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Abstract

Modern systems at scale are increasingly susceptible to transient hardware errors at current

technology sizes from natural phenomena such as high-energy particle strikes (also called

soft errors). Traditional solutions aimed at dealing with soft errors, however, typically

rely on indiscriminate redundancy in space and/or time for resilience. Such techniques can

incur high system overheads, whether in manufacturing cost, runtime performance, energy

consumption, and/or area requirements. Moreover, the all-or-nothing protection offered by

full redundancy may result in over-protection and inefficient use of resources. To that end,

while it is critical to be able to protect against the effect of hardware errors, it is important

to do so in an an efficient and low-cost manner.

One way to reduce the cost of protecting applications from hardware errors is to under-

stand how errors propagate at finer granularities, and only protect vulnerable components

via selective duplication. This raises three important questions:

1. What granularity of analysis is reasonable to target?

2. Which components at this granularity should be selected for protection?

3. How should the selective protection be implemented in a low-cost manner?

This thesis addresses these three questions with the design of multiple tools and techniques

geared towards identifying and understanding how single-bit flip errors propagate and af-

fect an application’s output. First, we present a general-purpose tool called Approxilyzer.

Approxilyzer uses the novel error pruning and equalization techniques pioneered by a prior

tool, Relyzer, to quantify the impact of virtually every error site in an application. Targeting

the instruction-level granularity for analysis and protection, Approxilyzer shows that not all

errors are equally important, and that trading off a small output quality degradation (for

example, 1%) can yield large resiliency overhead reduction (up to 55%) for 99% resiliency

coverage.

While Approxilyzer is a promising tool for resiliency analysis, it initially took a long

time to run due to the large number of error sites requiring exploration in an application.

To accelerate error analysis tools (such as Approxilyzer), the second part of this thesis

introduces a software-testing inspired toolkit called Minotaur. Minotaur bridges the gap

between software testing and hardware resiliency by adapting multiple techniques from the

software engineering domain to make hardware error analysis faster and thus more scalable.
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We show that Minotaur can significantly improve the runtime of Approxilyzer (10.3× on

average), while simultaneously improving its accuracy in identifying vulnerable instructions

which need protection.

The third part of this thesis focuses on reducing the implementation overhead of instruction-

level duplication, by taking into consideration the hardware platform and unique opportu-

nities provided by the backend architecture. Specifically, we develop a tool called SInRG, or

Software-managed Instruction Replication for GPUs. SInRG provides a family of instruc-

tion duplication techniques that exploit underutilized hardware resources for error detection.

Inspired by CPU instruction-level duplication, SInRG establishes the first practical approach

to software-directed instruction duplication for GPU-based systems, identifies GPU-specific

opportunities for overhead reduction, and explores software and hardware performance op-

timizations to lower the overheads of replication significantly. The GPU-specific software

optimizations trade off error containment for performance and reduce the average runtime

overhead to 36%. We also propose new ISA extensions with limited hardware changes and

area costs to further lower the average runtime overhead to just 30%.

General purpose error analysis and hardening techniques provide the benefit of being

universally applicable to general purpose code. Given additional information about the

application, however, can further enable low-cost resiliency solutions by leveraging domain

knowledge. The fourth part of this thesis uses this premise to perform a specialized resiliency

analysis for convolutional neural networks (CNNs), due to their prevalence in many safety-

critical application such as self-driving cars. We develop and evaluate two selective protection

techniques at different target granularities in CNNs (feature map level and inference level),

and show that the combination of both techniques is better than the sum of its parts. Our

results show that the specialized, domain-specific error analysis and hardening techniques

can achieve very high error coverage of 99.78% on average for the CNNs explored, while

incurring as low as 20% overhead, or 5× less overhead compared to full duplication.

Overall, this thesis focuses on understanding how hardware errors propagate to corrupt

an application’s output. We develop multiple tools and techniques for error analysis, and

advocate for specialized, selective protection solutions as a means to achieve low overheads

while maintaining high error coverage in applications.
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Chapter 1: Introduction

1.1 MOTIVATION

As we approach the end of conventional transistor scaling, hardware is becoming increas-

ingly susceptible to errors in the field [1, 2, 3, 4, 5, 6]. Commodity hardware is used in

systems with a range of reliability requirements, from entertainment devices such as per-

sonal phones to stringently safety-critical systems such as self-driving cars. Modern systems

at scale are especially susceptible to transient hardware errors (also called soft errors) at

current technology sizes from natural phenomena such as high-energy particle strikes, wear

out, and/or voltage droops [3, 7, 8]. With exascale systems scaling to hundreds of thousands

of nodes, automated driving systems on the roads, and wearable medical devices increasing

in use, it is critical to protect against the increased likelihood of hardware events causing

system errors and/or crashes.

Studies have shown that hardware errors can have severe unintended consequences unless

the system is designed to detect these errors [9, 10]. Many high-performance computing

(HPC) field studies [11, 12, 13] and exascale reports and challenges [3, 7, 8] assert the

importance of designing error-tolerant systems. Traditional reliability solutions, however,

typically rely on full and indiscriminate redundancy in hardware or software to ensure high

resilience. This can be both costly and inefficient at the system level. Although it is crucial to

detect hardware errors in such systems to ensure high reliability guarantees, hardware errors

themselves occur infrequently such that full, indiscriminate redundancy may be overkill for

many systems.

Early work recognized that a large majority of hardware errors are either masked at the

software level (i.e., they did not change the output of the executing program) or result in

easily detectable anomalous software behavior (e.g., exceptions due to unaligned or out-

of-bounds addresses) [14, 15, 16, 17, 18, 19, 20]. The former errors require no action and

the latter can be detected using zero to very low-cost detection mechanisms. While such

software-centric resiliency techniques show immense promise, unfortunately, some hardware

errors escape detection and result in undetected and potentially unacceptable silent data

corruptions (SDCs) of the program output.

SDCs have been an obstacle in the widespread adoption of software-centric resiliency

techniques; therefore, significant recent research has focused on characterizing and reducing

these SDCs either through hardware solutions (e.g., use of error-correcting code, or ECC,

in hardware memory structures) or software solutions (e.g., insertion of software checks and
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assertions in application code regions determined to be too vulnerable to SDCs) [19, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Underlying all of these solutions is the need for techniques that find SDCs in the appli-

cations of interest. Software resiliency (or just resiliency) is the ability of a given piece of

software to avoid an SDC for a given hardware error, and can be divided into two primary

components. The first component is resiliency analysis, which involves characterizing the

resiliency of a given piece of software for a given set of hardware errors. The second compo-

nent is resiliency hardening, whereby either software or hardware modifications are made to

make the software more resilient. Each component offers unique research challenges in the

identification and mitigation of SDCs.

In order to avoid the heavy hammer of indiscriminate redundancy for software resilience,

a developer can perform an offline analysis of the workload to help pinpoint vulnerabilities

before deployment in the field. The primary drawback of such a resiliency analysis, however,

is that the number of potential error sites requiring exploration can be extremely large. For

example, assuming a single-bit flip error model in an application would require studying the

impact of every bit flip of every register of every dynamic instruction in the application –

clearly an intractable proposition.

Prior work in resiliency analysis imposes a significant trade-off between speed and accu-

racy. Statistical analyses based on dynamic error-free execution traces or static code [27,

33, 34, 35, 36] are unable to precisely model error propagation paths. Randomized error

injection campaigns [37, 38, 39, 40, 41] can only provide statistical information and are un-

able to predict resilience for code portions where errors were not injected. More systematic

and comprehensive error-injection techniques [42, 43] can precisely identify SDC-causing

instructions but are much slower than the previous techniques.

Resiliency analysis can have a direct (positive) influence on hardening overheads, by re-

ducing the amount of work required by hardening techniques to only the vulnerable error

sites from the analysis. Resiliency hardening however, does not need to solely depend on

an offline analysis: various software-hardware co-designed protection techniques can be em-

ployed which operate in an “always-on” mode. Such a hardening solution instead depends

on understanding the hardware platform running the code, and exploiting spare resources to

“hide” protection overheads effectively. While such a technique can be beneficial for some

workloads, combined with an offline analysis can make it even more powerful as a low-cost

deployment resilience solution.

While the aforementioned analysis and hardening techniques can be universally applicable

to general-purpose code, a general purpose approach which does not take into consideration

the executing workload may perform sub-optimally in terms of minimizing the cost of re-
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silience while ensuring high-error coverage. Instead, by tuning resiliency to the application,

we can further reduce resiliency overheads. Major challenges involved in such an endeavor

include understanding how errors propagate in the application, and crafting solutions that

guard against the most egregious output corruptions.

This thesis aims to address many of the challenges described above by introducing tools

and techniques that help understand how hardware errors propagate, and how to mitigate

such errors using low-cost protection mechanisms. This thesis argues for scalable and spe-

cialized application error analysis tools to enable low-cost hardening techniques. Further,

given the recent meteoric rise of machine learning and deep learning in many safety-critical

applications, this thesis performs a deep-dive into convolutional neural network (CNN) re-

silience. Overall, we show that software-directed resiliency techniques not only have high

SDC detection capabilities, but can also do so with lower overheads than traditional mech-

anisms.

1.2 SUMMARY OF CONTRIBUTIONS

To address the challenges involved in identifying and protecting against hardware errors,

it is important to categorize and understand how errors propagate at various granularities

in a system. Moreover, it is critical to design tools and techniques which capitalize on the

gathered insights and understandings, while simultaneously ensuring the usability of such

tools in terms of their performance and accuracy. The following sections summarize the

contributions made in this thesis.

All the following work has been a collaborative effort, with shared contribution among

fellow students, faculty, and industry researchers.1 Radha Venkatagiri is the lead author on

the Approxilyzer tool described in Chapter 2. Khalique Ahmed led the effort in the gem5-

Approxilyzer work described in Section 2.6. I co-led the work described in Chapter 3 with

Radha. I am the lead author of the work described in Chapters 4, 5, and 6.

1.2.1 Principled and General Purpose Error Analysis Techniques

Despite the fact that errors carry a negative connotation, not all errors are created equal.

While some errors are egregious and must be identified and mitigated, other errors are tol-

erable and may have little or no impact on the system or application. In order to identify

which errors are “bad” and must guarded against while dismissing errors which are “good”

1Chapters 2 – 6 are heavily based on the publications I led and co-led.
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and can be tolerated, it is necessary to understand how errors propagate once a fault mani-

fests in the hardware. This requires principled and comprehensive tools to perform such an

analysis.

One challenge these tools must overcome is the extremely large space of possible errors,

given an error model. For example, if we assume an alpha particle strike can flip a random

bit of a register during program execution, the plurality of errors would include studying

the impact of every bit flip of every register of every dynamic instruction for a running

application. This is prohibitively expensive.

In addition to reducing the error space, we also need to understand the impact an error

has on the quality of an application’s output, an important contribution of this thesis. This

type of analysis can significantly help in reducing the typically high overhead associated with

reliability. Further, it can help in identifying which errors are especially important to protect

and which can be dismissed due to their low impact on the application’s output quality.

To address these issues, the first contribution of this thesis is the development of Ap-

proxilyzer [44] and gem5-Approxilyzer [45]. Using the novel error-site pruning techniques

pioneered by Relyzer [42], Approxilyzer quantifies the quality impact of a single-bit error in

all dynamic instructions of an execution with high accuracy. We demonstrate two uses of

Approxilyzer. First, we show how Approxilyzer can be used to quantitatively tune output

quality versus resiliency versus overhead to enable ultra-low cost resiliency solutions (for

a single bit flip error model). For example, we show that Approxilyzer determines that

a very small loss in output quality (1%) can yield large resiliency overhead reduction (up

to 55%) for 99% resiliency coverage. Second, we show how Approxilyzer can be used to

provide a first-order estimate of the approximation potential of general-purpose programs.

It does so in an automated fashion while requiring minimal user input and no program

modifications. We extend Approxilyzer to gem5-Approxilyzer, an open-source implemen-

tation that enables support for various instruction set architectures (ISAs); we study the

error profile of applications in the x86 and Scalable Processor Architecture (SPARC) ISAs

for comparison. Effectively, Approxilyzer is a comprehensive, general-purpose tool which

provides instruction-level error analysis with quality assessment.

1.2.2 Scaling Up Error Analyses Through Software Testing Techniques

Even with principled analysis, the space of possible errors may still be very large, and

a comprehensive analysis can still be slow. To promote the adoption of highly effective

error analysis tools such as Approxilyzer, an underlying requirement is that the tool must

be fast, without sacrificing accuracy of error analysis. To address this challenge, the second
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contribution of this thesis is to leverage the extensive line of work from the domain of software

testing, and adapt it to hardware resiliency. The novel insight here is that analyzing software

for resiliency to hardware errors is similar to testing software for software bugs; therefore,

adapting techniques from the rich software testing literature can substantially improve the

state-of-the-art in resiliency analysis.

The result is called Minotaur [46], a software testing inspired toolkit which can accelerate

error analysis tools such as Approxilyzer. Minotaur bridges between software testing and

hardware reliability by adapting four software testing techniques to make hardware error

analysis faster and thus more scalable. As a result, we show that Minotaur improves the

runtime of Approxilyzer by an order of magnitude (10.3×) on average while simultaneously

improving the accuracy of Approxilyzer in identifying hardware errors.

1.2.3 Optimizing General Purpose Protection Through Software-Managed Techniques

Error analysis forms only part of the equation when it comes to making application resilient

in the face of hardware errors. Another important aspect involves hardening the application

to avoid errors at runtime. For example, one mechanism for hardening an application is

duplicating all vulnerable instructions in order to detect errors and notify the system at

runtime. Although advantageous from a resiliency perspective, this can incur significant

overheads which may not be acceptable, especially for mission critical applications with

real-time constraints.

To study the implementation overhead of instruction-level duplication, the third contri-

bution of this thesis is the development of a tool called SInRG [47], or Software-managed

Instruction Replication for GPUs. SInRG provides a family of instruction duplication tech-

niques that exploit underutilized hardware resources for duplication. This work describes

a practical methodology to employ instruction duplication for graphics processing units

(GPUs) and identifies implementation challenges that can incur high overheads (69% on av-

erage). It explores GPU-specific software optimizations that trade fine-grained recoverability

for performance. It also proposes simple ISA extensions with limited hardware changes and

area costs to further improve performance, cutting the runtime overheads by more than half

to an average of 30%.

We find that the optimal SInRG duplication strategy is workload dependent: based on

the hardware resource utilization of the workload, a particular SInRG techniques performed

better or worse. For example, a workload with heavy register utilization would benefit from a

duplication strategy that avoids increasing register pressure. Thus, by leveraging application-

specific information, developers can potentially design lower-cost resiliency solutions.
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1.2.4 Specialized, Application-Driven Reliability for CNNs

The fourth contribution of this thesis is an end-to-end, specialized reliability toolset for

CNN workloads. As CNNs become more prevalent in safety-critical applications such as

self-driving vehicles, it is imperative that they behave reliably in the face of hardware errors.

Thus, rather than relying on general purpose tools for analysis and protection, we ask the

question: can we leverage domain-specific knowledge for resiliency analysis and hardening?

We develop and open-source a tool called PyTorchFI [48], which allows us to study the

impact of transient errors on the outcome of a CNN inference. Using PyTorchFI, we in-

troduce two software-driven, selective protection techniques that target different protection

granularities of a CNN. First, we develop a feature map level resilience technique (FLR) [49],

which identifies and statically protects the most vulnerable feature maps in a CNN. Second,

we develop an inference level resilience technique (ILR), which selectively reruns vulnerable

inferences by analyzing their output. Finally, we show that the combination of both tech-

niques (called FILR) is highly efficient. Our results show that the combination can achieve

very high error coverage of 99.78%, while incurring only 48% overhead on average (and as

low as 20% for ResNet50, or 5× less overhead compared to full duplication).

1.3 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 introduces Approxilyzer and gem5-Approx-

ilyzer, two general-purpose hardware error analysis tools that quantitatively measure the

impact of errors at the instruction-level. While Approxilyzer and gem5-Approxilyzer can

attain orders-of-magnitude gains via error pruning and equalization of errors (leveraging

Relyzer techniques), these tools can still take a long time to complete the analysis. To

address this issue, Chapter 3 proposes and evaluates the toolset Minotaur, showing how

employing and adapting software testing techniques to the field of hardware error analysis can

dramatically speed up application error analysis without loss of accuracy. Next, Chapter 4

presents SInRG, a family of low-cost, instruction-level duplication techniques which leverage

spare hardware resources to effectively hide error detection overheads in general-purpose

code.

Our results in Chapters 2–4 show that incorporating information about an application can

help optimize resiliency analysis and hardening techniques. Chapter 5 introduces PyTorchFI,

a specialized runtime perturbation tool for deep learning. Using PyTorchFI, Chapter 6

introduces and promotes a fully application-based error analysis and detection approach for

CNNs. Chapter 6 explores different granularities of analysis and protection for software-
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directed error analysis of CNNs, and shows that a combination of techniques at different

granularities is better than the sum of its parts. Chapter 7 highlights related work, and

Chapter 8 summarizes the contributions of this thesis and discusses potential future research

directions.
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Chapter 2: Principled and General Purpose Hardware Error Analysis

2.1 MOTIVATION

Traditional solutions for dealing with hardware errors in the field have relied on indis-

criminate redundancy in space and/or time [50, 51, 52, 53]. For example, Tesla released

a Full Self Driving (FSD) system in March 2019 which deploys two fully redundant FSD

chips along with accompanying redundant control logic, power, and peripheral packaging

on the board for reliability [53]. This solution of indiscriminate redundancy, however, is in

direct tension with a key implication of the end of the Moore’s Law and Dennards scaling

era: hardware designers are now severely constrained by power and area, and must obtain

improved efficiency to stay on the performance and functionality curves to enable future

applications [54]. Indiscriminate redundancy incurs too much overhead in cost, area, power,

and/or performance for most systems [1, 27, 30, 36, 55, 56, 57, 58, 59, 60]. This overhead

is particularly onerous since in many cases, it unnecessarily overprotects against hardware

errors.

A promising alternative to full application redundancy is the use of software for the de-

tection for hardware errors. Software-centric solutions aim to identify anomalous software

behavior due to hardware errors with the use of low-cost techniques [14, 15, 16, 17, 18, 19,

20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. However, many hardware errors still manage to

escape detection, resulting in unacceptable silent data corruptions, or SDCs, of the program

output [30, 61, 62, 63]. Therefore, significant research has focused on analyzing these SDCs,

and reducing them through either hardware or software solutions.

Resiliency analysis techniques used in practice to help uncover SDCs can generally be

categorized into two major categories: experimental error injection campaigns or analytical

error propagation models. An experimental error injection campaign involves performing

many error injection experiments, each of which emulates a hardware error by perturbing

internal program state, and then executing the program to completion to evaluate the effect

of the error [64, 65, 66]. Since a program can consist of trillions of operations and there are

a plurality of errors possible for each operation, a primary challenge of this approach is the

large amount of time and resources needed to completely characterize the resilience of an

application. On the other hand, analytical error propagation models attempt to reduce the

resource intensity of error injection by estimating the vulnerability of different operations

through higher-level models that take into account architecture or domain knowledge [67,

68, 69]. Section 7 goes into more detail on specific resiliency analysis techniques from the
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literature.

In order to obtain the accuracy obtained from experimental error injection while avoiding

the associated overhead involved, we need to systematically address the large error space and

reduce it in a principled manner. Furthermore, we need to understand the impact an error

has on an application’s output quality, to determine whether or not it requires protection.

To that end, we developed an open-source tool called Approxilyzer [44, 70].

Approxilyzer builds on a resiliency-driven tool called Relyzer [42] which uses a combina-

tion of error injection and program analysis to predict the outcomes of errors, assuming all

deviations from the error-free output are unacceptable. Relyzer uses an instruction-level

transient single bit error model, and determines outcomes for all such errors in the operand

registers of all dynamic instructions. We use error site to refer to a specific bit in a spe-

cific operand register in a specific dynamic instruction. Using program analysis and some

heuristics, Relyzer identifies error sites that behave similarly in the presence of a single-bit

error and groups these together into an equivalence class. It then performs an error injection

experiment on just one representative error site (called a pilot) and uses its result to predict

the outcome for all the error sites in the equivalence class. Hence, Relyzer is able to predict

the resiliency characteristics of virtually all the error sites in the application with relatively

few error injection experiments and high accuracy.

Approxilyzer builds upon Relyzer by introducing the notion of quality, determining the

quality degradation for each predicted SDC, and applying this information in the areas of

low-cost resiliency and approximate computing. It takes as input an unmodified program

(with input), a quality metric, and an optional acceptable quality threshold, and produces a

comprehensive output quality profile. This profile provides the outcome of a transient single

bit error in each error site in an execution. The outcome can be masked (an output is

produced and is the same as the golden, error-free output), detected (e.g., a fatal trap was

invoked), or an output corruption (an output is produced, but is different from the golden

output). For the last case, Approxilyzer further categorizes the output as a detectable data

corruption (outputs that are visibly incorrect and could be detected; e.g., a not-a-number or

NaN) or a silent data corruption. SDCs are further binned into buckets based on the output

quality.

We show two applications of Approxilyzer’s output quality profile in this chapter. First,

for low-cost resiliency (assuming our error model), we use the observation that error sites

that result in SDCs that are binned above an acceptable quality threshold do not need any

protection. We show how this observation can be used by the programmer to quantitatively

tune output quality versus resiliency versus overhead to enable ultra-low cost resiliency

solutions.
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Second, for a broader application of approximate computing, we observe that an error site

is not amenable to approximation if it produces an outcome that is detected, detectable, or

an SDC binned below an acceptable quality threshold. Although our error model is limited,

it is reasonable to assume that if even a single bit perturbation produces such an unaccept-

able outcome, then a stronger perturbation will likely also produce the same, making the

error site an unlikely candidate for approximation. Thus, Approxilyzer allows the system

or programmer to focus on the remaining error sites (and constituent instructions) as can-

didates for approximation. These sites may or may not result in acceptable outcomes with

stronger perturbations than single bit flips, but they provide a smaller subset for further

(and potentially easier) analysis with other tools. This pruning of the space of approximable

instructions is particularly valuable since it is completely automated – the only requirement

from the programmer is the end-to-end quality metric. Knowledge of a threshold for accept-

able quality is beneficial, but it is not necessary and can also be conservative. The more

conservative the threshold, the more SDCs are deemed as not approximable (in the limit of

no threshold, all SDCs are deemed not approximable). In this way, Approxilyzer enables a

first-order, automated estimation of the potential for approximation for any general-purpose

program.

While impactful as a general purpose resiliency tool, Approxilyzer’s adoption was lim-

ited due to its implementation using the proprietary Simics infrastructure [71] and the

SPARC [72] instruction set architecture (ISA). To that end, we also developed and open-

sourced gem5-Approxilyzer [45], a re-implementation of Approxilyzer using the open-source

gem5 simulator [73]. gem5-Approxilyzer can be extended to different ISAs, starting with

x86 in this work. We show that gem5-Approxilyzer is both efficient (up to two orders of

magnitude reduction in error injections over a näıve campaign) and accurate (average 92%

for our experiments) in predicting the program’s output quality in the presence of errors. We

also compare the error profiles of five workloads under x86 and SPARC to further motivate

the need for a tool like gem5-Approxilyzer.

2.2 BACKGROUND: PRINCIPLED ERROR PRUNING TECHNIQUES

Compared to a näıve campaign that performs an error injection for every error site, princi-

pled error pruning can dramatically reduce the number of error injections necessary to predict

the error outcome for all error sites. Using the novel heuristics pioneered by Relyzer [42],

we leverage two sets of pruning techniques: equivalence-based and known-outcome pruning

techniques, which we incorporate for use in Approxilyzer. This section briefly describes these

techniques; detailed explanations and examples can be found in prior work [42].
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Equivalence-based pruning techniques use program analysis (static and dynamic) and

heuristics to prune errors that are likely equivalent to others. These techniques partition

error sites into equivalence classes, where each class requires an error injection into just a

single representative error site (called a pilot) to predict the error outcome for all other

error sites in the class. Approxilyzer implements two equivalence-based pruning techniques:

control equivalence and store equivalence.

• Control equivalence groups error sites based on the observation that errors that

propagate through similar code sequences are likely to have similar error outcomes.

This technique records the next N branches for dynamic instances of a given static

instruction in the original execution (with no error injection). Corresponding error sites

of dynamic instances that share the same control path (up to depth N) are grouped

in an equivalence class.

• Store equivalence is used to equalize dynamic instances of store instructions and

instructions that a store depends on within a basic block based on the observation

that errors in a store instruction propagate through the loads that read the erroneous

value. This technique records the subsequent loads that read from a store address and

groups corresponding error sites of dynamic instances of store instructions that have

the same list of subsequent loads together.

Known-outcome pruning techniques largely use static (and some dynamic) program

analyses to determine the outcome of an error. Approxilyzer uses two known-outcome prun-

ing techniques:

• Address-bound pruning uses the observation that single-bit errors that appear out-

side the address range of an application result in detected outcomes. Thus, their out-

comes are known a priori and these errors can be pruned.

• Def-use pruning uses the observation that an injection in a def is equivalent to an

injection in the first use at the same register and bit position, so only one needs to be

explored.

By combining all these pruning techniques, error analysis tools can dramatically reduce

the total number of error sites that need detailed analysis. Specifically, Relyzer uses these

techniques to prune 99.78% of error sites in an application, reducing the number of error

sites requiring detailed study by 3 to 5 orders of magnitude. Relyzer uses error injection

simulations on the remaining error sites to identify the outcome of errors, and shows 96%

validation accuracy on average across all the applications studied.
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2.3 APPROXILYZER: A FRAMEWORK FOR INSTRUCTION-LEVEL ERROR
ANALYSIS

Approxilyzer builds upon Relyzer by introducing the notion of quality, determining the

quality degradation for each predicted SDC, and applying this information in the areas of

low cost resiliency and approximate computing. It takes as input an unmodified program

(along with the application’s input), a quality metric, and an optional acceptable quality

threshold, and produces a comprehensive output quality profile. This profile provides the

outcome of a single transient bit error in each error site in an execution. An outcome can

be masked, detected, or an output corruption (OC), where output corruptions are further

classified as either detectable data corruptions (DDCs) or silent data corruptions (SDCs).

Additionally, SDCs are binned into buckets based on their output quality.

We demonstrate two uses of Approxilyzer. First, we show how Approxilyzer can be used to

quantitatively tune output quality versus resiliency versus overhead to enable ultra-low cost

resiliency solutions (with a single bit error model). For example, we show that Approxilyzer

determines that a very small loss in output quality (1%) can yield large resiliency overhead

reduction (up to 55%) for 99% resiliency coverage. Second, we show how Approxilyzer can

be used to provide a first-order estimate of the approximation potential of general-purpose

programs. It does so in an automated way while requiring minimal user input and no

program modifications. This enables programmers or other tools to focus on the promising

subset of approximable instructions for further analysis.

This section provides details of the Approxilyzer framework and its usage model, as illus-

trated in Figure 2.1.

2.3.1 Inputs to Approxilyzer

Underlying any approximate computing solution is the need to quantify output quality

through an end-to-end quality metric. This metric is domain-specific [74, 75, 76] and Ap-

proxilyzer assumes that the programmer or user will supply it. Approxilyzer uses this metric

to calculate the quality degradation of the erroneous output with respect to an error-free

output.

Another parameter pertinent to many use cases for approximation is the quality threshold

that sets a bound on the maximum quality degradation that is acceptable to the user. This is

an optional parameter that Approxilyzer can take as input from the user. Since programmers

may want to use Approxilyzer for analysis or tuning, Approxilyzer enables them to specify

quality threshold ranges if they so desire. In the limit, no threshold range may be specified,
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Figure 2.1: Overview of the Approxilyzer framework and its usage.

in which case Approxilyzer will perform its analysis for the full range of quality degradation.

To assist the user, we incorporate simple domain-specific libraries in our framework that

include common sense quality metrics and thresholds that a user can choose. For example,

the maximum of the relative (percentage) difference between the golden and error-free output

components, L2-norms of matrices, and absolute differences are examples of quality metrics

that quantify the deviation of the erroneous output from the error-free one. Negative values

and infinities are examples of obviously unacceptable outputs for many financial applications

– the user can choose to apply acceptable thresholds based on such criteria. Section 2.4.1

describes specific metrics and thresholds used in our evaluation.

Thus, Approxilyzer places the absolute minimum burden on the user, only requiring an

end-to-end quality metric and, optionally, acceptable quality thresholds.

2.3.2 Classification of Errors

Approxilyzer aims to quantify the impact of a single bit transient error on the program’s

end-to-end output quality, for error sites comprising each register bit of each dynamic in-

struction in an execution. To accomplish this, Approxilyzer builds upon Relyzer [42], a

tool to predict the outcomes of errors in all of the above error sites. Relyzer’s predictions,

however, only consider whether an error results in being masked (an output is produced

and is the same as the golden, error-free output), detected (e.g., a fatal trap was invoked),

or a silent data corruption (SDC). Relyzer does not consider output quality, marking all
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Figure 2.2: A classification of errors.

corruptions in an output (no matter how trivial) as an SDC outcome.

Approxilyzer introduces a new categorization of error outcomes to incorporate the notion

of output quality into the category of errors traditionally known as SDCs. Figure 2.2 depicts

the new taxonomy of errors. We use the term output corruption (OC) to indicate the

outcome of an error where the execution runs to completion without crashing the program,

but where the output does not match up identically to that of the golden output. In the

literature, such outcomes have previously been uniformly referred to as SDCs. However, we

observe that there is a subclass of these previously classified SDCs that is, in fact, detectable

and not strictly silent. Such outcomes can be detected using a variety of low-cost mechanisms

such as range detectors [19, 21]. We introduce additional detectors in Approxilyzer to catch

NaNs, infinity values, negative outputs (if not expected by an application), and a check to

see if the final output of the erroneous execution generates the same number of values as the

golden output, irrespective of deviation. Our categorization refers to the output corruptions

detected through the above means as detectable data corruptions (DDC). It refers to

the remaining output corruptions, which are not detectable and truly silent, as silent data

corruptions.

The SDCs are further categorized as follows:

• SDC-Good: These SDCs are highly tolerable output corruptions which produce neg-

ligibly small quality degradations. This category also includes outcomes where the

deviations from the golden output occur only in non-significant portions of the output

(e.g., program related statistics and timing information). These SDCs do not require

any resiliency protection since errors produced by them are inherently tolerable. The

threshold for “small errors” is application and metric dependant.

• SDC-Maybe: These are potentially tolerable SDCs. The entire class is not outright

tolerable, but a subset of SDCs in this class may be tolerable based on user-provided ap-
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plication quality constraints – usually in the form of an acceptable quality degradation

threshold. Using Approxilyzer we show how we can extract SDCs that are tolerable

from this class, tuning the output quality in accordance with cost- and reliability-

benefits.

• SDC-Bad: These produce such large quality degradations that it can be reasonably

assumed that they are not tolerable for most applications and users.

The above categorization of the SDCs is dependent on the domain-specific quality metric

(required) and acceptable quality thresholds (optional) provided by the user. If a quality

threshold is provided by the user, then whether an SDC is tolerable or not is a binary

decision based on whether the resulting output quality degradation falls below or above the

quality threshold. In the absence of user-provided quality thresholds (e.g., in cases where

the user wants to undertake program analysis or tuning), Approxilyzer classifies the SDC

error sites into SDC-Good, SDC-Bad, and SDC-Maybe. Note that the classification into

SDC-Good and SDC-Bad occurs only if the user chooses to apply common sense domain-

specific thresholds provided by the tool (Section 2.4.1). Otherwise, all the SDC error sites

are classified as SDC-Maybe. For each error site belonging to the SDC-Maybe error class,

Approxilyzer also records its associated output quality degradation. It assesses the quality

of the corrupted/erroneous output by measuring its deviation from the error-free/precise

output using the application-specific quality metrics provided by the user. For example, an

error that produces a quality degradation of 20% is said to have a different outcome from

one with a quality degradation of 25%. Hence, the output quality for a given error site is

characterized by its error outcome class and additionally, in the case of SDC-Maybe, by the

amount of quality degradation introduced in the output.

Approxilyzer hypothesizes that Relyzer’s main insight (that errors propagating “similarly”

through the program are likely to result in similar outcomes) also holds true when consid-

ering quality as part of the error outcome. That is, errors propagating “similarly” through

the program are likely to generate program outputs of similar quality. Approxilyzer uses

Relyzer’s heuristics related to control and data flow to predict similarity and to divide error

sites into equivalence classes (Section 2.2). We define validation experiments to test this

hypothesis and show that this is indeed the case (Section 2.4). Thus, Approxilyzer is able

to enumerate, with high confidence, the output quality generated when each single error site

in the program is perturbed by a single bit corruption. We use the phrase “output quality

of error site” to refer to the quality degradation in the output generated when an error is

injected in the error site.
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Table 2.1: Error outcomes and their potential for approximation and resiliency overhead
savings.

