
c© 2020 Kaizhi Qian

DEEP GENERATIVE MODELS FOR SPEECH EDITING

BY

KAIZHI QIAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Mark A. Hasegawa-Johnson, Chair
Professor Steven E. Levinson
Associate Professor Lav R. Varshney
Doctor Shiyu Chang, MIT-IBM Watson AI Lab

ABSTRACT

Generative models are very useful for generating and modifying natural-

sounding speech in various speech processing tasks such as speech synthesis,

speech enhancement, and voice conversion. There are two ways that the

generative models can help in naturalness for speech processing. The first

way is to regularize the speech editing process by defining the sample space

of natural speech, and the second way is by permitting the separable mod-

ification of components of hierarchical speech generative models to modify

specified components of natural speech. In particular, four research projects

are introduced, where the first two use WaveNet as the clean speech gener-

ative model for single-channel and multi-channel speech enhancement; and

the last two projects modify different speaking styles by modeling different

speech components using autoencoders.

Multi-channel speech enhancement with ad-hoc sensors has been a chal-

lenging task. Speech model guided beamforming algorithms can recover

natural-sounding speech, but the speech models tend to be oversimplified

to prevent the inference from becoming too complicated. On the other hand,

deep learning-based enhancement approaches can learn complicated speech

distributions and perform efficient inference, but they are unable to deal with

a variable number of input channels. Also, deep learning approaches intro-

duce many errors, particularly in the presence of unseen noise types and set-

tings. Therefore an enhancement framework called DeepBeam is proposed,

which combines the two complementary classes of algorithms. DeepBeam

introduces a beamforming filter to produce natural-sounding speech, but the

filter coefficients are determined with the help of a WaveNet-based monaural

speech enhancement model. Experiments on synthetic and real-world data

show that DeepBeam can produce clean, dry, and natural-sounding speech,

and is robust against unseen noise.

For single-channel speech enhancement, the existing deep learning-based

ii

methods still have two limitations. First, the Bayesian framework is not

adopted in many such deep-learning-based algorithms. Second, the majority

of the existing methods operate on the frequency domain of the noisy speech,

such as the spectrogram and its variations. A Bayesian speech enhancement

framework, called BaWN (Bayesian WaveNet) is proposed, which directly

operates on raw audio samples. It uses the WaveNet as the prior model

to regularize the output to be in the speech space and thus improving the

performance. Experiments show that BaWN can recover clean and natural

speech.

Non-parallel many-to-many voice conversion, as well as zero-shot voice

conversion, remain under-explored areas. Deep style transfer algorithms,

such as generative adversarial networks (GAN) and conditional variational

autoencoder (CVAE), are popular solutions in this field. However, GAN

training is sophisticated and difficult, and there is no strong evidence that

its generated speech is of good perceptual quality. On the other hand, CVAE

training is simple but does not come with the distribution-matching property

as in GAN. A new style transfer scheme that involves only an autoencoder

with a carefully designed bottleneck is proposed. This scheme can achieve

distribution-matching style transfer by training only on a self-reconstruction

loss. Based on this scheme, AutoVC is proposed, which achieves state-of-

the-art results in many-to-many voice conversion with non-parallel data, and

which is also the first to perform zero-shot voice conversion.

Speech information can be roughly decomposed into four components: lan-

guage content, timbre, pitch, and rhythm. Obtaining disentangled represen-

tations of these components is useful in many speech analysis and generation

applications. Recently, state-of-the-art voice conversion systems have led

to speech representations that can disentangle speaker-dependent and inde-

pendent information. However, these systems can only disentangle timbre,

while information about pitch, rhythm, and content is still mixed. Fur-

ther disentangling the remaining speech components is an under-determined

problem in the absence of explicit annotations for each component, which

are difficult and expensive to obtain. To further explore this problem, we

propose SpeechSplit, which can blindly decompose speech into its four

components by introducing three carefully designed information bottlenecks.

SpeechSplit is among the first algorithms that can separately perform style

transfer on timbre, pitch, and rhythm without text labels.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to acknowledge my graduate advisor, Professor Mark Hasegawa-

Johnson, who has given me lots of research opportunities, guidance and in-

sights. His broad knowledge and research attitude deeply cultivated me to

become an independent, innovative and upright researcher.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4
2.1 Speech Enhancement . 4
2.2 Voice Style Transfer . 7
2.3 Deep Generative Models . 8

CHAPTER 3 DEEP LEARNING BASED BEAMFORMING 15
3.1 Introduction . 15
3.2 Problem Formulation . 16
3.3 The DeepBeam Framework 18
3.4 Experiments . 22
3.5 Summary . 26

CHAPTER 4 SPEECH ENHANCEMENT USING BAYESIAN
WAVENET . 27
4.1 Introduction . 27
4.2 The Model Architecture . 28
4.3 Training the Model . 32
4.4 Experiments . 34
4.5 Entropy Analysis . 37
4.6 Summary . 39

CHAPTER 5 ZERO-SHOT VOICE STYLE TRANSFER WITH
ONLY AUTOENCODER LOSS . 40
5.1 Introduction . 40
5.2 Related Work . 42
5.3 Style Transfer Autoencoder 42
5.4 AutoVC Architecture . 47
5.5 Experiments . 51
5.6 Summary . 56

CHAPTER 6 UNSUPERVISED SPEECH DECOMPOSITION VIA
TRIPLE INFORMATION BOTTLENECK 57
6.1 Introduction . 57

vi

6.2 Related Work . 59
6.3 Information in Speech . 61
6.4 SpeechSplit . 63
6.5 Experiments . 69
6.6 Summary . 80

CHAPTER 7 DISCUSSION . 82
7.1 Regularized Speech Enhancement 82
7.2 Disentanglement for Speech Editing 83
7.3 WaveNet for Speech Editing 84
7.4 Methods of Speech Disentanglement 85

CHAPTER 8 CONCLUSION . 86

REFERENCES . 87

vii

CHAPTER 1

INTRODUCTION

With the development of computers and intelligent systems in almost ev-

ery aspect of our life, such as laptops, smartphones, and smart homes, etc.,

human-machine interaction using speech becomes increasingly important. A

typical application uses computers to modify or generate speech for human

consumption, where naturalness is the most important requirement. In par-

ticular, speech enhancement and voice style transfer are the two tasks that

involve generating and modifying natural speech respectively.

Speech enhancement in general aims to suppress all interference presented

in speech signals. It tries to extract as much as possible useful speech in-

formation when the speech is contaminated by noise, reverberation, or even

another unwanted speech signal, which can be further divided into speech

denoising, speech deverberation, or speech separation. Depending on the

problem settings, single-channel enhancement and multi-channel enhance-

ment are the two types of speech enhancement schemes, where the former

deals with noisy speech from a single source, and the latter deals with noisy

speech from multiple sources. The enhanced speech can either be consumed

by computers, such as an automatic speech recognition system, or by human

listeners, such as voice communication systems, which require the enhanced

speech to sound natural. Zhang et al. [1] show that people prefer noisy but

natural speech than clean but unnatural speech.

Voice style transfer aims to modify the voice characteristics, such as timbre,

pitch, and rhythm, to sound like another speaker’s voice, without altering

the linguistic content of the speech. This task can be further divided into

timbre conversion, pitch conversion, and rhythm conversion, of which timbre

conversion is conventionally referred to as voice conversion. Timbre conver-

sion is relatively more studied than pitch conversion and rhythm conversion.

The converted speech is typically intended for human consumption, such as

customizing avatar voices and voiceover for videos. These applications again

1

require the converted speech to sound natural.

Speech enhancement and voice style transfer both aim to modify or gen-

erate different components of speech. Here we define such tasks as speech

editing. This thesis will focus on speech editing for human consumption,

where naturalness is very important. Generative models can be very useful

for speech editing because they can characterize the full distribution of nat-

ural speech. Therefore, our problem is to determine how generative models

help in naturalness for speech editing.

Generative models [2] refer to an important class of models in machine

learning, which are able to generate data from the corresponding distribu-

tion. Traditional generative models such as the Gaussian mixture model

(GMM) [3], hidden Markov model (HMM) [4], and linear predictive coding

(LPC) has been extensively used in speech processing. These models all make

strong assumptions on speech signals and attempt to fit the parameters of

the assumed distributions or models. For example, GMM assumes the data

samples are generated from the weighted sum of a finite number of Gaussian

distributions, and LPC models the characteristics of the vocal tract based

on the source-filter assumption of human speech production [5]. However,

the assumed distributions or models may be different from the ground truth,

and the bounded number of parameters makes the models difficult to benefit

from the unbounded amounts of data in the information era. These tradi-

tional models are not suitable for speech editing tasks because they usually

suffer from speech artifacts.

In recent years, due to the availability of data and the development of par-

allel computing, Deep neural networks (DNNs) have gained a large amount

of research attention. Given enough data and multi-layer networks with non-

linear activation functions, DNNs are capable of fitting almost any piece-wise

smooth functions [6]. Various DNN structures and algorithms have been pro-

posed and achieved state-of-the-art performance in many popular fields such

as computer vision and natural language processing. For acoustic modeling,

a deep generative model named WaveNet [7] is able to generate high-quality

natural-sounding speech that is almost indistinguishable from real human

speech, which makes it a very promising candidate model for improving the

quality of any speech generation related tasks. Besides modeling the speech

sample space as a whole, hierarchical generative models such as autoencoders

can model the different characteristics of speech as components and how these

2

components interact to generate natural speech.

For speech editing tasks, there are two methods in which generative models

can be used to ensure speech naturalness. The first method is to regularize

the speech editing process by defining the sample space of natural speech, and

the second way is permitting the separable modification of components of hi-

erarchical speech generative models in order to modify specified components

of natural speech. For the first method, Chapter 3 and Chapter 4 are success-

ful examples of using the WaveNet for regularizing the speech enhancement

process. Specifically, in Chapter 3, a beamformer is guided by the output of

a WaveNet-based speech model to perform speech beamforming for a multi-

channel ad-hoc microphone array. In Chapter 4, a prior model is trained

for natural speech using WaveNet and incorporated in a Bayesian framework

to regularize a single-channel speech enhancement model. In these applica-

tions, the WaveNet-based speech model defines the natural speech sample

space and thus can project any unnatural output of the enhancement model

into the natural speech sample space to make it natural. In addition, for the

second method, in Chapter 5 and Chapter 6, we are able to convert different

aspects of the speech by disentangling these aspects using autoencoders with

information constraining bottlenecks. Specifically, in Chapter 5, we can mod-

ify the speaker identity of the speech by disentangling content and timbre in

an unsupervised manner. In Chapter 6, we can convert not only timbre but

also pitch and rhythm separately by disentangling content, timbre, pitch, and

rhythm without using any text labels. In these applications, since the model

only learns to produce natural speech by modeling different components of

speech, the output will always be natural speech regardless of the inputs.

The remainder of the thesis is organized as follows. Chapter 2 introduces

the background of speech enhancement, voice style transfer, and deep gener-

ative models. Chapter 7 discusses the relationships among the four research

attempts introduced from Chapter 3 to Chapter 6 and how the thesis con-

tributed to the methods of speech editing. Finally, Chapter 8 states the

conclusion of the thesis.

3

CHAPTER 2

BACKGROUND

2.1 Speech Enhancement

Speech enhancement in general aims to suppress all interference presented in

speech signals. It tries to extract as much as possible useful speech informa-

tion when the speech is contaminated by noise, reverberation, or even another

unwanted speech signal, which can be further divided into speech denoising,

speech deverberation, or speech separation. Depending on the problem set-

tings, single-channel enhancement and multi-channel enhancement are the

two types of speech enhancement schemes, where the former deals with noisy

speech from a single source, and the latter deals with noisy speech from mul-

tiple sources. This thesis focuses on both single-channel speech enhancement

and multi-channel speech enhancement for human consumption, where the

naturalness of the enhanced speech is very important.

2.1.1 Multi-Channel Speech Enhancement

The problem of interest is how to perform speech enhancement on an ad-hoc

microphone array formed by the microphones on everyone’s laptops or cell-

phones in a conference room setting. This type of problem is traditionally

solved using beamforming, which in general tries to optimally combine the

microphone signals under some constraints [8]. One classical algorithm is

Minimum Variance Distortionless Response (MVDR) [9], which minimizes

the output power of the beamformer while preserving the signal coming from

the direction of interest. Variants of the MVDR beamformer have been exten-

sively explored for multi-channel speech enhancement [10, 11, 12, 13]. Among

these algorithms, the Linear Constraint Minimum Variance (LCMV) [14]

beamformer enables more than one direction of interest versus the MVDR.

4

Later, Griffiths et al. [15] proposed the Generalized Sidelobe Canceler (GSC)

structure to separately perform the output power minimization and the appli-

cation of constraints [16, 17]. However, given this ad-hoc microphone array

where both the locations and the frequency responses of the microphones

are unknown, traditional beamforming algorithms do not work well because

they usually need to calibrate the speaker locations and the interference

characteristics to turn the beams toward the speaker while suppressing the

interference. For example, the performance of MVDR deteriorates after in-

cluding far-field microphones [18], and GSC suffers from signal cancellation

problem if position calibration is inaccurate [19]. To avoid measuring the

speaker locations and the interference characteristics, some research efforts

have attempted to find the optimal beamformer by setting and optimizing

the features or characteristics that distinguish speech from all other interfer-

ence. In particular, Gillespie et al. [20] performed dereverberation on ad-hoc

microphone arrays by maximizing the kurtosis of the linear prediction resid-

uals based on the observation that the distribution of peaks of the linear

prediction residuals of the clean speech is different from that of the reverber-

ated speech [21]. Kim et al. [22] used the prior distributions of the frequency

bins of speech as a distinctive feature to separate speech from interference.

Similarly, Kumantani et al. [23] assume that the speech distribution should

be as non-Gaussian as possible. Later, Zhang et al. [1] tried to fit the glottal

residual of the beamformer output to that of the clean speech. The same idea

behind these works is to make the output as close as possible to clean speech

in terms of some target criterion using prior knowledge on clean speech. Bet-

ter target criteria may lead to better results. However, their prior knowledge

is often too simplified to characterize the true distribution of clean speech.

If there exists an ideal target criterion that characterizes the true distribu-

tion of clean natural speech, the output will ideally be natural and free of

interference.

2.1.2 Single-Channel Speech Enhancement

Single-channel speech enhancement is more challenging than multi-channel

speech enhancement. This is because the additional channels may provide

complementary information that is missing in other channels, which makes

5

the inference on clean speech relatively easier. Before deep learning gains

more popularity, traditional speech enhancement methods such as Wiener

filtering [24, 25, 26], spectral subtraction [27, 28, 29], and subspace methods

such as principal component analysis (PCA) and non-negative matrix factor-

ization (NMF) [30, 31, 32] have been explored for many years. Later, deep

learning-based methods became the mainstream for speech enhancement due

to their strong representation power of characterizing complex noise distri-

butions. These methods are mainly divided into two types. The first type

is mapping, which directly predicts clean speech features from noisy speech

features [33, 34, 35, 36, 37, 38]. The second type is masking, which predicts

masks from noisy speech features [39, 40, 41, 42, 43]. The masks in general

indicate the likelihood of the time-frequency bins being speech or noise on the

time-frequency representations of noisy speech, such as spectrograms. How-

ever, generalization to unseen noise types is a major problem for both the

traditional methods and deep learning methods. Traditional methods such

as Wiener filtering and spectral subtraction assume statistical properties of

speech and noise and require the noise power spectral density (PSD) to work.

Meanwhile, most deep learning methods are trained using a finite number

of types of noise, but there are typically mismatches between the types of

noise in real-world situations and those seen during training, which causes

the model performance to degrade in those cases. Although the noise char-

acteristics are difficult to obtain beforehand, the clean speech signal is highly

structured and can be modeled beforehand. If the clean speech distribution

is known, then any signal that does not follow the clean speech distribution

can be removed as noise without knowing the noise distributions or the types

of noise. Motivated by this, some works formulate the speech enhancement

problem in a Bayesian framework by modeling the clean speech prior distribu-

tion. However, these works mostly assume simple models of the distribution

of clean speech, such as HMM-GMM [44, 45, 46, 47], or Laplacian models

[48, 49, 22, 50], which may not accurately match the true distribution of clean

speech. In addition to the generalization problem, speech naturalness also

needs improvement for the existing methods. Most deep learning methods

including traditional methods such as spectral subtraction and non-negative

matrix factorization operate on the amplitude of the time-frequency repre-

sentations of speech such as magnitude spectrogram. For example, the phase

of the noisy spectrogram is directly applied to the enhanced spectrogram to

6

restore clean speech, which may suffer from phase distortion artifacts. It

is possible to estimate the phase of the clean speech to alleviate the phase

distortion problem to some extent [51, 52, 53], but it is prone to estimation

inaccuracies. Therefore, if there exists a generative model that accurately

models the clean speech distribution in raw waveform, it can be used as a

clean speech before regularizing the speech enhancement process formulated

in a Bayesian framework, which may help to simultaneously improve the

generalization to unseen noise and speech naturalness.

2.2 Voice Style Transfer

In general, voice style transfer refers to the task of converting the speak-

ing style of a source speaker into that of a target speaker, while keeping

the linguistic contents unchanged. There are different types of voice style

transfer. First, in terms of the availability of data, there are parallel conver-

sion [54, 55, 56] and non-parallel conversion [57, 58, 59]. Parallel conversion

requires pairs of time-aligned utterances with the same content and differ-

ent speaking styles for training. This paradigm is impractical because it is

very expensive to get pairs of time-aligned utterances with the same content

and different speaking styles. In contrast, non-parallel conversion is more

practical because it does not require paired utterances for training, but it is

technically more challenging. Second, in terms of the number of speakers,

there are one-to-one [60], many-to-one [61], one-to-many [62], and many-to-

many [63], each of which is more challenging than the previous ones. Finally,

in terms of whether the speakers are seen, conventional voice style transfer

schemes only convert among the speakers in the training dataset, and none

of the existing schemes can convert among unseen speakers.

Different attributes of the speaking style, such as timbre, pitch, and rhythm,

can be converted to make it sounds more like the target speaker [64, 65].

Conventionally, timbre conversion is also called voice conversion. However,

most of the research attention has been devoted to timbre conversion, where

the conversion algorithm focuses on converting the spectral features [66, 67].

More detailed control of the converted voice requires modifications of prosodic

features such as pitch and rhythm, which remains under-explored and chal-

lenging [68].

7

For pitch conversion, the widely adopted method is the mean-variance

global transformation, which modifies the average level and range of the

source pitch contour [69]. It is one of the frame-level methods [70, 71, 72]

that keeps the original shape of the contour without matching the detailed

intonation of the target speaker. Since pitch contour typically characterizes

speech features beyond the level of individual phones, it is more reasonable

to convert pitch in various segmental levels. To capture the intonation dif-

ference between the source speaker and target speaker, a few contour-based

conversion methods were proposed [73, 74, 75]. However, these methods ei-

ther require parallel data or alignment for creating parallel data to train the

model with supervision.

For rhythm conversion, it has been investigated in speech synthesis [76] and

voice conversion [75, 77, 78, 79, 80]. Most of these methods use conventional

models such as Gaussian mixture models (GMMs) and regular deep neural

networks (DNNs), and they require phone boundaries or phone identities

from text labels.

Due to limited amounts of parallel data and transcribed data, it is worth-

while to explore the methods of editing speech components without using

parallel or transcribed data. The key to success is finding a model that

can disentangle the speech components to be converted in an unsupervised

manner.

2.3 Deep Generative Models

Traditional generative models such as the Gaussian mixture model (GMM)

[3], hidden Markov model (HMM) [4], and linear predictive coding (LPC)

have been extensively used in speech processing. In particular, parametric

probabilistic generative models such as GMMs are typically used as acous-

tic models to model the phonetics in speech recognition [81] or the timbre

in speaker verification [82]. Besides, signal processing models such as LPC,

model the characteristics of the vocal tract based on the classical source-

filter assumption of human speech production [5]. These traditional genera-

tive models all make strong assumptions on the speech signal and thus are

unable to accurately characterize the true distributions of speech or explore

latent representations of speech. Thanks to the development of deep learn-

8

ing, deep generative models are much more flexible and can accurately learn

the distributions and the latent representations of speech given enough data.

Following, four important deep generative models will be briefly reviewed,

among which the WaveNet and vanilla autoencoder are the building blocks

of all four research attempts in this thesis.

2.3.1 Autoencoder

The autoencoder is one of the fundamental building blocks of machine learn-

ing, from which other systems may be created [83]. In general, a vanilla

autoencoder consists of an encoder and a decoder, as shown in Figure 2.1,

Figure 2.1: Autoencoder structure [84].

where the encoder compresses the input data into a low-dimensional hidden

representation and the decoder attempts to reconstruct the input data. The

encoder and decoder can use any type of neural network depending on the

tasks.

Many variants of vanilla autoencoder have been proposed depending on

different applications. For speech processing, denoising autoencoder (DAE)

[37, 85, 86] and variational autoencoder (VAE) [87, 88, 89] are two well-

known variants of vanilla autoencoder. Denoising autoencoder tries to learn

9

more informative codes from the input by reconstructing the input from the

corrupted input, based on the assumption that the structural level repre-

sentations are relatively stable to the corruption of the input. The vanilla

autoencoder and the denoising autoencoder focus on latent representation

discovering and do not explicitly output distributions. In contrast, the vari-

ational autoencoder tries to explicitly model the joint distribution of the

latent representation and the output, but the output distribution is only an

approximation up to a variational lower bound [90]. The sampled outputs

from this distribution are well-known to suffer from the over-smoothing effect

[91].

