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Abstract 

Fluids treated as a discrete collection of particles rather than as a continuum, exhibit 

exotic properties under shear at sub-continuum scales. For instance, at a critical 

strain-rate the fluid becomes non-Newtonian owing to an ordering transition and 

the thermodynamic entropy production can be negative on small length and time 

scales due to the probabilistic nature of the system observables.  Therefore, a 

complete characterization and study of fluid behavior is accomplished through the 

interplay between statistical and continuum mechanics. Molecular dynamics (MD) 

is naturally suited to provide insight into the behavior of such systems. It has been 

widely used to probe the behavior of a wide variety of systems on very small length 

and time scales. This research focuses on understanding the rheological nature, in 

particular, shear-thinning of atomic fluids to obtain a general constitutive 

relationship between shear-stress and strain-rate. We studied the statistical 

characteristics of the fluid properties to gain insight into the structural features that 

result in non-Newtonian behavior, the system’s tendency to violate the second law 

of thermodynamics, and the latter’s consequences for continuum theories.   

Using non-equilibrium molecular dynamics (NEMD) simulations, we study 

the shear-stress under steady-state conditions and its dependency on fluid properties 

(temperature and density) and applied shear-strain rate. The term strain-rate, more 

common in the physics literature, is used here in place of deformation rate. We 

propose a rheological equation of state that fits observed system responses 

exceptionally well and captures the extreme shear-thinning effect. This model 

arises naturally from the Boltzmann equation and kinetic theory and gives rise to a 

viscosity model similar to the well-established Cross model, but absent empirical 

parameters. The model possesses an inherent scaling parameter that unifies the 

rheological properties of the Lennard-Jones (LJ) fluid.  

Additionally, the probabilistic nature of the shear stress and the system’s 

tendency to violate the second law of thermodynamics is investigated by observing 

negative shear-stress increments. We draw conclusions on the implications these 

phenomena have on continuum theories adapted to atomic fluids such as flow 
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stability. Building on these models, we aim to understand the transitions to 

turbulence and flow instability in atomic fluids. Via the Poincaré inequality, we 

generalize a classical continuum methodology to atomic fluids and obtain a fluid 

dependent lower bound on the critical Reynolds number. 
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Chapter 1 

Introduction 

1.1 Motivation 

The surge in interest in MEMS (Micro Electro-Mechanical Systems) and 

NEMS (Nano Electro-Mechanical Systems) devices has correspondingly led to the 

widespread use of multiscale methods in the computational study of a wide variety 

of engineering systems. As scientists and engineers strive to miniaturize 

conventional machines and integrate them with novel technologies, they have come 

to realize that this scaling process is not straightforward. There are numerous 

instances in which the behavior of materials and systems in the microscale are 

vastly different from their conventional macroscale counterparts that obey the laws 

and tenets of classical continuum mechanics. Additionally, the scaling down 

process results in a more involved analysis since the assumptions made in classical 

continuum mechanical models are invalidated. As a result, a more synergistic 

approach utilizing tools from different realms of engineering and the physical 

sciences is required for analyzing small-scale systems.  

This research focuses on the nature of fluids under shear – Couette flow, 

and their departure from continuum scale behavior.  Couette flow is a widely 

studied and well-documented classical problem in fluid dynamics with the 

existence of an analytical result. The simplicity of the system makes it a suitable 

candidate for studying the effects of miniaturization on the bulk system response 

and exemplifying the differences between continuum and sub-continuum systems 

of similar geometries (see Fig.  1). At the molecular level classical (continuum) 

fluid dynamic models [i.e., the Navier-Stokes (NS) equations] often break down 

due to their inability to account for the discrete nature of the fluid [1] and thus its 

observable properties. In such cases, one should resort to molecular dynamics (MD) 

simulations to account for the discrete nature of the fluid and capture their 

microscale responses to external fields.  
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 (a) 

 

 (b) 

Fig.  1: (a) Continuum and (b) microscale models of Couette flow showing boundary 

plates and fluid as a collection of discrete particles 
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1.2 Background and Scope 

Non-equilibrium molecular dynamics (NEMD) and in particular the 

SLLOD algorithm are useful techniques for studying the rheological properties of 

molecular fluids. Shear-thinning has been widely observed in molecular fluids 

under SLLOD dynamics. Ref. [2] used macro-rheological equations to model the 

viscosity of a Lennard-Jones (LJ) fluid undergoing SLLOD dynamics. 

Additionally, Ref. [3] studied the structural features of the flow that result in shear-

thinning such as the shear-rigidity modulus and the structural anisotropy of the 

flow; the author investigated the transition from an amorphous liquid to a string 

phase that induces shear-thinning. This non-Newtonian behavior is counter-

intuitive considering the fluid is initially homogeneous and isotropic. Further 

scrutiny indicates that the anisotropy usually associated with shear thinning is 

induced in the fluid at sufficiently large strain rates as the molecules tend to realign 

themselves into string-like structures [4], [5], [6], [7]. This leads to a dramatic drop 

in shear stress between fluid layers, subsequently resulting in a drop in viscosity. It 

was found that the viscosity was proportional to 𝛾̇0.5 in the nonlinear regime of the 

flow [8], [9] and via mode-coupling analysis [10]. Additionally, experimental 

verification has been presented for shear-thinning in NEMD simulations where the 

authors fitted experimental and simulation results for the viscosity of squalane to a 

single Carreau equation [11]. 

NEMD has seen widespread applicability in determining the rheological 

properties of alkanes [12], [13], [14], [15], polymer melts [16], and colloidal 

suspensions [17]. These studies have extensively investigated the nonlinear shear-

thinning regime and the structural features at the onset of shear-thinning. A 

framework of using Monte Carlo simulations and NEMD simulations using the 

SLLOD equations to study the non-Newtonian shear viscosities of simple liquids 

under shear has been proposed [18]. The results from Monte Carlo simulations and 

MD simulations are consistent. This theory was extended by removing the 

limitation of requiring isothermal conditions [19] and was subsequently used to 

extensively study the rheological properties of the LJ fluid. Applying the 
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generalized Boltzmann equation, a nonlinear expression for the viscosity of the LJ 

fluid similar to the Ree-Eyring formula, but absent empirical parameters, was 

derived. It was discovered that the scaled shear viscosities at various state-points 

collapsed onto a single curve given by this expression, alluding to the existence of 

a universal scaling function for all temperatures and densities [19]. 

The classical Navier-Stokes (NS) equations for Couette flow consider a 

linear dependence between shear stress and deformation rate. As a consequence, in 

studies covering the transition to turbulence, there are instances where transition 

occurs at a lower Reynolds number compared to that predicted by linear stability 

analyses [20]. This is believed to be due to a drop in internal friction between fluid 

layers that result in shear-thinning. Conversely, it has been found that the onset of 

turbulence can be delayed in Couette flow experiments by dissolving a small 

amount of polymer molecules in water without altering their Newtonian nature 

[21]. 

Shear thinning and the associated ordering in the flow direction have 

important consequences for flow stability. The concept of stability is important in 

studying the transition to turbulence. It addresses two important questions: At what 

critical flow rate does the flow become unstable, and what is the nature of this flow 

after this critical flow rate. Mathematically, answers to these problems are sought 

from analyses of the NS equations via linear stability analyses. However, traditional 

linear stability analysis as outlined above has not agreed with laboratory 

experiments. For Poiseuille flow, the analysis predicts [22], [23] 𝑅𝑒𝑐𝑟 ≈ 5772, but 

in the laboratory the transition to turbulence occurs around 𝑅𝑒𝑐𝑟 ≈ 1,000. For 

planar Couette flow, the analysis predicts [24] stability at all 𝑅𝑒(𝑅𝑒𝑐𝑟 = ∞) but the 

transition occurs in the laboratory [25], [26] around 𝑅𝑒𝑐𝑟 ≈ 360. The problem 

arises because the optimal perturbations to the steady-state flows are superpositions 

of perturbation eigenmodes and not a single eigenmode [27]. Consequently, 

nonlinear contributions may lead to transient growth in the perturbations that result 

in the onset of turbulence at subcritical Reynolds numbers. Under stochastic forcing 

of the dynamical equations, the lack of normality of the eigenmodes leads to an 

amplification of the variance of the perturbations despite the exponential stability 
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of all the normal modes. This is due to the transfer of energy from the mean flow 

to the perturbation flow field [28].   

A ubiquitous feature at the onset of turbulence is the formation of stream-

wise vortices aligned with the flow direction. The vortices do not match any single 

eigenmode derived from the linearized NS equation; however, they do match the 

optimal perturbations composed of a superposition of eigenmodes which generate 

the largest growth in the kinetic energy density of perturbations [28], [29], [30]. In 

contrast to Squire’s theorem [31], these vortices are three-dimensional 

perturbations. It would be prudent to study the nature of these perturbations and the 

nonlinear contributions that lead to the subcritical onset of turbulence in simple 

atomic fluids under shear.  

Simple atomic fluids have been studied using non-equilibrium molecular 

dynamics (NEMD). These simulations typically use SLLOD dynamics where 

fictitious forces are added to the equations of motion [8] along with Lees–Edwards 

boundary conditions [32] to generate the desired shear gradient. In an early study 

of the stability of simple atomic fluids, Loose and Hess [33], [34] formulated a 

stability theory to predict the critical shear rate at which steady-state planar Couette 

flow of an amorphous (no long-range spatial order) atomic fluid ceases to be stable. 

This theory is similar to the traditional linear stability analysis of the NS equation 

except that the linear constitutive thermodynamic relationship between the pressure 

and strain rate tensors is no longer assumed to be true. This critical strain-rate is 

characterized by the onset of shear-thinning and the strain-rate dependent structural 

re-ordering of fluid particles in the direction of the flow (i.e. the ‘string’-phase). In 

this regime, steady-state Couette flow of an amorphous fluid is no longer possible. 

It is instead now accompanied by a reduction in viscosity and a change in the slope 

of the stress-deformation rate response [35]. With modern advances in simulation 

capabilities and algorithms such as MD, instability and transition phenomena are 

being studied on increasingly smaller length and timescales, such as to simulate the 

Rayleigh-Taylor instability in nanoscale systems [36], near-wall turbulence in 

Couette flow [37], and diffusion in microgravity [38]. 
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Fig.  2: Research methodology illustrating the analytical and computational methods 

employed in this research 

 Interestingly, from a thermodynamic perspective, such systems have also 

been observed to violate the second law of thermodynamics, which only holds true 

in the long-time limit, or large volume limit, or in a statistically average sense [39], 

[40]. In contradistinction to deterministic continuum mechanics, in sub-continuum 

systems, owing to the probabilistic nature of the shear stress, there is a finite 

probability of negative shear stress increments which signify negative entropy 

production. For these reasons, it is useful to understand and capture the temporal 

and structural mechanisms that lead to this observed behavior. Such models would 

be beneficial as inputs for more advanced fluid dynamics simulations. 

It will be shown that shear stress plays a central role in the stability of atomic 

fluids under shear. It is the stochastic forcing term in the dynamical equation for 

the kinetic energy of perturbations [41], and arises naturally from the fluctuation 

theorem (FT) [40] and the dissipation function [40], [42].  The latter is a central 

concept in microscale theories and continuum thermomechanics and facilitates 

unifying phenomena in these two distinct length scales [43]. The FT explicitly 

allows for stochastic fluctuations in the shear stress that allow for instantaneous 

violations [39], [44], [45], [46], [47] of the classical Clausius-Duhem inequality of 

entropy production in the very small-scale limit. It demonstrates that despite the 

exponential stability of the perturbations, the stochastic contribution from the 
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shear-stress can contribute to subcritical transient amplification of their kinetic 

energy. 

1.3 Research Methodology  

In order to obtain suitable insight into sub-continuum fluid behavior, we 

employ a combination of analytical and computational tools. The research 

methodology is summarized in the schematic in Fig.  2. Throughout the 

development of the ideas in this dissertation, we make all the assumptions of 

Couette flow analogous to those made in the classical continuum analysis of the 

system. To obtain a microscopic flow-field consistent with macroscopic 

observations of Couette flow we implement the SLLOD algorithm with Lees-

Edwards periodic boundary conditions. The entire simulation is carried out in 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)  [53].  

1.4 Research Objectives 

 The purpose of this dissertation is to outline methods for investigating the 

rheological (i.e. non-Newtonian) and stochastic (random) fluctuations that arise in 

sub-continuum shear flows despite the fluid being homogeneous and isotropic.  We 

implement NEMD (non-equilibrium molecular dynamics) simulations using the 

DOLLS tensor Hamiltonian and Lees-Edwards periodic boundary conditions 

(explained in detail in Chapter 2) to derive insights regarding the fluid’s shear flow 

response. The themes being studied in this dissertation fall into three categories: 

1. Fluid properties: An interesting phenomenon of sub-continuum flows 

simulated via NEMD is the fluid’s non-Newtonian response under shear. 

Our goal is to investigate the shear stress response and mathematically 

formulate the fluid’s viscosity by reconciling simulated observations with 

statistical mechanics theory.   

2. Stochastic Fluctuations: Treating the fluid as a discrete collection of 

particles, governed by the Lennard-Jones interaction potential (further 

details provided in Chapter 2), inherently results in random fluctuations 
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superimposed on the bulk flow trajectory. We investigate the nature of these 

fluctuations and characterize their statistical properties. We study their 

effects on fluid structure and discuss the statistical features that arise during 

a transition from the Newtonian to non-Newtonian flow regimes. 

3. Flow Stability: Stability analysis is a critical tool in understanding flow 

response to perturbations and transitions from laminar flow to turbulence. 

We extend the classical notion of stability to microscopic flows by 

reconciling continuum (i.e. the Navier-Stokes Equations) and statistical 

physics theories. We derive an analogous Reynolds-Orr equation for 

microscale flows to quantify the critical Reynold’s number at which flow 

instability sets in, that manifest as a structural transformation in the fluid.  

1.5 Dissertation Organization 

This dissertation is organized into six chapters. Chapter 2 describes the 

computational model and its implementation. First, we provide an overview of the 

atomic interaction potential and the governing dynamics. We describe the boundary 

conditions and the structure of the simulation domain. Finally, we describe the 

appropriate modifications necessary to the fundamental dynamics based on the 

simulation conditions. 

Chapter 3 describes the mathematical basis and computational observations 

confirming the non-Newtonian nature of the Lennard-Jones fluid. We study the 

shear-stress under steady-state conditions and its dependency on fluid density and 

applied shear-strain rate. Via the Boltzmann equation, a strain-rate dependent 

model for the shear stress that accurately captures the stress-deformation response 

of the fluid for the range of strain-rates under consideration is derived. Additionally, 

we obtain a model for the viscosity naturally from the constitutive relation for the 

shear stress, which is absent in empirical parameters. The model for the viscosity 

also possesses a scaling property that facilitates unifying the response of the LJ 

fluid across a range of state-points.  

 Chapter 4 delves into the stochastic characteristics of the LJ fluid and its 

tendency to violate the second law of thermodynamics. In particular, we pay close 
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attention to shear stress. We draw a connection between local density contrast and 

temporal fluctuations in shear stress, which arise naturally through the equivalence 

between the dissipation function and entropy production according to the 

fluctuation theorem. We focus on the shear stress and the spatio-temporal density 

fluctuations and study the autocorrelations and spectral densities of the shear stress. 

The bispectral density of the shear stress is used to measure the degree of departure 

from a Gaussian model and the degree of nonlinearity induced in the system owing 

to the applied strain rate. More evidence is provided by the probability density 

function of the shear stress. We use the information theory to account for the 

departure from Gaussian statistics and to develop a more general probability 

distribution function that captures this broad range of effects. By accounting for 

negative shear stress increments, we show how this distribution preserves the 

violations of the second law of thermodynamics observed in planar Couette flow of 

atomic fluids, and also how it captures the non-Gaussian nature of the system by 

allowing for non-zero higher moments. We also demonstrate how the temperature 

affects the band-width of the shear-stress and how the density affects its power 

spectral density, thus determining the conditions under which the shear-stress acts 

as a narrow-band or wide-band random process. We show that changes in the 

statistical characteristics of the parameters of interest occur at a critical strain rate 

at which an ordering transition occurs in the fluid causing shear thinning and 

affecting its stability. A critical strain rate of this kind is also predicted by the 

Loose-Hess stability criterion. 

