 4.06 0.52 0.03 40.8 6.13 66.7 10.0 

2 14.1 2.23 3.95 0.45 1.86 2.20 132 12.0 0.75 0.15 41.5 5.16 69.2 8.17 

3 15.9 2.81 3.05 0.07 6.88 2.00 121 7.86 0.5 0 37.1 6.53 64.5 11.4 

4 15.1 2.48 4.28 0.43 30.1 1.55 134 15.0 0.88 0.09 39.0 5.91 79.8 14.5 

5 16.1 2.63 4.06 0.53 20.9 1.21 150 22.0 0.92 0.07 35.2 5.94 81.7 15.7 

6 15.8 2.03 4.47 0.40 17.4 2.49 135 13.1 0.80 0.14 38.6 5.20 82.5 11.3 

*Maximum wind speed at each transect in m/s. 

 

7.3 Tree-fall Analysis Application on Fragility Assessment  

Fragility functions, which are probability functions of exceeding a certain limit state at a 

given wind speed, can provide quantitative insight into how a structure fails under different 

conditions. These fragility functions have been commonly developed analytically in the past 

(Amini and van de Lindt, 2014; Ellingwood et al., 2004; Lee and Rosowsky, 2005; Rosowsky and 
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Ellingwood, 2002). However, the recent tornado-based design paradigms propose a design based 

on limit states (Prevatt et al., 2012a; van de Lindt et al., 2013), in which a performance-based 

design (PBD) approach becomes necessary. Recently, an empirical approach of building fragility 

functions was adopted, using numerically reproduced wind fields (Nishijima et al., 2012; Roueche 

et al., 2017). One of the great advantages of tree-fall analysis is that it can reproduce the near-

surface tornadic wind fields to be used in establishing empirical fragility functions, in which these 

empirically driven tornado fragility curves can be used to validate analytical fragility functions. 

In this section, the maximum likelihood method from Roueche et al. (2017) is adopted. For 

each damage state, a binary damage state (0, 1) was assigned to each house with associated the 

maximum wind speed, and the lognormal best-fit parameters are determined. Then, the 

probabilities of structures meeting or exceeding a particular damage state at a given wind speed 

are determined. An illustration figure of lognormal fragility function and underlying empirical data 

from the Joplin, MO tornado is shown in Figure 7.15. 

 

 

Figure 7.15. Illustration lognormal fragility fit and underlying empirical data from Joplin, MO 

tornado (Roueche et al., 2017). 
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7.3.1 Empirical Fragility Curves of Residential Buildings 

Empirical fragility curves of the Naplate, IL tornado were developed using the maximum 

wind speed from the tree-fall analysis and the DODs of the residential houses collected from the 

survey. For each DOD, a binary damage state (0, 1) was assigned to each house with associated 

the maximum wind speed estimated from the tree-fall analysis (section 7.2.1.1). The best fit 

lognormal parameters were determined using the maximum likelihood functions and the 

probability functions of residential houses were built using the best-fit lognormal parameters. 

Figure 7.16 shows the fragility curves of residential buildings of Naplate, IL (blue lines) and Joplin, 

MO (red lines) tornado, in which the lognormal parameters of the Joplin, MO was taken from 

Roueche et al. (2017). Because of the relatively lower maximum wind speed of the EF 3 rated 

Naplate, IL tornado, the number of DOD 5 through 8 rated structures was enough to build 

meaningful fragility curves. Due to insufficient data for the higher DODs, only DOD 1 through 

DOD 4 were constructed. The curves show an evident increase in mean failure wind speed with 

higher DODs. Comparing the fragility curves of Naplate, IL to those of Joplin, MO tornado, DOD 

1 and DOD 2 display very similar curves. Nonetheless, the curves for DOD 3 and DOD 4 show 

considerable differences; the probability of meeting or exceeding DOD 4 at a wind speed of 67 

m/s (150 mph) is about 0.91 for the Joplin, MO tornado, whereas the probability is about 0.68 for 

the Naplate, IL tornado. The difference between the two regions may have been occurred because 

of regional differences between Naplate, IL, and Joplin, MO. The regional difference may include 

construction, common building type (e.g., wood, concrete masonry), and common roof type (e.g., 

gable, hip). However, it is believed that the large difference for DOD 3 and DOD 4 has resulted 

from the lack of number of damaged structures and the maximum wind speed of 58 m/s (129 mph) 

in Naplate, IL tornado; no data exist to fit the lognormal curve beyond the maximum wind speed. 
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A similar result is noticed in Roueche et al. (2018) where large differences are observed between 

different distributions for higher DODs as the fragility function is extrapolated beyond the 

observations. These fragility curves may be used to interpret and quantify the vulnerability of the 

residential houses to tornadoes and also used to validate analytical fragility functions. However, 

more empirical cases are certainly necessary to make a general interpretation and validation.  

