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Abstract

This dissertation presents a computational modeling framework to ad-

dress current challenges in pore-scale modeling of two-phase flow with ap-

plications to sequestration of carbon dioxide (CO2) in deep saline geological

formations. These formations are widely available and have relatively high

storage capacity to host injected CO2 for long-term as a practical solution

to reduce CO2 emissions from power plants. Due to the expense and com-

plexity of experimental investigations, computational approaches have been

developed to understand the physics of CO2-brine flow at the pore-scale.

The dissertation considers both direct numerical simulation on real rock ge-

ometry measured by X-ray micro-CT scans, as well as pore-network (PN)

models which simplify the pore space into interconnected idealized shapes.

Both approaches are challenged in applications to large heterogeneous cores.

A heterogeneous Mt. Simon sandstone sample is characterized in terms

of morphology and CO2-brine flow properties. 3D rock images are investi-

gated to assess the REV size and heterogeneity. Three distinct simulation

approaches are applied to simulate the displacement of brine by CO2: PN

modeling on the extracted network, and the lattice-Boltzmann (LB) method

and the finite-volume method using OpenFOAM (OF) on the rock geometry.

The relative permeabilities are computed and compared using different mea-

surement choices: the steady-state approach for LB, unsteady approach for

OF, and quasi-static approach for PN. All approaches are in close agreement

with one another. The accuracy, computational efficiency, and the effect of

grid resolution are also compared. A novel pore-network stitching method

(PNSM) is developed that combines the inherent simplicity of PN model-

ing with statistical network generation to characterize the heterogeneity of

cores. The method overcomes technical limits on sample size during X-ray

scanning and computational limits on network extraction algorithms. The

workflow is validated on various types of rock samples and applied on large
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domain problems based on pore structure and CO2-brine flow properties. In

each sample, multiple realizations are generated and the average results are

compared with properties from defined reference PNs. A new set of pore-

level flow models in PN modeling are proposed to improve the prediction

of residual trapping of CO2. This is important for assessing the long-term

storage capacity and safety of geological sequestration. LB simulations are

carried out on several PN configurations to investigate pore-body filling and

snap-off events that are simplified in PN modeling. The threshold local cap-

illary pressure is evaluated and modified equations are defined. The modified

model is incorporated into a quasi-static PN solver and applied to Berea and

Mt. Simon sandstone samples to obtain relative permeabilities and residual

trapping of CO2 after a drainage-imbibition cycle. The modified model pre-

dicts residual trapped CO2 closer to experimental data than the conventional

model.

These studies together enable the current generation of PN models to

be more accurate and applicable in practice. The PNSM enables study of

large heterogeneous cores. The use of direct numerical simulation to study

multiphase flow physics in PN configurations enables modification of rules

implemented in PN models to improve accuracy of predicted residual trapped

CO2.
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Chapter 1

Prologue

1.1 Introduction

Physics of two-phase flows in porous media plays an important role in

many applications such as carbon dioxide (CO2) sequestration in deep saline

reservoirs, recovery of oil from hydrocarbon reservoirs, transport of non-

aqueous phase liquid contaminants, and water infiltration into soil. Under-

standing the underlying physics at different length scales is vital to deal with

current societal needs and issues in managing water resources, providing en-

ergy, and combating climate change.

The ongoing increase of anthropogenic CO2 emission in the atmosphere

has played a major role in climate change (Friedlingstein and Solomon 2005;

Metz et al. 2005; Nordbotten and Celia 2011). The main source of this at-

mospheric CO2 is combustion of fossil fuels to generate electricity in thermal

power plants. A practical solution among available technologies to mitigate

the CO2 emission is CO2 capture and storage (CCS). The process of CCS

is associated with separation and compression of CO2 from energy indus-

tries, transporting it to storage locations, and keeping it isolated for a very

long-term period. Captured CO2 can be stored in large onshore and offshore

geological formations such as depleted hydrocarbon reservoirs and deep saline

geological formations (Metz et al. 2005).

1.1.1 Geological storage of carbon dioxide

A comprehensive study of geological storage of CO2 should encompass

economic feasibility, site selection, risk assessment, environmental impact,

safety aspects, monitoring and verification, in addition to perspectives on re-

tention time, physical leakage, brine displacement, and microseismicity (Metz
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et al. 2005). Deep saline formations are widely available and have relatively

high storage capacity, so they are important target reservoirs to study in more

depth. As an example, up to 65% of the CO2 produced in power plant of the

United States can be injected into deep saline aquifers (Shukla et al. 2010).

When captured and compressed CO2 enters a reservoir saturated with brine,

the interaction of these fluids with each other and the host rock at different

scales (molecular-scale, pore-scale, continuum-scale, and field-scale) controls

the long-term behavior of the system, specifically the fate and distribution

of CO2 plume.

During the active injection period, the supercritical CO2 displaces the

native brine phase, i.e., drainage process while imbibition of brine into CO2

plume occurs in post injection period. In general, this system can be stud-

ied from chemical, mechanical, hydrogeological, and petrophysical points of

view where each of those requires specific governing equations and consti-

tutive equations. For instance, the continuum-scale CO2-brine flow can be

modeled with Darcy’s law and mass balance for each phase as governing

equations along with macroscopic capillary pressure and relative permeabil-

ity characteristic curves as constitutive relations (Celia et al. 1995).

1.1.2 Pore-scale modeling of two-phase flow

The physics of two-phase flow of CO2-brine system in natural rocks at the

scale of pores controls fundamental behavior of flow and transport. Analyt-

ical, experimental, and computational approaches can be used in pore-scale

modeling. Analytical solutions are usually limited to simplified problems and

conditions. While experimental approaches can be more realistic, they are

usually difficult to implement, time-consuming, expensive, and have uncer-

tainties in measurements (Joekar-Niasar and Hassanizadeh 2012). Compu-

tational approaches are generally less expensive than experiments and have

more flexibility in implementation and adjusting parameters. Advances in

modeling of flow in porous media, as well as development of efficient com-

puter simulation, together with increasing computer power, have made it

possible to model flow at core-scale and even larger length scales. In addi-

tion, numerical simulation of flow at field-scale requires inputs such as the

relative permeability and capillary pressure curves at the scale of the grid
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blocks, which can be obtained by pore-scale modeling (Celia et al. 1995).

Pore-scale processes and geometry of pore structure determine the contin-

uum scale constitutive curves which affect significantly the characteristics

of the process at larger scales, including injection and storage of CO2 in

large-scale rock formations (Juanes et al. 2006; Pruess and Garcia 2002).

With recent advances in instrumentation and X-ray computed tomogra-

phy (CT) imaging, one can directly obtain detailed three-dimensional (3D)

geometry of rock and its pore structure with high resolution images (Flannery

et al. 1987; Dunsmuir et al. 1991; Wildenschild and Sheppard 2013; Andrä

et al. 2013a; Andrä et al. 2013b). Such images are inputs of pore-scale models

which can be categorized as either direct or simplified models, based on the

manner in which they represent the geometry of the void space of porous me-

dia. In direct models, flow and transport equations are solved directly on the

exact geometry of pore space obtained from the CT images. Some examples

of direct numerical simulation (DNS) methods are lattice-Boltzmann (LB)

methods (Boek and Venturoli 2010; Ramstad et al. 2012) and finite-volume

(FV) methods (Ferrari and Lunati 2013; Raeini et al. 2014). The main chal-

lenge in using DNS methods is computational costs due to limitations on the

size of the domain that is relevant to the grids resolution of simulation.

On the other hand, a popular simplified model is pore-network (PN) mod-

eling (Fatt et al. 1956; Sahimi 2011; Blunt 2017) which simplifies the pore

space by dividing it into two categories of pore elements: pore-bodies (larger

pores for storage of fluids) and pore-throats (narrower channels for flow of

fluids). A PN can be either generated from statistics of the pore space or

extracted directly from the 3D image of rock where irregular surfaces and

edges of the pore space are abstracted down to simpler geometrical units.

There are different PN extraction algorithms in the literature such as me-

dial axis (Lindquist et al. 1996), watershed (Gostick 2017), and maximal

ball (MB) algorithms (Silin and Patzek 2006;Dong and Blunt 2009). Defin-

ing a PN requires geometrical (location, size, and shape of pore elements)

and topological (connections between pore elements) information of the pore

space.

PN flow models then use some assumptions and approximations to the

governing equations on the entire PN, e.g., Hagen-Poiseuille equation for flow

in pore-throats. These flow models are generally classified further as quasi-

static and dynamic models. Quasi-static models predict static positions of
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interfaces at equilibrium states by imposing capillary pressure, but do not

involve viscous and gravity forces, so they are limited to capillary dominated

systems (Valvatne and Blunt 2004). Dynamic models predict dynamic effects

by imposing flow rate and includes capillary, viscous, and gravity forces,

but they are more complicated to implement and computationally expensive

(Joekar-Niasar and Hassanizadeh 2012).

Such approximations to geometry and physics make PN models more

capable of simulating a representative elementary volume (REV) of porous

medium with less computational effort compare to DNS methods to predict

macroscopic properties. Therefore, they can provide characteristic curves

such as relative permeability, capillary pressure, residual trapping, and hys-

teretic curves which are important in CCS. As an example, a quasi-static PN

modeling of CO2-brine flow can be initialized with the PN fully saturated

with brine. By incremental increase of macroscopic capillary pressure, CO2

invades pore elements gradually based on increasing threshold local capillary

pressure. This cycle continues until stopped or no more CO2 can occupy

pore elements and is called drainage cycle since the wetting phase saturation

is decreasing. On the hand, imbibition cycle is when the wetting phase sat-

uration is increasing in the porous medium. Since imbibition cycle follows

drainage cycle, the end point of drainage cycle is the start point of imbibition

cycle. The end point of imbibition cycle is when all CO2 in the the porous

medium is trapped or immobile which is called residual trapped CO2.

1.1.3 Heterogeneity and size

Although PN modeling based on CT images has been applied to different

types of porous media, it has been mainly applied on a relatively small volume

of an entire core. Current tools face important limitations for attaining

a large representative PN of heterogeneous domains. There are both (1)

technical limits and (2) computational limits:

• Technical limits: There are technical limits on the size of the core that

can be scanned to discern void space well. This is rooted in the trade-

off of size and resolution and reflected in both the scanning time and

size of produced images (Bultreys et al. 2015). For instance, typical

sandstones require few microns (about 2–5 µm) of resolution in CT
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images to be used in pore-scale modeling while typical scans are not

larger than 10003 − 20003 voxels with the current micro-CT scanners

(Blunt 2017).

• Computational limits: Current PN extraction algorithms are not com-

putationally able to provide a large PN covering all heterogeneities

at the core-scale. These algorithms generally scan the entire voxelized

pore space and the current codes are written as serial codes. Therefore,

their performance is limited in terms of both computational memory

and speed that results a limit on the size of their input. For example,

current MB network extraction codes cannot attain PNs beyond sizes

more than roughly 15003 − 20003 voxels.

There are different studies that have addressed some of the challenges

noted above by different strategies including multiscale frameworks and do-

main decomposition approaches in addition to exploiting growing computa-

tional capabilities in using current tools.

One common motivation in conducting multiscale studies comes from the

practice of investigation of core-scale images (resolution of about 10–30 µm)

of different heterogeneous rocks in terms of spatial variability that shows a

wide range of heterogeneities. While such images can reveal some details of

the rock such as connectivity of larger pores, they cannot be directly used

in pore-scale modeling tools due to lack of enough precision and failure in

capturing small channels and pores which are below the resolution scale.

However, these images are still able to cover a large domain of the core

thereby allowing study of the heterogeneity and spatial variation of the rock

properties. They can be used along with pore-scale images in a multiscale

framework to study rock heterogeneity, as has been addressed in some studies

to be demonstrated below.

Chu et al. (2013) developed a multiscale method with the form of hetero-

geneous multiscale method that couples PN models with continuum models

to predict pressure and track the macroscopic front, although their work

was limited to simpler PN models. In a PN study, Jiang et al. (2013) com-

bined coarse-scale and fine-scale pore elements to develop a multiscale PN

by stochastic generator. This work could cover three-level PNs from dif-

ferent resolutions but mainly addressed micropores. In another multiscale

work, Bultreys et al. (2015) developed a dual PN model that incorporates
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microporosity via adding micro-links to traditional PN models to address the

small-scale heterogeneities. While their approach results a great number of

pore elements in the constructed PN, it was mainly designed for modeling

micropores of heterogeneous samples.

Some other studies have bridged pore-scale models to core-scale in order

to incorporate heterogeneities. In a pore-to-core PN modeling work, Aghaei

and Piri (2015) studied a long Berea sandstone core to attain a large PN and

modeled capillary and viscosity effects with the aid of parallel computing.

This work was notable in terms of the prediction of two-phase flow properties

and the size of studied sample, but the type of rock was relatively homoge-

neous and the process of connecting sample pieces was sample specific. In

a recent pore-to-core PN modeling study, Zahasky et al. (2019) character-

ized centimeter-scale Bentheimer sandstone cores by studying heterogeneity

in capillary pressure and relative permeability with the aid of an extensive

multiple resolution imaging. In addition, Jackson et al. (2019) used multi-

scale experimental and modeling approaches to study two large Bentheimer

sandstone cores. Although both works were notable in terms of addressing

heterogeneity and size of the domain, they rely on full micro-CT images of an

entire core with a fine resolution which may not always be readily available.

Therefore, there is still a need for pore-to-core upscaling approaches that

can accurately represent the 3D complex pore structure and heterogeneity

of real media with efficient computational tools and incorporate information

from multiple scales.

1.1.4 Residual trapping

Trapping of non-wetting phase as residual saturation is an important fea-

ture in two-phase flow through natural rocks. In a CO2-brine flow system, the

CO2 can be trapped by four main mechanisms: physical (stratigraphic and

structural), solubility, mineral, and residual trapping (Andrew et al. 2014).

These mechanisms can occur simultaneously but with different time scales.

Mineral precipitation usually has the longest time scale followed by residual

trapping and dissolution, respectively. On the other hand, physical trapping

has the shortest time scale (Metz et al. 2005). Residual trapping is mainly

due to capillary forces and interface movement, i.e., capillary trapping. The
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majority of trapping happens when brine is invading the pore space after the

initial CO2 injection, i.e., imbibition process due to migration of the CO2

plume or injection of chase brine (Qi et al. 2009; Gershenzon et al. 2017).

Thus, in addition to capillary pressure and relative permeability curves, one

is also interested in predicting residual trapped CO2 at the end of drainage-

imbibition cycle in pore-scale modeling of CO2-brine flow.

There are several studies in the literature that focus on the amount of

residual trapped CO2 and end points in drainage and imbibition processes

using experimental or computational methodologies. Land et al. (1968) in-

troduced an empirical relation of residual trapping of non-wetting phase of

a two-phase flow system that relates initial and residual saturations known

as Land’s initial-residual trapping model. Andrew et al. (2014) studied vari-

ous natural rocks by core flooding experiments and reported that significant

amount of CO2 can be stored by capillary trapping. As an example, they

found about 30% CO2 residual saturation on two sandstone samples at the

end of imbibition cycle. Levine et al. (2014) conducted experiment of CO2

injection into brine-saturated synthetic and natural porous media to measure

drainage end point relative permeability and saturation. Most of reported

saturation values of this study were in range Snw = 0.60− 0.70 for drainage

end point. Perrin and Benson (2010) measured relative permeabilities of

CO2 and brine on a heterogeneous core from an actual storage reservoir and

obtained a drainage end point of Snw = 0.56. Jiang and Tsuji (2015) studied

the effect of interfacial tension on residual CO2 clusters using LB simulation

on a sandstone and characterized residual CO2 cluster distribution.

Although conventional quasi-static PN modeling has been used in some

CO2-brine flow studies, e.g., by Rasmusson et al. (2018), it is mainly de-

veloped and used based on oil-water flow systems and its properties during

drainage process. It can fail to capture the residual trapping of CO2 after

imbibition, especially when no drainage end point information is available.

As an example, quasi-static PN simulations using Valvatne and Blunt (2004)

flow solver on a Mt. Simon sandstone sample from a pilot CO2 injection site

shows approximately 70% trapped CO2 at the end of drainage-imbibition

cycle, which is far greater than typical counterpart experimental and DNS

results on sandstones (about 30–40%) in the literature. Since the residual

trapping is mainly due to capillary forces and interface movement, the source

of inaccuracies is in the defined pore-level flow rules and pre-solved equations
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of imbibition events of PN modeling that describe the interface shape and

movement prior trapping.

Thus, there is a need to improve current imbibition pore-level flow models

of CO2-brine flow for better understanding and predicting residual trapping

of CO2 and other resulting properties such as relative permeabilities.

1.2 Research objectives

The aim of this dissertation is use of different approaches of pore-scale

modeling and improve capabilities of current PN modeling from three per-

spectives to address challenges in modeling of CO2-brine flow through het-

erogeneous rocks used in CCS:

• There are different computational approaches in pore-scale modeling

but mostly applied to oil-water flow system on homogeneous rock sam-

ples and without a comprehensive REV analysis in the literature. These

computational approaches can be applied on CT scans of heteroge-

neous rock samples from CO2 storage sites that are noteworthy of be-

ing studied and characterized. A comparative and extensive analysis is

conducted to characterize the rock images and implemented CO2-brine

flow simulation to obtain relative permeabilities (Chapter 2).

• The challenge of existing multiscale heterogeneity in cores coming from

storage sites in addition to limitations on current CT imaging technolo-

gies and PN extraction tools. There is a need for an upscaling approach

that is capable of coming up with a representative large PN model of

a core. A novel pore-network stitching method (PNSM) is proposed as

an upscaling solution to address this issue (Chapter 3).

• The challenge of inaccuracy of quasi-static PN models, although com-

putationally efficient, in predicting residual trapped CO2 at the end

of a drainage-imbibition cycle. Modified pore-level flow models during

imbibition pore-level events of PN modeling are proposed to address

this challenge (Chapter 4).

The motivation for using and comparing different pore-scale modeling

approaches in Chapter 2 is to address challenges noted above for modeling
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CO2-brine flow in a Mt. Simon sandstone sample. The goal is to characterize

the heterogeneous sample used in a CO2 injection project and apply differ-

ent simulation approaches to assess their capabilities in terms of prediction

of relative permeabilities with different measurement approaches and their

computational efficiency.

The motivation for developing PNSM in Chapter 3 comes from investiga-

tion of available core-scale scans of various rock samples at different scales.

As an example, grayscale images with resolution of about 10–20 microns re-

veal a wide range of size distribution of pores across a core. Such images

cannot be directly used in pore-scale modeling due to lack of precision in

identifying narrow channels. However, they cover a large size of the core

thereby allowing study of the heterogeneity of the sample. Some regions of

interest of the cores can be imaged with increased resolution to reveal more

details of pore space needed for pore-scale modeling of flow. The goal of

PNSM workflow is to take these images as inputs, extract their PNs, gen-

erate new pore elements in terms of PN layers and volumes, stitch all PN

pieces together, and come up with a large representative PN, as an output,

of the heterogeneous core.

The motivation for proposing modified pore-level flow models in PN mod-

eling in Chapter 4 comes from the discrepancy between reported experimental

values of trapped CO2 and predicted ones from quasi-static PN modeling at

the end of drainage-imbibition cycle. Since the capillary forces are mainly

controlling the interface movement and filling of pores in CO2-brine flow

system, one should investigate threshold local capillary pressure relations in

different pore elements which determines the order of competing pore-level

events during imbibition process. Different scenarios of displacement events

can be studied using DNS on geometric PN configurations to propose modi-

fied relations with new parameters and factors. The proposed modifications

can then be incorporated in a quasi-static PN flow solver to evaluate residual

trapped CO2 and relative permeabilities and compare them with experimen-

tal measurements.
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1.3 Outline

The organization of the rest of this dissertation is as follows. In Chap-

ter 2, a heterogeneous sandstone used in CCS is characterized and studied

in-depth with three distinct computational approaches — LB method, FV

method, and PN modeling — to evaluate its drainage evolution and rela-

tive permeability curves of CO2-brine flow. Chapter 3 introduces a novel

PNSM to provide a large-enough representative PN for a heterogeneous core

where conventional pore-scale modeling approaches are not computationally

capable of representing. In Chapter 4, pore-level events of PN modeling of

CO2-brine flow during imbibition are investigated by applying LB simulation

on some geometric PN configurations. A new set of equations are proposed

and tested for the threshold local capillary pressure of pore-body filling and

snap-ff events to assess residual trapping of CO2. At the beginning of each

of Chapters 2, 3, 4, the full title of the chapter and its extended abstract are

provided. Finally, Chapter 5 provides conclusions of the dissertation along

with suggestions for the future work.
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Chapter 2

Comparison

Two-phase flow of CO2-brine in a heterogeneous sandstone:

Characterization of the rock and comparison of the

lattice-Boltzmann, pore-network, and direct numerical simulation

methods

Understanding the physics of two-phase flow of CO2 and brine in porous

geological formations is essential to sequestration of carbon dioxide in deep

saline reservoirs, as well as the older problem of enhanced oil recovery from

hydrocarbon reservoirs by CO2 injection. A pilot CO2 injection in Decatur,

Illinois, was undertaken, with the injection zone being the highly saline and

heterogeneous Mt. Simon sandstone, in order to better understand the fea-

sibility of full-scale sequestration process. This chapter reports the results of

an extensive study of the morphology of the sandstone and its heterogeneity,

and simulation of single-phase and two-phase flow of CO2 and brine in the

formation’s three-dimensional images. As we demonstrate by extensive anal-

ysis, the formation is much more heterogeneous than the typical sandstone,

such as Berea sandstone. In addition to characterizing the morphology of the

sandstone and computing its important flow characteristics, an important

goal of the study is to compare the accuracy and computational efficiency of

three distinct simulation approaches, namely, the lattice-Boltzmann (LB) ap-

proach, direct numerical simulation (DNS) of the governing equations of fluid

flow that uses the finite-volume method coupled with the OpenFOAM simu-

lator, and pore-network (PN) simulation. After validating the simulators by

comparing the computed relative permeabilities that they produce for Berea

sandstone, we simulate displacement of brine by CO2 at low and relatively

high capillary numbers, and compute the relative permeabilities and other

quantities of interest. We demonstrate that all the three methods provide

consistent relative permeability-saturation functions that are in close agree-

ment with one another. However, although the LB and DNS both produce

11



similar relative permeabilities, the DNS approach is computationally more

efficient because it simulates drainage by only a single set of computations

over the entire saturation range, whereas the LB simulation requires separate

simulation for each set saturation. Thus, the question of what method to use

for simulating such flow processes at the scale of core plugs should mainly

be addressed based on the computational time that one can afford and the

computational resources that one has access to. Another important question

addressed is the effect of the resolution of the computational grids or lattices

used, particularly when one uses the LB method with voxelized images of

porous media. We show that, unlike many claims in the past, one may need

many lattice units per voxel in order to obtain reliable, lattice-independent

results.

This chapter is published in the journal of Advances in Water Resources in

collaboration with colleagues at the University of Southern California (Ko-

hanpur et al. 2020). The author of this dissertation performed data ac-

quisition from Energy Data eXchange (EDX), processing all raw grayscale

micro-CT images, image analysis of pore space properties of all subsam-

ples, constructing PN models, and running all PN and LB simulations with

post-processing of their results in addition to post-processing saturation dis-

tribution of OpenFOAM simulations. The in-house LB code was originally

developed by Chen et al. (2018). A similar comparative study of PN and LB

simulations of CO2-brine flow with these tools was reported by us (Kohanpur

et al. 2016). Moreover, this LB code was part of a comprehensive study of

comparison of several pore-scale models by Zhao et al. (2019).