 Building on the results of Chapters 3 and 4, Chapter 5 investigates the 

stability of the LJ fluid. The stability of fluid flow is an important concept that aids 

in the study of transition regimes. One such mechanism to study flow stability is 

via the Poincaré inequality which, for deterministic continuum systems, is used to 

arrive at a stability criterion by providing an upper bound on the exponential decay 

of perturbations. However, at sub-continuum scales fluids under shear no longer 

behave in a manner consistent with the postulates of conventional continuum 

mechanics. Along with velocity perturbations, density perturbations are another 

factor which govern the subcritical transitions to turbulence. Specifically, under 



 

10 
 

stochastic forcing, these subcritical transitions are caused by energy transfer from 

the mean flow field to the perturbation field. Using the fluctuation theorem (FT) 

and the dissipation function, we generalize this classical continuum concept to 

sheared atomic fluids by ascribing a natural description to the nature of stochastic 

perturbations, i.e. fluctuations in shear stress, thus providing a reconciliation of 

kinetic theory and the Navier-Stokes (NS) equations. We obtain a fluid dependent 

estimate for the critical Reynolds number, investigate the nature of these 

disturbances and conditions necessary for the onset of turbulence at subcritical 

Reynolds numbers, and provide a framework by which one may generalize classical 

continuum theories to the microscale. 

 The key results are summarized and concluding remarks made along with 

a brief discussion of future work directions in Chapter 6. 
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Chapter 2 

Computational Model 

The goal in selecting the appropriate computational model is to obtain a 

microscopic description of Couette flow that is consistent with the isothermal 

continuum model. This necessitates preserving the linear velocity profile 

characteristic of Couette flow in continuum fluid dynamics when simulating its 

atomic counterpart. The NEMD (non-equilibrium molecular dynamics) model 

implemented in this dissertation satisfies those specific needs by utilizing the 

appropriate governing dynamics, boundary conditions, and thermostatting 

mechanism to preserve the linear velocity profile and institute isothermal 

conditions. We describe the exact methodology in greater detail below.    

2.1 NEMD Simulation Methodology 

The problem with simulating homogeneous flows driven by boundaries in 

real physical systems (e.g., Couette or elongational flows) is that a microscopic 

simulation explicitly including the walls invariably induces density 

inhomogeneities into the fluid [48]. This profound shortcoming gave rise to 

NEMD, which currently is well established as an accurate method for simulating 

homogeneous shear flows. Two well-known algorithms in this category are the 

DOLLS and SLLOD algorithms. These produce a microscopic description 

consistent with macroscopic observations. The first of the homogeneous NEMD 

algorithms was based on the DOLLS Hamiltonian proposed in [49]  

𝐻𝑑𝑜𝑙𝑙𝑠(𝒓
𝑁, 𝒑𝑁 , 𝑡) = 𝜙(𝒓𝑁) +∑

𝒑𝑖
2

2𝑚𝑖
𝑖

+∑𝒓𝑖. 𝛻𝒖. 𝒑𝑖𝛩(𝑡)

𝑖

 (2.1) 

where 𝜙(𝑟) is the system potential energy due to pair-wise interactions between 𝑁 

atoms, 𝒓𝑖 and 𝒑𝑖 are the laboratory position and momentum of atom 𝑖, 𝑚𝑖 is the 

mass of atom 𝑖, 𝛻𝒖 is the gradient of the streaming velocity 𝒖 of the fluid. 

Furthermore, we enforce the condition that the flow begins at 𝑡 = 0 as indicated by 
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Θ(𝑡) which is the Heaviside step function. This Hamiltonian generates the DOLLS 

equations of motion 

𝒓̇𝑖 =
𝒑𝑖
𝑚𝑖
+ 𝒓𝑖. 𝛻𝒖 (2.2a) 

𝒑̇𝑖 = 𝑭𝑖
𝜙
− 𝛻𝒖. 𝒑𝑖 (2.2b) 

where 𝐅𝑖
𝜙

 is the interatomic force on atom 𝑖 due to all the other atoms. However, a 

modification proposed in [50], [51], and [52] to account for linear and nonlinear 

system responses is given by [48] 

𝒓̇𝑖 =
𝒑𝑖
𝑚𝑖
+ 𝒓𝑖. 𝛻𝒖 (2.3a) 

𝒑̇𝑖 = 𝑭𝑖
𝜙
− 𝒑𝑖 . 𝛻𝒖 (2.3b) 

which are the so-called SLLOD equations of motion to indicate the transpose 

𝛻𝒖. 𝒑𝑖 → 𝒑𝑖. 𝛻𝒖. In addition, it should be noted that the SLLOD equations cannot 

be derived from a system Hamiltonian.   

To obtain an exact representation of planar Couette flow (i.e. to obtain a  

microscale Couette flow profile consistent with the continuum model), we apply 

the Lees-Edwards periodic boundary conditions [32], [10] by inducing a streaming 

velocity field of the form  

𝒖(𝒓, 𝑡) = 𝐷𝑖𝑗𝑥𝑗 = 𝒊𝛾̇𝑦 ⇒ 𝑢(𝒓, 𝑡) = (𝑣𝑥 𝑣𝑦 𝑣𝑧) = (𝛾̇𝑦 0 0) (2.4) 

where 𝒊 is the unit vector, 𝑦 is the channel height, and 𝛾̇ = 𝜕𝑢𝑥 𝜕𝑦⁄  is the strain rate 

such that, 

𝛻𝒖(𝒓, 𝑡) = 𝐷𝑖𝑗 = (
0 0 0
𝛾̇ 0 0
0 0 0

). (2.5) 

Then, the SLLOD equations are expressed as, 

𝒓̇𝑖 =
𝒑𝑖
𝑚𝑖
+ 𝒊𝛾̇𝑦𝑖 (2.6a) 
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Fig.  3: Sliding brick (top) and deforming cube (bottom) representations of the Lees-

Edwards periodic BCs used in NEMD simulations of atomic fluids undergoing Couette 

flow. The simulation domain is the center cell in the left figure with origin at the bottom 

left hand corner. 
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𝒑̇𝑖 = 𝑭𝑖
𝜙
− 𝒊𝛾̇𝑝𝑦𝑖. (2.6b) 

In this study, the fluid undergoes SLLOD dynamics, which has been widely 

used and extensively documented in the literature. A schematic of the simulation 

methodology is shown in Fig.  3. 

 

2.2 Lennard-Jones Fluid Model and Implementation 

The molecular dynamics simulations are carried out in two-dimensions in 

LAMMPS [53] with particles interacting via the Lennard-Jones (LJ) potential, 

where the interaction is given by 

𝜙(𝑟) = {
4𝜖 [(

𝜎

𝑟 
)
12

− (
𝜎

𝑟
)
6

] , 𝑟 < 𝑟𝑐

0, 𝑟 > 𝑟𝑐

 (2.7) 

Here 𝜖 is the depth of the potential well, and 𝜎 is the finite distance at which the 

inter-particle potential is zero. The dynamics of the simulation is governed by the 

SLLOD equations with Lees-Edwards periodic boundary conditions [32], [10]. To 

induce isothermal conditions, a Nose-Hoover thermostat in the canonical ensemble 

(NVT) is implemented, to yield the modified set of SLLOD equations as [9], [54] 

𝒓̇𝑖 =
𝒑𝑖
𝑚𝑖
+ 𝒊𝛾𝑦𝑖 (2.8a) 

𝒑̇𝑖 = 𝑭𝑖
𝜙
− 𝒊𝛾𝑝𝑦𝑖 − 𝛼𝒑𝑖 (2.8b) 

𝛼̇ =
1

𝑄
[
𝑇(𝑡)

𝑇0
− 1] (2.8c) 

where 𝛼 is the thermostatting multiplier, 𝑇(𝑡) is the actual kinetic temperature at 

time 𝑡, 𝑇0 is the preset kinetic temperature, and 𝑄 is a constant. The equilibrium 

distribution function for the Nose-Hoover thermostat in the canonical ensemble is 

given by [10] 
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𝑓𝑐(𝚪, ζ) =
exp [−𝛽 (𝐻0 +

1
2𝑄𝜁

2)]

∫ 𝑑𝚪𝑑𝜁 exp [−𝛽 (𝐻0 +
1
2𝑄𝜁

2)]
 (2.9) 

Simulations are carried out for a system size of 𝑁 = 200 molecules, in a 

channel of height ℎ∗ = ℎ/𝜎 = 10, at the state points given by (𝜌∗, 𝑇∗) =

 (0.6, 1.0), (0.6, 1.5), (0.8, 1.0), (0.8,1.1), and (0.8442, 0.722), and strain rates 

(0.0 ≤ 𝛾̇∗ = 𝛾̇𝜎√𝑚 𝜖⁄ ≤ 2.5, Δ𝛾̇∗ = 0.5) (in LJ reduced units), and a cutoff 

radius of 𝑟𝑐 = 2
1/6. The system is run for a total of 2.6 × 107 time steps with Δ𝑡∗ =

0.001 (where 𝑡∗ = 𝑡√𝜖𝜎2 𝑚⁄ ); it is sufficiently equilibrated for 1.5 × 106 time-

steps and then run for 2.45 × 107 time-steps for data extraction.  

The data acquisition is unique to the distinct themes of investigation and 

their stated objectives and thus are explicitly described in their respective chapters 

(i.e. Chapters 3, 4, and 5). However, the central variable to the entire dissertation is 

the shear stress, which is consistently referred to and leveraged in the upcoming 

chapters. In these subsequent chapters, we will demonstrate how NEMD serves as 

a useful tool for drawing crucial insights regarding the flow dynamics and 

properties of sub-continuum Couette flow. 
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Chapter 3 

Shear Thinning of Molecular Fluids Couette 

Flow 

3.1 Introduction1 

The Navier-Stokes (NS) equations for Couette flow consider a linear 

dependence between shear stress and deformation rate. However, it has been widely 

observed in NEMD simulations that homogeneous and isotropic fluids develop 

internal structure and begin shear thinning. A framework of using Monte-Carlo 

simulations and NEMD simulations using the SLLOD equations to study the non-

Newtonian shear viscosities of simple liquids under shear has been proposed [18]. 

These results from Monte-Carlo simulations and MD simulations compare 

excellently. This theory was extended by removing the limitation of requiring 

isothermal conditions [19], and was subsequently used to extensively study the 

rheological properties of the LJ fluid. Applying the Generalized Boltzmann 

equation, a nonlinear expression for the viscosity of the LJ fluid similar to the Ree-

Eyring formula, but absent empirical parameters, was derived. It was discovered 

that the scaled shear-viscosities at various state-points collapsed onto a single curve 

given by this expression, alluding to the existence of a universal scaling function 

for all temperatures and densities [19]. 

The purpose of this chapter is to establish a mathematical basis for the non-

Newtonian behavior of the fluid. We use statistical mechanics and kinetic theory to 

obtain a constitutive relation for the shear stress and a viscosity model that depend 

on fluid properties and are absent empirical parameters. We demonstrate the 

versatility of our models by comparing them with others in the literature. It is shown 

that our models retain accuracy over a wide range of strain rates compared to 

selected benchmark models. 

 
1 Adapted from:  B. V. Raghavan and M. Ostoja-Starzewski, "Shear-thinning of molecular fluids in 

Couette flow," Physics of Fluids, vol. 29, no. 2, p. 023103, 2017. 
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3.2 Constitutive Model Based on Kinetic Theory 

We now employ the Boltzmann equation for the flows under investigation. 

The general expression for this equation is 

𝜕𝑓

𝜕𝑡
+ 𝐯. ∇𝑓 +

𝐹

𝑚

𝜕𝑓

𝜕𝐯
= 𝐽[𝑓, 𝑓] (3.1) 

where 𝑓 is the distribution function, 𝐯 is the velocity, 𝐹 is the external force, 𝑚 is 

the mass, and 𝐽[𝑓, 𝑓] is the collision operator [55]. For simplicity, we consider the 

BGK (Bhatnagar–Gross–Krook) model [56] of the form 

𝜕𝑓

𝜕𝑡
+ 𝐯. ∇𝑓 +

𝐹

𝑚

𝜕𝑓

𝜕𝐯
= −𝜈(𝑓 − 𝑓𝐿) (3.2) 

where 𝑓𝐿 is a local equilibrium distribution function, and 𝜈 is an effective collision 

parameter. The BGK approximation introduces the parameter 𝜈 to render Eq. (3.1) 

more tractable.  

Under isothermal uniform shear flow conditions, we have 

𝑢𝑖(𝒓) = 𝑑𝑖𝑗𝑟𝑗 

(3.3) 𝐝 = 𝑑𝑖𝑗 = ∇𝑗𝑢𝑖 = 𝛾̇𝛿𝑖𝑥𝛿𝑗𝑦 

∇𝑇 = 0 

In order to analyze SLLOD dynamics under Lees-Edwards periodic BCs 

using the Boltzmann equation, we use a Galilean transformation to transition to the 

local rest frame (Lagrangian frame) of the fluid. Consequently, we introduce the 

peculiar velocity 𝐕 = 𝐯 − 𝐮(𝐫) (i.e. in a Lagrangian frame of reference), and 𝐫̃ =

𝐫 − 𝐮𝑡. In the local rest frame,  

𝑓(𝐫, 𝐯, t) = 𝑓(𝐕, 𝑡) (3.4) 

Using Eq.  (3.3) in the BGK approximation in Eq. (3.2) and noting that the external 

thermostatting force is of the form 𝐹 = −𝑚𝛼𝐕, where 𝛼 is the thermostatting 

multiplier related to the heating rate, we obtain 
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𝜕𝑓

𝜕𝑡
+ 𝐯. [

∂𝑓

𝜕𝐫̃

𝜕𝐫̃

∂𝐫
+
𝜕𝑓

𝜕𝐕

𝜕𝐕

∂𝐫
] − 𝛼𝐕

𝜕𝑓

𝜕𝐕

𝜕𝐕

𝜕𝐯
= −𝜈(𝑓 − 𝑓𝐿) (3.5) 

which upon simplification yields 

𝜕𝑓

𝜕𝑡
+ (𝐈 − 𝐝𝑡)𝐕

∂𝑓

𝜕𝐫̃
− 𝐝𝐕

𝜕𝑓

𝜕𝐕
− 𝛼𝐕

𝜕𝑓

𝜕𝐕
= −𝜈(𝑓 − 𝑓𝐿) (3.6) 

Under the condition of statistical spatial homogeneity, we can neglect the second 

term in Eq. (3.6) to obtain 

𝜕𝑓

𝜕𝑡
− [𝐝𝐕 + 𝛼𝐕]

𝜕𝑓

𝜕𝐕
= −𝜈(𝑓 − 𝑓𝐿) 

(3.7) 
𝜕𝑓

𝜕𝑡
− [𝑑𝑖𝑗𝑉𝑗 + 𝛼𝑉𝑖]

𝜕𝑓

𝜕𝑉𝑖
= −𝜈(𝑓 − 𝑓𝐿) 

At this point, we note that the pressure tensor is the second moment of the 

peculiar velocity and is expressed as  

𝐏:= 𝑚∫𝐕⊗ 𝐕𝑓(𝐕, 𝑡)𝑑𝐕 (3.8) 

where ⊗ denotes the vector outer product. Multiplying Eq. (3.7) by 𝑉𝑖𝑉𝑗 and 

integrating yields  

𝜕𝑃𝑖𝑗

𝜕𝑡
+ 𝑑𝑖𝑘𝑃𝑗𝑘 + 𝑑𝑗𝑘𝑃𝑖𝑘 + 2𝛼𝑃𝑖𝑗 = −𝜈(𝑃𝑖𝑗 − 𝑝𝛿𝑖𝑗) (3.9) 

Expanding Eq. (3.9), bearing in mind the following 

• 𝑃33 = 𝑃31 = 𝑃32 = 0 in planar Couette flow, 

• 𝑝 =
𝑃11+𝑃22+𝑃33

3
=
1

3
𝑡𝑟(𝐏), 

• All time derivatives vanish under steady-state conditions, 

we replace 𝑃11 = 𝑝 to obtain the following set of coupled differential equations 

governing the time-evolution of the pressure tensor as 
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𝜕𝑝

𝜕𝑡
+
2

3
𝛾̇𝑃12 + 2𝛼𝑝 = 0 (3.10a) 

𝜕𝑃22
𝜕𝑡

+ 2𝛼𝑃22 + 𝜈𝑃22 = −𝜈𝑝 (3.10b) 

𝜕𝑃12
𝜕𝑡

+ 𝛾̇𝑃22 + 2𝛼𝑃12 = −𝜈𝑃12 (3.10c) 

Neglecting time derivatives, and solving Eq. (3.10c) yields  

𝑃12 = −
𝛾̇
𝑃22
𝜈

1 +
2
𝜈 𝛼

 (3.11) 

In addition, Eq. (3.10a) yields the thermostatting multiplier as  

𝛼 = −
𝛾̇𝑃12
3𝑝

 (3.12) 

Substituting Eq. (3.12) in Eq. (3.11) and noting the BGK approximation that 𝜈 =

𝑝/𝜂0, where 𝜂0 is the Newtonian viscosity of the fluid, and that under steady-state 

conditions 𝑃22 = 𝑝, we have   

𝑃12 = −
𝜂0𝛾̇

1 +
2
𝜈 [
−𝛾̇𝑃12
3𝑝 ]

 
(3.13) 

Substituting 𝑃12 = −𝜂0𝛾̇ in Eq. (3.13) and noting that 𝑃12 = −𝜏12 yields 

𝜏12 =
𝜂0𝛾̇

1 +
2
3𝜈2

𝛾̇2
 (3.14) 

where 𝜏12 is the shear stress (which is the negative of the shear component of the 

pressure tensor).  

