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ABSTRACT 

 

Hybrid simulation is a widely accepted laboratory testing approach that partitions a proposed 

structure into numerical and physical substructures, for a space- and cost-effective testing method. 

Structural elements that are expected to remain in the linear elastic range are usually modeled numerically, 

while computationally intractable nonlinear elements are tested physically. The loads and conditions at the 

boundaries between the numerical and physical substructures are imposed by servo-hydraulic actuators, 

with the responses measured by loadcells and displacement transducers. Traditionally, these actuators 

impose boundary condition displacements at slow speeds, while damping and inertial components for the 

physical specimen are numerically calculated. This slow application of the boundary conditions neglects 

rate-dependent behavior of the physical specimen. Real-time hybrid simulation (RTHS) is an alternative to 

slow speed hybrid simulation approach, where the responses of numerical substructure are calculated and 

imposed on the physical substructure at real world natural hazard excitation speeds. Damping, inertia, and 

rate-dependent material effects are incorporated in the physical substructure as a result of real-time testing.  

For a general substructure, the boundary interface has six degrees-of-freedom (DOF); therefore, an 

actuation system that can apply multi-axial loads is required. In these experiments, the boundary conditions 

at the interface between the physical and numerical substructures are imposed by two or more actuators.  

Significant dynamic coupling can be present between the actuators in such setups. Kinematic 

transformations are required for operation of each actuator to achieve desired boundary conditions. 

Furthermore, each actuator possesses inherent dynamics that needs appropriate compensation to ensure an 

accurate and stable operation.  

Most existing RTHS applications to date have involved the substructuring of the reference structures 

into numerical and physical components at a single interface with a one-DOF boundary condition and force 

imposed and measured. Multi-DOF boundary conditions have been explored in a few applications; however 

a general six-DOF stable implementation has never been achieved. A major research gap in the RTHS 

domain is the development of a multi-axial RTHS framework capable of handling six DOF boundary 

conditions and forces, as well as presence of multiple physical specimen and numerical-to-physical 

interfaces.  

In this dissertation, a multi-axial real-time hybrid simulation (maRTHS) framework is developed for 

realistic nonlinear dynamic assessment of structures under natural hazard excitation. The framework is 

comprised of numerical and physical substructures, actuator-dynamics compensation, and kinematic 

transformations between Cartesian and actuator/transducer coordinates. The numerical substructure is 

compiled on a real-time embedded system, comprised of a microcontroller setup, with onboard memory 
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and processing, that computes the response of finite element models of the structural system, which are 

then communicated with the hardware setup via the input-output peripherals. The physical substructure is 

composed of a multi-actuator boundary condition box, loadcells, displacement transducers, and one or more 

physical specimens. The proposed compensation is a model-based strategy based on the linearized 

identified models of individual actuators. The concepts of the model-based compensation approach are first 

validated in a shake table study, and then applied to single and multi-axis RTHS developments.   

The capabilities of the proposed maRTHS framework are demonstrated via the multi-axial load and 

boundary condition boxes (LBCBs) at the University of Illinois Urbana-Champaign, via two illustrative 

examples. First, the maRTHS algorithm including the decoupled controller, and kinematic transformation 

processes are validated. In this study, a moment frame structure is partitioned into numerical beam-column 

finite element model, and a physical column with an LBCB boundary condition. This experiment is 

comprised of six DOFs and excitation is only applied in the plane of the moment frame. Next, the maRTHS 

framework is subjected to a more sophisticated testing environment involving a multi-span curved bridge 

structure. In this second example, two LBCBs are utilized for testing of two physical piers, and excitation 

is applied bi-directionally. Results from the illustrative examples are verified against numerical simulations. 

The results demonstrate the accuracy and promising nature of the proposed state-of-the-art framework for 

maRTHS for nonlinear dynamic testing of structural systems using multiple boundary points.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation  

In the past 20 years, natural hazards mitigation has experienced increased focus and investment. In 

2004, the National Science Foundation (NSF) instituted the George E. Brown Jr. Network for Earthquake 

Engineering Simulation (NEES) to develop innovative solutions and enhance the design and construction 

practices for minimizing earthquake- and tsunami-induced damages. NEES stretched over 15 facilities 

across the U.S., in laboratories well-equipped with shake tables, a tsunami wave basin, geotechnical 

centrifuges, and a variety of field-testing equipment. During the 10-year operation of NEES, earthquake 

engineering education and research saw huge strides and generated large volumes of literature. Following 

the conclusion of NEES, the natural hazards engineering community looked for new programs, research 

funding opportunities, and a broader research focus via inclusion of other forms of natural hazards. In the 

years since, the Natural Hazards Engineering Research Infrastructure (NHERI) was founded as the national 

research infrastructure with multiple focuses (e.g., earthquake and wind research).  

With the looming consequences of climate change, threats of natural hazards in major urban centers, 

energy issues, current global recession, the need to develop new strategies to rehabilitate and rebuild our 

aging civil infrastructure is more important than ever before. The goal of new infrastructure efforts should 

be the creation of resilient and sustainable communities. Traditional civil infrastructure approaches should 

be complemented with multi-hazard considerations focusing on mitigation and resilience.   

Historically, engineers have relied on numerical (e.g., finite element) modeling, quasi-static (cyclic), 

and shake table testing for assessment of element and system level interactions. Numerical modeling has 

seen rapid growth in the recent years. With advances in computational hardware, parallel computing, and 

increases in affordability and availability of supercomputers, engineers and researchers have the 

unprecedented ability to develop sophisticated finite element models. However, predictions of numerical 

models are only as good as the assumptions on which they are based, and although numerical modeling can 

be extremely accurate for elastic systems, nonlinear predictions are often inaccurate. Therefore, physical 

testing is often desired for exploration of the non-trivial phenomena in structures and materials.  

1.2 Experimental Testing 

From early verifications of the Hooke’s law, to identification of the most sophisticated material 

constitutive models and structural behaviors, experimental testing is deeply interwoven in the science of  

structures. Not only are experiments useful in uncovering new physical phenomena and validating existing 
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theories, but also serve in establishing reliability metrics and building confidence in engineering solutions. 

Experimental vibration testing of structural systems can be classified into two main categories: (i) field 

testing, and (ii) laboratory testing.  

Field vibration testing strategies can be classified as forced and unforced vibration tests. Forced 

testing involves installation of a vibration generator (e.g., shaking machine or actuators) for providing 

prescribed excitations to a structure of interest (Chopra 2011). Unforced strategies rely on naturally induced 

vibrations (e.g., ambient, wind and vehicular). The relationships between the input forces and the sensors 

provide a basis for evaluation of a variety of structural parameters, including damping and natural 

frequencies (Juang and Pappa 1985; Peeters and Roeck 1999). The fundamental limitation of field vibration 

testing is that structures cannot be pushed beyond the elastic range. In addition, occupants and owners of 

structures (e.g., municipalities) are often reluctant to have properties vibration tested, as operations may be 

affected by testing.  

Laboratory tests are often more desirable as they provide a more controlled environment for 

experimental testing. For nonlinear performance assessments useful for earthquake and wind engineering, 

structures are tested at either: 

i. slow speeds (e.g., quasi-static testing), or 

ii. fast speeds (e.g., shake table and fast cyclic testing), 

with slow speed testing intended to suppress inertial effects and focus only on restoring forces.  

In quasi-static or slow cyclic testing, an actuator imposes a predefined displacement or force history 

on a structural element of interest. The performance of the structure is assessed under cyclic load reversals 

and amplitude variations. Quasi-static testing is a popular method for identifying the nonlinear backbone 

curves and hysteretic behaviors of structures and materials, and the slow nature of the method allows 

researchers to observe the damage propagate on the specimen. The obvious limitation of the quasi-static 

method is that inertial effects are ignored, and materials and structures with high degrees of rate-dependence 

must be tested using alternative methods. Fast cyclic testing is an alternative, where the cyclic loading is 

fast enough to engage inertial (acceleration) effects. Some literature is devoted to exploring the dependence 

of common building materials (e.g., steel and concrete) to the rate of loading (Chae et al. 2017; Malvar and 

Ross 1998; Murray et al. 2014). Another limitation of the quasi-static test method is that structural elements 

are tested independently, and system level interactions are not considered, as shown in Fig. 1.1. In addition, 

the cyclic loading of the structure bears no resemblance to forces sustained by the structure under natural 

hazard excitation. 
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(a) Reference structure     (b) Quasi-static testing 

Figure 1.1 Quasi-static testing subject to predefined cyclic displacement trajectory 

Understanding and engineering structures to withstand natural hazards requires researchers to have 

the dynamic experimental tools necessary to replicate recorded excitations. Researchers typically use shake 

table test to subject structures to synthetic and historical earthquakes as a basis for assessing structural 

performance (Luco et al. 2010; Reinhorn et al. 2004). The earliest form of a shake table was a hand-powered 

device built in Japan in the 1890s (Severn 2011). Until the first ever ground motion was recorded (i.e., Long 

Beach – 1933), shake tables were mostly simple mechanical devices that imposed simple cyclic 

displacements to the base of a structure (Severn et al. 2012). With the advent of strong motion seismometers, 

electromechanical and servo-hydraulic shake tables were developed to reproduce synthetic and pre-

recorded earthquakes. Shake tables were developed for scaled- and full-sized structures. Significant 

developments were made in the form of the 7.6 𝑚 × 12 𝑚 shake table in San Diego and the 20 𝑚 × 15 𝑚 

E-Defense shake table in Japan, both capable of testing full-scale structures (Luco et al. 2010; Ohtani et al. 

2004).  

Shake table actuators have physical characteristics such as friction, frequency-dependence, 

nonlinearities (Rea et al. 1977), and more sophisticated phenomena like control-structure interaction (CSI), 

which refers to the dynamic coupling between actuators and test structure (Dyke et al. 1995; Zhao et al. 

2005). A wide body of literature is available discussing the different control strategies for compensation of 

shake table dynamics to ensure accurate replication of pre-recorded ground motions (Fletcher 1990; Gao et 

al. 2011; Phillips et al. 2014; Spencer and Yang 1998; Stoten and Shimizu 2007; Twitchell and Symans 

2003).  

Although shake table testing is the most complete and accurate method for assessment of seismic 

behavior of structures, the method faces many challenges and limitations:  
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i. large shake tables are few, expensive to build and operate, and inaccessible to most 

researchers and engineers, 

ii. small shake tables are limited to small specimens, which must be designed using complex 

similitude laws and results may not extrapolate to results of equivalent full-scale tests,  

iii. shake table actuators have their own dynamics which need to be compensated in order to 

accurately replicate historical ground motions, and  

iv. although one or few structural elements may be of interest, the entire structure must be built 

and tested as shown in Fig. 1.2. 

 

Figure 1.2 Shake table testing replicating historical earthquake 

From the discussion on the traditional testing techniques so far, it is evident that material rate-

dependent phenomena are primary reasons why fast testing techniques are desirable in some instances. The 

next section discusses the physics of rate-dependence.  

1.3 Material rate-dependence 

In general, the hysteretic behaviors of materials and structural systems tend to vary between quasi-

static and dynamic load scenarios. Experimental evidence has demonstrated that under dynamic loading, 

the elastic modulus remains largely the same, while the load capacity (i.e., height of the hysteresis) tends 

to grow (Campbell 1954; Cristescu 1967; Goldsmith 1960). The loading rate is often described by the 

measure of strain rate experienced by the structures and materials. 

For hybrid simulation applications, the challenge in classifying material strain rate-dependence is 

twofold: (i) if the rate-sensitive load capacity increase happens at typical loading frequencies of natural 

hazard excitations, and (ii) whether the rate-dependence makes a significant enough difference to run 

experiments at real-time speeds, instead of slow speeds. Real-time testing poses additional experimental 

challenges, which may not be desirable if rate-dependence is insignificant. Nevertheless, strain rate 

dependence is an important consideration for both theoretical and experimental constructs. 
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Strain rate dependence of commonly used structural materials include steel, concrete, and masonry 

have been widely studied. Chang and Lee (1987) studies the A36 structural steel under monotonic and 

cyclic loading conditions with strain rate range of 10−1/sec to 10−6/sec. Faster strain rates corresponded 

to increased yield capacity and longer plastic plateaus. Strain rate effects were found to be more significant 

under monotonic loading than for cyclic loading. Chang et al. (1989) applies the endochronic plasticity 

model for evaluation of strain-rate effects on inelastic behavior of structural steel under earthquake loading. 

At extreme strain rates of > 10−6/sec, such as impact loading scenarios, mild steel was found to have yield 

strengths of around 2000 MPa (Singh et al. 2008). When a ball projectile is impacted with a steel plate, the 

depth of surface penetration is correlated with the yield strength of the steel. The yield strength was 

demonstrated to be sensitive to the velocity of the ball projectile. Murray et al. (2014) highlight the yield 

and ultimate strength increase in steel reinforcement bars for A572-50 and A992 steels. A572-50 exhibits 

yield strength increases of up to 35% and ultimate strengths of up to 20%. A992 steel exhibits yield strength 

increases of up to 45% and ultimate strengths increases of up to 20%. Thereby, high strain rates have been 

shown to drastically change the yield capacity of structural steel.  

Concrete materials have also been the subject of several material rate-dependence studies. Malvar 

and Ross (1998) offers a literature review on the effects of strain rate on tensile strength of concrete. A 

bilinear function of the strain rate is improved to describe dynamic amplification data based on Comité 

Euro-International du Béton Model Code report. Zhou and Hao (2008) compares numerical models and 

experimental results for compressive behavior of concrete. Strain rate effects result in capacity 

amplifications described via the dynamic increase factor (DIF) of compressive capacities for strain rates of 

< 200/sec. A secondary amplification is also suggested to be induced by inertial confinement effects at 

strain rates of > 1000/sec. Chen et al. (2013) suggests that although DIF is observed in flexural strength, 

the direct tensile strength of concrete is more sensitive to increases in strain rate than flexural strength. 

Ghannoum et al. (2012) performs cyclic testing on reinforced concrete columns at slow and fast speeds. 

Cyclic speeds of up to 1,016 mm/s were investigated, with higher cyclic loads resulting in lateral load 

capacity increases of up to 33%.   

Few literatures in the hybrid simulation are also devoted to exploration of the material rate-

dependence. Shing and Mahin (1988) developed a single degree-of-freedom (DOF) numerical model for 

hybrid simulation to study the effects of DIF in the strength of seismically excited structures. The maximum 

strain rate sustained by the structure is 0.1/sec, which translated to a monotonic DIF of 40%. This value 

seems too high given the small strain rate. Nevertheless, two significant parameters are highlighted 

pertaining to rate-dependence of materials: (i) natural frequency of structure, and (ii) characteristics of the 

excitation. A multi-DOF structure with high natural frequencies coupled with a high frequency excitation 

may result in strain rate induced increases in capacity. Chae et al. (2017) studied the rate dependency of 
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reinforced concrete piers subject to slow speed and real-time hybrid simulation tests. Small increases in 

capacity were exhibited along with increases energy dissipation. The bridge structure considered in these 

hybrid simulation tests experienced an average reduction of 5% in the maximum displacements. 

Although countless studies have illustrated rate-dependence of steel and reinforced concrete building 

materials, the discussion on the significance of such phenomena under seismic and wind loads is not a 

settled one. Existing studies and literature are few and limited in scope. In addition, available results fail to 

demonstrate significant rate-dependence at seismic and wind loading rates, and their repeatability is not 

verified. 

On the other hand, high performance structural systems such as seismic isolation devices, passive 

energy dissipation devices, and semi-active and active control systems possess significant rate-dependent 

physics. Seismic isolation devices include elastomeric and rubber bearings and sliding friction pendulums 

devices. Passive energy dissipation devices include metallic, friction, viscoelastic, tuned mass, tuned liquid 

dampers. Semi-active and active control systems involve active mass dampers and bracing systems, variable 

stiffness or damping systems, MR dampers and smart materials. Because these systems are rate-dependent, 

real-time testing may be a more suitable testing method.  

Another time-dependent material behavior is the stress relaxation phenomenon. Stress relaxation 

describes the decrease in the structural stress levels while a constant strain is maintained. In slow speed 

testing, hold-ramp-hold algorithms impose displacements on the physical specimen (Carrion and Spencer, 

Jr. 2007). Because the extended timescale of conventional slow speed testing, and the potentially long 

durations of hold, stress relaxation may occur in the physical specimen. Stress relaxation calculations may 

vary for different materials, but generally speaking, it follows a logarithmic pattern with most of the 

relaxation happening immediately. Temperature and stress levels also affect the relaxation process (Ashter 

2014). 

Stress relaxation was reported in Chang and Lee (1987) for 10-minute holds. This relaxation was less 

significant in the strain-hardening zone as compared to the plastic plateau range. In addition, with changing 

strain rates, a unique stress-strain curve was not identified. This may be attributed to stress relaxation under 

slowly changing strains. Mosqueda et al. (2004) observed force/stress relaxation for 5-second holds. 

Continuous testing was proposed as an alternative to ramp-hold testing to avoid relaxation.  

1.4 Single-axis Hybrid Simulation 

Hybrid simulation is an alternative to the quasi-static and shake table test methods, for examining the 

response of structures. A hybrid test is typically comprised of both numerical (e.g., finite element analysis) 

and physical substructures. The objective of the hybrid simulation method is to overcome the limitations of 
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quasi-static testing in incorporating system-level interactions into the experiment and need to test a 

complete structure in the shake table method.  

The first hybrid simulation tests were developed in 1969 by Hakuno et al. (1969). A single-degree-

of-freedom (SDOF) equation of motion was programmed into an analog computer and a physical specimen 

was tied to an electromagnetic actuator. The analog computer solves the equation of motion and the 

restoring forces generated from the physical specimen are used in the next time step. Takanashi et al. (1975) 

utilizes a digital computer with a magnetic drum to solve the equation of motion and the loading task (e.g., 

servo-hydraulics). Servo-hydraulic actuators are moved slowly in small increments to achieve good 

tracking between target and executed displacements. Computers were still quite primitive at the time and 

establishing the first hybrid simulation took 2 years of development (Nakashima 2020). In the U.S., work 

on hybrid simulation begin in the 1980s with Hanson and McClamroch (1984).  Mahin and Shing (1985) 

implemented full-scale hybrid simulation test and validated results via comparisons with analytical studies.  

A major challenge with hybrid simulation is ensuring that the actuators accurately tracked the target 

boundary conditions. Small errors can accumulate, propagate into inaccurate hybrid simulation results 

(Shing and Mahin 1983). The first form of online compensation method for ensuring actuators correctly 

and accurately tracked boundary conditions is introduced in Nakashima and Kato (1987). The earliest 

attempts made at developing implicit and explicit numerical integration schemes for ensuring an accurate 

and stable hybrid simulation came next (Dermitzakis and Mahin 1985; Nakashima et al. 1990; Shing et al. 

1991).  

The basic procedure for executing a hybrid simulation experiment for a structure subject to 

earthquake loading is shown in Fig. 1.3, and can be summarized in four steps: 

1. At each time step, the ground motion excites the numerical substructure. 

2. Within the numerical substructure, the displacements at the boundary condition with the 

physical specimen are computed. 

3. A control algorithm ensures that the physical boundary condition can be achieved with 

sufficient accuracy. 

4. Physical execution is complete via actuators, and restoring forces are recorded and returned 

to the numerical model for the next time step.  
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(a) Numerical substructure and controller   (b) Physical substructure 

Figure 1.3 Hybrid simulation of the reference structure 

Hybrid simulation is typically executed at slow speeds with a ramp-hold loading procedure. Many 

developments allowed for the flexibility to pause and resume the loading during the simulation. The 

advantage of such capability is for researchers to closely observe the damage and structural behavior. 

Naturally, slow rate of loading results in dynamic structural behaviors to be ignored. Hybrid simulation is 

not an appropriate method for materials with significant rate-dependent hysteresis. Many studies have noted 

small rate-dependence in common structural materials like steel and concrete (Fan et al. 2014; Ghannoum 

et al. 2012; Li and Li 2012). Therefore, hybrid simulation may be sufficient for steel and concrete. 

The next wave of developments came in the form of fast and real-time hybrid simulation (RTHS). 

Early efforts to capture rate-dependence, resulted in increases in the speed of hybrid simulation to one-fifth 

of the speed of the actual earthquake (Takanashi and Ohi 1983). The actuator and velocity-control capacities 

at the time did not yet allow for a real-time test. RTHS requires rapid discrete-time implementation of 

embedded and data acquisition systems, numerical integration and actuator execution. The first successful 

RTHS test was demonstrated in Nakashima et al. (1992) for a base isolated structure with a viscous damper. 

Velocity and acceleration physics of the specimen were automatically incorporated as a result of the real-

time testing.  

The consequence of the real-time implementation is that stability of the RTHS may be jeopardized 

when the closed-loop delay is too large. Experimental time delays in RTHS typically translate into negative 

damping. Although, Moni et al. (2020) discovered that if only inertial forces develop due to actuation, 

control delays lead to positive damping. This is due to the 180° phase shift between stiffness and inertial 

forces. When the closed-loop system does not possess sufficient damping and friction to turn the overall 

system damping positive, instability can occur. Delays in RTHS experiments stem from actuator dynamics, 

computation, and communication processes. Actuators are complex electro-mechanical devices that possess 
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many unwanted behaviors. Computational delays are due to the effort necessary for time-stepping 

integration algorithms. Communication delays are associated with the digital and analog signal processing, 

and exchange of signals between different machines and hardware. Unless a controller is designed to 

compensate for these closed-loop delays, instability and performance issues are likely to occur. A controller 

receives the target boundary conditions (e.g., displacements or accelerations) and sends command signals 

to actuators for execution.   

Hybrid simulation to this point was conducted by imposing a displacement target boundary condition. 

Another type of hybrid simulation that is performed in real-time is the effective force testing (ETF) method. 

The computed inertial force introduced as a result of the relative acceleration of the mass with the ground 

in the numerical model, is imposed by the actuator. Therefore, the traditional displacement control is not 

necessary for this method and force control is preferred (Dimig et al. 1999; Thewalt and Mahin 1987; Zhao 

et al. 2005).  

Researchers have adopted RTHS testing for a variety of structural engineering research applications. 

Horiuchi et al. (1996) performs RTHS on an energy absorber physical specimen and compares results with 

the shake table method. Polynomial extrapolation techniques are used for actuator compensation. The 

limitation of this approach is that the order of the proposed polynomial and the overshoot of the actuators 

when tracking high velocity contents. Carrion et al. (2009) studies a semi-actively controlled structure with 

a magnetorheological (MR) damper, using the RTHS method. The MR damper and a single servo-hydraulic 

actuator makes up the physical substructure in this development. A viscous damper is physically tested in 

Chae et al. (2013). The adaptive time series (ATS) compensator is proposed, where the coefficients of a 

second-order compensator are updated using a least-square algorithm to minimize closed-loop time delays. 

This is a time domain compensator and does not provide the predictability of frequency-domain 

compensators. Additionally, guarantees of parameter convergence and robustness of design are not 

provided. Asai et al. (2013) proposes a smart outrigger system for tall buildings using clipped optimal semi-

actively controlled MR dampers. A feedforward controller is used for compensation. Ou et al. (2015) 

performs RTHS on an MR damper as well. An 𝐻∞ controller is used for the compensation action. 𝐻∞ 

controllers are best utilized when closed-loop uncertainties are quantifiable. Measurements of uncertainty 

are not readily available when physical experiments are involved. Ashasi-Sorkhabi et al. (2015) utilizes a 

tuned liquid damper for RTHS testing and compares the results of shake table and substructured 

configurations. Zhang et al. (2017) partitions a 15-story building structure into a 9-story numerical and 5-

story physical substructures. An inter-story isolation layer is introduced in the 10th floor along  with an MR 

damper device for vibration reduction. A model-based compensation techniques, based on Phillips et al. 

(2014), is incorporated for dynamic compensation of the actuators. For further reading on single-axis RTHS 

applications, reader can see Ahmadizadeh et al. (2008), Chen and Ricles (2010), Gao et al. (2011), Jung et 
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al. (2007), Maghareh et al. (2013), Mercan and Ricles (2009), Nakata et al. (2019), Reinhorn et al. (2003), 

Shao et al. (2011), Wu et al. (2006), and Zhu et al. (2017). 

1.5 Multi-axis Hybrid Simulation 

Three-dimensional (3D) and multi-axis tests are important for realistic evaluation of structures and 

materials. In the context of hybrid simulation, 3D numerical models interact with multi-axial boundary 

devices (actuator assemblies) to deform the physical specimens. The corresponding 3D feedback forces are 

then returned to the numerical model. The Load and Boundary Condition Box (LBCB) at the University of 

Illinois Urbana-Champaign, shown in Fig. 1.4, is an example of a multi-axial boundary device designed for 

multi-axial hybrid simulation applications.  

 

Figure 1.4 Load and Boundary Condition Box (LBCB) 

Multi-axial hybrid simulation has been explored over the last 15 years and is realized typically 

through one or more multi-actuator boundary interfaces. A physical specimen is equipped with several 

individual actuators or a rigid multi-axial boundary device (e.g., LBCB), as shown in Fig. 1.5. The Multi-

Axial Subassemblage Testing (MAST) system at the University of Minnesota is another multi-axial 

boundary device that has key quasi-static capabilities (French et al. 2004). Elnashai et al. (2005) introduces 

the hybrid simulation capabilities at the Newmark Civil Engineering Laboratory at the University of Illinois, 

and describes examples for use of the large- and small-scale LBCBs of the multi-axial full-scale 

substructured testing and simulation (MUST-SIM) facility. Frankie et al. (2013) implements hybrid 

simulation on a curved four-span bridge using the MUST-SIM facility, where the piers of the bridge are 

physically tested, and the deck is numerically evaluated. The results from the curved bridge simulation are 

compared to analytical simulations for verification. Murray and Sasani (2016) performs hybrid simulation 

on a reinforced concrete frame structure under pulse type ground motions. This study evaluated shear 

failures in pre-1970s RC frame structures. A 10-story structure was considered, and despite immediate 

failure of the physically tested columns, the building structure did not undergo collapse. Stathas et al. (2017) 



11 

 

introduces hybrid simulation for bridge pier uplifting under transverse seismic loading conditions. A two-

span bridge is considered, where the pier is physical and the decks are numerically evaluated. Hashemi et 

al. (2017) introduces the MAST system at the Swinburne University and its 6-DOF application to an RC 

column. Carbon fiber reinforcement polymers (CFRP) are used to repair the column. A comparative study 

of the undamaged and damaged columns concludes that CFRP repair of damaged columns can restore the 

resistance capacity and ductility of earthquake-damaged columns. Sadeghian et al. (2017) performs multi-

axial hybrid simulation of a shear-critical reinforced concrete frame. Modeling of such RC columns for 

accurate reproduction of damage patterns are discussed. A vast body of literature is designated to the multi-

axial and multi-actuator hybrid simulation framework. This framework is however unable to reproduce 

real-time results because loads are imposed at slow speeds. 

The multi-axial real-time hybrid simulation (maRTHS) adds complications involving actuator 

coupling and dynamics. Unless appropriate steps are taken toward decoupling and control of the multi-

actuator system, inaccuracies and instabilities may result. Blakeborough et al. (2001) is the first example 

of RTHS with a coupled two-actuators system, used for a 2-DOF RTHS experiment. Darby et al. (2002) 

used the same two-actuator configuration and introduced a polynomial extrapolation algorithm for actuator 

compensation. In both developments, actuators are compensated independently.  

Other literatures in this domain explore increases in the number of DOFs and use of more 

sophisticated controllers for actuator dynamics and coupling compensation. Wallace et al. (2005) proposes 

an adaptive polynomial forward prediction algorithm for multi-actuator RTHS. Jung et al. (2007) performs 

maRTHS using two actuators (e.g., 2-DOF) and explores discrete feedforward and phase lead 

compensation. Bonnet et al. (2007) investigates the effects of highly stiff actuator coupling. A stiff 3-DOF 

mass-spring system is studied with actuators installed at either ends. The stiffer the mass-spring system is, 

the harder the job of controlling the actuators. A minimal control synthesis with a modified demand 

compensator is introduced, with adaptive feedforward and feedback gains. Phillips and Spencer (2013) 

proposes a coupled model-based controller for an experimental setup with three actuators. Coupled and 

decoupled control of the experimental setup are evaluated. Chae et al. (2014) implements a multi-DOF ATS 

compensator.  

Many of the presented developments have involved individually attached actuators to a common 

physical specimen, as shown in Fig. 1.5(b), instead of a multi-axial boundary device, per Fig. 1.5(a). Control 

and manipulation of a multi-axial boundary device requires a framework that considers the kinematic 

transformations necessary between actuator and Cartesian frames of reference. Actuators bound by a rigid 

link tend to have dynamic coupling, where the movement of one actuator resulting in the movement of 

other actuators. 
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Fermandois and Spencer (2017) introduces an maRTHS framework as a tool for addressing rigid 

boundary condition devices like the LBCB and the MAST. The general architecture for this maRTHS 

framework involves directing target displacement obtained from a numerical substructure through an outer-

loop controller, to computer control signal for LBCB execution. Feedback forces from the physical 

execution of the boundary device are returned to the microcontroller responsible for the numerical 

computations, thus closing the overall RTHS loop.  

 

(a) Multi-axial boundary device  (b) Several individual actuators 

Figure 1.5 Multi-actuator setups 

A model-based outer-loop controller is proposed for this framework which addresses the dynamic 

coupling that exists between the LBCB actuators. Following system identification of the actuators, transfer 

function models of the individual actuator channels are developed. Through kinematic transformations, the 

actuator transfer function models are converted to Cartesian coordinate transfer models. Next, feedforward 

and feedback controllers are designed according to the model-based controller architecture proposed in 

Phillips and Spencer (2013). 

Data acquisition is conducted through the onboard loadcells, which are installed in the axis of each 

actuator, and external potentiometers that monitor the moving platform of the LBCB. Linear Variable 

Differential Transformers (LVDT) use can result in inaccurate measurements when LBCB casing and 

reaction wall undergo elastic deformations. External potentiometers are used instead of the onboard 

LVDTs. Fig. 1.6, illustrates the small-scale LBCBs and the external potentiometers used in the Fermandois 

and Spencer (2017) study.  

Kinematic transformations are necessary when dealing with multi-axial boundary points. In the 

maRTHS framework, external potentiometer measurements are converted from potentiometer to Cartesian 

coordinates. The transformation from axial to Cartesian coordinates is obtained through forward kinematic 

transformation. By converting the potentiometer measurements to Cartesian coordinates, direct comparison 



13 

 

is made between prescribed Cartesian displacements and rotations computed from the numerical model. 

Since the reference and measured displacements are in Cartesian coordinates, the corresponding outer-loop 

control task is performed in Cartesian coordinates. Because of the significant coupling that exists in the 

Cartesian frame of reference, the Cartesian compensator described in the maRTHS procedure is a multi-

input multi-output (MIMO) coupled controller.  

 

Figure 1.6 Small-scale LBCB and external potentiometers 

The illustrative example in Fig. 1.7 is provided, which entails a moment frame with one column 

substructured physically and the remainder substructured numerically. Only the translational DOF of the 

inertial mass is considered in this experiment. Earlier studies on the release of the rotational DOFs were 

found to cause instability problems. It was later discovered that the MIMO controller used for the dynamic 

compensation of the LBCB was not authoritative and robust enough. Tuning and optimization of MIMO 

controllers is a challenging task.  

 

(a) Numerical substructure   (b) Physical substructure 

Figure 1.7 Multi-axis RTHS of a moment frame 
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1.6 Actuator compensation 

Simulating natural hazard excitations in laboratories require actuators capable of reproducing 

dynamic behaviors. Accurate replication of prescribed trajectories is desirable for purposes of repeatability 

and comparison with numerical studies. Shake table testing and real-time hybrid simulation are 

experimental methods where accurate replications of prescribed trajectories are critical. Both testing 

methods take advantage of electro-mechanical or servo-hydraulic actuators for imposing forces or 

movements. Actuator dynamics, however, result in undesirable phase shifts and amplitude variations in the 

experimental response. Therefore, compensation techniques have been proposed throughout the literature 

to cancel out some of the dynamics from actuators.  System or actuator dynamics in the control theory 

context is often referred to as a plant dynamic. 

1.6.1 Shake table compensation 

Researchers use shake tables to subject structures to synthetic and historical records as a basis for 

assessing structural performance (Luco et al. 2010; Ohtani et al. 2004; Reinhorn et al. 2004). Shake tables 

and structures have a combined dynamic that is coupled and referred to herein as the shake table-structure 

dynamics. Unless appropriate compensation is provided for the shake table-structure dynamics, the shake 

table will not be able to sufficiently reproduce the prescribed motion accurately.  

The process of manipulating an acceleration signal to compensate for unwanted effects of shake table-

structure dynamics is referred to as acceleration tracking. The Transfer Function Iteration (TFI) is a 

commonly used control method built using an inverse model of the shake table-structure dynamics, that 

augments the original acceleration time-history with an error signal iteratively, resulting in improved 

tracking of the reference acceleration signal (Fletcher 1990; Spencer and Yang 1998). Small amplitude 

time-histories are used for iterative tuning of the TFI controller. Thereby, this method is well-suited when 

the dynamics of the shake table remains linear. When nonlinearities exist in the dynamics of the onboard 

structure, the shake table dynamics will also be nonlinear due to the ongoing coupling that exists with the 

onboard structure. In addition, the TFI method may not be able to compensate for the changing dynamics 

of the shake table. 