2.1 Introduction

The physics of two-phase flows in porous media is of utmost importance

to many problems of practical interest, such as CO2 sequestration in deep

saline reservoirs, recovery of oil from hydrocarbon reservoirs, transport of

non-aqueous-phase liquid contaminants in aquifers, and infiltration of rainfall

into soil. Understanding and predicting the properties of such flow processes

at various length scales are vital to addressing the problem of global warming,

as well as managing water resources, and energy production.

There is increasing incentive for studying two-phase flow of CO2 and
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brine in porous media, due to societal interest in geological sequestration of

CO2. The drastic increase in the amount of CO2 in the atmosphere plays the

most important role in global climate change (Friedlingstein and Solomon

2005; Metz et al. 2005; Nordbotten and Celia 2011). The main source of

the atmospheric CO2 is combustion of fossil fuels for producing electricity in

power plants. Among the various approaches that have been suggested for

mitigating the problem, CO2 capture and storage (CCS) is believed to be a

viable solution (Nordbotten and Celia 2011). The CCS is a process associ-

ated with separating CO2 from the other gases that are produced by power

plants and other sources, compressing and transporting it to storage loca-

tions, and keeping it sequestered in onshore or offshore geological formations

for very long times (Metz et al. 2005). As an example, the United States

can inject up to 65% of the CO2 produced by power plants deep into saline

aquifers (Shukla et al. 2010). Since such a sequestration process appears to

have great potential, understanding the behavior of flow of brine and CO2 in

deep porous formations is vital (Juanes et al. 2006; Pruess and Garcia 2002)

to its successful implementation, and should accompany any comprehensive

study of geological storage of CO2 that includes its economic feasibility, site

selection, risk assessment, environmental impact, safety aspects, monitor-

ing and verification, in addition to perspectives on retention time, physical

leakage, brine displacement, and microseismicity (Metz et al. 2005).

The Illinois State Geological Survey carried out a pilot injection study to

better understand the feasibility of full-scale CCS. The study site is in De-

catur, Illinois, and the injection zone is the highly saline Mt. Simon sandstone

(Finley 2014). Thus, one goal of the present study is to analyze two-phase

flow of CO2 and brine in Mt. Simon sandstone and, more generally, in natural

rock. The phenomenon may be studied at various length scales, including

molecular, core, and field scales by experiments and computer simulation.

Experiments are, of course, quite useful, but can be difficult to implement,

as they are time-consuming and expensive (Joekar-Niasar and Hassanizadeh

2012). At the molecular scale, the interaction between water and water-CO2

and mixed layer clay was recently studied (Rahromostaqim and Sahimi 2018;

Rahromostaqim and Sahimi 2019).

Advances in modeling of porous media, as well as development of efficient

computer simulation, together with increasing computer powers, have made

it possible to model and study in detail two-phase flow of brine and CO2

13



at core plug and larger length scales. Compared to experiments, the com-

putational approaches have the advantages of being generally less expensive

and more flexible in implementing and changing parameters, flow and dis-

placement mechanisms, and studying various mechanisms of displacements.

At the same time, numerical simulation of flow of brine and CO2 at field

scale requires such inputs as the relative permeabilities and capillary pres-

sure as functions of the saturation at the scale of the grid blocks, which can

be obtained by experiments, or by pore-scale modeling.

Pore-scale modeling (Celia et al. 1995) can provide the required input

data for field-scale modeling, provided that one takes into account the effect

of the morphology of the core-scale porous media and the various pore-scale

mechanisms of fluid displacements. This is because pore-scale flow affects

significantly the characteristics of the process at larger scales, including in-

jection and storage of CO2 in depleted reservoirs and other types of large-scale

porous formations (Juanes et al. 2006; Pruess and Garcia 2002; Raeini et al.

2014).

With advances in instrumentation, it has become possible to obtain three-

dimensional (3D) images of porous media with high resolution by, for exam-

ple, X-ray computed tomography (CT) (Blunt et al. 2013). At pore-scale,

detailed 3D geometry of rock and its void space can be captured by direct

imaging using nondestructive X-ray microtomography (Dunsmuir et al. 1991;

Flannery et al. 1987). Various rock properties, such as the permeability, have

been computed with the aid of micro-CT images (Arns et al. 2002; Øren and

Bakke 2002; Ramstad et al. 2010; Krevor et al. 2012; Bakhshian et al. 2018).

Thus, one can directly simulate two-phase flows in the images, which renders

as unnecessary developing models of the pore space. Image-based methods

are, however, computationally expensive, although recent advances in high-

performance computing, as well as a new method that smoothens the image

without changing its properties using curvelet transformations (Aljasmi and

Sahimi 2020), are making use of such methods increasingly common. The

methods that are used for simulating fluid flow in the images are either based

on directly solving the governing equations for fluid flow, i.e., the Stokes’

equation using the finite-volume method (Ferrari and Lunati 2013; Huang

et al. 2005; Rabbani et al. 2017), or based on the lattice-Boltzmann (LB)

method (Boek and Venturoli 2010; Ferreol and Rothman 1995; Pan et al.

2004; Porter et al. 2009; Ramstad et al. 2012; Rothman 1990). The LB
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method has been demonstrated to be well-suited for high-performance par-

allel computing in the complex geometry of porous media (Ahrenholz et al.

2008; Chen et al. 2018; Ramstad et al. 2012; Tölke et al. 2006). In addition,

advances in method based on the volume of fluids, especially the new de-

velopments of surface force formulation, have made it possible to efficiently

model two-phase flow by the finite-volume method at lower capillary numbers

(Gueyffier et al. 1999).

Another approach is based on pore-network models (PNMs) (Sahimi 2011;

Blunt et al. 2013) in which the pore space is simplified to a network of in-

terconnected pore-bodies and pore-throats. While the PNMs are computa-

tionally very efficient and inexpensive, they still involve some assumptions

and approximations, such as the definition of what constitutes a pore-body

or pore-throat, how to assign effective sizes to them, etc. (Ramstad et al.

2012; Joekar-Niasar and Hassanizadeh 2012). Therefore, a detailed compar-

ison between the results of the PNM computations with those obtained by

the other two aforementioned methods will shed much light on its advantages

and limitations.

The goal of this chapter is twofold. One is computing the drainage relative

permeability functions for CO2 and brine during injection of the former into a

sample of Mt. Simon sandstone. This is not a trivial problem as Mt. Simon

sandstone is much more heterogeneous than typical sandstones studied in

the past, such as the Berea sandstone. Moreover, the viscosity ratio of the

two fluids are much higher, about 10 times larger, than of that the typical

oil-water systems. The two challenges lead to computational difficulties that

require careful choices of the input parameters, discretization, and boundary

conditions. The second goal is evaluating the performance of the LB method

and PNMs by comparing the relative permeabilities computed by them with

those obtained through the direct numerical simulation of the fluid flow in the

image of the sandstone. In addition, we also study the effect of the capillary

number, i.e., the effect of flow, on the results.

The organization of the rest of this chapter is as follows. In the next

section the porous formation whose flow properties will be computed is de-

scribed. Section 2.3 provides brief description of the three distinct compu-

tational approaches that we have utilized in our work. The validation of the

computational methods is described in Section 2.4, while the main results

of the chapter are presented and discussed in Section 2.5. In Section 2.6
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we discuss the significance of the resolution of the lattices used in the LB

simulations. The main results are summarized in the last section.

2.2 Mt. Simon sandstone

The sample porous medium is from Mt. Simon sandstone at a depth of

6700 feet. The formation is located at verification well number 2 of a study

site in Decatur, Illinois where, as mentioned earlier, Illinois State Geological

Survey carried out a pilot injection study to better understand the feasibility

of full-scale CCS (Finley 2014). A core plug from the formation was scanned

by micro-CT imaging technique at the National Energy Technology Labo-

ratory (NETL) of the U.S. Department of Energy, which produced a series

of gray-scale scans. Table 2.1 presents the information of a cubic sample

from the core plug. A series of image processing steps were taken in Fiji

(Schindelin et al. 2012) to filter and smooth images in order to distinguish

void space from the solid grains via a thresholding algorithm. The outcome

was a segmented 12003 voxels sample with porosity of 27.1% and voxel size

of 2.80 µm, i.e., a 3.363 mm3 sample.

Table 2.1: Rock source and properties.

Rock type Mt. Simon sandstone
Depth (feet) 6700
Scans resolution (µm) 2.80
Images size (voxels) 12003

Sample size (mm3) 3.363

Porosity (%) 27.1

We took eight equal-size subsamples (each of size 5003 voxels) from the

center of the main sample to study its geometrical, topological, and flow

properties. Table 2.2 presents a list of the subsamples with their correspond-

ing porosity. Fig. 2.1 presents both a high-resolution cross section of the

original sample and a 3D representation of a 5003 voxels subsample S2. One

slice of this subsample in both gray-scale and segmented format is presented

in Fig. 2.2. Table 2.3 presents the important properties of subsample S2.
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Table 2.2: Porosity of eight subsamples of Mt. Simon sandstone.

Subsamples name Porosity
S1 0.258
S2 0.263
S3 0.272
S4 0.274
S5 0.287
S6 0.274
S7 0.283
S8 0.293

Figure 2.1: Thin-section scan of Mt. Simon sandstone at a depth of 6700
feet, and a 5003 subsample S2 of the formation selected for the two-phase
flow simulation.

Figure 2.2: Gray-scale (left) and segmented (right) formats of the 300th
slice (out of 500 slices) of the selected Mt. Simon sandstone subsample S2.
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Table 2.3: Properties of the selected Mt. Simon sandstone subsample S2.
The permeabilities are in mD.

Sample size (voxels) 500× 500× 500
Sample size (mm3) 1.4× 1.4× 1.4
Porosity (%) 26.3
Permeability by the LB simulation 4278
Permeability by the DNS 4370
Permeability by the PNM 4201

2.2.1 Construction of the pore-network

To characterize the heterogeneity of Mt. Simon sandstone, as well as

carrying out single- and two-phase flow simulations, we extracted from the

images the equivalent PNMs of the eight sandstone subsamples. To do so, we

used the maximal ball (MB) algorithm (Dong and Blunt 2009) that searches

the entire voxelized pore space in order to identify the largest possible spheres

in the porous medium. The algorithm was developed originally by Silin and

Patzek (2006) and was extended and improved by Al-Kharusi and Blunt

(2007), Dong and Blunt (2009), Arand and Hesser (2017), and Raeini et al.

(2017). In the algorithm the input is the voxelized binarized geometry of

the porous medium in which the solid and pore phases are stored as 1 and

0, respectively. All the zero voxels are scanned and the largest possible

voxelized sphere in the pore space for each of them is determined. The

resulting voxelized sphere for each pore voxel is taken as the MB. In practice,

many MBs are inside the larger MBs and, therefore, should be removed.

The resulting MBs are sorted and clustered based on their size that helps

identifying the ancestor MBs — the local maximums based on the size —

and a chain of the MBs that are from one ancestor to another one (Dong

and Blunt 2009). Each chain is segmented such that it represents a con-

figuration of two pore-bodies and their connecting pore-throat. Finally, by

counting voxels of each element, pore-body or pore-throat, various geomet-

rical features, such as the location, radius, volume, length, and shape factor

are calculated and stored. The pore-throat length is defined as the differ-

ence between the total pore-throat length and the lengths of the neighboring

pore-bodies. The pore-body length is defined as a function of its radius and

the total pore-throat length is defined as center-to-center Euclidean distance

between two neighboring pore-bodies (Dong and Blunt 2009).
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The shape factorG summarizes all the irregularities of the geometry of the

pore-bodies and pore-throats by, G = V L/A2, where A is surface area, and V

is volume of the voxelized element. L is defined as twice the distance between

the center of the ancestor MB and the farthest voxel in that MB (Dong and

Blunt 2009). The shape factor is a key quantity that helps assigning familiar

geometries, such as circles, squares, and triangles, to the cross sections of

the pore-bodies and pore-throats in the PNM flow solvers (Patzek and Silin

2000; Patzek and Kristensen 2001).

Fig. 2.3 presents the resulting PNM for sample S2 of Mt. Simon sand-

stone that we generated using the algorithm, as well as the size distributions

of its pore-bodies and pore-throats. The ratio of the median pore-throat

length and the radius is about 16.7. Table 2.4 presents the data for the

connectivity of all the eight samples in terms of the average coordination

number of their resulting PNMs. The connectivity density of the samples,

i.e., connectivity per unit volume, is on the order of 2× 10−5 [pixel-3], while

the ratio of their pore-throat length and radii is similar to that of sample S2.

Figure 2.3: The PNM of Mt. Simon sandstone and its pore-body and
pore-throat size distributions.

Table 2.4: The connectivity and anisotropy of the eight subsamples.

Subsamples name Average coordination number Degree of anisotropy
S1 4.77 0.23
S2 4.85 0.25
S3 4.90 0.19
S4 4.73 0.18
S5 5.24 0.19
S6 5.02 0.18
S7 4.78 0.25
S8 5.11 0.22

Also shown in Table 2.4 is the degree of anisotropy (DA) of all the eight
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samples. The DA is a measure of how highly oriented the pore structure

of a medium is within a volume (Harrigan and Mann 1984; Odgaard and

Gundersen 1993; Odgaard 1997; Toriwaki and Yonekura 2002). We used

the BoneJ plugin in Fiji, the image processing package, to calculate the DA

of the void space of the eight samples. The method is based on the mean

intercept length (MIL) method by which a large number of equal-length

vectors originating from a random point within the pore space are drawn

and an intercept is counted for each vector when it hits a boundary. The

MIL is the vector length divided by the number of boundary hits. A cloud

of points is formed where each point represents the vector times its MIL,

and then an ellipsoid is fitted to the cloud. The anisotropy tensor is then

constructed, and the eigenvalues and eigenvectors related to the lengths and

orientations of the ellipsoid’s axes are computed (Odgaard 1997). The DA

is defined as:

DA = 1− smallesteigenvalue

largesteigenvalue
(2.1)

The algorithm is stochastic and, therefore, new random points with the same

vectors yield new MIL counts. The DA must be updated until either the

minimum number of sampling points is reached or the coefficient of variation

of DA becomes smaller than a threshold. As Table 2.4 indicates, the samples

are slightly anisotropic. Thus, we ignore it in the flow calculations.

2.2.2 Analysis of the heterogeneity

We carried extensive analysis of the morphology of the selected sample

of Mt. Simon sandstone in order to characterize the severity of its hetero-

geneity. This was accomplished by analyzing the 3D image of sample S2,

extracting its equivalent PN, and comparing the results to those of a sample

Berea sandstone, which is a fairly homogeneous porous medium and whose

properties are presented in Table 2.5. In the study of the heterogeneity via

image analysis, we took fifteen equal-size subsamples, each 1/8 of the original

sample, eight of which were from the corners, six from the sides, and one at

the center. We then computed the porosity and degree of anisotropy DA of

the subsamples. The results are presented in Fig. 2.4.

To quantify the variability across the subsamples, we computed the co-
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Table 2.5: Berea Sandstone characteristics.

Rock type Berea sandstone
Scans resolution (µm) 5.34
Images size (voxels) 4003

Sample size (mm3) 2.143

Porosity (%) 19.6

Figure 2.4: Porosity and degree of anisotropy of 15 subsamples from the
Mt. Simon sandstone sample S2 and their comparison with those of the
Berea sandstone sample.
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efficient of variation (CV) of each property for each sample. The results are

presented in Table 2.6, according to which the CVs of the porosity and the

DA from the Mt. Simon sandstone are larger than those for the Berea sand-

stone sample, hence indicating that the former has more variability is more

heterogeneous.

Table 2.6: Comparison of the coefficient of variation (CV) of the properties
of the Mt. Simon sandstone sample S2 and the Berea sandstone sample.

Sample CV, Porosity CV, DA
Berea 0.039 0.214
Mt. Simon 0.049 0.250

In analyzing the heterogeneity of Mt. Simon sandstone using the PN,

we used a stochastic approach whereby a calculation box with a size 1/8 of

the PN extracted from the original sample was selected randomly. Then,

the average coordination number Z of the pore-bodies inside the calculation

box was calculated, since Z quantifies the connectivity of the pore space well.

The results for 100 realizations of the Mt. Simon sandstone sample S2, and

their comparison with those for the Berea sandstone sample are presented in

Fig. 2.5. According to the data, the CV of the average coordination numbers

is 0.054 for the Mt. Simon PN, but 0.025 for the Berea PN. Therefore, the

Mt. Simon sandstone sample S2 encompasses more variability in its pore

connectivity relative to the Berea sandstone sample and, thus, it is more

heterogeneous.

2.2.3 Determining the size of the representative elementary
volume

A careful study was undertaken in order to determine the size of the

representative elementary volume (REV) for the flow studies. It turned out

that a size of 5003 voxels was large enough to represent the average flow

properties. Fig. 2.6 presents three computed properties of the sample versus

its linear size, calculated by Fiji, while Fig. 2.7 shows the variation of the

absolute permeability computed by the LB simulation in order to identify the

size of the REV. The variation of the computed properties with the sample

size becomes negligible at a size of about 3003 voxels, thus justifying the

choice of simulation sizes larger than the identified size.
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Figure 2.5: Statistics of the average coordination numbers of over 100
realizations of the pore-network of the Mt. Simon sandstone sample S2, and
the corresponding Berea sandstone sample.
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Figure 2.6: Sample-size dependence of three properties of the subsample S2
of Mt. Simon sandstone in order to identify the size of the REV.
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Figure 2.7: Sample-size dependence of absolute permeability, computed by
the LB simulation, of subsample S2 of Mt. Simon sandstone.

Using the three computational approaches described in the next section,

we also carried out single-phase flow simulation with the eight subsamples

employing the three aforementioned approaches, namely, the LB method,

direct numerical simulation of Stokes’ flow using OpenFOAM, and PN cal-

culations, in order to evaluate the absolute permeability of each of the eight

samples. The results will be discussed shortly. For now, it suffices to say that

they indicate that the original sample is highly heterogeneous since different

subsamples from different locations have different average properties, while

they are also representative of a REV. Thus, as mentioned earlier, to study

two-phase flows, we selected subsample S2 in Table 2.2, whose characteristics

are presented in Table 2.3.

2.3 Computational approaches

As mentioned earlier, we have carried out extensive simulations of fluid

flow using three distinct computational methods, the details of each are as

follows.
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2.3.1 The lattice-Boltzmann method

As is well known, the LB method is based on streaming, collision and

relaxation of a set of fluid particle distribution functions (PDF) on a lattice.

The no-slip boundary conditions on solid surfaces are implemented by simply

switching the directions of the particles on the surface nodes, the so-called

bounce-back scheme. There are several LB schemes for simulating multiphase

flows (Huang et al. 2015; Liu et al. 2016). Among them, the color-fluid

model (Grunau et al. 1993; Gunstensen et al. 1991) is capable of producing a

relatively sharp interface between completely immiscible fluids, which is why

it has been widely adopted (Ahrenholz et al. 2008; Jiang and Tsuji 2017).

In addition, it can deal with high viscosity ratios due to its independent

control of the surface tension and viscosity (Chen et al. 2018). In the present

work, we use a variant of the multiple relaxation time (MRT) color-fluid LB

simulator (Tölke 2002; Tölke et al. 2006; Chen et al. 2018).

In the model, each phase has its own set of PDFs and the discrete Boltz-

mann’s equation is solved for each fluid phase. In our in-house LB code, we

consider two sets of the D3Q19 PDFs, i.e., a 3D model with 19 velocities,

representing the two fluid phases, referred to as the fluids r and b, which

follow the collision-streaming procedure for the PDF:

f si (x+ ei∆t, t+ ∆t) = f si (x, t) + Ω
s(3)
i

{
Ω
s(1)
i + Ω

s(2)
i

}
, s = r, b (2.2)

where Ω
s(1)
i is the standard LB collision operator, Ω

s(2)
i is the perturbation

step that generates the surface tension effect, and Ω
s(3)
i is the recoloring step

that separates the two fluids. The collision operators Ω
s(1)
i and Ω

s(2)
i are

constructed under the MRT framework that increases stability and accuracy

of the model (Lallemand and Luo 2000; Tölke et al. 2006; Chen et al. 2018;

d’Humieres 2002). More details of our in-house code are given by Chen et al.

(2018). The macroscopic quantities, such as fluid velocity and pressure,

are computed by calculating the moments of the PDF. Since the outputs

produced by the LB simulation are defined in terms of lattice units, they

must be converted to physical units (Ramstad et al. 2012; Sukop 2006).

In the present work, we simulate a method of measuring the relative

permeabilities known as the steady-state method. In this method a prede-
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fined fractional flow of both fluid phases is injected into the pore space at

constant flow rates, while the pressure drop across the sample is constant.

Steady state is reached when the downstream and upstream fractional flows

are equal. More details about the steady-state measurement are given by

Honarpour et al. (1986). In the LB model, the predefined fractional flow is

implemented as an initial randomly distributed saturation that will also be

the target saturation. We mirror the input geometry and impose periodic

boundary conditions along the flow direction as well, in order to allow both

fluid phases enter and exit the model smoothly. A body force is applied to

each fluid phase to achieve the same pressure drop and avoid capillary-end

effects. To ensure that steady state has been reached, various quantities, such

as the flow rates, should be monitored in order to check whether they con-

verge to steady-state values, which are then used for the relative permeability

calculation at the set target saturation. A similar method of measuring rel-

ative permeabilities was described by Ramstad et al. (2012).

2.3.2 Direct numerical simulation

The second computational method that we employed was direct numerical

simulation (DNS) using the OpenFOAM open source for both single-phase

and two-phase fluid flow. The simulator uses finite-volume discretization and

solves the continuity and momentum equations — the Stokes equations —

in the pore space. We used an unstructured mesh with grid size of 23 and 1

voxels in the pore volumes and throat, and corner points between the solid

boundaries, respectively, meaning that the grid blocks that are used in the

throats and the corners are half the size in each direction of those used in

the pores, employing a modified OpenFOAM mesh generator (Raeini 2013).

The total number of grid blocks used to discretize the image volume was

10,815,820. For each capillary number, the simulations employed 300 proces-

sors in parallel. Unlike the LB method, the finite-volume simulations are run

under unsteady-state conditions, and the results are measured in a dynamic

drainage simulation. More details about the method and its implementations

are given in the two phase flow solver of OpenFOAM (interFOAM) (Ubbink

1997). As usual, Darcy’s law and its generalization to two-phase flow, are

assumed.
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There are various methods for upscaling the microscopic dynamic and

capillary pressures to the Darcy-scale pressure, but it is not clear which

method averages the microscopic pressure most accurately. Raeini et al.