The major advantage of autoencoders is that they explicitly discover mean-

ingful latent representations and how the latent representations interact to

generate output. This advantage makes autoencoders optimal for learning

hierarchical representations of different speech components in an unsuper-

vised manner. When trained using natural speech, a set of properly designed

autoencoders may be able to learn disentangled speech components for nat-

ural speech editing. Since the autoencoder only learns to reconstruct natural

speech, the output speech after editing the components will also be natural

speech.

2.3.2 WaveNet

WaveNet is a multi-layer dilated convolutional neural network that is fully

probabilistic and autoregressive. The joint probability distribution of the

speech samples X = {x1, · · · , xT} is modeled by factoring it into the product

of condition distributions as shown in Equation (2.1)

p(X) =
T∏
t=1

p(xt|x1, · · · , xt−1) (2.1)

where the model predicts the distribution of each sample conditioned on the

previous samples. The dilated causal convolution as shown in Figure 2.2 has

a very large receptive field size that can capture the long-range temporal

dependencies.

WaveNet is simply trained using many hours of speech without making any

assumptions about the speech production process. During generation, each

10

Figure 2.2: Dilated causal convolution neural network [7].

sample is generated by conditioning on the previously generated samples.

If trained only using waveforms, the model generates speech-like babbles

smoothly with realistic sounding intonations. If trained by conditioning on

other features, the model can generate audio with the required characteris-

tics. There are two ways to condition the model on other variables: global

conditioning and local conditioning, where the former influences predictions

across all time steps, and the latter guides predictions for each time step. It

has been shown that by global conditioning on speaker embeddings [7], the

model can generate voice from multiple speakers; and by local conditioning

on mel-spectrograms, the model can synthesize the corresponding audio of

the mel-spectrograms [92]. One can build a multi-speaker mel-spectrogram

based vocoder by training the WaveNet conditioned on mel-spectrograms of

multiple speakers.

Although WaveNet can fully characterize the speech waveform distribu-

tion, it does not discover the latent representations of speech, which prevents

us from editing the output by manipulating the latent representations. In ad-

dition, the inference speed of WaveNet is slow because it generates samples

autogressively. Nevertheless, the ability to accurately model speech wave-

form makes WaveNet perfect for speech enhancement. It can be used as a

clean speech prior model for single-channel speech enhancement or a clean

speech predictor for multi-channel speech enhancement.

11

2.3.3 Generative Adversarial Network

A generative adversarial network (GAN) [93] is a class of machine learning

scheme that trains the generative model using the discriminator in a two-

player minmax game. The general framework of a GAN is shown in Figure

2.3

Figure 2.3: GAN framework [94].

where we denote the noise distribution and the data distribution as pz and

pdata respectively. The generator maps the input noise to the data. The

discriminator outputs the probability of its input coming from real data.

During training, the generator tries to produce data samples that are real

enough for the current discriminator. Meanwhile, the discriminator tries to

differentiate between the real data and the data produced by the current

generator. The generator and the discriminator are updated in turns until

the generator is able to produce data samples as if they are drawn from

the real data distribution. The training process can be viewed as a two-

player minmax game between the generator and the discriminator with value

function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))] (2.2)

The generator in a GAN is able to accurately learn the data distribution in

an unsupervised manner, which is one of GAN’s major advantages because it

is labor-intensive to get large amounts of labeled data. However, adversarial

training is very unstable and difficult to converge. In addition, the generator

may suffer from mode collapse if the optimization between the generator and

the discriminator is unbalanced.

GANs have been gaining huge research attention soon after it was pro-

12

posed, especially in image and computer vision areas. New GAN papers are

coming out every week, and thus it is impossible to keep track of all of them.

Those research attempts can roughly be categorized into two tracks. The

first track is solving existing problems. For example, WGAN [95, 96], LS-

GAN [97], and BEGAN [98] try to solve the unstable training problem and

the mode collapse problem. The second track is creating new architectures

for different applications. For image processing, DCGAN [99] and BigGAN

[100] greatly improved the output image quality. StyleGAN [101] and Cycle-

GAN [102] promoted the GAN-based image style transfer. StackGAN [103]

is able to synthesize images from text. In speech processing, SEGAN [104],

StarGAN-VC [58], and WaveGAN [105] used GAN for speech enhancement,

voice conversion, and speech synthesis respectively. Although there are many

variants of GAN, the fundamental principle behind them remains the same.

2.3.4 Generative Flow

The flow-based generative models [106] model the input distribution by first

learning an invertible mapping from the input to a simple auxiliary distri-

bution, such as Gaussian distribution. Then, the input distribution can be

directly computed by taking the inverse of the mapping, as shown in Figure

2.4

Figure 2.4: Flow based model.

The input distribution is learned once the mapping from the input to

the auxiliary distribution is also learned, which saves the computation to

learn both. Since the input distribution is typically complex whose exact

analytic form is unknown, it is impractical to directly map from the auxiliary

distribution to the input distribution. However, the inverse mapping is easier

and tractable to learn, which makes it possible to indirectly learn the complex

input distribution. Moreover, since the data is not autoregressively learned,

13

the inference speed of the flow-based models is much faster than that of

the WaveNet. One disadvantage is that the invertible layers may limit the

representation power of the model. As a result, the output quality of the

flow-based models is not as high as that of the state-of-the-art GAN-based

models. Nevertheless, flow-based models still achieve promising results on

speech synthesis [107].

14

CHAPTER 3

DEEP LEARNING BASED
BEAMFORMING

3.1 Introduction

Multi-channel speech enhancement with ad-hoc sensors has long been a chal-

lenging task [108]. As the traditional benchmark in multi-channel enhance-

ment tasks, beamforming algorithms do not work well with ad-hoc micro-

phones. This is because most beamformers need to calibrate the speaker

location as well as the interference characteristics, so that it can turn its

beam toward the speaker, while suppressing the interference. However, nei-

ther of the two vital information can be accurately measured, due to the

missing sensor position information and microphone heterogeneity [109].

Another class of beamforming algorithms avoid measuring the speaker po-

sition and interference. Instead, they introduce prior knowledge on speech,

and find the optimal beamformer by maximizing the “speechness” crite-

ria, such as sample kurtosis [20], negentropy [23], speech prior distributions

[22, 50], fitting glottal residual [1] etc. In particular, the GRAB algorithm [1]

is able to outperform the closest microphone strategy even in very adverse

real-world scenarios. Despite their success, these algorithms are bottlenecked

by their oversimplified prior knowledge. For example, GRAB only models

glottal energy, resulting in vocal tract ambiguity.

On the other hand, deep learning techniques are well known for their

ability to capture complex probability dependencies and efficient inference,

and thus have been widely used in single-channel speech enhancement tasks

[110, 111, 112, 113, 114, 115, 104]. Unfortunately, directly applying deep

enhancement networks to multi-channel enhancement suffers from three dif-

ficulties. First, the number of channels is variable, and can be any positive

integers. However, designing a network structure that has variable input

dimension is rather challenging. Second, deep enhancement techniques of-

15

ten produce a lot of artifacts and nonlinear distortions [114, 115], which are

perceptually undesirable. Third, neural networks often generalize poorly to

unseen noise and configurations, whereas in multi-channel speech enhance-

ment with ad-hoc sensors, the degree of such variability is large.

As it turns out, these problems can in turn be resolved by traditional

beamforming. Motivated by this observation, we have proposed an enhance-

ment framework called DeepBeam, which combines the two complementary

classes of algorithms. DeepBeam introduces a beamforming filter to pro-

duce natural sounding speech, but the filter coefficients are iteratively deter-

mined with the help of a monaural speech enhancement neural network.

DeepBeam demonstrates the beauty of combining signal processing based

beamforming and deep learning. The latter helps the former capture com-

plex speech distribution; while the former can accommodate any number of

channels, and eliminate the errors and artifacts made by the latter. It can

be shown that despite the error-prone enhancement network, DeepBeam

is able to converge approximately to the optimal beamformer under some

assumptions. Experiments on both the simulated and real-world data show

that DeepBeam is able to produce clean, dry and natural sounding speech,

and generalize well to various settings.

3.2 Problem Formulation

To formally define the problem, denote s[t] as the clean speech signal. Sup-

pose there are K channels of observed signals, yk[t], k = 1, · · · , K, which are

represented as

yk[t] = s[t] ∗ ik[t] + n[t] ∗ jk[t] (3.1)

where ∗ denotes discrete convolution, n(t) denotes additive noise, and ik[t]

and jk[t] are the impulse responses of the signal reverberation and noise

reverberation in the k-th channel, respectively. Our goal is to design a τ -tap

beamformer hk[t], k = 1, · · · , K, whose output is defined as

x[t] =
K∑
k=1

yk[t] ∗ hk[t] (3.2)

16

For notational brevity, define

s = [s[1], · · · , s[T]]T x = [x[1], · · · , x[T]]T

yk = [yk[1], · · · , yk[T]]T y = [yT1 , · · · ,yTK]T

h = [h1[1], · · · , h1[τ], h2[1], · · · , hK [τ]]T

(3.3)

which are all random vectors. Also define convolutional matrices

Yk =



yk[1]

yk[2] yk[1]
...

...
. . .

yk[τ] yk[τ − 1] · · · yk[1]
...

...
...

yk[T] yk[T − 1] · · · yk[T − τ + 1]


(3.4)

and

Y = [Y1, · · · ,YK] (3.5)

With these notations, Equation (3.2) can be simplified as

x = Y h (3.6)

The target of designing the beamformer is to minimize the weighted mean

squared error (MSE):

min
x=Y h

E
[
‖x− s‖2

W |y
]

(3.7)

where ‖x‖2
W = xTWx; W is a positive definite weight matrix, which, in

our case, is a diagonal matrix of Var−1(s[t]|y).

Equation (3.7) is a Wiener filtering problem [116], whose solution is

x∗ = PE[s|y] (3.8)

where

P = Y (Y TWY)−1Y TW (3.9)

is in fact the projection matrix onto the beamforming output space. So

by Equation (3.8), x∗ is essentially projecting E[s|y] onto the space that is

representable by the beamforming filter.

As shown by Equation (3.8), solving the Wiener filtering problem requires

17

computing E[s|y], which, due to the complex probabilistic dependencies, we

would like to introduce a deep neural network to learn. However, as discussed,

training a neural network to directly predict E[s|y] from the multi-channel

input y suffers from inflexible input dimensions, artifacts and poor general-

ization. DeepBeam tries to resolve these problems and find an approximate

solution.

3.3 The DeepBeam Framework

In this section, we will describe the DeepBeam algorithm. We will first

outline the algorithm, and then describe the neural network structure it

applies. Finally, a convergence analysis is introduced.

3.3.1 The Algorithm Overview

As mentioned, DeepBeam introduces a deep enhancement network to learn

the posterior expectation, while addressing its limitations. First, DeepBeam

is regularized by the beamformer to generalize well to unseen noise and mi-

crophone configurations. Second, it tolerates the distortions and artifacts

generated by the neural network. Formally, the neural network outputs an

inaccurate prediction of the posterior expectation E[s|ξ],

f(ξ) = E[s|ξ] + ε(ξ) (3.10)

where ξ is a single-channel noisy observation, and ε(ξ) is the prediction error.

The goal of DeepBeam is to approximate the optimal beamformer given the

inaccurate enhancement network. Algorithm 1 shows the description of the

DeepBeam algorithm. A graph of the DeepBeam framework is shown in

Figure 3.1.

Algorithm 1 essentially alternates between the posterior expectation and

projection iteratively. It will be shown in Section 3.3.3 that as long as the

error term ε is not too large, this iteration will approximately converge to

the optimal beamformer output.

One elegance of DeepBeam is that x(n) can be regarded as a noisy ob-

servation, and shares some statistical structures with the true noisy observa-

18

Inaccurate Monaural Enhancement NetworkBeamfomer

𝒚"
𝒔$ ← 𝔼 𝒔|𝒙 + 𝜺 𝒙

𝒙 ← 𝑷𝒔$

𝒚, 𝒚-
⋯

𝒙/∗

Figure 3.1: DeepBeam framework.

tions, yk. To see this, notice that by Equation (3.12), x(n) is the output of a

beamformer on y. Therefore, it can be shown that x(n) also takes the form

of Equation (3.1), with the same speech and noise source, but with a differ-

ent impulse response. This justifies the use of one monaural enhancement

network to take care of all the x(n).

3.3.2 Enhancement Network Structure

DeepBeam is a general framework, in which the choice of the neural network

structure is not fixed. The following network structure is just one of the

structures that produce competitive results.

The enhancement network applied here is similar to [115], which is inspired

by WaveNet [7]. Formally, denote the quantized speech samples as s̃[t], and

the samples of x(n) as x(n)[t]. Then the enhancement network predicts the

posterior probability mass function (PMF) of s̃[t]:

p(s̃[t]|x(n)) ≈ p(s̃[t]|x(n)[t− τr], · · · , x(n)[t+ τr]) (3.13)

Here we have restricted the probabilistic dependency to span τr time steps.

Cross-entropy is applied as the loss function.

Similar to WaveNet, the enhancement network consists of two modules.

The first module, called the dilated convolution module, contains a stack of

dilated convolutional layers with residual connections and skip outputs. The

second module, called the post-processing module, sums all the skip outputs

and feeds them into a stack of fully connected layers before producing the

final output.

There are two major differences from the standard WaveNet structure.

19

Algorithm 1 The DeepBeam algorithm.

Input: Multi-channel noisy speech observations y;
A neural network that predicts f(ξ) (Equation (3.10)) from any single-
channel noisy observation ξ.

Output: Beamformer output x̂∗.

Initialization:
1: Find the “cleanest” channel k∗ by finding the channel that has the small-

est 0.4 quantile of its squared sample points.
2: Set x(0) = yk∗ .

Iteration:
3: for n = 1 to maximum number of iterations do
4: Feed x(n−1) to the monaural enhancement network, and obtain its out-

put
ŝ(n) = f(x(n−1)) = E[s|x(n−1)] + ε(x(n−1)) (3.11)

5: Update the beamformer coefficients and output

x(n) = P ŝ(n) (3.12)

6: end for
7: return x̂∗ = x(N)

First, the input to the enhancement network is the noisy observation wave-

form x(n) instead of the clean speech. Second, to account for the future

dependencies, the convolutional layers are noncausal 1 × 3 instead of the

causal 1× 2.

After the posterior distribution is predicted, the posterior moments de-

noted as E[s|x(n)] and Var[s[t]|y] (for computing W), are computed as the

moments of the predicted PMF.

3.3.3 Convergence Analysis

In order to analyze the convergence property of DeepBeam, we assume the

following bound on the error term:

E[‖Pε(x(n))‖2
W |y] ≤ ρE[‖x(n) − s‖2

W |y] (3.14)

where ρ < 0.5 is some constant. This assumption is actually not quite

stringent, because it bounds not the weighted norm of ε(x(n)) itself, but

20

its projected value Pε(x(n)). In fact, the projection can drastically reduce

the weighted norm of the error term. For example, most of the artifacts

and nonlinear distortions that the enhancement network introduces cannot

possibly be generated by beamforming on y, and therefore will be removed

by the projection. The only errors that are likely to remain are residual noise

and reverberations. This is one advantage of combining beamforming filter

and neural network. This assumption is also very intuitive. It means that

the projected output error is always smaller than input error.

Then, we have the following theorem.

Theorem 1. Suppose Equation (3.14) holds. Then

lim sup
n→∞

E[‖x(n) − x∗‖2
W |y] ≤ u (3.15)

where

u =
2ρ

1− 2ρ
E[‖s− x∗‖2

W |y]

+
2

1− 2ρ
sup
n

E[‖PE[s|x(n)]− x∗‖2
W |y]

(3.16)

Proof. On one hand, from Equations (3.11) and (3.12)

E[‖Pε(x(n))‖2
W |y] = E[‖x(n+1) − PE[s|x(n)]‖2

W |y]

≥1

2
E[‖x(n+1) − x∗‖2

W |y]− E[‖PE[s|x(n)]− x∗‖2
W |y]

(3.17)

On the other hand, by orthogonality principle

E[‖x(n) − s‖2
W |y] = E[‖x(n) − x∗‖2

W |y] + E[‖s− x∗‖2
W |y] (3.18)

Combining Equations (3.14), (3.17) and (3.18), we have

E[‖x(n+1) − x∗‖2
W |y] ≤ 2ρE[‖x(n) − x∗‖2

W |y] + (1− 2ρ)u (3.19)

Create an auxiliary sequence

a(n) = E[‖x(n) − x∗‖2
W |y]− u (3.20)

21

Then by Equation (3.19),

a(n+1) ≤ (2ρ)na(1) (3.21)

Taking lim supn→∞ on both sides of Equation (3.21) concludes the proof.

If u = 0, then Equation (3.15) implies mean square convergence to the

optimal beamformer output. In actuality, u is nonzero, but it tends to be

very small. The first term of u measures the distance between the optimal

beamformer output and the true speech. According to our empirical study,

when the number of channels is sufficient, the optimal beamformer is able to

recover the true speech very well, so the first term is small. The second term

of u measures the distance between two posterior expectations PE[s|x(n)]

and PE[s|y]. The former is conditional on single-channel noisy speech, and

the latter on multiple-channel noisy speech. Considering that the speech

sample space is highly structured, and that the noisy speech x(n) is relatively

clean already, both posterior expectations should be close to the true speech,

and thereby close to each other. In a nutshell, with a small u, the Deep-

Beam prediction is highly accurate. Section 3.4.4 will verify the convergence

behavior of DeepBeam empirically.

3.4 Experiments

This section first introduces how the enhancement network is configured and

trained, and then presents the results of experiments on both simulated and

real-world data.

3.4.1 Enhancement Network Configurations

The enhancement network hyperparameter configurations follow [7]. The

network has four blocks of 10 dilated convolution layers. There are two

post-processing layers. The hidden node dimension is 32, and the skip node

dimension is 256. The clean speech is quantized into 256 levels via µ-law

companding, and thus the output dimension is 256. The activation func-

tion in the dilated convolutional layers is the gated activation unit; that in

22

the post-processing layers is the ReLU function. The output activation is

softmax.

The enhancement network is trained on simulated data only, which is

generated in the same way as in [1]. The speech source, noise source and

eight microphones are randomly placed into a randomly sized cubic room.

The impulse response from each source to each microphone is generated using

the image-source method [117, 118]. The noisy observations are generated

according to Equation (3.1). The reverberation time is uniformly randomly

drawn from [100, 300] ms. The energy ratio between the speech source and

noise source, Er, is uniformly randomly drawn from [−5, 20] dB. The speech

content is drawn from VCTK [119], which contains 109 speakers. The noise

content contains 90 minutes of audio drawn from [38, 120, 121]. The total

duration of the training audio is 8 hours. The enhancement network is trained

using ADAM optimizer for 400,000 iterations.

3.4.2 Simulated Data Evaluation

The simulated data for evaluation is generated the same way as the training

data, except for two differences. First, the source energy ratio, Er, is set to

four levels, −10 dB, 0 dB, 10 dB, and 20 dB. Second, both the speaker and

noise can be either seen or unseen in the training set, leading to four different

scenarios to test generalizability. It is worth highlighting that the unseen

speaker utterances and unseen noise are both drawn from different corpora

from training, TIMIT [122] and FreeSFX [123] respectively. Each utterance

is 3 seconds in length. The total length of the dataset is 12 minutes.

DeepBeam is compared with GRAB [1], MVDR [15],1 IVA [22] and the

closest channel (CLOSEST), in terms of two criteria:

• Signal-to-Noise Ratio (SNR): The energy ratio of processed clean

speech over processed noise in dB.

• Direct-to-Reverberant Ratio (DRR): the ratio of the energy of di-

rect path speech in the processed output over that of its reverberation in dB.

Direct path and reverberation are defined as clean dry speech convolved with

the peak portion and tail portion of processed room impulse response. The

peak portion is defined as ±6 ms within the highest peak; the tail portion is

1Clean speech is given for voice activity detection.

23

Table 3.1: Simulated data evaluation results.

Er = -10 0 10 20

SNR
(dB)

DeepBeam S1 18.5 22.0 26.5 28.4
DeepBeam S2 17.1 20.3 25.9 27.4
DeepBeam S3 15.3 19.5 24.1 27.6
DeepBeam S4 14.1 19.0 23.1 28.5
GRAB 2.48 12.5 21.6 25.4
CLOSEST -5.13 3.38 14.9 24.8
MVDR 8.41 12.9 22.6 26.7
IVA 10.3 13.3 16.8 19.2

DRR
(dB)

DeepBeam S1 3.45 8.97 11.2 11.5
DeepBeam S2 7.38 11.9 12.6 11.5
DeepBeam S3 5.60 4.85 8.43 9.78
DeepBeam S4 2.11 6.68 7.10 9.31
GRAB -0.83 1.70 3.63 3.68
CLOSEST 8.56 7.32 7.67 8.44
MVDR -2.17 -3.47 -3.42 -4.13
IVA -8.92 -8.77 -8.81 -8.99

S1: seen speaker, seen noise S2: seen speaker, unseen noise

S3: unseen speaker, seen noise S4: unseen speaker, unseen noise

defined as ±6 ms beyond.

Table 3.1 shows the results. As expected, DeepBeam’s performance drops

from S1, where both noise and speaker are seen during training, to S4, where

neither is seen. However, in terms of SNR, even DeepBeam S4 significantly

outperforms MVDR, which is the benchmark in noise suppression. In terms

of DRR, DeepBeam matches or surpasses CLOSEST except for -10 dB.

GRAB performs worse than in [1], because each utterance is reduced from

10 seconds to 3 seconds, which is more realistic but challenging. In short,

of “cleanness” and “dryness”, most algorithms can only achieve one, but

DeepBeam can achieve both with superior performance.

