

© 2021 Shengkun Cui

AI-DRIVEN METHODS FOR RESILIENCY AND SECURITY
ASSESSMENT: THE CASE FOR AUTONOMOUS DRIVING

SYSTEM AND HPC STORAGE SYSTEM

BY

SHENGKUN CUI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Adviser:

Research Professor Zbigniew T. Kalbarczyk

 ii

Abstract

Nowadays, computing systems are used extensively in mission-critical

exploration, transportation, scientific study, and manufacturing. With the advances in

computation technologies, computing systems have become ever more complex. Due to

the system’s complexity, it is increasingly hard for humans operators to monitor, assess,

and manage the system directly. Moreover, traditional model-based or rule-based

assessment techniques cannot provide sufficient coverages because of the wide ranges of

use cases and failure modes of complex systems. Recently artificial intelligence (AI)-

driven methods are used for timely accurate and high-coverage assessments in complex

systems because of their ability to learn from data without explicitly modeling the

complex systems. This thesis discusses our work on AI-driven assessment methods—

RoboTack, DiverseAV, and Kaleidoscope—in the domain of security (RoboTack) and

reliability (DiverseAV, Kaleidoscope) assessment in two critical use cases: autonomous

driving systems (ADS) and high-performance computing (HPC) storage systems. We

show that by using artificial intelligence and machine learning-based techniques, we can

perform high-accuracy, high-coverage security or reliability assessments of large-scale,

complex systems efficiently in real time.

 iii

Acknowledgments

I want to express my deepest gratitude to my adviser, Professor Zbigniew T.

Kalbarczyk, for providing me with his vision and mentorship of my research during my

undergraduate and graduate studies. I thank my colleague Saurabh Jha for his guidance

and support of the work presented in this thesis.

I am grateful to my mother and father, Xin He and Dong Cui, who always love,

encourage, and support me, along with my aunt Yi He, my uncle Zhong Cui, and my

cousin Weixi Wu.

I am grateful to James Cyriac, Haotian Chen, Vikram Anjur, Subho Banerjee,

and all other members of the DEPEND Research Group for their continuous support of

my studies and research.

Lastly, I am thankful for the friendship of Yangge Li, Zonglin Li, and Tianxing

Wang, and many others I know in the ECE and CS departments, for their support and

encouragement during many hardships.

 iv

Table of Contents

 Introduction ... 1

1.1 Thesis Contributions .. 5

1.2 Thesis Structure ... 7

 Autonomous Driving System (ADS): Overview ... 8

2.1 ADS Hardware ... 9

2.2 ADS Software: Modular-based ADS ..10

2.3 ADS Software: End-to-end ADS ..18

 RoboTack: ML-Driven Malware Targeting Autonomous Vehicle Safety21

3.1 RoboTack: Overview ...21

3.2 RoboTack: Related Work ..24

3.3 RoboTack: Background ...25

3.4 RoboTack: Attack & Threat Model...26

3.5 RoboTack: Methodology ..32

3.6 RoboTack: Experimental Setup ...37

3.7 RoboTack: Evaluations and Discussion ...40

3.8 RoboTack: Conclusion ...46

 DiverseAV: Low-cost Error Detection via Temporal Data Diversity48

4.1 DiverseAV: Overview ..49

4.2 DiverseAV: Related Work ...54

4.3 DiverseAV: Background ..56

4.4 DiverseAV: Methodology ...58

4.5 DiverseAV: Experimental Setup ..64

4.6 DiverseAV: Evaluations and Discussion ..70

 v

4.7 DiverseAV: Conclusion ..80

 HPC Storage System: Overview ...81

5.1 Client...82

5.2 Metadata Server (MDS) ..83

5.3 Object Storage Server (OSS) ...83

5.4 Management Server (MGS) ...84

5.5 Interconnections ..84

5.6 Reliability Features ...85

 Kaleidoscope: Live Forensics for HPC Systems: A Case Study on Distributed
Storage Systems ..87

6.1 Kaleidoscope: Overview ...87

6.2 Kaleidoscope: Related Work ..93

6.3 Kaleidoscope: Background ...94

6.4 Kaleidoscope: List of Components ...96

6.5 Kaleidoscope: Monitoring and Telemetry Data Collection.....................................97

6.6 Kaleidoscope: Methodology ... 100

6.7 Kaleidoscope: Evaluation and Discussion .. 108

6.8 Kaleidoscope: Conclusion ... 115

 Related Work ... 116

7.1 ADS Security Assessment .. 116

7.2 ADS Reliability Assessment .. 117

7.3 HPC Failure Localization and Diagnosis ... 119

 Conclusion and Future Work ... 121

8.1 Conclusion ... 121

8.2 Future Work ... 122

References ... 125

 1

 Introduction

Computing systems have become pervasive in our daily lives and are used

extensively in mission-critical exploration, transportation, scientific study, and

manufacturing. For example, embedded systems are used in critical infrastructure to

monitor the production process. Real-time systems are used in autonomous vehicles to

control the critical movement of the vehicle. High-performance computing systems

(HPCs) and large data centers are used to discover novel scientific knowledge from

petabytes of data. These systems are required to have high performance—able to

compute and complete their tasks on time and with high reliability—and to provide

continuous and uninterrupted service despite disruption due to faults or malicious

attacks, as any delays in task completion can cost money or even lives [1]. Therefore,

one pressing issue is monitoring and managing the system's hardware and software

resources to guarantee high performance and high reliability.

Technological advances lead to increases in both hardware and software

complexity of modern computing systems. The complexity of hardware increases because

of both the increasing number of hardware components [2] and the use of heterogeneous

computer fabrics consisting of CPUs, GPUs, FPGAs (field-programmable gate arrays),

 2

and proprietary ASIC (application-specific integrated circuit) accelerators [3]–[5]. The

software complexity increases because of the increasingly complex programming logics

and the use of artificial intelligence methods that involve the usage of heterogeneous

computer fabrics. Due to the complexity, criticality, and scales of those systems, it

becomes increasingly hard for humans to monitor, assess, and manage the system

directly. To address this, people start to use artificial intelligence (AI)-driven methods

to monitor, assess, and manage those systems automatically in real time. AI-driven

methods have several advantages: 1) learning-from-data, as AI-driven methods can learn

system anomaly from data directly, which eliminates the need to explicitly model

complex systems, 2) less human-intervention, as AI-driven methods can process a large

quantity of data produced by the system, which allows the human operators to focus on

more critical tasks, and 3) the use of heterogenous compute hardware which increases

the number of failure modes.

This thesis investigates the use of AI-driven methods in the context of two highly

important yet very different applications: autonomous vehicle (AV) and high-

performance computing (HPC). We are interested in these applications as they both

require continuous monitoring, assessing, and managing the system to ensure high

performance and resilience, and each application presents unique domain-specific

challenges.

 3

Autonomous driving system (ADS) integrates sensors, software, and hardware

responsible for autonomous driving in AV. ADS operates in highly dynamic, human-

centered, and safety-critical environments, in which critical faults can cause serious

accidents[1], [6]. Comprehensively monitoring and assessing the reliability of ADS is

inherently hard using traditional methods like formal verification, because of the

following reasons: 1) ADS can encounter infinitely many driving scenarios—countless

cases needed to be covered for exhaustive assessment, and 2) modern ADS uses black-

box machine learning (ML) techniques such as convolutional neural networks (CNNs)

for perception, prediction, and planning, making justifying and verifying the decision of

ADS a challenging task.

HPC systems used in data centers are large-scale computing systems with tens-of-

thousands of computing, storage, and networking components. HPC system is mission-

critical in which critical failures can lead to system-wide outage (SWO) that interrupts

multiple running jobs. These jobs can be scientific calculations that would take days to

finish, or internet services that serve billions of users. As a result, SWO often results in

waste-of-energy and incurs heavy financial losses [7]. Comprehensively monitoring and

assessing the reliability of HPC is equally challenging due to the following reasons: 1) a

large number of interconnected components result in many failure modes, 2) failure at

one component can either be masked or propagate through the system and have

different manifestation at different levels of the system, 3) a variety of user applications

 4

that stress different components of the system can lead to a variety of failure modes,

and 4) component failures and resources contention both result in performance

degradation at the user level, making diagnosis harder. These three properties of HPC

failures make pinpointing the source of the failures and their reasons particularly hard.

AI-driven methods for system assessment address these challenges by intelligently

learning the behaviors and hidden states of complex systems from the operation data,

and provide more comprehensive and timely coverage for system reliability, safety, and

security assessments. Though the coverage might not be 100% due to these systems’

complexities, such tools help the system operators catch and prevent catastrophe

failures in mission-critical systems like ADSs and HPC systems to mitigate the

consequences. We demonstrate the effectiveness of using AI-driven methods for mission-

critical system assessment on both ADSs and HPC systems---one for ADS safety and

security assessment, one for ADS fault detection, and one for HPC storage system fault

detection and localization. In each of these cases, we show that AI-driven methods learn

the state-of-the-art ADS and HPC system state from data without explicitly modeling

the system and they are generally applicable to other systems, which makes them

powerful system assessment tools.

 5

1.1 Thesis Contributions

This work presents three AI-driven methods for resiliency, safety, and security

assessment in the context of two applications: ADS and HPC systems. We present the

overview and contribution of each work in the following paragraphs.

RoboTack is an ML-driven malware that targets ADS safety. RoboTack

uses a deep-learning model to determine the attacking timing, which greatly increases

the attack success rate against state-of-the-art ADS [8], causing emergency braking in

75.2% of the runs and accidents in 52.7% of the runs. RoboTack presents a powerful

framework for assessing ADS susceptibility to malicious attacks and discovering ADS

vulnerability in critical driving conditions. For example, RoboTack learns the

vulnerability window of the sensor fusion module and attacks around that window to

cause a fatal accident. All in all, we believe RoboTack can aid the ADS development by

mining the ADS vulnerability before hitting the roads.

DiverseAV is an AI-aided low-cost and high-accuracy approach for

ADS hardware and software faults detection. DiverseAV detects faults that can

cause safety issues by exploiting the input data’s temporal diversity. DiverseAV

duplicates ADS software and runs them in round-robin mode while using data-driven

dynamic thresholds condition on speed fault-free simulations for fault detection.

DiverseAV can achieve precision and recall, both of 0.87, on detecting permanent

hardware faults and precision and recall of 0.99 and 1.0 respectively on detecting

 6

software faults, while incurring little compute overheads. Moreover, the DiverseAV

framework is universally applicable to different kinds of ADS with minimum alteration

to the original hardware and software.

Kaleidoscope is an AI-driven real-time failure detection and root-cause

analysis framework for HPC storage system. HPC storage system is a vital

component of the modern HPC system that directly impacts performance and

reliability. Kaleidoscope uses a probabilistic graphical model (PGM) to capture the

system’s topology and factor functions to represent the relationships between

components and uncertainty in failure paths. We use production data that reflects the

real-world usage of the system to train the PGM. We deployed Kaleidoscope on NCSA’s

Blue Waters Supercomputer’s Cray Sonexion storage system and achieve 99.3%

accuracy in failure localization and 95.8% in root-cause classification, with less than

0.01% runtime overhead.

Overall, these AI-driven methods can learn and identify the failure modes of

complex systems by observing the field data without modeling the system explicitly,

making resilience and safety assessment in complex systems tractable and achievable in

real time. Overall, our methods show great successes in applying AI-driven methods in

the ADS and HPC domains, and we believe these methods are the future direction of

complex system monitoring and assessment.

 7

1.2 Thesis Structure

The remainder of the thesis will be structured as follows. Chapter 2 will

introduce modern ADS architecture and underlying issues to be solved. It will discuss

representative modern ADS architecture in greater detail and expose common issues

found in modern ADS architecture and the usage of black-box algorithms. Chapter 3-4

will present the work on RoboTack and DiverseAV. Chapter 5 will serve as an overview

of the HPC storage system using NCSA’s Blue Waters as an example and present

problems related to monitoring and failure detection in such systems. Chapter 6 will

present the work Kaleidoscope. Chapter 7 will discuss the related works in AV and HPC

research fields, with a focus on the theme of reliability and security. Chapter 8 will serve

as a discussion and conclusion, in which we will conclude this thesis and discuss future

research directions.

 8

 Autonomous Driving System (ADS): Overview

Chapters 2, 3, and 4 describe the works related to the security and reliability

assessment of the ADS. ADS controls the critical behavior of the AV so it must operate

reliably in every driving environment. Modern ADSs are prone to security attacks due

to 1) easy physical and software access to the vehicle, 2) extensive usage of black-box

deep learning-based algorithms, and 3) lack of robust detection methods for adversarial

attacks. Our work RoboTack highlights these security vulnerabilities of the ADS by

developing a smart malware for ADS security assessment. Besides, ADSs are prone to

reliability issues due to the usage of heterogeneous compute architectures consisting of

CPUs, GPUs, and ASIC for different compute tasks in the ADS. These components are

not 100% reliable, and a reliability issue at the critical moment can cause catastrophic

problems, while fully duplicating the ADS can be quite costly. Our work DiverseAV

proposes a low-cost robust hardware and software fault detection framework that is

universally applicable to almost all ADSs to detect and mitigate critical reliability-rated

faults.

We will start by describing the details of the architecture of ADS. ADSs are

feedback-based control systems that represent the sensing and computational

components (both software and hardware) of AVs. An ADS takes in sensor data at each

 9

timestep, infers the data and constructs a world model, makes routing decisions, and

outputs control commands to the vehicle actuators to drive the vehicle. Modern ADSs

are complex integrations of various hardware and software. This chapter describes the

software and hardware components of common types of ADS, modular-based and end-

to-end-based, in detail, and provides a summary of issues found in current developments

of ADS.

2.1 ADS Hardware

ADS hardware consists of sensors and compute-hardware used by the ADS

software. A commercial ADS often consists of the following types of sensors: camera,

LiDAR, radar, global navigation satellite system (GNSS), and inertial measurement unit

(IMU) [8], [9]. Cameras provide high-resolution images describing the vehicle’s

surroundings, which are used for obstacle recognition, lane recognition and sign and

traffic light recognition. Multiple cameras are often used to cover as many view points

as possible. LiDARs output 3D cloud points of the surroundings with a field of view of

360 degrees, which are used to detect obstacles and infer their distances. Radars output

the distance and positions of the obstacle in front and are used for obstacle distance and

velocity detection. One advantage of radar is that it is less susceptible to bad weather or

bad lighting conditions than LiDAR and cameras, but radar outputs low-resolution

images that are not suitable for distinguishing between different types of objects, so

radar is often not used for 3D reconstruction of the obstacles. GNSS is used for

 10

localizing the vehicle in a global frame, and IMU is used for measuring the vehicle poses

(roll, yaw, pitch) and accelerations along the x, y, z-axes.

ADS compute hardware forms a heterogeneous compute architecture with

general-purpose CPU, GPU, and ASIC-based compute accelerators, and proprietary

accelerators (either integrated or standalone). The GPU or ASIC-based accelerators are

massive parallel architectures that are used to accelerate matrix multiplication,

convolution, pooling, and element-wise operations that are typically used in a deep

neural network (DNN). These compute components are often duplicated to provide

additional compute performance and hardware redundancy. For example, NVIDIA AGX

Xavier autonomous driving platform has two NVIDIA Xavier SoCs, and each SoC

contains an ARM v8 CPU, proprietary deep-learning accelerator, NVIDIA Volta GPU,

and proprietary image and video accelerator, with the option of adding two dedicated

NVIDIA TU104 based GPU accelerator [3]. Similarly, Tesla’s Full Self-Driving

Computer [5] uses two SoCs with ARM CPUs for general-purpose computing, and

proprietary neural processing units as parallel compute accelerators.

2.2 ADS Software: Modular-based ADS

ADS software runs on ADS compute hardware and provides key functionalities

for autonomous driving. At each time step, an ADS software is responsible for

perception, prediction, localization, planning, and vehicle control.

 11

Figure 1: Modular-Based ADS
Source: Adapted from [33]

Shown in Figure 1, modular-based ADS software such as [8], [9] use individual

software modules to solve each of the (from upstream to downstream) perception,

prediction, localization, planning, and control tasks. Information is passed from

upstream to downstream using a publisher-subscriber paradigm---a module subscribes to

topics for input data and publishes topics to broadcast output data. This publisher-

subscriber paradigm is often handled by the real-time OS of the ADS. We describe the

major components of a modular-based ADS in detail below.

2.2.1 Perception Module

Perception is the first step in autonomous driving. The perception module takes

the output from cameras, LiDARs, and radars as input, and tracks a list of detected

obstacles’ positions, velocities, and accelerations over time. This task is called multiple-

obstacle-tracking (MOT).

 12

Figure 2: Tracking-by-Detection Paradigm

Modular-based ADSs commonly use the tracking-by-detection (TBD) paradigm

for solving MOT tasks, for its higher reliability, interpretability, and debuggability

compared to black-box end-to-end detection-tracking algorithms. Figure 2 depicts a

TBD pipeline for a single sensor such as a camera, a LiDAR, or a radar, and Figure 3

depicts TBD pipelines for multiple sensors with the sensor fusion module.

 13

Figure 3: Multi-sensor Tracking-by-Detection Pipeline with Sensor Fusion Module

At each sensor time step 𝑡𝑡, a sensor 𝑆𝑆𝑡𝑡, for example, a camera, perceives the

environment and generates a sensor output (e.g. camera image). An object detection

algorithm 𝐷𝐷 (e.g. a CNN-based object detector) extracts the object states (e.g. position

in image), referred to as measurements 𝑂𝑂𝑡𝑡, from the sensor data. Since modern ADS has

multiple sensors running asynchronously, there can be multiple instances and types of 𝐷𝐷

for different sensors, each generating an 𝑂𝑂𝑡𝑡 when there is a new output from the

corresponding sensor. A matching-algorithm 𝑀𝑀 takes the measurements 𝑂𝑂𝑡𝑡 (possibly

from multiple 𝐷𝐷) as well as the existing tracklets 𝑺𝑺𝒕𝒕 (a tracklet is a single tracker

instance tracking a single obstacle, multi-object tracking often requires multiple

tracklets) and attempts to match the tracklets to their corresponding 𝑂𝑂𝑡𝑡. It is common

to transform 𝑂𝑂𝑡𝑡 from different sensors into the same coordinate system (e.g. world

coordinate) so that the 𝑂𝑂𝑡𝑡 from different sensors of the same obstacle can all be used to

 14

update that obstacle’s tracklet. If a 𝑂𝑂𝑡𝑡 is matched with a tracklet, it means that the

obstacle measured has already been tracked, so 𝑂𝑂𝑡𝑡 is used to update the tracklet’s

position by the tracking algorithm 𝐾𝐾. If a 𝑂𝑂𝑡𝑡 is unmatched, it means that there is a new

obstacle to track, so a new tracklet is created. If a tracklet is not able to match with

any 𝑂𝑂𝑡𝑡, it means that the obstacle is “lost”; the tracking algorithm 𝐾𝐾 can choose to

predict the obstacle’s position based on its internal motion model, or to delete the

tracklet if the obstacle is lost for some time. A way of ranking the correspondence

between a tracklet and a measurement is by matching their shape, keypoint features

(e.g. SIFT), and comparing their intercept-over-union (IOU is a way to measure area

overlaps) with a threshold. The Hungarian algorithm is used to solve this matching-

assignment problem given the correspondence of the object features and IOU as criteria.

Since an obstacle’s tracklet can be updated by different sensor-detection measurements,

this process is also called sensor fusion. Sensor fusion improves spatial redundancy for

obstacle tracking as an obstacle lost by one sensor might still be intact in other sensors.

Kalman filter [10] is often used as the tracking algorithm and the sensor fusion model

for its ability to track (prediction + estimation update) the obstacle state by using the

internal obstacle motion model and updating the obstacle state estimation from different

sensor-detector-pipeline’s measurements (𝑂𝑂𝑡𝑡). We omit the details of the Kalman filter

as it is beyond the scope of the thesis. The usage of state-estimator models such as KF

for tracking solves the following challenges: 1) Sensor outputs are discrete and the

obstacles might have moved in intervals. The use of state-estimator can predict obstacle

 15

location based on internal motion model, providing priors. 2) Detector outputs are

inherently noisy [11], [12] and the state-estimator compensates for the noise by using

predicted priors (internal beliefs) and measurement updates. The tracklets 𝑺𝑺𝒕𝒕 are then

used with the GPS localization data and the IMU data to construct the world model---a

3D reconstruction of the world specifying the location of the obstacles in the world

coordinate.

The perception module, apart from handling obstacle detection, also handles lane

detection, sign recognition, and traffic light recognition using camera sensors and

additional detection algorithms. Nowadays, specialized CNNs such as LaneNet [13], [14]

are used extensively for these tasks.

2.2.2 Prediction Module

Prediction is the step after perception. The prediction module predicts the

obstacle’s motion in the future. Given the obstacle’s tracklets’ history of 𝑁𝑁 state 𝑺𝑺𝒕𝒕−𝑵𝑵:𝒕𝒕,

the prediction module outputs 𝑺𝑺𝒕𝒕+𝟏𝟏:𝒕𝒕+𝑻𝑻� the prediction of the tracklets’ states until T time

steps into the future. These predictions are rough estimations of the obstacle’s future

trajectory and are used in the planning module for local path-planning. A simple way of

trajectory prediction is to use Newton’s kinematic model based on trajectory history.

This method works fine with vehicles but is less applicable with pedestrians since the

latter have more randomness in their movements. There are more advanced techniques

such as recurrent neural network-based methods [15], [16].