Early model-based controllers used the inverse of the nominal model of a shake table, to create a 

feedforward filter, for prefiltering of acceleration time-histories. Operation of a model-based controller is 

typically conducted by first obtaining a model of the coupled shake table-structure dynamics. There are 

numerous system identification tools including frequency-domain identification methods that generate 

accurate and predictable models of the shake tables. Twitchell and Symans (2003) proposes inverting the 
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actuator model into a feedforward filter and prefiltering the reference signal to tackle both displacement 

and acceleration tracking problems. This approach is sensitive to structural nonlinearities and failures.  

Online model-based controllers can better compensate in acceleration tracking even when 

nonlinearities are present. Model-based controllers make use of feedforward and feedback controllers for 

trajectory control of shake tables. Stoten and Shimizu (2007) uses minimal control synthesis (MCS) for 

adaptive identification of feedforward control parameters. The tracking performance of the MCS is not 

clearly established. Gao et al. (2012) proposes an 𝐻∞ control approach for actuator displacement tracking. 

This method requires a high level of accuracy in identification of the plant model and uncertainties. Esparza 

et al. (2013) introduces model reference adaptive controller (MRAC) for position tracking of a two-axis 

shake table. This development was only applied to displacement signals, and acceleration tracking was not 

assessed. Application of MRAC to acceleration tracking is challenging, as the adaptive controller generates 

low frequency feedback signal, which translates into large drifts for acceleration tracking implementations. 

Nakata (2010) proposed an acceleration trajectory tracking controller (ATTC) based on the acceleration 

feedforward control concept, coupled with a displacement feedback and a time delay filter, to ensure 

displacement feedback does not interfere in the acceleration tracking. The shake table was tested without 

an onboard structure in this study and the effects of shake table-structure interaction were thus ignored. 

Phillips et al. (2014) applied a similar architecture for acceleration tracking of a single-axis shake table, 

called the Model-Based Controller (MBC). Several different feedback configurations were studied, 

including feedbacks on acceleration, displacement and the combined. With this method, as the control 

authority is increased to achieve better tracking, stability of the shake table is jeopardized. On the contrary, 

as the stability is enhanced, the tracking becomes sluggish. In addition, the tracking performance of the 

MBC often deteriorates as changes take place in the shake table-structure dynamics, resulting in poor 

tracking robustness. The MBC is used for development of a new controller with enhanced tracking 

robustness and serves as one of the baseline control techniques used for comparison herein.  

1.6.2 Real-time hybrid simulation compensation 

The typical RTHS experiment involves numerical simulation of the linear components and physical 

testing on the components expected to behave in the nonlinear range of the structure using an actuation 

device. In the experimental partition, actuator dynamics along with computation and communication delays 

result in phase shifts and amplitude variations which need to be compensated. Some early compensation 

approaches involved polynomial extrapolation methods (Darby et al. 2002; Horiuchi et al. 1996). The major 

limitation of these approaches is the order of the proposed polynomial in relationship to the velocity content 

of the reference signal. Lower order polynomials result in overshoot when tracking high frequency contents 

and higher order polynomials result in oscillations when tracking low frequency contents. CSI is another 
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phenomenon that has major impact on the performance of actuated systems, which time domain 

extrapolation methods fail to account for.  

Frequency-domain controllers have proven successful for dealing with CSI. Feedforward inverse 

transfer function methods were the earliest frequency-domain approaches, which stemmed from system 

identification of a linear system, followed by offline feedforward filtering of the reference signal. 

Feedforward controllers have improved tracking of both displacement and acceleration reference record 

(Twitchell and Symans 2003). In real-time applications, inclusion of a feedback controller is necessary to 

deal with impulse-like behavior and disturbance attenuation.  

Next, Model-based techniques came about and made use of feedforward and feedback concepts to 

produce fast tracking controllers. A displacement tracking MBC combined feedforward and feedback 

controller was introduced in Carrion et al. (2009) to compensate for experimental dynamics and attenuate 

disturbances. An additional Linear Quadratic Gaussian (LQG) feedback loop for acceleration tracking was 

proposed, for improved multi-metric tracking (Phillips and Spencer 2013). The MBC algorithm has been 

used in operation of single and multi-axis RTHS experiments (Fermandois and Spencer 2017).  Tracking 

accuracy of these controllers is largely dependent on the goodness of the identified plant model. As plant 

nonlinearities increase and modeling uncertainties develop, these linear controllers may lose robustness and 

lead to instability. Thus, some later developments shifted focus to robust and adaptive approaches to 

overcome the listed limitations of linear controllers.  

Adaptive control is an approach where the controller adapts itself to the changing dynamics of the 

plant, hence expanding the successful operational horizon of the controller. The Adaptive Inverse 

Compensation method is based on displacement tracking where the focus of the adaptation is on the time-

varying actuator delays (Chen and Ricles 2010). A discrete-time transfer function is formed with 

proportional-integral adaptive law based on the tracking indicator (TI) proposed in (Mercan and Ricles 

2009). The Adaptive Time Series compensator is another proposed method where the coefficients of a 

second-order compensator are updated using a least-square algorithm to minimize the system delay (Chae 

et al. 2013). An advantage of this method is that there are no adaptive gains and the disadvantage is that 

this method was developed in the time domain, lacks predictability, and does not guarantee parameter 

convergence. An adaptive scheme was next proposed for the MBC with a projection adaptive law (Chen et 

al. 2015). The feedforward controller proposed is limited to a third-order transfer function and this poses a 

constraint when dealing with higher-order systems.  
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1.7 Research Objective 

The objective of this research is to address several of the main limitations of existing hybrid 

simulation methods for assessment of structural behavior under natural hazard loading. These limitations 

can be summarized as follows: 

i. inability to capture dynamic and rate-dependent behavior of materials,  

ii. ineffective means to represent complex three-dimensional interactions at substructure 

boundaries,  

iii. inaccurate target tracking in the nonlinear range, 

iv. restriction to a single substructuring interface, and  

v. cost burdens.  

This research is expected to advance multi-axial real-time hybrid simulation (maRTHS) technology, 

including multiple boundary interfaces, as a natural extension to many of the existing contributions, namely 

Carrion et al. (2009), Phillips and Spencer (2013), and Fermandois and Spencer (2017). 

1.8 Outline of the Chapters 

The chapters in this dissertation will introduce the fundamental concepts and algorithms necessary 

for successful actuator and shake table operations, single-axis RTHS, and multi-axial RTHS.  

Chapter 2 will discuss topics fundamental towards this hybrid simulation research. A generalized 

equation of motion for modeling of dynamic systems will be presented. A background on control of 

dynamic systems will be introduced, because many compensation algorithms shall be discussed herein.  

The governing equations of motion describing the dynamics of servo-hydraulic actuators will be described 

next, with an in-depth discussion on the servo valve mechanisms. Then, methods for system identification 

of single-input single-output (SISO) systems are presented. System identification is crucial in design and 

development of model-based controllers. Because multi-actuator boundary devices are useful for multi-

axial testing, fundamentals of kinematic transformations will be presented. Lastly, several commonly used 

numerical integration schemes will be listed.  

Chapter 3 will focus on actuator dynamics and compensation. The natural dynamics of actuators 

inhibits them from tracking a prescribed trajectory in an accurately and timely manner. A modified actuator 

compensator based on the model-based controller class of actuator compensators will be discussed. The 

modified compensator will be comprised of feedforward and feedback LQG controllers. An adaptive 

expansion will also be proposed for the modified compensator. The application involving the ground motion 

acceleration tracking of a shake table will also be explored as a verification study.  
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Chapter 4 will discuss the fundamentals of single-axis model-based RTHS. Model-based 

frameworks utilize system identified models of actuator and physical specimen dynamics. Several model-

based applications will be studied, including: (i) RTHS for lightly-damped and highly-nonlinear structure, 

(ii) RTHS of bridge vibration mitigation strategy using an MR damper, and (iii) virtual RTHS with adaptive 

compensation of a three-story steel frame. Once the success of the single-axis model-based strategy is 

demonstrated, the stage will be set for a multi-axial expansion of the model-based RTHS strategy. 

Chapter 5 will introduce the major contribution of this dissertation in the form of the multi-axial 

RTHS. Requirements for the successful execution of multi-axial RTHS will be listed, including kinematic 

transformations, actuator compensation, multi-axis load and boundary devices, and computational and 

input-output peripherals. A simple steel moment structure will be excited with a ground acceleration and 

used for a validation study. A single physical specimen will be tested in this study. Out-of-plane vibrations 

will be ignored. 

Chapter 6 will consider maRTHS with multiple boundary points and physical specimens. 

Incorporation of multiple interfaces will expand the existing applications of the RTHS methodology. A 

validation study involving a multi-span curved bridge structure will be considered where two of the bridge 

piers will be physically tested while the remainder of the structure is numerically modeled. The behavior 

of the bridge tested via the maRTHS method will first be compared to numerical simulation results. Next, 

the test specimen will be pushed into the inelastic range to demonstrate that the proposed framework is 

capable of nonlinear dynamic testing of structures. In this validation study, out-of-plane capability of the 

maRTHS framework will be demonstrated.  

Lastly, Chapter 7 will provide concluding remarks regarding the developments in this dissertation 

and discuss future studies and research directions that the hybrid simulation community can consider 

exploring.   
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CHAPTER 2 CONCEPTS IN HYBRID SIMULATION 

 

2.1 Introduction 

This chapter provides the prerequisites for the technical concepts described later in this dissertation. 

The goal of this chapter is twofold: (i) breaking down real-time hybrid simulation (RTHS) framework into 

smaller subcomponents for ease of understanding, and (ii) insisting on some preliminary aspects, which 

would otherwise be overlooked. As an example, reference tracking and stabilization of a dynamical 

systems, like actuators, are possible only when certain conditions of observability and controllability are 

satisfied.  

2.2 Equation of Motion 

Consider an n-story reference structure subject to some arbitrary external force 𝑓(𝑡) and ground 

motion acceleration 𝑥̈𝑔(𝑡), shown in Fig. 2.1(a). This is representative of a 2-dimensional building structure 

subject to dynamic forces and accelerations. This n-story structure is idealized as an n-DOF discretized 

finite element model (FEM) in Fig. 2.1(b). An FEM model may have any number of DOFs for added 

complexity and realism, but for the sake of establishing the abstract concept of substructuring of an equation 

of motion, only the lateral DOFs are presented.  

 

(a) 2-dimensional building structure  (b) Idealized building structure 

Figure 2.1 Reference structure 

The equation of motion for the reference structure can be described as a second-order differential 

equation, given by 
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𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑹(𝑡) = −𝑴𝜾𝑥̈𝑔(𝑡) + 𝑭(𝑡) (2.1) 

where 𝑹(𝑡) ∈ ℛ𝑛, 𝑪 ∈ ℛ𝑛×𝑛, and 𝑴 ∈ ℛ𝑛×𝑛 are restoring force, and the positive semi-definite damping 

and mass matrices for the reference structure. For the elastic case, 𝑹(𝑡) = 𝑲𝒙(𝑡) with 𝑲 ∈ ℛ𝑛×𝑛 as the 

stiffness matrix. 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛−1(𝑡), 𝑥𝑛(𝑡)]
𝑇, 𝒙̇(𝑡), and 𝒙̈(𝑡) are vectors of displacement, 

velocity, and acceleration value for the DOFs as a function of time 𝑡.  The ground acceleration is described 

as 𝑥̈𝑔(𝑡) and 𝜾 ∈ ℛ𝑛 is an influence vector indicating the direction of the inertial forces. All lateral externally 

applied forces are described in vector form as 𝑭(𝑡) = [𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛−1(𝑡), 𝐹𝑛(𝑡)]
𝑇.  

The damping matrix is representative of the various friction and dissipative mechanisms that exist in 

structures. Because damping is a difficult phenomenon to model, it is customary to assume the damping 

matrix as proportion of the mass and stiffness matrices (i.e., Rayleigh damping).  

𝑪 = 𝑎1𝑴+ 𝑎2𝑲 (2.2) 

where 𝑎1 and 𝑎2 are positive coefficients that are fit to predefined modal damping values of the structures 

under consideration. Modal damping is another approach for estimating the damping matrix, where a 

specific damping ratio 𝜁 is assigned to each mode individually (Chopra 2011).  

The governing equation for the reference structure is next partitioned into numerical and physical 

substructures  by breaking down the property matrices per: 

𝑹 = 𝑹𝑁 + 𝑹𝑃 ,              𝑪 = 𝑪𝑁 + 𝑪𝑃  ,              𝑴 = 𝑴𝑁 +𝑴𝑃 (2.3) 

where the subscripts N and P refer to numerical and physical substructures. The property matrices of the 

numerical and physical substructures should ideally add up to the property matrices of the reference 

structure. The new governing equations for the numerical and physical substructures are given by: 

𝑴𝑁𝒙̈𝑁(𝑡) + 𝑪𝑁𝒙̇𝑁(𝑡) + 𝑹𝑁(𝑡) = −𝑴𝑁𝜾𝑥̈𝑔(𝑡) + 𝑭(𝑡) − 𝑭𝑅(𝑡) 

𝑴𝑃𝒙̈𝑃(𝑡) + 𝑪𝑃𝒙̇𝑃(𝑡) + 𝑹𝑃(𝑡) = 𝑭𝑅(𝑡) 

(2.4) 

(2.5) 

where 𝑭𝑅(t) are the feedback forces from the physical specimen to the numerical substructure. The 

numerical substructure is typically modelled as completely elastic. Therefore, the numerical restoring force 

is simplified to just the elastic stiffness element, 𝑹𝑁(𝑡) = 𝑲𝑁𝒙𝑁(𝑡).  

A structural element of interest is selected for physical substructuring in the reference structure in 

Fig. 2.1. The boundary point between the physical and numerical substructures is indicated with the red 

circle in Fig. 2.2. Within the numerical substructure, the states (e.g., displacements and rotations) associated 

with the boundary condition with the physical substructure are denoted as 𝒙𝑁
𝐵𝐶(𝑡) ⊂ 𝒙𝑁(𝑡). In an ideal 

world, the calculated boundary conditions are perfectly replicated in the physical substructure, with 

𝒙𝑁
𝐵𝐶(𝑡) = 𝒙𝑃

𝐵𝐶(𝑡). Upon excitation of the physical substructure with boundary point states (i.e., conditions), 

specimen forces are measured and applied back to the numerical substructure at the location of the boundary 

condition.  
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(a) Closed-loop architecture of RTHS   (b) Application of RTHS to reference structure 

Figure 2.2 Real-time hybrid simulation of the reference structure 

It follows that in reality a perfect match between the numerical and physical boundary conditions is 

very difficult to achieve, due to the unwanted dynamics that exist in servo-hydraulic actuators. Control 

algorithms are incorporated into the closed-loop architecture to ensure that the error between the numerical 

and physical boundary conditions at time 𝑡 is minimized to less than some finite value 𝜖, otherwise 

instability can occur.  

|𝒙𝑁
𝐵𝐶(𝑡) − 𝒙𝑃

𝐵𝐶(𝑡)| < 𝜖 (2.6) 

2.3 Dynamic System Control 

The job of control theory in engineering is to alter and modify the responses of dynamic systems or 

plants. The behavior of a plant may be linear or nonlinear, and deterministic or stochastic. The plant inputs, 

outputs, and states are described by the vectors 𝒖(𝑡), 𝒚(𝑡), and 𝒙(𝑡), respectively. The control objective is 

summarized as manipulation of the input signal 𝒖(𝑡) to ensure that the output signal 𝒚(𝑡) follows a 

prescribed trajectory and physical performance requirement. 

Given a linearized 𝑛-DOF building structure in Fig. 2.1, a general form for the governing equation 

can be written as 

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) = 𝑭(𝑡) (2.7) 

where the input to the building structure or plant is the force vector 𝑭(𝑡) ∈ ℛ𝑛. The outputs from the system 

can be defined as the story-level accelerations 𝒙̈(𝑡) ∈ ℛ𝑛, since displacement and velocity data are harder 

to detect via data acquisition sensors from a building structure.  



22 

 

The second-order differential equation in Eq. (2.7) is next re-written as set of first-order differential 

equations, via the introduction of a new state variable 𝒛(𝑡) = [𝒙𝑇(𝑡) 𝒙̇
𝑇
(𝑡)]

𝑇
. Following a series of 

arithmetic manipulations, the governing equation can be written as a state-space formulation, given by 

𝒛̇(𝑡) = 𝑨𝑠𝒛(𝑡) + 𝑩𝑠𝑭(𝑡) 

𝒚(𝑡) = 𝑪𝑠𝒛(𝑡) + 𝑫𝑠𝑭(𝑡) 
(2.8) 

𝑨𝑠 = [
𝟎 𝑰

−𝑴−1𝑲 −𝑴−1𝑪
],      𝑩𝑆 = [

𝟎
𝑴−1],     𝑪𝑠 = [−𝑴

−1𝑲 −𝑴−1𝑪],    𝑫𝑠 = [𝟎] (2.9) 

where 𝑨𝑠 ∈ ℛ
2𝑛×2𝑛,  𝑩𝑠 ∈ ℛ

2𝑛×𝑛, 𝑪𝑠 ∈ ℛ
𝑛×2𝑛, and 𝑫𝑠 ∈ ℛ

𝑛×𝑛 are state, input, output, and throughput 

matrices, respectively. 𝒚(𝑡) ∈ ℛ𝑛 is a vector of outputs (i.e., story-level absolute accelerations). In the state-

space matrices provided in Eq. (2.9), 𝑰 ∈ ℛ𝑛×𝑛 and 𝟎 ∈ ℛ𝑛×𝑛 are identity and zero matrices. 

The eigenvalues and eigenvectors of the state matrix 𝑨𝑠, are described by 𝚲 ∈ ℛ2𝑛×2𝑛 and 𝑽 ∈

ℛ2𝑛×2𝑛  respectively. An 𝑛-DOF system has 𝑛 eigenvalues which can be obtained through 𝚲 = 𝑽𝑨𝑠𝑽
−1 =

𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, … , 𝜆2𝑛−1, 𝜆2𝑛]. A linear time-invariant (LTI) system is said to be stable when 𝑅𝑒(𝜆𝑖) ≤ 0 for 

𝑖 = {1,2,… ,2𝑛 − 1,2𝑛}. For nonlinear systems, the Lyapunov direct method may be used for proof of 

stability (Chen 1999). The analytical expression for the states of the system in Eq. (2.8) is computed via: 

𝒛(𝑡) = 𝝓(𝑡)𝒛0 +∫ 𝝓(𝑡 − 𝜏)𝑩𝑠𝑭(𝜏)𝑑𝜏
𝑡

0

 (2.10) 

where 𝒛0 = 𝒛(0) ∈ ℛ
2𝑛 are the initial conditions for the system states, and 𝝓(𝑡) ≔ 𝑒𝚲𝑡 =

𝑑𝑖𝑎𝑔[𝑒𝜆1𝑡, 𝑒𝜆2𝑡, … , 𝑒𝜆2𝑛−1 𝑡 , 𝑒𝜆2𝑛𝑡]. 

Sometimes dynamical systems are converted from time domain to Laplace domain (or frequency 

domain). In frequency-domain differential operations are converted to algebraic operations, resulting in 

computational efficiency. Laplace transform is a one-sided improper integral given by: 

𝑃(𝑠) = ∫ 𝑝(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 (2.11) 

with 𝑠 as the Laplace variable. 𝑃(𝑠) and 𝑝(𝑡) are a Laplace pair (i.e., Laplace and time domain 

manifestations of the same function). A linear time-invariant dynamical system can be described in the 

Laplace domain as a transfer function. The equation of motion in Eq. (2.7) for a single-DOF system, given 

an input force 𝐹(𝑡) and output acceleration 𝑥̈(𝑡) is written as: 

𝑮𝑥̈𝐹(𝑠) =
𝑋̈(𝑠)

𝐹(𝑠)
=

𝑠2

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (2.12) 

where 𝑘, 𝑐, and 𝑚 are the stiffness, damping, and mass parameters for the single-DOF system. The 

subscripts of the transfer function 𝑮𝑥̈𝐹(𝑠) describe the output-input pair, respectively. The transfer function 

for the 𝑛-DOF can be obtained by converting the state-space to a transfer function formulation: 
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𝑮𝒙̈𝑭(𝑠) =
𝑿̈(𝑠)

𝑭(𝑠)
= 𝑪𝑠(𝑠𝑰 − 𝑨𝑠)

−1𝑩𝑠 +𝑫𝑠 (2.13) 

The state-transition matrix in Laplace domain is defined as 𝚽(𝑠) = (𝑠𝑰 − 𝑨𝑠)
−1 = ℒ(𝝓(𝑡)), with ℒ 

indicating a Laplace transform. Even before solving the differential equation, a transfer function can 

provide valuable information about the system characteristics. The numerator and denominator of a transfer 

function can be written in factored form: 

𝑮(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑎−1)(𝑠 − 𝑧𝑎)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑏−1)(𝑠 − 𝑝𝑏)
 (2.14) 

where 𝑁(𝑠) and 𝐷(𝑠) are numerator and denominator polynomials. The roots of the numerator and 

denominator, 𝑧𝑗 for 𝑗 = {1,2,… , 𝑎} and 𝑝𝑘 for 𝑘 = {1,2,… , 𝑏} and 𝐾, are termed as the zeros, poles, and 

gain of the transfer function, respectively. All zeros and poles are either purely real valued 𝑝𝑘 = 𝜎𝑘, or 

appear in complex conjugate pairs 𝑝𝑘 = 𝜎𝑘 ± 𝑖𝜔𝑘. For a stable system, all the poles must have negative 

real parts, otherwise the output of the system increases without bounds, resulting in instability.  

2.3.1 Controllability and observability 

A system of linear algebraic equations has unique solutions if and only if the rank of the system is 

equal to the number of variables in that system. Controllability and observability are important tests for the 

LTI  systems that involve ranking testing of state-space matrix combinations. Controllability describes 

whether a system can be manipulated with a control input, in a finite time. Observability describes whether 

the states of a system are observable given the available knowledge from the system inputs and outputs, in 

a finite time. These concepts are later on tied to controllers and estimators.  

For the 𝑛-DOF system in Eq. (2.1), the controllability matrix is given by: 

𝓒 = [𝑩𝑠 𝑨𝑠𝑩𝑠 𝑨𝑠
2𝑩𝑠 … 𝑨𝑠

2𝑛−1𝑩𝑠] (2.15) 

and if the rank of the controllability matrix is equal to the rank of the system, 𝑟𝑎𝑛𝑘(𝓒) = 2𝑛, the dynamical 

system is controllable. Similarly, an observability matrix is written as: 

𝓞 = [𝑪𝑠 𝑪𝑠𝑨𝑠 𝑪𝑠𝑨𝑠
2 … 𝑪𝑠𝑨𝑠

2𝑛−1]𝑇 (2.16) 

and if the rank of the observability matrix is equal to the rank of the system, 𝑟𝑎𝑛𝑘(𝓞) = 2𝑛, the dynamical 

system is observable.  

2.3.2 State feedback 

A full-state feedback is the simplest form of control action, used to change how a dynamic system 

(plant) behaves by moving the poles of the system. A state feedback matrix 𝑲 ∈ ℛ𝑛×2𝑛 scales the system 

states and typically gets added to the reference trajectory 𝒓(𝑡) to produce a control signal 𝒖(𝑡) = 𝑲𝒛(𝑡) +
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𝒓(𝑡). For the dynamic system in Eq. (2.1), the reference signal is 𝑭(𝑡) = 𝒓(𝑡). The new closed-loop state-

space system with the added state-feedback is demonstrated in Fig. 2.3, and also expressed in Eq. (2.17). 

 

Figure 2.3 State-space system with full-state feedback 

𝒛̇(𝑡) = (𝑨𝑠 −𝑩𝑠𝑲)𝒛(𝑡) + 𝑩𝑠𝒓(𝑡) (2.17) 

Having established the concepts of controllability and stability and state-feedback, the following 

theorem needs to be stated: An LTI system is stabilizable if there exists a state feedback matrix 𝑲 that can 

ensure 𝑨𝑠 −𝑩𝑠𝑲 is stable. All unstable modes need to be controllable for this condition.  

2.3.3 State observer 

The assumption so far has been that states of the dynamical system are available for feedback action. 

Measurements of states depend on availability and distribution of sensors. For instance, in the dynamical 

system in Eq. (2.1), installation of accelerometers results in the availability of the acceleration states. Other 

states like velocity and displacement are typically not available. A state observer or estimator will generate 

an estimate of the states of the plant, whether available or not. Development of state observers typically 

require advanced knowledge of the system and the availability of an estimate of the dynamical model. 

Assuming a perfect knowledge of the plant dynamics, the following state observer can be designed: 

𝒛̇̂(𝑡) = (𝑨𝑠 − 𝑳𝑪𝑠)𝒛̂(𝑡) + 𝑩𝑠𝒓(𝑡) + 𝑳𝒚(𝑡) (2.18) 

where 𝒛̂(𝑡) and 𝒛̇̂(𝑡) are estimates of the system states and their derivatives. 𝑳 ∈ ℛ2𝑛×𝑛 is termed as the 

observer gain, and the main design objective in a state observer. A dynamic system is said to be detectable 

if there exists an observer gain 𝑳 such that 𝑨𝑠 − 𝑳𝑪𝑠 is stable. All unstable modes must be observable for 

this condition (Tsai and Gu 2014).  
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Figure 2.4 State-space system with a state observer  

A major share of the discussions on dynamic system controls in this dissertation surrounds the control 

of servo-hydraulic actuators which are critical to experimental testing of structures – in particular, the 

physical testing component of RTHS.  

2.3.4 PID control 

The proportional-integral-derivative (PID) controller is a popular control algorithm that is often used 

as an inner stabilizing controller for many research and industrial control applications. Simplicity and ease-

of-design have made PID a popular choice. The error between a reference and measured executed signal 

are computed and subjected to proportional, integral, and derivative gains (the three gains).   

The design objective for a PID controller is summarized in the optimization of the three gains 𝐺𝑃, 𝐺𝐼, 

and 𝐺𝐷. Proportional gain reduces rise-time and the steady-state errors between the reference and measured 

signals. However, it also results in overshoot and ripple effects (i.e., extended settling time). Derivative 

gain reduces the overshoot and ripple effects. The proportional gain can never fully remove steady-state 

error; thus, an Integral control is usually included. These gains are increased from a zero position gradually 

until the desired performance between the reference and measured signals 𝑟(𝑡) and 𝑦(𝑡) are met. The 

Ziegler -Nichols rule is an attempt at developing heuristic tuning steps for a PID controller.  
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Figure 2.5 PID control architecture 

The command signal 𝑢(𝑡) ∈ ℛ is the summation of the error terms multiplied by their corresponding 

PID gains 

𝑢(𝑡) = 𝐺𝑃𝑒(𝑡) + 𝐺𝐼∫𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝐺𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (2.19) 

2.4 Servo-hydraulic Actuators 

Servo-hydraulic actuators fulfil the important purpose of imposing boundary conditions on physical 

specimen(s) in an RTHS test. Actuators can operate individually or in tandem to actuate one or more 

Cartesian DOFs. The LBCB device shown in Fig. 1.4 for instance has six actuators and can impose motion 

in six DOFs. Based on the principles of incompressible flow, hydraulic fluid pressure provides the main 

energy source for a series of mechanical and electrical apparatuses that result in extension or retraction of 

an actuator arm. As the flow of the hydraulic fluid is stymied, pressure is built up.   

The operation of a servo-hydraulic actuator begins with a hydraulic oil tank. An oil pump generates 

flow through the pressure pipe shown in blue in Fig. 2.6(a). A tank pipe, shown in red, returns the flow of 

oil into the oil tank, ensuring a closed-loop operation. A hydraulic actuator has two chambers: left and right 

as illustrated in Fig. 2.6(b).When oil flows into the right chamber, it is followed by pressure build up in the 

right chamber and a resultant pressure differential across the piston. This results in the extension of the 

piston rod. Similarly, oil flow into the left chamber corresponds to a retraction of the piston rod.   
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(a) Closed-loop hydraulic actuator  (b) Chambers of a hydraulic actuator 

Figure 2.6 Operation of a servo-hydraulic actuator 

A spool valve controls the flow into each chamber of the actuator. Control and trigger of the spool 

valve are typically conducted in three ways: (i) manually, (ii) solenoids, and (iii) servo valves. A manual 

approach at triggering a spool valve is the simplest form but is not an option for real-time applications. 

Solenoids are inexpensive and easy to operate. High flow rates and high frequency operations are however 

not possible due to the physical limitations of solenoids. Electrohydraulic servo valves are another popular 

but more expensive options for operation of more powerful hydraulic actuators with a small electric signal.  

2.4.1 Servo valve 

The focus of the discussion herein is limited to two-staged electrohydraulic servo valves, similar to 

the types used in the experimental setups in later sections. These servo valves are able to convert low-

powered electrical signals to high-precision control, high-power and low-speed hydraulic actuators 

(Changhai and Hongzhou 2014). The two-stages involved are: (i) flapper nozzle system, and (ii) spool 

valve. The servo valve receives high pressure hydraulic oil from a pump and an electrical signal. The job 

of a servo valve is to release hydraulic pressure to an actuator proportional to the electrical current provided 

(Merritt 1967).  

The mechanisms involved in the operation of a two-staged servo valve are highly precise and 

repeatable. Fig. 2.7 provides a schematic of a two-staged servo valve. Hydraulic oil supplied from an oil 

pump enters through the supply pipe and rises in the spool valve (blue region) chamber in stage 2. When 

the hydraulic actuator is intended to be at an equilibrium position, no electrical signal is applied to the 

flapper in stage 1. Hence, the flapper stays in a vertical position and oil flow continues through the nozzles 

(yellow region) to leaves through the tank return pipe. In this configuration, the oil pressure in the vertical 

columns to the left and right of the spool remain equal, resulting in no pressure differential and movement.  
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Figure 2.7 Two-stage servo valve and hydraulic actuator 

Now suppose the objective is to extend the piston rod by increasing the pressure in the left chamber 

of the illustrated hydraulic actuator. An electrical signal is applied to the coil windings around the armature 

in stage 1. The coil generates an electromagnetic torque. The newly magnetized flapper reacts with the 

permanent magnets and deflects from the original position. The flapper moves horizontally, hindering the 

flow through one of the nozzles. The decrease in the flow of oil through one nozzle results in the 

accumulation of pressure in the vertical chamber. This is also associated with a reduction in the oil pressure 

in the opposing vertical chamber. As a result of the pressure differential at the ends, the spool begins to 

move releasing flow into the left chamber. Lastly, the pressure in the left chamber of the actuator increases 

and the piston rod extends.  

A feedback mechanism exists that brings the servo valve back to equilibrium. The sliding of the spool 

results in displacement at the base of the feedback wire, which is fed back to the flapper. The feedback wire 

provides a spring force that opposes the direction of motion of the spool. This spring force increases until 

an equilibrium state is reached. The servo valve can therefore release oil flow proportional to the direction 

and the magnitude of the current applied to the armature.  
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2.4.2 Parametric modeling of hydraulic actuation 

In developing a parametric model, the major components that form a hydraulic actuator system in 

series are separated and dynamic models of each are formulated. These components include the testing 

specimen, hydraulic actuator (cylinder), servo valve, and controller. A single-DOF physical specimen is 

considered by simplifying the system in Eq. (2.1). To move the physical specimen, a piston rod applies a 

force of 𝑓𝑝. This dynamic force engages the dynamic properties of both the actuator cylinder and the 

physical specimen.  

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝑓𝑝(𝑡) (2.19) 

where 𝑚 = 𝑚𝑠 +𝑚𝑝, 𝑐 = 𝑐𝑠 + 𝑐𝑝, and 𝑘 = 𝑘𝑠, with subscripts 𝑠 and 𝑝 referring to specimen and piston 

rod components of mass, damping and stiffness. The stiffness of the physical specimen here is expected to 

dominate the stiffness of the hydraulic actuator (Carrion and Spencer, Jr. 2007). The specimen is assumed 

to stay in the linear elastic range in Eq. (2.19). A transfer function model of the equation of motion is 

achieved by converting to Laplace domain 

𝑮𝑥𝑓(𝑠) =
𝑋(𝑠)

𝐹𝑝(𝑠)
=

1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (2.20) 

The physical principal behind deriving the dynamic equation for a hydraulic actuator is the flow 

continuity principle. Flow continuity is a form of the law of conservation of mass that of course appears in 

fluids. For a given volume of fluid with volume and density of 𝑉 and 𝜌, and input and output flows 𝑞𝑖𝑛 and 

𝑞𝑜𝑢𝑡 and densities 𝜌𝑖𝑛 and 𝜌𝑜𝑢𝑡 shown in Fig. 2.8(a) the following relationship is established 

𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 =
𝑑𝑉

𝑑𝑡
+
𝑉

𝜌

𝑑𝜌

𝑑𝑡
 (2.21) 

Next, the bulk modulus of elasticity for fluids 𝛽 =
𝑑𝑝
𝑑𝜌

𝜌

 is considered, with 𝑑𝑝 defining a differential 

change in pressure, and 𝑑𝜌, the differential change in density of the object, in order to remove the density 

terms in Eq. (2.21).  