3.4.3 Real-World Data Evaluation

DeepBeam and the baselines are also evaluated on the real-world dataset

introduced in [1], which consists of two utterances by two speakers mixed

with five types of noise, all recorded in a real conference room using eight

randomly positioned microphones. The source energy ratio is set such that

24

Table 3.2: Real-world Data Evaluation Results.

Noise Type N1 N2 N3 N4 N5

SNR
(dB)

DeepBeam 20.1 20.0 16.9 19.6 18.7
GRAB 18.9 17.4 12.4 18.5 17.4
CLOSEST 10.0 10.0 10.0 10.0 10.0
MVDR 10.8 16.5 7.72 14.0 13.4
IVA 11.7 9.74 6.83 12.4 15.9

MOS

DeepBeam 3.83 3.72 3.63 4.09 4.20
GRAB 3.10 3.06 2.93 3.71 3.45
CLOSEST 2.74 2.68 3.02 3.55 3.50
MVDR 2.05 2.40 2.28 2.71 2.62
IVA 1.73 2.03 1.75 1.78 2.08

N1: cell phone N2: CombBind machine N3:paper shuffle

N4: door slide N5: footsteps

the SNR for the closest microphone is 10 dB. The utterance in each scenario

is around 1 minute long, so the total length of the dataset is 10 minutes.

Besides SNR, a subjective test similar to [1] is performed on Amazon Me-

chanical Turk. Each utterance is broken into six sentences. In each test unit,

called HIT, a subject is presented with one sentence processed by the five

algorithms, and asked to assign an MOS [124] to each of them. Each HIT is

assigned to 10 subjects.

Table 3.2 shows the results. As can be seen, DeepBeam outperforms

the other algorithms by a large margin. In particular, DeepBeam achieves

> 4 MOS in some noise types. These results are very impressive because

DeepBeam is only trained on simulated data. The real-world data differ

significantly from the simulated data in terms of speakers, noise types and

recording environment. Furthermore, some microphones are contaminated

by strong electric noise, which is not accounted for in Equation (3.1). Still,

DeepBeam manages to perform well. The neural network used to be vul-

nerable to unseen scenarios, but DeepBeam has now made it robust.

3.4.4 Empirical Convergence Analysis

In order to empirically test whether DeepBeam has a good convergence

property, 10 sets of eight-channel simulated data are generated with the S1

setting and Er = 10. To study different numbers of channels, in each sub-

25

test, K channels are randomly drawn from each set of data for DeepBeam

prediction, and the resulting SNR convergence curves of the 10 sets are av-

eraged. K runs from 3 to 8.

1 2 3 4 5 6 7

Iterations

15

20

25

S
N

R

3 4 5 6 7 8

Channels
27

28

Figure 3.2: SNR convergence curves with different numbers of channels.

Figure 3.2 shows all the averaged convergence curves. As can be seen,

DeepBeam converges well in all the sub-tests, which supports our conver-

gence discussions in Section 3.3.3. Also, the more channels DeepBeam has,

the higher convergence level it can reach, which shows that DeepBeam is

able to accommodate different numbers of channels using only one monaural

network. We also see that the marginal benefit of having one more channel

diminishes.

3.5 Summary

We have proposed DeepBeam as a solution to multi-channel speech en-

hancement with ad-hoc sensors. DeepBeam combines the complementary

beamforming and deep learning techniques, and has exhibited superior per-

formance and generalizability in terms of noise suppression, reverberation

cancellation and perceptual quality. DeepBeam is a step closer toward re-

solving the longstanding tradeoff of perceptual quality and generalizability

in deep enhancement networks, and demonstrates the power of bridging the

signal processing and deep learning areas.

26

CHAPTER 4

SPEECH ENHANCEMENT USING
BAYESIAN WAVENET

4.1 Introduction

Deep learning has been widely used in speech enhancement tasks because

its strong representation power is capable of characterizing complex noise

distributions. For example, some works directly predict output spectrum

using deep neural networks (DNN) or denoising auto-encoders [33, 36, 37,

38]. A series of works [110, 111] applied different deep learning architectures

to predict ideal ratio masks. In addition, several works performed speech

separation using various deep learning architectures [112, 113].

However, these approaches have two major limitations. First, these deep

learning algorithms rarely incorporate an explicit prior model for clean speech

or a Bayesian framework, which has been shown effective for speech enhance-

ment [125]. While the variability of noise is hardly tractable, the clean speech

signal is highly structured, and thus a prior speech model can regularize en-

hanced speech to become speech-like. Without the speech model, many deep

learning algorithms are not generalizable to noise without highly similar char-

acteristics.

On the other hand, existing Bayesian speech enhancement algorithms

mostly model speech using simple probability distribution in order to have

closed-form solutions. For example, a large body of such works assume HMM-

GMM models [44, 45, 46, 47] or Laplacian models [48, 49, 22, 50]. Others

make looser assumptions on kurtosis or negentropy of speech distribution

[20, 23]. For these algorithms, building a more accurate model for speech

becomes a bottleneck, which can potentially be opened by deep learning.

The second limitation regarding the existing deep learning based approach

is that most deep learning algorithms operate on amplitude spectrum, such

as short-time Fourier transform or cochleargram. The noisy phase spectrum

27

is directly applied to the enhanced speech without restoring the clean phase

spectrum, which may suffer from phase distortion. Also, in some spectral

restoration methods, the time domain signal is recovered by overlap-add,

which is prone to artifacts and discontinuities. However, applying deep learn-

ing directly to speech waveform is difficult because the high sampling rate

requires large temporal memory and receptive field size.

Fortunately, the recently announced WaveNet [7] has shown a strong capa-

bility in modeling raw audio waveforms. Its receptive field size is significantly

boosted by stacking dilated convolution layers with exponentially increasing

dilation rates. Experiments have shown that it is able to generate random

babbles with high naturalness. Moreover, WaveNet is probabilistic, which

naturally fits into the Bayesian framework.

Motivated by these observations, we propose a Bayesian speech enhance-

ment algorithm using deep learning structures inspired by WaveNet, called

the Bayesian WaveNet (BaWN). BaWN directly predicts the clean speech

audio samples by estimating the prior distribution and the likelihood func-

tion of clean speech using WaveNet-like architectures, which are the two

major components of the Bayesian network. It promotes a happy marriage

between the Bayesian framework and the deep learning techniques: the for-

mer broadens the generalizability for the latter, and the latter improves the

model accuracy for the former.

4.2 The Model Architecture

The problem is formulated within the Bayesian framework. Denote X0:T−1

as the random process of the clean speech, which is quantized into Q levels,

q0:Q−1, via the µ-law encoding [126], so each Xt is a discrete variable. The

subscript 0 : T−1 denotes a set with subscripts running from 0 through T−1.

Denote Y0:T−1 as the random process of the observed noisy signal. In this

thesis, only additive noise is considered, but the framework is generalizable

to other types of interferences. Our task is to infer the clean speech x̂t given

a set of noisy observations Y0:T = y0:T . For notational ease, probability mass

functions will be abbreviated, e.g. p(Xt = xt|Yt = yt) as p(xt|yt).
We apply a sub-optimal greedy inference scheme for X0:T−1. Given inferred

values of the past samples x̂0:t−1, the inferred value of the current sample,

28

x̂t, is defined as the posterior expectation

x̂t , E [Xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2] (4.1)

Here we have made a Markov assumption that the probabilistic dependence

of Xt upon variables in the distant past and far future is negligible, when the

closer ones, Xt−τ1:t−1 and Yt−τ2:t+τ2 , are given. The terms τ1 and τ2 denote

the range of dependence on X0:T−1 and Y0:T−1, respectively. Therefore, the

following posterior distribution should be evaluated:

p(Xt = xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2)

,p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

∝p(xt|x̂t−τ1:t−1) · p(yt−τ2:t+τ2 |x̂t−τ1:t−1, xt)

(4.2)

where the , sign denotes the abbreviation.

Define the likelihood function as

L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) , p(yt−τ2:t+τ2 |x̂t−τ1:t−1, xt) (4.3)

Then Equation (4.2) can be rewritten into

p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

= p(xt|x̂t−τ1:t−1)︸ ︷︷ ︸
prior model

·L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2)︸ ︷︷ ︸
likelihood model

(4.4)

The BaWN architecture is based on Equation (4.4). As shown in Fig-

ure 4.1(a), it consists of two models. The first model is called the prior model,

or the speech model, modeling the prior distribution of clean speech signals.

For each time t, it takes x̂t−τ1:t−1 as input, and outputs a Q-dimensional vec-

tor of the log estimated pmf log p̂(xt|x̂t−τ1:t−1) up to an unknown constant.

The second model is called the likelihood model, or the noise model,

modeling the likelihood function. It takes as inputs x̂t−τ1:t−1 and yt−τ2:t+τ2 ,

and outputs a Q-dimensional vector of the estimated log likelihood function

log L̂(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) up to an unknown constant.

The two outputs are added and then passed through a softmax nonlin-

earity. Notice that the exponential function in softmax turns addition into

multiplication; the normalization step in softmax removes any unknown con-

29

stant. Therefore it can be easily shown, from Equation (4.4), that the output

of the softmax nonlinearity is the p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2) of interest. Also,

the output of the prior model, passing through a softmax nonlinearity alone,

becomes the prior distribution p(xt|x̂t−τ1:t−1).

The following two subsections introduce the two models respectively.

4.2.1 The Prior Model

The prior model replicates the architecture of WaveNet because it performs

a similar task. As shown in Figure 4.1(b), the prior model consists of two

modules. The first is the dilated convolution module, which contains a stack

of B1 blocks with L1 layers for each. The l-th layer in the b-th block is a 1D

causal convolution layer through time, with kernel size 2 and dilation rate

2l. For each time t, it produces two vector outputs—a hidden output z
(b,l)
t ,

which is fed into the convolution layer above, and a skip output s
(b,l)
t , which

is directly fed into the second module. The nonlinearity applied is a gated

activation unit [127] with residual structure [128]. Formally,

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+ d

(b,l)
f

)
(4.5a)

g
(b,l)
t = σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+ d(b,l)

g

)
(4.5b)

r
(b,l)
t = f

(b,l)
t � g(b,l)

t (4.5c)

z
(b,l)
t = i

(b,l)
t +W (b,l)

z r
(b,l)
t + d(b,l)

z (4.5d)

s
(b,l)
t = i

(b,l)
t +W (b,l)

s r
(b,l)
t + d(b,l)

s (4.5e)

where σ(·) denotes the sigmoid function, � denotes element-wise multiplica-

tion, and i
(b,l)
t denotes the input to this layer,

i
(b,l)
t =


z

(b,l−1)
t if l > 0

z
(b−1,L1−1)
t if l = 0, b > 0

Wix̂t otherwise

(4.6)

The second module is the post-processing module, which sums all the skip

outputs of time t, s
(0:B1−1,0:L1−1)
t , and passes it to a stack of 1×1 convolution

(fully connected within time t) layers with ReLU activation. The receptive

30

The Prior

Model

The Likelihood

Model

SoftmaxSoftmax

 𝑥𝑡−𝜏1:𝑡−1 𝑥𝑡−𝜏1:𝑡−1 𝑦𝑡−𝜏2:𝑡+𝜏2

 𝑝 𝑥𝑡 𝑥𝑡−𝜏1:𝑡−1 𝑝 𝑥𝑡 𝑥𝑡−𝜏1:𝑡−1, 𝑦𝑡−𝜏2:𝑡+𝜏2

(a) The general model framework

Dilated Convolution

⋯

 𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3⋯

Post

Processing

ReLU

⋮

ReLU

log 𝑝 𝑥𝑡| 𝑥𝑡−𝜏1:𝑡−1

𝜎 tanh

𝑖𝑡𝑖𝑡−2𝑙

𝑟𝑡

𝑧𝑡
𝑏,𝑙

𝑠𝑡
𝑏,𝑙

(b) The prior model. The right plot gives a detailed view of a basic convolution
unit in the left plot (Equation (4.5)).

Dilated Convolution

⋯

 𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3⋯

log 𝐿 𝑥𝑡; 𝑥𝑡−𝜏1:𝑡−1, 𝑦𝑡−𝜏2:𝑡+𝜏2

Dilated Convolution

𝑦𝑡−1 𝑦𝑡+1𝑦𝑡⋯

⋯⋯

⋯

⋮

(c) The likelihood model. The middle module is the post-processing module,
whose structure is similar to that in (b).

Figure 4.1: The model architecture. Compound arrows denote that the
node is multiplied by a weight matrix before sent to the next unit. Circled
add and circled dot denote element-wise addition and multiplication
respectively. The data path that generates the current output at time t is
highlighted.

31

field size is shown as

τ1 = B1

(
2L1 − 1

)

4.2.2 The Likelihood Model

The likelihood model is more complex than the prior model. This is because

(1) in addition to x̂t−τ1:t, which is the input to both models, the likelihood

model also takes yt−τ2:t+τ2 as input; (2) the prior model is causal, but the

likelihood model is non-causal.

To address these complexities, we adapt the original WaveNet structure

to that shown in Figure 4.1(c). The likelihood model also has a dilation

convolution module and a post-processing module, but the dilation module

now contains two parts. The first part deals with the input x̂t−τ1:t, and

has the same structure as in Equations (4.5) and (4.6). The second part

deals with the input yt−τ2:t+τ2 , and has almost the same structure, except for

two differences. First, the number of blocks and layers within each block is

changed to B2 and L2 respectively, to accommodate τ2, which can be different

from τ1. Second, instead of a causal convolution with kernel size 2, this part

imposes a non-causal convolution with kernel size 3 to account for future

dependency. Formally, Equations (4.5a) and (4.5b) are adapted to

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+W

(b,l)
f−1 i

(b,l)

t+2l
+ d

(b,k)
f

)
(4.7a)

g
(b,l)
t =σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+W

(b,l)
g−1 i

(b,l)

t+2l
+ d(b,l)

g

)
(4.7b)

The post-processing module in the likelihood model is the same as that in

the prior model, except that it sums all the skip outputs from both parts of

the dilated convolution module.

4.3 Training the Model

Since the two models in BaWN have their own specific interpretations, the

training scheme should be designed carefully to ensure that the models gen-

erate the correct outputs.

32

4.3.1 Training the Prior Model

If we replace the input x̂t−τ1:t−1 with the true clean samples, denoted as

x∗t−τ1:t−1, then the prior model can be trained on clean speech, following a

similar paradigm as in WaveNet. Specifically, for each t, given the previ-

ous true clean speech, x∗t−τ1:t−1 as input, the training scheme minimizes the

cross entropy between the estimated prior distribution and the empirical dis-

tribution. Formally, the training scheme solves the following optimization

problem:

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|xt−τ1:t−1) (4.8)

where 1{·} denotes the indicator function, which equals 1 if the statement

in its argument is true and 0 otherwise.

So far, we have implemented only the speaker-dependent enhancement

task. The generalization to speaker-independent models will be one of our

future directions.

4.3.2 Training the Likelihood Model

Once the prior model is trained, the likelihood model can be trained by

combining both models to estimate the posterior distribution, as indicated

by Equation (4.2). Ideally, we would like to solve

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2) (4.9)

However, notice that the input of time t contains x̂t−τ1:t−1, which is a func-

tion of the previous time outputs, as shown in Equation (4.1). Therefore,

Equation (4.9) introduces time recurrence, which causes gradient explosion

in practice. An alternative is to replace x̂t−τ1:t−1 with the true value x∗t−τ1:t−1

as in prior model training, but this approximation leads to insufficient train-

ing, because the model is given too much oracle information about the clean

speech.

Our solution is to replace x̂t−τ1:t−1 with the inferred clean speech produced

by the network trained in the previous iteration. Denote the previous inferred

33

value as x̂
(old)
t−τ1:t−1; then the problem in Equation (4.9) is reformulated as

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂(old)
t−τ1:t−1, yt−τ2:t+τ2) (4.10)

The previous inferred value x̂
(old)
t−τ1:t−1 can be implemented efficiently using the

method in [129].

It should be emphasized that while optimizing for Equation (4.10), the

weights of the prior model should be held fixed to prevent deviation from

modeling the prior distribution.

4.4 Experiments

This section presents experiments that test the performance of the proposed

BaWN model. In particular, we will investigate how the prior model im-

proves the generalizability of BaWN to deal with completely unseen and

different noises. The ideal ratio mask (DNN-IRM) based model [110] was

also implemented as a baseline.

4.4.1 Configurations

The three dilated convolutional networks of the WaveNet enhancement model

all have four blocks of 10 layers, which makes a receptive field size of approx-

imately two to three phones. For each layer, the hidden output has 32 chan-

nels and the skip output has 1024 channels. The post-processing modules in

both the prior and the likelihood models contain two fully connected layers,

each with 1024 hidden nodes. The clean speech is quantized into 256 levels,

so the output dimension is 256.

The training dataset consists of a clean training set (for the prior model)

and a noisy training set. The clean training set contains a total of 9700

utterances (19 hours) from audio books played by a female speaker [130]. The

noisy training set was created by mixing the 9700 clean utterances randomly

with 100 environment noises from [38, 120, 121], including train, airport,

restaurant and ring tones. The SNR of the noisy training set is set to two

levels: 0 dB and -5 dB.

34

There are two test sets, respectively containing 20 and 100 clean utterances

of the same speaker randomly selected from another audio book. For the

first test set, called the unseen noise test set, 100 noises were selected from

a completely different noise dataset [123] in order to test the generalizablity

of BaWN, where the types of noise and recording configurations completely

differ from that of the training noise dataset. For investigation purpose, the

second test set, called the seen noise test set, contains 20 noises drawn from

the training noise dataset.

The input training utterances were first segmented into fixed-length tokens.

Then, each clean token was quantized using 256-level µ-law companding and

padded with 4092 historical samples based on the receptive field size of the

our model. The noisy utterances were not quantized because the model

does not make predictions of noisy speech. Each noisy token was padded

not only with historical samples but also with the same number of future

samples. The target output was a 256-dimensional one-hot vector indicating

the quantization level of the desired output sample.

The prior model was trained on all 9700 (19 hours) clean utterances. Due

to significantly increased model complexity and the EM-like training proce-

dures, the likelihood model was trained on only 500 (1 hour) utterances from

the noisy training set. Though the small amount of training data may lead

to an insufficiently trained likelihood model, it actually provides a good op-

portunity to verify the power of the prior model and test the generalizablity

of BaWN. For fair comparison, the DNN-IRM baseline was trained on the

complete noisy training set. During testing, each predicted clean sample was

fed back as the clean input sample to predict the next clean sample.

The DIRM baseline was constructed according to [111] and trained on the

same 9700 noisy utterances. The 64-channel cochleargrams were extracted

from the noisy utterances as the input features. The targets were the ideal-

ratio-masks (IRMs) at the corresponding frame and channel. The IRM of

the current frame is predicted using 23 neighboring frames centered at the

current frame. During testing, the IRMs were predicted and applied to the

corresponding noisy utterances to recover clean utterances.

35

Table 4.1: Average SNR, SAR, SDR, STOI of the enhanced utterance using
DNN-IRM and BaWN. The first three metrics are measured in decibels
(dB), and the STOI is measured in percentage (%). Case indicates the
input SNR of the training and testing dataset. Noise indicates whether the
noise type is covered by the training set. BaWN stands for Bayesian
WaveNet. DIRM stands for DNN-IRM.

Case Noise Model SNR SAR SDR STOI

0dB
seen

BaWN 22.2 8.53 8.83 85.7
DIRM 15.6 10.3 12.3 86.4

unseen
BaWN 22.1 8.37 8.75 84.3
DIRM 11.9 8.58 12.7 84.8

-5dB
seen

BaWN 21.6 7.15 7.37 81.7
DIRM 12.2 6.45 8.53 79.0

unseen
BaWN 20.3 6.65 6.92 80.7
DIRM 9.20 5.25 8.24 76.6

4.4.2 Objective Evaluation Results

The performance was measured by the average of SNR, signal-to-artifacts

ratio (SAR), signal-to-distortion ratio (SDR), and short-time objective intel-

ligibility (STOI) of the predicted clean utterances. The first three metrics

were computed using the BSS-EVAL toolbox [131].

As seen in Table 4.1, the BaWN model outperforms the DNN-IRM model

in terms of much higher SNRs. The performance advantage is more signif-

icant in the −5 dB case, where BaWN takes the lead in SAR and STOI as

well. Also, our model generalizes better to the completely different unseen

noise, as the performance drop is smaller. This is remarkable considering

that the likelihood model was trained on only one hour of noisy speech and

the parameters of the model were not tuned. The prior model has enough

knowledge about the distribution of clean speech samples and tends to make

non-speech distributions less likely under unseen noise and low SNR, which

helps to make better predictions even if the likelihood model is weak. BaWN

achieves slightly lower SDR and, in the 0 dB case, SAR, because the sequen-

tial inference would occasionally generate impulse noise. Yet this does not

weaken our argument for BaWN, considering the inherent negative corre-

lation between the SNR and SAR/SDR, and the huge performance gain in

SNR.

36

4.5 Entropy Analysis

The effectiveness of the prior model under the Bayesian framework can be

further visualized and analyzed by computing the entropies of the estimated

prior and posterior distribution of each sample. Specifically

H
(pr)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1)

· log2 p̂(Xt = qi|x̂t−τ1:t−1)

H
(post)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

· log2 p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

(4.11)

Since the prediction of a sample is more uncertain if the entropy of the

corresponding distribution is high, we can conclude that the prior model plays

a more important role than the likelihood model at time t if H
(pr)
t < H

(post)
t .

Hence we define a prior effectiveness function

et = 1

(
H

(pr)
t < H

(post)
t

)
(4.12)

to depict the real-time effectiveness of the prior model. et is further smoothed

by a 20 ms moving average filter.