 16

2.2.3 Localization Module

The localization module localizes the ADS position in the regional high-definition

maps (HD maps). Different localization techniques are used to localize the ADS to

achieve better accuracy. GNSS-based localization localizes the vehicle in the global

frame by referring to the localization information sent by orbital satellites. However, a

sole GNSS-based localization does not provide the vehicle with heading information or

enough accuracy for autonomous driving. Additional methods such as normal

distribution transform (NDT) localization matches pre-stored HD map features with the

vehicle’s sensor measurements (LiDAR measurement in the case of NDT) to determine

the vehicle’s precise location on the map and its headings. The localization module also

provides crucial transform information that transforms both AV and obstacles into the

global frame to reconstruct the 3D world representation of the surrounding. Another key

component is the HD map. HD map stores detailed information of routes, lanes, and

traffic regulations (traffic signs, signals, etc.) used to provide extra information for ADS’

path-planning and decision-making.

2.2.4 Path Planning Module

With the information from perception, prediction, and planning, the path

planning module handles both high-level route planning and low-level motion planning

of the AV. The high-level route planner plans the high-level route from current location

to the destination. A graph search algorithm such as the Dijkstra algorithm or A*

 17

algorithm is used to search the quickest route from the current location to the

destination, without considering local obstacles, traffic regulations, or the AV’s motion

model. A low-level motion planner attempts to plan an obstacle-free path as the AV

drives and reaches its destination by searching for a viable path around the obstacles’

predicted trajectories, with consideration of the AV’s motion capability. Rapidly

exploring random tree (RRT) [17] is one efficient algorithm that is commonly used for

motion planning. A low-level planning algorithm generates local waypoints for the

vehicle’s control module to follow.

2.2.5 Control Module

 Finally, the control module converts the local waypoint from the planning

module into control signals for the AV’s actuators. Typically, an AV has three main

actuators: throttle, brake, and steering, each accepting a range of input. One way of

converting local waypoints into smooth control signals (for passengers’ comfort) is to use

PID controllers [18]. PID controller is a control-feedback loop that computes the control

signal based on errors and proportional, integral, and derivative coefficients. The error is

calculated between the vehicle’s poses (positions and headings) and the next waypoint

to track. The control module ultimately outputs throttle, brake, and steering actuation

commands to the actuators to drive the vehicle. The use of PID control smooths the

output and avoids sudden changes in the control value of the actuator.

 18

2.3 ADS Software: End-to-end ADS

Aided by the advancement in deep-learning, end-to-end ADS started to gain

much attention [19]–[21] and show promising performance in simple autonomous driving

tasks [22]. In contrast to its modular-based counterpart, end-to-end ADS does not have

distinctive modules to tackle different tasks of autonomous driving, but learns end-to-

end mapping directly from sensor data to planning waypoints, or control output,

instead. Many end-to-end ADSs use deep convolutional neural network (CNN)-based

models trained by reinforcement or imitation learning to learn such a mapping, and use

this mapping directly for autonomous driving. The workflow of an end-to-end ADS is

shown in Figure 4.

Figure 4: End-to-End ADS

Compared to modular-based ADS, end-to-end ADS has its own advantages and

disadvantages. One notable advantage is that end-to-end ADS has more flexibility in

retaining useful information throughout the perception-prediction-planning-control

process [23]. In contrast, a modular-based ADS cannot retain such information because

 19

the internal representation of knowledge about the environment in one module is

incompatible with another module downstream. For example, perceptual information of

the obstacles can be retained throughout the CNN of end-to-end ADS as feature maps

and used for planning and control. These feature maps might contain useful information

such as position uncertainty and confidence that is critical for more precise planning and

control. However, in a modular-based ADS, the output from the perception module is

the obstacle’s bounding box coordinates instead of the internal feature maps, so the

internal representation of the obstacles is lost, which can contain critical information.

Another advantage of end-to-end ADS is its simplicity—there is no need to develop and

fine tune different modules for different tasks and spend efforts for integration—almost

every task is handled by a single model developed and trained end-to-end.

The disadvantages of end-to-end ADS are also prominent. End-to-end ADS often

performs worse than modular-based ADS. More importantly, the decision made by end-

to-end ADS is less interpretable and verifiable without intermediate outputs of each

module like modular-based ADS. For example, when the end-to-end ADS decides to

change lanes, we are not able to look at each modules’ decision (as with a modular-

based ADS) and the reason why the ADS arrived at that decision, but can only suspect

that the module learned that from the training data. Moreover, CNN-based end-to-end

ADSs are susceptible to adversarial attacks and distribution shifts. The latter matters in

particular because out-of-distribution scenarios are common in autonomous driving due

 20

to infinitely many possible scenarios. The combination of many possible scenarios and

limited interpretability makes it hard to formally verify that the output of an end-to-

end ADS is “safe” under distribution shift when encountering new scenarios.

Overall, end-to-end ADS is less commonly used in commercial graded ADS

because of its inferior performance and interpretability compared to its modular-based

counterpart.

 21

 RoboTack: ML-Driven Malware Targeting

Autonomous Vehicle Safety

This chapter introduces RoboTack 1 [24], a smart ML-based Malware targeting

autonomous vehicle safety by attacking the perception module of the autonomous

driving system (ADS). RoboTack uses ML to infer scenarios and time for attacking the

ADS. Through RoboTack, we have shown that, contrary to common belief, even state-

of-the-art ADS with multiple sensors can be highly susceptible to malicious attacks

when the ADS is attacked at a critical scenario and time. Also, RoboTack can be used

as a universal and powerful framework to assess the security of the ADS by mining the

failure patterns in critical driving scenarios.

3.1 RoboTack: Overview

Security attacks that violate the safety constraints of AV on road can lead to

serious accidents. Creating a security hazard that results in serious safety violations

1 RoboTack is accepted and published as the paper ML-Driven Malware that Targets AV Safety [24] in
the 2020 International Conference on Dependable Systems and Networks. The thesis author is a co-author
(second author) of the paper due to his contribution in paper writing, method development, method
evaluation, and experiment data analysis. Specifically, the thesis author designed and developed Safety
Hijacker, a core component in RoboTack. The thesis author wrote the sections on methodology,
experimental setup, evaluation and results, and conclusion. The rest of the work is mainly credited to
Saurabh Jha, the first author of the paper. © 2020 IEEE. Reprinted with permission.

 22

(emergency brakings or accidents) is not only attractive from the perspectives of

malicious entities but also helps expose the underlying security problems of an ADS

during its development. The security hazard could be created using smart malware that

modifies the sensor data at an opportune time to interfere with the ADS’ perception and

prediction processes during autonomous driving. Such malware makes the ADS

miscalculate the trajectories of obstacles, leading to unsafe driving decisions. For

example, the a malware can fool the ADS into believing that a slowing-down vehicle in

front is in another lane, making the AV accelerate, and causing rear-end collision with

the vehicle in front.

In this work, we introduce RoboTack, an end-to-end attack framework that can

be deployed in the form of smart malware to compromise the safety of the AV with a

high success rate, and evaluate its effectiveness on a production-grade ADS. The key

contributions of RoboTack are that it answers the questions of “what”, “how”, and

“when” to attack the ADS and it proposes a general framework for ADS security

assessment.

 Deciding what to attack: RoboTack selects what obstacle to be attacked as well

as what attack method should be used to attack. RoboTack has situation awareness of

its surroundings so it selects the obstacle and attack vector to maximize the impact of

the attack using a rule-based system.

 23

 Deciding how to attack: RoboTack smartly alters the obstacle’s predicted

trajectory by altering the camera sensor input data or output of the perception module

and maintaining that trajectory for a short time interval. RoboTack decides the attack

method and attack duration in answering “what to attack” such that the alteration is

small enough to be considered as noise. RoboTack also overcomes compensation from

other sensors (e.g. LiDAR) and temporal stat-estimation models (e.g. Kalman filter).

Deciding when to attack: RotoTack employs a scenario matching algorithm and a

shallow three-layer neural network (NN) decision model to identify the most opportune

time to cause a safety hazard with a high probability of success. The proposed NN

models the non-linear relationship between AV kinematics and attack parameters (how

long to attack) and is used for attack decision-making. We use multi-layer NN because

it is a universal function approximator [25].

 We deploy RoboTack on Apollo ADS [8], a modular-based production-grade AV

system to evaluate and quantify the effectiveness of RoboTack, by simulating about

2000 runs of experiments with realistic traffic configuration using LGSVL simulator [26].

We find that 1) RoboTack is significantly more successful in creating safety hazards

than random attacks (our baseline) are. Random attacks attack random obstacles at

random moments and for a random duration, without intelligent decision-making.

RoboTack caused 33x more forced emergency braking than random attacks. 2)

RoboTack causes accidents in 52.6% of the experiments, while random attacks caused

 24

none. 3) RoboTack is more successful in causing an accident when a pedestrian is

involved, causing accidents in 84.1% of the runs. 4) RoboTack automatically learns the

vulnerability of Apollo’s perception system from data and can achieve successful attacks

in as few as 14 consecutive time steps (less than a second).

3.2 RoboTack: Related Work

 We compare RoboTack with other adversarial learning methods targeting

perception systems or AV safety. Several works have targeted deep neural networks

(DNNs) to create adversarial learning-based attacks [27]–[31] that were shown to be

successful in causing misrecognition of the DNNs. Moreover, [32] proposed a method to

overcome the temporal redundancy of the Kalman filter which leads to mistracking of

the obstacles. The theme of these researches is to create adversarial input or obstacles

on-road in an attempt to “fool” the AV’s perception system. However, these adversaries

are limited because 1) DNNs only represents a part of the system, 2) have low safety

impact because tracking and sensor fusion provide temporal and spatial redundancy to

protect the vehicle from adversarial attacks while existing methods only consider a

single sensor pipeline, and 3) existing methods lack attack timing and scenario

awareness, so most attacks are carried out at random which will not cause safety

violations of AV. Overall, existing adversarial attack methods only focus on “what and

how to attack” instead of “what, how, and when to attack” like RoboTack to improve

attack success rate. Moreover, existing adversarial methods do not consider the end-to-

 25

end autonomous driving feedback loop for evaluation but only evaluate precaptured

data. In contrast, we evaluate RoboTack on a production-grade AV system with an end-

to-end ADS-simulator feedback loop for a more realistic evaluation.

3.3 RoboTack: Background

1) Modular-based ADS: Figure 1 illustrates the basic architecture of modular-

based ADS. From now on, we use AV, and ego vehicle (EV) interchangeably. A detailed

overview of modular-based ADS is presented in Chapter 2 so we omit the details here.

In short, at each time step 𝑡𝑡, the ADS system takes input from sensors 𝑰𝑰𝒕𝒕 (e.g. cameras,

LiDAR, GPS, IMU) and reconstructs a world model 𝑾𝑾𝒕𝒕 consisting of position and

velocity of surrounding obstacles, and lane and path information. The planning module

uses 𝑾𝑾𝒕𝒕 to plan a viable path to the destination. The path information is converted into

steering, throttle, and brake actuation values 𝑨𝑨𝒕𝒕 using PID controllers.

2) Perception system: Chapter 2 presents the perception system and multiple-

obstacle-tracking (MOT) paradigm in-depth so we omit the details here. As shown in

Figure 3, the sensor input 𝑰𝑰𝒕𝒕 is the input to a CNN-based object detector, such as

YOLO [11] or Faster R-CNN [12]. The obstacle detector extracts a list of obstacles from

𝑰𝑰𝒕𝒕 known as measurements; we named it as 𝑶𝑶𝒕𝒕. The obstacle tracker, like Kalman filter

(each obstacle has one), tracks the obstacle over time, by first generating state

prediction 𝑺𝑺𝒕𝒕−𝟏𝟏� and generating state estimation 𝑺𝑺𝒕𝒕� based on measurements. 𝑺𝑺𝒕𝒕� is then

used with the appropriate coordinate transform T to build the world model 𝑾𝑾𝒕𝒕.

 26

Figure 5: Autonomous Vehicle Safety Model

3) Safety model: A safety model is a model to evaluate the safety of the

autonomous vehicle quantitively. We use the safety model proposed by [33] as it defines

the safety criteria of an AV in terms of longitudinal and lateral distances from the

closest-in-path-obstacle (see Figure 5). Since in this work all our scenarios are driving in

a straight-line, we use only the longitudinal definition. The stopping distance 𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 is

the distance needed to bring AV to stop under maximum deceleration. The safety

potential δ is the distance from 𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 to the nearest obstacle in the path. Finally 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + δ, and the AV is collision-free as long as 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0. A larger safety potential

requires a shorter stopping distance or keeping a longer distance with in-path obstacles.

On the other hand, reducing safety potential is equivalent to decreasing 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 given the

same stopping distance. In this work, we use 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 4 because a limitation in the

simulation environment terminates the simulation for 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 4 m.

3.4 RoboTack: Attack & Threat Model

1) Attacker’s goals: The attacker ultimately aims to alter (hijack) the obstacle’s

trajectories to cause a safety hazard. Safety hazards in this work are emergency brakings

and accidents. The attacker needs to stay hidden by short attack duration and

 27

disguising the attack as natural noise in the perception pipeline. RoboTack achieves this

by hiding the data perturbation of the sensor data as sensor noise and the resulting

perturbed output of the detector as detector noise (discussed in Section 3.7). Taking

advantage of the natural noise of the perception pipeline the malware attacks at a

critical time—causing the maximum impact on safety potential for a minimum duration.

This makes it hard for the intrusion-detection system (IDS) to detect [34] in time.

Attacking at the critical time requires the malware to be scenario-aware of AV’s

surroundings as altering the obstacle trajectories alone is not sufficient to cause an

attack if there is no obstacle nearby. The malware can automate the process by

continuously monitoring the surroundings, identifying the critical time, and attempting

to cause a safety hazard.

2) Threat model: Here we discuss the thread model, including system

defensibility and attacker’s capability. The targeted system is the perception subsystem

of the ADS, specifically the obstacles detection, tracking, and sensor fusion modules.

The built-in defenses are the spatial redundancy provided by multiple sensors and the

sensor fusion and the temporal redundancy provided by the obstacle state-estimator

(tracker). These two built-in redundancies defend against most of the existing

adversarial attacks on detectors [35] since these attacks focus on only a single sensor and

attack at a random time. The malware targets the critical vulnerable component in the

perception module—the Kalman filter (KF as 𝐾𝐾 in Figure 2) used as obstacle trackers.

 28

KF assumes Gaussian noise with zero mean for both the measurement and the process

update, which is true for the bounding box predicted by the CNN-based detectors.

However, these assumptions make KF less effective in compensating for adversarial

noise (added to measurements) that is tailored to alter the obstacles’ trajectories

because KF cannot identify noise that violates the assumptions. We show later that the

malware can alter the trajectory of a perceived obstacle within one standard deviation of

the modeled Gaussian noise and result in successful attacks. Since a KF uses an

obstacle’s trajectory history in trajectory estimation (temporal redundancy), one

challenge of attacking KF is to maintain a small window (continuous-time step of the

attack) to avoid IDS detection, while still resulting in an effective attack (too small a

window will not alter the trajectory by much).

We assume the attacker can get access to the ADS source code and live camera

feed, or get access to the ADS perception module during its operation. The attacker first

gains knowledge of the ADS system and understands its internal components. The code

can be obtained via a rogue employee. Moreover, there are works such as [36] that

showed the steps to intrude the ethernet-based camera and spoof the camera traffic

using the man-in-the-middle (MITM) attack. This way, the adversary can gain access to

the camera data and modify them at a given time. Finally, the attacker can choose to

use a hardware implant to compromise the ADS. One way is to install backdoors in the

hardware for remote access.

 29

We assume that the attacker cannot get access to the CAN bus and we assume

the transmission of control commands is encrypted and protected [37], so the attack

cannot perturb the control command of the ADS directly to cause safety hazards. These

are reasonable assumptions because the CAN bus is protected on production graded

systems. In addition, IDS can detect abnormal activities on the CAN bus.

3) Attack Vectors: Attack vectors are attack configurations to maximize impact

depending on the scenarios. The available attack vectors in RoboTack are Move_Out,

Move_In, and Disappear, but other attack vectors are also possible. Move_Out attack

moves the targeted vehicle (TO) out of the AV lane to fool the ADS into believing that

TO is moving out-of-lane and the path at the front is obstacle-free. This attack makes

the ADS accelerate and causes it to collide with the TO. Move_In attack moves an out-

of-lane TO into the AV’s lane, forcing the ADS to perform emergency braking.

Emergency braking can cause serious injuries. Disappear attack fools the ADS into

believing that in-path TO has disappeared; it is a more extreme version of the

Move_Out attack with similar consequences.

4) Attack phases: The first phase of the attack is preparing and deploying the

malware, which includes gaining access to ADS source code, defining a mapping between

attack vectors and world state (𝑾𝑾𝒕𝒕), training “safety-hijacker” and optionally fine-tuning

“trajectory-hijacker” for a given ADS, gaining access to ADS camera feeds or detector

outputs, and installing RoboTack on the targeted ADS.

 30

The second phase of the attack is monitoring the environment. RoboTack first

approximately reconstructs the world state using a subset of the sensors (e.g. single

camera) to gain scenario awareness. We assume that the world state approximated by

the front-facing camera is close to the one constructed using sensor-fusion, but less

accurate. The second step is identifying the victim or TO; we greedily choose the

closest-in-path-obstacle (CIPO) identified by our safety model introduced in the

previous chapter. The third step is invoking scenario matcher (SM) that uses the world

state to determine whether the TO is vulnerable to any attack vector. The fourth step is

using the “safety hijacker” (SH) to decide the attack timing and duration. The SH

decides the timings of the attack by estimating the impact of the attack on the safety

potential δ by using an NN with three hidden layers. SH only launches the attack when

δ is reduced below a predefined threshold of γ meters. The malware ensures that the

duration of the attack does not exceed some predefined value to avoid IDS detection;

this value is determined from the characteristic of obstacle detectors on continuous

misdetection in normal (attack-freed) autonomous driving scenarios.

Figure 6: RoboTack Attack Example

 31

The third phase of the attack is altering the TO’s trajectory according to the

chosen attack vectors, at the time and for the duration that SH decided. One way to

achieve this is to use “trajectory hijacker” (TH) to corrupt the camera feed. TH perturbs

the camera sensor data using adversarial patterns to fool the detector so that the

obstacle’s trajectories are altered to match the attack vector. The TH then attacks TO

for the duration chosen by the SH. Another way to achieve this is to directly perturb

the bounding box coordinates predicted by the obstacle detector, assuming the attack

has access to the detector outputs.

5) Real attack example: In Figure 6 we show an example of using RoboTack to

attack Apollo ADS, running with LGSVL simulator. We show two different views: i) a

simulation view showing the simulated scenario, and ii) an ADS view showing how the

ADS perceives the world. RoboTack continuously monitors every camera frame using

the scenario matcher (SM) to identify the targeted obstacle (TO) and attack vectors. If

SM does not identify such an obstacle, it aborts the attack and retries the next frame.

Otherwise, SM invokes the safety hijacker (SH). As shown in the figure, the SM

identifies the SUV in front as a TO, and based on the situation, SM selects the

“Move_Out” attack vector. SH, upon receiving the signal from SM, starts to infer the

reduction in safety potential due to the attack and determines the number attack

duration. When the predicted reduced safety potential is reduced below the 10 m

threshold the SH launches the attack by calling the trajectory hijacking (TH) to change

 32

the SUV’s trajectory. TH changes the trajectory of the SUV by perturbing the camera

feed with a small patch on the SUV (the white patch for illustration purposes). The

resulting trajectory perceived by the ADS is shown in the fourth plot in Figure 6, in

which the SUV is moved out of the lane. ADS decides to accelerate because of this and

collides into the SUV as shown in both the simulation view and the ADS view.

3.5 RoboTack: Methodology

In this section, we discuss the core components of RoboTack—scenario matcher

(SM), safety hijacker (SH), and trajectory hijacker (TH)—in detail.

Figure 7: RoboTack ADS and Attack Overview

We begin by summarizing the entire attack procedure into three key steps: 1)

monitoring the environment and selecting the candidate attack vector and targeted

 33

obstacle using SM, 2) deciding when to attack and attack duration based on the selected

attack vector and targeted obstacle using SH, and 3) launching the attack by perturbing

the trajectory of the targeted vehicle using TH. An overview of the attack is

summarized in Figure 7.

Table 1: Scenario Matching Attack Vector, TO: Target obstacle

TO Trajectory TO In AV-lane TO not in AV-lane

Moving In --- Move_Out/Disappear
Keep Lane Move_Out/Disappear Move_In
Moving Out Move_In ---

1) Scenario matcher: The goal of the SM is to monitor the environment and

check whether the targeted obstacle is vulnerable to any of the attack vectors. We

choose greedily the closest-in-path-obstacle (CIPO) to be the targeted obstacle (TO).

SM is essential to maximize the success rate and minimize chances of IDS detection

because the SM avoids launching the attack if there is no CIPO in front that would

affect the ADS, or if the CIPO is performing a maneuver similar to that of the attack

vector (moving-out when the attack vector is Move_Out). SM provides RoboTack with

scenario awareness. SM uses a rule-based system to select the attack vector, and the

rules are summarized in Table 1. Note that SM can interchangeably choose between

Move_Out and Disappear attack vector as they have the same consequences on the

target’s trajectory. However, we found that Disappear which requires a more sudden

perturbation in trajectory is better suited for targeting pedestrians because the attack

duration is small. In contrast, the attack duration required for the vehicle is large so

 34

Move_Out has a better chance to “stay under the radar” of the IDS due to a more

graduate change.