(2014) analyzed five methods in a steady-state incompressible single-phase

flow calculation to obtain the Darcy-scale pressure drop. Among all the

methods the velocity-weighted average of the viscous forces, as well as the

velocity- weighted average of the pore-scale pressure gradient, matched the

experimental results most closely. The same equations with some modifica-

tions can be used to calculate the macroscopic pressure drop in two-phase

flow. In the DNS simulations, the velocity-weighted average of the viscous

forces was employed in order to calculate the total macroscopic pressure drop

(∆Pα) in each phase:

∆Pα = − 1

Qα

∫
u · [∇ · (µ∇u)] dVα (2.3)

µ = βµ1 + (1− β)µ2 (2.4)

where α may be either the wetting or non-wetting phase, Qα is the flow rate

of phase α, u is the velocity vector, and Vα is the portion of flow volume filled

with phase α. In Eq. (2.4) µ1 and µ2 are viscosities of the two fluids, and β

is the volume fraction of fluid 1 in each grid cell. More details on upscaling

of pore-scale forces are given by Raeini et al. (2014).

Various methods have been developed for including the interfacial ten-

sion in Eulerian grids. They include the continuous surface stress (CSS)

(Gueyffier et al. 1999), continuous surface force (CSF), sharp surface force

(SSF) (Francois et al. 2006), and filtered surface force (FSF) (Raeini et al.

2012). The main problem with the CSF is the spurious velocity in the flow

field, which, to some extent, is controlled in the SSF method. Controlling

the sharpness of the capillary pressure in the SSF method is accomplished

by defining a sharpened indicator function. In the FSF method the indi-

cator is modified to have a smoother capillary force compared to the SSF

approach for the interface motion. This modification compresses the transi-

tion area of the capillary pressure. With this implementation, the issue with

the non-physical velocities that may arise is resolved, and the capillary pres-

sure transition area is only one grid block. Therefore, the FSF formulation

is used for the complex geometry used in this study.
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2.3.3 Pore-network model

The PNM simulation of drainage — displacement of brine by CO2 — was

carried out under the quasi-static condition, which corresponds to low capil-

lary number. It uses an invasion percolation (IP) algorithm (Wilkinson and

Willemsen 1983; Wilkinson and Willemsen, 1983; for the most efficient algo-

rithm to simulate the IP see Sheppard et al. 1999 and Knackstedt et al. 2000).

All the pore elements were initially saturated with the wetting phase. Pore

elements become occupied by injecting non-wetting phase through piston-

like displacement and based on the Young-Laplace equation that connects

the pressure in the two phases at the interface between them. The complete

procedure that we used is described by Valvatne and Blunt (2004), and need

not be repeated here. All the pore-bodies and pore-throats were assumed to

triangular cross sections.

In all three approaches the usual generalized Darcy’s law for multiphase

flows,

Vα = −kr,α(Sα)

µα

∆Pα
∆x

(2.5)

was used to compute the relative permeabilities, where kr,α is the relative

permeability of phase α, Sα is its saturation, and vα is its corresponding

Darcy velocity, which is proportional to total flow rate passing through the

medium. The relative permeability is generally a function of the phase sat-

uration, wettability, and the structure of the pore space. The competition

between the capillary and viscous forces influences the displacement of one

fluid by the second one, which is expressed by the capillary number Ca:

Ca =
µ (Qtot/A)

σ
(2.6)

where Qtot refer to the total flowrate of phases, µ is effective viscosity, A is

the cross-sectional area, and σ is the surface tension.

2.4 Test of the accuracy of the numerical approaches

We tested our computational methods with an oil-water system in a

water-wet Berea sandstone sample. The sample, having the data listed in

Table 2.5, has been extensively studied and used in the literature (Raeini
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et al. 2014; Ramstad et al. 2012; Valvatne and Blunt 2004) and is considered

a benchmark. We compare the calculated relative permeabilities of the oil-

water system during drainage with the experimental data (Oak et al. 1990)

in Fig. 2.8. Table 2.7 presents the properties of the two-phase flow system.

The LB results for the water relative permeabilities are slightly larger than

the experimental data but, as we discuss below, this is due to the resolu-

tion of the lattice used in the simulation. As the resolution increases, the

agreement between the LB results and the data improves significantly. The

agreement between the DNS results and the data is excellent.

Figure 2.8: Drainage relative permeabilities of the oil-water pair in a Berea
Sandstone sample with contact angle of 125o, capillary number of 5× 10−5,
and viscosity ratio of 1.32.

Table 2.7: Properties of CO2-brine pair for the LB simulation and DNS.

Properties Value
Contact angle (◦) 125 (water-wet)
Interfacial tension (mN/m) 30.0
Water density (Kg/m3) 1000
Oil density (Kg/m3) 1000
Water viscosity (Pa · s) 1.05× 10−3

Oil viscosity (Pa · s) 1.39× 10−3

Viscosity ratio 1.32
Capillary number 5× 10−5

The results from the DNS and LB methods are reported up to the water
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saturation of about 45% (Sw = 0.45) where water permeability becomes

negligible. We did not further continue the simulations due to the limited

computational resources.

2.5 Results and discussion

After validating our computational methods with the experimental data,

we carried out extensive simulation of both single- and two-phase flow in

the image of Mt. Simon sandstone. In what follows we present and discuss

results.

2.5.1 Single-phase flow

As pointed out earlier, the size of the REV for the single-phase simulations

with the eight subsamples was 5003 voxels. Using the DNS, we computed the

single-phase permeability for an image size of 5003 and resized subsamples

of size 2503 voxels (with the same physical size, i.e., 1.43 mm3, but with

a coarser image resolution of 5.6 µm) with the upstream and downstream

pressures of 5 Pa and 0 Pa. The fluid density and viscosity were set to be

the same as those of brine, µ = 0.0011 Pa.s and ρ = 1100 kg/m3. Fig. 2.9

shows the original mesh, and the pressure distribution of the subsample S5

with 5003 voxels.

Figure 2.9: The 3D pore volume of the subsample S5 (left) and the pressure
distribution in the volume at the end of the simulation (right).

The same properties were used in the LB method to calculate the absolute

permeabilities for both sizes. However, due to the low computational cost of
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simulation of single-phase flow with the PNM, no resizing was needed, and the

simulations were performed only with the original 5003 voxels samples. The

main purpose of carrying out the LB and DNS simulations on the resized

subsamples was reducing the size of the input geometry of our two-phase

flow simulations that reduces significantly the computational costs for both

methods. The absolute permeabilities of the eight subsamples, calculated by

the DNS, LB and PNM, are reported in Table 2.8.

Table 2.8: Comparison of the absolute permeability of the eight subsamples
computed by the PNM, LB and DNS methods. The results obtained by the
LB and DNS methods are for two sample sizes of 2503 and 5003 that have
resolutions of 5.6 and 2.8 µm, respectively.

Subsamples Porosity
Permeability (mD)

PNM
(5003)

LB
(2503)

LB
(5003)

DNS
(2503)

DNS
(5003)

S1 0.258 3843 3883 3638 4147 3971
S2 0.263 4201 4211 4278 4530 4370
S3 0.272 5037 5053 4818 4555 4376
S4 0.274 5283 5746 5772 5521 5344
S5 0.287 6055 5666 5397 6721 6418
S6 0.274 5884 4830 4614 5085 4860
S7 0.283 6784 5182 5106 8186 7879
S8 0.293 8112 6645 6558 7907 7595

A few features of Table 2.8 are worth pointing out. (i) The absolute

permeabilities computed by the DNS and LB for the original 5003 subsam-

ples are quite close to that of the resized 2503 subsamples. This indicates

that the resizing process honors the connectivity of the sample well. The

small increase in the permeabilities of the resized 2503 subsamples is due to

the interpolation of the voxelized geometry during downsizing that removes

minor irregularities in narrow pores and, thus, reduces flow resistance. How-

ever, this does not change the overall connectivity of the sample, and the

resulting permeabilities are still in good agreement. As an example, the ab-

solute permeability of subsample S2 changes from 4278 mD to 4211 mD

(computed by the LB simulation) after resizing, while its porosity remains

almost unchanged. Therefore, the resized 2503 subsamples were considered

as a good-enough approximation of the original 5003 subsamples, and were

used in two-phase flow simulations. (ii) The permeabilities computed by the

LB simulations agree with those computed by the DNS for the 5003 images;
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the difference between the two sets of results is about 10% or less in most

cases. This is also encouraging. (iii) A comparison of all the computed ab-

solute permeabilities of all the eight subsamples indicates that the original

Mt. Simon sandstone is indeed heterogeneous.

2.5.2 Two-phase flow

We used both the LB method and DNS, in addition to the quasi-static

PN computations, to carry out simulation of drainage for the CO2-brine pair

in the Mt. Simon sandstone sample S2 and evaluate the drainage relative

permeabilities for two capillary numbers Ca. Table 2.8 presents the properties

of the CO2-brine system used in the simulations.

Table 2.9: Properties of CO2-brine two-phase flow system for LB simulation
and DNS.

Properties Value
Contact angle (◦) 180 (brine-wet)
Interfacial tension (mN/m) 30.0
Brine density (Kg/m3) 1100
CO2 density (Kg/m3) 1100
Brine kin. viscosity (m2/s) 1× 10−6

CO2 kin. viscosity (m2/s) 1× 10−7

Capillary number 1× 10−4 and 3× 10−5

Viscosity ratio 10

We first carried out simulation of drainage with specified injection velocity

(or flow rate) at the inlet and pressure boundary condition at the outlet

to capture the invasion pattern of Properties of CO2-brine two-phase flow

system for LB simulation and DNS. through the initially brine-saturated

sample. In addition, initially, the first 8% of the grid blocks were filled

with the non-wetting phase. At the low capillary number, the average inlet

fluid velocity was 0.014 m/s, while for the high capillary number the inlet

velocity was set at 0.0465 m/s. Fig. 2.10 shows the results produced by

the LB simulation, where the CO2 front was injected into the sample from

the left at an average wetting-phase saturation of Sw = 0.50, indicating a

fingering pattern and very heterogeneous spatial distribution of CO2 in the

pore space.
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Figure 2.10: CO2 invasion pattern (blue) computed by the LB simulation
for capillary number Ca = 10−4 at brine saturation Sw = 0.50. Brine is
shown in red and rock is not shown.

In order to have a quantitative comparison and consistency check of the

results produced by the LB and DNS methods, we compare the dependence

of the CO2 saturation on the distance from the inlet along the direction of

macroscopic flow. The results are shown in Fig. 2.11 where CO2 saturation

represents an average taken over the cross-sectional area. The results pro-

duced by the two methods follow one another very closely. In addition, we

computed the change in the brine saturation in the sample volume over time

for the two Ca numbers. The results, shown in Fig. 2.12, indicate again that

the two simulation methods provide consistent and closely-agreeing results.

This gave us confidence that a comparison between the relative permeabili-

ties produced by the two methods, as well as those produced by the PNM,

is viable and meaningful.

Fig. 2.13 compares the spatial distributions of CO2, injected from left

side, and brine for two capillary numbers produced by the DNS, when the

latter has reached its residual saturation. Consistent with what is known for

the oil-water pairs in porous media, the displacement pattern at high capil-

lary number is more uniform, better connected and piston-like with a lower

residual saturation for the brine phase, than that obtained with the lower
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Figure 2.11: Comparison of the computed CO2 saturation for capillary
number Ca = 1× 10−4 and its dependence on the distance from the inlet at
brine saturation Sw = 0.50 during drainage.

Figure 2.12: Time-dependence of the computed brine saturation obtained
by the LB simulation (continuous curves) and the DNS (dashed curves)
during drainage.
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capillary number that exhibits fingering pattern with a fractal structure. Per-

haps, this can be seen better if we consider a side view of the displacement

patterns, shown in Fig. 2.14, which are consistent with those shown in Fig.

2.13. Thus, depending on the heterogeneity of the pore space, at lower capil-

lary numbers the capillary fingering effect can be strongly dominant. In that

case, there can be some fluctuations in the relative permeabilities, unlike the

smoother-varying values for high capillary numbers. It may also indicate that

obtaining smoothly-varying relative permeabilities for low capillary numbers

entails using larger REVs. Note that at the end of the simulations, the cal-

culated brine residual saturations for the high and low capillary number are

0.30 and 0.50, reached at times 54 ms and 122 ms, respectively.

Figure 2.13: 3D representation of the brine residual saturation (red) for
Ca = 1× 10−4 (left) and Ca = 3× 10−5 (right) capillary numbers. The
residual brine saturations are Sw = 0.30 and 0.50, respectively, reached at
times 54 ms and 122 ms.

In Fig. 2.15, we compare the computed relative permeabilities of the

CO2-brine pair for the lower capillary number that we simulated. All the

relative permeabilities computed by the three methods are in good agreement

with each other, although the methodologies are completely different. Fig.

2.16 compares the relative permeabilities computed by the LB method and

the DNS for the higher capillary number. In this case too, the results are

in agreement with each other. Since our PNM simulator is designed for

quasi-static displacement by an IP-like algorithm, it could not be used for

simulating an arbitrary value of the capillary number when the magnitude of

the viscous forces is competitive with the capillary forces. In such case, one

must use a dynamic PN simulator (Joekar-Niasar and Hassanizadeh 2012).
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Figure 2.14: Side view (inlet on the left and outlet on the right side of each
image) of the distribution of the brine (red) and CO2 in the pore space for
Ca = 1× 10−4 (left) and Ca = 3× 10−5 (right) at brine saturation,
Sw = 0.475.

Figure 2.15: CO2-brine relative permeability curves in low capillary
number, Ca = 3× 10−5.
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Figure 2.16: CO2-brine relative permeability curves for high capillary
number, Ca = 1× 10−4.

It should be pointed out that, to compute the relative permeabilities by

the LB simulator for each brine saturation, a separate simulation should be

carried out, whereas they are computed by one complete simulation when

the OpenFOAM poreFOAM package (Raeini et al. 2014) is used in the DNS,

as it simulates the entire process, from the beginning of injection of CO2 to

reaching the brine residual saturation. But, if the goal is to compute the

quantities of interest for a single saturation, then the LB method is more

efficient. The LB method has, however, a problem with spurious velocity,

which is resolved in the DNS simulator that we employ in this study by using

the FSF approach, instead of the CSF method (see the earlier discussions)

to account for the interfacial forces. Note also that the PNM simulation,

particularly for low capillary numbers, does not require high-performance

computational resources. Thus, it is still a reliable method for low Ca number

systems, if the PN used is accurate representation of the pore structure.

2.6 The importance of resolution of the computational

grid

An important point should, however, be emphasized. If the LB simulation

is used with an image of a porous medium, one must make sure that the

resolution of the lattice used is high enough; that is, the results must be
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independent of the resolution. For example, in the calculations that we

carried out, it was not enough to have one lattice unit per voxel and, thus,

the lattice with higher resolutions was needed. Fig. 2.17 compares the results

computed by the LB simulation obtained with two lattice resolutions for two

Ca numbers. In the low-resolution simulation, one lattice unit was defined

for each void space voxel, whereas eight lattice units were utilized for each

voxel of the input geometry in the high-resolution simulation. Fig. 2.17

indicates that only when high-resolution lattices are used, do the LB results

converge to those obtained by the DNS.

Figure 2.17: Effect of resolution of lattice in LB simulation on the resulting
CO2-brine relative permeability curves for Ca = 1× 10−4 (right) and
Ca = 3× 10−5 (left).

2.7 Summary and conclusions

In order to study two-phase flow of CO2-brine in the three-dimensional

image of a heterogeneous porous medium, the Mt. Simon sandstone, we

first carried out a detailed quantitative study of the pore structure on sev-

eral subsamples from the rock. Then, we used three distinct computational

approaches, namely, the lattice-Boltzmann method, direct numerical simu-

lation of the Navier–Stokes equations, and a pore-network model extracted

from the image. The main process simulated was drainage, displacement of

brine by CO2. The relative permeabilities of the two fluids for two capillary

numbers were computed and compared. Provided that the computational

grid in the DNS and the lattice used in the LB simulation have high-enough

resolution, the computed relative permeabilities agree very closely. The DNS
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approach requires, however, a single drainage simulation to compute the rel-

ative permeabilities over the entire intended range of saturation, whereas the

LB approach needs a separate steady-state simulation for each saturation

and, therefore, it requires more computational resources. In addition, the

difference in the results produced by the DNS and LB may be due to the

different formulations used for the capillary forces parallel to the interfaces.

The FSF formulation used in the DNS method eliminates non-physical ve-

locities, whereas the CSF formulation employed in the LB simulation results

in nonphysical currents, especially in complex geometries. The relative per-

meabilities computed by the PNM at a low capillary number also agree with

those obtained by the LB simulation and the DNS, although the PNM does

not need any high-performance computational resources.

Therefore, the question of which method to use for such simulations

should be addressed based mainly on the computational time that they need,

and the computational resources that one has access too. In addition, one

should carefully examine the effect of the resolution of the lattice used in the

LB simulation. Improving the interfacial surface formulation in the LB simu-

lation is expected to improve its accuracy, leading to much closer agreement

with the results obtained by the DNS method.
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Chapter 3

Upscaling

Pore-network stitching method: A pore-to-core upscaling

approach for multiphase flow

Pore-network modeling is a widely used predictive tool for pore-scale stud-

ies in various applications that deal with multiphase flow in heterogeneous

natural rocks. Despite recent improvements to enable pore-network mod-

eling on simplified pore geometry extracted from rock core images and its

computational efficiency compared to direct numerical simulation methods,

there are still limitations to modeling a large representative pore-network for

heterogeneous cores. These are due to the technical limits on sample size to

discern void space during X-ray scanning and computational limits on pore-

network extraction algorithms. Thus, there is a need for pore-scale modeling

approaches that have the natural advantages of pore-network modeling and

can overcome these limitations, thereby enabling better representation of

heterogeneity of the 3D complex pore structure and enhancing the accuracy

of prediction of macroscopic properties. This chapter addresses these issues

with a workflow that includes a novel pore-network stitching method to pro-

vide large-enough representative pore-network for a core. This workflow uses

micro-CT images of heterogeneous reservoir rock cores at different resolutions

to characterize the pore structure in order to select few signature parts of the

core and extract their equivalent pore-network models. The space between

these signature pore-networks is filled by using their statistics to generate

realizations of pore-networks which are then connected together using a de-

terministic layered stitching method. The output of this workflow is a large

pore-network that can be used in any flow and transport solver. We validate

all steps of this method on different types of natural rocks based on single-

phase and two-phase flow properties such as drainage relative permeability

curves of carbon dioxide and brine flow. Then, we apply the stochastic work-

flow on two large domain problems, connecting distant pore-networks and
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modeling a heterogeneous core. We generate multiple realizations and com-

pare the average results with properties from a defined reference pore-network

for each problem. We demonstrate that signature parts of a heterogeneous

core, which are a small portion of its entire volume, are sufficient inputs for

the developed pore-network stitching method to construct a representative

pore-network and predict flow properties. This chapter is published in the

journal of Transport in Porous Media (Kohanpur and Valocchi 2020a).

3.1 Introduction

The physics of two-phase flows in heterogeneous natural rocks is relevant

to many applications of multiphase flows in porous media such as geologi-

cal sequestration of carbon dioxide (CO2), displacements in oil recovery, and

contaminant transport. Pore-scale modeling is essential in understanding

fundamental phenomena necessary for prediction of macroscopic properties

used in field-scale simulation tools. As an example, relative permeability and

capillary pressure curves are important inputs of field-scale models to pre-

dict long-term displacement of oil or trapping of CO2 in reservoirs. Although

these properties can be estimated from core-scale experiments, these labora-

tory experiments are difficult to implement, time-consuming, expensive, and

have uncertainties in measurements (Joekar-Niasar and Hassanizadeh 2012).

Prediction of macroscopic flow and transport properties of rocks based on

pore-scale physics has been a focus of many studies (Blunt et al. 2013).

Pore-scale models are generally less expensive than experiments and have

more flexibility in implementing and changing parameters.

With recent advances in instrumentation and X-ray computed tomogra-

phy (CT) imaging, one can directly obtain detailed three-dimensional (3D)

geometry of rock and its pore structure with high resolution images (Flan-

nery et al. 1987; Dunsmuir et al. 1991; Wildenschild and Sheppard 2013;

Andrä et al. 2013a; Andrä et al. 2013b). Such images are inputs of pore-

scale models which can be categorized as either direct or simplified models,

based on the manner in which they represent the geometry of the void space

of porous media. In direct models, multiphase flow and transport equations

are solved directly on the exact geometry of pore space obtained from the CT

images. Some examples of direct numerical simulation (DNS) methods are
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lattice-Boltzmann methods (Boek and Venturoli 2010; Ramstad et al. 2012),

finite volume methods (Ferrari and Lunati 2013; Raeini et al. 2014), level set

methods (Prodanović and Bryant 2006), etc. The main challenges in using

DNS methods are limitations on the size of the domain that is relevant to the

grids resolution of simulation and limitations on computational efficiency.

On the other hand, a popular simplified model is pore-network (PN) mod-

eling (Fatt et al. 1956; Sahimi 2011; Blunt 2017) which simplifies the pore

space by dividing it into two categories of pore elements: pore-bodies (larger

elements for storage of fluids) and pore-throats (narrower elements for flow of

fluids). A PN can be either generated from statistics of the pore space, such as

pore size distribution, or extracted directly from the 3D image of rock where

irregular surfaces and edges of the pore space are abstracted down to simpler

geometrical units. There are different PN extraction algorithms in the liter-

ature such as medial axis (Lindquist et al. 1996), watershed (Gostick 2017),

and maximal ball (MB) algorithms (Silin and Patzek 2006;Dong and Blunt

2009). Defining a PN requires geometrical (location, size, and shape of pore

elements) and topological (connections between pore elements) information

of the pore space. PN flow models then use some assumptions and approx-

imations to the governing equations on the entire PN e.g., Hagen-Poiseuille

equation for flow in pore-throats. More details can be found in Valvatne and

Blunt (2004) and Joekar-Niasar and Hassanizadeh (2012). These approxima-

tions to geometry and physics make PN models more capable of simulating

a representative elementary volume (REV) with less computational effort

compare to DNS methods to predict macroscopic properties.

Although PN modeling based on CT images has been applied to different

types of porous media, it has been mainly applied on a relatively small volume

of an entire core. Current tools face important limitations for attaining

a large representative PN of heterogeneous domains. There are both (1)

technical limits and (2) computational limits:

• Technical limits: There are technical limits on the size of the core that

can be scanned to discern void space well. This is rooted in the trade-

off of size and resolution and reflected in both the scanning time and

size of produced images (Bultreys et al. 2015). For instance, typical

sandstones require few microns (about 2 to 5 µm) of resolution in CT

images to be used in pore-scale modeling while typical scans are not
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larger than 10003 − 20003 voxels with the current micro-CT scanners

(Blunt 2017).

• Computational limits: Current PN extraction algorithms are not com-

putationally able to provide a large PN covering all heterogeneities

at the core-scale. These algorithms generally scan the entire voxelized

pore space and the current codes are written as serial codes. Therefore,

their performance is limited in terms of both computational memory

and speed that results a limit on the size of their input. For example,

current MB network extraction codes cannot attain PNs beyond sizes

more than roughly 15003 − 20003 voxels.

There are different studies that have addressed some of the challenges

noted above by different strategies including multiscale frameworks and do-

main decomposition approaches in addition to exploiting growing computa-

tional capabilities in using current tools.

One common motivation in conducting multiscale studies comes from the

practice of investigation of core-scale images (resolution of about 10−30 µm)

of different heterogeneous rocks in terms of spatial variability that shows a

wide range of heterogeneities. While such images can reveal some details

of the rock such as connectivity of larger pores, they cannot be directly

used in pore-scale modeling tools due to lack of enough precision and failure

in capturing small channels and pores which are in sub-resolution. However,

these images are still able to cover a large domain of the core thereby allowing

study of the heterogeneity and spatial variation of the rock properties. They

can be used along with pore-scale images in a multiscale framework to study

rock heterogeneity that has been addressed in some studies.