 To find a suitable expression for the effective collision constant 𝜈 in terms 

of the reduced LJ parameters (i.e. the temperature 𝑇∗, density 𝜌∗, molecular mass 

𝑚, and Newtonian viscosity 𝜂0
∗), we know that [57] 



 

20 
 

𝜈 =
1

𝜆
(
8𝑘𝐵𝑇

𝜋𝑚
)

1
2
 (3.15) 

where 𝜆 is the molecular mean free path. The mean free path for extended potentials 

is defined as [58], [59] 

𝜆 =
𝜂0
𝜌
(
𝜋𝑚

2𝑘𝐵𝑇
)

1
2
 (3.16) 

Substituting Eq. (3.16) in Eq. (3.15) and converting to reduced LJ units [19], we 

have  

𝜈∗ = 𝜈𝜎(𝑚 𝜖)⁄
1 2⁄

=
4𝜌∗𝑇∗

𝜋𝜂0
∗𝑚

 (3.17) 

Thus, in reduced LJ units, the shear thinning equation of state is  

𝜏12
∗ = 𝜏12(𝜎

3 𝜖)⁄ =
𝜂0
∗ 𝛾̇∗

1 +
2
3
(𝛾̇∗ 𝜈∗⁄ )2

 (3.18) 

3.3 Results 

The data of primary relevance in this study are the mean values of the 

steady-state shear stress (i.e. the negative of the shear component of the pressure 

tensor, the latter being the default output in LAMMPS). After the initial 

equilibration period, we extract mean values for 2.45 × 107 time-steps at Δ𝑡∗ =

0.001 increments. We divided the total simulation into blocks of 𝑀 = 1000 time-

steps which yields a total number of 𝑁 = 24500 blocks. For each block, we 

calculate the section average which uses the 1000 data points associated with that 

block given by  

〈𝑃12(𝛾̇)〉𝐵 =∑𝑃12
(𝑖)

𝑀

𝑖=1

 (3.19) 



 

21 
 

and the cumulative average which accounts for all the previous section averages 

expressed as 

〈𝑃12(𝛾̇)〉𝐶 =∑〈𝑃12(𝛾̇)〉𝐵
(𝑖)

𝑁

𝑖=1

 (3.20) 

 

The steady-state is achieved when fluctuations in the cumulative average are no 

longer statistically significant. 

3.3.1 Comparison of Numerical and Analytical Results 

Table 1: LJ state points and parameter estimates in Eq. (3.18) obtained via curve fitting. 

𝝆∗ 𝑻∗ 𝜼𝟎
∗   𝟐 𝟑𝝂∗𝟐⁄  

𝟎. 𝟒 1.5 0.49 0.070 

𝟎. 𝟔 1.0 0.85 0.050 

𝟎. 𝟔 1.5 0.98 0.038 

𝟎. 𝟖 1.0 2.92 0.32 

𝟎. 𝟖 1.1 2.97 0.29 

𝟎. 𝟖𝟒𝟒𝟐 0.722 3.76 0.62 

𝟎. 𝟗 1.1 5.39 0.42 

Consistent with well-established observations made in the literature, the LJ 

fluid exhibits shear-thinning, the degree of which depends on the fluid state point 

as illustrated in Fig.  4. At low densities, the fluid only experiences moderate shear-

thinning [Fig.  4 (top)] for the range of strain-rates considered. With increasing 

density, the fluid exhibits extreme shear-thinning as shown by its stress-

deformation response in Fig.  4 (bottom). The level of shear-thinning tends to set in 

quicker as the fluid density increases. For instance, extreme shear-thinning occurs 

at 𝛾̇ ≥ 1.0  at the triple point (i.e. 𝜌∗ = 0.8442 and 𝑇∗ = 0.722), but only at 𝛾̇ ≥ 1.5 

for 𝜌∗ = 0.8 and 𝑇∗ = 1.0. Furthermore, an increase in temperature tends to delay 

the onset of extreme shear-thinning. Comparing two state points at 𝜌∗ = 0.8 and 

 𝑇∗ = 1.0 and 𝜌∗ = 0.8 and  𝑇∗ = 1.1, the latter requires a strain rate of  𝛾̇ ≥ 2.0  
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compared to𝛾̇ ≥ 1.5  for the former. In either case, we see that Eq. (3.18) is able to 

capture the stress-deformation response extremely well.  

 

Fig.  4: Moderate (top) and extreme (bottom) shear-thinning in the stress-deformation curve 

for the LJ fluid at various state points. The curve-fit is performed using Eq. (3.18) and is 

represented by the dotted lines. 
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3.3.2 Model Effectiveness and Molecular Model for Viscosity  

To evaluate the effectiveness of the proposed constitutive model, we 

compare it with widely used empirical formulae available in the literature and its 

goodness-of-fit measured by the 𝑟2-value. The models of interest are as follows: 

1. The Sisko equation: 𝜏12 = 𝑘𝛾̇
𝑛 + 𝜂∞𝛾̇ 

2. The Ree-Eyring equation: 𝜏12 =
𝑘𝑏𝑇

𝑉𝜎
sinh−1(𝛾̇𝜏̃) where 𝑘𝑏 is the Boltzmann 

constant, 𝑇 is the temperature, 𝜏̃ is the relaxation time, and 𝑉𝜎 is the shear 

stress activation volume. 

3. The Bair-Winer equation: 𝜏12 = 𝜏12
𝐿 (1 − 𝑒−𝜂0𝛾̇ 𝜏12

𝐿⁄ ) where  𝜏12
𝐿  is the 

limiting shear stress, a concept frequently used in high-pressure lubrication. 

These models are excellent for cases of moderate shear-thinning as observed for 

state points of (𝜌∗, 𝑇∗) = (0.4,1.5), and (0.6,1.5), and illustrated in Fig.  5a. These 

models fail to accurately capture the dramatic shear-thinning feature of the LJ fluid 

at higher densities of (𝜌∗, 𝑇∗) = (0.8,1.0), (0.8,1.1),   (0.8442,0.722) and 

(0.9,1.1). For moderate shear-thinning, the Sisko equation is comparable in 

effectiveness to Eq. (3.18) and fits the data with 𝑟2 ≅ 0.99. The former fails to fit 

the data at state points where dramatic shear-thinning occurs. In contrast, Eq. (3.18) 

is consistent for all the LJ state points considered and captures the extreme shear-

thinning effect. The Ree-Eyring and Bair-Winer equations, despite being widely 

considered more versatile than the Sisko, still suffer from the same drawbacks. In 

general, these equations are excellent models at low strain-rates, i.e., below the 

threshold where extreme shear-thinning sets in. The models are able to successfully 

capture the stress-deformation curve with 𝑟2 ≅ 0.99 for moderate shear-thinning, 

which falls to around 0.7 ≤ 𝑟2 ≤ 0.8 for extreme shear-thinning. The poor 

performance of these models at higher strain rates can be attributed to their 

empirical nature, where parameters are obtained by fitting experimental data, or 

their derivation from macro-viscoelastic models. 
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Fig.  5: (a) Demonstration of the ability of existing rheological equations to capture 

moderate shear-thinning in the LJ fluid and their inability to model extreme shear-thinning. 

The data markers are the same as used to identify the state points in Fig. 3. (b) Scaled 

viscosities for the LJ fluid at various state points for a system size of 𝑛 = 200 particles. 

The fit is given by Eq. 21. 
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To obtain a strain-dependent viscosity model, we note that 

𝜏12 = 𝜂(𝛾̇) 𝛾̇ (3.21) 

 

Thus, using Eq. (3.18) in Eq. (3.21), we find that  

𝜂∗

𝜂0
∗ =

1

1 +
2
3 (
𝛾̇∗

𝜈∗)
2 

(3.22) 

We compare our model with the well-established Cross viscosity model given in 

the literature as   

𝜂 =
𝜂0 − 𝜂∞
1 + 𝛽𝛾̇𝑛

+ 𝜂∞ (3.23) 

where 𝛽 and 𝑛 are fitting constants and 𝜂∞ is the infinite shear-rate limiting 

viscosity. Interestingly, Eq. (3.22) yields the Cross viscosity model, with 𝑛 =  2 

and 𝜂∞ = 0, absent empirical parameters since the parameters in Eq. (3.22) are 

completely determined by the fluid’s density 𝜌∗, temperature 𝑇∗, and Newtonian 

viscosity 𝜂0. To serve as a validation for our simulations, Eq. (3.22) yields a 

viscosity of 𝜂0  =  3.76 at the LJ triple point of (𝜌∗, 𝑇∗)  =  (0.8442, 0.722), which 

is comparable to the value of 𝜂0  =  3.73 calculated in the literature [60]. The Cross 

model has been previously used to model the strain-rate dependent viscosities of 

simple fluids, but in an empirical sense [5], [61]. It should be noted that our model 

has been completely derived from hydrodynamic and kinetic theories. A similar 

result has been obtained for the Ree-Eyring viscosity formula, which arose 

naturally from the Generalized Boltzmann equation.  

In our model, we find that the effective collision parameter, 𝜈∗, behaves as 

a universal scaling parameter that facilitates collapsing all the data onto a universal 

curve, suggesting the existence of a universal scaling law for the LJ fluid, as shown 

in Fig.  5b. The scatter is attributed to the inaccuracy of NEMD in accessing small 

strain-rates for viscosity calculations. Ideally, one would resort to the use of 

transient time correlation functions [62]. Additionally, we attribute the discrepancy 

between our calculations and those available in the literature to the truncation 

distance. In most studies, a truncation of 𝑟𝑐  =  2.5𝜎 was used which would account 
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for the attractive component in the LJ potential as well, compared to 𝑟𝑐  =  2
1 6⁄ 𝜎 

in this work. 

3.3.3 Quasi-linearity Based on Continuum Thermomechanics  

Note that Eq. (3.18) may allow one to determine a dissipation function which 

should equal the rate of entropy production [42]. Within the framework of 

thermomechanics, we know that the dissipation function is defined as 

𝐴𝑘𝑙
(𝑑)(𝑑̇𝑖𝑗)𝑑𝑘𝑙̇ = Φ(𝑑𝑖𝑗̇ ) (3.24) 

Where the dissipative forces 𝐴𝑘𝑙
(𝑑)

 define a symmetric second-order tensor and 𝑑𝑖𝑗̇  

is the deformation rate. For uniform shear flow, the dissipative forces are the shear 

stress 𝜎𝑖𝑗
𝑑 

𝜎𝑖𝑗
(𝑑)
(𝑑𝑖𝑗)𝑑𝑖𝑗 = Φ(𝑑𝑖𝑗) =

𝜂0𝛾̇
2

1 + (
2
3) (

𝛾̇
𝜈)
2 (3.25) 

Therefore, we have  

𝜎𝑖𝑗
(𝑑)
= 𝜇

𝜕Φ

𝜕𝑑𝑖𝑗
 (3.26) 

where 𝜇 is a constant of proportionality. Under uniform shear, we know that the 

three invariants are 𝑑(1) = 0, 𝑑(2) = 𝑑12
2 = 𝛾̇2, and 𝑑(3) = 0. Therefore, on account 

of these side conditions Eq. (3.26) becomes 

𝜎𝑖𝑗
(𝑑)
= 𝜇

𝜕

𝜕𝑑𝑖𝑗
(Φ − 𝜆1𝑑(1) − 𝜆2𝑑(3)) (3.27) 

where 𝜆1 and 𝜆2 are the Lagrange multipliers. Since 𝑑𝑖𝑗 is a deviatoric tensor, then 

so is 𝜎𝑖𝑗
𝑑 . Thus, we have 𝜎𝑖𝑖

𝑑 = 0. Furthermore, we also have |𝜎𝑖𝑗| = 0. Upon 

expanding Eq. (3.27), we obtain 
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𝜎𝑖𝑗
(𝑑)
= 𝜇 [

𝜕Φ

𝜕𝑑(1) 

𝜕𝑑(1)

𝜕𝑑𝑖𝑗
+
𝜕Φ

𝜕𝑑(2) 

𝜕𝑑(2)

𝜕𝑑𝑖𝑗
+
𝜕Φ

𝜕𝑑(3) 

𝜕𝑑3
𝜕𝑑𝑖𝑗

− 𝜆1
𝜕𝑑(1)

𝜕𝑑𝑖𝑗

− 𝜆2
𝜕𝑑3
𝜕𝑑𝑖𝑗

] 

(3.28) 

which simplifies to 

𝜎𝑖𝑗
(𝑑)
= 𝜇 [

𝜕Φ

𝜕𝑑(2) 
(𝑑𝑖𝑗 − 𝑑(1)𝛿𝑖𝑗) − 𝜆1𝛿𝑖𝑗 − 𝜆2(𝑑𝑖𝑘𝑑𝑘𝑗 − 𝑑(2)𝛿𝑖𝑗)] (3.29) 

On account of the constraints, we have  

−3𝜆1 − 𝜆2(𝑑𝑖𝑘𝑑𝑘𝑗 − 3𝑑(2)) = 0 ⇒ −3𝜆1 + 𝜆2𝑑(2) = 0 (3.30a) 

−𝜆1 + 𝜆2𝑑(2) = 0 (3.30b) 

Solving the system of Eqs. (3.30) yields 𝜆1 = 𝜆2 = 0, so that 

𝜎𝑖𝑗
(𝑑)
= 𝜇

𝜕Φ

𝜕𝑑(2)
𝑑𝑖𝑗 (3.31) 

Multiplying both sides of Eq. (3.31) with 𝑑𝑖𝑗 yields, 

Φ = 𝜇
𝜕Φ

𝜕𝑑(2)
𝑑𝑖𝑗𝑑𝑖𝑗 (3.32) 

For uniform shear, we obtain  

Φ = 𝜇
𝜕Φ

𝜕𝛾 2̇
(2𝛾2)̇  (3.33) 

Substituting the explicit form for Φ in Eq. (3.33) and taking the derivative with 

respect to 𝛾 2̇, we obtain  

𝜇 =
1 + (2/3)(𝛾2̇/𝜈2)

2
 (3.34) 



 

28 
 

Thus we see that a dissipation function of the form in Eq. (3.25) along with Eq. 

(3.31) suggest that a molecular fluid behaves at least like a quasi-linear fluid with 

a constitutive relationship of the form 

𝜎𝑖𝑗
(𝑑)
= 2𝜂(𝑑(2))𝑑𝑖𝑗 ⇒ 𝜎12

(𝑑)
= 2𝜂(𝛾 2̇)𝛾̇ (3.35) 

where the fluid viscosity 𝜂 needs to at least depend on 𝑑(2) = 𝛾 2̇. 

3.4 Conclusion  

In this chapter, we simulated LJ fluids at different state points and employed the 

Boltzmann equation to study the behavior of the steady-state shear stress with 

applied strain rate. We observe that, in all cases, the fluid exhibits shear-thinning. 

At low densities, the shear-thinning effect is moderate for the range of strain-rates 

considered. At higher densities, dramatic shear-thinning sets in at much lower 

strain-rates. In light of these observations, we are motivated to use kinetic theory to 

find an equation of state that is able to capture this wide range of behaviors. We 

compare our proposed equation with other models available in the literature to 

validate its effectiveness. 

In general, we find that the models from the literature performed well when 

the degree of shear-thinning is moderate. However, for cases of extreme shear-

thinning, the Ostwald-deWaele and Sisko equations of state completely break 

down, while the Ree-Eyring and Bair-Winer equations experience a significant 

drop in modeling capability. In contrast, the proposed model performs consistently 

well across all state-points. Additionally, the formalism involving the Boltzmann 

equation naturally gives rise to a form of the Cross viscosity model as a steady-state 

solution. The effective collision frequency used in the BGK approximation acts as 

a scaling parameter that seems to unify the behavior of the LJ fluid across all the 

state-points considered. 

Finally, a thermomechanical framework involving the dissipation function 

suggests that the LJ fluid behaves at least as a quasilinear fluid. This offers an 

insight into the minimum required approximations to be used in the process of 
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constructing a suitable constitutive model to represent a molecular fluid. The 

derivation shows that the proposed equation provides a suitable shear-thinning 

model while preserving thermodynamic orthogonality in molecular fluids, which is 

an important feature of continuum thermomechanics. The framework of 

thermodynamic orthogonality provides a means for transitioning from molecular to 

continuum scales and for a link to the fluctuation theorem which grasps 

spontaneous violations of the second law of thermodynamics on very small length 

and/or time scales [39]. Thus, for the purposes of modeling such fluids as continua, 

we need to assume that the viscosity is dependent on the strain-rate in a manner 

consistent with the postulates of continuum thermomechanics. 