 

 

Figure 7.16. Comparison of empirical fragility curves of FR12 between Naplate, IL, and Joplin, 

MO tornado. 

 

7.3.2 Empirical Fragility Curves of Trees 

An empirical fragility model for trees can also be built using a similar process as the 

fragility curve of residential buildings. Empirical tree fragility curve can be obtained using the 

location of standing and fallen trees where a binary damage state (0, 1), zero for fallen trees and 

one for standing trees, is given to each tree with associated maximum wind speed retrieved from 

the tree-fall analysis, and the best-fit lognormal parameters are estimated using the maximum 
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likelihood functions. Using the near-surface wind field from tree-fall analysis (section 7.2.1.1) and 

the information from fallen trees and standing trees, empirical tree fragility curve for Naplate, IL, 

and Joplin, MO tornado are established. The probability functions of tree failures (down or up) 

under the tornado events with their best-fit parameters are shown and compared in Figure 7.17. 

The difference between the two curves may have been occurred also because of the regional 

difference, such as the type of trees and soil condition. However, the probability of failure for the 

Naplate, IL is considerably lower than that of the Joplin, MO tornado beyond 48 m/s. Due to the 

same limitation addressed in section 7.3.1, the difference is believed to have been resulted from 

the lack of number of trees (compared to number of trees in Joplin, MO) and the maximum wind 

speed of 58 m/s (129 mph) in Naplate, IL where no data exists to fit the lognormal curve beyond 

the maximum wind speed.  

 

 

Figure. 7.17. Comparison of empirical tree fragility curves between Naplate, IL and Joplin, MO 

tornado. 
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More research on the empirical study is certainly needed for validation, and these fragility 

curves demonstrate great potential for validating the analytical tree-resistance models. Tree 

fragility curves can also be used as a Vc input parameter in the tree-fall analysis and produce more 

realistic looking tree-fall patterns as discussed in Chapter 4 (see section 4.3.1.2). Moreover, 

empirical fragility curves with more damage states (e.g., branch broken, uprooting, snapping) and 

with different species (e.g., coniferous and deciduous) can help improve tree damage indicator of 

the EF Scale method by understanding the damage behavior under tornadic wind.  

 

7.4 Summary 

 The field observation data and methodology described in previous chapters are used to 

estimate the near-surface wind field of five different tornadoes: 1) Naplate, IL, 2) Sidney, IL, 3) 

Bondurant, IA, 4) Tuscaloosa, AL, and 5) Alonsa, MB tornado, and some results were used to 

validate the estimation from the tree-fall analysis. The observed damage patterns of these 

tornadoes are analyzed and compared to the simulation, in which the near-surface wind fields of 

these tornadoes were recreated, except the Tuscaloosa, AL tornado. Especially, the near-surface 

wind speed of Naplate, IL tornado was estimated using multiple different methods with different 

damage indicators, in which all methods showed a good agreement with each other. The empirical 

fragility curves of the Naplate, IL, and Joplin, MO tornado show the probability of failure for 

residential houses and trees under tornadic winds, which are important in performance-based 

design and validation for analytical fragility curves. The following conclusion can be made based 

on the near-surface wind field and fragility curve estimation: 
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 From the implication of Naplate, IL tornado analysis, it is recommended that detailed data 

collection on not only the damaged structures, trees, and signs but also the undamaged ones 

which can be used to help estimate the near-surface wind speed of a tornado is necessary. 

 From the implication of Naplate, IL tornado analysis, aggregated damage information 

should be used to rate the tornado intensity instead of individual damage states as being 

done by conventional damage survey. Aggregated information improves individual 

estimates by providing valuable context and yields a more reliable result than any single 

damage indicator. 

 The Naplate, IL tornado analysis showed that different approaches to wind speed 

estimation using different damage indicators still produced comparable results, providing 

more confidence in the estimation. The general agreement in wind speed estimation also 

supports the application of any subset of the methods depending on the circumstances and 

data availability. 

 The near-surface wind field of Sidney, IL, and Bondurant, IA tornadoes were estimated 

using the tree-fall analysis, in which both estimates yielded an EF 1 category tornado as 

opposed to EF 0 rated by the NWS. Both cases are possible evidence of the EF scale method 

underrating the tornado intensity due to no structures present in the vicinity. 