Error outcome category Is this class of error sites
approximable?

Does this class of error sites
need resiliency protection?

Masked 3 7

SDC-Good 3 7

SDC-Maybe Maybe Maybe
SDC-Bad 7 3

DDC 7 7

Detected 7 7

2.3.3 Instruction-Level Approximation Opportunities

Given an unmodified program and end-to-end quality metrics, Approxilyzer analyzes the

program and automatically provides the programmer with a set of instructions that are

potential first order candidates for approximations. Approxilyzer does this by eliminating

instructions that have unacceptable output quality. The underlying argument that Approxi-

lyzer makes is that if an instruction produces an unacceptable quality output in the presence

of single bit corruptions, then it is highly unlikely to generate an output of acceptable quality

with more vigorous perturbations introduced by approximation.

Table 2.1 provides a classification of which error outcome categories are approximable and

which are not. Error sites that produce Detected, DDC and SDC-Bad outcomes are clearly

not acceptable and Approxilyzer marks them as not approximable. SDC-Good and Masked

error sites are marked as approximable. SDC-Maybe error sites are potential candidates for

approximation depending on whether their quality meets the acceptable quality threshold set

by the user. The approximation potential of an instruction is decided based on the nature of

its constituent error sites. If any error site in an instruction is deemed not approximable then

the instruction is marked by Approxilyzer as not approximable. Otherwise, the instruction

is marked as a potential candidate for approximation.

Since each error site in the application contains the information regarding which dynamic

instance of an instruction it belongs to, Approxilyzer can identify dynamic instructions that

can be approximated. This can be useful to determine if the application will benefit from

approximation techniques at the dynamic instruction granularity (e.g., task skipping [77]

and loop perforation [78]). Section 2.5.4 shows a case study for how Approxilyzer can be

used to analyze applications for approximation potential.

Since our framework uses transient single bit errors as the error model, instructions marked

as approximable by Approxilyzer may be false positives, since they may produce unaccept-

able quality output with approximation techniques that use different error models. False

negatives, however, are expected to be rare since in most cases if a single bit upset in an
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instruction causes an unacceptable outcome, then it is highly likely that multi-bit upsets

will also result in unacceptable outcomes. While our approach is aggressive, we believe it is

still useful since it narrows the huge exploration space for approximation to a manageable

smaller set of instructions on which it is feasible to do further rigorous and targeted analy-

sis. Another benefit of our approach is that the identification of approximable instructions

is automatic and needs only minimal programmer input – end-to-end quality metrics and

quality thresholds – and no program modifications. This makes it feasible even for novice

programmers to analyze any program for hidden approximation opportunities.

2.3.4 Tuning Quality vs. Resiliency vs. Overhead

Approximate computing environments often trade accuracy in the program output for

gains in other system parameters such as energy or performance. A framework like Ap-

proxilyzer, which quantifies the output quality of each error site in the program, can be

used to tune the loss in output accuracy with respect to other system benefits. We study

one such system benefit; namely, the reduction in the overhead costs related to resiliency.

We describe how Approxilyzer can be used to tune overhead costs with respect to desired

resiliency protection for different output quality requirements and show that this can enable

ultra-low cost resiliency solutions (Section 2.5.3).

Approxilyzer uses its knowledge of each error site’s output quality to decide whether

that error site needs protection from transient errors (Table 2.1). Error sites that result in

masked outcomes do not need to be protected since they produce the golden output even

in the presence of transient errors. Low cost detectors (as discussed earlier) can be used to

catch the detected category of errors and hence the associated error sites do not need to be

protected.

In the absence of Approxilyzer, we would have to protect all OC error sites. With Ap-

proxilyzer’s quality information, the system can selectively protect only those OCs that are

neither tolerable by the user/application, nor can be protected by low cost detectors. Since

SDC-Good is inherently tolerable and DDC (like detected) can be captured using other low

cost detectors, these error sites need not be protected. SDC-Bad error sites produce intol-

erable outputs and hence they always have to be protected. SDC-Maybes may or may not

need protection based on whether they meet the user’s quality threshold. This reasoning

about which error sites need protection from transient errors can be extended to instructions

based on the quality of their constituent error sites. If an instruction contains an error site

that needs to be protected, then we say that the instruction needs to be protected.

Thus, based on the type and quality of the OCs produced, Approxilyzer can selectively
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tune the set of OC causing instructions chosen for protection from transient errors.

2.4 EVALUATION METHODOLOGY

2.4.1 Quality Assessment and Metrics

Table 2.2 details the applications, inputs, quality metrics, and quality threshold ranges

used in our evaluations. To quantify the quality of the corrupted output, we must find a

measure of its difference from the golden (error-free) output. We refer to this “difference

measure” as the quality metric – technically, this is a quality degradation metric since the

higher the value of the difference, the lower the quality.

Table 2.2: Applications, quality metrics, thresholds, and quality bins.

Application Input Metric DDC SDC-Good SDC-Bad SDC-Maybe
QB : {Error range}

max-rel-err:
1: {10−4% ↔ 1%}

Blackscholes sim-large max-rel-err Fi > $500 max-abs-diff max-rel-err 2: {1% ↔ 2%}
[79] max-abs-diff Fi < $0 < $10−4 > 100% ...

99: {98% ↔ 99%}
100: {99% ↔ 100%}

max-abs-diff:
1: {10−4 ↔ 10−3}

Swaptions sim-small max-abs-diff Fi > $500 max-abs-diff max-abs-diff 2: {10−3 ↔ 10−2}
[79] Fi < $0 < $10−4 > $1 3: {10−2 ↔ 10−1}

4: {10−1 ↔1}
512x512 No max-rel-err:

LU [80] matrix max-rel-err App-Specific max-rel-err max-rel-err same binning
16x16 Detectors < 10−4% > 100% as Blackscholes
blocks

No max-rel-err:
Water [80] 512 max-rel-err App-Specific max-rel-err max-rel-err same binning

molecules Detectors < 10−4% > 100% as Blackscholes
No rel-l2-norm:

FFT [80] 64K rel-l2-norm App-Specific rel-l2-norm rel-l2-norm same binning
points Detectors < 10−4% > 100% as Blackscholes

Common to all Fi = NaN Errors in non-
apps Fi = Inf significant portions

#F != #G of the output

In the absence of specific domain studies and standardization [74, 75, 76], we have done our

best to choose quality metrics that strike a balance between over- and under-estimating an

application’s tolerance to errors. For example, consider outputs with multiple components.

Without further guidance, we must first determine a difference function for each component

and then a method to aggregate across the components. Depending on the magnitude of

the individual components, we use the absolute difference (small magnitude) or the relative

difference (large magnitude) for the per-component difference function. To aggregate across
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components, we use the maximum instead of the average. In cases where there is an estab-

lished common practice to analyze the output, we use the corresponding quality metric. For

example, FFT produces a matrix and we use the relative difference in the bounded L2 norm

to determine the quality.1 More precisely, given a golden output G and a faulty output F ,

both having n components, where n ≥ 1, Table 2.2 uses the following three quality metrics.

(1) max-abs-diff : This metric calculates the maximum absolute difference between the

components of the golden and faulty outputs.

max-abs-diff = max(|G1 − F1|, |G2 − F2|, . . . , |Gn − Fn|) (2.1)

(2) max-rel-err : This metric calculates the maximum of the relative error between the

individual components of the golden and faulty outputs.

rel erri =
|Gi − Fi|

Gi

× 100 (2.2)

max-rel-err = max(rel err1, rel err2, . . . , rel errn) (2.3)

(3) rel-l2-norm : This metric is typically used in mathematics to directly compare two

matrices. The metric estimates the relative difference in the bounded L2 norms (BL2N) of

the golden and erroneous matrices. For any matrix A, having n elements, a1, a2, . . . , an, we

define the following,

‖A‖BL2N =
‖A‖L2

n
(2.4)

where,

‖A‖L2 =

√√√√ n∑
i=1

a2
i (2.5)

The rel-l2-norm is thus defined as:

rel-l2-norm =
‖G− F‖BL2N

‖G‖BL2N

× 100 (2.6)

Table 2.2 also lists the quality threshold ranges for identifying SDC-Good and SDC-Bad.

We use fairly conservative values that we believe will be reasonable for most users and

applications.

Finally, although output quality is a continuous function, for ease of analysis and compar-

ison, we discretize it into multiple Quality Bins (QB), fine-grained enough to capture small

1We do not use this for LU because it effectively produces two triangular matrices and how the errors in
the two are composed depends on how the output is used.
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quality variations (last column of Table 2.2). For example, with the max-rel-err metric, the

bins are 1% wide (except at the boundary), and quality values of 12.1%, 12.6% and 13.3%

are assigned a QB of 13, 13, and 14 respectively. Thus, SDC-Maybe with QB10 refers to an

SDC-Maybe outcome with an output quality degradation in the range specified by QB10.

2.4.2 Error Injection Framework

Our error injection simulation infrastructure for Approxilyzer is similar to that used for

Relyzer [42]: it is based on Wind River Simics [71] and GEMS [81] for running our applica-

tions on OpenSolaris and compiled to the SPARC V9 ISA.

We inject single bit flips in integer and floating point architectural registers. Hence, we

only consider instructions that employ either an integer or floating point register as an

operand. For example, we do not inject errors in instructions such as call (no operands), ret

(no operands) or branches that use special condition code registers. Such instructions will

not be considered for approximation or resiliency protection.

We perform error injections only in the pilots of the generated equivalence classes. This

can still lead to a large number of error injections, especially for longer applications. In

order to reduce the simulation time, we only study 99% of the error sites in the application

for Approxilyzer, thereby trading off simulation time for a modest loss in coverage [42]. The

1% of error sites not included in the study do not detract from the observations and gains

reported.2 For resiliency overhead tuning (Section 2.5.3), these unexplored error sites might

represent missed opportunity (in the event that they produce SDCs) for further overhead

reduction using Approxilyzer. When identifying approximable instruction (Section 2.5.4),

these remaining error sites might introduce some false positives (in the event that they

produce unacceptable errors). This is, however, consistent with our goal to tolerate some

false positives, while minimizing false negatives, in the quest to uncover approximation

opportunities in the application.

Approxilyzer retains Relyzer’s speed benefits, with negligible additional overheads. Com-

pared to a (hypothetical) framework that would perform an error injection for each error

site, Relyzer is able to prune error injections by 3 to 5 orders of magnitude [42]. The re-

maining error injections complete on our cluster of 200 machines in a few days. Approxilyzer

adds a few hours to this process to perform quality calculations and error outcome catego-

rizations. The analysis to generate quality versus resiliency versus overhead curves for an

application (Section 2.5.3) takes several minutes. Analyzing error outcomes and quality to

2We address the remaining 1% of error sites in Chapter 3 by performing input minimization to reduce
the total number of error sites, making 100% error site evaluation feasible.
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identify approximable instructions (Section 2.5.4) takes a few seconds per application.

2.4.3 Validation Methodology

Approxilyzer relies on Relyzer’s heuristics to group error sites that produce similar quality

outcomes into an equivalence class (Section 2.3.2). It predicts the quality of each element

of an equivalence class based on the outcome of a fault injection experiment on its pilot. To

validate these predictions, we perform experiments similar to those in Relyzer [42].

The validation experiment asks the question: how accurately does the output quality of the

pilot predict the output quality of the other error sites in its equivalence class? For validating

a single pilot, we perform error injections in a sample of error sites from the pilot’s equivalence

class. We then compare the output quality of the population with that of the pilot to gain

confidence that the pilot accurately represents the population, and hence the equivalence

class. For example, a pilot that produces a DDC has a 100% validation/prediction accuracy

if the injection experiments for all of its associated population also produced DDCs. If only

90% of the population produced a DDC, the pilot’s prediction accuracy is 90%.

To validate a pilot of an SDC-Maybe class, we further require that the QB of the pilot

match that of the population to be considered a correct prediction. For example, consider a

pilot X that generates an SDC-Maybe with QB12. Suppose 86% of its population is SDC-

Maybe with QB12, 6% is SDC-Maybe with QB13, 5% is SDC-Maybe with QB10, and 3%

is SDC-Bad. Then the prediction accuracy of pilot X is 86%.

The overall prediction accuracy for an application is obtained by calculating the average of

the prediction accuracy across all the pilots studied, weighted by the size of their equivalence

class.

Requiring the pilot’s QB to exactly match the QB of the associated population is unnec-

essarily conservative and a tall order for any tool, especially for outcomes with quality at the

QB boundaries. We therefore introduce a flexibility parameter, δ, that allows a fine-grained

margin of error at QB boundaries. For the validation of pilot X described above, setting

δ = x means that an error site in its population with QB of 12± x would be considered as

a correct prediction. Thus, pilot X’s prediction accuracy with δ = 1 is 92% and with δ = 2

is 97%. The baseline validation uses the setting δ = 0.

We can further loosen our constraints on validation by considering the context in which

Approxilyzer is used as follows:

• Validation for Resiliency: In the first case, Approxilyzer is used to determine which

instructions need to be protected for resiliency. We therefore do not need to distinguish
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between Masked, SDC-Good, DDC, and Detected outcomes since all of them do not

require protection. We therefore group these outcomes together.

• Validation for Approximation: In the second case, Approxilyzer is used to deter-

mine which instructions are approximable. We therefore do not need to distinguish

between Masked and SDC-Good outcomes since they are approximable, and can group

them together. Similarly, we can group SDC-Bad, DDC, and Detected outcomes to-

gether since they are not approximable.

Thus, for a given use case, a pilot is said to have a correct prediction for a member of

its equivalence class if both the pilot and the member produce an outcome within the same

group as defined above for the use case. We use δres and δapprox when considering use-

specific validations for resiliency and approximation respectively. We continue to use δ for

use-oblivious validations.

As an example, consider a Pilot Y that generates a DDC and has the following population

outcome distribution: DDC: 85%, Detected: 7%, SDC-Good: 5% and SDC-Bad: 3%. The

prediction accuracy of Y is 85% for δ = 0, 97% for δres = 0, and 95% for δapprox = 0.

We perform the validation experiments for ∼700 pilots from each application. This gives

us a 99% confidence interval with a 5% error margin. We validate each pilot against a sample

population size of 750 (drawn randomly from the equivalence class), which also gives us a

statistical confidence of 99% with a 5% error margin. In all, we perform approximately 2.6

million error injection experiments for validating Approxilyzer.

2.5 RESULTS

We begin the evaluation in Section 2.5.1 by showing the output corruption distribution as

analyzed by Approxilyzer, followed by validation results in Section 2.5.2. Section 2.5.3 de-

scribes Approxilyzer results for tuning an application’s quality versus resiliency versus over-

head tradeoffs. Section 2.5.4 shows how Approxilyzer can be used to identify approximable

instructions in an application, using the duality of the tool for resilience and approximation

purposes.
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Figure 2.3: Distribution of error outcomes for the applications studied.

2.5.1 Output Corruption Distribution

Figure 2.3 shows the distribution of outcomes for error sites in the studied applications.3

Each application exhibits a unique distribution of error outcomes. At 68.8%, LU contains

the highest percentage of Output Corruption (OC) causing error sites and Swaptions, at

15.6%, the lowest.

Figure 2.4 shows the different categories of output corruptions, separately for integer and

floating point register error sites. Swaptions and Water show very high percentage of SDC-

Good at 76% and 58% respectively while Blackscholes produces 68% DDC (for both Integer

and Float combined). Swaptions and FFT show an interesting dichotomy in the behavior

of errors in the integer versus floating point registers, implying perhaps, a need for separate

techniques for resiliency and approximation across the two different register classes. LU’s

OC error sites are almost exclusively (>98%) composed of SDC-Bad outcomes. This may

either imply that LU is inherently not tolerant to errors or that the quality metric used to

classify errors in the output of LU may not be the correct choice.

These results illustrate how Approxilyzer can be employed to automatically analyze an

3The OC (originally SDC) rates reported in this work are different from the rates reported in previous
work [21, 42] as our error model is different. We study errors in both integer and floating point architectural
registers, while our prior work only considered integer registers.
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Figure 2.4: Distribution of output corruptions (OC) in integer (INT) and floating point
(FLOAT) registers.

application to gain insights into its behavior in the presence of perturbations.

2.5.2 Validation

Validation results for resiliency: The results for validation geared towards resiliency are

shown in Figure 2.5. All of the applications show very high pilot prediction rates with an

average prediction rate of 96% across applications using a very fine quality window of 2 (i.e.,

δres = 2).

Swaptions and Water see big gains in validation just by applying the δres optimization.

Both of these applications have high SDC-Good rates (Figure 2.4) and therefore many pilots

that are picked for validation belong to the SDC-Good outcome category. Some of these

equivalence classes (with SDC-Good pilots) contain a mix of Masked and SDC-Good error

sites, leading to lower overall validation for δ = 0.

Water especially has a high rate of SDC-Good outcomes which are due to very small

errors (< 10−6%) in the program statistics part of the output file. Approxilyzer heuristics

(not surprisingly) combine these error sites with Masked outcomes into equivalence classes.

As a result, applying the δres optimization causes the validation rate of Water to jump from

24



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

Swap0ons	
   LU	
  	
   Blackscholes	
  	
   FFT	
   Water	
   Average	
  

Ap
pr
ox
ily
ze
r	
  V

al
id
a0

on
	
  %
	
  

δ	
  =	
  0	
   δ_res	
  =	
  0	
   δ_res	
  =	
  1	
   δ_res	
  =	
  2	
   δ_res	
  =	
  5	
  
99	
  

96	
  
96	
  

99.8	
  
97	
  

90	
  

Figure 2.5: Approxilyzer validation geared towards resiliency.

71% to 98%.

In addition to having equivalence classes with mixed SDC-Good and Masked outcomes (as

described above for Water), Swaptions also has some pilots with DDC outcomes (Figure 2.4)

belonging to equivalence classes that feature a mix of DDC and Masked outcomes. These

pilots represent error sites from a few floating point instructions that process randomly gen-

erated numbers. If the error causes the random number to exceed the (expected) range of

0 to 1, it causes floating point overflows which result in NaN values. Because Approxilyzer

heuristics cannot accurately distinguish this special case, Swaptions contains some equiva-

lence classes with a mix of Masked and DDC outcomes which results in poor validation for

δ = 0. Applying the δres optimization, causes the validation rate of Swaptions to go up from

79% to 99%.

While still high at 90% (for δres = 2), Blackscholes shows the lowest validation accuracy

of the applications studied. Further analysis shows that this is due to a few pilots whose

equivalence classes have a mix of SDC-Maybe and SDC-Bad outcomes. This is why increas-

ing the quality window size (δ) does not cause the prediction rate to increase. The reason

behind the mixed equivalence class can be attributed to the fact that Blackscholes calculates

the option price for a portfolio containing more than 64,000 options and hence, the same
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Figure 2.6: Approxilyzer validation geared towards approximation.

instructions produce OCs of different quality based on the input being processed at any

given execution cycle. While range detectors can be applied to better capture variations

in data patterns in certain SDC-Bad outcomes and specialized heuristics to handle some of

these cases, we leave their implementation to future work. In spite of these special cases,

Blackscholes shows high prediction rate.

Validation results for approximation: Figure 2.6 shows the graph for validation considering

approximation. On average, the validation percentage for δapprox = 2 is 94% across all

applications. Swaptions shows lower validation predominantly due to poorly validated DDC

pilots belonging to a few floating point instructions (validation accuracy for integer pilots

with δapprox = 2 is 97%) operating on random numbers, as described above. While the

δres optimization equalizes these outcomes, the δapprox considers DDC and Masked outcomes

separately and hence the validation accuracy is not improved. Simple range detectors to

check the range of the random numbers can resolve this issue and we leave its implementation

to future work.

Overall, the average validation percentage, across δapprox = 2 and δres = 2, for the ap-

plications studied is 95%. Thus, we conclude that Approxilyzer can capture the output

corruption quality – at very fine granularities – with high precision for the purposes of both
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resiliency and approximate computing.

2.5.3 Tuning Quality vs Resilience vs Overhead

We demonstrate the ability of the user to harness Approxilyzer to tune application output

quality versus other system attributes with a study targeted towards system resiliency. As

explained in Section 2.3.4, we can target specific static instructions for resiliency protection

based on the quality threshold specified. Given additional criteria regarding resiliency (the

fraction of output corruption producing error sites in the application that must be protected,

referred to as “resiliency coverage” or simply “coverage”) and the maximum overhead to

be incurred for protection, an optimizer can pick the optimum balance of output quality,

resiliency coverage, and overhead to target user requirements. We produce tuning curves

that show the tradeoffs for different combinations.

To produce the different tuning curves, we first identify the instructions that need re-

siliency protection for different output quality thresholds (QT). Then we use a 0/1 knapsack

algorithm to pick the instructions for resiliency protection that offer the specified coverage

for the least overhead. A similar methodology is used by Relyzer [42] to tune resiliency

versus overhead, but without relaxation of output quality.

We assume instruction redundancy as our error protection scheme and charge one instruc-

tion worth of overhead to protect a given instruction. Hence, the execution overhead cost

for protecting static instruction X is equivalent to the dynamic instruction count of X.4

To illustrate the above with a simple example, consider two candidate static instructions

A and B, each responsible for 30% and 20% of the output corruption error sites in the

application, and producing 5% and 10% of the dynamic instructions, respectively. Assume

Approxilyzer determines that the maximum quality degradation produced by an error in

A and B is 1% and 4% respectively. Then for no quality loss, to cover 50% of the output

corruption error sites (resiliency coverage), both A and B have to be protected and the

(execution) overhead cost of doing so is their cumulative dynamic instruction count; i.e.,

15%. If the user is willing to accept a quality loss of 2%, we do not have to protect A, and

essentially get the resiliency coverage afforded by A (30%) at no additional overhead cost.

For resiliency coverage of 50% (with acceptable quality loss of 2%), we will need to protect

B and incur an overhead of 10%.

Figure 2.7 shows the resiliency overhead cost versus coverage for different levels of accept-

4Although this is a reasonable assumption, in Chapter 4, we show how actual instruction duplication
overhead is not always precisely a unit overhead per instruction, and introduce different techniques to
reduce the duplication overhead.
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Figure 2.7: Tuning resilience versus execution overhead versus output quality for different
applications.

able output quality degradation. We show graphs for four of our five benchmarks (the fifth,

LU, is discussed later). Each graph shows the following curves corresponding to different

levels of acceptable quality degradation.

• All Output Corruptions : This curve represents the optimal overhead versus cover-

age when all OC causing instructions are protected. It represents the state-of-the-art

in the absence of Approxilyzer’s output quality impact information to distinguish in-

structions that produce acceptable quality output.

• All SDC-Bad + SDC-Maybe : This curve shows the optimal overhead versus

coverage when all the instructions causing SDC-Bad and SDC-Maybe outcomes are

protected. This is the graph that will be generated by Approxilyzer in the absence

of specific user-defined quality thresholds. Approxilyzer automatically removes the

instructions that only produce SDC-Good and DDC from the list of instructions to
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protect.

• All SDC-Bad + SDC-Maybe with QB>x : These are the optimal overhead versus

coverage curves with user-specified quality threshold x. For these curves, Approxilyzer

does not protect instructions that produce SDC-Maybe with QB≤x from the list of

instructions protected. This essentially means that if a user says that she is willing

to tolerate x% quality loss in the output, then we need not protect the instructions

that we know will not suffer a quality degradation greater than x% in the presence of

transient errors. For convenience, the graphs show x as an actual application-specific

quality threshold instead of a QB number.

The gaps between the various curves for each point along the x axis represent the over-

head/cost savings by not applying resiliency protection to those instructions that produce

acceptable quality loss when perturbed. The benchmarks shown in Figure 2.7 show signif-

icant overhead savings if the user can tolerate very small quality loss. For example, if the

user can tolerate a 1% quality degradation in the output, then the resiliency overhead costs

can be reduced by 20%, 55%, and 11% for Blackscholes, Water and FFT respectively, while

still achieving 99% coverage (the difference between the All Output Corruptions and All

SDC-Bad + SDC-Maybe with QB>1% curves at 99% on the x axis). Similarly, for a quality

loss of less than one hundredths of a penny in final stock price (All SDC-Bad + SDC-Maybe

with QB>$0.001 ), Swaptions achieves an overhead reduction of 26% while providing 99%

coverage.

Swaptions has many instructions that exclusively contain SDC-Good error-sites. Hence

the overhead is significantly reduced by not protecting those instructions (99% coverage for

All SDC-Bad + SDC-Maybe has an overhead of 3%). Further increasing the application’s

quality degradation threshold provides marginal benefits (2% overhead reduction).

Blackscholes also does not show any benefit from increasing the quality degradation thresh-

old (QB), but for a different reason. As mentioned in Section 2.4.3, many (static) instructions

in Blackscholes produce a mix of SDC-Bad and SDC-Maybe outcomes (with wide QB ranges)

and hence they are always protected. Blackscholes does, however, achieve a 20% overhead

reduction by not protecting instructions that only generate DDC and/or SDC-Good out-

comes.

FFT, on the other hand, displays a behavior contrary to Swaptions and Blackscholes –

all its overhead reductions come from increasing the acceptable quality threshold of SDC-

Maybes (the curves for All Output Corruptions and All SDC-Bad + SDC-Maybe sit on top

of each other). This can be attributed to the fact that none of the instructions in FFT

exclusively produce only DDC or SDC-Good outcomes. Changing the quality threshold
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from QB>1% to QB>5% results in an additional overhead reduction of 12% for the 99%

coverage point.

Water shows the most overhead reduction while tolerating a small quality loss. This

is because Water has many instructions that contain a mixture of SDC-Good and SDC-

Maybe error sites that result in very small quality degradation. Hence even a small quality

degradation threshold results in large gains.

LU shows no gains from either quality tuning or from not protecting SDC-Good and DDCs

(not shown in the figure for brevity). This is because, as seen from Figure 2.4, LU produces

only SDC-Bad corruptions and hence all of the instructions need protection.

In summary, most of the applications show significant resiliency overhead reductions while

suffering very small accuracy losses. Thus, Approxilyzer can be used to target ultra-low cost

resiliency solutions in an approximate environment.

2.5.4 Approximation Opportunities

As mentioned in Section 2.3.3, Approxilyzer can be used as a tool to analyze the first order

approximation potential of an unknown application along different dimensions. We show one

such use case where we use Approxilyzer to analyze the approximation potential along the

dimension of static instructions for our five workloads. We use the same technique used to

identify which static instructions are potentially approximate, to also identify approximation

along different static instruction granularities. For example, if all the error sites related to

a particular register in a static instruction were deemed approximable, then we say that

the register is approximable. In this case study we do this analysis for the following static

instruction granularities:

• Full Instruction (FI): The entire static instruction (i.e., all register bits) is approx-

imable.

• Partial Instruction, Full Register (PI FR): At least one full register in the

static instruction is approximable.

• Partial Instruction, Partial Register, x bits (PI xb): At least one x bit long

register chunk in the static instruction is approximable.

For the purposes of this study we do not assume a quality threshold. Instead, we estimate

the best and worst case approximation bounds. For the best case, we assume that all the

SDC-Maybes have acceptable quality and hence are approximable. For the worst case we

assume that none of them have acceptable output quality and therefore are not approximable.
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Figure 2.8: Graphs (a) and (b) show the first order worst and best case bounds respectively
for the percentage of static instructions (studied) that are approximable for each applica-
tion at different granularities of approximation. Graphs (c) and (d) show the percentage
of dynamic instructions (in the full application) generated by these static approximable
instructions in the worst and best case respectively.

Figures 2.8(a) and 2.8(b) show, for each application the worst and best case bound, re-

spectively, on the number of static instructions, marked by Approxilyzer as candidates for

approximation. In order to understand the potential impact of approximating these static

instructions, Figures 2.8(c) and 2.8(d) show the proportion of dynamic instances produced

by these static instructions in the full application. Note that while the static instruction

percentage shown is for the fraction of static instructions studied, for a better insight, the

dynamic instruction percentage reported is the fraction over the entire application, which

includes dynamic instances of instructions we do not study (Section 2.4).

The graphs show that, on average, between 34% (worst case) to 40% (best case) of the

static instructions studied have 32 bits of continuous register chunks that can be candidates
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for approximation (assuming a technique can exploit approximations at that granularity).

These static instructions account for 27% (worst case) and 36% (best case) of dynamic

instructions respectively. Of the applications studied, Swaptions shows the most potential

for approximation. This is commensurate with its high SDC-Good and overall low OC error

sites.

Another insight gained from this experiment is that even applications that do not have full

instructions that are approximable, may contain pockets of smaller register chunks (partial

instructions) that are tolerable to errors. Hence, techniques that can exploit approximation

at these finer granularities can conceivably achieve big gains and unlock the hidden potential

in many new applications traditionally not considered as candidates for approximate com-

puting. For example, in the best case, while only 4% of the static instructions (producing

3% dynamic instructions) in Blackscholes are marked as candidates for (full instruction)

approximation by Approxilyzer, this number goes up to 29% (31% dynamic instructions)

when considering individual 32b register chunks. While in this work we only consider static

instructions for approximation, such analysis can also be carried out along the dimension

of individual dynamic instructions to further understand the application’s approximation

potential.

In summary, Approxilyzer can be used to understand the best and worst case bounds on

the approximation potential of an application even without a clear quality threshold. Such

analysis can unlock hidden approximation potential that can then be targeted by specialized

techniques.

2.6 EXTENDING ERROR ANALYSIS TO OTHER INSTRUCTION SET
ARCHITECTURES

Approxilyzer’s unique features makes it a useful tool that can enable new avenues of

research, but limitations in its current implementation hinder its usability. The tool relies

on Wind River Simics [71], a proprietary full-system simulator, is also designed to handle

only applications compiled for the SPARC instruction set architecture (ISA). The restrictions

imposed from both the simulator and ISA make a wide adoption of the tool challenging.

To that end, we developed gem5-Approxilyzer [45], an open-source5 implementation of Ap-

proxilyzer that enables support for more ISAs, beginning with x86 in this work. We build the

foundations of our new tool using the open-source gem5 simulator [73] which facilitates (with

relative ease) the future inclusion of more ISAs into the tool. Building gem5-Approxilyzer

required significant engineering effort to support x86 error analysis on gem5. Approxilyzer’s

5https://github.com/rsimgroup/gem5-Approxilyzer
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original implementation built for SPARC (a reduced instruction set computing architecture,

or RISC architecture) assumes constant register size and instruction encoding length, which

is not the case for x86 (a complex instruction set computing architecture, or CISC architec-

ture). This additional tool shows Approxilyzer’s effectiveness/accuracy with a different ISA,

namely x86. Further, we show that the error profiles of the same application can be rather

different under different architectures, which in turn can require customized resiliency and

approximation solutions. This result further motivates the need for open-source tools such

as gem5-Approxilyzer that can enable such comparisons and aid in building better solutions

and exploring new avenues of research.

2.6.1 gem5-Approxilyzer: An Overview

gem5-Approxilyzer is an implementation of Approxilyzer [44] using the open-source gem5

simulator. Hence, its interface, high-level design and techniques are the same as those de-

scribed in the previous sections and prior work [42, 44]. We describe here the implementation

details and associated challenges of gem5-Approxilyzer.

Similar to Approxilyzer, we use a single-bit transient error model in architectural registers

for gem5-Approxilyzer. We study errors in bits of both source and destination registers of

instructions. For gem5-Approxilyzer, we undertake error injection in registers of x86 macro-

instructions. Modern CISC implementations like x86 often implement the complex machine

instructions (macro-instructions) using low-level instructions called micro-instructions or

micro-operations. Micro-instructions are generally specific and proprietary to the micro-

architecture and not faithfully recreated in publicly available simulators. Hence, we restrict

our analysis to macro-instructions.

For this study, we only consider general-purpose registers and SSE6 registers in x86. We do

not inject errors in special-purpose, status, and control registers (e.g., %rsp, %rbp, rflags) to

simplify our error model and reduce the number of error injections required for a first-order

analysis. We assume that these always need protection and can be hardened in hardware

(e.g., with ECC). We also do not inject in implicit7 registers in this work, although gem5-

Approxilyzer is extensible and can support these registers in the future.

6The binaries we study do not explicitly use floating point stack registers (st0-st7) in the region of interest
and hence we do not study them.

7For example, the instruction imul rbx performs the following signed multiplication: rdx : rax←− rax∗rbx.
We only inject errors in rbx and not in rax and rdx.
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2.6.2 Implementation Details

To execute gem5-Approxilyzer end-to-end, the user provides an application, its inputs,

and associated quality metrics that evaluate the application output. The user can optionally

mark the beginning and end of a code region of interest (ROI) – either by annotating the

source or providing static PCs marking the beginning and end of the ROI – for analysis. In

the absence of an ROI, the full application is analyzed.

gem5-Approxilyzer executes four phases to produce an application’s error resiliency profile:

Phase 1 extracts static and dynamic properties of instructions executed within the ROI.

