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ABSTRACT

Robust Position, Velocity, and Timing (PVT) are essential for the safe oper-

ations of critical infrastructure sectors, such as transportation systems and

power grids. Different transportation systems, both human-operated and au-

tonomous vehicles, navigate using accurate position and velocity information.

On the other hand, precise timing is crucial for various economic activities

worldwide, such as banking, stock markets, and the power grid.

GPS serves as a backbone for many state-of-the-art applications related to

these crucial infrastructures. GPS provides sub-microsecond accurate tim-

ing and meter level of accurate positioning. It has global coverage and is

free for all users. The GPS positioning and timing service has some limi-

tations. The positioning accuracy degrades in urban environments due to

tall structures that block and reflect satellite signals. Degraded positioning

is not safe for the operation of autonomously driving vehicles. Furthermore,

GPS signals are susceptible to external attacks due to their low signal power

and unencrypted signal structures. Researchers have shown that GPS Spoof-

ing Attacks (GSAs) are feasible, and GSA for timing is able to alter timing

without modifying the positioning solution. Such attacks create unsafe op-

erating conditions for the modern power grid, which will use GPS timing

for monitoring the wide-area network. The contribution of this work is to

develop algorithms to mitigate the above limitations. We develop Bayesian

algorithms that utilize multiple sensors and receivers.

For improving positioning, first, we design an adaptive filter based on

Bayesian algorithms to augment GPS with the additional vision sensor. Sec-

ond, we develop an integrity monitoring algorithm for Direct Positioning

(DP), which is an advanced GPS receiver architecture that directly works on

the position domain and is robust to signal blockage and multipath effects.

To monitor integrity, we estimate vertical protection levels using a Bayesian

approach. We further generate GPS datasets simulating open, semi-urban,
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and urban environments for validating DP with multiple receivers.

For mitigating GSAs for timing, we design static and dynamic state esti-

mators for the power grid. The static state estimator utilizes measurement

residuals to correct power grid states. In the dynamic state estimator, we

fuse GPS and power grid measurements to provide resiliency against GSAs.

We create a virtual power grid testbed and generate datasets for a power grid

network under different GSAs. These are the first datasets that contain both

power grid and GPS measurements under GSAs, and we make them openly

available. Our estimators are validated on various power grid networks and

on the generated datasets.
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CHAPTER 1

INTRODUCTION

GPS provides sub-meter accurate positioning and sub-microsecond accurate

timing service worldwide [1]. It is widely integrated into safety-critical infras-

tructure sectors such as power grid systems, transportation systems, banking,

and communication systems, due to its free availability, reliability, and accu-

racy [2].

Figure 1.1: GPS positioning and timing service for many safety critical
infrastructures [2]

Figure 1.1 shows the dependency of GPS positioning and timing services on

various critical infrastructures. The modern power grid systems will utilize

GPS timing to monitor a wide area network, which is necessary to perform

essential tasks, including supervisory control and planning, bad data detec-

tion, optimizing power flows, security assessment for the grid, and detection

of possible failures in power systems [3].
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The transportation systems, including airplanes, railways, and ships, greatly

use GPS positioning service to ensure safety. GPS plays an important role

in the landing and takeoff phases of an aircraft flight. Its usage has resulted

in reducing accidents, delays, and operating costs for railways. For maritime

operations, it is being used for search and rescue, surveying, managing mar-

itime port facilities, navigating to optimum fishing locations, and ensuring

compliance with regulations. Furthermore, it has opened up a pathway for

industry developing tools for autonomous navigation.

Apart from critical infrastructures, positioning and timing services are also

used in public safety/ disaster relief. The precise location of police, fire, and

rescue vehicles reduces the response time. Furthermore, ground and maritime

vehicles equipped with GPS receivers can rapidly call for help and locate the

crash site.

1.1 GPS Vulnerabilities and Limitations

The GPS positioning and timing service have some limitations, which can

be broadly divided into two categories: positioning degradation in urban

environments and vulnerability to external attacks. The presence of tall

structures in the urban environment causes signal blockage and multipath,

degrading the positioning service. Figure 1.2 illustrates a scenario consisting

of signal blockage (SV5) and multipath (SV1 and SV4).

Figure 1.2: GPS positioning degrades in urban environments due to signal
blockage and multipath.
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The second vulnerability of susceptibility to external attacks arises from

the low power and unencrypted structure of GPS signals [1]. A spoofing

incident near the Russian port of Novorossiysk demonstrated that spoofing

is a real threat to critical infrastructure [4]. More than 20 ships reported

the same incorrect location that was off by 25 nm in this incident.

Ensuring the critical infrastructures’ safe operations would require im-

proved positioning service in GPS challenged environments and attack re-

silient timing service.

1.2 Related Work

In this work, we focus on addressing the aforementioned limitations of GPS

positioning and timing service for transportation and power grid systems,

respectively.

1.2.1 Improving Positioning in GPS Challenged Environments

Traditional GPS receiver architectures, such as scalar tracking loop [1] and

vector tracking loop [5], use two steps to provide a Position-Velocity-Time

(PVT) solution. First, the receiver estimates pseudoranges and then perform

trilateration in the second step to obtain a PVT solution. In GPS challenging

environments, such as the urban environment, the multipath’s presence adds

biases to pseudoranges and degrades GPS positioning service.

In the literature, the available approaches to improve positioning in GPS

challenged environments can be put into two categories: fusing GPS mea-

surements with a complementary sensor and developing advanced receiver

architecture.

Urban environments are rich in features, such as corners, edges, planes, etc.

Figure 1.3 shows the Scale Invariant Feature Transform (SIFT) [6] features

in an urban environment. Utilizing these features in a vision-based localiza-

tion approach will improve overall positioning. The accuracy of vision-based

localization approaches is dependent on the number of unique features. It

performs poorly in an open environment where such unique features are ab-

sent. However, GPS positioning is a more accurate open environment due to

the absence of multipath or signal blockage. In this fashion, GPS and vision
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are complementary to each other. Researchers utilize this complementary

nature to fuse GPS and vision measurements to improve GPS positioning

service in urban environments.

Figure 1.3: SIFT features are shown as red circles with a direction. The
urban environment is abundant with unique features which improve
localization using a vision-based approach.

The performance of a sensor fusion algorithm depends on process and

measurement noise covariance matrices. Figure 1.4 shows the positioning

estimate of a 1-D system using a Kalman Filter (KF) [7] in which the mea-

surement noise changes in between the experiment. Figure 1.4 demonstrates

that the estimator’s performance also changes due to the measurement noise

change.

The parameters of covariance matrices are, in general, manually tuned,

which is a laborious task. In [8], researchers perform discriminative training

using ground truth data to estimate these parameters to avoid manual tun-

ing. However, this method and manual tuning suffer from overfitting, i.e.,

once tuned for a particular scenario, the parameters may not work with a dif-

ferent scenario. For instance, parameters tuned for an open environment for

which the noise in GPS measurements is zero-mean Gaussian may not work

for urban environments where the noise may no longer be Gaussian. The

measurement noise in GPS measurements changes over time due to many

factors, including the number of visible satellites, multipath, ionosphere and

troposphere delays, and satellite geometry.

Covariance matching is a method that adaptively tunes the parameters of
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Figure 1.4: KF positioning estimate of a 1-D system in which measurement
noise changes in between the experiment. The performance of the estimator
depends on the measurement noise.

process and measurement noise covariance matrices using the received mea-

surements [9]. The noise change due to different environmental conditions

is captured in the received measurements, and thus, this method is robust

to environmental conditions. In covariance matching, the size of measure-

ments is assumed to be constant, which is an unrealistic assumption when

we consider GPS measurements.

Another approach to improve GPS-positioning is to use an advance GPS

receiver architecture. Direct Positioning (DP) is an unconventional GPS

receiver architecture that directly operates in the PVT domain [10, 11,

12]. By the Maximum Likelihood (ML) estimation principle, DP estimates

navigation solutions directly in the PVT domain in a single step [10, 13]. DP

facilitates a deep coupling of the signals from different satellites, increases

the effective signal power [11, 12], and utilizes a weak signal that would have

otherwise been discarded [14, 15].

Existing works have shown the improved accuracy of DP in degraded signal

environments using Cramer-Rao lower bound [16] to prove the higher achiev-

able accuracy of DP than the two-step approach. Under various propagation

models, software simulations have also demonstrated an improved accuracy

performance of DP in noisy signal environments [16, 17, 18, 19, 20]. These

improvements have been corroborated through live data experiments, includ-
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ing stationary ground stations [12, 21], a hand-held device near a residential

structure [22], and receivers mounted on automobiles [23].

Integrity measures the trustworthiness of a navigation solution [24]. It is

one of the most critical requirements for safety-of-life applications. Protec-

tion levels (PLs) are used to assess the integrity requirement [25, 26, 27, 28].

PLs overbound positioning and timing errors by using error models.

A large amount of literature is available for overbounding positioning errors

using Pseudorange Error Models (PEMs) [25, 26, 27, 28] for traditional re-

ceiver architecture, only a few are available for DP. With our best knowledge,

there has not been a paper that empirically shows the error distribution for

DP. Prior work [29] on DP-based integrity monitoring discusses the Solution-

Separation Receiver Autonomous Integrity Monitoring framework. However,

this framework is originally designed for PEMs. Another work [30] utilizes

the correlation manifolds generated by DP to overbound the positioning er-

rors. This approach is deeply coupled with the DP framework. However, the

authors use many empirical parameters for overbounding vertical errors.

1.2.2 GPS Spoofing-Resilient Power Grid Monitoring

Wide-area monitoring of the power grid is necessary to perform essential tasks

that ensure the power grid’s safe operation, including supervisory control and

planning, bad data detection, optimizing power flows, security assessment

for the grid, and detection of possible failures in power systems [31, 32]. A

State Estimator (SE) monitors the grid by estimating the substations’ voltage

phasors [33, 34]. Traditionally, SE monitors the power grid using Supervisory

Control and Data Acquisition (SCADA) measurements, including injection

power, power flow, and voltage magnitudes [32]. However, SCADA cannot

provide real-time monitoring of the wide-area network as its measurements

are asynchronous with a low update rate.

Compared to SCADA measurements, Phasor Measurement Units’ (PMUs)

measurements are 100 times faster [35] and are synchronized using GPS time.

PMUs measure voltage magnitude, voltage phase angle, line current magni-

tude, line current phase angle, frequency, and rate of change of frequency

[36]. Synchronized measurements with faster update rates make PMUs suit-

able for monitoring the power grid in real-time.
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The Grid Modernization Initiative (GMI) is an effort to modernize the

power grid network, ensuring greater resilience, improved reliability, en-

hanced security, additional affordability, superior flexibility, and increased

sustainability [37]. Through this initiative, roughly 2500 PMUs have been

installed throughout the North American power grid to establish wide-area

situational awareness [3]. Figure 1.5 shows the PMU locations overs the

North American power grid.

Figure 1.5: PMU locations over the North American power grid [3]

GPS provides sub-microsecond accurate timing [38] and plays a critical

role in synchronizing PMU measurements. However, due to low signal power

and the unencrypted structure of civilian GPS signals [1, 39, 40], PMUs

are vulnerable to external attacks. GPS Spoofing Attack (GSA) is one such

attack in which a counterfeit GPS signal is transmitted at a greater signal

power than the civilian GPS signals, thereby inducing conventional GPS re-

ceivers [1, 41] to lock onto the counterfeit signal. These spoofing attacks can

induce a time delay or modify the position of the GPS receiver. An induced

time delay shifts the phase angle of the PMU measurements. The introduced
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phase shift is referred to as the attack angle [42]. Various studies [43, 44, 45]

show that GSAs are feasible. In [45], researchers design a portable spoofer

that arbitrarily changes phase angles of PMU measurements by inducing time

delays.

An incorrect phase angle degrades the performance of state estimation.

The work in [46] demonstrates that a GSA induced time delay of 2.8 ms

can mislead the fault line detection algorithm by 180 km. Furthermore, a

state estimation algorithm can raise false warnings of power stability during

a GSA and provide erroneous power flow estimates [44].

IEEE C37.118.1-2011 describes a standard for phase angle accuracy [47].

According to this standard, timing error must be less than 26.5 μs for a 60

Hz system to ensure the phase error is less than 0.01 radians. However, the

IEC/IEEE 60255-118-1 standard highly recommends a time source to be at

least ten times more accurate than 26.5 μs [36]. These standards are used

to study power grid stability [48]. GSAs are capable of violating the IEEE

C37.118.1-2011 standard [45]. GSA detection and mitigation are critical to

ensure the safe operation of the power grid.

Similar to GSAs, bad data alter measurements by adding biases that de-

grade state estimation accuracy. For the power grid application, SEs use

residuals to detect bad data [49, 50, 51, 52]. Although bad data usually

induce an increased residual norm, some types of bad data can modify the

states without increasing the residual norm [49]. A theoretical analysis of

the impact of GSAs on residuals has not been provided in the literature. The

theoretical analysis will identify if certain GSAs can alter the states without

increasing the residual norm.

Related work is broadly divided into two parts: GSA detection and GSA

mitigation. GSA detection algorithms utilize GPS signal properties to de-

tect GSAs [53, 54, 55, 56, 57]. Various spoofing attacks and recommended

countermeasures for commercial receivers are elucidated in [56]. The coun-

termeasure strategies include drift monitoring and encryption-based defenses,

as well as signal-geometry-based defenses. The presence of encrypted mili-

tary P(Y) code in GPS raw signals is inspected in [53] for GSA detection.

The inspection is performed by cross-correlating GPS raw signals between

a wide network of power stations to find the spoofed node. Researchers in

[54] design a novel GPS receiver architecture that uses multiple receivers

to detect and locate a spoofer. The designed receiver architecture applies
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the cross-correlation properties of GPS signals across multiple receivers for

detecting GSAs. The work in [57] compares predicted and actual visible

satellites to identify a GSA for a static receiver. A generalized likelihood

ratio-based hypothesis test is devised in [58] to conduct GSA detection.

The GSA detection algorithm developed in [54] requires additional hard-

ware that can provide GPS raw measurements, such as pseudoranges. The

algorithms in [53, 57, 56, 58, 55] detect GSAs without providing a mecha-

nism to mitigate the detected attacks, i.e., these algorithms do not estimate

attack angles, which are essential for correcting PMU measurements.

After detecting a GSA, the SE must be able to mitigate the effects of the

GSA in order to continue ensuring safe operations of the power grid network.

The Spoofing-Matched (SpM) algorithm detects and mitigates the effect of

a GSA on the power grid state estimation [59]. It is tested with simulated

data and shown to be resilient against GSA. However, SpM is limited to

mitigating a single GSA.

A joint state estimation and attack reconstruction algorithm is proposed

in [42]. The joint estimation is formulated as an optimization problem. The

proposed algorithm is capable of simultaneously estimating attack angles and

states of a power grid network. This algorithm is computationally intensive,

and it took 95 seconds to mitigate two GSAs for the IEEE 118 bus test case.

A PMU data correction algorithm is devised in [60]. This work utilizes

the sparseness of attacked PMUs to correct PMU data. The devised method

is applicable for correcting PMU data under multiple GSAs. However, state

estimation is not performed in this work, which allowed the authors to relax

the assumption of the power grid network’s observability.

In all of these prior works, we observe that with a greater number of GSAs,

the accuracy of these SEs decreases [61], and computation time increases.

Furthermore, these SEs inherently assume a large GSA induced time delay

(> 1 ms). Furthermore, these SEs are validated using low-fidelity simulations

due to a lack of relevant datasets.

Experimental datasets containing both GPS and PMU measurements are

essential to assess GSAs’ impact on the power grid’s SEs. It is challenging to

validate GSA resilient SE through real-world experiments since it is illegal

to broadcast signals at GPS frequency, and experimenting on the real power

grid is costly. Available GSA datasets in the literature [62] are not relevant

to the power grid applications due to the following reasons:
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• Most of the GSAs in [62] alter the receiver position and are detectable

since the power grid’s substations are static. GSAs that modify the

receiver time without changing its location pose a threat to the power

grid. Such GSAs are known as timing GSAs [46].

• Timing GSAs in [62] induce a total time delay of 2 μs. According to

the IEEE C37.118-2011 [48] standard, timing delay should be less than

26.5 μs to ensure the phase error is less than 0.01 radians. However, the

literature does not cover the scenarios for which time delay lies between

26.5 μs and 1 ms.

• The current spoofing datasets in the literature are for GPS only. None

of the available datasets contain both GPS and PMU measurements

during a GSA.

1.3 Our Contributions

In this dissertation, we aim to improve GPS positioning service in urban en-

vironments and provide resilient GPS timing service. Our approach consists

of fusing multi-sensor and multi-receivers measurements using a Bayesian

approach. This dissertation presents algorithms for improving positioning in

urban environments and providing resiliency against GSAs to power grid’s

SEs. The contributions of our works in [63, 64, 65, 66, 67] are as follows:

1. Adaptive Sensor Fusion: The performance of a sensor fusion algo-

rithm depends on process and measurement noise covariance matrices,

as illustrated in Figure 1.4. The parameters of these covariance matri-

ces varies in size and with time. For instance, at a given position, the

geometry of visible satellites changes with time as well as the number

of the visible satellites. Tuning these parameters is a challenging and

tedious task. Furthermore, the tuned parameters may result in poor

performance if tested in different environmental scenarios.