 The RV parameter estimation of Bondurant, IA tornado suggests that the Vc estimation 

using the generalized crop lodging model may underestimate the true Vc value of corn, and 

the corn-fall pattern of the Bondurant, IA tornado also suggests that assuming a constant 

translation speed over the entire simulation domain may be inaccurate.  

 The tree-fall patterns of Tuscaloosa, AL, and Alonsa, MB tornado suggest a gradual 

increase in tornado intensity and size as the tornadoes traveled. In the early stage, more 
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forward falling trees can be observed, suggesting relatively small Gmax, and less rotation 

(tangential component) is observed as the DR is close to one. Towards the end of the track, 

the DW and DR are increased, and tree-fall patterns show more backward falling trees, 

suggesting an increase in Gmax with more tangential flow in the tornado. An increase in 

RMW is also noticed in Alonsa, MB tornado.  

 Comparing the estimation result of VT and Vc between the random variable method and the 

fixed variable method, there was a slight decrease in VT and Vc for the random variable 

method, which may suggest a slight overestimation of Vc using the HWIND method. 

 Empirical fragility curves of residential houses of Joplin, MO, and Naplate, IL tornado are 

built using the near-surface wind field estimated from tree-fall analysis and empirical data. 

The DOD 1 and DOD 2 fragility curves show little difference between the Joplin, MO and 

Naplate, IL tornado, but the difference is substantial for DOD 3 and DOD 4, which may 

have been caused due to lack of structures and the maximum wind speed capacity of the 

Naplate, IL tornado.   

 Empirical fragility curves of trees are also built the same way as the residential building. 

A large difference is also noticed between the fragility curve of Joplin, MO, and Naplate, 

IL tornado most likely due to the same reason as the residential building.  
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

Tree-fall analysis has shown great potential in estimating the near-surface wind field of a 

tornado. To accurately estimate the near-surface wind field and broaden the application of tree-fall 

analysis using different damage indicators, five main objectives were outlined within the 

introduction of this dissertation. To this end, the research focused on the following objectives with 

concluding marks: 

1) Documentation of tornado damage 

Total nine different damage surveys were conducted either or both on the ground and 

on air, collecting damage information of different damage indicators. Particularly, a 

semi-automatic tree-fall direction identification method using an image-processing 

technique was developed and the tree-fall pattern of Alonsa, MB tornado was obtained. 

The method showed a 95% accuracy of detecting downed trees and 74% of the downed 

trees showed less than 45 degrees difference in median fall direction from the 

traditional method (manually “tagging” trees).   

2) Improve the existing method of estimating of near-surface wind field of tornadoes 

using tree-fall patterns 

Tree-fall analysis is a method of estimating the near-surface wind field of a tornado 

analyzing the tree-fall patterns, in which a Rankine vortex model is used to simulate a 

vortex and generate tree-fall patterns that resemble field observations. The tree-fall 

analysis is improved by further developing the comparison method and generalizing 

tree-fall patterns. Moreover, an alternative way of generating a more realistic tree-fall 
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pattern by using tree fragility functions is developed and interaction plots showing how 

different parameters interact with each other are presented.  

3) Accurately estimate the critical wind speed of tree/crop/sign fall to be used in the tree-

fall analysis 

There are many limitations in collecting data on a damage-site. The critical bending 

moment capacity, which is one of the important parameters to estimate the critical wind 

speed, is hard to obtain in the field. The HWIND model, a commonly used method of 

estimating the critical wind speed of trees, is modified such that only DBH and height 

of the trees are used to obtain the critical bending moment of trees. Moreover, the 

vertical wind profile is modified to a gust profile from a mean profile to produce a more 

realistic tornadic vertical profile. A series of bending moment tests were conducted on 

corns with different growth stages, and ranges of 3-s gust critical wind speed of corn 

at different growth stages estimated using a generalized crop lodging model are 

presented. The Boughton et al. (2012) method was used to estimate the critical wind 

speed of traffic signs of the Naplate, IL tornado, but the traffic signs of Naplate, IL 

were presumed to fail in lateral-torsional buckling (LTB), and not reaching fully plastic. 

Thus, the yield moment was used instead of the plastic moment.  