In Figure 4.2a, using the entropies of the predicted distributions for each

sample from the prior model and the likelihood model respectively, a 0-1

vector indicating whether the prior model is more certain than the likelihood

model about each predicted sample was computed and then smoothed by a

rectangular window of 20 ms. For example, a level of 0.8 at some sample

point indicates that the prior model is more certain than the likelihood model

80% of the time within 20 ms around this sample point.

Figure 4.2 shows the smoothed et of a test speech segment (a), as well as

its corresponding clean speech (b) and noise (c) waveforms. There are two

important observations. First, the prior model is more effective when the

SNR is low, as can be seen from the segment before 0.25 s. This is because

when the SNR is high enough, the likelihood model can simply pass noisy

observation through, which does not rely much on the prior model.

Second, the prior model is more effective after the onset of vowels or voiced

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
sec

0

0.5

1

(a) Effectiveness of the prior model, ct

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
sec

-1

0

1

(b) Clean utterance waveform

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
sec

-0.2

0

0.2

(c) Noise waveform

Figure 4.2: The prior effectiveness function (Equation (4.12)) of a speech
segment, smoothed by a 20 ms moving average filter, with its corresponding
utterance and noise.

consonants. Accordingly, the likelihood model is more effective during un-

voiced consonants or at the onset of speech activities, as can be seen from

dips in the effectiveness function at around 0.4 s, 0.5 s and 0.65 s. This is

because the voiced speech is well structured, so the prior model knows what

comes next once it recognizes the phone. On the other hand, the prior model

is less certain about the unvoiced phones because they are stochastic and can

be easily confused with noise.

38

4.6 Summary

We proposed a WaveNet enhancement model that directly operates on speech

waveforms and exploited its generalizability to completely unseen noise. The

results showed that our proposed model is able to produce clean speech and

outperforms the DNN-IRM model under small-sized training data in terms

of generalizability owing to the effectiveness of the prior model.

39

CHAPTER 5

ZERO-SHOT VOICE STYLE TRANSFER
WITH ONLY AUTOENCODER LOSS

5.1 Introduction

The idea of speaking in someone else’s voice never fails to be a fascinat-

ing element in action and fiction movies, and it also finds its way to many

practical applications, e.g. privacy and identity protection, creative industry

etc. In the speech research community, this task is referred to as the voice

conversion problem, which involves modifying a given speech from a source

speaker to match its vocal qualities with a target speaker.

Despite the continuing research efforts in voice conversion, three problems

remain under-explored. First, most voice conversion systems assume the

availability of parallel training data, i.e. speech pairs where the two speak-

ers utter the same sentences. Only a few can be trained on non-parallel

data. Second, among the few existing algorithms that work on non-parallel

data, even fewer can work for many-to-many conversion, i.e. converting from

multiple source speakers to multiple target speakers. Last but not least, no

voice conversion systems are able to perform zero-shot conversion, i.e. con-

version to the voice of an unseen speaker by looking at only a few of his/her

utterances.

With the recent advances in deep style transfer, the traditional voice con-

version problem is being recast as a style transfer problem, where the vocal

qualities can be regarded as styles, and speakers as domains. There are many

style transfer algorithms that do not require parallel data, and are applicable

to multiple domains, so they are readily available as new solutions to voice

conversion. In particular, generative adversarial network (GAN) [93] and

conditional variational autoencoder (CVAE) [132, 133], are gaining popular-

ity in voice conversion.

However, neither of GAN and CVAE is perfect. GAN comes with a nice

40

theoretical justification that the generated data would match the distribu-

tion of the true data, and has achieved state-of-the-art results, particularly

in computer vision. However, it is widely acknowledged that GAN is very

hard to train, and its convergence property is fragile. Also, although there

is an increasing number of works that introduce GAN to speech generation

[104, 134, 135], there is no strong evidence that the generated speech sounds

real. Speech that is able to fool the discriminators has yet to fool human

ears. On the other hand, CVAE is easier to train. All it needs to do is to

perform self-reconstruction and maximize a variational lower bound of the

output probability. The intuition is to infer a hypothetical style-independent

hidden variable, which is then combined with the new style information to

generate the style-transferred output. However, CVAE alone does not guar-

antee distribution matching, and often suffers from over-smoothing of the

conversion output [58].

Due to the lack of a suitable style transfer algorithm, existing voice conver-

sion systems have yet to produce satisfactory results, which naturally leads to

the following question. Is there a style transfer algorithm that is also proven

to match the distribution as GAN is, and that trains as easily as CVAE, and

that works better for speech?

Motivated by this question, we propose a new style transfer scheme, which

involves only a vanilla autoencoder with a carefully designed bottleneck.

Similar to CVAE, the proposed scheme only needs to be trained on the

self-reconstruction loss, but it has a distribution matching property similar

to GAN’s. This is because the correctly designed bottleneck will learn to

remove the style information from the source and get the style-independent

code, which is the goal of CVAE, but which the training scheme of CVAE is

unable to guarantee.

Based on this scheme, we propose AutoVC, a many-to-many voice style

transfer algorithm without parallel data. AutoVC follows the autoencoder

framework and is trained only on autoencoder loss, but it introduces care-

fully tuned dimension reduction and temporal downsampling to constrain the

information flow. As we will show, this simple scheme leads to a significant

performance gain. AutoVC achieves superior performance on traditional

many-to-many conversion task, where all the speakers are seen in the training

set. Also, equipped the speaker embedding trained for speaker verification

[136, 137], AutoVC is among the first to perform zero-shot voice conversion

41

with decent performance. Considering the quality of the results and the sim-

plicity of its training scheme, AutoVC opens a new path toward a simpler

and better voice conversion and general style transfer system.

5.2 Related Work

There are several works that perform non-parallel many-to-many voice con-

version using VAE and its combination with adversarial training. VAE-VC

[57] is a simple voice conversion system using VAE. Afterward, many re-

search studies focus on removing the style information from the VAE code.

VAW-GAN [138] introduces a GAN on the VAE output. CDVAE-VC [139]

introduces two VAEs on two spectral features and forced the latent codes of

the two features to contain similar information. ACVAE-VC [63] introduces

an auxiliary classifier on the output to encourage the conversion results to be

correctly classified as the target speaker’s utterances. Chou et al. [140] intro-

duce a classifier on the code and a GAN on the output. Similarly, StarGAN

[141] and CycleGAN [102], which consist of encoder-decoder architectures

with GAN, are applied to voice conversion [58, 142]. As another track of

effort, phonetic posteriorgrams are introduced to assist the learning of the

latent code [143, 60]. Apart from VAE, GAN alone is also applied to voice

conversion [144]. However, the conversion quality of these algorithms is still

limited.

It is worth mentioning that Atalla et al. [145] conduct preliminary research

of style transfer using autoencoder only, and Chou et al. [140] briefly study

its ability to disentangle speaker information in voice conversion. However,

neither has shown promising results nor unveiled its distribution-matching

property by properly designing the bottleneck.

5.3 Style Transfer Autoencoder

In this section, we will discuss how autoencoder can match the data distri-

bution as GAN does. Although our intended application is voice conversion,

the discussion in this section is applicable to other style transfer applications

as well. As general mathematical notations, uppercase letters, e.g. X, de-

42

note random variables/vectors; lowercase letters, e.g. x, denote deterministic

values or instances of random variables; X(1 : T) denotes a random process,

with (1 : T) denoting a collection of time indices running from 1 to T . For

notational ease, sometimes the time indices are omitted to represent the col-

lection of the random process at all times. pX(·|Y) denotes the probability

mass function (PMF) or probability density function (PDF) of X conditional

on Y ; pX(·|Y = y), or sometimes pX(·|y) without causing confusions, denotes

the PMF/PDF of X conditional on Y taking a specific value y.

5.3.1 Problem Formulation

Assume that speech is generated by the following stochastic process. First, a

speaker identity U is a random variable drawn from the speaker population

pU(·). Then, a content vector Z = Z(1 : T) is a random process drawn from

the joint content distribution pZ(·). Here content refers to the phonetic and

prosodic information. Finally, given the speaker identity and content, the

speech segment X = X(1 : T) is a random process randomly sampled from

the speech distribution, i.e. pX(·|U,Z), which characterizes the distribution

of the speaker U ’s speech uttering the content Z. X(t) can represent a sample

of speech waveform, or a frame of speech spectrogram. In this chapter, we

will be working on speech spectrogram.

Now, assume two sets of variables, (U1, Z1, X1) and (U2, Z2, X2), are inde-

pendent and identically distributed (i.i.d.) random samples generated from

this process. (U1, Z1, X1) belong to the source speaker and (U2, Z2, X2) be-

long to the target speaker. Our goal is to design a speech converter that

produces the conversion output, X̂1→2, which preserves the content in X1,

but matches the speaker characteristics of speaker U2. Formally, an ideal

speech converter should have the following desirable property:

pX̂1→2
(·|U2 = u2, Z1 = z1) = pX(·|U = u2, Z = z1) (5.1)

Equation (5.1) means that given the target speaker’s identity U2 = u2 and

the content in the source speech Z1 = z1, the conversion speech should sound

as if the target speaker u2 were uttering z1.

When U1 and U2 are both seen in the training set, the problem is a standard

multi-speaker conversion problem, which has been addressed by some existing

43

!" ⋅ $%

!& ⋅ '(

)*%→(, ⋅,⋅*%
.%

/%

*(
.(

/(

(a) Conversion

!" ⋅ $%

!& ⋅ '%

()%→%+ ⋅,⋅)%
-%

.%

)%/
-%

.%/)%

(b) Training

Figure 5.1: The style transfer autoencoder framework. The ovals denote the
probabilistic graphical model of the speech generation process. The gray
boxes denote pre-trained modules. (a) During conversion, the source speech
is fed to the content encoder. An utterance of the target speaker is fed to
the speaker encoder. The decoder produces the conversion results. (b)
During training, the source speech is fed to the content encoder. Another
utterance of the same source speaker is fed to the speaker encoder. The
content encoder and the decoder minimize the self-reconstruction error.

works. When U1 or U2 is not included in the training set, the problem

becomes the more challenging zero-shot voice conversion problem, which is

also a target task of the proposed AutoVC. This problem formulation can be

extended to a general style transfer setting, where U1 and U2 can represent

two domains and X1 and X2 can represent samples from their respective

domains.

5.3.2 The Autoencoder Framework

AutoVC solves the voice conversion problem with a very simple autoencoder

framework, as shown in Figure 5.1. The framework consists of three modules,

a content encoder Ec(·) that produces a content embedding from speech, a

speaker encoder Es(·) that produces a speaker embedding from speech, and

a decoder D(·, ·) that produces speech from content and speaker embedding.

The inputs to these modules are different for conversion and training.

Conversion: As shown in Figure 5.1(a), during the actual conversion, the

source speech X1 is fed into the content encoder to have content information

extracted. The target speech is fed into the speaker encoder to provide target

speaker information. The decoder produces the converted speech based on

44

the content information in the source speech and the speaker information in

the target speech.

C1 = Ec(X1), S2 = Es(X2), X̂1→2 = D(C1, S2) (5.2)

Here C1 and X̂1→2 are both random processes. S2 is simply a random vector.

Training: Throughout the chapter, we will assume the speaker encoder is

already pre-trained to extract some form of speaker dependent embedding,

so by training we refer to the training of the content encoder and the decoder.

As shown in Figure 5.1(b), since we do not assume the availability of parallel

data, only self-reconstruction is needed for training. More specifically, the

input to the content encoder is still X1, but the input to the style encoder

becomes another speech drawn from the same speaker U1 (uttering a different

content Z ′1), denoted as X ′1. Then for each input speech X1, AutoVC learns

to reconstruct itself:

C1 = Ec(X1), S1 = Es(X
′
1), X̂1→1 = D(C1, S1) (5.3)

The loss function to minimize is simply the weighted combination of the

self-reconstruction error and the content code reconstruction error, i.e.

min
Ec(·),D(·,·)

L = Lrecon + λLcontent (5.4)

where
Lrecon = E[‖X̂1→1 −X1‖2

2]

Lcontent = E[‖Ec(X̂1→1)− C1‖1]
(5.5)

As it turns out, this simple training scheme is sufficient to produce the ideal

distribution-matching voice conversion, as will be shown in the next section.

5.3.3 Why does it work?

We will show this autoencoder-based training scheme is able to achieve ideal

voice conversion (Equation (5.1)). The secret recipe is to have a proper

information bottleneck. The basic idea is that the bottleneck dimension of

the content encoder needs to be set such that it is just enough to code the

speaker independent information.

45

!" ⋅

$%
&%

' ⋅,⋅

)$%→%+%

(a) Bottleneck too wide

!" ⋅

$%
&%

' ⋅,⋅

)$%→%+%

(b) Bottleneck too narrow

!" ⋅

$%
&%

' ⋅,⋅

)$%→%+%

(c) Bottleneck just right

!" ⋅
$%

& ⋅,⋅

()
*+%→)?
*+)→)?

+%? +)?

(d) Conversion

Figure 5.2: An intuitive explanation of how AutoVC works. The target
speaker is the same as the source speaker during training ((a)-(c)), and
different during the actual conversion ((d)). Each speech segment contains
two types of information: the speaker information (solid) and content
information (striped). (a) When the bottleneck is too wide, the content
embedding will contain some source speaker information. (b) When the
bottleneck is too narrow, the content information is lost, which leads to
imperfect reconstruction. (c) When the bottleneck is just right, perfect
reconstruction is achievable, and the content embedding contains no source
speaker information. (d) During the actual conversion, the output should
contain no information about the source speaker, so the conversion quality
should be as high as if it were doing self-reconstruction.

As shown in Figure 5.2, speech contains two types of information: the

speaker information (shown as solid color) and the speaker-independent in-

formation (shown as striped), which we will refer to as the content infor-

mation.1 Suppose the bottleneck is very wide, as wide as the input speech

X1. The most convenient way to do self-reconstruction is to copy X1 as is to

the content embedding C1, and this will guarantee a perfect reconstruction.

However as the dimension of C1 decreases, C1 is forced to lose some infor-

mation. Since the autoencoder attempts to achieve perfect reconstruction,

it will choose to lose speaker information because the speaker information is

already supplied in S1. In this case, perfect reconstruction is still possible,

but the C1 may contain some speaker information, as shown in Figure 5.2(a).

On the other hand, if the bottleneck is very narrow, then the content

1The speaker-independent information includes but is not limited to the content infor-
mation in Z, but for convenience, we will refer to the speaker-independent information as
content information.

46

encoder will be forced to lose so much information that not only the speaker

information but also the content information is lost. In this case, the perfect

reconstruction is impossible, as shown in Figure 5.2(b).

Therefore, as shown in Figure 5.2(c), when the dimension of C1 is cho-

sen such that the dimension reduction is just enough to get rid of all the

speaker information but no content information is harmed, we have reached

our desirable condition, under which two important properties hold:

1. Perfect reconstruction is achieved.

2. The content embedding C1 does not contain any information of the

source speaker U1, which we refer to as speaker disentanglement.

We will now show by contradiction how these two properties imply an

ideal conversion. Suppose when AutoVC is performing an actual conversion

(source and target speakers are different), the quality is low, or does not sound

like the target speaker at all. By property 1, we know that the reconstruction

(source and target speakers are the same) quality is high. However, according

to Equation (5.2), the output speech X̂1→2 can only access C1 and S2, both

of which do not contain any information of the source speaker U1. In other

words, from the conversion output, one can never tell if it is produced by self-

reconstruction or conversion, as shown in Figure 5.2(d). If the conversion

quality is low, but the reconstruction quality is high, one will be able to

distinguish between conversion and reconstruction above chance, which leads

to a contradiction.

5.4 AutoVC Architecture

Figure 5.3 shows that AutoVC consists of three major modules: a speaker

encoder, a content encoder, and a decoder. AutoVC works on the speech

mel-spectrogram of size N -by-T , where N is the number of mel-frequency

bins and T is the number of time steps (frames). A spectrogram inverter

is introduced to convert the output mel-spectrogram back to the waveform,

which will also be detailed in this section.

47

5×
1 ConvN

orm
 ×3

LSTM
×

2

Full Connect

BLSTM
×2

5×
1 ConvN

orm
 ×3

LSTM
×3

1×
1 Conv

5×
1 ConvN

orm

5×
1 ConvN

orm
 ×4

U
p1

Concatenate

512 32×2 320 512 1024 80 512 80

768 256 80

%& ⋅

(a)

(b) (c)

()

(*

+()→*D
ow

n1
D

ow
n2

Last O
utput

-)→

U
p2-)←

Copy/*

+

D
econv×4

W
aveN

et

D
ow

n1

U
p1

D
ow

n2

U
p2

(d)

(e) (f)

Figure 5.3: AutoVC architecture. The number above each block
represents the cell/output dimension of the structure. ConvNorm denotes
convolution followed by batch normalization. BLSTM denotes
bi-directional LSTM, whose white block denotes forward direction, and
gray block denotes backward direction. (a) The content encoder. The Es(·)
module is of the same architecture as in (b). (b) The style encoder. (c) The
decoder. (d) The spectrogram inverter. (e) and (f) demonstrate the
downsampling and upsampling of the forward and backward outputs of the
bi-directional LSTM, using an up/downsampling factor of three as an
example. The real up/downsampling factor is 32. The lightened feature
denotes that they are removed; the arrows denote copying the feature at
the arrow origin to the destination.

5.4.1 The Speaker Encoder

The goal of the speaker encoder is to produce the same embedding for dif-

ferent utterances of the same speaker, and different embeddings for different

speakers. For conventional many-to-many voice conversion, the one-hot en-

coding of speaker identities suffices. However, in order to perform zero-shot

conversion, we need to apply an embedding that is generalizable to unseen

speakers. Therefore, inspired by Ye et al. [146], we follow the design in

[137]. As shown in Figure (5.3)(b), the speaker encoder consists of a stack

of two LSTM layers with cell size 768. Only the output of the last time

step is selected and projected down to dimension 256 with a fully connected

layer. The resulting speaker embedding is a 256-by-1 vector. The speaker

encoder is pre-trained on the GE2E loss [137] (the softmax loss version). The

GE2E loss attempts to maximize the embedding similarity among different

utterances of the same speaker, and minimize the similarity among different

speakers.

In our implementation, the speaker encoder is pre-trained on the combi-

48

nation of VoxCeleb1 [147] and Librispeech [148] corpora, where there are a

total of 3549 speakers.

5.4.2 The Content Encoder

As shown in Figure 5.3(a), the input to the content encoder is the mel-

spectrogram of X1 concatenated with the speaker embedding, Es(X1), at

each time step. The concatenated features are fed into three 5 × 1 convo-

lutional layers, each followed by batch normalization and ReLU activation.

The number of channels is 512. The output then passes to a stack of two

bidirectional LSTM layers. Both the forward and backward cell dimensions

are 32.

As a key step of constructing the information bottleneck, both the forward

and backward outputs of the bidirectional LSTM are downsampled by 32.

The downsampling is performed differently for the forward and backward

paths. For the forward output, the time steps {0, 32, 64, · · · } are kept; for

the backward output, the time steps {31, 63, 95, · · · } are kept. Figures 5.3(e)

and (f) also demonstrate how the downsampling is performed (for the ease

of demonstration, the downsampling factor is set to three). The resulting

content embedding is a set of two 32-by-T/32 matrices, which we will denote

as C1→ and C1← respectively. The downsampling can be regarded as dimen-

sion reduction along the temporal axis, which, together with the dimension

reduction along the channel axis, constructs the information bottleneck.

5.4.3 The Decoder

The architecture of the decoder is inspired by [92]; and it is shown in Fig-

ure 5.3(c). First, the content and speaker embeddings are both upsampled by

copying to restore to the original temporal resolution. Formally, we denote

the upsampled features as U→ and U← respectively. Then

U→(:, t) = C1→(:, bt/32c)

U←(:, t) = C1←(:, bt/32c)
(5.6)

where (:, t) denotes indexing the t-th column. Figures 5.3(e) and (f) also

demonstrate the copying. The underlying intuition is that each embedding

49

at each time step should contain both past and future information. For the

speaker embedding, simply copy the vector T times.

Then, the upsampled embeddings are concatenated and fed into three 5×1

convolutional layers with 512 channels, each followed by batch normalization

and ReLU activation function, and then three LSTM layers with cell dimen-

sion 1024. The outputs of the LSTM layer are projected to dimension 80 with

a 1× 1 convolutional layer. This projection output is the initial estimate of

the converted speech, denoted as X̃1→2.

In order to construct the fine details of the spectrogram better on top of

the initial estimate, we introduce a post-network after the initial estimate,

as introduced in [92]. The post-network consists of five 5 × 1 convolutional

layers, where batch normalization and hyperbolic tangent are applied to the

first four layers. The channel dimension for the first four layers is 512, and

goes down to 80 in the final layer. We will refer to the output of the post-

network as the residual signal, denoted as R1→2. The final conversion result

is produced by adding the residual to the initial estimate, i.e.

X̂1→2 = X̃1→2 +R1→2 (5.7)

During training, reconstruction loss is applied to both the initial and final

reconstruction results. Formally, in addition to the loss specified in Equa-

tion (5.4), we add an initial reconstruction loss defined as

Lrecon0 = E[‖X̃1→1 −X1‖2
2] (5.8)

where X̃1→1 is the reciprocal of X̃1→2 in the reconstruction case, i.e. when

U2 = U1. The total loss becomes

min
Ec(·),D(·,·)

L = Lrecon + µLrecon0 + λLcontent (5.9)

5.4.4 The Spectrogram Inverter

We apply the WaveNet vocoder as introduced in [149], which consists of

four deconvolution layers. In our implementation, the frame rate of the mel-

spetrogram is 62.5 Hz and the sampling rate of speech waveform is 16 kHz.