 

(a) Control volume for continuous flow  (b) Hydraulic actuator 

Figure 2.8 Schematics for continuity flow relationships 
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It is also important to incorporate the flow directions into relationship Eq. (2.21) as the 

extension/retraction behavior of hydraulic actuators matters. By considering actuator motion in one 

direction only, Eq. (2.21) simplifies to the given 

𝑞𝑖(𝑡) = 𝐴𝑖𝑣(𝑡) +
𝑉𝑖
𝛽

𝑑𝑝𝑖(𝑡)

𝑑𝑡
 (2.22) 

where A is the internal area of the piston, 𝑣 is the fluid velocity, 𝑉 is the volume of the chamber, and 𝑖 

specifies which chamber (e.g., 1 for left and 2 for right). So far, the continuity assumption has assumed a 

perfect flow without any leakage. However, leakages exist in the form of external leakage: from actuator 

lining to the drain, and internal leakage: across the piston. The total load flow, hence, includes volumetric 

flow, leakage flow, and compressibility. Combining equation Eq. (2.22) for 𝑖 = {1,2} and given that 𝑉𝑡 =

𝑉1 + 𝑉2, the following relationship is arrived at 

𝑞𝐿(𝑡) = 𝐴𝑥̇(𝑡) + 𝐶𝑙𝑝𝐿(𝑡) +
𝑉𝑡
4𝛽
𝑝̇𝐿(𝑡) (2.23) 

where 𝑞𝐿 =
𝑞1+𝑞2

2
 is the total load flow, 𝐴 is the area of the piston (assumed equal on both sides), 𝑥̇(𝑡) is 

the velocity of the piston, 𝐶𝑙 is the total leakage coefficient, and 𝑝𝐿(𝑡) = 𝑝2(𝑡) − 𝑝1(𝑡) is the load pressure 

(Merritt 1967). The force applied by the piston rod is 𝑓𝑝(𝑡) = 𝐴𝑝𝐿(𝑡). Expressing the first-order dynamics 

in the Laplace domain 

𝑮𝑝𝑞(𝑠) =
𝑃𝐿(𝑠)

𝑄𝐿(𝑠) − 𝐴𝑠𝑋(𝑠)
=

1

𝐶𝑙 +
𝑉𝑡
4𝛽
𝑠
 

(2.24) 

The characteristics of a three-position four-way spool valve similar to those in Fig. 2.7 are considered 

next with the objective of expressing load flow as a function of load pressure and displacement of spool 

from the neutral position. A total of 11 nonlinear algebraic equations must be solved simultaneously, which 

can be tedious. By confining the operational horizon of the valve to the vicinity of the neutral position, a 

Taylor series expansion of the load flow equation approximated per 

𝑞𝐿(𝑡) ≔
𝜕𝑞𝐿
𝜕𝑥𝑣

𝑥𝑣(𝑡) +
𝜕𝑞𝐿
𝜕𝑝𝐿

𝑝𝐿(𝑡) (2.25) 

where the first partial derivative is defined as the flow gain 𝐾𝑞
′ ≔

𝜕𝑞𝐿

𝜕𝑥𝑣
 and the second partial derivative is 

the flow-pressure coefficient 𝐾𝑐
′ ≔ −

𝜕𝑞𝐿

𝜕𝑝𝐿
. 

The dynamics of a servo valve are quite difficult to model due to the complex physical geometry of 

the various spools and oil chambers. Pressure flow inside the chambers of a servo valve spool are inherently 

nonlinear (Mu and Li 2011). Many researchers have used first-order models for describing dynamics of 

servo valves (Carrion and Spencer, Jr. 2007; Qian et al. 2014). Merritt (1967) derived a third-order model, 
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Kim and Tsau (2000) proposed a fifth-order model, and Changhai and Hongzhou (2014) proposed a 

seventh-order model. For the sake of simplicity, a first-order model of servo valve dynamics used  

𝑮𝑥𝑖(𝑠) =
𝐾𝑠𝑣
1 + 𝜏𝑠

 (2.26) 

where 𝐾𝑠𝑣 is the servo valve gain, 𝜏 is the model time constant, and 𝑠 is the Laplace variable.  

The linearized dynamics of the physical specimen in Eq. (2.20), actuator pressure in Eq. (2.24), servo 

valve flow in Eq. (2.25), and spool valve motion in Eq. (2.26) are combined to formulate the closed-loop 

dynamics of the complete servo-hydraulic and specimen system in Fig. 2.9 and fourth-order system in Eqs. 

(2.27-2.32). A proportional controller with a gain of 𝐺𝑝 is assigned to the error term 𝑒(𝑡) between the 

control and measured signals 𝑢(𝑡) and 𝑥(𝑡).  

 

Figure 2.9 Closed-loop dynamics of servo-hydraulic and specimen system 

𝑮𝑥𝑢 =
𝑎1

𝑏5𝑠
4 + 𝑏4𝑠

3 + 𝑏3𝑠
2 + 𝑏2𝑠 + 𝑏1

 (2.27) 

𝑎1 = 4𝛽𝐾𝑝𝐾𝑞𝐴 

𝑏1 = 4𝛽𝐾𝑐𝑘 + 4𝛽𝐾𝑝𝐾𝑞𝐴 

𝑏2 = 4𝛽𝐾𝑐 + 𝑉𝑡𝑘 + 4𝛽𝐴
2 + 4𝛽𝐾𝑐𝑘𝜏 

𝑏3 = 4𝛽𝐾𝑐𝑚+ 𝑉𝑇𝑐 + 4𝛽𝐴
2𝜏 + 4𝛽𝐾𝑐𝑐𝜏 + 𝑉𝑡𝑘𝜏 

𝑏4 = 𝑉𝑡𝑚+ 4𝛽𝐾𝑐𝑚𝜏 + 𝑉𝑡𝑐𝜏 

𝑏5 = 𝑉𝑡𝑚𝜏 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The dynamic coupling between the physical specimen and the actuator is described by a natural 

velocity feedback. This phenomenon is described as control-structure interaction in (Dyke et al. 1995). The 

parametric model identified in Eq. (2.27) is capable of capturing this phenomenon for a single-DOF 

specimen. With the introduction of system identification and nonparametric modeling in later sections, 

natural velocity feedback for higher-DOF structures are incorporated into the linearized model of the servo-

hydraulic actuator and structure system.  
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A parametric model, also known as a white-box model, must be fit to a physical model. Manufacturer 

specifications provide accurate estimates of many of these parameters. Optimization algorithms for 

parameter identification may be used because of the finite-dimension of the parameter space (i.e., finite 

number of unknowns). The linear least-square approach is a simplest form of parameter estimator. Tidwell 

et al. (2009) uses a nonlinear least-square approach, and Qian et al. (2014) uses a genetic algorithm approach 

for identification of the parameters. The limitation of parametric modeling is that the exact structure of the 

dynamical system must be known.  

2.4.3 Nonparametric modeling of hydraulic actuation 

Nonparametric modeling differs from parametric in that input-output relationships for dynamical 

systems are not based on predetermined explanatory parameters (e.g., flow coefficients). These models are 

also termed black-box because the structure of the physical process is completely “black” or unknown. The 

benefit of nonparametric modeling is that it is applicable to the physical specimen with unknown 

performance. Important design and performance considerations for identification procedures include choice 

of excitation signals, data sampling, measurement and sensing, and pre-filtering and treatment of data. The 

modeling tool must be appropriate for the physical system (i.e., linear vs. nonlinear modeling).  

 

Figure 2.10 System identification of plant dynamics 

Modeling of a dynamic process is a two-step process: i) choice of mathematical representation for 

the model, ii) choice of optimization tool to minimize the error between model output and measured signal. 

Given the control and measurement signals 𝑢(𝑡) and 𝑥(𝑡), a mathematical model of the plant dynamics is 

identified by minimizing the error between the actual and predicted measurement signals, 𝑒(𝑡) = 𝑥(𝑡) −

𝑥(𝑡), as illustrated in Fig. 2.10.  

Classical modeling approaches include polynomial fitting, autoregressive (ARX) models, state-space 

and frequency domain fitting. Kim et al. (2005) presents a modeling tool based on frequency domain 

experimental data and offers the graphical tool MFDID, shown in Fig. 2.11, for visualization of the fitted 
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data. MFDID is used for system identification in later sections. The plant dynamics is idealized as a linear 

polynomial transfer function model and then optimized in three-steps: 

1. estimation of plant model via the linear least-square method, 

2. improvement using Steiglitz-McBridge method, and 

3. final optimization via the Levenberg-Marquardt method.  

 

Figure 2.11 MFDID 

Statistical identification tools like artificial neural networks and fuzzy models have also been 

proposed for describing the dynamics of actuator-structure systems (Jelali and Kroll 2004). He and Sepehri 

(1999) used neural networks for describing the dynamics of servo-hydraulic actuators with a mass attached 

to the piston rod. Neural networks were shown to accurately estimate the nonlinear behaviors of hydraulic 

actuators. Lastly, between black-box and white-box modeling, if there are any physical insights available 

into the plant dynamics, gray-box modeling techniques can be utilized.  

2.5 Frequency domain System Identification 

System identification is the process of developing mathematical models of a plant dynamics via 

measurements of input and output signals. For example, the table acceleration in a shake table test is the 

input signal and the story accelerations from the onboard structure are output signals. After post-processing 

of measurement data, a model of the structure is selected, and an optimization algorithm is applied to fit the 

response of the plant to the model. The final step of system identification is to verify the model against the 

actual plant.  

In a dynamic system, the outputs at the current time are dependent on the instantaneous inputs, and 

all the past inputs and behaviors. Although many different system identification tools are available for 

developing dynamic models as discussed in the previous section, the focus of this section is on frequency 
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domain system identification. As the name suggests, measurements in time domain must first be converted 

to the frequency domain. A time domain signal ℎ(𝑡) is converted to frequency domain via Fourier transform 

as described by 

𝐻(Ω) = ℱ[ℎ(𝑡)] 

= ∫ ℎ(𝑡)𝑒−𝑖Ω𝑡𝑑𝑡
∞

−∞

 
(2.34) 

for −∞ < Ω < ∞, where Ω ≔ 2𝜋𝑓 is the angular frequency, 𝑓 is the harmonic frequency, and ℱ indicates 

Fourier transforms. The inverse Fourier transform converts frequency domain signals back to time domain: 

ℎ(𝑡) = ℱ−1[𝐻(Ω)] 

=
1

2𝜋
∫ 𝐻(Ω)𝑒𝑖Ω𝑡𝑑Ω
∞

−∞

 
(2.35) 

with Eqs. (2.34) and (2.35) termed as Fourier transform pairs. The Fourier transforms of signals are often 

used to find the power of a signal distributed with frequency. An auto-spectral density function (also called 

power spectral) is given by 

𝑆ℎℎ(Ω) = |𝐻(Ω)|
2 (2.36) 

Similarly, the cross-spectral density function is defined as 

𝑆ℎ𝑔(Ω) = |𝐻
∗(Ω)𝐺(Ω)| (2.37) 

where the superscript ∗ signifies a complex conjugate.  

2.5.1 Frequency response function 

A frequency response function (FRF) conveys valuable information about the dynamics of a plant, 

including gain and phase as a function of frequency, resonant frequencies, and damping factors. The FRF 

of a plant is obtained using Fourier transforms of signals, spectral densities, and excitation. Random and 

sine-sweep excitations are popular options as they cover a whole bandwidth of frequencies. Other forms of 

excitations used for resonance analysis, like hammer impact testing, may also be used for acquiring the 

FRF. An FRF contains both gain and phase informations of the plant dynamics. Per Fig. 2.12, given an 

excitation 𝑥(𝑡) and a response 𝑦(𝑡), an FRF 𝑯(Ω) is expressed by 

𝑋(Ω) = 𝑯(Ω)𝑌(Ω) (2.38) 

where 𝑋(Ω) and 𝑌(Ω) are Fourier transforms of 𝑥(𝑡) and 𝑦(𝑡), respectively. 

 

Figure 2.12 Plant response subject to excitation 
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Two commonly used methods for acquiring the FRFs of single-input single-output plants are the 

𝑯1(Ω) and 𝑯2(Ω) methods. The 𝑯1(Ω) is an FRF estimation approach where the output is expected to be 

noisier than the input, 𝑣(𝑡) ≫ 𝑤(𝑡). The influence of uncorrelated noise in the output is reduced via 

averaging.  

𝑯1(Ω) =
𝑆𝑥𝑦(Ω)

𝑆𝑥𝑥(Ω)
 (2.39) 

The 𝑯2(Ω) is the second approach where the input is expected to be noisier than the output, 𝑤(𝑡) ≫

𝑣(𝑡). The influence of uncorrelated noise in the input is reduced by averaging. The 𝑯2(Ω) is more 

commonly used, as it is subject to less resolution-bias errors.   

𝑯2(Ω) =
𝑆𝑦𝑦(Ω)

𝑆𝑦𝑥(Ω)
 (2.40) 

The coherence function measures the extent to which an optimum linear least-square relationship can 

predict the output 𝑦(𝑡) from the input 𝑥(𝑡). Mathematically, the coherence function is equivalent to the 

ratio between the cross-spectral density between the input and output signals, and the corresponding auto-

spectral densities for each input and output term, given per 

𝛾𝑥𝑦(Ω) =
|𝑆𝑥𝑦(Ω)|

2

𝑆𝑥𝑥(Ω)𝑆𝑦𝑦(Ω)
 (2.41) 

with 𝛾𝑥𝑦 always satisfying 0 ≤ 𝛾𝑥𝑦 ≤ 1. When the value of the coherence function is one, the relationship 

between input and output signals are perfectly linear. Presence of noise, nonlinearities, and other inputs 

signals result in reduction in the value of coherence function. A coherence value of zero indicates that the 

two signals are completely unrelated (Berndat and Piersol 2010). Lastly, the system identification toolbox 

MFDID discussed in Section 2.4 is applied to the FRF data for fitting transfer function models.  

2.6 Kinematic Transformation 

Multi-axial boundary point devices are mechanical manipulators made up of several prismatic servo-

hydraulic actuators and connected by rotational ball/swivel joints. The number of servo-hydraulic actuators 

are typically equal to the number of degrees of freedom that the boundary condition assembly can operate 

in (Tsai 1999). For instance, a 6-DOF boundary condition assembly has six actuators. Each prismatic 

actuator is a simple prismatic device that extends and retracts in 1-DOF. The actuators are driven by 

hydraulic fluid pressure described by mechanisms in Section 2.4. Actuators are pinned to a fixed base at 

one end, and a moving platform at the other end. The fixed base is typically attached to a rigid reaction wall, 

and the moving platform is attached to the physical specimen. Examples of multi-axial testing facilities 

with load and boundary devices are demonstrated in Figs. 2.13 and 2.14.  
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For hybrid simulation applications, the moving platform may be required to impose displacements 

and forces onto a physical specimen. The multi-axial boundary condition devices possess mechanical 

components and sensing devices that allow them to measure the displacements and forces as well, like 

displacement transducers and loadcells. Controllers are used for the operation of the hydraulic actuators. 

Inner control loops via PID control (see Section 2.3) ensure stability and outer model-based controllers 

improve the tracking accuracies. Computational hardware including single-tasking microcontrollers and 

host personal computers (PCs), provide the high-speed real-time computation and control commands 

necessary for successful operation of the multi-axial boundary devices.  

 

(a) MAST at the University of Minnesota (b) MAST at the Swinburne University 

Figure 2.13 Multi-axial testing facilities 

Kinematics of boundary condition devices must be understood for successful use of these assemblies. 

Kinematics is the science of motion that deals with the geometry of position and force variables with respect 

to time. There are two types of kinematics transformations that are of importance in this dissertation: 

forward kinematics and inverse kinematics. Forward kinematics considers the strokes in each individual 

actuator and sensing device for deriving the position and orientation of the moving platform. Inverse 

kinematics uses the available desired positions of the moving platform to calculate what the strokes of 

individual actuators need to be to achieve the desired motion of the moving platform.  

 

Figure 2.14 Load and Boundary Condition Boxes at the University of Illinois at Urbana-Champaign 
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2.6.1 Basics of kinematics 

A Cartesian coordinate system is employed for studying the kinematics of boundary condition boxes, 

where every point in a 3D space is described via a three-axis frame of reference (i.e., 𝑥, 𝑦, and 𝑧). The 

frame of reference is termed fixed frame and moving frame, when in the original position and orientation 

and when moved, respectively. Because boundary condition boxes are typically very stiff, the scope of the 

motions described herein are limited to rigid body motion, which include translation and rotation. A vector 

𝒗 = [𝑣𝑥 , 𝑣𝑦, 𝑣𝑧]
𝑇
describes the motion of the fixed frame origin 𝑂 to a new position 𝑂′. A second vector 

𝒃 = [𝑏𝑥, 𝑏𝑦, 𝑏𝑧]
𝑇

defines the relative location of the point of interest 𝑃 to the moving frame origin 𝑂′.  

 

Figure 2.15 3D Cartesian motion 

Three moving frame rotations (roll, pitch, and yaw) are possible about the fixed frame. Rotations 

around the 𝑥, 𝑦, and 𝑧 axes are represented by Euler angles and are termed 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧. The counter-

clock-wise direction around each axis is the positive rotation. The action of each rigid body rotation is 

presented mathematically as a matrix. 𝑨𝜃𝑥, 𝑨𝜃𝑦, and 𝑨𝜃𝑧 are three successive rotation matrices about the 

reference frame. These matrices are multiplied to create a combined rotational matrix 𝑨(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) =

𝑨𝜃𝑥𝑨𝜃𝑦𝑨𝜃𝑧.  

𝑨𝜃𝑥 = [

1 0 0
0 𝑐𝜃𝑥 −𝑠𝜃𝑥
0 𝑠𝜃𝑥 𝑐𝜃𝑥

],   𝑨𝜃𝑦 = [

𝑐𝜃𝑦 0 𝑠𝜃𝑦
0 1 0

−𝑠𝜃𝑦 0 𝑐𝜃𝑦

],    𝑨𝜃𝑧 = [
𝑐𝜃𝑧 −𝑠𝜃𝑧 0
𝑠𝜃𝑧 𝑐𝜃𝑧 0
0 0 1

] (2.42) 

where 𝑐 and 𝑠 are cosine and sine operators. The matrix 𝑨 contains 9 terms, but rotation can be described 

by three rotational DOFs. The matrix multiplication in Eq. (2.42) is not commutative, and the order of 

operation is important. The relationship between the position vectors and rotation matrix help describe the 

position of the point 𝑃 with reference with the fixed frame  

𝒂 = 𝒗 + 𝑨𝒃 (2.43) 

where 𝒂 = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧]
𝑇

. The rigid motions can be represented in a single homogeneous transformation 

matrix with the form given by 
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𝑯 = [
𝑨 𝒗
𝟎 1

] (2.43) 

where 𝟎 = [0 0 0]𝑇. In addition, the vectors 𝒂 and 𝒃 are augmented to the form 

𝒂′ = [
𝒂
1
]                 𝒃′ = [

𝒃
1
] (2.44) 

2.6.2 Serial manipulators 

Serial manipulators are a class of open-loop robots with a series of actuated joints extending from a 

fixed base to a moving platform or end effector. The relative motion for each actuator (e.g., motor) is 

controlled individually to achieve a prescribed final position for the end effector. Fig. 2.16 illustrates an 𝑛-

DOF serial manipulator with a fixed base and an end effector. The frame of reference at the fixed base is 

referred to as the fixed frame, and each actuator has its own moving frame.  

 

Figure 2.16 𝑛-DOF serial manipulator 

The forward kinematics path in a serial manipulator involves user specified strokes in prismatic 

actuators and rotations in revolute actuators, to achieve some final end effector position. Most actuators are 

either prismatic or revolute. Hence, a joint variable is considered as input into the homogeneous 

transformation matrix: 

𝑞𝑖 = {
𝜃𝑖  ∶ revolute actuators
  𝑣𝑖  ∶ prismatic actuators

 (2.45) 

and since most actuators are either prismatic or revolute the homogeneous transformation matrix becomes 

a function of a single joint variable 𝑯𝑖 = 𝑯𝑖(𝑞𝑖). Note, that the matrix 𝑯𝑖 is not a constant and is updated 
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at each time instant for a moving end effector (Spong et al. 2005). The homogeneous transformation 

matrices are next multiplied to achieve a transformation matrix denoted by 𝑇𝑖𝑗, given by 

𝑻𝑖𝑗 = 𝑯𝑖+1𝑯𝑖+2…𝑯𝑗−1𝑯𝑗    if   i < j 

𝑻𝑖𝑗 = 𝑰   if  i = j 

𝑻𝑖𝑗 = (𝑻𝑖𝑗)
−1
    if    j > i 

(2.46) 

The transformation matrix between the fixed frame and the end effector summarizes the forward 

kinematics in serial manipulators and is described by 

𝑻0𝑛 = 𝑻1𝑻2…𝑻𝑛−1𝑻𝑛 (2.47) 

The matrix 𝑻0𝑛 = 𝑡𝑖𝑗 for 𝑖 = {1,2,3} and 𝑗 = {1…4}, has 12 entries which are nonlinear 

trigonometric equations. Because the forward kinematic relationships are non-trivial and complex nonlinear 

functions of joint variables, inverting the kinematics problem is a challenging task. The inverse kinematic 

problem for a serial manipulator involves solving for the closed-form relationship 

𝑞𝑘 = 𝑓𝑘(𝑡11, … , 𝑡34)    for 𝑖 = 1,… , 𝑛 (2.48) 

In instances when finding a closed-form solution is computationally expensive and not manageable 

within a finite time, numerical approximations are possible. In a serial manipulator, forward kinematics is 

fairly straightforward and inverse kinematics is very tricky to solve. For applications of RTHS, iterative 

numerical approximations are often not appropriate. Next, several solutions may exist for inverse 

kinematics problems. Physical laws need to be considered to rule out unfeasible and unrealistic solutions.   

2.6.3 Parallel manipulators 

Parallel manipulators are a class of closed-loop robots with multiple actuator arms controlling a 

single moving platform. Because the loads experienced by the moving platform are shared between the 

actuators, parallel manipulators have large load-carrying capacities. This quality is very attractive for 

experimental testing applications in structural engineering where high load capacity boundary devices are 

desired. The boundary condition devices illustrated in Fig. 2.13 and Fig. 2.14 are both examples of parallel 

manipulators.  

A schematic of a generalized parallel manipulator is presented in Fig. 2.17. A Cartesian fixed frame 

of reference is selected in arbitrary position, and a moving frame is selected on the moving platform. For 

RTHS applications, the location choice for the moving frame should fall at the centroid of the attachment 

with the physical specimen. The linear strokes of the prismatic limbs (e.g. actuators) result in displacement 

and rotation of the moving platforms. For some prescribed Cartesian motion at the moving frame, an inverse 

kinematic transformation can calculate the necessary stroke of each actuator. A translation vector 𝒗 

describes the motion of the moving frame relative to the fixed frame. The vectors 𝒂𝑖 and 𝒃𝑖 ∈ ℛ
3, denoting 
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the fixed and moving joint locations of the 𝑖-th actuator, respectively, are drawn from the frames of 

reference to the center of rotation of each spherical joint.  

 

Figure 2.17 𝑛-DOF parallel manipulator 

Three rotational matrices from Eq. (2.42), describe the rotational motion of the moving platform. 

Through the matrix multiplication 𝑨(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) = 𝑨𝜃𝑥𝑨𝜃𝑦𝑨𝜃𝑧, the combined rotational matrix is obtained. 

The Cartesian motion is described via the vector 𝒘 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧}
𝑇
. Through addition and 

subtraction of vectors, the below formulation is formed 

𝒔𝑖 = 𝒗 + 𝑨𝒃𝑖 − 𝒂𝑖 

𝜆𝑖 = |𝒔𝑖| = 𝑓𝑖(𝒘) 

(2.49) 

 

where 𝒔𝑖 is the vector representation of the actuator length, 𝜆𝑖 is the total length of the actuator for some 

prescribed Cartesian motion at the moving base, and 𝑓𝑖 is a nonlinear function describing the relationship 

between 𝜆𝑖 and 𝒘.  

The forward kinematic transformation is the process through which actuator measurements are used 

to calculate the Cartesian motion in the moving platform. This process is described by implicit equations, 

which must be solved through iterations until convergence is achieved. In parallel manipulators, the inverse 

kinematics is a straightforward and the forward kinematics is a challenging transformation. Solutions to 

forward kinematic problems are typically approximated via linearization around a stationary operation 

position. A first-order Taylor expansion of Eq. (2.49) around the equilibrium point, 𝒘 = 𝟎, results in 

𝝀̇ = 𝑱𝒘̇ (2.50) 

where 𝑱 ∈ ℛ𝑛×𝑛 is the Jacobian matrix and 𝝀̇ ∈ ℛ𝑛×1 and 𝒘̇ ∈ ℛ𝑛×1 are derivatives of the earlier described 

terms. The Jacobian describes the relationship between incremental changes in the actuator lengths and 

incremental changes in Cartesian motion. Next, a linearized forward kinematics is formulated via a discrete-
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time solution to Eq. (2.50). This approximation is generally more accurate for smooth Cartesian motions 

and during operations closer to the equilibrium position. For an 𝑛-DOF parallel manipulator: 

𝑱 =

[
 
 
 
 
𝜕𝜆1
𝜕𝑤1

⋯
𝜕𝜆1
𝜕𝑤𝑛

⋮ ⋱ ⋮
𝜕𝜆𝑛
𝜕𝑤1

…
𝜕𝜆𝑛
𝜕𝑤𝑛]

 
 
 
 

 (2.51) 

𝒘𝑘+1 = 𝒘𝑘 + 𝑱
−1(𝝀𝑘+1 − 𝝀𝑘) (2.52) 

where 𝑘 is the discrete time step.  

2.7 Numerical Integration 

A damped dynamical system with nonlinear restoring force behavior is described by the equation of 

motion 

𝑴𝑁𝒙̈(𝑡) + 𝑪𝑁𝒙̇(𝑡) + 𝑹𝑁(𝑡) = 𝑭(𝑡) − 𝑭𝑅(𝑡) (2.53) 

where 𝑴𝑁 is a positive definite mass matrix, 𝑪𝑁 is a non-negative definite damping matrix, and 𝑹𝑁(𝑡) is a 

vector of nonlinear restoring forces. Analytical solutions to equations of motion, which are second-order 

differential equations, are typically difficult to solve, instead numerical integration algorithms are employed 

for estimation of the responses of dynamical systems. Because dynamical systems are time-dependent 

systems, every point in time must be described by 

𝑡 = 𝑡𝑖+1 = 𝑑𝑡(𝑖 + 1) (2.54) 

where 𝑑𝑡 is a time increment. 

Implicit and explicit schemes are two classifications of numerical integration methods. When the 

states 𝒙(𝑡𝑖+1) are estimated based on available quantities in former and current time steps, the integration 

is said to be explicit. When the states are embedded in a set of coupled equations, and iterative solutions 

are required, the integration is said to be implicit. Explicit methods are mostly conditionally stable, because 

when the time step is too large, numerical errors increase and instability may ensue. Implicit methods on 

the other hand tend to be unconditionally stable. For RTHS applications, explicit integration methods are 

preferred as implicit solutions are complex to program and require significantly more computational effort 

and time. The implications of choosing a numerical integration algorithm are felt in the accuracy and 

stability of the evaluations. Time steps are generally selected to be much smaller than the natural period of 

the dynamical system.  

Consider the motion of a particle using Newton’s law 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡)                  

𝑑𝑣

𝑑𝑡
= 𝑎(𝑡) (2.55) 
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by utilizing the Taylor series expansion, the following relationships are achieved for 𝒙(𝑡) = 𝒙𝑖+1 and 

𝒗(𝑡) = 𝒗𝑖+1 

𝒙𝑖+1 = 𝒙(𝑡𝑖 + 𝑑𝑡) = 𝒙𝑖 + 𝒗𝑖𝑑𝑡 +
1

2
𝒂𝑖𝑑𝑡

2 +𝑶(𝑑𝑡3) 
(2.56) 

𝒗𝑖+1 = 𝒗(𝑡𝑖 + 𝑑𝑡) = 𝒗𝑖 + 𝒂𝑖𝑑𝑡 + 𝑶(𝑑𝑡
2) (2.57) 

where 𝑶(𝑑𝑡2) and 𝑶(𝑑𝑡3) are the higher-order terms.   

2.7.1 Euler algorithm 

The Euler algorithm is when only the first-order terms (e.g., 𝑶(𝑑𝑡)) are considered. An algorithm is 

said to be of the 𝑛𝑡ℎ order when error term is of the order 𝑶(𝑑𝑡𝑛). This algorithm has limited accuracy and 

stability due to its simplistic form given by 

𝒙𝑖+1 = 𝒙𝑖 + 𝒗𝑖𝑑𝑡 (2.58) 

𝒗𝑖+1 = 𝒗𝑖 + 𝒂𝑖𝑑𝑡 (2.59) 

2.7.2 Central difference algorithm 

In the central difference algorithm, velocity term does not appear in the right-hand-side when 

integrating the equations of motion. This algorithm has been implemented for RTHS use in several studies 

(Carrion and Spencer, Jr. 2007; Horiuchi et al. 1999; Nakashima et al. 1992). The new approximations for 

the displacement and derivative terms are 

𝒗𝑖 ≈
𝒙𝑖+1 − 𝒙𝑖−1

2𝑑𝑡
 

(2.60) 

𝒂𝑖 ≈
𝒙𝑖+1 − 2𝒙𝑖 + 𝒙𝑖−1

𝑑𝑡2
 

(2.61) 

𝒙𝑖+1 = (
1

𝑑𝑡2
𝑴𝑁 +

1

2𝑑𝑡
𝑪𝑁)

−1

{
2

𝑑𝑡2
𝑴𝑁𝒙𝑖 + (−

1

𝑑𝑡2
𝑴𝑁 +

1

2𝑑𝑡
𝑪𝑁)𝒙𝑖−1 − 𝑹𝑁 − 𝑭𝑅 + 𝑭} 

(2.62) 

The step-by-step procedure begins with mass, damping, and stiffness matrices formulated for the 

numerical substructure. The displacement, velocity, and acceleration values are then initialized {𝑥0, 𝑣0, 𝑎0}. 

Relationships Eqs. (2.60) – (2.62) are incorporated to compute time steps 1 through 𝑛. Nakashima et al. 

(1992) used a forward difference methodology, which Wu et al. (2006) incorporated to produce the 

operator-splitting algorithm.  
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2.7.3 Newmark-𝛽 algorithm 

The Newmark-𝛽 method is a more generalized finite difference method, where for a selection of 𝛽 

and 𝛾 parameters, the performance of the approximation is altered. For a linear structure, some force vector 

𝑷0 = 𝑭0 − 𝑹𝑁,0 − 𝑭𝑅,0, and initial conditions 𝒙0 and 𝒗0 

𝒂0 =
𝑷0 − 𝑪𝑁𝒗0 −𝑲𝑁𝒙0

𝑴𝑁
 

(2.63) 

𝒃1 =
1

𝛽𝑑𝑡2
𝑴𝑁 +

𝛾

𝛽𝑑𝑡
𝑪𝑁     𝒃2 =

1

𝛽𝑑𝑡
𝑴𝑁 + (

𝛾

 𝛽
− 1)𝑪𝑁 

𝒃3 = (
1

2𝛽
− 1)𝑴𝑁 + 𝑑𝑡 (

𝛾

2𝛽
− 1)𝑪𝑁 

(2.64) 

Calculations at each time step (𝑖 = 0, 1, 2…) follow  

𝑷̂𝑖+1 = 𝑷𝑖+1 + 𝒃1𝒙𝑖 + 𝒃2𝒗𝑖 + 𝒃3𝒂𝑖 (2.65) 

𝒙𝑖+1 =
𝑷̂𝑖+1

𝑲𝑁 + 𝒃1
 (2.66) 

𝒗𝑖+1 =
𝛾

𝛽𝑑𝑡
(𝒙𝑖+1 − 𝒙𝑖) + (1 −

𝛾

𝛽
)𝒗𝑖 + 𝑑𝑡 (1 −

𝛾

2𝛽
)𝒂𝑖 (2.67) 

𝒂𝑖+1 =
1

𝛽𝑑𝑡2
(𝒙𝑖+1 − 𝒙𝑖) −

1

𝛽𝑑𝑡
𝒗𝑖 − (

1

2𝛽
− 1)𝒂𝑖 (2.68) 

Special cases of the Newmark-𝛽 method involve when 𝛾 =
1

2
 and 𝛽 =

1

4
, for the constant average 

acceleration methods, and 𝛾 =
1

2
 and 𝛽 =

1

6
, for the linear acceleration method. The Newmark method is 

similar to the explicit central difference method when 𝛾 =
1

2
 and 𝛽 = 0. Mahin and Shing (1985) 

demonstrates that in some cases the Newmark algorithm is less sensitive to experimental error than the 

central difference algorithm for a hybrid simulation example. For nonlinear systems, this method is 

augmented with additional features per (Chopra 2011).  

2.7.4 HHT-𝛼 algorithm  

The Hilber-Hughes-Taylor- 𝛼 (HHT-𝛼) is an implicit method that allows for second-order 

convergence and energy dissipation through numerical damping. The finite difference equations in Eqs. 