4) Analyze different idealized vortex models to be used in the tree-fall analysis and the 

effects of topography 

The Sullivan vortex models did not match well with the full-scale radar measurements, 

while the modified Baker vortex model matched very well due to multiple shape factors 

allowing various shapes of wind profile. Burgers-Rott and Sullivan vortex models both 

produce an unrealistic tree-fall pattern because of the unrealistic boundary condition 
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whereas the Rankine and Baker vortex models do produce realistic tree-fall pattern, 

suggesting that the boundary condition assumption of Vr = 0 at r = 0 and r = ∞ may 

be valid at least near the ground where trees are present. The tree-fall patterns over 

idealized 3D sinusoid hills generated varying the RV parameters and using the ESDU 

KL factor showed fairly reasonable agreement with the tree-fall pattern generated from 

the LES simulation. The general agreement between the two patterns demonstrates the 

potential of topographic effects in the tree-fall analysis. However, the discrepancy 

proves more research is required in regards to channeling flow and treating the 

formation of sub-vortices. 

5) Apply tree-fall analysis to estimate near-surface wind field of different tornadoes, 

compare the estimated result to different methods, and evaluate the probability of 

structure and tree failure using empirical data 

A comprehensive damage survey of the Naplate, IL tornado allowed multiple different 

methods to be used in the estimation of the near-surface wind field. The comparable 

results increase the confidence level of the wind speed estimation and also support the 

application of any subset of the methods depending on the circumstances and data 

availability. The tree-fall analysis was used in agricultural fields damaged by 

tornadoes and produced a maximum wind speed of EF 1 rating. The result provided 

possible evidence of the EF scale method underestimating the tornado intensity in rural 

areas. The tree-fall patterns of Tuscaloosa, AL, and Alonsa, MB tornado, EF 4 rated 

tornadoes, show a general pattern where the tornado intensity, size, and tangential 

flow increase over time. Empirical fragility curves of residential buildings and trees 

were produced using the estimated near-surface wind field, which quantify the 
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vulnerability of residential houses and trees to tornadoes in the Midwest. Though, the 

results show that the number of empirical data is lacking especially in the damage 

states associated with high wind speed.  

 

8.2 Recommendations and Future Work 

Additional work that should be considered and areas that require improvement is to 

advance the method of estimating the near-surface wind field of a tornado using damage patterns 

are summarized as follows: 

 Fully automated tree-fall identification method. Although the semi-automatic tree-fall 

identification method using image-processing technique showed great potential and 

reduced the labor-intensive data collection from aerial photographs, the method 

requires calibrating and adjusting parameters in application to other tornado cases, and 

thus more generalization process is needed. A machine learning technique may be a 

feasible alternative approach to fully automate the tree-fall identification process and 

apply it to many other post-damage aerial photographs.  

 Automated near-surface wind field estimation package. In addition to the recent 

establishment of the Northern Tornado Project (NTP), a team aims to detect and 

document every tornado that occurs across Canada, the need to accurately and quickly 

estimating the near-surface wind field of a tornado is increasing. A software that 

automatically analyzes the tree-fall pattern and generates a near-surface wind field can 

be developed. Combining with the fully automated tree-fall identification method 

mention in the previous bullet, a full “package” of near-surface wind field estimation 

from a raw orthomasaic can be extremely beneficial to engineers and practitioners.  
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 Improvements in the estimation of critical wind speed. There has not been a significant 

improvement in the HWIND model, first developed in 1993, or development of any 

other models estimating the critical wind speed of trees ever since, possibly due to lack 

of full-scale measurements. No studies have been able to measure the drag coefficient 

of trees at the critical wind speed. As a result, a very rough drag coefficient is assumed 

in the HWIND model. It has been noticed that there are many different studies 

regarding determine the drag coefficient of different tree species. However, no studies 

have attempted to generalize the drag coefficients of trees, in which the key to 

generalizing is believed to be related to the morphology and the flexibility of the trees. 

Moreover, very little is known in regards to the critical wind speed of crops. Not only 

for corns, but further validation using full-scale data is also needed to improve the 

estimation of critical wind speed of crops and for the generalized crop lodging model 

to be applied to various crops. 

 Development of multi-vortex wind field. One of the limitations of the existing wind 

field models and tree-fall analysis is that the wind field model cannot produce a multi-

vortex structure despite the frequent observation of multi-vortex structures from radar 

and LES simulation. Thus, wind speed enhancement from sub-vortices cannot be 

replicated. Although it violates the NSE, super-positioning multiple vortex equations 

may be able to show the wind field of a multi-vortex structure.  

 The topographic effects on tornado wind field. The topographic effects on tornado wind 

fields still remain elusive due to the complexity of airflow interaction with the terrain 

and the tornado dynamic change. More LES simulations on various topographic 
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features and case studies to validate the numerical studies are necessary to accurately 

estimate the near-surface wind field of a tornado in mountainous regions.  
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