Chu et al. (2013) developed a multiscale algorithm with the form of

heterogeneous multiscale method that couples PN models with continuum

models to predict pressure and track the macroscopic front, although their

work was limited to simpler PN models and did not address pore-scale het-

erogneities. In a PN study, Jiang et al. (2013) combined coarse-scale and

fine-scale pore elements to develop a multiscale PN by their stochastic gen-

erator for vuggy carbonate rocks. Although this work could cover three-level

PNs from different resolutions, it mainly addressed micropores and its ac-

curacy in prediction of two-phase flow properties was not assessed. This

approach was continued by Pak et al. (2016) later where they developed an

44



effective PN integration process to select number and length-scale of input

PNs by utilizing experimental pore-throat size distribution. While this ap-

proach could combine information from different resolutions to construct a

multiscale PNs, it required imaging and PN extraction at all scales and its ca-

pability in relative permeability prediction was not studied either. In another

multiscale work, Bultreys et al. (2015) developed a dual PN model that in-

corporates microporosity via adding micro-links to traditional PN models to

address the small-scale heterogeneities. While their approach results a great

number of pore elements in the constructed PN, it was mainly designed for

modeling micropores of heterogeneous samples.

Some other studies have used domain decomposition to deal with the

challenges of modeling in large domain problems. Balhoff et al. (2007) used

a domain decomposition approach using mortar spaces in which a pore-scale

model can be coupled with an adjacent model (pore-scale or continuum) by

a 2D finite-element space (Balhoff et al. 2007; Balhoff et al. 2008). The

objective of using mortar coupling was to model a more realistic boundary

conditions for different neighboring pore-scale models rather than to provide

a large representative volume that includes heterogeneities. In another mor-

tar space study, Sun et al. (2012) used a domain decomposition method to

upscale absolute permeability on heterogeneous PN models. Also, Mehmani

and Balhoff (2014) used a hybrid method for parallel modeling of linear and

nonlinear flow across scales in large domains that enhanced the computa-

tional efficiency of mortar domain decomposition. These studies successfully

bridged the pore-scale to continuum-scale but were mainly validated based on

single-phase flow properties and did not involve core-scale heterogeneities. In

a different domain decomposition study, Rabbani et al. (2019) connected ex-

tracted PNs of subdomains by generating pore-throats between subdomains

with different decomposition strategies. While their approach was successful

in reducing computational demands of PN extraction, it was mainly focused

on PN properties and absolute permeability of homogeneous samples. In a

large domain study, Da Wang et al. (2019) used dual grid domain decompo-

sition on a large rock sample with the aid of high performance computing

but the work was limited to absolute permeability evaluation.

In a pore-to-core PN modeling work, Aghaei and Piri (2015) studied a

long Berea sandstone core to attain a large PN and model capillary and

viscosity effects with the aid of heavy parallelization based on domain de-
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composition scheme. While this work was notable in terms of the accuracy

of prediction of two-phase flow properties and the size of studied sample,

the type of rock was relatively homogeneous and the process of connecting

sample pieces were specific to that very studied sample. Varloteaux et al.

(2013) developed a method to upscale reactive transport from pore to core to

reservoir scale. A key part of their workflow is generating a spatially periodic

PN from extracted PNs from micro-CT images. They accomplished this by

using 3D Delaunay triangulation to add new links to boundary pore-bodies

of a homogeneous Fontainebleau sandstone PN and assigned geometric prop-

erties of links randomly from statistics inside the PN. While this approach

bears some relation to the layered stitching of the method we develop here,

its main purpose is to modify connectivity at the boundaries of PN rather

than construction of large heterogeneous PNs, which is the aim of our devel-

oped method presented here. In a recent pore-to-core PN modeling study,

Zahasky et al. (2019) characterized centimeter-scale Bentheimer sandstone

cores by studying heterogeneity in capillary pressure and relative permeabil-

ity with the aid of an extensive multiple resolution imaging. In addition,

Jackson et al. (2019) used multiscale experimental and modeling approaches

to study two large Bentheimer sandstone cores. Although these works were

notable in terms of providing a unique data set and addressing heterogeneity

and size of the domain, they rely on full micro-CT images of an entire core

with a fine resolution which may not always be readily available and requires

relatively large computer storage.

Therefore, there is still a need for pore-to-core upscaling approaches that

can accurately represent the 3D complex pore structure and heterogeneity

of real media with efficient computational demands and incorporate infor-

mation from multiple scales. Herein, we introduce a novel pore-network

stitching method 1(PNSM) to provide large-enough representative PN for a

core that encompasses a larger scale of heterogeneities than is possible using

conventional PN modeling and other pore-scale modeling approaches while

it is still computationally efficient. Some highlights of this method were

originally presented in Kohanpur and Valocchi (2018) and Kohanpur and

Valocchi (2019).

The organization of the rest of this chapter is as follows. Section 3.2

1The source code is available at: github.com/amirkohanpur/pn-stitcher
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will explain the overall workflow, steps, and tools used in the PNSM. In

Section 3.3, the main steps of this method, layered stitching and volumetric

stitching, are validated for computing flow properties on different types of

rock samples. The main application of the PNSM for larger domains is

presented in Section 3.4 where spatially separated PNs are connected together

and a large heterogeneous sample is modeled from the information of its

signature parts. We compare single-phase and two-phase flow properties of

a stitched PN with properties from a defined reference PN for each study.

Finally, the conclusions are summarized in Section 3.5 and the developed

software of PNSM is explained in Section 3.6.

3.2 Method

As mentioned earlier, the motivation for developing the PNSM comes

from investigation of core-scale images of heterogeneous rocks that can rep-

resent an entire cross section of a core along its length. For example, Fig. 3.1

shows a cross section of a heterogeneous Mt. Simon sandstone core with a

diameter of 2 inches at a depth of 7034 feet. The formation is located at ver-

ification well number 2 of Illinois Basin-Decatur Project (Finley 2014) where

Illinois State Geological Survey carried out a pilot CO2 injection study. The

core plug from the formation was scanned by industrial CT scanning at the

National Energy Technology Laboratory (NETL) of the U.S. Department

of Energy. The marked red boxes in Fig. 3.1 are some distinct regions or

heterogeneities of the core that characterize the overall variability. In gen-

eral, these regions can be found in 3D images of the core at different depths

but here we use this 2D image to explain steps taken in the workflow more

intuitively.

The first step is to examine the entire coarse resolution scans of the core

to find unique size and shape of solid grains and local pore structure in

different locations and identify heterogeneities. Assessment and integration

of multiple scales of 2D and 3D micro-CT images can be used to investigate

geometry, connectivity, and heterogeneity of pore space (Long et al. 2013).

This procedure might be tedious and subjective but it is an important step

in the workflow. It can be doubled-checked by applying a fast evaluation of

pore size distribution on multiple 2D images (Münch and Holzer 2008) from
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different selected depths where larger pores can still be identified in coarse

resolution images and most heterogeneities can be captured. The outcome of

this analysis is identification of selected locations of the core that are unique

in terms of pore size and structure that are defined as signature parts, as

shown with red boxes in Fig. 3.1. The hypothesis is that these signature

parts, which might or might not be adjacent, are sufficient to represent the

heterogeneity of the core.

Figure 3.1: A coarse-scale scan of a Mt. Simon sandstone sample at a
depth of 7034 feet from the Illinois Basin Decatur Project.

As depicted in Fig. 3.2, the next step after identifying signature parts

is to obtain their fine resolution scans, 3D micro-CT images, in order to

characterize their pore structure. These micro-CT images are used as inputs

to a PN extraction tool that obtains the PNs for each signature volume.

These extracted PNs also include key statistics of the pore space such as

pore size distribution and connectivity. Tahmasebi and Kamrava (2018) has

also proposed a similar approach of integrating information from coarse and

fine resolution images in which they construct a multiscale PN by adding

stochastically generated micro-PNs to extracted macro-PNs. In this work-

flow, we use the PN extraction code based on MB algorithm from Dong and

Blunt (2009). The algorithm was originally introduced by Silin and Patzek

(2006) where the entire 3D voxelized pore space is searched to find the largest
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possible spheres, and subsequently, was extended and modified in later works

such as Al-Kharusi and Blunt (2007), Dong and Blunt (2009), and Raeini

et al. (2017). The Dong and Blunt (2009) PN extraction code can provide

inherit randomness of pores and channels in real rocks with a wide range of

connection number for pore-bodies. On the other hand, the currently avail-

able code is not computationally parallelized and is limited by the size of

input rock images. It tends to result too many small pore-throats around

the voxel size of images (Dong 2008). In addition, the cut-off between pore-

bodies and pore-throats is arbitrary (Blunt 2017) and its pore-throats on

the inflow and outflow boundaries are generated randomly rather than being

derived from rock images. Despite these shortcomings and limitations, it is

used extensively in the literature and has successfully characterized various

rocks and predicted their flow properties. The code writes its outputs that is,

the information specifying the extracted PN, in StatOil format (Sochi 2007),

a commonly used data structure that is also used elsewhere in the PNSM

workflow.

The input of this algorithm is the voxelized binarized (solid as one and

pore as zero) geometry of the rock where all the zero voxels are scanned. The

largest possible voxelized sphere for each pore voxel is determined and taken

as the MB. In practice, most of MBs are removed since they are completely

inside the larger MBs. The resulting MBs are sorted and clustered based

on their volume that helps identifying the ancestor MBs and a chain of the

MBs that are from one ancestor to another one. Each chain is segmented as

a configuration of two pore-bodies and their connecting pore-throat (Dong

and Blunt 2009). The extracted PN is defined when all pore-bodies and

pore-throats are identified in the entire volume of zero voxels.

Finally, the algorithm assigns indices to pore-bodies and pore-throats

separately that is used for storing topological information, i.e., connections

between pore elements. In addition, geometrical information of pore elements

are stored including the location, radius, volume, length, total length, and

shape factor. The shape factor is a metric of irregularities of the pore space

in pore elements and defined as G = V L/A2, where A is surface area, V

is volume of the voxelized element, and L is twice the distance between the

center of the ancestor MB and the farthest voxel in that MB (Dong and Blunt

2009). The shape factor is also a key quantity that helps assigning familiar

geometries (such as circles, squares, and triangles) to the cross sections of
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the pore elements to be used in the PN flow models (Patzek and Silin 2000).

We use statistics of geometrical and topological information of pore elements

in the signature PNs in this workflow.

Figure 3.2: Signature parts of the core are selected and their corresponding
micro-CT scans, extracted pore-networks, and statistics are derived.

Since the space between signature PNs in the core can be relatively large

and cannot be directly extracted, the next important step of the workflow

is to fill the space between signature PNs by new defined pore elements.

We accomplish this by using statistics of the signature PNs and a stochastic

algorithm to generate new PNs in the empty regions of the domain. We then

develop a new PN stitching algorithm to link adjacent PNs. The final result

of the workflow are multiple realizations of a large PN for the entire core

volume that represents the heterogeneity identified in the different signature

parts. Fig. 3.3 summarizes the path from signature parts of the core to

generate new pore elements in the empty region of the domain and construct

a large PN as the output that includes both extracted and generated pore

elements.

We explain the two main tasks, namely, defining a layer of pore elements

linking neighboring PNs and generating an entire PN in empty regions of the

domain in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Layered stitching

The goal in layered stitching is to connect two neighboring PNs by a

layer of pore elements that can be in the direction of flow (longitudinal) or
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Figure 3.3: Signature pore-networks of the core are used to generate new
pore elements in the empty region of the domain and construct a large
stitched pore-network.

transverse directions to the flow (lateral). A layer of pore elements signifies

that the thickness of layer is in the range of average pore-throat length as

opposed to an entire volume of PN. This step is functionally similar to domain

decomposition approach using mortar spaces, since the purpose is to connect

two adjacent PNs. We will explain the details by considering longitudinal

stitching of left and right PNs together, as shown Fig. 3.4, where the flow

direction is from left to right in the flow model.

Initially, the algorithm reads in all information of the left and right PNs,

represented in yellow in Fig. 3.4, including: index, location, radius, length,

shape factor, volume, connectivity, and inlet and outlet status of all pore-

bodies and pore-throats. The next step is to remove outlet pore-throats of left

PN and inlet pore-throats of right PN based on the flow direction assumption.

This affects the inlet and outlet status of corresponding pore-bodies in those

locations. The stitching layer includes interconnected pore-bodies and pore-

throats which are connected to the left and right PNs, as represented in green

in Fig. 3.4. The thickness of the stitching layer is based on the summation

of average pore-throat length of both PNs. Pore-bodies in the stitching layer

are defined first where their centers are initially located on a regular 2D

lattice pattern proportional to dimensions of the cross section and followed

by a random perturbation in 3D space. To assign the number of pore-bodies

in the stitching layer, density of pore-bodies (number of elements per the box

volume) for each PN is calculated and their arithmetic mean is computed.

Then, by multiplying this average density by the thickness and area of the

the stitching layer, one can obtain the corresponding number of pore-bodies

in the stitching layer. In this way, it is guaranteed that no two pore-bodies

intersect and they are not too close to each other, otherwise it could yield
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extremely short pore-throats in the vicinity of the stitching layer which is

not realistic and may affect the resulting flow through the layer.

Figure 3.4: Layered stitching of two adjacent pore-networks by generating a
layer of pore elements.

In the next step, the generated pore-bodies of the stitching layer need

to get connected to each other and nearby pore-bodies in both PNs, i.e.,

generating pore-throats of the stitching layer. To do so, initially all possible

connections up to mean pore-throat length plus two standard deviations are

generated. This is a defined limit to ensure generating enough pore-throats

based on the available pore-throat length information in both PNs. Then,

we remove some connections randomly to achieve a determined number of

pore-throats in the stitching layer which is the arithmetic mean of density

of pore-throats from both PNs. This mean value involves both the number

of pore-throats and the volume of PNs to reduce redundant generated pore-

throats in the stitching layer. However, it is also important to investigate the

average connection number of the final stitched PN and compare it with the

arithmetic mean of the original PNs. The importance of average connection

number of a PN and its effect on flow properties have been demonstrated

in many studies (Fenwick and Blunt 1998; Raoof and Hassanizadeh 2010).

Therefore, a further step of adding or eliminating some pore-throats in the

stitching layer is applied to get the average connection number within a

threshold of the arithmetic mean of left and right PNs. The random elimina-

tion procedure to attain a certain connection number is also used in other PN

modeling studies, such as Raoof et al. (2013) and Varloteaux et al. (2013).

These criteria and averages are employed in the stitching layer to achieve a

smooth transition between left and right PNs in terms of connectivity and

length of pore-throats. While other averaging formula can also be used, we

will demonstrate the layered stitching with this approach on different rock

samples in the next section.

After defining number and location of pore elements and their connections
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in the stitching layer, their corresponding radius, shape factor, and volume

need to be determined. To do so, we add distributions of left and right PNs

for each property by combining their histograms and fitting a proper distribu-

tion function such as normal, log-normal, and Weibull distributions. These

distributions are also used in other PN modeling works such as Valvatne

(2003). While we can choose different combinations of these distributions

and evaluate the best one based on final resulting flow properties, we assign

default distributions for each property in the workflow coming from study-

ing a wide range extracted PNs from different types of rock. Based on our

analysis, the Weibull distribution is a better candidate for radius and volume

and normal distribution for shape factor of pore elements in most of studied

cases, so these are the default distributions in our developed code.

The explained procedure is applicable when the defined layer of pore el-

ements is normal to the main flow direction. On the other hand, a similar

strategy can be applied when the two neighboring PNs are stitched together

in the lateral direction which is parallel to the main flow direction. In such

case, we define the stitching layer with just generated pore-throats coming

from average statistics of both PNs and no pore-bodies are generated in the

lateral direction. In this way, we mark all pore-bodies of both PNs in the

vicinity of stitching layer (e.g., within the 10% of lateral length) and gen-

erate all possible connections. Then, we apply a similar removal approach

to achieve a determined number of pore-throats in the stitching layer based

on considering arithmetic mean of density of pore-throats and average con-

nection number of both PNs. The radius, shape factor, and volume of these

generated pore-throats are also determined by fitting a proper distribution

function as discussed for longitudinal layered stitching.

Thus, the size and connectivity of the layer of pore elements in longitudi-

nal and lateral directions are influenced by the statistics of the two adjacent

PNs. We implement the stitching layer as a deterministic approach to re-

duce complexity, albeit a smooth connection between adjacent PNs should

be achieved and tested in terms of resulting flow properties. In Sections 3.3.1

and 3.3.2, both longitudinal and lateral stitching procedures are validated on

several samples, respectively.
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3.2.2 Volumetric stitching

If the signature PNs are not neighbors in the domain, which is usually the

case, layered stitching would not be sufficient to connect them and another

way of generating pore elements in the empty volume of the domain is needed

that we call volumetric stitching. We use PN generators to have similar box-

size PNs and place them in empty spaces including the vicinity of signature

PNs as shown in Fig. 3.5. This approach allows using available PN generators

in the literature, such as the stochastic network generator developed by Idowu

and Blunt (2010), which we have used in this workflow.

Figure 3.5: Volumetric stitching of two distant pore-networks by generating
pore elements in the empty region and linking all pore-networks by layered
stitching.

This generator utilizes detailed statistics of pore elements as input data

and results a generated PN in the same format as an extracted PN from MB

algorithm. To be more specific, the required input data are distributions of

pore-body radius and volume, connection number, pore-throat radius and

volume, pore-throat length, and pore-throat total length along with their as-

sociated indices. The generator assigns locations of all pore-bodies randomly

first and, then it reconciles pore-throat lengths and connection numbers to

generate pore-throats between pore-bodies. Thus, the resulting locations of

pore-elements and statistics of pore-throats are stochastic and varies across

realizations. As a result, the output is a stochastic generated PN and suffi-

cient number of realizations must be generated for any analysis. More details

can be found in Idowu and Blunt (2010).
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We tested this generator on various PNs coming from different rocks and

observed that it sometimes fails to keep the connectivity of source statistics

in the generated PN, and therefore, underestimates permeability. To fix this

issue, we have added a modifier after generating PNs to check the weighted

average connection number (a metric that describes size and connectivity of

PN together) and adjust the pore-throat size distribution. In this way, some

of the generated realizations are rejected if their weighted average connection

number is not within the 10% of the weighted average connection number of

source data. Fig. 3.6 shows an example of pore-throat size distribution of an

accepted realization of generated PN compared with the original PN from a

Mt. Simon sandstone sample that its statistics are used as the source data.

Figure 3.6: Comparison of pore-throat size distribution of a generated
pore-network with its original pore-network from a Mt. Simon sandstone
sample.

The explained selective approach in PN generation leads to better realiza-

tions of generated PNs for filling the empty regions of the domain. The statis-

tics of the generated PNs should be derived from those of nearby signature

parts. One such approach would be to use parameters (e.g., mean, variance)

of derived fitting distributions. We accomplish this by concatenating the pore

element lists (pore-body radius and volume, connection number, pore-throat
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radius and volume, pore-throat length, and pore-throat total length) for all

signature PNs with a weight for each based on their relative center-to-center

distance to the generated PN, i.e., the closer to a signature PN, the more it

is influenced by its statistics. The advantage of this way is twofold. First,

we can easily honor the intrinsic correlation among geometrical properties

of a pore element such as radius, length, volume, etc. by picking them as

a set as opposed to considering separate distributions and then matching

correlations. This leads to having more realistic pore elements. Second, we

can relate the weighted average to all signature PNs of the entire domain si-

multaneously and thus, the footprint of their statistics can be found in every

single generated PN of the domain.

Once all empty spaces are filled with generated PNs, we use the layered

stitching in longitudinal and lateral directions to connect all PNs together as

shown in Fig. 3.5. Therefore, the stochastic PN generation is coupled with

layered stitching to create a large stitching volume to implement volumetric

stitching and connect signature PNs that might be in distant locations in

the core. It should be emphasized that the combination of stochastic PN

generation and deterministic layered stitching results a stochastic process for

volumetric stitching.

An important challenge in the described workflow that happens in most

of steps is to sort and relate indices of pore-bodies and pore-throats. This is

because each of the signature and stitching PNs has its own order indices of

pore-bodies and pore-throats initially but they need to to be modified and

reordered by any removal and addition of pore elements. The goal of having

a final unified PN requires having one single set of indices for all elements in

the final stitched PN. Moreover, the connection number of pore-bodies can

change with any removal and addition of pore-throats and pore-bodies; that

requires updating and matching indices in the connectivity information of

the final unified PN as well.

In summary, the introduced steps together form a workflow to deal with

large domain problems that starts with identifying signature parts and having

their 3D images. PN extraction is used, and the resulting statistics are used in

layered stitching and PN generation to fill empty spaces of the domain. The

outcome is that all signature and generated pore elements interconnected

in a large unified PN that can be used in flow simulation and other PN

applications.
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3.3 Validation

In order to validate the introduced PNSM and its specific steps of stitching

explained in Section 3.2, various test cases of flow simulations are carried

out on different types of rocks. For this validation, six cubic rock samples

(four sandstones and two carbonates) are chosen from different studies in the

literature; the samples are listed in Table 3.1 with their size, image resolution,

porosity, and a chosen label.

Table 3.1: Selected samples for validating steps of the pore-network
stitching method

Sample Label Porosity
Res.
(µm)

Size
(mm3)

Study

Berea
sandstone

BR 0.208 3.20 1.283 Jiang and Tsuji (2014)

Bentheimer
sandstone

BN 0.188 3.18 1.593 Herring et al. (2016)

Mt. Simon
sandstone

MH 0.261 2.80 1.403 Kohanpur et al. (2020)

Mt. Simon
sandstone

ML 0.097 1.95 1.563 Tahmasebi et al. (2017)

C1
carbonate

C1 0.233 2.85 1.143 Dong and Blunt (2009)

C2
carbonate

C2 0.168 5.35 2.143 Dong and Blunt (2009)

We carry out single-phase and two-phase flow simulations for different

steps of the PNSM on these six samples. As our original motivation was to

study geological storage of CO2, the CO2-brine flow system (see Table 3.2

for the properties) is used for the two-phase flow simulations, and we use a

quasi-static PN flow solver (Valvatne and Blunt 2004) to study its capillary-

dominated physics. In each validation study, the stitched PN is compared

with a similar-size reference PN that is constructed by connecting 3D image

of the original sample to its mirrored geometry along the intended stitching

direction.

For single-phase flow properties, we report absolute permeability of all six

samples here. For two-phase properties, we just report the results from the

Mt. Simon sample (MH) here which its raw and segmented 3D images are

available at Kohanpur et al. (2019). This sample has a fairly high porosity

and is more heterogeneous with respect to typical well-studied sandstones in
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Table 3.2: Properties of CO2-brine flow system in pore-network two-phase
flow simulations

Properties Value Unit
Interfacial tension 30 mN/m
Contact angle 25 ◦

Brine density 280 kg/m3
CO2 density 992 kg/m3
Brine viscosity 0.550 cp
CO2 viscosity 0.023 cp

the literature such as Berea and Bentheimer. Since the sample is from the

reservoir that has been used in a pilot CO2 sequestration project in Illinois

(Finley 2014), its CO2-brine flow properties are extensively studied recently

by different numerical pore-scale models (Kohanpur et al. 2020). We use

subsample S2 from that study, labeled MH in Table 3.1 and shown in Fig.