(2.66) and (2.67) are adopted and the equation of motion is modified with a parameter 𝛼, which describes 

numerical lag in damping, restoring forces and external forces.  

𝑴𝑁𝑎𝑖+1 + (1 + 𝛼)𝑪𝑁𝒗𝑖+1 − 𝛼𝑪𝑁𝒗𝑖 + (1 + 𝛼){𝑭𝑅,𝑖+1 + 𝑹𝑁,𝑖+1} − 𝛼{𝑭𝑅,𝑖 + 𝑹𝑁,𝑖}

= (1 + 𝛼)𝑭𝑖+1 − 𝛼𝑭𝑖 

(2.69) 
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where 𝛼 is a damping parameter. The three parameters 𝛼, 𝛽,and 𝛾 used as inputs for the HHT-𝛼 algorithm 

are computed per 

𝛼 ∈ [−
1

3
, 0],         𝛽 =

(1−𝛼)2

4
,        𝛾 =

1

2
− 𝛼 (2.70) 

For nonlinear systems, Newton-type iterative procedures are added to the HHT-𝛼 method to solve 

the equation of motion. Jung et al. (2007) proposed a modified Newton approach using the initial structural 

stiffness to compile hybrid simulation with the HHT-𝛼 method.  

2.7.5 Runge-Kutta algorithm 

The Runge-Kutta algorithms are a class of implicit and explicit numerical integration methods. A 

first-order Runge-Kutta algorithm is defined for a first-order differential equation given by 

𝑦̇(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) (2.71) 

for which the time-stepping is procedure is the Euler algorithm presented earlier or 

𝑘𝑖
𝐼 = 𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) 

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + 𝑘𝑖
𝐼𝑑𝑡 

(2.72) 

(2.73) 

A second-order Runge-Kutta (or mid-point) algorithm begins with Eq. (2.72) to estimate the 

derivative at 𝑡 = 𝑡0. Next, Eq. (2.73) is modified for the intermediate estimate of the time function at 𝑡 =

𝑡0 +
𝑑𝑡

2
, per 

𝑦1 (𝑡0 +
𝑑𝑡

2
) = 𝑦(𝑡0) + 𝑘0

𝐼
𝑑𝑡

2
 

(2.74) 

𝑘𝑖
𝐼𝐼 = 𝑓 (𝑦𝑖 (𝑡𝑖 +

𝑑𝑡

2
) , 𝑡𝑖 +

𝑑𝑡

2
) 

(2.75) 

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + 𝐾𝑖
𝐼𝐼𝑑𝑡 (2.76) 

with Eqs. (2.75) and (2.76) describing the general procedure for the second-order Runge-Kutta after the 

initial time step. The development of the fourth-order Runge-Kutta follows from the second-order 

procedure and is not covered in detail here.  

𝑘𝑖
𝐼 = 𝑓(𝑦(𝑡𝑖), 𝑡𝑖),     𝑘𝑖

𝐼𝐼 = 𝑓 (𝑦(𝑡𝑖) + 𝑘𝑖
𝐼 𝑑𝑡

2
, 𝑡𝑖 +

𝑑𝑡

2
), 

𝑘𝑖
𝐼𝐼𝐼 = 𝑓 (𝑦(𝑡𝑖) + 𝑘𝑖

𝐼𝐼 𝑑𝑡

2
, 𝑡𝑖 +

𝑑𝑡

2
),      𝑘𝑖

𝐼𝑉 = 𝑓(𝑦(𝑡𝑖) + 𝑘3𝑑𝑡, 𝑡𝑖 + 𝑑𝑡) 
(2.77) 

The fourth-order Runge-Kutta algorithm presented in Eq. (2.77) has been used extensively in hybrid 

simulation (Carrion et al. 2009; Carrion and Spencer 2007c; Drazin and Govindjee 2017; Fermandois and 

Spencer, Jr. 2018; Friedman et al. 2015; Phillips and Spencer 2013; Silva et al. 2020).  
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2.7.6 Dormand-Prince algorithm 

The Dormand-Prince is an explicit numerical integration algorithm for solving equations of motion, 

and an expansion to the Runge-Kutta method (Dormand et al. 1987). Both Dormand-Prince and Runge-

Kutta are applicable to nonlinear systems. The fifth- and eight-order Dormand-Prince algorithms are highly 

stable and use current values of states and their derivatives. The method uses multiple functions evaluations 

per step of integration. Dormand-Prince integration algorithms are widely popular for MATLAB users 

(MathWorks 2020). This algorithm has been implemented in several hybrid simulation applications (Chen 

et al. 2015; Najafi et al. 2020; Najafi and Spencer 2019).  

2.8 Summary 

The physical and mathematical tools for the ultimate objective of this dissertation, multi-axial RTHS 

testing, were outlined in this chapter. Modeling of dynamical systems requires an understanding of the 

mathematical representations necessary, in the form of an equation of motion. Manipulation of dynamical 

systems requires knowledge of control theory. Servo-hydraulic actuator and structural specimens are the 

primary dynamical systems of interest presented in this work. Frequency domain mathematics are presented 

as system identification is largely conducted in this domain throughout this literature. Kinematics of 

robotics and actuated systems were shown to be largely non-trivial to model and manipulate. Hence, the 

notion of kinematic transformation was developed and discussed. And lastly numerical integration 

algorithms were presented for solving the equations of motion.  
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CHAPTER 3 ACTUATOR COMPENSATION 

 

3.1 Problem Statement 

Actuator delays can result in instabilities in the closed-loop interaction between the numerical and 

physical substructures in RTHS experiments. Compensation strategies are an essential component of the 

RTHS methodology, in attempts to recover some of the actuator delays. Many compensation strategies have 

limitations in their abilities to sufficiently recover actuator delays, and thus performance and stability of the 

RTHS loop is compromised. In this chapter, an effort is made to develop compensation strategies that have 

excellent tracking and stability performance. The developments will later be incorporated in the multi-axial 

RTHS framework proposed in future chapters.  

A modification is proposed to the MBC proposed by (Carrion et al. 2009). The new architecture is 

referred to as the modified Model-Based Controller (mMBC). Like its predecessor, the mMBC uses a 

feedback and an inverse model controller designed using the identified model of the actuator-structure 

system. When the control authority is increased to achieve better tracking, stability of the MBC is 

jeopardized. The new mMBC provides better tracking performance, tracking robustness, and stability 

predictability A stability condition is proposed for the model-based class of controllers to demonstrate the 

tracking robustness of the mMBC.  

Next, an adaptive augmentation of the mMBC is introduced, and labeled as the Adaptive Model 

Reference Control (aMRC) with the objective of improving the tracking abilities of actuators through 

adaptation, while maintaining robustness. The proposed aMRC architecture is wrapped around the mMBC. 

The aMRC takes advantage of the model-reference idea to drive to track the desire performance embedded 

in the reference model. An adaptive projection algorithm is featured, with bounded output to prevent the 

adaptive parameter from drifting. At its core, the proposed adaptive algorithm is an integral controller, 

which ensures that steady-state errors induced by uncertainties and nonlinearities are dissipated.  

3.2 Setpoint tracking 

A setpoint is a desired target value to reach and maintain for a dynamic system. Two classes of 

setpoint problems in control theory include: (i) disturbance rejection, and (ii) reference tracking. In a 

disturbance rejection problem, the compensator attempts to maintain a constant equilibrium state while 

rejecting process disturbances and noise. In a reference tracking problem, the equilibrium state may be 

constantly evolving, and the goal of the compensator is to ensure that the plant follows the new equilibrium 

state. In reality, the job of the compensator is often both disturbance rejection and reference tracking.  
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Figure 3.1 Disturbance rejection 

 

Figure 3.2 Reference Tracking 

Shake tables are used to replicate historic and synthetic ground accelerations, for experimental testing 

of onboard structures. In order to have repeatability and for comparison with numerical simulations, the 

shake table must accurately replicate a prescribed acceleration record. However, shake tables possess 

inherent dynamics which alter the desired characteristics of the acceleration records executed on the 

onboard structure. Reproducing an acceleration time-history thus necessitates real-time comparisons of the 

reference and measured accelerations and manipulation of control signals in what is commonly referred to 

as an acceleration tracking problem.  

In real-time hybrid simulation, displacement and acceleration are often the preferred forms of 

imposing a boundary condition on a physical specimen (Zhang et al. 2017). Force tracking may be desired 

when imposing structural self-weighting on the physical specimen, or if the effective force testing method 

is used. In many applications, force and displacement tracking may be enforced simultaneously.   

3.3 Modified Model-Based Control 

The mMBC is developed using a linearized transfer function model of actuator-structure dynamics. 

The transfer function model should closely match the FRF of actuator-structure setup. In this section, the 

architecture of the mMBC is described for tracking of displacement and its derivatives (e.g., acceleration). 

The mMBC manipulates a prescribed reference signal and commands a control signal to an actuator for 

execution.  

3.3.1 Feedforward control 

Feedforward or inverse controllers are dynamical systems designed as the inverse of the nominal 

plant dynamics. The goal of this controller is to reconstruct the reference signal such that unwanted plant 

dynamics are cancelled out in the executed signal. The model used in the feedforward controller is 
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determined from the nominal plant dynamics obtained through system identification. The amplitude and 

bandwidth of the excitation during system identification should reflect the experimental conditions and 

intended use of the model. The feedforward control employed is cascaded with a lowpass filter. 

Since actuator-structure dynamics (i.e., plant) are described by strictly proper transfer functions, with 

more poles than zeros, as discussed in Section 2.4, the inverse must be an improper system. Multiplication 

with a lowpass filter will add the necessary poles for a proper and causal realization. Lowpass filters also 

serve in canceling high frequency dynamics which are often inaccurately identified in the nominal model. 

The inverse model is obtained per 

𝑭(𝑠) = 𝑷−1(𝑠)𝑳(𝑠) (3.1) 

where 𝑷(𝑠) is the plant or actuator-structure dynamics, 𝑳(𝑠) is the lowpass filter and 𝑭(𝑠) is the 

feedforward controller. The cutoff frequency and order for the lowpass filter are the only two design 

considerations and vary depending on experimental setups. The lowpass filter must have enough poles to 

make the inverse controller proper. The multiplication of the plant and feedforward controller result in the 

lowpass filter, which will be referred to as an augmented plant in this dissertation.  

3.3.2 Feedback control 

Feedback control can further compensate for tracking errors and provide tracking robustness in the 

presence of nonlinearities and noise. Feedback control refers to a large class of controllers each with their 

own advantages, like the 𝐻∞ (Ou et al. 2015). In this development, the LQG feedback controller is used. 

The proposed output feedback LQG is designed based on the augmented plant with and without noise 

𝑳(𝑠) =
𝑦(𝑠)

𝑞(𝑠)
= 𝑷(𝑠)𝑭(𝑠) = 𝑪𝐿(𝑠𝑰 − 𝑨𝐿)

−1𝑩𝐿 +𝑫𝐿 (3.2) 

𝒙̇(𝑡) = 𝑨𝐿𝒙(𝑡) + 𝑩𝐿𝑞(𝑡) + 𝑭𝑤(𝑡) 

𝑦(𝑡) = 𝑪𝐿𝒙(𝑡) + 𝑣(𝑡) 
(3.3) 

where 𝑨𝐿, 𝑩𝐿, 𝑪𝐿 and 𝑫𝐿 are the state-space realizations of the lowpass filter or augmented plant, 𝑞(𝑠) in 

Laplace-domain or 𝑞(𝑡) in time domain is the sum of the feedback controller outputs added back to the 

reference signal. The system in Eq. (3.2) is the augmented plant without noise, and the system in Eq. (3.3) 

is the augmented plant with noise. The combined use of the feedforward control, plant dynamics, and 

feedback control are illustrated in Fig. 3.1. 𝒙(𝑡) is a vector of state from the augmented plant and 𝑤(𝑡) and 

𝑣(𝑡) represent process and observation noise. The reference and measured signals are denoted as 𝑟(𝑡) and 

𝑦(𝑡), respectively, and the control signal sent to the plant for execution is labeled as 𝑢(𝑡). The feedforward 

control served in prefiltering the reference signal in the previous MBC development, but has been moved 

into the feedback loop in this modified development. 
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Figure 3.3 mMBC architecture 

Considering the augmented plant in Eq. (3.3) to be both controllable and observable, the proposed 

mMBC utilizes an LQG controller, which minimizes the expected value of a quadratic cost function, 

weighting the signal 𝑞(𝑡) and states 𝒙(𝑡). 

𝐽𝐿𝑄𝐺 = 𝔼{∫ (𝒙𝑇(𝑡)𝑸𝒙(𝑡) + 𝑞𝑇(𝑡)𝑅𝑞(𝑡))𝑑𝑡
∞

0

} (3.4) 

where 𝔼 denotes expected value, and 𝑸 and 𝑅 are weighting parameters, which are positive semidefinite 

and positive definite, respectively. The LQG controller assumes that the process and observation noises are 

Gaussian, white, zero-mean and stationary processes, and covariance matrices 𝑾 and 𝑽 are positive definite 

(Datta 2003).  

𝔼[𝑤(𝑡)𝑤𝑇(𝑡)] = 𝑾𝛿(𝑡 − 𝜏)       𝔼[𝑣(𝑡)𝑣𝑇(𝑡)] = 𝑽𝛿(𝑡 − 𝜏) (3.5) 

where 𝛿(𝑡 − 𝜏) is the Dirac Delta function as a function of time. In stochastic systems where the process 

and observation noise are Gaussian, the optimal feedback solution is separable into a linear quadratic 

estimator (LQE) or Kalman estimator and a linear quadratic regulator (LQR): 

1. Linear quadratic regulator – obtain the matrix feedback 𝑲𝐿𝑄𝑅 

𝑲𝐿𝑄𝑅 = 𝑅
−1𝑩𝐿

𝑇𝑿𝐿𝑄𝑅 (3.6) 

where 𝑿𝐿𝑄𝑅 is the solution to the following algebraic Riccati equation 

𝑿𝐿𝑄𝑅𝑨𝐿 + 𝑨𝐿
𝑇𝑿𝐿𝑄𝑅 +𝑸− 𝑿𝐿𝑄𝑅𝑩𝐿𝑅

−1𝑩𝐿
𝑇𝑿𝐿𝑄𝑅 = 0 (3.7) 

2. Linear quadratic estimator – obtain the observer gain 𝑳𝐿𝑄𝐸 

𝒙̇̂(𝑡) = (𝑨𝐿 − 𝑳𝐿𝑄𝐸𝑪𝐿)𝒙̂(𝑡) + 𝑩𝐿𝑞(𝑡) + 𝑳𝐿𝑄𝐸𝑒(𝑡) (3.8) 

where the observer gain is calculated by 𝑳𝐿𝑄𝐸 = 𝑿𝐿𝑄𝐸𝑪𝐿
𝑇𝑽−1, with 𝑿𝐿𝑄𝐸 as the solution to the following 

algebraic Riccati equation 

𝑨𝐿𝑿𝐿𝑄𝐸 + 𝑿𝐿𝑄𝐸𝑨𝐿
𝑇 − 𝑿𝐿𝑄𝐸𝑪𝐿

𝑇𝑽−1𝑪𝐿𝑿𝐿𝑄𝐸 + 𝑭𝑾𝑭
𝑇 = 0 (3.9) 

Taking advantage of the separation principle and the regulator and estimator matrices, the following 

feedback controller is obtained 

𝒙̇̂(𝑡) = (𝑨𝐿 −𝑩𝐿𝑲𝐿𝑄𝑅 − 𝑳𝐿𝑄𝐸𝑪𝐿)𝒙̂(𝑡) + 𝑳𝐿𝑄𝐸𝑒(𝑡) 

𝜇(𝑡) = −𝑲𝐿𝑄𝑅𝒙̂(𝑡) 
(3.10) 
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The transfer function of the feedback controller can be written as 

𝑲(𝑠) =
𝜇(𝑠)

𝑒(𝑠)
= −𝑲𝐿𝑄𝑅(𝑠𝑰 − 𝑨𝐿 +𝑩𝐿𝑲𝐿𝑄𝑅 + 𝑳𝐿𝑄𝐸𝑪𝐿)

−1
𝑳𝐿𝑄𝐸 (3.11) 

The dynamics of the LQG system are dependent on the plant it controls. First, a state estimator based 

on the augmented plant is obtained and applied to the error signal, to estimate the states of the augmented 

plant. Next, the estimated states are multiplied by the optimal LQR gain 𝑲𝐿𝑄𝑅 to obtain the feedback signal 

𝜇(𝑡). For optimization of the feedback controller, the weighting terms 𝑸 and 𝑅 are gradually adjusted until 

the error between the reference and measured signals is minimized.  

3.4 Modified Architecture 

The architecture difference between the MBC and mMBC is distinguishable in how the inverse model 

and feedback controllers are assembled. The output of the inverse model and feedback controllers are 

summed to formulate the control signal under the original architecture. In the mMBC, the output of the 

feedback controller is added back to the reference signal, per Figure 3.4. The feedback filter is designed on 

the basis of the inverse model and plant forming a combined augmented plant, idealized as a lowpass filter. 

This difference has important implications on the tracking robustness of the mMBC.  

 

(a) MBC      (b) mMBC 

Figure 3.4 Original and modified model-based architectures 

𝑮𝑀𝐵𝐶(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=
𝑷(𝑠)(𝑭(𝑠) + 𝑲(𝑠))

1 + 𝑷(𝑠)𝑲(𝑠)
  (3.12) 

𝑮𝑚𝑀𝐵𝐶(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=
𝑷(𝑠)𝑭(𝑠)(1 + 𝑲(𝑠))

1 + 𝑷(𝑠)𝑭(𝑠)𝑲(𝑠)
 (3.13) 

For a reference signal, 𝑟(𝑡), and a measurement signal, 𝑦(𝑡), the closed-loop system is denoted as 

𝑮(𝑠). 𝑦(𝑠) and 𝑟(𝑠) are Laplace representations of the reference and measurement signals. For some stable 

𝑷(𝑠), 𝑲(𝑠) and 𝑭(𝑠), the internal stability of the closed-loop system depends on the denominator or left-

half plane closed-loop poles. The difference between the architectures of MBC and mMBC is demonstrated 

in the denominators of the closed-loop transfer functions in Eqs. (3.12) and (3.13), respectively. 



51 

 

3.4.1 Stability condition 

The closed-loop stability is evaluated in this section, by assessing the denominator of the transfer 

functions in Eqs. (3.12) and (3.13). Let 𝑻 serve as a stable operator and 𝑲 be a stable feedback controller, 

where ‖𝑲‖∞ ≤ 1. Then, (𝑰 + 𝑻𝑲)−1is non-singular if ‖𝑻‖∞ < 1. In other words, if ‖𝑻𝑲‖∞ ≤

‖𝑻‖∞‖𝑲‖∞ < 1, then (𝑰 + 𝑻𝑲) is invertible. The mathematical backgrounds for these conditions are 

discussed in Dullerud and Paganini (2000). 

The stability condition for the MBC is the existence of a non-singular (1 + 𝑷(𝑠)𝑲(𝑠))
−1

. Similarly, 

the stability condition for the mMBC is the existence of a non-singular (1 + 𝑳(𝑠)𝑲(𝑠))
−1

. The re-routing 

of the feedback signal has resulted in the presence of the inverse model controller as an additional stabilizing 

module in the denominator of the closed-loop transfer function.  

Applying the norm conditions to Eq. (3.13), as discussed in the appendix, for some feedback 

controller, where ‖𝑲(𝑠)‖∞ ≤ 1, the mMBC closed-loop characteristic equation (1 + 𝑳(𝑠)𝑲(𝑠))
−1

is non-

singular when ‖𝑳(𝑠)𝑲(𝑠)‖∞ ≤ ‖𝑳(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1. Since ‖𝑳(𝑠)‖∞ = 1, the mMBC guarantees 

stability. Additional conditions for this stability are: (i) the specified bound on the infinity norm for the 

feedback controller, and (ii) assumption on lack of plant model uncertainty. Applying the norm condition 

to Eq. (3.12) with ‖𝑲(𝑠)‖∞ ≤ 1, ‖𝑷(𝑠)‖∞ may have any arbitrary gain. Hence, the stability condition 

‖𝑷(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1 cannot be guaranteed. Therefore, certainties in the robustness of the MBC system 

don’t exist.  

These norm bounds formulate a sufficient stability condition. Necessary conditions are exact and 

dependent on numerous physical parameters including the reachability of desired states. Due to the 

sufficient only nature of the stability condition discussed in this paper, the controller may remain stable 

even when the stability norm threshold is exceeded.  

3.5 Adaptive Model Reference Control 

The proposed aMRC controller is an augmentation on the mMBC controller discussed in Section 3.2. 

A reference model 𝑴(𝑠) is introduced, loaded with the intended behavior of the plant. An adaptive law 

𝑨(𝑠), is used to calculate an adaptive variable 𝜃(𝑡). Fig. 3.5 illustrates the complete aMRC loop. The aMRC 

is built on the 𝐿1 adaptive control architecture. The control law feature of the 𝐿1 is omitted to speed up the 

tracking performance. The assumptions, theorems, and proofs relevant to the response of the 𝐿1 are 

provided in (Cao and Hovakimyan 2009).  
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Figure 3.5 aMRC architecture 

3.5.1 Reference model 

The reference model developed in this adaptive scheme serves to drive the performance of the plant 

along the trajectory set by the reference model. Upon successful adaptation, the output trajectory of the 

plant converges to the output of the reference model. An ideal reference system representing perfect 

tracking is a unity-gain zero-phase system. The implication of this ideal system is that the reference signal 

will match the output signal, both in amplitude and phase.  

In reality, controlled actuator systems should perform as a lowpass filter, as high frequency 

attenuation is inevitable due to physical limitations. The cutoff frequency 𝑓𝑐 (Hz) for the lowpass filter 

should be a realistic selection based on the performance limitations of the actuator. The reference model is 

hence represented as a first-order lowpass filter 

𝑴(𝑠) =
2𝜋𝑓𝑐

𝑠 + 2𝜋𝑓𝑐
 (3.14) 

3.5.2 Adaptation law 

The adaptation law herein is responsible for the adaptive estimate that is continuously updated to 

change the controller behavior. The objective of the adaptation law in the proposed algorithm is to minimize 

steady-state errors that emerge when plant nonlinearities or unmodeled dynamics exist. Integral controllers 

have proven effective in minimizing steady-state errors. The integral control concept is used here in the 

adaptation law for fast and smooth attenuation of the steady-state errors. Integral controllers however are 

prone to drifting problems, where the calculated control parameter grows unbounded. A projection 

algorithm is thus introduced which addresses the drifting problem by limiting the calculated adaptive 
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parameter to a prescribed bound. The projection algorithm used, ensures a bounded and smooth adaptive 

parameter estimate (Cao and Hovakimyan 2009).  

Let 𝑓(𝜃) be a convex smooth function, the subset 

Ω0 ≔ {𝜃 ∈ ℛ𝑛|𝑓(𝜃) < 0} (3.15) 

is convex. 𝑓(𝜃) maps ℛ𝑛 to ℛ and is defined as 

𝑓(𝜃) = (𝜃^𝑇 𝜃 − 𝜃_max ^2)/(𝜖𝜃_max ) (3.16) 

where 𝜃𝑚𝑎𝑥 the maximum bound set on 𝜃 and 𝜖 is the exceedance tolerance on the bound. 𝜃 is the adaptive 

estimate and the outcome of the adaptation law. 𝜀(𝑡) is the error between the plant and the reference model 

outputs, 𝜀(𝑡) = 𝑦(𝑡) − 𝑦𝑚(𝑡). For an adaptive gain Γ, the projection operator on 𝜀 is formulated per  

𝜃̇ = Γ𝑃𝑟𝑜𝑗(𝜃, 𝜀) ≔

{
 

 
Γ𝜀                                                    if 𝑓(𝜃) < 0,…………………

Γ𝜀                                                    if 𝑓(𝜃) > 0, and ∇𝑓𝑇𝜀 ≤ 0,

Γ𝜀 − Γ
∇𝑓

‖∇𝑓‖
⟨
∇𝑓

‖∇𝑓‖
, 𝜀⟩ 𝑓(𝜃)    if 𝑓(𝜃) ≥ 0, and ∇𝑓𝑇𝜀 > 0.

 (3.17) 

The adaptive law is denoted by 𝑨(𝑠) in Fig. 3.5. The projection algorithm of the adaptive law in Eq. 

(3.17) at its core is simply an integral controller when 𝑓(𝜃) < 0. The projection operator subtracts a vector 

normal to the boundary of the convex set, such that a smooth transformation is obtained from the original 

vector 𝜀(𝑡). When 𝑓(𝜃) ≥ 0, the normal component of 𝜀 is attenuated until the 𝑃𝑟𝑜𝑗(𝜃, 𝜀) is tangential to 

the boundary. This ensures the estimated parameter remains smooth and bounded. By definition, the 

projection operator does not alter the integral action in formulating 𝜃, unless the maximum bound set for 

the adaptive estimate is approached. Fig. 3.6 illustrates a convex set and the action of the projection 

operator.  

 

Figure 3.6 Projection operator 

The reference model and the adaptation law are major components in the design of the aMRC 

algorithm. In the design of an aMRC compensator, if the cutoff frequency of the reference system is set too 

low, the controller tracking will be sluggish. If the cutoff frequency is too high, the adaptation law will not 

be able to compensate for high frequency contents appropriately and high frequency noise will appear in 

the output of the plant dynamics. While designing a reference model, a good practice is to start off with a 
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moderately low cutoff frequency and increase gradually to optimize the tracking performance and ensure 

stability. Similarly, the adaptation gain should be gradually increased to enhance the tracking performance.  

3.6 Numerical Evaluation 

This section evaluates the proposed mMBC and aMRC compensation algorithms for a reference 

tracking problem. A second-order dynamical system is introduced, where the model of the system used for 

developing compensation strategies is perturbed. The discrepancy between the real plant and nominal 

(identified) model are intentionally created to evaluate each controller in the presence of modeling 

uncertainty.  A 5-second chirp signal with a frequency bandwidth of 0 – 10 Hz is selected as the reference 

excitation. Four compensation techniques are evaluated as part of this analytical study: (i) feedforward, (ii) 

MBC, (iii) mMBC, and (iv) aMRC. 

𝑮(𝑠) =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 (3.18) 

where 𝜔𝑛 and 𝜁 are the natural frequency and damping ratio of the system, respectively. This second-order 

dynamic is representative of single-DOF dynamical system. The real plant is denoted as 𝑷(𝑠) and the 

nominal model is denoted by 𝑷̂(𝑠).  

𝑷(𝑠) = {𝑮(𝑠)|𝜔𝑛 = 50, 𝜁 = 0.5} (3.19) 

𝑷̂(𝑠) = {𝑮(𝑠)|𝜔𝑛~𝑈[45,50], 𝜁~𝑈[0.25,0.75]} (3.20) 

where the parameters 𝜔𝑛 and 𝜁 are distributed uniformly, with 𝑈[𝑎, 𝑏], and 𝑎 and 𝑏 as the lower and upper 

bounds for the parameter.  

The numerical simulations are conducted for a duration of 5 seconds with the Dormand-Prince RK8 

integration scheme (Dormand et al. 1987). The performance and feasibility of each compensator is assessed 

between reference and output signals 𝑟(𝑡) and 𝑦(𝑡) respectively, with the unitless root-mean-square error 

(RMSE) and maximum error (MAXE) evaluation criteria.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑟(𝑖) − 𝑦(𝑖))

2
 𝑛

𝑖=1

∑ (𝑟(𝑖))
2
 𝑛

𝑖=1

 (3.21) 

𝑀𝐴𝑋𝐸 =
max|𝑟(𝑖) − 𝑦(𝑖)|

max|𝑟(𝑖)|
 (3.22) 

where at step 𝑖, 𝑟(𝑖) and 𝑦(𝑖) are the reference and output (measured) signals respectively, and 𝑛 is the total 

data point count.  
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(a) Amplitude 

 

(b) Phase 

Figure 3.7 FRF of the plant and 100 nominal models 

A suite of 100 nominal models are obtained by randomizing the natural frequency and damping ratio 

per the upper and lower bounds provided in Eq. (3.20). This process creates variations or modeling 

uncertainties between the dynamics of the plant in Eq. (3.19) and nominal models in Eq. (3.20). The FRF 

of the plant and nominal model variations are presented in Fig. 3.5. A compensator which consistently 

produces good tracking performance under a wide degree of modeling uncertainties is said to have good 

tracking robustness.  

Compensators require intricate tuning to optimize their performance. The general tuning procedure 

and control design for each of the compensators are presented below: 

• Feedforward: nominal model in Eq. (3.20) is inverted and multiplied with a second-order lowpass filter 

with a cutoff frequency of 50 Hz. 

• MBC: nominal model in Eq. (3.20) is used for design of a kalman state estimator and an LQR gain. 

The estimator and regulators are tuned until the error between the reference and measurement signals 

are minimized. The feedforward controller from earlier is then applied to complete the MBC 

compensator.  

• mMBC: real plant in Eq. (3.19) and feedforward controller from earlier are cascaded to create an 

augmented plant. State estimator and feedback regulator are designed based on the augmented plant 

and tuned until the error between the reference and measurement signals are minimized. 
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• aMRC: the mMBC compensator is augmented with a reference model and an adaptive law. The cutoff 

frequency on the reference model is set to 𝑓𝑐 =300 Hz and the gain on the adaptive law is set to Γ =

200.  

The control-plant systems are next subject to the chirp signal in Fig. 3.8. This process is repeated for 

each of the 100 randomized nominal plants. 

 

Figure 3.8 5-second chirp signal 

Fig. 3.9 illustrates the synchronization plots for one simulation. A 1:1 diagonal line in a 

synchronization plot implies perfect tracking. As demonstrated, incorporation of feedforward and MBC 

compensators is not enough to cancel out the high frequency oscillations observed in the synchronization 

plots. The mMBC offers a more rigorous feedback action as noted by the major improvement in the 

tracking. Integration of the adaptive law in the form of the aMRC, bears no significant results however, 

when the tracking is already excellent.  

The box plots in Fig. 3.10, Table 3.1, and 3.2 provide graphical and numerical results from the 100 

simulations of the chirp signals for each compensator. The redlines and the bottom and top lines in the blue 

boxes indicate the median, 25th quartile and 75th quartile results respectively, for the RMSE and MAXE error 

indicators. The dashed lines extending from the box are whiskers of the box plot and indicate upper and 

lower extremes of the error data. The mMBC and aMRC compensators result in smaller errors compared 

to Feedforward and MBC algorithms. Note that although the improvements offered by the adaptive 

augmentation from the mMBC to the aMRC was not significant or observable for a single simulation in 

Fig. 3.9, the aMRC results in better tracking and more consistent (narrower box and whiskers) results. 

Therefore, the aMRC has the best tracking robustness followed by mMBC.  
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(a) Feedforward 

 

(b) MBC 

 

(c) mMBC 

 

(d) aMRC 

Figure 3.9 Synchronization plots 

 

(a) MAXE    (b) RMSE 

Figure 3.10 Box plots for the error indicators 
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Table 3.1 MAXE error variation 

Compensator Lower adjacent 25th percentile Median 75th percentile Upper adjacent 

FF 0.274 0.406 0.490 0.610 0.724 

MBC 0.275 0.406 0.495 0.617 0.731 

mMBC 0.023 0.056 0.077 0.093 0.210 

aMRCs 0.021 0.042 0.052 0.065 0.098 

 

Table 3.2 RMSE error variation 

Compensator Lower adjacent 25th percentile Median 75th percentile Upper adjacent 

FF 0.158 0.266 0.326 0.406 0.522 

MBC 0.163 0.263 0.320 0.409 0.530 

mMBC 0.012 0.041 0.056 0.072 0.131 

aMRCs 0.010 0.023 0.029 0.040 0.068 

 

3.7 Shake Table Control 

For experimental validation of the tracking abilities of the proposed controllers, a shake table setup 

is selected with an onboard structure. The aim of this study is to provide acceleration tracking for the shake 

table. The aMRC compensator is not included in this study, as adaptive compensation results in low 

frequency control signals. A low frequency acceleration signal translates to large displacements, which 

exceed the stroke capacity of a shake table. Several ground motions are selected and the capabilities of the 

mMBC are compared to some of the existing compensation techniques.  

3.7.1 Experimental setup 

The experimental setup in this study consists of a 1-DOF Quanser II shake table, a 

45 cm × 45 cm table operated on a linear ball bearing and powered by a 400 W DC Motor with an onboard 

1000 LPR IP 40 relative encoder. The motor is operated with a Kollmorgan Silverline H-344-H-0600 

amplifier. The operational frequency bandwidth of the shake table is 0 − 20 Hz with a stroke length of 

± 3”, (Dyke and Caicedo 2002). An NI CompactRIO 9073 controller is used along with the LabVIEW real-

time module, to manage the controller programming. An 8-channel m+p VibPilot is used for data 

acquisition. Acceleration measurements are obtained with a PCB 3701G3FA3G capacitive accelerometer. 