2) Safety hijacker: The SH module decides when to attack to maximally impact

the vehicle’s safety. The SH optimally attacks the vehicle when the attack results in a

safety potential of fewer than 4 m. The SH runs at each time step to determine the

attacking timing and attack durations. At each time step 𝑡𝑡, the SH takes the difference

between the AV and TO velocities and accelerations, the safety potential δ𝑡𝑡 to the TO,

and the attack vector α as inputs, and outputs the attack decisions. SH outputs the

attack duration 𝐾𝐾 specifying the number of consecutive camera frames to attack if the

decision is to attack the TO. However, predicting 𝐾𝐾 directly is hard because it is

unbounded and sparse. We therefore construct the learning problem as follows: given

the relative velocity and acceleration and the safety potential of TO, what is the

predicted safety potential after 𝐾𝐾 consecutive frame attacks with the selected attack

vector? Here the learning problem becomes predicting safety potential under the

attacks, which can be directly collected from simulation data. 𝐾𝐾 and α become a

tweakable hyperparameter in the new formulation. In other words, we need to learn a

function 𝑓𝑓α such that δ𝑡𝑡+𝑘𝑘 = 𝑓𝑓α(𝑣𝑣𝑟𝑟𝑠𝑠𝑟𝑟, α𝑟𝑟𝑠𝑠𝑟𝑟, δ𝑡𝑡, 𝑘𝑘). The SH only issues the attack command

when δ𝑡𝑡+𝑘𝑘 < γ, and we use γ = 4 for all of our experiments, which is the distance of a

“crash” in the simulator. α is selected by the SM before invoking the SH. To obtain the

optimal 𝑘𝑘 which we refer to as 𝐾𝐾, RoboTack uses a parameter-sweeping strategy on 𝑘𝑘 to

 35

search for the optimal value 𝐾𝐾 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑘𝑘 𝑘𝑘 ⋅ (𝐈𝐈[δ𝑡𝑡+𝑘𝑘 ≤ γ]), subject to 𝑘𝑘 ≤ 𝐾𝐾𝑚𝑚𝑠𝑠𝑚𝑚, with I

the indicator function. We use the fact that for all of our scenarios, 𝑓𝑓α is non-increasing

with increasing 𝑘𝑘 (also shown by our data), so that the first 𝑘𝑘 that satisfies the

condition is the optimal point. We can also use binary search.

SH estimates 𝑓𝑓α using a three-layer feed-forward NN. We choose NN because it is

a universal function approximator [25] that helps to model the uncertainty in the ADS.

Note that the malware uses a uniquely trained NN for each attack vector. The input to

the NN is the vector [𝑣𝑣𝑟𝑟𝑠𝑠𝑟𝑟, α𝑟𝑟𝑠𝑠𝑟𝑟, δ𝑡𝑡 ,𝑘𝑘] and the output of the NN is δ𝑡𝑡+𝑘𝑘, the safety

potential after 𝑘𝑘 consecutive frames of attack, given the input and the attack vector.

Intuitively, NN learns the effect of an attack vector and attack duration on the ADS

safety potential. We train the NN using the average L2 distance between the predicted

δ𝑡𝑡+𝑘𝑘 and the groundtruth δ𝑡𝑡+𝑘𝑘𝐺𝐺 from the training dataset 𝒟𝒟𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉. The NN we used has

three hidden layers with 100, 100, and 50 neurons respectively, using the ReLU

activation function and dropout layers between hidden layers with a dropout rate of 0.1.

The rather simple architecture of the NN is chosen to reduce the inference time with

sufficient learning power, as we find that further increasing of the number of hidden

layers results in limited improvement. The NN’s prediction error is within 1 m for

pedestrians and within 5 m for vehicles.

We trained the NN using a subset of 𝒟𝒟 collected from a series of driving

simulations for different scenarios, with Baidu’s Apollo ADS and LGSVL Simulator. To

 36

collect training data we randomly and uniformly choose δ𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡 for each run from a

range between 70 m (the start of the scenario) and 4 m, and a random 𝑘𝑘 between 10

and 100. The data collector invokes the trajectory hijacker (TH) as soon as the safety

potential reaches δ𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡. The NN is optimized with Adam optimizer and trained on a

60%--40% split of the dataset 𝒟𝒟 for training and validation.

3) Trajectory hijacker: The TH module alters the trajectory of the CIPO

according to an attack pattern, by either perturbing the camera feed or the output of

the obstacle detector (obstacle bounding boxes). The TH must also hold onto the attack

for 𝑘𝑘 consecutive frames to mitigate the temporal redundancy from the Kalman filter.

The objective of TH when used with the camera feed is to perturb the camera

feed in such a way that the bounding box 𝑠𝑠𝑡𝑡𝚤𝚤� estimated by the MOT algorithm at time 𝑡𝑡

moves in a given direction (left or right) at max by ω𝑚𝑚𝑠𝑠𝑚𝑚. This objective can be

formulated as an optimization problem, and to solve it we modified the formulation

provided by Jia et al. [32]. The core idea is to find the adversarial patch corresponding

to a translation vector 𝑤𝑤𝑡𝑡� at each time step that results in the maximal Hungarian

matching cost with tracker evasion (Disappear) or without tracker evasion (Move_Out):

𝑎𝑎𝑎𝑎𝑚𝑚𝑤𝑤𝑡𝑡� 𝑀𝑀�𝑜𝑜𝑡𝑡𝑖𝑖 + 𝑤𝑤𝑡𝑡�, 𝑠𝑠𝑡𝑡−1𝚤𝚤� �, where 𝑜𝑜𝑡𝑡𝑖𝑖 is the obstacle detector’s output, 𝑠𝑠𝑡𝑡−1𝚤𝚤� is the prediction

of the obstacle bounding box by the internal motion model, and 𝑜𝑜𝑡𝑡𝑖𝑖 + 𝑤𝑤𝑡𝑡� =

𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑎𝑎(𝐼𝐼 + 𝑝𝑝𝑎𝑎𝑡𝑡𝐷𝐷ℎ), meaning that applying an adversarial patch on the input of the

detector results in the shifting in position of the bounding box. Additional constraints

 37

need to be satisfied: 1) 𝑀𝑀 ≤ λ, meaning that the perturbed bounding box cannot escape

the original tracker unless the attack vector is Disappear, 2) 𝑤𝑤𝑡𝑡� ∈ [μ − σ,μ + σ], meaning

that the movement must be disguised as noise, and 3) 𝐼𝐼𝑂𝑂𝐼𝐼�𝑜𝑜𝑡𝑡𝑖𝑖 + 𝑤𝑤𝑡𝑡�,𝑝𝑝𝑎𝑎𝑡𝑡𝐷𝐷ℎ� ≥ γ,

meaning that the adversarial patch must be applied on the CIPO. It is also important

to stop maximizing the distance between the actual obstacle state and the perturbed

obstacle state once Ω𝑚𝑚𝑠𝑠𝑚𝑚 and hold on to that to maintain the object’s trajectory. We

omit the details of optimization. This process is simplified if one can directly access and

alter the output of the obstacle bounding boxes (used in our evaluations). For example,

with direct access to the output, there is no need to search the adversarial patch; rather,

directly apply a vector 𝑤𝑤𝑡𝑡� to translate the bounding box with the desired amount.

4) Implementation: We implemented RoboTack using Python for the attacker

and C++ for the ADS integration. We assume that we can access the output of the

obstacle detector directly for TH. The proposed malware (RoboTack) has a small

footprint of fewer than 500 lines of code and a 4% additional GPU utilization with

negligible additional CPU utilization. It is therefore difficult to detect the usage of

RoboTack by monitoring the system’s resource utilization.

3.6 RoboTack: Experimental Setup

1) ADS: We use Baidu’s Apollo [8] ADS for autonomous driving and LGSVL

Simulator [26] for simulation. Apollo ADS uses multiple sensors: a LiDAR and two

 38

front-facing cameras for perception, GPS for localization, and IMU for pose estimation.

We enable all sensors for our experiments.

2) Simulator: We use the LGSVL simulator to simulate driving scenarios. LGSVL

simulator is a realistic driving simulator that simulates the driving environment,

obstacles, physical interactions, and virtual sensor data. A driving scenario is a

predefined environment, with predefined actors and a series of events. For example, at

the 5th second the NPC car in front will change lanes. LGSVL posts virtual LiDAR,

camera, IMU, and GPS data to the ADS as if the ADS is driving in the real world. The

measurements of different sensors are posted in different frequencies: cameras at 15 Hz,

LiDAR at 10 Hz, and GPS and IMU at 12.5 Hz. At the time of this work, LGSVL does

not support radar sensors with Apollo. Finally, LGSVL provides Python API for

scenario creation.

Figure 8: Driving Scenarios

3) Driving scenarios: We use LGSVL’s Python API to create five common and

high-risk driving scenarios. All scenarios are based on the “Borregeas Avenue” located in

Sunnyvale California with a speed limit of 50 kph, unless otherwise specific, the AV

cruise at 45 kph without frontal obstacles. We depict all driving scenarios in Figure 8.

 39

In driving scenario 1 or DS-1, the ego vehicle (EV, or AV) followed a targeted

vehicle (TV or NPC) traveling at a constant speed of 25 kph. The TV started 60 m

ahead of the AV. In the golden (attack-freed) run, the AV should accelerate to 45 kph

while approaching the TV, and then slow down to 25 kph to match the speed of the TV

while maintaining a 20 m distance. We use this scenario to evaluate Disappear and

Move_Out attacks on a vehicle.

In driving scenario 2 or DS-2, a pedestrian illegally crossed the street about 40 m

away from the AV. In the golden run, ADS commands the AV to brake and avoid

collision with the pedestrian and stop at 10 m in front of the pedestrian. The AV starts

moving again once the pedestrian moves off-road. We use this scenario to evaluate

Disappear and Move_Out attacks on a pedestrian.

In driving scenario 3 or DS-3, a targeted vehicle is parked on the side of the road

in the parking lane. The AV should maintain its trajectory because the parked vehicle is

not an in-path obstacle. We use this scenario to evaluate the Move_In attack on a

vehicle.

In driving scenario 4 or DS-4, a pedestrian walks longitudinally towards the AV

in the parking lane (next to the AV’s lane). The AV should reduce speed to around 35

kph while passing the pedestrian, and accelerate back to 45 kph once it passes the

pedestrian. We use this scenario to evaluate the Move_In attack vector on a pedestrian.

 40

In driving scenario 5 or DS-5, there are multiple vehicles traveling both in the

AV’s lane and on the opposite lane, with random destinations. Also, there are randomly

generated pedestrians on the walking-lane. The AV is set to follow a target vehicle just

like DS-1, but this time with multiple non-AV vehicles in addition to just the one in

front. We use this scenario as the baseline for random attacks for comparison.

 4) Hardware platform: The production version of the Apollo ADS is supported

on commercially available hardware like the Nuvo-6108GC [38], which consists of Intel

Xeon CPUs and NVIDIA GPUs. We therefore run the ADS on a workstation with a

Xeon CPU, ECC memory, and NVIDIA Titan XP GPUs, with one dedicated GPU

running the simulator and the other running the ADS.

3.7 RoboTack: Evaluations and Discussion

1) Characterizing ADS perception system on obstacle detection: We characterize

the performance of Apollo’s perception system which uses YOLO [11] for obstacle

detection. We measure 1) the distribution of consecutive frames in which an obstacle is

continuously undetected, and 2) the distribution of the error in the center positions of

predicted bounding boxes compare to the groundtruth. The goal of this characterization

is to show that RoboTack attacks are indistinguishable from detector noise. We show

that RoboTack’s attacks fall in the 99th percentile of the corresponding distribution in

both aspects, and neither can be detected by IDS. For such characterizations we use

 41

sequences of recorded camera frames and the groundtruth labels by manually driving

the vehicle on the San Francisco map for 10 min with regular traffic.

 Continuous misdetection: An obstacle is misdetected if the IoU between the

predicted bounding box and the groundtruth is less than 60%. We quantify pedestrian

detection and vehicle detection separately. Both cases follow an exponential distribution,

with the 99th percentile of continuous misdetection being 31 frames for a pedestrian and

59 frames for vehicles.

 Bounding box prediction error: The bounding box prediction error is calculated

as the difference between the predicted bounding box by Apollo’s MOT tracking

pipeline (YOLOv3 with Kalman filter) and the simulator groundtruth. We normalize

the differences by the size of the groundtruth bounding boxes and we evaluate

pedestrian detection and vehicle detection separately. The distribution follows a

Gaussian noise distribution with a 99th percentile of 1 object length for both pedestrian

and vehicle detections.

Table 2: Attack Result Summary. DS-5 baseline random attack in bold. EB: emergency
braking without accidents, Accidents: crashes into obstacles, R: RoboTack Full.

𝐾𝐾� in baseline attack is picked between 15 to 85 for each run of experiment.

Exp ID K # runs # EB (%) # Accidents (%)
DS-1-Disappear-R 48 101 54 (53.5%) 32 (31.7%)
DS-2-Disappear-R 14 144 136 (94.4%) 119 (82.6%)
DS-1-Move_Out-R 65 185 69 (37.3%) 32 (17.3%)
DS-2-Move_Out-R 32 138 135 (97.8%) 116 (84.1%)
DS-3-Move_In-R 48 148 140 (94.6%) ---
DS-4-Move_In-R 24 135 106 (78.5%) ---

DS-5-Baseline-Random 𝐾𝐾� 131 3 (2.3%) 0

 42

 2) Quantifying baseline attack success rate: We use DS-5 as our driving scenario

for baseline random attacks. Random here means we (i) choose a random targeted

obstacle (TO), (ii) choose a random attack vector, (iii) initiate the attack at a random

moment, and (iv) continue the attack for a random duration (randomly chose 𝐾𝐾).

Baseline random attack uses neither the scenario matcher (SM) nor the safety hijacker

(SH), but only uses the trajectory hijacker (TH) to modify the trajectory of the TO.

Out of the 131 valid experiments of random attacks using DS-5, the AV performs

emergency braking in only 3 runs (2.3%) and crashes 0 times (see Table 2 DS-5).

 We also compare the full RoboTack malware with RoboTack with the SH

disabled that only uses SM and TH. These attacks are randomly initiated for random

durations 𝐾𝐾 and we evaluate these attacks using DS-1 to DS-4 as a direct comparison

with the full RoboTack malware (SM+SH+TH). Through these attacks, we show that

attack timing is critically important to successful attacks. We summarize these attacks

in Table 2 and the green box plots of Figure 9, with details described in a later section.

Together, the completely random attacks and attacks with SM and TH only are

analogous to the attack formulations in [27], [28], [31] respectively.

 43

Figure 9: Impact of Attacks. 𝛿𝛿: Safety potential; R w/o SH: RoboTack without safety
hijacker; R: Full RoboTack; Red dash line: safety potential 𝛿𝛿 = 4

3) Quantifying RoboTack attack success rate: The full RoboTack system uses

SM, SH, and TH to complete the attack procedure. Table 2 summarizes the average

value of the attack duration 𝐾𝐾, experiment runs, number of emergency brakings, and

number of crashes for each attack scenario and attack vector. Each ID in Table 2

specifies the scenario and the attack vector chosen, with 150 to 200 total experiment

runs, though we remove invalid experiments (simulator crash, etc.). RoboTack attacks

are much more successful in causing safety hazards than random attacks are. RoboTack

attack cause 33x more emergency braking (640 out of 851, 75.2%) than random attack

(3 out of 131, 2.3%). Random attacks cause 0 accidents while RoboTack attacks cause

accidents in 299 out of the 568 runs (excluding Move_In attacks because there is no

vehicle to crash into).

 RoboTack is more successful in attacking pedestrians than vehicles. We observe

that DS-2 and DS-4 have higher safety hazard rates than DS-1 and DS-3. In DS-2 and

DS-4 experiments, 84.1% of the runs have accidents involving pedestrians, and 87.8% of

the runs have emergency braking for Move_Out attacks, and these numbers change to

 44

82.6% and 94.4% for Disappear attacks. For Move_In attacks, there is no accident, but

for 78.5% of the runs the AV performs emergency braking. RoboTack achieves these

results with only 14 camera frames for Disappear attacks, 32 frames for Move_Out

attacks, and 24 frames for Move_In attacks. On the other hand, while the percentage of

runs with safety hazards is still high, RoboTack is less successful in creating a safety

hazard by attacking vehicles than attacking pedestrians. This is because LiDAR-based

obstacle detectors cannot detect pedestrians at greater distances, and are only able to

recognize larger obstacles such as vehicles. Although pedestrians are recognized by the

cameras, the sensor fusion model does not increase spatial redundancy because only

measurements from the camera-based pipeline are available for pedestrians.

 4) Safety hijacker and impact on safety potential: This section compares the

impact of using a safety hijacker (SH) on the resulting safety potentials and success rate

of causing safety hazards. The results indicate that the timing of the attack chosen by

the SH is critical for causing safety hazards with a high success rate. The comparison of

the minimum safety potentials recorded for each scenario with attack vectors is shown

in Figure 9 as box plots. In each subgraph, the green box on the left with the label “R

w/o SH” means RoboTack with SH disabled (random attack timing). The orange box

plot on the right with the label “R” means the full RoboTack malware is used to attack.

We omit the Move_In attack vector because in those scenarios the attacks did not

reduce the safety potential but only causing emergency braking. We can conclude from

 45

Figure 9 that using SH significantly reduces the resulting safety potential and leads to

more successful attacks. We summarize the improvement of the using SH over not using

the SH as follows: a) DS-1-Disappear: 7.2x more accidents (31.7% vs 4.4%) and 4.6x

(53.5% vs 11.6%) emergency brakings; b) DS-1-Move_Out: 6.2x more accidents (17.3%

vs 2.8%) and 5.1x more emergency braking (37.3% vs 7.3%); c) DS-2-Disappear: 7.9x

more accidents (82.6% vs 10.4%) and 2.4x more emergency braking (94.4% vs 39.4%);

d) DS-2-Move_Out: 24x more accidents (84.4% vs 3.5%) and 14.8x more emergency

braking (97.8% vs 6.6%); e) DS-3-Move_In: 1.9x more emergency braking (94.6% vs

50%); f) DS-4-Move_In: 1.6x more emergency braking (78.5% vs 48.1%). Again, we only

compare the numbers of emergency brakings because Move_In attacks do not cause

accidents. In summary, in the 1702 experiment runs, 851 with SH and 851 without SH,

the experiment runs with SH result in 640 emergency brakings (75.2%) and 299

accidents (52.6%, excluding Move_In attacks), while without SH, these numbers are 230

emergency brakings (27.0%) and 29 accidents (5.1%).

Figure 10: Time Steps 𝑘𝑘′: the number of continuous attack time steps required to move
the obstacle in or out

 5) Evading attack detection: Apart from high attack success rate, another crucial

part of RoboTack is evading detections of the IDS. Figure 10 shows 𝐾𝐾′ for each attack

 46

vector separately for pedestrians and vehicles. 𝐾𝐾′ is the shifting period in which the

trajectory of the targeted obstacle is experiencing a “rapid change”. After 𝐾𝐾′ the

trajectory of the obstacle has been shifted to the desired location, and the trajectory will

be maintained for an additional 𝐾𝐾 − 𝐾𝐾′ time steps. 𝐾𝐾′ is generally much smaller than 𝐾𝐾.

In those 𝐾𝐾′ time steps, we conclude that it is hard for the IDS to detect such abrupt

changes because either 𝐾𝐾′ is small (a fraction of a second) for Disappear, or it is within

one standard deviation of the characterized mean during the detector’s normal

operations for Move_Out and Move_In attacks, which require slightly longer attack

durations than the Disappear attacks.

3.8 RoboTack: Conclusion

RoboTack is a smart malware that strategically attacks AV perception systems

and results in safety hazards. Our work shows that when a malicious entity becomes

familiar with the ADS, he or she can develop malware with scenario and timing

awareness such as RoboTack to effectively target AV safety, by answering the questions

of what, how, and when to attack. In particular, understanding when to attack allows

RoboTack to attack at the most critical moment, and hence greatly improve attack

success rate. We believe that RoboTack provides the following benefits: 1) Knowledge

gathered from developing such malware can be used to explore flaws in an ADS system

for future improvements. 2) The result from the attack can guide the development of

countermeasures. The design of countermeasures is discussed in Chapter 8 of this thesis

 47

so we will only briefly discuss it here. One vulnerability in the perception system is the

use of Kalman filter (KF) as tracker and sensor fusion model because KF cannot

distinguish between malicious measurements and legitimate measurements—KF treats

both types of measurements equally. A dynamic tracking and sensor fusion method that

adaptively adjusts its parameters can help distinguish attacks from legitimate

measurements and compensate for potential losses, and therefore mitigate most of these

adversarial attacks.

 48

 DiverseAV: Low-cost Error Detection via Temporal

Data Diversity

While autonomous driving systems (ADSs) are susceptible to malicious attacks,

they are also susceptible to reliability issues, such as permanent and transient faults,

because of heterogeneous compute architecture consisting of CPUs, GPUs, FPGAs, and

ASICs. Faults such as a bit corruptions in the result register of CPU can lead to serious

accidents if not detected in time. In this section, we introduce DiverseAV, 2 a low-cost,

software-based, redundancy technique that improves the ADS’ redundancy. We show in

this work that DiverseAV can detect critical faults that lead to safety hazards, and

achieves high accuracy in detecting permanent hardware and software faults without a

full duplication of the hardware and software. In addition, DiverseAV is generally

applicable to a variety of ADSs without the need to redesign the ADS extensively.

2 DiverseAV is a paper in submission: Exploiting Temporal Data Diversity for Low-cost Error Detection
in Autonomous Vehicles. The thesis author is a co-author (third author) of the paper due to his
contribution in paper writing, method development, method evaluation, and experiment data analysis.
Specifically, the thesis author designed and developed fault detection techniques for neural network
weights-related faults and input data diversity analysis. The thesis author wrote the sections on the
introduction and related works, methodology, experimental setup, sensor data diversity characterization,
and evaluation and results. The rest of the work is mainly credited to Saurabh Jha and Timothy Tsai, the
first author and the second author of the paper. The co-authors of the paper have granted permission to
reprint its contents here.