In Chapter 4, we illustrate that non-Newtonian behavior results from non-

Gaussian fluctuations that correspond to the formation of structural order within the 

fluid. Therefore, we need to move beyond Gaussian statistics to characterize the 

fluid’s internal dynamics and provide and all-encompassing description of fluid 

behavior under shear flow.  
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Chapter 4 

Stochastic Characteristics and Second Law 

Violations of Atomic Fluids in Couette flow 

4.1 Introduction2 

 When the system size is small, i.e. in the micro or nanoscale, classical 

models based on continuum theories are insufficient. Continuum models often 

disregard the underlying stochastic processes that yield the observable fluid 

behavior, thereby providing an inadequate description of the overall system. Such 

systems require a statistical treatment rather than a deterministic one. To 

characterize the statistical nature of such systems, one needs to resort to molecular 

dynamics (MD) simulation techniques to extract pertinent information regarding 

the statistical moments and the temporal and spectral characteristics. NEMD 

techniques and, in particular, the SLLOD equations of motion, are well established 

and documented tools to model atomic fluids undergoing planar Couette flow [50], 

[51], [52].  Owing to the chaotic nature of molecular movement and interactions 

within the flow field, the state variables of interest are accompanied by significant 

fluctuations, and thus must be dealt with in a statistical sense. In the specific case 

of a planar Couette flow, we focus on the statistics of the shear stress and density 

perturbations. The latter is a randomly fluctuating field superimposed on the mean 

fluid density such that its spatial and temporal averages are zero.   

 We use NEMD with the SLLOD equations to study the statistical and 

structural features of atomic fluids that undergo Couette flow, with the particles 

interacting via a Lennard-Jones (LJ) potential. We study the autocorrelation 

function, power-spectral density, and bispectrum of the shear stress and local 

density fluctuations to gain insight into the shear-thinning characteristics of this 

 
2 Adapted from:  B. V. Raghavan, P. Karimi and M. Ostoja-Starzewski, "Stochastic characteristics 

and second law violations of atomic fluids in Couette flow," Physica A: Statistical Mechanics and 

its Applications, vol. 496, pp. 90-107, 2018. 
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system and its departure from a Gaussian system. We motivate the need to study 

these variables by illustrating the natural connection between them via the 

fluctuation theorem (FT). Using principles of information theory, we derive a 

probabilistic model for the shear stress that accounts for negative shear stress 

increments and thus for violations of the second law of thermodynamics. We 

describe the departure from Gaussian statistics as the fluid enters the nonlinear flow 

regime and describe how these changes can be used to identify the critical strain 

rate, and thus justifying the need for a more general probabilistic model. For the 

sake of clarity, we explain our observations based on a single LJ state-point and 

then elaborate on the effects of density and temperature variations on the above 

parameters. 

4.2 The Macroscopic Connection 

4.2.1 Linear Perturbation and Local Density Fluctuations 

The two variables of primary interest in characterizing Couette flow in the linear 

and nonlinear shear-thinning regime are the temporal shear stress fluctuations and 

the local temporal density fluctuations. To study their statistical nature under 

Couette flow, we investigate local density contrast in the fluid and its relationship 

to microscopic phenomena via connections established by the governing equations 

of fluid dynamics. We define the local density contrast as  

𝛿(𝒓, 𝑡) =
𝜌(𝒓, 𝑡) − 𝜌0

𝜌0
⇔ 𝜌(𝒓, 𝑡) = 𝜌0[1 + 𝛿(𝒓, 𝑡)] (4.1) 

where 𝜌0 is the prescribed fluid density. We treat 𝛿 as small perturbations, i.e.  

𝛿 ≪ 1, which is zero at the boundaries. We also introduce velocity perturbations as  

𝒗(𝒓, 𝑡) = 𝒗′(𝒓, 𝑡) + 𝒖(𝒓, 𝑡) (4.2) 

where 𝒗′ is the fluctuating velocity (that can be attributed to the peculiar velocity 

of fluid particles). The perturbations are zero at the boundaries of the domain, i.e. 

𝒗′(𝑦 = 0, 𝑡) = 𝒗′(𝑦 = ℎ, 𝑡) = 0. We consider ||𝒗′|| as being ‘small’, so we may 
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neglect quadratic terms of order ||𝒗′||𝛿, in accordance with linear perturbation 

theory. Finally, we also consider fluctuations in the pressure as  

𝑃(𝒓, 𝑡) = 𝑃′(𝒓, 𝑡) + 𝑃(𝒓, 𝑡) (4.3) 

which can be thought of as the sum of thermodynamic (𝑃′) and dynamic pressure 

(𝑃).  

To obtain a transport equation for 𝛿(𝒓, 𝑡) under isothermal conditions (in 

accordance with the thermosttated SLLOD equations) we use the continuity and 

Navier-Stokes equations of fluid mechanics which are respectively 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝒗) = 0 (4.4) 

(
𝜕

𝜕𝑡
+ 𝒗. ∇) 𝒗 = −

1

𝜌
∇𝑃 + 𝜈∇2𝒗 +

1

3
𝜈𝛻(𝛻. 𝒗) + 𝑓 (4.5) 

where 𝑃 is the pressure, 𝜈 is the kinematic viscosity, and 𝑓 are external forces. 

Substituting Eq. (4.2) and Eq. (4.3) in Eq. (4.4), and subtracting the perturbed 

equations from the unperturbed ones, we obtain 

𝜕𝛿

𝜕𝑡
+ ∇. ([1 + 𝛿]𝒗′) = 0 (4.6) 

and eliminating all quadratic terms yields 

𝜕𝛿

𝜕𝑡
+ ∇. 𝒗′ = 0 (4.7) 

In a similar manner, we substitute Eq. (4.2) and Eq. (4.3) in Eq. (4.5) and 

performing the same operation as above, we obtain, 

𝜕𝒗′

𝜕𝑡
+ (𝒗′. ∇)𝒗′ + (𝒗′. ∇)𝒖 + (𝒖′. ∇)𝒗′

= −
1

𝜌
∇𝑃′ + 𝜈∇2𝒗′ +

1

3
𝜈𝛻(𝛻. 𝒗′) 

(4.8) 

which after eliminating the quadratic term (𝒗′. ∇)𝒗′ reduces to  
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𝜕𝒗′

𝜕𝑡
+ (𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′ = −

1

𝜌0(1 + 𝛿)
∇𝑃′ + 𝜈∇2𝒗′ +

1

3
𝜈𝛻(𝛻. 𝒗′) (4.9) 

The goal now is to write the thermodynamic pressure, 𝑃′, in terms of the 

density. We achieve this by using the thermodynamic relation 

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑃′𝑑𝑉 (4.10) 

where 𝑑𝑆 is the change in entropy of the system, 𝑑𝑈 is the flow of energy into the 

system, and 𝑃′𝑑𝑉 is the work done on the system. The ideal gas relations 

𝑃′ = 𝜌𝑘𝐵𝑇 (4.11a) 

𝑈 =
3

2
𝑘𝐵𝑇 (4.11b) 

with 𝑘𝐵 being the Boltzmann constant are combined to yield 

𝑈 =
3

2
 
𝑃′

𝜌
 (4.12) 

Substituting the relations in Eq. (4.11a) and Eq. (4.12) into Eq. (4.10), we obtain 

𝑇𝑑𝑆 = 𝑑 (
3

2
 
𝑃′

𝜌
) + 𝑃′𝑑 (

1

𝜌
) (4.13) 

Substituting for the temperature using Eq. (4.11a), and expanding Eq. (4.13) 

yields 

1

𝑘𝐵

𝑃′

𝜌
𝑑𝑆 =

3

2

1

𝜌
𝑑𝑃′ +

5

2
𝑃′𝑑 (

1

𝜌
) (4.14) 

which can be rearranged as  

𝑑𝑃′

𝑃′
=
1

𝑘𝐵
𝑑𝑆 −

5

2
𝜌𝑑 (

1

𝜌
) (4.15) 

Integrating Eq. (4.15) and simplifying yields,  

𝑃′ = 𝜌5/3𝑒
2
3𝑘𝐵

𝑆
 (4.16) 
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which implies that 𝑃′ = 𝑃′(𝜌, 𝑆). Then, we can express the gradient of the 

pressure in terms of the density and entropy as  

∇𝑃 = (
𝜕𝑃′

𝜕𝜌
)
𝑆

∇𝜌 + (
𝜕𝑃′

𝜕𝑆
)
𝜌

∇𝑆 = 𝑐𝑠
2∇𝜌 +

2

3
𝜌𝑇∇𝑆 (4.17) 

Substituting Eq. (4.17) in Eq. (4.9) gives 

𝜕𝒗′

𝜕𝑡
+ (𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′

= −
1

𝜌0(1 + 𝛿)
[𝐾∇𝜌 +

2

3
𝜌𝑇∇𝑆] + 𝜈∇2𝒗′ +

1

3
𝜈𝛻(𝛻. 𝒗′) 

(4.18) 

where 𝐾 is the bulk modulus of the fluid. Simplifying the above equation and 

using 𝛿 ≪ 1, we obtain 

𝜕𝒗′

𝜕𝑡
+ (𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′ = −[𝑐𝑠

2∇𝜌 +
2

3
𝑇∇𝑆] + 𝜈∇2𝒗′ +

1

3
𝜈𝛻(𝛻. 𝒗′) (4.19) 

Operating with −∇. (. ), we obtain, 

𝜕(−∇. 𝒗′)

𝜕𝑡
− ∇ . [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′]  

= [𝑐𝑠
2∇2𝜌 +

2

3
𝑇∇2𝑆] − ∇. [𝜈∇2𝒗′] − ∇. [

1

3
𝜈𝛻(𝛻. 𝒗′)] 

(4.20) 

and using Eq. (4.7) in Eq. (4.20) and making the appropriate substitution yields 

𝜕2𝛿

𝜕𝑡2
+
4

3
𝜈∇2 (

𝜕𝛿

𝜕𝑡
) − 𝜌0𝑐𝑠

2∇2𝛿 =
2

3
𝑇∇2𝑆 + ∇ . [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′]  (4.21) 

which is a third order wave equation for local density contrast in the fluid. The first 

term on the left-hand side is related to the entropy production, and the second term 

is the coupling between the external driving force, i.e. the strain rate captured by 𝒖 

and ∇𝒖 (as shown in Eq. (2.4) and Eq. (2.5), respectively), and the fluctuating 

velocity field.  
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4.2.2 Entropy Production and Violations of the Second Law of 

Thermodynamics 

Considering Eq. (4.21), we now define the dissipation function as  

Ωt[𝚪(𝑡)] = ∫ Ω[𝚪(𝑠)]𝑑𝑠
𝑠

0

= ln [
𝑓(𝜞(0), 0)

𝑓(𝜞(𝑡), 0)
] − ∫ Λ[𝚪(𝑠)]𝑑𝑠

𝑡

0

  (4.22) 

where 𝚪 is the phase space, and 𝑓(𝜞(𝑡), 𝑡) is the phase space distribution function 

and Λ[𝚪(𝑡)] is the phase space compression factor. Equivalently, it can also be 

expressed as  

Ωt[𝚪(𝑡)] = Σ(𝑡) = 𝛽𝑱(𝑡)𝐹𝑒𝑉  (4.23) 

where 𝑱(𝑡) is the dissipative flux, 𝐹𝑒 is the external dissipative field, 𝑉 is the system 

volume, and 𝛽 = 1/𝑘𝐵𝑇. The dissipation function, Ω𝑡, is equal to the total 

irreversible entropy production rate, Σ(𝑡). So, we can set 𝑆 = Σ(𝑡)/𝑉. It is through 

the dissipation function that violations of the second law of thermodynamics are 

explored.  

 Violations of the second law of thermodynamics are captured via the 

fluctuation theorem [13]. Mathematically, it is expressed as  

𝑝(Ω𝑡 = 𝐴)

𝑝(Ω𝑡 = −𝐴)
= 𝑒−𝐴𝑉𝑡  (4.24) 

representing the ratio of observing positive and negative instances of negative 

entropy production. It is evident from the formulation that as the system size 

increases or the time period of observation extends to infinity, the probability of 

observing negative instances of entropy production decrease exponentially.  

In the case of Couette flow, 𝑱(𝑡) = 𝜏𝑥𝑦(𝑡), which is the total shear stress, 

i.e. 𝜏𝑥𝑦(𝑡) = 〈𝜏𝑥𝑦〉 + 𝜏′𝑥𝑦(𝑡). The first term is due to the streaming velocity profile 

with 〈𝜏𝑥𝑦〉 = 𝜂𝛾̇ which is a deterministic process that contributes to the increasing 

rate of entropy within the system, and the second term is the time-dependent 

fluctuating component owing to the stochastic nature of the system [45], [63]. It is 

through the second term that the system can violate the second law of 
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thermodynamics. In order to observe such violations, one observes the distribution 

of the shear stress, through which one can explicitly identify violating instances. 

For more details, readers are referred to [39]. Thus, using the rate of entropy 

production per unit volume given by 𝑆 = Ωt/𝑉𝑇 in Eq. (4.21) and the fact that 

1/𝑉 = 𝜌/𝑚, where 𝑚 is the molecular mass of the fluid and 𝑉 is the system 

volume, we obtain 

𝜕2𝛿

𝜕𝑡2
+
4

3
𝜈∇2 (

𝜕𝛿

𝜕𝑡
) − 𝜌0𝑐𝑠

2∇2𝛿 =
2

3
∇2
𝜌Ω𝑡
𝑚
+ ∇ . [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′] (4.25) 

Eq. (4.25) simplifies to 

𝜕2𝛿

𝜕𝑡2
+
4

3
𝜈∇2 (

𝜕𝛿

𝜕𝑡
) − (𝜌0𝑐𝑠

2 +
2𝜌0Ω𝑡
3𝑚

)∇2𝛿 = ∇ . [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′] (4.26) 

Now, we take a closer look at the right-hand side of Eq. (4.26). Taking the volume 

integral, and applying the divergence theorem, we have 

∫∇ . [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′]𝑑𝑉
𝑉

= ∫ [(𝒗′. ∇)𝒖 + (𝒖. ∇)𝒗′]. 𝒏̂𝑑𝑎
𝜕𝑉

 (4.27) 

The first term in Eq. (4.27) is 0 due to the boundary conditions on 𝒗′. Evaluating 

the second term for Couette flow yields,  

∫ [(𝒖. ∇)𝒗′]. 𝒏̂𝑑𝑎
𝜕𝑉

= ∫ 𝑈
𝜕𝑣𝑥

′

𝜕𝑦𝑦=ℎ

𝑑𝑥𝑑𝑧 (4.28) 

where 𝑈 = 𝛾̇ℎ is the velocity of the top plate, and 
𝜕𝑣𝑥

′

𝜕𝑦⁄ = 𝜏′𝑥𝑦(𝑡) is the time-

dependent fluctuating component of the shear stress. Thus, Eq. (4.28) becomes 

∫ 𝑈
𝜕𝑣𝑥

′

𝜕𝑦𝑦=ℎ

𝑑𝑥𝑑𝑧 = 𝛾̇𝜏𝑥𝑦
′ (𝑡)ℎ∫ 𝑑𝑥𝑑𝑧

𝑦=ℎ

= 𝛾̇𝜏𝑥𝑦
′ (𝑡)𝑉 = ∫𝛾̇𝜏𝑥𝑦

′ (𝑡)𝑑𝑉
𝑉

 (4.29) 

Therefore, we can write Eq. (4.26) as  

𝜕2𝛿

𝜕𝑡2
+
4

3
𝜈∇2 (

𝜕𝛿

𝜕𝑡
) − (𝜌0𝑐𝑠

2 +
2𝜌0Ω𝑡
3𝑚

)∇2𝛿 = 𝛾̇𝜏𝑥𝑦
′ (𝑡) (4.30) 
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where 𝜏𝑥𝑦
′ (𝑡) is a stochastic term. Eq. (4.30) is a stochastic partial differential 

equation that illustrates the intimate connection between local density fluctuations 

and the shear stress. It should be noted that 𝜏𝑥𝑦
′ (𝑡) is a stochastic forcing term, 

through which the possibility of second-law violations is explicitly captured in the 

system. As a consequence, it would be prudent to study the statistical properties of 

the density fluctuations, 𝛿 and the shear stress, 𝜏𝑥𝑦(𝑡). In the continuum limit as 

the system size increases, statistical fluctuations in the shear stress are negligible 

resulting in a deterministic equation of the form 

𝜕2𝛿

𝜕𝑡2
+
4

3
𝜈∇2 (

𝜕𝛿

𝜕𝑡
) − (𝜌0𝑐𝑠

2 +
2𝜌0𝜂𝛾̇

2

3𝑚𝑘𝐵𝑇
)∇2𝛿 = 0 (4.31) 

where the influence of the shear stress owing to the stochastic motion on the 

microscale disappears entirely. 

