©) 2020 Qi Wang



SECURING EMERGING IOT SYSTEMS THROUGH SYSTEMATIC ANALYSIS AND
DESIGN

BY

QI WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair

Professor Klara Nahrstedt

Assistant Professor Adam Bates

Assistant Professor Kangkook Jee, University of Texas at Dallas



ABSTRACT

The Internet of Things (IoT) is growing very rapidly. A variety of IoT systems have been
developed and employed in many domains such as smart home, smart city and industrial
control, providing great benefits to our everyday lives. However, as [oT becomes increasingly
prevalent and complicated, it is also introducing new attack surfaces and security challenges.
We are seeing numerous loT attacks exploiting the vulnerabilities in IoT systems everyday.

Security vulnerabilities may manifest at different layers of the IoT stack. There is no single
security solution that can work for the whole ecosystem. In this dissertation, we explore the
limitations of emerging IoT systems at different layers and develop techniques and systems
to make them more secure. More specifically, we focus on three of the most important layers:
the user rule layer, the application layer and the device layer. First, on the user rule layer,
we characterize the potential vulnerabilities introduced by the interaction of user-defined
automation rules. We introduce iRuler, a static analysis system that uses model checking
to detect inter-rule vulnerabilities that exist within trigger-action platforms such as IFTTT
in an IoT deployment. Second, on the application layer, we design and build ProvThings,
a system that instruments IoT apps to generate data provenance that provides a holistic
explanation of system activities, including malicious behaviors. Lastly, on the device layer,
we develop PROVDETECTOR and SplitBrain to detect malicious processes using kernel-level
provenance tracking and analysis. PROVDETECTOR is a centralized approach which collects
all the audit data from the clients and performs detection on the server. SplitBrain extends
PROVDETECTOR with collaborative learning, where the clients collaboratively builds the

detection model and performs detection on the client device.
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CHAPTER 1: INTRODUCTION

The Internet of Things (IoT) is growing rapidly. The number of IoT devices deployed
worldwide is expected to reach 20.4 billion by 2020, forming a global market of 13 trillion
dollars [1]. The rapid expansion of [oT is providing great benefits to our everyday lives. For
example, smart homes now offer the ability to automatically manage household appliances,
while smart health initiatives have made monitoring more effective and adaptive for each
patient.

With the increasing of user requirements, [oT devices are becoming more complex. Voice
assistants, smart-home hubs, wearables, drones, and automobiles are just some examples.
Recent development of inexpensive and highly functional hardware [2, 3] has introduced cost-
effective ways to implement IoT devices running community-verified IoT operating systems
(e.g., Android Things [4] and Ubuntu IoT [5]). Leveraging existing full-fledged IoT operating
systems (OSes), it saves a lot of time and efforts to build highly functional IoT devices to
meet the growing and diversified computational demands. On the other hand, in response to
the increasing availability of smart devices, a variety of IoT platforms have emerged that are
able to interoperate with devices from different manufactures. Samsung’s SmartThings [6],
Apple’s HomeKit [7], and Google’s Android Things [4] are just a few examples. IoT plat-
forms offer appified software [8] for the management of smart devices, with many going so far
as to provide programming frameworks for the design of third-party applications. To sup-
port easier end-user customizations, many IoT platforms provide user-friendly programming
frameworks for the design of simple automation logic that enable customized functionality.
For example, IFTTT [9] and Zapier [10]. Currently, trigger-action programming (TAP) is
the most commonly-used model to create automations in IoT. Studies have shown that about
80% of the automation requirements of typical users can be represented by TAP and that
even non-programmers can easily learn this paradigm [11].

However, as long prophesied by our community, the expansion of [oT is also now bringing
about new challenges in terms of security and privacy. Recently, there are numerous IoT
attacks exploit the vulnerabilities in IoT devices [12, 13, 14, 15, 16, 17], protocols [18, 19],
apps and platforms [20]. In some cases, 0T attacks could have chilling safety consequences
— burglars can now attack a smart door lock to break into homes [14], and arsonists may
even attack a smart oven to cause a fire [21].

There are considerable challenges to protect IoT. First, new I[oT devices are released
and deployed every day. Exploits targeting [oT devices are also being developed by ad-

versaries at a similarly high pace, making the threats against IoT devices highly dynamic



and ever-increasing. Second, Most IoT devices have limited resource allocations. It is thus
a challenging task to build an effective host-based data collection and detection solution
that runs on minimal resources. Third, as [oT devices and IoT apps become interconnected
and chained together to perform an increasingly diverse range of activities, explaining the
nature of attacks or even simple misconfigurations will become prohibitively difficult; the
observable symptom of a problem will need to be backtraced through a chain of different
devices and applications in order to identify a root cause. Fourth, as IoT deployments grow
in complexity, so do their attack surface — as users further automate their homes, unexpected
interactions between the automation rules may give rise to alarming new classes of security

issues [22].

1.1 THESIS STATEMENT

[oT is a very complex ecosystem which contains heterogeneous devices, protocols, plat-
forms and applications. Following the established principles of layering and abstraction
in computer science, we observe that there is a layered or stack architecture in the IoT

deployments:

e User Rule Layer: At the topmost layer, end users, most of which are non-technical

customers, define automation rules to control their devices.

e Application Layer: The automation rules/logic are implemented as applications run-

ning in IoT platforms or IoT hubs.

o Communication Protocol Layer: The applications establish communication with the
devices using various connectivity protocols. These protocols are adapted to the con-
straints of the environment in which the devices are deployed. For instance, the BLE
(Bluetooth Low Energy) protocol is optimized for short ranges while being extremely

energy efficient.

e Device Layer: At the bottom layer, the physical devices conduct their sensing or

actuation functionalities.

Security vulnerabilities exist at all layers of the IoT stack and the attacks enabled at the
layers have varying levels of impact on the infrastructure. For instance, attackers can com-
promise an individual device by exploiting vulnerabilities in its running processes, leading

to device-specific exploitation; attackers can compromise a communication protocol leading



to protocol-specific exploitation; or attackers can compromise the applications running in an
IoT platform.

Dissertation Statement: There is no one-size-fits-all approach to secure all emerging loT
systems. We need to systematically analyze the IoT systems at different layers of the IoT
stack and design security solutions for different layers to secure IoT deployments.

In particular, in this dissertation, we systematically analyzed and deigned systems for the
most important three layers in the IoT deployments: the user rule layer, the application
layer and the device layer. My dissertation research takes a top-down approach: we study
the IoT systems from the user rule layer down to the device layer, as the problems in the
upper layers are more general than the lower layer. With a good understanding of the upper
layer, our systems designed for the lower layer can further strengthen our systems designed

for the upper layer.

1.2 DISSERTATION CONTRIBUTIONS

To support the dissertation statement, we make the following contributions:

e This dissertation presents a comprehensive characterization of inter-rule vulnerabilities
that exist within trigger-action platforms. To better understand trigger-action rule
bugs, we conduct a systematic analysis of the interactions between trigger-action rules

from different trigger-action platforms.

e This dissertation introduces a novel approach to automatically detect inter-rule vul-
nerabilities in trigger-action IoT platforms. We design and develop iRuler, a system
that performs Satisfiability Modulo Theories (SMT) solving and model checking to

discover inter-rule vulnerabilities within IoT deployments.

e This dissertation introduces a novel platform-centric approach to centralized auditing
in the Internet of Things. We design and implement ProvThings, a general and prac-
tical framework for the capture, management, and analysis of data provenance on IoT
platforms. ProvThings performs efficient automated instrumentation of IoT apps and
device APIs in order to generate data provenance that provides a holistic explanation

of system activities.

e This dissertation presents a new approach for detecting stealthy attacks that employ
impersonation techniques. We design and implement PROVDETECTOR, a practical ap-
proach for detecting stealthy malware using OS-level provenance analysis. PROVDE-

TECTOR first employs a novel selection algorithm to identify possibly malicious parts in
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the OS-level provenance data of a process. It then applies a neural embedding and ma-
chine learning pipeline to automatically detect any behavior that deviates significantly

from normal behaviors.

e This dissertation introduces a novel edge-cloud collaborative Al security system for
[oT. We design and develop SplitBrain, a distributed system in which the clients col-
laboratively train the detection models and perform the anomaly detection of malicious

processes on the device.

1.3 DISSERTATION ORGANIZATION

The rest parts of this dissertation are organized as follows. In Chapter 2, we present the
preliminary concepts of IoT systems. In Chapter 3, we introduce iRuler, a static analysis
system that uses model checking to detect inter-rule vulnerabilities that exist within trigger-
action IoT platforms. In Chapter 4, we present ProvThings, a system that instruments
IoT apps to generate data provenance that provides a holistic explanation of system activ-
ities. Chapter 5 introduces PROVDETECTOR, a centralized approach that uses kernel-level
provenance tracking and provenance analysis to detect malicious processes on devices. In
Chapter 6, we describe SplitBrain, a distributed architecture that enables on-device detec-
tion of malicious processes with federated learning. Lastly, in Chapter 7, we give closing

observations and discuss the future of research.



CHAPTER 2: PRELIMINARY CONCEPTS

In this chapter, we first provide background on different IoT systems. Then we briefly

introduce the concept of data provenance, which we will use in our proposed systems.

2.1 10T PLATFORMS AND SMART HOME PLATFORMS

[oT is increasingly moving to platforms which enable faster, better and cheaper develop-
ment and deployment of IoT solutions. In 2017, there are more than 450 IoT platforms in
the marketplace [23]. Many of them, such as SmartThings and AWS IoT [24], integrate
a comprehensive set of devices and enable custom IoT applications. To interoperate with
devices from different manufacturers, IoT platforms create a device abstraction (device API)
for each device so that IoT apps or other devices can read messages and interact with the
device. For example, SmartThings uses Device Handlers and AWS IoT uses Device Shadows
to abstract physical devices. Device abstractions are often created in the forms of custom
programs (e.g., SmartThings) or device SDKs (e.g., AWS IoT), which could serve as proxies
of the behaviors of physical devices.

As IoT is a sprawling and diverse ecosystem, we focus on home automation platforms,
which have the largest market share of IoT consumer products [23]. Smart home platforms
automatically manage the home environments and enable the users to remotely monitor and
control their homes. Generally, in a smart home, a hub is a centralized gateway to connect
all the devices; a cloud synchronizes devices states and provide interfaces for remote moni-
toring and control; an app is a program that manages devices to create home automation.t
At present, a variety of platforms compete within the smart home landscape. Table 2.1
summarizes the architectural differences of 6 of the most popular platforms. We observe
two categories of architectures: cloud-centric architectures in which apps execute on a cloud
backend, and hub-centric architectures where apps run locally within the home [30]. Cur-
rently, the cloud-centric architecture is the most popular architecture [31], an example of
which is shown in Figure 2.1. Across all platforms, a central point of mediation exists (i.e.,
hub or cloud) for control of connected devices. Finally, while not all products feature an

app market, the logic of both appified and unappified platforms is largely specified in terms

aAvailable at https://github.com/SmartThingsCommunity/SmartThingsPublic

b Available at http://apps.mios.com/

¢Available at https://developer.android.com/things/sdk/samples.html

I Different IoT platforms use different terms to refer the same concepts. For example, a physical smart
device is termed device [28] in Samsung’s SmartThings, while is termed accessory [29] in Apple’s HomeKit.



Table 2.1: A comparison of several popular home automation platforms, describing whether
Apps Run On the cloud or the hub, Devices Connect To a local hub or a remote cloud, 3rd
Party Apps are permitted, and the number of Official Apps available for download (as of
May 2017).

Apps Devices 3rd Part Official
ToT Platform Rurrl)pOn Connect To Apps Y Apps
SmartThings [6] cloud hub Y 181
Wink [25] cloud hub N N/A
Iris [26] cloud hub N N/A
Vera, [27] hub hub Y 236 P
HomeKit [7] hub hub N N/A
Android Things [4] cloud cloud Y 12 ¢
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Figure 2.1: SmartThings architecture overview.

of a trigger-action programming paradigm [11].

Samsung SmartThings. Due to its maturity, in our work we consider SmartThings as
an exemplar smart home platform. The SmartThings architecture is cloud-centric and also
features a hub, a design that is common across several platforms including Wink and Iris.
The overview of the SmartThings architecture is shown in Figure 2.1. It consists of three
major components: the SmartThings cloud backend, the hub, and the SmartThings mobile
app. The cloud backend runs SmartApps (i.e., IoT apps) and Device Handlers (i.e., device
abstractions), which are Groovy-based [32] programs. The hub, which supports multiple
radio protocols, interacts with physical devices and relays the communication between the
cloud and devices. The mobile app is used to install apps, receive notifications and control
devices remotely. A SmartApp is a program that allows developers to create custom automa-
tions for their homes. Figure 2.2 shows a SmartApp which logs the events of a lock device
and sends the event data to a web server. A Device Handler is a virtual representation of
a physical device, example of which is provided in Appendix A.2. It manages the physical
devices using lower level protocols and exposes interfaces of a physical device to the rest of
the platform. SmartApps and Device Handlers communicate in two ways. First, SmartApps
can invoke the commands a device supports (e.g., lock or unlock the door) via method calls

to a device handler. Second, SmartApps can use the subscribe method to subscribe to the



1 |preferences {

2 input "lock", "capability.lock"

31}

4 |def installed() {

5 subscribe (lock, "lock", eventHandler)
6 |

7 |def eventHandler (evt){

8 def name = evt.name

9 def value = evt.value

10 log.debug "Lock event: $name, $value"
11 def msg = "Lock event data:" + value
12 httpPost ("http://www.domain.com", msg)
13 |}

Figure 2.2: An example SmartApp that monitors the events of a smart lock.

events of a device (e.g., motion detected).

SmartThings uses a capability model to govern what devices a SmartApp may access. A
capability consists of a set of commands and attributes. For example, the capability.switch
capability has two commands: on() and off (), and has an attribute switch that represents
the status of the switch. SmartApps state the capabilities they need and Device Handlers
states the capabilities they support. The end-user binds Device Handlers to SmartApps at

the app installation time.

2.2 TRIGGER-ACTION IOT PLATFORMS

Home automation [oT platforms commonly use the trigger-action programming paradigm,
which provides an intuitive abstraction for non-technical users wishing to automate their
devices. Broadly, a trigger-action (TA) program specifies that when a certain trigger event
occurs (e.g., motion is detected), one or more actions (e.g., turn on the light) should be
subsequently executed. Emerging trigger-action models are also becoming more expressive
through the introduction of advanced features. In Table 2.2, we compare the trigger-action
models in 5 popular smart home platforms and 3 popular task automation platforms. While
we note the differences between these platforms, our study considers a generalized trigger-
action model in which each rule can have one trigger, one or more actions, and a condition

associated with each action.

Trigger-action Rule Chaining.  The power of the trigger-action programming paradigm
is that rules can be chained together [22]; the execution of an action can invoke another
trigger event, causing another rule to execute. There are two ways rules can be chained,

examples of which are given in Figure 2.3 in the form of trigger-action graphs: rules A and
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Table 2.2: A comparison of several popular trigger-action platforms, which vary in their sup-
port for conditions, rules with multiple actions, parameter passing from triggers to actions,
and a rule store.

Support Multiple Trigger Values Rule
Platform Conl(:)ili)tions ACtiOI;’)IS useggin Actions | Store
SmartThings [6] v v v v
IFTTT [9] v v v v
openHAB [33] v v 4 4
Microsoft Flow [34] v v v v
Zapier [10] X v v v
HomeKit [7] X X X X
Iris [26] X X X v
Wink [25] X X X X

B are Explicitly Chained if (1) A’s action and B’s trigger belong to the same service and
(2) executing A’s action directly satisfies B’s trigger event; rules A and B are Implicitly
Chained if (1) A’s action and B’s trigger connect to a global shared medium or state and

(2) executing A’s action manipulates the shared medium such that B’s trigger is satisfied.

The IFTTT Platform.  If-this-then-that (IFTTT) [9] is a web-based task-automation plat-
form which allows users to connect different services to create automations using the trigger-
action paradigm. Services are typically published by third parties, facilitating interoperabil-
ity with smart devices (e.g., Nest thermostat) or online services (e.g., Gmail and Facebook).
Each supported service publishes a set of triggers and actions that are akin to a service API.
A trigger is a source of events in a service. For example, a trigger in the Nest thermostat
service is “Temperature drops below”, which fires every time the temperature drops below
a threshold. An action is a task that a service can perform, e.g., sending an email. An
applet (i.e., a rule) is an automation program that consists of one trigger and one or more
actions. For example, a user can create an applet to send an email if the temperature drops
below a threshold. Most triggers, like the one above, have trigger fields that determine under
what circumstances the trigger event should occur. Similarly, most actions have action fields
which are the parameters of the action. Each trigger also has ingredients (i.e., parameters)
which are basic data available from the corresponding trigger event. For example, the sub-
ject and the sender’s email address are two ingredients of an email trigger. In an applet,
trigger ingredients can be used as part of a parameter by an action. An applet developer
can also set further conditions on the invocation of an action by using the filter code feature,
which adds extra flexibility in the form of a TypeScript [35] code snippet. The filter code
has access to the data returned by the trigger and metadata like the current time. It can
use the information to override action field values or skip an action. An example filter code

snippet is provided in Appendix A.1.



Motion _ of Temperature
Detected High

(a) Rule 1 and Rule 2 are explicitly linked through  (b) Rule 1 and Rule 2 are implicitly linked through
Service 2. the temperature.

Figure 2.3: Trigger-action graphs depicting (a) explicit chaining and (b) implicit chaining.
Solid and dotted-line edges represent explicit and implicit chains, respectively.

2.3 THE GROWTH AND RISKS OF HIGHLY FUNCTIONAL IOT DEVICES

With the development of hardware technology and increased connectivity, IoT devices are
becoming more complex. Instead of residing on primitive hardware with micro-controller
units (MCUs) and kilobytes of memory, today’s IoT applications run on more powerful
hardware with full software stacks. To facilitate fast development and easy deployment,
[oT devices have embraced new OS implementation that is customized for IoT to meet the
growing and diversified functionality requirements. There are a mix of open-source and
closed-source IoT OSes, such as Google’s Android Things [4], Windows IoT Core [36], and
Ubuntu Core [5]. These OS-enabled IoT devices include both enterprise devices (such as
routers, switches and network attached storages) and consumer devices (such as security
cameras, DVRs, smart speakers, and connected automobiles). ABI Research forecasts that
21 billion IoT devices will ship with embedded operating systems by 2022 [37].

While connected to the public Internet, these highly functional IoT devices are often used
to locally control a number of MCU-like simple IoT devices. For example, home automation
solutions use voice assistant devices as a connection and control hub for devices like light
bulbs. As another example, automobiles dedicate a connection gateway (CGW) as an inter-
face on behalf of in-vehicle infotainment systems (IVI) and in-car physical devices controlled
by the electronic control unit (ECU).

As IoT devices become more sophisticated, they are more prone to expose vulnerabilities
and to create viable attack routes for attackers to the target systems. Recent IoT attack
campaigns, such as Mirai [16] and VPNFilter [17] , have highlighted the severe consequences

of attacks exploiting these devices.

2.4 DATA PROVENANCE

Data provenance describes the history of actions taken on a data object from its creation

up to the present. Provenance can be used to answer a variety of historical questions about



the data it describes, such as “In what environment was this data generated?” and “Was this
message derived from sensitive data?”. Conversely, provenance can also answer questions
about the successors of a piece of data, such as ” How has my data been used?”. Data
provenance supports a wide variety of applications such as network troubleshooting [38, 39,

40], forensic analysis of attack [41, 42], and secure auditing [43, 44].
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CHAPTER 3: UNDERSTANDING AND DISCOVERING INTER-RULE
VULNERABILITIES

Facilitated by programming abstractions such as trigger-action rules, end-users can now
easily create new functionalities by interconnecting their devices and other online services.
However, when multiple rules are simultaneously enabled, complex system behaviors arise
that are difficult to understand or diagnose.

In this chapter, we present our work on the user rule layer of IoT. In this work, we
conduct a comprehensive analysis of the interactions between trigger-action rules in order to
identify their security risks. We characterize the inter-rule vulnerabilities that exist within
trigger-action platforms. To aid users in the identification of these dangers, we go on to
present iRuler, a system that performs Satisfiability Modulo Theories (SMT) solving and
model checking to discover inter-rule vulnerabilities within IoT deployments.
Acknowledgements. This chapter is based on the work [45] supported in part by NSF
CNS 13-30491, NSF CNS 17-50024, and NSF CNS 16-57534.

3.1 INTRODUCTION

[oT has evolved from isolated single devices to integrated platforms that facilitate interop-
erability between different devices and online services (e.g., Gmail). Samsung’s SmartThings
6], Apple’s HomeKit [7], IFTTT [9] and Zapier [10] are just a few examples. IoT plat-
forms support end-user customizations, with many going so far as to provide programming
frameworks for the design of simple automation logic that enable customized functionality.
Currently, trigger-action programming (TAP) is the most commonly-used model to create
automations in IoT. Studies have shown that about 80% of the automation requirements of
typical users can be represented by TAP and that even non-programmers can easily learn
this paradigm [11].

Unfortunately, as IoT deployments grow in complexity, so do their attack surface — as
users further automate their homes, unexpected interactions between the automation rules
may give rise to alarming new classes of security issues [22]. Consider the possibility that a
user has installed the rule If temperature exceeds 30 °C, then open my windows; while this
may be innocuous in isolation, it could be leveraged by an attacker to gain physical entry
to the house if the user has also installed the rule (If you say) “Alexa, trigger heater”, then
turn the heater on. While IoT presents a variety of novel security challenges, the threats
created by the ease of trigger-action automation are worthy of careful consideration.

Reasoning about the security of trigger-action IoT platforms requires a precise under-
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Figure 3.1: Interaction of rules between popular home security services from real-world
examples [46]. Rules are represented as hexagon vertices, triggers using oval vertices, actions
using rectangle vertices, and services using cloud vertices.

standing of the interplay between trigger-action rules. The circumstances under which the
interactions between two rules should be designated as a bug or vulnerability, as opposed to
a feature, are not presently clear. Even among small rulesets, such as the real-world example
shown in Figure 3.1, it is not immediately obvious whether this composition of 5 rules could
lead to a breach in the user’s home security system; in fact, because the three rules (72,
r4, r5) all modify the security mode of the user’s Somfy Home Security System, there is a
legitimate risk that the system could reach an unsafe state. What further frustrates analysis
is the fact that trigger-action IoT ecosystems are closed-sourced and developed by a variety
of third parties, rendering existing program analysis techniques unusable.

To better understand trigger-action rule bugs, we first exhaustively explore the space
of inter-rule vulnerabilities within trigger-action IoT platforms. This taxonomy of inter-rule
vulnerabilities attempts to systematize problems identified by other recent work in this space
[47, 48, 49, 50] and uncovers new subclasses of this vulnerability. Then, we leverage formal
methods to enable the detection of these bugs; we present the design and implementation
of iRuler, an IoT analysis framework that leverages Satisfiability Modulo Theories (SMT)
solving and model checking to discover inter-rule vulnerabilities.

We evaluate iRuler against a real-world dataset of 315,393 applets found on the IFTTT
website. iRuler detects vulnerabilities in specific configurations of IoT deployments, but at
present robust data on realistic configurations is not publicly available. To address this, we
develop a method for synthesizing plausible rulesets based on publicly-visible install counts

of IFTTT applets. By testing iRuler on these synthetic configurations, we discover the
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widespread potential for inter-rule vulnerabilities in the IFTTT platform, with 66% of the

rulesets being associated with at least one such vulnerability.

3.2 BACKGROUND

3.2.1 Model Checking and Rewriting Logic

Model checking [51] is a technique that checks if a system meets a given specification by
systematically exploring the system’s state. In an ideal case, a model checker exhaustively
examines all possible system states to verify if there is any violation of specifications.

Rewriting logic [52], a logic of concurrent change that can naturally deal with state and
with concurrent computations, offers a clean-yet highly expressive-mathematical foundation
to assign formal meaning to open system computation. In rewriting logic, concurrent com-
putations are axiomatized by (possibly conditional) rewrite rules of the form [ — r, meaning
that any system state satisfying the pattern [ will be transited to a system state satisfying
the pattern r. For any given state, many rewrite rules can be active, thus allowing for
non-determinism. Rewriting logic has been used to model and analyze different distributed

systems [53, 54, 55, 56].

3.3 THREAT MODEL AND ASSUMPTIONS

We consider an adversary that seeks to covertly compromise an IoT deployment via rule-
level attacks that target the logic layer of an 10T platform. Rule-level attacks seek to subvert
the intent of the end user by exploiting the interactions of the IoT automation rules. Such
interactions may enable the attacker to execute privileged actions, cause denial of service
on devices or access sensitive information belonging to the user. These attacks are enabled
solely through the invocation of automation rules that were legitimately installed by the user.
There are many scenarios through which an attacker could create or detect the opportunity

for rule-level attacks.

e FEaxploitation: An adversary discovers an exploitable interaction between two or more benign

apps or invokes a trigger event through manipulation of a 3rd party service [57].

o Targeted Rules: An adversary tricks a user into installing rules that enable an attack, e.g.,

through phishing or social engineering.
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e Malicious Apps: An adversary develops and distributes a malicious app that contains

hidden functionality [20, 58, 59, 60].

Recent work has considered powerful adversaries that obtain root access to devices [16]
or compromise communication protocols [19], which are out of scope in this work. While
important, these strong adversarial models run the risk of downplaying the potential dangers
posed by everyday attackers without advanced technical knowledge. Prior work has demon-
strated that IoT end users often make errors in writing trigger-action rules [61, 62, 63].
Since they are often unaware of the implications of rules interactions, it stands to reason
that users’ creation, deletion, or misconfiguration of rules leads to security vulnerabilities
in their homes. Our threat model also accounts for the safety risks of benign misconfigura-
tions, which pose a real-world threat. We thus argue that rule-level attacks are an important
consideration for IoT security, and note also that similar threat models have appeared in
related work [47, 48, 58, 60, 64].

3.4 CHARACTERIZATION OF INTER-RULE VULNERABILITIES

In this section, we consider and define the interference conditions for trigger-action rules,
which we call inter-rule vulnerabilities. For generality, we define each inter-rule vulnerability
as a property of an abstracted information flow graph for an IoT deployment; we concretize
these definitions in later sections once the state for various devices and automation rules are
known.

Consider the graph G =< V, F > that encodes the active automation logic for an IoT
deployment. Vertices V' can be of type T', C, or A, respectively representing triggers, con-
ditions, and actions. All edges carry state from one vertex to another, but this state is
device and configuration-specific; for now, we only define an abstract state for condition
vertices as a boolean flag, i.e., STATE(c) € {0,1}. Edges that flow into conditions may
update this state, i.e., ON(c) or OFF(c). Null conditions can also exist in the graph where
STATE(c) = 1 always. An individual rule R; is given by {¢;, ¢, a;}; rule vertices are oth-
erwise elided. Using the above system, events in the IoT deployment can be represented as
path traversals in graph G. An event trigger ¢ being fired is represented by ACTIVATE(t),
which causes branching traversal of the outbound directed edges of vertex t. Traversal auto-
matically proceeds from all trigger and action vertices, leading to additional ACTIVATE(t)
and ACTIVATE(a) events. Traversal only proceeds from condition vertices if STATE(c) = 1.
Traversal concludes when all paths have reached either a childless action vertex or a condi-
tion vertex where STATE(c) = 0. A path p € P describes the series of valid transitions that
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Figure 3.2: The condition bypass vulnerability. Two paths exist from ¢, to a, and ¢; # ¢.
The red line shows a rule chain to bypass c¢,.

rx /-—@—' T
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(a) Not enough rules (b) Active blocking

Figure 3.3: Condition blocking scenarios. In 3.3a, removing a; will make ¢, unsatisfiable. In
3.3b, a;’s activation makes ¢, unsatisfiable.

occurred in the graph traversal, with the set P defining all valid paths.
We now enumerate the space of inter-rule vulnerabilities in terms of properties of IoT
information flow graphs. We will do so with respect to a benign rule R, = {t;, c, a,} and

(when necessary) an interference rule R; = {t;, ¢;, a;}.

Condition Bypass. Security-sensitive actions (e.g., open the window) are often guarded by
some security conditions (e.g., I am at home). However, when a trigger is fired, all associated
rules are activated; if there are multiple paths to the security-sensitive action, the burden is
on the user to apply the condition for all active rules. The security guarantee of an action

thus follows the weakest precondition, creating the potential for condition bypass:

dpe Pst {th,an} €pA{a} ¢p (3.1)

Condition bypass is visualized in Figure 3.2. As an example of this threat, consider the rule

“If temperature is higher than 30 °C, when I am at home and time is between S8am to Gpm,

then open the window”. If another rule exists with a null condition, i.e., “If temperature is

higher than 30 °C, then open the window” then the prior condition is trivially bypassed.