 49

4.1 DiverseAV: Overview

Autonomous vehicle (AV) uses an ADS for autonomous driving tasks. As

introduced in Chapter 2, ADS consists of artificial intelligence (AI) and machine

learning (ML)-based software to perform various tasks related to autonomous driving.

These AI and ML-based softwares are computationally expensive. To ensure a real-time

processing, ADS uses high-performance heterogeneous computing hardware, often

consisting of CPUs, GPUs, FPGAs, and ASICs, for different tasks [3], [5]. However, the

use of a large variety of hardware increases design complexity and hence makes the ADS

more susceptible to permanent and transient faults. These faults can lead to serious

accidents if not detected in time. For example, the faults might lead to an erroneous

trajectory estimation of the pedestrian and incorrect decision of the ADS. Typically,

commercial-grade ADSs use software and hardware duplication for fault detection [5].

One commonly used technique is duplication of the entire ADS (both software and

hardware) and feeding the same sensor data to both duplicates. The outputs of the

duplicates are compared bit-by-bit (assuming the ADS output is deterministic) for fault

detection. While effective for fault detection, a full duplication of the ADS can be very

costly and overly sensitive to faults. The latter could be problematic as a fault detection

system that generates an overwhelming number of alarms can distract the human

operator.

 50

In this work, we propose DiverseAV a low-cost, lightweight, and effective

software-based redundancy technique that exploits the temporal diversity of the sensor

data for high-coverage software and hardware permanent fault detection, without

significantly increasing the computational overhead. Going forward, the ADS software is

referred to as the “agent”. DiverseAV has three key components listed below.

Independent agents: DiverseAV uses two independent and identical agents (ADS

software) that are based on the same ADS software version and model. Here,

independent means 1) the two agents maintain their internal states, 2) the two agents

independently consume sensor input, and 3) the two agents make independent control

decisions. At each time step, one agent instance is selected to run and drive the vehicle,

and the other agent is selected to run at the next time step. In other words, the agent

instances are run in a “round-robin” fashion. We refer to this as “time-multiplexed

execution”.

Sensor data distribution and control fusion: DiverseAV runs the two agent

instances in round-robin mode with a sensor data distributor, which is responsible for

relaying the sensor data to the selected agent at each time step. For example, at 𝑇𝑇 = 2𝑡𝑡

agent 0 gets the sensor data 𝐼𝐼2𝑡𝑡, and at 𝑇𝑇 = 2𝑡𝑡+1, agent 1 gets the sensor data 𝐼𝐼2𝑡𝑡+1,

where 𝑡𝑡 is a natural number. The sensor data distributor allows DiverseAV to exploit

the temporal diversity of the sensor data. In the result section, we will show that though

the sensor data of consecutive frames are semantically similar (i.e., camera images have

 51

slight differences visually between consecutive frames), they are representatively

different at the bit level (i.e., very different when compared bit-by-bit at the same image

location). Other than the default round-robin mode, DiverseAV also supports single-

agent mode (running only one agent) or full duplication mode (in which two agents runs

concurrently, getting the same sensor data at each 𝑡𝑡).

We denote the control output of two agents running in round-robin 𝑂𝑂2𝑡𝑡, and

𝑂𝑂2𝑡𝑡+1. The agents in the round-robin mode take turns to control the AV. We expect the

control difference between 𝑂𝑂2𝑡𝑡 and 𝑂𝑂2𝑡𝑡+1 to be small since the semantic differences

between the sensor data in consecutive frames should be small. Any abrupt change in

control output between consecutive frames can be used for fault detection.

Fault detection: In the presence of a fault the outputs of the time-multiplexed

agents can be very different as the fault will either impact only one agent (e.g.

corrupted software states), or impact two agents differently (common hardware fault).

The latter is because the two agents consume different sensor data that lead to different

manifestations of the faults. Thus, data diversity between consecutive frames allows

DiverseAV to detect faults by statistical comparison of the outputs. DiverseAV hence

uses a sliding window anomaly detector to compare the statistical features (mean,

median, etc.) of the outputs over time to avoid overly sensitive detection, as the outputs

of the two agents under fault-free situation can be different from each other. The

hyperparameters of the sliding window detector are learned from fault-free everyday

 52

driving. In addition, DiverseAV can detect faults that may lead to safety hazards in

advance to provide a mitigation window for the ADS and human co-pilot. Such a

detection technique is very different from duplicating the entire ADS and comparing the

outputs bit-by-bit.

Low-cost and high-accuracy: DiverseAV is a black-box technique that duplicates

the software portion of the ADS (agents) with the addition of sensor data distributor,

fault detector, and control fusion, which makes DiverseAV usable on a variety of ADS.

In addition, DiverseAV requires little compute overhead because the agent duplicates

are running in round-robin mode. It is also highly viable and generalizable because it

avoids software modifications to agents that are costly in terms of development and

testing time, and it avoids hardware duplication as redesigning the platform can be

costly. Finally, by exploiting the input diversity, DiverseAV provides high coverage of

transient and permanent faults, with 0.87 precision and recall in detecting permanent

GPU faults, and 0.99 precision and recall in detecting permanent neural network (NN)

weight corruptions.

Overall, the key contributions of this work are the following: 1) We propose a

novel redundancy technique, DiverseAV, for detecting permanent and transient

hardware failures in ADS with high detection coverage and low compute overheads by

exploiting sensor data diversity and time-multiplexed execution. 2) We implement

DiverseAV with the state-of-the-art end-to-end ADS [20] using an advanced simulation

 53

platform [22] and evaluate the detection accuracy in a closed-loop environment. 3) We

provide an empirical characterization of the temporal data diversity using real-world

sensor data. 4) We perform an extensive experimental assessment on DiverseAV using

GPU, CPU, and NN fault injections.

Our result in Section 4.6 shows that DiverseAV performs on a par with using the

single agent, with the maximum deviation in various scenarios less than 50 cm.

DiverseAV is also highly accurate and can detect permanent GPU faults with 0.87

precision and recall, and can detect permanent NN weight corruption with 0.99 precision

and 1.0 recall, while only incurring 25% more overhead on CPU, 7% more overhead on

GPU, 19% more system memory usage and 26.1% more GPU memory usage. The GPU

permanent fault injection leads to more safety hazards than CPU permanent fault

injection. Two percent (31 out of 1539) of the GPU permanent fault injections lead to a

large deviation from the golden run, while none of the CPU permanent fault injections

lead to trajectory deviation. However, 72.9% of CPU permanent fault injections lead to

agent hangs (860 out of 1179 experiments). Finally, injection faults that corrupt a

software state (NN weights) lead to a high number of safety hazards (42%, 1291 out of

3072 runs).

 54

4.2 DiverseAV: Related Work

 A large variety of techniques are used for fault detection and mitigation, ranging

from low-level techniques such as parity and ECC protection to high-level techniques

that involve duplication of the software and hardware.

 Circuit hardening techniques are applied during hardware manufacturing to

modify the operation parameters to improve reliability during usage. For example, one

can tune the voltage and frequency of the chip to achieve maximum stability. But these

techniques interrupt or reset the manufacturing process and induce significant cost.

 Hardware design techniques often include fault detection and mitigation at the

circuit and architecture levels. These techniques include CPU instruction retry [39],

ECC [40] included memory, hardware checkers [41], and parity codes [42]. Also,

significant efforts have been spent on lock-step execution [43], single-core thread

redundancy, or multi-core redundancy [44], [45]. Though effective, these

implementations often require specific hardware designs of modification which induce

additional cost due to chip area, power consumption, and synchronization overhead.

 Software algorithm or enhancement techniques are for fault detection and

mitigation at the software level with or without hardware support. Examples include

algorithm-based fault detection [46], [47], software assertions [48], monitoring [49], and

process duplication [50]. Software-based techniques have lower manufacturing costs than

hardware-based techniques if no specific hardware is required, but because software-

 55

based methods often target specific pieces of software in the ADS stack, they are not

universally applicable to the entire ADS. Moreover, these techniques require in-depth

understanding of the software and redesign of the software to accommodate the

redundancy, adding development overhead.

 To put DiverseAV into perspective, DiverseAV is a lightweight, low-cost

software-based redundancy technique that utilizes the diversity within the sensor data

(input to the agents) to provide high-accuracy and high-coverage fault detection. The

use of data diversity helps to tackle common cause failure (CCF), such as a failure in

the hardware, because diverse input magnifies the faults in the case of CCF. Diversity

can be introduced by using different versions of the program [51], by ordering the

execution of instructions [50], by designing the program in a specific way [52], or by

enforcing diverse data [53]. DiverseAV enforces diversity at the data level, and it

ensures the agent’s state diversity by time-multiplexing the sensor data (round-robin

distribution) to the agents and running them on the same compute hardware, while

maintaining resources usage by running only one agent at each time step. Furthermore,

the agents are independent so that each agent maintains its states. DiverseAV can be

further expanded to use more than two agents or to use different agents instead of pure

duplication (N-version programming). Since DiverseAV runs each agent at half the

original frequency (from the agent’s perspective), it could impact the safety of the AV.

However, a comparison with a single agent shows that DiverseAV has negligible effects

 56

on AV safety because vehicle motions are smooth and the sensor data between

consecutive frames are semantically similar, so the two agents produce similar and

smooth outputs for consecutive frames. DiverseAV is the first framework that leverages

sensor data diversity for fault detection and mitigation for ADS.

4.3 DiverseAV: Background

 1) ADS: An ADS is a feedback-based control system that is responsible for

driving the AV. At each time step, the ADS consumes sensor data and ultimately posts

the control decision for the AV’s controller to drive the car safely and comfortably. Two

types of ADS are modular-based ADS and end-to-end ADS (used by our work). Figure 4

shows the architecture of an end-to-end ADS. The detailed architectures of both types

of ADS are described in Chapter 2 so we omit them here. We use the state-of-the-art

end-to-end ADS [20] for DiverseAV evaluation. At each time step, the end-to-end ADS

consumes the sensor data and makes either the planning waypoints or control decisions

using a single neural network (NN). The ADS we use outputs the planning waypoints

and uses PID controllers [18], one for throttle, and one for steering, to convert

waypoints into control decisions. An ADS is computationally expensive and often

requires heterogeneous compute architecture consisting of CPUs, GPUs, FPGAs, and

ASICs to achieve desirable performance for real-time driving [3], [5].

 57

Figure 11: ADS Hardware Fault Impacts on Actuation and Safety

2) Impact of faults on safety: An ADS can experience various hardware and

software faults, transient or permanent, and some of these faults can alter the control

actuation from the ADS, impacting AV safety. Faults may lead to silent data corruption

(SDC) and potentially propagate to the control decision that leads to safety violations.

It is challenging to timely detect faults that lead to SDC as it might only manifest itself

over time by accumulation. Timely detection of SDC requires costly solutions such as a

full duplication of the ADS software and hardware for bit-by-bit runtime comparison.

As an example, we show a GPU permanent fault that affects the throttle output of the

ADS in Figure 11. Here the red line is the throttle output values in the presence of a

GPU permanent fault, while the blue line is the throttle value of the fault-freed run. We

can see the throttle output values are significantly different between the two runs, and

the fault reduces the distance to the closest-vehicle-in-path (CVIP) in Figure 11. The

faulty run ends with the AV colliding with the vehicle at the front at 𝑇𝑇 = 10 due to the

high throttle value early on. Hence, it is crucial to detect such a fault in time for timely

mitigation (e.g. disengage the ADS and hand the control back to the human driver).

 58

4.4 DiverseAV: Methodology

 1) Design requirements: DiverseAV design allows us to address the following

design requirements: (a) detection of transient and permanent faults, (b) workload

independence of the ADS, (c) black-box plug and play solution, and (d) low cost.

DiverseAV needs to detect transient and permanent hardware and software faults that

are safety-critical with high accuracy and sufficient lead time. Since not all faults will

lead to safety hazards, DiverseAV should not report all faults and thereby generate an

overwhelming number of false alarms. DiverseAV design must be independent of the

agent’s design and should be usable on a large variety of ADS. DiverseAV should not

require an extensive rewrite of the ADS software. Finally, DiverseAV should incur

minimum overhead. Specifically, DiverseAV aims to be a completely software-based

solution without the need for hardware duplication.

 2) Design principles: DiverseAV uses two independent agents that are runtime

instances based on the same ADS software and are executed time-multiplexed on the

same ADS hardware. The outputs of the agent instances (or agents) are then inspected

for fault detection. Time multiplexing execution of the agents has the following

properties: 1) input data semantic consistency, 2) temporal sensor data diversity, and 3)

high-coverage fault detection. Since each agent consumes data from consecutive time

steps, and sensors are running at high frequency (e.g. 30 Hz to 60 Hz is typical for a

camera), the data from consecutive time steps should be semantically similar, meaning

 59

that the message conveyed by the data is similar. Time-multiplexed execution enables

temporal data diversity at the bit-level. Though the semantics of the data from

consecutive time steps should be similar (smooth transition), their bit-level

representation can be very different. For example, for RGB image data, when a given

pixel value changes from 95 to 96 for each color (a change in brightness), the data only

changes by 1 on the face-value, but at bit-level, it differs by 18 bits out of the 24-bit

RGB representation. Finally, time-multiplexing enables the detection of faults that

propagate through the ADS stack and subsequently impact the AV’s safety. The same

hardware fault affects the agents differently due to sensor data diversity and

independent agent states. Most of the time, the differences are significant enough and

allow timely detection of a critical fault in the system. DiverseAV ensures that under

normal execution, the safety of the AV is unaffected and each agent produces safe

output to control the vehicle.

 60

Figure 12: DiverseAV Overall Architecture Design

 3) Design overview: The design architecture of DiverseAV is shown in Figure 12-

1. To enable sensor data diversity and time-multiplexed execution of the agents, we

design and implement a sensor data distribution module and a control fusion module.

Moreover, we design a fault detection engine to detect safety-critical faults.

The sensor distribution module takes sensor data 𝐼𝐼𝑡𝑡 at time 𝑡𝑡 and distributes the

sensor data accordingly in a round-robin fashion, such that if agent 0 receives data for

the current time step (𝐼𝐼2𝑡𝑡), agent 1 receives data for the next time step (𝐼𝐼2𝑡𝑡+1). Such

design ensures that the agents get different input data and the data are semantically

similar for safe autonomous driving while being significantly different at the bit-level

 61

representation. As shown in Figure 12-2, two images from consecutive time steps look

very similar with minor transforms, but the pixel value’s bit-representation is different

for the same location at these two-time steps. We show later in the result section that

on average, 8-bit out of the 24-bit representation of a pixel will change from time to

time.

The control fusion module is responsible for aggregating the control decision of

the agents and routing that to the AV’s actuators. Depending on the types of ADS this

control fusion of multiple agent instances can be challenging. For an end-to-end ADS

like the Sensorimotor agent [20] used in this work, the sensor input and control decision

are synchronized (lockstep execution). In this case, the design of the control fusion

module is straightforward; since the input and output of the agent are synchronized, the

module simply passes the output of the “lived” agent to control the vehicle. For a

modular-based ADS, different modules can run at a different frequencies, so the two

agents post control decisions asynchronously. The control fusion module can choose to

either only pass one agent’s decision to the actuators (a primary-secondary setup), or

maintain a history of the control decisions and average the control decisions from the

two agents and post that to the actuators. In this work, since the agent we used is

synchronous, we naturally round-robin the agents’ decisions to control the vehicle.

Figure 12-3 shows that such round-robin control mode does not impact the AV safety

during normal operations.

 62

The fault detector is a module that compares the output of the two agents at two

consecutive time steps and alerts the system if the outputs are faulty. In a deterministic

system with full-duplication, the duplicated agents consume the same data and generate

the same outputs in fault-freed conditions. The outputs from such a system can be

compared directly bit-by-bit. This traditional approach is not suitable for ADS because

the output of an AI-driven complex system is nondeterministic. Besides, full duplication

of the system is costly. DiverseAV’s fault detection engine can detect various faults

using the input data diversity. The biggest challenge in designing the fault detection

engine is robustness—accurate detection with high precision and recall, and timely—to

detect the fault sufficiently before the safety hazard happens.

Even under normal execution, the outputs of the agent are different due to the

differences in the input sensor data. We therefore use a sliding window-based fault

detector and learn the statistic thresholds of output divergence between two agents

using the golden runs. If the statistical divergence of the output between two agents is

larger than the threshold, an alarm is raised to alert the human operator. This is shown

in Figure 12-4, in which a fault causes throttle divergence between the two agents to

increase. This increase in divergence affects the AV trajectory and the CVIP distance,

resulting in a safety hazard. In the case of a single agent, the use of a PID controller

smooths out the abnormal spike in the throttle from a single agent’s perspective, so the

fault is harder to detect in single-agent mode compared to DiverseAV.

 63

The fault detector uses the following parameters: 𝜃𝜃𝑡𝑡ℎ𝑟𝑟𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 , 𝜃𝜃𝑏𝑏𝑟𝑟𝑠𝑠𝑘𝑘𝑠𝑠 , 𝜃𝜃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟 , and 𝑎𝑎𝑤𝑤.

𝜃𝜃𝑡𝑡ℎ𝑟𝑟𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 ,𝜃𝜃𝑏𝑏𝑟𝑟𝑠𝑠𝑘𝑘𝑠𝑠 , 𝜃𝜃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟 are thresholds for throttle, brake, and steering command

differences between the two agents. An alarm is raised if the differences exceed the

thresholds. The thresholds are conditioned on the vehicle’s state as the tolerances are

different under different states. Here, 𝜃𝜃𝑡𝑡ℎ𝑟𝑟𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 ,𝜃𝜃𝑏𝑏𝑟𝑟𝑠𝑠𝑘𝑘𝑠𝑠 depend on the velocity and

acceleration of the vehicle, and 𝜃𝜃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟 depends on the steering angle and the angular

velocity of the vehicle. For example, a faster linear velocity may result in a higher

threshold of the throttle and brake divergence. These thresholds are learned per

statistical methods from training scenarios. We try different statistical methods on the

sliding windows, including max, min, mean, median, and exponential mean, and find

that max performs the best, so the thresholds are calculated by learning the maximum

divergence between the two agents from the training data, conditioned on the vehicle

states. The sliding window is used to smooth out the high transient divergence when the

planning decision changes between two time steps because one agent will output a new

control decision while the other agent has not yet made the same decision at those

moments. The size of the sliding window 𝑎𝑎𝑤𝑤 affects the sensitivity of the fault detector

to such transient outliers. The size also affects the lead detection time. We vary 𝑎𝑎𝑤𝑤

from 3 to 40, as our simulator, and hence the sensors run at 40 Hz (20 Hz for each

agent).

 64

4.5 DiverseAV: Experimental Setup

 This section describes the experimental setup, including the end-to-end ADS, the

simulation platform, the driving scenarios, the data collection procedure, the fault

injectors, and the hardware platform used in this work.

Figure 13: Sensorimotor Agent

 1) End-to-end ADS: We use the state-of-the-art convolutional neural network

(CNN)-based end-to-end autonomous agent proposed and pretrained by Chen et al. [20],

referred to as the Sensorimotor agent. The agent is trained by imitation learning via

expert demonstrations. The main component of the Sensorimotor agent is shown in

Figure 13. The key components are high-level route planner, CNN, waypoint tracker,

and control unit. First, the high-level route planner finds the next high-level destination

to go based on the destination and the vehicle’s current location from GPS

measurements. Then, the CNN ingests the three front-facing cameras’ data and

performs vision-based planning by planning a local path around the obstacles, while

following the lanes to the next high-level destination. The CNN outputs the local

waypoints that the vehicle should follow in the immediate future. The waypoint tracker

 65

tracks the waypoints from the CNN by calculating desired headings and the desired

velocity. These desired values are then compared with the current vehicle state to

generate heading and velocity errors for the control unit. The control unit uses two PID

controllers to convert heading and velocity error into steering and throttle commands.

Figure 14: Simulation Platform

2) Simulation platform: The simulation platform architecture is shown in Figure

14. CARLA [22] simulates both urban and highway environments with various weather

and road conditions. CARLA also simulates traffic, physics, and virtual sensor data for

autonomous driving. This work uses three front-facing cameras, GPS, and IMU sensors

as inputs to the Sensorimotor agent. The simulation runs at 40 Hz in synchronous

mode, in which the simulator and the ADS are synchronized. The agent-simulator stack

consists of two instances of Sensorimotor agents running in round-robin mode, a sensor

interface, and a scenario manager. The two agents can be configured to run in round-

robin mode (DiverseAV), duplicated mode (full software and process duplication), or

 66

single-mode, in which only agent 0 will be active. The scenario manager is responsible

for setting up the scenario events for the current run, such as the routes that the NPC

vehicles should follow. Finally, the campaign manager reads the experimental

configurations and launches the experiment accordingly.

Figure 15: Driving Scenarios: Left to right, Lead slowdown, Ghost cut-in, Front accident

3) Driving scenarios: There are two types of scenarios: safety-critical scenarios

and training scenarios. The safety-critical scenarios used in this work are shown in

Figure 14. These are scenarios that are considered high-risk by the National Highway

Traffic Safety Administration (NHTSA) [54]. The safety-critical scenarios are of a

minute length and capture the most safety-critical moments during autonomous driving.

We prepare the following safety-critical scenarios.