The numerical and control interfaces are operated at a sampling frequency of 200 Hz. 
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Figure 3.11 Two-story structure onboard a shake table 

To test the capabilities of the proposed controller, additional features are added to the shake table 

setup to achieve several phenomena including nonlinearity and modeling uncertainty. The two-story frame 

structure in Fig. 3.11 discussed in Wang et al. (2015) and Phillips et al. (2014) is mounted on the shake 

table throughout this experimental study. The structure’s modes were experimentally identified to have 

natural frequencies of 1.73 Hz and 4.64 Hz with respective damping ratios of 0.4% and 0.2%. The 

identified mass and stiffness matrices are presented below: 

𝑴 = [
25.11 0
0 23.40

] 𝑘𝑔               𝑲 = [
15400 −8300
−8300 8300

]𝑁/𝑚 (3.23) 

3.7.2 System identification of a single-axis shake table 

A bandlimited white noise (BLWN) with a frequency bandwidth of 0 – 30 Hz and an RMS value of 

2 mm was used to excite the shake table and specimen. The RMS value for the BLWN should correspond 

to the expected RMS value of the actuator motion during the experiment. Fig. 3.12 presents the FRF from 

command signal to measured shake table acceleration for different proportional gains (p-gain). When p-

gain is too high, distinct poles are formed resulting in harmonic behavior and sometimes instability. When 

p-gain is too low, the shake table becomes too slow for the acceleration tracking purposes. Established 

tuning approaches for PID controllers including the Ziegler-Nichols method, tend to predict smaller gains, 

leading to sluggish acceleration tracking performance. For the structure and shake table presented in Fig. 

3.11, a p-gain value of 3 resulted in the best model for acceleration tracking. The small shake table used 

for system identification is unable to impose accelerations at low frequencies, as such accelerations 

correspond to high amplitude displacements. Therefore, the noise-to-signal ratio is quite high at low 

frequencies. 
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(a) Amplitude 

 

(b) Phase 

Figure 3.12 FRF of shake table for different p-gains 

Next, wooden braces are added to each story of the structure. System identification is then conducted 

to capture the added stiffness due to the wooden braces. The aim for adding these braces is to demonstrate 

how different controllers react to a physical change (i.e. wooden braces breaking). Braces are built from 

Balsa wood with a length of 9.5”, width of 1 2⁄ ", thickness of 3 16⁄ ”, and width of 3” at the supports. 

Presence of the braces implies greater stiffness in both floors, and higher natural frequencies of 1.89 Hz 

and 5.17 Hz for the two modes.  

Following system identification, a linearized transfer function for input voltage and output 

acceleration is identified with 7 poles and 7 zeros, using the frequency domain identification tool MFDID, 

discussed in (Kim et al. 2005). This toolbox fits the FRF data with the closest matching transfer function 

model. All of the zeros reside in the left-hand plane or on the imaginery axis to ensure stability when the 

transfer function model of the shake table is inverted to produce an inverse model controller. The transfer 

function is presented in Eq. (3.24) and in graphical form in Fig. 3.13. The FRF for the setup with braces 

and without braces and the transfer function for the setup with braces are demonstrated in this figure. To 

ensure drifting is avoided due to the double integration in the inverse model implementation, input ground 

motions are highpass filtered to attenuate low frequency contents. A second-order butterworth highpass 

filter with a cutoff frequency of 0.25 Hz is used for prefiltering of earthquake time histories before 

experimenting.   
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𝑷(𝑠) =
1.667 (𝑠2)(𝑠 + 0.603)(𝑠2 + 0.577𝑠 + 130)(𝑠2 + 1.609𝑠 + 1041)

(𝑠 + 0.922)(𝑠2 + 0.511𝑠 + 121.4)(𝑠2 + 2.106𝑠 + 1000)(𝑠2 + 19.13𝑠 + 2007)
 (3.24) 

 

(a) Amplitude 

 

(b) Phase 

Figure 3.13 FRF and transfer function models of shake table 

3.7.3 Ground motion 

Acceleration records from strong motion sensors are unique to the geography and individual site 

conditions. Assessing the performance of the shake table with different acceleration records offers different 

challenges to the control task. Many ground motions possess higher frequency contents but are shorter in 

duration, while others have lower frequency contents with higher durations. Three ground motions are 

selected and presented in Fig. 3.14, which include: (i) El Centro – 1940, (ii) Kobe – 1995, and (iii) 

Northridge – 1994.  Due to limited stroke lengths of the shake table, the ground motion accelerations are 

scaled in amplitude and highpass filtered. 
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(a) El Centro 30% 

 

(b) Kobe 50% 

 

(c) Northridge 40% 

Figure 3.14 Original and filtered ground motion accelerations 

3.7.4 Tracking performance 

Three different ground motion inputs are commanded to the shake table setup and reference-to-

measurement signal tracking capabilities of the compensation techniques are evaluated. In this experimental 

study, the shake table is loaded with a two-story frame structure without the added braces, while the 

dynamic model used in the design of the controllers is derived from the identified two-story frame structure 

with the added braces. In addition, a roof-level Nonlinear Energy Sink (NES) device is mounted on the 

two-story frame, which adds nonlinearities to the shake table through CSI. The intent of this experiment is 

to test the controller behavior in the presence of nonlinearity and unmodeled dynamics.  

Tracking performance of 4 controllers are evaluated via the RMSE and MAXE criteria between 

reference and output accelerations in both time and frequency domains. These include: (i) Feedforward, (ii) 
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TFI, (iii) MBC, and (iv) mMBC. The ideal controller is one which consistently realizes the smallest 𝑅𝑀𝑆𝐸. 

Fig. 3.15 demonstrates the time domain acceleration tracking response for the El Centro earthquake PGA-

scaled at 30%. Both reference and measured acceleration records have been post-processed with a 5th order 

lowpass filter with a cutoff frequency of 20 Hz, to reduce high frequency noise contents.  

 
(a) Feedforward – time history 

 
(b) Feedforward – synchronization plot 

 
(c) TFI (3 iter.) – time history 

 
(d) TFI (3 iter.) – synchronization plot 

 
(e) TFI (6 iter.) – time history 

 
(f) TFI (6 iter.) – synchronization plot 

 

Figure 3.15 Acceleration tracking and synchronization plots for the 30% El Centro 
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Figure 3.15 (continued) 

 
(g) MBC – time history 

 
(h) MBC – synchronization plot 

 
(i) mMBC – time history 

 
(j) mMBC – synchronization plot 

The results of the RMSE and MAXE quantitative evaluation criteria in Eqs. (3.21) and (3.22), in time 

and frequency domain, are presented in Tables 3.3-3.5. Each tracking experiment is repeated three times 

and the performance criteria presented are for the average of the three performances. This is to account for 

the variability that may exist in these results. The feedback parameters of MBC and mMBC are optimized 

for the minimization of the tracking error. The results of the TFI technique are demonstrated for 3 iterations 

and 6 iterations. The iterative tuning of the TFI method amplifies high frequency contents as indicated by 

the results. The mMBC technique demonstrates the least overshoot in the output acceleration. This is 

attributed to the authoritative feedback design of the mMBC.  
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Table 3.3 Time domain RMSE performance for different ground motions 

Controller Type 
Time domain RMSE  

El Centro Kobe Northridge 

Feedforward 0.930 1.242 0.945 

TFI (3 iter.) 1.054 1.396 1.093 

TFI (6 iter.) 1.160 1.332 1.169 

MBC 0.870 1.376 0.951 

mMBC 0.803 1.128 0.784 

 

Table 3.4 Time domain MAXE for different ground motions 

Controller Type 
Time domain MAXE  

El Centro Kobe Northridge 

Feedforward 0.550 0.786 0.611 

TFI (3 iter.) 0.743 0.840 0.797 

TFI (6 iter.) 0.790 0.843 0.791 

MBC 0.432 0.843 0.665 

mMBC 0.402 0.688 0.584 

 

Table 3.5 Frequency domain RMSE performance for different ground motions 

Controller Type 
Frequency domain RMSE  

El Centro Kobe Northridge 

Feedforward 1.121 1.386 1.004 

TFI (3 iter.) 1.208 1.722 1.030 

TFI (6 iter.) 1.154 1.392 1.001 

MBC 1.101 1.731 0.957 

mMBC 0.706 1.004 0.559 

 

3.7.5 Tracking robustness 

Tracking robustness is the evaluation of the tracking ability of a controller under changing dynamics 

of the plant. A controller that becomes unstable under changing plant dynamics will clearly lack tracking 

robustness. A tracking robustness study hence requires analysis of both the tracking and stability properties 

of a controller. The stability performance of a feedforward controller is arbitrary and easy to analyze. With 
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a stable plant and a stable feedforward controller, this method needs no further stability analysis. TFI is an 

iterative expansion of the feedforward technique and its stability is dependent on the initial iteration. 

Therefore, in this section the focus of the stability performance is on the two model-based controllers. 

Addition of feedback control makes stability analysis difficult, particularly when changes in dynamics of 

the shake table are expected. The stability condition discussed earlier is further elaborated in this section.  

Stability assessment of the discussed model-based controllers requires limiting feedback gains to 

‖𝑲(𝑠)‖∞ ≤ 1. From an engineering perspective, an infinitely large feedback gain cannot be stabilizing. 

Thus, limiting the gain of the feedback controller for stability performance analysis is necessary. Having 

bounded the feedback gain, the limits that may exist on the plant gain must be studied. In the case of the 

MBC, the term plant refers to the coupled shake table and structure dynamics, and for the mMBC, refers to 

the cascaded use of the inverse model controller and the shake table and structure dynamics. A plant may 

have arbitrary gains over different frequency ranges and the amplitude of the gain is subject to change due 

to nonlinearities and changing plant dynamics. Understanding the operational frequency of the shake table 

helps determine what frequency range to study, when calculating the plant norm. In most shake tables, the 

frequency content of the input signal provides a good estimate of the operational frequency bandwidth of 

the shake table. Fig. 3.16 presents the power spectral densities (PSD) of three different ground motions. 

This PSD plot highlights the energy distribution at various frequencies. An important observation is that 

the majority of the energy of the listed ground motions is concentrated in the 0 – 10 Hz frequency range. 

Hence, stability conditions and norm calculations are assessed over this frequency bandwidth. 

 

Figure 3.16 Power spectral density for ground motions 

The goal of a feedback controller, particularly in tracking type problems, is to enhance the tracking 

abilities of the control system (i.e. amplitude and phase compensation). Feedback control induced instability 

happens when instead of observing improvements, by increasing the gain of the feedback the tracking 

abilities start to deteriorate and soon diverge into complete instabilities. Alternatively, instability may occur 

for a constant feedback gain, but with large nonlinearities or sudden changes of plant dynamics due to 

yielding or brittle failures of structural components onboard the shake table. The time domain performances 

of the shake table for the MBC and mMBC compensation methods are presented in Fig. 3.17, showing the 
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tracking quality for increasing values of feedback gain. The El Centro ground motion was used in this 

robustness analysis.   

With the MBC technique, the plant norm is calculated as ‖𝑷(𝑠)‖∞ = 3.84 for the frequency range 0 

– 10 Hz. Referring to the MBC stability plot, the RMSE value begins an upwards increase at ‖𝑲(𝑠)‖∞ ≈

0.3. The stability norm condition ‖𝑷(𝑠)‖∞‖𝑲(𝑠)‖∞ < 1, derived mathematically is observed to be 

violated, in Fig. 3.17, roughly when this upward trend begins and tracking approaches instability. When the 

mMBC is used, the augmented plant norm is ‖𝑳(𝑠)‖∞ = 1. For increasing values of ‖𝑲(𝑠)‖∞, not only is 

stability maintained, but the RMSE criterion decreases, which corresponds to a tracking enhancement.   

 

(a) MBC 

 

(b) mMBC 

Figure 3.17 RMSE performance of model-based controllers vs. feedback gain for 30% El Centro 

The mMBC achieves enhanced tracking for feedback gains satisfying ‖𝑲(𝑠)‖∞ ≤ 1, implying 

predictability in the stability performance of this control architecture. The MBC, however, does not have 

this predictive property. In the mMBC, the inverse model controller combines with the shake table 

dynamics in the stabilizing effort, while in the MBC, the entire stabilizing effort is burdened onto the shake 

table dynamics. The feedback controller in mMBC is designed based on a lowpass filter plant design, which 

typically results in fewer feedback states. However, in the feedback component of the MBC technique, 

there are at least as many states as there are in the presumed model of the shake table dynamics. Feedback 

on a smaller number of states is more stable and efficient from a computational perspective as well. 
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The tracking abilities of the discussed controllers are already demonstrated in the presence of 

unmodeled dynamics. The next step is to demonstrate the tracking robustness of the model-based controllers 

in the presence of sudden changes of dynamics during the test. This is achieved by installing Balsa wood 

braces, selecting a ground motion strong enough, and allowing the braces to break during the experiment. 

The El Centro ground motion, PGA-scaled to 70% was used for this purpose. An additional second-order 

Butterworth highpass filter with a cutoff frequency of 1.5 Hz is applied to ensure shake table stroke limit is 

not reached.  

 

Figure 3.18 Two-story frame structure with failed braces 

After the initial impulse at the 6 second mark, one or more braces failed, seen in Fig. 3.18, resulting 

in changes in the natural frequencies of the two-story frame. Since the response of the two-story frame is 

coupled with the response of the shake table through CSI, this change in natural frequency translates to a 

change in the dynamics of the shake table. Fig. 3.19 demonstrates the response of each model-based 

controller in the presence of brace failure. The MBC tends to unwind and is unable to bring the shake table 

acceleration to a zero equilibrium. The PSD for MBC output indicates a peak at around 5 Hz. The mMBC 

technique is capable of tracking the reference signal and stabilizing the new dynamics. The mMBC filters 

should be designed such that the stability norm condition is well below the stability condition threshold, to 

allow unmodeled behaviors to be accommodated throughout the experiments.  
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(a) MBC time domain     (b) MBC frequency domain 

 

(c) mMBC time domain    (d) mMBC frequency domain 

Figure 3.19 Model-based controller responses to changing dynamics 

The stability criterion for the mMBC algorithm is next schematically described, for before and after 

brace failure in Fig. 3.20. Under an elastic circumstance and prior to brace failure, the augmented plant 

behaves as a lowpass filter. Fig. 3.20(a) presents the lowpass filter 𝑳(𝑠) along with the LQG feedback 

controller 𝑲(𝑠). As mentioned earlier, stability can be guaranteed when (1 + 𝑳(𝑠)𝑲(𝑠))
−1

is nonsingular, 

which corresponds to ‖𝑳(𝑠)𝑲(𝑠)‖∞ < 1. This stability criterion is represented by the black dashed line in Fig. 3.20(a). 

When ‖𝑳(𝑠)𝑲(𝑠)‖∞ is close to zero, the feedback action is minimal, and tracking is poor. When ‖𝑳(𝑠)𝑲(𝑠)‖∞ is 

close to 1, the feedback action is strong, but the stability limit can be breached, if there are changes to the dynamics 

of the shake table and specimen. For particular feedback controller shown, the feedback gain was designed to be 

conservative to allow for changes in dynamics of the physical setup.  
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(a) Stability criterion before brace failure  (b) Stability criterion after brace failure 

Figure 3.20 Amplitude plots for the stability criterion 

In Fig. 3.20(b), 𝑷𝑑(𝑠) describes the dynamics of the system after braces are damaged. The new 

augmented plant is now described via 𝑷𝑑(𝑠)𝑭(𝑠). Due to the sudden failure in the brace elements, new 

peaks appear in the stability criterion (i.e., black dashed-line). The mMBC provides the foresight and 

predictability for the stability limit of the closed-loop dynamics. Designers can develop an mMBC 

controller with sufficient space between the stability limit and the stability criterion to allow for dynamic 

changes and, hence avoiding instabilities.  

3.8 Summary 

In this chapter, different control strategies were examined for compensation of unwanted actuator-structure 

dynamics. First, the concept of reference tracking for shake table and real-time hybrid simulation (RTHS) 

applications were described. Displacement, acceleration, and force are examples of reference tracking 

problems that were discussed. The modified Model-Based Control (mMBC) compensator was proposed as 

a modification to the Model-Based Control (MBC) already used in shake table and RTHS applications. The 

modified compensator has improved tracking performance, stability robustness, and stability predictability. 

An adaptive augmentation of the mMBC was proposed, called the adaptive Model Reference Control 

(aMRC). This algorithm is comprised of an adaptive law and a reference model. The adaptive law forces 

the plant to behave like the reference model. A projection algorithm is proposed for the adaptive law, which 

prevents adaptive parameter drifting.  

The tracking abilities of the proposed mMBC and aMRC algorithms were next numerically and 

experimentally evaluated. A single-DOF numerical simulation compared four compensation strategies, 

determining that the mMBC and aMRC had the best tracking robustness. A shake table setup with an 

onboard structure was considered for acceleration tracking. The aMRC algorithm was excluded from the 
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acceleration control problem, as the adaptive law generates low frequency contents which result in high 

amplitude displacements. Three other shake table compensation techniques were evaluated and the mMBC 

was determined to have the best tracking robustness and stability predictability.  
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CHAPTER 4 SINGLE-AXIS REAL-TIME HYBRID SIMULATION 

 

4.1 Problem Statement 

Real-time hybrid simulation (RTHS) is an alternative to the traditional hybrid simulation, which 

offers benefits of real-time testing (i.e., material rate-dependence can be accommodated) and substructuring 

(i.e., cost and space savings). Physical execution happens at real-world speeds and numerical integration is 

conducted explicitly at frequencies of 200 Hz or higher. The experimental capabilities and computational 

requirements are increased due to the rapid nature of the RTHS.  

One of the challenges in RTHS is that researchers set higher than realistic (artificial) damping values 

to the numerical substructure to achieve stable execution. The stability and accuracy of an RTHS 

experiment are often jeopardized by the presence of unwanted actuator-structure dynamics, resulting in 

closed-loop delays. Model-based RTHS eliminates the need for the added artificial damping and results in 

a stable performance. This RTHS formulation addresses the challenges of unwanted actuator-structure 

behavior via model-based compensation methods (Carrion et al. 2009; Phillips and Spencer 2013; Zhang 

et al. 2017).  

Another challenge with RTHS surrounds the question of the accuracy of the method. A number of 

publications in the recent years have investigated and compared the performances of shake table and various 

RTHS methods, as a means to validate the latter. Ashasi-Sorkhabi et al. (2015) studied the dynamic 

performance of a spring-mass system coupled to a tuned liquid damper. The displacement response of the 

full- and sub-structured test configurations were evaluated and demonstrated to be closely matching. 

Damping of the analytical substructure was set to a high value of 6.3%.  Lamarche et al. (2010) conducted 

shake table and RTHS testing of a two-story reinforced concrete frame. Similar results were observed in 

the displacement response for the shake table and RTHS tests in both the linear- and nonlinear-range. 

However, validated methods for testing lightly-damped and highly-nonlinear structures don’t appear to be 

available. Nonlinear energy sink devices are examples of lightly-damped and highly nonlinear structural 

systems.  

This section outlines the model-based RTHS method for single-axis testing, as a steppingstone for 

the multi-axial RTHS development to be described in later chapters. Several applications involving lightly-

damped and highly-nonlinear structural systems are then explored.  

4.2 Model-based Real-Time Hybrid Simulation 

The RTHS method partitions the dynamics of a reference structure into two or more components. 

The fundamental components are typically numerical and physical substructures, and a boundary interface. 
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The numerical substructure is comprised of governing equations, state-space formulations, or more 

sophisticated finite element analysis (FEA) models. The physical substructure is the structural element of 

interest whose nonlinear hysteresis is the focus of the research. There exists a correspondence between the 

boundary conditions and forces in numerical and physical substructures, as if the entire experiment was one 

continuous reference structure. Since, it is impossible for a computer and a structural element to directly 

communicate the physical laws at the boundary conditions, actuators and sensors are utilized. The boundary 

point for a single-axis RTHS experiment is often enforced by just one servo-hydraulic actuator and one or 

more sensors, per Fig. 4.1. 

 

Figure 4.1 Schematic of a single-axis RTHS  

The single-axis model-based RTHS framework presented herein employs the mMBC compensator 

developed by Najafi and Spencer (2020), which has excellent tracking and robustness capabilities, making 

it a suitable choice for RTHS applications. In setting up the framework, two types of model-based 

compensations are considered: (i) displacement tracking, and (ii) acceleration tracking, as shown in Fig. 

4.2. The excitation considered here is an earthquake ground acceleration for demonstrative purposes. The 

choice of input excitation is arbitrary.   

 

(a) RTHS with displacement tracking   (b) RTHS with acceleration tracking 

Figure 4.2 Model-based RTHS architecture 
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After excitation of the numerical substructure, displacements or accelerations at the boundary with 

the physical substructure are computed. The signal that exits the numerical substructure is referred to as the 

reference or target signal. The mMBC compensator may be used in both displacement and acceleration 

reference tracking problems. Output of the compensators is a control signal 𝑢(𝑡), sent for physical execution 

via an actuator. Once the physical substructure is deformed, onboard sensors including accelerometers, 

displacement transducers, and loadcells obtain the measurement signal 𝑦(𝑡) and feedback force 𝐹𝑅(𝑡).  

Throughout this section, three applications of single-axis RTHS are explored. First, a validation study 

of model-based RTHS for a lightly-damped and highly-nonlinear structural system is presented, where the 

results of RTHS experiments are evaluated via comparisons to shake table tests. Next, an RTHS framework 

with the aMRC compensator is presented with application to the benchmark control problem discussed in 

Silva et al. (2020). Lastly, a study of magnetorheological dampers for mitigation of train-induced bridge 

vibrations is presented.  

4.3 Model-based RTHS for lightly-damped and highly-nonlinear structure 

With the objective of conducting model-based RTHS on a structural system with light damping and 

high degree of nonlinearity, the two-story structure from Section 3.7 is selected. The two-story frame shown 

in Fig. 4.3 behaves as a shear building, since the floor slabs are considerably stiffer than the columns. The 

structure is lightly damped, possessing damping ratios of 0.20% and 0.36% for the first two modes, 

respectively, when the NES is locked, the damping is 0.45% and 0.38% when the NES is unlocked.  

 

Figure 4.3 Two-story steel frame with track NES 

The NES mass, shown in Fig. 4.4, moves along a vertically nonlinear path described by the shape of 

the track ℎ(𝑥𝑛), where 𝑥𝑛 is the horizontal displacement of the mass. Due to this geometric nonlinearity, 

the restoring forces of the NES are identified per the nonlinear equation below and shown in Fig. 4.5.  
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Γ = ([ℎ′(𝑥𝑛)]
2𝑥̈𝑛 + ℎ

′(𝑥𝑛)ℎ
′′(𝑥𝑛)𝑥̇𝑛 + ℎ(𝑥𝑛))𝑚𝑛 (4.1) 

 

Figure 4.4 NES device 

 

Figure 4.5 Track NES hysteretic relationship for different excitation frequencies 

The two-story steel frame and NES are modeled with a three-DOF governing equation of motion with 

ground acceleration as the input excitation. 

𝑚1𝑥̈1(𝑡) + 𝑐1𝑥̇1(𝑡) + 𝑐2(𝑥̇1(𝑡) − 𝑥̇2(𝑡)) + 𝑘1𝑥1(𝑡) + 𝑘2(𝑥1(𝑡) − 𝑥2(𝑡)) = −𝑚1𝑥̈𝑔(𝑡) (4.2) 

𝑚2𝑥̈2(𝑡) + 𝑐2(𝑥̇2(𝑡) − 𝑥̇1(𝑡)) + 𝑘2(𝑥2(𝑡) − 𝑥1(𝑡)) − 𝑐𝑛𝑥̇𝑛(𝑡) − Γ(t) = 𝑚2𝑥̈𝑔(𝑡) (4.3) 

𝑚𝑛𝑥̈𝑛(𝑡) + 𝑐𝑛𝑥̇𝑛(𝑡) + Γ(t) = −𝑚𝑛 (𝑥̈2(𝑡) + 𝑥̈𝑔(𝑡)) (4.4) 

where 𝑚𝑖, 𝑐𝑖, and 𝑘𝑖 are the mass, damping, and stiffness parameters, 𝑥̈𝑖(𝑡), 𝑥̇𝑖(𝑡), and 𝑥𝑖(𝑡) are relative 

acceleration, velocity, and displacement terms of the 𝑖𝑡ℎ story, and 𝑐𝑛 is the damping of the NES. 𝑚𝑛 is the 

mass of the NES at 2.457 kg. 𝑥̈𝑛(𝑡) and 𝑥̇𝑛(𝑡) describe the acceleration and velocity terms for the NES, 

relative to the second-floor mass. 𝑥̈𝑔(𝑡) is the ground acceleration. The schematic of the numerical 

realization for the two-story frame with the track NES device is presented in Fig. 4.6.  
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Figure 4.6 Shake table testing: two-story steel frame with a track NES device 

4.3.1 Shake table testing result  

The selected two-story steel frame with onboard track NES device is shake table tested as a 

benchmark for comparison with RTHS results in later sections. The proposed experimental study is 

conducted on a Quanser Shake Table II. An NI CompactRIO 9073 controller completes the task of 

stabilizing the shake table via a proportional-derivative controller. Numerical integration and compensation 

action are computed on a dSPACE DS1103PPC microcontroller with a sampling rate of 1kHz. A 4th-order 

Runge-Kutta integration algorithm is used. The development environment for the dSPACE controller 

consists of the Matlab/Simulink software suite and the ControlDesk program which converts algorithms to 

the C programming language and compiles them on the microcontroller.  

Measurement of the horizontal displacements at the story levels in the discussed steel frame is a 

challenging task. Linear displacement measurement tools like linear variable differential transformers 

(LVDTs) possess small amounts of friction, which can offset experimental results. To solve this issue, 

vision-based displacement measurement techniques are incorporated.  

A 60 frame-per-second camera is used to record the behavior of the building during the duration of a 

ground motion acceleration. Black and white square patterns are installed on the structural components for 

detection via a vision-based algorithm, per in Fig. 4.7. Base (i.e., shake table) displacement is measured via 

the onboard optical encoder. 

PCB353B33 piezoelectric accelerometers are used for acceleration measurements. The 

accelerometers are installed at each story, on the NES, and on the shake table for acceleration feedback and 

compensation purposes. Following the data acquisition from the shake table testing procedure, results are 

synchronized and prepared for the model-based RTHS validation study. 
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Figure 4.7 Two-story steel frame with track NES device 

The two-story steel frame with the track NES device is excited with a PGA-scaled 30% 1940 El 

Centro earthquake, shown in Fig. 4.8. This original ground acceleration was sampled at a 100 Hz from 

recording station no. 6, was upsampled to 1000 Hz for this study. The mMBC is used for compensation 

during the shake table testing and provides better tracking than many existing methods. Details pertaining 

to tracking control and operation of the shake table and two-story steel frame are presented in Najafi and 

Spencer (2020).   

 

Figure 4.8 30% PGA-scaled 1940 El Centro earthquake 

Nonlinearities in the dynamics of the shake table device result in small performance variations in 

every experiment. These variations are presented in Fig. 4.9, along with the minimum and maximum values. 

To study these variations, results for 10 experiments are presented. Next, the structure is partitioned and 

tested via the RTHS method.  



78 

 

 

(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.9 Variations in the displacement and acceleration responses for 10 repeated shake table tests 

4.3.2 Real-time substructuring 

Before conducting RTHS in the laboratory, the structure of interest is substructured and a numerical 

model identified.  To this end, the two-story frame structure with NES is partitioned into two substructures. 

The two-story frame is numerically modeled while the NES device is physically tested. The proposed RTHS 

substructuring is demonstrated in Fig. 4.10.  

 

Figure 4.10 RTHS testing: substructuring of the two-story frame with track NES 
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[
𝑚1 0
0 𝑚2

] {
𝑥̈1(𝑡)

𝑥̈2(𝑡)
} + [

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

] {
𝑥̇1(𝑡)

𝑥̇2(𝑡)
} + [

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

] {
𝑥1(𝑡)

𝑥2(𝑡)
}

= − [
𝑚1 0
0 𝑚2

] {
1
1
} 𝑥̈𝑔(𝑡) − {

0
1
}𝐹𝑅 

(4.5) 

where 𝐹𝑅 is the hybrid simulation restoring force, estimated using the acceleration data from the track NES 

shown in Fig. 4.4, and given by 

𝐹𝑅 = 𝑚𝑛𝑥̈𝑛,𝑎𝑏𝑠(𝑡) = 𝑚𝑛 (𝑥̈𝑛(𝑡) + 𝑥̈2(𝑡) + 𝑥̈𝑔(𝑡)) (4.6) 

The two-DOF equation of motion for the two-story frame is next converted to state-space format for 

simulation purposes 

[
𝒙̇𝑁(𝑡)

𝒙̈𝑁(𝑡)
] = [

𝟎 𝑰
−𝑴−1𝑲 −𝑴−1𝑪

] [
𝒙𝑁(𝑡)

𝒙̇𝑁(𝑡)
] + 𝑩𝑥̈𝑔(𝑡) + 𝑮𝐹𝑅 (4.7) 

𝑦1(𝑡) = [0 1 0 0] [
𝒙𝑁(𝑡)
𝒙̇𝑁(𝑡)

] + 𝑥𝑔(𝑡) (4.8) 

𝑦2(𝑡) = [−𝑴
−1𝑲(: ,2) −𝑴−1𝑪(: ,2)] [

𝒙𝑁
𝒙̇𝑁
] (4.9) 

where 𝑀, 𝐶, and 𝐾 are mass, damping, and stiffness matrices of the two-story frame and 𝑥𝑁 = [𝑥1 𝑥2]𝑇. 

Also, the input vectors are described as 𝑩 = [0 0 −1 −1]𝑇 and 𝑮 = [0 0 −[0 1]𝑴𝑇]𝑇. The 

outputs of the numerical substructure are described as 𝑦1(𝑡) and 𝑦2(𝑡), which represent the second-story 

displacement and acceleration, respectively.  

In the proposed setup, the boundary condition between the numerical and physical substructures is 

defined by the absolute motion of the second story. A shake table is used to actuate the physical 

substructure. By replicating the absolute motion of the second floor, the shake table ensures that the NES 

device undergoes the same inertial forces, as it would if the complete structure was tested. Actuator 

compensation is provided in the form of the mMBC for displacement and acceleration control.  

The physics of the NES mass is largely determined by the inertial behavior of this device, as stiffness 

and damping properties are insignificant. Since the inertial behavior is directly proportional to the 

acceleration of the mass, it makes sense to control the acceleration behavior of the boundary condition, in 

order to ensure an accurate RTHS experiment.  

A high-fidelity model of the two-story steel frame is next obtained via extraction of natural 

frequencies and mode shapes, and a particle swarm optimization (PSO) algorithm for model parameter 

optimization. The two-story frame structure (i.e., without the NES device), is installed on a shake table and 

excited with a BLWN voltage signal. Acceleration responses of the stories are recorded during this 

excitation. Time and frequency domain relationships between the input BLWN signal and recorded floor 

accelerations are used for the model identification. The process for modeling of the two-story steel frame 

involves the two steps: (i) parameter estimation, and (ii) parameter optimization.  
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The first steps for reasonably accurate parameter estimations are listed below: 

1. Estimate the story masses and formulate mass matrix, 𝑴.  

2. Identify the natural frequencies 𝜴 = [𝜔1 𝜔2]𝑇, via a peak-picking strategy. 

3. Use the FRF phase relationships to estimate the mode shapes, 𝚽 = [𝚽1 𝚽2]. 

4. Calculate the diagonal modal mass and stiffness matrices, 𝑲̂ = 𝑑𝑖𝑎𝑔{𝑘̂1, 𝑘̂2} and 𝑴̂ =

𝚽𝑇𝑴𝚽 = 𝑑𝑖𝑎𝑔{𝑚̂1, 𝑚̂2}, via 𝑘̂𝑖 = 𝑚̂𝜔𝑖
2 for 𝑖 ∈ {1,2}. 

5. Convert the stiffness matrix from modal to general stiffness coordinates, 𝑲. 

𝑲 = 𝚽−𝑇𝑲̂𝚽−1 (4.10) 

6. Estimate the modal damping ratios 𝜁𝑖, for 𝑖 ∈ {1,2}, by fitting the model to the peaks of the 

FRF plots. 

In the next step, the parameter estimates identified earlier are optimized, such that the numerical 

model of the two-story frame more accurately resembles the real physical performance. PSO uses a nature-

inspired swarming strategy (i.e., bird flocking) and uses primitive mathematical operators to create an 

inexpensive computational tool (Kennedy and Eberhart 1995). Optimizing a structural model requires 

evaluation of multiple parameters. The evolutionary programming of the PSO algorithm is suitable for 

handling combinatorial optimization problems.  