4.2.3 Probability Density Function of the Stress Tensor 

Based on the statistical nature of the shear stress in molecular Couette flow, and its 

non-Gaussian nature, we are inclined to develop a non-Gaussian probabilistic 

model for the shear stress that can account for non-zero higher order statistics. In 

the linear flow regime, 𝜏𝑥𝑦 is approximately Gaussian. But, this is not the case in 

the nonlinear flow regime. To capture both these effects we develop a general 

probability distribution function. We bear in mind that at the molecular scale, the 

shear stress can spontaneously attain negative values, which corresponds to 

negative entropy production and which means that the second law of 

thermodynamics holds only in a statistical (average) sense and not in an absolute 

one.  

Primarily, we are interested in the steady-state probability density function 

(PDF) of the shear stress. We compute the PDF for the stress tensor, and obtain the 

PDF for the shear stress as a marginal distribution. To obtain a general expression, 

we use the principle of maximum entropy (MaxEnt) to obtain a suitable probability 

distribution for the stress tensor subjected to certain inherent constraints on its 
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moments. The random pressure tensor (which is the negative of the stress tensor, 

i.e. 𝐏 = −𝚻 ⇔ 𝑃12 = −𝜏12) is defined as, 

𝐏 = 𝑃𝑘𝑙: = −(∑
𝑝𝑖𝑘𝑝𝑖𝑙
𝑚

𝑁

𝑖=1

−
1

2
∑𝑟𝑖𝑗𝑘𝐹𝑖𝑗𝑙

𝑁

𝑖,𝑗

) , 𝐏 ∈ ℝ2×2
+  (4.32) 

We are interested in maximizing the differential entropy defined as 

𝑆(𝑓𝐏):= −∫𝑓(𝐏)𝑙𝑛 [𝑓(𝐏)] 𝑑𝐏 (4.33) 

To maximize 𝑆𝑓, we need suitable constraints on 𝑓(𝐏). The first constraint is the 

normalization constraint 

∫𝑓(𝐏) 𝑑𝐏 = 1 (4.34) 

Under steady-state conditions, we know that the mean 〈𝑃𝑘𝑙〉 exists. Additionally, 

moments of the inverse of 𝐏 must also exist since 𝐏 is invertible. Restricting 

ourselves to the first moment in the latter, we obtain the constraints as   

∫𝐏𝑓(𝐏)𝑑𝐏 = 〈𝐏〉 ⇒ E(𝐏) = 〈𝐏〉  (4.35a) 

∫𝑙𝑛 (|𝐏|)𝑓(𝐏) 𝑑𝐏 = 𝜅 ⇒ E(𝑙𝑛 (|𝐏|)) = 𝜅, 𝜅 < +∞ (4.35b) 

where |𝐏| is the determinant of 𝐏. Using the constraints in Eqs. (4.34), (4.35a), and 

(4.35b), we maximize the differential information entropy in Eq. (4.33) using 

Lagrange multipliers. We define the objective function to be maximized as, 

ℱ = −∫𝑓(𝐏) 𝑙𝑛[𝑓(𝐏)] 𝑑𝐏 − 𝜆0 (∫𝑓(𝐏)𝑑𝐏
𝐏

− 1)

− 𝜆1  (∫𝑙𝑛(|𝐏|) 𝑓(𝐏)
𝐏

𝑑𝐏 − 𝜈)

− 𝑇𝑟 [𝚲𝟐 (∫𝐏𝑓(𝐏)
𝐏

𝑑𝐏 − 〈𝐏〉)] 

(4.36) 
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where 𝜆0, 𝜆1, and 𝚲2 are Lagrange multipliers, and 𝑇𝑟 is the trace operator. Thus, 

we have 

𝜕ℱ

𝜕𝑓(𝐏)
= 0 ⇒ −(1 + ln[𝑓(𝐏)]) − 𝜆0 − 𝜆1 ln(|𝐏|) − 𝑇𝑟(𝚲𝟐𝐏) = 0 (4.37) 

The solution to Eq. (4.37) is 

𝑙𝑛[𝑓(𝐏)] = −(1 + 𝜆0) − 𝜆1 ln(|𝐏|) − 𝑇𝑟(𝚲𝟐𝐏) (4.38) 

Or,  

𝑓(𝐏) = 𝑒−(1+𝜆0)|𝐏|−𝜆1𝑒−𝑇𝑟(𝚲𝟐𝐏) (4.39) 

To find the Lagrange multipliers, we substitute Eq. (4.39) into the constraint 

equations. The next steps are as follows.  

i. Using the normalization condition, we have 

∫𝑒−(1+𝜆0)|𝐏|−𝜆1𝑒−𝑇𝑟(𝚲𝟐𝐏)

𝐏

 𝑑𝐏 = 1 (4.40) 

which implies that  

∫|𝐏|−𝜆1𝑒−𝑇𝑟(𝚲𝟐𝐏)

𝐏

 𝑑𝐏 = 𝑒(1+𝜆0) (4.41) 

Using the matrix generalization of the Laplace transform [64], we find that  

𝑒(1+𝜆0) = |𝚲2|
𝜆1−

𝑛+1
2 𝛤𝑛 (

𝑛 + 1 

2
− 𝜆1) (4.42) 

Thus, we have  

𝑓(𝐏) =
|𝚲2|

−𝜆1+
𝑛+1
2

𝛤𝑛 (
𝑛 + 1 
2 − 𝜆1)

|𝐏|−𝜆1𝑒−𝑇𝑟(𝚲𝟐𝐏) (4.43) 

ii. To obtain 𝚲2, we obtain the mean corresponding to the distribution in Eq. 

(4.43). The matrix characteristic function of 𝐏 is defined as  
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𝜓𝐏(𝐏) = 𝐸[𝑒
𝑇𝑟(𝑖𝚷𝐏)] = ∫𝑒𝑇𝑟(𝑖𝚷𝐏)𝑓(𝐏)𝑑𝐏

𝐏

 (4.44) 

Substituting Eq. (4.43) in (4.44), we have 

𝜓𝐏(𝐏) =
|𝚲2|

−𝜆1+
𝑛+1
2

𝛤𝑛 (
𝑛 + 1 
2 − 𝜆1)

∫𝑒−𝑇𝑟[−(𝚲𝟐−𝑖𝚷)𝐏]|𝐏|−𝜆1𝑑𝐏
𝐏

= |𝚲2|
−𝜆1+

𝑛+1
2 |𝚲𝟐 − 𝑖𝚷|

𝜆1−
𝑛+1
2 = |𝐈 − 𝑖𝚷𝚲2

−1|𝜆1−
𝑛+1
2  

(4.45) 

Using the cumulant (an alternative set of quantities to moments describing 

a PDF) generating function, we have 

𝑙𝑛[𝜓𝐏(𝐏)] = (𝜆1 −
𝑛 + 1

2
) 𝑙𝑛|𝐈 − 𝑖𝚷𝚲2

−1|

= (𝜆1 −
𝑛 + 1

2
) [(−𝑖𝚷𝚲2

−1) +
1

2
(−𝑖𝚷𝚲2

−1)2 +⋯ ] 

(4.46) 

From which we obtain the mean as 

𝐸(𝐏) =
𝜕ln [𝜓𝐏(𝐏)]

𝜕(𝑖𝛀)
|
𝛀=0

= (𝜆1 −
𝑛 + 1

2
)𝚲2

−1   (4.47) 

Comparing Eq. (4.47) with (4.35a) yields 

(𝜆1 −
𝑛 + 1

2
)𝚲2

−1 = 〈𝐏〉 ⇒ 𝚲2 = (𝜆1 −
𝑛 + 1

2
) 〈𝐏〉−1 (4.48) 

From (i) and (ii), we see that the probability density function for the pressure 

tensor is given by 

𝑓(𝐏; 𝜆1, 𝑛, 〈𝐏〉
−1)

=
(𝜆1 −

𝑛 + 1
2 )

𝒏(𝜆1−
𝑛+1
2
)

|〈𝐏〉|𝜆1−
𝑛+1
2

𝛤𝑛 (
𝑛 + 1 
2 − 𝜆1)

|𝐏|−𝜆1𝑒−𝑇𝑟[(𝜆1−
𝑛+1
2
) 〈𝐏〉−1𝐏]

 

(4.49) 

which is recognized as the matrix-variate gamma distribution. We leave 𝜆1 as a free 

modeling parameter in Eq. (4.49).  
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The probability density for the shear component of the pressure tensor (or 

the shear stress) is found via the Bartlett decomposition. Explicitly, the scale matrix 

is given by for the probability distribution in Eq. (4.49) is given by 

〈𝐏〉 = (
〈𝑃11〉 〈𝑃12〉
〈𝑃12〉 〈𝑃22〉

) (4.50) 

The Lower Cholesky factor of 〈𝐏〉 is given by 

𝐋 =

(

 
 
√〈𝑃11〉 0

〈𝑃12〉

√〈𝑃11〉
√
〈𝑃11〉〈𝑃22〉 − 〈𝑃12〉

2

〈𝑃11〉
)

 
 

 (4.51) 

Using the Bartlett decomposition, we express the random stress tensor as 

𝐏 = 𝐋𝐀𝐀𝑇𝐋𝑇 (4.52) 

where the matrix 𝐀 is given by 

𝐀 = (
𝑔1 0
𝑛12 𝑔2

) (4.53) 

where 𝑔𝑖
2 ∼ Γ(𝑎, 𝑏) and 𝑛𝑖𝑗 ∼ 𝒩(0,1). Due to molecular interactions, the 

parameters 𝑎 and 𝑏 are in general non-integer parameters. We expect a reduction 

to the chi-squared distribution when molecular interactions are neglected. That is, 

𝑔𝑖
2 ∼ Γ(

𝑛−𝑖+1

2
,
1

2
 ) = 𝜒𝑛−𝑖+1

2 .  

Expanding Eq. (4.52), we obtain the expression for 𝑃12 as 

𝑃12 = 𝑔1
2〈𝑃12〉 + 𝑔1𝑛12√〈𝑃11〉〈𝑃22〉 − 〈𝑃12〉2 (4.54) 

which we recognize as a normal variance-mean mixture with the mixing density 

being a gamma distribution. The PDF is given by 

𝑓(𝑃12) = ∫
1

√2𝜋𝜎2𝑔1
2
𝑒
[
−(𝑃12−𝛽𝑔1

2)
2

2𝜎2𝑔1
2 ]

ℎ(𝑔1
2)𝑑𝑔1

2
∞

0

 (4.55) 
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where 𝛽 = 𝜂(𝛾̇)𝛾̇ and 𝜎 = √〈𝑃11〉〈𝑃22〉 − 〈𝑃12〉
2, and ℎ(𝑔1

2) is the gamma 

distribution Γ(𝑎, 𝑏) with 𝑎 and 𝑏 being adjustable parameters (of the gamma 

distribution) based on the data being modeled. Carrying out the integration in Eq. 

(4.55) with  

ℎ(𝑔1
2) =

𝑎𝑏

Γ(𝑏)
(𝑔1
2)𝑏−1𝑒−𝑎(𝑔1

2)  (4.56) 

we obtain the most suitable distribution for 𝑃12 as the variance-gamma distribution 

expressed as 

𝑓(𝑃12; 𝑎, 𝑏, 𝛽, 𝜎, ⟨𝑃12⟩)

=
2𝑎𝑏

Γ(𝑏)𝜎2√2𝜋(𝛽2 + 2𝑎𝜎2)𝑏−
1
2

|𝑃12

− 〈𝑃12〉|
𝑏−
1
2𝐾

𝑏−
1
2
(
√𝛽2 + 2𝑎𝜎2

𝜎2
|𝑃12

− 〈𝑃12〉|) 𝑒
𝛽
𝜎2
|𝑃12−〈𝑃12〉| 

(4.57) 

4.3 Results  

In this section, we discuss the structural features of the fluid under shear flow and 

investigate the stochastic processes governing its observable behavior. We illustrate 

the inadequacy of Gaussian approximations and propose a more general statistical 

description that captures the two distinct flow regimes (i.e. the Newtonian and 

shear-thinning regimes). We describe how changes in the fluid’s statistical 

properties correspond to the emergence of structure, thus enabling us to use the 

former as a proxy to identify different flow regimes and the nature of structural 

transitions.  
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4.3.1 Stochastic Characteristics of Density Fluctuations and Shear 

Stress 

 

Fig.  6: Density profiles for the LJ fluid at the state point (ρ∗, T∗) = (0.8442, 0.722) for 

(a) γ̇∗ = 0.1 and (b) γ̇∗ = 0.5 and (c) γ̇∗ = 1.5 and (c) γ̇∗ = 2.5. The red line indicates the 

average prescribed density, and the blue line with markers indicates the actual density 

profile during the simulation. 

There exists a critical strain rate above which the LJ fluid begins to exhibit 

shear-thinning in Couette flow [3], [4], [6], [7], [34]. This is characterized by a drop 

in shear stress as depicted in a plot of stress and strain rate [35]. The reason is that 

above the critical strain-rate, fluid particles begin to align in the direction of the 

flow and develop into a so-called ‘string phase’. Therefore, there is a decrease in 

friction between fluid layers and an observable drop in the shear-stress and 

viscosity of the fluid.  The string phase is considered to be an artifact of the 
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thermostatting mechanism, which artificially imposes a streaming velocity profile 

[6], [10]. Nonetheless, it is a physical development in the system being modeled 

which provides insight into the simulation algorithm as well as shear-thinning 

fluids in microscale and nanoscale systems. We focus on studying the statistical 

characteristics and features of the flow that accurately describe the linear and 

nonlinear flow regimes. We focus on investigating the statistical nature of the local 

density contrast as expressed in Eq. (4.2) and the shear stress. The former is a useful 

metric by which we can identify the development of the ‘string-phase’, and the 

latter is closely related to the stability of the fluid [33], [34].  

 

 

Fig.  7: Autocorrelation function of the local density contrast for the LJ fluid at the state 

point (𝜌∗, 𝑇∗) = (0.8442, 0.722) for (a) 𝛾̇∗ = 0.1 and (b) 𝛾̇∗ = 0.5  and (c) 𝛾̇∗ = 1.5 and 

(d) 𝛾̇∗ = 2.5. 
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Fig.  8: Shear stress autocorrelation function for the LJ fluid at the state point (𝜌∗, 𝑇∗) =

(0.8442, 0.722) at (a) 𝛾̇∗ = 0.1 (b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 1.5, and (d)  𝛾̇∗ = 2.5. The top plots 

are in the linear regime and the bottom plots are the nonlinear regime. 

Although the LJ fluid being simulated is inherently homogeneous, there 

exists a critical strain-rate above which extreme shear-thinning occurs due to the 

development of structural anisotropy, owing to the formation of a ‘string-phase’ in 

which molecules tend to align themselves along the direction of the flow. To 

explore this phenomenon further, we study the spatial density profiles (i.e. variation 

in density with respect to channel height) for a fluid with state points 𝜌∗ = 0.8442 

and 𝑇∗ = 0.722 in the shear-thinning regime of the flow and compare them with 

the profile at small strain-rates where shear-thinning has not yet set, see Fig.  6. At 

low strain-rates, we see that the fluid remains homogeneous and the spatial density 

is equivalent to the prescribed density of the fluid, with fluctuations within 

negligible limits. As the deformation rate increases, this leads to an increasingly 

saw-tooth profile that alludes to the formation of strings that are aligned in the 
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direction of flow, with the degree of alignment being proportional to deformation 

rate. The induced structural anisotropy results in a decrease in friction between fluid 

layers causing a drop in the shear stress and a corresponding decrease in fluid 

viscosity. We see that the development of the string-phase corresponds to the 

critical strain rate, 𝛾̇𝑐𝑟
∗ = 1.5 which is the peak of the stress-deformation curve [35] 

at which a discontinuity forms due to the development of an ordering transition. 

Such a critical strain-rate above which an ordering transition occurs and the flow 

becomes unstable may also be predicted by the Loose-Hess stability criterion, 

which suggests that for 𝛾̇ > 𝛾̇𝑐𝑟 a velocity perturbation in the shear gradient 

direction can amplify a density perturbation along that direction [33]. The Reynolds 

number is 𝑅𝑒 ≈ 91 which in the regime for the excitation of the first harmonic of 

the Fourier modes (82 ≤ 𝑅𝑒 ≤ 107) [8]. Consequently, we can expect some 

perturbations to grow as some eigenmodes do not dampen out with increasing shear 

rate, resulting in an ordering transition [34]. This is indeed the transition we see in 

Fig.  6c and Fig.  6d for 𝛾̇ = 𝛾̇𝑐𝑟 and 𝛾̇ > 𝛾̇𝑐𝑟, respectively. As a consequence, we 

see that the shear-thinning regime is in the unstable regime of the flow.  