So the deconvolution layers will upsample the spectrogram to match the

50

sampling rate of the speech waveform. Then, a standard 40-layer WaveNet

conditioning upon the upsampled spectrogram is applied to generate the

speech waveform. We pre-trained the WaveNet vocoder using the method

described in [92] on the VCTK corpus.

5.5 Experiments

In this section, we will evaluate AutoVC on many-to-many voice conversion

tasks, and empirically validate the assumptions of the AutoVC framework.

5.5.1 Configurations

The evaluation is performed on the VCTK corpus [150], which contains 44

hours of utterances from 109 speakers. Each speaker reads a different set of

sentences, except for the rainbow passage2 and the elicitation paragraph. So

the conversion setting is non-parallel. Depending on the conversion tasks,

different subsets of speakers were selected. The data of each speaker is then

partitioned into training and test sets by 9:1. AutoVC is trained with a

batch size of two for 100k steps, using the ADAM optimizer. The speaker

embedding is generated by feeding 10 two-second utterances of the same

speaker to the speaker encoder and averaging the resulting embeddings. The

weights in Equation (5.9) are set to λ = 1, µ = 1.

We performed two subjective tests on Amazon Mechanical Turk (MTurk).3

In the first test, called the mean opinion score (MOS) test, the subjects are

presented with converted utterances. For each utterance, the subjects are

asked to assign a score of 1-5 on the naturalness on the converted speech.

In the second test, called the similarity test, the subjects are presented with

pairs of utterances. In each pair, there is one converted utterance, and one

utterance from the target speaker uttering the same sentence. For each

pair, the subjects are asked to assign a score of 1-5 on the voice similarity.

We follow the design in [151] to cue the subjects to judge if the speakers

are the same, and how confident they are with their judgment. Thus the

similarity score of 5 corresponds to the same speaker with high confidence,

2http://web.ku.edu/ idea/readings/rainbow.htm
3https://www.mturk.com/

51

and 1 corresponds to different speakers with high confidence. The subjects

are explicitly asked to focus on the voice rather than intonation and accent.

5.5.2 Traditional Many-to-Many Conversion

Traditional many-to-many conversion task performs conversion only on speak-

ers seen in the training corpus. Two baselines are compared with AutoVC,

which we name StarGAN-VC [58] and Chou et al. [140]. Both baselines are

current state-of-the-arts in non-parallel many-to-many voice conversion. For

Chou et al., we use the original implementation4 and its pre-trained model,

which is trained on 20 speakers in the VCTK corpus. For fair comparison,

the other models are trained on the same 20 speakers. Note that the train-

ing/test sets are partitioned differently from the Chou et al.’s pre-trained

model, so we are giving the Chou et al. baseline an unfair advantage of

seeing part of the test utterance during training. We use the open-source

implementation for StarGAN-VC.5

AutoVC uses the speaker embeddings produced by the speaker encoder,

while the baselines only use the one-hot embeddings of the speakers. To

avoid unfair comparison and study if the performance advantage of AutoVC

simply comes from the speaker embeddings, we implement another version

of AutoVC, called AutoVC-one-hot, that also uses one-hot embeddings

of the speakers.

To construct the utterances for the MTurk evaluation, 10 speakers, five

male and five female, are randomly chosen from the 20 speakers in the train-

ing set. We then produce 10 × 10 = 100 conversions by converting a test

utterance of each of the 10 speakers to each of the 10 speakers’ voice. Each

test unit, called HIT, contains conversion results of the same source-target

speaker pair of the three algorithms, so there are 100 HITs in total. Each

HIT is assigned to 10 subjects.

Figure 5.5(a) presents the MOS scores, and Figure 5.5(b) presents the sim-

ilarity scores. We are dividing the audio into four gender groups, male to

male, male to female, female to male and female to female, and summarize

the scores within each gender group. As shown in Figure 5.5(a), the percep-

tual quality of the speech generated by AutoVC is much better than the

4https://github.com/jjery2243542/voice conversion
5https://github.com/liusongxiang/StarGAN-Voice-Conversion

52

Seen to seen Seen to unseen Unseen to seen Unseen to unseen

M2M F2F M2F F2M
0

1

2

3

4

(a) MOS

M2M F2F M2F F2M

(b) Similarity

Figure 5.4: Subjective evaluation results for zero-shot conversion.

baselines’. The MOS scores of AutoVC are above 3 for all groups, whereas

those for the baselines almost all fall below 3. To give readers a better idea

of what this means. Notice that the MOS for 16kHz natural speech is around

4.5. The MOS scores of the current state-of-the-art speech synthesizers are

between 4 and 4.5 [92, 152]. The highest score in 2016 Voice Conversion

Challenge [151] for parallel conversion is 3.8 for same-gender conversions,

and 3.2 for cross-gender conversion. Therefore, our subjective evaluation re-

sults show that AutoVC approaches the performance of parallel conversion

systems in terms of naturalness, and is much better than existing non-parallel

conversion systems.

In terms of similarity, AutoVC also outperforms the baselines. Note

that for the baseline algorithms, there is a significant degrade from same-

gender conversion to cross-gender conversion, but AutoVC algorithms do

not display such a degrade. Finally, there is no significant difference between

AutoVC and AutoVC-one-hot, which implies that the performance gain

of AutoVC does not result from the use of the speaker encoder.

5.5.3 Zero-Shot Conversion

Now we are ready to go beyond the traditional conversion task toward zero-

shot conversion, where the target speakers are absent in the training set and

only a few (20 seconds) utterances of each target speaker are available for

reference. Since there are no zero-shot conversion baselines, we will compare

the results within AutoVC.

The experiment settings are almost the same as in Section 5.5.2, except

53

AutoVC AutoVC-ont-hot StarGAN Chou et. al.

M2M F2F M2F F2M
0

1

2

3

4

(a) MOS

M2M F2F M2F F2M

(b) Similarity

Figure 5.5: Subjective evaluation results for traditional conversion.

that the training set is expanded to 40 speakers to improve the generalizabil-

ity to unseen speakers. Ten seen speakers and 10 unseen speakers are selected

for MTurk evaluation, so there are a total of 400 source-target speaker pairs,

each producing one conversion utterance. Each HIT contains four utterances,

summing up to 100 HITs in total. Each HIT is assigned to 10 subjects.

Figure 5.4 presents the scores. There are three observations. First, for

conversions among seen speakers, the performance is comparable to that

in Section 5.5.2. Note that in this experiment, AutoVC is trained on 40

speakers, which doubles the number of speakers used in the experiment in

Section 5.5.2. Therefore, this comparable performance on seen speakers indi-

cates that AutoVC is scalable to a large number of speakers in the training

set.

Second, in terms of MOS score, AutoVC shows good generalizations to

unseen speakers, with the MOS score exceeding 3 in most settings. This

means, even for unseen speakers, AutoVC is still able to outperform most

existing non-parallel conversion algorithms.

Finally, in terms of the similarity score, there is an interesting observation

that as long as seen speakers are included in either side of the conversions,

the performance is comparable. There is a significant gap between conver-

sions from unseen speakers to unseen speakers and the rest of the paradigms.

Nevertheless, even for conversions within unseen speakers, which is the most

challenging case, the similarity scores are still very competitive, which demon-

strates AutoVC’s competence in zero-shot conversion.

54

Table 5.1: Assessment of the reconstruction quality and speaker
disentanglement of AutoVC.

Narrow AutoVC Wide
Recon. Error 34.6 8.59 3.85
Class. Acc. 7.50% 12.0% 70.5%

5.5.4 Bottleneck Dimension Analysis

Our justifications for the proposed style transfer autoencoder lies in the claim

that the bottleneck dimension affects perfect reconstruction and disentangle-

ment of content code and source speaker information, and that there exists

a desirable bottleneck dimension where both properties hold (Figure 5.2). In

this section, we will empirically validate this claim.

We measure AutoVC’s reconstruction quality and the degree of disentan-

glement between the content code and the source speaker information. The

reconstruction quality is measured by the `2-norm of reconstruction error

in the training set. Lower reconstruction error means higher reconstruction

quality. The disentanglement is measured by training a speaker classifier

on the content code and computing the classification accuracy on the train-

ing set. Higher classification accuracy means better disentanglement. The

speaker classifier consists of 3 fully-connected layers with 2,048, 1,024 and

1,024 hidden nodes respectively in each layer and softplus activation. The

output activation is softmax and the training loss is cross entropy. The

model architecture and experiment setting follow those in Section 5.5.3, so

the speaker classification is on the 40 seen speakers.

As references, we introduce two anchor models. The first model, which we

name the “too narrow” model, reduces the dimensions of C1→ and C1← from

32 to 16, and increases the downsampling factor from 32 to 128 (note that

higher downsampling factor means lower temporal dimension). The second

model, which we name the “too wide” model, increases the dimensions of

C1→ and C1← to 256, and decreases the sampling factor to 8, and λ is set to

0. Supposedly, according to Figure 5.2, the “too narrow” model should have

low classification accuracy (good disentanglement) but high reconstruction

error (poor reconstruction). The “too wide” model should have low recon-

struction error (good reconstruction) but high classification accuracy (poor

disentanglement). The normal AutoVC model should have both low recon-

55

struction error (good reconstruction) and low classification accuracy (good

disentanglement).

Table 5.1 shows the reconstruction error and speaker classification accuracy

for the three models. As expected, as the bottleneck dimension decreases,

the reconstruction error increases and the classification accuracy decreases.

What is interesting is that the normal AutoVC model does strike a good

balance, with reconstruction error almost as low as the “too wide” model and

the classification accuracy almost as low as the “too narrow” model. It is

worth mentioning that Chou et al. [140] also perform a similar classification

experiment to test disentanglement, and the classification accuracy is 45.1%

on 20 speakers, after an adversarial training is introduced to force disentan-

glement. We also perform a classification on the same 20 speakers, and the

classification accuracy is 14.2%. Of course, the direct comparison of these

two numbers is unfair, but it at least validates that the effect of bottleneck

dimension adjustment on speaker disentanglement is no worse, if not better,

than that of the more sophisticated adversarial training.

5.6 Summary

We have proposed AutoVC, a non-parallel voice conversion algorithm that

significantly outperforms the existing state-of-the-art, and that is the first to

perform zero-shot conversions. In sharp contrast to its performance advan-

tage is its simple autoencoder structure that trains only on self-reconstruction,

and a bottleneck tuning to balance between reconstruction quality and speaker

disentanglement. In an era of building increasingly sophisticated algorithms

for style transfer, the success of AutoVC suggests that it is time to return

to simplicity, because sometimes an autoencoder with a careful bottleneck

design is all you need to make a difference.

56

CHAPTER 6

UNSUPERVISED SPEECH
DECOMPOSITION VIA TRIPLE
INFORMATION BOTTLENECK

6.1 Introduction

Human speech conveys a rich stream of information, which can be roughly

decomposed into four important components: content, timbre, pitch and

rhythm. The language content of speech comprises the primary information

in speech, which can also be transcribed to text. Timbre carries information

about the voice characteristics of a speaker, which is closely connected with

the speaker’s identity. Pitch and rhythm are the two major components of

prosody, which expresses the emotion of the speaker. Pitch variation conveys

the aspects of the tone of the speaker, and rhythm characterizes how fast the

speaker utters each word or syllable.

For decades, speech researchers have sought to obtain disentangled rep-

resentations of these speech components, which are useful in many speech

applications. In speech analysis tasks, the disentanglement of speech compo-

nents helps to remove interference introduced by irrelevant components. In

speech generation tasks, disentanglement is the foundation of many applica-

tions, such as voice conversion [153], prosody modification [154], emotional

speech synthesis [155], and low bit-rate speech encoding [156], to name a few.

Recently, state-of-the-art voice conversion systems have been able to obtain

a speaker-invariant representation of speech, which disentangles the speaker-

dependent information [157, 140, 153]. However, these algorithms are only

able to disentangle timbre. The remaining aspects, i.e., content, pitch, and

rhythm are still lumped together. As a result, the converted speech produced

by these algorithms differs from the source speech only in terms of timbre.

The pitch contour and rhythm remain largely the same.

From an information-theoretic perspective, the success in timbre disen-

tanglement can be ascribed to the availability of a speaker identity label,

57

which preserves almost all the information of timbre, such that voice con-

version systems can “subtract” such information from speech. For example,

AutoVC [157], a voice conversion system, constructs an autoencoder for

speech and feeds the speaker identity label to the decoder. As shown in Fig-

ure 6.2(a), by constructing an information bottleneck between the encoder

and decoder, AutoVC can force the encoder to remove the timbre informa-

tion, because the equivalent information is supplied to the decoder directly.

It is worth noting that although the speaker identity is also correlated with

the pitch and timbre information, the information overlap is relatively small,

so the speaker identity cannot serve as labels for pitch and rhythm. If we

had analogous information-preserving labels for timbre, rhythm or pitch, the

disentanglement of these aspects would be straightforward, simply by utiliz-

ing these labels the same way voice conversion algorithms use the speaker

identity label.

However, obtaining annotations for these other speech components is chal-

lenging. First, although language content annotation is effectively provided

by text transcriptions, obtaining a large number of text transcriptions is

expensive, especially for low-resourced languages. Therefore, here, we will

focus on unsupervised methods that do not rely on text transcriptions. Sec-

ond, the rhythm annotation, which is essentially the length of each syllable,

can only be obtained with the help of text transcriptions, which are again

unavailable under our unsupervised setting. Finally, for pitch annotation,

although the pitch information can be extracted as pitch contour using pitch

extraction algorithms, the pitch contour itself is entangled with rhythm infor-

mation, because it contains the information of how long each speech segment

is. Without the information preserving labels, disentangling content, rhythm

and pitch becomes an under-determined problem. Hence, here we ask: Is it

possible to decompose these remaining speech components without relying

on text transcriptions and other information-preserving labels?

In this chapter, we propose SpeechSplit, a speech generative model that

can blindly decompose speech into content, timbre, pitch, and rhythm, and

generate speech from these disentangled representations. Thus, Speech-

Split is among the first algorithms that can enable flexible conversion of

different aspects to different styles without relying on any text transcrip-

tion. To achieve unsupervised decomposition, SpeechSplit introduces an

encoder-decoder structure with three encoder channels, each with a different,

58

carefully crafted information bottleneck design. The information bottleneck

is imposed by two mechanisms: first, a constraint on the physical dimen-

sion of the representation, which has been shown effective in AutoVC, and

second, the introduction of noise by randomly resampling along the time

dimension, which has been shown effective in [158]. We find that subtle dif-

ferences in the information bottleneck design can force different channels to

pass different information, such that one passes language content, one passes

rhythm, and one passes pitch information, thereby achieving the blind dis-

entanglement of all speech components.

Besides direct value in speech applications, SpeechSplit also provides

insight into a powerful design principle that can be broadly applied to any

disentangled representation learning problem: in the presence of an informa-

tion bottleneck, a neural network will prioritize passing through the informa-

tion that cannot be provided elsewhere. This observation inspires a generic

approach to disentanglement.

6.2 Related Work

The Source-Filter Model Early research on speech generation proposed

the source-filter model [5], and many subsequent research efforts try to de-

compose speech into the source that includes pitch and the filter that includes

content, using signal processing approaches, such as linear predictive coding

[159], cepstral analysis [160], temporally stable power spectral analysis [161]

and probabilistic approaches [162]. However, these approaches do not con-

sider the prosody aspects of speech.

Voice Conversion Inspired by the style transfer and disentanglement

techniques in computer vision [163, 141, 164], many approaches based on vari-

ational autoencoders (VAEs) and generative adversarial networks (GANs)

have been proposed in the field of voice conversion to disentangle the timbre

information from the speech. VAE-VC [57] directly applies a VAE for voice

conversion, where the encoder produces a speaker-independent content em-

bedding. After that, VAE-GAN [138] replaces the decoder of the VAE with a

GAN when generating the converted speech to improve the quality of the con-

version results. CDVAE-VC [139] uses two VAEs working on different speech

features, one on STRAIGHT spectra [161], and one on mel-cepstral coeffi-

59

cients (MCCs), and encourages that the latent representation can reconstruct

both features well. ACVAE-VC [63] introduces an auxiliary classifier for the

conversion outputs, and encourages the converted speech to be correctly clas-

sified as the source speaker. Chou et al. [140] introduced a classifier for the

latent code, and discouraged the latent code to be correctly classified as the

target speaker. Inspired by image style transfer frameworks, [144] and [58]

adapted CycleGan [141] and StarGan [164] respectively for voice conversion.

Later, CDVAE-VC was extended by directly applying GAN [165] to improve

the degree of disentanglement. Chou and Lee [153] used instance normal-

ization to further disentangle speaker from content, and thus can convert to

speakers that are not seen during training. StarGan-VC2 [166] refined the

adversarial framework by conditioning the generator and discriminator on the

source speaker label, in addition to the target speaker label. Recently, Qian

et al. [157] proposed AutoVC, a simple autoencoder based method that

disentangles the timbre and content using information-constraining bottle-

necks. Later, Qian et al. [167] fixed the pitch jump problem of AutoVC by

F0 conditioning. Besides, the time-domain deep generative model is gaining

more research attention for voice conversion [168, 169, 170]. However, these

methods only focus on converting timbre, which is only one of the speech

components.

Prosody Disentanglement There have been a few recent text-to-speech

(TTS) systems that seek to disentangle the prosody information to generate

expressive speech. Skerry-Ryan et al. [171] introduced a Tacotron based

speech synthesizer that can disentangle prosody from speech content by hav-

ing an encoder that can extract the prosody information from the original

speech. Mellotron [172] is a speech synthesizer conditional on both explicit

prosody labels and latent prosody code to capture and disentangle different

aspects of the prosody information. CHiVE [173] introduces a hierarchical

encoder-decoder structure that is conditioned on a set of prosodic features

and linguistic features. However, these TTS systems all require text tran-

scriptions, which, as discussed, makes the task easier but limits their ap-

plications to high-resource language. Besides TTS systems, Parrotron [174]

disentangles prosody by encouraging the latent codes to be the same as the

corresponding phone representation of the input speech. However, Parrotron

still requires text transcriptions to label the phone representation, as well as

to generate the synthetic parallel dataset. Polyak and Wolf [158] proposed,

60

to the best of our knowledge, the only prosody disentanglement algorithm

that does not rely on text transcriptions, which attempts to remove the

rhythm information by randomly resampling the input speech. However, the

effect of their prosody conversion is not very pronounced. In this chapter,

our objective is to achieve effective prosody conversion without using text

transcriptions, which is more flexible for low-resource languages.

Please call Stella Please call Stella

Please call Stella Please call Stella

Figure 6.1: Spectrograms (left) and pitch contours (right) of two utterances
of the same sentence “Please call Stella”. The left rectangle marks highlight
the formant structures of the phone “ea”. The arrows mark the frequencies
of the second, third and fourth formants. The right rectangle marks
highlight the pitch tones of the word “Stella”.

6.3 Information in Speech

Since this chapter focuses on the decomposition of speech information into

rhythm, pitch, timbre, and content, we provide here a brief primer on each of

these components. Figure 6.1 shows the spectrograms (left) and pitch con-

tours (right) of utterances of the sentence “Please call Stella”. Throughout

this chapter, the term “spectrogram” refers to the magnitude spectrogram.

Rhythm Rhythm characterizes how fast the speaker utters each syllable.

As shown in Figure 6.1, each spectrogram is divided into segments, which

correspond to each word, as marked on the horizontal axis. So the lengths

of these segments reflect the rhythm information. In the top spectrogram,

61

each segment is long, indicating a slow speaker; in the bottom spectrogram,

each segment is short, indicating a fast speaker.

Pitch Pitch is an important component of intonation. One popular repre-

sentation of the pitch information is the pitch targets [175], which is defined

as the intended pitch, e.g. rise or fall, high or low etc., of each syllable.

The pitch information, or pitch target information, is contained in the pitch

contour, because the pitch contour is generally considered as the result of

a constant attempt to hit the pitch targets of each syllable, subject to the

physical constraints [175]. However, the pitch contour also entangles other

information. First, the pitch contour contains the rhythm information, be-

cause each nonzero segment of the pitch contour represents a voiced segment,

which typically corresponds to a word or a syllable. So the length of each

voiced segment indicates how fast the speaker speaks. Second, the pitch

range reflects certain speaker identity information — female speakers tend

to have a high pitch range, as shown in the upper panel of Figure 6.1, and

male speakers tend to have a low pitch range, as shown in the lower panel

of Figure 6.1. Here, we assume that the impact of the speaker identity on

the pitch contour is linear. In other words, if we normalize the pitch contour

to a common mean and standard deviation, the speaker identity information

will be removed. To sum up, the pitch contour entangles the information

of speaker identity, rhythm and pitch; the normalized pitch contour only

contains the information of the latter two.

Timbre Timbre is perceived as the voice characteristics of a speaker.

It is reflected by the formant frequencies, which are the resonant frequency

components in the vocal tract. In a spectrogram, the formants are shown as

the salient frequency components of the spectral envelope. In Figure 6.1, the

rectangles and arrows on the spectrogram highlight three formants. As can be

seen, the top spectrogram has a higher formant frequency range, indicating

a bright voice; the bottom spectrogram has a lower formant frequency range,

indicating a deep voice.

Content In English and many other languages, the basic unit of content

is the phone. Each phone comes with a particular formant pattern. For

example, the three formants highlighted in Figure 6.1 are the second, third

and fourth lowest formants of the phone “ea” as in “please”. Although

their formant frequencies have different ranges, which indicates their timbre

difference, they have the same pattern — they tend to cluster together and

62

are far away from the lowest formant (which is at around 100 Hz).