An instruction parser module analyzes static instructions in the application’s disassembly to

identify registers used, determine if the instruction affects control flow (jumps, conditional

branches, function calls, etc.), and identify any registers that contain memory addresses

(these are marked for address-bound pruning). Information from this static pass is used

to build the def-use chains that are used by pruning techniques in Phase 2. Next, gem5

is used to produce a full dynamic execution trace of user-mode instructions and memory

accesses. From this trace, only the (dynamic) instructions that are found within the static

disassembly, along with their corresponding memory accesses, are extracted for analysis;

gem5-Approxilyzer does not analyze external library code, system code, or calls to them.

Further, it simplifies the trace to only contain the execution within the ROI (if an ROI is

provided).

Phase 2 prunes error sites as mentioned in Section 2.2 by applying control- and store-

equivalence as well as address-bound and def-use techniques. gem5-Approxilyzer processes

the execution trace from Phase 1 to build control-equivalence classes and def-use chains.

The memory accesses recorded in the trace are used to build store equivalence classes and

perform address-bound pruning. At the end of this phase, gem5-Approxilyzer picks a pilot

for each equivalence class and creates the set of error sites for error injections.

Phase 3 performs the error-injection experiments using our error injector module built

for gem5. The error injector takes as input a string with the error-site description: dynamic

instruction described using the cycle number of the simulation, register information (register

name and whether it is used as a source/destination operand) and register bit number.

The error injector pauses the simulation at the specified dynamic instruction and flips

the bit in the register. For source registers, the bit flip is performed before the instruction

execution. For destination registers, the error is simulated by performing the bit flip af-

ter the instruction execution (otherwise the error would be overwritten by the instruction

execution). The simulation then proceeds, checking for any hangs and crashes, or other

symptoms to identify detected outcomes. If no detected symptoms are encountered before
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the simulation ends, gem5-Approxilyzer compares the generated output with the error-free

execution’s output to identify any OC. If there is an OC, gem5-Approxilyzer uses the user-

provided quality metric to evaluate the output quality.gem5-Approxilyzer records each pilot

injection and its outcome for post-processing in the next phase.

Phase 4 analyzes the outcome of each error injection and assigns it the appropriate error

outcome, i.e., error outcome category and quality degradation (QD) score for OCs. gem5-

Approxilyzer then assigns the same error outcomes to pruned error sites associated with

the pilot, and finally outputs the application’s comprehensive error profile containing all the

error sites and their corresponding error outcomes.

For an end-to-end error analysis with gem5-Approxilyzer, the error injections in Phase 3

consume the most time – several days worth of CPU time versus only few minutes/hours

consumed by all the other phases combined for the experiments reported here. Thus, using

effective pruning techniques that can reduce the total number of error injections in Phase 3

is the most direct means of reducing the tool’s analysis time.

x86 Implementation Challenges: While Phases 3 and 4 are largely ISA independent,

Phases 1 and 2 in gem5-Approxilyzer require customization to support different ISAs. Since

x86 is a CISC ISA, opcode lengths vary, and hence the instruction parser in Phase 1 must

capture instruction semantics correctly to identify source and destination operands of differ-

ent instructions. Depending on the complexity of the macro-instructions, a varying number

of micro-instructions can be generated. Any memory accesses performed by these micro-

instructions in the gem5 memory trace must be mapped to the correct macro-instruction.

Since x86 allows for variable register sizes, another challenge in Phase 2 is to correctly asso-

ciate registers of varying sizes with their aliased 64-bit registers. This must be done carefully

to identify aliased def-use pairs which enables pruning the right set of error sites within an

aliased register. For example, %ax and %eax both alias to %rax. While performing def-use

pruning, only the lower 16 bits of %eax definition must be pruned if the first use is %ax.

Extensions to Other ISAs: We designed gem5-Approxilyzer to be reasonably modular

(e.g., each phase is a separate module) to enable future extensions to support different ISAs,

error models, and pruning techniques. Here, we briefly elaborates on some details for future

extensions.

The gem5 simulator currently supports many ISAs, and gem5-Approxilyzer could support

them with the following modifications:

1. The instruction parser in Phase 1 must be modified to capture the semantics of the

new ISA. This modification ensures that instructions near branch boundaries belong

to the correct control equivalence class.

35



2. ISA-specific behaviors that affect control flow (e.g., branch delay slots for SPARC)

should be incorporated into the control-equivalence algorithm accordingly. If registers

alias to one another, then def-use pairs must carefully track the currently used register

bits within the larger register.

3. Register aliasing must be captured correctly to track def-use pairs.

The error-injector module in Phase 3 can be modified to support other error models such

as multi-bit injections or injections to other system structures like dynamic random-access

memory (DRAM). The error-pruning module in Phase 2 would need to be extended to

support pruning algorithms appropriate for the chosen error model.

gem5-Approxilyzer performs Phase 2 analysis on the dynamic trace generated by gem5

in Phase 1. For very long executions, this may result in excessively long traces, requiring a

tighter coupling of Phases 1 and 2 to trace and analyze parts of the execution at a time.

2.6.3 Evaluation

We implement gem5-Approxilyzer using gem5 [73] to simulate an Ubuntu-16.04 system,

and we use GCC 7.3 with -O3 optimization to compile the applications. We validate gem5-

Approxilyzer in a similar manner to Approxilyzer. Specifically, for SDC-Maybe, we equalize

error cites based on if their output quality degradations (QD) are above or below user

specified output quality thresholds (QT). In the absence of a quality threshold, prediction

accuracy measurements for any SDC-Maybe pilot with a quality degradation of, say, Q

measures the number of its population members that also result in SDC-Maybe with the

same quality degradation Q. Table 2.3 lists the applications explored as well as their inputs

for gem5-Approxilyzer evaluation.

For each application, the overall validation accuracy for a given equivalence based prun-

ing technique (control, store, or combined = control+store) is obtained by calculating the

average of the pilot prediction accuracy across a random sample of equivalence classes built

using that technique (control, store, or combined), weighted by the size of the equivalence

class.

We randomly pick 750 equivalence classes to validate each of the control- and store-

equivalence techniques (1500 equivalence classes for combined control+store). This gives us

a 99% confidence interval with a 5% error margin [84]. For each equivalence class we set the

population size to 750. If the equivalence class size is less than 750 (error sites), then the

pilot is validated using all the remaining error sites in the equivalence class. This again gives
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Table 2.3: Benchmarks, inputs, and error-site pruning by technique (C: Control-Equivalence,
S: Store-Equivalence, C+S+K: total pruning using control, store, and known-outcome tech-
niques)

Application Input Total Error Sites Remaining Error Sites Pruned Error Sites %

C: 12.24
Blackscholes [82] 21 options 232K 100K S: 9.45

C+S+K: 56.77
1 simulation C: 52.47

Swaptions [82] 1 option 10.3M 720K S: 7.85
C+S+K: 93.01

8x8 blocks C: 23.49
LU [80] 16x16 matrix 1.2M 268K S: 22.72

C+S+K: 77.91
C: 43.99

FFT [80] 28 data points 4.4M 215K S: 21.50
C+S+K: 95.05

C: 62.74
Sobel [83] 81x121 pixels 85.3M 300K S: 20.94

C+S+K: 99.65

us a 99% confidence interval with a 5% error margin [84]. In all, we perform approximately

1.6 million error-injection experiments to validate gem5-Approxilyzer.

Pruning Effectiveness: The number of error sites pruned is directly related to the reduction

in the number of error injection experiments needed to analyze the application. For each

application, we measure first the number of error sites in the application’s region of interest

and then the number of error sites remaining after the pruning phase to calculate the number

of error sites that have been pruned by various heuristics. This metric evaluates the tool’s

effectiveness since the number of error sites pruned directly reduces the number of error-

injection experiments needed to analyze the application. For the control heuristic, we set

depth to N=50, as in prior work [43].

The last column of Table 2.3 shows the percentage of error sites pruned by gem5-Approxilyzer

using the control-equivalence (C), store-equivalence (S), and known-outcome (K) pruning

techniques. At 56.77%, Blackscholes has the smallest total (C+S+K) pruning. Blackscholes

is a small application, which coupled with our choice of a small input leads to a very small

execution footprint (as can be seen by the small number of total error sites). This translates

to few dynamic instructions per static PC which leads to very small equivalence classes.

The average size of the equivalence class in Blackscholes is just 1.96. Since the amount of

pruning is directly proportional to the size of the equivalence class, it is not surprising that

the pruning effectiveness for Blackscholes is limited. The maximum pruning is achieved in

Sobel, at 99.65%. Apart from Blackscholes, all the other applications see a one to two orders

of magnitude reduction in the number of error injections needed to comprehensively analyze

them. Thus we show that these pruning techniques are also effective for x86.

Validation Results: Figures 2.9(a), 2.9(b), and 2.9(c) show the validation accuracy for the

37



0

10

20

30

40

50

60

70

80

90

100

Bl
ac

ks
ch

ol
es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Va
lid

at
io

n 
(%

)

Res (δ = 2) Approx (δ = 2) Res (δ = 2, QT = 5) Approx (δ = 2, QT = 5)

(a)  Control (b)  Store (c)  Combined

Figure 2.9: gem5-Approxilyzer validation for (a) control equivalence, (b) store equivalence,
and (c) combined (control + store) equivalence.

control equivalence, store equivalence and their combination respectively. On average, both

control and store equivalence techniques show high accuracy (> 92%) for Res and Approx

with a flexible quality parameter δ = 2 that uses 2% for Blackscholes, FFT, LU, and Sobel,

while for the financial applications, Blackscholes and Swaptions, uses the absolute difference

in the dollar value set to $0.01 (difference of 1 cent or less). In brief, gem5-Approxilyzer

is able to correctly predict the output quality of the x86 application error sites with very

fine granularity (2% or within a single cent). Swaptions (> 94%), LU (> 98.5%), and

Sobel (> 99.9%) show very high validation accuracy across the board. While still relatively

high, Blackscholes shows the poorest validation accuracy for both control (Resδ=2 = 87%,

Approxδ=2 = 86%) and store (Resδ=2 = 78%, Approxδ=2 = 79%). As mentioned before,

Blackscholes has small equivalence classes which can lead to poor prediction accuracy even

if a single error site is predicted incorrectly.

We observe that the pilots that have low prediction accuracy in Blackscholes and FFT

(and a few in Swaptions) predominantly belong to two categories: (a) pilots are SDC-Maybe

and the populations also produce SDC-Maybe but with quality degradations that have a

wider range than allowed by the δ and (b) pilots of equivalence classes that have a mix of

outcomes at the border of either SDC-Bad and DDC or SDC-Maybe and SDC-Bad. More

sophisticated heuristics that combine control and data flow might capture specific patterns

in these applications more accurately and we leave their exploration to future work. Across

all applications, we observe that pilots with Masked, SDC-Good, and Detected outcomes

show almost perfect (> 99.9%) validation accuracy.
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Figure 2.10: Distribution of error outcome categories for the applications studied using the
x86 and SPARC ISAs.

Both Blackscholes and FFT show an improvement (> 90%) when a user quality threshold

is applied. For brevity we show results for QT=5, but we performed this experiment with a

range of different QT values and observed a similarly high validation accuracy. This implies

that even for pilots that fail to predict the quality at a fine granularity, the grouping of the

equivalence classes is sufficiently accurate to be used in many realistic use cases. On average,

we see that when a quality threshold is supplied, the validation accuracy is > 97% for both

store and control heuristics (and hence their combination).

Hence, we show that the techniques used by gem5-Approxilyzer are very accurate in

characterizing the error profiles for x86 applications.

2.6.4 Error Profiles for Different ISAs

We use gem5-Approxilyzer to perform an error analysis on our workloads compiled to

x86 binary. We also analyze the same workloads compiled to a SPARC binary with of

Approxilyzer using SIMICS [71], which allows us to perform an initial comparison of the

resiliency and approximation characteristics of the same workloads for two different ISAs.

Figure 2.10 compares the distribution of error outcomes (for all the error sites) in each

application for the x86 and SPARC ISAs. The error outcome profiles of the same application

look rather different for the different ISAs. We note, however, that some differences are

expected due to the CISC vs. RISC nature of the instructions as well as the fact that x86

uses many more implicit registers (that we do not inject into) compared to SPARC. The
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graph shows that SPARC has a higher percentage of more egregious outcomes. For example,

while Blackscholes-x86 has many error sites that lead to SDC-Good, SDC-Maybe, and SDC-

Bad outcomes, the error outcomes in Blackscholes-SPARC produce such bad quality output

that they become DDCs. We leave a deeper analysis of the causes for these differences to

future work.

Figure 2.11 further shows the percentage of static instructions that need resiliency pro-

tection and those that are approximable for the same QT across the two ISAs. The wide

differences across the two ISAs and the lack of a clear trend further underscore the impor-

tance of resiliency analysis tools like gem5-Approxilyzer that can analyze applications at

the binary level to devise customized resiliency and approximation solutions for different

architectures. Source-code or IR-level error analysis may not lead to the most optimized

solutions for different architectures.
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2.7 SUMMARY

We present a systematic framework, Approxilyzer, for principled and general purpose

instruction-level approximate computing and show its application to hardware resiliency.

Approxilyzer uses a new scheme to classify error outcomes into categories based on ap-

proximation potential. This categorization is based on an end-to-end quality metric that is

application-specific. We perform an extensive validation to show that Approxilyzer is able

to predict the impact of an instruction-level error on output quality with high accuracy (av-

erage of 95% accuracy for fine-grained quality classification observed over 2.6 million error

injections), for all dynamic instructions in a program execution.

Approxilyzer also presents a mechanism to quantitatively tune output quality, resiliency,

and overhead to the user’s target goals for the error model assumed. Furthermore, for general

error models, Approxilyzer automatically identifies candidate instructions for approximation

with no programmer burden (except for information on the quality metric), enabling a more

focused analysis for the general error model by other tools or the user.

The extension to gem5-Approxilyzer, an open-source re-implementation of Approxilyzer

for the gem5 simulation environment, enables support for multiple ISAs in the future within

an open-source infrastructure. We start by supporting x86 in this work. We show that gem5-

Approxilyzer is both effective and highly accurate in predicting the program’s final output

quality in the presence of soft errors in the execution. To additionally motivate the need

for such tools, we perform a comparison of our workloads across two ISAs, by generating

the error profiles for both x86 and SPARC. The differences in the error profiles for the same

applications across ISAs further underscore the need for a tool like gem5-Approxilyzer.
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Chapter 3: Scalable General Purpose Hardware Error Analysis

3.1 MOTIVATION

With principled error analysis techniques, the space of possible errors can shrink by orders

of magnitude, as exemplified by Relyzer [42] and Approxilyzer [44]. Despite the reduction

in the total number of error sites requiring exploration to make it a tractable problem,

actual runtimes can still be high. For example, with Approxilyzer, we found that it took

multiple days to complete the error analysis of an application – for a single input. Thus,

it is important to accelerate this general-purpose analysis in order for it to be used across

potentially even larger applications, as well as extending it to multiple inputs for a more

comprehensive resiliency analysis.

To effectively scale up such principled error analysis techniques, we leverage insight from

the domain of software testing. The software development workflow has, for many decades,

dealt with the problem of vetting code to be bug-free before release, in spite of the challenges

associated with uncovering elusive bugs. In the scope of hardware resiliency, this can be con-

sidered analogous to the detection of silent data corruptions (SDC), where the (challenging)

process of analysis for soft errors also typically occurs before program deployment. Iden-

tifying this key bridge between software testing for software bugs and hardware reliability

analysis for hardware errors is one of the key contributions of this thesis. By identifying and

adapting key concepts from the software testing domain, hardware reliability analysis can

scale up while maintaining the principled and comprehensive analysis enabled by tools such

as Approxilyzer.

This chapter presents Minotaur [46], a toolkit that improves the speed of resiliency analyses

while also precisely identifying more SDC-causing instructions (or, equivalently, the program

counters for general purpose applications) referred to henceforth as SDC-PCs. Minotaur

bridges between software testing and hardware reliability by adapting four software testing

techniques to make hardware error analysis faster and thus more scalable. As a result, we

show that Minotaur improves the runtime of Approxilyzer by an order of magnitude on

average (10.3×) while simultaneously improving the accuracy of Approxilyzer in identifying

hardware errors.

We identify, adapt, and evaluate the following four concepts which bridge between software

testing and resiliency analysis:

Concept 1: Test-Case Quality → Input Quality

Concept 2: Test-Case Minimization → Input Minimization
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Concept 3: Test-Case Prioritization → Error-Injection Prioritization

Concept 4: Test-Case Prioritization → Input Prioritization

Minotaur shows, for the first time, that leveraging software testing concepts for resiliency

analysis enables principled and significant benefits in speed and accuracy. While our evalua-

tion uses Approxliyzer as the underlying resiliency analysis, Minotaur and its concepts apply

more generally. For example, Concepts 1 and 2 can be applied to speed up any dynamic

resiliency analyses that typically study large inputs, by producing a smaller representative

input for analysis. Error-injection analyses can greatly benefit from Concept 3, by priori-

tizing error-injections and employing early termination for SDC-PCs. Concept 4 can propel

resiliency analyses to explore multiple inputs, a new direction which previously was daunting

due to speed and accuracy concerns of existing techniques. Minotaur provides a foundation

for a systematic methodology for efficient resiliency analysis based on software testing, and

opens up many avenues for further research.

3.2 BACKGROUND: SOFTWARE TESTING TECHNIQUES

Software testing is the process of executing a program or system with the intent of finding

failures [85]. The objective of testing can be quality assurance, verification, validation, or

reliability estimation. We discuss some techniques and best practices adopted by the software

testing community and associated definitions.

3.2.1 Test-Case Quality

In software testing, a test case is an input and an expected output used to determine

whether the system under test satisfies some software testing objective. A test set is a col-

lection of one or more test cases. The number of all test cases can be intractably large.

Thus, selecting appropriate test cases has a significant impact on testing cost and effective-

ness. Test cases are selected by evaluating them using quality criteria relevant to the testing

objectives.

Selecting a quality criterion involves a tradeoff. A “stronger” criterion enables closer

scrutiny of program behavior to find bugs, while a “weaker” criterion can be fulfilled faster

using fewer test cases [86]. The choice of criterion depends on several factors, including

the size of the program, cost requirements, and criticality and consequence of failure. Some

popular quality criteria from the software testing literature [86], ordered from weaker to

stronger, are: (1) statement coverage [87], which measures the fraction of program statements

executed by tests; (2) branch coverage [85], which measures the fraction of branch edges
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executed; and (3) def-use coverage [86, 88], which measures the fraction of pairs of variable

definitions and their corresponding uses executed. Despite being a weak criterion, statement

coverage is typically used for testing commercial software due to its low resource overheads.

Branch coverage is often used for safety-critical systems [89]. The software testing literature

provides an extensive analysis of various testing criteria [87].

3.2.2 Test-Case Minimization

While running larger (or more) test cases is desirable for thorough testing, time and re-

sources limit the size (or number) of test cases that can be executed. Test-case minimization

is used to minimize the testing cost in terms of execution time [90, 91, 92, 93, 94, 95, 96]. The

goal of test-case minimization is to generate a smaller test case that has similar or (ideally)

the same quality as the original test case; e.g., covers the same statements.

3.2.3 Test-Case Prioritization

Resource constraints can sometimes make it infeasible to execute all planned test cases. It

thus becomes necessary to prioritize and select test cases so that critical failures can surface

sooner rather than later [90]. Test-case prioritization techniques schedule test cases in an

order that allows the most important tests, by some measure, to execute first. For example,

test-cases can be prioritized by their coverage. Many test-case prioritization techniques have

been proposed in the literature [90].

3.3 MINOTAUR: ADAPTING SOFTWARE TESTING TECHNIQUES FOR
HARDWARE ERRORS

Minotaur shows, for the first time, that leveraging software testing concepts for resiliency

analysis enables principled and significant benefits in both speed and accuracy of such anal-

ysis. We identify, adapt, and evaluate four bridges between software testing and resiliency

analysis described below. These concepts can benefit many resiliency analysis techniques;

here we evaluate them by applying to the state-of-the-art Approxilyzer tool [44]. Figure 3.1

illustrates the complete system.
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Figure 3.1: Overview of Minotaur. Approxilyzer may be replaced with another resiliency
analyzer.

3.3.1 Input Quality

Evaluating and ensuring that “good” quality inputs are used for resiliency analysis in-

creases the effectiveness of the analysis. We adapt the concept of test-case quality (Sec-

tion 3.2.1) to build an Input Quality Checker (Box 1 in Figure 3.1) that measures the

quality of the inputs used for resiliency analysis.

The software test quality criteria are typically expressed at the source-code level, to make

it easier for developers to understand what is covered and what is not. There has also been

some work on test coverage at the object-code level [97, 98], but it is not widely studied. Our

resiliency analysis examines error models at the object code level and aims to find assembly

instructions that are vulnerable to SDCs (SDC-PCs). Hence, it is desirable to measure the

quality of the input used for resiliency analysis with quality criteria expressed at the object

code.

Figure 3.2 demonstrates the difference between using input quality criteria at the source

versus object code level. Suppose a ternary operator is used by the developer, such as in

Line 1. Assuming a value of True for the variable c, the statement coverage (Section 3.2.1)

of the source code measures that this single input will cover (execute) 100% of the code.

However, for the same code compiled to assembly, only 75% of the instructions are covered

(executed). Analyzing resiliency with just this input does not provide full (100%) assembly

instruction coverage, and an error in assembly instruction PC-4 would not be captured.

For resiliency analysis, we adapt three test (input) quality criteria to the object code

level—statement, branch, and def-use coverage. The analog of statement coverage at the

object code level measures the fraction of static assembly instructions (or PCs) executed

by the input; we call it simply PC coverage. Branch and def-use coverage are analogously
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// INPUT: c = True

// Source. 100% Statement Coverage

1. v = c ? E1 : E2 // covered

// Assembly. 75% PC Coverage

PC-1. beq c, $0, L2 # covered

L1: PC-2. move v, E1 # covered

PC-3. jump L3 # covered

L2: PC-4. move v, E2 # not covered

L3: …

Figure 3.2: Statement coverage vs. PC coverage.

adapted from the source to the object code level to consider assembly-level branches and

def-uses pairs, respectively.

The Input Quality Checker evaluates whether a given input meets the desired quality

threshold (e.g., 90%) for a specified quality criterion (e.g., PC coverage). We refer to the

combination of the input quality criterion and the threshold as the input quality target (IQT).

3.3.2 Input Minimization

Minimizing the input size for an application can greatly speed up the resiliency analysis by

reducing the time for each error-injection experiment and/or reducing the total number of

error injections needed. Using insights from test-case minimization, we designed a systematic

technique, a Minimizer (Box 2 in Figure 3.1), that Minotaur uses to generate a minimal

input, Min, provided a reference input, Ref.

There is no general algorithm to minimize inputs across all application domains in software

testing [87]. Our Minimizer algorithm is specialized for our workloads, but the underlying

concepts are general and can be extended to other domains with appropriate modifications.

Given a Ref, the goal of the Minimizer is to find a reduced input (Min) that minimizes a

stated minimization objective (MinObj) (e.g., execution time) while satisfying an input qual-

ity target (e.g., 90% PC coverage relative to Ref). We chose a simple, greedy algorithm based

on binary search for the Minimizer and found it effective. More sophisticated optimizers may

find better Min inputs; we leave such an exploration to future work.

In addition to the minimization objective and input quality target, the Minimizer is pro-

vided with the list of input parameters (e.g., command line and other program-specific

parameters) and a set of parameter constraints (e.g, range or boundary conditions) to en-

sure that the Min generated is both legal and realistic. A realistic Min enables the resiliency

analysis to uncover SDC-PCs that are vulnerable for realistic conditions, avoiding over- or

under-protection. Domain knowledge enables understanding the realistic range of input val-
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ues and how to change them (e.g., choosing image shrinking instead of sub-sampling pixels

or subsetting image inputs [99]) to achieve realistic inputs.

Algorithm 3.1: Input Minimization Pseudocode

1 PList: Parameter List, C: Constraints,
2 IQT : Input Quality Target, MinObj: Minimization Objective,
3 PListRef : Reference input’s PList
4 Function Minimizer(PListRef , C, IQT, MinObj):
5 PList← OrderParams(PListRef , MinObj)
6 for param ∈ PList do
7 lower ← Minimum value of param provided C
8 upper ← Reference value of param
9 PList[param]← BinarySearch(lower, upper, C, IQT )

10 end
11 return PList

12 Function OrderParams(PList, MinObj):
13 return Ordered parameters of PList with respect to MinObj
14 Function BinarySearch(lower, upper, C, IQT ):
15 Search values between lower and upper provided C,
16 checking if the candidate value satisfies IQT
17 return minimum value that satisfies IQT

Algorithm 3.1 shows the pseudo-code of Minotaur’s Minimizer. It first performs a pre-

processing pass over the reference input’s parameter list and orders the parameters according

to their estimated impact on the minimization objective. Our current implementation deter-

mines this order by running the program with a few different values for each input parameter

and measuring the impact on the minimization objective. This step can be accelerated with

additional domain knowledge from the user or automated using more sophisticated optimiz-

ers.

Given the ordered parameter list, the Minimizer uses binary search to progressively change

each input parameter (one with highest impact on the minimization objective first) while

ensuring that the new input value meets the input quality target. Lines 6–10 of Algorithm 3.1

show this search for applications with (1) numeric inputs and (2) where reducing the value

of input parameters reduces (or does not affect) the minimization objective. All applications

we study (except Sobel, which takes as input an image) satisfy both characteristics, with

binary search sufficing for the value exploration. We reduce images for Sobel using the

resize utility in the ImageMagick suite [100], which accepts a numerical argument, adapting

the binary search to adjust this argument. Similarly, other application domains could also

require appropriate adaptation of the algorithm. At the end of this process, the Minimizer
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outputs the final parameter list for the minimized input.

3.3.3 Error Injection Prioritization with Early Termination

We next use insights from test-case prioritization to improve resiliency analysis for any

input (minimized or not). We evaluate error-injection prioritizations that order error injec-

tions for a PC such that error sites which are more likely to be SDC-causing are examined

earlier. Once an injection reveals an SDC, Minotaur does not perform injections for any

other error sites for that PC. Hence, error-injection prioritization can lead to early termina-

tion of error-injection campaigns, leading to significant savings in error injections. Box 3 of

Figure 3.1 shows the application of error-injection prioritization in Minotaur’s workflow.

We study the following ordering schemes for error-injection prioritization to understand

which error sites result in SDCs:

• Bit position of registers (BitPos): Injecting into specific bits first (such as the

MSB or LSB).

• Dynamic instance of error site (DI): Error sites from an earlier dynamic instance

may be more prone to SDCs than later dynamic instances.

• Register type (RT) – integer vs. floating point: Certain register types could be

more susceptible to SDCs than others.

• Operand kind (OP) – source vs. destination: Prioritizing source vs. destination

register may also show a pattern for SDC-causing instructions.

• Equivalence class size (ECS): This ordering is specific to Approxilyzer and prior-

itizes injections in error sites of largest equivalence classes first, which is the default

ordering used by Approxilyzer to maximize the number of error sites with predicted

outcome for a given number of total error injections.

• Random ordering: Error sites are chosen at random.

3.3.4 Input Prioritization

Mission-critical applications with high resiliency requirements must undergo analysis us-

ing multiple inputs to build confidence that most SDC-PCs in the application have been

identified. To that end, a näıve, but prohibitively expensive, scheme could analyze many

inputs in their entirety to find all SDC-PCs in an application. Instead, we adapt test-case
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prioritization from software testing in the form of input prioritization to speed up resiliency

analysis for multiple inputs.

In our scheme, an Input Selector (Box 4 in Figure 3.1) chooses inputs for resiliency analysis

according to an order specified by an input prioritization objective. We choose to analyze

the input with the shortest execution time, prioritizing faster analyses first (e.g., we choose

Min before Ref). Input prioritization can lead to faster resiliency analysis speed for each

subsequent input because the PCs already identified as SDC-PCs by prior inputs need not

be (re)analyzed. Thus, we can leverage input-prioritization to find many of the SDC-PCs

from one (faster) input, and carry this information onto another (slower but larger) input to

avoid unnecessary error injections. Minotaur’s Input Selector can successively select inputs

for resiliency analysis until it meets an analysis target (e.g., a coverage or resource target).

3.4 EVALUATION METHODOLOGY

Our error-injection infrastructure builds on Approxilyzer, based on simulation using Wind

River Simics [71] and GEMS [81] running OpenSolaris. Our workloads are compiled to the

SPARC V9 ISA with all optimizations enabled. Approxilyzer’s error model uses single-bit

architecture-level errors (Section 2.4), which are a limited but effective [101] and realis-

tic subset of hardware errors [102]. With resiliency becoming a first-class software design

objective [103], techniques with different speed, precision, and error models are needed at

different stages of software development. Evaluating Minotaur with tools that use different

error models (lower-level, multi-bit, etc.) is part of our future work.

To evaluate Minotaur, we use seven workloads from three benchmark suites [79, 80, 83]

spanning multiple application domains, summarized in Table 3.1. Column 3 lists the refer-

ence (Ref) input parameters used in our study. For five of the benchmarks—Blackscholes,

Swaptions, LU, Water, and FFT—we use the same inputs as Approxilyzer [44] for the ref-

erence inputs. For Streamcluster, prior evaluations [78, 104] showed that the benchmark

benefits from realistic datasets (as opposed to data points generated internally by the appli-

cation); hence, we use a dataset from the UCI Machine-Learning Repository [105, 106, 107]

as its Ref input. For Sobel, we use the bird image from the iACT [108] repository as in-

put. We chose relatively small Ref inputs for almost all applications to be conservative and

not over-estimate the benefits of input minimization. To evaluate the quality of the out-

puts, we use the same metrics as Approxilyzer [44] for Blackscholes, Swaptions, LU, Water,

and FFT; for Streamcluster and Sobel, we use maximum relative error (max-rel-err from

Approxilyzer [44]).

Evaluating Minotaur using the above workloads involved performing over 8.4 million error-
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Application Domain Ref Input Min Input PC (%) Branch (%) Def-Use (%)

Blackscholes Financial 64K options 21 options 100 100 99.38
Swaptions Modeling 16 options 1 option 99.91 99.23 98.42

5000 simulations 1 simulation
Streamcluster Data centers = [10,20] centers = [4,5] 99.97 99.77 98.67

Mining num iterations = 3 num iterations = 1

LU Scientific 512x512 matrix 16x16 matrix 100 100 95.56

Computing 16x16 block size 8x8 block size
Water 512 molecules 216 molecules 99.89 99.36 99.85

FFT Signal 220 data points 28 data points 100 100 99.59

Processing

Sobel Image 100% image size 25.25% image size 100 100 100

Processing (321x481 pixels) (81x121 pixels)

Table 3.1: Applications studied and key input parameters (the ones that changed during
minimization) for Ref and Min. The last three columns show the coverage of Min relative
to Ref for different input quality criteria.

injection experiments spanning approximately seven weeks of simulation time on a 200-node

cluster of 2.4GHz Intel Xeon processors.

3.4.1 Input-Quality Criteria

Since no available tool can easily measure test coverage at the object-code level, we de-

veloped our own tools using dynamic traces from Simics [71] for PC, branch, and def-use

coverage for the object code. For PC coverage, we simply track the PCs executed by the

input. For branch coverage, we store the unique branch-target PC pairs that represent con-

trol edges exercised by the input. For def-use coverage, we analyze the definition and use of

operand registers exercised by the input, and store unique PC pairs that represent a def-use

edge. For all criteria, we measure Min’s coverage relative to Ref.

3.4.2 Input Minimization

Minotaur uses application run time as the minimization objective and targets 100% PC

coverage (relative to Ref) as the input quality target when possible. We measure PC, branch,

and def-use coverage for each Min relative to its corresponding Ref; e.g., if Min executes all

PCs executed by its Ref, we consider it to have 100% PC coverage. Similarly, if Min exercises

all branch-target and def-use pairs exercised by Ref, we consider it to have 100% branch and

def-use coverage, respectively.

We choose PC coverage as our quality criterion because it is simple and fast to compute

and it is the analog of the widely used statement coverage criterion for software testing

(Section 3.2.1). We find that the Min inputs generated using PC coverage are surprisingly
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effective, and also exhibit high (but not perfect) branch and def-use coverage.

3.4.3 Accuracy Analysis

Minotaur uses input minimization to generate a Min that is a good representative of a

Ref. We quantify Minotaur’s accuracy for a given input as the fraction of SDC-PCs found

by the input (either Min or Ref) relative to the total number of SDC-PCs found by the

union of both inputs.

To understand the sources of inaccuracy, we analyze the SDC-PCs identified by Min and

Ref by grouping them into categories based on whether they were found by Ref, Min, or

both. We further distinguish the cases where certain PCs are explored (i.e., analyzed for

resiliency) by one input but not both inputs. The difference occurs when the targeted error-

site coverage is less than 100% and Minotaur chooses different PCs to meet that coverage for

the two different inputs. We use the term explore to convey that at least one error site for a

PC was analyzed (for a given input) by Minotaur. If no error site for a PC was analyzed (for

a given input), we say that the PC was not explored by the input. Note that not explored

does not mean not executed by the input; it simply means that the PCs were not analyzed

for resiliency.