3.7, to validate each step of the PNSM. The full results on other samples of

Table 3.1 are available in Appendix A of this dissertation and reported in

Kohanpur and Valocchi (2020b).

Figure 3.7: The Mt. Simon sandstone sample: (left) the segmented image
of the first slice of the stack and (right) the 3D reconstructed geometry of
the rock.

3.3.1 Longitudinal layered stitching

In order to validate the layered stitching in longitudinal direction (along

the main flow direction), the original sample is considered as the left sample

and its 3D image is mirrored longitudinally to obtain the right sample. Con-
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necting left and right samples in the voxelized domain forms the extended

sample as shown in Fig. 3.8. By applying PN extraction algorithm on 3D

images of these samples, one can get left, right, and extended PNs as depicted

in Fig. 3.8.

Figure 3.8: Longitudinal layered stitching of a Mt. Simon sandstone sample
to its mirrored geometry and its corresponding reference sample.

While the extended PN is used as the reference PN, left and right PNs

are stitched together using the longitudinal layered stitching described in

Section 3.2.1. The stitched and reference PNs are then used as input PNs

of the quasi-static PN flow solver (Valvatne and Blunt 2004) with the same

input properties to be compared.

The predicted absolute permeability of all samples are compared in Fig.

3.9 where horizontal and vertical axes refers to predicted absolute permeabil-

ity of the reference and stitched PNs, respectively. All samples have results

that are quite close to the diagonal line, thus providing confidence in the

longitudinal stitching algorithm across a variety of rock types. Regarding

two-phase flow properties, Fig. 3.10 shows excellent agreement for drainage

relative permeability curves between the stitched and reference PNs of sample

MH.
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Figure 3.9: Comparison of absolute permeability of reference pore-network
with the resulting stitched pore-network via longitudinal layered stitching
for all six selected samples.

Figure 3.10: Comparison of relative permeability curves of the stitched
pore-network from the Mt. Simon sandstone sample (MH) via longitudinal
layered stitching with its reference pore-network.
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3.3.2 Lateral layered stitching

As explained in Section 3.2, stitching in the lateral direction is imple-

mented slightly differently from that in the longitudinal direction, adding

only pore-throats between PNs. For this validation, the 3D image of the

original sample is mirrored laterally and connected to itself to obtain a lat-

erally extended sample as shown in Fig. 3.11. The PN extraction algorithm

is applied on all these pieces to get original, mirrored, and reference PNs as

depicted in Fig. 3.11.

Figure 3.11: Lateral layered stitching of a Mt. Simon sandstone sample to
its mirrored geometry and its corresponding reference sample.

The original and mirrored PNs are stitched via lateral layered stitching

explained in Section 3.2.1 to be compared with the reference PN based on flow

properties. The predicted absolute permeability of all samples are compared

in Fig. 3.12. The results are all close to the diagonal line again, which

means a good accuracy of lateral layered stitching across these six samples.
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Fig. 3.13 presents the comparison of drainage relative permeability curves of

stitched and reference PNs from sample MH that shows excellent agreement.

Figure 3.12: Comparison of absolute permeability of reference pore-network
with the resulting stitched pore-network via lateral layered stitching for all
six selected samples.

Although longitudinal and lateral layered stitching are contributing a

small fraction of pore elements in the final stitched PN, the quality of defining

new pore elements from the statistics is crucial in terms of connectivity and

the resulting flow properties of the stitched PN.

3.3.3 Volumetric stitching

After ensuring that layered stitching works smoothly in both longitudinal

and lateral directions, it is also necessary to investigate the performance

of volumetric stitching where an entirely new PN and stitching layers are

generated in the domain. As discussed in Section 3.2 because the utilized

PN generator is a stochastic tool, the volumetric stitching is also stochastic

tool, and this needs to be reflected in the evaluation of properties. Fig. 3.14

shows the defined problem to evaluate flow properties of the stitched PN via

volumetric stitching. The extended geometry along the main flow direction

can still be used as the reference PN while the mirrored sample is replaced
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Figure 3.13: Comparison of relative permeability curves of the stitched
pore-network from the Mt. Simon sandstone sample (MH) via lateral
layered stitching with its reference pore-network.

by a generated PN. Then, longitudinal layered stitching is applied to link the

original and generated PNs to obtain one realization of the stitched PN via

volumetric stitching.

We have carried out volumetric stitching with 10 realizations on each

sample listed in Table 3.1. Fig. 3.15 shows the arithmetic mean and range

of the resulting permeability of each sample compared with its reference PN.

Since the approach is stochastic, it is possible that some realizations will be

outliers in terms of computed flow properties. However, the mean over the

10 realizations is close to the diagonal line, showing good agreement with the

reference PN.

To assess the resulting relative permeability curves, we compare the mean

of realizations with the reference PN curves. We have obtained this by tak-

ing the arithmetic mean at each saturation point. Figs. 3.16 and 3.17 show

drainage relative permeability of CO2 and brine, respectively, for 10 real-

izations along with their mean compared with the reference curve. The

predicted relative permeability of both phases show good agreement between

stitched PN and reference PN curves. Relative permeability curves from

other samples are reported in Appendix A.
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Figure 3.14: Lateral layered stitching of a Mt. Simon sandstone sample to
its mirrored geometry and its corresponding reference sample.

Figure 3.15: Comparison of absolute permeability of reference pore-network
with the resulting realizations of stitched pore-network and their mean via
volumetric stitching for all six selected samples.

64



Figure 3.16: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from the Mt. Simon sandstone (MH) sample via
volumetric stitching with their reference pore-network.

Figure 3.17: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from the Mt. Simon sandstone (MH) sample via
volumetric stitching with their reference pore-network.
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It should be emphasized that this stochastic approach is feasible because

PN generation and stitching are computationally efficient and quasi-static

PN solver is a also fast predictive tool.

3.4 Results and discussion

In this section, we use the PNSM on two different defined problems with

large domains relative to conventional pore-scale studies. The first problem

considers two distant samples in the flow direction with different properties

where the space between them is filled with new pore elements based on

combined statistics of their PNs. The second problem is for a large hetero-

geneous 3D sample where three small signature parts are used to construct a

large representative PN and compute flow properties. The focus of the first

problem is to combine different PN statistics to generate an average PN in

the empty space in between, which are stitched to original PNs. On the other

hand, the focus of the second problem is to deal with different pieces of a

large sample and the choice of signature parts as inputs of PNSM. However,

the ultimate goal of both problems is to obtain a large unified PN that is

used in a flow solver to compute upscaled flow properties. We have defined

these two problems in a fashion to be able to have a reference PN to compare

predicted properties; however, the PNSM can certainly be applied on larger

sizes as well for which it is not feasible to extract a single PN.

3.4.1 Connecting distant pore-networks

In order to investigate the quality of combining statistics of different PNs

and a resulting average statistics, a Mt. Simon sandstone core with the size

of 1200 × 400 × 400 voxels and resolution of 2.80 µm is divided into three

pieces (left, middle, and right) of 4003 voxels having porosity 0.255, 0.233,

0.238, and absolute permeability 3784 mD, 2935 mD, 2598 mD, respectively

from left to right (obtained by PN flow modeling). In the defined problem,

the middle piece is removed and the left and right pieces are considered as

signature parts of the PNSM. The goal is to combine the information from

extracted PN from left and right pieces and to generate a middle PN that

connect the two original PNs. Fig. 3.18 shows the steps taken to obtain the
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final stitched PN from the two original PNs at left and right corners of the

core.

Figure 3.18: Stitching of pore-networks of two distant Mt. Simon sandstone
samples by generating an average pore-network in the middle.

The resulting stitched PN is compared with the extracted PN from the

entire core by taking the mean over 50 realizations. Figs. 3.19 and 3.20 show

drainage relative permeability of CO2 and brine, respectively, for 50 realiza-

tions along with their mean. Regardless of the variation across realizations,

the comparison shows good agreement between the mean of the stitched PN

curves and the reference PN curve for each phase.

3.4.2 Modeling a large heterogeneous sample

In order to apply the developed PNSM on a core-scale problem, we have

constructed a large heterogeneous sample (6.4 mm3) by extending a Berea

sandstone sample in all directions and altering its pore structure in random

locations. To do so, we chose random boxes with arbitrary sizes on the
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Figure 3.19: Comparison of drainage relative permeability of CO2 from a
long Mt. Simon sample with 50 realizations of stitched pore-networks and
their mean.

Figure 3.20: Comparison of drainage relative permeability of brine from a
long Mt. Simon sample with 50 realizations of stitched pore-networks and
their mean.
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3D image of the extended sample and utilized noise addition or removal

functions in Fiji (Schindelin et al. 2012) on the pore space of these boxes

to expand or shrink the pore structure. The outcome is a wide range of

variations in pore structure and a large heterogeneous sample. A stochastic

approach is also implemented to quantify the heterogeneity of this sample

where 1000 calculation boxes are chosen randomly and the statistics of their

weighted average connectivity are calculated. The coefficient of variation of

the statistics on the heterogeneous sample is 0.053 due to the randomized

alteration of the pore structure while it is 0.018 (about one-third) on the

homogeneous Berea sandstone and 0.007 on an equal-size uniform regular

PN. The conclusion is that this sample is heterogeneous enough to be used

for the actual application of the PNSM.

Fig. 3.21 shows a PN representation of this sample and how it is divided

into 12 equal-size pieces. We labeled them from 1 to 12, starting from bottom

left corner as depicted in Fig. 3.21, and marked three signature parts (pieces

3, 5, and 10) out of it based on the calculated range of porosity (from 0.152

to 0.221) and absolute permeability (from 219 mD to 1972 mD) across all

pieces reported in 3.3. We have defined a problem where three signature

parts are selected to start with and the rest of pieces are removed. The goal

of the PNSM on this problem is to fill the empty space with pore elements

and stitch them together and to the three signature parts to come up with a

large stitched PN covering the entire domain. This PN is compared with a

PN extracted from the original heterogeneous sample, as the reference PN,

based on flow properties. We look into absolute permeability and drainage

relative permeability curves of CO2-brine flow across 50 realizations.

Fig. 3.22 shows the variation of absolute permeability over 50 realizations

of stitched PNs having an arithmetic mean equal to 1389 mD, which shows

excellent agreement with the reference PN, 1400 mD. This shows that the

first three signature pieces could provide enough statistical information about

the pore structure to construct a representative PN of the larger sample, and

therefore, an accurate prediction of connectivity and permeability is resulted.

It is also important to note that we are not seeking a single PN for this

purpose but a mean over enough number of realizations due to the stochastic

approach in generating pore elements in the initial empty space.

Figs. 3.23 and 3.24 show the comparative drainage relative permeability

results between reference PN and realizations of stitched PN and their mean
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Figure 3.21: A pore-network representation of a constructed heterogeneous
sample with its 12 equal-size pieces. Pieces 3, 5, and 10 are selected as
signature parts.

Table 3.3: Absolute permeability of 12 pieces of the constructed
heterogeneous sample

Pieces Porosity Permeability (mD)
1 0.170 803
2 0.221 3387
3 0.199 1608
4 0.182 972
5 0.170 926
6 0.201 1972
7 0.163 670
8 0.153 624
9 0.185 1075
10 0.152 219
11 0.202 1720
12 0.175 762
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Figure 3.22: Absolute permeability over 50 realizations of stitched
pore-networks from the heterogeneous sample.

for CO2 and brine, respectively, as a function of brine saturation. The agree-

ment for both phases is quite good when we compare the mean of realizations

curves with the reference PN curves. Therefore, the PNSM could also provide

a representative large PN with respect to two-phase flow properties when it

is fed with signature parts.

Figure 3.23: Comparison of drainage relative permeability of CO2 from the
large heterogeneous sample with 50 realizations of stitched pore-networks
and their mean.

It is important to emphasize that we have deliberately use a constructed

71



Figure 3.24: Comparison of drainage relative permeability of brine from the
large heterogeneous sample with 50 realizations of stitched pore-networks
and their mean.

large heterogeneous sample that is still small enough so that we are able to

extract its PN in order to have a valid reference sample. However in practice,

a reference PN of an entire core cannot be available in a real practical problem

due to limitations as discussed in Section 3.1 and experimental measurements

of rock flow properties can be used as a reference. In addition, this defined

problem helped us to have properties of all different pieces of the sample in a

way that we could readily choose three distinct ones as signature parts and

use them as inputs of the developed PNSM. However, this step may not be

as easy if we cannot capture properties of pieces of the entire core, and other

methods such as fast pore size distribution evaluation on 2D industrial-scale

images can be used to find those signature parts, and then, take micro-CT

scans of them to get to signature PNs.

3.5 Summary and conclusions

We developed a pore-network stitching method (PNSM) to extend exist-

ing PN extraction and modeling capabilities to incorporate core-scale hetero-

geneity. The novel PNSM workflow takes a few signature parts representative
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of different heterogeneous parts of the core as inputs and use their extracted

PNs and statistics of their geometrical and topological information to gen-

erate and stitch new pore elements in the empty space of the domain. The

PNSM gives multiple realizations of a large PN with non-stationary statistical

properties that vary in the volume generated between the signature PNs. We

carried out validation studies on all steps of the workflow including layered

stitching (in longitudinal and lateral directions) and volumetric stitching for

different types of rock samples to demonstrate that the developed method is

robust and independent of the morphology of the pore space. Then, we ap-

plied the method to two large domain heterogeneous problems and computed

absolute permeability and drainage relative permeability curves of CO2-brine

flow; this demonstrates that the method can construct a large representative

PN for a heterogeneous porous medium and predict single-phase and two-

phase flow properties successfully. Additional future work is necessary to

apply the method on comprehensive multi-scale CT scans from a hetero-

geneous core and compare the predicted flow properties against core-scale

experimental measurements.

3.6 Pore-network stitching method software

The source code of the introduced pore-network stitching method (PNSM)

are available at: github.com/amirkohanpur/pn-stitcher. The instructions about

compiling and running the code are provided in this address. The code is

written in Fortran language (.f90 files) and compiled via GFortran (GNU

Fortran compiler). The format of input and output pore-network files is in

StatOil format, a commonly used data structure of pore-network files. More

details about this format can be found in Sochi (2007).

In addition to the source code, the executable file and an example of input

pore-network files with their stitched pore-network files are provided. The

two-phase flow simulation files of the example using quasi-static pore-network

solver (Valvatne and Blunt 2004) can also be found. Some post-processing

files for visualizing the pore-network and plotting relative permeability and

capillary pressure curves are also included.
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Chapter 4

Modification

Improving pore-level flow models in residual trapping of CO2 via

direct numerical simulation

The physics of two-phase flow of CO2 and brine in natural rocks plays an

important role in geological storage of CO2 captured from coal-fired power

plants in deep saline reservoirs. It is well-known that macroscopic behavior

of two-phase flow depends upon pore-scale physics due to the complexity of

pore space of natural rock and because the wettability properties of the rock

will affect the flow paths of the two fluids. Therefore, pore-scale modeling

is necessary to understand fundamental behavior of CO2-brine flow through

the pores and obtain essential flow properties in field-scale simulation where

prediction of amount and fate of trapped CO2 is desired. Direct numerical

simulation methods and pore-network modeling are common approaches to

study such flow systems in natural rocks because experimental methodologies

are difficult to implement, time-consuming, and expensive.

Although pore-network modeling is more computationally efficient com-

pared with direct methods due to simplifications of the pore structure and

governing flow equations, it does not accurately predict the full drainage-

imbibition cycle in terms of residual trapped CO2 and characteristic curves

of CO2-brine flow. In a quasi-static pore-network simulation on a Mt. Simon

sandstone sample from a pilot CO2 injection study, the saturation of trapped

CO2 at the end of imbibition process was approximately 70%, which is far

greater than typical experimental results on sandstones (about 30–40%) re-

ported in the literature. Such discrepancy becomes even greater when the

contact angle is relatively small and the rock is highly heterogeneous. This

error can also lead to inaccuracy in the resulting relative permeability and

capillary pressure curves which are important inputs of field-scale simulators,

and thus, it impacts the predicted fate and distribution of the CO2 plume in
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the reservoir. Since the residual trapping of CO2 is mainly due to the move-

ment of interfaces in pore elements and the order of pore-level events in the

pore-network, the source of inaccuracy of trapped CO2 due to shortcomings

in simplifying assumptions used in quasi-static pore-network model, namely

the pre-solved equations of local capillary pressure and flow of phases dur-

ing piston-type displacement, pore-body filling, and snap-off events. These

pore-level events have different contributions to the resulting trapped CO2

after a drainage-imbibition cycle.

In this chapter, snap-off and pore-body filling events are the focus of

lattice-Boltzmann simulations of CO2-brine flow on pore-network configura-

tions which are small collections of connected pore-bodies and pore-throats.

A range of shape factors are chosen to define the geometry of pore-network

configurations. The shape and evolution of the interface through pore el-

ements are captured and associated to the threshold local capillary pres-

sure. Based on the results from lattice-Boltzmann simulations, a new set

of equations for different pore-body filling scenarios and snap-off on differ-

ent triangular pore elements are proposed, and then, incorporated into a

quasi-static pore-network solver. This modified model results a new pattern

of invasion during imbibition process due to a different order of competing

pore-level events. This modified pore-network model is applied on extracted

pore-networks of Berea and Mt. Simon sandstone samples to predict residual

trapped CO2 and compare with data from experiment and direct numerical

simulation. The modified model predicts smaller number of snap-off in pore-

throats and higher number of pore-body fillings. As a result, it predicts

residual trapped CO2 less than the original model and is in better agreement

with the available experimental data. The resulting CO2-brine relative per-

meabilities are also calculated based on the modified model for both Berea

sandstone and Mt. Simon sandstone samples.

4.1 Introduction

Physics of two-phase flows in natural rocks plays an important role in ad-

dressing many current issues in water, energy, and climate. In particular, cap-

ture and geological storage of carbon dioxide (CO2) in deep saline reservoirs

are being studied widely as a potential technology to reduce emission of green-
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house gases from conventional power plants. Pore-scale modeling is necessary

to understand fundamental behavior of CO2-brine flow and obtain rock-flow

properties needed for field-scale studies such as reservoir simulation. Direct

numerical simulation (DNS) methods and pore-network (PN) modeling are

common approaches to study such flow systems in natural rocks because ex-

perimental methodologies are difficult to implement, time-consuming, and

expensive. On one hand, DNS solves directly the Navier-Stokes equations

from images of rock. On the other hand, PN modeling extracts a simplified

network of pore elements from the real geometry of pore spaces and solves

Navier-Stokes equations in the simplified geometry.

Although PN modeling is more computationally efficient compared with

DNS due to simplifications of the pore structure and governing flow equa-

tions, PN modeling has inaccuracies in predicting the full drainage-imbibition

cycle curves and residual trapped non-wetting phase in CO2-brine flow sys-

tem. This is important for assessing the long-term storage capacity and safety

of geological sequestration. As an example, quasi-static PN simulations on a

Mt. Simon sandstone sample from a pilot CO2 injection site shows approxi-

mately 70% trapped CO2 at the end of imbibition cycle, which is far greater

than typical counterpart experimental and DNS results on sandstones (about

30–40%). Such discrepancy becomes even greater when the contact angle is

relatively small and the rock is highly heterogeneous, which is the case in the

studied Mt. Simon sandstone sample. This error also leads to inaccuracy

in the resulting relative permeability and capillary pressure curves which are

important inputs of field-scale simulators, and thus, it impacts the predicted

fate and distribution of the CO2 plume in the reservoir.

The CO2-brine flow is usually considered as a capillary-dominated flow

system. Therefore, capillary forces determine the interface movement, flow,

and trapping through the pore space. These are described as local capil-

lary pressure of pore-level events in PN modeling which their competition

determines the invasion pattern of phases, and thus, residual trapping of

CO2. Therefore, the source of inaccuracies in residual trapping is back to

the defined pore-level flow models and pre-solved equations of threshold lo-

cal capillary pressure of PN events — piston-type displacement, pore-body

filling, and snap-off — in pore elements. These pore-level events have dif-

ferent contributions to the resulting trapped CO2. Their flow models can

be studied and revised using DNS to improve their accuracy. DNS meth-
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ods can generally predict the shape and evolution of interface, flow rate and

distribution of each phase, and incorporate viscous and capillary forces. We

apply lattice-Boltzmann (LB) simulation as a DNS method on various ge-

ometric PN configurations, that encompass a small collection of connected

pore-bodies and pore-throats, to evaluate local capillary pressure during im-

bibition process. Then, we propose a modified model of imbibition events

with new parameters and factors, accordingly. The modified model is then

incorporated into a quasi-static PN flow solver that can be applied on ex-

tracted PNs from natural rocks (Dong and Blunt 2009; Raeini et al. 2018) or

on larger PNs from upscaling approaches (Aghaei and Piri 2015; Kohanpur

and Valocchi 2020a) thereby resulting in more realistic macroscopic charac-

teristic curves.

The organization of the rest of this chapter is as follows. A detailed

literature review is presented in the next section. Section 4.3 explains the

physics of pore-level events in a two-phase flow system in PN modeling.

Section 4.4 discusses the defined PN configurations and the used simulation

methods. In Section 4.5, the main results from LB simulations of pore-

body filling and snap-off in pore-throat are discussed (Section 4.5.1). Then,

the modified model is presented and incorporated into the quasi-static PN

flow model, and applied on real rock samples (Section 4.5.2). Finally, the

conclusions are summarized in Section 4.6.

4.2 Literature

Ever since the early generation of two-phase flow PN models, there have

been attempts to improve pore-level flow models during drainage and imbibi-

tion cycles for better understanding and prediction of core-scale macroscopic

constitutive relations, including relative permeability functions and residual

trapping of non-wetting phase. This is important during CO2 injection into

deep saline aquifer or depleted oil reservoirs where the physics of flow can be

modeled by immiscible two-phase flow of supercritical CO2 and brine. We

categorize the relevant studies to this research objective into three categories:

Category 1 includes classic PN modeling studies where detailed descrip-

tion of drainage and imbibition flow with corresponding pore-level events are

presented and validated in a PN flow solver (Blunt 2001; Valvatne and Blunt
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2004; Raeini et al. 2018). Lenormand et al. (1983) first described pore-

scale displacement mechanisms during drainage and imbibition from a 2D

micromodel experiment. These displacements mechanisms are piston-type,

snap-off, and pore-body filling that are widely used in PN flow solvers. For ex-

ample, the commonly used quasi-static PN flow solver developed by Valvatne

and Blunt (2004) includes pore-level displacement events in pore-bodies and

pore-throats during drainage and imbibition cycles in a capillary-dominated

flow system where capillary number (Ca) is less than 10−4 and viscous pres-

sure drop can be neglected. Raeini et al. (2018) presented a newer version

of this capillary-dominated PN flow model that includes the concept of half-

throats, several corners in pore elements, and new formulations of pore-level

events. This solver was verified experimentally by Bultreys et al. (2020) us-

ing measured contact angle and based on the evolution of fluid distributions

and flow paths during imbibition cycle. The source code of both of these PN

flow solvers are available for any potential modifications. In both models,

the definition of cross section of pore elements based on the concept of shape

factor and flow conductance of phases come from the studies done by Patzek

and Silin (2000) and Patzek and Kristensen (2001).