Lead slowdown: Shown in Figure 15-left, the AV (red) follows an NPC vehicle

(blue) and maintains a distance of 25 m. The NPC then performs emergency braking

and comes to a complete stop. The AV needs to infer this situation and apply the brake

in time to avoid a rear-end collision with the NPC. The lead slowdown is a dangerous

scenario because it leaves little time for the AV to react.

 67

Ghost cut-in: Shown in Figure 15-middle, the AV is driving on the middle lane

while maintaining its speed. An NPC vehicle approaches from the left adjacent lane and

cuts in front of the AV with a small longitudinal margin. The AV needs to reduce speed

immediately to avoid a collision. In this driving scenario, the NPC vehicle is not visible

until it cuts in front of the AV, and hence it is also highly dangerous if the AV does not

recognize this situation in time.

Front accident: Shown in Figure 15-right, the AV is following a leading NPC in

the same lane, and another NPC vehicle tries to cut in but collides with the leading

NPC. Both NPC vehicles suddenly change because of the impact and both come to a

complete stop before moving on. The AV needs to recognize this situation and stop in

time to avoid a collision. One challenge in this scenario is that the motion of NPC

vehicles suddenly changed after the collision. Although this incident is rare, the AV

might not recognize the abrupt change in trajectories of the leading vehicles and thus

might output the incorrect decision.

The training scenarios are scenarios used for training. These are long scenarios

with 10 min of autonomous driving. These scenarios are selected from the 2020 CARLA

Challenge, with fault injections disabled. The long scenarios consist of important driving

tasks such as lane keeping, turning, lane-changing, and handling of intersections. We

later show in Section 4.7 that the fault detector parameters can be learned from these

long scenarios, which are used as references for normal everyday driving without faults.

 68

The learned parameters achieve high precision and recall in detecting safety-critical

faults. The long scenarios include different driving environments including urban,

highway, and a hybrid of both.

4) Data collection: We collect the control decisions, including the throttle,

steering, and brake value from the two agents, and the AV trajectories and states at

each time step. We also collect the distance to the CVIP, steering, and velocity error

from the waypoint tracker and the predicted waypoints from the CNN. In addition, the

scenario manager summarizes driving statistics including route completion percentages

and the number of collisions. We also collect logs from the system, fault injectors, and

the agent-simulator stack for experiment and fault injection status analysis.

5) Fault injection: We consider the following fault models: 1) instruction-level

bit-flip models for CPUs (via PinFI [55], [56]), and GPUs (via NVBitFI [57], [58]) and

2) weight perturbation of the neural network (via PyTorchFI [59]). We focus less on

transient hardware faults because those faults are short-lived and affect only a single

agent, so they can be easily detected. Permanent faults are long-lasting and hence they

affect both the agents, which are more dangerous to autonomous driving.

GPU fault injection: We use NVBitFI for GPU fault injection. NVBitFI

simulates the consequences of underlying permanent fault at the instruction level of the

GPU, by corrupting the instruction result register of a selected opcode for all dynamic

instances of that opcode. A dynamic instance of an opcode is that specific opcode with

 69

the operand, and instructions with the same opcode but different operands are counted

as different dynamic instances. This fault model affects all dynamic instances with the

same opcode during execution. NVBitFI corrupts the result register by XOR-ing the

original value with a mask. In our case, the mask is fixed and user-defined for all

injections. The mask we choose simulates random multiple bit-flips. The ISA of an

NVIDIA Titan Xp GPU has 171 opcodes, and for each opcode, we perform injections on

all three safety-critical scenarios and repeat each opcode injection three times to capture

any non-deterministic behaviors. In addition, we run 50 fault-free experiments for each

scenario as fault-freed golden runs. We make sure that the injections only affect the

agents but not the simulator.

CPU fault injection: CPU injections are done using PinFI. The fault model and

injection procedure are similar to NVBitFI and we inject all of the 131 Intel opcodes

used by the ADS software. Again, we make sure that the injections only affect the

agents but not the simulator.

 Software fault injection: In an end-to-end ADS the NN is the most critical,

complex, and computationally expensive component of the ADS. Since AV is an IoT

device and NN weight update is done by over-the-air (OTA) update, it is possible that

the NN weight is corrupted during weight transfer. Besides, the weight can also be

corrupted when it is transferring from the disk to system memory, or from system

memory to device memory. Therefore, we inject faults directly into one of the agent’s

 70

NN by perturbing the NN weights using PyTorchFI. This simulates the fault model of a

corruption of the software state due to a transient fault, and the corruption disappears

when restarting the software or the system. A transient fault in the software will likely

impact only one of the agents because the agents are independent. We only inject faults

into one agent and one weight of the 1024 weights in the last layer for all three safety-

critical scenarios with PyTorchFI. PyTorchFI corrupts the weights by XOR-ing a

weight with a random mask to simulate multiple bit flips of the weight. For each

driving scenario, we ran 50 fault-free experiments as the golden run for each scenario.

NN injections do not need repetition for their deterministic behaviors.

6) Hardware platform: the GPU and CPU injection experiments are run on

platforms with Intel Xeon E5-2699v4 CPU, 64 GB of RAM, and an NVIDIA Titan Xp

GPU. The NN weight injection experiments are run on platforms with a Ryzen 5 2600

CPU, 16 GB of RAM, and an NVIDIA Titan Xp GPU. All fault injections use the same

version of ADS and CARLA Simulator.

4.6 DiverseAV: Evaluations and Discussion

1) Characterizing sensor data diversity: DiverseAV leverages sensor data

diversity to achieve a high-coverage of fault detection because the fault manifestation

differs with different input data. We characterize the sensor data diversity of both the

simulated sensor and the real-world sensor data.

 71

Figure 16: Value and Bit Diversity of Simulated Sensor Data

The simulated sensor data are collected from the CARLA simulation on the long

driving scenarios. We evaluate the value diversity (shown in Figure 16-left)—the

difference in color intensity (0—255 for each of the R, G, and B color of a pixel is

represented as an 8-bit unsigned integer), calculated per color channel and per pixel

location between two consecutive camera frames from the same camera. There are three

cameras, facing front, front-left, and front-right, in our simulation. We also evaluate the

bit diversity (shown in Figure 16-right)—the number of bit differences in the 24-bit

color-representation, calculated per corresponding pixel location between consecutive

camera frames from the same camera. The distribution of value diversity has a mean of

3 and the 90th percentile of 14, with 255 being the maximum possible diversity between

two pixels. In contrast, in the distribution of bit diversity, the mean is 5 bits changed in

a 24-bit pixel representation, with the 90th percentile of 9 bits. We can see that even

though the value diversity is small, the bit-level diversity is large. The latter is

important because the computer hardware operates on bits (representation of the

values) instead of the values themselves. As a result, a larger bit diversity results in a

 72

more diverse manifestation of the same permanent faults on two different agents, which

allows the fault detector to detect common-caused-failures (CCFs).

Figure 17: Value and Bit Diversity of Real World Sensor Data

The real-world sensor data have larger diversities in both value diversity and bit

diversity time step by time step because real-world sensor data are noisy which further

increases the diversity. We use KITTI Raw Data [60] dataset for diversity

characterizations on real-world sensor data. The dataset consists of LiDAR, camera,

IMU, and GPS sensor data collected at 10 Hz from real-world driving. We characterize

the camera sensor data diversity using the same method we use for simulation data with

a total of 9391 camera frames. As shown in Figure 17, the value diversity of the real-

world camera data is 5 at the 50th percentile and 58 at the 90th percentile, while the bit

diversity is 8 bits at the 50th percentile and 13 bits at the 90th percentile (24-bit RGB

pixel representation). In other words, while the value diversity is seemly small, the bit

diversity is large. We also characterize floating-point data such as IMU and GPS data

and find that the bit diversities at the 50th and 90th percentile are 11 bits and 15 bits

out of the 32 bit floating-point number.

 73

Figure 18: Impact of DiverseAV on Safety Potential

2) Characterizing the impact of DiversAV on AV safety: One key design

requirement of DiverseAV is that it should not affect the AV’s safety due to the time-

multiplexing execution of the agents situations. We characterize the impact of

DiverseAV on AV safety by comparing its trajectory with the original single-agent ADS

(baseline) setup. The trajectory of the AV is a list containing the global position of the

AV in the simulation environment over time. We use δ𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸 ,𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑚𝑚(𝑡𝑡𝑎𝑎𝑎𝑎𝑗𝑗𝐸𝐸 − 𝑡𝑡𝑎𝑎𝑎𝑎𝑗𝑗𝐵𝐵) to

denote the maximum divergence between the DiverseAV and the baseline trajectories.

Figure 18 shows the boxplot of the δ𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸,𝐵𝐵 of the three safety-critical scenarios, calculated

using 50 runs for each setup. We can see the deviation is less than 50 cm for all safety-

critical scenarios. Therefore, we conclude that while DiverseAV affects AV’s trajectory,

it mimics closely the original single-agent setup and will not cause a safety hazard. In

fact, in none of the runs has DiverseAV caused any safety violation.

 74

Table 3: Fault Injection Summary. All experiments use in round-robin agent mode. DS:
driving scenario, LSD: lead slow-down, GC: ghost cut-in, FA: front accident, #

Trajectory Violations: number of experiment with trajectory violation that are accident-
free, # Accidents: number of experiments with crashes

FI Target DS # Golden # FI Exp
(Hang/Crash)

Accidents # Trajectory
Violations

GPU LSD 50 513 (83) 3 9
GPU GC 50 513 (83) 14 2
GPU FA 50 513 (81) 0 3
CPU LSD 50 393 (287) 0 0
CPU GC 50 393 (286) 0 0
CPU FA 50 393 (287) 0 0

Neural Network LSD 50 1024 (84) 378 55
Neural Network GC 50 1024 (100) 226 187
Neural Network FA 50 1024 (66) 393 52

3) Characterizing fault in ADS: Table 3 summarizes the experiments for each

fault injection method per critical scenarios and their outcomes. In total there are nine

combinations from three fault injection methods and three critical scenarios. We also

use three additional driving scenarios (Route02, Route15, and Route46) for training the

fault detector (finding thresholds). These training routes have zero accidents or

trajectory violations so they are not mentioned in the table. For each of the campaigns,

we ran 50 fault-freed (golden) runs to characterize the simulation’s nondeterminism,

understand the impact of the fault on the AV’s safety, and test the threshold learned

from the training scenarios under fault-freed conditions. The impact of the faults on the

AV’s safety is quantified by two metrics: number of trajectory violations, and number of

accidents. During a run, the trajectory is violated if δ𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸,𝐵𝐵 > 2 (i.e., the maximum

divergence between the experiment run (E) and the baseline (B) exceeds 2 meters). We

vary δ𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸,𝐵𝐵 to reveal the detection capability of our proposed design. The trajectory of B

 75

is the average of the trajectories from all golden runs for the same scenario. The next

metric is the number of experiments that have accidents; the experiment terminates if

an accident happened, and the accident incident is reported by the scenario manager to

the logs.

For hardware fault injections (FIs), CPU FI results in the highest percentage of

hangs and crashes with 72.9% of the experiments (860 out of 1179 runs), but zero

trajectory violations or accidents across all runs. Hangs and crashes can be detected

promptly by the system, and the system can quickly alert the human operator to take

over the vehicle. Those hangs and crashes are expected because FI into CPU

instructions will corrupt the control flow and the memory accessing address of the

program, resulting in hangs or crashes. On the other hand, we see fewer crashes with

GPU FIs but a higher percentage of safety violations. Only 16% of GPU FIs result in

hangs or crashes (247 out of 1539 runs), 1.1% of GPU FIs end in accidents, and 0.9% of

GPU FIs end with trajectory violations. In some incidents, GPU FI causes silent data

corruption (SDC) that is undetectable by DiverseAV and significantly impacts the AV’s

trajectory, leading to safety violations.

Software fault injections (FIs) resulted in the highest percentages of accidents

(32.4% which is 997 out of 3072 runs) and trajectory violations (9.6% which is 294 out

of 3072 runs), and the lowest percentage of hangs and crashes at 8.1%. This is expected

 76

because the FI directly corrupts the weights that affect the NN’s output, which is the

local waypoints for the AV to follow.

Figure 19: Heatmap, precision and recall under different hyperparameters

4) Characterizing error detection capabilities: Two other key requirements of

DiverseAV are high accuracy and high coverage fault detection. At the very least,

DiverseAV should aim to detect all safety-critical faults—faults that lead to accidents or

trajectory violations. In addition, DiverseAV should not raise an alarm for golden runs

because those runs are fault-freed. The fault detection capabilities are evaluated in

terms of precision, recall, and lead detection time. Moreover, we vary the two

hyperparameters, 𝑎𝑎𝑤𝑤 and 𝑡𝑡𝑑𝑑, to find the best hyperparameter settings. The term 𝑎𝑎𝑤𝑤 is

the size of the sliding window, and 𝑡𝑡𝑑𝑑 is the threshold for trajectory violations (instead

of just 2 m, 𝑡𝑡𝑑𝑑 can range from 1 to 5 m). We evaluate DiverseAV using only

experiments with GPU FI and NN FI because a majority of NN FI cause hangs and can

be easily detected by the system. We evaluate DiverseAV on both the safety-critical

scenarios (including golden runs) and long scenarios and observe if DiverseAV raises

false alarms on fault-freed runs.

 77

GPU FI: Figure 19-1 and 2 show the heat maps of precision and recall of the

fault detector on detecting GPU FIs using different hyperparameter configurations. The

best performance is obtained by using 𝑎𝑎𝑤𝑤 = 3 and 𝑡𝑡𝑑𝑑 = 2, with a precision and recall of

0.87. DiverseAV does not generate alarms on any of the golden runs and flag runs

Figure 20: DiverseAV Detection Missed Case

for which the two agents’ outputs are noticeably different. The precision and recall are

not 1 because there are cases of false negative and false positive. False-positive cases are

cases in which the two agents’ outputs differ but do not result in safety violations.

False-negative cases are more interesting, as these are cases with safety violations but

the output of the two agents are similar throughout the experiments. One such case is

shown in Figure 20 and the targeted GPU opcode is 44 (IMADSP), which performs

integer exact multiply-add operations. We can see from the figure that though there is a

safety violation, the output of the two agents is closed. Understanding the cause is not

the focus of this work, so we omit it here. Figure 21-right shows the lead detection time

 78

for the fault detector on GPU FIs. We can see that DiverseAV can detect the faults

with a lead time significantly greater than 1 sec, which leaves sufficient time for the

human driver to take control of the vehicle.

Figure 21: Lead Detection Time, left NN Weight FI, right GPU FI

NN weights FI: The NN FI by its nature only affects a single agent so the output

of that agent, if affected, is significantly different from the normal agent. Interestingly,

the AV is found to be safe in many of the runs, despite the fact that the fault should

impact the output of the agent directly. This could be attributed to the compensation

from the good agent, or insignificant weight values. For NN FI fault detection, we relax

the fault detection model so that the threshold parameters for throttle, brake, and

steering, 𝜃𝜃𝑡𝑡ℎ𝑟𝑟𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 ,𝜃𝜃𝑏𝑏𝑟𝑟𝑠𝑠𝑘𝑘𝑠𝑠 ,𝜃𝜃𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟, are constantly used for detecting faults for NN FI.

Similar to parameters conditioned on the AV’s state, we learn these parameters from

the training scenarios and verify them using the golden runs. The precision and recall

heat maps of choosing different 𝑎𝑎𝑤𝑤 and 𝑡𝑡𝑑𝑑 are shown in Figure 19-3 and 4. The best

performance of precision and recall of 1.0 is achieved by setting 𝑎𝑎𝑤𝑤 = 10, 𝑡𝑡𝑑𝑑 = 1. The

fault detector robustly detects the faults for other settings of 𝑎𝑎𝑤𝑤 and 𝑡𝑡𝑑𝑑 as well. Figure

 79

21-left shows the lead detection time for 𝑎𝑎𝑤𝑤 = 10, 𝑡𝑡𝑑𝑑 = 1. We observe that the lead

detection time is zero for 2 cases, but for over 93.8% of cases, the lead detection time is

greater than 1 sec, given the ADS sufficient for mitigation. Again, DiverseAV generates

an alarm for none of the golden runs.

Table 4: DiverseAV Performance Overheads

 CPU % GPU % RAM VRAM
Single Agent 4% 14% 2258 MB 757 MB
Dual Agent 5% 15% 2689 MB 955 MB

Duplicated ADS (Estimation
from Single Agent)

8% 28% 4516 MB 1514 MB

5) Resource overhead: The final key requirement of DiverseAV is low-cost. We

measure the resource overhead of the DiverseAV during fault-freed execution on training

scenarios and compare it with the single-agent baseline. As shown in Table 4,

DiverseAV increases the CPU and GPU usage marginally and consumes significantly

less compute power than the full duplication execution. DiverseAV does increase both

system memory and GPU memory usage, by 19% and 26% respectively, due to

additional states when running two agents. The memory did not double because

DiverseAV only duplicates the ADS agent and part of the memory is used by shared

libraries and infrastructures. Compared to a full duplication of the entire autonomous

driving software, DiverseAV reduced computational overheads by 46.4% for the GPU

and 37.5% for the CPU, without the need for duplicating the hardware.

 80

4.7 DiverseAV: Conclusion

 In this work, we proposed DiverseAV, a low-cost, high-accuracy, and high-

coverage redundancy technique for autonomous driving agents that leverages the

temporal data diversity of the sensor data. DiverseAV runs the agent duplicates in time-

multiplexed mode which significantly reduces compute overheads compared to a full

duplication of the ADS software while providing high fault detection coverage. Our

result shows that DiverseAV can detect various hardware and software faults that affect

one or both of the agents without the need to fully duplicate the ADS. DiverseAV treats

the ADS as block-box and only requires an additional sensor distribution module and

fault detection module, without requiring extensive modification or redesign of the ADS

software. This property makes DiverseAV generalizable to a large variety of ADS.

 81

 HPC Storage System: Overview

Chapters 5 and 6 and describe the works related to high-performance computing

(HPC) storage systems. A storage system of the HPC analogs to the storage device of a

personal computer that stores system and user data but at a much larger scale. An HPC

storage system must meet the desired quality-of-service (QoS) requirements in terms of

latency and throughput because the compute nodes in an HPC are storage-less with

their performance bounded by the storage system. A fault in the HPC storage system

may propagate through the system and affects a wide range of applications. The most

critical faults cause system-wide outages (SWOs) in which the entire HPC storage

system becomes unavailable. When that happens, the applications running on the HPC

crash, and hundreds and thousands of compute hours are wasted, incurring heavy

financial losses. However, real-time system failure localization and diagnosis in the HPC

storage system are challenging because 1) a large number of interconnected components

result in many failure modes, making it hard to pinpoint the exact location of the

failure, 2) failures can be transient and masked by the system redundancy so there is no

effect on the system’s operation, or they can propagate through the system and have

different manifestation at different layers of the system, 3) a large variety of user

applications stress the system components differently and can cause different failure

 82

modes, and 4) it is hard to distinguish component failures from resource contention

because of their similar impact on performances.

Our work Kaleidoscope focuses on real-time failure localization and diagnosis of

the HPC storage system while tackling the aforementioned challenges via smart

monitoring, probabilistic graphical model (PGM), and natural language processing. We

will start by describing the key components of a typical HPC storage system using the

Cray Sonexion-1600 storage system in NCSA Blue Waters Supercomputer as an

example. Cray Sonexion-1600 storage system uses Lustre as its filesystem and has a

peak throughput of 13.3 petabytes per second. Lustre is a high-performance peta-

scalable distributed filesystem tailored for HPC applications and supports POSIX

compliant interface. A typical HPC storage system forms a server-client interaction

model with the compute nodes via networks and process file queries from the compute

nodes.

5.1 Client

The HPC storage system serves the compute nodes that run the user

applications. The compute nodes are referred to as clients. Clients connect to the

storage servers via network and send file queries to the storage servers. Upon accessing a

file, the client first queries the metadata servers for file metadata, and the client has the

permission to access the file; the client then queries the object storage servers for the

 83

actual file content. Depending on the dynamic routing algorithms of the network, a

client has multiple pathways to connect with the storage servers and accesses the files.

5.2 Metadata Server (MDS)

The metadata server hosts the metadata of the files stored on the file system.

The files are stored on the filesystem as objects, and the metadata of the file includes

filename, inode, and list of file object’s locations on the object storage device. The

metadata server stores the file metadata on metadata targets (MDTs), which are arrays

of drives configured in RAID for speed and redundancy. The MDS is the starting point

of accessing a file as the file can only be accessed with the metadata. Due to constantly

searching for file metadata, the MDS accesses comprise many small and random

transactions and hence the target devices are designed accordingly. For example, in

Cray Sonexion-1600, the MDS consists of 14 450 GB SAS drives for enterprise-grade

reliability and performance in RAID 1+0 mode, and one 100 GB SSD for filesystem

journaling and journal-replay (imperative recovery). The MDS is configured in active-

active or active-passive (in the case of Blue Waters) pairs for improved reliability.

5.3 Object Storage Server (OSS)

The object storage server (OSS) handles file inquiries from the clients and stores

the actual file objects. File objects are blocks of fixed size stored on the storage devices

on OSS known as object storage targets (OSTs) and a file is stored as stripes across

multiple OSTs to maximize the performance and redundancy. OSSes are connected in

 84

active-active or active-passive configuration pairs and in the former configuration can

serve the file inquiries and replace the faulty OSS if one of them fails. The OSS has

much more storage space than MDS and on Cray Sonexion-1600; each OSS-pair has 80

disks of 2 TBs each organized in units of 8+2 configured with RAID 6. The OSS also

includes “hot swap” disks to swap out faulty disks on the fly to improve redundancy.