The PSO model begins by assigning a swarm of a particles to each optimization variable. A 

population of 𝑑 random particles with a uniform distribution between the two boundaries
lb and

hb , and a 

position 𝑥𝑖,𝑗~𝑈[𝑏𝑙 , 𝑏ℎ], and a velocity 𝑣𝑖,𝑗 for 𝑖 ∈ {1,… , 𝑑}, where 𝑗 is iteration count, are at first initialized 

for each variable. For the proposed structural model in Eq. (4.5), the optimization variables are selected as 

𝑘1, 𝑘2, 𝑚1, 𝑚2, 𝜁1, and 𝜁2. Each particle moves iteratively in the search-space and remembers its own 

optimal position 𝑃𝑖
𝐿. The best position amongst all swarm particles are next stored in 𝑃𝑖

𝐺. During each 

iteration, the velocity is updated per: 

𝑣𝑖,𝑗+1 = 𝐼𝑇𝑗 + 𝐶𝑇𝑗 + 𝑆𝑇𝑗 (4.11) 

𝐼𝑇𝑗 = 𝑤𝑣𝑖,𝑗 (4.12) 

𝐶𝑇𝑗 = 𝑐1𝑟1(𝑃𝑖
𝐿 − 𝑥𝑖,𝑗) (4.13)  

𝑆𝑇𝑗 = 𝑐2𝑟2(𝑃𝑖
𝐺 − 𝑥𝑖,𝑗) (4.14) 

where 𝐼𝑇𝑗 is an inertial term, 𝐶𝑇𝑗 is a cognitive term, and 𝑆𝑇𝑗 is a social term. 𝑟1 and 𝑟2 are uniformly 

distributed random vectors ~𝑈[0,1]. 𝑤 is the inertial weight, 𝑐1 is the self-adjustment weight, and 𝑐2 is the 

social-adjustment weight. The new position for each iteration is determined per below 

𝑥𝑖,𝑗+1 = 𝑥𝑖,𝑗 + 𝑣𝑖,𝑗+1 (4.15) 

Therefore, a particle can optimize its course based on the past experiences of itself and other swarm 

particles.  
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The standard deviation (SD) between the measured and numerically computed first and second story 

accelerations, 𝑎𝑒𝑥𝑝 and 𝑎𝑛𝑢𝑚, are used to develop the cost function in this optimizing algorithm. 

Minimizing this cost function results in a reduction of errors between measured and numerically calculated 

accelerations. The SD is formulated per 

𝑆𝐷 =
√∑ (𝑎𝑒𝑥𝑝(𝑘) − 𝑎𝑛𝑢𝑚(𝑘))

2
𝑛
𝑘=1

𝑛
 

(4.16) 

where 𝑛 is the data point count.  

The parameters of the two-DOF system described in Eq. (4.15) are next identified via the two-step 

process. The experimentally identified FRFs and fitted numerical models of the first and second story 

accelerations are shown in Fig. 4.11 and 4.12. The PSO in step 2 assists in improving the accuracy of the 

structural model. 

 

(a) Amplitude      (b) Phase 

Figure 4.11 First story acceleration FRF 

 

(a) Amplitude      (b) Phase 

Figure 4.12 Second story acceleration FRF 

The acceleration and displacement responses of the numerical model subjected to the El Centro PGA-

scaled at 30%, and are compared with the experimental results in Fig. 4.13.  
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(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration   (d) Second story acceleration 

Figure 4.13 Time domain responses of the two-story structure – experimental and numerical results 

The PSO algorithm is initialized with 𝑑 = 200 swarm particles for each of the 6 structural 

parameters. Table 1 presents the predicted structural parameters after the estimation and optimization steps. 

This table also presents the lower and upper boundary values for the initialization of the swarm particles. 

The evolution of the swarm particles is demonstrated in Fig. 4.14, over the course of 15 iterations. These 

particles rarely converge to a single value due to the presence of an inertial term which ensures that their 

velocity is never converged to zero. Nevertheless, the position with the most optimal cost function is 

recorded and used.  

 

(a) 𝜁1      (b) 𝜁2 

 

(c) 𝑘1      (d) 𝑘2 

Figure 4.14 Evolution of the swarm particles assigned to each variable 
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Figure 4.14 (continued) 

 

(e) 𝑚1     (f) 𝑚2 

Table 4.1 Identified parameters for two-story steel frame 

Parameters 
Step 1 

(Parameter estimation) 
𝑏𝑙 𝑏ℎ 

Step 2 

(Parameter optimization) 

𝑚1 (𝑘𝑔) 25.1 22.5 27.5 24.98 

𝑚2 (𝑘𝑔) 23.4 20.7 25.3 24.31 

𝑘1 (𝑁/𝑚) 7100 6390 7810 7238 

𝑘2 (𝑁/𝑚) 8300 7470 9130 8236 

𝜁1 (%) 0.250 0 1 0.196 

𝜁2 (%) 0.250 0 1 0.359 

 

4.3.3 Shake table and model-based RTHS comparison 

The mMBC is developed using a linearized transfer function model of the shake table and structural 

system. The process for system identification, and frequency response function fitting are described in 

Section 3.7. Transfer function models of the shake table-structure interaction are used in the development 

of feedforward and feedback controllers.  

  System identification is conducted on the experimental substructure, which includes the shake table 

with the onboard NES device. A BLWN with a frequency range of 0 – 30 Hz and an RMS amplitude of 0.2 

V is applied to the shake table and the realized displacements and accelerations are recorded.  

Next, the time domain results are transformed to frequency domain to obtain FRFs for: (i) target 

displacement – measured displacement 𝑷𝑑𝑑(𝑠), and (ii) target displacement – measured acceleration 

𝑷𝑑𝑎(𝑠), transfer systems. The FRFs are fitted with transfer function models which are presented in Eqs. 

(4.17) and (4.18), per the process in Section 2.5. The bode plot of the experimental FRFs and identified 

transfer models are shown in Fig. 4.15 and 4.16. 
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(a) Amplitude      (b) Phase 

Figure 4.15 𝑷𝑑𝑑(𝑠) transfer system 

 

(a) Amplitude      (b) Phase 

Figure 4.16 𝑷𝑑𝑎(𝑠) transfer system 

𝑷𝑑𝑑(𝑠) =
𝑑𝑜𝑢𝑡(𝑠)

𝑑𝑖𝑛(𝑠)
=

4.67𝑒6

𝑠4 + 167𝑠3 + 1.14𝑒4𝑠2 + 2.81𝑒5𝑠 + 4.67𝑒6
 (4.17) 

𝑷𝑑𝑎(𝑠) =
𝑎𝑜𝑢𝑡(𝑠)

𝑎𝑖𝑛(𝑠)
=

1.18𝑠4 + 479.1𝑠3 + 4.83𝑒4𝑠2

𝑠4 + 126.6𝑠4 + 2.05𝑒4𝑠3 + 1.09𝑒6𝑠2 + 2.93𝑒7𝑠 + 4.3𝑒8
 (4.18) 

The feedforward controller for displacement tracking is designed by cascading the inverse of the 

transfer system in Eq. (4.17) with a fourth-order Butterworth lowpass filter with a cutoff frequency of 50 

Hz. The feedforward controller for acceleration tracking is designed by cascading the inverse model of Eq. 

(4.18) with first-order Butterworth lowpass filter with a cutoff frequency of 50 Hz.  

Tracking performance results between the target and measured signals are evaluated next for 

displacement control and acceleration control mMBC RTHS schemes. The time histories of the reference 

and measurement signals are presented in Fig. 4.17 (a) and (c). Tracking is qualitatively assessed via the 

synchronization plots in Fig. 4.17 (b) and (d). This x-axis displays the target signal and y-axis refers to the 

measured output signal. Table 4.2 summarizes unitless 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝑋𝐸 error indicators from Eqs. (3.21) 

and (3.22).  

Table 4.2 Tracking performance for each control type 

Control type 
Error index 

MAXE RMSE 

Displacement 0.1549 0.1587 

Acceleration 0.3055 0.3432 
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(a) Displacement control tracking   (b) Displacement control synchronization 

   

(c) Acceleration control tracking   (d) Acceleration control synchronization 

Figure 4.17 Tracking and synchronization plots of the proposed mMBC compensator 

The performance and variations in the behavior of the two-story structure subject to a ground motion 

excitation are examined using both shake table testing and model-based RTHS in this section. The variables 

relevant to this study are the first and second story relative displacements and absolute accelerations. 

Particular attention is paid to the second story motions, as this floor formulates the boundary condition 

between the physical and numerical substructures. 

Due to the nonlinear behavior of the actuator (i.e., shake table), variations exist in the performance 

of the RTHS experiments. Therefore 10 experiments are conducted for the evaluation of the displacement 

control RTHS and another 10 for the acceleration control RTHS. The RTHS experiments are next compared 

to the 10 shake table tests conducted earlier. Every shake table and RTHS experiment is cross evaluated 

using the RMSE criterion and the results are displayed in the RMSE bar charts in Fig. 4.18 and 4.19.   

Experimental results are post-processed through synchronization and low and highpass filtering. In 

all experiments, the measured data are synchronized with their corresponding input ground motions. Since 

the ground motions are identical between all experiments, synchronization is conducted by matching the 

input ground motions. Next, measured data are post-processed with a second-order Butterworth lowpass 

filter with a cutoff frequency of 15 Hz, and a second-order Butterworth highpass filter with a cutoff 

frequency of 0.5 Hz.  
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Figure 4.18 RMSE median and interquartile range 

for displacement results 

 

Figure 4.19 RMSE median and interquartile range 

for acceleration results 

 

(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.20 Shake table and RTHS variational comparison – Displacement control 
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(a) First story displacement   (b) Second story displacement 

 

(c) First story acceleration    (d) Second story acceleration 

Figure 4.21 Shake table and RTHS variational comparison – Acceleration control 

4.4  RTHS of bridge vibration mitigation using an MR damper 

In general, high-speed railway bridges are expected to have a limited vibration performance, as excessive 

high frequency deflections may result in uncomfortable train rides for passengers, or even risk structural 

damage (Wang et al. 2003). Damping devices may be used for dissipation and vibration reduction. The 

major questions with damping devices are where and how to install them on existing and new bridges. In 

many bridges, the depth of the deck section is deep enough to create a large distance between the flange 

surface and neutral axis of the deck. In such bridges, installation of a diagonal damper between the abutment 

and the bottom flange of the deck can result in satisfactory damping performance, as a large neutral axis 

depth means noticeable horizontal movements in the bottom flange and engagement of the damping device.  

A magnetorheological (MR) damper is a semi-active damping device comprised of a metal cylinder 

with a piston and rod, magnetorheological oil, an electromagnetic coil, and pressurized gas. As the piston 

rod is extended or retracted, the MR oil flows from one chamber of the cylinder to the other, across the 

damper piston. By applying an electric charge to the electromagnetic coil, the flow properties of the oil are 

across the piston are changed. In simple terms, with an increase in the current passing through the coil, the 

oil grows thicker, and thus the resistance of the flow across the piston increases. This is a useful property 

for a damper, as the friction characteristics of the damper may be altered in real-time for semi-active control 

purposes. In the study proposed in (Tell et al. 2019), an MR damper is used as a supplemental dissipation 
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device for high-speed railway bridges. The RTHS method was selected for testing of the bridge-damper 

system, because real-time testing is necessary for understanding rate-dependent behaviors of dampers. 

The model-based RTHS framework is applied for studying the behavior of a high-speed railway 

bridge with an added MR damper. The position of the MR damper is illustrated relative to the bridge deck 

in Fig. 4.22. In this study, the MR damper is physically substructured, and the bridge deck and train load 

are numerically modeled. A servo-hydraulic actuator and LVDT handle the boundary condition force-

displacement.  

 

Figure 4.22 Simply supported bridge deck and damping device  

A simply supported bridge deck is modeled with an Euler-Lagrange assumption. The governing 

equations of the system are modeled per  

𝑑

𝑑𝑡

𝜕𝒯

𝜕𝑞̇𝑖
−
𝜕𝒯

𝜕𝑞𝑖
+
𝜕𝒱

𝜕𝑞𝑖
= 𝑓𝑖(𝑡) (4.19) 

where 𝒯 and 𝒱 are the kinetic and potential energy relationships (Craig and Kurdila 2006). 𝑞𝑖 is the 𝑖𝑡ℎ 

generalized coordinate and 𝑓𝑖 is the 𝑖𝑡ℎ generalized force. By assuming the general shape of the bridge 

modes, the transverse deflection of the deck is expressed as 

𝑣(𝑥, 𝑡) =∑𝜓𝑖(𝑥)𝑞𝑖(𝑡)

𝑁

𝑖=1

 (4.20) 

where 𝜓𝑖 is the assumed 𝑖𝑡ℎ mode shape and 𝑁 is the total number of modes considered. The equation of 

motion of the bridge deck using the assumed mode method simplifies to 

𝑴𝒒̈(𝑡) + 𝑪𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝑭(𝑡) (4.21) 

with 𝑴 ∈ ℛ𝑁×𝑁, 𝑪 ∈ ℛ𝑁×𝑁, and 𝑲 ∈ ℛ𝑁×𝑁 as the mass, damping, and stiffness matrices, and 𝑭(𝑡) ∈ ℛ𝑁 

containing the external forces.  

4.4.1 Real-time substructuring 

The physical and numerical substructures are depicted in Fig. 4.23. As a highspeed train with a 

velocity of 𝑉 passes over the bridge deck, a dynamic force of 𝑭(𝑡) is exerted. The deformation of the bridge 
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deck results in extension and retraction (stroke) of the MR damper rod. The stroke is computed as 𝑟(𝑡), and 

sent to the model-based compensator. The compensator sends a control signal 𝑢(𝑡) to servo-hydraulic 

actuator for execution. The LVDT onboard the hydraulic actuator records the measured stroke and reports 

back to the compensator for feedback action. The measured experimental force 𝐹𝑅(𝑡) is returned to the 

numerical substructure for a closed-loop RTHS.  

The experimental setup is comprised of a double-ended servo-hydraulic actuator with load and stroke 

capacities of 556 kN and ± 152.4 mm. The hydraulic power supply is rated at 1000 psi in both directions. 

The actuator houses an onboard LVDT, a 445 kN-rated loadcell, and is supported by several rigid brackets 

to ensure accurate displacement measurement.  

The servo-hydraulic actuator is operated with a Shore Western analog controller. The embedded 

system is comprised of a dSPACE DS1103PPC control board with onboard memory and processing of 1 

GHz, input-output peripherals with 16-bit resolution, and the ControlDesk graphical user interface. 

Numerical models and compensation algorithms are developed on MATLAB/SIMULINK and converted 

into C source code for compilation on the dSPACE controller. A Topward 3303D power supply unit is used 

to command static voltage to the MR damper. Figure 4.24 provides a schematic of the experimental 

hardware. 

 

Figure 4.23 Model-based RTHS for rail-way bridge 
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Figure 4.24 Experimental hardware and communication signals 

4.4.2 System identification and tracking results 

System identification of the actuator-MR damper setup is next conducted to develop a linearized 

nominal actuator model for use in the mMBC compensator. A bandlimited white noise with a frequency of 

0 – 40 Hz ad RMS amplitudes of 0.1 V and 0.15 V are applied to the actuator. The current supply to the 

MR damper is also varied between 0 A to 2 A. The FRF between the reference and measured signals are 

displayed in Figure 4.25.  

A 6-pole transfer function model of the actuator system is identified and used for the mMBC 

compensator:  

𝑷(𝑠) =
𝑦(𝑠)

𝑟(𝑠)
=

2.414𝑒13

𝑠6 + 306.7𝑠5 + 1.495𝑒5𝑠4 + 2.922𝑒7𝑠3 + 5.429𝑒9𝑠2 + 5.055𝑒11𝑠 + 2.53𝑒13
 (4.22) 

 

(a) Amplitude     (b) Phase 

Figure 4.25 Experimental FRF and identified nominal actuator model 
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For perfect displacement tracking between reference and measured signals, a 0 𝑑𝐵 amplitude and 0 

degree phase are desired. However, this is unachievable due to physical realities of actuation. The proposed 

mMBC algorithm reduces the phase slope (delay) and improves the amplitude tracking as demonstrated in 

Figure 4.26. Delay reduction results in less negative damping and a more stable and accurate RTHS 

(Horiuchi et al. 1996). Fig. 4.27 displays the hysteretic behavior of the MR damper subjected to a sinusoidal 

deformation.  

 

(a) amplitude      (b) phase 

Figure 4.26 Frequency response function with and without mMBC control 

 

Figure 4.27 Sinusoidal hysteretic behavior of the MR damper  

4.4.3 Vibration mitigation results 

The Banafjäl bridge in Sweden is considered in this study. A finite element model of the bridge is 

developed as part of the numerical substructure of the experiment. The train loading applied on the bridge 

is based on the Eurocode High-Speed Load Models (HSLM). The HSLM-A4 is selected for simulation of 

a moving train load. The response of the bridge is considered for varying train velocities and current levels 

in the MR damper.  Fig. 4.28 illustrates the maximum acceleration and displacements in the bridge, 𝐴𝑚𝑎𝑥 
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and 𝐷𝑚𝑎𝑥, as a function of the train velocity. As the current level is increased, the damping action in the 

MR damper becomes more rigorous. Therefore, a significant reduction is observed at the resonance speed 

of the bridge structure. Fig. 4.29 and 4.30 demonstrate the bridge performance for a train traveling at a 

velocity of 169 km/hr with an MR damper with current levels of 0.0 𝐴 and 2.0 𝐴. 

 

(a) Acceleration performance   (b) Displacement performance 

Figure 4.28 Maximum bridge acceleration and displacement as a function of train velocity 

 
(a) Acceleration performance   (b) Displacement performance 

Figure 4.29 Mid-span bridge response with 𝐼 = 0.0 𝐴 and 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 169 𝑘𝑚/ℎ𝑟 

 
(a) Acceleration performance   (b) Displacement performance 

Figure 4.30 Mid-span bridge response with 𝐼 = 2.0 𝐴 and Velocity = 169 𝑘𝑚/ℎ𝑟 
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4.5  Virtual RTHS with Adaptive Compensation 

A virtual RTHS study is completed using the benchmark control problem for RTHS of the three-story 

steel frame defined in (Silva et al. 2020). The objective of the benchmark problem is to gather control 

techniques developed in the RTHS domain, for comparison and provide valuable lessons for future 

developments. The benchmark problem poses a three-story structure, which is seismically excited and 

evaluated using the RTHS technique. In this framework, a first-story moment frame is experimentally 

evaluated as the rest of the structure is numerically simulated. The physical component is attached to a 

hydraulic actuator and the combined transfer function is presented per 

𝑷(𝑠) =
2.13𝑒13

29.12𝑠5 + 1.26𝑒4𝑠4 + 8.42𝑒6𝑠3 + 2.33𝑒9𝑠2 + 5.44𝑒11𝑠 + 2.17𝑒13
 (4.23) 

with 𝑷(𝑠) as a 5-pole plant. For some control signal in Laplace domain 𝑈(𝑠), an output signal of 𝑌(𝑠) is 

obtained. The plant is perturbed with a time-varying nonlinear signal 𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), which contains all 

uncertainties and disturbances. The disturbance signal 𝐷(𝑠) is assumed to be continuous and bounded. The 

disturbance is assumed to be additive for the purpose of control design per below 

𝑌(𝑠) = 𝑷(𝑠)(𝑈(𝑠) + D(𝑠)) (4.24) 

A controller is next used to cancel out the unwanted dynamics due to actuator-structure interaction. 

In this analysis, three compensation techniques are studied: (i) PI control with a phase-lead compensator, 

(ii) MBC, and (iii) aMRC. The performances of these controllers are presented in terms of the evaluations 

criteria presented as part of the benchmark control problem.  

4.5.1  Summary of the benchmark problem 

The three-story steel frame reference structure in Fig. 4.31 is partitioned into numerical and physical 

substructures and evaluated with the RTHS technique. The new equation of motion for the three-story frame 

is presented below 

𝑴𝑛𝒙̈𝑛(𝑡) + 𝑪𝑛𝒙̇𝑛(𝑡) + 𝑲𝑛𝒙𝑛(𝑡) = −𝑴𝑟𝜾𝒙̈𝑔(𝑡) − (𝑴𝑝𝒙̈𝑝(𝑡) + 𝑪𝑝𝒙̇𝑝(𝑡) + 𝑲𝑝𝒙𝑝(𝑡)) (4.24) 

where 𝑴𝑛, 𝑪𝑛, and 𝑲𝑛 are the numerical and 𝑴𝑝, 𝑪𝑝, and 𝑲𝑝 are the physical mass, damping, and stiffness 

matrices. The states 𝒙𝑛(𝑡) and 𝒙𝑝(𝑡) belong to the numerical and physical substructures and 𝑀𝑟 is the 

reference mass of the complete frame.  
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Figure 4.31 Three-story steel frame reference structure 

To investigate the performance of the RTHS substructures, four variations on the substructuring 

configurations are considered. These configurations vary the choice of the reference floor mass and modal 

damping values. In addition to the nominal plant, several actuator and stiffness parameters are evaluated 

probabilistically to simulate modeling uncertainties and referred to as perturbation cases. Details on the 

substructuring configurations and perturbation cases are demonstrated in Fig. 4.32.  

 

Figure 4.32 Substructuring of the three-story steel frame 

4.5.2 Evaluation criteria 

Per the companion paper, nine quantitative evaluation criteria are concerned to assess the 

performance of the proposed aMRC algorithm. Criteria 𝐽1 − 𝐽3 evaluate the input-output tracking ability of 

the controllers and 𝐽4 − 𝐽9 evaluate the performance accuracy of the RTHS relative to the reference 

structure.   

As a brief summary, 𝐽1 assesses the time delay (ms) between reference and measurement signals. 𝐽2 

evaluates the tracking error via the normalized root-mean-square (RMS). 𝐽3 is a normalized peak tracking 

error measure. Next, 𝐽4 − 𝐽6 are the normalized RMS errors between the reference structure and 

substructured system floor displacements. Lastly, 𝐽7 − 𝐽9 are the normalized peak tracking errors between 
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the reference structure and substructured system floor displacements. These criteria are evaluated for the 

three controllers described.  

 

(a) PI + Phase-lead   (b) MBC   (c) aMRC 

 

(d) Errors 

Figure 4.33 Partition configuration 4: Control input-output tracking for the nominal plant 

4.5.3 Virtual RTHS results 

Next, the responses of the virtual RTHS and reference system simulations are compared and 

analyzed. For each controller, time histories of the floor displacements are visually inspected, and 

qualitative assessment is provided. The evaluation criteria are presented along with the performance of the 

controllers for each criterion.  

Fig. 4.33 illustrates the tracking abilities for each controller along with the input-output errors. The 

phase-lead compensator feature of the PI controller amplifies high frequency contents, resulting in a noisy 

measurement. This controller demonstrates the largest steady-state error. Incorporation of the model-based 

filters into the RTHS, have resulted in enhanced tracking performance. The MBC has improved tracking 

relative to the PI compensator. The aMRC demonstrates the fastest tracking ability with the smallest noise 

feed-through. The choice of adaptive gain and cutoff frequency for reference model vary the tracking 

performance of the aMRC. A unity-gain zero-phase reference model is selected for the most rigorous 

feedback action in this case. 
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(a) Floor 1 

 

(b) Floor 2 

 

(c) Floor 3 

Figure 4.34 Partition configuration 4: RTHS vs. reference displacements for the nominal plant 

Fig. 4.34 compares the RTHS performance relative to the reference structure for each controller. Due 

to the larger phase lag produced by the PI technique, RTHS results have an inherent overshoot and produce 

larger displacement envelopes relative to the reference model. The aMRC however, closely tracks the 

reference behavior. The performance of the aMRC for configurations 1 – 3 is shown Fig. 4.35 – 4.37. The 
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proposed controller demonstrates excellent tracking between the reference and RTHS formulations for all 

four configurations.  

 

(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.35 Partition Configuration 1: RTHS vs. reference tracking for the nominal plant 

 

(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.36 Partition Configuration 2: RTHS vs. reference tracking for the nominal plant 

 

(a) Floor 1   (b) Floor 2   (c) Floor 3 

Figure 4.37 Partition Configuration 3: RTHS vs. reference tracking for the nominal plant 
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The aMRC is shown in action in Fig. 4.38. The behavior of the adaptive parameter is demonstrated 

when the plant is perturbed. The adaptive action grows proportional to the steady-state error. For example, 

steady-state errors tend to be largest at peak displacement amplitudes and the adaptive parameter is 

amplified as well.   

 

(a) Reference tracking    (b) Adaptive parameter 

Figure 4.38 Adaptive parameter for the perturbed configuration 

Fig. 4.39 provides a visual illustration of the evaluation criteria introduced earlier. Tables 4.3 – 4.5 

list the numerical values associated with the nine evaluation criteria. Table 4.2 provides a more direct 

comparison of the evaluation criteria for the partition configuration 1. From these results, the aMRC 

compensation offers the best tracking performance. The adaptation mechanism is quick in canceling out 

steady-state errors caused by modeling uncertainties. When the aMRC is used, there are no major increases 

in the evaluation criteria errors when perturbations are added to the plant. The PI and MBC controllers 

experience increased error quantities when the plant is perturbed, however. The aMRC method enhances 

tracking even in the presence of modeling uncertainties or perturbations, and therefore illustrates the best 

tracking robustness. 
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(a) 𝐽1    (b) 𝐽2    (c) 𝐽3 

 

(a) 𝐽4    (b) 𝐽5    (c) 𝐽6 

 

(a) 𝐽7    (b) 𝐽8    (c) 𝐽9 

Figure 4.39 Evaluation Criteria 

Table 4.3 Partition configuration 1: evaluation criteria for nominal case 
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Table 4.4 PI evaluation criteria 

 

 

Table 4.5 MBC evaluation criteria 
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Table 4.6 aMRC evaluation criteria 

 

4.6 Summary  

This chapter introduced a single-axis model-based real-time hybrid simulation (RTHS) framework. 

Concepts of numerical and physical substructuring and boundary condition were discussed along with two 

types of tracking compensators: displacement and acceleration. The modified Model-Based Controller 

(mMBC) and adaptive Model Reference Controller (aMRC) were proposed for compensation action of 

actuator-structure dynamics. Three applications for single-axis model-based RTHS were presented: 

1. Lightly-damped and highly-nonlinear structures 

2. Vibration mitigation of high-speed railway bridges 

3. Virtual RTHS for a control benchmark problem 

When the reference signal from the numerical substructure is a displacement signal, both the mMBC 

and aMRC are applicable for compensation action. When the reference signal is acceleration, only the 

mMBC is applicable, as the aMRC for acceleration tracking can result in large actuator strokes. Results 

demonstrate the successful application of the model-based RTHS method in accurately reproducing the 

behavior of a reference structure. 
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CHAPTER 5 MULTI-AXIAL REAL-TIME HYBRID SIMULATION 

 

5.1 Problem Statement 

In this chapter, a multi-axial RTHS (maRTHS) framework is introduced for realistic and three-

dimensional assessment of structural performance under dynamic loading. The framework is comprised of 

numerical and physical substructures, along with kinematic transformation layers and an actuator 

compensation scheme based on the mMBC. At each time step, the target motion of the boundary interface 

is calculated by the numerical substructure and enforced via an boundary condition device. When the 

physical specimen deforms, restoring forces are measured via the loadcells onboard the LBCB, and returned 

to the numerical substructure. The compensation task herein is performed in actuator coordinates as a means 

to overcome the limitations of Cartesian control seen the previous maRTHS development. To demonstrate 

and verify the capabilities of the new maRTHS framework in overcoming the earlier challenges, an 

illustrative example consisting of a steel moment frame is provided. In this example, one column is tested 

physically while other elements are computed numerically. 

5.2 Multi-Axial RTHS Framework 

The dynamic response of a reference structure may be represented via a second-order equation of 

motion (EOM) 

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝒇(𝒙, 𝒙̇) = 𝑭(𝑡) (5.1) 

where 𝑡 is time, 𝒙̈(𝑡), 𝒙̇(𝑡), and 𝒙(𝑡) are the acceleration, velocity and displacement vectors, and 𝑴 and 𝑪 

are matrices representing the mass and damping properties of the reference structure, and 𝒇 represents the 

linear and nonlinear restoring forces properties of the reference structure, respectively. In this formulation, 

𝑭(𝑡) represent the external forces imposed on the reference structure, like inertial forces induced by 

earthquake accelerations.  

Instead of testing structural systems as a whole, only components of interest are physically tested, 

and the remaining components are built into computational models. The physical and numerical 

components are linked via actuators which enforce the desired displacements calculated by the numerical 

model, and sensors which measure the feedback forces. The EOM for the numerical model is given by 

𝑴𝑁𝒙̈𝑁(𝑡) + 𝑪𝑁𝒙̇𝑁(𝑡) + 𝒇𝑁(𝒙, 𝒙̇) = 𝑭(𝑡) − 𝑭𝑅(𝑡) (5.2) 

where the subscript “N” describes the parameters of the numerical substructure. 𝑭𝑅(t) represents a vector 

of measured feedback forces from the loadcells in physical substructure. Alternatively, feedback forces may 

be estimated from the dynamical parameters of the physical substructure.  
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The displacement-based maRTHS framework proposed herein is divided into four components: (i) 

numerical substructure, (ii) numerical to physical (N2P) transformation, (iii) physical substructure, and (iv) 

physical to numerical (P2N) transformation. The architecture of the maRTHS loop is illustrated in Fig. 5.1. 

 

Figure 5.1 Proposed maRTHS framework 

At each time step, the numerical substructure is excited by the ground acceleration, 𝑥̈𝑔, and produces 

the Cartesian target boundary conditions. The 𝑁2𝑃 transformation converts target boundary conditions in 

Cartesian coordinates to actuator control signals for the experimental substructure to execute. The 

experimental substructure is comprised of the physical specimen, the LBCB and all onboard sensors. The 

experimental data which may include displacement, velocity, and acceleration behaviors of the physical 

specimen, denoted by 𝒙𝐸, 𝒙̇𝐸, and 𝒙̈𝐸, respectively, which are either directly measured or estimated. The 

𝑃2𝑁 transformation converts measured actuator forces to Cartesian restoring forces, which are returned to 

the numerical substructure to close the maRTHS loop.  

5.2.1 Load and Boundary Condition Boxes at the University of Illinois 

To demonstrate the capabilities of the proposed maRTHS algorithm, an LBCB device is used for 

experimental validation in this study. The LBCB, shown in Fig. 5.2, is a loading platform consisting of six 

hydraulic actuators, two in the X-direction, 3 in the Y-direction and one in the Z-direction, each equipped 

with inline loadcells and linear variable differential transducers (LVDT). The Multi-Axial Full-Scale Sub-

Structuring Testing and Simulation (MUST-SIM) facility at the University of Illinois at Urbana-Champaign 

offers multiple LBCB devices capable of imposing loading and boundary conditions in 6-DOFs on 

structural specimens (Elnashai et al. 2005). Multiple LBCBs can be used together for the evaluation of the 

same specimen in different configurations for investigation of more complex structures. The LBCB is 

particularly useful for hybrid simulation testing due to its modularity and 6-DOF loading at the connection 

point with the physical specimen.   
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The MUST-SIM facility also offers 1/5th-scale LBCBs, shown in Fig. 5.2(b), for small-scale and 

proof-of-concept studies prior to testing in the large-scale facility. A 1/5th-scale LBCB is used for the 

experimental validation in this study. The actuators are supported by low-friction swivel bearing on both 

sides and housed by a rigid box frame that can be attached to the ground or a reaction wall in different 

orientations. The rigidity of the box frame is important for accurate assessment of specimen deformation. 

The extension and retraction capacities and stroke limits in each direction are listed in Table 1 for a rated 

pressure of 3000 psi for the hydraulic power supply (HPS).  

 

(a) Full-scale LBCBs  (b) 1/5th-scale LBCBs 

Figure 5.2 LBCB devices at the MUST-SIM facility 

Table 5.1 Force and stroke capacities of the 1/5th-scale LBCB 

Actuator 

Direction 
X Y Z 

Retraction 

Force 
18.9 kN 4.2 kip 28.0 kN 6.3 kip 9.3 kN 2.1 kip 

Extension 

Force 
31.1 kN 7.0 kip 46.7 kN 10.5 kip 15.6 kN 3.5 kip 

Displacement ± 53.0 mm ± 2.09 in ± 25.4 mm ± 1.00 in ± 25.4 mm ± 1.00 in 

The LBCBs were designed for quasi-static, cyclic and slow-speed hybrid simulation testing. In 

addition, recent  developments have focused on slow-speed hybrid simulation implementations on the 

LBCBs ((Kim et al. 2011; Kwon et al. 2005; Mahmoud et al. 2013; Nakata et al. 2010)). The intended use 

of the LBCBs for real-time implementation as described by this paper, requires development and use of 

appropriate actuator compensation and kinematic transformations to address the dynamics of the LBCB.  

5.2.2 Kinematic transformation 

For completeness, this section briefly reviews the kinematic transformations that are employed to 

control the LBCBs.  The states of a parallel manipulator like an LBCB can be specified either in: (i) actuator 

coordinates; or (ii) Cartesian coordinates. Fig. 5.3(a) presents a schematic of the relationship between the 

stroke of the ith actuator and Cartesian motion of the moving platform onboard an LBCB. A Cartesian 
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reference frame is selected on the fixed based, denoted by 𝑹𝒇, and another is selected on the moving 

platform, denoted by 𝑹𝒎. The location of the 𝑹𝒎 corresponds to the location of the attachment with the 

center of the physical specimen. The linear strokes of the prismatic limbs result in displacement and rotation 

of the moving platform. For some prescribed Cartesian motion at 𝑹𝒎, an Inverse Kinematic Transformation 

(IKT) calculates the necessary stroke of each actuator. A translational vector 𝒗 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧} ∈

ℝ3 describes the motion at 𝑹𝒎 with reference to 𝑹𝒇. The vectors 𝒂𝑖 ∈ ℛ
3 and 𝒃𝑖 ∈ ℛ

3 , denoting the fixed 

and moving joint locations of the i-th actuator, respectively, are drawn from the Cartesian reference frames 

to the center of rotation of each spherical joint. The actuators and their labels are demonstrated in Fig. 