Condition Block. An alternate vulnerability related to conditions is that a given condition
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Figure 3.4: (a) Action reverting: aj has the opposite effect as action a;. (b) Action conflict:
t, activates a, and @ in an unknown order.

is simply unsatisfiable. Broadly, the definition for condition blocking can be given as follows:
Vpe P, ACTIVATE(a;) — OFF(c) (3.2)

We identify two scenarios in which condition blocking is a potential issue, Not Enough Rules
and Active Blocking, visualizations for which are shown in Figure 3.3. For the former sce-
nario, a condition may depend on other devices’ states but there is no rule to manipulate the
state in such a way to satisfy the condition. For example, if a user has a rule “If motion is

detected at the door when home is in_armed state, then send me a notification”. If no action

in the deployment sets the home’s security system to the armed state, this condition cannot
be satisfied. Conversely, when Active Blocking occurs there is a buggy or malicious rule that
actively disables the condition before the action can be activated. For example, another rule
using the “If motion is detected at the door” trigger could specify an action that sets the
home’s security system to the disarmed state. In either case, the user’s intended action is

unreachable.

Action Revert. An alternate mechanism for preventing an action from having its intended
effect is to immediately reverse it. For a given action a;, let there be an opposite action aj

that negates the a;’s effect. With this in mind, action reverting can be defined as:
dpe P st. ACTIVATE(ay) = ACTIVATE(ay) (3.3)

Action reverting is shown in Figure 3.4a. The reverting action pair shown here could be
lock and unlock commands on a door. It is also possible that a, = aj, e.g., an action that

toggles a switch.

Action Conflict. In contrast to action reverting, which deterministically negates a;, ac-

tion conflicts activate a, and a; in a non-deterministic ordering, potentially putting the
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deployment in an unstable or unknown state. Action conflicts are defined as:

I p1,pa € P st {ty,ap} € p1 Aty a,} € p2 Ap1 € po (3.4)

That is, there exist paths from t, to both a, and aj, but the former path is not a subset
of the latter path. In an action conflict, a door could be left in either a locked or unlocked
state depending on non-deterministic state in the IoT platform. For ease of intuition, in the
above definition we consider an action conflict that arises based on the same trigger, but
in fact an even more general definition would accommodate different triggers. For example,
the rules “When motion s detected, unlock the door” and “Everyday at 11pm, lock the door”

will conflict if motion is detected at 11pm.

Action Loop. Intuitively, this vulnerability describes when an action’s activation cyclically

leads to its own re-activation. We can define action looping as follows:
dpe€ P st. ACTIVATE(ay) — ACTIVATE(ay) (3.5)

An example of action loop are the rules “If the bedroom light is turned on, then turn off the

living-room light” and “If the living-room light is turned off when the home state is away,

then turn on bedroom light”. Further, attacks that exploit the action loop condition have
previously been presented in the literature. For example, an attacker can use an action loop
on a smart bulb to create strobe light that could potentially induce seizures [15]. An attacker

can also use action looping as a side channel to leak information [58].

Action Duplicate. Unexpected duplicate activation of an action can lead to user harm.
For example, the duplication of an action to inject some medicine could cause health problem
to a patient, or a duplicate transaction can cause financial loss. Action looping is an instance

of the action duplication vulnerability; a more general definition is as follows:

3 P1, P2 € P s.t. {ab} e pr A\ {ab} € pa A ?é P2 (36)

In addition to action looping, this definition accommodates the duplicate actions being
invoked by the same or different triggers. Another circumstance in which action duplication
arises is the event where one action in the deployment configuration subsumes another action,
which we do not define here but account for when concretizing rules in the subsequent

sections.
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Figure 3.5: The architecture and workflow of iRuler. RR: Rule Representations; IR: Inter-
mediate Representation.

3.5 APPROACH: IRULER

In this section, we describe iRuler, our tool to detect inter-rule vulnerabilities in TA
rulesets. The architecture and workflow of iRuler is shown in Figure 6.2. Given a set
of IoT apps from a TA platform, the Rule Parser extracts trigger-action rules from the
apps and transforms the rules into Rule Representations (RR). The Model Builder takes
the rule representations, device metadata and the user’s deployment configuration as input
and generates an Intermediate Representation (IR) of the IoT deployment. The Checking
Engine performs checking over the IR and outputs potential inter-rule vulnerabilities as
introduced in Section 3.4. It is then up to the user to determine the severity of the warning
and whether or not to correct the rules. In Figure 6.2, the components in yellow are provided
by the user, the components in green are platform-specific and the components in blue are
platform-agnostic. Our tool can be easily extended to another platform by implementing a
rule parser and building device metadata for the platform. Below we discuss each component

in more detail.

3.5.1 Rule Parser

An IoT app could contain multiple TA rules. The rule parser first extracts all the rules in
the app, then transforms the rules into uniform rule representations which are used by the
model builder. Listing 3.1 shows the format of our rule representation. A rule is composed of
a trigger and one or more actions. A trigger is defined as an event with a constraint and an
event is defined in terms of subject (e.g., a certain device) and attribute. For example, the
trigger “if temperature drops below 30” is represented as temperature_sensor.temperature <

30. The event here is the value change in the measurement of the temperature sensor. An
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Listing 3.1: The iRuler rule representation format.

rule ::= (trigger) (action)+

trigger ::= (event) (constraint)

action ::= (condition) (subject).(command) (arguments)
event ::= (subject).(attribute)

condition ::= logical expression | null

constraint ::= logical expression | null

action comprises a condition, the subject, the command to execute and the arguments
to the command. A condition or a constraint could be null (i.e., no condition) or a logical
expression. The difference between them is that a constraint is a predicate over the event

data while a condition could be a predicate over other subjects.

3.5.2 Formal Modeling with Model Builder

The model builder generates a model of the [oT deployment using rule representations,
deployment configuration describing the user’s IoT deployment (e.g., the types of devices
and where they are located), and device metadata. It then generates an intermediate repre-
sentation for the checking engine. As an IoT deployment is essentially a distributed system
interacting with a nondeterministic environment, we model the deployment as an event-
based (e.g., device events and time events) transition system and we model the transitions

with rewriting logic. Below we describe how we model different aspects of an IoT system.

Device/Service Modeling. Each device has a set of attributes, representing the states
of the device, and supported commands (i.e., actuator capability). For example, a heater
device may have a switch attribute and two commands turn on and turn off. A device
command can change the values of one or more attributes, e.g., the turn_on command sets
the value of the switch attribute to “on”. Further, the execution of a command can affect
one or more environmental variables, e.g., the turn_on command can affect the temperature
environmental variable. Devices can also observe multiple environmental variables (i.e., sen-
sor capability). For example, a temperature sensor monitors the environment temperature.
Each device instance is modeled as a device object, i.e., an instance of a particular device
type. For example, a heater instance is modeled as < oid : Heater | switch : _ >, where oid
is the id of the device.

Device State Transitions.  To model the interaction of rules, it is important to model the
state transitions of devices (or services) as the action of a rule could cause a state transition

which invokes the trigger of another rule. For a device command that can change the
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device’s attributes, we model the command execution as a transition from one device state
to another. The value change of a device attribute is modeled as a device event. For example,
the turn_off command of the heater is modeled as a transition from state < switch : on >
to state < switch : off > with a switch change event Event(oid, switch : off) where oid is the
id of the device.

Environment Modeling. Implicit chaining is achieved through environmental variables
such as temperature. We model each environmental variable as an environment object, for
example, < env.temperature | value : _ >. As a device usually only observes or affects
environmental variables in the same place the device is deployed, we consider the same type
of environmental variable in different zones (locations) as different variables. For example,
the temperature of the bedroom and the temperature of the living room are treated as
two different variables. Further, when the value of an environmental variable is updated,
the corresponding attribute of a device that observe the variable will also be updated. For
example, when the value of env.temperature bedroom is changed, the temperature attribute
of a temperature sensor in the bedroom will be updated to the same value. This is achieved
with parallel state transitions which change both the environment object and the device
object. If no location configuration is provided for a device, we consider it as deployed
in the common zone. Note that, our main purpose for environment modeling is to model
the implicit chaining of a device’s command to another device’s event (e.g., temperature is
higher than 30). Thus, we model each environmental variable with discrete values. A full
modeling of environmental variables, such as dealing with real-time continuous environments
with dynamic laws and time delays, and modeling correlations of environmental variables

are out of our scope.

Time Modeling.  We support temporal behavior modeling by modeling time as a monoton-
ically increasing variable. Time advances when there is no other transition available. Time-
based triggers (e.g., a timer at 8 am) are modeled as time events when the time variable
advances to the specific values. For device actuation that can affect environmental variables,
we make state transitions of the environment objects to update their values as time advances.
The updates are made based on the effects caused by the actuation. Currently, we support
increase (i.e., increasing by a rate), decrease (i.e., decreasing by a rate) and change to effects
(i.e., directly changing to a value). For example, if a heater increases the temperature with
a rate r. For each time unit that the switch attribute of the heater is “on”, we make a state
transition from < env.temperature | value : T' > to < env.temperature | value : T + r >. If
no rate r is provided, we use 1 as default. One optimization we use to reduce system states

is to update the values of time and environmental variables only with the values used in the
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ruleset. For example, if there are two timers, one at 8 am and the other at 9 am , in the
rules, we will advance time from 0 to 8 am then to 9 am instead of advancing the time by

one time unit in the transitions.

Device/Service Metadata.  The device metadata contains the necessary information for
device modeling and environment modeling. For example, it defines the attributes and com-
mands of a device type, the effects on environmental variables (e.g., increasing temperature)
of a command, and state transitions of a device command (i.e., what events will be gen-
erated by the execution of a command). Device/Service metadata can be constructed by
analyzing the documentation of an IoT platform or provided by the platform developers or
experts [65, 66]. For the IFTTT platform, we construct the service metadata by crawling
the web page of each service to get what triggers and actions the service supports. We show

examples of a device metadata and a service metadata in Appendix B.

Intermediate Representation.  The model builder could generate intermediate representa-
tion for different model checkers. Due to its maturity and expressiveness, we use Maude [67],
which is a language and tool that supports the formal specification and analysis of con-
current systems in rewriting logic [68], as our checking engine. With rewriting logic, an
[oT system, which is a concurrent system, can be naturally specified as a rewrite the-
ory R = (3,E,R) with (X, F) an equational theory describing system states, and R
rewrite rules describing the system’s concurrent transitions. Rewrite rules of the form
cl [I] : () = ¢(7, ) if ¢(2, ) describe an I-labeled transition in an open system
from an instance of ¢ to the corresponding instance of ¢’; the extra variables 7 on the right-
hand side of the rule are fresh new variables that can represent external nondeterminism
(e.g., sensor probing); ¢ is a constraint solvable by an SMT solver. In the generated inter-
mediate representation, devices, environmental variables and time are modeled as objects;
events and commands are modeled as messages; state transitions and trigger-action rules are
modeled as rewrite rules (7] for rules and crl for conditional rules). Consider an example
of an IoT deployment consisting of a temperature sensor sensor sensing the temperature
from the environment and an air conditioner ac, which collaborate to maintain the in-house
temperature at a desired setpoint. In this case, the state of the system can be modeled
as < ac | setpoint : _, switch : _ >, < sensor | temp : _ >, < env.temp | temp : _ > and
< Time | time : _ >, where the attributes time, temp, and setpoint are integers representing
the wall-clock, the temperature in the house, and the desired temperature setpoint, respec-
tively, and the attribute switch is a Boolean referring to whether the air conditioner is turned
on or off. Note that time and temp are under control of the environment, while setpoint and

switch are under control of the system. The state transitions can then be modeled by the
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following three rewrite rules in Listing 3.2:

Listing 3.2: Example Rewrite Rules

crl [turn-on]

(< ac | setpoint:S, switch:false >
< sensor | temp:T > ; ¢)
— (< ac | setpoint:S, switch:true >
< sensor | temp:T > ; ¢ AT > 8) if sat(¢ A T > S)

crl [turn-off]
(< ac | setpoint:S, switch:true >
T HRO))
— (< ac | setpoint:S, switch:false >
:T > ;3 ¢ AT < 8) if sat(¢ A T < 8)

< sensor | temp:

< sensor | temp
rl [time-advance]
< Time | time:R > < Temp | temp:T > < sensor | temp:T >

— < Time | time:R+1 > < Temp | temp:T’ > < sensor | temp:T’ > .

Rules [turn-on] and [turn-off] model the situations in which the temperature sensed by the
sensor exceeds the setpoint or not, and thus the air conditioner is turned on or off. Rule
[time-advance] models the advance of wall-clock time (advancing the timer by one time unit
in this case) and the state transition of temperature and the sensor. Note that the extra
variable 7" indicates the external nondeterminism resulting from temperature changes in
the house. Also note that we embed in the system state the constraints (e.g., ® A T > S)
along the way during the system transitions, which will be solved by the SMT solver in the

symbolic reachability analysis.

3.5.3 Formal Analysis by Checking Engine

The checking engine takes the IR as input and uses rewriting modulo SMT [69] to discover
inter-rule vulnerabilities. Rewriting modulo SMT is a symbolic technique combining the
power of rewriting modulo theories, SMT solving, and model checking. For each combination
of device states, we use it as an initial state to check the vulnerable properties as defined in
Section 3.5.2. Since our goal is to find existence of violations, we use the search command
to search a reachable state that reveals the vulnerabilities. As an example, the following
search command in Listing 3.3 looks up to 1 solution and a search depth 15 for a reachable
state in which the air conditioner is turned on, while the temperature sensed by the sensor

from the house does not exceed the current setpoint:

Listing 3.3: Example Search Command

search [1,15] (< sensor | temp: T:Integer > < ac | setpoint: S:Integer, switch: false > ;
true) =>* (< sensor | temp: T’:Integer > < ac | setpoint: S:Integer, switch: true > ;

B’:Boolean) such that sat(T’:Integer <= S:Integer and B’:Boolean)
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Figure 3.6: Average number of vulnerabilities discovered for different configuration synthesis
strategies (averaged over 50 trials per number of rules). Different inter-rule vulnerability
classes are separated by color; Conflict_2 stands for action conflict with different triggers
and Duplication_2 stands for group action duplication (i.e., one action subsumes another
action). Duplication violations can exceed # of rules because a single action can be involved
in multiple duplications.

Note that the true on the left-hand side of the arrow indicates no initial constraints. Similar
with [48], we perform bounded model checking [70, 71] with the argument like “[1,15)”
to bound the search task to a certain depth to reduce the search space. The search-based
model checker returns either a vulnerable state reachable from the initial state or no solution,
indicating no such vulnerability.

Besides the inter-rule vulnerabilities, our tool can also check other properties using the
built-in LTL (Linear Temporal Logic) [72] model checker. For example, the air conditioner
will be turned on if the in-house temperature exceeds the desired setpoint. The follow-
ing command in Listing 3.4 analyzes, from the initial state, if the air conditioner will be

eventually turned on in all reachable states once the temperature is above the setpoint:

Listing 3.4: Example Model Checking Command

reduce modelCheck(init, above(Cl:Config) -> []1<> on(C2:Config)) .

Note that above and on are two user-defined predicates on the system states. The temporal
operator — represents the notion of “implication”, and [J ¢ the LTL notion of “always

eventually”.

3.6 EVALUATION

In this section, we examine the potential for inter-rule vulnerabilities within the IFTTT

ecosystem.
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3.6.1 Dataset

We conduct our evaluation on a dataset crawled from the IFTTT website in October
2018 using the methodology introduced by Ur et al. in [63]. The data we collect is entirely
public and includes only metadata about the published applets and services — all user data
in IFTTT is private, and thus not contained in our dataset, with the exception of aggregate
applet install counts which are made public.! Our crawl identifies 315,393 applets and 674
services. The applets make use of 1,718 distinct triggers and 1,327 distinct actions. The
applets were written by either service providers or 131,768 third-party authors (i.e., users).
Some components of IFTTT applets are not publicly visible, making us unable to discover
certain classes of inter-rule vulnerabilities; for example, because applet filter code is not
public, we cannot analyze IFTTT for the condition bypassing vulnerability. Instead, we
limit our evaluation to action loop, conflict, revert, and action duplicate vulnerabilities.

The security of a given IoT deployment ultimately depends on its configuration, i.e., the
currently active set of rules. However, we are not aware of a publicly available dataset that
describes how actual users configure their IoT deployments; for example, on IFTTT each
user’s installed rules are private. This knowledge gap is not specific to our study but belies
a broader limitation in state-of-the-art IoT security research. Unfortunately, without an
accurate picture of IoT configurations, we are limited in our ability to identify real-world
vulnerabilities in smart homes.

In order to evaluate iRuler, we make the observation that IFTTT actually exposes a limited
amount of usage information that will allow us to approximate realistic IoT configurations.
We leverage this usage information in the form of 3 competing heuristics for synthesizing

plausible trigger-action rule sets:

e [nstall Count Strategy. IFTTT reports the total number of installations of each applet.
We normalize these install counts to assign each applet a weight and construct an IoT
configuration of r rules by performing a weighted random walk starting at a random point
in the IFTTT information flow graph. This strategy reflects the intuition that popular

applets are more likely to be simultaneously installed.

o Service-Based Strategy. We construct an [oT configuration by randomly selecting a small
number of services, then randomly selecting r rules from within those services. This strategy

reflects the intuition that a user is likely to make use of only a small number of services.

e Author-Based Strategy. In IFTTT, authors have the option of sharing their applets publicly.

'We argue that this is analogous to security surveys of mobile app markets (e.g., [73]) and therefore
consistent with community norms governing ethical data collection.

24



100 100

80 80
I X
% 60 87 60
& 8
5 5 I
S 40 8 40
(0] [0}
o o |

20 Il 20 Kl I‘ | 1

: ! G Il
0 10 20 30 40 50 60 0 10 20 30 40 50 60
# of rules # of rules
(a) Including duplication (b) Excluding duplication

Figure 3.7: The percentage of applet authors whose applets have at least one vulnerability.

We construct an IoT configuration by assuming that an author has all of their public applets
simultaneously installed. This strategy reflects the intuition that authors are likely to use

their own applets.

We compare each of these heuristics to a baseline Random Strategy that uniformly selects
at random r rules from the IFTTT dataset. Thus, our findings will not only serve to validate

iRuler but also characterize the potential for real-world inter-rule vulnerabilities.

3.6.2 Results

We apply each IoT configuration synthesis strategy for variable numbers of rules between
2 and 60, reporting the average number of discovered violations across 50 trials. Figure 3.6
shows the average number of vulnerabilities identified as the number of active rules increases
using the Random Strategy, Install Count Strategy, and Service-Based Strategy, respectively.
In Figure 3.6, action duplication is the most prevalent concern in the IFTTT ecosystem.
Looping behaviors are also quite frequent, occurring at least once per configuration when
more than 15 rules are simultaneously active. While less prevalent, we also identify the
potential for conflicts and reverting behaviors in many of the synthesized configurations.
The group action duplication vulnerability, while rare, was also observed in our tests. Using
the Install Count Strategy, in total, 66% of the rulesets are associated with at least one
inter-rule vulnerability.

We consider the Author-Based Strategy in a separate analysis because, unlike the other
strategies, we are unable to control the number of trials and the number of active rules.

Figure 3.7a shows the percentage of authors of applets with at least one vulnerability. Almost
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Table 3.1: Rule chaining in IFTTT. Actions/ Triggers is the number of chainable mechanisms
in IFTTT, while Observed signifies the number of linkable mechanisms observed in at least
one [FTTT rule.

Type Actions (Observed) | Triggers (Observed)
Explicit chaining 204,510 (200,030) 62,013 (61,967)
Implicit chaining 10,128 (9931) 6262 (5228)

all authors” applets show evidence of at least one inter-rule vulnerability. Again, similar to
prior test, duplication is the most common concern; Figure 3.7b shows the frequency of
vulnerabilities excluding duplication. Concerningly, about 1 in 5 authors will experience a
non-duplication vulnerability in their rule set if they activate at least 10 rules. However,
some authors might not simultaneously activate all their applets, meaning that this test may
overestimate the frequency of vulnerabilities. However, taken as a whole, this test provides
compelling evidence that inter-rule vulnerabilities currently exist in the wild.

Our study also presents an opportunity to characterize the potential for rule chaining
within TA platforms. Because rule chaining increases the complexity of an IoT configuration,
we theorize that it also increases the potential for security violations within the deployment.
Across the 674 IFTTT services we analyzed, there exist 509 actions that can explicitly link
to other rules and 518 triggers can be explicitly triggered by some action. In addition, we
identify 460 actions that can affect an environment variable in order to indirectly invoke
392 triggers that monitor environmental variables. Table 3.1 summarizes our rule chaining
results. We identify a total of 204,510 (64.8%) rules that can explicitly link to other rules,
and 62,013 (19.5%) rules that can be explicitly linked by other rules. There exist 10,128
(3.2%) rules can implicitly link to other rules, and 6262 (2.0%) rules that can be implicitly
linked by other rules.

3.6.3 Vulnerability Analysis

Condition Bypassing € Condition Blocking. ~ While we introduce the notion of condition-
based vulnerabilities in Section 3.4, we are unable to detect them on IFTTT because applets’
filter code is not public. We verified the presence of condition vulnerabilities using our own

applets but leave large-scale validation of this issue to future work.

Action Reverting.  Our dataset contains 1127 applets with multiple actions, 50 of which
contain contrary action pairs that revert each other. A rule susceptible to action-reverting
by another rule/applet, usually occur within distance 1 or 2 of one another in the IFTTT

information flow graph, but the longest distance observed was 5 in a configuration of 26
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applets; such violations would likely to be difficult to identify manually. One example of
such violation in our dataset consists of an applet that turns the lights on when motion
is detected, but another applet turns off the lights whenever a light is turned on. A more
concerning violation we observed was a rule that would disconnect a HomeSeer device from
Wi-Fi the moment it was turned on, creating a DoS attack because the device cannot function

or receive commands without a network connection.

Action Looping.  Most of the loops we observed consist of 2 or 3 rules, while the longest
loop contains 9 rules in a configuration of 30 applets. We observed one rule chain that
triggered IFTTT to call the user whenever their calendar received an appointment, while a
second rule triggered IFTTT to make an appointment to the user’s calendar whenever they
missed a call. Hence, if a user sent IFTTT’s autodial to voicemail, IFTTT would continue

to call back while simultaneously filling her calendar with pointless appointments.

Action Conflicts.  Most of the conflicting action pairs are direct actions of the same trigger
(i.e., distance 1). There are also rules that conflict with other rules in another branch,
including rule chain of length 4, longest in a configuration of 23 rules. We observed a rule
chain where two rules conflict: “Arm the Scout Alarm when the user enters an area”, and
“Turn off the user’s phone Wi-Fi when the user enters an area”. The second rule disconnects
the phone from the network, so IFTTT is unable to trigger the first rule, i.e., arm Scout
Alarm. We observe that the sequence of the firing triggers usually determines the final
states of the conflicting actions. We found one example where scoutalarm enters armed
mode everyday from 10 AM until the user’s phone connects to home Wi-Fi, but a second
rule disables the home Wi-Fi every day at 9:55 AM. Combined, these will cause scoutalarm
to first disarm at 9:55 AM and then re-enter armed mode at 10 AM, even when the user is

at home.

Action Duplication.  As seen from Section 3.6.2, action duplication is very common. It is
perhaps not surprising to observe redundant rules in the community-based IFTTT ecosys-
tem as developers may publish applets with the same function. A chain length of 8 in a
configuration of 38 rules is the longest we observed to contain an action duplicate viola-
tion. The number of group duplication violations we detected is very small as there are only
113 applets that use group actions. We further investigated that IoT services in IFTTT
provides more group actions, such as Turn off device vs. Turn off all devices (Linn) or
Disarm all cameras vs. Disarm a camera (Eagle Eye NuboCam). We envision that as more
functionalities are introduced in IoT devices, these superseding relationships will become
more common, creating the potential for action-duplication vulnerabilities to significantly

frustrate the debugging of IoT deployments.
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3.7 DISCUSSION AND LIMITATIONS

Usability.  The motivation of this work is to help users better diagnose potential security
problems in their IoT deployments. In future work, we plan to evaluate the usability of
iRuler through real world IoT user studies, and further characterize actual security threats.
An important component of the future work is to extend iRuler to provide further assistance

to non-expert users when an inter-rule vulnerability is found.

The IFTTT Applets Dataset.  Similar to Ur’s IFTTT recipe dataset in [63], our dataset is
missing relevant information that is not publicly available, including values for the trigger
fields in each applet and the applet’s filter code (i.e., conditions). An interesting direction
for further study is leveraging applet descriptions to attempt to recover these fields; for
example, the applet “Get a phone call alert when a door is opened during sleeping hours,”
suggests the condition “during sleeping hours” is applied to the call_my_phone action. Note

the model checker of iRuler already supports conditions.

Synthetic IoT configurations. Because we lack real-world examples of IoT deployment
configurations, in our evaluation, we use heuristic strategies to synthesize IoT deployments
from our IFTTT dataset. Because filter code is not publically visible, we conservatively
assume in our analysis that any action that may flow to a trigger will flow to it. We also as-
sume that environmental factors are always affected such that the flow from action to trigger
occurs. Thus, the vulnerabilities we detect may be absent from real-world configurations.
However, this method demonstrated the validity of iRuler for cases in which configuration
data is available. In our future work, we plan to conduct user studies to evaluate our tool

with real-world IoT configurations.

3.8 RELATED WORK

IoT Security. ~ Numerous vulnerabilities have been identified in IoT devices [13, 14, 16],
protocols [18; 19], apps and platforms [20]. Alrawi et al. [76] proposed a modeling methodol-
ogy for IoT devices, associated apps and communication protocols to analyze device-specific
security postures. Different from the network-based [77, 78|, platform-based [79] and app-
based [58, 64] IoT-security solutions which detect vulnerabilities at runtime, iRuler leverages
NLP and model checking to statically check vulnerabilities before an app is installed and ex-
ecuted. Celik et al. [80] use static analysis to identify sensitive data flows in IoT apps, while
our work studies vulnerabilities caused by the interaction of multiple trigger-action rules.

Several other studies consider challenges related to access control in IoT [81, 82, 83, 84].
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Table 3.2: Approaches for checking security and safety properties of IoT rules/apps. [74]
checks properties at runtime while all others perform static checking. These systems all have
different aims and advantages; this table focuses specifically on the similarity of their design
to iRuler.

Multiple | Environment Device Time Support Checking # Inter-rule Vuln
Actions Modeling Location | Modeling Other Properties Types Considered
iRuler v v v 4 v 8
Soteria [47] v X X X v 3
TIoTSan [48] v X X 4 v 2
AutoTap [75] X X X v v N/A
MenShen [66] X v X v v N/A
Salus [65 X v v v v N/A
SIFT [49 X v X 4 v 1
HomeGuard [50] v X X X X 5
ToTGuard [74] v N/A X N/A v 3
Surbatovich et al. [22] X X X X X N/A

Trigger-Action Programming (TAP) in IoT. Researchers have studied how smart homes [11,
85, 86] and commercial buildings [87] can be customized using TAP, and the usability
of existing TAP frameworks to propose guidelines for developing more user-friendly inter-
faces [61, 88]. Ur et al. [63] create a dataset of IFTTT recipes and analyze different aspects
of the recipes. Bastys et al. [60, 89] discuss user privacy issues in IFTTT and developed
a framework to detect private data leakage to attacker controlled URLs. However, they
concentrate only on the privacy violations in the filter code of individual applets, not the
interaction between applets. Fernandes et al. [90] consider the effect of OAuth-related over-
privilege issues on the IFTTT platform and proposed a way to decouple the untrusted cloud

from trusted clients on the user’s personal devices.

IoT Automation Errors. 10T automation errors have been studied from various aspects,
including analyzing logic inconsistencies and supporting end-user debugging to resolve them
[49, 65, 75, 91, 92] as well as assisting [oT app developers with GDPR, [93]. Chandrakana et
al. [62] identify that too few triggers in automation rules is a source of errors and security
issues. They propose a tool to determine a necessary and sufficient set of triggers based on
the actions written by end users. However, their tool analyzes each rule in isolation while we
consider vulnerabilities from rule interactions. Some work has also been done on detecting
and resolving automation conflicts in smart home and office environments [87, 94, 95, 96, 97];

in this work, we consider a broader class of vulnerabilities.

IoT Properties Checking.  Several recent studies have proposed to check security or safety
properties of IoT when multiple rules/apps are enabled. We compare our approach with
other existing approaches in different aspects in Table 3.2; iRuler is among the works that
support the more advanced features of TA platforms (Multiple Actions), incorporates a broad

set of characteristics into its model (Environment Modeling, Device Location, Time Modeling,
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Table 3.3: The types of inter-rule vulnerabilities considered by existing work.