5.4 Management Server (MGS)

The management server or MGS handles platform-specific configurations and

stores book-keeping information about the components. The data are stored on local

storage devices named management data targets (MGTs). MGS is responsible for

storage system monitoring and imperative recovery in case of a system failure. In Cray

Sonexion-1600, the MGSs are configured in active-active pairs for improved redundancy.

5.5 Interconnections

The individual server of the storage system is connected by an internal storage

network. For example, the Cray Sonexion system’s interconnection is the Infiniband

network. This network is different and independent from the network used by the

compute servers or the interconnections between the compute servers and the storage

servers. The health states of the storage network directly impact the efficiency of the

storage servers, and a network outage due to network component failures or congestions

can cause a serious system-wide outage of the storage system. The internal storage

 85

network likely has load balancing and dynamic routing, so the route taken by a file

access request can be dynamic.

5.6 Reliability Features

The MDS, OSS, and MGS are all configured in high-availability pairs or HA-

pairs. By connecting two servers in pairs, one server in the pair can take over the other

server’s job and continuously serve the clients in the case of a server failure within the

HA-pair. The HA-pair can be configured as either active-active, in which both servers

serve the client, or active-passive, in which only one serves the client while the other

serves as a backup. When a failure happens, the monitoring system running on the MGS

detects such failure, kills the failed server, and configures the system so that it uses only

the other/backup server to serve the client. The HA-pair also enables imperative

recovery to recover a failed-recovered server using the healthy server and updates the

failed-recovered server with the missing file transactions.

Imperative recovery is triggered on the failed server by the MGS. The imperative

kills and reboots the failed server, and updates the server availability table for the client

to avoid the client connecting to the faulty server. The failed server, after reboot, also

replays the transactions on the healthy server to recover the lost transactions. These

procedures are transparent to the client and perform solely on the server side of the

storage system. However, depending on the duration of the outage or the workload of

 86

the storage system, imperative recovery can affect system performance and take a

prolonged time to complete.

Another redundancy feature is the RAID array, which can be used for disk-level

redundancy by pairing up individual disks making some disks in the pair as backups. In

a RAID 1+0 configuration, 𝐾𝐾 disks are configured as a RAID 1 stack and multiple of

these RAID 1 stacks are configured as RAID 0 striping for speed. In a RAID 6

configuration, the disks are configured as striping with dual parity, with two parities per

drive. Such a configuration has high fault tolerance and can withstand simultaneous

two-disk failure in a single array.

 87

 Kaleidoscope: Live Forensics for HPC Systems: A Case

Study on Distributed Storage Systems

This work presents Kaleidoscope 3 [7], a real-time HPC storage system failure

recognition framework that uses domain knowledge and machine learning techniques for

HPC failure detection, localization, and root cause diagnosis. Kaleidoscope not only

detects the failures, but also infers the failure modes, and finally identifies the possible

failure components. Kaleidoscope is deployed on the Blue Waters supercomputer and

evaluated with more than two years of monitoring data from production. The evaluation

shows that Kaleidoscope can localize 99.3% of the failures and pinpoint 95.8% of the 843

known, real-world production issues, with negligible compute overheads.

6.1 Kaleidoscope: Overview

The HPC storage system is a high-performance, large-scale system that could

experience a wide range of failures due to its complexity. These failures include

3 Kaleidoscope is accepted and published as the paper: Live Forensics for HPC Systems: A Case Study on
Distributed Storage Systems [7] in the 2020 International Conference for High-Performance Computing,
Networking, Storage, and Analysis. The paper was selected as a finalist for both the Best Paper and the
Best Student Paper awards. The thesis author is a co-author (second author) of the paper due to his
contribution in paper writing, method development, method evaluation, and experiment data analysis.
Specifically, the thesis author helped the development of the fault diagnosis model by telemetry data
analysis, a core component in Kaleidoscope. The thesis author wrote the sections on methodology,
evaluation and results, and operational experiences. The rest of the work is mainly credited to Saurabh
Jha, the first author of the paper. © 2020 IEEE. Reprinted with permission.

 88

reliability failures that result in hangs and crashes and resource overload failures that

result in resource scarcity. These failures often have similar impacts on the client side—

a slowdown or inability to access the files. However, the causes of these failures can be

very different, ranging from component failures such as a failed disk or network switch,

or application abuse such as a rogue program frequently accessing the files. Different

causes require different mitigation plans (restarting or isolations for component failures

and throttling for resource overload failures) to be carried out in time to mitigate the

failures. The inability to mitigate these failures can lead to system-wide outages (SWOs)

that seriously impact the applications running on the system. Thus, to carry out the

correct mitigation plan in the presence of a failure, the monitoring system needs to

detect and localize the failure and then diagnose the failure in real time.

Kaleidoscope is designed to address the aforementioned issues. Kaleidoscope uses

machine learning (ML) techniques for failure localization and failure diagnosis by using

existing monitoring infrastructure. We demonstrate Kaleidoscope’s effectiveness on the

petascale distributed storage system of the NCSA Blue Waters Supercomputer and show

that we can achieve failure localization and diagnosis in real time. We focus on the

storage system because NCSA system administrators reported that in 2018 64.4% of the

loss in compute hours (32 million core hours) were due to storage-related problems.

Further, the problem is expected to get worse in the future exascale systems because of

increases in both components and system scales.

 89

ML-driven methods: Kaleidoscope is an ML-driven failure recognition framework

that uses multi-modal telemetry data that provides comprehensive temporal and spatial

information system-wide. These data are collected by actively polling the system

components using pings or heartbeats, or passively aggregating performance

measurements based on server loads. The telemetry data are often noisy and only

contain partial information because of asynchronous collection, failure propagation, and

non-determinism in the system due to routing and load balancing. These telemetry data

need to be aggregated and analyzed as a whole for accurate diagnosis of the failures, and

singular analysis can lead to false positive or false negative detections. However,

analyzing these data manually is not an easy task because the data are large scale (a

few TBs per day) and recorded in system logging format. Manually analyzing the data

often causes significant delays in failure identifications and misses the timeframe for

mitigation, leading to system outages. Kaleidoscope uses ML methods to automatically

infer component health states and the root causes of the failures using these noisy data

in real time, providing real-time failure localization and diagnosis. Kaleidoscope differs

from existing works as it 1) jointly diagnoses and distinguishes between resource

overload failures and reliability failures, 2) focuses on a wide range of system

components instead of a single type of component such as storage devices, and 3)

recognizes failures without the need for explicitly labeling the data for training.

 90

Approach overview: Kaleidoscope consists of hierarchical domain-guided

interpretable ML models: a failure localization model for component failure localization

a failure diagnosis model for identifying the failure mode and root cause of the failure.

The failure localization model uses a probabilistic graphical model (PGM) and

I/O path tracing data (Store Pings) for state estimation of system components. System

components include metadata servers, object storage servers, network components, and

clients (compute nodes). The I/O path tracing data provide information on component

responsiveness and availability on the route taken by the storage accessing request,

issued from the clients (compute nodes) to the actual disks on the storage servers.

Successfully serving the request requires every component on that route to be available

and healthy. Since each of these I/O path tracing data provides only a partial view (one

path/route) of the system state, the failure localization module jointly evaluates the

path tracing data and infers the system’s health state as a whole.

PGM is used to analyze the noisy path tracing data by expressing the

interrelationships between the components and the paths as statistical relations. The

PGM is modeled to capture the path uncertainties due to load balancer and dynamic

routing protocol via statistical relations. The failure states of the components are

modeled as hidden random variables of the PGM in which their values need to be

inferred from the observed variables—the path availability, indicated by the telemetry

data. The connectivity of the PGM captures the interrelationships between the random

 91

variables and it is derived from the path tracing monitors, the component failure

distributions, and the system topology. Using this setup, the PGM can jointly evaluate

different sets of path tracing data, which is a form of data aggregation to reduce the

noise within the data.

To collect the path tracing data, Kaleidoscope uses a set of metrics called Store

Pings to evaluate the latency of a path from a client to the disks. Store Pings are low-

cost, low-overhead monitoring probs that are issued periodically from the client to the

storage server to capture path latency. At each time step, the path of the Store Pings

can be configured beforehand to cover a specific path in the system. Store Pings are

placed strategically in the system to achieve maximum coverage by minimum overheads.

The failure diagnosis model is a domain knowledge-embedded statistical model

that identifies the failure mode and the root cause of the failure. The failure diagnosis

model achieves these by using the component’s telemetry data which includes

performance metrics and logs as well as the health state of the components estimated by

the failure localization model. The failure diagnosis model utilizes local outlier factor

analysis [61], which is an unsupervised method model for anomaly detection based on

local density.

 92

Implementation and deployment: We implemented and deployed Kaleidoscope to

Blue Waters’ Cray Sonexion-1600 4 petascale distributed storage system. This

distributed storage system uses Lustre file system, 5 a file system that is used by more

than 70% of the top 100 supercomputers [62]. The key result of this work is summarized

below.

High accuracy: Kaleidoscope is highly accurate for failure localization and failure

detection. We use two years of Blue Water’s production data with 843 known

production issues flagged by the system operators. Kaleidoscope can localize failures for

99.3% of the cases and infer the correct failure mode and cause of the failure in 95.8% of

the cases. Kaleidoscope can distinguish between failures caused by component failures

and resource overload failures. To our surprise, Kaleidoscope finds failures that are not

previously identified by the human operator as well.

Low false positive rate: A monitoring system that generates a large number of

false positives can distract the operators from focusing on the real issue. Kaleidoscope

produces fewer false positives than the state-of-the-art monitoring technique, Net

Bouncer [63], by 100 times.

4 Sonexion 1600 Hardware Architecture (cray.com):
https://pubs.cray.com/bundle/Sonexion_1600_Field_Installation_Guide_1.5.0_H-
6124/page/Sonexion_1600_Hardware_Architecture.html
5 Lustre: https://www.lustre.org/

https://pubs.cray.com/bundle/Sonexion_1600_Field_Installation_Guide_1.5.0_H-6124/page/Sonexion_1600_Hardware_Architecture.html
https://pubs.cray.com/bundle/Sonexion_1600_Field_Installation_Guide_1.5.0_H-6124/page/Sonexion_1600_Hardware_Architecture.html
https://www.lustre.org/

 93

Low resource overheads: Kaleidoscope and the Store Pings monitoring probs are

non-intrusive to the normal system operations. The measured overhead of Kaleidoscope

is less than 0.01% of the system’s peak I/O throughput.

6.2 Kaleidoscope: Related Work

There are a wide variety of failure localization techniques for HPC [63]–[70].

Kaleidoscope goes beyond failure localization as it also infers the failure mode and the

root cause of the failures for choosing the correct mitigation strategy. Kaleidoscope, to

the best of our knowledge, is the first method to offer such capabilities, and it

differentiates itself from the crowd in the following aspects: 1) Existing works based on

supervised ML methods [69], [70] are data-hungry, while Kaleidoscope improves data

efficiency by using domain-driven PGM model. 2) Previous works support either failure

detection and localization (e.g., [63], [67]) or failure diagnosis (e.g., [71]), while

Kaleidoscope supports all three while handling the noise in the data due to non-

deterministic routing and system behaviors. 3) Kaleidoscope recognizes failures in

advance before the clients are affected, and uses active probing called Store Pings to

actively monitor the health states of the components. Kaleidoscope places the Store

Pings strategically to reduce active monitoring overhead while providing comprehensive

coverages. Overall, Kaleidoscope is a low-overhead, high-accuracy, high-coverage failure

recognition framework and it is the first method that can distinguish between reliability

failures and resource contention failures.

 94

6.3 Kaleidoscope: Background

1) Blue Waters storage system: The Cray Sonexion storage system of the Blue

Waters supercomputer is a large-scale distributed storage system that can support up to

petabytes of computing throughputs. The system architecture is described in detail in

Chapter 5, so we omit the details here. In summary, the storage system consists of 6

management servers (MGS), 6 metadata servers (MDS, or MS in the later sections), and

420 object storage servers (OSS, or data server (DS), in later sections). The storage

servers are connected by a storage network called Infiniteband network, and the

compute nodes (clients) connect to the storage system via 582 I/O load balancers, also

known as I/O nodes. The Cray Sonexion storage system uses a total of 17280 HDDs as

data storage devices to store the file data, and these disks are configured in RAID to

improve I/O performance and redundancy. The disks are referred to as object storage

devices or OSDs. Each DS is connected to one or more clusters of OSDs, and servers

themselves form high-availability (HA) pairs.

Figure 22: I/O Failure Propagation with Limited Views on the Actual Issue

 95

2) Failure case study: Figure 22 shows a typical real-world failure scenario. Such

failure is hard to pin-point and analyze using the telemetry data (performance

measurement of the system) alone because the telemetry data provide a partial view of

the problem. On the storage server side (data server), the telemetry data indicate high

loads and degraded performance of the storage system, while the telemetry data from

other healthy data servers do not reflect these high loads. From the running applications

on the clien side (a compute node), the file operations will likely be slow or failing,

hinting at a possible problem in the file system client, in the network, or in the storage

system. None of these data point directly to the source of the issue, so they are not

sufficient for component-level failure localization and diagnosis. The precise reasons for

failure are buried deeply in the system logs, as the subsequent analysis of the system

logs reviews a disk failure with its effects propagating throughout the system. The

failure disk triggers a RAID rebuild and drastically decreases the available bandwidth.

Such reduction in bandwidth leads to increasing system loads and finally triggers server

failures due to the loads. All these are revealed from the system logs rather than the

telemetry data.

3) Challenges: The failure case presented above highlights several challenges.

Telemetry data collected in a large-scale system is inherently heterogeneous because

each subsystem uses different monitoring techniques and generates a different set of

performance measurements, thereby presenting only a partial view of the system states.

 96

Therefore, the first challenge is to jointly analyze these data. The second challenge is

failure data collection and labeling because failures are rare events, and most of the

failures are transient and one-off. It is hard to both identify a failure and subsequently

label it if the failure is a new kind of failure. The third challenge is the presence of noise

in the measurements. The measurements are noisy because of propagation delays,

randomness in dynamic routing, and the existence of short-term failures that affect the

measurements. Finally, the fourth challenge is the timeliness of the analysis. The

analysis must provide comprehensive system coverage while ensuring the critical failures

are detected sufficiently before they impact the system. The challenges make it hard to

analyze these telemetry data automatically using rule-based algorithms because there

are endless rules to encode. The only option left for the system operators is to dig

through terabytes of data manually and hope to understand the cause. Due to this, it is

hard to perform timely mitigation to alleviate the negative impact of the failures on the

system. It is often the case that failure causes are found only after the failure has

happened.

6.4 Kaleidoscope: List of Components

Figure 23 below shows a list of components of the Kaleidoscope. The top-left

shows a simplified view of the Kaleidoscope. The lower-left shows the telemetry data

collection facility. The top-right shows the overall model for failure localization and

diagnosis. The lower-right shows the interpretable result of the Kaleidoscope.

 97

Figure 23: Kaleidoscope Framework Design Overview

With all these components, Kaleidoscope addresses each of the four challenges

presented in Section 6.3 as follows. To address the first challenge, Kaleidoscope fuses

heterogenous telemetry data that captures both the storage system’s and client’s views

and analyzes them jointly. To address the second challenge, Kaleidoscope uses PGM, a

class of unsupervised ML methods, to remove the need for explicit data labeling. To

address the third challenge, Kaleidoscope models system uncertainty and compensates

for noise using hierarchical probabilistic ML models that leverage domain knowledge to

model the measurement noise and failure propagation effects. Finally, to address the

fourth challenge, Kaleidoscope uses low-cost monitoring and ML method to reduce

monitoring and failure localization/diagnosis overheads and can perform failure

localization and diagnosis in real time.

6.5 Kaleidoscope: Monitoring and Telemetry Data Collection

1) End-to-end Probing Monitors: Kaleidoscope uses Store Pings, a set of

monitoring probes that monitor the latency over paths. Here, a path is a route from the

 98

client to the storage server that allows the client to ultimately access the desired file.

Store Pings provide health information of a route based on a basic principle: for the file

operation to succeed end-to-end (complete the operation within the time limit), all

components on that route must be healthy. Store Pings not only record the total latency

of the request but also allow the request to be routed through a specific set of load

balancers for more deterministic behavior. Assuming the topology of the HPC is fixed in

the short term since the I/O pings generated by the Store Pings are of fixed size, the

request completion time is likely fixed. Therefore, for any Store Pings request that takes

longer than one second, we declare the request as timeout because 99% of the Store

Pings request return within one second.

The Store Pings request from a client to a file uniquely identifies the data server

and the possible path it can take since the metadata server has metadata information

for the file pinged from that request. The ping also reduces the number of possible load

balancers and routes that the request can take since an OSD can only connect up to

four load balancers. Though not 100% deterministic (as that will require changing the

load balancing algorithm specifically to support Store Pings), the numbers of possible

routes are significantly reduced. This also makes it tractable to model the route

uncertainty using PGM.

Store Pings improve observability by using a wide range of existing file

operations. There are three types of Store Pings: CrWr, WrEx, and RmEx, which stand

 99

for create-then-write, write-to-existing-file, and remove-existing-file. CrWr and RmEx

test the functionality of the metadata server (MS) in file creation and removal

respectively, while WrEx tests the functionality of both the MS and the data server

(DS). Issued from the client, these three types of Store Pings test all the components

necessary to complete file requests, including the client itself, the load balancers, the

client-to-storage-system network, the storage system network, and the storage servers.

To achieve maximum coverage while incurring minimum monitoring overheads,

Store Pings are placed strategically in the system. The placement of Store Pings is

guided by the sufficient identifiability condition described in [72], [73], so we omit the

details here. In general, Store Pings are placed on clients that have different system

stacks, live on different networks, and perform different services. Specifically, Store

Pings are placed on all service nodes that provide scheduling (64 services nodes),

importing and exporting of bulk data (25 I/E nodes), and user login nodes (user entry

point, 4 nodes). We monitor these nodes because they provide critical services for the

end-users.

At each monitoring time step (every minute), Store Pings are executed from all 4

login nodes, 1 out of 64 services nodes, and 1 out of 25 I/E nodes. Store Pings ping

every OSD, DS, and MS, which results in 72 CrWr and 72 RmEx pings (from 6 clients

to 6 MS and 6 OSDs), and 5184 WrEx pings (from 6 clients to 6 DS and 432 OSDs).

 100

2) Component logs: Apart from Store Pings, Kaleidoscope uses a comprehensive

monitoring system to collect performance measurements and RAS logs for all system

components. These data are collected by either the Light-weight Distributed Metric

Service (LDMS) [74] or the Integrated System Console (ISC) [75]. These logs provide

more fine-grained information on component health states.

6.6 Kaleidoscope: Methodology

Kaleidoscope uses hierarchical machine learning models for real-time failure

localization and failure diagnosis given the failures exist. The hierarchical machine

learning model consists of two parts: (i) failure localization model for identifying failure

components, and (ii) failure diagnosis model for identifying failure modes and the root

cause of the failure. The failure localization model is primarily developed by Saurabh

Jha with his permission to reprint the work so we include it here for completeness. The

failure diagnosis model is developed as a joint effort by Shengkun Cui and Saurabh Jha.

1) Failure localization model: The failure localization model identifies the

components that are failed or overloaded and result in I/O failures. Store Pings

telemetry data is used for failure localization. However, Store Pings data are inherently

noisy, like other telemetry data, due to asynchronous data collection, dynamic routing,

load balancing, and the presence of transient failures, and provide only a partial view of

the system (latency measured for a single route). We need to consider the uncertainty in

 101

these telemetry data and fuse the partial views to get an accurate estimation of the

system’s health.

Kaleidoscope uses a probabilistic graphical model (PGM) in the form of a factor

graph (FG) [76] to model uncertainties as probabilistic random variables, and fuse the

telemetry data from all Store Pings monitors together by jointly analyzing them. The

PGM models the relationships between the random variables (components in the

system) using a graphical structure, with nodes being the random variables, and the

edges between random variables representing the statistical relationships between these

random variables. Such a structure allows the PGM to model complex conditional

independence relationships between random variables—variables that are conditionally

independent are not connected—based on domain-specific knowledge. We use the PGM

formulation because we believe that PGM is able to reduce the measurement errors by

jointly analyzing groups of Store Pings measurements. Kaleidoscope uses a specific form

of PGM called the factor graph (FG) that provides the most flexible form of formalism

to model the system using factor functions. In our FG model, the failure states of the

individual components on a path are graph nodes and treated as hidden variables, and

the corresponding path availability is also a graph node and it is an observed variable.

The relationship between the hidden and the observed variables on a path is captured

using factor functions—a set of statistical functions that model the statistical

relationship between related variables.

 102

Figure 24: Factor Graph used in the Failure Localization Module

Formulating the problem: The formalism of the problem using the FG is shown

in Figure 24. The health and hence the failure state of a component 𝑎𝑎 on a path is at

time 𝑡𝑡 denoted as 𝑋𝑋𝑖𝑖 (omitting the 𝑡𝑡 for simplicity), and its value captures the

probability that the component can serve the I/O request successfully. Without prior

measurements, we model 𝑋𝑋𝑖𝑖~Beta(α,β) from Beta distribution as its prior. At each time

step, α, β are updated based on the measurements (observations). At each time step,

the Store Pings monitors generate reachability measurements between client 𝐶𝐶𝑖𝑖 and

OSD 𝑂𝑂𝑆𝑆𝐷𝐷𝑖𝑖, and this measurement, due to uncertainty, can be denoted as a random

variable 𝑌𝑌<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗>. Since Store Pings issues multiple independent pings, 𝑌𝑌<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> is

derived from a binomial distribution to capture the overall success rate of the requests.