We group the SDC-PCs into five categories:

1. Common: Both Min and Ref classify the PCs as SDC, which are considered accurately

classified by both.

2. MinSDC: Min classifies these as SDC-PCs and Ref explores them but does not classify

them as SDC-PCs. Although Ref did not find these SDC-PCs, they are still candidates

for hardening because they were found by a realistic Min input. Hence, these PCs are

considered accurately classified by Min, but not by Ref.

3. MinSDC+: Min classifies these as SDC-PCs and Ref does not explore them. For

similar reasons as MinSDC, this category is also considered accurately classified by

Min, but not by Ref.

4. RefSDC: Ref classifies these as SDC-PCs and Min explores them but does not classify

them as SDC-PCs. These PCs are inaccurately classified by Min because relying only

on Min’s analysis would leave these PCs unprotected.

5. RefSDC+: Ref classifies these as SDC-PCs and Min does not explore them. This

category is also considered inaccurately classified by Min.
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The error-injection prioritization scheme (Section 3.4.4) does not affect accuracy because

it finds the same set of SDC-PCs for an input as without the optimization, albeit faster.

Employing the input-prioritization scheme for all inputs (Section 3.4.5) will result in 100%

accuracy since input-prioritization obtains the union of SDC-PCs found by analyzing all

inputs (while optimizing resiliency analysis speed).

3.4.4 Error-Injection Prioritization

We explore 38 different error-injection prioritizations using combinations of the schemes

from Section 3.3.3. For BitPos, DI, and ECS schemes, we test both ascending (A) and

descending (D) ordering. We also explore compositional schemes. For example, BitPos A +

ECS D first orders error injections by bit positions in ascending order (i.e., starting with the

LSB), followed by ordering in descending equivalence class size. For RT and OP schemes,

we simply pick the type/kind of register (e.g., OPSrc or OPDest) to prioritize.

To understand the bounds on the error-injection prioritization gains, we also run an Or-

acle best and worst case. The best case assumes that the Oracle identifies an SDC-PC

with a single injection. For the worst case, the Oracle picks (for each PC) all injections

that are not SDC-causing before picking an SDC-causing injection, reducing the benefit of

early termination.

3.4.5 Input Prioritization

Our Input Selector prioritizes (faster) Min over Ref. Section 3.5 shows that while Min

exhibits high accuracy (Section 3.4.3), it misses a small number of SDC-PCs found only by

Ref. To achieve 100% accuracy, resiliency analysis on Ref is run after resiliency analysis on

Min completes, but only for PCs that Min did not find as SDCs (Section 3.3.4).

3.4.6 Runtime Analysis of Minotaur

We evaluate the time that Minotaur takes to perform resiliency analysis on a single input.

The Input Quality Checker, Minimizer, and Input Selector (Boxes 1, 2, and 4 in Figure 3.1)

take negligible time compared to the resiliency analysis (Approxilyzer) time (Box 3); there-

fore, we focus on the resiliency analysis component.

Ideally, the runtime performance would be measured directly by measuring all components

of Approxilyzer and every error injection. However, this cannot be done precisely on a
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busy cluster which introduces variability between runs. We estimate the total runtime by

measuring statistically sampled error injections and using formulas as follows.

The time for resiliency analysis for a given application and input (Ref or Min) depends

on: (1) equivalence class generation time (tequiv class gen) [42, 44], (2) total injections of

each outcome category (Imasked, Idet, IOC) for a target error site coverage, and (3) the av-

erage error-injection runtime of each outcome category (tmasked, tdet, tOC). We measure the

runtime for each category separately because it can be quite different; e.g., an OC error

requires additional post-processing (compared to Masked) to quantify the error quality into

Good/Maybe/Bad categories, while Detected outcomes involve simulator and OS overhead

to report outcomes such as SegFaults.

We measure the runtime by sampling 1,000 error-injection experiments for each of masked,

detected, and OC outcomes per application and input, excluding outliers in the top and

bottom 2.5% of runs. The total samples correspond to a 99.8% confidence level with 5%

error margin in timing measurements [109]. The time for resiliency analysis is calculated as:

TotalRuntime = tequiv class gen +Σn (In × tn) (3.1)

where each outcome type n ∈ {masked, detected,OC} is weighted by the number of injec-

tions with that outcome and average injection runtime for that outcome.

In practice, error injections (the second term of Equation 3.1) dominate the total runtime

of resiliency analysis. Thus, even though tequiv class gen is much shorter for Min (order of

minutes) compared to Ref (order of hours), it is negligible compared to the total time of

injection experiments.

All runs for Ref and Min begin with a checkpoint at the start of the region of interest

(ROI), generally provided by the benchmarks, to avoid simulator startup cost and applica-

tion initialization overhead. We break down the measurements into two components: the

application runtime only inside the ROI, and the remaining runtime from the end of the

ROI to the injection outcome. The latter runtime includes simulation overheads, various file

I/O, and analysis of the application output.

3.5 RESULTS

We evaluate Minotaur’s impact on a resiliency analysis tool, Approxilyzer [44], by ana-

lyzing (1) the speedup and accuracy from a minimized input (Min) for resiliency analysis

(Section 3.5.1); (2) the speedup from error-injection prioritization with early termination

(Section 3.5.2); (3) the combined speedup from minimization and error-injection prioritiza-
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tion (Section 3.5.3); and (4) the speedup from applying input prioritization across multiple

inputs (Section 3.5.4).

3.5.1 Input Minimization

Min Quality: Table 3.1 shows the Min generated by applying Algorithm 3.1 to each Ref,

using PC coverage as the input quality criterion. Most applications show a large reduction of

input parameter values in Min (Column 4), which translates to faster application runtimes

relative to Ref.1 Additionally, Min maintains very high PC coverage relative to Ref (Column

5), which translates to high accuracy in finding SDC-PCs.

Not all workloads achieve a significant application speedup with the input quality threshold

set to 100%. Slightly reducing the threshold by less than a percent, however, results in

substantially higher minimization for Swaptions, Streamcluster, and Water. We show that

the PC coverage reduction does not impact Min’s accuracy significantly, while allowing

Minotaur to benefit from running the faster Min.

The last two columns of Table 3.1 show the branch and def-use coverage of the generated

Min (relative to Ref) and are discussed further at the end of this section.
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Figure 3.3: Number of error injections for different error-site coverage targets for each bench-
mark, relative to 100% error-site coverage for Ref (Ref100). R=Ref, M=Min.

1Many of our Ref inputs are themselves relatively small; higher benefits are likely with larger Ref inputs.
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Minimization Speedup: Min typically runs faster than Ref because it has fewer dy-

namic instructions, resulting in fewer error injections and a shorter runtime per injection.

Figure 3.3 shows the total number of error injections needed for resiliency analysis for

an application, relative to analyzing 100% of Ref’s error sites (Ref100). Past studies found

that targeting 100% error-site coverage was too expensive and so targeted just the top 99%

of error sites (Ref99). By using input minimization, achieving 100% error-site coverage

is no longer elusive for many applications. Figure 3.3 shows that for the Min inputs of

Blackscholes, Swaptions, LU, and FFT, the number of error injections required for 100%

error site coverage (Min100) is comparable to the number of error injections for Ref99 Thus,

for these applications, it becomes tractable to run resiliency analysis with Min100. The other

applications (Water, Streamcluster, and Sobel) also reduce the number of error injections

from Ref100 to Min100, but the total number is still very large, presenting a trade-off

between resiliency-analysis runtime and error-site coverage. We choose to favor runtime and

use 99% error-site coverage for these applications. Henceforth, we use the umbrella term

Min (unless otherwise stated) to encompass Min100 for Blackscholes, Swaptions, LU, and

FFT, and Min99 for Water, Streamcluster, and Sobel. We use Ref to refer to Ref99 for all

applications.
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Figure 3.4: Average runtime per injection, normalized to Ref. Each set of three bars rep-
resents (from left to right) Masked, Detected, OC runtime (Section 3.4.6), divided into
application runtime and simulation overhead. R = Ref and M = Min.
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Not only does Min require fewer error injections for most of our workloads, each individual

injection runs faster compared to Ref. Figure 3.4 shows the average runtime per injection

for Ref and Min for different outcome types (Masked, Detected, and OC). Each bar is

divided into the application runtime during the ROI (which begins after an application’s

initialization phase) and the simulation overhead (Section 3.4.6).

Min injections run 2.1× faster on average2 than Ref for all outcome types for two primary

reasons. First, the application runtime itself is faster (2.3× on average across outcome types)

due to the smaller input. Second, for some applications, the I/O and other simulation envi-

ronment overhead is significantly reduced for Min (1.8× on average). This is most notable

for LU and FFT, where a large output matrix is generated for Ref but not for Min. The out-

put matrix needs to be extracted for comparison and error classification (Figure 2.2). Min’s

smaller output matrices allow for faster post-processing, further speeding up the resiliency

analysis relative to Ref for these applications.
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Figure 3.5: Min, MinEIP , and RefEIP speedup relative to Ref.

Figure 3.5 shows the total speedup obtained for Min (and the Minotaur optimizations

discussed in the next sections). The first bar for each application shows the speedup from

using a Min input relative to Ref. Overall, the combination of having fewer error sites and

faster runtime per injection results in a 4.1× speedup for Min over Ref on average (up to

2All averages in this chapter refer to the arithmetic mean.
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Figure 3.6: Min and Ref accuracy. The Y-axis represents all SDC-PCs found by Min or Ref
in an application.

15.5× for FFT), with nearly all applications showing speedup. Even for the applications that

do not show much speedup (Streamcluster and Sobel), the Min inputs are more accurate than

Ref inputs (they identify more SDC-PCs) and benefit from error-injection prioritization, as

discussed in the next sections.

Minimization Accuracy: Figure 3.6 shows the accuracy of Ref and Min for each appli-

cation. The Y-axis corresponds to the union of SDC-PCs found by Ref or Min, distributed

into the five accuracy categories (Section 3.4.3). The results show that a majority of SDC-

PCs are categorized in the same way by both Ref and Min (60% on average are Common).

Further, a large number of PCs fall in the MinSDC and MinSDC+ categories (35% on aver-

age). These are SDC-PCs that Min finds that Ref misses – either due to misclassification by

Ref (MinSDC) or due to the lack of exploration of that PC by Ref altogether (MinSDC+).

Figure 3.7 explains the surprising result of finding additional SDC-PCs over Ref in the

MinSDC+ category. The Y-axis corresponds to the total number of static PCs explored for

different error site coverage targets. Ref error sites, although much more than Min error

sites, generally explore fewer distinct PCs than Min at lower error site coverage targets.

Figure 3.7 shows that, on average, for 99% error-site coverage (sorted by equivalence class
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Figure 3.7: Percentage of PCs explored for different error-site coverage targets. R = Ref, M
= Min.

size), Ref explores 55% of the static PCs explored by the union of Ref and Min, while Min

explores 85%. Thus, it can still be advantageous to run resiliency analysis with Min for

workloads such as Streamcluster and Sobel, even though the total analysis time is similar to

that of running with Ref.

The remaining two categories, RefSDC and RefSDC+, reflect a loss of accuracy for Min.

For many workloads, there are no RefSDC+ because Min explores all the PCs explored

by Ref. The RefSDC category is also small, but not insignificant (4% on average). Upon

further study of the misclassified PCs, we found that a majority of the mismatches occur at

the boundary of SDC categories that distinguish if protection is needed or not. For example,

in many cases Ref identifies a PC as SDC-Maybe, but Min identifies it as SDC-Good. Often

the difference in output quality between these is less than 1%. Similarly, on the other end

of the protection spectrum, there are many PCs that mismatch because Ref classified the

PC as SDC-Bad but Min classified it as DDC.

Overall, Min shows significantly higher accuracy than Ref. Of the total SDC-PCs discov-
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ered, on average, Min finds 96% (the sum of Common, MinSDC, and MinSDC+ categories)

while Ref finds only 64% (the sum of Common, RefSDC, and RefSDC+) of these SDC-PCs.

Improving Min Selection Criteria: We studied branch and def-use coverage of Min

(relative to Ref) to understand if these stronger criteria could have been used to generate

an alternate Min that provides higher accuracy than PC coverage. Table 3.1 shows that

the Min inputs generated using PC coverage already have very high branch and def-use

coverage of 99.76% and 98.78%, respectively, relative to Ref. Further, as discussed, Min

already finds 96% of the SDC-PCs discovered by the union of Ref and Min. Thus, the

potential improvement from using the more complex criteria is limited.

Nevertheless, we isolated the branch-target and def-use pairs that were in Ref but not in

Min to determine if they were responsible for the RefSDCs in Figure 3.6. We found that none

of the RefSDC PCs intersect with the isolated branch-target pairs and only four intersect

with the def-use pairs (one each for Blackscholes and Swaptions and two for LU). A more

comprehensive analysis would explore the entire control and data flow paths rooted at the

isolated branch-target and def-use PCs in Ref to conclusively confirm whether the stronger

criteria would add further accuracy. We leave such an analysis and exploration of even more

complex input quality criteria (e.g., path coverage) to future work, given that our results

already show that PC coverage provides an excellent sweet spot for simplicity, performance,

and accuracy.

3.5.2 Error-Injection Prioritization
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Figure 3.8: Speedup with error-injection prioritization for Min and Ref.
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Figure 3.9: Cumulative probability (Y-axis) of picking an SDC-causing error injection within
the first n injections (X-axis) for an SDC-causing PC.

We study 38 different error injection prioritization schemes (Section 3.4.4). For brevity,

we show results only for the 7 most effective schemes, in addition to the oracle best-case and

oracle worst-case schemes.

Figures 3.8a and 3.8b show the speedup results for Min and Ref, respectively, for different

error injection prioritization schemes with early termination enabled. The figures show a

noticeable speedup for most cases for both Min and Ref. Random prioritization gains the

best average speedup of 2.4× and 3.8× for Min and Ref (upto 3× and 8.1×), respectively,

while also being very close to the oracle best-case.

To understand the surprising result that Random performs the best, Figure 3.9 plots the

cumulative probability (averaged over all SDC-PCs) of choosing an SDC-causing error injec-

tion after n error injections in an SDC-causing PC. Figure 3.9 shows only four applications

using Ref input, but the trends are representative across the workloads and inputs. The

figure shows that the probability of finding an SDC injection shoots up within the first

few injections. Upon investigation, we uncover an interesting insight – when a PC is SDC-
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causing, a large fraction of the injections in that PC result in an SDC outcome. Randomly

choosing an injection therefore tends to quickly find an SDC for that instruction. Thus, we

choose the Random error injection prioritization scheme for the remainder of the evaluations

in this chapter.

3.5.3 Minimization With Injection Prioritization

This section discusses the benefits of combining input minimization with error injection

prioritization. Figure 3.5 shows the speedup in resiliency analysis, relative to Ref, from (1)

using Min, (2) using Min with error injection prioritization (referred to as MinEIP ), and

(3) using Ref with error injection prioritization (RefEIP ). As discussed previously, using

only Minotaur’s input minimization optimization for resiliency analysis provides a 4.1×
average speedup (up to 15.5×) compared to Ref (first bar for each application in Figure 3.5).

Combining Minotaur’s input minimization optimization with error injection prioritization

results in an average speedup of 10.3× (up to 38.9× for FFT), relative to Ref. In contrast,

RefEIP observes only a 3.8× average speedup (up to 8.14× for LU) relative to Ref (third

bar for each application in Figure 3.5 and also discussed in Section 3.5.2).

Recall that the accuracy of MinEIP is the same as that of Min as described in the previous

section. Thus, in addition to MinEIP significantly outperforming Ref and RefEIP on average,

MinEIP has the added benefit of finding many SDC-PCs that were not found by Ref (and

RefEIP ) – Min finds 96% of the total SDC-PCs while Ref finds 64%.

3.5.4 Input Prioritization

For safety-critical systems which may require even higher accuracy, Minotaur provides the

additional optimization of input prioritization. This optimization can speed up the analysis

of multiple inputs in an attempt to further improve SDC-PC identification without taking

the performance hit of running resiliency analysis for each individual input in its entirety.

Figure 3.10 shows the runtime of analyzing both MinEIP and RefEIP , without and with

input prioritization, normalized to the runtime of MinEIP .

The first bar for each application shows the runtime of employing a naive input prior-

itization scheme, by simply running MinEIP followed by RefEIP analyses in their entirety

(MinEIP + RefEIP in the figure). The second bar shows the runtime of running MinEIP

and RefEIP with input prioritization enabled. That is, MinEIP is first run in its entirety

(which is relatively fast, as discussed in Section 3.5.3), followed by RefEIP but only for PCs

not identified as SDC-PCs by MinEIP . Thus, input prioritization requires the second input
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Figure 3.10: Resiliency analysis time for analyzing both MinEIP and RefEIP , without and
with input prioritization, normalized to analysis time for only MinEIP .

(RefEIP in our study) to run for only a fraction of the original resiliency analysis time.

Figure 3.10 shows that without input prioritization, MinEIP + RefEIP runs 3.7× slower

than MinEIP . Using input prioritization ((MinEIP + RefEIP )IP in the figure) brings the

analysis time to only 1.6× slower than MinEIP . Thus, leveraging input prioritization allows

Minotaur to analyze both inputs 2.3× faster on average than analyzing each input alone in

its entirety. By carrying over information from one input analysis to the next, Minotaur is

capable of achieving 100% accuracy while running much quicker than previous techniques.

3.6 MINOTAUR EXTENSIONS

Minotaur’s techniques can be used to benefit analyses beyond those discussed so far. This

section demonstrates Minotaur’s generality by discussing and evaluating two extensions.
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3.6.1 Extension to Approximate Computing

The resiliency analyzer we chose (Approxilyzer [44]) can also be used for approximate com-

puting. Approxilyzer can identify approximable instructions by grouping error sites differ-

ently. Whereas for resiliency we focus on SDC-Maybe and SDC-Bad outcomes,Approxilyzer

classifies an instruction as approximable if no egregious errors – Detected, DDC, or OC

above a user-defined threshold – are observed for any dynamic instance of that instruction.

We use the following user-defined thresholds: 1) for financial applications, errors in individ-

ual outputs that are smaller than a cent are tolerable and 2) for other applications, relative

errors up to 5% in individual outputs are tolerable. We use the same Min and Ref inputs

as in Table 3.1, and apply random error injection prioritization with early termination (we

observe the same trend that randomized error injection ordering performs close to oracle

best). For approximate computing, early termination is triggered when an error-injection

reveals a PC as non-approximable, indicating that no further injections are required for that

instruction.

For approximate computing, Minotaur’s analysis time without error injection prioritization

is the same as that for resiliency since we use the same Min and Ref inputs. That is, Min

observes an average 4.1× speedup compared to Ref, due to Min’s smaller size. Applying error

injection prioritization for approximate computing analysis (where early termination differs

compared to resiliency, as described above), Min analysis can be sped up by 4.4× on average,

while Ref shows an average speedup of 5.53×. Combining the two optimizations, MinEIP

shows an average speedup of 18× compared to Ref for approximate computing analysis.

We use an accuracy metric similar to that in Section 3.4.3, adapted from SDC-PC to

Approximable-PC. Min shows very high accuracy – of all the approximable-PCs identified

by both Min and Ref, on average, Min identifies 96% while Ref identifies 81%.

3.6.2 Selective Instruction Analysis

Minotaur can speed up analysis for any desired subset of PCs. For example, a user may

desire to analyze the “hot” PCs that account for X% of the dynamic execution. The user can

identify the “hot” PCs by first profiling Ref and then switching to Min to run the resiliency

analysis. For instance, by targeting the PCs for the top 25% of the dynamic execution in

Blackscholes, MinEIP speeds up the analysis by 6.8× over Ref for the same PCs and with

100% accuracy.
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3.7 SUMMARY

This chapter presents Minotaur, a toolkit to improve the analysis of software vulnerability

to hardware errors by leveraging concepts from software testing. Minotaur adapts several

concepts from software testing for software bug detection to resiliency analysis for hardware

error detection: 1) identifying test-case quality criteria, 2) test-case minimization, and 3)

two adaptations of test-case prioritization. We evaluate Minotaur on Approxilyzer, the

resiliency analysis tool introduced in Chapter 2. Minotaur’s single-input techniques speed up

Approxilyzer’s resiliency analysis by 10.3× on average while significantly improving SDC-PC

detection accuracy (96% vs. 64% on average) for the workloads studied. Further, Minotaur

presents a technique, input prioritization, which enables finding SDC-PCs across multiple

inputs at a speed 2.3× faster (on average) than analyzing each input independently.

Although Minotaur is already very effective, there are many avenues of future work to

improve both Minotaur’s effectiveness and its applicability. For example, it is possible to

explore more input quality criteria (such as path coverage, loop coverage, or state cover-

age [87]) as well as develop new quality criteria geared specifically towards resiliency (e.g.,

criteria derived from ACE bits [35] or PVF [27]) or towards approximate computing (e.g., us-

ing parameter range coverage). Further, more sophisticated optimizers to improve the speed

and scalability of the Minimizer along with custom minimization objectives (e.g., number

of error-sites analyzed) for faster Mins. The Input Selector can also be improved, by tun-

ing analysis speed versus accuracy for multiple Refs and Mins with variable input quality

thresholds.

To widen the applicability of Minotaur, we can apply it to other resiliency and approxi-

mation analysis techniques proposed in the literature, using a broader range of error models

abstracted at lower and higher layers of the system stack than studied here. Our end goal

is a seamless integration of resiliency analysis (and hardening) into the standard software

development and testing workflow. Minotaur opens up many avenues for further research

towards this ambitious end goal. Modern software development practices such as contin-

uous integration encourage developers to continuously commit their code, which would be

ideally checked for resiliency, making fast and accurate resiliency analysis techniques such

as Minotaur even more important.
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Chapter 4: Optimizing General-Purpose, Software-Directed Instruction-Level
Protection

4.1 MOTIVATION

Resiliency analysis techniques, such as those proposed by Approxilyzer and accelerated

by Minotaur, can help inform better resiliency hardening schemes by identifying erroneous

error sites and providing a general understanding of error propagation in applications and

systems. Such an analysis is advantageous in reducing the scope of protection to only

the most critical locations in an application. At the same time, the specific hardening

scheme used to implement the protection can also benefit from an optimized analysis and

implementation, in order to reduce the high overheads of protection.

State-of-the-art systems typically employ ECC or parity protection for major storage

structures such as main memory, caches, and the register file [110, 111, 112, 113]. However,

prior work indicates that datapath errors originating from unprotected latches scattered

across the processors will contribute significantly to the total SDC rate [114, 115]. Without

datapath reliability mechanisms, such systems may not be able to maintain high reliability

at future error rates and system scales. Traditional hardware-only solutions that duplicate

the entire processor can provide datapath reliability [50, 51]. However, processor duplica-

tion is expensive and excessive for workloads or sections of code that are inherently resilient.

Software-based redundancy overcomes these issues and can provide the flexibility of protect-

ing just the vulnerable parts of the program without incurring the high design, debug, and

testing costs attributed to hardware-only schemes.

In this chapter, we target software-directed instruction replication for GPU error detection.

Software instruction-level duplication has been studied extensively for CPUs and has been

shown to provide runtime overheads that are significantly lower than 100% by exploiting

under-utilized hardware resources (approximately 60% using a 4-way issue super-scalar pro-

cessor and 40% for Intel Itanium CPUs) [116, 117, 118]. Duplication at this level has never

been explored for GPUs. Prior research has shown that many GPU workloads under-utilize

GPU cores [119, 120], indicating potential for a low-overhead instruction-level duplication

solution.

For GPUs, software-based redundancy can alternatively be introduced at various granu-

larities such as the process, kernel, and thread. However, only instruction-level duplication

can be applied seamlessly to workloads that produce non-deterministic results at a coarse

granularity (e.g., at the function, GPU kernel, or application output level) without requiring

spare hardware resources to be reserved solely for redundancy purposes. Higher level dupli-
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cation techniques often suffer from limitations in one of these aspects. Section 7.3 discusses

these trade-offs in detail.

This chapter introduces SInRG (pronounced “synergy”), Software-managed Instruction

Replication for GPUs, which is a family of techniques that optimize software-based in-

struction duplication for GPUs. Our work is the first to establish a practical approach

to software-directed instruction duplication for GPU-based systems, identify GPU-specific

opportunities for overhead reduction, and explore software and hardware performance opti-

mizations to lower the overheads significantly.

SInRG first implements a commonly-studied CPU instruction duplication algorithm in

NVIDIA’s production compiler and evaluates it on real GPUs. This algorithm duplicates

the data-flow chains leading to non-duplicated instructions and maintains two register spaces

such that the original and duplicate instructions operate on the original and shadow register

spaces, respectively [117]. Whenever a non-duplicated instruction is executed, the source

register values are verified, and a higher layer in the system is notified if verification fails.

Our results show an average runtime overhead of 69%.

Main contributors to the overhead stem from two sources. (1) Doubling the number of

required registers per thread can adversely affect performance for some workloads because

the register file is a shared resource and its inefficient use can limit the number of concurrent

threads (and performance). (2) The total number of executed instructions increase with the

introduction of additional verification and notification instructions. These new instructions

also introduce new dependencies, which can limit the ability to software-pipeline instructions,

further increasing runtime overheads.

SInRG addresses the first issue by employing an instruction duplication algorithm that

trades off the per-thread register requirement for more verification and notification instruc-

tions. We propose a set of solutions to reduce the overheads caused by executing verification

and notification instructions. (1) SInRG removes direct dependencies between the verifica-

tion and notification instructions, using a per-thread flag to defer error notification to the

end of a thread. It trades off error containment for performance, which can be mitigated

through a small ISA extension that provides error notification capability to the verifica-

tion instructions. (2) We discover that the verification and deferred notification can be

implemented using just a single, high-throughput assembly instruction supported by cur-

rent GPUs. (3) With the aim of eliminating the verification and notification instructions

altogether, SInRG accelerates the first solution above through hardware support. Some of

these solutions defer error detection until the end of the kernel, which may affect fine-grain

recoverability. The increase in detection latency is however not a concern for coarse grain

coordinated checkpointing solutions [121, 122, 123, 124].

66



Results show that SInRG reduces the average runtime overhead to 36% (1.94× lower than

the näıve implementation) with software-only techniques. Simple hardware extensions that

eliminate verification and notification instructions reduce the average overhead to 30%. We

compare SInRG to a prior state-of-the-art GPU software-based approach – thread-level du-

plication (TLD) [125, 126, 127] – and further optimize it for comparison. Results show that

SInRG is faster than TLD for a majority of the workloads studied despite it not needing/u-

tilizing spare thread resources.

We evaluate the error detection capabilities of SInRG by quantifying the dynamic instruc-

tion coverage (counting the executed instructions that are protected by SInRG). Results show

that on average, 87% of dynamic instructions are covered. We also conduct architecture-

level error injection experiments to show that SInRG is effective in reducing SDCs. Results

show that the percentage of injected errors that result in SDCs is always lower than the

percentage of uncovered dynamic instructions. Lastly, we evaluate the effect on the true

failure rate (measured as Failure In Time or FIT, where 1 FIT = 1 failure in 1 billion hours

of operation) reduction by conducting accelerated high-energy particle testing. Results show

that SInRG can reduce the SDC FIT rate by an order of magnitude.

4.2 BACKGROUND AND CHALLENGES

4.2.1 GPU Background

This section reviews basic GPU architecture terminology and the NVIDIA GPU compi-

lation flow because SInRG is implemented using NVIDIA’s technology. However, the ideas

presented in this chapter can be applied to other GPU architectures.

GPU programming models consider thousands of threads that each execute the same code.

Threads are grouped into 32-element vectors called warps to improve efficiency. The threads

in each warp execute in a single instruction, multiple thread (SIMT) fashion. Many warps

are assigned to execute concurrently on a single GPU streaming multiprocessor (SM). An

SM offers resources that are shared by all the executing threads, such as the register file

and shared memory (or scratchpad). A GPU consists of many SMs attached to a memory

hierarchy that includes SM-local scratchpad memories, L1 caches, a shared L2 cache, and

multiple DRAM channels.

A user can write parallel programs using high-level programming languages such as

CUDA [128] or OpenCL [129], and use a front-end compiler to generate intermediate code

in a virtual ISA called parallel thread execution (PTX) [130]. A backend compiler optimizes

and translates PTX instructions into machine code that can run on the device. NVIDIA’s
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native ISA is called SASS [131]. The backend compiler can be invoked in two ways: (1)

ahead-of-time compilation of compute kernels via a PTX assembler (ptxas) or (2) just-in-

time compilation by the GPU driver (if the PTX code is part of the binary).

4.2.2 Challenges with GPU Instruction Duplication

Overheads of an instruction duplication algorithm arise from the introduction of the three

types of instructions: redundant, verification, and notification instructions. Prior opti-

mizations target leveraging under-utilized resources and reduce the number of the added

instructions. GPUs, however, present several new challenges in developing a cost-effective

solution.

Limited shared resources: Since SMs provide resources that are shared among all

the executing threads, inefficient per-thread usage of these shared resources may limit the

number of warps that can simultaneously run on the SM (also known as warp occupancy).

The register file is one such resource; doubling the per-thread register requirement can limit

the warp occupancy and increase the overall runtime.

Additional dependencies: The verification and notification instructions added by an in-

struction duplication algorithm introduce read-after-write dependencies between themselves,

which may limit instruction level parallelism (ILP) and the instruction scheduler’s ability

to pipeline instructions. Such limitations can significantly increase the runtime overheads if

the workload is not capable of executing enough concurrent threads. Prior research has also

noted the importance of ILP for GPUs [132].

Extra instructions: Verification and notification instructions increase the dynamic in-

struction count. Moreover, throughput offered by the assembly instructions used for them

can be low. For example, compare operations have half of the maximum throughput offered

by some instructions on NVIDIA GPUs [128, 131].

4.3 SINRG: SOFTWARE-MANAGED INSTRUCTION REPLICATION FOR GPUS

4.3.1 Sphere of Replication (SoR)

GPUs used in HPC and safety-critical systems protect major memory structures such as

DRAM, caches, and the register file using ECC/parity. However, unprotected execution

units and pipeline registers remain susceptible to soft-errors. Since GPUs are designed to

maintain high throughput for arithmetic intensive workloads, the datapaths constitute a
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significant fraction of the chip area, unlike CPUs which devote most of their non-cache logic

to instruction delivery and control speculation.

To protect the execution units and pipeline stages, we employ assembly instruction-level

duplication without duplicating values in memory. We use the term sphere-of-replication

(SoR) to identify at a high-level what is duplicated and which hardware structures we ex-

pect to be protected by this approach. This technique can detect errors that affect program

text (instructions) and computation (instruction execution). Since not all instructions are

duplicated (e.g., branch instructions and atomic operations remain unduplicated), the cov-

erage is high but not complete. We quantify coverage in later sections.
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Figure 4.1: The GPU hardware structures in the SoR. We focus on protecting the GPU
datapath against transient errors.

Figure 4.1 shows the hardware structures that SInRG protects. Almost all of the SM units

used to execute an instruction (from instruction fetch to write-back) receive protection from

single-event errors. SInRG also delivers additional protection to some of the structures that

are protected by hardware ECC/parity(e.g., I-cache for all SInRG schemes and register file

for the schemes that duplicate registers). This additional protection comes for free.

4.3.2 Instruction Duplication Algorithms

SInRG duplicates all instructions that (1) produce deterministic values, (2) do not di-

rectly modify the control flow, and (3) do not write to memory. We call such instructions

duplication eligible.

SInRG performs duplication using two main base algorithms. The first algorithm, in-

spired by Reis et al. [117], duplicates all the instructions in a data-flow chain leading to

a non-duplicated instruction and verifies the values only at the end of the chain. Dupli-
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cated instructions operate on a virtual shadow register space. For instructions that are not

duplication eligible and write to a register (e.g., atomic operations and special registers),

we copy the result of the original instruction to the shadow register space to maintain the

functionality of shadow execution. We call this algorithm DRDV, because it doubles the

virtual register space and delays verification until the end of a data-flow chain.

The second base algorithm duplicates all duplication eligible instructions and places them

just before the original instruction. The duplicated instruction reads the same source regis-

ters used by the original instruction and writes to a new virtual register. We immediately

verify the value in the new register with the destination register value of the original instruc-

tion, and notify the runtime layer for appropriate event handling if the verification fails. This

scheme adds verification and notification instructions for every duplication eligible instruc-

tion, increasing the total number of dynamic instructions significantly (and hence is often

ignored by CPU implementations). We call this algorithm SRIV because it uses a single

register space and immediately verifies each instruction’s result.

4.3.3 SInRG Optimizations

This section presents techniques we propose to address the challenges mentioned in Sec-

tion 4.2.2. Table 4.1 summarizes the trade-offs offered by these optimizations. Each SInRG

duplication technique is listed with a qualitative comparison of its attributes (relative to an

uninstrumented workload), which are discussed in more detail below.