We develop an adaptive sensor fusion algorithm that estimates these

parameters using the received measurements. Our algorithm imple-

ments the logic that noise implicitly affects measurements, and we

can estimate the noise level by utilizing the received measurements.
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The developed algorithm estimates the noise parameters that change

in size and with time. Furthermore, we implemented a GPS-Vision

fusion algorithm and compared the adaptive sensor fusion algorithm’s

performance with GPS only, vision only, and sensor fusion with fixed

covariance matrices [63].

2. Integrity Monitoring for DP: The available integrity monitoring

algorithms for DP either utilize integrity framework developed for con-

ventional GPS receivers or use integrity framework for DP but with

many environmental specific empirical parameters. Furthermore, the

positioning error distribution for DP is not available in the literature.

We devise a Bayesian algorithm to perform integrity monitoring for

DP. The developed algorithm uses DP framework and does not require

environmental specific empirical parameters. The developed algorithm

is robust to the unknown positioning error distribution. We generate 24

hours of stationary GPS raw signal dataset using a high-fidelity GPS

simulator.We obtain 4 million DP’s positioning solution data points

from the generated datasets. With our best knowledge, this is the

first work that shows DP’s positioning error distribution is multi-modal.

The developed Bayesian algorithm is validated on the generated dataset,

and we observe that the developed algorithm overbounds DP’s position-

ing errors [64].

3. GSA-Resilient Static State Estimation: The modern power grid

will utilize PMUs for monitoring a wide-area-network. These devices

are vulnerable under GSAs due to their dependence on GPS signals for

time synchronization. GSA-resilient SEs for the power grid in the lit-

erature utilize PMU measurements for mitigating GSAs. However, the

literature does not provide theoretical analysis for identifying scenar-

ios that might not be detectable using PMU measurements. In prior

works, the GSA-resilient SEs mitigate at most one GSAs [59] or mit-

igate multiple GSAs but are computationally intensive to implement

[42].

We perform a theoretical analysis on the PMU measurement residu-

als and derive a necessary condition that demonstrates an increase in
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residual norm during GSAs. We show that the distribution of resid-

ual changes during GSAs, which we exploit to detect GSAs. We pro-

pose a novel residual-based Spoofing-Resilient Static State Estimator

(SR-SSE) for the power grid, which is resilient to multiple GSAs with

different attack angles.

SR-SSE consists of two algorithms: Spoofing Detection and Measure-

ment Correction. The Spoofing Detection algorithm monitors the resid-

ual norms to distinguish between a nominal and a spoofed scenario. In

the nominal scenario, none of the PMU buses are spoofed, while in

the spoofing scenario, one or more PMU buses are spoofed with differ-

ent attack angles. The Measurement Correction algorithm corrects the

false PMU measurements by iteratively minimizing the residual norms.

We conduct MC simulations on IEEE 14, IEEE 39, IEEE 118, and

Illinois 200-bus [68] test systems for different GSAs to test our derived

necessary condition and validate SR-SSE [65].

4. Experimental GPS and PMU Datasets Under GSAs: Experi-

mental datasets containing both GPS and PMU measurements under

GSAs are unavailable in the literature. We generate the GPS and PMU

datasets relevant to the power grid community for different GSAs.

We devise a methodology for generating integrated datasets containing

PMU measurements coupled with GPS measurements for nominal and

spoof scenarios. The nominal scenario refers to an ideal environment

in which GPS signals are authentic. In the spoof scenario, we simulate

timing GSAs with time-walk that induce a linearly increasing timing

delay greater than 26.5 μs.

We generate openly available integrated datasets for nominal and spoof

scenarios by performing Hardware-In-the-Loop (HIL) simulations with

Real-Time Digital Simulator (RTDS), PMUs, and GPS clock. The in-

tegrated datasets have PMU datasets coupled with GPS datasets. The

PMU datasets consist of GPS timestamped voltage phasor, current

phasor, frequency, and frequency change rate. The GPS datasets con-

tain GPS raw signals, satellite positions, and pseudoranges. With our

best knowledge, these are the first openly available datasets that con-
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tain both GPS and PMU measurements under various timing GSAs.

These datasets will serve as an evaluation platform for testing power

grid SE’s performance under various timing GSAs [66].

5. GSA-Resilient State Estimation Using an Extended Kalman

Filter (EKF): The prior works [59, 42, 60, 65] minimize a complex

objective function to estimate attack angles for different numbers of

GSAs. The minimization step is computationally intensive and may not

always reach the global minimum. Due to this, the computation time

increases, and the accuracy decreases with an increase in the number of

GSAs. Furthermore, these algorithms will fail to mitigate GSAs if the

number of GSAs is higher than half of the number of installed PMUs

[61].

We propose a novel Spoofing-Resilient State Estimator (SR-SE) for the

power grid that fuses time-varying GPS and PMU measurements using

an EKF. The sequential estimator removes the minimization step by

incorporating the time-varying GPS and PMU measurements in state

estimation. With our best knowledge, this is the first estimator that

utilizes both GPS and PMU measurements for mitigating GSAs.

SR-SE jointly estimates power grid states and receiver clock biases. By

keeping track of individual clock biases of the receivers, SR-SE is capa-

ble of mitigating GSAs even when the number of GSAs is higher than

half of the number of installed PMUs. In SR-SE, we design a GPS-PMU

coupled measurement model that relates GSA induced time delay to

PMU measurements. We remove the minimization step by incorporat-

ing the time-varying GPS and PMU measurements in state estimation

using a sequential EKF. The time-varying GPS measurements enable

the SE to track the induced time delay for each PMU, thereby simul-

taneously tracking the attack angle during a GSA. This measurement

model is essential to maintain estimates of attack angles, which is nec-

essary to mitigate GSAs. We conduct HIL and MC simulations to test

SR-SE on IEEE 14, IEEE 39, and Illinois 200-bus [68] test systems for

different GSA scenarios.
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1.4 Outline of the Dissertation

Chapter 2 describes the adaptive sensor fusion algorithm for improving po-

sitioning in urban environments. In this algorithm, we fuse pseudoranges

from GPS receiver with vision measurements. The algorithm estimates the

covariance matrices that adapt to environmental changes. We validate the

algorithm through simulation and real-world experiments.

Chapter 3 provides an overview of DP and its implementation. The de-

tailed Bayesian PL estimation algorithm, which is built on DP architecture,

is presented afterward. We test the developed algorithm using high-fidelity

simulations in which we generate GPS raw signals for a stationary receiver.

We verify that DP’s positioning error distribution is multi-modal and validate

that the estimated PLs overbound the positioning errors.

In chapter 4, we present an overview of conventional SEs for the power

grid. We describe our SR-SSE in detail and show theoretical analysis for

detecting GSAs using PMU measurement residuals. The developed algorithm

is validated on various power grid test systems for different GSA scenarios.

We end the chapter with the limitations of SR-SSE.

Chapter 5 devises a methodology for generating GPS and PMU measure-

ments under nominal and spoof scenarios. The nominal scenario represents

an ideal environment in which GPS signals are authentic. In the spoof sce-

nario, GPS signals are modified to mimic a timing GSA that modifies receiver

time without altering the receiver location. Using the devised methodology,

we generated openly available GPS, and PMU integrated datasets by per-

forming HIL simulations with RTDS, physical PMUs, virtual PMUs, and

GPS clock. This chapter provides details for the generated datasets. Fur-

thermore, we demonstrate that the integrated datasets involve timing GSAs

with time-walk. The integrated datasets will serve as an evaluation platform

for testing the performance of SEs for the power grid.

Chapter 6 describes the SR-SE algorithm that addresses the limitations

of the SR-SSE algorithm. In this algorithm, we remove the computation-

intensive minimization step by incorporating GPS measurements in state

estimation with PMU measurements using a sequential EKF. This is the

first algorithm that utilizes both GPS and PMU measurements to estimate

power grid states. SR-SE is tested with various power grid test systems

through MC simulations for different GSAs. Furthermore, we validate SR-
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SE on the generated integrated GPS and PMU datasets. Finally, Chapter 7

summarizes our contributions.
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CHAPTER 2

ADAPTIVE SENSOR FUSION

Navigation in urban environments with standalone GPS is challenging due to

tall structures that block and reflect GPS signals. The standalone GPS posi-

tioning accuracy degrades in urban environments because of signal blockage

and multipath. Figure 2.1 shows GPS positioning in an urban environment

which deviates from the true position.

Figure 2.1: GPS positioning degrades in urban environment. The blue
circle shows the true position and red circle shows the position estimated
from GPS

One approach to improve positioning in an urban environment is to aug-

ment GPS with a complimentary sensor using a sensor fusion algorithm.

The performance of a sensor fusion algorithm depends on covariance matri-

ces. Tuning these matrices is time-consuming. Furthermore, once tuned for

a particular scenario, these matrices may result in poor performance for a

different scenario as noise may change with time. The noise in GPS measure-

ments varies with time as the number of visible satellites and their geometry
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change over time for a given position. Covariance matching [9] is not appli-

cable due to the inherent assumption of the constant size of measurements.

This chapter presents our work on an adaptive sensor fusion algorithm that

adapts to time and size varying noise. We fuse GPS and vision measurements

to improve positioning in urban environments. The remainder of this chapter

is organized as follows: Section 2.1 provides an overview of our approach. In

Section 2.2, we describe the process of obtaining a position from camera

images. The adaptive estimation of covariance matrices is elaborated in

Section 2.3. Section 2.4 details the measurements used from GPS and vision.

The developed algorithm is tested in simulation, and in the real-world, the

details of simulation and real-world experiments are provided in Section 2.5

and 2.6, respectively.

2.1 Approach

The noise parameters for GPS and vision change with time and environmen-

tal scenarios. Figure 2.2 shows that the noise affects measurements, and in

our approach, we utilize measurements to estimate noise parameters.

Figure 2.2: Noise affects measurements differently based on the scenario.
The affected measurements can be utilized to estimate noise.

The overall architecture of our approach is shown in Figure 2.3. GPS and

vision measurements are fused using an EKF. Pseudoranges from GPS re-

ceiver and position estimates from vision are input to EKF. In Image match-

ing, we compare the raw image from the camera and Google Street View

(GSV) to estimate the raw image’s position. In Covariance estimation, in-

novation sequence and Kalman gain are used to estimate the covariance ma-

trices that are used in EKF for fusing the measurements. The remaining
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sections provide a detailed description of Image matching and Covariance

estimation blocks.

Figure 2.3: Overall architecture for adaptive sensor fusion algorithm.

2.2 Image matching

GSV contains a database of geo-referenced images. An image can be pulled

from GSV by providing the latitude and longitude of the desired position.

The resolution of this database is roughly 10 m, i.e., GSV gives the same

image if the difference between the positions of two pull requests is less than

10 m.

It is challenging to match images that have a different scale, orientation,

and lighting conditions. We use SIFT [6] features, which are invariant to

scale, rotation, and lighting conditions, for image matching. Figure 2.4 shows

the steps involved in matching the camera image with the GSV database.

Figure 2.4: Image matching using SIFT features
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First, we obtain SIFT features for all the images present in the database

and the camera image. Then we find the feature correspondences by im-

plementing Lowe’s criteria, in which two features correspond to each other

if the ratio of the distance between the two nearest neighbors is below a

certain threshold. Feature matching is susceptible to outliers. After finding

the correspondences, we utilize a RANdom SAmple Consensus (RANSAC)

algorithm [69] on the matched features to estimate homography between the

two images.

The homography is used to reject outliers by projecting features from the

camera image to the database image and checking the difference between the

projected features and their correspondences. Inliers are the features that

lie within a certain threshold to their correspondences after applying the

homography. We compute the number of inliers for each database image and

consider the database image with the largest number of inliers as a match

to the camera image. The position of the matched database image is vision

measurement, i.e., the raw image’s position.

2.3 Adaptive Covariance Estimation

Innovation sequence is the difference between received measurements and

expected measurements based on the measurement model. Any time and

size variation of noise will affect the measurements, and the effect will be

observed in the innovation sequence. We apply innovation sequences to esti-

mate process and measurement noise covariance matrices. Figure 2.5 outlines

the steps involved in estimating the covariance matrices using the innovation

sequence.

EKF is a sequential filter, to which the inputs are measurements and states

from the previous time step. We utilize the innovation sequence and mea-

surement model to get an expression of the measurement noise covariance

matrix. Similarly, we use the process model, Kalman gain, and innovation

sequence to express the process noise covariance matrix. The estimated co-

variance matrices are passed to EKF in the next time step. The subsequent

subsections provide more details to filter equations and expressions of esti-

mated covariance matrices.
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Figure 2.5: Adaptive estimation of covariance matrices using innovation
sequence.

2.3.1 Filter Equations

An EKF consists of a prediction and a measurement update step, which

utilizes the process and measurement models. A generic discrete process

model is given by

xk = f(xk−1) + ωk (2.1)

where x is the state of a given system, k denotes the time instant, f is a state

transition function that relates states from previous time step to current time

step, ω is zero-mean Gaussian noise. A generic discrete measurement model

is given by

zk = h(xk) + ηk (2.2)

where z denotes the measurements, h is the measurement function that re-

lates states to the measurements, and η is zero-mean Gaussian noise.

In the prediction step, EKF propagates states forward in time using the

process model. The following equations are used in the prediction step

xk|k−1 = f(xk−1|k−1) (2.3)

Pk|k−1 = FkPk−1|k−1F
>
k + Qk (2.4)

where xp|q denotes the state x at the pth time instant given the measurements

till the qth time instant, P denotes the state covariance matrix, Fk is the

Jacobian of f evaluated at xk−1|k−1 and Qk = E[ωkω
>
k ] is the process noise

covariance matrix, which is a diagonal matrix.
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New measurements allow EKF to update the states using the process and

measurement models. The following equations are used in the measurement

update step

ỹk = zk −Hkxk|k−1 (2.5)

Sk = Rk + HkPk|k−1H
>
k (2.6)

Kk = Pk|k−1H
>
k S−1k (2.7)

xk|k = xk|k−1 + Kkỹk (2.8)

Pk|k = (I−KkHk)Pk|k−1 (2.9)

where ỹ denotes the innovation sequence, Hk is the Jacobian of h that is

evaluated at xk|k−1, S is the theoretical covariance of innovation sequence,

Rk = E[ηkη
>
k ] is the measurement noise covariance matrix, K is the Kalman

gain, and I is the identity matrix. EKF sequentially performs predict and

update steps, and its performance depends on process and measurement noise

covariance matrices, i.e., Q and R respectively.

2.3.2 Covariance Estimation

We assume the process and measurement noise to be independent and Gaus-

sian in a small time interval of length W . For a given time instant k, we

compute the covariance of innovation sequence using the received measure-

ments as

E[ỹkỹ
>
k ] =

1

W − 1

W∑
i=1

(ỹk−i − ˜̄y)(ỹk−i − ˜̄y)> (2.10)

where ˜̄y is the mean of W samples of innovation sequence around the time

instant k. Now, rearranging the terms in (2.6) will result in the following

equation

R̂k = SWk −HkPk|k−1H
>
k (2.11)

where R̂ is the estimate of measurement noise covariance matrix and SWk =

E[ỹkỹ
>
k ] is the computed covariance matrix of the innovation sequence. The

R̂ is a diagonal matrix due to the assumption of noise being independent

and Gaussian. The diagonal element of R̂ is given by
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R̂k(i, i) = SWk (i, i)−Hk(i, :)Pk|k−1Hk(i, :)
> (2.12)

where R̂k(i, i) is the ith diagonal element of R̂k, SWk (i, i) is the ith diagonal

element of SWk , and Hk(i, :) denotes the ith row of Hk. Size variation in the

measurements will modify the innovation covariance in (2.10) and the size of

estimated covariance noise matrix will be adjusted accordingly in (2.12).

We use process model, estimated covariance of innovation sequence and

Kalman gain to estimate elements of process noise covariance matrix. Equa-

tion (2.1) is rearranged to obtain an estimate of process noise, ω̂, as

ω̂k = xk|k − f(xk−1|k−1)

= xk|k − xk|k−1 From rearranging (2.3)

= Kkỹk From rearranging (2.8) (2.13)

Taking expectation on both sides of (2.13) will result in following equation

Q̂k = KkS
W
k K>k (2.14)

where Q̂k is the estimated process noise covariance matrix. We smooth the

estimates of covariance matrices by weighing previous estimates, using the

following equation

R̂k(i, i) = αR̂k(i, i) + (1− α)R̂k−1(i, i) (2.15)

Q̂k = αQ̂k + (1− α)Q̂k−1 (2.16)

where α ∈ (0, 1) denotes the parameter for weighing the estimates. Equations

(2.15) and (2.16) show the expressions of estimated covariance matrices. To

ensure that the estimated covariance matrices are positive definite, we take

the absolute value of the right hand side in (2.15) and (2.16). This sec-

tion completes the discussion of estimating covariance matrices for a generic

sensor fusion algorithm which will be referred as Adaptive Kalman Filter

(AKF). In the subsequent sections, we apply this algorithm for fusing GPS

and vision measurements.
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2.4 GPS-Vision Fusion

The states considered for GPS and vision are given by

x = [x ẋ y ẏ z ż Cδt Cδ̇t]> (2.17)

where (x, y, z) and (ẋ, ẏ, ż) denote position and velocity in Earth Centered

Earth Fixed (ECEF) frame, respectively, C is the speed of light in vacuum,

and (δt, δ̇t) are the receiver clock bias and drift, respectively.