6.4 SpeechSplit

This section introduces SpeechSplit . For notation, uppercased letters, X

and X, denote random scalars and vectors respectively; lowercased letters, x

and x, denote deterministic scalars and vectors respectively.

6.4.1 Problem Formulation

Denote S = {St} as a speech spectrogram, where t is the time index. Denote

the speaker’s identity as U . We assume that S and U are generated through

the following random generative processes

S = gs(C,R,F ,V), U = gu(V) (6.1)

where C denotes content; R denotes rhythm; F denotes pitch target; V

denotes timbre. gs(·) and gu(·) are assumed to be a one-to-one mapping.

Note that here we assume C also accounts for the residual information that

is not included in rhythm, pitch or timbre.

Our goal is to construct an autoencoder-based generative model for speech,

such that the hidden code contains disentangled representations of the speech

components. We formally denote the representations as Zc, Zr and Zf , and

these representations should satisfy

Zc = hc(C), Zr = hr(R), Zf = hf (F) (6.2)

where hc(·), hr(·) and hf (·) are all one-to-one mappings.

6.4.2 AutoVC and Its Limitations

Since SpeechSplit inherits the information bottleneck mechanism proposed

in AutoVC, it is necessary to first review its framework and limitations. Fig-

ure 6.2(a) shows the framework of AutoVC, which consists of an encoder

and a decoder. The encoder has an information bottleneck at the end (shown

as the grey tip), which is implemented as a hard constraint on code dimen-

sions. The input to the encoder is speech spectrogram S, and the output of

63

the encoder is called the speech code, denoted as Z. The decoder takes Z

and the speaker identity label U as its inputs, and produces a speech spectro-

gram Ŝ as output. We formally denote the encoder as E(·), and the decoder

as D(·, ·). The AutoVC pipeline can be expressed as

Z = E(S), Ŝ = D(Z, U) (6.3)

During training, the output of the decoder tries to reconstruct the input

spectrogram:

min
θ

E[‖Ŝ − S‖22] (6.4)

where θ denotes all the trainable parameters.

It can be shown that if the information bottleneck is tuned to the right size,

this simple scheme can achieve disentanglement of the timbre information as

Z = h(C,R,F) (6.5)

Figure 6.2(a) provides an intuitive explanation of why this is possible. As

can be seen, speech is represented as a concatenation of different blocks, indi-

cating the content, rhythm, pitch and timbre information. Note that speaker

identity is represented with the same block style as timbre because it is as-

sumed to preserve equivalent information to timbre according to Equation

(6.1). Since the speaker identity is separately fed to the decoder, the decoder

can still have access to all the information to perform self-reconstruction even

if the encoder does not preserve the timbre information in its output. There-

fore, when the information bottleneck is binding, the encoder will remove

the timbre information. However, Z still lumps content, rhythm, and pitch

together. As a result, AutoVC can only convert timbre.

6.4.3 The SpeechSplit Framework

Figure 6.2(b) illustrates the SpeechSplit framework. SpeechSplit is also

an autoencoder with an information bottleneck. However, in order to fur-

ther decompose the remaining speech components, SpeechSplit introduces

three encoders with heterogeneous information bottleneck, which are a con-

tent encoder, a rhythm encoder, and a pitch encoder. Following are the details

of the encoders and the decoder of SpeechSplit.

The Encoders As shown in Figure 6.2(b), all three encoders are almost

the same, but with two subtle differences. First, the input to the content

64

encoder and rhythm encoder is speech S, whereas the input to the pitch

encoder is the normalized pitch contour, which we denote as P . As discussed

in Section 6.3, the normalized pitch contour P refers to the pitch contour that

is normalized to have the same mean and variance across all the speakers,

so the normalized pitch contour only contains the pitch information, F , and

rhythm information, R, but no speaker ID information, U .

Second, the content encoder and pitch encoder perform a random resam-

pling operation along the time dimension of the input. Random resampling

involves two steps of operations. The first step is to divide the input into seg-

ments of random lengths. The second step is to randomly stretch or squeeze

each segment along the time dimension. Therefore, random resampling can

be regarded as an information bottleneck on rhythm. All the encoders have

the physical information bottleneck at the output. The final outputs of the

encoders are called content code, rhythm code and pitch code, which are

denoted as Zc, Zr and Zf respectively. Formally, denote the content encoder

as Ec(·), rhythm encoder as Er(·) and pitch encoder as Ef (·), and denote the

random resampling operation as A(·). Then we have

Zc = Ec(A(S)), Zr = Er(S), Zf = Ef (A(P)) (6.6)

The Decoder The decoder takes all the speech code and the speaker

identity label (or embedding) as its inputs, and produce a speech spectrogram

as output, i.e.,

Ŝ = D(Zc,Zr,Zf , U) (6.7)

During training, the output of the decoder tries to reconstruct the input

spectrogram, which is the same as in Equation (6.4).

Counter-intuitive as it may sound, we claim that when all the informa-

tion bottlenecks are appropriately set and the network representation power

is sufficient, a minimizer of Equation (6.4) will satisfy the disentanglement

condition as in Equation (6.2). In what follows, we will explain why such

decomposition is possible.

6.4.4 Why Does It Force Speech Decomposition?

Figure 6.2 provides an intuitive illustration of how SpeechSplit achieves

speech decomposition, where a few important assumptions are made.

65

Encoder

Decoder

Speech !

Speech "!

#

Decoder

$$$% $&

Speaker
ID &

Speech ! Speech ! Pitch Cont. %

#! #" ##
Speaker

ID &

Speech "!

Rhythm Content
Pitch Timbre

RRRR

(a) AutoVC (b) SpeechSplit

Figure 6.2: Frameworks and AutoVC and SpeechSplit and illustration
of why they can perform disentanglement. Signals are represented as blocks
to denote their information components. Er denotes the rhythm encoder;
Ec denotes the content encoder; Ef denotes the pitch encoder. “RR”
denotes random resampling. “Pitch Cont.” is short for the normalized
pitch contour. The grey block at the tip of the encoders denotes the
information bottleneck. Some rhythm blocks have some holes in them,
which represents that a portion of the rhythm information is lost. The
bottlenecks force the encoders to pass only the information that other
encoders cannot supply, hence achieving the disentanglement.

Assumption 1: The random resampling operation will contaminate the

rhythm information R.

Assumption 2: The random resampling operation will not contaminate the

other speech components.

Assumption 3: The pitch contour P contains all the pitch information and

a portion of rhythm information.

As shown in Figure 6.2(b), speech contains four blocks of information.

When it passes through the random resampling operation, a random por-

tion of the rhythm block is wiped (shown as the holes in the rhythm block

at the output of the RR module), but the other blocks remain intact. On

66

the other hand, the normalized pitch contour mainly contains two blocks,

the pitch block, and the rhythm block. The rhythm block is missing a cor-

ner because the normalized pitch contour does not contain all the rhythm

information, and it misses even more when it passes through the random

resampling module.

Similar to the AutoVC claim, the timbre information is directly fed to the

decoder, so all the encoders do not need to encode the timbre information.

Therefore, this section focuses on explaining why SpeechSplit can force

the encoders to separately encode the content, pitch, and timbre.

First, the rhythm encoder Er(·) is the only encoder that has access to the

complete rhythm information R. The other two encoders only preserve a

random portion of R, and there is no way for Er(·) to guess which part is

lost and thus only supply the lost part. Therefore, Er(·) must pass all the

rhythm information. Meanwhile, the other aspects are available in the other

two encoders. So if Er(·) is forced to lose some information by its information

bottleneck, it will prioritize removing the content, pitch, and timbre.

Second, given that Er(·) only encodes R, then the content encoder Ec(·)
becomes the only encoder that can encode all the content information C,

because the pitch encoder does not have access to C. Therefore, Ec(·) must

pass all the content information. Meanwhile, the other aspects can be sup-

plied elsewhere, so the rhythm encoder will remove the other aspects if the

information bottleneck is binding.

Finally, with Er(·) encoding only R and Ec(·) encoding only C, the pitch

encoder Ef (·) must encode the pitch information. All the other aspects are

supplied in other channels, so Ef (·) will prioritize removing these aspects if

the information bottleneck is binding.

Simply put, if each encoder is only allowed to pass one block, then the

arrangement in Figure 6.2 is the only way to ensure full recovery of the

speech information.

6.4.5 Network Architecture

Figure 6.3 shows the architecture of SpeechSplit. The left module cor-

responds to the encoders and the right to the decoder. All three encoders

share a similar architecture, which consists of a stack of 5 × 1 convolutional

67

$ &(
&'
&)

%$

BLSTM
Linear

C
oncat
U
p

×3
*

2 $
2 +

C
onv

G
N
orm

!'

BLSTM
D
ow
n

!(, !)

×45×46

R
R

Figure 6.3: The architecture of SpeechSplit. “GNorm” denotes group
normalization; “RR” denotes random resampling; “Down” and “Up” denote
downsampling and upsampling operations respectively. “Linear” denotes
linear projection layer. ×n denotes the module above is repeated n times.

Table 6.1: Hyperparameter settings of the encoders.

Rhythm Content Pitch

Conv Layers 1 3 3
Conv Dim 128 512 256
Norm Groups 8 32 16
BLSTM Layers 1 2 1
BLSTM Dim 1 8 32
Downsample Factor 8 8 8

layers followed by group normalization [176]. For the content encoder, the

output of each convolutional layer is passed to a random resampling module

to further contaminate rhythm. The final output of the convolutional layers

is fed to a stack of bidirectional-LSTM layers to reduce the feature dimen-

sion, which is then passed through a downsampling operation to reduce the

temporal dimension, producing the hidden representations. Table 6.1 shows

the hyperparameter settings of each encoder.

The decoder first upsamples the hidden representation to restore the orig-

inal sampling rate. The speaker identity label U , which is a one-hot vector,

is also repeated along the time dimension to match the temporal dimen-

sion of the other upsampled representations. All the representations are

then concatenated along the channel dimension and fed to a stack of three

bidirectional-LSTM layers with an output linear layer to produce the final

output. The spectrogram is converted back to the speech waveform using

the same wavenet-vocoder as in AutoVC.

68

6.5 Experiments

In this section, we will empirically verify the disentanglement capability of

SpeechSplit. We will be visualizing our speech results using spectrogram

and pitch contour. The frequency axis units of all the spectrograms are in

kHz, and those of the pitch contour plots are in Hz.

6.5.1 Configurations

The experiments are performed on the VCTK dataset [150]. The training set

contains 20 speakers where each speaker has about 15 minutes of speech. The

test set contains the same 20 speakers but with different utterances, which

is the conventional voice conversion setting. SpeechSplit is trained using

the ADAM optimizer [177] with a batch size of 16 for 800k steps. Since there

are no other algorithms that can perform blind decomposition so far, we

will be comparing our result with AutoVC, a conventional voice conversion

baseline.

The model selection is performed on the training dataset. Specifically, the

physical bottleneck dimensions are tuned based on the criterion: when the

input to one of the encoders or the speaker embedding is set to zero, the

output reconstruction should not contain the corresponding information. As

will be shown in Section 6.5.4, setting the inputs and speaker embedding

to zero can measure the degree of disentanglement. From the models that

satisfy this criterion, we pick the one with the lowest training error.

6.5.2 Rhythm, Pitch and Timbre Conversions

If SpeechSplit can decompose the speech into different components, then

it should be able to separately perform style transfer on each aspect, which

is achieved by replacing the input to the respective encoder with that of the

target utterance. For example, if we want to convert pitch, we feed the target

pitch contour to the pitch encoder. To convert timbre, we feed the target

speaker id to the decoder.

We construct parallel speech pairs from the test set, where both the source

and target speakers read the same utterances. Please note that we use the

parallel pairs only for testing. During training, SpeechSplit is trained

69

without parallel speech data. For each parallel pair, we set one utterance as

the source and one as the target, and perform seven different types of conver-

sions, including three single-aspect conversions (rhythm-only, pitch-only and

timbre-only), three double-aspect conversions (rhythm+pitch, rhythm+timbre,

and pitch+timbre), and one all-aspect conversion.

So
ur
ce

Ti
m
br
e

Pi
tc
h

R
hy
th
m

Ta
rg
et

Please call Stella

Please call Stella Please call Stella

Please call Stella

Figure 6.4: Spectrogram (left) and pitch contours (right) of single-aspect
conversion results of the utterance “Please call Stella”. The left rectangle
marks highlight the formant structures of the phone “ea”. The arrows mark
the frequencies of the second, third and fourth formants. The right
rectangle marks highlight the pitch tones of the word “Stella”.

Conversion Visualization Figure 6.4 shows the single-aspect conversion

results on a speech pair uttering “Please call Stella”. The source speaker is a

70

Table 6.2: MOS of different conversion types/algorithms.

Rhythm Only Pitch Only Timbre Only
3.21 3.79 3.40

Rhythm+Pitch Rhythm+Timbre Pitch+Timbre
3.04 2.73 3.35

All Three AutoVC Source
2.79 3.24 4.65

slow female speaker, and the target speaker is a fast male speaker. As shown

in Figure 6.4, SpeechSplit can separately convert each aspect. First, in

terms of rhythm, note that the rhythm-only conversion is perfectly aligned

with the target utterance in time, whereas the timbre-only and pitch-only

conversions are perfectly aligned with the source utterance in time. Second,

in terms of pitch, notice that the timbre-only and rhythm-only conversions

have a falling tone on the word “Stella”, which is the same as the source

utterance, as highlighted by the dashed rectangle. The pitch-only conver-

sion has a rising tone on “Stella”, which is the same as the target utterance,

as highlighted by the solid rectangles. Third, in terms of timbre, as high-

lighted by the rectangles on the spectrograms, the formants of pitch-only and

rhythm-only conversions are as high as those of the source speech, and the

formants of timbre-only conversions are as high as those in the target.

Subjective Evaluation We also perform a subjective evaluation on Ama-

zon Mechanical Turk on whether the conversion of each aspect is successful.

For example, to evaluate whether the different conversions convert pitch, we

select 20 speech pairs that are perceptually distinct in pitch, and generate

all the seven types of conversions, plus the AutoVC conversion and the

source utterance as baselines. Each test is assigned to five subjects. In the

test, the subject is presented with two reference utterances, which are the

source and target utterances in a random order, and then with one of the

nine conversion results. The subject is asked to select which reference utter-

ance has a more similar pitch tone to the converted utterance. We compute

the pitch conversion rate as the percentage of answers that choose the target

utterance. We would expect the utterances with pitch converted to have a

high pitch conversion rate; otherwise, the pitch conversion rate should be

low. The rhythm conversion rate and timbre conversion rate are computed

in a similar way.

71

Rhythm Only Pitch Only Timbre Only

Rhythm+Pitch Rhythm+Timbre Pitch+Timbre

All Three Aspects AUTOVC Source Speech

Rhythm Conv. Rate
Pitch Conv. Rate
Timbre Conv. Rate

Figure 6.5: Subjective conversion rates of different conversion types. Each
bar group corresponds to a conversion type/algorithm. The three bars
within each group represent the rhythm, pitch and timbre conversion rates
respectively.

Figure 6.5 shows the conversion rates of different types of conversions. As

expected, the conversion rate is high when the corresponding aspect is con-

verted, and low otherwise. For example, the pitch-only conversion has a high

pitch conversion rate but low rhythm and timbre conversion rates; whereas

the rhythm+timbre conversion has a high rhythm and timbre conversion

rates but a low pitch conversion rate. It is worth noting that AutoVC has

a high timbre conversion rate, but low in the other, indicating that it only

converts timbre. In short, both the visualization results and our subjective

evaluation verify that each conversion can successfully convert the intended

72

aspects, without altering the other aspects, whereas AutoVC only converts

timbre.

We also evaluate the MOS (mean opinion score), ranging from one to

five, on the quality of the conversion, as shown in Table 6.2. There are a

few interesting observations. First, the MOS of pitch conversion is higher

than that of timbre and rhythm conversions, which implies that timbre and

rhythm conversions are the more challenging tasks. Second, as the number

of converted aspects increases, the MOS gets lower, because the conversion

task gets more challenging.

Objective Evaluation Due to the lack of explicit labels of the speech

components, it is difficult to fully evaluate the disentanglement results using

objective metrics. However, we can still objectively evaluate the pitch-only

conversion performance by comparing the pitch contour of the converted

speech and the target pitch contour. Following [172], we use three metrics

for the comparison: Gross Pitch Error (GPE) [178], Voice Decision Error

(VDE) [178], and F0 Frame Error (FFE) [179]. SpeechSplit achieves a

GPE of 1.04%, a VDE of 8.14%, and an FFE of 8.86%. As a reference, these

results are comparable with the results reported in [172], with a slightly

higher GPE and lower VDE and FFE. Note that these two sets of results

cannot be directly compared, because the datasets are different, but they

show the effectiveness of the SpeechSplit in disentangling pitch.

6.5.3 Mismatched Conversion Target

Since utterances with mismatched contents have different numbers of syl-

lables and lengths, we would like to find out how SpeechSplit converts

rhythm when the source and target utterances read different content. Fig-

ure 6.6 shows the rhythm-only conversion between a long utterance, ‘And we

will go meet her Wednesday’ (top-left panel), and a short utterance, “Please

call Stella” (top-right panel).

The short to long conversion is shown in the bottom-left panel. It can be

observed that the conversion tries to match the syllable structure of the long

utterance by stretching its limited words. In particular, “please” is stretched

to cover “and we will”, “call” to cover “go meet”, and “Stella” to cover “her

Wednesday”. On the contrary, the long to short conversion, as shown in the

73

And we will go meet her Wednesday Please call Stella

Long Speech Short Speech

And will go meet her WednesdayPlease call Stella

Short to Long Long to Short

Figure 6.6: Rhythm-only conversion when the source and target speech
have mismatched content.

bottom-right panel, tries to squeeze everything to the limited syllable slots

in the short utterance. Intriguingly still, the word mapping between the long

utterance and the short utterance is exactly the same as in the short to long

conversion. In both cases, the word boundaries between the converted speech

and the target speech are surprisingly aligned.

These observations suggest that SpeechSplit has an intricate “fill in

the blank” mechanism when combining the rhythm information with content

and pitch. The rhythm code provides a number of blanks, and the decoder

fills the blanks with the content information and pitch information provided

by the respective encoders. Furthermore, there seems to be an anchoring

mechanism that associates the content and pitch with the right blank, which

functions stably even if the blanks and the content are mismatched.

6.5.4 Removing Speech Components

To further understand the disentanglement mechanism of SpeechSplit, we

generate spectrograms with one of the four components removed. To re-

move rhythm, content or pitch, we respectively set the input to the rhythm

encoder, content encoder or pitch encoder to zero. To remove timbre, we

74

Remove Rhythm Remove Content

Remove Pitch Remove Timbre

Figure 6.7: Reconstructed speech when one speech component is removed.
The ground truth speech is in Figure 6.6 top-left panel.

set the speaker embedding to zero. Figure 6.7 shows the output spectro-

grams with one component removed. As can be observed, when the rhythm

is removed, the output becomes zero, and when the content is removed, the

output becomes a set of slots with no informative spectral shape. These find-

ings are consistent with our “fill in the blank” hypothesis in Section 6.5.4.

When rhythm code is removed, there is no slot to fill, and hence the output

spectrogram is blank. When content is removed, there is nothing to fill in

the blanks, resulting in a spectrogram with uninformative blanks. When the

pitch is removed, the pitch of the output becomes completely flat, as can be

seen from the flat harmonics. Finally, when timbre is removed, the formant

positions of the output spectrogram shift, which indicates that the timbre

has changed, possibly to an average speaker. These results further verify

that SpeechSplit can separately model different speech components.

6.5.5 Varying the Information Bottleneck

In this section, we would like to verify our theoretical explanation in Sec-

tion 6.4.4 by varying the information bottleneck and see if SpeechSplit

will still act as our theory predicts.

According to Figure 6.2, if the physical information bottleneck of the

75

Rhythm Only Pitch Only Timbre Only

Rhythm Only Pitch Only Timbre Only

R
hy

th
m

En
co

de
r

To
o

W
id

e
C

on
te

nt
 E

nc
od

er
To

o
W

id
e

Rhythm Conv. Rate
Pitch Conv. Rate
Timbre Conv. Rate

Figure 6.8: Subjective conversion rates of single-aspect conversions of
SpeechSplit when the information bottleneck of the rhythm encoder (top
panel) or the content encoder (bottom panel) is too wide. Each bar group
corresponds to a conversion type/algorithm. The three bars within each
group represent the rhythm, pitch and timbre conversion rates respectively.

rhythm encoder is too wide, then the rhythm encoder will pass all the infor-

mation through, and the content encoder, pitch encoder and speaker identity

will be useless. As a result, the rhythm-only conversion will convert all the

aspects. On the other hand, the pitch-only and timbre-only conversions will

alter nothing. Similarly, if the physical information bottleneck of the content

encoder is too wide, but random sampling is still present, then the content

encoder will pass almost all the information through, except for the rhythm

information, because the random resampling operations still contaminate

the rhythm information and SpeechSplit would still rely on the rhythm

encoder to recover the rhythm information. As a result, the rhythm-only

conversion would still convert rhythm, but the pitch-only and timbre-only

conversions would barely alter anything.

Figure 6.8 shows the subjective conversion rates of single-aspect conver-

sions when the physical bottleneck of rhythm encoder or the content encoder

is too wide. These results agree with our theoretical predictions. When the

76

rhythm encoder physical bottleneck is too wide, the rhythm-only conversion

converts all the aspects, while other conversions convert nothing. When the

content encoder physical bottleneck is too wide, the rhythm-only conver-

sion still converts rhythm. Notably, the timbre-only conversion still converts

timbre to some degree, possibly due to the random resampling operation

of the content encoder. These results verify our theoretical explanation of

SpeechSplit.