Trading off additional dynamic instructions to reduce register requirements:

The DRDV algorithm doubles the virtual registers required per thread. Running the

NVIDIA compiler’s production-quality register allocator after the instruction duplication

pass can reduce the real register usage per thread. Despite this optimization, DRDV often

observes a significant increase in the number of registers used per thread. For workloads

where the register file is a critical resource, this approach can either reduce the number

of threads that can run in parallel or increase the number of register spill/fill instructions.

The SRIV algorithm naturally provides an interesting trade-off because it does not alter

the original application’s register requirement by much, but instead executes more dynamic

instructions. This trade-off can benefit some workloads, especially when the register file is

a critical resource, which we analyze in more detail in Section 4.6.

Deferring error notification: The code to notify the upper layers of the system (e.g., a

trap instruction and the control flow instructions to skip the trap in fault-free executions) is

typically added after every verification instruction for error containment. The added depen-

dency between the two instructions can contribute significantly to performance overheads, as
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Table 4.1: Summary of the SInRG techniques

Attributes
3= low, O = medium, 7= high 3= yes, 7= no

Register Error
SInRG # Verification requirement Error Masking
Technique Instructions per thread Containment Potential

D
R

D
V

Base 77 7 3 3

FastSig 3 7 7 3

HW-Notify 3 7 3 3

HW-Sig 33 7 7 7

S
R

IV

Base 77 7 3 7

FastSig O 3 7 7

HW-Notify O 3 3 7

HW-Sig 33 3 7 7

Abbreviations:
DRDV: Double register space, delayed verification
SRIV: Single register space, immediate verification
FastSig: Software-only, fast signature-based checking
HW-Notify: Hardware instruction to compare-then-trap
HW-Sig: Signature-based checking in hardware
TLD: Thread Level Duplication [126]
TLD-Sig: TLD [126] with delayed notification using signatures

mentioned in Section 4.2.2. To reduce the overheads, we investigate deferring the notification

until the end of the function. The results of all verification instructions are accumulated to

produce a single flag (signature), which is then used by a single error notification instruction

at the end of the function. Similar approaches have been explored and shown to be effective

in the context of software testing [133, 134, 135]. This optimization drastically reduces the

number of error notifications (and associated control flow instructions) and enables better

instruction scheduling. However, it allows some erroneous values to propagate to memory

before the error is detected and notified. While this optimization may violate the error con-

tainment assumptions of some recovery schemes, it works fine for coarse-grain coordinated

checkpoint systems that discard memory values in the event of a detected error to roll back

to a previous checkpoint [121, 122, 123, 124].

Verification and accumulation of the result must be implemented efficiently for a low

overhead solution. This can be accomplished using one or two high-throughput assembly

instructions on current GPUs. This approach also addresses the third challenge mentioned
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in Section 4.2.2 and explained in Section 4.4.3. We call this combined software optimization

FastSig and it applies to both the DRDV and SRIV algorithms.

Eliminating notification instructions: To eliminate explicit error notification instruc-

tions and provide high error containment, we propose a simple extension to an existing

GPU instruction that is used to compare two values. This extension raises an exception in

hardware if the values mismatch. We call this technique HW-Notify.

Eliminating verification and notification instructions: We eliminate the verification

and notification instructions by proposing HW-Sig, which uses the same principles as FastSig

and provides hardware support to maintain the signature register. This register is initialized

at kernel launch time. It is updated by each of the original duplication-eligible and duplicate

instructions such that it will have the same initialized value at the end of a fault-free kernel

execution. Maintaining one register per thread can be expensive in GPUs because SMs

support thousands of threads. We overcome this challenge by maintaining just one signature

register per hardware lane, which would be used by all threads (from different warps) that

execute on the lane. HW-Sig improves performance without sacrificing error coverage. Since

it defers the error notification, similar to FastSig, the trade-offs are also similar.

We also considered a scheme that extends the ISA such that each duplicate instruction

automatically verifies the result produced by the original instruction and notifies upper layers

upon failure. The source operands of the original instruction should not be updated before

the duplicate instruction executes, which introduces new instruction scheduling constraints.

As our evaluation showed lackluster performance, we do not discuss it further in this work.

4.4 SINRG IMPLEMENTATION

4.4.1 GPU Compilation Flow

GPU instruction duplication can be implemented at several places in the compiler tool

chain. While performing it early in the flow before PTX code generation is perhaps easiest to

implement, later compiler optimization passes may transform the program and eliminate the

resilience-oriented instructions. Inserting the replicated and checking instructions directly

into the SASS code ensures tight control over the final program binary, but requires re-

implementation of instruction scheduling and register allocation which are already in the

back-end compiler.

Avoiding these limitations, we implement SInRG within the back-end compiler (ptxas),

applying our transformations on the intermediate representation there. The duplication

algorithm runs after all back-end optimizations are performed, but before the instruction
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scheduling or register allocation passes. This approach leverages the production-quality

instruction scheduler already implemented in the back-end compiler, which helps to lower the

performance overheads of the duplication and verification code. It also enables instruction

duplication on programs for which only the PTX code (rather than the CUDA or OpenCL

source code) is available. Figure 4.2 summarizes the compilation flow for NVIDIA GPU

programs, including the SInRG instruction duplication pass. We evaluate SInRG using

the ahead-of-time compilation flow, but the just-in-time compiler can employ the same

instruction duplication algorithms.

4.4.2 Instruction Duplication Compiler Pass

In SInRG, we duplicate every duplication-eligible instruction once, using a data-structure

to track already-protected instructions so as not to duplicate them multiple times. We then

create the data structure to track the shadow register mapping. In our implementation,

we duplicate all major register classes—general-purpose registers, predicate registers, and

condition codes—except for the predefined registers such as zero-value register and thread-

id. Next, for each original duplication-eligible instruction, we duplicate the instruction and

map the duplicate into the shadow register space.

Instructions that are not eligible for duplication include memory writes, control-flow

instructions, instructions that produce non-deterministic values, barrier spill/fill instruc-

tions, and instructions that write to pre-assigned physical registers. Non-deterministic

instructions—those where the replica and the original instruction can produce different

values—include S2R instructions that read special registers whose values change over time

(e.g., the clock value), atomic operations, and volatile and non-cached memory reads [131].
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Algorithm 4.1: The DRDV back-end compiler instruction duplication algorithm,
run once per function.

1 create list of original instructions
2 clear original to shadow register mapping
3 for each instruction in the function do
4 if instruction is duplication-eligible and original then
5 duplicate the original instruction
6 for all operands in the duplicate instruction do
7 if shadow register does not exist then
8 create a shadow register for the source
9 end

10 replace original register to shadow register

11 end

12 else if instruction is copy eligible and original then
13 insert a move instruction to copy the destination register value to the shadow

space
14 end

15 end
16 for each instruction in the function do
17 if instruction is not duplication eligible and is original then
18 for all sources in this instruction do
19 verify original and shadow registers have same value
20 if values are different then
21 notify error to higher level (trap)
22 end

23 end

24 end

A load can be non-deterministic if there is a data race in the program. While we would ide-

ally only mark the race-vulnerable loads as non-deterministic, identifying only this subset

of loads is not feasible. Instead, we conservatively mark all generic, global, shared, texture,

and surface loads as non-deterministic. We mark local and constant loads as deterministic

because they cannot partake in data races. Local memory offers per thread storage (which

cannot be accessed by other threads) and constant memory is read-only (and cannot be

written to). We do not apply SInRG passes to built-in CUDA Runtime API calls.

For DRDV, verifying the inputs of a non-duplicated instruction requires adding a set

of verification and notification instructions, one for each source operand. We implement

an optimization where we insert only one error notification instruction per non-duplicated

instruction (as opposed to one per source operand) by chaining multiple verification instruc-

tions. We place the duplicate instruction after the original instruction and map the registers
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used by it into a shadow register space. For all non-duplicated copy eligible instructions,

we insert a move instruction to copy the destination register value into the shadow register

space so that duplicated instructions can use it. Finally, we insert verification instructions

to check original and shadow register values for all inputs to non-duplicated instructions.

This approach reduces the verification overhead (compared to SRIV) by chaining multiple

replicated instructions on the path to a single verification. Algorithm 4.1 describes our

implementation of the DRDV instruction duplication algorithm.

For SRIV, we place the duplicate before the original instruction because the original in-

struction may overwrite a source operand, and we want the duplicate to generate the same

result as the original instruction using the same source operands. We do not duplicate the

original move operations because they naturally duplicate the source register value into the

destination register. We verify them by comparing the source and destination registers of

the original operation. Verification and notification consist of a comparison operation, a

conditional branch instruction, and a trap instruction (BPT). Algorithm 4.2 describes our

implementation of the SRIV instruction duplication algorithm.

Algorithm 4.2: SRIV back-end compiler instruction duplication algorithm, run on
each function.
1 create list of original instructions
2 for each instruction in the function do
3 if instruction is duplication eligible and original then
4 duplicate and place it before the original instruction
5 for all destination registers in the duplicate instruction do
6 replace original register with a new virtual register
7 verify the original and new registers have same value
8 if values are different then
9 notify error to higher level (trap)

10 end

11 end

12 end

Figures 4.3(1) and 4.3(2) show an example of how we duplicate and verify an add in-

struction using SRIV. Base verification includes two additional instructions in the critical

path for each duplicated instruction and creates sequential dependencies which can affect

performance. The branch and trap instructions also limit the instruction scheduler, which

does not efficiently schedule instructions across trap instructions or basic blocks.
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Figure 4.3: Optimizing the verification and error notification code.

4.4.3 SInRG Optimizations

FastSig: This technique accumulates the results of the verification instructions into a

signature register and uses it at the end of the function for deferred error notification. This

signature (flag) register is initialized to zero at the beginning of a function. On every register

verification, the values produced by the original and duplicate instructions are added to and

subtracted from the signature register, respectively. If the signature register is not equal to

zero at the end of the function, an error has occurred.

Using simple add and subtract operations may miss some errors due to over/under-flow.

Instead, we compute bit-wise difference between the destination registers of the original and

duplicate instructions using XOR, and then OR the result with the signature register to up-

date it. During a fault-free execution, the signature register will remain zero. We discovered

that the LOP3 operation supported by the current NVIDIA GPUs can create any arbitrary

logical function using three source operands and is well suited for the signature accumula-

tion [130, 131]. Moreover, it offers the highest throughput among all supported instructions.

We maintain a separate predicate signature register and use the PSETP instruction to perform

a similar accumulation operation in one instruction.

Figure 4.3(3) shows an example of how this optimization reduces the number of static veri-

fication instructions from three to one. Furthermore, this optimization allows us to predicate

the verification instructions if the original store instruction is predicated, providing added

benefit. In the base approach, the verification (ISETP) instruction cannot be predicated

because it must generate a correct predicate register for the subsequent branch instruction.

Since FastSig relaxes error containment, an error can propagate to memory and in some

cases result in a crash/hang before the notification instruction is executed. If a function has

many conditional return instructions, the number of error notification instructions will also

be high, increasing overheads.

HW-Notify: We propose a new branch-free instruction that compares two values and

raises an exception on a mismatch to provide low-latency error detection with full error
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containment. This instruction replaces the signature update operation used by FastSig and

avoids the need to maintain a signature register. It is similar to a logical (LOP) operation

except that it does not need a destination register. Hardware changes, as summarized in

Figure 4.4, include instruction decoder support for the new operation and some logic in the

register write-back stage to raise an exception based on the results of a bit-wise equality

check. Since current GPUs support exception reporting and handling [136], HW-Notify can

leverage this existing framework for traps. Figure 4.3(4) illustrates how the instruction is

used.

HW-Sig: This technique eliminates all verification and notification instructions. As

mentioned in Section 4.3.3, maintaining one register per thread requires significant on-chip

storage (10s of kB/SM) because an SM supports thousands of threads. We propose using just

one signature register per hardware lane (not per thread) per context. Since instructions can

write to one or two 32-bit registers, we propose using a 64b signature register. We initialize

the signature register to zero at the kernel launch time (using a synchronous reset signal) and

ensure that it is zero at the end of the kernel. As each instruction executes, it updates the

signature register by adding or subtracting its destination register values based on whether

the instruction is original or duplicate, respectively. Operations that are commutative, easy

to design in hardware, and require low area overhead are good candidates for signature

updates. For example, binary Galois Field arithmetic (GF(2)) that uses XOR operations

can be used for signature accumulation and subtraction [137]. We need one extra meta-data

bit in the instruction to indicate whether the signature register should be updated by the

instruction. When HW-Sig is employed with SRIV, the duplicate instruction only updates

the signature register; its destination is replaced with RZ. The signature update logic need

not be in the critical path and can be performed in parallel with the write back stage while

the result of the instruction is being written back to the register file. Figure 4.4 summarizes
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the hardware changes.

At the end of the kernel, we activate the register checking logic using a global signal. If

the value is non-zero, an exception is raised. This approach trades off the ability to detect

the error until the end of the kernel and diagnose which thread is corrupted, which is not a

concern for existing coarse grained checkpointing solutions [121, 122, 123, 124].

Storage overhead can be reduced by accumulating the ECC bits of each result, instead

of the result itself. Hence the signature register only needs to be as wide as the error code

(e.g., 7-bit single-error correction, double error detection (SEC-DED) is used for the 32-bit

GPU registers [110, 112]). The signature update can take place in a pipeline stage following

ECC encoding without performance concerns because this logic is not in the critical path of

the datapath.

A hardware error can be missed if (1) both the original and duplicate instructions see the

same corruption in their results, which is not possible for single instruction error model, or

if (2) a single error propagates to an even number of instructions in the same thread and

these affected instructions update the signature register such that the observed errors happen

to cancel out. The second scenario is impossible for SRIV (duplicate instructions do not

write to registers), and highly improbable for DRDV because the conditions are challenging

to meet. The likelihood of this scenario can be reduced by choosing a signature update

function that is less likely to cancel errors (e.g., one’s complement add as opposed to GF(2)

XOR).

4.5 EVALUATION METHODOLOGY

Our experimental flow targets NVIDIA Pascal (Titan-Xp) architecture-based GPUs with

Compute Capability 6.1 [112]. We modify NVIDIA’s production back-end compiler and use

it with the CUDA 8.0 toolkit. The host system has an Intel i7-3930K CPU (3.2 GHz) and

32 GB of system memory. We evaluate SInRG using 16 workloads, 15 of which are from the

Rodinia benchmark suite (version 3.0) [138]. The last workload is the matrix multiplication

program (referred as mm) provided as a sample in the CUDA 8.0 toolkit.

4.5.1 Performance Metrics

We measure runtime overheads by running workloads directly on the system with the

GPU. For the application-level runtime, we take the average time from five consecutive

runs after a warm-up run. We obtain the GPU kernel-level runtime by analyzing a GPU

execution trace that contains the times when the kernels are launched and their duration.
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The --print-gpu-trace option for the nvprof tool prints this trace. We exclude the time spent

copying data between the GPU and host memory.

To understand the source of slowdowns, we collect the total number of dynamic instruc-

tions, number of spill/fills, increase in register usage per thread, warp occupancy, warp

execution efficiency, and stall reasons using nvprof. We measure the increase in the binary

file size as a secondary overhead metric.

Evaluating the optimizations that require hardware support: We implement the

modifications needed for HW-Notify and HW-Sig in NVIDIA’s production compiler and

measure the performance overhead using real GPUs. Since these techniques propose using

new ISA extensions that are not available on current GPUs, we generate instructions that are

closest in term of performance and functionality to measure expected runtime overheads. For

example, we generate LOP with a dummy destination register (RZ ) in place of the HW-Notify

compare-and-trap instruction. For HW-Notify, we remove the notification instructions and

the control-flow to branch around them. For HW-Sig, we remove all the signature update

instructions such that there are no verification and notification instructions.

Comparison to Thread-Level Duplication: We quantitatively compare SInRG to a

prior competitive GPU software-based solution – thread-level duplication (TLD) [125, 126,

127]. We implemented a TLD algorithm that is similar to the Intra-Group-LDS FAST

configuration from [126] and the Intra-Permute configuration from [127], which is the most

aggressive organization that they consider. On every memory write, TLD communicates the

address and value to the neighboring redundant thread using a SHFL instruction, compares

them with the local values, and notifies higher layers on an error (where only the redundant

thread performs this last task). We also implemented an optimization called TLD-Sig that

defers the notification until the end of the function using a predicate signature register (not

explored by prior work). A thorough exploration of TLD optimizations is beyond the scope

of this work.

4.5.2 Coverage Metrics

Dynamic instruction coverage: We measure the fraction of dynamic instructions in

a program that are assumed to be protected by SInRG. We measure this by first catego-

rizing instructions at compile-time by modifying the back-end compiler as follows. (1) All

duplication-eligible instructions are categorized as covered original. (2) All duplicate instruc-

tions are categorized as covered duplicated. (3) We categorize verification and notification

instructions as verification. An error in these instructions will likely result in a verification

failure, assuming only a single fault occurs during a program run. (4) Instructions that
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are not duplicated are categorized as uncovered. We conservatively mark instructions as

uncovered if we cannot identify an instruction that covers the instruction following compiler

transformations that are performed after the duplication pass. (5) Remaining instructions,

mostly consisting of register spills and fills, are categorized as others. Since most of the

registers are duplicated in DRDV, a corruption during a spill or fill will likely be detected

by the code that verifies the register value once it is filled. An error in a spilled register that

is never filled has no consequence.

We next obtain dynamic instruction counts per static instruction using a binary instru-

mentation tool, which is similar to SASSI [139]. Combining this data with the above in-

struction categories, we obtain the dynamic instruction coverage. This metric assumes that

all instructions have equal vulnerability.

SDC reduction: We conducted architecture-level error injections for all of our work-

loads using a modified version of the SASSIFI tool [140]. We injected single-bit flips into

the destination registers of randomly selected SASS instructions (one error per run). This

methodology, unlike dynamic instruction coverage, accounts for architecture-level propaga-

tion. We observe no error detections during error-free runs, which confirms that SInRG’s

false-positive rate is zero. We calculate 95% confidence intervals using the Wilson score

interval and find that all intervals are less than 5% of the estimated mean. We modified

some of the workloads such that SDC identification is feasible, which include printing the

final result and fixing the random number generator’s seed for deterministic runs.

We also conducted accelerated high-energy particle beam experiments to quantify the

effect of employing SInRG on the true SDC rate at the full GPU level. Accelerated particle

beam testing is one of the most accurate and widely-accepted methods of measuring FIT.

We conducted the experiments at a proton facility with particle energy >200MeV. We used

a Volta-based GPU [111] with ECC enabled and targeted the entire GPU package. We used

our modified back-end compiler with the CUDA 9.0 toolkit and recompiled the workloads for

Compute Capability 7.0 without any technical challenges, which demonstrates that SInRG

algorithms are portable across toolkits and applicable to different architectures. Due to

the statistical nature of the experiments and limited availability of beam time, we studied

the FIT rate reduction for only the matrix multiplication workload. We used two DRDV

versions: one based on the Section 4.4.2 (DRDV) and a second similar version that duplicates

loads using a function-level heuristic. This heuristic marks all loads as deterministic based

on the non-existence of an atomic operations in the function, which was appropriate for this

workload. These two versions, referred to in Section 4.6 as DRDV and DRDV with LD dup,

respectively, allow us to understand the effect of not duplicating most loads.
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4.5.3 Area Costs and Effectiveness Analysis

We implement Verilog models of the structures needed for HW-Sig to estimate their hard-

ware costs. The circuits are synthesized with the Synopsys toolchain using a 16nm industrial

technology library [141]. We estimate circuit area using a NAND2 gate-equivalents metric.

We conducted gate-level error injections to evaluate the efficacy of using a SEC-DED ac-

cumulator with HW-Sig, as a single error in the pipeline can propagate to many erroneous

bits, and the SEC-DED code can alias if more than three bits are erroneous. We use the

Hamartia framework [66] to flip the the output of a single gate or flip-flop per injection.

This methodology is similar to that of Nedel et al. [142], though we use netlist rewriting

to simulate errors without modifying the gate-level simulator. Our results are based on six

unpipelined DesignWare components [143], using random inputs.

4.6 RESULTS

4.6.1 Software-Only Techniques

Performance: We begin our evaluation by measuring the performance overheads of

the baseline SInRG versions. As the baseline SRIV incurs very high overheads (>100%

for all our workloads), we do not analyze it further. The GPU kernel runtime for DRDV

incurs an arithmetic average overhead of 69%, as shown in Figure 4.5. Employing the

software-only FastSig optimization reduces the average runtime overheads to 39% and 49%

for DRDV and SRIV, respectively. Workloads with low baseline IPC have more potential for

improvement when employing SInRG. Underutilized resources (due to memory operations,

hazards, poor code, etc.) can cause low IPC, which SInRG exploits by hiding duplication

overhead. To understand the effect of SInRG’s runtime overheads on different architectures,

we evaluated FastSig-DRDV on a Volta-based GPU for a subset of workloads and observed

similar overhead trends.

Our results show that the average application-level runtime overheads are only 6%, 4%,

and 5% for baseline DRDV, FastSig-DRDV, and FastSig-SRIV, respectively. This is much

lower than the GPU kernel-level overheads because these runtimes include time spent on

host and copying memory.

FastSig-DRDV outperforms FastSig-SRIV for some workloads, such as lud (18% versus

59% overhead). This phenomenon can be explained by the difference in dynamic instruction

count, which is 33% higher for FastSig-SRIV. FastSig-SRIV has better performance for some

workloads, despite executing more dynamic instructions. For example, the runtime overheads
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for b+tree are 32% versus 6% for FastSig-DRDV and FastSig-SRIV, respectively. Although

the SRIV version executes more dynamic instructions, the warp occupancy is 1.82× higher,

resulting in better overall performance.

Figure 4.6 further explains the dynamic instruction count increase. The results are nor-

malized per workload to the total instruction count of FastSig-DRDV and show that FastSig-

SRIV always executes more instructions than FastSig-DRDV. As discussed above, this is not

the only indicator of performance. Warp occupancy, which is also plotted in Figure 4.6 on

the secondary axis, is almost always reduced by using FastSig-DRDV. This relative decrease

correlates well with the relative runtime overhead increase (Figure 4.5) compared to FastSig-

SRIV. In summary, selecting an instruction duplication algorithm that is aware of the GPU

resource requirements for a workload can provide better performance.

Comparison to thread-level duplication: If a workload has spare thread and register

resources, it can benefit from TLD beyond what SInRG offers because SInRG does not exploit

spare thread resources. This is the case for lavaMD and leukocyte, as shown in Figure 4.5.
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Figure 4.7: Architecture-level error injection results. Original refers to uninstrumented
program.

These workloads exhibit low warp occupancy (Figure 4.6) for both FastSig versions, since

they are not register resource limited.

As mentioned in Section 4.5.1, TLD-Sig optimizes TLD by deferring error notification

until the end of the function, which reduces the runtime overheads for most of the workloads.

Results show that despite this optimization, one of the FastSig optimized SInRG versions

outperforms TLD-Sig for a majority of the workloads.

Code bloat: The average increase in the program binary file size, which includes non-

duplicated host code, was a modest 12% for FastSig-DRDV and 19% for FastSig-SRIV.

SInRG’s static instruction overhead ranges from 74%–115% for FastSig-DRDV and from

180%–227% for FastSig-SRIV. The overheads for FastSig-SRIV are relatively higher because

it adds more verification instructions.

Dynamic instruction coverage: Results in Figure 4.6 show that the original

programmer-defined instructions (other than compiler-inserted spill and fill code) account

for an average of 36% and 25% of the total dynamic instructions for FastSig-DRDV and

FastSig-SRIV, respectively. The duplicated instructions account for a similar fraction. The

percentage of verification instructions varies significantly based on the workload and the

algorithm. As expected, the average percentage is 2.4× more for FastSig-SRIV compared

to FastSig-DRDV (35% versus 15%). While a small fraction of instructions are categorized

as others for most workloads, spills and fills increase the prevalence of this instruction class

for some register constrained workloads. We assume all the above instructions are covered

by SInRG. Finally, the fraction of uncovered instructions also varies by workload and de-

pends on the prevalence of control, global and shared memory reads, and atomics in the

program. On average 88% and 87% of the dynamic instructions are considered covered by

FastSig-SRIV and FastSig-DRDV, respectively.
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SDC reduction through architecture-level error injections: Figure 4.7 shows

architecture-level error injection results for the uninstrumented programs and the two SInRG

versions. It shows that SInRG is effective in reducing the SDC percentage. We expect the

dynamic instruction coverage, plotted on the secondary y-axis, to correlate well with FastSig-

SRIV’s DUE (Detected Unrecoverable Errors [144]) percentage because FastSig-SRIV per-

forms immediate verification, providing no opportunity for error masking. Since the error

notification is delayed, some of the errors may result in DUE-other (crashes/hangs) prior

to being flagged by SInRG as DUE-SInRG (e.g., b+tree, lud). FastSig-DRDV provides

opportunity for masking until the end of the data-flow chains, lowering the expected DUE

rate. The results clearly show this trend — the SDC percentage is always lower than the

percentage of uncovered instructions.

SDC reduction through accelerated particle testing: Figure 4.8a shows the effec-

tiveness of SInRG in reducing the GPU SDC FIT rate while running the mm workload.

The observed SDC rate for both SInRG versions is an order of magnitude lower than the

uninstrumented program. Figure 4.8b shows that the DUE FIT rate increases with SInRG;

we observed the evidence of several SInRG error detections in the system logs. These results

establish that SInRG is effective in significantly improving the reliability of GPUs.
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Figure 4.8: SDC and DUE FIT rates for the mm workload, normalized to the original mm.
Architectural injection and instruction coverage results are plotted on the secondary y-axis.

We plot the dynamic instruction coverage and architecture-level error injection results in

Figure 4.8 (on the secondary y-axes) to analyze the trends. These results, however, cannot

be directly compared to FIT rates because these methods estimate the program-level error

propagation probabilities once the error has manifested at the architecture level.

Figure 4.8a shows that the percentage of uncovered dynamic instructions reduces from

100% to 29% and 3% for DRDV without and with load duplication, respectively. The
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corresponding SDC percentage reduction from architecture-level error injection are 18% and

0%, down from 72%. These trends correlate strongly with each other and the FIT estimates.

We noted similar strong correlations for the DUE results.

4.6.2 Optimizations Through Hardware Support

Performance: We apply HW-Notify to the two FastSig versions to overcome their lim-

itation and provide perfect error containment. Figure 4.9 shows the average overheads for

HW-Notify-DRDV and HW-Notify-SRIV are 37% and 46%, respectively, which are similar

to the FastSig versions.
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Figure 4.9: Runtime overheads for the hardware-based schemes.

HW-Sig eliminates the verification instructions altogether providing a faster solution. HW-

Sig-SRIV is significantly faster than the HW-Notify-SRIV, with average overheads of 33%

versus 44%. This improvement is expected because FastSig-SRIV has many verification

instructions that HW-Sig eliminates. We did not observe such a high improvement for

HW-Sig-DRDV over HW-Notify-DRDV (35% to 33%). Even though the average overheads

between HW-Sig-SRIV and HW-Sig-DRDV are similar, we observe significant differences

for different workloads. When HW-Sig is employed with DRDV, maintaining the shadow

data-flow chain and the shadow register space provides additional instruction scheduling

flexibility, which can be beneficial for workloads that are not register limited.

Hardware costs: Table 4.2 gives the circuit area estimates following synthesis, as well as

a 32b adder and a SEC-DED encoder for reference. The HW-based SInRG schemes require

modest amounts of new hardware per lane—the total area of the new structures is similar

to or less than that of an adder, which itself represents a small fraction of the pipeline logic.

The 64b HW-Sig accumulator is shown with two signature accumulation algorithms—GF(2)

XOR and one’s complement. The HW-Sig accumulator is the largest new structure, but it

can be efficiently replaced by a SEC-DED accumulator at less than 1/6 (GF(2) XOR) or 1/8

(one’s complement) the cost.
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Table 4.2: Area costs per lane for hardware extensions.

Structure Technique # FFs Area (NAND2)

32b Zero Detector HW-Notify 1 19
64b XOR Accumulator HW-Sig 65 496
64b One’s Accumulator HW-Sig 65 1044

7b SEC-DED XOR Accumulator HW-Sig 8 73
7b SEC-DED One’s Accumulator HW-Sig 8 130

32b Adder Reference 96 715
2x 32b SEC-DED Encoders Reference 14 354

The SEC-DED accumulator potentially has imperfect error coverage because a single-

event transient error in the pipeline can propagate to many erroneous bits, and the SEC-

DED code can alias if more than three bits are in error. Our gate-level error injection

campaign determined this risk to be minimal—over 3,862 logically unmasked errors injected

into six fixed-point and floating-point arithmetic units, only one would remain uncaught by

the SEC-DED accumulator. This leads to a 95% confidence interval of (0.0%, 0.2%) for the

percentage of errors that the SEC-DED accumulator would miss.

We target a 2 GHz clock (assuming 50% margin for uncertainty and unmodeled control

circuitry), which is an efficient operating point for more complex functional units such as the

multiply-add unit. All of the considered circuits achieve this speed using automatic register

retiming.

4.6.3 Automated Duplication Technique Selection

As explained earlier, either DRDV or SRIV can perform best for a specific GPU kernel,

depending on its requirements and the available GPU resources. We explore heuristics to

automatically select the SInRG algorithm for each dynamic kernel at kernel launch time.

We obtain and pass the following information to a machine learning model to predict which

algorithm to apply. We pass (1) an occupancy estimate using number kernel specific infor-

mation such as registers needed per thread, shared memory usage, and thread block size

and target GPU resource constraints, (2) the increase in the number of static instructions,

and (3) the increase in static spill/fill instructions. Based on our initial study, we find that

supervised learning methods such as Decision Tree and Random Forest perform well for this

task. Auto-selected duplication algorithm for FastSig, HW-Notify, and HW-Sig reduces the

average runtime overheads to 36%, 34%, and 30%, respectively. These are significantly lower

when compared to the average overheads obtained by DRDV and SRIV individually for the

respective techniques.
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4.7 SUMMARY

Software-based instruction duplication is an attractive resiliency hardening technique be-

cause it can be employed on state-of-the-art systems and can be selectively applied to

resilience-critical workloads. In this chapter, we implement intra-thread instruction dupli-

cation on GPUs (inspired by prior CPU work) and find the overheads to be high, averaging

69% over a variety of workloads. We propose several software-only and software-hardware

optimizations to reduce the overheads and implement them in NVIDIA’s production com-

piler. Our GPU-specific software optimizations trade off error containment for performance

and reduce the average runtime overhead to 36%. We also propose new ISA extensions with

limited hardware changes and area costs to further lower the average runtime overhead to

just 30%.

While we show that reliability overheads can be reduced with various optimizations in

software and hardware, the auto-tuner approach to select the optimal duplication strategy

(discussed in Section 4.6.3) indicates that adapting the resiliency solution to the workload can

have a major impact on runtime performance and overheads. In general, this is a recurring

theme even for Approxilyzer (Chapter 2) and Minotaur (Chapter 3), where having more

information about the application can provide more opportunity for optimized resiliency

solutions. Thus, a deeper understanding of the application and error propagation at an

algorithmic level could also help inform a software-directed resiliency approach to protect

against soft errors. In the next two chapters, we perform a deep-dive into a single application

domain, deep learning, and show that we can leverage domain knowledge to design scalable

tools and techniques for specialized error analysis.
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Chapter 5: PyTorchFI: A Runtime Perturbation Tool for DNNs

5.1 MOTIVATION

With the recent advances in machine learning (ML) alongside enabling hardware (such as

GPUs [145] and custom ML processors [146, 147]), deep neural networks (DNNs) have quickly

become a dominant player in the application space. Today, DNNs are heavily used across

many application domains and hardware platforms, ranging from entertainment devices such

as personal phones, to stringently safety-critical systems such as perception software in self-

driving vehicles.

With the ubiquitous utilization of DNNs across many domains, it is crucial that DNNs

operate reliably in the face of errors. There is mounting evidence that even tiny pertur-

bations such as soft errors can cause a DNN to output an incorrect result at the software

level [148, 149, 150, 151]. Additionally, recent work in adversarial machine learning has shown

that malicious perturbations in the input (and more advanced attacks such as rowhammer

within a network), can alter a DNNs execution [152, 153, 154, 155, 156, 157, 158, 159, 160].

On one hand, most of the time an error has a negligible impact on the computation be-

cause it either gets masked out entirely (e.g., due to activation functions such as rectified

linear or ReLU layers) or does not cause the DNN’s decision to cross a decision boundary

(a misclassification). On the other hand, there are errors which manifest into observable

output corruption. It is therefore crucial that developers understand the dependability and

reliability characteristics and limitations of their models before deployment in the field.

Developers are currently lacking the tools to study the impact of perturbations on DNNs.