Category 2 includes studies that focus on pore-level events of PN mod-

eling and using DNS for improvement, such as proposing new cross sections

of pore elements, flow properties in pore-throats, local capillary pressure

relations, corner flow behavior, and so on (Ruspini et al. 2017; Xie et al.

2017; Zhao et al. 2020). Among studies using LB on pore elements of PN,

Xie et al. (2017) implemented LB simulation inside individual pores with

triangular cross section to describe viscous coupling in oil-water flow as em-

pirical terms. They incorporated these terms into a quasi-static PN solver

that resulted a more accurate prediction of relative permeability curves. In

another study, Zhao et al. (2020) coupled LB and PN methods to simulate

drainage through sandstones and obtain higher accuracy of flow properties.

They applied multi-relaxation-time color gradient LB model on real pore-

throat cross sections to obtain properties, namely, threshold local capillary

pressure, macroscopic capillary pressure curve, absolute permeability, and

relative permeability.

There are also studies using other DNS approaches on pore elements of

PN to improve the current models. Miao et al. (2017) proposed a novel de-

scription of PN elements to avoid geometry simplifications of conventional
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PN models by using circularity, convexity, and elongation of voxelized pores.

They carried out finite element simulations to obtain single-phase flow con-

ductance and approximate the relationship between pore shape parameters

and hydraulic conductance. Shams et al. (2018) incorporated viscous cou-

pling effect into flow conductance of triangular tubes in different wettability

conditions with the aid of finite volume simulation. They investigated the

flow in the center and corners of a capillary tube and sandwiched layers with

different boundary conditions at the interface and proposed viscous coupling

effect as a function of geometry, viscosity ratio, wetting phase saturation, and

wettability in the flow conductance term. Tang et al. (2018) carried out vol-

ume of fluid two-phase flow simulations via Fluent software on various cross

sections (circle, square, equilateral triangle, and regular hexagon shapes) of

tube to investigate the effect of contact angle on meniscus behavior and lo-

cal capillary pressure in individual pores. They proposed a correlation to

quantify the resulting stabilized meniscus geometry and calculate equivalent

radius of a polygonal channel in order to compute local capillary pressure

based on Young-Laplace equation.

On the other hand, some studies are conducted purely based on geometri-

cal features of the pore elements to improve the current models. Ruspini et al.

(2017) introduced a new model of pore-body filling to investigate capillary

trapping of non-wetting phase in water-wet rocks. The model incorporated

geometrical characteristics of the pore-body, spatial location of connecting

filled pore-throats, and wetting properties. They validated their model based

on residual trapping, imbibition relative permeability, and capillary pressure

curves from PN modeling of different sandstone samples. Suh et al. (2017)

conducted a morphological analysis technique along with LB simulation on

different irregular pore-throat cross sections to establish a correlation be-

tween effective shape factor and local capillary pressure. They validated

their method by comparing macroscopic capillary pressure with experimen-

tal data of water retention curve.

Category 3 includes studies on the physics of CO2 and brine flow at

pore-scale to understand the evolution of interfaces, displacement dynamics,

capillarity, and trapping mechanisms such as residual trapping of CO2 (Jiang

and Tsuji 2015; Chen et al. 2018; Mahabadi et al. 2020). In a pioneering

work, Land et al. (1968) introduced an empirical relation of residual trapping

of non-wetting phase of a two-phase flow system that relates initial and resid-
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ual saturations known as Land’s initial-residual trapping model. Jiang and

Tsuji (2015) studied the effect of interfacial tension on residual CO2 clusters

using LB simulation on Berea sandstone. They quantified capillary trapping

mechanism and its stability by characterizing residual CO2 cluster distribu-

tion in terms size distribution, major length, interfacial area, and sphericity.

Some studies have reported the residual trapped CO2 by experimental ap-

proaches. Perrin and Benson (2010) measured relative permeability of CO2

and brine on a heterogeneous core from an actual storage reservoir and ob-

tained a drainage end point of Snw = 0.56 while the capillary number is

2.5 × 10−5. Levine et al. (2014) conducted experiment of CO2 injection (in

liquid and supercritical conditions) into brine-saturated synthetic and nat-

ural porous media to measure drainage end point relative permeability and

saturation. Most of reported saturation values of this study are in range

Snw = 0.60− 0.70 for drainage end point.

There are also some PN modeling studies focused on residual trapping in

CO2-brine flow through real rock samples. Mahabadi et al. (2020) studied

immiscible displacement patterns during drainage cycle in a dynamic PN

model by varying capillary number (Ca) and viscosity ratio (M). They also

examined the effect of pore-throat size distribution and PN connectivity on a

sandy sediment for different sets of Ca and M . Matching their findings with

properties of a typical CO2-brine flow system (Ca ' 10−5 and M ' 10−15),

the dominant displacement pattern is capillary fingering and the end point

of drainage is about Snw = 0.50−0.60. On the other hand, Rasmusson et al.

(2018) used a quasi-static PN model of CO2-brine flow on Heletz sandstone to

investigate the sensitivity of residual trapping of CO2 to several parameters

such as advancing contact angle and average connection number. They also

obtained the initial-residual saturation curves of CO2 in different drainage-

imbibition scenarios. In addition, Hefny et al. (2020) applied quasi-static PN

modeling on a highly permeable sandstone from a depleted oil field to study

residual trapping of CO2 and obtain characteristic curves during drainage

and imbibition cycles. They investigated the effect of initial brine saturation

at the reversal point from drainage to imbibition on residual trapping and

relative permeabilities. They also found that smaller contact angle values

(more brine-wet rock) lead to higher trapped amount of CO2 at the end of

imbibition cycle.

In this chapter, we use the available codes of quasi-static PN flow solver

80



(Category 1) and apply LB simulations to develop new local capillary pres-

sure relations for pore-body filling and snap-off events as a function of shape

factor which was not proposed in other models in the literature (Category 2).

Then, we apply the modified PN model on two sandstones to evaluate the

residual trapping and relative permeabilities in a drainage-imbibition cycle

of CO2-brine flow (Category 3).

4.3 Pore-level processes and events

4.3.1 Drainage and imbibition

Drainage process happens when the non-wetting phase displaces the wet-

ting phase and imbibition process is vice versa. Both processes can occur

in individual pores locally or across the porous medium averagely based on

the direction of saturation change. In the application of geological storage

of CO2, the pore space of a saline aquifer is initially filled with brine, as the

wetting phase. Injection of CO2, as the non-wetting phase, into the pore

space is a drainage process where the macroscopic capillary pressure and

overall saturation of CO2 increase. At the end of the drainage process, the

saturation of CO2 is maximum. If the macroscopic capillary pressure drops,

brine fills the pore space gradually which is the imbibition process. Due to

wettability, the entire CO2 will not be displaced by the brine and some gets

trapped across the pore space at the end of imbibition. This phenomenon is

called residual trapping of CO2 which is in favor of storage of CO2 due to

the capillary forces between phases.

As mentioned before, capillary forces drive flow in a CO2-brine system

which results in low flow rate in both drainage and imbibition processes. In

PN modeling of these process, one should gradually change the macroscopic

capillary pressure and control the direction of invasion. On one hand, cap-

illary pressure is increasing incrementally during drainage which allows CO2

to displace the brine in the center of pores through piston-type displacement

while brine resides in the corners and crevices. Based on Young-Laplace

equation, wider pores (pore-bodies) are invaded first in drainage followed by

invasion of narrower pores (pore-throats).

On the other hand, imbibition process occurs after the drainage process

81



that has left a residual brine in the corners due to wettability. Capillary

pressure decrease incrementally by increasing brine pressure which allows

brine to displace CO2 through different displacement events, namely, piston-

type displacement, pore-body filling, and snap-off (Lenormand et al. 1983).

The occurrence and frequency of these events depend on the local capillary

pressure in pore element, the topology of brine and CO2 (connection number

and filling), wettability (contact angle), pore irregularity (shape factor), and

relative size of pore-body with respect to neighboring pore-throats (aspect

ratio). These events can compete with one another and influence the invasion

pattern and trapping of CO2 at the end of imbibition process.

In the low capillary number condition of CO2-brine flow, the assumption

of local capillary equilibrium is valid which relates the curvature of interface

in any pore at any time to the local capillary pressure based on Young-

Laplace equation. This assumption is the basis of quantifying the threshold

local capillary pressure of different displacement events through the shape of

interface in pore elements.

4.3.2 Piston-type displacement

In piston-type displacement, the invading phase displaces the defending

phase from the center of the pore element. For example in drainage, if CO2

pressure is high enough (i.e., local capillary pressure passes the threshold)

in a pore element, it displaces brine through its terminal meniscus from the

center of the pore element. Fig. 4.1 shows schematically how CO2 (in white)

is advancing through the center of a rectangular tube and pushing brine

(in blue). This displacement event requires an adjacent filled pore element

with the invading phase. The threshold capillary pressure depends on the

wettability and geometry of the pore element through the Young-Laplace

equation, which for a circular tube pore element it is:

Pc =
2σcosθ

r
(4.1)

In Eq. 4.1, Pc is the threshold local capillary pressure, σ is surface tension,

θ is contact angle between phases, and r is the radius of the cross section of

the tube. If the capillary pressure is exceeded this threshold, then the pore is

instantly invaded by CO2. Related equations for rectangular and triangular
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cross sections become different can be found in Valvatne 2004.

Figure 4.1: Schematic representation of piston-type displacement during
drainage process in a rectangular tube. CO2 (in white) is displacing brine
(in blue) in the pore-throat (Image from Rasmusson et al. (2018)).

4.3.3 Snap-off

As mentioned earlier, the injected CO2 (as the non-wetting phase) occu-

pies the center of pore elements at the end of drainage process while brine

(as the wetting phase) resides in the corner as connected layers throughout

the PN. As the brine pressure increases and the imbibition process starts,

these layers will swell and increase the CO2 saturation slowly. If the brine

layer is not connected to any adjacent brine-filled elements and the swelling

continues due to increase in the pressure, at some point the brine layers from

corners meet and create an unstable state. This leads to snap-off where brine

spontaneously fills the center of pore element. This mechanism happens in

pore-throats first during imbibition since they have smaller radius. Snap-off

in a pore-throat that does not have adjacent brine-filled elements discon-

nects brine in adjacent pore-bodies which translates into either partial filling

or trapping in following states of the PN and impacts the distribution of

CO2 throughout the PN. Fig. 4.2 shows schematically how the progress of

swelling of brine layer in pore-throat can lead to snap-off. The brine phase

gets disconnected between the two adjacent pore-bodies. In Fig. 4.2, brine in

the right pore-body will be trapped and brine in the left pore-body is losing

one order of filling.

Swelling and snap-off can also be observed at the cross section of pore-

throat by the change in the area of brine in corners. A rectangular cross

section of pore-throat is shown in Fig. 4.3: (a) is the beginning of imbibition
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Figure 4.2: Schematic 2D representation of snap-off in pore-throat during
imbibition process. Brine (in blue) starts swelling from the corners and
eventually disconnects CO2 (in white) in the center of pore-throat (Image
from Rasmusson et al. (2018)).

where all brine layers are separate at their corners, (b) is when swelling has

moved interfaces and increased brine saturation in the pore-throat, (c) is

the unstable state on the brink of snap-off where the three-phase contact

between fluid phases and solid can no longer exists, and (d) is right after

snap-off where the pore-throat is spontaneously occupied by brine.

Figure 4.3: Schematic representation of progress of brine (in blue) swelling
during imbibition and snap-off at the cross section of a rectangular
pore-throat.

4.3.4 Pore-body filling

When the capillary pressure decreases during imbibition process through

the increase of brine pressure, the invading brine starts with filling narrower

pore-throats and displacing CO2 to the available adjacent elements which

are pore-bodies filled with CO2. Depending on the connection number of the

pore-body (number of pore-throats connected to it) and number of CO2-filled

adjacent pore-throats, different scenarios of pore-body filling can occur. Fig.
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4.4 shows a schematic representation of two scenarios (I1 and I2 events) for

a pore-body with connection number of 4. In refers to a pore-body filling

where there are n connected pore-throats filled with CO2 that allows an

escape path during the invasion of brine into the pore-body. For a pore-body

with connection number of zcn, n can be between 0 to zcn − 1.

The important feature of In events is that their entry capillary pressure

can be different since the interface curvature that results during invasion

is different. For example in Fig. 4.4, the I1 event would result in larger

curvature (i.e., smaller radius of curvature) than I2 based on the drawn dash

lines referring to next steps.

Figure 4.4: Schematic 2D representation of pore-body filling, I1 and I2
events, during imbibition process. Brine (in blue) is entering the pore-body
from connected pore-throats and CO2 (in white) escapes through the
remaining pore-throats (Image from Rasmusson et al. (2018)).

If no connected pore-throat is filled with CO2 (I0 event), the CO2 is

already trapped. If only a single connected pore-throat is filled with CO2 (I1

event), the displacement process will be similar to piston-type displacement.

The complexity of modeling is for higher order events (In, n from 2 to zcn −
1) where the exact location and curvature of interface in the pore-body is

not clear. There are different studies in the literature proposing different

parametric models by taking into account geometry-based and statistics-

based parameters in the model. Blunt (1998) proposed a model based on

the generic form of Pc in piston-type displacement and reducing it with a

parametric term to describe Pc of higher order In events:

Pc =
2σcosθ

rp
− σ

n∑
i=1

Aixi (4.2)
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In Eq. 4.2, Ai is the model parameter chosen correlated with the inverse of

absolute permeability of the PN, and xi is a random number between zero

to one. Another form of this model is proposed by Hughes and Blunt (2000)

as:

Pc = CIi
σcosθ

rp
(4.3)

In Eq. 4.3, CIi is the empirical coefficient of the pore-body filling event Ii

(CI1 = 1.7, CI2 = 1.15, CI3 = 0.7, CI4+ = 0.5). More details on parametric

models can be found in Blunt 2017.

4.3.5 Competition of events in imbibition

The imbibition process in a PN flow model consists of a series of pore-

level events (described in Sections 4.3.2, 4.3.3, 4.3.4) in pore elements based

on their threshold local capillary pressure. These events compete with one

another in determining the invasion pattern and distribution of phases during

imbibition. Therefore, the prediction of CO2 distribution and trapping is

connected with the study of occurrences of these events. A change in the

threshold local capillary pressure or the order of displacement events can lead

to a different pattern of phases, relative permeability, and residual trapping.

The threshold local capillary pressure of each event determines timing

and location of events. In drainage, the largest pore-bodies are invaded by

CO2 first, and then, smaller pore-bodies and narrow pore-throats are invaded

while the imposed macroscopic capillary pressure increases incrementally. On

the other hand, the imposed macroscopic capillary pressure decreases during

imbibition process and narrower pore-throats are the first elements where

brine displaces CO2 through different pore-level events.

In imbibition, the topology of brine phase also matters to determine the

type of event. If the adjacent element has brine at its center, the piston-type

or pore-body filling would occur if the threshold local capillary pressure is

already reached. Snap-off, however, does not require adjacent filled elements

since it starts with swelling of brine at the corner which is present all over

the PN. In practice, the ratio of threshold local capillary pressure of events

should be checked in elements with adjacent brine-filled elements.
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4.3.6 Effect of parameters in imbibition

• Shape factor: It summarizes the irregularities of the pores into one

one parameter in pore elements. The half-angle values of a triangular

pore element can be obtained based on the shape factor (Patzek and

Silin 2000). These half-angle values are involved in the threshold local

capillary pressure (Pc) relations of different pore events. In this study,

different defined shape factors of the cross section are considered to

evaluate the effect of shape factor on imbibition pore-level events.

• Aspect ratio: The aspect ratio of a pore-body is the ratio of its radius

to the radius of its connected pore-throats (a = rp/rt). This param-

eter can be also expressed using average radius of multiple connected

pore-throats to a pore-body. The competition of threshold Pc of pore-

body filling and snap-off events is correlated with aspect ratio. This

competition can be quantified by the ratio of their threshold Pc (Blunt

2017). Generally, higher aspect ratio values results in more snap-off

events compared to pore-body filling events. In this study, typical as-

pect ratio values from extracted PNs of natural rocks are used to define

PN configurations.

• Connection number: The number of connected pore-throats to a

pore-body is its connection number. It can be averaged across all pore-

bodies of the PN as average connection number (zcn) that represents

the connectivity. Although zcn is not explicitly used in threshold Pc

relations, it is correlated with trapping of CO2. The higher values of

zcn means more potential pore-throats for the CO2 to escape from the

invaded pore-bodies during imbibition process.

• Contact angle: Wettability is an important factor in the brine inva-

sion pattern during imbibition process. It is described by contact angle

(θ) between phases and can vary in different locations of the core. The

threshold local capillary pressure in pore elements is usually propor-

tional to cosθ. Due to contact angle hysteresis, a successful model

should incorporate receding and advancing contact angles (θr and θa)

during drainage and imbibition processes, respectively. More detail on

using contact angle hysteresis in PN modeling can be found in Valvatne
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(2004). In this study, measured CO2-brine flow contact angle values

from an experimental study by (Dalton et al. 2018) are used.

4.4 Methodology

4.4.1 Pore-network configurations

We aim to apply DNS of two-phase flow via the LB code developed by

Chen et al. (2018) on pore elements of PNs from natural rocks to assess

the physical assumptions used for pore-level events. Therefore, the geometry

of simulations consists of typical pore-bodies and pore-throats of extracted

PNs with enough resolution to capture the interface and corner flow. We

define a PN configuration as a small number of interconnected pore-throats

and pore-bodies that is designed for investigation of pore-level events during

imbibition in the pore element of interest. Two types of PN configurations

are studied here:

• PTP configuration: This refers to a pore-throat connecting two

pore-bodies, as shown in Fig. 4.5(a) with triangular elements. The

pore-throat is the focus of this configuration to investigate corner flow,

piston-type displacement, or snap-off. The pore-bodies can be con-

nected to inlet and outlet reservoirs of non-wetting and wetting fluids

or additional pore elements. We study the PTP configuration to cap-

ture the interface in the cross section of the pore-throat and find the

threshold Pc right before snap-off occurs.

• TPT configuration: This refers to a pore-body defined between two

or more connecting pore-throats, as shown in Fig. 4.5(b) with triangu-

lar elements. The pore-throats can be directly connected to the inlet

and outlet reservoirs or other pore-bodies. The pore-body is the focus

of this configuration to investigate the filling process via different num-

ber of pore-throats and simulate pore-body filling during imbibition

process.

Conventional quasi-static PN models can use pore elements with different

cross sections; triangle, square, circle are considered here as they are com-

monly used. The shape factor (G) is a dimensionless geometric parameter
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Figure 4.5: Two types of PN configurations with triangular cross section:
(a) PTP configuration where the focus is on the pore-throat and (b) TPT
configuration where the focus is on the pore-body.

that quantifies irregularities of a pore element. It is a key parameter in as-

signing familiar geometries to the cross section of a tube-shape pore element

(Patzek and Silin 2000). It is defined as:

G =
V L

A2
(4.4)

In Eq. 4.4, A is the cross-sectional area, V is the volume, and L is the length

of the tube-shape pore element with an arbitrary cross section. In practice,

the triangular cross section comprises the majority of pore elements of PNs

from different rock types. Shape factor of triangular elements can vary in

a range from 0 (slit-shape) to 0.0481 (equilateral). In this study, we select

three shape factor values equal to 0.020, 0.030, 0.040 for the designed PN

configurations to represent a reasonable range while limiting the number of

required LB simulations. The corresponding cross section of these shape

factors are illustrated in Fig. 4.6. The corner half-angle values (β’s defined

as β1 < β2 < β3) based on the algorithm by Patzek and Silin (2000) are listed

in Table 4.1.

Figure 4.6: Three selected triangular cross sections of pore element for
including shape factors of (a) G = 0.040, (b) G = 0.030, (a) G = 0.020 in
studied pore-network configurations.

As discussed in Section 4.3.4, pore-body filling process can occur in differ-

ent scenarios depending on the number of adjacent CO2-filled pore elements.

These scenarios can be defined with different TPT configurations based on
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Table 4.1: Corresponding corner half-angle values of the chosen shape
factors of based on Patzek and Silin (2000) algorithm. All β’s are in
degrees.

Shape factor β1 β2 β3
G=0.020 6.20 19.7 64.1
G=0.030 9.6 35.6 44.8
G=0.040 18.0 23.7 48.3

the number of connecting pore-throats to the pore-body of configuration,

which will be addressed in Section 4.5.1.1.

4.4.2 Lattice-Boltzmann method

The lattice-Boltzmann (LB) method will be used for DNS for the idealized

pore element geometry noted above. Use of LB for DNS on voxelized pore

geometry is now well established, and its popularity is due to its favorable

computational features (Tölke 2002; Chen et al. 2018). The LB is a so-called

mesoscopic method that can simulate fluid mass and momentum balance.

The fluid is represented by particles with probability of moving in different

directions along a predefined lattice. It is described based on streaming, col-

lision and relaxation of a set of fluid particle distribution functions (PDF) on

a lattice. The no-slip boundary conditions on solid surfaces are implemented

by simply switching the directions of the particles on the surface nodes,

the so-called bounce-back scheme. Among several LB schemes for simulating

multiphase flows, the color-fluid model (Gunstensen et al. 1991; Grunau et al.

1993) is capable of producing a relatively sharp interface between immiscible

phases and capturing their interface evolution. The color-fluid model is also

able to incorporate high viscosity ratios due to its independent control of

the surface tension and viscosity which makes it quite relevant to CO2-brine

flow system where viscosity ratio is about 10–15. On the other hand, it has

limitations on the density ratio and a large absolute value of color gradient

may produce numerical instabilities (Ramstad et al. 2019).

We use a variant of the multiple relaxation time (MRT) color-fluid LB

simulator (Tölke 2002; Tölke et al. 2006; Chen et al. 2018). In this model,

each phase has its own set of PDFs and the discrete Boltzmann’s equation is

solved for each phase. We consider two sets of the D3Q19 PDFs, i.e., a 3D
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model with 19 velocities, representing the two fluid phases, referred to as the

fluids r (CO2) and b (brine), which follow the collision-streaming procedure

for the PDF:

f si (x+ ei∆t, t+ ∆t) = f si (x, t) + Ω
s(3)
i

{
Ω
s(1)
i + Ω

s(2)
i

}
, s = r, b (4.5)

In Eq. 4.5, Ω
s(1)
i is the standard LB collision operator, Ω

s(2)
i is the perturba-

tion step that generates the surface tension effect, and Ω
s(3)
i is the recoloring

step that separates the two fluids. The collision operators Ω
s(1)
i and Ω

s(2)
i are

constructed under the MRT framework that increases stability and accuracy

of the model (d’Humieres 2002; Tölke et al. 2006). The macroscopic quanti-

ties of flow, such as fluid velocity and pressure, are computed by calculating

the moments of the PDFs. More details of our in-house code are given by

Chen et al. (2018).

In the present work, we carry out LB flow simulations of CO2-brine flow

system on PN configurations. The fluid properties and flow conditions are

listed in Table 4.2, which are similar parameters used in Kohanpur et al.

(2020) except the contact angle comes from an experimental study by Dal-

ton et al. (2018). We simulate the drainage process followed by the imbi-

bition process with inlet velocity and outlet pressure boundary conditions.

The capillary number of 5× 10−5 is fairly small that guarantees a capillary-

dominated flow observed in CO2-brine flow experiments. However, smaller

values of capillary number can be computationally expensive with potential

numerical instabilities.