Here, 𝑌𝑌<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗>~𝐵𝐵𝑎𝑎𝑛𝑛𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵 �𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗>,𝑁𝑁� in which 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> denotes the probability of

reachability from the client to that OSD, and 𝑁𝑁 is the total number of Store Pings

issued from 𝐶𝐶𝑖𝑖 to 𝑂𝑂𝑆𝑆𝐷𝐷𝑖𝑖 in the time interval (𝑡𝑡 − 1, 𝑡𝑡]. Note that the FG’s inference time

 103

interval is independent of the time interval of the Store Pings, and FG uses some

accumulation of measurement from the Store Pings. To model 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> we used the

topology of the system and the domain knowledge of the statistical relationships

between the telemetry data and the component’s health to calculate 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗>. These

statistical relationships are based on the understanding of the system topology and

routes. Here, 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> solely depends on the product of the probabilities of being

healthy of all individual components (assuming that components are independent of

each other), in other words, all components on the requested route need to be healthy

for the request to serve successfully: 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> = ∏ 𝑋𝑋𝑖𝑖i∈Path�Ci,OSDJ� .

Recall that the routing is dynamic due to load balancers and HA server pairs so

routing is non-deterministic. We incorporate such non-determinism into the model by

using a series-parallel network formalism. For example the Store Pings request

eventually lands on the OSD that contains the file. The OSD is connected by two DSs,

named DS-1 and DS-2. The OSD is not available if both of the DSs are down;

otherwise, the healthy DS can serve the request. The 𝑅𝑅𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖, the probability of a file

access request completing successfully from a destinated load balancer to OSD, is

𝑅𝑅𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖 = �1− (1− 𝑋𝑋𝐷𝐷𝑂𝑂−1) ⋅ (1− 𝑋𝑋𝐷𝐷𝑂𝑂−2)� ⋅ 𝑋𝑋𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖, where the 𝑋𝑋𝐷𝐷𝑂𝑂−1,𝑋𝑋𝐷𝐷𝑂𝑂−2, and 𝑋𝑋𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖 denote

the probability that DS-1, DS-2, and the i-th OSD are healthy, respectively. The

formula (1− 𝑋𝑋𝐷𝐷𝑂𝑂−1) denotes the probability that DS-1 has failed, and similarly for

(1 − 𝑋𝑋𝐷𝐷𝑂𝑂−2), so the product of those is the probability that both DS-1 and DS-2 have

 104

failed, so �1 − (1 − 𝑋𝑋𝐷𝐷𝑂𝑂−1) ⋅ (1 − 𝑋𝑋𝐷𝐷𝑂𝑂−2)� is the probability that at least one of the DS-1

and DS-2 is healthy, so the request can be served. Finally, �1− (1 − 𝑋𝑋𝐷𝐷𝑂𝑂−1) ⋅

(1 − 𝑋𝑋𝐷𝐷𝑂𝑂−2)� multiplied with the probability of OSD being healthy (𝑋𝑋𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖) is the

probability of 𝑅𝑅𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖 being healthy. We use a similar way to model other redundancy and

uncertainty measurements such as multiple load balancers. Ultimately, 𝐴𝐴<𝐶𝐶𝑖𝑖,𝑂𝑂𝑂𝑂𝐷𝐷𝑗𝑗> = 𝑋𝑋𝐶𝐶𝑖𝑖 ⋅

𝑋𝑋𝐿𝐿𝑖𝑖 ⋅ 𝑋𝑋𝐶𝐶𝑁𝑁𝑖𝑖 ⋅ 𝑋𝑋𝑂𝑂𝑁𝑁𝑖𝑖 ⋅ 𝑋𝑋𝑀𝑀𝑂𝑂𝑖𝑖 ⋅ 𝑅𝑅𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖, with 𝐶𝐶𝑖𝑖 ,𝐿𝐿𝑖𝑖 ,𝐶𝐶𝑁𝑁𝑖𝑖, 𝑆𝑆𝑁𝑁𝑖𝑖 ,𝑀𝑀𝑆𝑆𝑖𝑖 being the client, LNET, compute

network, storage network, and metadata server (MS) respectively. Here, 𝑋𝑋𝐿𝐿𝑖𝑖 should be

similar to 𝑅𝑅𝑂𝑂𝑂𝑂𝐷𝐷𝑖𝑖 when modeling redundancy, so we omit here for brevity. Apart from

modeling the system with spatial relationships (topology), Kaleidoscope also models

temporal relationships (evolution over time) between previous and current time steps by

using the estimated parameters from the previous time step as priors for estimations in

the current time step, assuming that the failures propagate through the system

gradually.

The above relationships are encoded in the factor functions of the FG. As shown

in Figure 24, the components are FG nodes with the unshaded ones being the hidden

variables that we wish to infer, and the shaded ones being the observed variable from

the measurements. In Figure 24, the black boxes are factor functions, with the singular

function 𝑓𝑓 being the prior beliefs of the components’ health, and ℎ𝑠𝑠𝑖𝑖 are path functions

following the above multivariate binomial formulation. The inference of the FG is to

calculate the expected health of the components (hidden variables) given the set of

 105

observations 𝐸𝐸(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … |𝑌𝑌1,𝑌𝑌2,𝑌𝑌3 …), which requires the knowledge of both the

observation and the priors of the components’ health. The observations are the

measurements of the successful Store Pings during a specific interval, and the priors 𝑓𝑓

follow the Beta distribution, with the individual parameters α, β being estimates from

the inference result in the previous time step (for 𝑡𝑡 = 0, we set 𝑓𝑓 = 0.5 as there is no

prior information). The role of inference task is to update these parameters for the

priors based on the telemetry data observations. Kaleidoscope solves the inference

problem using the Monte Carlo Markov Chain algorithm [77], which estimates the

expected health of the components given the observations by generating a large number

of samples from the model while tweaking the parameters to minimize the disparities

between the predicted observations from the sampled distribution as well as the real

observations. Our model declares the component to be failed when the confidence in

inferencing is over 75%. The FG is implemented using PyMC3 [78, p. 3] with

observations collected over 5 min intervals.

2) Failure diagnosis model: The primary goal of the failure diagnosis model is to

identify the failure mode as well as the root cause of the failure given the set of

telemetry data including performance metrics and RAS logs. The failure diagnosis model

answers the conditional question “Given a component has failed, which modality of the

telemetry data best explains the failure?”, and the condition “given a component has

failed” is obtained from the failure localization model. This question is very different

 106

from answering the unconditional version of the question “Which modality of the

telemetry data is anomalous across all components?” The non-conditional version of the

question requires the model to identify the failures from the logs first and then identify

the failure modes and root cause, which is quite challenging as mentioned because of the

partial observability and the noise present in the telemetry data. For example, it is

common that a server has higher loads than the rest of the server, but we cannot flag

the server based on just high loads as the file request can still be served within the time

limit. However, if the failure localization model, after combining all data, identifies that

the server has failed, then high loads might be a root cause of the failure.

The failure detection model answers the conditional question by statistically

comparing the measurements of the failed component and the healthy component by

using an unsupervised anomaly detection model that selects the measurement conveying

the failure modes. If there is a reliability failure, the failure detection model points to

the failure logs, and if there is a resource overload failure, the model points to the

performance metric that indicates that failure.

Diagnosing reliability failures: Reliability failures are identified by analyzing the

system logs. We work with vendors and national labs to create a library of regular-

expression patterns from five years of logs. These regular expressions cover a wide range

of logs under failures, and we use these regular expressions to filter out error logs from

normal logs. Kaleidoscope filters RAS logs of the components by using these regular

 107

expressions, and the error logs of each failed component are compared to the error logs

of the healthy components: δ = 𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠𝑓𝑓 −∪𝑖𝑖 ∈ {ℎ𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡ℎ𝑦𝑦} 𝐿𝐿𝑖𝑖; if the difference is not an empty

set, then the failure is caused by component failures.

Diagnosing resource overload failures: The difference between resource overload

failures and reliability failures is that in the presence of the former there might be no

component failures. Therefore, Kaleidoscope focuses on performance indicators such as

load average, disk await-time, latency, and network performance counters to identify

resource overload failures. Kaleidoscope identifies resource overload failures by using the

local outlier factor (LOF) algorithm [61] to compare the performances of similar storage

components. The LOF is based on the local density of the data points in which the

density is given by the distance of the K nearest neighbors. By calculating the LOF for

all components of a similar type, we can identify the failure components as outliers. If a

failed component has the same LOF score as the others on the same performance

metric, there is no reason to believe that the component is marked failed due to resource

overload and vice versa. LOF is a reasonable choice because storage components within

a homogeneous group could have different modes of operation that are not indications of

anomalies. We found that some groups of data servers have a low load average of 10,

but some other groups have a high load average of 64, and both groups operate as

intended. Kaleidoscope declares that a failed component is due to resource overload if its

𝐿𝐿𝑂𝑂𝐹𝐹𝑟𝑟 is 1.5 times greater than the max LOF of the value of the healthy components.

 108

Finally, there is no explicit training involved in constructing the failure diagnosis

module as we use unsupervised methods with domain-specific knowledge. The method

does require sufficient knowledge of the system to come up with a set of regular

expressions for filtering the error logs.

6.7 Kaleidoscope: Evaluation and Discussion

We evaluate Kaleidoscope by using two years of Store Pings monitoring data

collected from the Cray Sonexion storage system starting from 2018 as well as live

forensics on Cray Sonexion for over three months. Over the two-year span, Cray

Sonexion operators have identified and resolved 843 production issues that led to critical

failures of the storage system, and each issue has a report on the cause of the problem.

These issues are used as ground truth failures in the Kaleidoscope evaluation as true

positives, and others as true negatives. We also randomly select 100 issues identified by

kaleidoscope to quantify the number of false positives.

Figure 25: Duration of System Outage Distribution

 109

1) Effectiveness: Kaleidoscope identifies 26596 I/O failure events with 25427

resource overload failures and 1169 reliability failures. The large number of failures

identified by Kaleidoscope in comparison to the failure identified by the operators is due

to transient failures. Transient failures are short-term low-impact failures that can be

masked by the system’s redundancy or recovered with the system’s recovery

mechanisms so they do not lead to production issues. Cray’s operators use the following

two policies to identify important I/O failures for manual investigation: 1) The failure

alarms are discarded if there are subsequent recovery events that recover the system. 2)

Resource overload failures are often transient and an investigation is initiated only if the

failures persist over 30 minutes, shown as the tail in Figure 25. These two policies are

applied to the failures found by Kaleidoscope and the total number of failures is reduced

to 1525.

Kaleidoscope can localize the failures for 837 out of 843 cases, with an accuracy

of 99.3%, and those 6 undetected failures did not impact the system but were flagged

only for maintenance purposes. The additional 668 detected failures are not false

positives as many of the failures point to a real underlying problem of the system after

close inspection. Those 668 failures are unidentified failures mainly due to lack of

monitoring so they were ignored by the operators.

In those 843 production issues, 346 issues were reliability failures and 497 were

resource overload failures. Kaleidoscope is able to correctly identify 340 reliability

 110

failures and their causes, and 468 resource overload failures and their causes, which

leads to the diagnostic accuracy of 98.3% and 94.2% respectively. Among the 668

failures detected by the failure localization module, Kaleidoscope additionally recognizes

22 reliability-related failures and 558 resource overload-related failures. After a manual

inspection of 100 out of these 558 resource overload-related failures, we found that many

of them were true and they were not false positives.

It is hard to precisely quantify the false positive rate because the failures flagged

by Kaleidoscope could indeed represent a true failure but were ignored by the system

operators. Therefore, 100 failures identified by Kaleidoscope, with half of them flagged

as reliability failures and half of them flagged as resource overload failures, are selected

for analysis. The result indicates that Kaleidoscope localizes all 100 failures correctly but

incorrectly identifies 4 out of these 100 failures.

Table 5: Kaleidoscope Comparing with NetBouncer in Failure Localization. Using six
months of production data.

 True Positive False Negative Alarms
Kaleidoscope 184 2 4892
NetBouncer 110 76 116072

2) Baseline comparison: Kaleidoscope is compared with NetBouncer [63], a state-

of-the-art failure localization method for HPC, using six months of previous production

data. The result of the comparison is shown in Table 5. We can see that compared to

Kaleidoscope, NetBouncer generates many more alarms and misses more cases. This

could be due to the inability of NetBouncer to compensate for uncertainty in request

 111

routing and evolution of the component states. Kaleidoscope tackles both issues much

better by using hierarchical machine learning techniques, as discussed in Section 6.6.

3) Monitoring overheads: Another important perspective of any monitoring and

failure recognition technique is the monitoring overheads. Kaleidoscope aims to have low

monitoring overheads and is non-intrusive to the normal operations of the system. The

monitoring overheads of Kaleidoscope are benchmarked using the IOR benchmark, 6 a

tool to test the Lustre file system performance. During our evaluation, there are 4320

compute nodes running IOR. The results indicate that when running Store Pings and

Kaleidoscope with 100 Store Pings monitors running at 30 sec intervals, the peak

performance is 97.58% of the peak performance of the system without Store Pings and

Kaleidoscope. Note that in a production environment the user applications can hardly

stress the storage system to its peak performance. We also evaluate the time difference

between subsequent launches of Store Pings. The results show that over 98% of Store

Pings are launched within 3 sec, and all of them are launched within 10 sec.

6 GitHub - LLNL/ior: Parallel filesystem I/O benchmark: https://github.com/LLNL/ior

https://github.com/LLNL/ior

 112

Figure 26: End-to-End Latency of Store Pings, green without fault, red with faults

4) System operation experiences: The deployment of Kaleidoscope helps the

system operators to identify production issues as well as enabling fine-grained failure

characterization of the storage system.

Kaleidoscope finds that in most cases reliability failures lead to system

performance degradations which subsequently lead to I/O request failures. However,

only a small percentage <1% of reliability failures lead to system-wide outage (SWO).

This is because most of these component failures are masked by the system’s

redundancies. For example, at the disk-level, RAID arrays act as redundancies to

protect the system from disk failures, and at the server-level, HA-pairs protects the

system against server failures. Nevertheless, most of these failures trigger system

recoveries that divert some bandwidth from the user applications, and hence the

performance loss. Figure 26 shows that the average I/O request completion time

increased by 52.7% under failures with the 99th completion time at 31 sec (request time

out).

 113

Figure 27: Load Average Duration and Its Affects I/O Completion Time

On the other hand, Kaleidoscope reveals that resource overhead failures due to

excessive I/O by the application or high load on the server frequently lead to I/O

request failures. Excessive I/O causes high loads on the server and the storage devices

and therefore slows down the entire system. As shown in Figure 27, generally, excessive

I/O abuses are short and within 10 sec. However, the relatively long tail in the figure

indicates that there exist some applications with excessive I/O requests as long as 4 h.

During that incident, the system load average index increases from 60 to 350. Moreover,

system high load is another reason for resource overload failures. The I/O request

completion time is strongly correlated with the load on the storage servers. As shown in

Figure 27, when the average server load indices increase, so does the average I/O

request completion time and the 99th percentile I/O request completion time. A severely

high load can cause the I/O request completion time to increase by more than 10 times.

The high load can be caused by either excessive I/O or self-recovery/rebuild of the

storage server.

 114

Finally, Kaleidoscope can help the system operators identify one-off failures that

were unseen before because the failure localization model localizes failures based on

telemetry data rather than historical events (training data in the supervised models).

On average four new failure modes are found per month. One such case is when the

system experienced a partial failure in the LNET node, causing the bandwidth available

from the clients to that DS to decrease by 25%. Such a partial failure was novel because

though the LNET node had failed, it continued to generate heartbeats as if alive.

Kaleidoscope can quickly localize such failure by telemetry data and point to the failed

LNET node.

5) Generalization: A valuable monitoring technique needs to be generalizable to

different systems. Kaleidoscope is not developed specifically for the Cray Sonexion

storage system or Lustre file system. Kaleidoscope uses PGM for failure localization, and

RAS logs and performance metrics for failure diagnosis, and none of these is tied to a

specific system. Performance metrics and RAS logs are available on every HPC system

and assuming the topology of the system is known, developers can derive the PGM

structure from the system topology. One unique feature provided by Kaleidoscope is

Store Pings, which provides the ability to periodically ping from a client to a storage

device by issuing I/O requests. Other systems have similar supports. For example, Ceph

distributed file system [79] uses the CRUSH [80] algorithm to compute file location. We

can use CRUSH to get the file mapping rules, and strategically place the files on every

 115

storage device and ping the files by issuing I/O requests from clients. Therefore, though

Store Pings monitors are proprietary to Kaleidoscope, constructing a similar monitoring

facility in other HPC systems is not intractable.

6.8 Kaleidoscope: Conclusion

 This chapter presents Kaleidoscope, an ML-based failure localization and

diagnosis framework for HPC systems. Kaleidoscope uses PGM and unsupervised

methods to localize and diagnose system failures in real time, and can effectively

distinguish reliability failures from resource overload failures for the best mitigation

plan. In addition, Kaleidoscope uses Store Ping monitors to provide high coverage while

incurring low monitoring overheads. We evaluate Kaleidoscope using two years of

production data from the Blue Waters supercomputer’s Cray Sonexion storage system

and show that Kaleidoscope not only recognizes real production failures with high

accuracy but also helps system operators identify unseen failures. Finally, we argue that

Kaleidoscope is generalizable to other HPC systems because it does not require specific

system architectures or software facilities to achieve its full functionality. We believe

that Kaleidoscope will be a powerful tool in failure recognition for HPC systems that

can help the system operators to better monitoring and maintaining their system.

 116

 Related Work

This chapter discusses work related to autonomous driving system (ADS)

security and reliability assessments, as well as high-performance computing (HPC)

system failure monitoring, localization, and diagnosis.

7.1 ADS Security Assessment

Security assessment on ADS has mainly focused on the deep learning-based

machine learning models as they are notoriously prone to adversarial attacks, so one line

of work is to assess the ADS ability to withstand adversarial attacks—attacks that aim

to “fool” the deep learning-based model to produce incorrect predictions. Carlini and

Wagner [81] reveal that modern convolutional neural network (CNN)-based image

classifiers are prone to carefully designed adversarial noise. Such noise is not obvious to

human eyes but could lead to distribution shifts when added to the input data and

cause misclassifications, for example, classifying a panda as a truck. As shown in [27]–

[31], the authors target the CNN-based obstacle detector used by different sensors,

which are the core of the ADS perception pipelines. Works such as [27] target CNN-

based obstacle detector for camera and show successful attacks on stop sign by painting

certain textures onto the stop sign. Similarly, [31] shows similar but more robust

attacks. In addition, [28] targets CNN-based obstacle detector for LiDAR by placing

 117

carefully designed physical adversarial obstacles on the road that are not detectable by

the obstacle detector using LiDAR data, causing potential accidents. Finally, [30]

targets end-to-end camera-based ADS by painting black stripes on the road, causing the

ADS to make the wrong steering decisions. This line of work considers only the impacts

of adversarial attacks on the targeted detector to cause misdetection, without

considering the impact on the AV safety. Specifically, existing works do not consider the

importance of timing or defensive capabilities brought by the spatial and temporal

redundancy in the ADS. Work such as [32] considers the temporal redundancy from the

obstacle tracker (Kalman filter) and provides a more advanced attack method to attack

the entire multiple-obstacle-tracking (MOT) pipeline, but it too fails to consider the

timing of the attack which is proven to be utterly critical in our work RoboTack.

Another line of work seeks to gain access to ADS. Various works show attacks

that gain access to the ADS by hacking vehicle-to-vehicle (V2V) channels [82], [83],

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) channels [84], OTA software

updates [85], ECUs [70], CAN bus [86], infotainment systems [87], and physical access to

the physical vehicle [82]. All these works show that it is possible to hack into the ADS

and gain critical knowledge, which makes the RoboTack attack entirely possible.

7.2 ADS Reliability Assessment

ADS is a complex system consisting of artificial intelligence and machine

learning-based algorithms and heterogeneous hardware to meet the performance and

 118

compute requirements. ADS, like any other complex systems, is also prone to reliability

failures such as transient and permanent faults. Modern ADS uses both hardware-based

and software-based techniques to improve system redundancy.

One such technique is duplicating the software and hardware completely and

running the two stacks independently, and comparing the outputs of the duplicated

system bit-by-bit. This technique, while effective at identifying both transient and

permanent faults, is very costly.

Other techniques improve system resiliency at the hardware level, as introduced

in Section 4.2. Hardware techniques improve system resiliency by introducing

redundancy on instruction execution such as lockstep execution [43], bit error detection

using parities such as ECC memory and parity checks [40], [42], or other techniques

such as thread redundancy [44], [45]. The improvement of hardware resiliency to faults

reduced the need to duplicate the entire system, so that only part of the hardware

required modification. However, hardware redundancy incurs higher manufacturing costs

due to increased complexity and reduces performance due to increased redundancy

overheads.

Fault detection and correction can also be included at the software level without

dedicated hardware support. These techniques include error detection and correction by

modifying algorithms. For example, [46] proposed a fault-tolerant matrix multiplication

algorithm, and [47] improves the resilience of convolutions by algorithm-based error

 119

detection. Other categories include software runtime monitoring [49] and diverse

execution of the process on duplicated processors [50]. The software-based assessment

methods do not require specific hardware architecture, which further reduces the

manufacturing cost. However, software-based techniques often target a specific type of

software in the ADS system; for example, [46], [47] target matrix arithmetic in the

DNNs, while other techniques require specific software supports (such as compiler

support) or redesign of the software. Therefore, unlike DiverseAV which can assess the

entire ADS, existing software-based methods can only assess part of the ADS software,

or require a substantial redesign of the software.