Another key indicator of this fact is the development of long range 

correlations in local density contrast as shown in Fig.  7. Since density perturbations 

vary the most in the direction of the shear gradient, we calculate the spatially-

averaged density autocorrelation as  

〈𝛿(𝑡)𝛿( 𝑡 + 𝑠)〉 =
1

𝑁
∑𝛿(𝑦𝑖, 𝑡)𝛿(𝑦𝑖, 𝑡 + 𝑠)

𝑁

𝑖=1

 (4.58) 

where 𝑖 = 1 𝑡𝑜 𝑁 represents the number of spatial slices of the domain in the 𝑦 

direction. Fig.  7a and Fig.  7b indicates that the local density fluctuations are 

essentially white noise in the linear regime of the flow. However, at the onset of 

shear-thinning, the local density fluctuations become correlated over a long-time 

period as shown in Fig.  7c and Fig.  7d. At small strain rates, the fluid remains 

homogeneous. Consequently, the density fluctuations resulting from molecular 

interactions are uncorrelated and distributed homogeneously throughout the fluid. 

At the onset of shear-thinning, molecules tend to align via the formation of string-
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like structures oriented in the direction of the flow. This confines the density 

fluctuations to a particular layer in the direction of the flow thus leading to the 

development of correlations as they no longer homogeneously permeate throughout 

the fluid. Furthermore, these correlations take longer to die out with increasing 

strain rate as is evident by comparing Fig.  7c and Fig.  7d.  

 

Fig.  9: Shear stress power spectral density (PSD) for the LJ fluid at the state point 

(𝜌∗, 𝑇∗) = (0.8442, 0.722) at (a) 𝛾̇∗ = 0.1 (b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 1.5, and (d)  𝛾̇∗ = 2.5. 

The top plots are for the linear regime and the bottom plots are for the nonlinear regime. 

The inset figures are the total PSD, while the outer plot zooms in to show the existence of 

additional frequencies, particularly in (c) and (d).  
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Fig.  10: Bispectrum magnitude |𝐵(𝜔0, 𝜔1)| for the LJ fluid at the state point (𝜌∗, 𝑇∗) =

(0.8442, 0.722) at (a) 𝛾̇∗ = 0.1 (b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 1.5, and (d)  𝛾̇∗ = 2.5. 

 

Fig.  11: Probability distribution of the shear stress, 𝜏𝑥𝑦, for (a) 𝛾̇∗ = 0.1 and (b) 𝛾̇∗ = 1.5 

with the fit given by Eq. (4.52) in red. 
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Fig.  8 compares the time autocorrelation functions (ACFs) of the 

fluctuating component of the shear stress, 𝑅(𝑡). The microscopic formulation of 

the stress tensor [Eq. (4.32)] is linked to the peculiar velocities of the fluid particles. 

Fig.  8a shows that when the string phase is absent, the ACF decays to 0 in the long-

time limit and is an indication of the homogeneity and isotropy of the fluid. The 

peak to peak times correspond well to 𝜃∗/𝛾̇∗ where 𝜃∗ is the effective collision 

frequency of the particles [35]. Additionally, in this regime correlations are damped 

in proportion to the strain rate as illustrated in Fig.  8a and Fig.  8b. On the other 

hand, in the nonlinear regime alignment in the flow direction confines all 

interactions to the 𝑥 streaming direction. In this regime, the peak to peak times 

correspond to 𝛾̇∗−1, since the strain-rate is much larger than the mean collision 

frequency of the molecules. Furthermore, once shear-thinning sets in, the 

correlations do not decay in the long-time limit and continue oscillating 

indefinitely, i.e. for the remaining duration of the simulation run, indicating the 

development of anisotropy in the fluid. These correlations get increasingly stronger 

with increasing strain rate, as shown in Fig.  8c and Fig.  8d. In particular, from Fig.  

8d, we see that autocorrelation function decays in a manner  consistent with the low 

strain behavior of the fluid (0 ≤ 𝑡∗ < 2), but after structural reordering occurs (at 

𝑡∗ ≥ 2), the autocorrelation actually increases for a finite time before decaying 

slightly but not entirely dying out.  The power spectral density (PSD) of the shear 

stress shown in Fig.  9 shows that, in the linear regime, fluctuations in the shear 

stress are confined to a narrow frequency range showing its narrow-band character. 

With increasing shear strain, additional frequencies are activated, as shown in Fig.  

9c and Fig.  9d. These additional frequencies are estimated to correspond to the 

initiation of structural reordering within the fluid because some of the eigenmodes 

of the velocity perturbations do not decay.  

This is further indicated by the bispectrum of the shear stress. Fig.  10 

depicts the bispectrum for the LJ fluid in the linear and nonlinear regimes. The 

bispectrum of the shear stress, is the Fourier transform of the 3rd order cumulant 

function and is expressed in the frequency domain as  
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𝐵(𝜔0, 𝜔1) = 〈𝜏12(𝜔0)𝜏12(𝜔1)𝜏12(𝜔0 + 𝜔1)〉 (4.59) 

The bispectrum clearly indicates the degree of nonlinearity in the system and the 

degree of departure from a Gaussian system. In general, the application of an 

external strain rate results in system nonlinearities. However, for weak external 

fields, a linear approximation still holds as |𝐵(𝜔0, 𝜔1)|  is small. In such cases, a 

Gaussian approximation for the system is valid. On the other hand, from Fig.  10c 

and Fig.  10d, we see that the system possesses a significant degree of nonlinearity 

in the shear-thinning regime of the flow owing to molecular alignment, and thus is 

an indicator of the development of structural anisotropy. Furthermore, the 

bispectrum alludes to the development of quadratic phase coupling (QPC).  In 

particular, we see that there are frequency components at 𝜔0 + 𝜔1. The bispectrum 

is often used to indicate the presence of quadratic nonlinearities in the system [65], 

[66]. Consequently, this alludes to the influence of quadratic terms in the perturbed 

quantities, which suggests a departure from linear perturbation theory. 

Additionally, non-gaussianity is a key feature indicative of flow instability and 

transition to the string phase. This substantiates the need for higher-order 

constitutive models that may be used in more advanced simulations for a variety of 

engineering systems.  

Non-Gaussianity is also demonstrated by the probability density function of 

the shear stress shown in Fig.  11. Fig.  11 shows the probability distribution for the 

shear stress in the linear regime of the flow. It is approximately Gaussian and in 

good agreement with NEMD observations [39]. In addition, there is a non-zero 

albeit small probability that the shear stress can become negative. This implies the 

existence of system trajectories that violate the second law of thermodynamics. 

Additionally, the probabilistic nature of shear stress can have important 

consequences for system stability. For instance, although the Loose-Hess instability 

criterion, which quantifies instability by relating the shear-stress and normal stress 

components, holds in the average sense, there may be instances where an unstable 

flow might temporarily become stable owing to the probabilistic nature of the stress 

tensor, as negative shear stress increments can violate this instability criterion. The 

ordering transition at the critical strain rate also leads to a departure from a Gaussian 
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distribution. In this case, depicted in Fig.  11b, the probability density function 

becomes skewed and higher-order moments exist, which is also consistent with the 

observation made in the bispectrum of the shear stress. This suggests that the flow 

tends to be stable so long as it remains Gaussian. We also demonstrate that Eq. 

(4.57) is a suitable generalization to a Gaussian Approximation for the shear stress 

and is able to successfully model the system in the linear and nonlinear regimes by 

accounting for the existence of higher-order moments.   

4.3.2 Effects of Temperature and Density 

 

Fig.  12: Shear stress autocorrelation function for the LJ fluid at the state point (𝜌∗, 𝑇∗) =

(0.8, 1.0) (blue curve) and (𝜌∗, 𝑇∗) = (0.8, 1.1) (red curve) at strain rates of (a) 𝛾̇∗ = 0.1 

(b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 2.0, and (d)  𝛾̇∗ = 2.5. 

To examine the effects of fluid temperature and density on the shear stress 

ACF, we study the LJ fluid at additional state points of (𝜌∗, 𝑇∗) =

(0.6, 1.0), (0.6, 1.5), (0.8, 1.0) and (0.8, 1.1). In this set, only the last two state 
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points exhibit shear thinning for the range of strain-rates considered. From the 

autocorrelation functions in Fig.  12 and Fig.  13, we see that in the linear regime 

of the flow, the temperature of the fluid increases the time period of the shear stress 

autocorrelations. This is particularly evident at the state points (𝜌∗, 𝑇∗) = (0.6, 1.0) 

and (0.6, 1.5) in Fig.  13. Compared with (𝜌∗, 𝑇∗) = (0.8, 1.0) and (0.8, 1.1), it 

would appear that the increase in the time period of the ACF is proportional to the 

increase in fluid temperature. Additionally, we also see that an increase in fluid 

density tends to cause molecular alignment at lower strain rates, as shown in Figs. 

Fig.  12c and Fig.  12d. For all the cases, in the linear regime of the flow, the strain 

rate acts as a damping parameter and causes the ACF to decay faster to 0. 

 

Fig.  13: Shear stress autocorrelation function for the LJ fluid at the state point (𝜌∗, 𝑇∗) =

(0.6, 1.0) (blue curve) and (𝜌∗, 𝑇∗) = (0.6, 1.5) (red curve) at strain rates of (a) 𝛾̇∗ = 0.1 

(b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 2.0, and (d)  𝛾̇∗ = 2.5. 
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By examining the PSDs of the corresponding ACFs in Fig.  14 and Fig.  15, 

we see that at a fluid density of 𝜌∗ = 0.8, a higher temperature leads to a lower PSD 

value at the activated frequencies in the linear regime of the flow. From Fig.  14c 

and Fig.  14d, we see that multiple frequencies are activated at the onset of shear 

thinning. Additionally, we also see that an increase in fluid temperature delays the 

onset of shear-thinning. We infer that a higher fluid temperature leads to increased 

molecular activity, thus requiring a higher strain-rate to cause molecular alignment. 

Furthermore, at higher temperatures, the power at the activated frequencies seems 

to be more evenly distributed among the activated frequencies in the nonlinear 

shear thinning regime of the flow and is particularly evident in Fig.  14d.  

 

Fig.  14: Shear stress power spectral density (PSD) for the LJ fluid at the state point 

(𝜌∗, 𝑇∗) = (0.8, 1.0) (blue curve) and (𝜌∗, 𝑇∗) = (0.8, 1.1) (red curve) at strain rates of 

(a) 𝛾̇∗ = 0.1 (b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 2.0, and (d)  𝛾̇∗ = 2.5. 
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In contradistinction to this, at 𝜌∗ = 0.6 in Fig.  15, we see that a higher 

temperature leads to a higher PSD value. At high strain rates, despite the range of 

activated frequencies being the same, the energy distribution across them is more 

uniform in the case of lower fluid temperature, as illustrated in Fig.  15c and Fig.  

15d. Consequently, the shear stress behaves as a wide-band random process for low 

temperatures, and a narrow-band random process for high temperatures, at a given 

fluid density. In addition, we see that an increase in fluid density leads to a higher 

PSD value at a given strain rate.  

In all cases, it is interesting to note that the shear stress autocorrelation 

function in the linear regime strongly matches an exponentially damped cosine 

wave that is able to accurately capture its narrow-band or wide-band characteristics. 

The ACF for the shear stress is expressed as [67] 

〈𝜎12(𝑠)𝜎12(𝑠 + 𝑡)〉 = 𝑅(𝑡) = 𝑒
−𝑎𝑡cos (𝑏𝑡) (4.60) 

where 𝑎 and 𝑏 are fitting constants depending on the molecular parameters (i.e. 

𝜈∗, 𝜌∗, and 𝑇∗), and the lag 𝑡. The corresponding PSD (via the Fourier transform) 

is given as 

𝑆(𝜔) =
𝑎

𝜋
[

𝜔2 + 𝑎2 + 𝑏2

𝜔4 + 2𝜔2(𝑎2 − 𝑏2) + (𝑎2 + 𝑏2)2
] (4.61) 

The fitting is illustrated in Fig.  16. In particular, we note that Eq. (4.60) is able to 

accurately capture the ACF for a range of fluid state-points. This modeling ability 

is preserved for any range of strain-rates so long as shear-thinning has not set in, 

and the fluid continues to behave linearly. In the nonlinear regime, Eq. (4.60) breaks 

down and is no longer a suitable model owing to the activation of multiple 

frequencies.  
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Fig.  15: Shear stress power spectral density (PSD) for the LJ fluid at the state point 

(𝜌∗, 𝑇∗) = (0.6, 1.0) (blue curve) and (𝜌∗, 𝑇∗) = (0.6, 1.5) (red curve) at strain rates of 

(a) 𝛾̇∗ = 0.1 (b) 𝛾̇∗ = 0.5 (c) 𝛾̇∗ = 2.0, and (d)  𝛾̇∗ = 2.5. 
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Fig.  16: Shear stress ACF (blue) and fit given by Eq. (8) (red) for the LJ fluid. The top 

row is at the state point (𝜌∗, 𝑇∗) = (0.8442, 0.722) and bottom row is at (𝜌∗, 𝑇∗) =

(0.6, 1.5). The left column is at strain rate of 𝛾̇∗ = 0.1 and the right column is 𝛾̇∗ = 0.5. 

4.4 Conclusion 

The objectives of this study were to investigate the stochastic characteristics of an 

atomic fluid undergoing Couette flow. In Sec. 4.3.1 and 4.3.2, we demonstrated the 

connection between local density fluctuations and the shear stress and thus 

restricted our focus to these properties, and how changes in their statistical 

characteristics could be used to identify the critical shear rate at which planar 

Couette flow of an atomic fluid ceases to be stable. We explicitly show how 

fluctuations in shear stress drive density perturbations. Using the dissipation 

function, we relate entropy production to shear stress and obtain a stochastic partial 

differential equation. In the continuum limit, we recover a deterministic equation 

as statistical fluctuations in the shear stress die out. Driven by observations made 
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in NEMD simulations of Couette flow, we formulated a probability density 

function to describe the shear stress using the framework of information theory.  

In general, there exists a critical shear rate at which the fluid undergoes an 

ordering transition from an amorphous phase to a ‘string’ phase in which particles 

align in the direction of the flow. This transition manifests as a saw-tooth profile in 

plots of the spatial density profile. The degree of alignment is proportional to the 

strain rate. To better understand the mechanism behind this transition and 

subsequently identify linear and nonlinear regimes of the flow, we examine the 

statistical characteristics of the local density contrast and the shear stress. By 

studying the autocorrelation function of the density perturbations, we find that in 

the linear regime or amorphous phase it is Gaussian noise. Above the critical strain 

rate, once the ordering transition sets in, correlations develop which indicate the 

development of internal structure within the fluid.  

 The shear stress is an additional indicator of the development of nonlinear 

phenomena in the system and can be used to identify the critical shear rate and 

determine the transition from the amorphous to the string phase. One such indicator 

of change is the autocorrelation function of the shear stress, which significantly 

changes between the linear and nonlinear flow regimes. The autocorrelation 

function does not decay entirely in the latter. By observing the power spectral 

density of the shear stress, there are additional frequencies activated in the nonlinear 

regime of the flow. These changes correspond quite well to the excitation of the 

first harmonic of Fourier modes. The bispectrum provides further insight into the 

nonlinearity of the flow by suggesting the existence of a quadratic phase coupling 

between eigenmodes. We also demonstrate how the probability distribution for the 

shear stress changes in the linear and nonlinear regimes of the flow. In the linear 

regime, the system is approximately Gaussian as it is amorphous. At the critical 

strain rate, the transition to a string phase introduces nonlinearities into the system 

that result in higher-order moments of the shear stress no longer being negligible. 

We show how the probability density function given in Eq. (4.57) is a more general 

approximation than a Gaussian one as it is not restricted to the linear flow regime 
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and is able to accurately model the response of the system regardless of the flow 

regime. 

 Finally, we see that the critical shear rate increases when the fluid density 

decreases or the temperature increases. Additionally, for an amorphous system, the 

autocorrelation function and the power spectral density are accurately described by 

an exponentially damped cosine function and its corresponding Fourier transform, 

respectively.  

In summary, we have characterized the statistical nature of Couette flow via 

molecular dynamics. We have demonstrated how the density perturbations and the 

shear stress and their corresponding temporal and spectral moments can be used to 

identify the critical shear rate at which the ordering transition occurs, and 

subsequently when the flow instability sets in. Such insight is particularly useful in 

more complicated simulations, for instance in micro and nanofluidics, when the 

system under study requires a statistical treatment.  