We use a constant velocity as our process model which is linear. The state

transition function in (2.1) becomes a constant matrix and the process model

is given by

ẋk|k−1 = Fxk−1|k−1 + ωk (2.18)

where F =



1 ∆t 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 ∆t 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 ∆t 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 ∆t

0 0 0 0 0 0 0 1


, ∆t is a small time step and ωk

is process noise. The measurements used from GPS are pseudoranges and

vision positions obtained by matching camera images with GSV database

images. The overall measurement vector is given by

z =
[
ρSV1 · · · ρSVi · · · ρSVN xvision yvision zvision

]>
(2.19)

where ρSVi denotes pseudorange between the SV yh
i satellite and the receiver,

N is the total number of visible satellites and (xvision, yvision, zvision) is the
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position obtained from vision. The measurement model is given by

z =



√
(XSV1 − x)2 + (Y SV1 − y)2 + (ZSV1 − z)2 + Cδt

...√
(XSVi − x)2 + (Y SVi − y)2 + (ZSVi − z)2 + Cδt

...√
(XSVN − x)2 + (Y SVN − y)2 + (ZSVN − z)2 + Cδt

x

y

z


+ η (2.20)

where (XSVi , Y SVi , ZSVi) denotes the satellite position in ECEF frame. Equa-

tions (2.18) and (2.20) describe the process and measurement model for fus-

ing GPS and vision measurements. We implement the adaptive sensor fusion

algorithm with the above process and measurement models.

2.5 Simulation Environment and Results

We simulate a scenario consisting of both open and urban environments. To

simplify the calculations, we make following assumptions

• Motion is in 2-dimensional plane.

• Virtual satellites are stationary in 2-dimensional plane.

• Receiver and satellites’ clock are synchronized.

• Noise in measurements have different variance in open environment

compared to urban environment.

Figure 2.6 illustrates the 2-dimensional simulation scenario. There are

four virtual stationary satellites located at (XSVi , Y SVi) with a pseudorange

of ρSVi from the receiver that is located at (x, y) and 1 ≤ i ≤ 4 is a natural

number. The receiver moves along the orange segment, i.e., from D-E-F-G.

The segment EF represents an urban environment in which the signals from

SV2 and SV3 are received after reflection from the blue wall. The remaining

segments simulate the open environment in which the signals are received
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Figure 2.6: 2-dimensional simulation scenario with 4 stationary virtual
satellites. The vehicle moves from point D-E-F-G-D. Segment EF simulates
an urban environment, where the signals from SV2 and SV3 are received
after reflection from the blue wall. The rest of the segments simulate an
open environment, where the vehicle receives signals from all the satellites
without any reflection.

without reflection. We add Gaussian noise to vision measurements with a

larger variance in open environment than urban environment. The variable

variance in vision measurements incorporates the hypothesis that the position

obtained from vision is more reliable in urban environments.

Figure 2.7 shows the measurements generated for the simulation scenario,

shown in Figure 2.6. The receiver enters segment EF at time instant 1000

and leaves at time instant 2000. From Figure 2.7, we observe sudden jumps

in pseudoranges for SV2 and SV3 when the receiver enters and leaves the

segment EF, simulating reflection from the wall. Similarly, the vision mea-

surements have lower noise variance in segment EF than other segments,

demonstrating that vision measurements are more reliable in the urban en-

vironment.

Conventional GPS receiver solves pseudorange equations using Least Squares
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Figure 2.7: Generated pseudoranges and vision measurements for the
simulation scenario

Estimation (LSE) to obtain a positioning solution. We apply LSE on the gen-

erated pseudoranges to obtain positioning solution which is shown in Figure

2.8. The reflection in the segment EF results in creating a bias in positioning

solution which is illustrated in Figure 2.8

We utilize the generated pseudoranges and vision measurements in our

AKF algorithm to obtain a positioning solution. In AKF, we also estimate

the noise standard deviation for vision measurements. Figure 2.9 shows the

estimated standard deviation of vision measurements’ noise along X and Y

directions. As mentioned in the simulation scenario, we added noise with less

variance in segment EF to vision measurements compared to other segments.

Figure 2.9 illustrates that AKF keeps track time-varying noise.

The estimated trajectory of the receiver is shown in Figure 2.10. Compared

to pseudorange only solution, shown in Figure 2.8, and vision measurements,

shown in Figure 2.7, the AKF positioning estimate is closer to the ground

truth for all the segments. The positioning estimate has less variance in

the open environment than vision measurements and does not have a bias

in the urban environment. Therefore, AKF adapts to time-varying noise

present in the sensor measurements. This section shows proof of concept via

simulations. In the next section, we test the algorithm in real-world where
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Figure 2.8: LSE positioning solution obtained by solving the generated
pseudoranges

we encounter size variation in GPS measurements.

2.6 Real-World Testing

2.6.1 Experimental Scenario

We conducted a real-world experiment on the UIUC campus that consists of

both urban and open environments. The route taken during the experiment

is shown in Figure 2.11 with a red line. We recorded pseudoranges from

a commercial GPS receiver and video from a handheld mobile camera in

the shown route. The initial path along the west direction consisted of tall

buildings, and we expect a few satellites in the north-south direction to be

blocked. The rest of the path is considered an open environment due to the

presence of shorter buildings.
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Figure 2.9: Estimated standard deviation of vision measurements’ noise
along X and Y directions.

Figure 2.10: Estimated and true trajectory of the receiver
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Figure 2.11: Route taken during the experiment on UIUC campus.

2.6.2 Results

Figure 2.12 shows the intermediate results of the image matching algorithm.

The top image is obtained from GSV, and the bottom image is collected

while experimenting. The subsequent images in each row, from left to right,

correspond to the block diagram’s steps. For a given database image and

camera image, first SIFT features are computed, shown with green circles.

Next, features are matched using Lowe’s criteria, which are shown in the

third column. This step is susceptible to outliers. For instance, the red car’s

features in the database image should not be matched with any camera image

features as the car is not present in the camera image. The homography is

obtained by applying the RANSAC algorithm to the matched features, and

then it is used to remove the outliers. The last column of images shows the

matched features after the outliers are rejected. From the last column of

images, it can be visually verified that the features shown in the database

image correspond to the features shown in the camera image.

Measurements used in our filter consist of pseudoranges from GPS receiver

and position from vision. The number of visible satellites varies depending

on the position and time of the day. Due to this, the size of the measure-

ments changes with time. Figure 2.13 shows the variation of the length

of the received measurements with time. It illustrates that the size of the

measurements is not constant. Furthermore, the noise varies with time and

environment. Figure 2.14 shows the estimated noise variance in vision mea-
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Figure 2.12: Demonstrating image matching algorithm for a single camera
image.

Figure 2.13: Variation in the size of received measurements with time.

surements. It demonstrates that noise in vision measurements varies with

time, depending on the surrounding environment.

We implemented our AKF that adapts to time variation of noise and size

variation of measurements. Figure 2.15 shows the variation of east and north

position obtained from vision measurements and AKF. The noise in vision

measurements changes around 450 seconds, and AKF positioning estimates

are smooth compared to the vision measurements, showing AKF adapts to
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Figure 2.14: Variance of vision noise with time.

Figure 2.15: Variation of east and north position obtained from vision and
AKF with time.

time variation of noise.

We compare the pseudorange only positioning estimate, obtained using

LSE, EKF positioning estimate with constant covariance matrices, and AKF

positioning estimate in Figure 2.16. It shows that AKF positioning esti-

mates are closer to the ground truth than positioning estimates obtained

from pseudorange only and EKF with constant covariance matrices..
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Figure 2.16: Positioning estimates obtained from LSE, EKF with constant
covariance matrices, and AKF

2.7 Summary

In this chapter, we presented an AKF algorithm that adapts to time and

size variation of noise. We discussed the implementation of a sensor fusion

algorithm that fuses GPS and vision measurements. An image matching

algorithm was devised, which provides a positioning estimate by matching

a given image with GSV images. The developed AKF algorithm is tested

in simulation as well as in the real world. We demonstrated that AKF po-

sitioning estimates are closer to ground truth, compared to the positioning

estimates obtained from GPS only, vision only, and EKF with constant co-

variance matrices.
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CHAPTER 3

INTEGRITY MONITORING FOR DIRECT
POSITIONING

Critical infrastructures, such as the power grid, banking, and transportation

system, use GPS timing, and positioning service to ensure safety [70]. In-

tegrity [24]measures the trustworthiness of a navigation solution. It is one of

the most critical requirements for safety-of-life applications. PLs are used to

assess the integrity requirement for a system [25, 26, 27, 71]. PLs overbound

positioning and timing errors by using error models.

Traditional receiver architectures, such as scalar tracking loop [1] and

vector tracking loop [41], use two steps to provide a PVT solution. Pseudo-

ranges are estimated in the first step, and trilateration is performed in the

second step to obtain a PVT solution. PEMs are used to derive PLs. These

models assume that each error component in PEMs is completely charac-

terized by uni-modal symmetric Gaussian distribution. However, the error

distribution is multi-modal due to changing environmental conditions [71].

Overbounding the multi-modal error distribution tails under such a scheme

may result in the underbounding of errors due to asymmetry or bias in the

distribution. This may cause a loss in integrity [27, 71].

One way to overbound multi-modal error distribution is to use multi-modal

Gaussian distribution. In [71], the authors show that the error distribution is

multi-modal and overbound the positioning errors using a bi-modal Gaussian

distribution. Using this approach, the authors improve the overall availability

of the system by 50%. This approach implicitly assumes that the number

of modes present in the multi-modal error distribution is known. However,

the number of modes in the error distribution is dependent on environmental

conditions and is unknown.

DP [10, 11, 12, 17, 72, 20, 15, 73, 74, 75] is an unconventional GPS

receiver architecture that directly operates in PVT domain. Compared to

traditional two-steps methods, DP estimates PVT solution in a single step

without estimating pseudoranges. Thus, DP removes errors arising from the
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convolutions of PEMs.

A large amount of literature is available for overbounding positioning errors

using PEMs [25, 26, 27, 71]; only a few are available for DP. With our

best knowledge, there has not been a paper that empirically shows the error

distribution for DP. We expect the error distribution to be multi-modal due

to changing environmental conditions.

Prior work [29] on DP-based integrity monitoring discusses Solution-

Separation Receiver Autonomous Integrity Monitoring framework. However,

this framework is originally designed for PEMs. Another work [30] utilizes

the correlation manifolds generated by DP to overbound the positioning er-

rors. This approach is deeply coupled with the DP framework. However,

the authors use many empirical parameters to overbound the vertical er-

rors. These parameters are dependent on environmental conditions and may

change with different environmental conditions.

As a starting step, we focus on estimating PLs for vertical errors. Com-

pared to prior works, we develop a Bayesian algorithm for estimating Vertical

Protection Levels (VPLs) using the DP framework and does not require em-

pirical parameters to overbound vertical errors. The developed algorithm

accounts for the unknown number of modes present in the vertical errors’

multi-modal distribution. In this chapter, we describe our Bayesian algo-

rithm for estimating VPLs. The remainder of this chapter is organized as

follows: Section 3.1 provides an overview of a generic DP. In Section 3.2, we

describe our Bayesian VPL estimation algorithm that is built on DP receiver

architecture. Section 3.3 details the simulation environment and results for

validating the developed Bayesian algorithm. Finally, Section 3.4 summarizes

this chapter.

3.1 Overview of Direct Positioning

This section provides an overview of a generic DP receiver. The first sub-

section describes the mathematical formulation, and the second subsection

provides details for DP’s implementation.
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3.1.1 Mathematical Formulation

The objective of DP [10] is to estimate PVT coordinates of a receiver X

given the received signal Y , where:

X =
[
x y z Cδt ẋ ẏ ż Cδ̇t

]>
=

[
x

ẋ

]
(3.1)

(Cδt, Cδ̇t) denotes receiver specific clock bias and drift multiplied by speed

of light. Also, x =
[
x y z Cδt

]>
ẋ =

[
ẋ ẏ ż Cδ̇t

]>
. The PVT coor-

dinates are in ECEF coordinate frame. The received signal at time t and at

coordinate X, after carrier wipe off is given by

Y (a,X, t) =
M∑
i

a(i)g(i)(t− τ i) exp
(
j2π∆f it

)
+ n(t) (3.2)

where:

• a =
[
a(1) a(2) ... a(M)

]>
∈ CM are the complex amplitudes of the

visible satellites.

• M ∈ N is the number of visible satellites.

• g(i) is the L1 coarse acquisition (C/A) code of the ith visible satellite.

• τ (i) is the code delay of the ith visible satellite:

τ (i) =
||d(i)||
C

+
(
δt− δt(i)

)
(3.3)

• ∆f (i) is the carrier Doppler shift of the ith visible satellite:

∆f (i) =
−fL1
C

{
r(i)ṙ(i)

||r(i)||
+ C

(
δ̇t− δ̇t(i)

)}
(3.4)

• d(i) =
[
x− x(i) y − y(i) z − z(i)

]>
is the relative vector to the ith

visible satellite.

• (δt(i), δ̇t
(i)

) are satellite specific clock bias and clock drift rate.
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• n(t) ∈ N (0, σ2) ∈ C is an independent and identically distributed

(i.i.d.) Gaussian process, same as the complex additive Gaussian nose

(AWGN).

In DP, receiver’s coordinates are obtained by maximizing the following like-

lihood

p(y|a,X, σ2) =

(
1

πσ2

)N
exp

{
−||y −Da||2

σ2

}
(3.5)

where:

• y =
[
Y (a,X, t1) Y (a,X, t2) ... Y (a,X, tN)

]>
∈ CN is a signal snap-

shot obtained over t = {tn}Nn=1.

• D(X, t) ∈ CN×M is a matrix containing signal replicas of visible satel-

lites for a given X and t.

• σ2 ∈ R is the noise level of the receiver.

• ||b|| denotes L2 norm of a generic vector b.

Under nice properties of D [75] and using the orthogonality principle, the

likelihood [10] is simplified as

p(y|X, σ2) =

(
1

πσ2

)N
exp

{
−
||y||2 − 1

N
||D∗y||2

σ2

}
(3.6)

The ML estimation is then obtained by

X̂ML ≈ argmax
X

1

N
y∗DD∗y = argmax

X
R(X, t) (3.7)

where:

• D∗,y∗ are conjugate transpose of D and y respectively.

• R(X, t) denotes the correlation manifold obtained at coordinate X and

time samples t.

3.1.2 Implementation of Direct Positioning Receiver

Equations (3.3) and (3.4) show that time delay and Doppler shift are implicit

functions of the receiver’s PVT coordinates. Instead of first estimating time
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delay and Doppler shift, the DP receiver directly estimates PVT coordinates

by maximizing the correlation manifold. The implementation of a generic

DP [76, 73, 74, 20] receiver is described below:

1. In the first step, the DP receiver generates a grid of candidates X̂m.

Each candidate represents a potential navigation solution and corre-

sponds to a unique time delay and Doppler frequency shift. The grid

is initialized in such a way to ensure X remains within the range of

candidates.

2. DP generates an expected signal reception, Ŷm, for each candidate

based on the PVT coordinates of the candidate.

Ŷm(X̂m, t) =
M∑
i=1

g(i)(t− τ (i))

exp
{
j2π(fL1t+ ∆f (i)t+ φ(i))

} (3.8)

where fL1 is L1 carrier frequency (1575.42 MHz) and φ(i) is the carrier

phase of the ith visible satellite. The signal synchronization parame-

ters are derived from receiver coordinates X̂m using (3.3) and (3.4).

Expected time sampled signal is given by time sampling of Ŷm and is

given below

ŷm =
[
Ŷm(X̂m, t1) Ŷm(X̂m, t2) ... Ŷm(X̂m, tN)

]>
(3.9)

3. For each candidate, the receiver computes the cross-correlation between

the expected reception ŷm and the received signal y

R(X̂m, t) = corr(y, ŷm) (3.10)

Correlation manifold is obtained by collectively obtaining correlation

values over the grid. This manifold is typically unimodal, where the

peak is at the candidate closest to the navigation solution. For illus-

tration purpose, a typical correlation manifold is shown in Figure 3.1.

4. The navigation solution is obtained by selecting the candidate that has
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the highest correlation value

X̂DP = argmax
m

R(X̂m, t) (3.11)

where X̂DP denotes the estimated navigation solution provided by DP.