Vulnerabilities Considered
Ruler conflict, loop, revert, duplicate, group duplicate
condition bypass, action blocking, not enough rules
Soteria [47] conflict, duplicate, inconsistent events
ToTSan [48] conflict, duplicate
SIFT [49] conflict
HomeGuard [50] | conflict, duplicate, loop, condition disabling, condition enabling
IoTGuard [74] conflict, duplicate, loop

Support Checking Other Properties), and identifies new classes of inter-rule vulnerabilities.
We show the vulnerabilities considered by other work in Table 3.3. Conversely, these works
also provide several useful properties that we did not consider in iRuler. AutoTap [75]
presents a method for verifying configuration properties as expressed by novice users, and
joins MenShen [66], Salus [65], and SIFT [49] in supporting automated creation and repair
of rules (Rule Writing). Systems like Soteria [47], IoTSan [48], and HomeGuard (arXiv
preprint only: [50]) are based on source code analysis of [oT apps and can therefore consider
additional factors such as finer-grained reduction of state explosion and specific malicious
input sequences. ToTGuard [74] instruments apps to check security and safety properties at
runtime. Conversely, rather than leverage source code analysis, instrumentation, or a priori
knowledge of app behaviors, our technique uses an NLP-based approach to infer information
flow. As a result, iRuler is necessarily less precise and fine-grained in its analysis but has
the advantage of working out-of-the-box on commodity IoT platforms where source code is

typically unavailable.

3.9 CONCLUSION

While the trigger-action programming paradigm promotes the creation of rich and col-
laborative IoT applications, it also introduces potential security and safety threats if users
do not take precautions in combining these apps. In this work, we generalize and examine
inter-rule vulnerabilities in trigger-action IoT platforms, presenting a tool for their auto-
matic detection. iRuler combines the power of SMT solving and model checking to model

the IoT systems and check vulnerable properties.
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CHAPTER 4: PROVIDING PROVENANCE TRACING TO IOT
PLATFORMS

As the Internet of Things (IoT) continues to proliferate, diagnosing incorrect behavior
within increasingly-automated homes becomes considerably more difficult. Devices and apps
may be chained together in long sequences of trigger-action rules to the point that from an
observable symptom (e.g., an unlocked door) it may be impossible to identify the distantly
removed root cause (e.g., a malicious app). This is because, at present, IoT audit logs are
siloed on individual devices, and hence cannot be used to reconstruct the causal relationships
of complex workflows.

In this chapter, we present our work on the application layer of IoT. In this work, we
present ProvThings, a platform-centric approach to centralized auditing in the Internet of
Things. ProvThings performs efficient automated instrumentation of IoT apps and device
APIs in order to generate data provenance that provides a holistic explanation of system
activities, including malicious behaviors.

Acknowledgements. This chapter is based on the work [64] supported in part by NSF
CNS grants 15-13939, NSF CNS 13-30491, and NSF CNS 16-57534.

4.1 INTRODUCTION

In response to the increasing availability of smart devices, a variety of IoT platforms have
emerged that are able to interoperate with devices from different manufactures; Samsung’s
SmartThings [6], Apple’s HomeKit [7], and Google’s Android Things [4] are just a few
examples. IoT platforms offer appified software [8] for the management of smart devices,
with many going so far as to provide programming frameworks for the design of third-party
applications, enabling advanced home automation.

As long prophesied by our community, the expansion of IoT is also now bringing about
new challenges in terms of security and privacy [12, 13, 15, 16]. In some cases, IoT attacks
could have chilling safety consequences — burglars can now attack a smart door lock to
break into homes [14], and arsonists may even attack a smart oven to cause a fire [21].
However, as smart devices and apps become interconnected and chained together to perform
an increasingly diverse range of activities, explaining the nature of attacks or even simple
misconfigurations will become prohibitively difficult; the observable symptom of a problem
will need to be backtraced through a chain of different devices and applications in order to
identify a root cause.

One solution to this problem is to look into standard application logs. We surveyed the
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logging functionalities of several commodity [oT platforms and found that most of them pro-
vide activity logs [6, 25, 26, 27]. Some provided high-level event descriptions (e.g., “Motion
was detected by Iris Indoor Camera at 11:13 AM”) [26], while others exposed verbose but ob-
tuse low-level system logs [27]. However, we determined that, in all cases, existing audit logs
were insufficient to diagnose IoT attacks. This is because logging mechanisms were device-
centric, siloing audit information within individual devices. Moreover, even some platforms
provided a centralized view of all device events, the audit information was specified in such
a way that it was impossible to infer the causal dependencies between different events and
data states within the system [98], which is needed in order to reconstruct complete and
correct behavioral explanations. For example, an Iris log cannot answer the question “Why
light was turned on at 11:14 AM?” as no causal link is established between the audit events
of the light and the camera.

Data provenance represents a powerful technique for tracking causal relationships between
sequences of activities within a computing system. Through the introduction of provenance
tracing mechanisms within IoT, we would possess the information necessary to perform at-
tribution of malicious behaviors or even actively prevent attacks through performing lineage-
based authorization of activities. Unfortunately, past approaches to provenance collection
are not applicable to IoT, which is defined by its ecosystem of heterogeneous devices produced
by different manufacturers. Performing whole-system monitoring in such an environment is
challenging, as it is impractical to modify all devices through the introduction of a tracking
mechanism. Moreover, at present there does not exist a uniform ontology for describing
events in the diverse loT environment, particularly one that is both sufficient for diagnosing
attacks while including minimal extraneous information. Finally, data provenance is gener-
ally considered a tool of system administrators and forensic investigators, which is at odds
with the consumer-focused nature of the IoT product market.

Considering these challenges, we present ProvThings, a platform-centric approach to
provenance-based tracing for IoT. ProvThings analyzes both IoT apps and device APIs to
capture complex chains of interdependencies between different apps and devices, and thus
represents a significant step forward in comparison to the current state-of-the-art [58], which
can analyze IoT apps in isolation but not how data flows between apps. ProvThings uses
program instrumentation to collect the provenance of device data and control messages in a
minimally invasive fashion, then aggregates these traces into provenance graphs that provide
a complete history of interactions between principals in the system. A critical challenge in
the design of provenance-aware systems is the sheer volume of information that is generated,
imposing high storage overheads and frustrating forensic analysis [44, 99, 100]. To avoid col-

lecting unnecessary provenance metadata, we define a set of sources and sinks that inform
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the security state of an IoT system, then design a selective instrumentation algorithm that
prunes provenance collection to only those instructions that impact the security state. To
offer utility to a broad group of stakeholders within the IoT ecosystem, ProvThings provides
low-level query interfaces to assist developers, an expressive policy engine for advanced users,
and a simplified management app that allows consumers of limited technical knowledge to
benefit from the insights of provenance tracing.

In this work, our contributions can this be summarized as follows:

e ProvThings. We present a general and practical framework for the capture, manage-
ment, and analysis of data provenance on loT platforms. We ensure that our approach
is both efficient and minimally invasive through the introduction of a selective instru-
mentation algorithm which reduces provenance collection through the identification
of security-sensitive sources and sinks. To our knowledge, our work is the first in
the literature to offer a means of tracing through complex chains of interdependencies

between [oT components.

e Implementation & Evaluation. We implement ProvThings on Samsung’s Smart-
Things, and exhaustively evaluate the efficacy and performance of our prototype. We
present a novel coverage benchmark that validates ProvThings’ attack graphs against
26 known IoT attacks, and demonstrate that ProvThings imposes as little as 5% la-

tency on IoT devices and requires just 260 KB of storage for daily use.

e Deployment & User Scenarios. Through an extensive series of use cases, we demon-
strate how ProvThings can be deployed and used by a variety of loT users. We explain
how ProvThings could aid IoT professionals in performing attack reconstruction and
help desk troubleshooting, show how technical users can specify advanced provenance-
aware security policies for their homes, and show the design of an IoT management
app that distills the insights of ProvThings into an easily interpretable format for users

with limited technical ability.

4.2 BACKGROUND

4.2.1 Security Threats to Smart Homes

The rise of [oT has ushered in a host of new security threats to the home. Of particular
concern is the widely used trigger-action programming paradigm, which allows the chaining

of multiple devices and apps together to the point that determining the root cause of an
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Figure 4.1: An example provenance graph that describes why a kitchen light was turned on
by Apple HomeKit.

unexpected event is often difficult. Hence, malicious or vulnerable IoT apps in a chain
can have far-reaching implications for home security, such as accessing sensitive information
or executing privileged functionality. For example, if a malicious app were to forge a fake
physical device event from a CO detector, an associated alarm panel app in the trigger-action
chain would be unable to detect the illegitimate history of the event and would therefore
sound an alarm [20]. Diagnosing errors is also difficult in benign environments. An error
in one rule may lead to unexpected behaviors [61, 62], yet the observable symptom may be
distantly removed from the root cause (e.g., buggy app, misconfiguration). To address this
threat, what is needed is a means of understanding the lineage of triggers and actions that

occur within the home.

4.2.2 Data Provenance

Data provenance, as we introduced in Section 2.4 ,could allow us to understand the causal
relations within a smart home. An example of an IoT provenance graph is shown in Figure 4.1
describing the circumstances under which a kitchen light was turned on by Apple HomeKit.
The bottommost node in the graph represents a service! named on which changes the state
of the light. Its execution was prompted by the Apple Home App eventHandler, which
received a Motion Detected Event. We can therefore conclude that the kitchen light was

turned on as the result of a motion sensor detecting movement within the home.

System Model.  In this work, we use the W3C PROV-DM (PROV data model) specifi-
cation [101] because it is pervasive and represents provenance graph in a directed acyclic
graph (DAG). PROV-DM has three types of nodes: (1) an Entity is a data object, (2) an
Activity is a process, and (3) an Agent is something bears responsibility for activities and en-

tities. The edges encode dependency types that relate which entity WasAttributedTo which

! Available at https://developer.apple.com/reference/homekit/hmservice
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agent, which activity was WasAssociatedWith which agent, which entity WasGeneratedBy
which activity, which activity used which entity, which activity WasInformedBy which other
activity, and which entity WasDerivedFrom which other entity between nodes. Note that,
except WasAttributedTo and WasAssociatedWith, edges point backwards into the history of

a system execution.

4.3 THREAT MODEL AND ASSUMPTIONS

In this work, we consider malicious A PI-level attacks and accidental app misconfigurations
in appified IoT platforms such as smart home platforms. An API-level attacker is able to
access or manipulate the state of the smart home through creation and transition of well-
formed API control messages. There are several plausible scenarios through which this

capability could be obtained:

e Malicious Apps: An attacker can trick victims into installing a malicious 3rd party

app by offering to provide some useful automation functionality [20, 58].

e Device Vulnerability: An attacker may gain remote access to a device through

accessing an inadequately protected management interface [12, 102].

e Proximity: An unmonitored adversary within the home can covertly make use of
device interfaces that implicitly trust local users, e.g., issuing an unauthorized voice

command [103].

What our work does not consider is an attacker that can obtain root access to devices
(e.g., Mirai attack [16]), but instead assumes device integrity. The assumption of device
integrity has been used consistently in closely-related prior work [20, 58, 79]. Our goal is
to provide a holistic explanation of system behaviors by generating data provenance of API
control messages (e.g., unlocking the door). Thus, attacks that bypass platform APIs, such
as through compromising communication protocols [19], are out of scope. We adopt this
assumption in order to ensure that we arrive at a practical and immediately deployable
solution; reliably tracking information flow on compromised devices would necessitate a
complete redesign of device architectures (e.g., trusted hardware).

Similarly, in this work, we assume the entity responsible for executing the IoT’s central
management logic is not compromised. In the case of Samsung SmartThings, this means
that our approach trusts the Samsung cloud. In alternate hub-centric platforms, our solution

would trust the local hub. Securing the platform by reducing its attack surface is orthogonal
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to our research (e.g., [104]). Particularly in the case of cloud-centric platforms, and in light
of the adversary’s capabilities, we argue that this integrity assumption is reasonable due an
array of security precautions (e.g., best practices, app analysis) that can be taken by the

cloud administrator.

4.4 APPROACH: PROVTHINGS

To serve as a general framework for the development of provenance-aware IoT platforms,

a system needs to satisfy a key collection of requirements:

e Completeness. It must produce complete explanations as to all causal event chains

and data state changes that occur within the IoT deployment.

e Applicability. The framework must be general enough to be applicable to many IoT

platforms.

e Minimality. The framework must be minimally invasive in order to facilitate deploy-

ment on existing systems.

To satisfy completeness, a system should be able to answer questions such as “How was the
data generated by my sleep sensor used?” and “What triggered my front door to unlock?”,
while also making it possible to reconstruct and detect attacks and diagnose misconfigu-
rations. To satisfy applicability, the framework should be adaptable with modest changes
to the broad variety of IoT platforms listed in Table 2.1. To achieve minimality, it should
require few or no changes to the semantics of the IoT platform, or to the platform itself,
and thus continue to behave typically except when interacting with other provenance-aware
components. We thus rule out approaches involving device instrumentation due to the great
heterogeneity of developers or manufacturers involved in the provisioning of even a modest
smart home deployment.

IoT Provenance Model. Our approach to addressing these requirements in ProvThings
is to identify the common concepts present in different [oT platforms from Section 5.2 and
define a unified IoT provenance model based on the W3C PROV-DM [101]. With this model,
we are able to utilize provenance metadata in a platform-independent way; a unified model
enables the same terminology for provenance to be used on different platforms, unification of
causal relations across multiple platforms, and the specification of platform-agnostic general
policies. Our general model is shown in Table 4.1. We map each concept to the PROV

model and use a subtype property to further categorize concepts. For example, a smart

36



Table 4.1: We introduce the following model for representing the provenance of IoT. Each
common concept in [oT platforms is mapped to the PROV model and has a subtype property
for finer categorization.

[ Concept [ Description [ PROV Model [ Subtype ]
A An application in a IoT platform. Agent APP_IOT,
bp For example, an IoT app or a mobile app. gen APP_MOBILE, ..

Device A smart device in a platform. Agent DEVICE
The security-critical APIs provided a platform,

Action such as making a HTTP request. Activity ACTION

Device Command A action supporte(.i by a device. Activity DEVICE_CMD
For example, a switch has on and off commands.

. The states of a device. .

Device State For example, a lock is locked or unlocked. Entity DEVICE_STATE

Device Event An object that represents a state change on a device. Entity EVENT_DEVICE

Device Message Messages received at or sent from a device. Entity DEVICE_-MSG

External Event A non-device event. Entity EVENT_LOC,
For example, a location event or a timer event. EVENT_TIMER, ..

Input Data that goes into a platform, Entity INPUT_USER,
such as user inputs, HTTP requests or responses. INPUT_HTTP, ..

device generates device messages (entities) and executes device commands (activities). We
map it to an Agent and use the DEVICE subtype to distinguish it from other types of agents.
For convenience, we add an agentid property to each entity and activity that points to the
identities of their agents.

A key insight enabled by IoT platform designs is that we can define provenance in terms
of sources and sinks. A source is a security sensitive data object like the state of a door
lock. A sink is a security sensitive method like the command to unlock a door. Sources and
sinks can be easily identified from platform developer API documentations such as [105]. By
default, we consider device state, device event, device message and input as sources. And
we consider device command and action as sinks. In Section 6.5, we argue that by tracking
provenance in terms of sources and sinks is enough to satisfy the completeness requirement.
Provenance Management Framework. We show an overview of the ProvThings frame-
work in Figure 4.2. We use a modular design to decouple the capture, management and
analysis of provenance metadata on IoT platforms. ProvThings uses a set of provenance
collectors to collect provenance records from different components in an IoT platform. A
provenance recorder merges records collected from different sources, and converts them into
our [oT provenance model. It then builds provenance graphs and stores them into database.
The policy monitor uses user-defined policies to analyze provenance graphs and take actions.
The frontends provide interfaces to interact with other components in the framework. By
converting provenance records into our IoT provenance model, we aim to make most of the
framework agnostic to different IoT platforms to address applicability. In the architecture,
only the provenance collectors are platform-specific. To apply ProvThings on a different IoT

platform, we only need to implement provenance collectors for the target IoT platform. We
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Figure 4.2: The architecture of the ProvThings provenance management framework.

next describe each of these components in more detail.

Provenance Collectors are monitoring mechanisms residing within different IoT compo-
nents that are responsible for generating provenance records in response to low-level system
events (e.g., API calls). For example, a provenance collector for an IoT app could track
the data used by the app and the commands the app issued to devices. However, a single
collector is inadequate to observe interactions between different components. To satisfy the
completeness requirement, we therefore distribute provenance collectors across different com-
ponents in order to gain a complete picture of system events. In this work, we consider IoT
apps and device APIs (proxies for devices), which are two key components in [oT platforms.
In support of minimality, our implementation makes use of program instrumentation mech-
anisms to implement provenance collectors. These collectors track data flow and method
invocations in order to generate provenance metadata. Provenance collectors are platform
specific as different platforms use different programming languages and have different sig-
natures of APIs. We show our implementation of provenance collectors for SmartThings in
Section 4.5 and discuss the implementations for two other platforms in Section 5.7. We en-
vision community-built and vetted provenance collectors for different platforms to integrate
into our framework.

The Provenance Recorder aggregates and merges provenance records from different col-
lectors, filters them, and converts them into the IoT provenance model. The recorder then
builds and stores the resulting provenance graphs, offering modular support for different
storage backends such as SQL and Neo4j [106]. The provenance recorder provides a server

interface to access provenance graphs, and notifies the policy monitor every time a target
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entity or activity is updated.

The Policy Monitor is responsible for performing active enforcement based on the prove-
nance of system events. The monitor takes as input policies describing sequences of causal in-
teractions between system components, then performs a specified action (e.g., whitelist /black-
list) when an artifact’s provenance is matched to the policy. ProvThings provides an ex-
pressive policy language allowing for the description of such sequences of events and further
define what action should be taken when the sequence is detected. At runtime, ProvThings
checks the provenance graph against the set of active policies. We discuss the policy language
in greater depth below.

ProvThings Frontends provide an interface for users to interact with the above components
of the ProvThings framework. They allow users to create configurations, define policies, and
make queries with the query API. Our implementation provides multiple frontends for users
of different skill levels, which are explained in greater detail in Section 4.7. These frontends
make use of the following components, presenting various levels of abstraction depending on
the use case. A configuration interface allows users to decide what provenance records they
want to collect, how to process the collected records and where to store them. For example,
users could define sources and sinks based on their needs instead of using the default ones.
A query API provides a low-level interface through which to conduct causal and impact
analysis. Finally, a policy engine is responsible for developing and storing policies for use
with the backend Policy Monitor.

The main functions of ProvThings query API are: FindNodes finds all the provenance
nodes that match an expression; FindAncestors and FindSuccesssors return the ancestors
or successors of a specific type for a given node; BackwardQuery and ForwardQuery return a
partial provenance graph describing either a target node’s ancestry or propagation within
the system. The backward dependency query, which traces back in time to find causal
dependencies among system activities, could be used to investigate why a sensitive command
of a device was executed. The forward dependency query, which traces forward in time, is
useful to investigate information leak. For example, how the pincode of a smart lock set by
the user was leaked.

Instrumentation-based Provenance Collection. To satisfy the minimality requirement,
we design ProvThings to be backward compatible using instrumentation-based provenance
collection, which can be directly adopted by existing IoT platforms. At a high level, we
instrument code to a program to track data assignments and method invocations to capture
data provenance such as data creations and derivations. We now describe our method for
instrumenting IoT component source code to embed Provenance Collectors using static anal-

ysis. As a starting point, our approach is to generate an Abstract Syntax Tree (AST) and
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a call graph from the source code, then perform control flow analysis and data flow analysis
over the AST in order to identify all relationships between all data objects. The data flow
analysis considers aliasing and object properties to precisely track data dependencies. We
then instrument the code with new instructions that emit provenance records as instructions
are executed. While this simple approach would be adequate to assure completeness, track-
ing all control and data flow transition would require a provenance event for almost every
instruction in the program, violating minimality, and moreover would produce provenance
records that would be far too dense to interpret.

In order to overcome this obstacle, what is needed is a means of logging provenance only for
those instructions which are necessary for attack reconstruction and detection. Our solution
is to use the API of the IoT platform as a guide to identify sources and sinks which are
security sensitive. We perform intra-procedural control-flow and data-flow analysis in order
to identify sinks invocations, data dependencies and return values of each method. A method
that invokes a sink will also be labeled as sink and a data object that derives from a source will
also be labeled as source. Then, we conduct iterative inter-procedural analysis to compute
a fix point of sources and sinks. After that, we perform selective code instrumentation
with the identified sources, sinks and program entry points to insert provenance collection
instructions as shown in Algorithm 4.1. For each method in the program, we first check if
this method is a sink and if it can be reached from any entry point. If not, we can ignore
this method as it will not affect the sensitive behavior of the program. If this method is a
program entry point, we instrument code to track this method invocation (Line 5). Then
for each branch of this method, we iterate over each statement to look for sink invocations.
If a sink invocation is encountered, we instrument code to track this sink execution (Line 9).
If this sink uses variables whose value is derived from sources (Line 10-12), we compute a
backward slice [107] from the sink invocation statement with the variables as slicing criteria
(Line 13). The backward slice is a subset of code in the branch that affects the source
variables used by the sink. We instrument code for each statement in the slice to track the
provenance of source data.

The statically instrumented code supports runtime logic that creates entities, activities
and agents, tracks the relation between them, and sends them to ProvThings’s provenance
recorder. There are four key aspects of this runtime function: (1) Each method execution is
represented as an activity. A WasInformedBy relation is created from the callee function to the
calling function. (2) Each method invocation has a Used relation with its argument whose
value is derived from some source. The return value of a method has a WasGeneratedBy
relation to the method. (3) Each data dependency is represented as a WasDerivedFrom

relation between entities. We assign each source entity a taint label and maintains a taint
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Algorithm 4.1: The Selective Code Instrumentation Algorithm.

Inputs : ast < Abstract Syntax Tree of a Program;
entries <— Program Entry Points;
sources <— Source Set;
sinks < Sink Set;

Output: instAst <+ Instrumented ast

1 foreach method € ast.methodNodes do

2 if not ISREACHABLEFROMENTRY (method, entries) then continue
3 if not method.name € sinks then continue
a if method.name € entries then
5 ADDINSTRUMENT(method) /* Insert code to create an Activity and create Used relations
with arguments. */
6 foreach branch € method.branches do
7 foreach stm € branch.statements do
8 if stm is MethodCall and stm.name € sinks then
) ADDINSTRUMENT(method) /* Insert code to create Activity, Used relation, and
WaslInformedBy relation with the top method in call stack */
10 varsUsed < all variables in stm.arguments
11 sourceVars < varsUsed N sources
12 if sourceVars # () then
13 slice <~ BACKWARDSLICE(stm, sourceVars)
14 foreach stm?2 € slice do
15 ADDINSTRUMENT(stm2) /* Insert code to create Entities and
WasDerivedFrom relations */
16 end
17 end
18 end
19 end

map that propagates dependencies between entities. These taint labels make it possible
to quickly query relations between entities and make it easier to define information flow
policies (e.g., Figure 4.11). (4) To help capture data dependencies that are not directly
propagated by assignments, we track implicit flows (e.g., conditional statements) using an

Implicit-Used relation.

pattern:{ }
check: exist | not exist
action: notify | allow | deny

Figure 4.3: Format description for IoT Provenance Policy.

IoT Provenance Policy Specification. We now describe the policy language of ProvThings.
As the provenance of a system behavior is a graph, it is natural to use graph patterns to de-
scribe the behavior. The format of a policy is shown in Figure 4.3. In a policy, the pattern

field defines the graph pattern of a target behavior; the check condition defines whether
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to check for the presence or absence of the pattern; the action specifies the action to be
taken when the check condition is satisfied. Our pattern definition language is derived from
Cypher [108], which is a widely-used query language featuring expressive graph syntaxes. To
make the graph pattern definition more concise and expressive for IoT provenance concepts,
we introduce several extensions to the Cypher syntax. For example, the WasOriginatedFrom
keyword is a shortcut to represent that there is a path from the first node to the second
node in the provenance graph. The before, after and within keywords are used to describe
the time relation between two nodes. We also define labels using the subtypes defined in the
[oT provenance model to expressively specify a type of node. Our shortcuts are translated

to the Cypher syntax by the Policy Engine at query execution.

pattern:{
MATCH (a:DEVICE_CMD {name:"setCode"}) WasOriginatedFrom
(b:INPUT_HTTP {name:"HTTP Request"}),
(c:DEVICE {name:"Front Door Lock"})
WHERE a.agentid = c.id
RETURN a
¥
check: exist
action: notify

Figure 4.4: An example IoT Provenance Policy.

Using this language, ProvThings enables real-time system behavior monitoring (e.g., ma-
licious behavior detection) and response. The notify action can be used to alert users of
suspicious behavior. An example of such a policy can be found in Figure 4.4, which specifies
to notify the user when the setCode command of the Front Door Lock is triggered by an
HTTP request. The allow and deny actions can be used to whitelist (or blacklist) cho-
sen sequences of actions. This is accomplished through a small extension to ProvThings
which instruments sink executions to require Policy Monitor authorization. Before a sink
is executed, the instrument code queries the Policy Monitor with the metadata of the sink
function. The Policy Monitor checks if any policy covers this sink execution activity and re-
turns the defined action to the control code. If the action is allow, the control code executes
the sink function. Otherwise, the control code goes to the next statement. In Section 4.7.3,
we demonstrate an end user app that creates policies with allow and deny actions. When the
provenance of a command is suspicious (i.e., is not isomorphic to the expected provenance),
the platform can halt delivery of the command until it has been authorized by the user.
Comparison to Other Information Flow Solutions. For clarity, we now compare

ProvThings to existing IoT information flow security solutions. The differences are summa-
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Table 4.2: A comparison of existing [oT security solutions that also use information tracking.

N Information | Cross App | Consider | No Platform | No Developer
ame Flow Analysis Devices | Modification Effort
FlowFence [79] v v X X X
ContextIoT [58] v X X v v
ProvThings v v v v v
Instrumented Provthings Server
SmartApp SmartApp 3
| ProvThings - S
Code SmartThings S® Prov. Recorder
Cloud Backend | > ©
Instrumentor o | Frontend |
Device Instrumented W=
Handler Device Handler [ Policy Monitor |

Figure 4.5: An overview of the deployment of ProvThings on the SmartThings platform.

rized in Table 4.2. FlowFence protects data from IoT device sensors by enforcing information
flow policies on IoT apps. It is able to track data flows through multiple apps, but assumes
that both platform and app developers will be willing to invest significant capital towards
extending their software to support information flow control. ContextloT avoids the require-
ment of developer assistance by presenting a source code instrumentation tool for IoT apps.
While this general approach is similar to ProvThings, the capabilities of these systems are
quite different. ContextloT analyzes apps in isolation, collecting context internal to the IoT
apps in order to distinguish between benign and malicious contexts. It does not capture how
data flows into apps, or trace relationships across different apps and devices. ProvThings
supports this capability, allowing it to observe and explain complex interactions involving
multiple agents. An example of an attack that ContextloT would not be able to detect is
explained in Section 4.7.3 involving the forgery of fake device events. ContextloT would not
distinguish the real and fake device events because, within the internal context of the app,

these events appear to be identical.

4.5 IMPLEMENTATION

We implemented a prototype of ProvThings for the Samsung SmartThings platform, which
is a mature cloud-centric IoT platform with a native support for a broad range of device
types and share key design principles with other platforms. In our implementation, we
collect provenance from SmartApps and Device Handlers as SmartApp manage the inter-

actions between different devices and Device Handlers manage the communication between
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SmartThings and the physical devices. As shown in Figure 4.5, SmartApps and Device
Handlers are instrumented by ProvThings before they are submitted for execution on the
SmartThings backend. The instrumented code collects provenance records and sends them
to our ProvThings backend server which runs the provenance recorder and the policy engine.
The provenance recorder is implemented based on the SPADE system [99] and the policy
engine is implemented using Java to translate [oT provenance policy queries into the Cypher
language. The policy monitor which runs on the Neo4j database is also implemented using
Java. Our implementation only needs to instrument the code of SmartApps and Device
Handlers without any change to the SmartThings platform.

We implemented source code instrumentation as described in Section 4.4 for both Smar-
tApps and Device Handlers, which is described below. As there are more than 450 IoT
platforms in the marketplace, we are not able to develop provenance collectors for each
platform. Thus, we envision community-built and vetted provenance collectors for different
platforms to integrate into our framework implementation.

SmartApp Provenance Collector. We developed a static source code instrumentation

tool for Groovy using Java and a Groovy library to collect provenance at runtime.

Static Source Code Instrumentation. — Our tool generated the Abstract Syntax Tree (AST)
of a SmartApp using Groovy AST transformation [109] at the semantic analysis pass of
compilation. To implement Algorithm 4.1, we manually identified entry points, sources and
sinks for SmartApps from SmartThings’s developer API documentation. The entry points
of a SmartApp are lifecycle methods (installed, updated and uninstalled), event handler
methods and web service endpoints?. We identified device states, device events and inputs
as sources since they may contain sensitive data. We identified device control commands and
24 SmartThings-provided API as sinks. These APIs can be potentially used by adversaries
to carry out malicious payload. For example, the httpPost API can be used to leak sensitive
data, and the sendSms API can be used to send phishing messages to the victims. As of
April 2017, though SmartThings only documents 72 capabilities®, we identified 85 device
commands protected by 89 capabilities are supported by SmartThings.