In Chapter 5, we will see how the fluctuation theorem (FT) naturally 

emerges as a stochastic forcing function in the mathematical generalization of the 

Reynolds-Orr equation to molecular and atomic fluids. Contrary to classical 

stability theory, we will illustrate that the perturbed kinetic energy does not decay 

monotonically. This phenomenon is governed by a Langevin-type equation 

(specifically an inequality), the moments of which yield insight into the critical 

Reynolds number at which flow instability sets in.  
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Chapter 5 

Effects of Second Law Violations on the 

Hydrodynamic Stability of a Lennard-Jones 

Atomic Fluid 

 

5.1 Introduction3 

Simple atomic fluids are studied using non-equilibrium molecular dynamics 

(NEMD). These simulations typically use SLLOD dynamics where fictitious forces 

are added to the equations of motion [8] along with Lees–Edwards boundary 

conditions [32] to generate the desired shear gradient. In an early study of the 

stability of simple atomic fluids, Loose and Hess [33], [34] had formulated a 

stability theory to predict the critical shear rate at which steady-state planar Couette 

flow of an amorphous (no long-range spatial order) atomic fluid ceases to be stable. 

This theory is similar to the traditional linear stability analysis of the NS equation 

except that the linear constitutive thermodynamic relationship between the pressure 

and strain rate tensors is no longer assumed to be true. This critical strain-rate is 

characterized by the onset of shear-thinning and the strain-rate dependent structural 

re-ordering of fluid particles in the direction of the flow (i.e. the ‘string’-phase). In 

this regime, steady-state Couette flow of an amorphous fluid is no longer possible. 

It is accompanied by a reduction in viscosity and a change in the slope of the stress-

deformation rate response [35]. 

It will be shown that shear stress plays a central role in the stability of atomic 

fluids under shear. It is the stochastic forcing term in the dynamical equation for 

the kinetic energy of perturbations [41], and arises naturally from the fluctuation 

theorem (FT) [40] and the dissipation function [40], [42], [68].  The latter is a 

 
3 Adapted from:  B. V. Raghavan and M. Ostoja-Starzewski, " On the Hydrodynamic Stability of a 

Lennard-Jones Molecular Fluid," Journal of Statistical Physics, vol. 177, pp. 61-77, 2019. 
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central concept in microscale theories and continuum thermomechanics and 

facilitates unifying phenomena in these two distinct length scales [43]. The FT 

explicitly allows for stochastic fluctuations in the shear stress that allow for 

instantaneous violations [39], [44], [45] of the classical Clausius-Duhem inequality 

of entropy production in the very small-scale limit. It demonstrates that despite the 

exponential stability of the perturbations, the stochastic contribution from the 

shear-stress can contribute to subcritical transient amplification of their kinetic 

energy. 

We restrict ourselves to two-dimensional (2D) simulations be consistent 

with the simulations used to observe violations of the second law of 

thermodynamics and establish a method to identify the critical Reynolds number 

corresponding to string formation [6], [7], [8], [9], [34], [35], [43]. Although the 

‘string’-phase is an artifact of the thermostatting mechanism, it is an observable 

unstable structure that depends on the Reynolds number of the flow. Consequently, 

there exists a critical strain-rate above which the ‘string’-phase instability 

manifests. The goal of this chapter is to provide a framework for estimating the 

critical Reynolds number at which the flow becomes unstable and examine the 

mechanisms responsible for the formation of strings. 

5.2 Stability and Kinetic Energy Dissipation 

To study the stability via the dissipation of kinetic energy in Couette flow, we 

derive the Reynolds-Orr equation for atomic fluids [69]. We begin by denoting the 

velocity field and pressure field as  

𝒖(𝒙, 𝑡) = 𝒖𝑪 + 𝒗′(𝒙, 𝑡) (5.1a) 

𝑝(𝒙, 𝑡) = 𝑝 + 𝑝′(𝒙, 𝑡) (5.1b) 

where 𝒖𝐶 = 𝐢𝛾̇𝑦 is the Couette flow velocity field from the Navier-Stokes equation. 

The individual fluid particle velocities fluctuate randomly about the mean flow 

velocity with a peculiar velocity given by 𝒗′(𝒙, 𝑡) = 𝒖(𝒙, 𝑡) − 𝒖𝐶 , So, we can 

consider a basic state as (𝒖𝐶 , 𝑝) and a perturbed state as (𝒖𝐶  + 𝒗′, 𝑝 + 𝑝′) to derive 

the evolution equations for the perturbation field.  
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The continuity equation yields 

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝒖 = 0 (5.2) 

where 𝒖 = 𝒖𝑪 + 𝒗′ is the total velocity field. Additionally, we also have 

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝒖𝑪 = 0 (5.3) 

for the Couette flow field. If we subtract Eq. (5.3) from (5.2), we obtain 

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌(𝒖𝑪 + 𝒗′) − [

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝒖𝑪] = 0 (5.4) 

which for an incompressible flow yields 

∇. 𝜌𝒗′ = 0 ⟹ ∇.𝒗′ = 0 (5.5) 

The flow is subjected to Lees-Edwards periodic boundary conditions, on account 

of which the fluctuating velocity field is subject to periodic boundary conditions of 

the form 

𝑣𝑥
′(𝑦 = 𝐿𝑦, 𝑡) = 𝑣𝑥

′(𝑦 = 0, 𝑡) + 𝛾̇𝐿𝑦, 

  𝑣𝑦
′ (𝑦 = 𝐿𝑦) = 𝑣𝑦

′ (𝑦 = 0),   

𝑣𝑧
′(𝑦 = 𝐿𝑦) = 𝑣𝑧

′(𝑦 = 0) = 0    

(5.6) 

The macroscopic definition for the isothermal incompressible fluid flow is given 

by the Navier-Stokes equation,  

𝜌0 [
𝜕𝒗

𝜕𝑡
+ 𝒗. ∇𝒗] = 𝜂∇2𝒗 − ∇𝑝 + 𝜌0𝒃 (5.7) 

Considering perturbations to the velocity and pressure of the form in (1) and noting 

that 𝒖𝐶 = 𝒖(𝒙, 𝑡) is a solution of Eq. (5.7), we can substitute the perturbed velocity 

field in (5.7) and subtract from the unperturbed version to obtain the equations for 

the perturbed velocity field as 
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𝜌0 [
𝜕𝒗′

𝜕𝑡
+ 𝒗′. ∇𝒗′] = 𝜂∇2𝒗′ − ∇𝑝′ − 𝜌0𝒗

′. ∇𝒖(𝒓) − 𝜌0𝒖(𝒓). ∇𝒗′ (5.8) 

Dividing by 𝜌0 we obtain, 

[
𝜕𝒗′

𝜕𝑡
+ 𝒗′. ∇𝒗′] = 𝜈∇2𝒗′ − 𝒗′. ∇𝒖(𝒓) − 𝒖(𝒓). ∇𝒗′ −

1

𝜌0
∇𝑝′ (5.9) 

For Couette flow, Eq. (5.9) can be simplified further as  

𝜕𝒗′

𝜕𝑡
= −𝒗′. ∇𝒗′ + 𝜈∇2𝒗′ − 𝛾̇𝑦𝜕𝑥𝑣

′ − 𝐢𝛾̇𝑣𝑦 −
1

𝜌0
∇𝑝′ (5.10) 

We can define the kinetic energy of the perturbations as 

𝐾(𝑡) =
1

2
𝜌0∫‖𝒗

′(𝒙, 𝑡)‖2𝑑𝑉
𝑉

  (5.11) 

and its time evolution as  

𝑑

𝑑𝑡
𝐾(𝑡) = 𝜌0∫𝒗

′(𝒙, 𝑡). 𝜕𝑡𝒗
′(𝒙, 𝑡)𝑑𝑉

𝑉

  (5.12) 

Using Eq. (5.10) in (5.12) for the term 𝜕𝑡𝒗′(𝒙, 𝑡), where 𝜕𝑡 is the partial derivative 

with respect to time, and noting that ∇𝒖(𝒓) = 𝝐, we obtain  

𝑑

𝑑𝑡
𝐾(𝑡) = 𝜌0∫𝒗

′. [𝜈∇2𝒗′ − ∇𝑝′ − 𝒗′. 𝝐 − 𝒖(𝒓). ∇𝒗′ − 𝒗′. ∇𝒗′]𝑑𝑉
𝑉

  (5.13) 

The second term is 0 since there are no spatial variations in the perturbed pressure 

field (i.e. 𝑝′ = 𝜌𝑘𝐵𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and owing to the periodicity of the simulation 

domain. For the last term, we have 

−∫𝒗′. [𝒗′. ∇𝒗′]𝑑𝑉
𝑉

= −∫ ∇. (
1

2
𝒗′‖𝒗′‖) 𝑑𝑉

𝑉

 (5.14) 

Applying the divergence theorem to the right-hand-side of Eq. (5.14) and 

expanding yields 
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−∫ ∇. (
1

2
𝒗′‖𝒗′‖) 𝑑𝑉

𝑉

= −∫ ‖𝒗′‖𝒗′. 𝒏
𝜕𝑉

𝑑𝑆  (5.15) 

where 𝒏 is the surface normal to the simulation domain (namely, the periodic 

bounding box). Expanding Eq. (5.15) gives  

−∫ ‖𝒗′‖𝒗′. 𝒏
𝜕𝑉

𝑑𝑆 

= − [∫ ‖𝒗′‖{[𝑣𝑥
′(0, 𝑡) + 𝛾̇𝐿𝑦 𝑣𝑦

′ (𝐿𝑦, 𝑡)]
𝑡𝑜𝑝

(
0
1
)}𝑑𝑥𝑑𝑧

+ ∫ ‖𝒗′‖{[𝑣𝑥
′(0, 𝑡) 𝑣𝑦

′ (0, 𝑡)]
𝑏𝑜𝑡𝑡𝑜𝑚

(
0
−1
)}𝑑𝑥𝑑𝑧

+ ∫ ‖𝒗′‖{[𝑣𝑥
′(0, 𝑡) 𝑣𝑦

′ (0, 𝑡)]
𝑙𝑒𝑓𝑡

(
− cos[𝜃(𝑡)]

− sin[𝜃(𝑡)]
)}𝑑𝑦𝑑𝑧

+ ∫ ‖𝒗′‖{[𝑣𝑥
′(𝐿𝑥, 𝑡) 𝑣𝑦

′ (𝐿𝑥, 𝑡)]
𝑟𝑖𝑔ℎ𝑡

(
cos[𝜃(𝑡)]

sin[𝜃(𝑡)]
)}  𝑑𝑦𝑑𝑧] = 0 

(5.16) 

where 𝜃(𝑡) = 𝜋/2 − tan−1(2𝛾̇𝑡) [8]. We now simplify the expression for the 

special case of uniform shear flow using 𝒖(𝒙, 𝑡) = 𝒊𝛾̇𝑦 ⇒ 𝒖(𝒙, 𝑡) =

(𝑢𝑥 𝑢𝑦 𝑢𝑧) = (𝛾̇𝑦 0 0) 

𝑑

𝑑𝑡
𝐾(𝑡) = 𝜌0∫𝒗

′. [𝜈∇2𝒗′ − 𝒊̂𝑣𝑦
′ 𝛾̇ − 𝛾̇. 𝜕𝑥𝒗

′]𝑑𝑉
𝑉

  (5.17) 

where 𝐢 is the unit vector, 𝑦 is the channel height, and 𝛾̇ = 𝜕𝑢𝑥 𝜕𝑦⁄  is the strain rate 

to track the evolution of the perturbations, we apply the Lees-Edwards periodic 

boundary conditions and calculate term-by-term in the integral in Eq. (5.17). Owing 

to the periodicity of the simulation domain in the 𝑥-direction and assuming it to be 

of infinite length, we can take 𝜕𝑥𝒗
′ = 0. Applying the divergence theorem to the 

first term in the integral we have, 

∫𝒗′. [∇2𝒗′]𝑑𝑉
𝑉

= ∫[𝛁. (𝒗′. 𝛁𝒗′) − (𝛁𝒗′): (𝛁𝒗′)𝑑𝑉
𝑉

 (5.18) 

Eq. (5.18) can be rewritten as  
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∫𝒗′. [∇2𝒗′]𝑑𝑉
𝑉

= ∫ (𝒗′. 𝛁𝒗′). 𝒏̂
𝜕𝑉

𝑑𝑆 − ∫‖𝛁𝒗′‖2𝑑𝑉
𝑉

 (5.19) 

Applying the boundary conditions in the first integral in Eq. (5.19) yields  

∫ (𝒗′. 𝛁𝒗′). 𝒏̂
𝜕𝑉

𝑑𝑆

= ∫ [𝑣𝑥
′(0, 𝑡) + 𝛾̇𝐿𝑦 𝑣𝑦

′ (𝐿𝑦, 𝑡)]
𝑡𝑜𝑝

[
𝑣𝑥,𝑥
′ 𝑣𝑥,𝑦

′

𝑣𝑦,𝑥
′ 𝑣𝑦,𝑦

′ ] (
0
1
)𝑑𝑥𝑑𝑧

+ ∫ [𝑣𝑥
′(0, 𝑡) 𝑣𝑦

′ (0, 𝑡)]
𝑏𝑜𝑡𝑡𝑜𝑚

[
𝑣𝑥,𝑥
′ 𝑣𝑥,𝑦

′

𝑣𝑦,𝑥
′ 𝑣𝑦,𝑦

′ ] (
0
−1
)  𝑑𝑥𝑑𝑧

+ ∫ [𝑣𝑥
′(0, 𝑡) 𝑣𝑦

′ (0, 𝑡)]
𝑙𝑒𝑓𝑡

[
𝑣𝑥,𝑥
′ 𝑣𝑥,𝑦

′

𝑣𝑦,𝑥
′ 𝑣𝑦,𝑦

′ ] (
−cos [𝜃(𝑡)]
−𝑠𝑖𝑛 [𝜃(𝑡)]

)  𝑑𝑦𝑑𝑧

+ ∫ [𝑣𝑥
′(𝐿𝑥, 𝑡) 𝑣𝑦

′ (𝐿𝑥, 𝑡)]
𝑟𝑖𝑔ℎ𝑡

[
𝑣𝑥,𝑥
′ 𝑣𝑥,𝑦

′

𝑣𝑦,𝑥
′ 𝑣𝑦,𝑦

′ ] (
cos [𝜃(𝑡)]
𝑠𝑖𝑛 [𝜃(𝑡)]

)  𝑑𝑦𝑑𝑧  

(5.20) 

Simplifying Eq. (5.20) yields 

∫𝒗′. [∇2𝒗′]𝑑𝑉
𝑉

= 𝛾̇𝐿𝑦∫ 𝜕𝑦𝑣𝑥
′𝑑𝑥𝑑𝑧

𝜕𝑉(𝑦=𝐿)

−∫‖𝛁𝒗′‖2𝑑𝑉
𝑉

 (5.21) 

We note that 𝜕𝑦𝑣𝑥
′ = 𝜎′𝑥𝑦(𝑡)/𝜂 is the time-dependent fluctuating component of 

the shear-stress [43]. Therefore, we obtain 

∫𝒗′. [∇2𝒗′]𝑑𝑉
𝑉

=
𝛾̇𝐿𝑦𝜎𝑥𝑦

′ (𝑡)𝐿𝑥𝐿𝑧

𝜂
− ∫‖𝛁𝒗′‖2𝑑𝑉

𝑉

 (5.22) 

Thus, we have 

∫𝒗′. [∇2𝒗′]𝑑𝑉
𝑉

=
𝛾̇𝜎𝑥𝑦

′ (𝑡)𝑉

𝜂
− ∫‖𝛁𝒗′‖2𝑑𝑉

𝑉

 (5.23) 
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Interestingly, the term 𝛾̇𝜎𝑥𝑦
′ (𝑡)𝑉 is the stochastic component of the dissipation 

function Ω𝑡(𝚪) that is the foundation of the FT.  For the second term in the integral 

in (5.17), we have  

∫𝒗′. [𝒊̂𝑣𝑦
′ ]𝑑𝑉

𝑉

= ∫𝑣𝑥
′𝑣𝑦
′𝑑𝑉

𝑉

 (5.24) 

which yields 

1

2
𝜌0
𝑑

𝑑𝑡
∫‖𝒗′(𝒙, 𝑡)‖2𝑑𝑉
𝑉

= 𝛾̇𝜎𝑥𝑦
′ (𝑡)𝑉 − 𝜂∫‖𝛁𝒗′‖2𝑑𝑉

𝑉

− 𝜌0𝛾̇ ∫𝑣𝑥
′𝑣𝑦
′𝑑𝑉

𝑉

 

(5.25) 