In order to detect and mitigate hardware errors which can propagate and affect DNN out-

comes or malicious adversarial perturbations in the network, researchers and developers alike

need accurate tools for assessing DNN reliability in the face of different error types. Such

tools must be easy-to-use (for widespread adoption by researchers and developers), extensi-

ble (to keep up with the fast moving field of deep learning, while also allowing for the study

of different perturbation models), and fast (since DNNs can become very large and there are

many possible places within a network for an error to manifest).

In this chapter, we introduce PyTorchFI [48], a runtime perturbation tool for DNNs de-

veloped in the popular PyTorch [161] framework. PyTorchFI allows users to perform neural

network perturbations in weights and/or neurons in convolutional operations of DNNs during

execution. Therefore, it enables the study of the manifestation and propagation of different

perturbations at the application level. PyTorchFI is designed to be programmer-friendly and
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easy-to-use: it minimizes the programmer overhead by streamlining the installation process

through the pip package manager, and provides a simple and intuitive implementation for

performing perturbations at runtime. In addition, PyTorchFI is extremely fast with negligi-

ble runtime overhead due to its native implementation. Further, PyTorchFI is very versatile:

by abstracting the notion of an “error” to that of a “perturbation” and designing for the

latter, PyTorchFI can enable many additional research applications beyond just reliability.

This chapter focuses on presenting and discussing the technical underpinnings and design

decisions of PyTorchFI, which are key to making it an easy-to-use, extensible, fast, and

versatile error analysis tool. Additionally, we showcase multiple research use cases for Py-

TorchFI, and subsequently perform a deep dive into convolutional neural network (CNN)

resilience analysis and hardening in Chapter 6.

5.2 BACKGROUND

5.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks (DNNs) used to

analyze visual imagery such as image recognition or object detection. We primarily consider

CNN resiliency due to their prevalent use across many safety-critical applications [162, 163,

164, 165, 166].

A classification CNN takes as input an image which propagates through many computa-

tional layers until it arrives at a softmax layer. The softmax provides a probability for each

class the network aims to predict, indicating the confidence of predicting a specific class. The

class with the highest confidence (the Top-1 confidence) indicates the CNN’s prediction for

the image. During training, a cost function (such as the cross entropy loss) is computed from

the softmax and backpropogated to update weight values to improve prediction accuracy.

At deployment time, a classification CNN operates in feed-forward mode only to perform an

inference.

A CNN is composed of various layers between the input and the softmax. The predominant

layer type of a CNN is the convolutional (conv) layer, and typically constitutes more than

90% of a CNNs total computations [167]. A neuron (also called an activation value) is

the fundamental component of a conv layer, computed as a dot product between a filter of

weights and an equal-sized portion of the input. Each dot product is composed of many

multiply-and-accumulate (MAC) operations. A plane of neurons is known as a feature map

(or fmap for short). Each conv layer in the network may have a different number of filters,

which map one-to-one with the number of output fmaps for that layer.
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5.2.2 Other Tools

Two related error injection tools that offer similar capabilities are Ares [168] and Ten-

sorFI [169], designed to operate within the Keras [170] and TensorFlow [171] frameworks,

respectively. These two tools allow modifying the state of the layers in DNNs as they are

executing. However, Ares requires changes to the Keras inference computation to introduce

dynamic perturbation, which is required for most dependable research studies. TensorFI

requires the users to update a configuration file in addition to making modifications to

the TensorFlow program. While Keras and TensorFlow are commonly used deep learning

frameworks, PyTorch has emerged as a popular framework for DNN research for its ease-of-

use [172] and its use of dynamic graphs for DNN computations, which is extremely powerful

for understanding and debugging DNN models.

Apart from filling the gap for the PyTorch framework, we addressed the limitations of the

prior tools and offer a tool that is fast and easy-to-use. Specifically, we address the issue of

portability and longevity of the tool by implementing PyTorchFI in Python 3 rather than

Python 2 [169] (Python 2 is no longer support as of January 1, 2020 [173]); we support

injecting errors during both inference and training (we present a use case in Section 5.4.3);

and we minimize the programmer overhead via a simplistic API which does not require model

modifications. Additionally, PyTorchFI is still extremely fast as it operates at roughly the

same native speed of PyTorch on silicon.

5.3 TOOL DESCRIPTION

At a system level, PyTorchFI is a lightweight tool built on top of PyTorch [161] which

enables perturbations on weights and neurons of DNN models for perturbation analysis

with use cases including hardware resiliency, adversarial attacks, robust DNN design, and

interpretability. This section explains the design choices and implementation details which

make PyTorchFI an easy-to-use, extensible, fast, and versatile tool for error perturbations

in DNNs. An overview of PyTorchFI is illustrated in Figure 5.1.

5.3.1 Design Choices

Dynamic perturbations for neurons can be implemented in several ways within the Py-

Torch framework. The simplest implementation is to append an intermediate layer after

every convolutional layer, and apply a transformation layer to perturb output values before

proceeding to the next layer in the network. Studying the effects of different perturbation
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Figure 5.1: PytorchFI [48] is a lightweight tool built on top of PyTorch [161] that enables
error perturbations for research into different domains of deep learning. Perturbations in
weights are performed offline by modifying the weight tensor, while neuron perturbations
are implemented using hooks on convolution operations.

models using this method would require major alterations to the network configuration. For

deep networks with many layers, or networks with custom layers in-between convolutions,

making the modifications to the model for this approach will require non-trivial effort for

the user.

Another option is to modify the PyTorch source code to intercept the computation of the

neuron to perturb it. This method suffers from a lack of portability because it may require

separate implementations for convolutions on CPU, GPU, and other backends. It would

require patching scripts and developer maintenance for future versions of PyTorch.

Rather than modifying the network topology or the PyTorch source code, we utilize Py-

Torch’s hook functionality to perturb neuron values during the forward pass of a computa-

tional model. By leveraging the hook application programming interface (API) to instrument

error, PyTorchFI avoids altering any source code of PyTorch while also enabling compati-

bility with future PyTorch versions. Furthermore, it allows the perturbation to run at the

native speed of PyTorch, with minimal introduced overheads (overheads depend only on the

code introduced for perturbation – the instrumentation methodology introduces nearly no

runtime overhead).
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5.3.2 Implementation

Identifying hooks as the best candidate for instrumenting neuron perturbations is an

important step to ensure that PyTorchFI is fast, extendable, and easy to integrate with

existing implementations. For weights, we further optimize PyTorchFI by providing wrapper

functions that directly modify the weight tensor before an inference, effectively perturbing

weights offline and away from the critical path (Figure 5.1). This optimization translates to

no runtime overhead for weight perturbations.

PyTorchFI was designed from the ground up for minimal programming overhead for the

programmer. As a result, a researcher can begin using PyTorchFI by following just three

steps: (1) importing PyTorchFI, (2) initializing their model, and (3) performing a pertur-

bation with a custom or provided default error model. The following are the steps to install

and use the tool:

1. Installing and importing PyTorchFI: PyTorchFI has been published to the pip

package manager of Python, an extremely popular method for managing libraries such

as numpy and scikit-tools. This makes PyTorchFI easily accessible, and requires no

compilation or configuration scripts. Importing the tool is as easy as using import in

the beginning of the code.

2. Initialization: Initializing PyTorchFI takes the model for which perturbations will

be performed. Other arguments include input image height and width, and optional

parameters such as batch size, model data type (e.g., FP32 or FP16), and whether to

run on the CPU or GPU. PyTorchFI then performs a single, dummy inference to profile

the model and gathers all the hyperparameters of the network, such as the number of

layers, filter sizes, and feature map sizes. This information is used for ensuring that

perturbations are legal, and to provide detailed debugging messages to the end user.

3. Perturbation: The third step involves selecting a perturbation model and a pertur-

bation location. We provide a default set of perturbation models for the user to select

from, such as a random value, a single bit flip, or zero value. The user can also easily

implement their own perturbation model.

In addition to the perturbation model, the user needs to specify the location of the

weight/neuron that will be perturbed. This can be a single location (specified by

the layer, feature map, and neuron’s coordinate position in the tensor) or multiple

locations to incur multiple perturbations across the network. The user can also specify

whether to have the same perturbation across all elements in a batch, or a different

perturbation per element.
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Figure 5.2: Average runtime for 19 networks across three datasets, with and without Py-
TorchFI (PFI), for a single neuron injection with batch size = 1. PyTorchFI effectively runs
at the same native speed on both CPU and GPU with negligible overhead.

The actual perturbation occurs during runtime by taking in the location of the erroneous

neuron/weight and appending it to a list of positions in the tensor to change. Then, on every

layer, the forward hook will iterate through all of the locations and corrupt the corresponding

value based on the selected perturbation model.

5.3.3 Performance Evaluation

PyTorchFI has been tested on PyTorch versions 1.0 through 1.6. We expect long term

support for PyTorchFI, as hooks are becoming first class objects in the PyTorch environment:

they have been explicitly mentioned in every PyTorch release [174] and are widely used within

the PyTorch ecosystem.

PyTorchFI’s implementation has extremely low overhead since there is only a single check

on every layer. If there are no perturbations defined, then there is no overhead. It also scales

very well, since the same hook can be used to inject single or multiple error within the same

operation.

To evaluate the runtime overhead introduced by PyTorchFI, we measured the runtimes

of pretrained DNNs with and without perturbations introduced by PyTorchFI. We ran our

experiments on two hardware platforms – for CPU, we used an AMD EPYC 7401 processor

with 1 TB of RAM and for GPU we ran on an NVIDIA Titan Xp with 12 GB of RAM.

We used the default perturbation model provided by PyTorchFI (a uniform, random value

between [-1,1]) on a random neuron location for random input images. We averaged the

runtime across 1000 trials for each network.

Figure 5.2 shows the runtime results. We see that all inferences (with and without Py-

TorchFI) typically take less than 0.2 seconds for both CPUs and GPUs. As GPUs are known

to offer higher throughput for deep learning workloads compared to CPUs, the GPU run-
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times we observed were a lot faster. More importantly, what we find is that the runtime with

perturbations differs by less than 10 millisecond in wall-clock time across both platforms,

all models, and datasets. Further, we also performed a study of PyTorchFI using inference

batching (a common practice for some DNN inference applications). We swept the batch

size from 1 to 512. We observed the same trend: the wall clock time overall went up (as

batching takes longer to run than for a single inference), while the runtimes with and with-

out PyTorchFI were comparable and within the error margins, indicating an amortized cost

per model for instrumenting perturbations. Thus, PyTorchFI is extremely fast, effectively

operating on the native speed of the underlying hardware platform.

5.3.4 Limitations

PyTorchFI operates at the application level of DNNs, which is useful for modeling high

level perturbations and understanding their effect at the system level. Lower level pertur-

bation models, such as register-level faults, cannot be captured at this level. However, we

can still use PyTorchFI to model lower level faults by mapping them to either single- or

multiple- bit flips (in single or multiple neurons) [175]. Recent studies have shown that

high level models can be used to study the effect of errors at the system level [64, 176]. At

the same time, higher level models can run 4-6 orders of magnitude faster [65] compared

to low-level implementations [177]. We show that PytorchFI runs at the native speed of

silicon, as it requires no code instrumentation for error modeling. This enables a faster ex-

ploration of the large state space which is crucial for understanding real-life aspects of errors

in safety-critical applications.

5.4 PYTORCHFI USE CASES

With the use of a domain-specific perturbation tool such as PyTorchFI, we can go beyond

just resiliency analysis for classification networks (the primary focus of Chapter 6 and a ma-

jor contribution of this thesis), and explore other interesting research problems in the domain

of deep learning. In this section, we demonstrate PyTorchFI’s versatility as a research tool

by showcasing four additional use cases: 1) object detection resiliency, 2) robustness of ad-

versarial training techniques, 3) training error-resilient models, and 4) DNN interpretability.

While these are not the only uses of PyTorchFI, we show these to illustrate the importance

and generality of the tool. Our goal is to demonstrate the uses of the tool and not to fully

address challenges in each of the areas covered by the use-cases.
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(a) No perturbation (b) PyTorchFI perturbations

Figure 5.3: Perturbations on YOLOv3 object detection network

5.4.1 Resiliency Analysis of CNNs used for Object Detection:

We used PyTorchFI to study resilience of object detection networks, exploring another

class of DNNs widely used in autonomous vehicle systems. Object detection is more com-

plex than image classification: it combines both the object localization and classification

problems. Thus, the definition of an output corruption in this context changes dramatically

from a Top-1 misclassification for a classification network.

Using PyTorchFI, we perturb multiple neuron values (one neuron perturbation per layer,

each with a uniformly chosen random FP32 value) and study the effect on the inference

output. Figure 5.3 illustrates the observed differences. Figure 5.3a depicts a correct inference

with the YOLOv3 network [178] on an image from the COCO dataset [179]. In this image,

the network identifies two objects (a car and a truck) by placing a border around each object

and classifies each of the detected objects. Figure 5.3b shows that the perturbed network can

behave irrationally, identifying many phantom objects each of which are classified seemingly

arbitrarily. This example illustrates that PyTorchFI can be used to perform perturbations

on DNN tasks beyond classification networks and with a different error model than the

one used in previous sections. More importantly, it illustrates that perturbations can cause

egregious outputs which must be studied for building resilient object detection networks for

many safety-critical applications.

Using PyTorchFI, researchers can study the effect of perturbations across different error

models on emerging DNN tasks. As nearly all the perception tasks in autonomous system

are being performed by DNNs, it is important to have a versatile tool which can be used to

perform detailed resiliency studies.
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Figure 5.4: Relative vulnerability (compared to a baseline model without IBP) of the first
two layers of AlexNet when trained with different IBP parameters.

5.4.2 Resilience Analysis of Models Robust to Adversarial Attacks

In a traditional adversarial attack setting for classification networks, small perturbations

in the input layer of a DNN typically propagate through subsequent layers and eventually

lead to an incorrect classification [180]. Some of the defense strategies developed to protect

a DNN from adversarial attacks aim at limiting the propagation of the perturbation from

one layer to the last one. To that end, PyTorchFI can be used to validate that protection

against adversarial attacks should make a network inherently more resilient.

We consider the case of AlexNet on CIFAR-10 [181], and train a version of AlexNet

through the Interval Bound Propagation (IBP) approach [182]. For a perturbation with a

maximum L∞ = ε norm in input, IBP computes the corresponding minimum and maximum

probability of each class in output. Training is performed by minimizing the cost function

J =
∑

(1− α)log(pwin) + αlog(pwin − δpwin(ε)), (5.1)

where
∑
log(pwin) is the traditional cross-entropy loss function, whereas∑

log(pwin − δpwin(ε)) is the worst-case cross entropy, computed when the DNN is

under attack and the magnitude of the attack is ε. For training, we follow the procedure

for AlexNet in [183], but minimize the cost function in Equation 5.1. To guarantee stable

convergence, we use curriculum learning as described in [182], and we scale linearly both

α and ε from 0 to their respective maximum values from iteration 41 to iteration 123. We

consider different values of α = {0.025, 0.1, 0.25} and ε = {0.125, 0.25, 0.5, 2.0} as these two

parameters affect the robustness of the trained DNN in a different way: increasing ε leads

to networks that are resistant to large input perturbations, while increasing α gives more

importance to the worst case entropy, potentially penalizing the accuracy on clean data.
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Table 5.1: Training ResNet18 with and without PyTorchFI for resiliency.

Baseline PyTorchFI

Training time 2h 8m 33s 2h 8m 57s
Test accuracy 95.50% 95.34%

Post-training output misclassifications
(out of 24 million) 10,543 7,701

We used PyTorchFI to analyze the effect of IBP on the resiliency of the network. The

results showed improvement in the total resilience after training with IBP. While perform-

ing the per-layer vulnerability analysis, we discovered that the first two layers of AlexNet

developed higher resilience compared to the rest of the layers. Figure 5.4 summarizes this

key finding. This figure shows the vulnerability of the first two layers (defined using Top1-

misclassifications) relative to a baseline AlexNet that is not trained with IBP. The analysis

with PyTorchFI shows that the IBP is capable of improving resilience by up to 4×: this is

a positive side-effect of adversarial training that, on the other hand, decreases the accuracy

on clean data by approximately 3%. Our results also show that not all models trained to

be robust to adversarial attacks are equally resilient. PyTorchFI enables us to investigate

the reason for such differences and eventually develop a method that is robust to adversarial

attacks and also highly resilient to hardware errors.

5.4.3 Training for Inherently Error-Resilient Models

Most use cases presented so far assume a trained model, which is then vetted using Py-

TorchFI for robustness to errors. A different approach towards DNN resiliency is to attempt

to build reliability inherently into the network while training.

We propose a training procedure where we inject errors during training using PyTorchFI

to increase the robustness of the network to errors once deployed. Injecting errors/noise

during training can reduce the converged accuracy of the model and increase the training

time. Models trained to be robust to traditional adversarial attacks commonly observe such a

behavior. In contrast, our initial experiments show that some resilience can be built into the

models via an injection-based training method with nearly no change in the model accuracy

and training time.

Training, as described in Section 5.2.1, consists of many forward and back-propagation

passes. PyTorchFI can be used to inject errors during forward passes during training, where

the error model selection can be part of the training protocol.

Incorporating PyTorchFI into training requires minimal modifications — three additional
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lines of code as described in Section 5.3.2. We integrate one of the built in error models

for training, namely, a random neuron per layer is changed to a uniformly random value

between [-1, 1] during the forward pass. Evaluations are presented on ResNet18 [184] trained

on CIFAR10 [185]. Two models are trained for comparison: a baseline without PyTorchFI,

and one with it. Both models are trained from the same initialization conditions for a clean

comparison, and no other hyper-parameters are varied.

Table 5.1 summarizes some of the key elements between the two models, which were

trained on an Nvidia Titan V. We find that training with PyTorchFI has a negligible impact

on training time, where both models completed the same number of iterations on the dataset

in the same amount of time. Importantly, integrating PyTorchFI into training does not

adversely affect convergence. We find that training with PyTorchFI reduces the accuracy of

the final model by 0.16%. Note that convergence time, unlike training time, describes the

number of epochs required to reach the final accuracy; training with PyTorchFI does not

affect convergence time either.

After training, we performed error injections on a separate test set to compare the re-

siliency of both networks. We measured the number of Top1-misclassifications due to per-

turbations, and found that the number of misclassifications are reduced for the ResNet18

model trained with PyTorchFI.

While these encouraging results show that some robustness can be introduced with no

practical change in training time and model accuracy, selecting a different error model and

the frequency with which we injection errors during the forward pass (during training) may

likely provide different robustness, accuracy, and training time trade-offs. Studying this

trade-off space is an interesting future research direction.

5.4.4 Interpretability

One important research question which can provide insight into the reliability and de-

pendability of neural networks is to interpret how a DNN works. While prior research has

looked into DNN interpretability [186, 187, 188], the field is still evolving and state-of-the-art

techniques cannot fully explain the predictions made by the models. We propose a technique

which can work alongside the state-of-the-art techniques to assist in DNN interpretability.

One popular technique for visualizing the important input pixels which contributed to a

DNN inference is Guided-GradCAM [189, 190]. Guided-GradCAM performs backpropaga-

tions starting at different layers to generate gradients for the input, which are then aggre-

gated and visualized based on magnitude. We perform error injections using PyTorchFI in

the forward pass of GradCam on specific feature maps, to highlight the effect of a neuron
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(a) No perturbation (b) Low sensitivity (c) High sensitivity

Figure 5.5: Visualization of error injections in DenseNet using Grad-CAM [189]. a) shows
the original visualization with no perturbation, b) shows a perturbation in the least sensitive
feature map, and c) shows a perturbation in the most sensitive feature map.

firing and the affect that a specific feature has on classification. Figure 5.5a shows the super-

imposed heatmap generated by the Guided-GradCam technique on a correct inference using

DenseNet [191]. Figure 5.5b shows the effect of injecting an egregiously large value of 10,000

in a feature map which has little impact on the classification as defined by the gradient values

of the feature map. As shown, although the neuron value in this feature map is extreme, the

visualization technique shows little difference in the output; this is also corroborated in the

softmax where the Top-1 class does not change. On the other hand, perturbing a neuron of

a “highly vulnerable” feature map skews the heatmap as portrayed in Figure 5.5c. Thus, an

error-injection technique can be tuned to shed insight into the mapping between important

input pixels and important feature maps. This simple experiment can perhaps guide a more

rigorous iterative algorithm: perturbing a network at different feature maps and observing

the effect on the heatmap along with the Top-1 network classification to extract which re-

gions of the input pixels are picked up during inference to arrive at the correct classification

of the image. This is an interesting future research direction.

5.5 SUMMARY

PyTorchFI is a runtime perturbation tool for deep neural networks (DNNs), implemented

for the popular PyTorch deep learning platform. PyTorchFI enables users to perform per-

turbations on weights or neurons of DNNs at runtime. It is designed with the programmer

in mind, providing a simple and easy-to-use API, requiring as little as three lines of code

for use. It also provides an extensible interface, enabling researchers to choose from various
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perturbation models (or design their own custom models), which allows for the study of

hardware error (or general perturbation) propagation to the software layer of the DNN out-

put. Additionally, PyTorchFI is extremely versatile: we demonstrate how it can be applied

to multiple different use cases for dependability and reliability research. With the use of

PyTorchFI to emulate soft errors at runtime, Chapter 6 presents multiple resiliency analysis

and hardening solutions for CNNs, focusing on this domain due its common utilization in

many safety-critical applications.
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Chapter 6: Domain-Specific Resiliency Analysis Techniques for Deep Learning

6.1 MOTIVATION

General purpose resiliency analysis and hardening techniques, as described in Chap-

ters 2, 3, and 4, provide the important aspects of flexibility and generality in addressing

the challenge of hardware errors. The previous chapters have shown that focusing efforts

at the instruction granularity for analysis and hardening provides a suitable abstraction

level for software-directed hardware resiliency. At the same time, however, a general pur-

pose resiliency solution can underperform (and introduce higher overheads) if it does not

take into consideration the executing application, as expounded upon in Chapter 4. While

SInRG aimed to use compiled program artifacts (such as register utilization and total in-

struction count) to select the appropriate duplication strategy for an application, a deeper

understanding of the executing application can provide additional insights into how soft

errors propagate and corrupt the output of an application. These results pave the way for

specialized resiliency solutions, which aim to better understand error propagation at the soft-

ware level, as well as leverage domain-specific knowledge to develop low-overhead solutions.

This chapter shows how such an application error analysis can be performed in a scalable

way, with a focus on deep learning and convolutional neural networks (CNNs) due to their

increased adoption in many high-performance and safety-critical applications.

As described in previous chapters, modern-day techniques to protect against soft errors

in deep learning applications use duplication-based approaches, such as dual modular re-

dundancy (DMR) [50, 51, 52]. For example, Tesla’s recent Fully Self-Driving (FSD) system

deploys two fully redundant DNN accelerator chips along with accompanying redundant

control logic, power, and peripheral packaging on the board for reliability [53]. With the

increasing computational demands of the perception and planning tasks performed by such

systems [192], paying the high overheads of duplication is undesirable, especially if an al-

ternative method exists with similar error coverage but at lower overheads. Moreover, the

all-or-nothing protection offered by full duplication may result in over-protection and ineffi-

cient use of resources.

In this work, we advocate for software-directed, selective protection of CNN models to

avoid the high overheads of indiscriminate redundancy. In order to effectively and efficiently

perform selective protection, we ask three important questions:

(Q1) At what granularity should the selective protection be performed?

(Q2) Which components at this granularity should be selected for protection?
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(Q3) How should the selective protection be implemented?

Answering these questions requires understanding the resilience characteristics of CNNs.

Furthermore, by understanding the effect of soft errors on the outcome of CNNs, we can

potentially leverage domain-specific knowledge to develop low-overhead reliability solutions

and avoid the heavy hammer DMR solution.

Using PyTorchFI [48] (introduced and described in Chapter 5) for analysis and soft error

emulation, we introduce two distinct, yet complementary, techniques for selective protection

in CNNs. The first technique we propose targets feature-map level resilience, which we

call FLR (Section 6.3). FLR selectively protects the vulnerable feature maps (fmaps for

short) of a CNN before deployment for static, “built-in” resiliency. We find that not all

fmaps of a CNN have the same vulnerability to soft errors. By identifying and selectively

protecting the highly vulnerable fmaps, FLR helps avoid the uninformed and hefty hammer

of full duplication by honing protection efforts on the most important sub-components of

the network. However, addressing the second question (which fmaps to protect? ) requires

a typically expensive resiliency analysis of the CNN that involves simulating many error

injections and evaluating the outcomes. Traditional approaches measure a binary outcome

for an output corruption: either the error caused an output misclassification, or it did not.

To accelerate this analysis, we propose a novel, domain specific metric called ∆Loss which

converts the binary metric for output corruptions into a continuous metric. ∆Loss speeds up

analysis by 3.2× on average (up to 9.4×) by gathering vulnerability information even when

an output misclassification does not occur (Section 6.3.2). Addressing Q3, FLR protects the

vulnerable fmap computations by duplicating the corresponding filters in the network. We

show that FLR exhibits a sublinear error coverage versus runtime overhead tradeoff. For

example, our results show that SqueezeNet [193] can attain 90% error coverage with less

than 30% overhead.

The second novel technique we present targets the granularity of each inference a CNN

performs (Section 6.4). Inference-level resilience, or ILR, is a dynamic, confidence-based

resilience technique, which selectively reruns inferences deemed vulnerable to soft errors

using only the output confidence values. ILR leverages a key property we discovered between

an inference output and the probability a soft error will corrupt the output. Specifically, we

find that there is a strong inverse correlation (Spearman coefficient of -0.93) between the

difference of the top 2 confidences (called Top2Diff) reported by a CNN’s inference output

classification and the occurrence of a misclassification (due to a soft error) (Section 6.4.2).

We perform resiliency analysis on CNNs to identify network-specific thresholds for Top2Diff

(addressing Q2), and perform a logic check after each inference to rerun if the Top2Diff is

below the threshold (addressing Q3). Our results show that for the networks studied, we
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can get 90% error coverage on average with only 17% overhead (as low as 9% overhead for

ResNet50).

ILR does surprisingly well: for a given coverage, our results show that its overhead is

lower than either DMR or FLR. Even though FLR duplicates a fraction of computations,

the duplication decision is static and it happens all the time. In contrast, ILR duplicates

a full CNN computation, but is invoked dynamically and less frequently, resulting in lower

overall overhead. We consider a novel combination of the two where FLR selectively protects

fmaps that complement the selective inference protection by ILR for a target error coverage.

Our results show that the combined technique, called FILR (Section 6.5), can obtain 99.78%

error coverage with only 48% overhead on average (as lows as 20% for ResNet50, or 5× less

overhead compared to full duplication).

6.2 CNN ERROR MODEL

In this work, we focus on transient errors in the hardware that occur randomly during

the inference phase of a CNN. We focus on inference since CNNs are usually trained offline

once, the model’s correctness is verified by measuring model accuracy, and then the model

is deployed where the inference task is performed repeatedly with no in-field verification.

As described in Chapter 4, processors deployed in exascale and safety-critical systems

employ ECC/parity to protect large storage structures (such as those storing weights and

intermediate data) [47]. The level of protection offered by that alone without logic protection

will likely not be sufficient, particularly as deep learning continues to grow and delivers high

performance computational power to many critical application domains. In this work, we

focus on transient computational errors during inference, or simply errors which manifest at

a neuron’s output. We employ a single-bit flip error model at the neuron level, which is in

line with many other studies [69, 148, 194, 195, 196].

6.3 FLR: FEATURE-MAP LEVEL RESILIENCE

As described in Section 5.2.1, a CNN is composed hierarchically: groups of neurons form

feature maps (fmaps) which are grouped into layers to comprise a full network. Under-

standing and quantifying the vulnerability at finer granularities can help avoid full network

duplication by enabling selective protection of the most vulnerable components only and

reduce overheads compared to traditional DMR techniques.

This section introduces a resiliency analysis and hardening technique called FLR. Given
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a pretrained network, FLR targets the computational component of fmaps for fine grained

analysis and protection (Section 6.3.1), quantitatively estimates the vulnerability of each

fmap using a new, domain-specific metric called ∆Loss (Section 6.3.2), then selectively

protects the most vulnerable fmaps via filter duplication (Section 6.3.3). FLR is a software-

driven technique, enabling a flexible analysis which can subsequently be deployed on various

hardware platform backends. Figure 6.1 shows an overview of FLR.
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Figure 6.1: FLR design overview. Given a pretrained network, FLR (1) targets fmaps for
selective analysis and protection, (2) estimates vulnerability of each fmap, and (3) selectively
protects the most vulnerable fmaps in software before deployment.

6.3.1 Target Granularity: Feature Maps

Of the three CNN sub-components (i.e., neuron, fmap, layer), we target feature maps

as the sweet-spot for resiliency analysis and hardening for a couple of reasons. First,

neuron-level analysis may be too fine-grained, with many millions of neurons per CNN (e.g.,

ResNet50 and VGG19 trained for ImageNet have over 11 and 14 million neurons, respec-

tively). These numbers increase with input size. Evaluating vulnerability of each neuron via

error injection will be extremely time consuming. Additionally, neurons are not immune to

all translational effects in input images (e.g., rotation, zoom), making this granularity less

robust for reliability analysis.

Fmaps and layers, on the other hand, are much more tractable in terms of total compo-

nents (ResNet50 and VGG19 have 26,560 and 5,504 fmaps across 53 and 16 convolutional

layers, respectively), and they are typically trained to have the same behavior across simi-

lar images [197, 198]. Performing fmap analysis has the additional benefit that the results

can be composed to perform layer- and network-level vulnerability analysis. To the best of

our knowledge, this is the first work to target fmaps for vulnerability analysis and selective

protection with no retraining and no loss in original pre-trained network accuracy in the
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absence of hardware errors.

6.3.2 Vulnerability Estimation

FLR quantifies the vulnerability of each fmap in a CNN due to an error by computing the

likelihood that an error manifests and propagates to the output and produces an SDC. We

compute the likelihood as the product of two components: (1) the origination vulnerability

(Vorig), which captures the likelihood a transient hardware error corrupts the output of an

fmap, and (2) the propagation probability (Pprop), which is the probability the fmap-level

manifestation propagates to and corrupts the CNN output. We compute the vulnerability

of each fmap, Vfmap[i], as:

Vfmap[i] = Vorig[i]× Pprop[i] (6.1)

We define the vulnerability of the CNN, VCNN , as the probability that the CNN produces

an SDC due to a transient hardware error that occurs during inference. This vulnerability

can be computed as the sum of vulnerabilities of each of the N fmaps in the CNN:

VCNN =
N∑
i

Vfmap[i] (6.2)

Using Equations 6.1 and 6.2, FLR measures the relative vulnerability of each fmap in the

CNN, or intuitively the contribution of an fmap towards the total CNN vulnerability:

V relfmap[i] = Vfmap[i]/VCNN . (6.3)

Error Origination Vulnerability (Vorig):

Vorig depends on the implementation of the architecture on which the CNN is being run

and the computation that generates a feature map (e.g., convolution). Assuming that the

major storage structures (e.g., DRAM, caches, and register files) are ECC/parity protected

in the target hardware platform [47], most of the errors originate from the unprotected

computations. Vorig can be computed using the hardware details, the numerical precision of

the computation, raw failure rates of the logic and storage structures, and the computation

structure.

Given that MAC operations are used to perform a convolution and produce an fmap, we

assume that Vorig is directly proportional to the number of MACs in a convolution, without

loss of generality. In this work, we compute Vorig for an fmap as the fraction of the number of

MACs used to compute the fmap to the number of MACs in the entire CNN. Our formulation
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can be extended to compare VCNN across different networks, in which case Vorig should not

be normalized to allow a network-level vulnerability assessment based on the total number of

computations performed by different networks. We leave this interesting direction as future

work.

Error Propagation Probability (Pprop):

Pprop is the fraction of the fmap-level error manifestations that propagate to the CNN

output, producing SDCs. While the true Pprop values for fmaps may not be known, we can

estimate them using statistical error injection. Pprop can also be calculated using heuristics;

however, we explored multiple heuristics and none had significantly high accuracy. We

discuss the heuristics explored briefly in Section 6.8.1, and focus our analysis here using

error injection metrics.

Number of Mismatches: Counting mismatch from error injections may require many obser-

vations for statistical convergence. This metric (although commonly used for its accuracy),

suffers from two issues. (1) It is a binary metric, which means that only error injections

that change the Top-1 class can affect the Pprop measurements. Injection experiments where

the softmax changes but not the Top-1 class are not captured by this metric. As a result,

estimating an accurate SDC probability requires many injection experiments. (2) The Top-1

mismatch-based SDC metric does not extend naturally to other, non-classification CNNs.

This is one of the open problems expressed in the recent survey of DNN resiliency [164]. We

address these issues with a new metric to estimate Pprop called ∆Loss.