As shown in Algorithm 4.1, code that was not on any control-flow path from the entry
points to the sinks was not instrumented as it did not affect the behavior of sinks. However,
in the case of Smart Apps we did identify two exceptions. One exception was dynamic method
invocation. Since a dynamic method invocation could invoke any method in the SmartApp
at runtime, we instrumented code to track this call. We further discuss the implication of

it in Section 5.7. The other exception was assignment to global variables as they are shared

2http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/
3http://docs.smartthings.com/en/latest/capabilities-reference.html
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1 |preferences {

2 input "lock", "capability.lock"

31}

4 |def installed() {

5 subscribe (lock, "lock", eventHandler)

6 |

7 |def eventHandler (evt){

8 def scope = [:]

9 entryMethod (scope, "eventHandler", "evt", evt)
10 def name = evt.name

11 def value = evt.value

12 trackVarAssign(scope, "value", "evt")

13 log.debug "Lock event: $name, $value"

14 def msg = "Lock event data:" + value

15 trackVarAssign(scope, "msg", "value")

16 trackSink (scope,"httpPost","msg", ["http://www.domain.com",msg])
17 httpPost ("http://www.domain.com", msg)

18 |}

19 | //code snippets of our provenance collection Groovy library
20 |def entryMethod(scope, name, argName, argValue){

21 scope [argName] = createEntity(argValue)

22 scope.id = createActivity (name)

23 createRelation(scope.id, scopelargName], "Used")
24 |}

25 |def trackVarAssign(scope, varName, usedVar){
26 def id = createEntity(varName, "VARIABLE")

27 createRelation(id, scopel[usedVar], "WasDerivedFrom")
28 |}

29 |def trackSink(scope, name, usedVar, args){

30 def id = createActivity(name, usedVar, args)

31 createRelation (id, scope[usedVar], "Used")

32 createRelation(id, scope.id, "WasInformedBy")

33 |}

Figure 4.6: Instrumented version of the example SmartApp shown in Figure 2.2. The
instrumented code is highlighted in grey background.

among executions. If a global variable has been assigned data that could be derived from
sources and the variable has been used by sinks, the code in the control-flow path from entry
points to the assignment statement also needs to be instrumented to track the provenance
of the data. As an example, in Figure 4.6, we show the instrumented version of the example
SmartApp in Figure 2.2. We highlight the instrumented instructions in gray background.
The instrumented code tracks the provenance of how the value of a lock event was used by
a httpPost sink. Note that we do not track the log.debug invocation (Line 13) as it is not
a sink. Even though the value of the name variable is derived from a source (lock event evt),

we do not track it as it is not used by any sink (Line 10).
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Runtime Provenance Collection.  We implemented a set of helper functions as a Groovy
library to perform runtime provenance collection. Figure 4.6 shows some of the helper
functions: entryMethod, trackVarAssign and trackSink, which track provenance of program
entry point invocation, variable assignment and sink invocation respectively. Besides the
provenance records which are collected at runtime as described in Section 4.4, we represent
dynamic method invocation as a special type of activity which has a Used relation with the
value of each GString. The actual method being invoked has a WasInformedBy relation to
the dynamic method invocation activity. Specifically, state and atomicState are two global
variables that allow developer to store data into different fields and share the data across
executions. Our data dependency tracking is designed to be field-sensitive to precisely track
the data dependency relationship of these two global objects.

Device Handler Provenance Collector. We use the same instrumentation mechanism to
implement Device Handler provenance collectors. The entry points for a Device Handler are
lifecycle methods, device command methods, the parse method and web service endpoints.
For each command method in a Device Handler, we track the message to be sent to the
physical device, and create a WasGeneratedBy relation from the message to the command
method. We instrument the parse method to track the message from the device and the
events created by parsing the message. A Used relation is created from the method to the

message, and a WasGeneratedBy relation is created from each event to the parse method.

4.6 EVALUATION

In this section, we evaluate our implementation of ProvThings on SmartThings in five
metrics (1) Effectiveness of attack reconstruction (i.e., completeness); (2) Instrumentation
overhead; (3) Runtime overhead; (4) Storage overhead; (5) Query performance. We con-
ducted evaluation of (1) and (3) using the SmartThings IDE cloud [110], and conducted
other evaluations locally on a machine with an Intel Core i7-2600 Quad-Core Processor (3.4
GHz) 16 GB RAM running Ubuntu 14.04. To measure overhead, we compare unmodified
(Vanilla) SmartApps and Device Handlers to the instrumented ones using two versions of
the ProvThings Provenance Collector: ProvFull (PF), which instruments all instructions to
collect provenance records for the whole program; and ProvSave (PS), which performs Se-
lective Code Instrumentation (Algorithm 4.1) in order to only generate provenance records

related to sources and sinks.
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4.6.1 Effectiveness

To evaluate the completeness of ProvThings, we constructed Smart Apps for a corpus of 26
possible attacks on IoT platforms through surveying relevant literature [12, 13, 20, 58]. Each
attack represents a unique class of malware or a vulnerable app, with 12 based on reported
[oT vulnerabilities and 14 migrated from malware classes from smartphone platforms. The
resulting attack corpus covers all attacks in [20] and covers 22 out of 25 attacks used in the
evaluation of [58].

To establish a ground truth for describing the complexity of each attack, two coders
independently inspected each attack implementation and applied our IoT Provenance Model
to generate a PROV description for the code’s execution. One of the coders was responsible
for writing the attacks, while the other had not seen the source prior to the beginning of
coding. The coders then met to discuss their results and resolve any inconsistencies.

We then instrumented the Smart Apps and Device Handlers for each attack using ProvSave
and ProvFull, and triggered the malicious behavior of the SmartApp in the SmartThings
IDE runtime. Following execution, we queried ProvThings to reconstruct the provenance
graph of the attack, which was compared to the manual code review. For all the attacks,
ProvFull produced more complex graphs than ProvSave as extraneous nodes and edges were
generated for operations such as logging. However, we found that the ProvFull graphs
contained all nodes and edges in the ProvSave graphs, which were necessary for attack
reconstruction. In Table 4.4, we show the result of ProvSave for each attack in terms of
overall graph complexity. Note that we did not count the agent nodes in the results as they
are encoded as an agentid property in entity and activity nodes as described in Section 4.4.
In all cases, ProvSave and ProvFull achieve 100% coverage of the attack when compared to
manual coding. These results show that provenance graphs generated by ProvThings are
able to accurately and reliably reconstruct IoT attacks, demonstrating the completeness of
our approach. Moreover, the fact that these provenance graphs could also be generated by
hand through code review is a promising indicator of the intuitiveness and usability of our

IoT Provenance Model.

4.6.2 Instrumentation Performance

We benchmarked our instrumentation tool in terms of analysis time and Lines of Code
(LoC) overhead. We applied our tool to a corpus of 236 SmartApps averaging 280 LoC
each, and 132 Device Handlers averaging 200 LoC each. Our evaluation results are shown in

Table 4.4. ProvFull has larger instrumentation time and introduces more LoC as compared
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Table 4.3: Effectiveness of ProvThings in tracing the provenance of different attack scenarios.
Ground Truths were obtained through manual source code inspection; Cov.: Coverage.

Ground Truth ProvSave

Attack nodes | edges | nodes [ edges Cov.
Backdoor Pin Code Injection [20] 7 8 7 8 100%
Door Lock Pin Code Snooping [20] 23 27 23 27 100%
Disabling Vacation Mode [20] 19 17 19 17 100%
Fake Alarm [20] 14 13 14 13 100%
Creating seizures [15, 58] 173 168 173 168 100%
Surreptitious Surveillance [58] 34 31 34 31 100%
Spyware [111] 10 10 10 10 100%
Undesired unlocking [14, 58] [§ 5 6 5 100%
BLE relay unlocking [14, 58] 7 5 7 5 100%
Lock Access Revocation [14, 58] 18 29 18 29 100%
No Auth Local Command [13] 7 5 7 5 100%
No Auth Remote Command [12] 7 5 7 5 100%
Repackaging [58] 15 15 15 15 100%
App Update [58] 6 5 6 5 100%
Drive-by Download [58] 14 11 14 11 100%
Remote Command [58] 13 13 13 13 100%
User Events [58] 12 13 12 13 100%
System Events [58] 29 31 29 31 100%
Abusing Permission [58] 9 8 9 8 100%
Shadow Payload [58] 28 31 28 31 100%
Side Channel [58] 61 59 61 59 100%
Remote Control [58] 14 14 14 14 100%
Adware [58] 19 16 19 16 | 100%
Ransomware [58] 29 25 29 25 100%
Specific weakness [58] 29 33 29 33 100%
IPC [58] o1 81 o1 81 | 100%

Table 4.4: Average code instrumentation overhead for SmartApps and Device Handlers.
Performance improvement of ProvSave is shown in parenthesis.

Tvoe Inst. Time (ms) LoC Added LoC
yp ProvFull | ProvSave ProvFull | ProvSave Vanilla

SmartApp 34 31 (91%) 108 24 (22%) 280

Device Handler 27 25 (93%) 85 16 (19%) 200

to ProvSave, with ProvSave reducing the invasiveness of instrumentation by 78% and 81%
for SmartApps and Device Handlers, respectively. This is because ProvFull instruments
extraneous instructions that do not relate to sources or sinks. We note that the instrumen-
tation is a one-time effort, and also that in addition to the above LoC our tool appends 200
LoC for the Groovy Library that provides helper functions for provenance generation and

transmission (§4.5).

4.6.3 Runtime Performance

We next measured the cost imposed by provenance collection on end-to-end event handling
latency, which is the time between an event handler receiving an event and reaching the sink

execution. For example, for an event handler which sends a text message if motion is detected
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Figure 4.7: Runtime Overheads for ProvThings; PF: ProvFull, PS: ProvSave

by a motion sensor, the end-to-end event handling latency is the time between the motion
event is received and the time the message is delivered to the user. We further divide end-to-
end latency into SmartApp computation (the time taken in executing the SmartApp event
handler code), Device Handler computation (time taken to generate the command message to
be sent to the physical device), and sink execution (time taken to send the command message
from SmartThings cloud backend and for the physical device to execute the command).
The SmartThings cloud IDE provides a simulator which can model the behavior of phys-
ical devices with virtual devices. In the experiment, we run our corpus of 236 SmartApps
within the simulator. To automate the test, we build an automatic testing framework using
Selenium [112] which automatically install a SmartApp, set the preferences for the Smar-
tApp and generate all types of events (such as device events and timer events). For each
SmartApp, our testing framework uses the fuzz testing approach to randomly feed user in-
puts and generate all types of events in different order to trigger all the event handling logic
in the SmartApp. For example, for the SmartApp in Figure 2.2, we generate both lock
and unlock event to trigger the eventHandler. Our results are shown in Figure 4.7a. On
average, ProvSave imposes 20.6% overhead on event handling (68 ms additional SmartApp
computation, 7 ms additional Device Handler computation) compared to ProvFull’s 40.4%
overhead. In addition to benchmarking SmartApps on the simulator, we also evaluated two
events using physical devices: a SmartApp which strobes an Aeon Labs Z-Wave Siren [113]
if the gun case is moved, and a SmartApp that sends an SMS to the user’s phone when
power consumption exceeds a threshold.* We trigger both events 50 times and observe 5.3%
and 4.5% total respective overhead for ProvSave, compared to 13.8% and 8.7% overhead for
ProvFull. We conclude that our prototype already meets the efficient demands of real world

deployment.

4Note that there are no Device Handlers for the SMS tests as SMS support is provided by the SmartThings
APL
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Storage Overhead. We determine the storage costs of provenance collection by measuring
log growth during our runtime performance tests, shown in Figure 4.7b. At 168,000 events,
ProvFull generated 219 MB of raw provenance, while ProvSave generated just 89 MB of
provenance, a 59% reduction. As a baseline, we compare these values to the event log from
the SmartThings IDE, which is in the format of “Date, Source, Type, Name, Value, Displayed
Text”. For the same events, SmartThings event log took 29 MB raw data; while ProvSave’s
log is 3 times larger, the SmartThings log does not track the causal relationships necessary
to reconstruct attacks and perform impact analysis. Moreover, a highly active IoT user may
generate just 500 events each day [114], which would translate to just 260 KB storage cost

for ProvSave. We thus conclude that ProvThings imposes negligible storage costs.

4.6.4 Query Performance

Finally, we consider the speed with which ProvThings can be queried. The ability to
quickly query the provenance graph is of critical importance when using ProvThings for
online monitoring of certain sequence of events. We evaluated query performance using the
Neo4j database. In the evaluation, we issued a series of queries to the Provenance Recorder
using the query API defined in Section 4.4. For each node, we request the ancestry of it to
produce a provenance graph. The query performance is shown in Figure 4.7c. For graphs
with 2 million nodes generated by ProvSave, the average query time for all nodes is 2 ms
and the average query time for sink activity nodes is 9 ms. Sink nodes have large query time
as they have longer ancestry than average nodes. For graphs with 2 million nodes generated
by ProvFull, we observe similar results of 5 ms and 14 ms respectively. The results indicate
that ProvThings is able to quickly respond to forensic queries and is able to be used in a real
time setting to detect malicious behaviors. We note that query performance is not greatly
affected by the size of the database. For example, for a smaller dataset with 417,380 nodes,

the sink nodes query time is 8 ms.

4.7 USER SCENARIOS

In this section, we illustrate how ProvThings can be deployed and benefit three kinds of
users with different technical capabilities: 1) Professionals such as smart home platform de-
velopers investigating abnormal behaviors in their customers’ homes, 2) “Techies” creating
customized policies for their smart homes, and 3) Typical consumers with limited technical
skill that wish to understand and react to peculiar events that happening in their smart

homes.
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4.7.1 Professionals

[oT professionals of a platform provider can deploy ProvThings within their platform
to provide services to their customers. We further divide them into: Platform developers
investigating abnormal behavior based on customer reports, and Help Desk staff helping

customers to troubleshoot problems.

Platform Developers. In this scenario, we show how a platform developer Admin uses
ProvThings to investigate an abnormal behavior in a customer’s home. A smart home
customer, Alice, installed several apps: WhenEveryoneIsAway, an app that sets the mode of
her home to Away when everyone has left home, and LockItWhenILeave, an app that subscribes
to mode change events then locks the door and turns on a surveillance camera when the
mode is set to Away. However, Alice’s copy of LockItWhenILeave has been embedded with a
malicious payload (see Appendix C.1 for details). When installed, the app will phone home
to a malicious domain to retrieve an attack command and time. The app waits until everyone
is away, then executes the attack command after the specified time. After installed these
apps, Alice enjoyed the benefits provided by home automations for several weeks. However,
when she gets home one day, she finds her door is left open and some of her belongings are
stolen. Since there are no signs of forced entry, she files a report to Admin and requests an
investigation.

In order to know how the door was opened, Admin uses the FindNodes API to get the
activities nodes of Alice’s front door lock that were created during the day. The API returns
one unlock activity node that was created in the afternoon. Then she calls the BackwardQuery
API with the unlock activity. The API returns a provenance graph as shown in Figure 4.8.
For simplicity, we do not show how the presence event was generated in the provenance
graph. The provenance graph shows that the unlock command was triggered by a dy-
namic method invocation which was invoked by the attack function. The name of the
dynamic method was unlock and it was stored in the state.command global variable the
value of which was derived from an HTTP response to a malicious domain. Note that the
value of state.command was set weeks earlier before it was used. The attack function in
LockItWhenILeave, on the other hand, was triggered by a timer that was set while han-
dling a mode change event that was generated by the setLocationMode function invoked by
WhenEveryoneIsAway. To understand the attack ramifications, Admin calls the ForwardQuery
API with the attack activity. The returned provenance graph shows that the attack func-
tion not only sent a short message to a disposable phone but also made another request to
the malicious site to get the next attack command.

During the investigation, Admin realizes that dynamic method invocation is vulnerable,
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Figure 4.8: The provenance of an unintended unlock event for a front door. The app
LockItWhenILeave visited a malicious domain to retrieve a command, then waited until after
a specified time when the mode was away to execute the command.

especially when the value used by the dynamic invocation was from an untrusted source.
Based on the provenance graph shown in Figure 4.8, she creates a policy as shown in Figure
4.9. In the policy, SINK is a label representing sink activities, Reflection represents a
dynamic method invocation activity. The policy specifies that if a sink was invoked using
dynamic method invocation and the value was from an external HTTP input, ProvThings

will notify Admin of the activity.

Help Desk Staff. ~ We looked into the community /forums of SmartThings and found several
real-world examples where ProvThings could be helpful in diagnosing and debugging prob-
lems. We show how a Help Desk staff Marc could use ProvThings to troubleshoot problems
for their customers.

ProvThings can be used to diagnose defective devices [115], misbehaving SmartApps [116]
and unmatched Device Handlers [117]. For example, a customer uses a SmartApp to turn on
and turn off her kitchen light at specific times. However, she found her light was randomly

turned off frequently and she couldn’t tell whether it is a hardware issue or a SmartApp
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pattern:{
MATCH (a:SINK)-[:WasInformedBy]->(:Reflection)-[:Used]->(:Entity)
WasOriginatedFrom (:INPUT_HTTP)
RETURN a
}
check: exist
action: notify

Figure 4.9: A policy to detect vulnerable dynamic method invocations use values from an
HTTP input.
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Figure 4.10: A provenance graph shows how some sensitive information (for example the
lock pin code) was leaked. The spyHander function collected sensitive information and a
scheduler triggered the sendData function to send the data to the attacker.

issue [115]. With ProvThings, Marc could first query all the off activities of the kitchen
light that were created during the suspicious time. If there are such activities, then the
random turning off should be triggered by SmartApps. Marc could then make backward
query with the returned activities to know why the light was turned off. It could be a
misbehaving SmartApp or the customer’s misconfiguration. On the other hand, if there is
no such activities, it is very likely there is a hardware issue with the light. Another use case of
ProvThings is to debug smart home automation issues. In example [118], a customer uses a
SmartApp that will turn off a switch some time after the switch is turned on. She configured
the SmartApp to turn off her switch 2 minutes after the switch is turned on. However, she
found that when she turned the switch on, it just stayed on. With ProvThings, Marc could
query the on activity of the customer’ switch and make a forward query with the activity. In
the returned provenance graph, Marc finds that the on activity leads to a onHandler function
which invoked a timer function with a parameter of value 2000. Since a timer had been set,
it is very likely the problem was caused by the timer. By examining the parameter, Marc
realizes that the customer made a mistake in the configuration. The unit for the timer is

second not millisecond.
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pattern:{
MATCH (a:SINK)-[:Used]->(b:Entity),
(c:APP_IOT {name:"FaceDoor"})
WHERE a.agentid=c.id and
(a.uri<>"http://trust.me" || b.taint <> "ImageCapture")
RETURN a
¥
check: exist
action: notify

Figure 4.11: A policy to detect unintended information flows.

4.7.2 Techies

Tech users can deploy ProvThings in their own backend server to specify advanced provenance-
aware security policies for their homes. In this scenario, we show how tech users could use
ProvThings to detect unintended information flow based on their own needs. Bob, another
smart home user, installed two apps. LockManager is an app that allows the user to update
or delete lock pin codes. FaceDoor is an app that allows unlocking a door via face recogni-
tion using the front door camera. However, a malicious payload in FaceDoor (see Appendix
C.2 for details) steals user’s sensitive information and sends it to an attacker at midnight
every day. It leverages a privilege escalation vulnerability in SmartThings [20] that permits
a SmartApp to subscribe to all events generated by a device once the user has authorized
the app to access the device. In this case, FaceDoor subscribes all the events of the motion
sensor, front door lock, front door camera and location. Hence, it could steal sensitive infor-
mation such as pin codes from codeReport events, users’ photos from image events and the
mode of the home from mode events.

Figure 4.10 shows a provenance graph of how some sensitive data was leaked by FaceDoor.
For simplicity, we do not show how some events were generated in the provenance graph.
The provenance graph shows that the spyHandler function subscribed to different events and
stored them in the state.data global variable. A scheduler, which was set at installation
time, triggered the sendData function to send the data to an attacker at midnight every
day. The graph also explains how the door lock pin code was leaked even though it was
set in the LockManager app. Since FaceDoor uses a trusted service for face recognition, Bob
allows the information flow from a camera to the trusted site. To detect other unintended
information flows, Bob defines a policy as shown in Figure 4.11. The policy specifies that if
an information flow is not from an entity with ImageCapture taint label to the trusted site

in FaceDoor, Bob will be notified of the unintended flow.
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Figure 4.12: A provenance graph shows the provenance of a real smoke event and a fake
smoke event.

4.7.3 Typical Consumers

For typical consumers who do not have much computer skills, a simplified frontend is
needed for them to benefit from the insights of provenance tracing. Similar with the fake
alarm attack in [20], in this case, we consider a user installed a benign app (SmokeMonitor)
which monitors the events of a smoke detector. If there is smoke detected by the smoke
detector, SmokeMonitor will turn on the fire sprinkler, open the window and sound the
alarm. Another app (SmartLight) which is embedded with malicious payload could raise a
fake physical device event for the smoke detector which will misuse the logic of SmokeMonitor
to take multiple actions. This fake event could cause physical damage to the house and
allow burglars to break into the house through a window. For brevity, provenance graphs
of both the real and fake device events are overlaid in Figure 4.12. The fake event was
generated by the createFakeEvent method of SmartLight, while the real event was generated
by parsing a device message from the smoke sensor. However, to the smokeHandler function
of SmokeMonitor, the two smoke events appear to be the same. Although this graph can be
used to establish the illegitimacy of the fake event, it exposes a variety of low-level system
details that are likely to confuse typical consumers.

In Figure 4.13, we show screenshots of our simplified frontend, the WhyThis app, for
typical consumers. It explains unseen sequence of activities and allows them to “allow” or
“deny” such activities. When the open command (a sink function) of the window is about to
be executed, WhyThis prompts the user with a dialog as shown in Figure 4.13a. The user can
click the WhyThis? button to see a simplified provenance graph and a paragraph description
before making a decision (Figure 4.13b). In this case, since this behavior is inconsistent
with the description of SmartLight, the user may decide to deny the action. In response,

WhyThis will generate a new policy to deny all future fake events from SmartLight, as shown
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Figure 4.13: Screenshots of our simplified frontend for typical consumers.

pattern:{

MATCH (a:SINK)-[:WasInformedBy]->(:Activity {name:"smokeHandler"})-
[:Used]->(:EVENT_DEVICE)-[:WasGeneratedBy]l->(b:Activity
{name:"createFakeEvent"}),

(c:APP_IOT {name:"SmartLight"})

WHERE b.agentid = c.id

RETURN a

¥
check: exist
action: deny

Figure 4.14: WhyThis procedurally generates a policy to deny fake smoke events from Smart-
Light.

in Figure 4.14. It is important to note that this is only a proof-of-concept frontend for typical
consumers. Future IoT platforms which adopt the ProvThings approach can design better
presentation such as provenance comics [119] to meet their usability requirements for typical

consumers.

4.7.4 Privacy Considerations

IoT platform providers (e.g., SmartThings) host IoT apps and device handlers and there-
fore can already observe all events and control commands, as mentioned in their privacy
policy [120]. They can transparently apply ProvThings to their platform as it requires no

platform modification. However, ProvThings systematizes the auditing of IoT events and
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generates new privacy-sensitive insights of causal dependencies. Thus, platform providers
that adopt ProvThings approach should update their privacy policies to reflect this. To pro-
tect consumers’ privacy, platform providers should allow consumers to configure the granu-
larity of the provenance collected, how long it can be stored and with whom it can be shared.
They could use access control to enforce the provenance metadata that a platform developer
or help desk staff could access. They could also deploy system auditing [44] to reliably trace
how customers’ provenance data had been accessed. Tech users could have more control
over their provenance data. They could deploy ProvThings to their own backend servers to
manage and use the collected provenance data. They can protect their privacy as long as
their backend servers are not compromised. Typical consumers do not have the ability to
manage their provenance data and therefore they should follow the best practices of privacy
protection. For example, they should be aware of the privacy implications of provenance

collection and choose IoT services and products from trusted providers.

4.8 DISCUSSION AND LIMITATIONS

Static Source Code Instrumentation. A general limitation of static program analysis is its
ineffectiveness in dealing with the dynamic features of a language. However, SmartThings
runs its programs in sandboxes, restricting many dynamic features to be used, such as
Groovy Eval [121]. The only dynamic feature to consider was GString, which can be used
for dynamic method invocation and dynamic property access. To ensure the completeness
of our provenance records, we conservatively assumed that a dynamic method invocation
could be sink invocation and a dynamic property access on a device object could access the
device’s state. Hence, we instrumented code on any control-flow path from a program entry
to a GString statement, potentially causing us to perform more instrumentation than was
actually needed. Given access to the Groovy runtime environment, we could use dynamic

program analysis to further restrain provenance collection.

Usability.  The proliferation of smart home technology has depended on ease of use. In
keeping with this design philosophy, a provenance-aware system must make provenance useful
and salient to end users. In this work, we sketch several scenarios in which provenance would
be of use to IoT stakeholders. In our future work, we will perform user studies to evaluate

the usability of ProvThings for different users.

Applicability.  Our approach is generic to provide broad support for different IoT platforms.
In this work, we demonstrate how we apply ProvThings on the SmartThings platform. We
have also examined how to apply ProvThings on other IoT platforms in Table 2.1. For
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Vera [27], we could perform source code instrumentation to its Lua-based apps. For Android
Things [4], we could perform either source code or bytecode instrumentation to its Android-
based apps. In ProvThings, the provenance collection module is platform-specific as it
works on platform chosen languages and platform defined APIs. Our work demonstrates
that the platform API implicitly identifies sources and sinks, so the only engineering effort
required for porting would be to implement our algorithm for another language. Moreover,
even ProvThings fits best for centralized platforms, it is not limited to centralized IoT
architectures. For example, in a decentralized setting where devices communicate directly
with each other, provenance collectors could be developed and deployed on each device to

collect the necessary metadata for building provenance graphs.

Deployability.  ProvThings would be most useful to platform providers. ProvThings pro-
vides a transparent mechanism that platform providers can use for effective auditing without
modifications to their platforms. Moreover, our approach strikes an optimal balance between
precision and performance overhead. ProvThings could also be deployed for debugging by
developers or “techies” with source code access, and that typical users could indirectly ben-

efit from ProvThings’ deployment.

Device Integrity.  In this work, we assume the devices are not compromised. Thus, compro-
mised devices can generate false messages to cause ProvThings to create wrong provenance
graphs. However, securing device is a problem orthogonal to our work. The device integrity
assumption enables an practical method of system-wide monitoring of IoT activities. The

alternative would be invasive and device specific.

4.9 RELATED WORK

IoT Security. A lot of vulnerabilities have been identified in IoT devices [12, 13, 14, 15, 16,
122] and protocols [18, 19]. Fernandes et al. [20] conducted the first security analysis of the
SmartThings platform. They discovered several design flaws and constructed four proof-of-
concept attacks. In our evaluation, we showed that ProvThings can efficiently detect these
attacks. For IoT security solutions, Sivaraman et al. [77] proposed a three-party architec-
ture in which a specialist provider dynamically manages network access control rules based
on MAC addresses to protect IoT devices. Yu et al. [78] proposed a centralized controller
that monitors the contexts of devices and operating environment and instantiates special-
ized middle-boxes that impose on traffic to devices to enforce security policies. Different
from these network-level protections, ProvThings collects information at application-level to

capture attack provenance. FlowFence [79] is a system that enforces flow policies for ToT
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apps to protect sensitive data. ContextIoT [58] is a context-based permission system for
[oT platforms which collects context information to identify sensitive actions. As compared
in Section 4.4, unlike FlowFence, ProvThings does not require platform modification and
additional development effort from app developers. ContextloT only collects information
within an app, which we have demonstrated is insufficient for attacks that involve multiple
agents. Our approach tracks data across both apps and devices, which captures a more

complete and accurate context.

IoT Forensics.  Several frameworks/models [123, 124] have been proposed for IoT foren-
sics. Oriwoh et al. [125] proposed the Forensics Edge Management System, which is a smart
device that autonomously detects, investigates and indicates the source of security issues by
monitoring the network in smart homes. Zawoad et al. [126] formally defined IoT forensics
and proposed a Forensics-aware IoT (FAIoT) model to support forensics investigations in
the IoT infrastructure. Similar with the FAIoT architecture, we also use a centralized server
to process and store evidences. However, different from the proposed models, our approach
uses provenance metadata as evidence and builds provenance graphs to assist forensics in-

vestigation.