This estimate is utilized in the next time step for populating the grid

candidates, that is performed in step 1.

Figure 3.1: 2D example showing the correlation manifold R on the local
East-Up plane [30]. The best match denotes the candidate closest to the
receiver.

The high dimensional search space for X is decoupled into two subspaces:

position and clock bias, x and velocity and clock drift, ẋ. The decoupling

is similar to Space Alternating Generalized Expectation (SAGE) algorithms,

as discussed in [20, 77, 78]. This decoupling is performed to reduce the

computation cost.
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3.2 Bayesian Approach to Estimate Protection Levels

Figure 3.2 shows the overall architecture of the Bayesian VPL estimation al-

gorithm in which we perform three steps for VPL estimation. In the first step,

we estimate PVT coordinates and noise variance from the received raw signal

snapshots, y, using DP receiver. Next, we obtain Altitude Likelihood Man-

ifold (ALM) by creating additional candidates in local up direction around

the PVT coordinate and calculating the correlation manifold at the created

candidates. Finally, we utilize ALM in Bayesian VPL Estimation to estimate

VPL. The subsequent subsections details each of the above-mentioned steps.

Figure 3.2: Overall architecture of the Bayesian VPL estimation algorithm

3.2.1 Direct Positioning

In the first step, we use a generic DP receiver architecture to estimate the

receiver’s PVT coordinates, X̂DP . We model the vertical errors with time-

varying Gaussian distribution and perform ML estimation on (3.6) to esti-

mate the variance of the time-varying Gaussian distribution, σ̂2. The vari-

ance estimate is given by [75]

σ̂2 =
||y||2 −R(X̂DP , t)

N
(3.12)

Conventional DP integrity monitoring methods use PVT estimates only;

however, we utilize both PVT and noise variance estimate in the developed

algorithm. In the next step, we apply these estimates for computing ALMs.

3.2.2 Compute Altitude Likelihood

In Section 3.1, we described the implementation of a generic DP that provides

two decoupled 4-dimensional correlation manifolds: one in position and clock

bias subspace and another in velocity and clock drift subspace. Our primary
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focus in this chapter is to obtain VPL for a given PVT estimate. We achieve

this by converting the 4-dimensional correlation manifold, in position and

clock bias subspace, into a 1-dimensional correlation manifold in the local

up direction, i.e., ALM. The following steps are involved in obtaining ALM

from the 4-dimensional correlation manifold:

1. We transform the DP’s PVT estimate, X̂DP , to local East-North-UP

(ENU) frame using a reference coordinate. Then, we generate candi-

dates zj in local up direction around the reference coordinate.

2. Signal replicas are generated for these candidates. Note that for these

replicas, PVT coordinates are same as X̂DP except for the local z co-

ordinate.

ŷzj =
[
Ŷzj(zj, t1) Ŷzj(zj, t2) ... Ŷzj(zj, tN)

]>
(3.13)

where ŷzj denotes the time sampled expected signal at local coordinate

zj.

3. Next, we perform cross-correlation between the received signal and the

expected signal to obtain altitude correlation manifold.

R(zj, t) = corr(y, ŷzj) (3.14)

4. Finally, we use altitude correlation manifold along with the estimate of

noise variance to compute ALM.

p(y|zj) =

(
1

πσ̂2

)N
exp

{
−
||y||2 − 1

N
R(zj, t)

σ̂2

}
(3.15)

For illustration purpose, a sample 2-dimensional correlation manifold and

the corresponding 1-dimensional correlation manifold in local up direction

are shown in Figures 3.3 and 3.4 respectively. In the final step, we utilize

ALM to estimate VPL.
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Figure 3.3: Sample 2-dimensional correlation for the candidates in local
East and Up direction
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Figure 3.4: Sample 1 dimensional correlation for the candidates in local Up
direction

3.2.3 Bayesian VPL Estimation

In the literature, VPL is defined using posterior probability and integrity risk

requirements. Therefore, in the final step, we obtain the posterior probability

from likelihood by applying Bayes theorem and then estimate VPL.
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Estimation of Posterior Probability

According to Bayes theorem, the posterior probability is given by

p(z|y) =
p(y|z)p(z)

p(y)
(3.16)

To simplify computations, we assume the prior probability, p(z), to be uni-

formly distributed over the generated local zj candidates. The normalizing

probability, p(y), is obtained by applying the law of total probability

p(y) =

∫
p(y|z)p(z)dz (3.17)

The expression of p(y|z) contains non-linear terms and the closed-form

solution of (3.17) is unavailable. We numerically integrate (3.17) using the

Euler method, over the set of candidates. The posterior probability under

such scheme of integration is given by

p(z|y) =
exp

{
R(z,t)
σ̂2N

}
∑

j

(
exp

{
R(zj ,t)

σ̂2N

})
∆zj

(3.18)

where:

• R(z, t) denotes altitude correlation manifold at z and time samples t.

• ∆zj denotes the candidates’ separation.

The summation in the denominator is taken over all the generated candi-

dates zj. The log-sum-exp trick is used to avoid numerical overflow errors.

This trick is widely used by deep learning researchers for training the neural

network [79]. The following equation explains this trick:

log

(∑
k

exp(bk)

)
= log (exp(bmax)) + log

(∑
k

exp(bk − bmax)

)
(3.19)

where bk is the kth element of some vector b and bmax = maxk(b), i.e., the

maximum element of b. This trick is used to avoid numerical overflow errors

that may occur in numerical computation.
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Estimation of VPL

For a given integrity risk probability ε, VPL is defined by [71]

p(|z − ẑ| > V PL|y) < ε (3.20)

The task is to estimate ẑ and an interval I that satisfy (3.20). Equation

(3.20) is simplified to [71]

∫
z∈I

p(z|y)dz ≤ ε (3.21)

There is no unique way to find the interval I. For simplicity, we assume

that the probability of being on each side of the interval is ε/2. Under

this assumption, we numerically solve the inequality in (3.21) to obtain the

interval I. Then, we compute upper and lower bounds for a given PVT

estimate and thus obtain VPL. Figure 3.5 illustrates the steps used to obtain

VPL by solving (3.21).

Figure 3.5: VPL estimation illustration using posterior probability

In Figure 3.5, zmin, zmax denotes the minimum and maximum value of

the generated local candidates, respectively. We incrementally integrate the

posterior probability from both ends of the distribution. At each incremental

integration, we check if the integrated probability exceeds ε/2. The first

local zj candidate for which condition specified in (3.21) is not satisfied,

corresponds to upper and lower bounds. In Figure 3.5, these extremes are

denoted by zlow and zhigh. The estimated VPL is given by

V PL = |zhigh − zlow| (3.22)

where || denotes absolute value. Under similar Euler numerical integration

scheme, the integration of posterior probability is given by
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∫
z∈I

p(z|y)dz ≈

∑
i

(
exp

{
R(zl,t)
σ̂2N

})
∆zl∑

j

(
exp

{
R(zj ,t)

σ̂2N

})
∆zj

(3.23)

where l is such that zl ∈ I, ∆zl denotes the candidates’ separation and

j is such that it covers all the generated candidates, i.e., the sum in the

denominator is taken over all candidates.

3.3 Simulation Environment and Results

Real-life outdoor experiments involve uncontrolled conditions. These condi-

tions often are undetectable and difficult to analyze. Obtaining ground-truth

in such situations becomes a challenging task. In order to avoid uncontrolled

situations and the problem of obtaining ground truth, we decide to work

with a simulated dataset. We use a high-fidelity GPS simulator to generate

GPS raw signals. The simulator provides the functionality of creating cus-

tom motion trajectories with adjustable individual satellite power levels and

transmitting it directly to the receiver.

Figure 3.6: High fidelity GPS simulator

The simulator is capable of simulating up to 12 GPS satellites. The number

GPS satellites are selected based on the almanac and ephemeris files, GPS

time, and receiver position that a user specifies. The simulator validates

several satellite parameters before simulating the satellites. If the satellite

parameters are valid at the specified GPS time, the simulator selects the
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satellite and uses it to simulate a GPS signal. The simulator continuously

updates the Doppler shifts between the satellites and simulated receiver so

that the simulated signal is as close to the specified position as possible.

We generate 24 hours of stationary GPS data using this simulator. At each

time step, we use 20 × 10−3 seconds of data to get PVT coordinates using

DP. The sampling frequency for the generated data is 2.5 MHz, providing us

with four million positioning data points. These positioning data points are

used to obtain the distribution of vertical positioning errors.

We implement our developed algorithm on pyGNSS, Python-based Software-

Defined-Radio (SDR) research suite [76, 80]. The software suite provides

the flexibility to test and verify new GPS receiver algorithms. It is also ca-

pable of analyzing raw GPS signal samples. Table 3.1 lists the parameters

used in DP’s implementation. Additional candidates generated to obtain

ALM are spaced 1 cm apart if they are within 5 m of the estimated position.

Otherwise, the spacing between the candidates is 3.5 m.

Table 3.1: Grid samples for DP’s implementation

Domain Axis Span Spacing Dim
Position East,North,Up [−351.6, 351.6] (m) 46.88 (m) 15
Velocity East,North,Up [−17.58, 17.59] (m/s) 2.34 (m/s) 15

Time Cδt [−351.6, 351.6] (m) 46.88 (m) 15
Time Drift Cδṫ [−0.22, 0.22] (m/s) 0.03 (m/s) 15

3.3.1 Validating Multi-modal Distribution

We obtain positioning estimates from DP on the generated GPS dataset. We

compute the vertical positioning error for each DP’s positioning estimate to

get the vertical positioning error distribution. Figure 3.7 shows the histogram

for vertical positioning errors.

Figure 3.8 displays a quantile-quantile (QQ) plot. The plot’s x-axis de-

notes quantiles taken from a standard normal distribution, and the y-axis

of the plot denotes quantiles taken from vertical positioning error distribu-

tion. The deviation of vertical positioning error distribution from the red

dotted line shows that the distribution is non-Gaussian. Figure 3.7 verifies

this observation, where the vertical positioning error distribution is multi-

modal. There are roughly four million data points present in Figures 3.7
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Figure 3.7: DP’s vertical positioning error has a multi-modal distribution.
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Figure 3.8: DP’s vertical positioning error distribution is non-Gaussian as
the blue crosses lie outside the red line in the QQ plot.

and 3.8. Overbounding of multi-modal distribution using a uni-modal Gaus-

sian distribution may reduce performance or loss in integrity for a navigation

system.
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3.3.2 Estimated VPL

The developed Bayesian VPL estimation algorithm, described in Section 3.2,

is implemented and tested on the generated dataset. Figure 3.9 shows the

estimated VPL with red circles and vertical errors with black circles. The

bottom subplot in Figure 3.9 shows a zoomed-in version of the top subplot.

We compare the distribution of the estimated VPL and vertical errors in

Figure 3.10 and 3.11.

Figure 3.9: Estimated VPL overbounds the vertical positioning errors

Figure 3.11 shows that the distributions of estimated VPL and vertical po-

sitioning errors are similar for errors smaller than 6m. Therefore, the derived

algorithm is able to capture the multi-modal behavior. Even for larger error,

the estimated VPL overbounds the vertical errors. This is evident from the

histogram plot shown in Figure 3.12.

3.4 Summary

This chapter briefly gave an overview of DP and described a Bayesian algo-

rithm for estimating VPL for DP, whose vertical error distribution has not

been shown in the literature. The developed algorithm is tested on 24 hours

of GPS dataset, which is generated using a high-

47



-6 -4 -2 0 2 4 6

Standard Normal Quantiles

-4

-2

0

2

4

6

8

10

12

14

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

Absolute vertical error

VPL

Figure 3.10: QQ plot of vertical positioning errors and estimated VPL vs
standard normal
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Figure 3.11: QQ plot of vertical positioning errors vs estimated VPL shows
that vertical errors and estimated VPL have similar distribution for small
vertical errors.

fidelity GPS simulator. We showed that the DP’s vertical positioning error

has a multi-modal distribution by obtaining 4 million positioning error data

points from the generated dataset. The developed algorithm bounds the

vertical errors and is insensitive to the unknown number of modes present in

the distribution of vertical errors.
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Figure 3.12: Histogram of vertical positioning errors and estimated VPL
shows that estimated VPL bounds the vertical errors.
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CHAPTER 4

GPS SPOOFING-RESILIENT STATIC
STATE ESTIMATION FOR THE POWER

GRID

The installation of PMUs is a step towards achieving wide-area situational

awareness for the power grid. PMUs utilize GPS signals for time synchro-

nization and are vulnerable to GSAs as civilian GPS signals are unencrypted

and have low signal power. Studies [43, 44, 45] show that GSAs are feasible.

GSAs shift the phase angle of the PMU measurement, and the phase shift is

referred as attack angle [42]. The work in [44] and [46] demonstrate that

an SE raises false warnings of power stability and provide erroneous flow

estimates. Furthermore, GSAs are capable of violating the IEEE C37.118.1-

2011 standard [45]. GSA detection and mitigation are critical to ensure the

safe operation of the power grid.

Figure 4.1: Conventional GPS receiver locks on counterfeit GPS signals
under GSAs, providing incorrect timing to PMUs and making them
vulnerable during GSAs.

In the literature, a theoretical analysis of GSAs’ impact on PMU measure-

ment residuals has not been provided. This analysis will identify if certain
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GSAs can alter the power grid states without increasing the residual norm.

The key objectives of this chapter are as follows:

1. Perform theoretical analysis to examine the impact of GSAs on PMU

measurement residuals.

2. Provide an algorithm for correcting PMU measurements under multiple

GSAs with different attack angles.

For the power grid, PMUs are stationary with a known position. GSAs

that alter the receiver position would be detectable compared to timing GSAs

that alter the receiver time without changing the receiver position. Timing

GSAs pose a threat to the safe operations of the power grid. In this chapter,

we consider timing GSAs and refer to them as GSAs only. This chapter’s

overall goal is to develop an SE that is resilient to multiple GSAs with differ-

ent attack angles. We propose a novel residual-based SR-SSE for the power

grid that is resilient to multiple GSAs. SR-SSE estimates voltage phasors

using PMU measurements. During one or multiple GSAs, SR-SSE itera-

tively minimizes the residual norm to provide resilient voltage phasors. We

derive a necessary condition for the proposed estimator to show that the

residual norm increases during GSAs. We perform MC simulations to verify

the derived necessary condition. We further simulate the IEEE 14, IEEE

39, IEEE 118, and Illinois 200-bus test systems to validate SR-SSE against

multiple GSAs. The remainder of this chapter is organized as follows: Sec-

tion 4.1 presents a conventional PMU-based Static State Estimator (SSE)

for the power grid along with the spoofing attack measurement model. In

Section 4.2, we provide details of our theoretical analysis and the derived

necessary condition. Section 4.3 describes our proposed estimator and ex-

plains the simulation environment and implementation. Section 4.4 contains

simulation results, and the summary of the chapter is presented in Section

4.5.

4.1 Background

The SE estimates the complex voltages of the buses present in a power grid

network using SCADA or PMU measurements. Conventionally, an SSE is
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used for estimating power grid states. The voltages in the power grid vary

slowly, and the measurements at a given time instance are utilized in SSE.

Depending on the type of measurements, different SSEs are available in the

literature [34], such as SCADA-based SSEs [32], PMU-based SSEs [81], or

SSEs which incorporate both SCADA and PMU measurements [82]. In this

chapter, we focus on PMU-based SSE.

4.1.1 PMU-based SSE

Apart from having a faster update rate and synchronized measurements,

PMUs directly measure voltage and current phasors. This results in a linear

relationship between states of the grid and the PMU measurements. Consider

a power grid network of N buses/nodes with M PMUs installed to ensure

the network is observable. The system state x ∈ R2N×1 can be written as

x =[Re(U1), · · · , Re(Ui), · · · , Re(UN),

Im(U1), · · · , Im(Ui), · · · , Im(UN)]>
(4.1)

where Re(·) denotes the real part, Im(·) is the imaginary part, and Ui is the

complex voltage of the ith bus. The PMU measurements at bus i, which is

connected to k different buses, are given by

zi =[Re(Ui), Im(Ui), Re(Ii1), · · · ,

Re(Iik), Im(Ii1), · · · , Im(Iik)]
>

(4.2)

where Re(Iik), Im(Iik) are the real and imaginary parts of the complex cur-

rent injected into line (i, k). The measurement model for the PMU at bus i

is written as

zi = Hix + ηi (4.3)

where zi denotes the PMU measurements at bus i, Hi is the regression ma-

trix associated with bus i, and ηi is assumed to be zero-mean Gaussian noise.

In MATPOWER [83], a branch line is approximated using a π model. The

regression matrix relates the complex current flowing in a line with the com-

plex voltages at the buses of the π model. The construction of the regression

matrix is given in [84, 83].

In order to have a concise representation, PMU measurements are verti-
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cally stacked to create a total measurement vector z. The overall PMUs’

measurements are given by

z = Hx + η (4.4)

where z = [z1, · · · , zM ]>, H = [H1, · · · ,HM ]>, and η = [η1, · · · ,ηM ]>.