Average Delta Cross Entropy Loss (∆Loss): Cross entropy loss is traditionally used during

CNN training to measure how different the predicted result is from the expected (known)

result to improve the prediction accuracy of the network. More generally, it is used in

information theory to measure the entropy between two distributions – the true distribution

and the estimated distribution. Adapting this metric to resiliency, we can calculate the

average absolute difference between the cross entropy loss values observed during an error-

free inference and an error-injected inference. This can be expressed as:

∆Lossfmap =

∑N
i | (Lgolden − Li) |

N
(6.4)

where Lgolden is the cross-entropy loss for an error-free inference and Li is the cross-entropy

loss for the ith error-injected inference across N total error injections. We use the absolute

difference to capture the magnitude of the change in cross entropy loss observed due to an

error injection. The larger the average ∆Lossfmap, the more vulnerable the fmap. Since this

method does not predict the SDC percentage, it can be used only to estimate the relative

Pprop. Figure 6.2 provides an example to illustrate the advantage of using this new metric.
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Figure 6.2: ∆Loss example where (a) shows an error-free inference classifying the car cor-
rectly, (b) shows an example of a mismatch where an error causes the network to select truck
instead of car, (c) shows an example where an error causes a drop in confidence for car that
does not lead to a mismatch; however, the drop can be captured by measuring ∆Loss.

6.3.3 Selective Protection

Once the fmap vulnerabilities are quantified, FLR selects the most vulnerable fmaps to

harden them from SDCs. Individual fmap computations can be protected by duplicating the

filters that correspond to them. Filter duplication results in two copies of the same logical

fmap, where any mismatches between the two copies are used to detect errors during inference

and trigger a higher-level system response. The duplicated fmaps need to be dropped before

execution of the subsequent layer. The comparison of the two duplicate feature maps can

be performed lazily to remove it from the critical path. Although this is not the only

possible implementation for fmap hardening (e.g., algorithm-based fault tolerant or ABFT

techniques [196]), it extends naturally from the relationship between filters and feature maps.

Overall, FLR is a highly tunable software-directed selective protection approach, allowing

the designer to control the error coverage versus computational overhead trade-off based on

the resiliency requirements of the system. We study this trade-off in Section 6.7.
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Figure 6.3: ILR design overview. ILR selectively reruns inferences deemed vulnerable to
SDCs based on the output confidence values.

6.4 ILR: INFERENCE LEVEL RESILIENCE

Another granularity which can be targeted for CNN resilience is an individual inference

for an image. (Section 6.4.1). In this section, we introduce ILR, a novel, per-image inference

confidence-based CNN resiliency technique. ILR selectively reruns images for inferences that

are vulnerable to SDCs by using only information provided after an inference is complete,

namely the confidences in the softmax. We study two confidence-based criteria, Top1Conf

and Top2Diff (Section 6.4.2), and identify a confidence threshold to trigger reruns during

deployment (Section 6.4.3). Figure 6.3 depicts the high level design of ILR.

6.4.1 Target Granularity: Inference

The target granularity for CNN resiliency chosen for ILR is an individual inference. While

FLR targets static, structural duplication of select fmaps before network deployment, ILR

uses dynamic information to perform selective, full network reruns. The motivational insight

behind ILR is that the classification confidence of a CNN for an inference is related to the

probability that a soft error can cause a classification mismatch. Furthermore, despite

their importance, SDCs should be an exception and not the norm; thus, to avoid incurring

static overheads to have high resilience, a dynamic anomaly detector can significantly reduce

overheads while maintaining high error coverage.

6.4.2 Vulnerability Estimation

To selectively identify which inferences are vulnerable and need to be reexecuted, we

explore two decision functions which operate on the softmax (summarized in Algorithm 6.1).

The first function assesses vulnerability of an inference based on the highest confidence value

observed from the softmax (the Top1-Conf). We select this metric to examine if an inference

with high confidence in prediction is more robust to soft errors. In this scenario, if the Top1-
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Algorithm 6.1: ILR Implementation

1 Input: Softmax layer confidence values
2 if F (Softmax) then
3 Re-run CNN for image
4 else
5 No-op

6 Version 1: F (Softmax) returns Top1Conf < THRESHOLD
7 Version 2: F (Softmax) returns Top2Diff < THRESHOLD

Conf lies above a certain threshold, the inference is deemed less vulnerable to perturbations,

while inferences with Top1-Conf below the threshold should be conservatively rerun to avoid

a possible SDC.

The second criterion we explore is the difference between the top two classes in the softmax,

called Top2Diff. The intuition behind this choice is that a transient error needs only do

enough computational damage to the network to cause the CNN to classify the image as the

second highest class, rather than the (originally correct) top class. Thus, a smaller Top2Diff

is akin to a smaller catalyst for the soft error to overcome to cause a mismatch, compared

to a large Top2Diff which is more robust to mismatches from soft errors. In Section 6.7,

we show that a small Top2Diff is highly correlated with SDC occurrences, and thus a good

selection for the ILR conditional function.

For both decision functions studied, we perform resiliency analysis using error injections to

identify the operational threshold for a target error coverage. More broadly, ILR can employ

a complex, higher dimensional function which uses inference-specific artifacts to perform

selective re-execution. Such a generalization is useful for extending ILR to additional, non-

classification CNNs. We leave this exploration as future work.

6.4.3 Selective Protection

ILR protects against SDCs by rerunning vulnerable inferences, and verifying the output

between the two runs. The ILR logic check is a highly attractive solution from an implemen-

tation standpoint due to its simplicity, and can be performed either in hardware or software.

In this work, we consider the ILR logic overhead as negligible and focus on the reexecution

overhead incurred as a result of ILR. In practice, rerunning an inference is not the only

method for duplication. For example, the inference can be subsequently run on a separate,

optimized model, rerun on hardened hardware, use lower precision during verification, or

optimized in other ways to avoid incurring “full” overhead from a duplicate rerun.
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6.5 FILR: ILR + FLR

ILR and FLR can be employed independently for CNN resiliency, as each targets a dif-

ferent axis for selective resiliency analysis and hardening. In this work, we also explore a

combination of the two techniques, to evaluate the benefits of dynamic, selective inference

duplication with static, selective fmap duplication.

To combine the two techniques, we first performs ILR analysis on the dataset to identify

an optimal THRESHOLD for coverage versus overhead as determined by the decision function,

Top2Diff. We then run FLR analysis, but only on the subset of inferences not protected by

ILR. The main idea is to focus the FLR analysis (which will result in a flat, built-in resiliency

overhead by duplicating fmaps before deployment) on the SDCs which ILR does not protect

against.

6.6 EVALUATION METHODOLOGY

Benchmarks: We perform our evaluation of FLR, ILR, and FILR on 7 popular CNNs

pre-trained on the ImageNet dataset [199], each listed in Table 6.1 with a count of topolog-

ical parameters. As described in Section 5.2.1, we assume that a transient error during a

MAC operation of a convolution will corrupt a single bit in a neuron. We use INT8 neuron

quantization during inference, as highly optimized systems typically employ quantization

prior to deploying CNNs. Such models run significantly faster with hardware support for

reduced-precision operations, which is prevalent in GPUs and CPUs. These benefits come

with a small but acceptable loss in classification accuracy (reported in Table 6.1). Addition-

ally, prior work has shown that limiting the numerical range of a neuron can significantly

reduce the SDC rate in a network [148], which we incorporate by operating in a quantized

regime.

Infrastructure: We use the PyTorch framework v1.1 [161], and obtain pretrained models

for CNNs from the PyTorch TorchVision repository [205]. We use PyTorchFI [48] (Section 5)

to perform error injections on the CNNs. All experiments in this section are run on an

Amazon EC2 p3.2xlarge instance [206], which has an Intel Xeon E5-2686 v4 server processor,

64GB of system memory, and an NVIDIA V100 GPU with 16GB of device memory [207].

Data Partitioning: ImageNet [199] provides a test set of 50,000 images, which we

randomly split into an analysis set (AS) and a deployment set (DS) using an 80/20 ratio

for evaluation.1 Since this work focuses on pretrained networks, we do not use the images

1We use “AS/DS” to disambiguate from the common “train/test” nomenclature in ML workloads, al-
though the evaluation concept is the same.
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Table 6.1: CNNs studied with key topological parameters.

Average INT8
Neural Conv Total Total Neurons/ Quantized

Network Layers Fmaps Neurons Fmap Accuracy

AlexNet [145] 5 1,152 484,992 421 56.04%
GoogleNet [200] 57 7,280 3,226,160 443 69.43%
MobileNet [201] 52 17,056 6,678,112 391 62.18%
ShuffleNet [202] 56 8,090 1,950,200 418 67.01%
SqueezeNet [193] 26 3,944 2,589,352 241 57.39%
ResNet50 [203] 53 26,560 11,113,984 656 75.79%
VGG19 [204] 16 5,504 14,852,096 2698 72.20%

from the ImageNet training set as they would already have been used for training. As in a

real-life scenario, we assume the developer only has access to the AS for reliability analysis

of the CNNs, and we validate our results on the DS. The 40,000 images in the AS are the

same across all networks and techniques explored, and similarly for the 10,000 DS images.

During reliability analysis, we are primarily interested in identifying SDCs on images that

are defined as originally correct during an error-free inference, and which result in a mismatch

due to a transient error. Thus, for error coverage analysis, we perform error injections only

on images which are originally correct (meaning the inference resulted in the same class as

the dataset label) during an error-free execution [148, 150, 208]. When measuring runtime

overhead, we include all images for evaluation, since at runtime it is unknown which ones

give correct or incorrect outcomes.

While the AS remains the same throughout analysis, the resiliency analysis methodology

differs for FLR and ILR since they are different techniques (we elaborate in Section 6.6.1 and

Section 6.6.2). However, for validation, we perform a single, unified error injection campaign

on the DS. For the DS, we perform 10 million random error injections per network, where

each error injection is performed on a random bit of a random neuron for a random image.

In total, we perform 70 million error injection experiments across all networks for the DS.

6.6.1 FLR

We partition the evaluation of FLR into two parts: 1) comparing the accuracy and speed

of the two metrics, mismatch and ∆Loss; 2) evaluating the coverage versus overhead tradeoff

provided by FLR’s selective fmap duplication.

To compare mismatch and ∆Loss, we first generate a statistical oracle for fmap vulnerabil-

ity by performing 12,288 injections per fmap (inj/famp) for each network, which corresponds
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to at a least 99% confidence level with less than 0.23% confidence intervals. We define our

statistical oracle using the number of mismatches obtained at 12,288 inj/fmap (shorthand:

Mismatch-12288). For each individual error injection experiment, we flip a random bit of

a random neuron in the fmap for a random image. As described in previous chapters, a

true oracle is computationally elusive, due to the exponentially large population size of all

possible error sites. In total, we performed a total of 855 million unique error injections

across all CNNs studied for FLR.

We generate a cumulative vulnerability distribution based on a greedy selection algorithm

for which fmap order to protect. We sort all fmaps in descending order of vulnerability

(based on the metric being considered) and choose the first several fmaps whose relative

vulnerability adds up to the targeted coverage. The error coverage is always extracted from

the oracle mismatches of each fmap. We model the expected computational overhead as the

total number of MAC operations in those selected fmaps as a fraction of the total MAC

operations in all fmaps. We use MACs as a reasonable proxy to the actual overhead, while

providing some abstraction for the actual hardware used. Our technique is designed to make

FLR platform agnostic, providing a portable analysis for CNN reliability on any hardware

backend.

To compare the accuracy of the metrics, we measure the average Manhattan distance

between each cumulative distribution and the oracle cumulative distribution. We perform a

sweep from 64 inj/fmap to 12,288 inj/fmap for each metric, using the Manhattan distance as

a measure for how similar the vulnerability estimations are (zero Manhattan distance implies

same vulnerability estimations). To compare the speed of each metric in performing the FLR

vulnerability analysis, we identify the number of inj/fmap required to attain 99% similarity

to the oracle. By ensuring that all infrastructure is held constant during error injection

experiments (i.e., the hardware used, the number of images in a batch for parallelizing

error injections, and the runtime of an inference), the only differentiating factor for analysis

runtime is the total number of error injections performed, which we use to calculate speedup.

Finally, we analyze the coverage versus overhead tradeoff for different networks, and show

that the expected coverage (as indicated by the AS) is very accurate compared to the actual

coverage (as indicated by the DS).

6.6.2 ILR

For ILR evaluation, we perform 1000 error injection experiments per image in the AS for

each CNN studied. For each error injection experiment, we flip a random bit of a random

neuron in the network at runtime. In total, we perform 184 million unique error injections
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across all CNNs studied for ILR. We conservatively select 1000 inj/image, which corresponds

to a 99% statistical confidence level with less than 0.81% confidence intervals. Our strong

validation results of ILR on the DS support our evaluation choices (Section 6.7.2).

We evaluate the two logical conditionals for ILR, Top1Conf and Top2Diff, sweeping the

threshold values from 0.0 to 1.0 in increments of 0.01, and measuring the provided error

coverage and associated overhead. The error coverage indicates how many SDCs are pro-

tected against the given Top2Diff/Top1Conf threshold for rerun, while the overhead is the

additional number of inferences performed due to ILR reruns.

6.6.3 FILR

We evaluate FILR using the same error injection infrastructure as ILR described in Sec-

tion 6.6.2. For the ILR component of FILR, we select Top2Diff as the decision criterion.

Given a target coverage, we run ILR analysis to generate threshold values which provide less

coverage than the target. We then run FLR on the subset of inferences not covered by ILR

at each threshold value, and selectively duplicate the most vulnerable feature maps which

bridge the gap to the target coverage. We calculate the associated overhead as the “built-in”

redundancy provided by fmap duplication from FLR for each inference, in addition to the

total number of inferences performed by ILR in deployment, i.e., both the original inference

and the selectively re-run inferences, where each individual inference runtime is based on the

uninstrumented CNN inference plus the additional fmap duplication overhead from FLR.

We report results at the target coverage of 100%, and validate the results by measuring the

coverage and overhead on the DS using the Top2Diff threshold values and selected duplicate

fmaps from the AS.

6.7 RESULTS FOR EFFECTIVENESS OF TECHNIQUES

This section focuses on evaluating the effectiveness of FLR, ILR, and FILR by highlighting

the high-level insights and results. Sections 6.8 provides additional results and in-depth

analysis into the techniques.

6.7.1 FLR

Mismatch versus ∆Loss Convergence: We begin by analyzing the two metrics we use

to quantify fmap vulnerability. Figure 6.4 provides empirical evidence for the convergence

of Mismatch-based analysis and ∆Loss-based analysis as the number of injections per fmap

113



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
M

an
h

at
ta

n
 D

is
ta

n
ce

(R
e

la
ti

ve
 t

o
 M

is
m

at
ch

-1
2

2
8

8
)

Injections per Feature Map (Inj/Fmap)

Mismatch-AlexNet Loss-AlexNet Mismatch-VGG19 Loss-VGG19

Mismatch-SqueezeNet Loss-SqueezeNet Mismatch-ShuffleNet Loss-ShuffleNet

Mismatch-GoogleNet Loss-GoogleNet Mismatch-ResNet50 Loss-ResNet50

Mismatch-MobileNet Loss-MobileNet

Figure 6.4: ∆Loss and Mismatch converge as inj/fmap increase.

increases. The X-axis in the figure shows the number of injections per fmap used for each

analysis, and the Y-axis shows the Manhattan distance between the vulnerability ranking

of fmaps obtained at each point relative to the statistical oracle of Mismatch-12288.

Our first observation is the scale on the Y-axis, which indicates that even at 64 inj/fmap,

∆Loss differs from the oracle by less than 7% on average. Second, the results show that

∆Loss quickly asymptotes to its final ordering of fmaps, and it does so sooner than Mismatch.

Table 6.2 lists the number of inj/fmap required for Mismatch and ∆Loss to arrive within 1%

of the oracle. For Mismatch, the number of inj/fmap ranges from 640-5632 while for ∆Loss

it is lower going from 128-1536 inj/fmap. Additionally, both Mismatch and ∆Loss converge

without requiring a full 12288 inj/fmap. To attain a very high accuracy fmap vulnerability

ordering, our results show that Mismatch requires 5.2× fewer inj/fmap on average than

the Oracle, while ∆Loss requires 16.7× fewer inj/fmap on average, resulting in an average

speedup for ∆Loss of 3.2× over Mismatch (up to 9.4×) .

VGG19 does not attain 99% similarly from ∆Loss and asymptotically approaches the

97.5% mark instead. While still relatively high, we believe this is attributed to the average

size of fmaps in VGG19, listed in column 5 of Table 6.1. For this network, the statistical error

in the large injection campaign of Mismatch-12288 might not be small enough. However,

as we show in the following section, this difference is minute when considering the coverage

versus overhead trade-off, since the precise ranking of fmaps is less important so long as

it is approximately well-ordered. Thus, while the Manhattan distance provides us with
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Table 6.2: Comparison of Mismatch and ∆Loss

Network Inj/Fmap for 99% Oracle Speedup from Oracle Loss
Neural Mismatch ∆Loss Mismatch ∆Loss Speedup

AlexNet 2560 896 4.8× 13.7× 2.9×
GoogleNet 5632 1536 2.2× 8.0× 3.7×
MobileNet 640 128 19.2× 96.0× 5.0×
ResNet50 3584 384 3.4× 32.0× 9.4×
ShuffleNet 1664 1280 7.4× 9.6× 1.3×
SqueezeNet 3072 896 4.0× 13.7× 3.4×

VGG19* 2560 1536 4.8× 8.0× 1.7×
Geomean 2382 738 5.2× 16.7× 3.2×

* For 97.5% similarity to Oracle

empirical evidence for the convergence of Mismatch and ∆Loss, FLR does not suffer from

small imprecisions in the ordering. Attaining a good ordering quickly is advantageous for

faster offline resiliency analysis, and this can be performed with ∆Loss for all networks

studied.

Coverage versus Overhead: Figure 6.5 shows the performance of FLR as a selective

resiliency technique, measured by the coverage versus overhead trade-off for selective fmap

duplication. The X-axis shows the cumulative coverage by selectively protecting fmaps

based on a vulnerability ordering, and the Y-axis shows the corresponding overhead as a

percentage of additional MAC operations. We plot the trade-off for 6 vulnerability orderings:

the Oracle (Mismatch-12288), Loss-12288, mismatch and loss at the 99% convergence points

(Table 6.2), and Mismatch and Loss at 64 inj/fmap. The inclusion of Mismatch-64 and

Loss-64 helps further illustrate the the faster convergence of ∆Loss relative to Mismatch, as

explained in the prior section.

First, the results show that the computational overhead is always sublinear to coverage,

indicating that selective protection is in fact advantageous to full duplication and can even

provide large benefits. For example, covering 90% of errors in SqueezeNet incurs less than

30% overhead for the network, emphasizing that only a fraction of fmaps possess most of the

vulnerability for the network. MobileNet is another interesting network, reaching nearly 98%

coverage (for 64% overhead) before a sudden, vertical rise in overhead for the last 2%. In this

case, we find that MobileNet has a unique feature: an imbalance of fmap sizes (captured by

Vorig), such that the vulnerability of larger fmaps dominate, while a tail of smaller fmaps can

be relegated in protection. For VGG19, despite the small difference in convergence between

∆Loss and Mismatch in fmap ordering (Table 6.2), using selective protection shows that an

informed, approximate ordering (as employed by FLR at fewer inj/fmap) still provides an
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Figure 6.5: FLR vulnerability reduction versus computational overhead.

opportunistic coverage versus overhead tradeoff for CNN resiliency.

Validation: Figure 6.6 validates the use of ∆Loss as a metric for vulnerability analysis,

where we show the estimated coverage predicted by FLR using ∆Loss on the AS (X-axis), and

comparing it to the actual coverage as measured by the number of SDCs protected against on

the DS (Y-axis). The results show that ∆Loss is representative of the actual vulnerability as

measured by mismatches in the DS. Thus, the prediction provided by ∆Loss is an excellent

alternative for system developers for error analysis compared to Mismatch.

116



Figure 6.6: FLR validation of predicted versus actual coverage.

6.7.2 ILR

Correlation Between Inference Confidence and SDCs: We discovered a strong

correlation between inference output and the vulnerability of the inference. Figure 6.7 il-

lustrates this correlation. We plot the number of SDCs for 1000 randomly selected images

run on AlexNet on the primary Y-axis. The secondary Y-axis shows the image’s error-free

Top1Conf and Top2Diff values. We measure the Spearman correlation between the per-

images SDC rate and the two confidence metrics we extract. For AlexNet, the Spearman

correlations are -0.87 for Top1Conf and -0.93 for Top2Diff, where -1.0 indicates a perfect

inverse relationship. Both metrics exhibit a very high correlation relationship between the

number of SDCs observed for an image and the image’s confidence, which we can leverage

for resiliency analysis and hardening.

Coverage versus Overhead: While the two metrics for ILR seemingly have very high

correlations, we find that Top2Diff performs significantly better as a criterion for detecting

SDCs. Figure 6.8 illustrates this difference. Each point shows the coverage and overhead

obtained by setting the threshold for reruns by ILR, swept from 0.01 to 1.0 with 0.01 incre-

ments. Figures 6.8a and 6.8b show the coverage versus overhead tradeoff for using Top1Conf

and Top2Diff in ILR, respectively. For both the metrics, we find that ILR provides a fa-

vorable trade-off in terms of obtaining high coverage and incurring low overhead, signified

by all points being below the x=y line. More importantly, the pareto-optimal threshold

values for Top2Diff are strictly better for Top2Diff, illustrated by a lower “knee” for each
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Figure 6.8: ILR: Coverage versus overhead at different thresholds.

network. ResNet50, for example, can achieve 90% coverage at only 9% overhead using ILR

with Top2Diff, while incurring 18% overhead with Top1Conf. Figure 6.9 summarizes this

result for all networks, showing that on average, we can obtain 90% coverage with only 17%

overhead using Top2Diff, compared to 31% overhead on average with Top1Conf. We focus

on Top2Diff as the decision criterion for ILR moving forward as it performs better.

Validation: We validate ILR by measuring the coverage versus overhead trade-off on

the DS. Figure 6.10 shows the tradeoff plot for ILR using Top1Conf and Top2Diff, showing

similar trends as analyzed on the AS (Figure 6.8b). That the AS and DS contain exclusively

different images reinforces the use of Top2Diff as a confidence-based metric for CNN resiliency

by quantitatively showing a strong correlation between the confidence of an inference and

SDCs.
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Figure 6.10: ILR validation results on DS.

Analysis: Our results show that confidence-based metrics for SDC detection are highly

effective. Furthermore, Top2Diff specifically helps explain the phenomenon of a mismatch,

showing that a soft error has a higher probability of causing a mismatch if the margin

between the top two classes is small, which translates to a higher probability of an SDC

appearing.

While ILR using Top2Diff shows impressive gains compared to DMR by performing selec-

tive inference duplication, we observe that the overhead can still be considered rather high

for resource constrained systems, since despite their importance SDC events are typically

rare. We looked more into this issue, and found that the primary cause of this bloated

overhead was due to the many false positive inferences ILR chooses to re-run, specifically for

images which are originally incorrectly classified and have a small Top2Diff. Moreover, we

found that networks that exhibit a high classification accuracy on average such as ResNet50
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Figure 6.11: FILR coverage versus overhead.

(column 6 in Table 6.1) suffer less from this phenomenon than other networks, such as

AlexNet. This encourages additional research on improving network prediction accuracy in

general (which is already a ripe area of ML research). At the same time, we can explore using

ILR with a secondary metric to attempt to differentiate between correct/incorrect inferences

after the primary metric of Top2Diff. We leave this avenue as future work.

6.7.3 FILR

Combination of Techniques Results: Figure 6.11 shows the results for FILR, which

combines the two resiliency techniques of FLR and ILR as an ensemble resiliency solution.

All points in the figure represent 100% coverage. The X-axis shows the Top2Diff threshold

used by ILR, which also influences the FLR analysis as described in Section 6.6.3. The

Y-axis shows the overhead for FILR, which is a result of both the static overhead from fmap

duplication and dynamic overhead from inference reruns.

The 0.0 Top2Diff threshold (on X-axis of the figure) corresponds to no coverage or overhead

contribution from ILR and only selective fmap protection. The 1.0 Top2Diff threshold

corresponds to only using ILR (with FLR not needing to protect any fmaps). We find that

there exists an optimal point for each network below the 1.0 Top2Diff threshold, where ILR

and FLR collaborate to achieve high, 100% coverage with an overhead that is far lower than

100%. On average, the overhead via FILR is 48.07% across networks, and as low as 20.78%

for ResNet50.

Validation: Figure 6.12 shows the validation on the optimal points from FILR. Our
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Figure 6.12: FILR validation at optimal Top2Diff thresholds.

results show very strong validation, with 99.78% coverage at an average of 47.66% overhead

(as low as 20.47% for ResNet50). These results show that the FILR technique is better than

the sum of the parts, where each technique individually required near 100% overhead to

obtain near 100% coverage.

Analysis: FILR is efficient at identifying a balance between FLR and ILR to obtain less

than 100% overhead. For ResNet50, VGG19, and ShuffleNet, nearly all points provide sub-

100% overhead, benefiting from ILR’s initial low cost at high coverage. Other networks such

as GoogleNet, SqueezeNet, and MobileNet show less overall improvement, but FILR is still

able to identify multiple sub-100% overhead points for efficient resiliency. AlexNet contains

one such point at 0.95 Top2Diff threshold, but as it is a smaller and low-accuracy network,

there seems to be less opportunity for lower overheads at such high coverage. Nevertheless,

there still exists a point below 100% overhead which is identified by FILR, further validating

the use of selective, granular resiliency over DMR.

The results show that FILR is effective at flattening the sharp rise observed by ILR alone

(in Figure 6.8b) at higher coverage points. More generally, FILR combines the benefits of

each technique, by providing a low overhead starting point via ILR, followed by a shallow

growth for higher error coverage via FLR’s selective feature duplication. The key behind

this symbiotic relationship is using FLR to focus selective protection of fmaps for the subset

of SDCs missed by ILR. Furthermore, using ∆Loss as the resiliency metric for FLR has a

subtle yet important contribution in the combined analysis, since it can help distinguish

fmap vulnerabilities at fine granularity with fewer samples.
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Figure 6.13: Layer level vulnerability analysis with ∆Loss on ResNet50-ImageNet (cutoff at
1024 fmaps).

6.8 DETAILED ANALYSIS AND EXTENSIONS

We performed additional analyses and experiments for FLR, ILR, and FILR, to shed more

light on various aspects of the techniques. We provide additional details into layer-level and

network level resilience of CNNs, the effect of different error models on analysis, multiple

heuristics for calculating vulnerability of fmaps, and implementation measurements on a

Jetson Xavier platform.

6.8.1 FLR

Layer Level Analysis: As layers in a CNN consist of many fmaps, we study whether the

vulnerable fmaps of FLR are clustered in certain layers or not. Figure 6.13a shows a heatmap

of ResNet50’s fmap vulnerabilities (Vfmap), which are computed using ∆Loss. Fmaps per

layer are sorted based on Vfmap values. The darker the color, the more vulnerable the fmap.

We find that on average, a small fraction of fmaps (<33%) account for a large percentage

(>76%) of a CNN’s vulnerability. The figure also show that the highly vulnerable fmaps are

distributed across layers. A layer-level analysis and protection may provide an inefficient

solution as it will likely protect more fmaps than required to meet the resilience requirements.

A fine-grained analysis at the fmap level provided by FLR informs which fmaps to target

duplication for an optimal solutions.

We also study the importance of incorporating Vorig in the vulnerability formulation by

122



0

10

20

30

40

50

60

70

80

90

100

0 0.00004 0.00008 0.00012 0.00016 0.0002

O
ve

rh
e

ad
(%

 A
d

d
it

io
n

al
 M

A
C

s) ResNet50

MobileNet

VGG19

GoogleNet

ShuffleNet

SqueezeNet

Vulnerability
Target

𝐕𝐂𝐍𝐍
Figure 6.14: Network level analysis for ImageNet networks.

comparing the Pprop and Vfmap values. Figure 6.13b shows the updated per-fmap profile

combined at the layer level using just Pprop (i.e., not including Vorig). Prior work used similar

quantities to determine what and how much to protect [150, 168, 209]. This figure (when

compared to Figure 6.13a) shows that the fmap and layer vulnerabilities could vastly differ,

and could lead to protecting significantly different set of fmaps or layers if the origination

vulnerability is ignored.

Network Level Analysis: FLR further allows a developer to compare total vulnera-

bility values, VCNN , of different CNNs, allowing them to make an informed decision about

selecting a CNN that meets the resilience, performance, and accuracy targets. Results for

six different CNNs trained on the ImageNet dataset to solve the same classification prob-

lem are shown in Figure 6.14. For a given vulnerability target, this analysis informs the

developer how many fmaps need protection for a selected CNN and estimates the associ-

ated overheads. Since we use ∆Loss to predict Pprop, the X-axis values are in an arbitrary

units, but allow for relative comparison and selection. A separate small experiment can be

performed to calibrate the scale to real probabilities. For example, based on a vulnerabil-

ity target of 0.00007 (as exemplified in Figure 6.14), selecting ResNet50 would satisfy the

reliability need without additional protection. Selecting SqueezeNet and GoogleNet would

require duplicating a fraction of fmaps which would amount to approximately 5% and 35%

overheads, respectively.

Different Error Models: As described in Section 6.6, we assume that a transient error

on a flip-flop during a MAC operation of a convolution will corrupt a single neuron’s value.
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While this chapter has focused primarily on this error model, prior work has shown that

low-level errors can manifest as single or multiple bit flips [210]. To that end, we evaluate

Pprop using a few additional error models, and compare the resiliency analysis results.

In each model we explore, an error is injected into a neuron that is randomly chosen

from an fmap, followed by substituting the original value with the erroneous value. We

explore the follow three error models: (1) FP-Rand represents a random, multi-bit error in

a neuron storing a floating-point value. A random value between [-max, max] is selected as

the injected error, where max is the maximum observed neuron value in the fmap across the

training set. FP-Rand limits the the error by bounding it between a range. Previous work

found that inference is highly sensitive to errors in the sign and exponent bits and a simple

output fmap-level range detector can mitigate many of the most severe corruptions [148],

which we incorporate in this error model. We use 16-bit floating point (FP16) precision

for our evaluation. (2) FxP-Rand considers 8-bit integer (INT8) fixed-point quantization

(a commonly used scheme in many commercial products [211, 212]), which quantizes the

CNN based on the range of neuron values observed during training. The erroneous value

is a randomly selected INT8 value. (3) FxP-Flip represents a random single bit-flip on a

fixed-point quantized 8-bit integer neuron. This third model is the same model that was

used previously throughout this chapter.

The different computational precisions used for FP-* and FxP-* impact the FIT rate of the

MAC operation and the error origination vulnerability, Vorig. Two factors affect the FIT rate

of a MAC – the number of unprotected bits in the MAC and the logical error propagation

probabilities through the multiplier and accumulator implementations. We assume Vorig

for FxP-Rand to be 0.75× the Vorig for FP-Rand, primarily based on the reduction in the

number of unprotected bits2. We assume Vorig for FxP-Rand and FxP-Flip are identical.

Figure 6.15 shows the cumulative relative vulnerability (V relfmap) of the fmaps in AlexNet-

ImageNet, where the X-axis is sorted in descending order of V relfmap, which are measured

using 12,288 inj/fmap and mismatch as the SDC determination criterion. For the com-

parison, we use the same fmap order on the X-axis, which is obtained based on FxP-Flip

V relfmap.

Results show that an fmap’s contribution towards the total network vulnerability is practi-

cally the same for the different error models, with less than .0001% difference. We, however,

found that the absolute total vulnerability, VCNN , changes with the models. FP-Rand and

FxP-Rand exhibit similar propagation probabilities (Pprop), as both models have the same

dynamic range and multi-bit perturbation error model. However, VCNN is lower for FxP-

2Since each MAC unit typically has two input registers (8-bits for INT8 and 16-bits for FP16) and one
accumulator (of 32 bits), we use (8 + 8 + 32)/(16 + 16 + 32) = 0.75.
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Figure 6.15: V relfmap is similar across error models, even with different VCNN (AlexNet-
ImageNet).

Rand due to the influence of the numerical precision of the MACs (INT8) on Vorig. FxP-Flip

shows lower VCNN , which we attribute to the less egregious error model, i.e., a single-bit

perturbation, compared to a random value from the entire range.

Heuristic Exploration for Pprop: Our primary results and evaluation for FLR focused

on error injection analysis for Pprop. We also explored other heuristic based approaches

for Pprop, discussed briefly here. Despite the heuristics running quickly relative to an error

injection campaign, the resulting accuracy for fmap-level analysis was not as high as desired

for the heuristics explored [49]. The heuristics rely on information from a set of error-free

inferences to estimate the vulnerability of an fmap, and fall under two general categories:

(1) obtaining fmap-level information using observations from the forward pass during an

inference, and (2) performing an additional backward pass (a back-propagation) to provide

additional information via differentiation for vulnerability estimation. We studied a total of

6 non-injection based heuristics, and include a summary in Table 6.3.