6.5.6 Does Random Resampling Remove All Rhythm?

In Figure 6.2 and Section 6.4.4, we assume that the random resampling only

contaminates rhythm information, but does not completely remove it. To

verify this assumption, we train a single autoencoder for speech, where the

encoder and decoder are the SpeechSplit content encoder and decoder re-

spectively. If randomly resampling only removes a portion of the rhythm

information, the output reconstruction can still roughly temporally aligned

with the ground truth speech. Otherwise, the reconstruction will be com-

pletely misaligned.

And we will go meet her Wednesday And we will go meet her Wednesday

Figure 6.9: Reconstructed speech produced by AutoVC with a random
resampling module. The ground truth speech for the left column is in
Figure 6.6. The word boundaries and labels are copied from that of the
ground truth.

Figure 6.9 shows two reconstruction results with different randomly drawn

resampling factors, whose ground truth utterances are both the top-left panel

of Figure 6.6. To assist our judgment of the alignment, we directly copy the

word boundaries and labels from the ground truth. As can be observed, the

two reconstructions are very alike, even though their random resampling fac-

tors are different. Furthermore, both reconstructions can recover the ground

77

So
ur
ce

SP
EE
C
H
FL
O
W

En
er
gy

U
V

Ta
rg
et

And we will go meet her Wednesday

Please call Stella go meet her Wednesday

Please call Stella

An
d we

will

Figure 6.10: Rhythm-only conversion using the rhythm feature in
SpeechSplit (second row) compared with that using candidate rhythm
features, including short-time energy (third row) and UV label (fourth row).

truth speech decently, only with some minor blurring, which verifies that ran-

dom resampling performs an incomplete disentanglement of rhythm. In other

words, SpeechSplit shows that we can build a complete disentanglement

mechanism even if we only have a partial disentanglement technique.

6.5.7 Do Rhythm Labels Exist?

In Section 5.1, we have discussed that one motivation for designing Speech-

Split is that rhythm labels are not directly available. If they were, the

rhythm aspect could be disentangled in much simpler ways. In this section,

78

we would like to explore if there exist any rhythm labels.

We have identified two promising candidate rhythm labels, short-time en-

ergy and unvoiced-voiced (UV) label. The short-time energy is computed

by taking the moving average of the squared waveform. The UV labels are

derived from pitch contour, which equals one if the corresponding frame is

voiced, and zero otherwise. Both candidates are informative of the sylla-

ble boundaries, and neither contains other information such as content and

pitch. To test if these candidates are equally effective as the SpeechSplit

rhythm encoder, we train two variants of SpeechSplit, one replacing the

rhythm code with the short-time energy, and the other with the UV label. We

then perform the rhythm-only conversion using SpeechSplit and the two

variants, by replacing the rhythm code/label with that of the target speech.

If the candidates are effective, the corresponding rhythm-only conversions

should be successful.

Figure 6.10 shows the rhythm-only conversion results on two utterances,

“Please call Stella” and “And we will go meet her Wednesday”, produced

by these three algorithms. At first glance, all the conversion results are

temporally aligned with the target speech, which seems to suggest that the

rhythm aspect has been successfully converted. However, a close inspection

into the formant structure of the candidate conversion results reveals that

the content within each syllable is completely incorrect.

With the “fill in the blank” perspective discussed in Section 6.5.4, we can

better understand why the candidate rhythm labels fail. Both candidates

can accurately provide the temporal information of the syllable boundaries,

and thus the blanks are correctly located in time. However, the candidates

fail to provide the anchor information of what to fill in each blank, and that

is why the conversion algorithms put the wrong content in the blanks. In

summary, obtaining a rhythm label is a nontrivial task, because the rhythm

label should contain some anchor information to associate each syllable with

the correct content, while excluding excessive content to ensure content dis-

entanglement. SpeechSplit, with a triple information bottleneck design,

manages to obtain such an effective rhythm code, which contributes to a

successful rhythm conversion.

79

6.5.8 Additional Conversion Spectrograms

In Figure 6.11, we augment the spectrogram visualization results in Sec-

tion 6.5.2 (Figure 6.4) with two additional utterances, “One showing mainly

red and yellow” and “Six spoons of fresh snow peas”, and with all the con-

version types (not just the single-aspect conversions) displayed. Consistent

with the results shown in Section 6.5.2, these additional results show that

SpeechSplit can successfully convert the intended aspects to match those of

the target speech, while keeping the remaining aspects matching the source

speech. Remarkably, when all three aspects are converted, the converted

speech becomes very similar to the target speech.

6.6 Summary

We have demonstrated that SpeechSplit has powerful disentanglement ca-

pabilities by having multiple intricately designed information bottlenecks.

There are three takeaways. First, we have shown that the physical dimen-

sion of the hidden representations can effectively limit the information flow.

Second, we have verified that when information bottleneck is binding, neu-

ral autoencoder will only pass the information that other channels cannot

provide. Third, even if we only have a partial disentanglement algorithm,

e.g. the random resampling, we can still design a complete disentanglement

algorithm by having multiple channels with different information bottleneck.

These intriguing observations inspire a generic approach to disentanglement.

80

So
ur

ce
R

hy
th

m
Pi

tc
h

Ti
m

br
e

R
+P

R
+T

P+
T

A
ll

Th
re

e
Ta

rg
et

One showing mainly red and yellow

One sho
wing

main
ly

red an
d

yel
low

Six spoons of fresh snow peas

Six of snow peas

fre
sh

spo
on

s

Figure 6.11: Spectorgrams of aspect-specific conversion results on two
utterances, “One showing mainly red and yellow” (left) and “Six spoons of
fresh snow peas” (right). R+P denotes rhythm+pitch conversion; R+T
denotes rhythm+timbre conversion; P+T denotes pitch+timbre conversion.

81

CHAPTER 7

DISCUSSION

We have introduced four research attempts that use generative models for

speech editing. Now we can reconsider the problem raised in Chapter 1, that

is how can generative models help in naturalness for speech editing.

7.1 Regularized Speech Enhancement

The first way is to regularize the speech editing process by defining the

sample space of natural speech. In particular, BaWN and DeepBeam es-

sentially regularize the inference on clean speech using generative models of

speech. In other words, the generative models make the enhanced speech

natural by forcing it to fall in the sample space of natural speech. BaWN

and DeepBeam share two major benefits of using generative models. First,

they both benefit from using the generative models by focusing on modeling

clean speech distribution. As a speech prior used in a Bayesian framework for

BaWN, the generative model greatly improves the ability of the enhancement

model to generalize to unseen types of noise. Similarly, as a clean speech pre-

dictor for DeepBeam, the generative model alleviates the beamformer from

the burden of characterizing sensor positions and interference, which are dif-

ficult to determine for ad-hoc microphone arrays. Second, they both operate

directly on waveform without needing to revert time-frequency representa-

tions to waveform, which is prone to phase distortion artifacts. However,

the generative models used in BaWN and DeepBeam differ in terms of the

distributions being modeled, the function of the model in the framework,

and the form of regularization. The generative model used in BaWN only

models clean speech waveform and acts as the clean speech prior model in

a Bayesian framework. However, the generative model used in DeepBeam

models the conditional distribution of clean speech waveform given the noisy

82

speech waveform, which not only defines the clean speech sample space but

also enhances speech by removing noise from its input. The generative model

used in BaWN regularizes the enhancement model output by multiplying

the prior distribution with the likelihood function. However, the generative

model used in DeepBeam predicts clean speech, which is set as the target

of the beamformer by minimizing the mean-squared-error between the clean

speech target and the beamformer output.

7.2 Disentanglement for Speech Editing

Unlike the first way, which improves the naturalness of edited speech as dis-

cussed in Section 7.1, the second way is to directly modify the components

of hierarchical generative models. When the model only learns to produce

natural speech by modeling different components of speech, the output will

always be natural speech regardless of the inputs. In particular, AutoVC

learns to generate natural speech from timbre and content, and Speech-

Split learns to generate natural speech from timbre, content, rhythm, and

pitch. AutoVC can only convert timbre by modifying the speaker identity

label, but SpeechSplit can convert each of different combinations of tim-

bre, pitch, and rhythm. The basic building block of AutoVC and Speech-

Split is autoencoder, where the latter adds two additional autoencoders to

disentangle rhythm and pitch respectively. As an extension of AutoVC,

SpeechSplit is based on the same principle of learning disentangled repre-

sentations of speech as AutoVC. The key to achieve speech disentanglement

is constraining the information flow using a carefully designed bottleneck that

only passes the desired component of speech. Both AutoVC and Speech-

Split achieved unsupervised speech disentanglement by training only on the

self-reconstruction loss. Although SpeechSplit is able to convert rhythm,

it requires the target utterance to have the same or very similar content as

the source utterance, which is not very flexible in practice. This means that

the content information and rhythm information are still correlated to some

degree. A complete disentanglement of rhythm still remains challenging and

needs to be explored in future research.

83

7.3 WaveNet for Speech Editing

As one of the major breakthroughs in audio waveform modeling in recent

years, WaveNet is used in all four research works for the generation of speech.

It enables BaWN and DeepBeam to directly operate on speech waveform

without needing to convert between waveform and time-frequency represen-

tations of speech, which may suffer from phase distortion artifacts. In BaWN,

it is used as the basic building block for both the prior model and the like-

lihood model. The prior model is a causal WaveNet that autoregressively

predicts the current sample based on the previously predicted samples. The

likelihood model is a non-causal WaveNet that predicts the current sample

based on the previous, current, and future input samples. The final output

sample distribution is the product of the prior distribution and the likelihood

function. Due to the autoregressive nature of the prior model, the current

final output sample depends on the previously predicted final output sam-

ples during both training and testing. During training, this time dependency

significantly slows down the training speed, which needs to be addressed in

future research. The non-causal WaveNet is also used in DeepBeam as the

enhancement model that predicts the clean speech samples from the noisy

speech input samples. For the non-causal WaveNet, the inference on clean

speech can be done in a feed-forward fashion because the output sample of

the non-causal WaveNet does not depend on the previous outputs. Instead

of being the fundamental building block in BaWN and DeepBeam, the

WaveNet is used as vocoder in AutoVC and SpeechSplit. The models

of these two works directly operate on spectrograms. In order to be able to

listen to the results, the spectrograms need to be converted to waveforms,

which is a task that WaveNet can accomplish. The same WaveNet vocoder is

used in both AutoVC and SpeechSplit, where the vocoder is pre-trained

using pairs of spectrogram and waveform from 109 speakers by condition-

ing the WaveNet on the spectrograms as described in Section 2.3.2. During

inference, the WaveNet vocoder autoregressively predicts the current speech

sample based on the current frame of the conditioned spectrogram and the

previously predicted speech samples. The WaveNet vocoder’s autoregres-

sive generation of speech is slow, but we found it generalizes well to unseen

speakers and produces natural-sounding speech.

84

7.4 Methods of Speech Disentanglement

In the second way of using generative models for speech editing, we have seen

different methods of speech disentanglement using different ways to construct

information-constraining bottlenecks.

We have introduced two methods of speech disentanglement using autoen-

coders. If there is a label for the information to be disentangled, we can

directly supply the label to the decoder and tune the bottleneck dimensions

to disentangle that information. In AutoVC, the speaker identity label is

used as the label of timbre because there is a one-to-one mapping between

speaker identity and timbre. Since the decoder has access to the timbre in-

formation, the timbre information is disentangled if the bottleneck dimension

is small enough. However, if there is no label for the information to be disen-

tangled, we can corrupt that information and supply the full information to

the decoder. In SpeechSplit, since there is no label for the rhythm informa-

tion, we simultaneously supply the input speech with corrupted rhythm and

the original input speech to the decoder through two encoders respectively.

In this way, only the encoder with original input speech can provide the

rhythm information, and the other information can be provided through the

other encoder. Although the corrupted rhythm information still reaches the

decoder, the decoder does not use it because it cannot be used to reconstruct

the original input speech. In this way, rhythm information is disentangled.

Depending on the two methods of speech disentanglement, there are two

ways of constructing the information-constraining bottleneck. In AutoVC,

the information flow is constrained by the dimensions of the encoder’s output

layer. The dimensions of the encoder’s output layer in an autoencoder are

typically small in order to learn some compact representation of the input. In

AutoVC, the output of the encoder is downsampled in both the frequency

dimension and time dimension in order to squeeze out the timbre information

and only keep the content information. Besides dimension constraints, in

SpeechSplit, the information flow is constrained by corruption when it

cannot be constrained using dimension constraints. In particular, the rhythm

information is corrupted by randomly compressing or stretching the input

speech. Depending on the type of information to be disentangled, other

methods such as dropout and quantization can also be used to construct

information-constraining bottlenecks.

85

CHAPTER 8

CONCLUSION

This thesis introduces two ways of using generative models for speech edit-

ing tasks, where speech naturalness is very important. The first way is to

regularize the speech editing process by defining the sample space of natu-

ral speech, and the second way is by permitting the separable modification

of components of hierarchical speech generative models in order to modify

specified components of natural speech. For the first method, Chapter 3

and Chapter 4 are successful examples of using the WaveNet for regularizing

the speech enhancement process. Specifically, in Chapter 3, a beamformer is

guided by the output of a WaveNet-based speech model to perform speech

beamforming for a multi-channel ad-hoc microphone array. In Chapter 4, a

prior model is trained for natural speech using WaveNet and incorporated

in a Bayesian framework to regularize a single-channel speech enhancement

model. In these applications, the WaveNet-based speech model defines the

natural speech sample space and thus can project any unnatural output of

the enhancement model into the natural speech sample space to make it nat-

ural. In addition, for the second method, in Chapter 5 and Chapter 6, we are

able to convert different aspects of the speech by disentangling these aspects

using autoencoders with information constraining bottlenecks. Specifically,

in Chapter 5, we can modify the speaker identity of the speech by disentan-

gling content and timbre in an unsupervised manner. In Chapter 6, we can

convert not only timbre but also pitch and rhythm separately by disentan-

gling content, timbre, pitch, and rhythm without using any text labels. In

these applications, since the model only learns to produce natural speech by

modeling different components of speech, the output will always be natural

speech regardless of the inputs.

86

REFERENCES

[1] Y. Zhang, D. Florêncio, and M. Hasegawa-Johnson, “Glottal model
based speech beamforming for ad-hoc microphone arrays,” Interspeech,
pp. 2675–2679, 2017.

[2] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[3] D. A. Reynolds, “Gaussian mixture models,” Encyclopedia of Biomet-
rics, vol. 741, 2009.

[4] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[5] T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and
Practice. Pearson Education India, 2006.

[6] S. Liang and R. Srikant, “Why deep neural networks for function ap-
proximation?” in International Conference on Learning Representa-
tions, 2017.

[7] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[8] S. Darlington, “Linear least-squares smoothing and prediction, with
applications,” Bell System Technical Journal, vol. 37, no. 5, pp. 1221–
1294, 1958.

[9] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[10] O. L. Frost, “An algorithm for linearly constrained adaptive array pro-
cessing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935, 1972.

[11] E. A. Habets, J. Benesty, S. Gannot, and I. Cohen, “The MVDR beam-
former for speech enhancement,” in Speech Processing in Modern Com-
munication. Springer, 2010, pp. 225–254.

87

[12] U. H. Yapanel and J. H. Hansen, “A new perceptually motivated
MVDR-based acoustic front-end (PMVDR) for robust automatic
speech recognition,” Speech Communication, vol. 50, no. 2, pp. 142–
152, 2008.

[13] D. E. Ba, D. Florêncio, and C. Zhang, “Enhanced MVDR beamform-
ing for arrays of directional microphones,” in 2007 IEEE International
Conference on Multimedia and Expo. IEEE, 2007, pp. 1307–1310.

[14] M. Er and A. Cantoni, “Derivative constraints for broad-band ele-
ment space antenna array processors,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 31, no. 6, pp. 1378–1393, 1983.

[15] L. Griffiths and C. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Transactions on Antennas and
Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[16] S. Affes and Y. Grenier, “A source subspace tracking array of micro-
phones for double talk situations,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), vol. 2. IEEE,
1996, pp. 909–912.

[17] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech,” IEEE
Transactions on Signal Processing, vol. 49, no. 8, pp. 1614–1626, 2001.

[18] I. Himawan, I. McCowan, and S. Sridharan, “Clustered blind beam-
forming from ad-hoc microphone arrays,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 19, no. 4, pp. 661–676, 2011.

[19] J. Bitzer, K. U. Simmer, and K.-D. Kammeyer, “Theoretical noise
reduction limits of the generalized sidelobe canceller (GSC) for speech
enhancement,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), vol. 5. IEEE, 1999, pp. 2965–2968.

[20] B. W. Gillespie, H. S. Malvar, and D. A. Florêncio, “Speech derever-
beration via maximum-kurtosis subband adaptive filtering,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 6, 2001, pp. 3701–3704.

[21] B. Yegnanarayana and P. S. Murthy, “Enhancement of reverberant
speech using LP residual signal,” IEEE Transactions on Speech and
Audio Processing, vol. 8, no. 3, pp. 267–281, 2000.

[22] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source sepa-
ration exploiting higher-order frequency dependencies,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 15, no. 1, pp.
70–79, 2007.

88

[23] K. Kumatani, J. McDonough, B. Rauch, D. Klakow, P. N. Garner, and
W. Li, “Beamforming with a maximum negentropy criterion,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17, no. 5,
pp. 994–1008, 2009.

[24] T. Sreenivas and P. Kirnapure, “Codebook constrained Wiener filtering
for speech enhancement,” IEEE Transactions on Speech and Audio
Processing, vol. 4, no. 5, pp. 383–389, 1996.

[25] M. El-Fattah, M. Dessouky, A. Abbas, S. Diab, E.-S. El-Rabaie, W. Al-
Nuaimy, S. Alshebeili, and F. Abd El-Samie, “Speech enhancement
with an adaptive Wiener filter,” International Journal of Speech Tech-
nology, vol. 17, pp. 53–64, 03 2014.

[26] B. Xia and C. Bao, “Wiener filtering based speech enhancement with
weighted denoising auto-encoder and noise classification,” Speech Com-
munication, vol. 60, pp. 13–29, 2014.

[27] R. Martin, “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.

[28] S. Boll, “Suppression of acoustic noise in speech using spectral subtrac-
tion,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 27, no. 2, pp. 113–120, 1979.

[29] N. Upadhyay and A. Karmakar, “The spectral subtractive-type algo-
rithms for enhancing speech in noisy environments,” in 2012 1st In-
ternational Conference on Recent Advances in Information Technology
(RAIT). IEEE, 2012, pp. 841–847.

[30] T. Takiguchi and Y. Ariki, “PCA-based speech enhancement for dis-
torted speech recognition,” Journal of Multimedia, vol. 2, no. 5, 2007.

[31] K. W. Wilson, B. Raj, P. Smaragdis, and A. Divakaran, “Speech de-
noising using nonnegative matrix factorization with priors,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2008, pp. 4029–4032.

[32] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and un-
supervised speech enhancement using nonnegative matrix factoriza-
tion,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 21, no. 10, pp. 2140–2151, 2013.

[33] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal Pro-
cessing Letters, vol. 21, no. 1, pp. 65–68, 2014.

89

[34] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach
to speech enhancement based on deep neural networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 1,
pp. 7–19, 2014.

[35] K. Han, Y. Wang, D. Wang, W. S. Woods, I. Merks, and T. Zhang,
“Learning spectral mapping for speech dereverberation and denoising,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 23, no. 6, pp. 982–992, 2015.

[36] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning for
speech denoising,” in Interspeech, 2014, pp. 2685–2689.

[37] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder,” in Interspeech, 2013, pp. 436–440.

[38] A. Kumar and D. Florêncio, “Speech enhancement in multiple-noise
conditions using deep neural networks,” in Interspeech, 2016, pp. 3738–
3742.

[39] Y. Wang, A. Narayanan, and D. Wang, “On training targets for super-
vised speech separation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 22, no. 12, pp. 1849–1858, 2014.

[40] K. Han and D. Wang, “A classification based approach to speech seg-
regation,” The Journal of the Acoustical Society of America, vol. 132,
no. 5, pp. 3475–3483, 2012.

[41] A. Narayanan and D. Wang, “Ideal ratio mask estimation using deep
neural networks for robust speech recognition,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 7092–7096.

[42] Y. Zhao, D. Wang, I. Merks, and T. Zhang, “DNN-based enhancement
of noisy and reverberant speech,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
6525–6529.

[43] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking
for monaural speech separation,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 3, pp. 483–492, 2015.

[44] Y. Ephraim, “A Bayesian estimation approach for speech enhancement
using hidden Markov models,” IEEE Transactions on Signal Process-
ing, vol. 40, no. 4, pp. 725–735, 1992.

90

[45] H. Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan, “HMM-based
strategies for enhancement of speech signals embedded in nonstationary
noise,” IEEE Transactions on Speech and Audio Processing, vol. 6,
no. 5, pp. 445–455, 1998.

[46] D. Y. Zhao and W. B. Kleijn, “HMM-based gain modeling for en-
hancement of speech in noise,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 15, no. 3, pp. 882–892, 2007.

[47] A. Kundu, S. Chatterjee, A. S. Murthy, and T. Sreenivas, “GMM
based Bayesian approach to speech enhancement in signal/transform
domain,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2008, pp. 4893–4896.

[48] R. Martin and C. Breithaupt, “Speech enhancement in the DFT do-
main using Laplacian speech priors,” in International Workshop on
Acoustic Echo and Noise Control (IWAENC), vol. 3, 2003, pp. 87–90.