In state estimation, the problem is to determine the unknown states, x,

using the available measurements, z. Under the assumption of full observ-

ability, the least squares solution is given by

x̂ =
(
H>H

)−1
H>z (4.5)

where x̂ is the estimated state of the network.

4.1.2 Spoofing Attack Model

Timing GSAs induce a time delay that shifts the phase angle of PMU mea-

surements by an attack angle. Without loss of generality, assume the PMU

at bus i is spoofed. During a timing GSA, the PMU measurements at bus i

are modified as

zspfi =[|Ui| cos(θi + ∆θi), |Ui| sin(θi + ∆θi),

|Ii1| cos(θi1 + ∆θi), |Ii1| sin(θi1 + ∆θi), · · · ,

|Iik| cos(θik + ∆θi), |Iik| sin(θik + ∆θi)]
>

(4.6)

where zspfi denotes the spoofed measurements, θi is the phase angle at bus

i, θik is the phase angle for the line (i, k), and ∆θi is the attack angle. The

work in [46] demonstrates that timing GSAs introduce a constant attack

angle to all PMU measurements as shown in (4.6). The attack angle at bus

i is related to the induced time delay by

∆θi = 2πf∆ti (4.7)

where f denotes the frequency of the system and ∆ti is the induced time de-

lay. Using cosine identities, a linear relationship is obtained between spoofed

and authentic measurements [42]

zspfi = γiHix + ηi (4.8)
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where γi is a block diagonal matrix with the following sub-matrix

G =

[
cos(∆θi) − sin(∆θi)

sin(∆θi) cos(∆θi)

]
(4.9)

The PMU measurements are vertically stacked and (4.8) is re-written as

zspf = ΓHx + η (4.10)

where zspf = [zspf1 , · · · , zspfM ]> and Γ is given by

Γ =



I1 0
. . .

γi
. . .

0 IM


(4.11)

where I denotes an identity matrix. Without knowledge of Γ, the SSE under

timing GSAs will produce the following state estimates

x̂spf =
(
H>H

)−1
H>zspf

=
(
H>H

)−1
H>Γz = H†Γz

(4.12)

where z denotes the PMU measurements under the nominal scenario and H†

represents
(
H>H

)−1
H>. During the nominal scenario, none of the PMU

buses are spoofed and the SSE state estimates match with power flow anal-

ysis. Under the spoofing scenario, one or more PMU buses are spoofed with

different attack angles. The PMU measurements under the nominal and

spoofed scenarios are related by following equation

zspf = Γz (4.13)

In the next section, we analyze the impact of GSAs on residuals and derive a

necessary condition that ensures an increase in residual norm during GSAs.
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4.2 Residual Statistics Under GSAs

In the power grid, bad data are detected using measurement residuals [49, 50,

51, 52]. The majority of the literature assumes the bad data to be of additive

nature. However, the GSA introduces bad data of multiplicative nature as

shown in Section 4.1.2. Some additive bad data do not increase the residual

norm and are not detectable using residual-based detection algorithms [49].

Given that certain additive attacks are not detectable, we analyze the impact

of GSAs on the residuals and derive a necessary condition showing that the

residual norm increases under GSAs. We analyze residual distributions for

two scenarios:

1. Nominal scenario: In this scenario, none of the PMU buses are spoofed

and the residual is given by

r = z−Hx̂

= z−HH†z
(4.14)

where r denotes the PMU measurement residual vector. From (4.4),

the expectation of z is Hx. Using this and taking the expectation of

the above equation yields

E[r] = E[z]−HH†E[z]

= Hx−HH†Hx

= Hx−H
(
H>H

)−1
H>Hx = 0

(4.15)

where E[·] is the expectation operator. The above equation shows that

under the nominal scenario, the expectation of the residual vector is

zero.

2. Spoofing scenario: In this scenario, one or more PMU buses are spoofed

and the residual is given by

rspf = zspf −Hx̂spf

= Γz−HH†Γz
(4.16)

where rspf is the PMU measurement residual vector under GSA. To

simplify notations, let mus denote the set of PMUs that are not spoofed
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and let ms represent the set of PMUs that are spoofed. Now, the

attacked measurements can be re-written as

zspf =

[
Imus 0

0 γms

]
z =

[
zmus

γmszms

]
(4.17)

where zmus denotes original measurements corresponding to unspoofed

PMUs and zms represents original measurements corresponding to spoofed

PMUs. Note that z = [zmus , zms ]
>, which is a nominal case measure-

ment. Using this, (4.16) is simplified as

rspf =

[
zmus

γmszms

]
−HH†

[
zmus

γmszms

]

=

[
zmus

γmszms + zms − zms

]

−HH†

[
zmus

γmszms + zms − zms

]

=

[
zmus

zms

]
−HH†

[
zmus

zms

]
+

[
0

(γms − Ims)zms

]

−HH†

[
0

(γms − Ims)zms

]

= r +

[
−HmusH

†
ms

(γms − Ims) zms(
Ims −HmsH

†
ms

)
(γms − Ims) zms

]

(4.18)

where Hmus and Hms are matrices which contain rows of H correspond-

ing to unspoofed and spoofed PMUs, respectively, and H†ms
is a matrix

which contains columns of H† corresponding to spoofed PMUs. Taking

the expectation of the last expression of (4.18) gives

E[rspf ] = E[r]

+

[
−HmusH

†
ms

(γms − Ims)E[zms ](
Ims −HmsH

†
ms

)
(γms − Ims)E[zms ]

]

=

[
−HmusH

†
ms

(γms − Ims)E[zms ](
Ims −HmsH

†
ms

)
(γms − Ims)E[zms ]

]
6= 0

(4.19)
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The expectation is non-zero since E[zms ] is non-zero (assuming the

states are non-zero). Therefore GSAs give rise to a bias in residuals.

The change in the statistic is utilized in our approach to differentiate

a nominal scenario from a spoofing scenario.

Comparing the residual norm under the nominal and spoofing scenarios, we

demonstrated that the residual norm distribution changes under GSAs. We

further show that the residual norm increases during a GSA, i.e.,
∥∥rspf∥∥2 ≥

‖r‖2 if
(
I−HH†

)
is semi-positive definite. The proof is provided below:

To show:
∥∥rspf∥∥2 ≥ ‖r‖2 if

(
I−HH†

)
is semi-positive definite.

Proof: Let b =

[
0

(γms − Ims)zms

]
to simplify calculations. From (4.18):

rspf = r +
(
I−HH†

)
b

=
(
I−HH†

)
z +

(
I−HH†

)
b

(4.20)

Taking square of norm on both sides:∥∥rspf∥∥2 = ‖r‖2 +
∥∥(I−HH†

)
b
∥∥2

+ 2z>
(
I−HH†

)> (
I−HH†

)
b

=
∥∥(I−HH†

)
b
∥∥2 + 2z>

(
I−HH†

)>
b

− 2z>
(
I−HH†

)> (
HH†

)
b + ‖r‖2

=
∥∥(I−HH†

)
b
∥∥2 + 2z>

(
I−HH†

)>
b

− 2z>
(
HH† −HH†HH†

)>
b + ‖r‖2

= ‖r‖2 +
∥∥(I−HH†

)
b
∥∥2

+ 2z>
(
I−HH†

)>
b

(4.21)

as HH† = HH†HH†, due to the structure of pseudoinverse matrices. Now,

note that the RHS contains a sum of positive numbers, the last term is

positive since
(
I−HH†

)
is semi-positive definite. This implies that

∥∥rspf∥∥2 ≥ ‖r‖2 (4.22)

The above proof shows that the residual norm under GSAs will be greater

than that of the nominal residual norm. Semi-positive definiteness of the ma-

trix
(
I−HH†

)
is the necessary condition that ensures an increase in residual
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norm during GSAs. This observation is used to correct PMU measurements

under GSAs. Note that the necessary condition implies that the residual

norm will increase under GSAs. However, it is not a sufficient condition, i.e.,

an increase in residual norm does not always imply that there is a GSA.

4.3 Spoofing-Resilient Static State Estimation

Figure 4.2: Flow chart of SR-SSE. First, we utilize residuals in the Spoofing
Detection algorithm to detect GSAs. Later, if a GSA is detected, we
correct PMU measurements in the Measurement Correction algorithm by
iteratively minimizing the measurement residual norm. The corrected
measurements are used in the SSE which provides GSA-resilient states.

The overall architecture of the proposed estimator is shown in Figure 4.2.

In the proposed estimator, we perform the following steps:

1. Initialization: In this step, the power grid states are estimated us-

ing all of the PMU measurements and the measurement residuals are

computed.

2. Spoofing Detection: The measurement residuals are compared with

a predetermined threshold to detect spoofing. We consider measure-

ments to be spoofed if the measurement residual norm is greater than

a predetermined threshold.

3. Measurement Correction: Based on the output of the Spoofing

Detection algorithm, the measurement correction step is carried out.
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In this algorithm, we estimate the attack angles. Once the attack angles

are estimated, we correct the PMU measurements.

4. SSE: The corrected measurements are passed to the SSE to estimate

the power grid states.

The subsequent subsections provides more details on Spoofing Detection

and Measurement Correction algorithms.

4.3.1 Spoofing Detection

In the previous section, we analyzed the measurement residuals and demon-

strated that the residual norm increases under GSAs. We empirically com-

pute a threshold to differentiate the nominal scenario from the spoofing sce-

nario.

We perform MC simulations for the nominal scenario to obtain the maxi-

mum measurement residual norm. In MC simulations, we simulate a virtual

power grid in steady state using MATPOWER [83]. For each simulation,

we generate PMU measurements from (4.4) and estimate power grid states

using SSE. The residual norm for each simulation is recorded. The maximum

residual norm is selected as a threshold.

In this work, we primarily focus on GSAs and assume the PMU measure-

ments are altered by GSAs only. The residuals obtained in the initialization

step are passed to the Spoofing Detection algorithm, where we compare the

measurement residual norm with the selected threshold. If the measurement

residual norm is greater than the selected threshold we correct measurements

in the Measurement Correction algorithm, otherwise we use the measure-

ments as they are.

4.3.2 Measurement Correction

In this section, we will describe the developed algorithm to correct PMU

measurements and thus provide GSA-resilient states. The flow chart of the

algorithm is shown in the right side of Figure 4.2. The measurement cor-

rection is an iterative algorithm that estimates the attack angles for spoofed

buses. The following steps are performed in the Measurement Correction

algorithm:
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1. The overall residual norm
(∥∥rspf∥∥) is compared with the selected thresh-

old to identify whether the measurements are spoofed or not.

2. If the overall residual norm is less than the selected threshold, then

the corrected measurements are used in the SSE to estimate states.

Otherwise, we estimate the attack angles by iteratively minimizing the

following objective function

fobjective(∆θms , x̂) =
∥∥rspfms

∥∥ (4.23)

where ms denotes the set of PMUs that are spoofed. In the developed

algorithm, ms is initialized as an empty set. We take the following

steps to minimize the above objective function:

(a) Select the PMU with the largest residual norm and add the mea-

surements to the set ms.

(b) Given the previous state estimate (x̂), minimize the objective

function with respect to ∆θms . We use gradient descent to mini-

mize the objective function and estimate the attack angles.

(c) Correct the PMU measurements by utilizing the estimated attack

angles (∆θms)

zc = Γ>(∆θms)z
spf (4.24)

(d) Update the power grid states

x̂ = H†zc (4.25)

(e) Repeat from Step 2.b until the estimated states have converged.

The norm of the difference of the estimated states between two

consecutive iterations is selected as the criterion for convergence.

3. Repeat from Step 1 until the residual norm falls below the predeter-

mined threshold.

Equation (4.18) shows that the residuals are a function of the attack angle.

This is the motivation for selecting residual norm as an objective function.

The minimization of the residual norm is a non-convex problem. Our devel-

oped iterative algorithm is inspired from the alternating minimization algo-

rithm. In order to estimate both the attack angles and states, we minimize
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the objective function first with respect to the attack angles and then with

respect to states.

4.4 Simulation Environment and Results

Real-life spoofing experiments cannot be performed without proper approval

from the U.S. government. It is illegal to broadcast any signal at GPS fre-

quency. Furthermore, it is costly to conduct real-life experiments with PMUs

and the power grid. As a result, we perform simulations using MATPOWER

[83], which generates steady-state PMU measurements for the IEEE 14, IEEE

39, IEEE 118, and Illinois 200-bus [68] test systems. The parameters re-

quired to create the regression matrix (H) are provided in MATPOWER [83].

The noise covariance (E[ηη>]) is a diagonal matrix with standard deviation

of 0.01 and 0.02 for bus voltage and line current measurements, respectively.

In our simulations, we have assumed the network to be observable. Table

4.1 presents the PMU buses for different test systems. For the nominal sce-

nario, we perform power flow analysis to estimate the power grid states. We

use these states as reference and calculate Root Mean Square Error (RMSE)

relative to these reference states for different estimators. To simulate spoof-

ing, we modify the nominal PMU measurements using (4.13).

The simulation results are divided into two parts: Residual Characteristics

and State Estimation. In residual characteristics, we show the residual norm

distribution under the nominal and spoofing scenarios. This distribution is

empirically obtained by performing MC simulations. In state estimation,

we compare the estimation results of SSE, SpM [59], and SR-SSE under

different GSAs.

4.4.1 Residual Characteristics

For the considered systems, the minimum eigenvalue of
(
I−HH†

)
is found

to be on the order of 10−17, implying that
(
I−HH†

)
is semi-positive definite.

Therefore, we expect the residual norm to increase under GSAs.

We conduct 1000 MC simulations for both nominal and spoofing scenarios.

In the nominal scenario, none of the PMU measurements are modified. For

the spoofing scenario, we modify the PMU measurements at bus 1 and 6
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Table 4.1: PMU buses for different IEEE bus test systems

Test Case Number of PMUs (M) PMU buses
IEEE 14 8 [1,2,4-6,7,10,13]

IEEE 39 22
[1-3,5-10,12,14-17,19,
20,22,23,25,26,29,39]

IEEE 118 54

[1,3-6,8,9,11,12,15,
17,19,21,23,25,26,28,30,

34,35,37,40,43,45,46,
49,52,54,56,59,62,63,65,

68,70,71,75,76,77,78,
80,83,85,86,89,90,92,94,
96,100,105,108,110,114]

Illinois 200 136

[1,2,4,6,8-13,15-30,32,33,35,
37-41,43-45,47-53,55-63,65,67-73,
75-80,82,83,86,87,89-94,99,101,

103-105,107,108,110,113-115,117,
118,122,123,125-127,130,131,

135-138,145-149,151-155,157,161,
163-170,173,174,176,178,180-183,

185,186,189,190,195,196,197]

according to the spoofing attack model with an attack angle of 20 degrees.

In each MC simulation, we calculate the residuals using SSE. Figure 4.3 plots

the residual norms for each test system.

Figure 4.3 illustrates that spoofing introduces an increase in the residual

norm, thus verifying (4.22). We use the maximum residual norm in the MC

simulations for the nominal scenario as our threshold to differentiate the

nominal and spoofing scenarios. We can effectively differentiate the nominal

scenario from the spoofing using the threshold as long as the spoofed residual

norm is greater than the selected threshold. We investigate if there are some

cases that give rise to smaller residual norm compared to the threshold.

We perform 100 MC simulations in which the attack angle is varied between

1 to 20 degrees and the numbers of GSAs are varied from 1 to 3. In each GSA,

we randomly select and spoof PMU buses with a given attack angle. For each

GSA, we record the minimum residual norm among the 100 simulations and

compare it with the selected threshold. Figure 4.4 shows the variation of the

minimum residual norm with attack angle for different numbers of GSAs.

This figure illustrates that GSAs with small attack angles (< 8 degrees) are

not differentiable from the nominal scenario using the selected threshold.
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Figure 4.3: The histogram of measurement residual norms during the
nominal, shown in blue, and during spoofing, shown in red, scenarios. The
nominal and spoofing scenarios are clearly distinguishable due to the
change in the distribution of the residual norms.
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Figure 4.4: Variation of the minimum residual norm with attack angle for
different numbers of GSAs. The nominal and spoofing scenarios are not
distinguishable for small attack angles (< 8 degrees).

4.4.2 State Estimation

We test SR-SSE on the IEEE 14, IEEE 39, IEEE 118, and Illinois 200-bus

test systems. We perform MC simulations in which number of GSAs are

varied from 1 to 3. For each GSA, we perform 100 MC simulations in which

we randomly spoof a given number of PMU buses with the attack angles.
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The attack angles are randomly sampled from a normal distribution with a

mean of 40 degrees and standard deviation of 5 degrees.