Table 4.2: Properties of CO2-brine flow system.

Properties Value
Contact angle (◦) 56 (brine-wet)
Interfacial tension (mN/m) 30.0
Brine density (Kg/m3) 1100
CO2 density (Kg/m3) 1100
Brine kin. viscosity (m2/s) 1× 10−6

CO2 kin. viscosity (m2/s) 1× 10−7

Capillary number 5× 10−5

Viscosity ratio 10
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4.4.3 Quasi-static pore-network model

The quasi-static PN flow simulation is an efficient tool to characterize

single-phase and CO2-brine flow properties. The capillary number of this

two-phase flow system is relatively small (less than 10−5) which justifies the

assumption of capillary-dominated flow and is also the case in practice for

large scale CCS. In this work, we carry out drainage and imbibition sim-

ulations via the publicly available PN flow codes of Valvatne and Blunt

(2004) and Raeini et al. (2018). We incorporate modified equations imbi-

bition pore-level events (which are discussed in Sections 4.5.1.1 and 4.5.1.2)

into the solver and apply it on extracted PNs from real rock images to ob-

tain residual trapping of CO2 and relative permeability curves. The detailed

procedure of the PN flow solver is described in Valvatne (2004) and Raeini

(2013).

4.5 Results

4.5.1 Lattice-Boltzmann flow simulation

The PN configurations in Section 4.4.1 are used as the input geometry of

LB simulation where each voxel of the image is converted to a lattice unit.

It is a normal practice in LB simulations to use dimensionless parameters

and normalize with lattice units and then convert to physical units when

needed. A lattice unit can be as pore (0-value) or as wall (1-value), and the

set of PDFs of each phase is solved in lattice units. The phase saturation

and the interface can be distinguished with the order parameter (φ) in the

color gradient LB model:

φ =
ρr − ρb
ρr + ρb

(4.6)

In Eq. 4.6, ρr and ρb are fluid densities of red and blue fluids in lattice unit,

respectively. The density of each phase is computed by the zeroth moment of

the PDFs. Therefore, φ ≈ 1 refers to the presence of red fluid while φ ≈ −1

represents the presence of blue fluid. The location of interface is where φ ≈ 0.

This is because the fluid interface is diffuse and spread over several lattice

units, but if we use fine grids, then we can have a relatively sharp interface.

In practice, we use the cut-off of 5% for φ to specify the location of each
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fluid.

In order to evaluate local capillary pressure in pore elements, one can use

the relation between density and pressure based on the distribution of order

parameter in the lattice unit. This calculation procedure of local capillary

pressure is validated on a simple piston-type displacement in a cylindrical

tube, as illustrated in Fig. 4.7. We use the resulting density of fluids to obtain

the pressure distribution in each fluid to calculate their pressure difference

and relate it to the local capillary pressure during the filling process. In the

color-fluid LB method, a simple ideal equation of state is assumed which

allows calculation of fluid pressure from the density. The order parameter

is used to detect the location of phases and the interface. The calculation

of phases pressure should be far enough from where the order parameter is

about zero in order to compute the pressure of the pure red and blue fluid

phases. The pressure of the red and blue fluids can be averaged based on

the total density of mixture fluid in lattice units of a calculation box (e.g.,

pore-body).

P̄r =

∑
1/3ρri
nr

(4.7)

P̄b =

∑
1/3ρbi
nb

(4.8)

In Eqs. 4.7 and 4.8, the summation is over the lattice units of a defined

calculation box, respectively, and nr and nb are the number of lattice units

of red and blue fluids in the calculation box, respectively. Thus, the local

capillary pressure (Pc) in the calculation box can be obtained using the dif-

ference in the pressure of red and blue fluids in this LB color-fluid model. In

Fig. 4.7 (left), the calculation box is marked with two blue planes.

Pc = P̄r − P̄b (4.9)

In Eq. 4.9, Pc is the calculated average local capillary pressure within the cal-

culation box of interest. Fig. 4.7 (right) shows a cross-sectional view through

the center of tube in this simple piston-type displacement simulation. The

radius of interface (r′) can be captured and used in the Young-Laplace equa-

tion to evaluate local capillary pressure, which is denoted the cross-sectional

approach. Using the interface from LB simulation on the tube radius of

r = 10 (in lattice units) in cross-sectional and LB density-based approaches,

93



the predicted Pc is within 7% and 18%, respectively, of the theoretical value

coming from Young-Laplace equation. Thus, the cross-sectional approach is

preferred wherever the radius of interface can be captured. However, this

is not always the case in 3D LB simulation on PN configurations such as

pore-body filling events in triangular elements.

Figure 4.7: A validation of LB simulation on a simple piston-type
displacement in a cylindrical tube for calculation of local capillary pressure:
(left) CO2 is in red, brine is transparent, and the blue planes define the
bounds of calculation box, (right) cross-sectional view parallel to yz-plane
through the center of tube to capture the radius of interface.

In Fig. 4.8, the resulting Pc from LB simulation of the simple piston-

type displacement in a cylindrical tube is calculated and compared with the

theoretical values based on Young-Laplace equation for different radii (r = 5,

r = 10, r = 15, r = 20 in lattice units). The results show a good agreement,

thereby giving us confidence in the procedure for calculation of Pc based

on the order parameter and densities in lattice unit is feasible in 3D LB

simulations.

Moreover, the described procedure is straightforward to implement and

can be used in cases where the resulting interface has a 3D complex shape

and it is not feasible to identify the interface in a cross-sectional approach. In

following Sections 4.5.1.1 and 4.5.1.2, we present the LB simulation results on

PN configurations plus the modified models of pore-body filling and snap-off

events during imbibition that will be used in the quasi-static PN flow solver.
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Figure 4.8: Comparison of calculated Pc from LB simulation and theoretical
Pc on different radii of a cylindrical tube.

4.5.1.1 Simulation of pore-body filling

Three different TPT configurations with different shape factors but equal

radius of inscribed circle and the connection number of 4, shown in Fig.

4.9, are studied to model the I1, I2, I3 events during imbibition process.

The average connection number of PNs from various rock samples is usually

within the range of 3–5. Therefore, the choice of connection number of 4

is close to a realistic average value. In addition, having 4 connecting pore-

throats allows to include pore-body filling events up to order 3. As explained

in Section 4.3.4, lower orders of pore-body filling have higher threshold Pc

and are more favorable than higher orders pore-body filling (I4+). The higher

orders of pore-body filling usually have a small number of occurrences and less

important with respect to trapping. Thus, we focus on lower orders of pore-

body filling in the LB simulations. This would help in avoiding geometric

complexity in PN configurations and focusing on key factors in the filling

process such as shape factor and corner half-angles.

The cross section of pore-body is defined as a triangle with three different

shape factors with their corresponding corner half-angles, as listed in Table

4.1. The cross section of pore-throats in all cases are defined as square-shape

to reduce the complexity and ensure a simultaneous invasion from different
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connecting pore-throat across different configurations. This is achieved by

designing configurations in a way that all pore-throats have the same cross

section and path length from the inlet or outlet reservoirs to the pore-body,

as depicted in Figs. 4.9 and 4.10. The inscribed radii of all pore-throats are

equal and the geometric aspect ratio between pore-body and pore-throat is

5.

Figure 4.9: Pore-body filling configurations for the three studied shape
factors G = 0.020, G = 0.030, G = 0.040 during I1, I2, I3 events.

In LB flow simulation on all of these configurations, the inlet reservoir

is connected to bottom pore-throats and the outlet reservoir is connected to

top pore-throats, and the flow is always in +z (upward) direction. Initially,

drainage simulation is implemented that results in CO2 occupying the center

of pore elements. Then, brine is injected from the same inlet reservoir to

displace the CO2 from the pore-body. The boundary conditions in both

drainage and imbibition cycles are velocity inlet and pressure outlet that

allow a faster flow simulation through the configuration. Fig. 4.11 shows an

example of LB simulation of pore-body filling during drainage and imbibition

processes on a triangular TPT configuration, shown in Fig. 4.10, with the

shape factor of G = 0.040 during I1 event. While the pore-body filling event

is a dynamic process, we can track the saturation of CO2 in the pore body

in order to specify the relevant time step for the evaluation of threshold Pc.
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Figure 4.10: Pore-body filling configuration for the shape factor of
G = 0.040 designed for modeling I1 events from different angles. The equal
length and cross section of pore-throats provide a desired simultaneous
invasion.

Figure 4.11: Pore-body filling during drainage (left) and imbibition (right)
processes on a triangular TPT configuration with the shape factor of
G = 0.040 during I1 event.
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We choose the saturation of 0.50, when half of the CO2 is displaced, as the

time step of calculation threshold Pc as described earlier. The described

procedure is applied on all configuration of Fig. 4.9 and the corresponding

Pc is computed. The dimensionless capillary pressure in pore-body (P̂c) is

defined as:

P̂c = Pc
rp
σ

(4.10)

In Eq. 4.10, rp is the inscribed radius of pore-body and σ is the surface

tension. This definition makes the analysis more straightforward since the

conversion from lattice unit to physical unit is not necessary.

We propose the threshold local capillary pressure of pore-body filling

event in a similar format to conventional models (e.g., Valvatne and Blunt

(2004)) but with some new parameters as:

P̂ci = 2cos(θ)−
(
rp
Gr̄t
× a′i × Cfi

)
(4.11)

In Eq. 4.11, the subscript i refers to the order of pore-body filling event. Cfi
is defined as filling factor that comes from the analysis of LB simulations of

PN configurations. a′i is defined as effective aspect ratio of the pore-body

which is similar to classic definition of geometric aspect ratio but it considers

just the invading pore-throats rather than all connecting ones. Therefore,

a′i can be a function of filling event and it involves the radius of invading

pore-throat during the pore-body filling event.

In order to use this model, one needs to know Cfi for different orders of

filling on different shape factors of pore-body. We consider Cf1 = 1 the same

as conventional models. In order to evaluate Cf2 and Cf3 , we define the ratio

of P̂ci of events with respect to P̂c1 as:

f21 =
P̂c2

P̂c1
(4.12)

f31 =
P̂c3

P̂c1
(4.13)

If we combine Eqs. 4.11-4.13, the filling factors can be described as:

Cf2 =
2Gr̄tcos(θ)(1− f21)

rpa′2
(4.14)

98



Cf3 =
2Gr̄tcos(θ)(1− f31)

rpa′3
(4.15)

Therefore, by having P̂ci of different events from LB simulation, one can

compute the corresponding fi1 and use Eqs. 4.14-4.15 to obtain the filling

factors of the modified model.

Table 4.3 presents the resulting dimensionless local capillary pressure of

pore-body filling events (I1, I2, I3) for the studied shape factors. The P̂ci
are used to calculate the capillary pressure ratios (fi1) and the filling factors

(Cfi) next, as listed in Table 4.4.

Table 4.3: The resulting dimensionless local capillary pressure (P̂ci) of
pore-body filling events from LB simulations on PN configurations.

Shape factor P̂c1 P̂c2 P̂c3
G=0.020 2.020 1.514 0.984
G=0.030 1.884 1.362 0.859
G=0.040 1.433 0.994 0.614

Table 4.4: The resulting filling capillary pressure ratios (fi1) defined in the
modified pore-body filling model from LB simulations on PN configurations.

Shape factor I2 filling I3 filling
G=0.020 f21 = 0.750 f31 = 0.487
G=0.030 f21 = 0.723 f31 = 0.456
G=0.040 f21 = 0.694 f31 = 0.428
Conventional f21 = 0.676 f31 = 0.412

The results in Table 4.4 are used to describe the filling factor as a function

of shape factor and incorporate it into a quasi-static PN flow solver where

pore-body filling events of I1 and I2 are modified with Eq. 4.11, accordingly

4.5.1.2 Simulation of snap-off

The three different shape factors of G = 0.020, G = 0.030, G = 0.040

on triangular cross sections in a PTP configuration, shown in Fig. 4.12, are

studied to investigate the threshold capillary pressure during snap-off event.

The focus is the cross section of the center of the pore-throat. We first

implement drainage simulation with receding contact angle (10◦) followed by

imbibition simulation with with advancing contact angle (60◦). These values
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are based on Morrow’s contact angle hysteresis model (Morrow et al. 1975)

for intrinsic contact angle of 56◦. The model relates the intrinsic contact

angle to receding and advancing ones. The boundaries are connected to

bounding pore-bodies and a pressure-driven flow is implemented in the LB

simulation.

We propose the threshold capillary pressure of snap-off event in a similar

format to the conventional snap-off models but with having a new correction

factor:

P̂c = cos(θ)− Cisin(θ) (4.16)

In Eq. 4.16, Ci is defined as the snap-off factor and P̂c is defined similar to

Eq. 4.10 (rp replaced with rt). In conventional models, Ci can be described

in terms corner half-angles:

Ci =
2

cot(β1) + cot(β2)
(4.17)

However, we carry out LB simulation for different shape factors, depicted

in Fig. 4.12, to find Ci as a function of G coming from two-phase flow

simulation of CO2 and brine with appropriate contact angle. The drainage

invasion of CO2 into the PTP configurations are implemented first. Then,

the gradual imbibition of brine is implemented via an incremental increase

of the imposed pressure difference. This would allow the brine in corners to

expand gradually prior to snap-off in the pore-throat, as shown in the cross

section of pore-throat in Fig. 4.13.

Figure 4.12: PTP configurations with different shape factors defined for
assessing the snap-off event in the pore-throat: (a) G = 0.040 (b) G = 0.030
(c) G = 0.020.

A cross-sectional analysis is applied on the results from LB simulation

to obtain the radius of curvature in each corner, as illustrated in Fig. 4.14,

during the snap-off event. The minimum radius among three is used in the
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form of Young-Laplace equation (Pc = 2σcos(θ)/r′) to evaluate the threshold

local capillary pressure of the pore-throat:

r′ = min {r′1, r′2, r′3} (4.18)

In Eq. 4.18, r′i refers to the calculated radius of curvature in each corner of

the pore-throat, as shown in Fig. 4.14. On the other hand, by defining the

local capillary pressure of snap-off in the form of Eq. 4.16, one can relate

the correction factor of Ci to the radius of curvature r′ from LB simulation

results:

Ci =
1− 2rt/r

′

tan(θ)
(4.19)

In Eq. 4.19, rt refers to the inscribed radius of the pore-throat (a purely

geometric parameter) while r′ refers to the minimum radius of curvature of

the interface right before snap-off event in the pore-throat (coming from LB

simulation results).

Table 4.5 presents the resulting snap-off factors from LB simulation on

PTP configurations for the three studied shape factors. Although only three

shape factors are evaluated, it covers a range from 0.020 to 0.040 using linear

interpolation. This range of shape factor is sufficient to include the majority

of both pore-bodies and pore-throats across various pore-networks of different

samples.

Table 4.5: The resulting snap-off factor (Ci) as a function of shape factor
from LB simulations on PTP configurations compared with the
conventional model.

Shape factor Conventional model Modified model
G=0.020 Ci = 0.167 Ci = 0.163
G=0.030 Ci = 0.274 Ci = 0.213
G=0.040 Ci = 0.373 Ci = 0.337

4.5.2 Pore-network flow simulation

4.5.2.1 Rock samples and extracted pore-networks

In this study, two natural rock samples of Berea sandstone and Mt. Simon

sandstone are selected to investigate residual trapping of CO2. The former
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Figure 4.13: Cross section of a pore-throat with G = 0.040 during snap-off
event: (a) beginning of imbibition (b) moving the interface toward the
center (c) before snap-off (d) after snap-off (e) higher resolution of
pore-throat cross section.

Figure 4.14: Cross-sectional approach in evaluation of capillary pressure of
snap-off event based on the radius of curvature of three corners of a
triangular pore-throat with G = 0.040.
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sample was the focus of an experimental study of measurement of contact

angle between CO2 and brine by Dalton et al. (2018). The latter sample

was the focus of a rock characterization study and CO2-brine flow simulation

with different approaches by Kohanpur et al. (2020) and covered in Chapter 2.

The core plugs of both samples were scanned by micro-CT imaging technique

at the National Energy Technology Laboratory (NETL) which produced a

series of grayscale scans. These scan are processed through several steps of

image processing in Fiji (Schindelin et al. 2012) to filter and smooth images

in order to distinguish existing image phases (solid, pores, CO2, brine) from

each other via thresholding algorithms. Table 4.6 presents the information

of the studied sandstone samples.

Table 4.6: Studied samples for pore-network CO2-brine flow simulation of
drainage-imbibition cycle.

Sample Porosity
Res.
(µm)

Size
(mm3)

Study

Berea
sandstone

0.202 2.36 1.89× 1.89× 1.42 Dalton et al. (2018)

Mt. Simon
sandstone

0.263 2.80 1.40× 1.40× 1.40 Kohanpur et al. (2020)

The micro-CT images of the Berea sandstone sample also included post-

imbibition scans with residual CO2 and the distribution of contact angle.

Table 4.7 describes the experimental measurements from this sample. The

contact angle average (55.9◦) and standard deviation (15.5◦) come from mea-

surement on 40 slices of micro-CT images. The distribution of these measured

contact angles from different locations of the sample are represented in Fig.

4.15. More details can be found in Dalton et al. (2018).

Fig. 4.16 shows an example of post-imbibition grayscale image (left fig-

ure) and its corresponding segmented image (right figure) which is consist of

three image phases: solid in white, CO2 in black, brine in gray. It is obtained

via a ternary segmentation implemented in Fiji, which is the result of two

sequential binary segmentation on dry scans and post-imbibition scans in or-

der to obtain their differences and extract the distribution of CO2. Fig. 4.17

shows the 3D representation of the pore structure (left figure) and residual

trapping CO2 after imbibition (right figure) in the Berea sandstone sample.

Here, we use the PN extraction code based on Maximal Ball (MB) algo-

rithm from Dong and Blunt (2009) and Raeini et al. (2017) to obtain cor-
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Table 4.7: Experimental data of the Berea sandstone sample.

Property Value
Residual CO2 saturation after imbibition 0.339
Contact angle, average* 55.9◦ (brine-wet)
Contact angle, standard deviation* 15.5◦

* Measurement on 40 micro-CT images

Figure 4.15: The distribution of measured contact angles from different
locations of the sample based on 40 slices of micro-CT images. The dash
line is the average value.

Figure 4.16: A slice of micro-CT images of the Berea sandstone sample
with residual CO2. The left figure is the raw grayscale slice. The right
figure is the ternary segmented slice where solid part is in white, CO2 is in
black, and brine is in gray.
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Figure 4.17: Comparison 3D representation of the pore structure (left) and
residual trapping CO2 after imbibition (right) in the Berea sandstone
sample

responding PNs of rock images. The algorithm was originally introduced by

Silin and Patzek (2006) where the entire 3D voxelized pore space is searched

to find the largest possible voxelized spheres, known as MBs. This PN ex-

traction tool can provide the inherit randomness of pore structure in real

rocks with a wide range of connection number for pore-bodies. More details

of this PN extraction tool can be found in Dong and Blunt (2009). The out-

put of this tool is geometrical and topological information of pore-bodies and

pore-throats including the location, radius, volume, length, total length, and

shape factor. Fig. 4.18 shows the 3D representation of the Berea sandstone

sample (left figure) and its extracted PN (right figure) via MB algorithm.

Table 4.8 lists the properties of extracted PNs of the studied samples. The

reported absolute permeabilities come from using the Valvatne and Blunt

(2004) PN flow solver.

Table 4.8: Extracted pore-network information of the studied sandstone
samples.

Sample Berea Mt. Simon
Number of pore-bodies 6207 2566
Number of pore-throats 10160 6349
Average connection number 3.18 4.85
Absolute permeability 455 mD 4201 mD

As mentioned earlier, the shape factor (Eq. 4.4) in PN models is a metric

of irregularities of the pore space in pore elements. Fig. 4.19 shows the shape
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Figure 4.18: 3D representation of the Berea sandstone sample (left) and its
extracted pore-network from maximal-ball algorithm (right).

factor distribution of pore-bodies (left plot) and pore-throats (right plot) in

the extracted PN of the Berea sandstone sample. The distribution in both

follows approximately a normal distribution with the average of 0.0298 and

0.0312 and standard deviation of 0.0078 and 0.0064 for pore-bodies and pore-

throats, respectively. Therefore, these distributions justify the selected values

of shape factors (Table 4.1) in PN configurations studied in Section 4.4.1.

Figure 4.19: Shape factor distribution of pore elements in the extracted
pore-network of the Berea sandstone sample: (left) pore-body shape factor
distribution, (right) pore-throat shape factor distribution.

Here, we present detailed results from the CO2-brine flow simulation on

both sandstone samples with properties listed in Table 4.2. We use a modified

PN flow solver that includes the new pore-level models described in Sections

4.5.1.1 and 4.5.1.2 and compare its outputs with results from the original PN

flow solver in conventional models.

106



In order to incorporate the measured contact angles, shown in Fig. 4.15,

in the quasi-static PN flow model, one can use the arithmetic average of data

distributed uniformly in pore elements or fit a distribution function and as-

sign values randomly in pore elements. We fit a Weibull distribution function

on the available contact angle data in the range of 30–90◦ and use it as the

equilibrium contact angle in the input data of PN flow model. We compare

it with the PN flow model with a uniform contact angle of 55.9◦ (the average

value). Table 4.9 shows the resulting residual trapped CO2 after a drainage-

imbibition cycle on the Berea sandstone sample. While in both distributions,

the modified model predicts closer to the experimental saturation, the uni-

form average value of contact angle results a better agreement compare to

the Weibull distribution. Therefore, we present the PN flow results based on

the uniform average value of contact angle in next sections on both samples.

Table 4.9: Comparison of uniform average and Weibull distribution of
contact angle in terms of residual trapped CO2 after a drainage-imbibition
cycle on the Berea sandstone sample.

CO2 saturation Uniform average value Weibull distribution
Original model 0.437 0.542
Modified model 0.375 0.482
Experimental 0.339

Since no measured experimental data of residual trapped is available on

the Mt. Simon sandstone sample, introduced in Table 4.6, we carry out LB

simulations of drainage and imbibition processes (as explained in Chapter

2) on the rescaled 3D rock images with contact angle of 55.9◦ and capillary

number of 5 × 10−5 to obtain the saturation at the end of drainage and

residual trapped CO2 at the end of imbibition. Fig. 4.20 shows the resulting

distribution of CO2 at the end of drainage and imbibition processes on the

Mt. Simon sandstone sample. The corresponding saturations of CO2 at these

points are Sdrain.nw = 0.60 and Simbib.nw = 0.14, respectively. Thus, we use this

Sdrain.nw (i.e., Sinit.w = 0.40) as the end point of drainage simulation in the PN

flow solver, and we compare the Simbib.nw with the resulting residual saturation

at the end of imbibition from PN flow simulation.

In the following, the statistics of pore-level events during imbibition on

both samples are investigated in Section 4.5.2.2. Then, results of residual

trapping of CO2 and relative permeability curves during drainage and imbi-
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Figure 4.20: LB simulations of drainage and imbibition processes on the
Mt. Simon sandstone sample to obtain end point saturations. (a) pore
space of the sample (b) end of drainage process (c) end of imbibition
process. CO2 is shown in red. Brine and rock are not rendered.

bition processes are discussed in Sections 4.5.2.3 and 4.5.2.4, respectively.