• Max Neuron Value: This simple forward-pass technique assigns an fmap the value of

the maximal observed neuron value across many sample inputs. Thus, effectively, it

assumes that errors in feature maps where the activation values can be high are more

likely to affect the outcome.

• Feature Map Range: This technique assigns each fmap the value computed by finding

the difference between the largest and smallest activation value across many sample

inputs. This ranking scheme takes into consideration that networks will typically be

125



Table 6.3: Summary of estimation techniques for FLR

Vulnerability estimation based on error injections
Method Name Description

Mismatch Top-1 Misclassification rate in fmap due to error
∆Loss Average delta cross entropy loss of fmap due to error

Vulnerability estimation based on heuristics, with no error injections
Method Name Description

MaxNeuron Max neuron value observed for fmap
FmapRange Range of neuron values observed for fmap

L2 Average L2-norm value of fmap
Gradient Average magnitude of gradients for fmap

Gain Analytical model of Top-1 class change for variation in fmap [213]
ModGain Alternative formulation of Gain analytical model (Equation 6.5)

quantized before deployment [213, 214, 215], constraining their dynamic range and, in

effect, also reducing the possible observable corruptions in the neurons in the feature

maps. Thus, it models the maximal range of error values which may be observed

during inference.

• Average L2 : The L2-norm calculates the distance of the vector coordinate from the

origin of the vector space. Specifically, it is calculated as the square root of the sum

of the squared vector values. We compute the L2-norm of an fmap (vector) averaged

across multiple input samples to assign this value to the fmap as an estimate of relative

vulnerability.

• Gradient : One of the key components of CNN training is the gradient descent algo-

rithm used to update a network’s weights. During training, a CNN performs back-

propagation to adjust weights in order to minimize a loss function (a typical loss

function is cross-entropy loss, discussed above). This is done by obtaining the gradient

value at each weight, and adjusting the weights incrementally during each training

epoch by using the gradient value. We use a similar technique but adapted to neurons

(rather than weights). As neurons are differentiable, they too have gradient values

which can be used to predict vulnerability. For this technique, we perform a backward

pass which only computes the gradients for each neuron and does not modify the net-

work parameters, unlike the backward pass used in the training phase. We compute

the gradients with respect to the cross-entropy loss at the output. We use the absolute

value of neuron gradients obtained, and average them per fmap across many samples
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from the dataset.

• Gain: Recent work by Sakr et al. [213, 215] proposed an analytical model which

bounds mismatch probability in the context of network quantization. We implement

this technique, called Gain, which intuitively models the expectations of a class change

for a CNN.

• ModGain: We adapt the Gain formulation for reliability analysis. While Gain utilizes

a model of independent noise neuron corruption, we propose to study the effect of

replacing a neuron by a random scalar belonging the the fmap’s dynamic range. Under

such setup, it can be shown that the Gain approach may be re-purposed to obtain

ModGain, where the gain of fmap F is:

EF = E


M∑

i=1,i 6=ŷ

∑
a∈F a

2

∣∣∣∣∂(zi−zŷ)∂(a)

∣∣∣∣2
|zi − zŷ|2

 (6.5)

where F ’s neurons {a}a∈F are combined with the M soft outputs {zi}Mi=1 given a

predicted label of ŷ.

Compared to the forward-pass only techniques (the first three), the techniques which

leverage back-propagation (the latter three) are slower in estimating Pprop due to the extra

operations. However, by leveraging framework optimizations, all heuristics are expected

to run faster than error injections campaign due to the limited number of total inferences

compared to error injection experiments. While advantageous from a runtime perspective,

these heuristics did not perform well (relative to the Oracle described in Section 6.6.1),

because the network topology was not taken into consideration (whereas the topology is

incorporated by injecting errors and emulating their propagation to the output). We leave

the exploration of better heuristics for estimating Pprop as future work.

6.8.2 ILR

As described previously in Section 6.6.2, the offline analysis for threshold selection of

ILR may require many experimental error injections to increase the statistical confidence in

the final threshold. However, empirically, we find that a reduced number of sampling can
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(a) GoogleNet-ImageNet (b) MobileNet-ImageNet

(c) ShuffleNet-ImageNet (d) SqueezeNet-ImageNet

(e) ResNet50-ImageNet (f) VGG19-ImageNet

Figure 6.16: Error rate of images for a given fault-free Top2Diff threshold.

also suffice for quickly determining an ILR threshold while maintaining the accuracy of the

selected threshold.

In order to understand this more, we grouped images together from the AS based on their

original (error-free) Top2Diff values for evaluation. Loosely, each group can be considered

an equivalence class of images, since the hypothesis is that images with similar top2diff

will behave similarly in terms of SDC possibilities. We performed 1000 error injections per

image, and plotted the number of output mismatches that occurred within each equivalence

class. The results are illustrated in Figure 6.16.

We find that our intuition regarding Top2Diff holds - the class of images with lower

Top2Diff produce more errors on average than classes of images with larger Top2Diff. Fur-

ther, we find that the approximate location where Top2Diff of a network has a very low
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(b) MobileNet-ImageNet
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(c) ShuffleNet-ImageNet
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(d) SqueezeNet-ImageNet
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(e) ResNet50-ImageNet
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(f) VGG19-ImageNet

Figure 6.17: Reduced sampling rates for ILR can accelerate Top2Diff threshold selection.
The legend indicates the fraction of samples relative to our baseline injection campaign (e.g.,
1.0 in the legend corresponds with 40 million samples).

mismatch rate is analogous to the optimal Top2Diff threshold selected by ILR, as explained

in Section 6.7.2.

The main takeaway from these results indicates that images with lower Top2Diff have a

higher mismatch rate, and this insight can be used to bias the sampling of images when

looking for the optimal ILR threshold. Figure 6.17 provides emperical evidence for such a

reduced sampling concept. The figure shows the overhead versus coverage plots for a different

number of samples, based on the original 40 million error injections used to perform the ILR

experiments in Section 6.6.2. The legend indicates the percentage of samples used, relative

to the total 40 million injections from our baseline experiments (1.0 indicates 40 million total

samples; 0.5 indicates 20 million total samples, etc). We find that the number of samples

can be as few as 40,000 (.01% of our baseline) before loosing the fine-grained thresholding

results of the baseline. Effectively, this is a relative speedup of 3 orders of magnitude. In

terms of actual wall-clock time, that is the difference between an error injection campaign

requiring multiple hours to complete versus less than a minute for threshold selection (when

running error injection experiments on a high-end GPU such as an NVIDIA V100).

Overall, by understanding the correlation between a transient error on an inference’s

output confidences, we are able to further accelerate our error analysis campaign to run

quickly without the loss of accuracy in identifying a good threshold for ILR.
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6.8.3 FILR

We implemented FLR at the optimal point indicated by FILR (Figure 6.11) and measured

the static model runtime overhead. We used a Jetson AGX Xavier as our platform, which has

a 8-core ARM v8.2 CPU and 512-core Volta GPU with Tensor Cores and 32GB of shared

memory. We ran the models on each of the CPU and GPU with a batch size of 1, and

performed 100 runs and measured the average runtime overhead relative to an unhardened

model. Figure 6.18 shows the results.
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Figure 6.18: Model runtime overhead at optimal FILR design points, measured on a Jetson
AGX Xavier.

We find that the measured runtime overheads are indeed platform-specific. Our measured

CPU runtime overheads are higher on average, increasing the model runtime by approx-

imately 7.7% on average, while GPU runtime overhead is much less at 1.6% on average.

Many factors can influence the exact runtime of the models, including compiler optimiza-

tions, library implementations (in this case, cuDNN on CPU versus GPU), the hardware

implementation which may accelerate certain computation (tensor cores on the GPU), as

well as the possible availability of spare resources such that duplicate computations are run

in parallel to effectively hide the latency of protection. While exact runtime overheads would

require a more thorough analysis, this study shows the portability of implementing our tech-

niques on different hardware platforms, as well as show the diverging results which may be

accompanied by the platform of choice.

6.9 SUMMARY

As CNNs are increasingly employed in high performance and safety-critical applications,

ensuring they are resilient to transient hardware errors is important. Full duplication pro-
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vides high error coverage, but the overheads are prohibitively high for resource-constrained

systems. Instead, selective protection targeting the most vulnerable work or components

can provide a low-cost solution compared to employing indiscriminate redundancy across

the board.

In this chapter, we develop and evaluate two selective protection techniques for CNNs

that target different granularities. First, we develop a feature-map level resilience technique

(FLR), which identifies and statically protects the most vulnerable feature maps in a CNN.

Second, we develop an inference level resilience technique (ILR), which selectively reruns

vulnerable inferences by analyzing their output. Finally, we show that the combination of

both techniques (called FILR) is highly efficient. Our results show that the combination can

achieve very high error coverage of 99.78%, while incurring only 48% overhead on average

(and as low as 20% for ResNet50, or 5× less overhead compared to full duplication).
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Chapter 7: Related Work

7.1 GENERAL PURPOSE RESILIENCY

Many successful analysis techniques have been proposed to address soft errors in both

hardware and software. Here, we compare these approaches to our work.

Hardware resiliency analysis techniques: As described in Chapter 1, hardware re-

siliency analysis techniques can generally be categorized into two groups:

1) Techniques that rely purely on static/dynamic program analysis of error-free execution

to model error propagation. ACE [35] analysis is often used to measure the Architectural

Vulnerability Factors (AVF) [33, 35, 216, 217, 218] of hardware structures. PVF [27] iso-

lates purely (program or software dependent) architecture-level vulnerabilities in the AVF;

ePVF [36] further isolates bits that may lead to crashes and achieves a more accurate es-

timation of the program’s SDC vulnerability. Many cross-layer resiliency solutions have

been proposed using these techniques [219, 220]. Shoestring [30] uses a compiler analysis to

identify vulnerable program locations. While fast, these techniques do not precisely model

an error’s impact on the execution because they use information from only an error-free

execution.

2) Techniques that employ error injections. While typically slower than the previous

group, these techniques employ error injections at different hardware and software abstrac-

tions [37, 38, 39, 40, 41, 102, 221, 222, 223, 224]. Some rely predominantly on statisti-

cal error injections for vulnerability analysis [32, 225, 226, 227, 228]. Others employ a

hybrid approach combining combine program analysis with selected error-injection cam-

paigns [41, 42, 44, 62, 229, 230]. For example, MeRLiN [41] applies ACE-like analysis and

error pruning to accelerate statistical micro-architectural error injections. It can provide

fine-grained reliability estimates for hardware structures and SDC vulnerability estimates

for software. VTrident [62] uses error injections in static instructions to build an input-

dependent model on top of Trident’s [61] error propagation analysis to predict the instruc-

tion’s SDC vulnerability. Rezlyer analysis (which is leveraged heavily in Approxilyzer as

described in Chapter 2), is also a hybrid technique, but the primary goal is not a statistical

average or probability—it is to determine precisely if/how an error in any specific instruction

will impact the final output.

Concepts similar to Minotaur: We discuss the most directly related works from other

domains with similarities to different concepts in Minotaur in Chapter 3. IRA [99] uses

statistical techniques to generate reduced canary inputs that are used to explore different
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approximation techniques; once an appropriate technique is found, it is applied to the larger

input. In Minotaur, the Min input is used not just for exploration, but also for the final

resiliency analysis. The Ref input is analyzed only if additional accuracy is desired from

multiple inputs and even so, only a subset of Ref needs analysis. A key difference is that IRA

targets online production time analysis whereas Minotaur is motivated by offline development

time analysis.

DeepXplore [231] proposes the criterion of neuron coverage for quantifying the fraction

of a deep learning system’s logic exercised by a set of test inputs based on the number of

neurons activated by the inputs. Neuron coverage is an orthogonal application-specific input

quality criterion that could be employed by Minotaur for appropriate domains.

There are several (static and runtime) approaches in other contexts that share the same

goal as Minotaur’s early termination technique, namely, cutting the computation short with-

out sacrificing accuracy [229, 232, 233, 234]. A recent example is SnaPEA [232] where

convolution operations are terminated early if their output is predicted to be zero.

MinneSPEC [235] aims to provide reduced input workloads to improve performance (usu-

ally runtime of applications), which differs from our objective of uncovering SDC-PCs.

Minotaur is an orthogonal technique that can be used to improve many of the above

techniques. In general, the concepts of measuring input quality and input minimization

are broadly applicable to all techniques that use application inputs. PC coverage as an

input quality criterion can conceptually apply to many of the above techniques, but it

needs experimental verification. Error injection prioritization can be directly applied to all

techniques that use error injections. Input prioritization is also a general concept that can

be applied in cases where multiple inputs are used.

7.2 APPROXIMATE COMPUTING

Many techniques have been proposed that leverage approximate computing for improved

performance, energy or reliability. Loop perforation [78], voltage scaling [236, 237], ap-

proximate ALU computations [238, 239], approximate kernels [240, 241, 242], neural hard-

ware [243], and memory system approximations [244, 245] are all possible techniques that

trade off accuracy for system benefits.

Programming language support, such as that in [83, 239, 246, 247, 248] helps programmers

abstractly express approximations and check program correctness at the cost of increased

programmer burden. Recent frameworks [247, 249, 250] build on these languages to auto-

matically identify approximate regions of the code while providing some statistical [250] or

probabilistic [247] guarantees on the final end-to-end error. While these frameworks advance

133



the state-of-the-art to greatly reduce programmer burden, they still require the programmer

to adopt a new programming language and/or modify their source code. Thus, they can-

not be used for very large multi-kernel programs (static analysis may be complicated and

under-estimate the approximation potential) or for programs where the source code is not

available (such as legacy code). We believe that Approxilyzer is a complementary technique

and can be used as a front end plugin to these frameworks. A concurrent work [251] provides

statistical guarantees on final output quality given an approximate kernel and accelerator

configuration using compiler support and hardware binary classifiers. While this work fo-

cuses on coarse-gain approximation with accelerators, Approxilyzer is a general framework

which studies approximation at the fine granularity of single instructions.

SAGE [241] automatically generates approximate kernels for GPUs but like other meth-

ods [240, 252] uses an online mechanism to catch unacceptable quality degradation in a

reactive fashion. Approxilyzer on the other hand provides offline output quality informa-

tion. Techniques such as [253] control output quality constraints by tuning various knobs in

an approximate program. Approxilyzer solves the problem of identifying approximate code

and as such is an orthogonal technique.

The idea of identifying unacceptable output corruptions for selective reduced-cost re-

siliency protection has previously been explored in the realm of soft computations. A com-

bination of error injections and static analysis is used in [254] to identify Egregious Data

Corruption (EDC) prone code and data segments in soft computations that can then be

protected by detector placements. IPAS [255] uses machine learning to identify and protect

only those Silent Output Corruptions (SOC) instructions that alter the output of scientific

codes. Khudia et al. [256] use compiler analysis to identify critical variables in the appli-

cation that are likely to generate Unacceptable Silent Data Corruptions (USDCs) in the

presence of errors and only protect those using strategic expected value checks. Approxi-

lyzer classifies error outcomes into categories based on approximation potential and predicts

the impact errors in individual instructions with high accuracy. This allows for very fine

tuning of resiliency protection schemes for different quality and overhead requirements.

Application of approximate computing to hardware resiliency has also been demonstrated

in specialized domains such as bio-medical applications. Sabry et al. [257] study Electrocar-

diogram (ECG) monitoring wireless body sensor nodes and tradeoff inaccuracies inherent to

the domain to achieve resiliency overhead savings. Approxilyzer also exploits accuracy loss

for resiliency overhead savings but does so in a manner that can be used by any general-

purpose program.

Many techniques have been proposed that leverage approximate computing at the level of

software [75, 78, 240, 241, 242, 251, 253, 258, 259, 260, 261, 262], programming languages [83,
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239, 246, 248, 249, 250, 263] and hardware [243, 244, 261, 264, 265, 266, 267, 268, 269,

270, 271, 272, 273, 274, 275] for improved performance, energy, or reliability. Criticality-

testing [104, 254, 276, 277, 278, 279, 280] of approximate computations is important for

many domains. Minotaur is an orthogonal set of techniques that can be used to improve

many of these analyses that use application input(s).

7.3 GPU RESILIENCY

Software introduced redundancy: Prior techniques have introduced redundancy at

multiple granularities including the process, GPU kernel, thread, and assembly instruction

level. Process-level redundancy replicates the process and compares results at system call

boundaries [52, 281]. This approach suffers from limitations for multi-threaded workloads.

Kernels or thread blocks can be re-executed and their outputs then compared to ensure

correctness [125]. This approach is challenging for workloads where the kernel or block

outputs are non-deterministic, which can arise from rounding errors and reading clock values

during execution. Thread-level duplication (TLD) has been employed for CPUs [281, 282,

283, 284] and GPUs [125, 126, 127] and requires spare hardware resources. Wadden et

al. [126] and Gupta et al. [127] each proposed a compiler-based approach for GPUs that

duplicates thread-blocks and threads, and observed high overheads for block-level duplication

due to inter-block communication and synchronization. We quantitatively compare SInRG to

TLD in Chapter 4. One drawback for TLD is that programmer intervention may be required

to ensure spare hardware resources are available. Intra-warp communication constructs such

as warp vote and shuffle operations, for example, must be handled accordingly for proper

TLD operation.

Software instruction-level duplication does not have these limitations and has been ex-

plored for CPUs [116, 117, 118]. Oh et al. [116] proposed a technique to duplicate instruc-

tions at the assembly level and insert checking instructions to validate the results. The

average runtime overheads were approximately 60% on a 4-way issue superscalar processor.

SWIFT [117] proposed a compiler-based approach and exploited wide, underutilized proces-

sors by scheduling both original and duplicated instructions in the same execution thread,

and reported overheads of about 40% on Intel Itanium CPUs. The applicability of such tech-

niques for GPUs has not been studied previously, and SInRG addresses this gap. To reduce

the overheads further, Shoestring developed a compiler technique to selectively duplicate

instructions by trading off coverage for performance [67]. Combining such a technique with

SInRG is an interesting future direction.

Hardware introduced redundancy: Traditional business-class systems (e.g., IBM Z
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Series machines [51]) employ expensive hardware-managed dual- or triple-modular redun-

dancy schemes at prohibitively high cost for commercial use. In safety-critical systems,

similar techniques are being employed to meet the safety integrity requirements [50]. Recent

server and business-class processors (e.g., IBM System Z machines [285]) adopt fine-grained

hardware checkers to detect errors in individual processor components, presumably with

substantive design effort. Such an approach has also been explored for GPUs [286].

Warped-DMR [115] and RISE [287] proposed hardware mechanisms to exploit underuti-

lized parallelism in GPUs for error detection. Specifically, Warped-DMR uses the idle single-

instruction, multiple thread (SIMT) lanes to redundantly execute some of the threads within

the warp and achieve intra-warp DMR execution. RISE proposed mechanisms to predict and

use idle SM cycles and SIMT lanes to execute redundant work [287]. Warped-RE extended

these approaches and introduced redundancy to verify every warp instruction [288]. It re-

executes the instruction to correct any detected errors. Each of these techniques requires

complex hardware changes and they are not directly comparable to SInRG techniques.

7.4 CNN RESILIENCY

With the increasing use of CNNs in HPC and safety-critical applications, there has been

a recent surge in research on CNN resilience. Many proposed methods for CNN resilience

require network retraining. This has been performed for redistributing vulnerability across a

network [208, 289] and introducing additional components that require fine-tuning [209]. One

goal of our work is to avoid training altogether due to its high associated costs. Retraining

is also often not an option for proprietary models, as the training recipe and datasets may

be unavailable.

Many works have explored error injection analysis for CNNs [148, 150, 208, 209, 290, 291,

292, 293]. Most of these works, however, have limited resiliency analysis studies by either

focusing on only a few small networks (using MNIST and CIFAR10 datasets), performing

relatively few injection experiments (a few 1000 injections per network), or cap the number

of images studied. To the best of our knowledge, we perform the first large scale CNN

reliability study across many networks and datasets. Further, we introduce a new method,

∆Loss, which opens up several new research directions including allowing other techniques to

validate their results for accuracy without limitations of very large error injection campaigns.

Prior work has explored performing selective duplication at finer granularities, such as

kernel-level duplication in GPUs [290], layer level duplication [291], feature map level du-

plication [208], and neuron level duplication [209]. Further, recent work has shown that

software level TMR hardening can provide similar error protection compared to hardware
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duplication, while costing less area [291]. In this work, we target fmap-level resilience in

software with FLR and inference-level resilience for ILR. While this work is not the first

to target fmaps level granularity, we are the first to evaluate protection of fmaps without

retraining and while performing a large scale study and analysis. To the best of our knowl-

edge, this is the first work to introduce ILR, as well as a combination of two granularities

for holistic CNN resiliency.

CNN model pruning techniques aim to remove redundant and less-useful parameters from

a model to improve execution efficiency [294], which can be considered an inverse operation

of hardening. These techniques often reduce accuracy by a few small factors. FLR focuses

on identifying vulnerable feature maps, which it then proceeds to duplicate to improve

reliability, with no effect on classification accuracy. There are many similarities between

pruning and hardening. (1) Pruning is typically a two-phased process. The first phase

identifies a filter to remove, and the second phase (called a fine-tuning phase) removes the

filter and retrains the network. (2) Recent work found that pruning full filters (rather

than individual weights in a filter) can have minimal effects on accuracy, while improving

the pruning speed [295]. This is analogous to our fmap target granularity and protection

strategy, where FLR duplicates feature maps instead of neurons. (3) Pruning techniques

rank filters using heuristics to identify candidates to prune [295, 296]. We also explore

similar heuristics to estimate fmaps based on vulnerability, as described in Section 6.7.1.

The objective of a pruning technique is to zero-out a filter, removing it from the model. In

contrast, for the resiliency analysis, we assume various error models which change a single

neuron.

Recent work in this domain has also explored mapping lower-level error models to

higher level models [175], as well as the nearby work of approximations for accelerat-

ing CNN computations via quantization [297]. Both these works can potentially be an-

alyzed by FILR for resiliency analysis, and may provide good future directions for ex-

ploration between quantization, different error models, and CNN resilience. Adversarial

attacks [152, 153, 154, 155, 156, 157, 158, 159, 160, 298] are another set of CNN pertur-

bations similar in spirit to soft errors (in that they can affect the output of a classifica-

tion), with the subtle difference that adversarial attacks focus on the input into the CNN,

while transient errors in computations are typically modeled on the internal CNN computa-

tions [69, 148, 175, 194, 195, 196].
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Chapter 8: Conclusion and Future Work

8.1 CONCLUSIONS

Modern systems at scale are increasingly susceptible to transient hardware errors at current

technology sizes. With commodity hardware used across various systems with a range of

reliability requirements, it is important to design tunable, low-cost resiliency solutions to

address the issue of hardware errors. In this thesis, we promote software-directed, selective

duplication as a means to avoid the high overheads of traditional full duplication methods,

while maintaining high error coverage.

Approxilyzer [44] and gem5-Approxilyzer [45] are general purpose tools, which allow the

developer to understand the impact of an error on the applications output. Using the novel

pruning techniques introduced by Relyzer [42], Approxilyzer takes as input a quality metric

for an application and automatically (without user directives) provides a resiliency profile at

the instruction granularity for a single-bit flip error model. Effectively, it allows the user to

understand the impact of virtually any bit-flip on the outcome of the application, and allows

the user to subsequently tune their resiliency versus overhead versus output quality based on

the system requirements. This key insight explicitly identifies the duality between resilience

and approximate computing, and we explore both opportunities given an application’s error

profile.

While very powerful as a resiliency analysis tool, Approxilyzer need to be accelerated

and more scalable for general use. We introduce Minotaur [46], a software-testing inspired

toolkit to speed up the runtime of resiliency analysis tools such as Approxilyzer. While

Approxilyzer’s analysis is orders of magnitude better than a naive error analysis, it can still

be slow due to the large number of possible error sites requiring detailed study. Minotaur

bridges between software testing and hardware resiliency by adapting four techniques from

the software engineering domain to make hardware error analysis faster and thus more

scalable. We show that Minotaur can significantly improve the runtime of Approxilyzer,

while simultaneously improving its accuracy in identifying hardware errors as well.

The third contribution of this thesis focuses on reducing the implementation overhead of

instruction-level duplication, by taking into consideration the hardware platform and unique

opportunities provided by the backend architecture. We develop a family of techniques called

SInRG [47], which is the first practical approach to software-directed instruction duplication

for GPU-based systems. With SInRG, we identify GPU-specific opportunities of overhead

reduction, explore software and hardware performance optimizations to lower replication

138



overhead, and implement an auto-tuner to selectively choose the best duplication technique

for a give workload.

We find a common theme across the general-purpose tools and techniques discussed in

this thesis. Specifically, tuning techniques and analyses to the application on hand can

provide additional opportunity for reducing overheads and identifying errors. The fourth

contribution expands this observation, by performing domain-specific resiliency analysis on

convolutional neural networks (CNNs), due to their prevalence in safety-critical tasks. We

developed an open-source CNN perturbation tool, PyTorchFI [48], and use it to introduce

two selective protection schemes at different granularities: feature maps level resilience (FLR)

and inference level resilience (ILR). Moreover, we show that the combination of the two

resilience schemes is better than the sum of their parts (called FILR). On average, we find

that FILR can achieve very high coverage (99.78%) while incurring only 48% overhead on

average (as low as 20% for ResNet50, or 5× less overhead compared to full duplication).

Overall, the goal of this thesis makes fundamental contributions in the space of soft error

resilience, by using principled and scalable software directed techniques for error analysis.

Furthermore, this thesis promotes specialized resiliency analysis (by introducing novel tech-

niques in the space of CNN resilience) as a means for low-cost resiliency techniques by

understanding how hardware errors propagate at the software level to impact the outcome

of an application. This opens the door for many new domain-specific resiliency analysis

tools and techniques, with use cases beyond just resilience, such as the fertile domains of

approximate computing and deep neural network design.

8.2 LIMITATIONS AND FUTURE DIRECTIONS

8.2.1 Error Model Exploration

One of the challenges associated with hardware resilience is fully capturing how a natural

phenomenon (such as an alpha particle strike) maps to an architectural error. In this work,

we assume a single-bit flip error at the register level (in Chapters 2, 3, and 4) and a single-bit

flip error at the neuron level (in Chapter 6). While these are commonly used error models

and represent real errors, single-bit flip models are not representative of all real errors in

hardware [101, 175, 210], and a challenging aspect of hardware resilience is identifying the

correct error model to use to study an application’s error tolerance. Additionally, other error

types in hardware can also be important, such as permanent errors or intermittent errors,

each of which may provide more insight into an application’s resilience.

For example, multiple bit flips within the same register (or neuron) or across multiple
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registers (or neurons) can be useful to analyze or discover whether an application can be

approximated in face of more than one error. Additionally, a more precise error modeling

is a more attractive solution for industry practitioners and/or certification standards for

hardware. Thus, while useful to study and design tools around, a single-bit flip error model

is not the only model, and exploration of other error models can be useful in many capacities.

Many of the tools and techniques described here can be modified to work with other error

models. In particular, PyTorchFI was designed ground-up with this feature in place, and we

provide a few simple examples in Section 5 on how different error models can be utilized in

different capacities.

8.2.2 System Level Resilience

Studying the impact of an error within a single building block of a system (as we did

in Chapter 6 for CNNs) can provide insights into the error propagation and inherent error

tolerance of the building block. However, at a system level, it is important to understand

where and how such a building block fits into the overall design and workflow of the system,

especially since it can provide opportunities to further reduce resilience overheads.

For example, in an autonomous vehicles (AV) setting, understanding how a CNN classi-

fication is used in the next stage of the system can indicate whether a certain CNN needs

hardening or not. Many systems (including AV systems) have many safe-guards in the soft-

ware already, in order to tolerate errors from a machine learning model. Understanding the

software-introduced redundancy can help direct the developer to the most vulnerable units

in the system, and can also inform developers where to focus resiliency analysis efforts to

optimize hardening solutions in the system.

Incorporating an entire system is a challenging task – however, it provides many opportu-

nities for reducing overheads by either hiding the costs (as illustrated with SInRG in Chap-

ter 4) or avoiding protection altogether if it is unnecessary (as explored independently with

Approxilyzer and FILR). By generalizing error analyses and tools to explore error propaga-

tion across system components, additional insights can be gathered to optimize system-level

resilience.

8.2.3 Transfer Resilience

A fascinating concept in the domain of deep learning is transfer learning. The main

premise is that one can train a network on one dataset, and then transfer the weights to

another dataset to “jump-start” the training with a high accuracy. We find that this is very

140



common in the medical field, where most networks which perform well are transferred from

the Inception-Net neural network which is training on ImageNet.

From a reliability standpoint, an interesting future step is exploring whether the reliability

properties can also be transferred in the process. Further, extrapolating beyond neural

networks, do certain programming patterns exhibit similar reliability characteristics? Such

“code primitives” can be used to understand a program’s expected robustness while running

on unreliable hardware by analyzing the source code, which would be much faster than

current methods while also providing hints to the developer on how to structure their code.

From a hardening perspective, a similar avenue would be to identify applications and code

patterns which behave similarly from a reliability standpoint, and target reliability solutions

in the hardware to take advantage of the identified pattern. This would enable a more tightly

coupled hardware-software co-design for reliability, as well as bring the software developer

into the picture as they know their code the best and further extending what Minotaur

(Chapter 3) began for combining software testing and hardware resilience.

8.2.4 A Unifying Theory of Errors for DNNs

The concept of an “error” in the domain of deep learning is severely overloaded. An error

in the context of resilience, for example, denotes an output corruption due to a natural

occurrence such as a transient bit flip during computation. However, in the context of an

adversarial input to the network, an error occurs at the input of the network, fooling the

network into a misprediction. Moreover, a validation error in DNNs relates to the training

accuracy of the model, and is predicated on the statistical nature of the machine learning

model. While all these “errors” are seemingly different, they all share a common theme: an

undesirable and incorrect outcome.

Many concepts may be adapted across these sub-domains for better accuracy or (anal-

ogously) fewer errors. For example, training with errors as exemplified in Section 5.1 can

make a network more resilient, with minimal effect on validation accuracy. Another pos-

sible research direction is to incorporate Top2Diff in the cost function during training, to

maximize the distance between the top two classes for strong confidence in predictions.

Overall, finding overlaps between the different “error models” in the domain of DNNs is a

tantalizing opportunity for improving deep learning models. Theoretically formulating the

relationship is also grounds for future work.
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8.2.5 Bridging Between General Purpose Analysis and Specialized Error Analysis

Another interesting direction from this thesis is the exploration of the efficacy of general

purpose techniques versus specialized error analysis. Studying the benefits and trade-offs

of both techniques can help inform when a general-purpose tool can be enough to analyze

an application versus when it would be advantageous to develop specialized domain-specific

tools for application error analysis. In other words, similar to the approach taken by FILR

to combine two techniques at different granularities, it would be interesting to study how an

instruction-level analysis intersects with a specialized granularity of analysis such as iden-

tifying vulnerable feature maps in CNN. Furthermore, are certain domains more amenable

to general-purpose solutions, while others benefit more from a specialized approach to re-

silience? A taxonomy and categorization of the two quantitatively is both current limitation

and a promising opportunity for additional research.

8.2.6 A Software Testing Framework for Error Analysis

Chapter 3 introduced the concept of bridging between software testing and resiliency

analysis. More generally, it paves the way for a plethora of future research that can create

a software engineering discipline for hardware errors. It should be possible to adapt many

more techniques from the rich literature on software testing [85, 90, 299, 300, 301, 302]

and program analysis [303, 304, 305, 306] to provide principled and scalable approaches for

software resiliency to hardware errors.

For example, a critical requirement for scalable analysis is to keep up with an evolving code

base and its implications in the face of hardware errors (incremental analysis). Even subtle

programmatic changes can alter an application’s resiliency profile, and affect which parts

of the program are more susceptible to hardware errors. Furthermore, current resiliency

analysis techniques generally require the entire program to be available, and any change in

this program requires the expensive analysis to be rerun from scratch. In a real software

development workflow, the entire program is rarely available and tested at once; rather,

individual program units are tested and then composed together (compositional analysis).

Practical tools and workflows must support both incremental and compositional resiliency

analysis and hardening.

The software engineering discipline has architected scalable solutions for the similar obsta-

cle of finding bugs in code as the code evolves, with incremental analysis techniques such as

delta testing, mutation testing, and automated test generation for extensive code coverage.

Various techniques also exist for compositional analysis of code, leveraging symbolic testing
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and black-box testing techniques to analyze large systems.

This work opens the door to adaptation and adoption of the above (and many other)

software engineering techniques for addressing hardware errors. A long-term goal is to enable

research to incorporate resiliency analysis and hardening seamlessly within the software

development workflow; i.e., to create a software engineering discipline for hardware errors.

Minotaur enables this goal by taking the first steps at identifying and bridging the gap

between these two domains.
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