The RMSE and computation time of SR-SSE are compared with SpM and

SSE. Figures 4.5, 4.6, 4.7, and 4.8 show RMSE box plots of voltage and

phase estimates for different estimators. In these plots, the median value is

illustrated with a red line, the blue box bounds the first and third quantile

values, the black whiskers denote the 1.5× inter-quantile range, and the

outliers are marked with red stars. Outliers are the points that lie outside

1.5× inter-quantile range.
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Figure 4.5: Comparison of the voltage and phase RMSE of SSE (first
column), SpM (second column), and SR-SSE (third column) for the IEEE
14-bus test system. The SSE and SpM estimates degrade with the number
of GSAs. The SR-SSE estimates are an order of magnitude more accurate
than SSE and SpM estimates.
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Figure 4.6: Comparison of the voltage and phase RMSE of the SSE (first
column), SpM (second column), and SR-SSE (third column) for the IEEE
39-bus test system. The SSE and SpM estimates degrade with the number
of GSAs. The SR-SSE voltage estimates are an order of magnitude more
accurate than SSE and SpM estimates.

From Figures 4.5, 4.6, 4.7, and 4.8, we observe that the voltage RMSE of

SR-SSE is an order magnitude smaller than SSE for all test systems. The

performance of SR-SSE and SpM is similar for a single GSA; however, SR-

SSE outperforms SpM for multiple GSAs.

Table 4.2 presents the median RMSE of 100 MC simulations and the com-

putation time for all of the estimators. The computation time of SR-SSE is

greater than SpM for the IEEE 14 and 39-bus test systems. However, the

SR-SSE estimates have lower RMSE for all test systems. Computation time

of SR-SSE increases with number of GSAs as it is an iterative estimator that
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Figure 4.7: Comparison of the voltage and phase RMSE of the SSE (first
column), SpM (second column), and SR-SSE (third column) for the IEEE
118-bus test system. The SSE and SpM estimates degrade with number of
GSAs. The SR-SSE estimates are an order of magnitude more accurate
than SSE and SpM estimates.

mitigates one GSA at a time. The largest computation time of 1.69 seconds

is observed in the Illinois 200-bus test system for the scenario with 3 GSAs.

Depending on the time of day, the system time constant varies between

10 seconds and 10 minutes [33]. Presently, state estimation runs every 1-5

minutes for large power systems [85]. For the systems with time constant

smaller than 1.69 seconds, SR-SSE can be used for real-time estimation.
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Figure 4.8: Comparison of the voltage and phase RMSE of the SSE (first
column), SpM (second column), and SR-SSE (third column) for the Illinois
200-bus test system. The SSE and SpM estimates degrade with number of
GSAs. The SR-SSE estimates are an order of magnitude more accurate
than SSE and SpM estimates.

4.5 Limitations and Summary

This chapter described our proposed novel residual-based SR-SSE for the

power grid that is resilient to multiple GSAs with different attack angles.

The proposed estimator consists of two algorithms, one that detects a GSA

and another that corrects the PMU measurements. The developed spoofing

detection algorithm is based on measurement residuals. The measurement

correction algorithm iteratively minimizes residual norms to correct PMU

measurements under GSAs. Furthermore, we derived a necessary condition
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to show that the residual norm increases under GSAs. The necessary con-

dition was verified with MC simulations. When validating SR-SSE on the

IEEE 14, IEEE 39, IEEE 118, and Illinois 200-bus test systems, we observed

that SR-SSE estimates are an order of magnitude more accurate than SSE

and SpM for multiple GSAs. We also observed that SR-SSE’s computation

time is lower than that of SpM for the IEEE 118 and Illinois 200-bus test

systems, demonstrating that SR-SSE achieved a greater accuracy without

compromising computation time.

We observed that the computation time of SR-SSE increases with the

number of GSAs, and RMSE of phase estimates increases slightly with the

number of GSAs. The increase in computation time is due to the iterative

nature of the proposed estimator. SR-SSE’s performance will degrade with

the increase in the number of GSAs due to the reduction in the number of

authentic measurements, as shown in [61]. Figure 4.4 showed that the GSAs

with small attack angles (< 8 degrees) are not detectable. Furthermore, the

derived necessary condition does not guarantee that increase in residual norm

implies GSAs. In the next chapter 6, we improve the performance of SE by

augmenting it with GPS measurements.
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Table 4.2: Median RMSE and computation time of the SSE, SpM, and
SR-SSE estimators for the IEEE 14, IEEE 39, IEEE 118, and Illinois
200-bus test systems under different GSAs. RMSE of SR-SSE estimates is
smaller than that of SSE and SpM estimators for the multiple GSAs
scenario. SR-SSE provides GSA-resilient states under multiple GSAs.

S
S

E

Test Case Scenario
Voltage Phase Computation

Magnitude (pu) (deg) Time (sec)

IEEE 14
1 GSAs 0.0313 5.4354 0.0008
2 GSAs 0.0504 10.7971 0.0008
3 GSAs 0.0607 15.4949 0.0007

IEEE 39
1 GSAs 0.0107 1.7355 0.0026
2 GSAs 0.0189 3.3157 0.0025
3 GSAs 0.0299 5.1311 0.0025

IEEE 118
1 GSAs 0.0099 1.5235 0.0125
2 GSAs 0.0142 2.2896 0.0123
3 GSAs 0.0190 3.2987 0.0122

Illinois 200
1 GSAs 0.0083 1.1598 0.0393
2 GSAs 0.0104 1.9679 0.0414
3 GSAs 0.0120 2.7309 0.0391

S
p
M

IEEE 14
1 GSAs 0.0055 0.2759 0.0074
2 GSAs 0.0274 5.6298 0.0057
3 GSAs 0.0430 11.1899 0.0054

IEEE 39
1 GSAs 0.0015 0.1005 0.0711
2 GSAs 0.0112 1.7123 0.0651
3 GSAs 0.0224 3.5075 0.0622

IEEE 118
1 GSAs 0.0053 0.3324 1.9515
2 GSAs 0.0094 1.4440 1.7703
3 GSAs 0.0127 2.3702 1.7530

Illinois 200
1 GSAs 0.0054 0.3055 31.4554
2 GSAs 0.0074 1.3320 30.0399
3 GSAs 0.0098 2.3216 29.5627

S
R

-S
S
E

IEEE 14
1 GSAs 0.0055 0.2776 0.0282
2 GSAs 0.0050 0.3254 0.1047
3 GSAs 0.0047 0.3610 0.2629

IEEE 39
1 GSAs 0.0024 0.2215 0.2510
2 GSAs 0.0033 0.5558 0.6667
3 GSAs 0.0041 0.9764 1.3421

IEEE 118
1 GSAs 0.0052 0.3402 0.1287
2 GSAs 0.0051 0.3345 0.3015
3 GSAs 0.0051 0.3666 0.6991

Illinois 200
1 GSAs 0.0054 0.3067 0.2842
2 GSAs 0.0054 0.3160 0.8010
3 GSAs 0.0054 0.3225 1.6912
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CHAPTER 5

HARDWARE-IN-THE-LOOP GPS AND
PMU INTEGRATED DATASETS FOR THE

POWER GRID UNDER GSAS

Experimental datasets containing both GPS and PMU measurements are

essential to assess GSAs’ impact on power grid’s SEs. The available datasets

[86, 62] in the literature are not relevant to the power grid community due

to the following reasons:

• Most of the GSAs in [86, 62] alter receiver position and are detectable

since power grid sub-stations are static. GSAs that modify receiver

time without changing its position pose a threat to the power grid.

Such GSAs are known as timing GSAs [59].

• Timing GSAs in [86, 62] induce a total time delay of 2µs. However, a

timing delay greater than 26.5µs is required to violate IEEE C37.118-

2011 standard.

• The current spoofing datasets in the literature are for GPS only. In-

tegrated datasets, containing PMU measurements coupled with GPS

measurements, are unavailable.

Due to lack of datasets, researchers in [59, 42, 60] evaluate SE’s perfor-

mance under GSAs using low-fidelity simulations [83] in which PMU mea-

surements are obtained by performing software simulations without incorpo-

rating the PMU hardware. It is challenging to conduct real-world experi-

ments involving GSAs as it is illegal to broadcast signals at GPS frequency.

Additionally, experimenting on the real power grid under GSAs is costly as

GSAs would implicitly affect the grid’s power flow.

In this chapter, we address the limitations of the available datasets for

power grid applications. We conduct HIL simulations with RTDS, PMUs,

and GPS clock to simulate the IEEE 14-bus test system for different GSA

scenarios. We generate PMU datasets coupled with GPS datasets for two

scenarios: nominal, simulates an ideal environment in which GPS signals are
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authentic and spoof, simulate timing GSAs with time-walk. The remainder

of the chapter is organized as follows: Section 5.1 presents the developed

methodology for generating integrated datasets. In this section, we provide

information for generating relevant GPS datasets along with PMU datasets.

Section 5.2 describes our integrated datasets for nominal and spoof scenarios.

In Section 5.3, we show experimental results that validate our integrated

datasets. Section 5.4 summarizes this chapter..

5.1 Methodology for Generating Integrated Datasets

Figure 5.1: Overall architecture of our methodology.

The developed methodology contains two coupled steps: generate GPS

Datasets and generate PMU Datasets. In the first step, we generate GPS

datasets using a modified GPS simulator [87], to which the inputs are

ephemeris data, receiver position, velocity, and timing delay profile. This

simulator generates In-phase/Quadrature (IQ) samples, which we record.

In the second step, we generate PMU datasets by conducting HIL sim-

ulations with a virtual power grid that receives GPS raw signals from the

generated GPS datasets and authentic timing signals. Transmitting these

two signals allows us to spoof some of the PMUs in the virtual power grid

network. We record the PMU data in real-time from the virtual power grid

for a given GPS dataset. Figure 5.1 shows the overall architecture of the de-

veloped methodology for generating integrated datasets. A detailed descrip-

tion of the two steps involved in our methodology is given in the following

subsections.
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5.1.1 Generating GPS Datasets

(a) Generic GPS Simulator

(b) Modified GPS simulator

Figure 5.2: High-level flow chart of a generic GPS simulator (a) and the
modified GPS simulator (b).

The flow chart in Figure 5.2(a) shows the high-level steps involved in gener-

ating GPS raw signals. The first step is to compute the satellite positions and

velocities using the ephemeris data. Next, pseudoranges and pseudoranger-

ates are calculated by utilizing the receiver’s position and velocity. Then the

simulator estimates the code and carrier phase by applying the calculated

pseudoranges and pseudorangerates [1]. Finally, the simulator generates IQ

samples by employing the estimated code and carrier phase. We utilize GPS-

SDR-SIM [87], an open-source GPS simulator that performs these steps and

generates GPS raw signals.

We modify GPS-SDR-SIM by inserting the Adding Biases block to sim-

ulate timing GSAs. Figure 5.2(b) shows the steps involved in the modified
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Figure 5.3: Adding equal biases to the pseudoranges for each of the visible
satellites, modify the timing solution without changing the positioning
solution.

GPS simulator. In Adding Biases block, we add equal biases to the pseudo-

ranges for each of the visible satellites. The timing delay profile determines

the magnitude of the biases.

Figure 5.3 illustrates the idea of simulating timing GSAs by adding equal

biases to the pseudoranges for each of the visible satellites. In the nomi-

nal scenario, illustrated in the top plot of Figure 5.3, the receiver receives

authentic GPS signals. In the spoof scenario, shown in the bottom plot of

Figure 5.3, the added biases modify the timing solution without changing

the positioning solution. To show this idea mathematically, consider the

pseudorange equation in the nominal scenario which is given by
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ρi = di + C
(
δt− δti

)
+ ηi (5.1)

where ρi denotes the pseudorange between the receiver and the ith visible

satellite, di is the true range between the receiver and the ith visible satellite,

C refers to speed of light, δt is the receiver clock bias, δti is the ith satellite

clock bias, and ηi is zero mean Gaussian noise. To simulate timing GSAs,

we add Cb bias to the pseudorange that modifies the pseudorange equation

as

ρ
′i = di + C

(
δt− δti

)
+ Cb+ ηi (5.2)

where ρ
′i denotes the modified pseudorange and Cb is the bias in meters

corresponding to a timing delay of b seconds. Rearranging the terms in the

last equation will result in the following equation

ρ
′i = di + C

(
(δt+ b)− δti

)
+ ηi

= di + C
(
δt′ − δti

)
+ ηi

(5.3)

where δt′ = δt+b is the modified receiver clock bias. From (5.1) and (5.3),

we observe that by adding equal biases to the pseudoranges for each of the

visible satellite we can achieve timing GSAs.

We use a timing delay profile that increases linearly i.e., we induce timing

delay through time-walk to avoid sudden jumps in GPS timing and reduce the

risk of detecting GSAs. The modified GPS simulator is utilized for generating

GPS datasets for nominal and spoof scenarios.

5.1.2 Generating PMU Datasets

We simulate a virtual power grid network by performing HIL simulations with

RTDS, physical PMUs, virtual PMUs, and GPS clock. Figure 5.4 elaborates

on the intermediate blocks from our overall architecture, shown in Figure

5.1, that are utilized to generate PMU measurements. The virtual power

grid testbed is adapted from [88], where author tested the performance of a

PMU under meaconing and jamming attacks. We extended the testbed in

[88] by incorporating multiple PMUs associated with a power grid network.
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Figure 5.4: Generating PMU datasets by performing HIL simulations with
RTDS, physical PMUs, virtual PMUs, and GPS clock.

The virtual power grid provides PMU measurements that are recorded in

real-time. We transmit two signals to the virtual grid: GPS raw signals

from the generated GPS datasets and authentic timing signals. The physical

PMUs get the Inter-Range Instrumentation Group-B (IRIG-B) timing signals

from the GPS clock, which receives the transmitted GPS raw signals. We

also generate authentic IRIG-B timing signals that we transmit to RTDS.

The virtual PMUs inside the RTDS always receive authentic timing signals.

In the Transmit GPS datasets block, we transmit GPS signals from the gen-

erated GPS datasets through a Universal Software Radio Peripheral (USRP)

with a Wide Bandwidth Transceiver (WBX). In the Transmit Authentic

Timing block, the second USRP, with Low-Frequency Transmitter (LFTX),

transmits the authentic timing signals to RTDS. A Chip Scale Atomic Clock

(CSAC) provides a reference signal to the USRP. Multiple Input Multiple

Output (MIMO) cable syncs the two USRPs. We utilize openly available

GNU-Radio Software to communicate between the two USRPs and the lap-

top for transmitting the two signals.

In the virtual power grid, we simulate the IEEE-14 bus system that is

illustrated in Figure 5.5. There are 8 PMUs installed in this bus system to

ensure observability, which is essential for SEs. Physical PMUs at bus 4 and 6

receive a timing signal from the GPS clock. The remaining PMUs at bus 1, 3,

5, 7, 10, 11, and 13 are virtual, which always receive authentic timing signals.

For each PMU bus, PMU measurements, consisting of voltage phasors, line

current phasors, frequency, and frequency change rate, are recorded in real-

time using open-PDC software [89]. Figure 5.6 shows the hardware setup
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Figure 5.5: IEEE-14 bus system with physical and virtual PMUs.

for conducting HIL simulations and generating PMU datasets.

Figure 5.6: Hardware setup consisting of RTDS, physical PMUs, virtual
PMUs, GPS clock and USRPs.

5.2 Integrated Datasets

We generated four GPS and PMU integrated datasets using the developed

methodology for two scenarios: nominal and spoof. The nominal scenario

refers to an ideal environment in which the transmitted GPS raw signals are
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authentic. In the spoof scenario, we generated GPS raw signals by utilizing

the modified GPS simulator that simulates timing GSAs with time-walk.

Table 5.1 lists the scenarios for the integrated datasets.

Table 5.1: Scenarios for the integrated datasets.

S. No. Scenario
Total Induced Time Delay

Description
Time Delay (ms) Profile

1 Nominal 0 - Simulates ideal environment
2 0.5
3 Spoof 2 Time-walk Simulates timing GSAs
4 4

Integrated datasets contain PMU datasets coupled with GPS datasets.

We generated 30 minute long GPS datasets for each of the listed scenarios

in Table 5.1. For each scenario, the simulated receiver position is static and

the start time of the experiment is the same. Table 5.2 provides the ground

truth for the receiver position and the start time. We obtained satellite

positions from the ephemeris data and pseudoranges by performing scalar

tracking using pyGNSS, a Python-based SDR research suite [76, 80]. The

GPS datasets contain:

• GPS raw signals in binary files.

• GPS timestamped satellite positions and pseudoranges in CSV files.

Table 5.2: Ground truth of the receiver position and start time.