7.3 HPC Failure Localization and Diagnosis

There is a wide range of attempts on fault detection and localization in the HPC

system [63]–[70]. Many of these techniques focus on fault detection and localization in

specific areas of the distributed system. For example, [63], [64] use active probing

techniques for network latency measurement and anomaly detection. Works like [65] use

Lasso regression and hypothesis testing for timely fault localization for the virtual disk.

Works like [66] propose a user-friendly end-to-end I/O monitoring tool with a focus on

automatic I/O anomaly localization by analyzing historical data. In addition, [67]

focuses on the detection of fail-slow faults—in which the hardware or software functions

but with degraded performance—using time-out signals. There are also works on failure

diagnosis. Moreover, [71] diagnoses system faults by comparing the abnormal system

 120

logs with healthy system logs and points to the most influential factor for the

developers. Few of these works can simultaneously detect, localize, and diagnose system

faults like the Kaleidoscope. Finally, works like [70] that simultaneously perform fault

detection and localization using deep learning-based methods ([70] uses recurrent neural

network for system log processing) are often data-hungry and require collecting and

labeling a large amount of training data. Kaleidoscope avoids this problem and improves

data efficiency by using domain-knowledge-driven graphical model and unsupervised

learning methods.

 121

 Conclusion and Future Work

8.1 Conclusion

In this thesis, we present three AI-driven assessment methods in the context of

two applications: autonomous driving system (ADS) and high-performance computing

(HPC) system. Each method addresses a unique set of challenges. We propose

RoboTack, an end-to-end attack framework targeting ADS in the form of smart

malware. RoboTack considers both the spatial and temporal redundancy of the ADS

and uses ML methods to learn the vulnerability within the ADS perception and sensor

fusion system, achieving a high attack success rate. RoboTack, with the capability to

automatically identify ADS security vulnerabilities in critical scenarios, can help the

developers to quickly identify and fix these vulnerabilities via simulations.

Moreover, to address reliability assessment in ADS, we propose DiverseAV, a

high-accuracy and high-coverage fault detection framework that solves the challenge of

low-cost reliability assessment in ADS. DiverseAV achieves high accuracy and high

coverage (over 85% precision and recall in hardware permanent fault detection, and 99%

precision and recall in detecting software failures) by leveraging natural temporal

diversity in sensor data and vehicle state-conditioned thresholds—a first of its kind. In

addition, DiverseAV does not rely on proprietary hardware or hardware duplication, but

requires only a duplication of the software, reducing manufacturing cost. Furthermore,

 122

DiverseAV does not require redesigning the ADS software, which makes it highly

generalizable to various ADS.

Finally, we introduce Kaleidoscope, a low-overhead, high-accuracy, and high-

coverage framework that simultaneously performs fault detection, localization, and

diagnosis on HPC systems. The two key challenges that Kaleidoscope solves are 1) data-

efficient failure localization and diagnosis and 2) distinguishing between reliability

failures and resource overload failures. The latter is particularly important because,

given that the impacts of the two types of failures on the end-users are similar, knowing

the root cause of the failure promotes the correct mitigation strategy (reliability

failures—restart, resource overload failures—throttling). Kaleidoscope achieves these

solutions by combining domain knowledge of the system with probabilistic graphical

models and unsupervised machine learning methods. Moreover, Kaleidoscope is not

tailored for a particular HPC system, but rather is a general framework for fault

localization, detection, and diagnosis on HPC systems.

8.2 Future Work

The work presented in this thesis provides valuable future research directions in

improving the resiliency of complex ADS and HPC systems. Our work on RoboTack

reveals that the widely adopted CNN-Kalman-filter-based MOT (multiple-obstacle-

tracking) pipelines and sensor fusion models in modular-based ADS are susceptible to

malicious attacks at critical times, contrary to the conclusions of previous works. This

 123

vulnerability is caused by the inability of the pipeline to distinguish between legitmate

noisy measurements and malicious perturbed measurements, causing the pipeline to

erroneously update the state estimation using perturbed measurements. One direction of

future work that may reduce such vulnerability is to develop tracking and sensor fusion

methods that can identify malicious measurements from legitimate measurements.

Another direction is to introduce an uncertainty measurement to obstacle detectors so

that the detectors report uncertainty envelopes of their detections. This could improve

the perception pipeline in defending against malicious attacks that cause high

uncertainty in obstacle detections. Though learning uncertainties of the model and the

data have been proposed in several works [88], [89], they have not yet been applied to

the control feedback loop of the ADS.

In addition, we introduce DiverseAV for low-cost transient and permanent fault

detections in ADS, but we have not discussed the mitigation plan once a critical fault is

detected. A line of research on DiverseAV is to propose fine-grained strategies for fault

mitigation in the ADS settings, as currently the most common mitigation process is

limited to disengagement and handing controls back to the human driver. A detailed

mitigation procedure will require better understanding of the detected faults (fault

diagnosis), and we argue that the failure diagonosis model in Kaleidoscope can be

applied to ADS as well.

Lastly, we assert that Kaleidoscope is not limited to HPC systems, but rather

can be used for other complex systems as well. The intuition behind Kaleidoscope is to

 124

leverage domain-driven knowledge to more efficiently localize and diagnose system

faults. The formulation of Kaleidoscope is generally applicable to a wide range of

complex systems, because the complex system, software or hardware, has topology and

causal relationships between components. Therefore, a line of future work can focus on

fault detection and localization on other cyber-physical systems, such as unmanned

aerial vehicles (UAVs) and complex control systems in critical infrastructures (e.g.,

smart grids), using Kaleidoscope’s formalism.

Overall, the emergence of AI-driven assessment methods not only enables timely

security and reliability assessment of complex systems but also opens up new directions

for system resiliency research. We anticipate that more AI-driven methods will be

adopted in future systems, and with the aid of these methods, the future generation of

systems will be more powerful, more intelligent, and more resilient.

 125

References

[1] T.S., “Why Uber’s self-driving car killed a pedestrian,” The Economist, May 29,
2018.

[2] M. Snir, W. D. Gropp, and P. Kogge, “Exascale research: Preparing for the post-
Moore era,” Univesity of Illinois white paper, 2011.

[3] D. Shapiro, “Introducing Xavier, the NVIDIA AI supercomputer for the future of
autonomous transportation,” NVIDIA blog post, Sep. 28, 2016.

[4] R. Moore-Colyer, “Nvidia Xavier supercomputer aims to turn cars into AIs on
wheels,” Silicon.co.uk, Jan. 05, 2017.

[5] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering,
A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev, “Compute solution for
Tesla’s full self-driving computer,” IEEE Micro, vol. 40, no. 2, pp. 25–35, 2020, doi:
10.1109/MM.2020.2975764.

[6] S. Alvarez. (2018, Jun.). Research group demos why Tesla autopilot could crash
into a stationary vehicle. [Online]. Available: https://www.teslarati.com/tesla-
research-group-autopilot-crash-demo/.

[7] S. Jha, S. Cui, S. S. Banerjee, T. Xu, J. Enos, M. Showerman, Z. T. Kalbarczyk,
and R. K. Iyer, “Live forensics for HPC systems: A case study on distributed
storage systems,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp. 1–16, doi:
10.1109/SC41405.2020.00069.

[8] Baidu Apollo team. (2019). Apollo: Open source autonomous driving. [Online].
Available: https://github.com/ApolloAuto/apollo

[9] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A.
Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on board: Enabling
autonomous vehicles with embedded systems,” in 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), 2018, pp. 287–296.

[10] G. Welch and G. Bishop, An Introduction to the Kalman Filter. University of
North Carolina, 1995.

[11] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” ArXiv Prepr.
ArXiv180402767, 2018.

 126

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Proceedings of Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[13] N. Garnett, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, “3D-LaneNet: End-to-end
3D multiple lane detection,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 2921–2930, doi: 10.1109/ICCV.2019.00301.

[14] F. Pizzati and F. Garcia, “Enhanced free space detection in multiple lanes based on
single CNN with scene identification,” 2019 IEEE Intell. Veh. Symp. IV, Jun. 2019,
doi: 10.1109/ivs.2019.8814181. [Online]. Available:
http://dx.doi.org/10.1109/IVS.2019.8814181

[15] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese,
“Social LSTM: Human trajectory prediction in crowded spaces,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 961–
971, doi: 10.1109/CVPR.2016.110.

[16] F. Altché and A. de L. Fortelle, “An LSTM network for highway trajectory
prediction,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 353–359, doi:
10.1109/ITSC.2017.8317913.

[17] S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Annu.
Res. Rep., 1998.

[18] K. J. Aström and T. Hägglund, PID Controllers: Theory, Design, and Tuning vol.
2. Instrument Society of America Research Triangle Park, NC, 1995.

[19] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to
end learning for self-driving cars,” ArXiv Prepr. ArXiv160407316, 2016.

[20] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,” in
Conference on Robot Learning, PMLR 100, 2020, pp. 66-75.

[21] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end
driving via conditional imitation learning,” in Proceedings of International Conf. on
Robotics and Automation (ICRA), 2018.

[22] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

 127

[23] A. Tampuu, M. Semikin, N. Muhammad, D. Fishman, and T. Matiisen, “A survey
of end-to-end driving: Architectures and training methods,” in IEEE Transactions
on Neural Networks and Learning Systems, Dec. 2020.

[24] S. Jha, S. Cui, S. Banerjee, J. Cyriac, T. Tsai, Z. Kalbarczyk, and R. K. Iyer, “ML-
driven malware that targets AV safety,” in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2020, pp.
113–124, doi: 10.1109/DSN48063.2020.00030.

[25] B. C. Csáji, “Approximation with artificial neural networks,” MSc thesis, Eötvös
Loránd University, Hungary, 2001.

[26] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G.
Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M.
Reyes, D. Zelenkovsky, and S. Kim, “LGSVL simulator: A high fidelity simulator
for autonomous driving,” ArXiv Prepr. ArXiv200503778, 2020.

[27] J. Lu, H. Sibai, and E. Fabry, “Adversarial examples that fool detectors,” ArXiv
Prepr. ArXiv171202494, 2017.

[28] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li, “Adversarial
objects against LiDAR-based autonomous driving systems,” ArXiv Prepr.
ArXiv190705418, 2019.

[29] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in Artificial Intelligence Safety and Security, R. V. Yampolskiy, ed., CRC
Press, 2016, pp. 99-112.

[30] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Attacking
vision-based perception in end-to-end autonomous driving models,” ArXiv Prepr.
ArXiv191001907, 2019.

[31] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T.
Kohno, and D. Song, “Robust physical-world attacks on deep learning models,”
ArXiv Prepr. ArXiv170708945, 2017.

[32] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei, “Fooling
detection alone is not enough: Adversarial attack against multiple object tracking,”
in International Conference on Learning Representations, 2020.

 128

[33] S. Jha, S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W.
Keckler, and R. K. Iyer, “ML-based fault injection for autonomous vehicles: A case
for Bayesian fault injection,” in Proceedings of 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2019, pp.
112–124, doi: 10.1109/DSN.2019.00025.

[34] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle
intrusion detection,” in Proceedings of 25th USENIX Security Symposium, 2016,
pp. 911–927.

[35] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “No need to worry about adversarial
examples in object detection in autonomous vehicles,” ArXiv Prepr.
ArXiv170703501, 2017.

[36] D. Rezvani, “Hacking automotive ethernet cameras,” Argus Cyber Security, Nov.
2018. [Online]. Available: https://argus-sec.com/hacking-automotive-ethernet-
cameras/

[37] O. Pfeiffer, Implementing Scalable CAN Security with CANcrypt, Embedded
Systems Academy Inc., 2017.

[38] NEOUSYS. Nuvo-6108GC GPU computing platform. [Online]. Available:
https://www.neousys-tech.com/en/product/application/gpu-computing/nuvo-
6108gc-gpu-computing

[39] G. L. Hicks, L. D. Howe Jr, and F. A. Zurla Jr, “Instruction retry mechanism for a
data processing system,” U.S. Patent no. 4,044,337. 23 Aug. 1977.

[40] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC server
main memory,” IBM Microelectron. Div., vol. 11, 1997.

[41] R. Nathan and D. J. Sorin, “Argus-G: Comprehensive, low-cost error detection for
GPGPU cores,” IEEE Comput. Archit. Lett., vol. 14, no. 1, pp. 13–16, 2015, doi:
10.1109/LCA.2014.2298391.

[42] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no.
1, pp. 21–28, 1962.

[43] X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, and H.-U. Zurek, “The Arm
triple core lock-step (TCLS) processor,” ACM Trans. Comput. Syst., vol. 36, no. 3,
Jun. 2019, doi: 10.1145/3323917.

 129

[44] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and evaluation of
redundant multi-threading alternatives,” in Proceedings 29th Annual International
Symposium on Computer Architecture, 2002, pp. 99–110, doi:
10.1109/ISCA.2002.1003566.

[45] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tolerance in
microprocessors,” in Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), 1999, pp. 84–91,
doi: 10.1109/FTCS.1999.781037.

[46] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix
operations,” IEEE Trans. Comput., vol. 100, no. 6, pp. 518–528, 1984.

[47] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making convolutions
resilient via algorithm-based error detection techniques,” IEEE Trans. on Dep. and
Secur. Comp., pp. 1–1, 2021, doi: 10.1109/TDSC.2021.3063083.

[48] L. A. Clarke and D. S. Rosenblum, “A historical perspective on runtime assertion
checking in software development,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no.
3, pp. 25–37, 2006.

[49] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime
software-fault monitoring tools,” IEEE Trans. Softw. Eng., vol. 30, no. 12, pp. 859–
872, 2004.

[50] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “Software-only based diverse
redundancy for ASIL-D automotive applications on embedded HPC platforms,” in
2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2020, pp. 1–4.

[51] A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE Trans.
Softw. Eng., no. 12, pp. 1491–1501, 1985.

[52] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing design diversity
to achieve fault tolerance,” IEEE Softw., vol. 8, no. 4, pp. 61–71, 1991.

[53] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software fault
tolerance,” IEEE Trans. Comput., vol. 37, no. 4, pp. 418–425, 1988.

[54] National Highway Traffic Safety Administration (NHTSA), “Pre-crash scenario
typology for crash avoidance research,” DOT HS 810 767, 2007.

 130

[55] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the accuracy of
high-level fault injection techniques for hardware faults,” in 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2014, pp. 375–382.

[56] PinFI. [Online]. Available: https://github.com/DependableSystemsLab/pinfi

[57] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A dynamic binary
instrumentation framework for NVIDIA GPUs,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 372–383.

[58] NVBitFI. [Online]. Available: https://github.com/NVlabs/nvbitfi

[59] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “PyTorchFI: A runtime perturbation tool for
DNNs,” in 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2020, pp. 25–31, doi: 10.1109/DSN-
W50199.2020.00014.

[60] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The
Kitti vision benchmark suite,” in 2012 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pp. 3354–3361.

[61] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-
based local outliers,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD’00), Dallas, Texas, USA, 2000.

[62] S. Oral and F. Baetke, LUSTRE community BOF: Lustre in HPC and emerging
data markets: Roadmap, features and challenges. [Online]. Available:
https://sc18.supercomputing.org/proceedings/bof/bof_pages/bof176.html

[63] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang,
“NetBouncer: Active device and link failure localization in data center networks,” in
Proceedings of the 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’19), Boston, MA, USA, 2019.

[64] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B.
Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A large-scale system for data
center network latency measurement and analysis,” in Proceedings of the 2015
ACM SIGCOMM Conference (SIGCOMM’15), London, United Kingdom, 2015.

 131

[65] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao, and M.
Chintalapati, A. Krishnamurthy, and T. Anderson, “Deepview: Virtual disk failure
diagnosis and pattern detection for Azure,” in Proceedings of the 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’18), Renton,
WA, USA, 2018.

[66] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,
J. Zhai, W. Liu, and W. Xue, “End-to-end I/O monitoring on a leading
supercomputer,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), Boston, MA, 2019, pp. 379–394.

[67] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S. Gunawi, “IASO: A
fail-slow detection and mitigation framework for distributed storage services,” in
Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC’19),
Renton, WA, 2019.

[68] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Problem
determination in large, dynamic internet services,” in Proceedings International
Conference on Dependable Systems and Networks, 2002, pp. 595–604.

[69] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday: Predicting
which node will fail when on supercomputers,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, 2018, pp.
108–121.

[70] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017, pp. 1285–
1298.

[71] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis of systems
logs to diagnose performance problems,” Presented at 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, 2012,
pp. 353–366.

[72] L. Ma, T. He, A. Swami, D. Towsley, and K. K. Leung, “Network capability in
localizing node failures via end-to-end path measurements,” IEEEACM Trans.
Netw., vol. 25, no. 1, pp. 434–450, 2016.

[73] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe, “Node failure
localization via network tomography,” in Proceedings of the 2014 Conference on
Internet Measurement Conference, New York, NY, USA, 2014, pp. 195–208, doi:
10.1145/2663716.2663723.

 132

[74] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S.
Monk, N. Naksinehaboon, J. Ogden, et al. “The lightweight distributed metric
service: A scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” in SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 154–165.

[75] M. Butler. Blue Waters super system. [Online]. Available:
https://www.globusworld.org/files/2010/02/SuperSystem-BW-.pdf

[76] D. Koller, N. Friedman, and F. Bach, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[77] R. M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods,
University of Toronto, 1993.

[78] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in
Python using PyMC3,” PeerJ Comput. Sci., vol. 2, p. e55, Apr. 2016, doi:
10.7717/peerj-cs.55.

[79] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: A
scalable, high-performance distributed file system,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’06),
Seattle, WA, 2016.

[80] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH: Controlled,
scalable, decentralized placement of replicated data,” in SC’06: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, 2006, pp. 31–31.

[81] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
arXiv preprint arXiv:1608.04644, 2017.

[82] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, et al. “Experimental security analysis of a
modern automobile,” in Proceedings of 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 447–462.

[83] Z. Winkelman, M. Buenaventura, J. M. Anderson, N. M. Beyene, P. Katkar, and
G. C. Baumann, When Autonomous Vehicles Are Hacked, Who Is Liable? Santa
Monica, CA: RAND Corporation, 2019.

 133

[84] I. A. Sumra, I. Ahmad, H. Hasbullah and J. bin Ab Manan, “Classes of attacks in
VANET,” in 2011 Saudi International Electronics, Communications and Photonics
Conference (SIECPC), Riyadh, Saudi Arabia, 2011, pp. 1-5, doi:
10.1109/SIECPC.2011.5876939.

[85] A. Sampath, H. Dai, H. Zheng, and B. Y. Zhao, “Multi-channel jamming attacks
using cognitive radios,” in Proceedings of 2007 16th International Conference on
Computer Communications and Networks, 2007, pp. 352–357.

[86] E. Yağdereli, C. Gemci, and A. Z. Aktaş, “A study on cyber-security of autonomous
and unmanned vehicles,” J. Def. Model. Simul., vol. 12, no. 4, pp. 369–381, 2015.

[87] T. Lin and L. Chen. (2019). Common attacks against car infotainment systems.
[Online]. Available: https://events19.linuxfoundation.org/wp-
content/uploads/2018/07/ALS19-Common-Attacks-Against-Car-Infotainment-
Systems.pdf

[88] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep learning
for computer vision?” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 2017, pp. 5580–5590.

[89] J. Choi, D. Chun, H. Kim, and H. Lee, “Gaussian YOLOv3: An accurate and fast
object detector using localization uncertainty for autonomous driving,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 502–
511, doi: 10.1109/ICCV.2019.00059.

	Chapter 1: Introduction
	1.1 Thesis Contributions
	1.2 Thesis Structure

	Chapter 2: Autonomous Driving System (ADS): Overview
	2.1 ADS Hardware
	2.2 ADS Software: Modular-based ADS
	2.2.1 Perception Module
	2.2.2 Prediction Module
	2.2.3 Localization Module
	2.2.4 Path Planning Module
	2.2.5 Control Module

	2.3 ADS Software: End-to-end ADS

	Chapter 3: RoboTack: ML-Driven Malware Targeting Autonomous Vehicle Safety
	3.1 RoboTack: Overview
	3.2 RoboTack: Related Work
	3.3 RoboTack: Background
	3.4 RoboTack: Attack & Threat Model
	3.5 RoboTack: Methodology
	3.6 RoboTack: Experimental Setup
	3.7 RoboTack: Evaluations and Discussion
	3.8 RoboTack: Conclusion

	Chapter 4: DiverseAV: Low-cost Error Detection via Temporal Data Diversity
	4.1 DiverseAV: Overview
	4.2 DiverseAV: Related Work
	4.3 DiverseAV: Background
	4.4 DiverseAV: Methodology
	4.5 DiverseAV: Experimental Setup
	4.6 DiverseAV: Evaluations and Discussion
	4.7 DiverseAV: Conclusion

	Chapter 5: HPC Storage System: Overview
	5.1 Client
	5.2 Metadata Server (MDS)
	5.3 Object Storage Server (OSS)
	5.4 Management Server (MGS)
	5.5 Interconnections
	5.6 Reliability Features

	Chapter 6: Kaleidoscope: Live Forensics for HPC Systems: A Case Study on Distributed Storage Systems
	6.1 Kaleidoscope: Overview
	6.2 Kaleidoscope: Related Work
	6.3 Kaleidoscope: Background
	6.4 Kaleidoscope: List of Components
	6.5 Kaleidoscope: Monitoring and Telemetry Data Collection
	6.6 Kaleidoscope: Methodology
	6.7 Kaleidoscope: Evaluation and Discussion
	6.8 Kaleidoscope: Conclusion

	Chapter 7: Related Work
	7.1 ADS Security Assessment
	7.2 ADS Reliability Assessment
	7.3 HPC Failure Localization and Diagnosis

	Chapter 8: Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References