Provenance-based Solutions. A lot of work has been done to leverage provenance for
forensic analysis [41, 42, 44, 127, 128], network debugging, auditing [129] and troubleshoot-
ing [38, 39, 40], and intrusion detection and access control [130, 131]. Similarly, provenance-
based solutions are proposed for android to provide attack reconstruction [132, 133, 134],
debugging and diagnosing device disorders [135]. ProvThings solves unique challenges asso-
ciated with building a general provenance framework for IoT platforms and further enables
provenance-based applications in the domain of IoT platforms. Provenance solutions have
been proposed in previous works [136, 137, 138] for IoT devices. However, these solutions
are targeted towards [oT devices and cannot be directly applied to IoT platforms which is
the main focus of this work. Moreover, none of the existing works provide concrete imple-
mentation and are only designed to work on specific IoT devices which require changing IoT
devices code. Thus, these solutions are not scalable and practical due to great heterogeneity

of IoT devices.

4.10 CONCLUSION

In this work, we have presented ProvThings, a general and platform-centric approach to
[oT provenance collection. ProvThings collects provenance of events and data state changes

from different IoT components to build provenance graphs of their causal relationships, en-
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abling attack investigation and system diagnosis. We prototyped ProvThings on Samsung
SmartThings, and demonstrated the efficacy and performance through extensive evaluation
of our proof-of-concept implementation; ProvThings was able to provide complete prove-
nance for a corpus of 26 known [oT attacks, and offers utility to a variety of professionals
and end users. ProvThings thus provides promising new capabilities that aid in understand-

ing and defending against IoT security threats.
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CHAPTER 5: DETECTING STEALTHY ATTACKS AGAINST DEVICES
VIA DATA PROVENANCE ANALYSIS

Desktop machines have long been the targets for adversaries. As [oT devices are becoming
complex, modern devices have embraced new OS implementation that is customized for IoT.
Many attack vectors designed for desktop machines now are migrated by adversaries to loT
devices. To subvert recent advances in perimeter and host security, the attacker community
has developed and employed various attack vectors to make a malware much stealthier than
before to penetrate the target system and prolong its presence. Such advanced malware
or “stealthy malware” makes use of various techniques to impersonate or abuse benign
applications and legitimate system tools to minimize its footprints in the target system.

In this chapter, we present our work towards securing the device layer of IoT. We present
PROVDETECTOR a provenance-based approach for detecting stealthy malware. Our insight
behind the PROVDETECTOR approach is that although a stealthy malware attempts to
blend into benign processes, its malicious behaviors inevitably interact with the underlying
operating system (OS), which will be exposed to and captured by provenance monitoring.
Based on this intuition, PROVDETECTOR first employs a novel selection algorithm to identify
possibly malicious parts in the OS-level provenance data of a process. It then applies a neural
embedding and machine learning pipeline to automatically detect any behavior that deviates
significantly from normal behaviors. While we evaluate PROVDETECTOR with Windows
desktop machine, PROVDETECTOR is general to Linux-based [oT devices.
Acknowledgements. This chapter is based on the work [139] supported in part by NSF
CNS 13-30491.

5.1 INTRODUCTION

The long-lasting arms race on security warfare has entered a new stage. Malware detection
has greatly advanced beyond traditional defenses [140, 141] due to innovations such as ma-
chine learning based detection [142, 143, 144, 145] and threat intelligence computing [146].
However, the attacker community has also sought for sophisticated attack vectors to keep
up with the advances. Adversaries are now increasingly focusing on new techniques to evade
detection and prolong their presence on the target system.

A new kind of technique, i.e., stealthy malware, hides the malware’s (or an attacker’s)
identity by impersonating well-trusted benign processes. Besides simple methods such as
renaming processes and program file names, more advanced stealthy techniques are being

actively developed and employed. Unlike the traditional malware family that persists on the
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disk for its payload, stealthy malware hides its malicious logic in the memory space of well-
trusted processes, or stores it into less attended locations such as Windows registry or service
configurations. Recent reports [147] have estimated that stealthy malware constituting 35%
of all attacks, grew by 364% in the first half of 2019, and these attacks are ten times more
likely to succeed compared to traditional attacks [148, 149].

Despite the importance and urgency, we are yet to see any definitive solution that detects
stealthy malware which employs advanced impersonation techniques. One reason is that
stealthy malware minimizes the usage of regular file systems and, instead, only uses loca-
tions of network buffer, registry, and service configurations to evade traditional file-based
malware scanners. To make things worse, the attacker has multiple options to craft new
attacks as needed using different impersonation techniques. First, the attack can take ad-
vantage of the well-trusted and powerful system utilities. The latest OSes are shipped with
well-trusted administrative tools to ease the system operations; but these tools are com-
monly abused targets. For instance, PowerShell and Windows Management Instrumental
Command-line (WMIC) have long histories of being abused by attackers [150]. Second, an
attack can inject malicious logic into benign processes via legitimate OS APIs (e.g., Cre-
ateRemoteThread() of Win32 API) or use shared system resources. Finally, the attack can
exploit vulnerabilities of a benign program to gain its control. Since attackers have so many
options, the detection approaches that are based on static or behavioral signatures cannot
keep up with the evolution of stealthy malware.

Based on the characteristics of stealthy malware, we suggest that an effective defense needs
to meet the following three principles. First, the defense technique should not be based on
static file-level indicators since they are not distinguishable for stealthy malware. Second,
the technique should be able to detect abnormal behavior of well-trusted programs as they
are susceptible to attackers with stealthy attack vectors. Third, the technique should be
light-weight so as to capture each target program’s behavior at a detailed level from each
host without deteriorating usability.

Kernel-level (i.e., OS-level) provenance analysis [151, 152, 153, 154, 155] is a practical
solution that is widely adopted in real-world enterprises to pervasively monitor and protect
their systems. Even when a malware could hijack a benign process with its malicious logic, it
still leaves traces in the provenance data. For example, when a compromised benign process
accesses a sensitive file, the kernel-level provenance will record the file access activity. OS
kernel supports data collection for provenance analysis incurring only a reasonable amount
of overhead when it is compared to heavy-weight dynamic analyses such as virtual machine
(VM) assisted-instrumentation or sandbox execution [156, 157].

In this work, we propose PROVDETECTOR, a security system that aims to detect stealthy
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impersonation malware. PROVDETECTOR relies on kernel-level provenance monitoring to
capture the dynamic behaviors of each target process. PROVDETECTOR then embeds prove-
nance data to build models for anomaly detection, which detect a program’s runtime be-
haviors that deviate from previously observed benign execution history. Thus it can detect
previously unseen attacks. To hunt for stealthy malware, PROVDETECTOR employs a neu-
ral embedding model [158] to project the different components in the provenance graph
of a process into a n-dimensional numerical vectors space, where similar components are
geographically closer. Then a density-based novelty detection [159] method is deployed to
detect the abnormal causal paths in the provenance graph. Both the embedding model and
the novelty detection model are trained with only benign data. However, while the design
insight of PROVDETECTOR to capture and build each program’s behavioral model using
provenance data seems plausible, the following two challenges must be addressed to realize
PROVDETECTOR.

C1: Detection of marginal deviation. Impersonation-based stealthy malware tends to
incur only marginal deviation for its malicious behavior, so it can blend into a benign pro-
gram’s normal behavior. For instance, some stealthy malware only creates another thread
to plant its malicious logic into the victim process. While the victim process still carries out
its original tasks, the injected malicious logic also runs alongside it. Therefore, PROVDE-
TECTOR needs to accurately identify and isolate the marginal outlier events that deviate
significantly from the program’s benign behaviors. Conventional model learning is likely
to disregard such a small portion of behavior as negligible background noise, resulting in
misclassification of malicious behaviors.

To address the first challenge, PROVDETECTOR breaks provenance graphs into causal
paths and uses the causal paths as the basic components for detection (Section 5.5.3). The
insight of this decision is that the actions of stealthy malware have logical connections and
causal dependencies [153, 160]. By using causal paths as detection components, PROVDE-
TECTOR can isolate the benign part of the provenance graph from the malicious part.

C2: Scalable model building. The size of the provenance graph grows rapidly over time
connecting an enormous number of system objects. For a provenance-based approach which
takes provenance data as its input and builds a model for each process, it is common to
see that even in a small organization that has over hundreds of hosts, the system events
reported from each end-host incur significant data processing pressure. While simplistic
modeling [161] that is based on a single-hop relation scale to digest large-scale provenance
graphs, the single-hop relation cannot capture and embed contextual causality into the
model. However, a modeling that is based on a multi-hop relation (e.g., n-gram [162] or

sub-graph matching [163]) would incur huge computation and storage pressure, making it
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infeasible for any realistic deployment.

To address this second challenge, PROVDETECTOR only processes the suspicious part of a
provenance graph. This is achieved by a novel path selection algorithm (Section 5.5.3) that
only selects the top K most uncommon causal paths in a provenance graph. Our insight is
that the part of a provenance graph that is shared by most instances of a program is not
likely to be malicious. Thus, we only need to focus on the part that is uncommon in other
instances. Leveraging this path selection algorithm, PROVDETECTOR can reduce most of
the training and detection workload.

To confirm the effectiveness of our approach, we conducted a systematic evaluation of
PROVDETECTOR in an enterprise environment with 306 hosts for three months. We collected
benign provenance data of 23 target programs and used PROVDETECTOR to build their
detection models. We then evaluated them with 1150 stealthy impersonation attacks and
1150 benign program instances (50 for each target program). PROVDETECTOR achieved
a very high detection performance with an average F1 score of 0.974. We also conducted
systematic measurements to identify features contributing to PROVDETECTOR’s detection
capability on stealthy malware. Our evaluation demonstrated that PROVDETECTOR is
efficient enough to be used in a realistic enterprise environment.

To summarize, in this work, we make the following contributions:

e We designed and implemented PROVDETECTOR, a provenance-based system to detect

stealthy malware that employs impersonation techniques.

e To guarantee a high detection accuracy and efficiency, we proposed a novel path selec-
tion algorithm to identify the potentially malicious part in the provenance graph of a

process.

e We designed a novel neural embedding and machine learning pipeline that automati-

cally builds a behavioral profile for each program and identifies anomalous processes.

e We performed a systematic evaluation with real malware to demonstrate the effec-
tiveness of PROVDETECTOR. We further explained its effectiveness through several
interpretability studies.

5.2 BACKGROUND

In this section, we introduce the stealthy malware we focus on in this study and present

our insights of using provenance analysis to detect such malware.
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5.2.1 Living Off the Land and Stealthy Attacks

“Living off the land” has been a popular trend in cyberattacks over the last few years. It is
characterized by the usage of trusted off-the-shelf applications and preinstalled system tools
to conduct stealthy attacks. Since many of these tools are used by system administrators for
legitimate purposes, it is harder for the defenders to completely block access to these tools
for attack prevention.

Stealthy impersonation malware, which has been increasingly employed in recent cyber-
attacks [147, 164], heavily uses the “living off the land” strategy to try to evade detection.
Instead of storing its payload directly onto a disk and executing it, the malicious code is typ-
ically injected into some running processes (often trusted applications or system tools) and
executed only within the process memory (i.e., RAM). There are multiple ways to achieve

such impersonation purpose.

Memory Code Injection.  Memory code injection allows a malware to inject malicious code
into a legitimate process’ memory. These attacks often targets long-running, trusted sys-
tem processes (e.g., svchost.exe) or applications with valuable user information (e.g., Web
Browser). Some well-known code injection techniques include remote thread injection, re-
flective DLL injection [165], portable executable injection, and recently discovered process
hollowing [166] and shim-based DLL injection [167].

Script-based Attacks. Attackers can embed scripts in benign documents like Microsoft
Office documents to run their malicious payload. Worse, the Windows system opens access
to its core functionalities via various language interfaces (e.g., PowerShell and .Net) that an
attacker could take advantage of. Such dynamic languages facilitate execution of a malicious

logic on-the-fly, leaving little or no footprints on the filesystem.

Vulnerability Fxploits. The third way is to take advantages of the vulnerabilities of a
benign software. For example, CVE-2019-0541 [168] allows adversaries to execute arbitrary
code in Internet Explorer (IE) through a specially crafted web page.

In Figure 5.1, we show the kill chain of a real-world DDE! (Dynamic Data Exchange)
script-based attack, which launches several stages of PowerShell scripts in memory, reported
by the Juniper Threat Labs [169]. The attack starts from an email phishing campaign which
includes a seemly benign Microsoft Word (MS Word) document as an attachment. When
a user opens the document, a message box is shown to enable DDE. Once the DDE is
enabled, the embedded DDEAUTO command invokes cmd.exe, which executes powershell.exe

to download and execute a PowerShell script (0.ps1) using Dropbox service. The 0.ps1

!The Dynamic Data Exchange (DDE) is a protocol of Microsoft Windows for sharing data between
applications.
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Figure 5.1: The kill chain of the DDE script-based attack [169].

script then introduces the next PowerShell module called “Empire” [170] to open encrypted
backdoor. Note that both of the downloaded PowerShell scripts are obfuscated and resided

only in memory.

5.2.2 Existing Detection Methods for Stealthy Malware

Existing detection methods, such as anti-virus (AV) software, use a combination of the
following practices [171] to detect malware. As we will discuss, these methods are ineffective

at detecting stealthy malware.

Memory Scanning. AV software offers memory scanning as one of their multi-layered solu-
tions. Such techniques scan memory just-in-time at the loading point or in a scheduled way.
However, this approach essentially is looking for known payloads in memory. Adversaries

can customize or obfuscate the attack payload to avoid detection.

Lockdown Approaches.  Lockdown approaches, such as application control or whitelisting,
do not help much as stealthy malware often leverages administrative tools or other appli-
cations that are typically in a company’s whitelist of trusted applications. The defenders

could not completely block access to these programs to block the attacks.

Email Security and Network Security.  As shown in Figure 5.1, script-based malware is
often spread through phishing emails. Many security vendors provide solutions for email
and network security by inspecting and blocking suspicious attacks by evaluating URLs,
attachment files, and scripts. However, similar to the limitation of memory scanning, attack
payload is easy to be modified to avoid detection.

In particular, the existing in-host defenses are effective against known file-based malware

families. However, the characteristics of stealthy malware, such as low attack footprint,
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Figure 5.2: An illustration of the behavior differences of a benign process instance and a
malicious process instance of MS Word (winword.exe) using provenance graphs.

absence of files, usage of dual-use tool, make the detection difficult for existing methods.

5.2.3 Detecting Stealthy Malware Using Provenance Analysis

As discussed in Section 5.2.2; existing methods are ineffective at detecting stealthy mal-
ware. Since it has multiple characteristics to evade detection, we propose to detect stealthy
malware by inspecting its behavior. More specifically, our approach tracks and analyzes
the system provenance data related to a program to hunt down stealthy attacks based on
behavior differences.

Figure 5.2 illustrates an example of a stealthy attack and the provenance graphs of two
process instances of MS Word (winword.exe) with and without an attack. In Figure 5.2a,
we show the provenance graph of a benign instance of MS Word. A benign MS Word
process typically reads multiple types of files (e.g., dat, doc, css) created by other programs
or itself and writes new files (e.g., doc, txt, png). The created files will also be read by
other programs like the Outlook email client (e.g., sent as an attachment). It can also start
other programs such as Internet Explorer (iexplore.exe) when a user clicks the URLs in
a doc file. In contrast, Figure 5.2b shows the provenance graph of a malicious instance of
MS Word, which is used in the DDE script-based attack as shown in Figure 5.1. Note that
we highlight the key attack paths with red arrows. Similar with the benign instance, this
malicious MS Word instance also reads and writes different types of files. However, it starts
a cmd.exe process, which further spawns several powershell.exe processes. This behavior is
very different from that of the benign one.

Once these process behaviors are represented as provenance graphs, these attack paths
become very distinguishable from benign ones. Therefore, provenance tracking and analysis

is a key technique to detect stealthy attacks. On the other hand, as shown in Figure 5.2b,
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Figure 5.3: The PV-DM model for learning a paragraph vector.

since stealthy attacks take advantages of processes already running in the system, their
malicious behaviors could be hidden in benign behaviors of the processes. Moreover, to make
the attacks stealthy, malware could mimic and blend in existing benign behaviors. Thus,
it is a main challenge to accurately capture the robust and stable features from provenance

graphs that can effectively differentiate malicious behaviors from benign ones.

5.2.4 Neural Document Embedding Models

Word2vec [172] is one of the most well-known word embedding methods. It uses a sim-
ple and efficient feed forward neural network architecture called “skip-gram” to learn dis-
tributed representations of words. Recently, Le and Mikolov proposed Paragraph Vector
(i.e., doc2vec) [158], a straightforward extension of word2vec that is capable of learning dis-
tributed representations of arbitrary length word sequences such as sentences, paragraphs
and even whole large documents.

PV-DM (Distributed Memory Model of Paragraph Vectors) is one version of doc2vec. The
core idea of PV-DM is that a paragraph p can be represented as another vector (i.e., para-
graph vector) contributing to the prediction of the next word in a sentence. In the PV-DM
model as illustrated in Figure 5.3, every paragraph is mapped to a paragraph vector, rep-
resented by a column in a paragraph matrix and every word is mapped to a word vector,
represented by a column in a word matrix. Then the paragraph vector and word vectors
are averaged or concatenated to predict the next word in a context. The contexts are fixed-
length and sampled from a sliding window over the paragraph. The paragraph vector is
shared across all contexts generated from the same paragraph but not across paragraphs.
The PV-DM model uses stochastic gradient descent to train the paragraph vectors and word

vectors. After being trained, the paragraph vectors can be used as features for the para-
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graph. At prediction time, the model also use gradient descent to compute the paragraph

vector for a new paragraph.

5.3 THREAT MODEL AND ASSUMPTIONS

In this work, we focus on stealthy malware (or stealthy attack) that impersonates or abuses
legitimate tools or services already present on the victim’s host or exploits trusted off-the-
shell applications (e.g., applications in the whitelist of an enterprise’s intrusion detection
system) to perform malicious activities. As discussed in Section 5.2.1, such attacks could
conduct extremely damaging activities such as exfiltrating sensitive data, crippling com-
puters, or allowing remote access. Exploiting legitimate tools or applications enable those
attacks to do their malicious activities while blending in with normal system behavior and
leaving fewer footprints, which makes their detection very difficult. Such stealthy attacks

can be achieved through:

e Impersonation techniques such as memory code injection, script-based attacks and

vulnerability exploits as described in Section 5.2.1.

e A malicious version of a trusted application accidentally installed by the user with

attack payloads embedded.

Traditional malware that needs to drop a custom built malware binary to the victim’s
machine to execute its payload is out of our scope. We make the following assumptions about
our system. Similar with existing provenance-based systems [41, 127, 152, 153, 154, 155],
we assume the underlying OS and the provenance tracker are in our trusted computing base
(TCB). We assume the attacker cannot manipulate or delete the provenance record, i.e., log
integrity is maintained at all time. Log integrity violation detection is an orthogonal problem
and has existing solutions [173]. We also do not consider the attacks performed using implicit
flows (side channels) that bypass the system call interface and thus cannot be captured by
the underlying provenance tracker. Finally, since our system tries to differentiate benign
process instances from malicious ones, we assume that our system has benign provenance

data for each monitored program to profile its normal behaviors.

5.4 PROBLEM DEFINITION

In this section, we formally define several concepts that will be used in the rest of this

chapter and then we formulate the problem statement for PROVDETECTOR.
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Table 5.1: The system entities and their relations we consider.

Src Dst . .
Entity Entity Attributes Relations
Process | Executable path, Pid, Host name Start, End
Process File File path, Host name Read, Write, Execute
Socket Src IP, Src port, Dst IP, Dst port Read, Write

5.4.1 Definitions

System Entity and System Event.  Similar with [153, 161, 174], we consider the following
three types of system entities: processes, files and network connections (i.e., sockets). A
system event e = (src,dst, rel,time) models the interaction between two system entities,
where src is the source entity, dst is the destination entity, rel is the relation between them
(e.g., a process writes a file), and time is the timestamp when the event happened. Note
that, only the process entity can be the source entity in a system event. Each system entity
is associated with a set of attributes. For example, a process entity has attributes like its
pid and the executable path. In Table 5.1, we show the entity attributes and relations we

consider.

System Provenance Graph.  Given a process p (identified by its process id and host) in
the system, the system provenance graph (or dependency graph) of p is the graph that
contains all the system entities that have control dependencies (i.e., start or end) or data
dependencies (i.e., read or write) to p. Formally, the provenance graph of p is defined as
G(p) =<V, E >, where V and E are the sets of vertexes and edges respectively. Vertexes

V' are system entities and edges E are system events.

Process Instance. ~ We refer a program (or an application) we are interested in monitoring as
a program. For example, some trusted applications like MS Word. A process is an execution
of a program. A process instance of a program is the process created in one execution of the

program.

5.4.2 Problem Statement

Suppose we have a set of n provenance graphs s = {G1, G, ..., G,} for n benign process
instances of a program A. Given a new process instance p of A, we aim to detect if its prove-
nance graph G(p) is benign or malicious. Here and hereafter, we refer to a malicious process
instance of A as the process hijacked or abused by a stealthy malware. The provenance

graph of the malicious process is thus referred to as a malicious provenance graph.
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Figure 5.4: The overview of PROVDETECTOR

5.5 APPROACH: PROVDETECTOR

In this section, we detail the design and implementation of PROVDETECTOR.

5.5.1 Overview

To detect stealthy malware, we make the following design decisions about PROVDETEC-
TOR:

e PROVDETECTOR is an anomaly detection based technique that only learns from benign
data.

e PROVDETECTOR uses causal paths, i.e., ordered sequences of system events with causal

dependency, in provenance graphs as features for detection.
e PROVDETECTOR only learns a subset of causal paths of a provenance graph.

We design PROVDETECTOR as an anomaly detection based technique [175] for two rea-
sons: first, it is able to detect unknown attacks (as well as zero-day attacks) as it models the
normal operation of a system; second, as the normal profiles are tailored for every application
or system, it is very difficult for an attacker to know what activities he can carry out to evade
detection. PROVDETECTOR uses causal paths as features to distinguish the malicious part
of the provenance data from the benign part. As shown in Section 6.5, this decision helps
PROVDETECTOR improve the detection performance. PROVDETECTOR selects a subset of
causal paths from a provenance graph to address the dependency explosion problem [41, 42]

and to accelerate the speed of both training and detection.
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In Figure 5.4, we show the workflow of PROVDETECTOR which comprises four stages:
graph building, representation extraction, embedding, and anomaly detection. PROVDE-
TECTOR is configured to monitor a list of M programs (e.g., Microsoft Word or Internet
Explorer) and detect if they are hijacked by stealthy malware. To do this, PROVDETECTOR
deploys a monitoring agent on each monitored host, collects system provenance data as we
defined in Section 5.4.1, and stores the data in a centralized database. PROVDETECTOR’s
data collection follows the same principles as previous work [153, 154]. Then, PROVDETEC-
TOR periodically scans the database and checks if any of the newly added processes has been
hijacked. For each given process, PROVDETECTOR first builds its provenance graph (Stage:
Graph Building). Then it selects a subset of paths from the provenance graph (Stage: Rep-
resentation Extraction) and converts the paths into numerical vectors (Stage: Embedding).
After that, PROVDETECTOR uses a novelty /outlier detector to get predictions for the em-
bedding vectors and reports its final decision (i.e., if the process has been hijacked) (Stage:
Anomaly Detection).

PROVDETECTOR has two modes: the training mode and the detection mode. The work-
flow of the detection mode is described above. The workflow of the training mode is similar.
The only difference is that instead of querying the novelty/outlier detector, PROVDETEC-
TOR uses the embedding vectors to train the detector (i.e., building the normal profiles for

the applications). Next, we present each stage in detail.

5.5.2 Provenance Graph Building

Given a process instance p (identified by its process id and host), PROVDETECTOR builds
its provenance graph G(p) =< V, E > as a labeled temporal graph using the data stored
in the database. As defined in Section 5.4.1, the nodes V' are system entities whose labels
are their attributes, and F are edges whose labels are relations and timestamps. Each node
in V' belongs to one of the following three types: processes, files or sockets. We define each
edge e in E as e = {src, dst, rel, time}. The construction of a provenance graph G(p) starts
from v == p. Then we add any edge e and its source node src and destination node dst to
the graph if e.src € V or e.dst € V.

5.5.3 Representation Extraction

After the provenance graph is built, the next step is representation extraction, the goal of
which is to find representations (or features) from the graph to differentiate benign ones and

malicious ones. One naive approach is to use the provenance graph itself as the representa-
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Figure 5.5: Example causal paths from the provenance graphs in Figure 5.2. We concretize
the * with file names.

tion. However, as the discussions in Section 5.2.3 and Section 5.6.3, the whole provenance
graph is not a good representation for detecting stealthy malware as the majority parts of
the graph are still benign (the attacks try to blend their attack activities with the normal
activities to evade detection).

To isolate the malicious parts from the whole provenance graph, we propose to select
certain causal paths as the features for the graph. In Figure 5.5, we show some causal
paths from the provenance graphs in Figure 5.2. Formally, we define a causal path A in a
dependency graph G(p) as an ordered sequence of system events (or edges) {e1, ez, ..., €,}
in G(p), where Ve;,e;01 € A, e;.dst == e;1.src and e;.time < e;41.time. Note that the
time constraint is important since an event can only be depended on events in the future.
Due to the time constraints, PROVDETECTOR will not generate infinite number of paths in
loops. For each selected path, PROVDETECTOR removes the host-specific or entity-specific
features, such as host name and process identification (PID), from each node and edge.
This process ensures that the extracted representation is general for the subsequent learning
tasks.

Rareness-based Path Selection.  Directly extracting all paths from a provenance graph may
cause the “dependency explosion problem” [154]. The number of paths is exponential to the
number of nodes. Since a provenance graph may contain thousands of nodes [154], it is
impossible to traverse all its paths. To address this problem, we propose a rareness-based
path selection method that only selects the K most uncommon paths from a provenance
graph.

Our intuition is as follows. A process instance of a program may contain two types
of workloads: the universal workload and the instance-specific workload. The universal
workloads are common across all instances of the same program and are thus less likely to

be malicious. For example, the MS Word program loads a fixed set of DLL files required
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during its initial stage. This workload is universal to all its instances. On the other hand,
the instance-specific workloads, which are different from instance to instance based on the
inputs. We argue that malicious workloads are more likely to be instance-specific.

Therefore, we propose to select causal paths that are generated by the instance-specific
workloads instead of those paths generated by universal workloads. We determine whether
a path is generated from universal workloads or instance-specific workloads by its rareness:
more rare a path is, more likely it is from the instance-specific workload.

To discover the top K rarest paths, we use the reqularity score proposed in previous
work [153]. The regularity score of a path A\ = {ej,es, ..., e,} is defined as R(\) =
[T, R(e;), where R(e;) is the regularity score of event e;. In PROVDETECTOR, the reg-

ularity score of an event e = {src — dst} is defined as:

R(e) = OUT(src) ”‘{é‘f‘)’n\f(dst) (5.1)

In Equation 5.1, H(e) is the set of hosts that event e happens on while H is the set of all the
hosts in the enterprise [153, 154]. To calculate IN and OUT for a node v, PROVDETECTOR

partitions the training data into n time windows T = {t,ts,...,t,}. We say t; is in-stable
if no new in edges are added to v during ¢;. Similarly, ¢; is out-stable if no new out edges
are added to v during t;. Then the IN(v) and OUT(v) are calculated using Equation 5.2
and Equation 5.3 respectively where |17, | is the count of stable windows in which no edge
connects from v, |T},| is the count of stable windows in which no edge connects to v, and
|T| is the total number of windows.

_ Tl

IN(v) = a

(5.2) OUT(v) = ol (5.3)
T

By defining the regularity score, we formalize our path selection problem as finding the
top K paths with the lowest reqularity scores from a provenance graph. To efficiently solve
this problem, PROVDETECTOR further converts it to a K longest path problem [176]. To do
this, for a provenance graph G, we add a pseudo source node vspyurce to all the nodes whose
in-degree are zero and a pseudo sink node vy, to all the nodes whose out-degree are zero.
This process converts G to a single source and single sink flow graph G’. We then assign a
distance to each edge e as W(e) = —log, R(e) (the outgoing edges of vspuree and incoming
edges of v, are all uniformly initialized to 1). Thus, the length of A could be converted as
LX) =" W(e;) = —log, [ [, R(e;). Hence, the K longest paths in G’ are the K paths
with lowest regularity scores in G.

Although solving the K longest path problem on a general graph is an NP-hard problem,
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it could be efficiently solved by reducing it to the K longest paths problem on a Directed
Acyclic Graph (DAG), which can be efficiently solved by the Epstein’s algorithm [177] with
a time complexity linear to the number of nodes. To reduce our problem to the K longest
paths problem on a DAG, we convert G’ to a DAG. For each node N in G', PROVDETECTOR
orders all its in-edges and out-edges in the temporal order. Then N is split into a set of
nodes {ny,ng,ns,...,n;}. Any n; has the same attributes as N but guarantees that all its
in-edges are temporally earlier than any of its out-edges. As PROVDETECTOR requires all
events on a causal graph are temporally ordered, splitting a node based on the temporal
orders of its in-edges and out-edges removes all loops in the graph. After the conversion,

PROVDETECTOR relies on existing algorithm [177] to find the K longest paths on the DAG.