Date
UTC start

Receiver position in ECEF frame (m)
time (hh:mm:ss)

Dec 14, 2014 00:00:00
X Y Z

151317.2428 −4882273.0498 4087975.6877

We generated PMU datasets by transmitting GPS datasets to the virtual

power grid and recording PMU measurements. The PMU measurements un-

der the nominal scenario are the ground truth measurements for the IEEE-14

bus system. The PMU datasets provide GPS timestamped voltage phasors,

current phasors, frequency, and frequency change rate in CSV files for each

PMU in the IEEE-14 bus system. The GPS and PMU integrated datasets

are openly available at https://navlab.stanford.edu/resources/datasets.
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5.3 Experimental Validation

We analyzed GPS datasets using pyGNSS software suite. We performed

scalar tracking and obtained a navigation solution for each of the generated

GPS datasets. Figure 5.7 shows the least-squares navigation solution and

induced timing delays for different scenarios. The cyan, red, green and blue

colors in Figure 5.7(a) show the navigation solution for Nominal, Spoof 0.5ms,

Spoof 2ms, and Spoof 4ms, respectively. The Figure 5.7(b) shows induced

timing delay for Spoof 0.5ms, Spoof 2ms, and Spoof 4ms with red, green,

and blue colors, respectively. We observe that the navigation solution for

Nominal and Spoof scenarios is indistinguishable. We further observe that

the Spoof 0.5ms, Spoof 2ms, and Spoof 4ms scenarios induce a total timing

delay of 0.5, 2, and 4 ms, respectively. Therefore, the generated GPS Spoof

datasets induce timing GSAs with time-walk.

We tested the generated GPS datasets and our authentic timing signals

with the GPS clock. Figure 5.8 shows the IRIG-B timing signal from the GPS

clock, in blue color, and the authentic IRIG-B timing signal, in red color, at

two-time instants during the experiment for nominal and spoof scenarios. In

the nominal scenario, we notice that the authentic timing signal is in sync

with the GPS clock’s timing signal. In the spoof scenario, we observe that the

GPS clock’s timing signal lags behind the authentic timing signals. Figure

5.8 demonstrates that GPS Spoof datasets achieve the desired timing delays

for different scenarios.

Timing GSAs alter phase angle of PMU measurements proportional to the

induced timing delay [46], as shown in the following equation

∆θ = 2πf∆t (5.4)

where ∆θ is the phase delay, f is the frequency of the current and ∆t is the

timing delay induced by a timing GSA. Table 5.3 shows the expected phase

delays, obtained from (5.4), for different spoof scenarios.

Table 5.3: Expected phase delays for different spoof scenarios.

Scenario ∆θ (deg)
Spoof 0.5ms 10
Spoof 2ms 43
Spoof 4ms 86
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(a) Positioning Solution

(b) Induced Timing Delay

Figure 5.7: Positioning solution obtained using least squares (a) and
induced timing delay (b) for different scenarios.

Figure 5.9 displays the voltage phase angle at spoofed bus 4 and 6 for

different spoof scenarios. We observe that the voltage phase angle, under

spoof scenarios, increases linearly and diverges from the nominal voltage

phase angle. Furthermore, we notice a total phase delay of 10, 43, and

86 degrees is introduced for Spoof 0.5 ms, Spoof 2 ms, and Spoof 4 ms,

respectively. Figure 5.9 validates that the GPS Spoof datasets induce phase

delays proportional to the induced timing delays.
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Figure 5.8: Timing signals at two-time instants during the experiment for
Nominal and Spoof scenarios.

Figure 5.9: Voltage phase angle for spoofed bus 4 and 6 for different spoof
scenarios.

80



5.4 Summary

In this chapter, a methodology was devised to generate GPS and PMU in-

tegrated datasets for a virtual power grid. Two scenarios were simulated:

Nominal and Spoof. The Nominal scenario referred to an ideal environment

in which GPS signals were authentic. In the Spoof scenario, the pseudor-

anges were modified to simulate timing GSAs with time-walk. Such GSAs

are relevant to the power grid as its substations are static. We generated

openly available GPS and PMU integrated datasets by performing HIL sim-

ulations with RTDS, physical PMUs, virtual PMUs, and GPS clock. The

GPS datasets contained raw signals, satellite positions, and pseudoranges.

The PMU datasets consisted of GPS timestamped voltage phasors, current

phasors, frequency, and frequency change rate measurements for the IEEE-14

bus system. The integrated datasets were validated by demonstrating that

the datasets involve timing GSAs with time-walk. The integrated datasets

will serve as an evaluation platform for testing the performance of SEs for

the power grid.
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CHAPTER 6

GPS SPOOFING-RESILIENT STATE
ESTIMATION FOR THE POWER GRID

USING AN EXTENDED KALMAN FILTER

In the chapter 4, we presented SR-SSE that mitigates multiple GSAs us-

ing PMU measurements and also derived a necessary condition that showed

GSAs increase PMU measurement residual norm. However, the computa-

tion time of SR-SSE increases with the number of GSAs. We observe similar

trends with the prior works as the key part of the developed SEs involves min-

imizing a complex objective function to estimate attack angles for different

GSAs [59, 42, 60, 65]. The minimization step is computationally intensive

and may not always reach the global minimum. Due to this, the accuracy of

SEs decreases with the increase in the number of GSAs. Another limitation

of the prior works was the implicit assumption that GSAs introduce a large

(> 10 degrees) attack angle. In this chapter, we present a novel SR-SE that

mitigates the limitations of prior works. The developed SR-SE meets the

following requirements:

• The order of computation time should remain the same for any number

of GSAs.

• The order of RMSE of voltage magnitude and phase estimates should

remain the same for any number of GSAs.

The remainder of this chapter is organized as follows: Section 6.1 provides

a detailed description of SR-SE. This section presents our approach for miti-

gating multiple GSAs and process and measurement models for implementing

an EKF. We validate SR-SE using HIL and MC simulations with different

test systems under different GSA scenarios. Section 6.2 describes the simu-

lation environment and experimental scenarios. In Section 6.3, we show the

experimental results to validate SR-SE. Finally, Section 6.4 summarizes the

chapter.
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6.1 Spoofing-Resilient State Estimator

In our approach, we remove the minimization step by incorporating the time-

varying GPS and PMU measurements in state estimation. The time-varying

GPS measurements enable the SE to track the induced time delay for each

PMU, thereby simultaneously tracking the attack angle during a GSA. Our

proposed SR-SE jointly estimates power grid states and receiver clock biases

using an EKF. The estimated power grid states are resilient to timing GSAs

as SR-SE maintains an estimate of GSA induced time delay by tracking

receiver clock biases. It is computationally efficient compared to prior works

as it fuses measurements sequentially without requiring a computationally

intensive minimization step.

6.1.1 Overview of SR-SE

Figure 6.1: Overall architecture of SR-SE.

Figure 6.1 shows the overall architecture of SR-SE. The ‘Scale’ block in

Figure 6.1 scales GPS measurements to avoid numerical instabilities since

PMU measurements are on the order of 1 pu, and GPS measurements are on

the order of 107 m. The time alignment block aligns PMU and GPS mea-

surements by updating the overall measurements based on the time stamp

of the latest received measurement. This is a necessary step as the update

rates of GPS and PMU measurements are different. SR-SE sequentially per-

forms prediction and measurement update steps using process and coupled

measurement models.

Consider a power grid network of N buses with M PMUs installed to

ensure observability. We refer to a bus with a PMU installed as a PMU

bus. Each PMU uses a GPS receiver that provides GPS time. In SR-SE, we
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augment the power grid states with the scaled GPS receiver clock bias state.

The augmented state vector is given by

x =
[
xv xclk

]>
(6.1)

where x ∈ R(2N+M)×1 is the state vector, xv ∈ R2N×1 denotes the power grid

states which include the complex voltage phasors for each of the N buses in

the network, and xclk ∈ RM×1 is the scaled clock bias of the GPS receivers

at the PMU buses. We scale the receiver clock biases to avoid numerical

instabilities. We perform a linear scaling and the scaled clock biases are

given by

xclk = a(Cδt) + b (6.2)

where (a, b) are scaling constants that ensure the magnitude of each element

in xclk is less than or equal to one, and δt is given by

δt =
[
δt1 · · · δtM

]>
(6.3)

where δti denotes the receiver clock bias at the ith PMU bus. The subsequent

section outlines the details of process and measurement models for EKF

implementation.

6.1.2 Process Model

We assume the power grid is operating in a quasi-steady state [90] in which

voltage phasors change due to slow and smooth load generation changes.

Under this assumption, voltage phasors become constant between two sets

of PMU measurements. The following process model is used for the voltage

phasors

xv,k+1 = xv,k + ωv (6.4)

where k denotes the time instant and ωv is zero-mean Gaussian noise. In an

unspoofed scenario, the clock bias of a stationary receiver varies slowly [1].

The following process model is used for scaled clock biases

xclk,k+1 = xclk,k + ωclk (6.5)
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where ωclk is zero-mean Gaussian noise. The overall process model is given

by

xk+1 = xk + ω (6.6)

where x = [xv xclk]> and ω = [ωv ωclk]
> is zero-mean Gaussian noise.

6.1.3 Measurement Model

We assume the positions of the PMUs are known and the power grid is

observable. These assumptions reduce the number of unknowns in the pseu-

dorange equations. The following subsections describe the coupled GPS and

PMU measurement model that helps in mitigating timing GSAs.

GPS Measurement Model

A conventional GPS receiver [1, 41] executes two steps for estimating a

PVT solution. In the first step, scalar acquisition and tracking estimate

channel-specific parameters such as the code delay and Doppler shift for

each visible satellite. The second step involves solving a set of pseudorange

equations to obtain a positioning and timing solution. We use pseudoranges

from GPS receiver as measurements in SR-SE. Without loss of generality,

consider that Sn ∈ N is the number of visible satellites at the nth PMU bus.

The pseudorange equation is given by

ρjn = djn + C(δtn − δtj) + ηjclkn (6.7)

where subscript n refers to the variables associated with the nth PMU bus, ρj

denotes pseudorange measurement between the receiver and the jth visible

satellite, dj is the true range between the jth visible satellite and the receiver,

C is the speed of light, δt is the receiver clock bias, δtj is the clock bias for

the jth satellite, and ηjclk is zero-mean Gaussian noise. Because the PMU is

stationary at a well-known position and because the satellite clock bias is

provided to the PMU via external channels, the only unknown variable in

(6.7) is the receiver clock bias. We scale (6.7) using the scaling constants

(a, b) from (6.2) to obtain a relationship between the nth scaled clock bias

state (xclkn) and the pseudorange measurement.
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aρjn = adjn + aC(δtn − δtj) + b− b+ aηjclkn

= adjn + (aC(δtn) + b)− aCδtj − b+ aηjclkn

= adjn + xclkn − aCδtj − b+ aηjclkn

= hjGPSn
(xclkn) + aηjclkn

(6.8)

where xclkn denotes the scaled clock bias at the nth PMU bus and hjGPSn
(xclkn)

is a linear scalar function which is defined as

hjGPSn
(xclkn) = xclkn + a(djn − Cδtj)− b (6.9)

The overall GPS measurements at the nth PMU bus is given by

zGPSn =a
[
ρ1n · · · ρSn

n

]>
=[h1GPSn

(xclkn) + aη1clkn · · ·

hSn
GPSn

(xclkn) + aηSn
clkn

]>

=hGPSn(xclkn) + aηclkn

(6.10)

where zGPSn denotes the GPS measurements at the nth PMU bus, ηclkn is

zero-mean Gaussian noise, and hGPSn is a linear vector function given by

hGPSn(xclkn) =
[
h1GPSn

(xclkn) · · · hSn
GPSn

(xclkn)
]>

(6.11)

The combined GPS measurements for the entire network is given by

zGPS =
[
z>GPS1

· · · z>GPSM

]>
= hGPS(xclk) + aηclk

(6.12)

where zGPS denotes the GPS measurements of all receivers at M PMU buses,

ηclk is zero-mean Gaussian noise, and hGPS(xclk) =
[
hGPS1(xclk1)

> · · · hGPSM
(xclkM )>

]>
.

Equation (6.12) is the linear GPS measurement model.
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PMU Measurement Model

The power grid state xv ∈ R2N×1 consists of

xv =[Re(U1), · · · , Re(Ui), · · · , Re(UN),

Im(U1), · · · , Im(Ui), · · · , Im(UN)]>
(6.13)

where Re(Ui) and Im(Ui) denote the real and imaginary parts of the complex

voltage Ui at the ith bus, respectively. Each PMU measures voltage and

current phasors, which are given by

zPMUi
=[Re(Ui), Im(Ui), Re(Ii1), · · · ,

Re(Iik), Im(Ii1), · · · , Im(Iik)]
>

(6.14)

where zPMUi
denotes the PMU measurement at the ith PMU bus that con-

nects to k other buses, and Re(Iik) and Im(Iik) are the real and imaginary

parts of the injected current phasors at the line connecting ith and kth buses,

respectively. The PMU measurements at the ith PMU bus are related to the

power grid states by

zPMUi
= HPMUi

xv + ηPMUi
(6.15)

where HPMUi
denotes the regression matrix associated with the ith bus [84]

and ηPMUi
is zero-mean Gaussian noise. The regression matrix for the ith

bus relates its voltage phasors and current phasors with voltage phasors of

the entire network. The construction of the regression matrix is given in

[84, 83].

The induced time delay under a timing GSA shifts the phase angle of the

phasor measurements by an attack angle. Zhang et al. [46] showed that

timing GSAs induce the same attack angle to all the PMU measurements.

Assume the ith PMU bus is attacked. Under a timing GSA, (6.15) is modified

as
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zPMUi
=[|Ui| cos(θi + ∆θi), |Ui| sin(θi + ∆θi),

|Ii1| cos(θi1 + ∆θi), |Ii1| sin(θi1 + ∆θi), · · · ,

|Iik| cos(θik + ∆θi), |Iik| sin(θik + ∆θi)]
>

(6.16)

where θi is the phase angle of the ith bus, θik is the phase angle of the

line connecting the ith and the kth buses, and ∆θi is the attack angle. The

following equation relates the attack angle at the ith PMU bus to the GSA

induced time delay

∆θi = 2πfδti

= 2πf

(
xclki − b
aC

) (6.17)

where f denotes the frequency of the current, δti is the receiver’s clock bias at

the ith PMU bus, (a, b) are the scaling constants from (6.2), and xclki denotes

the scaled clock bias at the ith PMU bus. Effective timing GSAs modify the

receiver time by adding bias to pseudorange measurements, thereby inducing

errors in the receiver clock bias. Under timing GSAs, the receiver clock bias

is approximately the same as the induced time delay. This approximation is

valid when induced time delays are greater than a few microseconds, which is

the case under timing GSAs. Risbud et al. [42] derived a linear relationship

between spoofed and authentic measurements using cosine identities. This

relationship is given by

zPMUi
= γi(xclki)HPMUi

xv + ηPMUi
(6.18)

where γi(xclki) is a block diagonal matrix, given by the following equation:

γi(xclki) =


Gi(xclki) 0 · · · 0

0 Gi(xclki) · · · 0
...

...
. . .

...

0 0 · · · Gi(xclki)

 (6.19)
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where Gi(xclki) is given by

Gi(xclki) =

cos
(

2πf
(
xclki−b
aC

))
− sin

(
2πf

(
xclki−b
aC

))
sin
(

2πf
(
xclki−b
aC

))
cos
(

2πf
(
xclki−b
aC

))  (6.20)

The PMU measurements for the entire power grid network are given by

zPMU = Γ(xclk)HPMUxv + ηPMU (6.21)

where zPMU = [z>PMU1
· · · z>PMUM

]> denotes the PMU measurements for the

entire power grid network, HPMU = [H>PMU1
· · · H>PMUM

]> is the overall

regression matrix, ηPMU = [η>PMU1
· · · η>PMUM

]> is zero-mean Gaussian

noise, and Γ(xclk) is a block diagonal matrix, given by the following equation:

Γ(xclk) =


γ1(xclk1) 0 · · · 0

0 γ2(xclk2) · · · 0
...

...
. . .

...

0 0 · · · γM(xclkM )

 (6.22)

Equation (6.21) shows the overall PMU measurement model, which is valid

in the presence and absence of GSAs. Under GSAs, the induced time delay

will be greater than a few microseconds, which will make the off-diagonal

elements of Gi non-zero. However, in the absence of GSAs, the clock bias

will be on the order of a few nanoseconds making Gi an identity matrix and

correspondingly resulting in an identity Γ matrix.

The overall measurement of SR-SE consists of GPS and PMU measure-

ments. The GPS-PMU coupled measurement model is given by

z = h(x) + η (6.23)

where z =

[
zGPS

zPMU

]
denotes the overall measurements for the entire power

grid network, h(x) =

[
hGPS(xclk)

Γ(xclk)HPMUxv

]
is the nonlinear vector function

which relates states with measurements and η =

[
aηclk

ηPMU

]
is zero-mean Gaus-

sian noise.
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6.1.4 SR-SE Implementation

An EKF consists of a prediction and a measurement update step, which

utilizes the process and measurement models. Since the process model is

linear, the prediction step is given by

xk|k−1 = xk−1|k−1 (6.24)

Pk|k−1 = Pk−1|k−1 + Q (6.25)

where xp|q denotes the state x at the pth time instant given the measure-

ments till the qth time instant, P denotes the state covariance matrix, and

Q = E[ωω>] is the process noise covariance matrix, which is a diagonal

matrix. New measurements allow the SR-SE to update the states using the

process and measurement models. The following equations are used in the

measurement update step

ỹk = zk − h(xk|k−1) (6.26)

where z is the overall measurements, h is the nonlinear measurement model

from (6.23), and ỹ is the innovation sequence. The Kalman gain matrix (K)

is calculated using the state and measurement covariance matrices as

Kk = Pk|k−1H
>
k

(
HkPk|k−1H

>
k + R

)−1
(6.27)

where R = E[ηη>] is the measurement noise covariance matrix, which is a

diagonal matrix, and H is the Jacobian of the nonlinear measurement model

h(x). The state vector is corrected using the following equation:

xk|k = xk|k−1 + Kkỹk (6.28)

where xk|k is the posterior or the corrected state. The convergence of SR-SE

depends on the Q and R matrices. We perform empirical tuning of these

matrices using the expected noise levels of the GPS signals [1] and PMU

measurements [42].
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6.2 Simulation Environment and Experimental Setup

It is illegal to transmit signals at GPS frequency without approval from

the U.S. government, making real-world spoofing experiments challenging.