4.5.2.2 Statistics of pore-level events

We carried out drainage and imbibition cycles via quasi-static PN flow

simulation that incorporates the modified models introduced in Sections and

4.5.1.1 and 4.5.1.2. In each step of imbibition process, piston-type displace-

ment, pore-body filling, and snap-off occur across the PN. The cumulative

statistics of these events during imbibition PN steps on the Berea and Mt.

Simon sandstone samples are presented in Figs. 4.21 and 4.22, respectively.

These statistics are compared for the results from the original PN model and

the modified model.

In the Berea sandstone sample, the modified model predicts higher num-

ber of piston-body filling events (6.3% more) and piston-type displacement

in pore-throats (15.6% more). On the hand, it predicts smaller number of

snap-off events compare to the original model (7.3% less). Therefore, we ex-

pect to see a more frontal invasion pattern in the modified model which can

translate into less chance of trapping CO2. This is also in agreement with

reported residual saturation in Table 4.10.

In the Mt. Simon sandstone sample, a similar pattern with a slight change

between the modified and original models is also resulted. The modified

model predicts higher number of piston-body filling events (9.4% more) and

piston-type displacement in pore-throats (10.7% more) while smaller number

of snap-off events are predicted compare to the original model (7.2% less).
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Figure 4.21: Statistics of number of pore-level events in pore-bodies (left)
pore-throats (right) of the Berea sandstone sample.

Figure 4.22: Statistics of number of pore-level events in pore-bodies (left)
pore-throats (right) of the Mt. Simon sandstone sample.
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4.5.2.3 Residual trapping

In PN simulation of drainage-imbibition cycle, the end point of drainage

process corresponds to maximum macroscopic capillary pressure which is

also the starting point of imbibition process. This drainage end point can

be a control parameter in terms of trapped wetting phase saturation in the

quasi-static PN flow model. The resulting saturation of trapped non-wetting

phase at the end of imbibition follows a hysteresis behavior based on the

initial saturation in the imbibition process. Therefore, a trapping curve can

be produced via the PN flow solver similar to Land’s initial-residual trapping

model (Land et al. 1968) where initial and residual saturations are related.

In Fig. 4.23, the residual trapping curve of CO2-brine flow in the Berea

sandstone sample is compared between the original and modified PN models.

For the original PN model, the resulting residual saturation of brine is about

0.56 (that is, 0.44 for CO2) when the initial brine saturation is small (for

about Sinit.w < 0.40). For the modified PN model, the resulting residual

saturation of brine is about 0.63 (that is, 0.37 for CO2) when the initial

brine saturation is small (for about Sinit.w < 0.40). Both models refer to

a drainage process with displacements and invaded elements that leaves a

relatively small saturation of brine in the PN, mainly in corners and small

or isolated pore elements. Fig. 4.23 implies that such a drainage process will

be followed by an imbibition process with higher trapped CO2. On the other

hand, for values of Sinit.w > 0.40 the residual saturation of brine increases

which means less trapped CO2.

For the Berea sandstone sample, we chose Sinit.w = 0.20 (mid-point of the

beginning of the trapping curve) as the start point of imbibition process in

the quasi-static PN flow solver since no experimental value is available. The

reported statistics of events in Section 4.5.2.2 were also based on the Sinit.w =

0.20. The resulting residual trapping of CO2 after imbibition is presented in

Table 4.10 where the modified model is compared with the original model.

The residual saturation of CO2 is also compared with an experimental value

based on analysis of volume ratio of CO2 in X-ray micro-CT scans rendered

in Fig. 4.17. The modified model predicts residual saturation of trapped

CO2 within 10% of the experimental values while the error from the original

model is about 29%. The number of trapped pore elements and regions in

the PN is also reported in Table 4.10 for each model which is correlated with
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Figure 4.23: Residual trapping curve from pore-network modeling of
CO2-brine flow in the Berea sandstone sample.

the residual saturation of CO2.

Table 4.10: Comparison of the original and modified pore-network flow
models on the Berea sandstone sample based on predicted residual trapping
of CO2 after imbibition.

Residual trapping CO2 saturation No. of regions No. of elements
Original model 0.437 588 2754
Modified model 0.375 539 2627
Experimental CO2 saturation 0.339

For the Mt. Simon sandstone sample, we chose Sinit.w = 0.40 based on

the LB simulations shown Fig. 4.20. The resulting residual trapping of

CO2 after imbibition is also presented in Table 4.11 and compared with the

residual saturation from LB simulation. The overall prediction error is higher

on the Mt. Simon sandstone sample compare to the Berea sandstone sample

that can be due to numerical errors in both LB imbibition simulation and

PN flow models.

In both studied samples, the modified model outperforms the original

model and predicts the residual trapping in better agreement with the ex-

perimental or LB simulation value since it predicts less number of snap-off

events in pore-throats, as shown in Figs. 4.21 and 4.22.
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Table 4.11: Comparison of the original and modified pore-network flow
models on the Mt. Simon sandstone sample based on predicted residual
trapping of CO2 after imbibition.

Residual trapping CO2 saturation No. of regions No. of elements
Original model 0.282 110 744
Modified model 0.248 98 612
LB simulation CO2 saturation 0.141

4.5.2.4 Relative permeability curves

The relative permeabilities of the CO2-brine flow during drainage and

imbibition processes on the Berea sandstone sample are presented in Figs.

4.24 using original and modified PN flow models. The different statistics of

pore-level events results in a different invasion pattern that corresponds to

a different average flow rates across the PN which translates into different

relative permeability values at each saturation point. In these plots, the

difference in resulting residual saturation is also clearly seen as the point

where no flow occurs and by definition, the relative permeability is zero.

A similar procedure is applied on the Mt. Simon sandstone sample using

original and modified PN flow models and its resulting relative permeabilities

are shown in Fig. 4.25. The change in the imbibition relative permeability

curves of the Mt. Simon sandstone sample is less noticeable than the Berea

sandstone sample. This is because the connectivity of the Mt. Simon sand-

stone sample is higher (average connection number 3.18 vs. 4.85) and the

CO2 trapping is smaller compared to the Berea sandstone sample. Recall

that more connections and pore-throats for each pore-body results in higher

chance of escaping during filling events of imbibition process. Therefore,

the CO2 trapping is less sensitive to the implemented modifications into the

model.

In both studied samples, the CO2 relative permeability is higher in the

modified model compare to the original model. This can be justified by the

reduction in snap-off events and trapped CO2 that results a more frontal

displacement during imbibition process with higher macroscopic flow rate of

CO2 across the PN.
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Figure 4.24: Relative permeability curves of CO2-brine flow in the Berea
sandstone sample using original and modified imbibition models: (top)
brine curves as the wetting phase, (bottom) CO2 curves as the non-wetting
phase.
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Figure 4.25: Relative permeability curves of CO2-brine flow in the Mt.
Simon sandstone sample using original and modified imbibition models:
(top) brine curves as the wetting phase, (bottom) CO2 curves as the
non-wetting phase.
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4.6 Summary and conclusions

The physics of CO2-brine flow at pore-scale is a key part of prediction

of amount and fate of residual trapped CO2 in geological storage of CO2 in

deep saline reservoirs. The description of this flow system in the form of

pore-level flow models through pore-bodies and pore-throats of an extracted

PN from micro-CT images of real rock is a practical approach to obtain

important characteristic curves during a drainage-imbibition cycle. However,

this description can be improved by more specific and accurate relations for

CO2-brine flow that can come from DNS methods. This study presented a

new set of pore-level flow models during pore-body filling and snap-off events

of imbibition process in PN modeling of CO2-brine flow. LB simulations were

carried out on several designed PN configurations and the thresold local

capillary pressure was evaluated to develop modified equations of threshold

capillary pressure as a function of shape factor, which was not proposed

in other models in the literature. We also defined effective aspect ratio of

pore-body filling as a new parameter in the modified model.

The modified equations of local capillary was incorporated in a quasi-

static PN solver. This modified model resulted a new pattern of invasion

during imbibition process due to a different order of competing pore-level

events compare to the original model. We applied the modified model on

extracted PNs of a two sandstone samples (Berea and Mt. Simon) to ob-

tain relative permeabilities and saturation of residual trapped CO2 after

a drainage-imbibition cycle. The statistics of pore-level imbibition events

changed by replacing the original model with the modified model. The oc-

currence of snap-off in pore-throats was reduced by about 10% which means

more frontal displacement pattern across the sample. As a result, our mod-

ified model was in closer agreement than the original model based on the

comparison of the residual trapped CO2 with experimental and DNS data.

The relative permeabilities were also computed based on the modified model

for both sandstone samples. The higher connectivity of pore structure in the

Mt. Simon sandstone sample resulted less difference in relative permeabilities

due to model modification.

Additional future work can be performed by comparing predicted rela-

tive permeabilities with experimental or high resolution DNS measurements.

Also, the effect of lattice resolution and capillary number in LB simulations
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can be studied. This can lead to some changes in the results and the pro-

posed modified model. A preliminary study is discussed in Appendix B on

one shape factor and can be extended to more shape factors and other PN

configurations.
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Chapter 5

Epilogue

5.1 Conclusions

This dissertation presents a computational modeling framework to ad-

dress current challenges in pore-scale modeling of two-phase flow with ap-

plications to sequestration of carbon dioxide (CO2) in deep saline geological

formations. These formations are widely available and have relatively high

storage capacity to host injected CO2 for long-term as a practical solution to

reduce CO2 emissions from fossil fuel power plants. Due to the expense and

complexity of experimental investigations, computational approaches have

been developed to understand the physics of CO2-brine flow at the pore-

scale. The dissertation considers both direct numerical simulation on real

rock geometry measured by X-ray scans, as well as PN models which simplify

the geometry as a connection of pore-bodies and pore-throats with idealized

shapes. Both approaches are challenged in applications to large heteroge-

neous core plugs.

In Chapter 2, a heterogeneous Mt. Simon sandstone sample from a pilot

CO2 injection project was extensively studied in terms of characterization

of morphology and simulation of single-phase and two-phase flow of CO2

and brine. 3D rock images coming from X-ray micro-CT scans were investi-

gated to assess the size of the REV and sample heterogeneity. Three distinct

simulation approaches were applied to simulate the drainage process: PN

modeling on a PN extracted from the scans, and two different methods for

direct numerical simulation on the rock geometry, namely the LB method,

and the finite-volume method using OpenFOAM. The relative permeabilities

during displacement of brine by CO2 were computed and compared using

different measurement choices for the direct numerical simulations, i.e., the

steady-state approach for LB and unsteady approach for OpenFOAM. They
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were also compared with the prediction from computationally more efficient

quasi-static PN flow model. All approaches were in close agreement with one

another for low capillary number. The accuracy, computational efficiency,

and the effect of the resolution of the computational grids were also com-

pared for low and relatively high capillary numbers.

In Chapter 3, a novel pore-network stitching method (PNSM) was devel-

oped that combines the inherent simplicity of PN modeling with statistical

PN generation to characterize the heterogeneity of rock cores. The method

overcomes technical limits on sample size to discern void space during X-ray

scanning and computational limits on PN extraction algorithms by using the

information from a few signature parts of the core and their extracted PNs.

The workflow was validated on various types of natural rock samples and

applied on large domain problems based on pore structure and flow prop-

erties including relative permeabilities of CO2-brine flow. In each sample,

multiple realizations were generated and the average results were compared

with properties from defined reference PNs.

In Chapter 4, a new set of pore-level flow models during imbibition pro-

cess in PN modeling were proposed to improve the prediction of residual

trapping of the non-wetting CO2 phase. This is important for assessing the

long-term storage capacity and safety of geological sequestration. LB simula-

tions were carried out on several PN configurations to investigate pore-body

filling and snap-off events that are simplified in PN modeling. The local

capillary pressure of these events was evaluated and modified equations of

threshold capillary pressure were defined. The modified model was incor-

porated into an existing quasi-static PN flow solver and applied to a Berea

sandstone sample to obtain relative permeabilities and saturation of residual

trapped CO2 after a drainage-imbibition cycle. The modified model was in

closer agreement than the conventional model based on the comparison of

the residual trapped CO2 with the available experimental data. The modified

model was also applied to the same Mt. Simon sandstone sample studied in

Chapter 2. In this case, no experimental measurements of trapped CO2 were

available, unlike the Berea sandstone sample. A comparison with trapped

CO2 simulated by DNS again shows improved results for the modified PN

model, though the results are not as good as for the Berea sandstone sample.

These studies together enable straightforward modifications to the current

generation of PN models to improve accuracy and be more applicable in
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practice. The PNSM enables study of large heterogeneous rock cores. The

use of DNS to study multiphase flow physics in PN configurations enables

modification of rules implemented in conventional PN models to improve

accuracy of capturing trapping of CO2 during imbibition process.

5.2 Future directions

5.2.1 Pore-network stitching method

In terms of inputs, the workflow can also include a robust method of

detecting the signature parts of a heterogeneous core. It should be capable

of addressing some possible challenges in its inputs as well, such as missing

data in rock images or artifacts in coarse resolution scans. Recent advances in

machine learning approaches in both image processing and integrating multi-

scale images (Mohaghegh 2018; Karimpouli and Tahmasebi 2019; Tahmasebi

et al. 2020) can be used in identification of signature parts of a large domain.

Moreover, high-resolution thin-section images of cores can be used as inputs

of 2D-to-3D reconstruction techniques (Tahmasebi and Sahimi 2012) to gen-

erate 3D images of signature parts as an alternative when micro-CT scanning

of all signature parts is not feasible.

In terms of procedure, there were assumptions in various steps of the

developed PNSM, such as averaging the PN parameters between two PNs or

used distribution functions, that could be replaced with alternative averaging

approaches and functions. The stochastic PN generator can be replaced with

newer generations of PN generators based on deep learning approaches.

In terms of performance, the accuracy of PNSM can be assessed on a full

core dataset including comprehensive multiscale CT scans with different res-

olutions and core-scale experimental measurements on relative permeabilities

and other flow properties. The PNSM can also be tested in other applications

of porous media, e.g., based on reactive transport properties or mechanical

properties of the rock where the PN geometry should be updated with the

simulation time to mimic the structural evolution of pore space.
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5.2.2 Pore-level flow models

The PN configurations studied in Chapter 4 can be designed to be more

complex and realistic by adding some geometric variabilities. Pore-body

filling configurations can be assessed based on different connection numbers.

Their connecting pore-throats can have a non-uniform distribution of aspect

ratio. Also, the orientation of connecting pore-throats can be involved as a

factor to be investigated in the modified model. The cross section of pore

elements can be defined with more diverse shapes that still incorporates

corner flow such as star-shape or higher order polygons. The analysis was

done on just three selected shape factors due to computational limitations to

obtain relations as a function of shape factor. However, this can be extended

to more shape factors to obtain more accurate relations.

Moreover, the modified models were limited to new relations and factors

with an experimentally measured contact angle in just threshold local capil-

lary pressure of events. The flow relations of phases in different parts of PN

configurations can also be studied and added to this framework including

a wide range of contact angles. Such modifications can certainly have an

impact on the predicted relative permeabilities.

Finally, we used LB as the DNS method to study the physics of CO2-

brine flow in PN configurations. It is also possible to do the analysis with

another DNS method, e.g., finite-volume method, to assess the validity of

findings. This can specifically be focused on areas where the color-fluid LB

model has limitation, e.g., studying high density ratio problems. In addition,

the effect of grid resolution and capillary number on results from DNS can

be investigated further. A preliminary sensitivity analysis of LB simulation

on PN configurations is discussed in Appendix B.
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Appendix A

Validation

Validation of the pore-network stitching method on more rock

samples

In this appendix, more validation results of the developed PNSM, intro-

duced in Chapter 3 , are presented. Two-phase flow pore-network simulation

on the introduced samples in Chapter 3 are carried out. The samples are

Berea sandstone (BR), Bentheimer sandstone (BN), Mt. Simon sandstone

(ML), C1 carbonate (C1), C2 carbonate (C2). Basic information of their 3D

images and properties are reported in Chapter 3.

For each sample, the 3D reconstructed geometry of the rock and the seg-

mented image of one slice of the stack are presented. Then, drainage relative

permeability curves of CO2 and brine together for longitudinal and lateral

layered stitching studies are reported, respectively. Finally, validation of

volumetric stitching are presented where relative permeability curves of 10

realizations and their mean are reported for CO2 and brine phases, respec-

tively. In all cases, the reference pore-network is obtained as discussed in

Chapter 3.
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Figure A.1: The sample BR: (top) the 3D reconstructed geometry of the
rock and (bottom) the segmented image of one slice of the stack.
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Figure A.2: Comparison of relative permeability curves of the stitched
pore-network from sample BR via longitudinal layered stitching with its
reference pore-network.

Figure A.3: Comparison of relative permeability curves of the stitched
pore-network from sample BR via lateral layered stitching with its
reference pore-network.
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Figure A.4: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from sample BR via volumetric stitching with their
reference pore-network.

Figure A.5: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from sample BR via volumetric stitching with their
reference pore-network.
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Figure A.6: The sample BN: (top) the 3D reconstructed geometry of the
rock and (bottom) the segmented image of one slice of the stack.
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Figure A.7: Comparison of relative permeability curves of the stitched
pore-network from sample BN via longitudinal layered stitching with its
reference pore-network.

Figure A.8: Comparison of relative permeability curves of the stitched
pore-network from sample BN via lateral layered stitching with its
reference pore-network.
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Figure A.9: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from sample BN via volumetric stitching with their
reference pore-network.

Figure A.10: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from sample BN via volumetric stitching with their
reference pore-network.
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Figure A.11: The sample ML: (top) the 3D reconstructed geometry of the
rock and (bottom) the segmented image of one slice of the stack.
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Figure A.12: Comparison of relative permeability curves of the stitched
pore-network from sample ML via longitudinal layered stitching with its
reference pore-network.

Figure A.13: Comparison of relative permeability curves of the stitched
pore-network from sample ML via lateral layered stitching with its
reference pore-network.
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Figure A.14: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from sample ML via volumetric stitching with their
reference pore-network.

Figure A.15: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from sample ML via volumetric stitching with their
reference pore-network.
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Figure A.16: The sample C1: (top) the 3D reconstructed geometry of the
rock and (bottom) the segmented image of one slice of the stack.
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Figure A.17: Comparison of relative permeability curves of the stitched
pore-network from sample C1 via longitudinal layered stitching with its
reference pore-network.

Figure A.18: Comparison of relative permeability curves of the stitched
pore-network from sample C1 via lateral layered stitching with its reference
pore-network.
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Figure A.19: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from sample C1 via volumetric stitching with their
reference pore-network.

Figure A.20: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from sample C1 via volumetric stitching with their
reference pore-network.
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Figure A.21: The sample C2: (top) the 3D reconstructed geometry of the
rock and (bottom) the segmented image of one slice of the stack.
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Figure A.22: Comparison of relative permeability curves of the stitched
pore-network from sample C2 via longitudinal layered stitching with its
reference pore-network.

Figure A.23: Comparison of relative permeability curves of the stitched
pore-network from sample C2 via lateral layered stitching with its reference
pore-network.
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Figure A.24: Comparison of CO2 relative permeability of 10 realizations of
stitched pore-networks from sample C2 via volumetric stitching with their
reference pore-network.

Figure A.25: Comparison of brine relative permeability of 10 realizations of
stitched pore-networks from sample C2 via volumetric stitching with their
reference pore-network.
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Appendix B

Sensitivity analysis

Sensitivity analysis of parameters of lattice-Boltzmann

simulations on pore-network configurations

In this appendix, sensitivity analysis of lattice resolution and capillary

number of LB simulations in PN configurations studied in Chapter 4 are ex-

plored. The TPT configuration associated with pore-body filling of I1 event

with the shape factor of G = 0.040 is selected to investigate the effect of

lattice resolution (using two resolutions) and capillary number (using three

values) on the resulting threshold local capillary pressure and its correspond-

ing parameters in the modified model which were explained in Section 4.5.1.1.

In each case, the P̂c1 of I1 event is obtained from LB simulation, and then,

f21 and f31 are computed based on Eqs. 4.12 and 4.13, respectively.

In order to investigate the effect of lattice resolution, two simulation sizes

of 47×47×50 and 92×92×105 are chosen. Table B.1 includes the information

of the two studied resolutions (low and high) for pore-body filling of I1 event

with G = 0.040. All values reported in the table are in lattice units. Fig. B.1

shows the two different resolutions of TPT configuration for pore-body filling

of I1 event. The radius of pore-body and pore-throat in the high resolution

configuration is twice larger than the low resolution configuration. Fig. B.2

shows the LB simulation of pore-body filling during imbibition process on

the high resolution configuration.

Table B.1: The information of studied resolutions for TPT configuration of
pore-body filling of I1 event with G = 0.040. All values are reported in
lattice units.

Resolution Simulation size Pore-body radius Pore-throat radius
Low 47× 47× 50 25 5
High 92× 92× 105 50 10
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Figure B.1: The studied resolutions of TPT configuration for pore-body
filling of I1 event with G = 0.040: (left) low resolution configuration, (right)
high resolution configuration.

Figure B.2: Pore-body filling of I1 event during imbibition process on a
high resolution TPT configuration with G = 0.040: (a) beginning of
imbibition (b) prior to pore-body filling (c) during pore-body filling.
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The resulting filling factors of these two resolutions from LB simulation

are listed in Table B.2. The difference between factors of the two resolutions

is not significant which implies that the used low resolution was sufficient to

simulate pore-level events with the LB model which comes with less compu-

tational costs.

Table B.2: The resulting filling factors for two studied lattice resolutions
from LB simulation of pore-body filling of I1 event with G = 0.040.

Shape factor f21 f31
Modified (low res.) 0.694 0.428
Modified (high res.) 0.660 0.407
Conventional 0.676 0.412

In order to investigate the effect of capillary number, three values of

Ca=5 × 10−5, Ca=1 × 10−5, and Ca=5 × 10−6 are chosen. Fig. B.3 shows

the LB imbibition simulation of I1 event during filling with the three studied

capillary numbers on TPT configuration with the shape factor of G = 0.040.

Figure B.3: Pore-body filling of I1 event during imbibition process with
different capillary numbers on TPT configuration with G = 0.040: (a)
Ca=5× 10−5 (b) Ca=1× 10−5 (c) Ca=5× 10−6.

The resulting filling factors of these three capillary numbers from LB

simulation are listed in Table B.3. While the difference between factors of

Ca=1× 10−5 and Ca=5× 10−6 is negligible, they are slightly different from

the factors of Ca=5 × 10−5 (used in Chapter 4). This implies that a lower

capillary number is a safer choice to model a CO2-brine flow which is a highly

capillary-dominated flow system. It also shows that a very low capillary

number is not necessarily needed to obtain an acceptable accuracy since the

factors from Ca=1× 10−5 and Ca=5× 10−6 are very close. Thus, one should
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choose an optimal capillary number to reduce computational costs while it

is able to result an acceptable accuracy. Among the three studied capillary

numbers, Ca=1 × 10−5 is the optimal capillary number to apply on other

configurations and shape factors.

Table B.3: The resulting filling factors for three different capillary numbers
from LB simulation of pore-body filling of I1 event with G = 0.040.

Shape factor f21 f31
Modified (Ca=5× 10−5) 0.694 0.428
Modified (Ca=1× 10−5) 0.632 0.390
Modified (Ca=5× 10−6) 0.626 0.386
Conventional 0.676 0.412
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