5.5.4 Embedding

After we select the top K rarest paths as features, the next question is how to feed the
paths to anomaly detection models. There are several challenges: (1) the lengths of causal
paths are different, and (2) the labels of nodes and edges are unstructured data such as file

names or executable paths.

Intuition  An important intuition we have is to view a causal path as a sentence/document:
the nodes and edges in the path are words that compose the “sentence” which describes a
program behavior. In other words, different nodes and edges compose paths in a similar
way that different words compose sentences. Based on this intuition, we could treat each
node as a “noun”, treat each edge as a “verb”, and use their labels to form a sentence that
represents the path. For example, for the path B; in Figure 5.5, it can be directly mapped
to the following sentence: Process:winword.exe write File:t1.txt read_by Process:outlook.exe
write Socket:168.x.x.1.

Embeddings Learning  To learn an embedding vector for a causal path, we can leverage the
document embeddings model with the path as a sentence. Formally, a causal path A can
be translated to a sequence of words {l(e;.src),l(e;),l(e;.dst), ... l(ey.s1¢),l(en),l(ey.dst)},
where [ is a function to get the text representation of a node or an edge. Currently, we
represent a process node by its executable path, a file node by its file path, and a socket
node by its source or destination IP and port; we represent an edge by its relation.

With the translated sentences, PROVDETECTOR uses the PV-DM model of doc2vec [158]
to learn the embedding of paths. This method has several advantages. First, it is a self-
supervised method, which means we can learn the encoder with purely benign data. Second,

it projects the paths to the numerical vector space so that similar paths are closer (e.g., By
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and My in Figure 5.5) while different paths are far away (e.g., By and M in Figure 5.5). This
allows us to apply other distance based novelty detection methods in the next step. Third, it
also considers the order of words, which is also important. For example, a cmd.exe starting

a winword.exe is likely benign while a winword.exe starting a cmd.exe is often malicious.

5.5.5  Anomaly Detection

The final step of PROVDETECTOR is to use a novelty detection method to detect if the
embedding of a path is abnormal. Our design of the anomaly detector is based on the nature
of the provenance data. In our observation, provenance data has two important features.
First, they cannot be modeled by a single probability distribution model. Modern computer
systems and programs are complex and dynamic, it is very hard to model the behaviors of
programs with a mathematical distribution model. Second, provenance data have multiple
clusters. Workloads of a program can be very different. Although provenance data from
similar workloads may look similar, they will be very different if they are from two distinct
workloads. Thus, it is very hard to use a single curve to separate normal and abnormal
provenance data in the embedding space.

Based on the features of provenance data, PROVDETECTOR uses Local Outlier Factor
(LOF) [159] as the novelty detection model. LOF is a density based method. A point is
considered as an outlier if it has lower local density than its neighbors. LOF does not make
any assumption on the probability distribution of data nor separates the data with a single

curve. Thus, it is an appropriate method for our novelty detection problem.

Final Decision Making In the detection phase, we use the built novelty detection model to
make predictions of path embedding vectors of a provenance graph. We then use a threshold-
based method, i.e., if more than ¢ embedding vectors are predicted as malicious we treat
the provenance graph as malicious, to make the final decision about whether the provenance
graph is benign or malicious. This method could enable an early stop in the path selection
process to reduce detection overhead when the top t instead of K selected paths are already

predicted as malicious.

5.5.6 Implementation

While PROVDETECTOR takes inputs from both Linux and Windows hosts, our evaluation
focuses on Windows event, as our benign deployment mainly comprise of Windows host and
most stealthy malware runs for Windows target. We implement the provenance data collector

of PROVDETECTOR which stores data in a PostgreSQL database using the Windows ETW
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framework [178] and Linux Audit framework [179]. The provenance graph builder and the
representation extractor are implemented using about 15K lines of Java code, with the
same method proposed by King et al. [151] and our causal path selection algorithm in
Section 5.5.3. The rest parts of PROVDETECTOR, such as embedding and anomaly detection,
are implemented in Python.

We use the K = 20 selected paths as the representation for a provenance graph. We then
train a PV-DM model as discussed in Section 5.5.4 using the Gensim library [180], which
embeds each path into a 100 dimensional embedding vector, which is the default option of
Gensim. Finally, we use the embedding vectors to train a novelty detection model using the
Local Outlier Factor (LOF) algorithm in Scikit-learn [181].

Provenance Data Preprocessing  Provenance data collected from different hosts may con-
tain host-specific or entity-specific information such as file paths. To remove such informa-

tion, we follow the abstraction rules that are similar to previous works [153, 154, 155]:

e Path Abstraction. Process entity and file entity have path related attributes such as
process executable path and file path. We abstract these paths by removing user
specific details. For example the path C:/USERS/USER_NAME/DESKTOP/PAPER.DOC will be
changed to *: /USERS/*/DESKTOP/PAPER.DOC, where the user name and the root location

are abstracted.

e Socket Connection Abstraction. A socket connection has two parts: the source part
(IP and port) and the destination part (IP and port). As the IP of a host is a specific
field only to the host, we abstract a socket connection by removing the internal address
while keeping the external address. More specifically, we remove the source part of an

outgoing connection and the destination part of an incoming connection.

5.6 EVALUATION

To evaluate the efficacy of PROVDETECTOR, we seek for answers to the following research

questions:

RQ1: How effective is PROVDETECTOR in detecting stealthy malware? What is the detection
accuracy? (Section 6.5.2)

RQ2: What makes PROVDETECTOR capable of detecting stealthy malware? (Section 5.6.3)

RQ3: What is the computational overhead of PROVDETECTOR to build its models and to
perform detection? (Section 5.6.4)
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5.6.1 Experiment Protocol

We answer the above three research questions with real stealthy malware instances gained
by running malware samples and benign process instances gained from a real-world enterprise
deployment. To collect benign provenance data, we installed the provenance data collector
to 306 Windows hosts in an enterprise. The benign provenance data was collected over three
months and stored in a PostgreSQL database.

To collect provenance data for stealthy malware, we downloaded about 15,000 malware
samples from VirusShare [182] and VirusSign [183] and executed them in the Cuckoo sand-
box [184]. Regarding the sandbox configuration, we prepared the same operating system
(OS) and application environment as it is configured for the enterprise. Among the mali-
cious execution instances, whose behaviors were triggered and captured by our sandbox, we
identified 23 victim programs. These victims are benign programs used in the enterprise,
whose behaviors are captured in the benign provenance dataset. The 23 hijacked victims
include popular Windows applications such as IE Browser and Microsoft Word, and pre-
installed system tools such as the Windows Certificate Services Tool. Table 5.2 shows the
complete list.

In preparation of the dataset for model building, we chose 250 benign process instances
and 50 malicious process instances for each of the 23 programs observed from both the
benign and malicious environment. For each program, we randomly chose benign instances
from the enterprise environment, whereas we generated corresponding malicious instances
by running one distinct stealthy malware. In other words, we executed 50 distinct malware
for each of the 23 programs to generate malicious data. Since our approach is an anomaly
detection technique, which only needs benign data for training, we randomly selected 200
benign instances as the training dataset and used the rest 50 benign instances and all the
malicious instances as the testing input. In total, we evaluated PROVDETECTOR with 1,150
distinct malware samples that hijacks benign processes. These malware samples are classified
into 189 malware families with AVClass [185]. Among the malware samples?, 298 of them
are identified to be anti-VM (i.e., detecting if it is in a virtual machine) and 238 of them
are identified to be anti-debug (i.e., detecting if it is under debugger) by VirusTotal [186] or
Tencent HABO [187].

We trained PROVDETECTOR on a machine with an Intel Core i7-6700 Quad-Core Pro-
cessor (3.4 GHz) and 32 GB RAM running Ubuntu 16.04 OS; detection was also performed

on the same machine.

2We list the MD5 value of a malware, whether it is anti-VM, whether it is anti-debug and its AVClass
label at https://github.com/share-we/malware.
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Remowal of Biases Due to Sandbor  Although we use real stealthy malware, the Cuckoo
sandbox may introduce bias in our experiment. The workflow of how Cuckoo runs a stealthy
malware is as follows: (1) the Cuckoo agent introduces a malicious payload (malware ex-
ecutable or malicious document) to the sandbox, (2) the initial payload injects malicious
logic into a target benign program via various channels, (8) the injected malicious logic in
the victim process executes. The first part of the workflow leaves a unique pattern in the
provenance graphs due to the Cuckoo agent: every attack path in the provenance graph
either starts with the agent process or the malicious payload. This pattern could introduce
a bias to our experiment as the model can simply just remember the agent process or the
malicious payload to predict whether a path is from a hijacked process. To eliminate such a
bias, for all the malicious provenance graphs, we only use the sub-graph generated after the
malicious payload has been loaded. In other words, we remove the event of loading the ma-
licious payload and all other dependency events that happen before it. This pre-processing
eliminates all the features related to the Cuckoo framework. To ensure that the generated
provenance graphs do not have any bias, we examined the distribution of the embeddings
of the paths generated from the benign workloads in the Cuckoo and confirmed that they

follow the same distribution as our training data.

5.6.2 Detection Accuracy

To answer research question RQ1, we measure the detection accuracy for the 23 pro-
grams. To further evaluate the effectiveness of our proposed techniques, we also compare
our embedding and anomaly detection methods to other baseline approaches.

In our experiments, we select the top 20 causal paths from each provenance graph using
our path selection algorithm (Section 5.5.3). Then, we measure both path-level detection
accuracy and graph-level detection accuracy. To measure the path-level detection accuracy,
we treat each path as an individual data sample; for the graph-level detection accuracy, we
use the threshold-based method (Section 5.5.5) to make a final prediction from the predic-
tions of paths. The detection accuracy of PROVDETECTOR is measured using precision,
recall, and F1-score metrics.

We show the path-level detection results in Table 5.2. The detection accuracy of PROVDE-
TECTOR is consistently high across different programs. Precision ranges from 0.952 to 0.965,
recall ranges from 0.965 to 1, and F1-score ranges from 0.961 to 0.982. We show the average
graph-level detection accuracy for the 23 programs using different threshold values in Fig-
ure 5.6. Here the threshold value is the number of rarest paths selected as in Section 5.5.3.

As we can see, using a threshold value of 3 or 4 already achieve very high precision and recall
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Table 5.2: The path-level detection accuracy of PROVDETECTOR.

[ Program [ Description [ Precision [ Recall [ F1-Score ]
. Windows File
attrib System Tool 0.958 1 0.978
certutil Windows Certificate 0.964 1 0.981
Services Tool
cmd Windows Command 0.956 0.999 0.977
Line
. Windows System
cscript Script Interpreter 0.959 0.999 0.978
) Component of
cvtres C4+ Toolchain 0.965 1 0.982
excel Microsoft Excel 0.961 1 0.980
firefox Firefox Browser 0.958 0.965 0.961
iexplore IE Browser 0.960 0.968 0.963
javaw Java VM 0.957 0.992 0.974
jusched Java Update Scheduler 0.957 0.990 0.974
maintservice Firefox Updater 0.959 1 0.979
msiexec Windows Installer 0.960 0.983 0.971
mspaint Microsoft Paint 0.96 0.990 0.975
notepad Windows Text Editor 0.963 0.984 0.973
rar WinRAR Compression 0.953 1 0.976
Tool
sc Windows Service 0.952 1 0.975
Controller
Windows Spooler
spoolsv Subsystem App 0.955 1 0.977
tasklist Windows Task 0.962 0.970 0.966
Management Tool
taskmgr Windows Task Manager 0.960 1 0.979
wget Downloader 0.952 1 0.975
winword Microsoft Word 0.960 0.976 0.967
wmic Windows Management 0.952 0.998 0.974
Instrumentation Command
wmplayer Windows Media Player 0.959 0.996 0.977
[ Average [ - [ 0.959 [ 0.991 [ 0.974 ]
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Figure 5.6: The graph-level detection accuracy of PROVDETECTOR with different threshold
values

(precision of 0.957 and 0.995 for the threshold 3 and 4, respectively; recall of 1 for both of
the threshold values 3 and 4). All these results show that PROVDETECTOR is very effective
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Figure 5.7: The detection accuracy of the whitelist approach with different values.

in detecting stealthy malware.

Comparison with Strawman Detection Approaches. To show the effectiveness of
our machine learning-based approach, we compare PROVDETECTOR with three strawman
techniques: the blacklist, the whitelist, and the anomaly score based approach [153].

The goal of having the blacklist approach is to answer the question: is it possible to use
hand-coded rules developed by human experts to detect stealthy attacks. Ideally, relying
on human experts seems to be an effective approach which can easily bring in with several
working heuristics. One exemplary rule can be “Ul-heavy programs (e.g., MS Word and
Excel) should not launch external scripts, such as through CMD or PowerShell”. However,
in practice, since the adversary has a lot of ways to run the malicious code, it is very difficult
to come up with a comprehensive blacklist. For instance, the Ul-heavy processes could run
the malicious code through Java or hijack other processes (e.g., notepad.exe) instead of
using scripts. Using a blacklist approach could overlook a large number of other attacks,
especially unknown attacks. In our experiment, we measure the effectiveness of applying
the “Ul-heavy programs should not run external scripts” heuristic. To do so, we use all the
8 Ul-heavy programs (i.e., excel, firefox, iexplore, mspaint, notepad, rar, winword and
wmplayer) in our evaluated 23 programs and check if they calls cmd.exe, powershell.exe or
other script interpreters. We found that the recall of this heuristic is close to zero (<0.07),
which means a large number of attacks were overlooked by this approach.

The second strawman approach, the whitelist, is to evaluate whether people can detect
stealthy attacks by simply detecting infrequent events. To construct the whitelist, we use a
statistics-based approach. For each event, if it exists in more than p percent of the benign
program instances, we add it to the whitelist. In Figure 5.7, we show the detection accuracy

of this approach averaged by the 23 programs using different p values. In our experiment,
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Table 5.3: The detection accuracy of the anomaly score based approach with different per-
centile values.

[ n-percentile [ Precision [ Recall [ F1-Score ]
85 0.84 0.36 0.50
86 0.845 0.349 0.49
87 0.885 0.31 0.46
88 0.893 0.243 0.38
89 0.905 0.233 0.37
90 0.909 0.208 0.34
91 0.914 0.199 0.33
92 0.925 0.182 0.30
93 0.918 0.183 0.31
94 0.921 0.195 0.32
95 0.939 0.163 0.28

Table 5.4: Detection accuracy comparisons with path-level and graph-level approaches.

[ Path or Graph [ Approach | Precision | Recall | Fl-score |
Path-level PROVDETECTOR (path-level) 0.959 0.991 0.974
v Path Nodes Averaging 0.961 0.890 0.924
PROVDETECTOR (graph-level) 0.957 1 0.978
Graph-level graph2vec 0.899 0.452 0.601

this approach achieves the best F1 score of 0.78 when p is 3%, which is still substantially
lower than the F1 score of PROVDETECTOR.

The third strawman approach is the anomaly score-based approach. In Section 5.5.3, we
define regularity score for a path to select the top K rarest paths from a provenance graph.
One may consider that these regularity scores (or anomaly scores) could be used to effectively
detect stealthy malware for simplicity. To address this concern, we evaluated a score-based
detection approach. For each program, the anomaly score based approach first selects the
top K rarest paths from all the benign provenance graphs, then it chooses the n-percentile of
all the anomaly scores of the paths as the threshold. During the detection stage, it identifies
any path that has an anomaly score higher than the threshold as a malicious path. In other
words, if a path has an anomaly score higher than n percent of the paths selected from
benign provenance graphs, this strawman approach identifies the path as malicious. The
results of detection accuracy with different percentile values are shown in Table 5.3. The F1
score is even substantially lower than the whitelist approach. One major reason for such poor
performance is that the rare paths selected from benign provenance graphs could also have
very high anomaly scores. Therefore, the anomaly scores alone are not informative enough
to differentiate benign ones and malicious ones. The results in Table 5.3 justify our choice of
using a learning-based approach that learns both from rareness and causal dependencies to
automatically identifies the proper boundary between benign and anomalous paths for each
program.

Comparison with Different Embedding Approaches. We compare our embedding
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approach (Section 5.5.4) with a graph embedding approach (graph2vec [188]), and the sim-
ple node-level path embedding (Path Nodes Averaging). graph2vec is an approach to learn
distributed representations of graphs. With graph2vec, we directly embed each provenance
graph into a feature vector. In the Path Nodes Averaging approach, we still compute em-
beddings for the paths selected by PROVDETECTOR. In contrast, we use word2vec to get the
embedding of each node, then obtain the embedding for a path by averaging the embeddings
of all the nodes in the path. In the evaluation of different embedding approaches, we follow
the same experiment protocol in Section 5.6.1.

To compare our approach with graph2vec, we compute graph-level detection accuracy of
PROVDETECTOR using a threshold of 3. The comparison results are shown in Table 5.4,
in which PROVDETECTOR has a substantially higher recall than graph2vec. The graph2vec
approach has reasonable precision but has very poor recall (even worse than random guess).
This result confirms our insight: the benign workloads of a hijacked process may hide the
malicious workload in the graph level. It is thus necessary to use the path-level features.
We will further discuss this result in Section 5.6.3.

We compare our embedding approach with Path Nodes Averaging in path-level detection
accuracy as shown in Table 5.4. The Path Nodes Averaging approach achieves comparable
precision and recall with our approach as it also uses the paths selected by PROVDETECTOR
in the embedding. However, it does not perform as good as our approach on recall as it does
not consider the order of nodes in a path.

Comparison of Different Anomaly Detection Algorithms. In our current imple-
mentation, we use Local Outlier Factor (LOF) [159] as the default anomaly detector. We
compare LOF with three other novelty detection or outlier detection algorithms in path-level

accuracy. The three baseline methods are as follows:

e Isolation Forest [189]: This algorithm divides the data points to different partitions.

Outliers need less cuts to be separated from other points while inliers need more cuts.

e One-Class SVM [190]: The algorithm trains a hyper-plane which separates all the
training data from the origin while maximizing the distance from the origin to the

hyper-plane.

e Robust Covariance (Elliptic Envelope) [191]: The algorithm assumes that the data is

Gaussian distribution and learns an ellipse.

In the evaluation of the above baseline methods, we follow the same experiment protocol
as we did for PROVDETECTOR. For one-class SVM, we use the rbf kernel with nu set to
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Table 5.5: Comparison of different anomaly detection algorithms in path-level detection
accuracy.

[ Algorithm [ Precision [ Recall [ F1-Score ]
Local Outlier Factor 0.959 0.991 0.974
One-Class SVM 0.886 0.635 0.739
Isolation Forest 0.955 0.467 0.627
Robust Covariance 0.940 0.397 0.558

0.1 and gamma set to 0.5. For the other three models, we set the contamination to 0.04. The
results are summarized in Table 5.5.

As shown in the table, LOF significantly outperforms other methods in terms of recall.

5.6.3 Interpretation of Detection Results

In this section, we interpret the detection results presented in Section 6.5.2 to justify our

design decisions. In particular, we seek answers for the following questions:
e Why do simple models (e.g., blacklist or whitelist) fail?

Why the whole provenance graph is not a good feature for stealthy malware detection?

Why our path selection method can accelerate the training and detection?

e How robust is PROVDETECTOR against mimicry attacks?

Why does LOF Perform better?
e What PROVDETECTOR learns?

Simple Models. To understand why simple models, such as the black- and white-lists,
that only consider one-hop features are not effective, we use one realistic example in our
experiment as a case study. The example is the “DownAuto Certutil Macro Dropper”
malware, which is a part of APT28 attack [192, 193]. The causality chain of this attack
is shown in Figure 5.8. This malware embeds its malicious payload as a base64 string and
exploits the certificate services (certutil.exe) to convert the base64 string to an executable
(c029ec8b.exe). After that, the malware runs the payload, which uses rund1132.exe to
connect back to the adversary.

The analysis based on the one-hop relationships cannot disclose the adversarial context,
as every step in this attack looks normal. It is possible for excel.exe to handle certificates
with certutil.exe. It is also normal behavior for certutil.exe to create any arbitrary

files. Note that in our experiment environment, although the malicious executable has a
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Figure 5.8: The path selected by PROVDETECTOR from a realistic attack example.
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Figure 5.9: The t-SNE plot with the paths randomly selected from benign and malicious
provenance graphs of the winword program. The blue points and red points represent paths
selected from benign provenance graphs and malicious provenance graphs respectively.

random name, in practice, this name could also be the name of any benign software and
may not contain the extension .exe. Finally, it is also impractical to prevent excel.exe
from executing external programs and rundl1132.exe whose execution logic depends on its
command line given at runtime. The abnormality of the operation arises only when all dots
are connected and considered as a whole. PROVDETECTOR models the whole causality path
altogether as a vector and detects anomalous paths instead of anomalous steps. This is why
PROVDETECTOR outperforms simple approaches.

Whole Graph Modeling. To understand why the whole graph is not a good feature for
detecting stealthy malware as well as why graph2vec does not perform well in Section 6.5.2,
we perform a set of empirical measurements. We randomly selected paths from the prove-
nance graphs of processes that were hijacked by stealthy attacks. We then feed these paths
into our anomaly detector to get their prediction. We found that, on average, about 70% of
randomly selected paths from hijacked processes cannot be detected as malicious. In other
words, about 70% of the paths are not distinguishable from benign paths. For a graph-level
embedding method, which summarizes the features of all paths to get an embedding, will

not be sensitive to a small number of abnormal paths.
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Figure 5.10: The t-SNE plot with the paths selected by our path selection algorithm from
benign and malicious provenance graphs of the winword program. The blue points and red
points represent paths selected from benign provenance graphs and malicious provenance
graphs respectively.

To better understand the distribution of paths from hijacked programs, we take the
winword (MS Word) program as an example and visualize the distribution in Figure 5.9.
To generate Figure 5.9, we randomly select 20 paths from each provenance graph of winword
(both benign and malicious), embed them with PROVDETECTOR, and plot the embedding
vectors with t-SNE [194]. We mark the paths selected from benign graphs in blue and those
from malicious graphs in red. In Figure 5.9, the majority of paths selected from malicious
graphs are mixed with paths selected from benign graphs. This is because these “malicious”
paths are generated from the benign part of the hijacked process. There is only a small
group of paths that are easily separable, which we marked in a black circle. Therefore,
graph-level embedding methods, such as graph2vec, which learn features from all the paths,
is less capable of detecting stealthy malware as the features from “real” malicious paths are
overlapped with the “normal” paths.

Path Selection. To demonstrate why our path selection technique can maintain the accu-
racy while reducing training and detection workload, we again take the winword program as
an example. In Figure 5.10, we plot the embedding vectors of paths selected by PROVDE-
TECTOR with t-SNE. The blue points are paths selected from benign provenance graphs and
the red points are paths selected from malicious provenance graphs by PROVDETECTOR.
The result in Figure 5.10 delivers two findings. First, the selected benign paths form mul-
tiple clusters representing the diversity of custom workloads of benign programs. Second,
the selected (rare) paths from malicious graphs are very different from other benign paths,

therefore they are easy to be separated in the embedding space. This result confirms our
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assumption that rare paths could capture abnormal behavior of stealthy malware.
Robustness Against Mimicry Attacks. The adversary may evade the detection of
PROVDETECTOR by mimicking “normal” behaviors of programs. It is important to know
how much effort does the adversary need to take to evade the detection.

To answer this question, we introduce the editing distance between malicious paths and

benign paths. We define the editing distance between two causal paths as the minimum
number of actions needed to convert one path to another. The actions include add, modify,
and delete any node in a causal path®. In our experiment, we measured the average editing
distance between malicious paths and benign paths*. The average value is about five. In
other words, to make a malicious path looks benign, an adversary needs to mimic about five
system objects. This result suggests that PROVDETECTOR is more robust than the single
step detection approaches (e.g., blacklist approach) since the adversary only needs to mimic
the behavior of one system object.
Why does LOF Perform Better? As shown in Table 5.5, LOF performs the best among
the four evaluated algorithms. This is because LOF does not rely on an assumption about
the distribution of the data. As shown in Figure 5.10, the embeddings of paths have multiple
clusters and do not follow any single distribution.

Robust Covariance performs worst as it assumes the data obeys approximately a Gaussian
distribution and tries to learn an ellipse to cover the normal data points. Consequently, it
may degrade when the data is not unimodal. Isolation Forest and One-Class SVM outper-
form Robust Covariance because they do not rely on any assumption on the distribution of
data. However, these two methods assume that the normal paths are all from one cluster;
thus they cannot achieve high detection accuracy as high as LOF.

On the other hand, LOF detects anomalous data points by measuring the local deviation
of a given data point with respect to its neighbors, making it typically suitable for the
case where different models in the data have different densities. As with our data, different
workloads may generate paths that have different densities in distribution, thus LOF could
achieve a high detection accuracy.

What ProvDetector Learns? There are two possible kinds of features that PROVDETEC-
TOR has learned: the path-level feature or the single node level feature. If PROVDETECTOR
only learns single node level features, it could indicate that PROVDETECTOR only mem-
orizes a small set of nodes to detect malicious paths. Still take the winword program as

an example, a “bad” detection model which only learns node level features might predict a

3This concept is borrowed from computational linguistics.
4To eliminate the bias introduced by arbitrary file names, we consider all files with the same type as one
file; for network connection, we abstract all IPs to 7*.*.* *7,
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path as malicious if a previously unseen process (e.g., PowerShell) node is in the path. Such
detection model can easily be evaded by attackers.

To answer this question, a naive method is to develop baseline detection methods that
only rely on single node level features. However, this method may have a bias from what
baseline detection methods we select. Instead, we use LIME [195], a model-agnostic pre-
diction explanation tool, to calculate and rank the “impact” of each single node in a path
to the final detection. LIME also produces a numeric value to evaluate how much the final
result would change, in case we remove any node from the path.

We use LIME to calculate the “KEY” nodes for each benign path and malicious path. A
set of nodes are considered as KEY nodes if they are the most impactful nodes identified by
LIME and PROVDETECTOR would give a different detection result if we remove these nodes
from the path. We try to find if there is a set of KEY nodes that are common across all the
paths. If so, it indicates that PROVDETECTOR has only learned single node level features.

In our experiment, we find that there is not a set of KEY nodes that can be shared by
most of the paths. For benign paths, 35% of the paths have their own unique KEY node. On
average, the number of paths that share the same KEY node is 3.18. In other words, each
KEY node is used to impact 3 benign paths on average in PROVDETECTOR. For malicious
paths, about 50% of paths have their unique KEY node. The average number of paths that
share the same KEY node is 3.1. In summary, PROVDETECTOR relies on path-level features
instead of single node level features to detect stealthy malware, which is consistent with our

design motivation.

5.6.4 Runtime Performance

We measure the runtime overhead of PROVDETECTOR for its training and detection

stages.

Training Overhead  The runtime overhead in the training stage for each monitored program
mainly consists of (1) the overhead for building provenance graphs and path selection, (2) the
overhead to build the doc2vec model, and (&) the overhead to build the anomaly detection
model. On average, it takes seven seconds to build a provenance graph from the database
and select the top 20 paths. With the data of 30,000 paths, it takes about 94 seconds to train
the doc2vec model with the embedding vector size of 100 and epochs of 100. It takes around
39 seconds to train the LOF novelty detection model. Note that the training overhead for
one program is a one-time effort. We do not need to retrain either of the doc2vec model or

the LOF model unless we want to improve the models with more training samples.
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Detection Qverhead  The runtime overhead in the detection stage for a process instance
mainly consists of (1) the overhead for building provenance graphs and path selection, (2)
the overhead for embedding the selected paths, and (3) the prediction overhead of the
anomaly detection model. On average, it takes five seconds to build the provenance graph
and two seconds to select the top 20 paths from the graph. It only takes one millisecond
(ms) to embed a path into a vector and 0.06 ms for the novelty detection model to make a
prediction with the vector. In total, the detection overhead for a process instance is about
seven seconds.

To estimate the practicality of PROVDETECTOR in an enterprise, we count the number of
process instances created for the 23 evaluated programs from the data over three months with
306 hosts. On average, each host creates about 22.7 instances of these programs, i.e., about
one process for each program. Suppose an enterprise which has 100 hosts and there are 30
programs to monitor, it will take 5.7 hours per day to check all the created instances in the
enterprise. However, note that our experiments were conducted on a single general desktop
with a single thread. The detection time can be reduced by parallelizing PROVDETECTOR

on multiple server machines.