[49] T. Lotter and P. Vary, “Speech enhancement by MAP spectral am-
plitude estimation using a super-Gaussian speech model,” EURASIP
Journal on Applied Signal Processing, vol. 2005, pp. 1110–1126, 2005.

[50] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Determined blind source separation unifying independent vector anal-
ysis and nonnegative matrix factorization,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 24, no. 9, pp. 1626–1641,
2016.

[51] P. Mowlaee and J. Kulmer, “Harmonic phase estimation in single-
channel speech enhancement using phase decomposition and snr infor-
mation,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 23, no. 9, pp. 1521–1532, 2015.

[52] J. Kulmer and P. Mowlaee, “Phase estimation in single channel speech
enhancement using phase decomposition,” IEEE Signal Processing Let-
ters, vol. 22, no. 5, pp. 598–602, 2014.

[53] T. Gerkmann, M. Krawczyk, and R. Rehr, “Phase estimation in
speech enhancement–Unimportant, important, or impossible?” in 2012
IEEE 27th Convention of Electrical and Electronics Engineers in Israel.
IEEE, 2012, pp. 1–5.

[54] A. Kain and M. W. Macon, “Design and evaluation of a voice conver-
sion algorithm based on spectral envelope mapping and residual pre-
diction,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 2. IEEE, 2001, pp. 813–816.

91

[55] A. R. Toth and A. W. Black, “Using articulatory position data in voice
transformation,” in SSW, 2007, pp. 182–187.

[56] T. Toda, A. W. Black, and K. Tokuda, “Mapping from articulatory
movements to vocal tract spectrum with gaussian mixture model for
articulatory speech synthesis,” in Fifth ISCA Workshop on Speech Syn-
thesis, 2004.

[57] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,”
in Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA). IEEE, 2016, pp. 1–6.

[58] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “StarGAN-VC:
Non-parallel many-to-many voice conversion using star generative ad-
versarial networks,” in IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2018, pp. 266–273.

[59] A. Mouchtaris, J. Van der Spiegel, and P. Mueller, “Nonparallel
training for voice conversion based on a parameter adaptation ap-
proach,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 14, no. 3, pp. 952–963, 2006.

[60] Y. Saito, Y. Ijima, K. Nishida, and S. Takamichi, “Non-parallel voice
conversion using variational autoencoders conditioned by phonetic
posteriorgrams and d-vectors,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5274–
5278.

[61] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng, “Phonetic posteri-
orgrams for many-to-one voice conversion without parallel data train-
ing,” in 2016 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, 2016, pp. 1–6.

[62] D. Saito, K. Yamamoto, N. Minematsu, and K. Hirose, “One-to-many
voice conversion based on tensor representation of speaker space,” in
Twelfth Annual Conference of the International Speech Communication
Association, 2011.

[63] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “ACVAE-VC: Non-
parallel voice conversion with auxiliary classifier variational autoen-
coder,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, no. 9, pp. 1432–1443, 2019.

[64] E. Zetterholm, “Same speaker–different voices. a study of one imper-
sonator and some of his different imitations,” in Proceedings of the 11th
Australian International Conference on Speech Science & Technology,
2006, pp. 70–75.

92

[65] M. Barlow and M. Wagner, “Prosody as a basis for determining speaker
characteristics,” in Proceedings of the Australian International Confer-
ence on Speech Science and Technology, 1988, pp. 80–85.

[66] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicen-
cio, T. Kinnunen, and Z. Ling, “The voice conversion challenge 2018:
Promoting development of parallel and nonparallel methods,” in Proc.
Odyssey 2018 The Speaker and Language Recognition Workshop, 2018,
pp. 195–202.

[67] T. Toda, L.-H. Chen, D. Saito, F. Villavicencio, M. Wester, Z. Wu, and
J. Yamagishi, “The voice conversion challenge 2016,” in Interspeech,
2016, pp. 1632–1636.

[68] Y. Stylianou, “Voice transformation: A survey,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2009, pp. 3585–3588.

[69] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous probabilistic
transform for voice conversion,” IEEE Transactions on Speech and Au-
dio Processing, vol. 6, no. 2, pp. 131–142, 1998.

[70] D. T. Chappell and J. H. Hansen, “Speaker-specific pitch contour mod-
eling and modification,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol. 2. IEEE, 1998, pp.
885–888.

[71] B. Gillett and S. King, “Transforming F0 contours,” in Interspeech,
2003.

[72] H. Ye and S. Young, “High quality voice morphing,” in IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 1. IEEE, 2004, pp. I–9.

[73] N. Q. Hy, S. W. Lee, X. Tian, M. Dong, and C. E. Siong, “High quality
voice conversion using prosodic and high-resolution spectral features,”
Multimedia Tools and Applications, vol. 75, pp. 5265–5285, 2015.

[74] Z. Wu, T. Kinnunen, C. E. Siong, and H. Li, “Text-independent F0
transformation with non-parallel data for voice conversion,” in Inter-
speech, 2010.

[75] G. K. Anumanchipalli, L. C. Oliveira, and A. W. Black, “A style cap-
turing approach to F0 transformation in voice conversion,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2013, pp. 6915–6919.

93

[76] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Simultaneous modeling of spectrum, pitch and duration in HMM-
based speech synthesis,” in Sixth European Conference on Speech Com-
munication and Technology, 1999.

[77] B. Şişman, H. Li, and K. C. Tan, “Transformation of prosody in voice
conversion,” in Asia-Pacific Signal and Information Processing Asso-
ciation Annual Summit and Conference (APSIPA). IEEE, 2017, pp.
1537–1546.

[78] R. Srikanth, B. Bajibabu, and K. Prahallad, “Duration modelling in
voice conversion using artificial neural networks,” in 2012 19th Inter-
national Conference on Systems, Signals and Image Processing (IWS-
SIP). IEEE, 2012, pp. 556–559.

[79] C.-H. Wu, C.-C. Hsia, T.-H. Liu, and J.-F. Wang, “Voice conver-
sion using duration-embedded bi-hmms for expressive speech synthe-
sis,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, no. 4, pp. 1109–1116, 2006.

[80] K. Yutani, Y. Uto, Y. Nankaku, T. Toda, and K. Tokuda, “Simulta-
neous conversion of duration and spectrum based on statistical models
including time-sequence matching,” in Ninth Annual Conference of the
International Speech Communication Association, 2008.

[81] S. K. Gaikwad, B. W. Gawali, and P. Yannawar, “A review on speech
recognition technique,” International Journal of Computer Applica-
tions, vol. 10, no. 3, pp. 16–24, 2010.

[82] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vec-
tor machines using GMM supervectors for speaker verification,” IEEE
Signal Processing Letters, vol. 13, no. 5, pp. 308–311, 2006.

[83] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[84] M. Stewart, “Comprehensive introduction to autoencoders,”
Apr 2019. [Online]. Available: https://towardsdatascience.com/
generating-images-with-autoencoders-77fd3a8dd368

[85] X. Feng, Y. Zhang, and J. Glass, “Speech feature denoising and dere-
verberation via deep autoencoders for noisy reverberant speech recog-
nition,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2014, pp. 1759–1763.

[86] T. Ishii, H. Komiyama, T. Shinozaki, Y. Horiuchi, and S. Kuroiwa,
“Reverberant speech recognition based on denoising autoencoder,” in
Interspeech, 2013, pp. 3512–3516.

94

[87] M. Blaauw and J. Bonada, “Modeling and transforming speech using
variational autoencoders,” in Interspeech, 2016, pp. 1770–1774.

[88] K. Akuzawa, Y. Iwasawa, and Y. Matsuo, “Expressive speech synthesis
via modeling expressions with variational autoencoder,” in Interspeech,
2018, pp. 3067–3071.

[89] W.-N. Hsu, Y. Zhang, and J. Glass, “Learning latent representations
for speech generation and transformation,” in Interspeech, 2017, pp.
1273–1277.

[90] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and cap-
tions,” in Advances in Neural Information Processing Systems, 2016,
pp. 2352–2360.

[91] W.-C. Huang, Y.-C. Wu, H.-T. Hwang, P. L. Tobing, T. Hayashi,
K. Kobayashi, T. Toda, Y. Tsao, and H.-M. Wang, “Refined wavenet
vocoder for variational autoencoder based voice conversion,” in 27th
European Signal Processing Conference (EUSIPCO). IEEE, 2019, pp.
1–5.

[92] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural TTS synthesis
by conditioning wavenet on mel spectrogram predictions,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[93] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[94] J. Feng, X. Feng, J. Chen, X. Cao, X. Zhang, L. Jiao, and T. Yu,
“Generative adversarial networks based on collaborative learning and
attention mechanism for hyperspectral image classification,” Remote
Sensing, vol. 12, no. 7, p. 1149, 2020.

[95] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of Wasserstein GANs,” in Advances in
Neural Information Processing Systems, 2017, pp. 5767–5777.

[96] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International Conference on Machine Learning,
vol. 70, 2017, pp. 214–223.

95

[97] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2794–2802.

[98] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Bound-
ary equilibrium generative adversarial networks,” arXiv preprint
arXiv:1703.10717, 2017.

[99] A. Radford, L. Metz, and S. Chintala, “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[100] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” in International Conference
on Learning Representations, 2018.

[101] T. Karras, S. Laine, and T. Aila, “A style-based generator architec-
ture for generative adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4401–4410.

[102] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[103] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N.
Metaxas, “StackGAN: Text to photo-realistic image synthesis with
stacked generative adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 5907–5915.

[104] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech enhancement
generative adversarial network,” Interspeech, pp. 3642–3646, 2017.

[105] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthe-
sis,” in International Conference on Learning Representations, 2018.

[106] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invert-
ible 1x1 convolutions,” in Advances in Neural Information Processing
Systems, 2018, pp. 10 215–10 224.

[107] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 3617–3621.

[108] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing
Techniques and Applications. Springer Science & Business Media,
2013.

96

[109] S. Markovich-Golan, A. Bertrand, M. Moonen, and S. Gannot, “Opti-
mal distributed minimum-variance beamforming approaches for speech
enhancement in wireless acoustic sensor networks,” Signal Processing,
vol. 107, pp. 4–20, 2015.

[110] J. Chen, Y. Wang, S. E. Yoho, D. Wang, and E. W. Healy, “Large-scale
training to increase speech intelligibility for hearing-impaired listeners
in novel noises,” The Journal of the Acoustical Society of America, vol.
139, no. 5, pp. 2604–2612, 2016.

[111] J. Chen and D. Wang, “Long short-term memory for speaker gener-
alization in supervised speech separation,” in Interspeech, 2016, pp.
3314–3318.

[112] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Deep
learning for monaural speech separation,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 1562–1566.

[113] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, “Discrim-
inatively trained recurrent neural networks for single-channel speech
separation,” in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2014, pp. 577–581.

[114] K. Qian, Y. Zhang, S. Chang, X. Yang, D. Florêncio, and M. Hasegawa-
Johnson, “Speech enhancement using Bayesian Wavenet,” Interspeech,
pp. 2013–2017, 2017.

[115] D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denoising,”
in IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 5069–5073.

[116] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series. MIT Press, Cambridge, MA, 1949.

[117] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” The Journal of the Acoustical Society of
America, vol. 65, no. 4, pp. 943–950, 1979.

[118] E. A. Lehmann and A. M. Johansson, “Diffuse reverberation model
for efficient image-source simulation of room impulse responses,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1429–1439, 2010.

[119] J. Yamagishi, “English multi-speaker corpus for CSTR voice cloning
toolkit,” http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/
page58.html.

97

[120] “Freesound,” https://freesound.org/, 2015.

[121] G. Hu, “100 nonspeech sounds,” http://web.cse.ohio-state.edu/pnl/
corpus/HuNonspeech/HuCorpus.html, 2015.

[122] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “DARPA TIMIT acoustic-phonetic continuous speech corpus
CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon Technical Report
N, vol. 93, 1993.

[123] “FreeSFX,” http://www.freesfx.co.uk/, 2017.

[124] F. Ribeiro, D. Florêncio, C. Zhang, and M. Seltzer, “CrowdMOS:
An approach for crowdsourcing mean opinion score studies,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 2416–2419.

[125] Z. Ou and Y. Zhang, “Probabilistic acoustic tube: A probabilistic gen-
erative model of speech for speech analysis/synthesis,” in International
Conference on Artificial Intelligence and Statistics (AISTATS), 2012,
pp. 841–849.

[126] ITU, “Pulse code modulation (PCM) of voice frequencies,” in Recom-
mendation, CCITT, 1988.

[127] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with pixelCNN
decoders,” in Advances in Neural Information Processing Systems,
2016, pp. 4790–4798.

[128] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[129] T. L. Paine, P. Khorrami, S. Chang, Y. Zhang, P. Ramachandran,
M. A. Hasegawa-Johnson, and T. S. Huang, “Fast wavenet generation
algorithm,” arXiv preprint arXiv:1611.09482, 2016.

[130] S. King and V. Karaiskos, “The Blizzard Challenge 2013,” Proc. Bliz-
zard Workshop, 2013.

[131] C. Févotte, R. Gribonval, and E. Vincent, “BSS EVAL toolbox user
guide–revision 2.0,” 2005.

[132] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Stat,
vol. 1050, p. 10, 2014.

98

[133] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Advances in Neu-
ral Information Processing Systems, 2014, pp. 3581–3589.

[134] Y. C. Subakan and P. Smaragdis, “Generative adversarial source sep-
aration,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 26–30.

[135] Z.-C. Fan, Y.-L. Lai, and J.-S. R. Jang, “SVSGAN: Singing voice sepa-
ration via generative adversarial network,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 726–730.

[136] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-
dependent speaker verification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
5115–5119.

[137] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-to-
end loss for speaker verification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp.
4879–4883.

[138] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang,
“Voice conversion from unaligned corpora using variational autoencod-
ing Wasserstein generative adversarial networks,” in Interspeech, 2017,
pp. 3364–3368.

[139] W.-C. Huang, H.-T. Hwang, Y.-H. Peng, Y. Tsao, and H.-M. Wang,
“Voice conversion based on cross-domain features using variational auto
encoders,” in 11th International Symposium on Chinese Spoken Lan-
guage Processing (ISCSLP). IEEE, 2018, pp. 51–55.

[140] J.-C. Chou, C.-C. Yeh, H.-Y. Lee, and L.-S. Lee, “Multi-target voice
conversion without parallel data by adversarially learning disentangled
audio representations,” Interspeech, pp. 501–505, 2018.

[141] T. Kaneko and H. Kameoka, “Parallel-data-free voice conver-
sion using cycle-consistent adversarial networks,” arXiv preprint
arXiv:1711.11293, 2017.

[142] F. Fang, J. Yamagishi, I. Echizen, and J. Lorenzo-Trueba, “High-
quality nonparallel voice conversion based on cycle-consistent adversar-
ial network,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 5279–5283.

99

[143] F.-L. Xie, F. K. Soong, and H. Li, “A KL divergence and DNN-based
approach to voice conversion without parallel training sentences,” in
Interspeech, 2016, pp. 287–291.

[144] Y. Gao, R. Singh, and B. Raj, “Voice impersonation using generative
adversarial networks,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 2506–2510.

[145] C. Atalla, B. Tam, A. Song, and G. Cottrell, “Look ma, no GANs!
image transformation with modifAE,” 2019. [Online]. Available:
https://openreview.net/forum?id=B1ethsR9Ym

[146] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
R. Pang, I. Lopez Moreno, Y. Wu et al., “Transfer learning from
speaker verification to multispeaker text-to-speech synthesis,” Ad-
vances in Neural Information Processing Systems, vol. 31, pp. 4480–
4490, 2018.

[147] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale
speaker identification dataset,” in Interspeech, 2017.

[148] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An ASR corpus based on public domain audio books,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2015, pp. 5206–5210.

[149] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” CoRR abs/1609.03499,
2016.

[150] C. Veaux, J. Yamagishi, K. MacDonald et al., “Superseded-CSTR
VCTK corpus: English multi-speaker corpus for CSTR voice cloning
toolkit,” 2016.

[151] M. Wester, Z. Wu, and J. Yamagishi, “Analysis of the voice conversion
challenge 2016 evaluation results,” in Interspeech, 2016, pp. 1637–1641.

[152] S. Ö. Arık, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice: Real-
time neural text-to-speech,” in International Conference on Machine
Learning, 2017, pp. 195–204.

[153] J.-C. Chou and H.-Y. Lee, “One-shot voice conversion by separat-
ing speaker and content representations with instance normalization,”
Proc. Interspeech 2019, pp. 664–668, 2019.

100

[154] S. Shechtman and A. Sorin, “Sequence to sequence neural speech syn-
thesis with prosody modification capabilities,” in Proc. 10th ISCA
Speech Synthesis Workshop, 2019, pp. 275–280.

[155] M. D. Pell, A. Jaywant, L. Monetta, and S. A. Kotz, “Emotional speech
processing: Disentangling the effects of prosody and semantic cues,”
Cognition & Emotion, vol. 25, no. 5, pp. 834–853, 2011.

[156] M. Schroeder and B. Atal, “Code-excited linear prediction (CELP):
High-quality speech at very low bit rates,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 10.
IEEE, 1985, pp. 937–940.

[157] K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-Johnson,
“AutoVC: Zero-shot voice style transfer with only autoencoder loss,”
in International Conference on Machine Learning, 2019, pp. 5210–5219.

[158] A. Polyak and L. Wolf, “Attention-based WaveNet autoencoder for uni-
versal voice conversion,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6800–
6804.

[159] B. Atal and M. Schroeder, “Predictive coding of speech signals and
subjective error criteria,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 27, no. 3, pp. 247–254, 1979.

[160] P. Mermelstein, “Distance measures for speech recognition, psycholog-
ical and instrumental,” Pattern Recognition and Artificial Intelligence,
vol. 116, pp. 374–388, 1976.

[161] H. Kawahara, M. Morise, T. Takahashi, R. Nisimura, T. Irino, and
H. Banno, “Tandem-STRAIGHT: A temporally stable power spectral
representation for periodic signals and applications to interference-free
spectrum, F0, and aperiodicity estimation,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2008, pp. 3933–3936.

[162] Y. Zhang, Z. Ou, and M. Hasegawa-Johnson, “Improvement of proba-
bilistic acoustic tube model for speech decomposition,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 7929–7933.

[163] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and
M. Ranzato, “Fader networks: Manipulating images by sliding at-
tributes,” in Advances in Neural Information Processing Systems, 2017,
pp. 5967–5976.

101

[164] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Star-
GAN: Unified generative adversarial networks for multi-domain image-
to-image translation,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 8789–8797.

[165] W.-C. Huang, H. Luo, H.-T. Hwang, C.-C. Lo, Y.-H. Peng, Y. Tsao,
and H.-M. Wang, “Unsupervised representation disentanglement using
cross domain features and adversarial learning in variational autoen-
coder based voice conversion,” IEEE Transactions on Emerging Topics
in Computational Intelligence, 2020.

[166] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “StarGAN-VC2:
Rethinking conditional methods for StarGAN-based voice conversion,”
Proc. Interspeech 2019, pp. 679–683, 2019.

[167] K. Qian, Z. Jin, M. Hasegawa-Johnson, and G. J. Mysore, “F0-
consistent many-to-many non-parallel voice conversion via conditional
autoencoder,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 6284–6288.

[168] J. Niwa, T. Yoshimura, K. Hashimoto, K. Oura, Y. Nankaku, and
K. Tokuda, “Statistical voice conversion based on WaveNet,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5289–5293.

[169] E. Nachmani and L. Wolf, “Unsupervised singing voice conversion,”
Proc. Interspeech 2019, pp. 2583–2587, 2019.

[170] J. Serrà, S. Pascual, and C. S. Perales, “Blow: A single-scale hypercon-
ditioned flow for non-parallel raw-audio voice conversion,” in Advances
in Neural Information Processing Systems, 2019, pp. 6790–6800.

[171] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton, J. Shor,
R. Weiss, R. Clark, and R. A. Saurous, “Towards end-to-end prosody
transfer for expressive speech synthesis with Tacotron,” in Interna-
tional Conference on Machine Learning, 2018, pp. 4693–4702.

[172] R. Valle, J. Li, R. Prenger, and B. Catanzaro, “Mellotron: Multi-
speaker expressive voice synthesis by conditioning on rhythm, pitch and
global style tokens,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6189–6193.

[173] T. Kenter, V. Wan, C.-A. Chan, R. Clark, and J. Vit, “CHiVE: Varying
prosody in speech synthesis with a linguistically driven dynamic hier-
archical conditional variational network,” in International Conference
on Machine Learning, 2019, pp. 3331–3340.

102

[174] F. Biadsy, R. J. Weiss, P. J. Moreno, D. Kanvesky, and Y. Jia, “Par-
rotron: An end-to-end speech-to-speech conversion model and its ap-
plications to hearing-impaired speech and speech separation,” Proc.
Interspeech 2019, pp. 4115–4119, 2019.

[175] Y. Xu and Q. E. Wang, “Pitch targets and their realization: Evidence
from Mandarin Chinese,” Speech Communication, vol. 33, no. 4, pp.
319–337, 2001.

[176] Y. Wu and K. He, “Group normalization,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 3–19.

[177] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[178] T. Nakatani, S. Amano, T. Irino, K. Ishizuka, and T. Kondo, “A
method for fundamental frequency estimation and voicing decision:
Application to infant utterances recorded in real acoustical environ-
ments,” Speech Communication, vol. 50, no. 3, pp. 203–214, 2008.

[179] W. Chu and A. Alwan, “Reducing F0 frame error of F0 tracking al-
gorithms under noisy conditions with an unvoiced/voiced classification
frontend,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2009, pp. 3969–3972.

103