5.3(b). 

 

(a) Kinematics    (b) Actuator orientations 

Figure 5.3 Actuator kinematics for an LBCB 

The Cartesian motion is described via the vector 𝒘 = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧}
𝑇

. Through addition and 

subtraction of vectors, the below formulation is formed 

𝒔𝑖 = 𝒗 + 𝑨𝒃𝑖 − 𝒂𝑖 (5.3) 

𝜆𝑖 = |𝒔𝑖| = 𝑓𝑖 (𝒘) (5.4) 

The Forward Kinematic Transformation (FKT) reverses the formulation in Eqs. (5.3) and (5.4), by 

using actuator measurements to calculate the Cartesian motion in the moving platform. A linearized forward 

kinematics is presented in discrete time in Eqs. (5.5) and (5.6). For an LBCB 

𝑱 =

[
 
 
 
 
𝜕𝜆1
𝜕𝑤1

⋯
𝜕𝜆1
𝜕𝑤6

⋮ ⋱ ⋮
𝜕𝜆6
𝜕𝑤1

…
𝜕𝜆6
𝜕𝑤6]

 
 
 
 

 (5.5) 

𝒘𝑘+1 = 𝒘𝑘 + 𝑱
−1(𝝀𝑘+1 − 𝝀𝑘) (5.6) 

where 𝑘 is the discrete-time step.  
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5.2.3 N2P and P2N transformations 

The 𝑁2𝑃 block shown in the Fig. 5.1 is described in more detail in Fig. 5.4. This transformation 

receives Cartesian target and measured external potentiometer signals and calculates the actuator control 

signals. The inverse kinematic transformation for target signals, Target IKT, converts these displacements 

to actuator coordinate target signals, 𝒓(𝑡) = {𝑟𝑋1 , 𝑟𝑋2 , 𝑟𝑍, 𝑟𝑌1 , 𝑟𝑌2 , 𝑟𝑌3}
𝑇
. External potentiometers are used for 

displacement measurements of the moving platform of the LBCB. These measurements are transformed 

via a 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 process to obtain Cartesian measurements and an 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐼𝐾𝑇 to obtain 

actuator coordinate displacement measurements, 𝒚(𝑡) = {𝑦𝑋1 , 𝑦𝑋2 , 𝑦𝑍, 𝑦𝑌1 , 𝑦𝑌2 , 𝑦𝑌3}
𝑇

.  

Next, a decoupled controller provides the necessary compensation for each of the six actuators 

independently. The term decoupled highlights the mMBC compensation in action in each actuator 

independent of other actuator channels. Actuator control signals are lastly transmitted to the LBCB for 

execution. The decoupled control concept is a unique aspect of the proposed maRTHS scheme, as it 

empowers the use of single-input single-output (SISO) type controllers which are easy to design and 

typically have performance guarantees. In the previously developed maRTHS scheme, actuators were 

compensated in Cartesian coordinates using a multi-input multi-output (MIMO) controller, which is hard 

to tune and stabilize. The requirement for MIMO controllers stemmed from the large degree of coupling 

between the actuators in Cartesian coordinates. By switching to actuator coordinate controls, the proposed 

framework aims to solve the challenges of MIMO Cartesian control, namely, the tuning and stability 

challenges.  

 

Figure 5.4 Numerical to physical (N2P) transformation 

Meanwhile, the P2N block transforms actuator forces, measured from the onboard loadcells in-line 

with the actuators, to Cartesian restoring forces. This process is completed via the Force Transform block, 

shown in Fig. 5.5. Force transformation assumes a static equilibrium between internal actuator forces and 

external specimen forces. The static equilibrium is solved through the principle of virtual work. The 

Jacobian matrix 𝑱1 is required in this formulation to build a linearized kinematic relationship between 
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Cartesian and actuator coordinates. Next, loadcell measurements 𝑭𝑎𝑐𝑡(𝑡) are transformed to Cartesian 

forces 𝑭𝑐𝑟𝑡(𝑡) via the force Jacobian 𝑱1
𝑇 per below:  

𝑭𝑐𝑟𝑡(𝑡) = 𝑱𝟏
𝑻𝑭𝑎𝑐𝑡(𝑡) (5.7) 

where 𝑭𝑐𝑟𝑡(𝑡) = {𝐹𝑥 , 𝐹𝑦, 𝐹𝑧, 𝑀𝑥 ,𝑀𝑦,𝑀𝑧}
𝑇

 are the measured forces in Cartesian coordinates. The measured 

Cartesian forces are in fact the feedback forces that are returned to the numerical substructure, thereby 

𝑭𝑅(𝑡) = 𝑷𝑐𝑟𝑡(𝑡).  

 

Figure 5.5 Physical to numerical (P2N) transformation 

5.2.4 Decoupled controller: actuator dynamic compensation 

The dynamics of actuators introduce significant lag in the RTHS system, which may result in loss of 

accuracy, as well as potential instability. Thus, controllers used in RTHS experiments must be designed 

specifically to compensate for the amplitude and phase discrepancies between target and measured signals. 

In this paper, a decoupled control technique is introduced for compensation of the actuator dynamics, per 

Fig 5.4. The term “decoupled” implies that each actuator onboard the LBCB is compensated independent 

of other actuators, as shown in Fig. 5.6.  

 

Figure 5.6 Architecture of the decoupled controller 
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The mMBC is the actuator compensation technique of choice for this decoupled strategy. The 

architecture of this controller provides specifications for the use of feedforward and feedback filters to 

ensure the controller has good tracking and robustness properties. The mMBC is applied to each actuator 

channel independently, as shown in Fig. 5.6. When designing a linear controller for a nonlinear process, 

the linear controller must be designed to sufficiently account for modeling errors and process nonlinearities. 

The performance of the proposed controller must be evaluated for small and high amplitude actuator 

displacements to ensure satisfactory performance. Najafi and Spencer, Jr. (2020) provide more extensive 

discussions on this controller and its tracking and robustness properties.  

In this development, the 𝑁2𝑃 and 𝑃2𝑁 transformations are introduced for the operation of an LBCB 

device for an maRTHS experiment. The 𝑁2𝑃 transformation converts Cartesian target signals to actuator 

target signals and the mMBC controller compensates for each actuator channel independently to create 

actuator control signals. Independent control of actuators is aimed at overcoming the challenges of 

Cartesian actuator control discovered in the previous maRTHS development (Fermandois and Spencer 

2017). Next, the 𝑃2𝑁 blocks transform actuator coordinate forces to Cartesian restoring forces. The 𝑁2𝑃 

and 𝑃2𝑁 blocks combined, formulate the links between the numerical and physical substructures.  

5.3 Experimental Setup 

To verify the proposed maRTHS framework, an experimental study is envisioned involving a small-

scale LBCB and a steel moment frame. This section describes the physical setups for the verification study. 

A three-DOF dynamical model is used to represent the steel moment frame, with two rotational and one 

translational DOFs, as shown in Fig. 5.7. This model assumes axial deformations are negligible. The 

moment frame is partitioned into a physical column and remaining components are numerically modeled. 

The physical column is designed from a 31.75 mm round steel section with a height of 457 mm. The natural 

frequencies of the complete structure are 1.58, 3.63, and 10.95 Hz. The mass and stiffness properties of the 

numerical substructure are provided below: 

𝑴𝑁 =
𝐸𝐼

ℎ
[

12 0 6ℎ
0 ℎ2 ℎ2/2

6ℎ ℎ2/2 5ℎ2
]             𝑲𝑁 =

𝑚ℎ

420
[
1836 0 22ℎ
0 64ℎ2 −48ℎ2

22ℎ −48ℎ2 68ℎ2
] (5.7) 

where 𝐸 = 200,000 MPa, 𝐼 = 102,354 mm4, ℎ = 457 mm and 𝑚 = 0.0091 kg/mm. The natural 

frequencies of the numerical substructure are 1.09, 2.65, and 10.50 Hz. A nominal proportional damping 

ratio of 5% is assumed for this model. The 1940 El Centro acceleration record with two intensity measures 

(PGA-scaled at 10% and 30%) are considered to excite the moment frame structure in the elastic and 

nonlinear ranges, respectively. The 30% PGA-scaled El Centro earthquake is shown in Fig. 4.8. The 
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feedback force and moment at DOFs 1 and 2 are denoted by 𝐹𝑥 and 𝑀𝑧, and the displacement and rotation 

are denoted by 𝑈𝑥 and 𝑅𝑧, respectively, in Fig. 5.7.  

 

(a) Numerical substructure   (b) Physical substructure 

Figure 5.7 Numerical and physical substructuring of the steel moment frame 

5.3.1 Experimental setup 

A Shore Western computer manages the servo-control of the hydraulic actuators. The HSP has a 

capacity of 10 gallons per minute. A dSPACE microcontroller comprised of a DS1103 PPC controller board 

with an onboard PPC 70GX processor clocking at 1 GHz, which offers 20 analog input and 8 analog output 

channels with a 16-bit resolution, is used for compilation of numerical models and communication with 

external devices. Numerical models, control techniques and integration algorithms are developed on the 

MATLAB/SIMULINK platform on a separate host PC and compiled into a C source code and uploaded 

onto the dSPACE microcontroller. The management of the maRTHS experiments are carried out via the 

ControlDesk software. 

External potentiometers are attached to the moving platform of the LBCB for accurate measurements 

of the executed boundary conditions. External potentiometers are preferred over the onboard LVDTs as 

reactional wall deflections can introduce errors to LVDT measurements (Chang et al. 2014). Fig. 5.8 

provides a schematic of the proposed experimental setup. 
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Figure 5.8 maRTHS hardware and physical setup 

5.3.2 System identification and kinematic assembly 

System identification is necessary for this framework, because of the use of the model-based 

compensation technique. The experimental substructure, which includes the LBCB attached to the physical 

specimen, is system identified. This process is initiated by commanding a BLWN to individual actuators 

and measuring their respective displacements. The six actuators onboard the LBCB device are labeled as 

𝑋1, 𝑋2, 𝑍, 𝑌1, 𝑌2 and 𝑌3, corresponding to the primary direction of the actuator in Cartesian space. The 

BLWN signals have a frequency bandwidth of 0 – 50 Hz and a root-mean-square (rms) amplitude of 5 mm 

in the X and Z axes and 2 mm in the Y axis. The rms amplitude of the bandlimited white noise must reflect 

the intended use of the actuator. The physical specimen is attached to the LBCB during the system 

identification. The effects of control-structure interaction are captured in this process, as the physical 

specimen is constrained by the LBCB. Thus, a natural velocity feedback from the specimen will cause a 

change in the dynamical properties of every actuator on the LBCB.  

The target and measured results are next transformed from time to frequency domain. The sampling 

frequency, NFFT and window type are set to 1000Hz, 8192 and Hanning with 50% overlap, respectively. 

A system of six-by-six FRFs, where row "𝑖" pertains to the target signal in actuator "𝑖"  and zero command 

in all the other actuators. Column "𝑗" describes the FRF of the measured displacement of actuator "𝑗", due 

to the target in actuator "𝑖". The experimentally obtained FRFs of the LBCB actuators are fitted with a 

transfer matrix model. A linear time-invariant transfer function with 6 poles and zeros at infinity create the 

best fit for the diagonal terms of the transfer matrix: 

𝑷𝑖(𝑠) =
𝛼0,𝑖

𝑠6 + 𝛽5,𝑖𝑠
5 + 𝛽4,𝑖𝑠

4 + 𝛽3,𝑖𝑠
3 + 𝛽2,𝑖𝑠

2 + 𝛽1,𝑖𝑠 + 𝛽0,𝑖
 (5.8) 
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where 𝛼𝑘,𝑖 and 𝛽𝑘,𝑖 are the numerator and denominator coefficient of the transfer function models. The six-

by-six system of FRFs and the corresponding transfer matrix model are presented in Fig. 5.9. The off-

diagonal terms are indicative of the dynamic coupling that exists between different actuators onboard an 

LBCB device.  

From Fig. 5.9(a), the off-diagonal terms are deemed negligible due to the sufficient amplitude 

reduction between the target and measured displacement signals. In Fig. 5.9(b), off-diagonal phases often 

have a low signal-to-noise ratio, indicating the weak correlation between the target and measured 

displacement signals. Thereby, system identification is only conducted for on-diagonal terms. The 

important implication of this assumption in the design of the proposed maRTHS framework is that target 

and measured signals, and compensation are handled in actuator coordinate since dynamic coupling is weak 

in this frame of reference. SISO compensators are suitable for decoupled and weakly coupled systems. On 

the other hand, dynamic coupling tends to be significant when addressing multi-actuator loading assemblies 

in a Cartesian reference frame as was done in (Fermandois and Spencer, Jr. 2018). The proposed framework 

is applicable to multi-axial boundary conditions where the dynamic coupling in actuator coordinates is light.  
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(a) FRF Amplitudes 

Figure 5.9 System of FRFs for an LBCB device 
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Figure 5.9 (continued) 

 

(b) FRF phases 

Identification of the kinematic relationships is another important component of an maRTHS 

experiment. Determining the vectors in Eq. (5.4) and the Jacobian in Eq. (5.6) requires acquisition of 

accurate geometric quantities (i.e., dimensions) of the LBCB device and physical specimen. The Jacobian 

matrix associated with the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 process is labeled 𝑱2. To obtain this Jacobian matrix, first 

the three-dimensional vectors in Eq. (5.3) need to be calculated between a potentiometer frame of reference 

and the Cartesian frame of reference. The potentiometer frame of reference is chosen as the base of the 

physical specimen in this example. Next, the total lengths of the potentiometers are formulated per Eq. (5.4) 

and linearized about the equilibrium position to obtain the 𝑱2 matrix. This process is repeated for the LVDT 

to Cartesian frames of reference to obtain the Force Transform labeled as 𝑱1 matrix. Both Jacobian matrices 

𝑱1 and 𝑱2 formulated for use in the Force Transform and Potentiometer FKT processes are presented below 
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𝑱1 =

[
 
 
 
 
 
−1.00 0.02 −0.01 0.06 3.85 0.50
−1.00 0.02 0.00 −0.06 −3.85 0.50
0.00 0.07 1.00 1.85 1.69 −0.13
−0.02 1.00 0.01 0.00 0.04 −3.54
−0.05 1.00 0.01 3.38 0.10 5.01
−0.04 1.00 −0.04 −2.84 0.07 4.83

 

]
 
 
 
 
 

   𝑱𝟐 =

[
 
 
 
 
 
−0.94 −0.32 0.11 −0.82 2.18 −0.60
−0.92 −0.32 0.19 0.44 −1.64 −0.59
−0.01 −0.24 0.97 −1.99 −0.66 −0.18
−0.11 −0.99 0.05 −0.06 0.09 1.64
−0.02 −0.98 0.20 −2.53 −0.61 −3.31
−0.02 −0.99 0.11 2.19 −0.43 −3.35

 

]
 
 
 
 
 

 (5.9) 

The elements of the Jacobian 𝑱1 describe the relationship between the actuator forces and the 

Cartesian forces. Meanwhile, the Jacobian 𝑱𝟐 represents the correspondence between the potentiometer 

strokes and the Cartesian motion. These Jacobians are not symmetric because the positions of the actuators 

and the potentiometers with reference to the physical specimen are not symmetric. The translational and 

rotational elements in 𝑱1 and 𝑱2 are in units of mm and radians, respectively. 

5.4 Experimental Verifications 

This section aims to verify the proposed maRTHS development through an illustrative example 

involving a steel moment frame in Fig. 5.7.   

5.4.1 Deformation of reaction wall and LBCB fixture 

The target displacements may be different than the displacements imposed on the specimen due to 

deformations of the reaction wall and LBCB, which can negatively affect the hybrid simulation. Reaction 

wall deflections were observed in prior hybrid simulation experiments conducted on the large-scale facility 

described in Section 5.2 (Chang et al. 2014). To test the magnitude of these deflections on the small-scale 

MUST-SIM facility, LED markers are installed on the reaction wall and the 1/5th-scale LBCB frame. The 

locations of the LED markers are illustrated in Fig. 5.10. The blue markers are intended for measurements 

of the LBCB frame and orange markers are intended for the reaction wall.  

In this study, a Krypton K600 camera is used to measure the displacements of the LED markers in 

Cartesian space with an accuracy of ± 0.02mm. An maRTHS experiment with a 30% El Centro earthquake 

is executed, and the deformations indicated by the LEDs are recorded. The vertical deformation in blue 

marker #2 and out-of-plane deformations in the orange marker #6 are presented in Fig. 5.11. The maximum 

deflections in the orange markers are obtained and plotted in Fig. 5.12. The blue dashed lines represent the 

extrapolations of the lateral deformations to the base of the reaction wall. 
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Figure 5.10 Configuration of the LED markers 

 

(a) Vertical deformation of blue LED #2 

 

(b) Out-of-plane deformation of orange LED #6 

Figure 5.11 Displacements of in blue LED #2 and orange LED #6 

 

Figure 5.12 Maximum out-of-plane deformation in orange LED markers 
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These deformations are deemed significant as a ratio of the physical specimen deformations. To avoid 

measurement inaccuracies induced by LBCB and reaction wall deformations, external potentiometers are 

provisioned and used to measure the displacements of the moving platform. These potentiometers are 

connected to the moving platform of the LBCB at one end, and the fixed floor of the experimental setup, at 

the other end. The potentiometer deformations are converted to Cartesian measurements via 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝐹𝐾𝑇 and then converted to corrected LVDT measurements via 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐼𝐾𝑇.  

 

(a) 𝑌1 actuator   (b) 𝑌2 actuator   (c) 𝑌3 actuator 

Figure 5.13 LVDT and Potentiometer measurements of the vertical (Y-axis) actuators 

Fig. 5.13 demonstrates the target, LVDT and external potentiometer measurements. The LVDT 

measurement from actuator 𝑌1 points to a noticeably larger displacement than the potentiometer 

measurement. This observation highlights the incorporation of LBCB frame and reaction wall deformations 

to the LVDT measurements. The external potentiometers provide more accurate measurements since LBCB 

frame and reaction wall deformations are avoided. Another important observation is that actuator 𝑌1 is 

confronted with the high axial stiffness, due to its close proximity with the steel column. As a result, a larger 

lag is observed between the target and external potentiometer signals for this actuator. An actuator with a 

higher force capacity, or a physical specimen with a smaller axial stiffness can overcome the observed lag 

and result in a more accurate 𝑌1 tracking.  

Lastly, the potentiometer measurements converted to Cartesian coordinates are validated via 

comparisons to reference measurements from a Krypton camera. The camera is directed at the front face of 

the LBCB and LEDs are installed on the moving platform of the LBCB. The moving platform executes 

sinusoidal translations in the 𝑋- and 𝑍-axes, respectively, and rotation about the 𝑍-axis. Next, Cartesian 

deformations are calculated from external potentiometer readings and compared to Krypton measurements. 

The results for the X-translation and Z-rotation presented in Fig. 5.14(a)-(b) demonstrate accurate tracking. 

The Z-translation results shown in Fig. 5.14(c) suffer from inaccuracies due to the nonuniform vertical 

translation as a result of the flexural deformations in the moving platform during experiments. The 
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Jacobians discussed earlier assume that the moving platform is rigid and does not undergo flexural 

deformation. Therefore, the use of the Jacobians to calculate Cartesian motion will result in minor errors in 

the 𝑌 translation calculations, when the flexural deformation in the moving platform is large.  

 

(a) 𝑋 Translation   (b) 𝑍 Rotation   (c) 𝑌 Translation 

Figure 5.14 Potentiometer and Krypton camera measurements 

5.4.2 Tracking performance of compensation techniques 

This section assesses the tracking performance of the mMBC compensator proposed in the previous 

sections, which is critical to ensuring the integrity of the maRTHS. Three compensation scenarios are 

considered for comparison: (i) no control, (ii) feedforward (FF) control, and (iii) mMBC. Next, open-loop 

maRTHS experiments are conducted and the tracking ability of each controller is assessed. The open-loop 

execution implies that restoring forces are set to zero and stability is assured while the tracking performance 

of each compensation scenario is considered.   

Two evaluation criteria are used for assessment of the tracking performance of each compensation 

scenario: the normalized root-mean-square error (𝑅𝑀𝑆𝐸) and normalized maximum error (𝑀𝐴𝑋𝐸) per Eqs. 

(3.21) and (3.22), respectively. These criteria should be minimized for a better tracking performance.  

Following open-loop executions of the maRTHS with a 10% PGA-scaled El Centro earthquake, the 

tracking performance of the compensation scenarios are listed in Tables 5.2–5.4. Inclusion of an FF 

compensator results in better tracking performance compared to the uncontrolled scenario. Addition of the 

feedback controller to formulate the mMBC compensator, further minimizes the evaluation criteria. 

Tracking in the Z actuator appears to be poor, however, the displacement of this actuator is quite small (~ 

0.1 mm). Thus, even small errors are amplified by the tracking criteria. Fig. 5.15 illustrates the 

synchronization plots in Cartesian coordinates for DOFs 1 and 2, identified in Fig. 5.7. A 1: 1 diagonal line 

in these figures implies perfect tracking. Use of the FF and mMBC compensators reduces the area in the 

tracking loop, thereby reducing negative damping that can render a closed-loop RTHS unstable (Horiuchi 
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et al. 2000). These results show that although feedback control serves in improving tracking, most of the 

compensation is brought about by the FF controller.  

Table 5.2 RMSE tracking performance of actuators 

Compensation 

scenario 

𝑅𝑀𝑆𝐸 

𝑋1 𝑋2 𝑌1 𝑌2 𝑌3 𝑍 

No control 0.159 0.198 0.242 0.168 0.198 3.623 

FF 0.102 0.148 0.086 0.110 0.113 3.534 

mMBC 0.095 0.137 0.083 0.098 0.099 3.221 

Table 5.3 MAXE tracking performance of actuators 

Compensation 

scenario 

𝑀𝐴𝑋𝐸  

𝑋1 𝑋2 𝑌1 𝑌2 𝑌3 𝑍 

No control 0.173 0.186 0.215 0.151 0.152 3.843 

FF 0.111 0.126 0.101 0.109 0.127 3.608 

mMBC 0.101 0.113 0.093 0.104 0.119 3.077 

Table 5.4 Tracking performance in Cartesian coordinates 

Compensation 

scenario 

𝑅𝑀𝑆𝐸  𝑀𝐴𝑋𝐸  

𝐷𝑂𝐹 1 DOF 2 DOF 1 DOF 2 

No control 0.195 0.214 0.190 0.184 

FF 0.155 0.109 0.130 0.144 

mMBC 0.115 0.098 0.099 0.142 
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(a) DOF 1 (No Control)   (c) DOF 1 (FF)   (e) DOF 1 (mMBC) 

 
(b) DOF 2 (No Control)  (d) DOF 2 (FF)   (f) DOF 2 (mMBC) 

Figure 5.15 Tracking performance of compensation scenarios for Cartesian coordinates – 10% El Centro 

5.4.3 maRTHS results 

Next, the maRTHS loop is closed (i.e., the feedback forces are returned to the numerical model) to 

enable maRTHS execution. The behavior of DOFs 1–3 of the steel moment frame are used for evaluation 

in this section. DOFs 1, 2 and 3 represent the horizontal translation of the beam in the X-direction, rotation 

at the top-right beam-column attachment about the Z-axis, and the rotation at the top-left beam-column 

attachment about the Z-axis, respectively, as shown in Fig. 5.7. A numerical model of the whole (reference) 

structure is first used for comparison and validation of the maRTHS test. This comparison is conducted in 

the linear elastic range for a 10% El Centro excitation.  

In the linear elastic range, the results of the maRTHS test of the moment frame are compared to 

predicted response from a numerical model. A PGA-scaled El Centro at 10% excitation is introduced to the 

moment frame structure and the responses of DOFs 1–3 are presented in Fig. 5.16. The performance of the 

maRTHS experiment is observed to be closely matching that of the numerical simulation, thereby verifying 

the accuracy of the maRTHS results in the linear range. The differences observed in DOF 2, as shown in 

Fig. 5.16(b), may be associated to the imperfections in the compensation action of the boundary condition.  
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(a) DOF 1 

 
(b) DOF 2 

 
(c) DOF 3 

Figure 5.16 Numerical simulation and maRTHS of the steel moment frame – 10% El Centro 

A 30% El Centro excitation is used to push the moment frame structure into the nonlinear range. The 

results for the performance of DOFS 1–3 for this nonlinear maRTHS experiment are provided in Fig. 5.17.  

The hysteretic (i.e., force-displacement) responses of DOFs 1 and 2 are presented in Fig. 5.18. The results 

presented describe the evolution of the deformation parameters 𝑈𝑋 and 𝑅𝑍, and force parameters 𝐹𝑋 and 

𝑀𝑍 as demonstrated in Fig. 5.7. 

 
(a) DOF 1 

 
(b) DOF 2 

 
(c) DOF 3 

Figure 5.17 maRTHS behavior of the steel moment frame – 30% El Centro 

 

(a)  𝐹𝑋 vs. 𝑈𝑋 (DOF 1)    (b) 𝑀𝑍 vs. 𝑅𝑍 (DOF 2) 

Figure 5.18 Hysteretic responses at DOFs 1 and 2 – 30% El Centro 
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5.4.4 Damping ratio study 

Closed-loop delays in RTHS can be interpreted as negative damping which can render experiments 

unstable. Instability may ensue unless the combined damping in the numerical and physical substructures 

is large enough. Therefore, delay compensation is an important feature of any RTHS implementation. The 

damping ratio of the numerical substructure has been set to 5% up to this point. To explore the effectiveness 

of the delay compensation action, the damping of the numerical substructure is varied from 𝜁 = 2 − 10%, 

where 𝜁 is the damping ratio. The corresponding maRTHS results are presented in Fig. 5.19. The boundary 

condition translation along the X-axis and rotation around the Z-axis, pertaining to DOF 1 and 2 are 

displayed. These results demonstrate a smooth and stable performance for the specified range of damping 

ratios. With the inclusion of the mMBC compensator in the maRTHS loop, the closed-loop delays and 

negative damping effects are reduced.   

 

(a) Translation along X-axis (DOF 1) 

 

(b) Rotation along Z-axis (DOF 2) 

Figure 5.19 maRTHS results under different damping scenarios – 10% El Centro 
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These results illustrate improvements over the previous development discussed in  (Fermandois and 

Spencer 2017). The stability of the rotational DOF 2, at the top of the physical column, was discovered to 

be highly sensitive in the previous development and the decision was made to neglect it. This DOF however 

was included with the proposed maRTHS implementation, thus providing a more realistic substructuring 

selection. The previous development also condensed out the Y-translation controller, as the Cartesian 

feedforward controller was numerically singular due to the high axial stiffness of the physical specimen. 

None of the Cartesian directions are condensed out in this approach. Lastly, good tracking and stability are 

displayed by the maRTHS framework, even when the physical specimen is pushed into the nonlinear 

response region.  

 

5.5 Summary 

A novel framework for multi-axial real-time hybrid simulation (maRTHS) testing is proposed in this 

chapter. This development aims to provide a viable alternative to shake table and hybrid simulation with 

realistic dynamic and three-dimensional characteristics. This framework is divided into four steps, namely: 

(i) numerical substructure; (ii) numerical to physical (𝑁2𝑃) transformation; (iii) physical substructure; and 

(iv) physical to numerical (𝑃2𝑁) transformation. The 1/5th-scale Load and Boundary Condition Box 

(LBCB) device at the University of Illinois at Urbana-Champaign is used for experimental verification of 

the proposed framework.  

The experimental verification is comprised of a steel moment frame, which is partitioned into 

physical and numerical substructures and evaluated via the proposed maRTHS algorithm. At every time 

step, the response of a beam-column model is numerically evaluated on a microcontroller for a given ground 

excitation. The 𝑁2𝑃 transforms the Cartesian target boundary conditions (i.e., displacements and rotations) 

from the numerical substructure to actuator control signals for the LBCB to execute. This process involves 

several layers of kinematic transformations and a decoupled actuator compensation scheme. Once control 

signal has been executed, feedback forces measured by the loadcells in-line with the actuators are 

transformed via the 𝑃2𝑁 transformation to Cartesian restoring forces and returned to the numerical 

substructure.  

The actuator compensation in this framework is conducted in a decoupled manner, with each actuator 

channel compensated independently. The decoupled control scheme creates ease of design and enables 

utilization of SISO type controllers, like the modified model-based compensator (mMBC), which has good 

tracking and robustness behaviors. Three compensation scenarios are studied experimentally: (i) no control; 

(ii) feedforward; and (iii) mMBC. By comparison, the latter demonstrates the best tracking performance. A 

range of damping values were assigned to the numerical substructure to ensure that the compensation is 
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robust, and instability caused by closed-loop delays are prevented. The results from the maRTHS test 

conducted in the linear range are compared to a numerical simulation for verification. Lastly, results from 

the maRTHS test with the physical specimen pushed into the nonlinear range demonstrate successful and 

stable implementation of the proposed maRTHS framework.  
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CHAPTER 6 MULTI-BOUNDARY INTERFACE REAL-TIME HYBRID 

SIMULATION  
 

6.1 Problem Statement 

For many practical engineering and research applications, maRTHS with more than one boundary 

interface and physical substructure may be necessary. In this Chapter, a framework for multi-axial real-

time hybrid simulation employing substructuring at multiple boundary points is proposed; the framework 

also enables simulation of systems with multiple physical substructures. Out-of-plane physical realizations 

which vastly increase the mechanical coupling between the actuators of an LBCB will also be considered 

herein. After substructuring the reference structure, kinematic and force transformation, and actuator 

compensation algorithms are introduced to connect each physical element with the numerical model. The 

mathematical and analytical basis for the proposed maRTHS framework are first presented, addressing the 

following: (i) scalability for higher degrees-of-freedom (DOFs); (ii) multiple physical boundary points; (iii) 

decoupled compensation for dynamics and mechanical couplings between interacting actuators; and (iv) 

out-of-plane boundary condition motions and forces. The maRTHS framework is subsequently applied to 

a multi-span curved bridge structure with two LBCBs testing the physical piers. The bridge under 

consideration is a four-span, curved deck, and asymmetric structure loaded via a bi-directional ground 

motion. Steel physical substructures are employed herein for ease of analysis and repeatability. The inertial 

effects of LBCBs on the measurement feedback forces are also considered and shown to be negligible.  

6.2 Multi-Boundary Multi-Axis Real-Time Hybrid Simulation 

In most RTHS implementations to date, only a single boundary interface and a single physical 

specimen have been the subject of the study. In many applications however, physical testing of multiple 

boundary interfaces and specimen may be of interest. Several multi-axial boundary point devices, 

comprised of actuators and sensors, are required for such simulations. The goal here is to extend the 

maRTHS framework proposed in Najafi et al. (2020) for simulations with multiple physical substructures. 

In seismic applications of maRTHS, with each integration time step, a ground acceleration 𝑥̈𝑔(𝑡) 

serves as the input excitation into the test. As the numerical substructure is excited, the deformation values 

at the boundary point with where the physical substructure would be positioned in the reference structure 

are computed and termed as the target. The target boundary condition 𝒘𝑖(𝑡) for the 𝑖𝑡ℎ physical 

substructure is obtained in a Cartesian coordinate from the finite element model. Steps involving kinematic 

transformations and actuator compensation next prepare the target signal for execution in the physical 

substructure. 
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A transformation 𝑁2𝑃𝑖 is responsible for converting target boundary condition to actuator control 

signal 𝒖(𝑡). After physical execution (i.e., deformation of physical specimen by actuators), loadcells record 

actuator forced 𝑭𝑎𝑐𝑡(𝑡). A transformation 𝑃2𝑁𝑖 converts actuator forces to Cartesian feedback forces 

𝑭𝑐𝑟𝑡(𝑡) for use in the numerical substructure. In addition, relevant physical data 𝒙𝑃, 𝒙̇𝑃, and 𝒙̈𝑃 are recorded 

from the experimental setup. A schematic of the proposed maRTHS framework for multiple physical 

substructures is presented in Fig. 6.1. In some experiments, the physical substructures may directly interact 

(e.g., one physical specimen with multiple boundary interfaces), while in others the physical interaction is 

through coupling in the numerical substructure (e.g., separate physical specimen and boundary interfaces).  

 

Figure 6.1 Proposed multi-boundary interface maRTHS framework 

6.3 Experimental Setup Requirements 

Multi-axial simulations are typically realized with actuated devices such as the LBCBs at the MUST-

SIM laboratory at the University of Illinois at Urbana-Champaign, per Fig. 5.2. Each box can be used 

together or individually, and configured at different orientations, per Fig. 6.2.  