5.7 DISCUSSION AND LIMITATIONS

Offtine Detection vs. Online Detection.  In our current implementation, PROVDETECTOR
works as an offline detector, where it scans the provenance database to detect stealthy
attacks. However, PROVDETECTOR can be implemented as a real-time approach by using an
in-memory provenance graph database on each monitored host [196]. Then PROVDETECTOR
can model the path selection problem as an incremental K longest paths problem on a
dynamic graph, which is an orthogonal problem and has existing solutions [197, 198]. We

leave the implementation details to our future work.

Applicability to Other Operating Systems.  In this work, our evaluation focuses on programs
(e.g., MS Word) on Windows systems as most of the stealthy malware we collected target
Windows. However, our approach is not limited to a certain operating system like Windows
since similar OS level provenance data can be also collected from other operating systems

such as Linux [152]. Moreover, our approach does not rely on any Windows specific feature.

More Complex Embedding or Learning Approaches.  In this work, PROVDETECTOR uses
the doc2vec paragraph embedding technique and a simple anomaly detection model LOF
for its detection purpose. As shown in Section 6.5, the combination of these two models

have already achieved very good detection performance. More complex machine learning
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techniques, such as LSTM [199], Tree-structured LSTM [200], Graph Convolutional Net-
works [201], and One-class Neural Networks [202, 203] could possibly further improve the

detection accuracy, yet they may also introduce a higher cost.

Mimicry Attacks.  An adversary may mimic behaviors of benign programs to evade the
detection of PROVDETECTOR. In Section 5.6.3, we measured that, on average, an adversary
needs to add, modify, or delete about five different nodes in a causal path to mimic the behav-
ior of benign programs. Since a causal path embeds the contextual causality among different
system entities (e.g., processes), we believe that it is much harder to evade PROVDETECTOR
than the approaches that focus only on the behavior of one process. We will conduct more

evaluation and research on defending mimicry attacks in our future work.

Anti-analysis Malware. A lot of today’s malware has anti-analysis (e.g., anti-VM or anti-
debug) capabilities. When the malware detects that it is being run in a virtual machine or
under a debugger, it changes its behavior (usually either less malicious behavior or termi-
nation). PROVDETECTOR, unlike virtualization based solutions [156, 157], is designed to
run on bare metal machines and does not require isolated environments. Similar to previ-
ous work [157, 204, 205], to perform a large-scale analysis, we use sandbox environments
to automate the execution of malware samples in our evaluation. It is possible that some
anti-analysis malware changed their behavior during our evaluation. However, 289 (26%) of
the malware samples in our evaluation are identified as anti-VM by VirusTotal. For these
samples, PROVDETECTOR should still be able to detect them when they are running on
bare metal machines as their behaviors on bare metal should be same or more malicious,

which will be easily selected by PROVDETECTOR’s path selection algorithm.

The Benign Dataset.  We collected our benign data from an anonymous enterprise which
was well guarded by security professionals and continuously monitoring using up-to-date
security solutions. Although it does not guarantee that our “benign” data is perfectly benign,

we believe that the chance of data pollution is low and will not invalidate our evaluation.

5.8 RELATED WORK

Stealthy Malware.  Malware is becoming increasingly stealthy to evade detection. A popu-
lar trend in recent cyberattacks is to impersonate or abuse benign applications on the victim
host to achieve the attack goals. There are many impersonation techniques. For example,
DLL injection [165], portable executable injection, and remote thread injection [206]. Re-
cently developed new techniques such as process hollowing [166], AtomBombing [207] and

shim-based DLL injection [167] have also been applied in real-world malware. Fileless mal-
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ware, which follows the “living off the land” attack strategy, has been actively studied by
both industry [148] and academia [208]. While characterized by its avoidance of using files
during an attack, we believe that PROVDETECTOR will also be helpful in detecting cer-
tain types of fileless malware whose behavior can be tracked by our kernel-level provenance

tracing.

Malware Detection. Malware detection has been an active area of research in multiple
platforms like Android, Windows, and Linux. In traditional approaches, static analysis [140,
141, 209] and dynamic analysis [210, 211, 212] have been used to analyze and detect malware.
Recently, machine learning and deep learning approaches are leveraged as a new trend in
malware analysis and detection which greatly improve the detection accuracy over traditional
methods [142, 143, 144, 145]. Shu et al. [213] profile a program’s historical behavior to
detect stealthy control flow violations (e.g., aberrant path attack) based on function call
logs gained by software instrumentation. Differently, PROVDETECTOR aims to detect a
malware-controlled program using more coarse-grained kernel-provided audit logs. There
are multiple proposals to detect stealthy malware that uses impersonation techniques like
code injection. Bee master [204] prepares honeypot processes in an analysis environment
and detects injections into the processes. Membrane [214] and Quincy [205] extract features
from memory information such as memory paging information and memory dumps, and use
supervised machine learning to detect code injection. Tartarus [156] and API Chaser [157]
use taint tracking to identify code injection. However, these proposals either target only
certain types of attacks [204] (e.g., [204] cannot detect process hollowing), relay on some OS
features [214], or need virtualization environments and have severe impact on the system
performance [156, 157]. Moreover, all of them have a limitation for script-based attacks.
In contrast, our approach uses lightweight kernel-level provenance tracking and targets the

broad scope of impersonation techniques including script-based attacks.

Anomaly Detection with Host Level System Events. Several approaches have been pro-
posed to detect intrusion or abnormal behaviors using system event data on the end hosts [153,
161, 174, 215, 216]. Caselli el al. [215] proposed an approach which first builds the profile
of k-grams from benign system call traces and then it throws an alert if a new system call
trace is significantly different from the normal profile. Padmanabhan et al. [216] modeled
the information flow in a system using directed graphs and extracts abnormal substructures
from it. Dong et al. [174] proposed a system to find abnormal event sequences from a large
number of heterogeneous event traces. Chen et al. [161] proposed a principled and unified
probabilistic model to learn the likelihood of system events. Siddiqui et al. [217] developed

a system to detect malicious system entities using a multi-view based technique.
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Unstructured Data Embeddings.  Multiple embedding techniques (i.e., learning distributed
representations or numerical vectors of data) have been proposed for unstructured data
such as texts and graphs. In the natural language processing domain, different embedding
techniques have been proposed for words [172, 218], sentences [219] and documents [158].
Learning techniques have also been proposed for graphs [188] as well. These embedding
techniques are utilized in multiple security applications for data modeling. For example,
Narayanan et al. [188] demonstrated the ability of graph2vec in classifying malicious and
benign Android apps using API dependency graphs. Mimura et al. [220] used paragraph
vectors to detect unseen malicious traffic from proxy log. Tavabi et al. [221] proposed a neural
language modeling approach that learns embeddings of darkweb/deepweb discussions to
predict whether vulnerabilities are exploited. In this work, we utilize paragraph embedding
techniques over system provenance data to detect stealthy malware. PROVDETECTOR would

benefit from the future improvement of embedding techniques.

Mimicry Attacks on Host-based Solutions.  System call traces have long been used as the
information source for host-based instruction detection systems (IDS). The seminal research
on mimicry attacks [222, 223] demonstrated that the IDS can be evaded by carefully crafting
an exploit that produces a legitimate sequence of system calls while performing malicious
actions. To limit the vulnerability of the IDS to mimicry attacks, a number of improve-
ments [224, 225, 226, 227, 228] have been proposed by considering more features in the
analysis. For example, [224] incorporates into the analysis information about the call stack
configuration at the time of a system call to counteract mimicry attacks. To automate the
construction of mimicry attacks, several techniques [229, 230, 231] have been proposed. How-
ever, these systems focus on monitoring system call traces, which do not reflect the context
of each syscall event. In contrast, our approach uses data provenance that encodes historical
context into causality graphs. Conducting mimicry attacks on provenance-based solutions is
more challenging than on system call traces as provenance graphs contain complex structural

information that is difficult to imitate without impeding the attack.

Provenance-based Solutions. A large body of work has been proposed to leverage prove-
nance for multiple areas such as forensic analysis [41, 42, 127, 128, 152, 155, 232, 233],
network debugging and troubleshooting [39, 234], alert triage [153], intrusion detection and
access control [130, 131, 154, 235, 236], and attack reconstruction [64, 134, 237].

Linux Provenance Modules (LPM) [152] and Hi-Fi [127] proposed an efficient and trusted
provenance collecting framework by adding provenance hooks in the Linux kernel similar to
Linux Security Modules. BEEP [42] and ProTracer [41] are provenance trackers that solve

the problem of dependency explosion in the provenance graph by execution partitioning
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the event-handling loops. Liu et al. [154] proposed an anomaly based priority search to
address the dependency explosion problem. LogGC [128] further reduces the log size using
the idea of execution partitioning. Winnower [155] provides a storage efficient provenance
auditing framework for large clusters. MCI [238] proposes a reliable and efficient approach
to restore fine-grained information flow among system events using dual execution (LDX).
While these techniques address different problems, we believe that they can be integrated into
PROVDETECTOR to improve its accuracy. Besides forensic investigation, provenance is also
used in network debugging. Chen et al. [39] proposed differential provenance which reasons
the differences compared to good and bad references. The same authors [234] also proposed
secure packet provenance (SPP) that provides provenance on the Internet’s data plane which
has a high data rate. NoDoze [153] is an automated threat alert triage system based on data
provenance. It ranks the alerts from third party threat detection systems (TDS) by the
rareness of causal paths in their provenance graph. However, it cannot effectively extract
the K rarest paths as it enumerates all the paths of a provenance graph. Moreover, it only
provides anomaly scores to paths to help with investigation and does not provide a systematic
way to separate benign and malicious paths. PROVDETECTOR addresses the limitations and
provides an end-to-end solution to automatically learns the boundaries from training data

using machine learning techniques. Besides, a TDS is not required by PROVDETECTOR.

5.9 CONCLUSION

In this work, we present PROVDETECTOR, an anomaly detection based approach to detect
stealthy impersonation malware using OS level provenance graphs. PROVDETECTOR uses
a novel rareness-based path selection algorithm to identify causal paths in the provenance
graph which represent the potentially malicious behavior of a process. These causal paths
are then used by a pipeline of a document embedding model and a novelty detection model
to determine if the process is malicious. We evaluated PROVDETECTOR with 23 target
programs using a system provenance dataset from an enterprise. The results show that
PROVDETECTOR has consistently high precision and recall for the evaluated programs,

demonstrating its effectiveness and practicality in the detection of stealthy malware.
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CHAPTER 6: ENABLING ON-DEVICE ANOMALY DETECTION WITH
FEDERATED LEARNING

In last chapter, we have described PROVDETECTOR, a novel approach to detect stealthy
attacks using data provenance analysis. However, PROVDETECTOR is a centralized ap-
proach. All the monitored clients send their system monitoring data to a central server; the
server builds detection models and performs attack detection. In this chapter, we go on to
present our work on the device layer of IoT. We describe how we extend PROVDETECTOR
to a decentralized approach that trains the detection models and performs detection all on
devices.

In this chapter, we present SplitBrain, a novel edge-cloud collaborative security system
that detects stealthy attacks on IoT devices. SplitBrain maintains in-memory provenance
graphs with host-level system events and performs efficient paths selection to build normal
behavior profiles. To offload computation to IoT devices and aggregate behavior profiles to
build global models, we propose a novel federated neural embedding and machine learning
pipeline that leverages the knowledge from multiple clients. We prototype SplitBrain and
systematically evaluate its efficiency and effectiveness. With a reasonable amount of com-
putation overhead on the IoT device, SplitBrain can detect stealthy attacks with very high
accuracy. We show that our SplitBrain design can greatly improve the detection performance

over individual devices and our design can greatly reduce network communication overhead.

6.1 INTRODUCTION

Internet of Things (IoT) is now ubiquitous in smart homes, offices, and industrial environ-
ments. With the increase of user requirements, [oT devices are also becoming more complex.
Security cameras, voice assistants, smart-home hubs, drones, and connected automobiles are
just some examples. Behind this transition in IoT is the recent development of inexpensive
and highly functional hardware [2, 3], which has introduced cost-effective ways to implement
IoT devices running community-verified IoT operating systems (e.g., Android Things [4] and
Ubuntu [oT [5]). Leveraging existing full-fledged 10T operating systems (OSes), it saves a lot
of time and efforts to build highly functional IoT devices to meet the growing and diversified
computational demands.

Unfortunately, these more functional IoT devices also provide unprecedented opportuni-
ties for attackers. First, IoT OSes share a common codebase with general-purpose OSes
(e.g., Linux). Therefore, vulnerabilities and attack vectors found in one device can be easily

replicated to other IoT devices. Second, IoT vendors make their own customizations to the
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common codebase to fulfill the desired functionalities in their products. However, to quickly
bring their products to the market, they often give low priority to the rigorous testing and
verification of their implementations, giving attackers more opportunities to find zero-day
vulnerabilities. As a result of these reasons, recent IoT attack campaigns have occurred at an
unprecedented scale. The number of victim IoT devices can easily exceed half a million [17]
to a few million [16] in a massive attack.

In response to more and more IoT attack campaigns, a number of security solutions
(79, 239, 240, 241] have been proposed. However, at the same time, the attacker community
is seeking for new techniques to keep up with the advances. Adversaries are now increasingly
focusing on new techniques to evade detection. In particular, stealthy techniques, such as
fileless techniques, have been increasingly employed in recent cyberattacks [147, 164]. Fileless
attacks usually reside in memory and inject malicious payload into other running processes
to perform malicious activities, making it very difficult to detect them. With the prevalence
of 10T, IoT devices are now becoming the top targets for fileless attacks. We are seeing
quite a lot of fileless attacks against Linux systems and IoT devices (Linux-based IoT device
in particular) [208, 242, 243]. There are multiple proposals [139, 156, 157, 204, 205, 214]
to detect stealthy attacks. However, there are considerable challenges in implementing an
effective solution to protect IoT devices.

However, when applying to IoT devices, they have a lot of limitations. For example,
some proposals rely on some OS features [214], or need virtualization environments and
have severe impact on the system performance [156, 157]; some proposals only target certain
types of attacks [204]. While PROVDETECTOR is a more general and lightweight approach
to detect stealthy attacks, it is a centralized approach that requires the clients to send all
their monitoring data to a server for offline detection.

C1: Highly dynamic IoT threat landscape. New IoT devices are released and deployed
every day. Exploits targeting IoT devices are also being developed by adversaries at a simi-
larly high pace, making the threats against IoT devices highly dynamic and ever-increasing.
It is also a notable trend that [oT attacks are becoming much more sophisticated and ad-
versaries leverage stealthy attack vectors and zero-day vulnerabilities to attack [oT devices.
Therefore, approaches, such as [204], that only target certain types of attacks will fail to
detect new attacks.

C2: IoT resource constraints. Most IoT devices have limited resources such as CPU,
memory and network. It is impractical to deploy complex solutions that require too much
resources. For example, some approaches [156, 157] need virtualization environments that
have severe impact on the system performance. As network bandwidth and traffic are also

severely constrained for IoT devices, approaches such as [139] that send all the monitoring
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data to the server is inefficient in the long run.
C3: Data Unbalance. Machine learning is extensively used in different security solutions.
However, the training data available at each device depends on the duration that an IoT
device has been in monitored and the amount of interaction it has had, which varies largely
between clients. The data collected from each device is usually insufficient to train good
detection models. Therefore, directly applying machine learning based solutions to individual
devices seriously reduces the detection accuracy.
C4: Data Privacy. IoT devices closely monitoring the user environment to fulfil its
designed functionalities. A lot of sensitive information of the customers could be extracted
or inferred from the collected data. Approaches that sending all monitoring data to a server
for attack detection [139] or sharing data to other devices may cause serious privacy concerns.
To this end, we present SplitBrain, a novel edge-cloud collaborative security architecture
for IoT that addresses the aforementioned security challenges. Our SplitBrain architecture
has two major parts: a Local Brain deployed in each IoT device and a Cloud Brain resides
in the cloud server. The Local Brain collects system monitoring data and performs on-
device attack detection; the Cloud Brain orchestrates many Local Brains to build the global
detection models. To have more data channels to capture stealthy attack behaviors, the Local
Brain uses a lightweight mechanism which collects extensive system-level events in an efficient
manner. [t maintains in-memory provenance graphs and performs efficient incremental paths
selection to enable real-time detection. As building a good ML model requires a large amount
of data and heavy computation, it is impractical to build a good model on individual devices.
To provide the Local Brain with good models to perform local detection and preserve data
privacy, the Cloud Brain collaborates with many Local Brains to train document embedding
models and anomaly detection models through federated learning. Instead of sending the raw
data to the server, the Local Brain only needs to send the model updates (i.e., parameters
of the models) to the server, which greatly reduces network cost and preserves data privacy.
We implement a prototype of SplitBrain and extensively evaluate its efficiency and effec-
tiveness. For efficiency, we deploy Local Brains to IoT devices (Raspberry Pi devices) and
evaluate our prototype under different IoT workloads. The performance evaluation results
confirm the feasibility of our approach. We also show that the Cloud Brain is scalable to
a large number of edge devices. For effectiveness, we evaluate SplitBrain with a dataset
which contains fileless attacks to 23 programs. We show that SplitBrain also has very high
detection accuracy. The detection performance is close to the state-of-art approach [139]
which performs centralized training. We further compare the detection performance of the
SplitBrain with single devices. By using federated learning to train models with multiple

devices, SplitBrain can greatly improve the detection performance over individual devices.
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We show that our architecture can reduce network communication overhead by 10x just in
the training phase.

Our contributions can thus be summarized as:

e We present SplitBrain, a novel ML-based edge-cloud collaborative security system for
[oT devices with a constrained resource allocation. SplitBrain performs efficient in-
host monitoring data collection and distributes machine learning workloads between
the edges and the cloud, facilitating computationally expensive ML-based security in
the IoT context.

e To enable real-time on-device detection, we propose a novel dynamic path selection
algorithm to identify potentially malicious part of a process with in-memory provenance

graph maintaining.

e We design a novel federated neural embedding and machine learning pipeline that

leverages the knowledge from multiple clients to identify anomalous processes.

e We systematically evaluate the efficiency and effectiveness of SplitBrain. We show
that with a reasonable amount of computation overhead, SplitBrain can achieve a

high detection accuracy as compared with a centralized approach.

6.2 BACKGROUND

6.2.1 Fileless Attacks for IoT and Linux-based Systems

While traditional malware uses a file that requires execution to infect a victim’s system,
fileless attacks [149] usually reside in memory and perform all malicious activities directly
in RAM. Fileless techniques minimize or eliminate traces of malware on disk, and greatly
reduce the chances of detection by file-based malware scanning solutions.

Fileless attacks are prevalent on Windows systems [165, 166, 169]. Recently, we see quite
a lot of fileless attacks against Linux systems and IoT devices (Linux-based IoT device in
particular) [208, 242, 243]|. On Linux systems, there are different ways to accomplish fileless
attacks. For example, using calls such as memfd_create to create an anonymous file in RAM
that can be run, using LD_PRELOAD to preload malicious libraries, and using ptrace to remote
control of another process. Besides, fileless attacks could exploit software vulnerabilities to

inject malicious payload into benign processes and hide in memory.
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6.2.2 IoT Security Challenges and Limitations

As for the current IoT landscape, security for [oT devices mainly relies on intrusion detec-
tion systems (IDS) [239, 241, 244, 245]. An IDS typically monitors network or host behaviors
to find malicious activities or policy violations. Most IDSes have a common structure: a
data-gathering module that collects data that could contain evidence of an attack, an anal-
ysis module that processes such data to detect attacks, and an attack reporting mechanism.
Network-based IDSes perform their tasks by analyzing network traffic, whereas host-based
IDSes require data collection modules, commonly called agents (or sensors), that run on the
monitored devices.

There are two main types of intrusion detection approaches: signature-based detection and
machine-learning-based detection. Signature-based detection acts on a signature database
established by referring various sources of threat intelligence. Signature-based detection is
an efficient solution with a good accuracy for already known attacks, but it is short for
new attack vectors such as zero-days. Skilled attackers can easily evade it with simple
transformation of their attack vectors.

Compared to signature-based approaches, ML-based approaches aim to identify outlier
entities, events, or observations that deviate from its normal behavioral patterns. Such
approaches are more versatile, as they can detect previously unknown attacks (i.e., zero-
days), but are harder to implement. ML-based approaches are in general data-heavy and
computational expensive. We expect to have better models when events are more detailed
and are collected from various sources. ML-based anomaly detection automatically builds
normal behavior patterns. Despite its capability to distinguish newly seen attack patterns
from these normal patterns, ML-based anomaly detection often comes with accuracy issues.
In addition, for true positives, it is still difficult to understand and explain the reason for

the detection, thus making the interpretation of alerts an interesting research topic.

6.2.3 Collaborative (Federated) Learning

ML-based analysis has become a mainstream measure in addressing various problems
across different domains. Despite of its increasing popularity, being data-heavy and compu-
tational expensive, we are yet to see ML-based approaches play a vital role in domains for
small and distributed [oT devices. Recently, we have come to see proposals that attempt
to adopt ML-based approaches to the IoT domain. TICTAC [246] facilitates distributed
learning by tackling the increasing complexity of training models and input data through

communication scheduling between edge devices and the cloud. Federated Learning [247] is
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Figure 6.1: Edge-cloud collaboration for IoT security.

Google’s approach to enable edge devices to collaboratively learn a shared prediction model
while keeping all the training data on edge device, decoupling the ability to do machine

learning from the need to store the data in the cloud.

6.2.4 Edge-cloud Collaborative Learning for IoT Security

As discussed in Section 6.1 and Section 6.2, there are several major challenges in imple-
menting an effective solution for IoT devices. With the ever-increasing IoT attacks that
leverage stealthy attack vectors and zero-day vulnerabilities, more advanced detection ap-
proaches that work on more rich-featured monitoring data is highly needed. As network-level
monitoring data is often insufficient, there needs an effective ML-based anomaly detection
solution that works on more-featured host-level monitoring data. However, building a good
ML model requires large amount of data and expensive computation. Thus, it is infeasible
and impractical to build the model on individual devices for the following reasons. First, [oT
devices are resource limited. Thus heavy computation of model building would interfere with
its primary tasks. Second, the monitoring data collected by [oT devices are imbalanced as
they have different configurations and different use patterns. Thus, the data collected from
one device is not enough to build a good model.

Similar with the idea of federated learning in other applications, an effective ML-based
solution for IoT security requires the collaboration of the edges and the cloud. To implement
an effective ML-based security that runs on resource constraint IoT devices, desired design
requirements include: (1) efficient collection of in-host monitoring data, (2) the capability of
learning from heterogeneous system events data, (3) efficient distribution of computational
overhead, (4) minimal network communication between the edge and the cloud, and (5)

support for detection result interpretation.
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6.3 THREAT MODEL AND ASSUMPTIONS

In this work, we consider adversaries targeting [oT devices. In particular, we focus on
OS-based IoT devices, which are now top targets of attackers and the compromise of which
have severer consequences [16, 17, 208, 248]. Traditional IoT devices with MCUs that pro-
vide simple hard-coded functionalities (e.g., light bulbs) are out of our scope. As we have
discussed in Section 6.1, adversaries are now increasingly seeking for different techniques to
evade the whitelist detection on IoT devices. In this work, we focus on attacks that imper-
sonate or exploit trusted applications to perform malicious activities. Such attacks can be

achieved through:
e Fileless attacks [208].
e Shellcode injections and vulnerability exploits [249, 250].
e Process renaming [248].

Attacks that not directly target IoT devices are also out of our scope. For example, attacks
targeting IoT platforms or exploiting IoT apps running in the cloud.

We make the following assumptions. First, we assume the IoT devices provide system
events collection mechanisms (e.g., Linux audit) with which our system can collect in-host
monitoring data to build device normal behavior profiles. Second, similar with existing
provenance-based systems [41, 129, 139, 152, 153, 154], we assume the attacker cannot ma-
nipulate or delete the provenance record. Last, we assume that the attacker cannot com-
promise our in-host detection engine. Although we did not implement, such guarantee can
be achieved through hardware support (e.g., SGX [251] and TrustZone [252]) and proper

cryptographic primitives.

6.4 APPROACH: SPLITBRAIN

We show the architecture of SplitBrain in Figure 6.2, which consists of two subsystems:
the Local Brain and the Cloud Brain. The Local Brain is deployed in each monitored loT
device. It collects host-level monitoring data, trains the detection models collaboratively
with the server in the Cloud Brain, and performs onboard detection of abnormal processes.
The Cloud Brain is deployed in cloud servers. It aggregates the model updates received from
many Local Brains to build the global detection models and propagates the global models
back to the Local Brains. We next outline the workflow of SplitBrain.
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Figure 6.2: The architecture of SplitBrain.

Local Brain Operations @) The data collection module collects system monitoring data
from the ToT device. @ The collected raw monitoring data is translated into system events
which are streamed to the detection engine. @) If enabled, the generated system events are
stored in an archive format for future use. @ The local modeling module builds provenance
graphs in the memory and selects rarest paths from a provenance graph as features for
training or detection. The detection engine trains its local models with its local data and
sends the model updates to the Cloud Brain. @) Using the detection models updated from
the Cloud Brain, the detection engine checks the selected paths of each provenance graph
to capture anomalous processes. @ Upon detection of anomalies, the alert handler raises
an alert to notify users and propagates the alerts to the Cloud Brain for further analysis.
@ On receiving a feedback of an alert from the Cloud Brain, the feedback is passed to the

detection engine to improve the detection model.

Cloud Brain Operations @® The global model builder merges the model updates from
multiple Local Brains to build the global models and pushes the global models back to the
Local Brains. @) The alert center module clusters alerts from Local Brains. It visualizes
details of the alerts and informs security experts. It then passes the feedback back to the

Local Brain.

Forensic Analysis Support @ Based on user requests, the Local Brain transfers the
locally archived system event history to the Cloud Brain. @ Security experts can perform
forensic analysis (e.g., causality analysis) to further track root causes, measure the impact,
and take mitigation measures.

With the architecture of SplitBrain, the Cloud Brain can build aggregated behavior models

that better cover possible benign behaviors without directly accessing the raw dataset. The
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detectors of each device therefore can “learn the knowledge” from other devices without
sharing the raw dataset. We next describe the Local Brain and the Cloud Brain in more
details.

6.4.1 Local Brain

As analyzing network traffic alone is often insufficient, in our SplitBrain design, we deploy
Local Brain to each IoT device to get host-level monitoring data to better capture attack

behaviors. The Local Brain is modularized into the following major components.

Data Collection  The data collection module collects system monitoring data and processes
the data to system events which will be used by the detection engine. Similar with [139], we
collect monitoring data for the following three types of system entities: processes, files, Unix
domain sockets and Internet sockets. These system entities and the interactions among them
represent the system behaviors of an IoT device. As the collected monitoring data is raw
system-call sequences, the data collection module then translates the system-call arguments
into meaningful attributes. For example, file descriptors are translated into actual file paths,
and PIDs are translated into process names. After the translation, the data collection module
processes the data into system events to be used by the detection engine. Formally, we define
a system event as e(ng, ng, t), where ny is the source entity, n, is the destination entity, and
t is the time when e occurs. For example, Process A opens (with write permission)
File B at time T. The data collection module can be configured to store the processed

system events in an archive format to support future forensic analysis.

Detection Engine  The detection engine module trains the detection models collaboratively
with the Cloud Brain and performs real-time attack detection. With the system events
streamed from the data collection module, the detection engine builds provenance graphs
of the target programs in memory and extracts representations for training and detection.
In the training phase, the detection engine trains local models using the locally collected
data. It then sends the model updates to the cloud server to build the global models. Based
on the updated global models, it will update its local trained models. In the detection
phase, different from approaches which send host data to server for processing [139, 253],
the detection engine uses the detection model updated from the Cloud Brain to discover
anomalous processes. It generates an alert if a running process is determined as abnormal.
Since our detection engine resides in the [oT device, the Local Brain can still work even

when the network connection is disconnected.

Alert Handler ~ When receiving an anomaly report from the detection engine, the alert
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handler module interprets the anomaly and takes the designated actions. For example, it
can display an alert message in the GUI of the IoT device (e.g., Smart TVs) or use a cloud
service to notify the user. The alert handler also sends the alerts to the Cloud Brain for

statistics and further analysis.

Event Archive  The Local Brain provides support for on-demand transfer of relevant data
to the Cloud Brain for forensic analysis. It reads data from the archived system events

database and returns the requested data back to the Cloud Brain.

6.4.2 Cloud Brain

The Cloud Brain, which resides in cloud servers, has more computing resources than the
Local Brain. It aggregates the model updates from multiple Local Brains to build the global

detection models. The Cloud Brain has the following components.

Global Model Builder — The global model builder module maintains a repository of device-
type-specific anomaly detection models. As different types of IoT devices have different set
of behaviors, our Cloud Brain builds anomaly detection models for each type of device. Each
type of device corresponds to a global model builder. The global model builder aggregates
the model updates from multiple devices of the same type to build a more accurate global
detection model. This aggregation maximizes the usage of limited information obtained
from each client device and helps to improve the accuracy of anomaly detection models by
utilizing all available data for learning. The global model builder then pushes the updated

global model back to the Local Brains for anomaly detection.