Furthermore, testing on a physical power grid network is costly and time-

consuming. As a result, we perform both low- and high- fidelity simulations.

Low-fidelity simulations are mainly software-based and do not incorpo-

rate physical hardware in simulations. This type of simulations is ideal for

performing MC simulations as it approximates the real-world, allowing it to

perform simulations faster than real-time. High-fidelity simulations incorpo-

rate physical hardware in simulations and simulate an environment closer to

the real-world.

In low-fidelity simulations, we simulate the steady-state power grid using

the MATPOWER [83] tool. In high-fidelity simulations, we simulate the

IEEE 14-bus test system using RTDS, physical PMUs, and GPS clock. The

following subsections provide details for low- and high- fidelity simulations.

6.2.1 Low-Fidelity Simulations

In low-fidelity simulations, we generate 10 seconds of GPS and PMU mea-

surements using measurement models described in Section 6.1.3. We generate

these measurements for the IEEE 14, IEEE 39, and Illinois 200-bus [68] test

systems.

Generating GPS Measurements

Generating pseudorange measurements from (6.7) requires satellite positions,

PMU positions, and satellite clock biases. We simulate four stationary satel-

lites with known clock biases in the same 2-dimensional plane as PMU devices

for all the test systems. Table 6.1 specifies the positions of these satellites.

The PMUs’ positions for the IEEE 14 and 39-bus test systems are uniformly

generated from a 10 × 10 km2 area. The synthetic Illinois 200 bus [68]

is based on the central Illinois power grid network. The synthetic buses’

positions are specified in [68], which are spread all over central Illinois.
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Table 6.1: Positions of simulated virtual satellites.

Satellite East North
number (km) (km)

1 -26× 103 30× 103

2 26× 103 −30× 103

3 26× 103 −30× 103

4 -26× 103 30× 103

Generating PMU Measurements

We perform power flow analysis using MATPOWER [83] to obtain steady

states of each test system from which we generate PMU measurements using

(6.21). Table 6.2 lists the PMU buses for all the test systems. These PMU

buses ensure the observability of each test system.

Table 6.2: PMU buses for IEEE 14, IEEE 39 and Illinois 200-bus test
systems.

Test Number of PMU
System PMUs (M) buses
IEEE 14 8 [1,2,4-6,7,10,13]

IEEE 39 20
[1-6,8,10,12,14-16,19,
20,21,22,23,25,26,29]

Illinois 200 136

[1,2,4,6,8-13,15-30,32,33,35,37-41,
43-45,47-53,55-63,65,67-73,75-80,82,
83,86,87,89-94,99,101,103-105,107,
108,110,113-115,117,118,122,123,
125-127,130,131,135-138,145-149,

151-155,157,161,163-170,173,174,176,
178,180-183,185,186,189,190,195,196,197]

6.2.2 High-Fidelity Simulations

In chapter 5, we simulated timing GSAs by shifting all of the visible satel-

lites equally along the line-of-sight direction. We achieved timing GSAs by

adding equal biases to all of the pseudoranges. The modified pseudoranges

are utilized to generate GPS datasets using an openly available SDR re-

ceiver, GPS-SDR-SIM [87]. We generated a nominal GPS dataset, in which

none of the pseudoranges were modified, as well as spoofing GPS datasets

that induced total time delays of 0.5, 2, and 4 ms, respectively. In spoofed
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GPS datasets, the time delay is linearly increased to avoid sudden jumps

in the GPS timing to reduce the risk of detection. We analyze the gener-

ated datasets using our SDR, PyGNSS [80], with which we performed scalar

tracking [1] to obtain positioning and timing solutions. Figures 5.7 and

5.8 showed the induced time delays and positioning solutions for each of the

generated GPS datasets. From these figures, we observed that the different

GPS datasets’ positioning solutions coincided with each other. As a result,

the generated GPS datasets mimic GSAs that induce time delays without

altering the receiver’s positioning solution.

In the high-fidelity simulation, we simulated the IEEE 14-bus test system

in RTDS with virtual PMUs, physical PMUs, and GPS clock. Table 6.2

specifies the PMU buses for the IEEE 14-bus test system. Figure 5.6 illus-

trates the experimental setup for the HIL simulations. The setup consists

of two physical PMUs, six virtual PMUs, a commercial GPS clock, and two

Universal Software Radio Peripherals (USRPs). The physical PMUs are at

buses 4 and 6, while the remaining PMUs are virtual.

6.3 Experimental Results

6.3.1 Monte Carlo Simulation Results

We test SR-SE for three GSA scenarios in which 25%, 50%, and 100% of the

total number of PMU buses are spoofed, respectively. We perform 100 MC

simulations for each GSA scenario. Each simulation generates 10 seconds

of GPS and PMU measurements. In each MC simulation, for a given GSA

scenario, we randomly select PMU buses from all PMU buses and spoof them

by adding signed biases to the pseudoranges. The sign, positive or negative,

is randomly chosen, and it determines whether the added bias is linearly

increasing or decreasing. For each selected PMU bus, we start to add biases

at random start times, which lie between 0 and 10 seconds.

We perform MC simulations with IEEE 14, IEEE 39, and Illinois 200-bus

test systems. We compare the RMSE and computation time of our proposed

SR-SE with that of SpM [59] and a conventional PMU-based SSE [91].

The RMSE is computed using the entire power grid state, i.e., for all N

buses. Figures 6.2, 6.3, and 6.4 show the RMSE box plots of voltage and
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phase estimates for the three GSA scenarios. In these box plots, the red lines

indicate the median, the blue boxes bound the first and third quantiles, the

black whiskers indicate the 1.5× inter-quantile range, and the red crosses

denote the outliers. Outliers are the data points that lie outside the 1.5×
inter-quantile range.
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Figure 6.2: Voltage and phase RMSE of the SSE (first column), SpM
(second column), and SR-SE (third column) for the IEEE 14-bus test
system. SR-SE estimates are an order of magnitude more accurate than the
SSE and SpM algorithm.

Figure 6.2 shows the RMSE box plot of voltage and phase estimates for the

IEEE 14-bus test system. The SR-SE voltage and phase estimates, shown

in Figure 6.2, are an order of magnitude more accurate than SSE and SpM

estimates. We observe a similar trend for IEEE 39-bus test system from
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Figure 6.3. Additionally, for the Illinois 200-bus test system, we observe that

the SR-SE phase estimates are an order of magnitude more accurate than

SSE and SpM.
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Figure 6.3: Voltage and phase RMSE of the SSE (first column), SpM
(second column), and SR-SE (third column) for the IEEE 39-bus test
system. SR-SE estimates are an order of magnitude more accurate than the
SSE and SpM algorithm.

Table 6.3 provides the median RMSE and computation time of SSE, SpM,

and SR-SE for all test systems under the three GSA scenarios. We observe

in Table 6.3 that the SR-SE phase estimates are at least an order of mag-

nitude more accurate than the SSE and SpM estimates for all test systems.

The RMSE of the voltage estimate for SR-SE is smaller than the SSE and

SpM voltage estimates for all test systems. SSE has the lowest computa-
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Figure 6.4: Voltage and phase RMSE of the SSE (first column), SpM
(second column), and SR-SE (third column) for the Illinois 200-bus test
system. SR-SE phase estimates are an order of magnitude more accurate
than the SSE and SpM algorithm.

tion time, but its voltage and phase estimates degrade under an increasing

number of GSAs. The sequential nature of SR-SE makes it computationally

efficient compared to SpM, which minimizes a complex objective function.

For each test system, the RMSE of the SR-SE estimates and computation

time remains consistent for all GSA scenarios.

Due to the centralized nature of SR-SE, the computation time increases

with the network’s size, as observed in Table 6.3. A distributed state esti-

mator would be more efficient for networks with a few thousand buses.
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Table 6.3: Median RMSE and computation time of the SSE, SpM, and
SR-SE for the IEEE 14, IEEE 39, and Illinois 200-bus test systems.

S
S

E
Test System

GSA scenario Voltage Phase Computation
(% spoofed buses) Magnitude (pu) (deg) Time (sec)

IEEE 14
25 0.0085 1.4009 0.0001
50 0.0126 1.5438 0.0001
100 0.0236 6.4359 0.0001

IEEE 39
25 0.0074 0.9252 0.0004
50 0.0146 1.1210 0.0004
100 0.0286 1.4216 0.0004

Illinois 200
25 0.0089 2.4546 0.0020
50 0.0133 3.4764 0.0020
100 0.0235 4.9973 0.0019

S
p

M

IEEE 14
25 0.0049 0.8027 0.0421
50 0.0072 1.6644 0.0432
100 0.0225 4.7125 0.0404

IEEE 39
25 0.0057 0.8883 0.2936
50 0.0155 1.4779 0.2867
100 0.0293 2.2575 0.2673

Illinois 200
25 0.0082 2.5055 22.5612
50 0.0123 3.5661 22.0030
100 0.0225 5.2157 21.0423

S
R

-S
E

IEEE 14
25 0.0014 0.0737 0.0032
50 0.0013 0.0769 0.0032
100 0.0015 0.1154 0.0032

IEEE 39
25 0.0006 0.0378 0.0095
50 0.0007 0.0360 0.0095
100 0.0006 0.0423 0.0091

Illinois 200
25 0.0015 0.1116 0.5982
50 0.0015 0.1159 0.5993
100 0.0015 0.1136 0.5996

6.3.2 Hardware Experimental Results

We test SR-SE on the three GPS-PMU integrated datasets that induce a

total time delay of 0.5, 2, and 4 ms. We compare the RMSE of SR-SE

estimates with SSE and SpM estimates. Table 6.4 provides the RMSE of

voltage and phase estimates, and median computation times. From Table

6.4, we observe that for all three datasets

• The phase estimates provided by SR-SE are at least an order of mag-

nitude more accurate than the SSE and SpM estimates.
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• The RMSE of the SR-SE voltage estimates is smaller than the estimates

from SSE and SpM.

• The computation time of SR-SE is an order of magnitude smaller than

that of SpM.

Table 6.4: RMSE and median computation time of the SSE, SpM, and
SR-SE for HIL simulations

S
S

E

Total induced Voltage Phase Computation
time delay Magnitude (pu) (deg) Time (sec)

0.5 ms 0.0017 3.1299 0.0050
2 ms 0.0157 13.2819 0.0027
4 ms 0.0560 26.0038 0.0053

S
p

M

0.5 ms 0.0006 3.6902 0.0439
2 ms 0.0006 14.9523 0.0154
4 ms 0.0005 28.9547 0.0146

S
R

-S
E 0.5 ms 0.0001 0.0734 0.0078

2 ms 0.0002 0.2982 0.0073
4 ms 0.0003 0.5925 0.0063

Figure 6.5 shows the estimated voltage magnitude and phase angle of the

spoofed PMU bus 6. The first, second, and third columns of Figure 6.5 show

the voltage and phase estimation results for GPS-PMU integrated datasets

that induce a total time delay of 0.5, 2, and 4 ms. SR-SE phase estimates

are closer to the truth. For each dataset, the SpM phase estimate oscillates

due to its inability to reach the global minimum.

From Table 6.4 and Figure 6.5, we observe that SR-SE provides GSA

resilient power grid states without compromising on the computation time

for the IEEE 14-bus test system.

6.4 Summary

In this chapter, we presented a novel SE that addresses the limitations of

the prior works. The proposed SR-SE fuses time-varying GPS and PMU

measurements using an EKF. We designed a coupled measurement model

that relates the GPS and PMU measurements. SR-SE jointly estimates the

power grid states and receiver clock biases, thereby providing power grid

state estimates that are resilient to timing GSAs.
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Figure 6.5: Estimated voltage magnitudes and phase angles of SR-SE, SSE,
and SpM for each of the three GPS-PMU integrated datasets that induce a
time delay of 0.5, 2, and 4 ms.

To validate SR-SE, we performed MC and HIL simulations. In MC simu-

lations, we simulated IEEE 14, IEEE 39, and Illinois 200-bus test systems for

different GSA scenarios and observed that SR-SE achieved greater accuracy

than SSE and SpM for all test systems. In HIL simulations, we tested SR-

SE on the generated GPS-PMU integrated datasets and observed at least an

order of magnitude higher accuracy of phase estimates than SSE and SpM

for all datasets.

The computation time of SR-SE is comparable with that of SSE for the

IEEE 14 and 39-bus test systems. However, the computation time increases

with the network’s size due to the centralized nature of SR-SE. The next
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step would be to explore distributed SEs, which will be efficient for grids

with more than a few thousand buses.
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CHAPTER 7

CONCLUSIONS

This dissertation presented algorithms that mitigate the limitations of GPS

positioning and timing service. We developed algorithms that fuse multi-

sensor and multi-receiver measurements using a Bayesian approach to im-

prove GPS positioning in urban environments and provide resiliency against

GSAs to the power grid’s SEs.

The developed algorithms are tested in simulations as well as through real-

world experiments. We created the first experimental datasets for GPS and

PMU measurements under GSAs. The contributions of this dissertation are

summarized below

• Chapter 2 presented an adaptive sensor fusion algorithm that adap-

tively estimates the time- and size-varying noise parameters for process

and measurement noise covariance matrices. We described a sensor fu-

sion algorithm that fuses GPS and vision measurements to improve

positioning in urban environments. We tested the developed adaptive

sensor fusion algorithm with simulated and real-world data. We showed

that the developed algorithm improves positioning in urban environ-

ments compared to GPS only, vision only, and sensor fusion with fixed

covariance matrices.

• Chapter 3 described a novel DP receiver that directly works in the po-

sition domain. We designed a novel Bayesian algorithm to estimate

VPLs for DP that utilizes both PVT and variance estimates. The de-

signed algorithm is robust to the unknown number of modes present in

the vertical positioning error distribution. We validated the designed

algorithm using a high-fidelity GPS simulator. We generated 24 hours

of stationary GPS dataset and obtained 4 million vertical positioning

error data points. This chapter showed that DP’s vertical position-

ing error distribution is multi-modal and further validated that the
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designed algorithm overbounds vertical positioning errors.

• Chapter 4 identified the unexplored areas for GSA-resilient SEs. It in-

troduced PMU-based SSE and the negative impact of GSAs on SSE. We

proposed a novel residual-based SR-SSE for the power grid, which is re-

silient to multiple GSAs with different attack angles. SR-SSE consisted

of two algorithms: Spoofing Detection and Measurement Correction.

We performed a theoretical analysis detailing GSAs’ impact on residu-

als and derived a mathematically necessary condition that ensures an

increase in residual norm during GSAs. We validated SR-SSE and ver-

ified our derived necessary condition by performing MC simulations on

the IEEE 14, IEEE 39, IEEE 118, and Illinois 200-bus test systems for

different GSAs.

• Chapter 5 described a methodology for generating GPS and PMU mea-

surements under nominal and spoof scenarios. The nominal scenario

represented an ideal environment in which GPS signals are authentic.

In the spoof scenario, GPS signals were modified to mimic a timing

GSA that modifies receiver time without altering the receiver location.

Using the devised methodology, we generated openly available GPS and

PMU integrated datasets by performing HIL simulations with RTDS,

physical PMUs, virtual PMUs, and GPS clock. We demonstrated that

the integrated datasets involved timing GSAs with time-walk. The in-

tegrated datasets will serve as an evaluation platform for testing the

performance of SEs for the power grid.

• Chapter 6 outlined SR-SE that fuses GPS and PMU measurements

using an EKF. Compared to prior works, we remove the minimization

step for obtaining GSA-resilient states by incorporating time-varying

GPS and PMU measurements in state estimation. The time-varying

GPS measurements enabled the SE to track the induce time delay for

each PMU, thereby simultaneously tracking the attack angle during a

GSA. In SR-SE, we designed a GPS-PMU coupled measurement model

that relates GSA induced time delay to PMU measurements. This

measurement model is essential to maintain estimates of attack angles,

which is necessary to mitigate GSAs.
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SR-SE is validated using MC and HIL simulations. In MC simulations,

we simulated IEEE 14, IEEE 39, and Illinois 200-bus test systems for

different GSAs and observed that SR-SE achieved greater accuracy

than SSE and SpM. In HIL simulations, we utilized the generated in-

tegrated datasets and observed at least an order of magnitude higher

accuracy of phase estimates than SSE and SpM.
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