To measure forces, six loadcells are necessary, installed in-line with the axis of the actuators. To 

measure the executed deformations, displacement transducers in the form of six linear potentiometers are 

used. To allow for the input/output (I/O) peripherical devices (e.g., loadcells), embedded systems (e.g., 

servocontroller and microcontroller) must have sufficient I/O channels for connectivity. Each actuator 

control channel requires a digital-to-analog (DA) channel from the microcontroller to the servocontroller, 

and from the servocontroller to the actuator for execution. The displacement transducer and loadcells each 

require an analog-to-digital (AD) channel from the microcontroller to the servocontroller, and from the 

servocontroller to the actuator for measurements. 
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Figure 6.2 Two LBCBs used on a shared physical specimen 

For an maRTHS test with 𝑛 boundary interfaces, the peripheral device requirements are: 6𝑛 loadcells, 

6𝑛 displacement transducers (LVDT or linear potentiometer), and 6𝑛 actuator command channels. The 

servocontroller and microcontroller must have the I/O connectivity interface for 6𝑛 DA channels and 12𝑛 

AD channels.  

6.4 Reference Model Development 

A multi-span curved bridge is selected as the reference structure for the experimental verification of 

the proposed maRTHS framework. This selection is made as a natural extension to the developments made 

in the multi-axial slow-speed hybrid simulation testing done as part of the CABER program at the MUST-

SIM facility at the University of Illinois at Urbana-Champaign (Abdelnaby et al. 2012; Chang et al. 2014; 

Elnashai et al. 2005; Frankie et al. 2013).  

6.4.1 Multi-span curved bridge  

An asymmetric four-span reinforced concrete curved-bridge is partitioned into a numerical deck and 

physical piers for slow-speed hybrid simulation. The numerical component is modeled via finite element 

analysis in Zeus-NL (Abdelnaby et al. 2012). The two outer physical piers are tested at a 1:3 scale using 

the full-scale LBCBs, while the inner pier is tested at a 1:20 scale using the 1/5th-scale LBCB. Details of 

the abutments, input excitation, and restraints are also modeled numerically (Frankie 2013). The simulation 

coordinator integrating the numerical and physical substructures together is the UI SIMCOR (Kwon et al. 

2005).  

The reference structure discussed in the CABER program is a 400 ft long curved bridge with a 

curvature of 1/660 ft. The four-spans are 75 ft (22.9 m), 150 ft (45.7 m), 100 ft (30.5 m), and 75 ft (22.9 

m), respectively. The piers of the bridge are 28.5 ft (8.7 m), 37.5 ft (11.4 m), and 22.5 ft (6.9 m), 

respectively. The piers are designed at 48 in. (1220 mm) round reinforced concrete elements with 28 #10 
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reinforcement bars, and #5 stirrups. The deck is idealized as a 60 in. (1.52 m) by 81 in. (2.06 m) transverse 

beam.  

 

(a) Reference structure    (b) Real-time substructuring 

Figure 6.3 Illustrative curved bridge example 

In this study, a reference structure is envisioned with similar geometry to the structure studied 

previously. Structural steel is used instead of reinforced concrete for repeatability and since this is a proof-

of-concept study. The new reference structure is designed with a scale of 1:20 compared to the original 

CABER bridge. The new bridge is 20 ft (6.1 m) long with a curvature of 1/33 ft (1/10.1 m), as illustrated 

in Fig. 6.3(a). For ease of modeling and construction, round sections are appropriated for all numerical and 

physical components. The bridge deck is modeled as a round steel section with a diameter of 2.8 in. (71 

mm). The supports at both ends of the curved deck, restrain the bridge in the rotational and the 𝑌-direction.  

The piers are dimensioned per Table 6.1. Fig. 6.3(b) provides an illustration of the real-time substructuring 

of the reference bridge into numerical and physical substructures, and two multi-axial boundary interfaces. 

Table 6.1 Bridge pier dimensions 

Pier Simulation Diameter (in. / mm) Length (in. / mm) 

1 Physical 1.25 / 31.75 18.0 / 457.2 

2 Physical 1.25 / 31.75 21.5 / 546.1 

3 Numerical 2.00 / 50.80 13.5 / 342.9 

 

6.4.2 Model development 

A three-dimensional finite element model (FEM) of the reference structure is first formulated in 

MATLAB. The curved deck of the bridge is idealized via 16 linearized segments per Fig. 6.4. Development 

of a MATLAB-based numerical model is critical to the maRTHS implementation, as well-established FEM 

tools such as Abaqus and SAP2000 are not integrable with real-time testing hardware. Development of an 
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accurate numerical model for the reference structure is a challenging task, due to the three-dimensional 

nature of the bridge and coupling present between out-of-plane and torsional moments in the curved deck.  

 

Figure 6.4 Linearized segments of the curved deck 

The SAP2000 software was selected for verification of the MATLAB-based numerical model. Table 

6.2 lists the dominant eigen modes, and natural frequencies identified in the SAP2000 and MATLAB 

models. Due to the out-of-plane flexibility of the curved bridge, most of the dominant eigen modes are 

lateral and vertical vibration modes. Fig. 6.5 compares a total of 30 eigen modes and the corresponding 

identified natural frequencies. Fig. 6.6 illustrates the first six mode shapes for the curved bridge structure. 

In this figure, the wireframe and the color-coded frame indicate the at-rest position and mode shape of the 

bridge. Results indicate that the MATLAB-based numerical model is similar to the SAP2000 model in 

dynamic performance.  

Table 6.2 List of dominant eigen modes and natural frequencies 

Natural 

Frequency 

(Hz) 

1 2 3 4 5 6 7 8 9 

Mode Lateral Lateral Lateral Lateral Vertical Vertical Lateral Vertical Lateral 

SAP2000 0.5235 0.6536 1.1027 1.2616 1.3312 1.4644 2.1894 3.0756 3.1976 

Numerical 

Model 
0.5260 0.6545 1.0919 1.2581 1.3270 1.4650 2.1864 3.0048 3.327 

 

 

Figure 6.5 Comparison of 30 eigen modes 
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(a) Mode 1: lateral 0.5235 Hz  (b) Mode 2: lateral 0.6536 Hz  (c) Mode 3: lateral 0.9067 Hz 

 

(d) Mode 4: lateral 0.7927 Hz  (e) Mode 5: vertical 1.3312 Hz  (f) Mode 6: vertical 1.4644 Hz 

Figure 6.6 Mode shapes 

6.5 Experimental Validation 

In this section, the proposed multi-boundary interface maRTHS framework is validated by simulating 

the illustrative example involving the multi-span curved bridge structure. Following an introduction of the 

experimental platforms and hardware used, the structure is subjected to a bi-directional ground motion. The 

results for the elastic range are first compared to numerical simulation results. The amplitude of the ground 

motion is next increased until nonlinear behavior is achieved in the physical substructure.  

6.5.1 Experimental setup 

The numerical substructure and compensation algorithm are programmed in the real-time MATLAB-

Simulink programming environment, on a host PC. Upon compilation, the MATLAB program is converted 

into a C-language source code and sent to a microcontroller. The graphical user interface based on the 

Simulink environment are displayed in Appendix A. The Speedgoat performance real-time target machine 

with a 4.20 GHz processor is the microcontroller of choice in this implementation. Appropriate I/O driver 

block interface for Simulink real-time are provided by the Speedgoat software library. For the I/O 

peripherals, two Speedgoat IO133 modules are installed on the performance real-time target machine, each 

with 68 pins. Two 1/5th-scale LBCBs are used in this study. Operation of each LBCB requires 17 pins which 

include 6 analog outputs for commanding the actuators, and 13 analog inputs (six loadcells, six external 



130 

 

potentiometers, one reference potentiometer). The two LBCBs used herein are labeled LBCB #1 and LBCB 

#2.  

Two Shore Western servo-controllers handles the operations of the two LBCBs and the 

corresponding Moog G631 2-stage servo valves and hydraulic actuators. A proportional controller 

programmed in the servo-controller ensures the stability of all actuators. The stroke limits and force 

capacities of the actuators are discussed in Najafi et al. (2020). The Speedgoat microcontroller and Shore 

Western servo-controllers communicate via analog I/O terminal boards. Fig. 6.7 provides a schematic of 

the experimental hardware used for this study.  

 

Figure 6.7 Experimental hardware used for maRTHS study 

Each actuator onboard the LBCB possesses an inline displacement transducer in the form of LVDTs. 

However, as demonstrated Najafi et al. (2020) and discussed in Chapter 5, the deformations in the reaction 

wall and frame of the LBCB result in displacement measurements from LVDTs to be skewed. Therefore, 

external potentiometers are installed between the top of the physical specimen and base of the reaction wall 

to ensure more accurate displacement measurements. LBCB #1 uses Celesco CLWG-150-MC4 

potentiometers, while LBCB #2 uses Celesco CLP-200 Potentiometers.  

The Interface WMC-3000 loadcells are used with each actuator axis. Each loadcell has a capacity of 

3 kips. The capacity of the loadcells to measure forces in the 𝑌-direction is about 9 kips. For the steel piers 

to axially deform by 1 mm, a force of 77.9 kips is required. Therefore, to avoid damaging the loadcells, the 

𝑌-direction displacements are truncated out of the model at the locations of the boundary points.   



131 

 

6.5.2 System identification 

The updated maRTHS framework uses a model-based control technique to compensate for the 

dynamics of the actuators. Because of the decoupled nature of the controller, each actuator is compensated 

independent of the other actuators. A system identification procedure is also necessary to obtain the nominal 

actuator model necessary for the development of the model-based controller.  

A single-input single-output (SISO) identification procedure is employed here, where each of the six 

actuators onboard an LBCB are subjected to BLWN signal with a 0 – 50 Hz bandwidth, and an rms 

amplitude of 2 mm. The system identification procedure involves sending a BLWN target signal to actuator 

𝑖, while the displacements of actuator 𝑗 is recorded. Each time domain input-output pair 𝑟𝑖 and 𝑦𝑗 is 

converted to frequency domain to obtain 𝑅(Ω) and 𝑌(Ω) at frequency Ω, respectively. The FRF of the 

input-output pair is obtained per Eq. (2.40). 

Data acquisition is completed at a sampling rate of 1000 Hz, NFFT of 8192, and a Hanning window 

with 50% overlap. The frequency domain fitting tool MFDID is next employed for fitting transfer function 

models to the FRFs identified (Kim et al. 2005). A six-pole transfer function model is used to describe the 

FRFs given by Eq. (5.8). Figs. 6.8 and 6.9 summarize the amplitude and phase plots for the six-by-six FRF 

systems of the two LBCBs used in this study. The off-diagonal terms or coupling between the actuators are 

deemed to be small and ignored for the purposes of system identification. Hence, the MFDID tool is only 

used for the on-diagonal terms. Tables 6.3 and 6.4 describe the coefficients of the numerators and 

denominators of the nominal transfer function models fitted to the FRF plots. The coefficients for the 

transfer function of  actuator 𝑷𝑋1 of LBCB #1 are presented in Tables 6.3 and 6.4 and illustrated 

schematically in the top-left block of Figs. 6.8 and 6.9.  

The coupling between the LBCB actuators can be significant when the physical specimen attached 

to the LBCB is extremely stiff. The off-diagonal terms and the coupling between the actuators should not 

be ignored in such instances. MIMO or coupled compensators can be useful in addressing the compensation 

of LBCB setups with very stiff physical specimen.  
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(a) Amplitude 

 

(b) Phase 

Figure 6.8 System of FRFs for an LBCB #1 device 
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(a) Amplitude 

 

(b) Phase 

Figure 6.9 System of FRFs for an LBCB #2 device 
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Table 6.3 Numerator and denominator coefficient of the transfer function - LBCB #1 

Actuator ID 𝛼0,𝑖 𝛽0,𝑖 𝛽1,𝑖 𝛽2,𝑖 𝛽3,𝑖 𝛽4,𝑖 𝛽5,𝑖 

𝑮𝑋1 5.403𝐸12 6.264𝐸12 1.536𝐸11 2.175𝐸9 1.631𝐸7 9.685𝐸4 279.2 

𝑮𝑋2 4.340𝐸12 5.220𝐸12 1.344𝐸11 2.057𝐸9 1.562𝐸7 9.612𝐸4 272.5 

𝑮𝑌 4.291𝐸12 6.244𝐸12 1.340𝐸11 1.851𝐸9 1.346𝐸7 8.694𝐸4 242.7 

𝑮𝑍1 2.004𝐸12 4.522𝐸12 1.599𝐸11 2.498𝐸9 2.020𝐸7 1.120𝐸5 332.2 

𝑮𝑍2 1.191𝐸13 1.222𝐸13 2.597𝐸11 3.330𝐸9 2.405𝐸7 1.261𝐸5 352.0 

𝑮𝑍3 1.036𝐸13 1.123𝐸13 2.343𝐸11 2.972𝐸9 2.090𝐸7 1.151𝐸5 310.1 

 

Table 6.4 Numerator and denominator coefficient of the transfer function - LBCB #2 

Actuator ID 𝛼0,𝑖 𝛽0,𝑖 𝛽1,𝑖 𝛽2,𝑖 𝛽3,𝑖 𝛽4,𝑖 𝛽5,𝑖 

𝑮𝑋1 4.375𝐸12 4.992𝐸12 1.328𝐸11 2.041𝐸9 1.579𝐸7 9.690𝐸4 278.2 

𝑮𝑋2 2.710𝐸12 3.543𝐸12 9.736𝐸10 1.659𝐸9 1.330𝐸7 8.847𝐸4 253.4 

𝑮𝑌 8.595𝐸12 1.060𝐸13 2.125𝐸11 2.688𝐸9 1.815𝐸7 1.050𝐸5 273.1 

𝑮𝑍1  2.194𝐸12 5.201𝐸12 1.623𝐸11 2.461𝐸9 1.898𝐸7 1.098𝐸5 303.1 

𝑮𝑍2 1.149𝐸13 1.374𝐸13 2.779𝐸11 3.468𝐸9 2.341𝐸7 1.233𝐸5 321.5 

𝑮𝑍3 1.153𝐸13 1.406𝐸13 2.755𝐸11 3.359𝐸9 2.269𝐸7 1.207𝐸5 316.5 

 

6.5.3 Kinematic transformations 

The Jacobian matrices 𝑱𝑑 and 𝑱𝛿 for the Force Transform and Potentiometer FKT processes are 

identified for LBCB #1 and #2, from the linearization of the nonlinear functions in Eqs. (6.1) and (6.2). 

Elements of the Jacobian 𝑱𝑑 describe the linearized relationship between the forces in actuator coordinates 

to forces in Cartesian coordinates. Elements of Jacobian 𝑱𝛿 described the linearized relationship between 

the potentiometer strokes and Cartesian displacements and rotations. The units for these Jacobians are 𝑚𝑚 

for the displacement terms and 𝑟𝑎𝑑 for the rotational terms.  

𝑱𝑑,1 =

[
 
 
 
 
 
−1.00 0.02 −0.01 0.06 3.85 0.50
−1.00 0.02 0.00 −0.06 −3.85 0.50
0.00 0.07 1.00 1.85 1.69 −0.13
−0.02 1.00 0.01 0.00 0.04 −3.54
−0.05 1.00 0.01 3.38 0.10 5.01
−0.04 1.00 −0.04 −2.84 0.07 4.83

 

]
 
 
 
 
 

  𝑱𝛿,1 =

[
 
 
 
 
 
−0.94 −0.32 0.11 −0.82 2.18 −0.60
−0.92 −0.32 0.19 0.44 −1.64 −0.59
−0.01 −0.24 0.97 −1.99 −0.66 −0.18
−0.11 −0.99 0.05 −0.06 0.09 1.64
−0.02 −0.98 0.20 −2.53 −0.61 −3.31
−0.02 −0.99 0.11 2.19 −0.43 −3.35

 

]
 
 
 
 
 

 (6.1) 
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𝑱𝑑,2 =

[
 
 
 
 
 
0.94 −0.34 0.03 −0.75 −2.05 0.82
0.94 −0.34 0.04 0.65 1.93 0.82
0.00 −0.31 0.95 −2.46 0.67 0.21
−0.01 −1.00 0.05 −0.08 −0.09 −1.86
0.00 −1.00 0.04 −2.18 0.15 3.33
0.00 −1.00 0.04 2.05 0.14 3.33

 

]
 
 
 
 
 

      𝑱𝛿,2 =

[
 
 
 
 
 
1.00 0.06 0.04 0.27 −3.73 −1.15
0.99 0.10 0.06 −0.20 2.57 −0.99
−0.01 0.10 1.00 1.32 2.45 −0.23
−0.01 1.00 −0.02 0.15 0.06 3.90
−0.03 1.00 −0.02 2.85 −0.01 −5.04
−0.02 1.00 −0.02 −2.90 −0.18 −5.20

 

]
 
 
 
 
 

 (6.2) 

6.5.4 Multi-boundary maRTHS results 

The 1940 El Centro earthquake acceleration record is applied bi-directionally as the ground excitation 

to the multi-span curved bridge structure. The ground accelerations are applied in the 𝑋 and 𝑍 directions 

and are illustrated in Fig. 6.10. Scales of 5% and 2.5% is applied to the acceleration records in the 𝑋 and 𝑍 

directions, respectively, for the initial elastic range study and numerical verification. The scales are next set 

to 20% and 2.5% in the 𝑋 and 𝑍 directions, respectively, to push the physical specimen into the nonlinear 

hysteresis range. The amplitude in the 𝑍 direction is limited to 2.5% to prevent large amplitude actuation 

in the 𝑍 direction.  

 

(a) 𝑋 direction    (b) 𝑍 direction 

Figure 6.10 1940 El Centro ground acceleration 

The results presented herein focus on the hysteretic and tracking behavior of the boundary conditions. 

The hysteretic study focuses on the force-deformation relationship in the structural element of interest. A 

tracking study assesses how accurately the actuated setup is able to replicate the prescribed trajectory 

without major delays. The boundary points as illustrated schematically in Fig. 6.3(b) are at the column caps 

of the physical piers.  

To check the quality of the actuator target displacement tracking during the LBCB executions, the 

two evaluation criteria RMSE and MAXE per Eqs. (3.21) and (3.22) are used, respectively. Table 6.6 

summarizes the tracking performance of the LBCB execution in Cartesian coordinates. Three compensation 

scenarios are considered: (i) No control, (ii) Feedforward, and (iii) mMBC. For this comparison, the 

maRTHS loop is left open with feedback forces set to zero. This step is necessary as the no control scenario 

leads to an unstable execution in the closed-loop maRTHS. Results demonstrate that feedforward and 

mMBC compensation can drastically reduce the tracking error. The rotational DOF 𝑅𝑌 corresponds to the 

torsional DOF of the physical specimen, inclusion of compensation worsens the tracking behavior. The 
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torsional DOF is very stiff and difficult to control and compensation methods introduce noise in this 

channel. The largest errors are observed in the 𝑅𝑋 channel of LBCB #1. Tracking errors and noise as a ratio 

to the small amplitude rotations in this channel (± 0.05 degrees), result in large tracking performance 

criteria. 

Table 6.5 Tracking performance in Cartesian coordinates 

LBCB LBCB #1 LBCB #2 

Channel 𝑈𝑋 𝑈𝑍 𝑅𝑋 𝑅𝑦 𝑅𝑍 𝑈𝑋 𝑈𝑍 𝑅𝑋 𝑅𝑌 𝑅𝑍 

No Control 
RMSE 0.231 0.310 2.436 0.871 0.568 0.251 0.158 0.587 0.551 0.337 

MAXE 0.198 0.297 2.460 0.616 0.520 0.200 0.117 0.411 0.462 0.360 

Feedforward 
RMSE 0.162 0.175 1.932 0.937 0.370 0.121 0.130 0.611 0.601 0.258 

MAXE 0.130 0.174 2.184 0.723 0.370 0.074 0.120 0.391 0.547 0.291 

mMBC 
RMSE 0.153 0.107 2.030 0.940 0.336 0.112 0.127 0.588 0.573 0.262 

MAXE 0.122 0.108 2.428 0.737 0.314 0.076 0.115 0.434 0.567 0.254 

Figs. 6.11-6.16, demonstrate the tracking synchronization plots for the DOFs for LBCB #1 and LBCB #2. 

A 1:1 line is illustrative of perfect tracking in this figure. Incorporation of the mMBC generally results in 

better tracking performance.  

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.11 Tracking synchronization plots for LBCB #1 – No Control 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.12 Tracking synchronization plots for LBCB #2 – No Control 

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.13 Tracking synchronization plots for LBCB #1 – Feedforward 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.14 Tracking synchronization plots for LBCB #2 – Feedforward 

 

(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.15 Tracking synchronization plots for LBCB #1 – mMBC 
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(a) 𝑈𝑋    (b) 𝑈𝑍   (c) 𝑅𝑋 

 

(d) 𝑅𝑌   (e) 𝑅𝑍 

Figure 6.16 Tracking synchronization plots for LBCB #2 – mMBC 

Fig. 6.17–6.20 illustrate the deformation and force results of numerical simulation and maRTHS tests 

in the 5 directions for both LBCBs. The small amplitude ground motions are used for this comparison to 

ensure that the physical testing stays in the elastic range. The mMBC algorithm is employed for this 

implementation. By comparing maRTHS results to the numerical simulations, the accuracy of the execution 

proposed maRTHS framework is verified.  

 

(a) 𝑈𝑋       (b) 𝑈𝑍 

Figure 6.17 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #1 DOFs 

 

 

 



140 

 

Figure 6.17 (continued) 

 

(c) 𝑅𝑋       (d) 𝑅𝑌 

 

(e) 𝑅𝑍 

 

(a) 𝑈𝑋       (b) 𝑈𝑍 

Figure 6.18 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #2 DOFs 
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Figure 6.18 (continued) 

 

(c) 𝑅𝑋       (d) 𝑅𝑌 

 

(e) 𝑅𝑍 

 

(a) 𝐹𝑋       (b) 𝐹𝑍 

Figure 6.19 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #1 forces 
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Figure 6.19 (continued) 

 

(c) 𝑀𝑋       (d) 𝑀𝑌 

 

(e) 𝑀𝑍 

 

(a) 𝐹𝑋       (b) 𝐹𝑍 

Figure 6.20 Numerical simulation and maRTHS of the multi-span curved bridge, LBCB #2 forces 
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Figure 6.20 (continued) 

 

(c) 𝑀𝑋       (d) 𝑀𝑌 

 

(e) 𝑀𝑍 

Fig. 6.21–6.22 illustrate the hysteretic behaviors of the physical piers connected to LBCB #1 and 

LBCB #2. The amplitude of the bi-axial ground motion is increased to ensure that nonlinearity is achieved 

in the physical piers. The proposed maRTHS framework is capable of handling sophisticated nonlinear 

dynamical behaviors as demonstrated in Fig. 6.21–6.22 and may be attractive for a variety of experimental 

tests and simulations.  

 

(a) 𝑈𝑋 − 𝐹𝑋  (b) 𝑈𝑍 − 𝐹𝑍  (c) 𝑅𝑋 −𝑀𝑋 

Figure 6.21 Hysteretic behaviors of LBCB #1 
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Figure 6.21 (continued) 

 

(d) 𝑅𝑌 −𝑀𝑌  (e) 𝑅𝑍 −𝑀𝑍 

 

(a) 𝑈𝑋 − 𝐹𝑋  (b) 𝑈𝑍 − 𝐹𝑍  (c) 𝑅𝑋 −𝑀𝑋 

 

(d) 𝑅𝑌 −𝑀𝑌  (e) 𝑅𝑍 −𝑀𝑍 

Figure 6.22 Hysteretic behaviors of LBCB #2 

The inertial effects of the mass of the moving platform are next studied. The physical specimen 

attached to LBCB #1 is removed to avoid measuring of the specimen restoring forces. The small-amplitude 

El Centro ground motion scales of 5% and 2.5% in the X and Z directions, respectively, are imposed on the 

substructured system. The measured forces in LBCB #1 without a physical specimen are compared to the 

case where the physical specimen is included. The measured force for the case without the physical 

specimen includes the inertial force of the moving platform and some friction forces that exist as a result 
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of the swivel joints. Table 4 summarizes the peak forces in each case and evaluates the effect of the inertial 

force as a percentage of the total force measured for the RTHS scenario where the physical specimen is 

attached to LBCB #1. Fig. 19 presents the hysteretic behavior of the inertial effects in the 𝑋 and 𝑍 directions. 

Based on the results presented, the inertial effects of the moving platform are deemed to be negligible.  

6.6 Effects of Inertia on Measured Force 

The inertial effects of the mass of the moving platform are next studied. The physical specimen 

attached to LBCB #1 is removed to avoid measuring of the specimen restoring forces. The small-amplitude 

El Centro ground motion scales of 5% and 2.5% in the X and Z directions, respectively, are imposed on the 

substructured system. The measured forces in LBCB #1 without a physical specimen are compared to the 

case where the physical specimen is included. The measured force for the case without the physical 

specimen includes the inertial force of the moving platform and some friction forces that exist as a result 

of the swivel joints. Table 6.6 summarizes the peak forces in each case and evaluates the effect of the 

inertial force as a percentage of the total force measured for the RTHS scenario where the physical specimen 

is attached to LBCB #1. Fig. 6.23 presents the hysteretic behavior of the inertial effects in the 𝑋 and 𝑍 

directions. Based on the results presented, the inertial effects of the moving platform are deemed to be 

negligible.  

Table 6.6 Inertial forces study in LBCB #1 

Force (kN) with specimen without specimen % of inertial component 

𝐹𝑋 3.295 0.017 0.51 

𝐹𝑍 2.135 0.016 0.75 

 

(a) 𝐹𝑋 − 𝑈𝑋      (b) 𝐹𝑍 − 𝑈𝑍  

Figure 6.23 Hysteretic behavior in the X and Z directions for LBCB #1 without a physical specimen 
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6.7 Summary 

A multi-axial real-time hybrid simulation (maRTHS) framework was proposed for use with multiple 

boundary interfaces and physical substructures. In the previous developments, out-of-plane dynamical 

behaviors were not considered, and hence this study was an opportunity to introduce higher degrees of 

freedom and out-of-plane motions to ensure that the maRTHS methodology is capable handling increased 

dynamical sophistications. A decoupled control algorithm was introduced which successfully compensated 

for the physical coupling between the actuators and the numerical coupling due to the hybrid simulation. 

A multi-span curved bridge structure was then studied to validate the framework. The deck and one 

of the bridge piers were modeled numerically, while two piers are tested physically. Steel is used as the 

material for the physical and numerical substructures for ease of design and repeatability. Several studies 

were conducted including an actuator tracking study in the Cartesian frame of reference, maRTHS versus 

pure numerical simulation while the structure remains in the elastic range, and final a nonlinear dynamic 

test. The proposed maRTHS framework proved to be successful in capturing realistic nonlinear dynamic 

behavior of structural systems.  
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CHAPTER 7 CONCLUSIONS AND FUTURE STUDIES 

 

7.1 Conclusions 

In this dissertation, key algorithms were presented as part of a multi-axial real-time hybrid simulation 

(maRTHS) framework with substructuring at multiple boundary points, for nonlinear dynamic testing of 

structural systems. The proposed framework allows the acquisition of the three-dimensional behaviors of 

structures, execution at real speeds of natural hazard excitations, and substructuring of reference structures 

into numerical and physical components for flexibility, cost and space savings. The developments presented 

included compensation approaches for reducing unwanted dynamics of actuators, system identification 

strategies, kinematic transformations for converting in-axis actuator forces and strokes to Cartesian 

conditions, and computational resources and laboratory requirements for successful implementation of 

maRTHS framework. These algorithms were all experimentally verified.  

On path towards the development of a compensation strategy for the maRTHS framework, a modified 

Model-Based Control (mMBC) actuator compensation strategy was proposed with excellent tracking and 

stability properties. Following system identification of the physical setup (i.e., actuator and physical 

specimen), feedforward and feedback controllers are developed and tuned for optimal tracking performance 

and stability. In the new modified framework, the feedforward controller is moved into the feedback loop, 

and the feedback compensator is designed based on the combined action of the feedforward controller and 

plant dynamics. The small-gain theorem was used to demonstrate the predictability and enhanced stability 

of the mMBC strategy.  The mMBC was next incorporated in single-axis real-time hybrid simulation and 

shake table test demonstrations for validation.  

The mMBC was next augmented with an adaptive law to create the adaptive Model Reference Control 

(aMRC). In this development, a reference model is designed as a lowpass filter. The mMBC tries follow 

the trajectory predicted by the reference model. Whenever the mMBC prediction is not matching the 

reference model, the adaptive feature kicks in to compensate. An integral control adaptive law with 

projection algorithm was proposed for rapid adaptation and prevention of drifting. The aMRC was 

incorporated into a virtual RTHS benchmark problem and evaluated against several other compensation 

strategies.  

A one-boundary point maRTHS framework was next developed. In this framework, actuator and 

Cartesian signals measured in the physical substructure and calculated by the numerical substructure are 

related via forward and inverse kinematic processes. The actuator compensation takes place in actuator 

coordinates in a decoupled manner, where each actuator is compensated independent of the others. The 

mMBC algorithm was used for actuator coordinate compensation. Decoupled compensators are 
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considerably easier to tune and optimize than multi-input multi-output coupled compensators. Actuator and 

sensor measurements and commands were converted to Cartesian coordinates via several kinematic 

transformation steps. Inverse kinematics converted Cartesian signals to actuator signals, and forward 

kinematics converted actuator and displacement transducer signals to Cartesian signals. Force kinematics 

converted in-axis loadcell measurements to Cartesian forces and moments. This framework was executed 

on a steel moment frame structure where one column of the frame is physically tested, while the remainder 

of the structure is numerically modeled. In this experiment, out-of-plane excitations were not considered.  

Finally, the maRTHS framework was augmented to incorporated multiple boundary interfaces and 

multiple physical specimens. In this augmented framework, each boundary interface has its own kinematic 

transformation and decoupled actuator control steps. The experimental setups necessary for conducting 

maRTHS with high DOFs are also noted. For the validation of the multi-boundary point maRTHS, a multi-

span curved bridge structure was selected. Two piers were tested physically while the remainder of the 

structure remained nonlinear. The maRTHS framework with multiple boundary points is a promising 

experimental technique for examining the nonlinear dynamical behavior of structures and is useful for 

studying structural behavior under natural hazard excitation.  

7.2 Future Studies 

7.2.1 Mixed-mode control 

In section 3.2, the concept of setpoint tracking was introduced with a focus on displacement and 

acceleration signals for RTHS applications. In some RTHS experiments, such as the effective force testing 

method, the setpoint is a force signal that needs to be tracked. In many structural engineering experimental 

applications however, displacement and force need to be tracked at the same time. An example of such 

application is observed in earthquake engineering applications where a lateral load is applied on the physical 

specimen of the interest, while a gravitational downward force is needed to simulate the self-weight of the 

structure. Future research should focus on efficient methods for incorporating deformation and force signals 

into a combined mixed-mode control strategy.  

7.2.2 Kinematic transformation algorithms 

In section 2.6, 5.2, and 6.5, the forward and inverse kinematic transformations for parallel 

manipulators were listed. In such devices, it was mentioned that the forward kinematic transformation 

computation is challenging task, and hence linearization was made about the equilibrium position. 

Linearized approximations can deviate from the true solution of the nonlinear system of equations as the 

states of the manipulator deviate farther from the equilibrium position. Future research should consider 
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higher-order approximations of the nonlinear system of equations or solve the system of equations in a 

computationally efficient manner.  

7.2.3 Machine learning uses in hybrid simulation 

Machine learning algorithms are computational tools that learn and improve through experience. 

Training data are used to program and optimize models of systems. The predictive abilities of machine 

learning algorithms have proven very attractive in the recent years. Machine learning algorithms have huge 

untapped potentials in the RTHS domain and can be used for efficiently and rapidly modeling of nonlinear 

systems. With applications in nonlinear actuator compensation, nonlinear finite element modeling, and real-

time system identification of nonlinear physical system, machine learning can help solve nontrivial 

dynamical problems.  

7.2.4 Stability guarantees studies 

Instability problems are a common occurrence when dealing with actuated setups and dynamical 

speeds. Real-time hybrid simulation in particular is prone to many different forms of instabilities as a result 

of closed-loop delays. Therefore, in the recent years many researchers have used mathematical theorems 

from control theory such as the small-gain theory, like in Section 3.4, and phase and gain margin analyses 

to try and predict the stability behavior of a closed-loop RTHS system. However, because many of these 

RTHS systems are nonlinear and hard to model, stability predictors are not always successful. Future studies 

should identify newer and more complete ways of designing RTHS systems that are stable.  

7.2.5 Nonlinear dynamic studies 

Many of the existing RTHS frameworks involve linearized system identification, compensation, and 

other transformations. Because of the linear architecture of this frameworks, it is unclear to what extent the 

physical behavior can be pushed into the nonlinear range. Future studies should focus on studying the 

nonlinearity range that the linearized RTHS system can explore and continue to produce realistic results. 
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APPENDIX A GRAPHICAL USER INTERFACE  

 

 

Figure A.1 Graphical user interface (dashboard) for execution of experiments 
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Figure A.2 Closed-loop real-time hybrid simulation program 
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Figure A.3 Numerical substructure 
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Figure A.4 Physical substructure including input-output channels 
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Figure A.5 Compensation options 
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Figure A.6 Modified Model-Based Control (mMBC) compensation 
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Figure A.7 Feedforward compensation 



167 

 

 

Figure A.8 Earthquake excitation and state-space model 
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Figure A.9 Kinematic transformation for Cartesian target signals 
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Figure A.10 Smooth-stop for emergency stops 

 