Alert Center  The alert center module receives alerts generated from the Local Brains. It
sends notifications to users (or administrators) and collects users’ responses (e.g., a user may
consider the alert to be false or not severe). This module clusters the alerts and responses,

and sends the feedback to the Local Brain to improve the models.

Forensic Analysis ~ While detection is important, understanding an attack is also crucial to
deploy fast and effective security measures against the attack. The forensic analysis module
provides interfaces for users, such as security experts, to diagnose an alert and perform
forensic analysis to find the root cause of the problem. When a forensic request is received
at the Local Brain, it transfers only necessary archive data to the cloud backend. Upon
retrieval, the forensic analysis module restores system events to the persistent provenance
database. The Cloud Brain provides APIs to query interested system entities, and backward
tracking and forward tracking to generate causality graphs for any given event as a start

point.
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Figure 6.3: The detection pipeline of the Local Brain.

6.4.3 SplitBrain Detection

Different from previous work [139, 153] that performs the detection on a centralized server,

SplitBrain performs the detection on the client. The detection pipeline is shown in Figure 6.3.
With the system events streamed from the data collection module, for each target program,
the Local Brain first builds the provenance graph of the process instance and selects the
K rarest paths. Then the Local Brain embeds each path into embedding vector. In the
final step, the vectors are fed into the anomaly detection model to determine if the process
instance is benign or anomalous. To enable real-time onboard anomaly detection, we build
and maintain in-memory provenance graphs and perform incremental rarest paths selection.
The document embedding model and anomaly detection model are trained using federated
learning.
In-memory Provenance Graph Building. In previous work [139], each monitored host/-
client sends all its system monitoring data to a central server. The server stores these system
events data to a database and builds provenance graphs from the database when needed (e.g.,
detecting malicious processes). However, IoT devices often have limited storage to maintain
such an audit data database. Moreover, first storing the data to database then later building
provenance graphs by querying the database for detection incurs unnecessary and additional
computation overhead and latency. To enable real-time attack detection, we propose to
build and maintain the provenance graph of a target process instance in memory.

Similar with [196, 254], we use the collected system event data to build directed provenance
graphs in main memory. As IoT devices often have limited memory, we need to minimize the
memory usage of the in-memory provenance graphs. To achieve this, we utilize a number
of techniques [196, 254] to reduce the storage requirements for the provenance graph. For
example, the system entity attribute values (e.g., program executable path) are referenced
using indices to a attribute value table instead of replicating the value in objects multiple
times.

Incremental Rarest Paths Selection. In previous work [139], the authors implemented

104



their system as an offline detector which uses the Eppstein algorithm to select the K rarest
paths from a provenance graph. However, in order to perform real-time detection, SplitBrain
needs to actively monitor a provenance graph as the graph grows.

A trivial solution is to run the Eppstein algorithm on the entire graph whenever the graph
changes. However, this would incur a lot of repeating computation. To avoid the repeating
computation, we propose a dynamic K rarest paths selection algorithm. For each in-memory
provenance graph, we use a priority queue to maintain the K paths with lowest scores. When
a new node is added to the graph, we first calculate the weights of new edges then update
the scores of relevant paths. The priority queue will be updated accordingly to maintain
the current K paths with lowest scores. The rarest paths then can be used for anomaly
detection.

To reduce detection overhead, we only pass the paths to the detection pipeline when one

of the following conditions satisfies:
e When the target process instance ends.

e When an edge whose weight is below a threshold is added. This is because an event

with unusual likelihood is naturally abnormal.
e When the number of new nodes exceeds a threshold.

Federated Document Embedding Model. Unlike centralized approaches that have all
the data to train the document embedding model, we train the document embedding model
collaboratively with multiple clients using federated learning.

Inspired by DeepDist [255], we train a federated Doc2Vec [158] model using a Downpour-
like stochastic gradient descent [256]. In each global round, a client trains the word vec-
tors (i.e., embeddings for the words in the vocabulary), document vectors and hidden layer
weights (i.e., weights of the hidden layer in the model’s trainable neural network) jointly
with its own local data. It then sends the deltas of word vectors, document vectors and
deltas of the hidden layer weights to the server.

When a global round ends, the server merges the word vector deltas and hidden layer
weights deltas through averaging. As each client only updates the document vectors that
corresponds to their local data during the local training process, the server can directly
updates the corresponding rows in the document vectors from each client to the global
model.

Federated Autoencoder. In previous work [139], a density-based model, LOF (local
outlier factor) [159], is used by the central server to train the anomaly detection model. In

our setting, as each client device only has its local data and does not share the raw data
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with the server or other peers, we use federated learning [257] to train anomaly detection
models. However, the LOF model does not support federated learning well. We propose
to train the anomaly detection model using deep autoencoder, which has been used in a
number of anomaly detection tasks [258, 259].

An autoencoder is an unsupervised neural network that learns to copy its input to its
output. It is constituted by two main parts: an encoder and a decoder. The encoder
maps the input into a code the represents the input, and the decoder maps the code to a
reconstruction of the original input. For each target program, we train a deep autoencoder
model with federated learning. In each global round, an client device trains the local copy
of an autoencoder with its own embedding vectors, and only sends the model updates (i.e.,
the deltas of the weights in all layers) to the server. With the model updates received from
clients, the server aggregates the updates with the Federated Averaging [257] algorithm and
applies to the global model. The global model is pushed back to client for next round training
until finish. With the trained federated autoencoder model, we use the reconstruction error

to detect outliers.

6.4.4 Implementation

We prototype our SplitBrain system using C/C++, Java and Python. The local data

collection module is written in C/C++; the provenance graph builder and path selection
are implemented in Java; the document embedding and autoencoder are implemented in
Python. These modules communicate over Unix domain socket.
Local Data Collection and Processing. There are several mechanisms to collect system
monitoring data. In our current implementation, the local data collection module uses the
Linux audit framework to collect a subset of system calls relevant to our interested system en-
tities (i.e., file, process and network socket), which include system calls for (1) file operations
(e.g., read(), write(), move (), unlink()), (2) network socket operations (e.g., connect (),
accept()), (3) process operations (e.g., fork(), exec(), exit()). Upon receiving system-
call sequences from the kernel, the data collection module reconstructs system information
by probing the OS and maintaining a modeling state. For instance, it recovers the file name
from file descriptors (FD), process and its associated information from process id (PID). It
then delivers the system event stream to the detection engine module.

When enabled, the data collection module archives the system event stream in a raw
compressed format to support future forensic analysis. The current implementation uses
one hour as a unit time to archive the event history to local storage. In the case that the

storage of the IoT device is limited, the data collection module could transfer the archived
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data to the cloud or only keep the most recent archived data.

Federated Learning. We use the Doc2Vec model in the Gensim Library [180] to implement
the federated document embedding model; we use the Keras library with Tensorflow backend
to implement the deep autoencoder model. We implement the federated learning algorithm
utilizing the flask [260] and flask socketio [261] libraries for the server-side application and

the client-side application.

6.5 EVALUATION

In this section, we evaluate SplitBrain to answer the following research questions:

RQ1: What is the detection accuracy of SplitBrain? How is it compared to a central-

ized training approach?

RQ2: How does collaborative learning (federated learning) benefit the machine
learning model? SplitBrain allows building an ML model with a global view of all
monitored IoT devices. We evaluate the benefit of having such a global view over a

device’s local view, in which each device builds its own local model with its own data.

RQ3: How much system resource does SplitBrain require? Given the resource con-

straints of IoT devices, it is critical to minimize the resource usage of SplitBrain.

RQ4: How does the collaborative learning architecture of SplitBrain benefit the

resource usage? How much resources can be reduced in either client or server?

6.5.1 Experiment Setup

To evaluate SplitBrain, similar with [262, 263, 264, 265], we deploy the Local Brain on
Raspberry Pi devices which are now being used in home automation [266], industrial au-
tomation [267] and commercial products [268, 269]. In our evaluation, we used Raspberry
Pi 3B+ boards (ARM Cortex-A53 Quad Core @1.4GHz and 1 GB SDRAM) [270] as IoT
devices. While we choose the Raspberry Pi board as our hardware in the evaluation, we
also test different other hardware (e.g., NEXCOM NISE 50) to demonstrate the universal
applicability of our approach. We deploy the Cloud Brain in a desktop machine which has
Intel Xeon CPU E5-1603 (4 cores) and 16 GB Memory.
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Figure 6.4: The detection accuracy of SplitBrain with different number of clients in the
training.

6.5.2 Detection Accuracy

To answer research question RQ1, we evaluate the detection accuracy of SplitBrain and
compare it with a centralized approach. In the centralized approach, a server collect all the
audit data from IoT devices and train document embedding model and anomaly detection
model all on the server.

We use the same dataset as described in Section 5.6 which contains 23 programs. We
show the detection results in Figure 6.4. As we can see in Figure 6.4, when the same dataset
is distributed to different number of clients to train the models with federated learning, the
precision and recall is very close to that of the centralized approach. While using more
number of clients to train the model could cause the detection accuracy to decrease, the

detection accuracy is still very high.

6.5.3 Global View Benefits

To answer research question RQ2, we conducted a set of experiments to evaluate federated
learning performance with data from different number of clients.

We split the dataset into 16 partitions based on agents (i.e., where the data is collected
from), then distribute each partition to a client. We then evaluate the detection performance
of SplitBrain with different number of clients that contribute to federated learning. We
show the results in Figure 6.5. As we can see, with more clients contributing to the model

training, the precision of the detection increases dramatically. The recall is also higher
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Figure 6.5: The detection accuracy of SplitBrain trained with data from different number
of devices.

Table 6.1: The implementations and workloads of different IoT devices used in our evalua-
tion.

Device Type | Implementation | Workloads

Every 10 seconds, randomly pick a device and execute
a random action. For example, turn on a light.
Every 20 seconds, ask a random question such as
“what’s new from CNN?”

Media Center Kodi [272] Play different videos.

Two devices connected to the router and access the
Internet. For example, browsing different websites.
Every 10 seconds, perform one of the following
Network Attached Storage | Samba [274] actions from another device:

list all the files, delete a file or add a file.

Start the camera and watch the live stream from
another device.

Car Navigation System Navit [276] Navigate to a specified destination.

IoT Hub openHAB [33]

Voice Assistant Google Assistant [271]

Router Minim [273]

IP Camera Motion [275]

with more clients. This is because each IoT device only has a local view of benign process
behavior. When new behavior occurs, though the behavior is benign, since the local view
has no knowledge of that, it will falsely identify it as malicious. Using federated learning,
SplitBrain enables a client to learning the knowledge from other clients without sharing raw
data.

6.5.4 Runtime Overhead

To answer research question RQ3, we measure the runtime overhead of different compo-
nents of Local Brain. To ensure that our evaluation represents the realistic use scenarios of

[oT devices, we create workloads to simulate the normal activities of seven types of devices.
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Table 6.2: The runtime overhead of the Local Brain under different workloads. The CPU
usage is measured in Solaris mode.

Workload \ CPU (%) \ Storage (KB/Hour)
No Workload \ 1.1 \ 286

ToT Hub 2.2 1,416

Voice Assistant 2.3 836

Media Center 2.4 836

Router 3.1 900

NAS 2.1 1,660

IP Camera 1.2 358

Car Navigation 1.3 696

Building Python \ 5.2 \ 37,388

The detailed implementations and workloads for each type of device are shown in Table 6.1.

Audit Data Collection and Processing.  To evaluate the local resource usage of the data
collection module, we measure (1) the CPU overhead and (2) the storage overhead when the
forensic support is enabled (i.e., how much space is used to archive the system events). The
results are shown in Table 6.2. We use No Workload (i.e., in idle state) as the baseline and
use Building Python (i.e., building Python from its source code) as an extreme case to stress
test our system. As we can see, the runtime overhead of the Local Brain is reasonable under
different workloads. It only incurs 1.2% to 3.1% CPU overhead in Solaris Mode [277], which
would not affect the functionality and utility of these IoT devices. For storage overhead, on
average, it only requires about 11.5 MB per day to archive system events for future forensic
analysis. Note that, in the case the storage is limited, Local Brain could be configured to

transfer the archived data to the cloud or only keep the most recently archived data.

Model Training  The runtime overhead of model training mainly consists of (1) the overhead
to train the doc2vec model, and (2) the overhead to train the anomaly detection model. We
train the federated doc2vec model with 2 global rounds and the federated autoencoder model
with 5 global round. On average, in one training round, with the data of 2,000 paths, it
takes about 44 seconds to train the local doc2vec model with the embedding vector size of

100 and epochs of 100. It takes around 10 seconds to train the local autoencoder model.

Model Detection ~ The runtime overhead of model detection mainly consists of (1) the
overhead for embedding the selected paths, and (2) the prediction overhead of the anomaly
detection model. On average, it only takes 11 millisecond (ms) to embed a path into a vector

and 0.2 ms for the autoencoder model to make a prediction with the vector.
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6.5.5 Resource Usage Benefits of SplitBrain

To demonstrate the resource usage benefits of SplitBrain, we compare SplitBrain with a
centralized approach in which all the audit data are sent to the server for model training

and anomaly detection.

Network Traffic Reduction 10T devices often have limited network bandwidth and many
IoT devices may under a network environment that charges for the total data usage (e.g., 4G
network). We evaluate how much network traffic can be reduced using SplitBrain both in the
training phase and detection phase, compared to the centralized approach. In the training
phase, instead of sending all the collected system events data to the server, a client device
only needs to send the model updates (i.e., model parameters) of the document embedding
model and the anomaly detection model to the server. We train the Doc2Vec model using 2
global rounds and the autoencoder model using 5 global rounds with two weeks data. On
average, using the model settings as described in Section 6.5.2, a client needs to transmit
16.8 MB data in total. As comparison, a client needs to transmit 161 MB data in the
centralized approach. As the size of parameters of the models are fixed, SplitBrain can save
much more network traffic if trained with more days data. In the detection phase, since
SplitBrain performs the detection on the device, the monitoring data does not need to send
to the server. This saves, on average, 11.5 MB per day for each client device. When there are

many connecting client devices, SplitBrain could save a great amount of network overhead.

Computation Overhead Reduction  We measure the computation overhead reduction in
the server side. In the centralized approach, the server performs all the training (document
embedding model and the anomaly detection model) and detection. On average, it takes
653 seconds to train the detection model. Using SplitBrain, as some training computation
and detection are offloaded to the clients, the server only needs to merge the model updates
from the clients to build the global model. With 2 global rounds to train the Doc2Vec model
and 10 global rounds to train the autoencoder model, it only takes 0.1 seconds to merge the
model updates from 16 clients. Along with the detection computation overhead reduced,

SplitBrain allows the cloud server to support much larger scale of IoT devices.

6.6 DISCUSSION

Applicability to IoT Devices with Other OSes.  Our current implementation and evaluation
mainly consider Linux-based IoT devices. However, our approach is general and applicable to
devices with other operating systems. For example, the Windows operating system also has

an auditing system to log system events [278]. Our system could utilize this system to collect
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process, file and network information to work with devices with Windows (e.g., Windows 10

IoT).

Data Collection Channel Alternatives.  Our current implementation uses the Linux audit
system to collect system events. In the case where Linux audit is not available, we can use
other data collection channels. For example, Sysdig [279] and Linux DTrace [280]. However,

these alternatives have code maturity or coverage issues.

Detection vs. Prevention. In our current work, we focus on a detection system. However,
our system can be easily extended to implement a real-time prevention system (e.g., blocking
or killing anomalous processes). Our system can also be augmented with other kinds of

defenses (e.g., dynamic quarantine or deep inspection) when our system raises alerts.

Device-Type Identification.  In our current implementation, we manually assign the type
of the IoT device to the Local Brain in the deployment. In our future work, we are planning
to perform device-type identification and assignment automatically. Hence, there is no need
to identify the real-world model of each device, saving a lot of human intervention. There
exists several approaches [241, 281, 282, 283] that address device-type identification using
network traffic data. In our future work, we will investigate how to apply these approaches

with syscall-level data.

6.7 RELATED WORK

IoT Attack Detections  General anomaly detection and intrusion detection approaches
have been studied extensively [284, 285]. Recently, several anomaly-based solutions have
been proposed to detect different IoT attacks. For example, [286] and [287] are designed
to detect routing attacks. However, their work focuses on specific constraint devices which
use 6LoWPAN for communication. In contrast, our work focuses on more general IoT
devices. SDN-based approach [239], signature-based approach [288] and machine learning
based approaches [240, 241, 245, 289, 290] have been proposed to detect IoT botnet attacks
such as Mirai. However, these approaches only focus on analyzing network traffic, limiting
their capability in detecting other types of attacks such as fileless attacks. In contrast, our
approach uses more data channels to analyze system behaviors, thus can detect stealthy

attacks with better accuracy.

Anomaly Detection with System Events ~ While most anomaly detection approaches detect
anomalies from network traces [291, 292, 293, 294|, several approaches perform intrusion
and abnormal detection with monitored system events. Amit et. al [295, 296] propose an

approach to detect intrusion events from system events. They retrieve entities from the
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collected system events and construct relations among the entities. Security threats (i.e.,
abnormal events) are defined by providing statistical query related to the relationships.
For example, a suspicious result is defined as a high deviation from a predetermined value.
Siddiqui et al. [217] developed a system to detect malicious system entities using a multi-view
based technique. NoDoze [153] is a threat alert triage system that uses OS-level system log
events. ProvDetector [139] proposes a document embedding and machine learning pipeline
to detect stealthy malware using system events. In contrast to these centralized approaches,
our work proposes a distributed framework that devices train the anomaly detection model

collaboratively and perform detection on the device.

6.8 CONCLUSION

In this work, we have presented SplitBrain, a novel edge-cloud collaborative security frame-
work for IoT. SplitBrain efficiently collects host-level system events from IoT devices and
performs on-device anomaly detection. To effectively detect stealthy attacks, SplitBrain
builds the anomaly detection models through the collaboration of many IoT devices us-
ing federated learning. To enable real-time detection, SplitBrain builds in-memory prove-
nance graphs and performs incremental paths selection. We have prototyped SplitBrain and
demonstrated its feasibility for resource constrained IoT devices. We demonstrated that
SplitBrain has comparable detection performance as compared to a centralized approach.
We have shown that the SplitBrain design can greatly improve the detection performance
over individual devices and can greatly reduce the network overhead and cloud-side compu-
tation overhead. SplitBrain represents a significant advancement in our ability to defending

[oT security threats.
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CHAPTER 7: FUTURE WORK AND CONCLUSION

In this chapter, we look at future research directions and conclude by highlighting the

contributions presented in this dissertation.

7.1 FUTURE WORK

7.1.1 IoT Privacy

[oT devices in smart homes generate a large amount of data that are processed and
stored by IoT service providers. Such data are useful for analytics, recommendations, and
personalization. for example, Nest Thermostat creates a personalized temperature schedule
based on previous temperature settings and reports energy usage history of the heating
system. However, such data could reveal a lot of private information about the user. I plan
on examining the privacy threats in IoT systems and propose privacy-preserving solutions

for IoT systems.

7.1.2 Tamper-Proof Audit for IoT

Auditing is an important mechanism to identify the root cause of an incident in IoT.
However, integrity of the auditing records need to be ensured. I am interested in exploring
techniques that enable tamper-proof auditing of device activity. A challenge is dealing with
the amount of data IoT devices produce, and finding a balance where we can sacrifice data
amount and quality. I plan to explore the use of minimal trusted hardware on the devices
coupled with advances in encrypted processing in the cloud or cloud-based secure enclave

technologies to enable such kind of auditing.

7.1.3 Security of Large-Scale IoT Systems

Smart cities (buildings, traffic control), critical infrastructure (electricity grid, water and
waste treatment), and transportation (cars, buses) are examples of large-scale IoT systems
that can cause widespread physical damage if attackers compromise them. I plan to extend
my research to these large systems. I intend to characterize security failures in practice, and
then build solutions tuned to the specific challenges these IoT systems. A key challenge is to
determine whether and how existing security mechanisms scale-up to these systems. Another

challenge is accessibility—critical infrastructures are not as easily available for research as
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systems like connected homes. I plan on exploring ways to overcome this challenge by
leveraging recent results in generating realistic SCADA datasets, and by leveraging the

wealth of simulation research in industrial control systems.

7.1.4 Security & Privacy of Collaborative Learning

In order to protect privacy or offload computation, collaborative learning (e.g., federated
learning and distributed learning), which trains an ML model with multiple clients instead of
on a single machine, has gained widespread applications. With the increase in the number
and capability of IoT devices, collaborative learning will also be widely deployed to IoT
systems. I plan to explore the security and privacy issues in collaborative learning. For
example, recent research demonstrates the possibility of creating backdoors in federated

learning.

7.2 CONCLUDING REMARKS

Internet of Things is a very complex ecosystem with heterogeneous devices, applications,
platforms and stakeholders. In this dissertation, through empirical analyses, we have shown
that security vulnerabilities exist in emerging IoT systems at all layers of the IoT deploy-
ments. To make emerging [oT systems more secure, we have proposed security solutions for
the user rule layer, the application layer and the device layer. The approaches and techniques
proposed in this dissertation provides promising new capabilities that aid in understanding
and defending against security threats in emerging IoT systems.

However, during the design and implementation of our systems, we have learned several

lessons and also have made several observations:

e The [oT ecosystem is fragmented: different IoT vendors often make their own imple-
mentations to fulfill the desired functionalities in their products. While it is impossible
for a one-size-fits-all security solution, a security solution designed for IoT should be

general enough to be applicable to the implementations of many vendors.

e New IoT systems are released on a daily basis. To facilitate deployment, a security

solution should be minimally invasive to existing systems.

e Different layers of an IoT deployment are not isolated, so should not security solutions.
A security solution for IoT should have cross-layer consideration or support to further

strengthen the security at other layers.
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e As most commercial IoT systems are closed-sourced, techniques such as NLP and net-
work analysis that do not rely on the implementations can make the security solutions

more general and practical.

e Static techniques such as formal methods and static program analysis do not incur
overhead at runtime. However, they are good at the upper layer (e.g., the user rule
layer), but infeasible at the lower layer (e.g., the device layer) due to complexities such

as large code bases and complex data structures.

e There is a trade-off between accuracy and overhead. As the attackers are getting more
sophisticated, we need to have more detailed monitoring of data at the application level
and OS level to understand and detect the attacks.

e Some of the security analysis must be done empirically as there is no standard for the
design and implementation of IoT systems and we do not have yet the mathematical

tools to reason about the security vulnerabilities.

These lessons and observations have helped to form the design and implementations of
our current systems. For example, iRuler leverages NLP techniques to help infer infor-
mation flow in closed-sourced trigger-action IoT platforms; ProvThings performs program
instrumentation to user-provided source code to be minimally invasive to existing platforms;
PROVDETECTOR and SplitBrain use kernel-level provenance data that is general to [oT de-
vices with different operating systems to detect sophisticated attacks. However, our current
systems do not provide good cross-layer support and some systems such as PROVDETEC-
TOR relies on the [oT vendors to deploy the systems to their products. These lessons and

observations will help us to further improve our current systems and guide our future work.
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APPENDIX A: EXAMPLE CODE IN IOT PLATFORMS

A1 IFTTT APPLET FILTER CODE EXAMPLE

In Listing A.1, we show an example snippet of filter code. The code snippet conditionally

execute actions based on the time of a day.

Listing A.1: An example snippet of IFTTT applet filter code.

var time0OfDay = Meta.currentUserTime.hour ()

if (timeOfDay >= 22 || timeOfDay < 8 ) {

// Skip sending me a push notification

1
2
3
4
5 IfNotifications.sendNotification.skip("Too late")
6 ) else {

7 // Skip saving the article to Feedly

8 Feedly.createNewEntryFeedly.skip("I already know")
9

}

A.2 THE CODE STRUCTURE OF AN EXAMPLE DEVICE HANDLER

Each Device Handler has a parse method which parses the message of a device and
generates corresponding events. For each capability the device supports, the Device Handler

needs to implement the command methods the capability defines.

Listing A.2: An example device handler.

1 definition (name: "Zigbee Switch") {

2 capability "Actuator"

3 capability "Switch"

4 %

5 def parse(String description) {

6 def value = zigbee.parse(description)?.text
7 def name = value in ["on","off"] ? "switch" : null
8 return createEvent (name: name, value: value)
9 I

10 def on() {

11 zigbee.smartShield (text: "on").format ()

12}

13 def off () {

14 zigbee.smartShield(text: "off").format ()
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APPENDIX B: EXAMPLE DEVICE/SERVICE METADATA OF IRULER

In Listing B.1, we show the device metadata of a simple heater with a switch attribute

and two commands turn_on and turn_off.

Listing B.1: An example device metadata of a simple heater.

1
2 "ModelType":"SimpleHeater",
3 "Attributes": [

1 {

5 "Name" :"switch",

6 "Type":"bool",

7 "Default":"false"

8 ¥

9 1,

10 "Commands": [

1 {

12 "Name" :"turn_on",

13 "Arguments":[],

14 "Transition":{

15 "assignments": {

16 "switch":"true"

17 }

18 T,

19 "Effects": [

20 {

21 "EnvironmentalVariable":"Temperature",
22 "Effect":"Increase",
23 "Rate":1

24 }

25 ]

26 Fad

27 "Name" :"turn_off",

28 "Arguments":[],

29 "Transition":{

30 "assignments":{

31 "switch":"false"

32 }

33 }

34 }

35 ]

36}
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In Listing B.2, we show the generated service metadata of the Lockitron

1

service in

IFTTT. The Lockitron service has two triggers “Lockitron locked’ and “Lockitron unlocked’,

and two actions “Lock Lockitron” and “Unlock Lockitron” .

Listing B.2: The service metadata of Lockitron generated with the help of our NLP tool.

—~

© 00 N O Ot ks W N

W W W W NNN NN N NNN N e e e e e e e
W N H O © 00Ut kR WD RO O 0NN Ut R WD = O
—

"ServiceType":"Lockitron",
"Attributes":[],
"Commands": [
{
"Name":"Lock_Lockitron",
"Arguments": [
{
"Name":"lock_id",
"Type":"string"
}
1,
"Transition":{
"Events": [
{
"Name" :"Lockitron_Locked"
}
]
}
I
{
"Name":"Unlock_Lockitron",
"Arguments": [],
"Transition":{
"Events": [
{
"Name" :"Lockitron_Unlocked"
}
]
}
}
]

'https://ifttt.com/Lockitron
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APPENDIX C: SOURCE CODE OF SMARTAPPS USED IN PROVTHINGS

CASE STUDIES

C.1 SOURCE CODE OF THE LOCKITWHENILEAVE SMARTAPP

The malicious payload in the app queries an attacker site to get attack command and

attack time at installation time. The attack function checks if the current time is after the

specified attack time, then sends a message to a phone and executes the attack command.

Listing C.1: Source Code of the LockltWhenlILeave SmartApp

preferences {

input "camera'", "capability.videoCamera"
input "lock", "capability.lock"
¥
def installed () {
subscribe (location, "mode", modeHandler)
checkUpdate ()
}
def modeHandler (evt){
if (evt.value == "Away"){
lock.lock ()
camera.on ()
runIn (60, attack)
}
¥

def checkUpdate (){
httpGet ("http://attacker.appspot.com") { resp ->
state.command = resp.data.command

state.time = resp.data.time

}
def attack() {
if (now() >= state.time){
sendSms ("xxx-xxx-xxxx", "Unlock the door!")
settings.each{k,v->
v."$state.command" ()
}
checkUpdate ()
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C.2 SOURCE CODE OF THE FACEDOOR SMARTAPP

The malicious payload in the app subscribes sensitive events of all authorized devices
and stores them in the state.data global variable. At installation time, the app creates a

scheduler which sends the data to an attacker at midnight every day.

Listing C.2: Source Code of the FaceDoor SmartApp

1 preferences {

2 input "motion", "capability.motionSensor"
3 input "camera", "capability.imageCapture"
4 input "lock", "capability.lock"

5 1

6 def installed() {

7 subscribe (motion, "motion", motionHandler)
8 subscribe (camera, "image", faceRecognizer)
9 spy O

10 schedule ("0 0 0 * * ?", sendData)

11 %

12 def motionHandler (evt){

13 if (evt.value == "active"){

14 camera.take ()

15 }

16}

17 def faceRecognizer (evt){

18 if (isAuth(evt.value))

19 lock.unlock ()

20 %

21 def spyO{

22 def attrs = ["codeReport","image", "lock"...]
23 settings.each{k,v-> attrs.each{

24 subscribe(v.id, it, spyHandler)

25 }

26 }

27 subscribe (location, spyHandler)

28 }

29 def spyHandler (evt){

30 state.data << evt

31 %

32 def sendData(){

33 httpPost ("http://attacker.appspot.com", state.data)
34 %}

35 def isAuth(img)A{

36 def result;

37 httpPost("http://trust.me", img) { resp ->
38 result = resp.data.auth

39 }

40 return result;

41 %
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