We now apply the Poincaré inequality [41] to Eq. (5.25) to obtain4,5 

𝑑

𝑑𝑡
(
1

2
𝜌0∫‖𝒗

′(𝒙, 𝑡)‖2𝑑𝑉
𝑉

)

≤ 𝛾̇ ∫𝜎𝑥𝑦
′ (𝑡)𝑑𝑉

𝑉

− (
𝜂𝜋2

𝐿𝑦2
−
𝜌0𝛾̇

2
) × 

2

𝜌0
(
1

2
𝜌0∫‖𝒗′(𝒙, 𝑡)‖

2𝑑𝑉
𝑉

) 

(5.26) 

Bearing in mind Eq. (5.11), we simplify Eq. (5.26) to obtain 

𝑑

𝑑𝑡
𝐾(𝑡) ≤ −(

2𝜂𝜋2

𝜌0𝐿𝑦2
− 𝛾̇)𝐾(𝑡) + 𝛾̇𝜎𝑥𝑦

′ (𝑡)𝑉 (5.27) 

When Eq. (5.27) is written with the equality sign, it is a stochastic ordinary 

differential equation, i.e. a Langevin equation for 𝐾(𝑡) in the presence of random 

 
4 Let 𝐷 be a regular, bounded region in 𝔼3. Then there is a scalar constant 𝜆 > 0, depending only 

on 𝐷, with the property ∫ |𝒘|2𝑑𝑉𝒙𝐷
≤ 𝜆∫ ∇𝒘: ∇𝒘𝑑𝑉𝒙𝐷

  for all smooth vector fields 𝒘 satisfying 𝒘 =

 𝟎 on 𝜕𝐷. 
5 Suppose 𝑓(𝑦) is a (smooth enough) function on 𝑦 ∈  [0, ℎ] and 𝑓(0) = 0 = 𝑓(ℎ). Then, ‖𝑓‖2 =

∫ [𝑓(𝑦)]2𝑑𝑦
ℎ

0
≤
𝜋2

ℎ2
∫ [𝑓′(𝑦)]2𝑑𝑦
ℎ

0
=
𝜋2

ℎ2
‖𝑓′‖2. 
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noise. The first term is the conventional deterministic continuum result, and the 

second term is the stochastic modification owing to random molecular motion that 

has been introduced due to the FT. As a result, Eq. (5.27) can be written as  

𝑑

𝑑𝑡
𝐾(𝑡) ≤ −(

2𝜂𝜋2

𝜌0𝐿𝑦2
− 𝛾̇)𝐾(𝑡) + 𝑆(𝑡) (5.28) 

Where 𝑆(𝑡) is the total volumetric entropy production, which acts as a stochastic 

forcing term in Eq. (5.28) [40]. In this manner, the FT acts as a bridge between 

classical continuum scales and the microscopic scale. The solution to the above 

relation implies the condition 

𝐾(𝑡) ≤ 𝑒
−(
2𝜂𝜋2

𝜌0𝐿𝑦
2 −𝛾̇)𝑡

𝐾(0) + 𝛾̇𝑉∫ 𝑒
−(
2𝜂𝜋2

𝜌0𝐿𝑦
2 −𝛾̇)(𝑡−𝑠)

𝜎𝑥𝑦
′ (𝑠)𝑑𝑠

𝑡

0

 (5.29) 

5.3 Results and Discussion 

5.3.1 Lower Bound on the Critical Reynolds Number   

Alternatively, the relation in Eq. (5.28) can be written for the magnitude of the 

fluctuations (𝑣2 = ‖𝐯‖2) as 

𝑑

𝑑𝑡
‖𝐯‖2 +

‖𝐯‖2

𝜏𝑟
≤
𝜂𝛾̇

𝜌0
𝜎𝑥𝑦
′ (𝑡) (5.30) 

 where 𝜏𝑟 = 1/ (
2𝜂𝜋2

𝜌0𝐿𝑦
2 − 𝛾̇). The statistical mean of Eq. (5.30) is 

⟨‖𝐯‖𝑡
2⟩ ≤ ⟨‖𝐯‖0

2⟩𝑒−𝑡/𝜏𝑟 (5.31) 

where ‖𝐯‖0
2 is ‖𝐯‖𝑡

2 at 𝑡 = 0 where we assumed ⟨𝜎𝑥𝑦
′ (𝑡)⟩ = 0. The variance of 

(5.30) is given by 

𝑠𝑡
2 ≤

𝜂2𝛾̇2𝑔𝜎′𝜏𝑟

𝜌0
2 (1 − 𝑒−2𝑡/𝜏𝑟) (5.32) 
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where 𝑔𝜎′ = ∫ ⟨𝜎𝑥𝑦
′ (0)𝜎𝑥𝑦

′ (𝑠)⟩𝑑𝑠
𝑡

0
= 𝑘𝐵𝑇𝜂 from the Green-Kubo relation for 

viscosity [10] arising from linear-response theory, 𝑇 is the fluid temperature, and 

𝑘𝐵 is the Boltzmann constant. As 𝑡 → ∞, using the definition of the variance and 

under the assumption of Maxwell dynamics (where the motion of the fluid 

molecules is described probabilistically by the Maxwell-Boltzmann distribution), 

𝑠𝑡→∞
2 = ⟨(𝑣2)2⟩ − ⟨𝑣2⟩2 = ⟨𝑣4⟩ − ⟨𝑣2⟩2 ≤

𝜂2𝛾̇2𝑔𝜎′𝜏𝑟

𝜌0
2  (5.33) 

The left-hand side of Eq. (5.33) can be simplified as  

𝑠𝑡→∞
2 = ⟨𝑣2⟩2 [

⟨𝑣4⟩

⟨𝑣2⟩2
− 1] (5.34) 

where ⟨𝑣2⟩2 = 9𝑣𝑝
4/4 with 𝑣𝑝 as the most probable speed of the Maxwell-

Boltzmann distribution. We define the excess kurtosis of the Maxwell-Boltzmann 

distribution as 𝜅 = ⟨𝑣4⟩ ⟨𝑣2⟩2⁄ − 3. Then, the variance can be rewritten as   

𝑠𝑡→∞
2 =

9𝑣𝑝
4

4
[𝜅 + 2] (5.35) 

Substituting Eq. (5.35) in Eq. (5.33), and using the definition of 𝜏𝑟, we obtain 

9𝑣𝑝
4

4
[𝜅 + 2] ≤

𝜂3𝛾̇3𝑘𝐵𝑇

𝜌0
2 (

2𝜋2

𝑅𝑒
− 1) (5.36) 

where 𝑅𝑒 = 𝜌0𝛾̇𝐿𝑦
2 /𝜂 is the Reynolds number. Using the ideal gas relation6  

𝑃 = 𝜌𝑘𝐵𝑇, and considering pressure to be compressive, and 𝜎𝑥𝑦 = 𝜂𝛾̇, we have 

9𝑣𝑝
4

4
[𝜅 + 2] ≤

𝜂3𝛾̇3𝜌0𝑘𝐵𝑇

𝜌0
3 (

2𝜋2

𝑅𝑒
− 1) = −

𝜎𝑥𝑦
3 𝑃

𝜌0
3 (

2𝜋2

𝑅𝑒
− 1) (5.37) 

 
6 In the specific case of Couette flow of fluid whose particles interact via the Lennard-Jones 

potential, the influence of the particle interactions on the transport properties of the fluid is weak 

even in states far from equilibrium [74]. Hence, the reason why the ideal gas equation is a 

reasonable approximation in this case. 
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Rearranging Eq. (5.37), we obtain  

9

4𝑃𝑣𝑝2
[𝜅 + 2] ≤ −(

2𝜋2

𝑅𝑒
− 1) [

𝜎𝑥𝑦

𝜌0𝑣𝑝2
]

3

 (5.38) 

The term 𝜎𝑥𝑦 𝜌0𝑣𝑝
2⁄  is related to the hydraulic friction factor 𝑓 = 𝑎𝜎𝑥𝑦 𝜌0𝑣𝑝

2⁄  where 

𝑎 is a constant depending on the type of f used (Fanning, Darcy, Stanton, etc). Using 

𝑓 in Eq. (5.38) yields Table 2.  

9

4𝑃𝑣𝑝2
[𝜅 + 2] ≤ −(

2𝜋2

𝑅𝑒
− 1) [

𝑓

𝑎
]
3

 (5.39) 

Now, applying the relationship 𝑓~𝑏/𝑅𝑒, where 𝑏 is a constant once again 

depending on the definition used in Eq. (5.31), 

9

4𝑃𝑣𝑝2
[𝜅 + 2] ≤ −(

2𝜋2

𝑅𝑒
− 1) [

8

𝑅𝑒
]
3

 (5.40) 

where factor 8 is the ratio 𝑏/𝑎. For the Maxwell-Boltzmann distribution,  

𝜅 = 0.1082 and 𝑣𝑝 = √2𝑅𝑇 𝑀⁄  where 𝑅 = 8.314 J/K.mol, and 𝑀 is the molar 

mass of the fluid. Rearranging and simplifying Eq. (5.40) yields the quartic 

inequality  

−(
5.572 × 10−4𝑀

𝑃𝑇
)𝑅𝑒4 + 𝑅𝑒 − 2𝜋2 ≥ 0 (5.41) 

Under RTP conditions (i.e. 𝑃 = 101.325𝑘𝑃𝑎, 𝑇 = 300𝐾) we obtain  

−1.833 × 10−8𝑀𝑅𝑒4 + 𝑅𝑒 − 2𝜋2 ≥ 0 (5.42) 

Eq. (5.42) can be solved (numerically or graphically as in Fig. 1) for different gases 

to yield a fluid dependent Reynolds number that governs the transition to turbulence 

as shown in Table 2.  
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Fig.  17: Plot of the left-hand side of the inequality in Eq. (5.42), expressed as 𝑓(𝑅𝑒), for 

Argon with 𝑀 = 39.948 × 10−3 𝑘𝑔 (top) and 𝑀 = 1 (bottom). 
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An exciting result of Eq. (5.42) is that, by choosing 𝑀 = 1, and solving the 

quartic equation (see Fig.  17), we obtain a baseline value for the critical Reynolds 

number as 𝑅𝑒𝑐𝑟~372.45 which is remarkably consistent with experimental 

observations. This significantly tightens the lower bound of 𝑅𝑒𝑐𝑟 ≥ 2𝜋
2 derived 

from the classical Poincaré inequality, as shown in Fig.  23. In fact, the application 

of the FT has yielded a result consistent with experimental observations. 

Additionally, the explicit use of the molar mass, 𝑀, of the fluid under consideration 

yields a modified value for  𝑅𝑒𝑐𝑟 that satisfies the inequality in Eq. (5.42) to serve 

as an upper bound. For instance, the critical Reynolds number for Argon from  

Table 2 would be in the region 372.45 ≤ 𝑅𝑒𝑐𝑟 ≤ 1,103, as shown in Fig.  23. 

Somewhere in this region is where the transition to turbulence is expected to occur 

spontaneously. 

 

Fig.  18: Plot of inequality in Eq. (5.42) for Argon showing the critical Reynolds number. 

The yellow shaded region is constrained by the two values for the critical Reynolds number 

that satisfy Eq. (5.42). The classical deterministic solution of 𝑅𝑒 ≥ 2𝜋2 is shown to 

illustrate the tightening of the bounds via implementation of the FT.  

𝑅𝑒 = 2𝜋2 
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Table 2: Critical Reynolds numbers for gases based on Eq. (5.42) 

Gas 𝐌 (g/mol) 𝐑𝐞𝐜𝐫 
𝐍𝟐 28.014 1255 
𝐀𝐫 39.948 1103 
𝐂𝐥𝟐 70.9 923 

𝐧 − 𝐃𝐞𝐜𝐚𝐧𝐞 142.86 733 
𝐇𝟐𝐎 18.015 1453 
𝐇𝟐 2.008 3013 
𝐇𝐞 4.0026 2395 

𝐏𝐄𝐆 𝟒𝟎𝟎 420 513 

From Table 2, we gather that the predicted upper bound for the critical 

Reynolds number from Eq. (5.42) is larger for lighter gases than heavier ones as 

dictated by their molar mass. Only for the heaviest organic compounds (n-Decane 

and PEG 400) do we observe 𝑅𝑒𝑐𝑟 being close to the experimental value of 360 

reported in the literature. One possible reason for this fluid-dependent Reynolds 

number could be that, for light gases, the random molecular motion is inherently 

significant as compared to their heavier counterparts. Therefore, perturbations of 

much higher magnitude are required to overcome this natural activity and create 

sufficient inertial disturbance to induce turbulence. As an example, the flow of the 

diatomic hydrogen gas potentially becomes turbulent at 𝑅𝑒𝑐𝑟~2,395, whereas the 

flow of the diatomic chlorine gas, which is roughly 35 times heavier, is predicted 

to become turbulent at 𝑅𝑒𝑐𝑟~923, and PEG 400 (polyethylene glycol 400) which 

is more than 200 times heavier is predicted to become turbulent at 𝑅𝑒𝑐𝑟~513. It is 

interesting to note that although the upper bound value for the critical Reynolds 

number for the majority of the gases is much greater than the experimental value of 

360 or the computational value of 372.45, they are still on the order of 1,000 as 

described in Ref. [23]. One possible explanation for this over-prediction could be 

due to the 2D nature of the analysis leading to Eq. (5.42) which constrains 

perturbations to the 𝑥𝑦 −plane, inhibiting the development of 3D disturbances and 

vortex formation. A much tighter bound on the critical Reynolds number could 

potentially be obtained with a 3D analysis that would relax these constraints.  
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5.3.2 Kinetic Energy of Velocity Perturbations  

To calculate the kinetic energy of velocity perturbations we divide the simulation 

domain in the y-direction into 20 equally thick slabs and calculate the spatially 

averaged velocities of the particles in that region. The spatially averaged velocities 

are obtained by binning each of the 20 slabs and then estimating the average 

velocity by  

〈𝑣′(𝑦, 𝑡)〉 =
1

𝑛
∑(

1

𝑁
∑𝑣𝑗(𝑞𝑥,𝑗, 𝑞𝑦,𝑗 , 𝑡)

𝑁

𝑗=1

)

𝑛

𝑖=1

 (5.43) 

where 𝑛 is the number of bins in each slab, 𝑁 is the number of particles in a bin, 

and 𝐪 is the coordinate in one of these sub-cells. At each instant of time, the 

fluctuations are calculated by subtracting the streaming velocity profile, 𝐮(𝐫, 𝑡) =

𝐢𝛾̇𝑦. We then calculate the kinetic energy of the perturbations at each of the slabs 

as 𝐾(𝑦, 𝑡) =
1

2
𝜌0‖𝒗

′(𝑦, 𝑡)‖2. By averaging over all the spatial slabs, we obtain the 

global perturbation field as 𝐾(𝑡) =
1

20
∑ 𝐾(𝑦𝑖, 𝑡)
20
𝑖=1 .  

5.3.3 Instability and Transition.  

Table 3: Reynolds numbers for LJ fluid at the state point (𝜌∗, 𝑇∗) = (0.8442, 0.722) based 

on channel widths 

𝑳𝒚
∗𝝈 𝜸∗̇ = 𝟎. 𝟏 𝜸̇∗ = 𝟎. 𝟓 𝜸∗̇ = 𝟏. 𝟓 𝜸∗̇ = 𝟐. 𝟓 

𝟏𝟎 2.3 11.35 34 56.7 

𝟐𝟓 14 71 212.75 354.6 

𝟓𝟎 56.7 284 851 1418.3 

We restrict ourselves to an LJ fluid at the state point (𝜌∗, 𝑇∗) = (0.8442, 0.722). 

Fig.  19 shows the time-evolution of the kinetic energy of the perturbation field for 

different system sizes characterized by the number of particles 𝑁. For 𝑁 = 200, 

500, and 1,000, the channel width is 𝐿 = 10𝜎, 25𝜎, and 50𝜎, respectively. We 

have normalized the velocities by ‖𝐯′‖0
2 which is  ‖𝐯′(𝐱, t = 0)‖. Hence, at 𝑡 = 0 

the normalized variable being plotted |𝐯|2 =
‖𝐯′‖

2

‖𝐯′‖0
2 = 1. The most immediate 

observation is that, as suggested by Eq. (5.29), the kinetic energy of the perturbation 
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field undergoes a general exponential decay superposed with an additional 

stochastic contribution. The randomness is due to the fluctuations in the shear stress 

and results in a non-monotonic decay of perturbations. Therefore, over the general 

exponentially decaying trend, we would observe instances of a spontaneous 

increase in kinetic energy.  

It is expected that in situations where the stochastic forcing of the shear 

stress is sufficiently strong, it can result in transient amplification of the kinetic 

energy that overcomes the exponential stability, thus resulting in a subcritical 

transition to turbulence. This is illustrated in Fig.  19a, for 𝛾̇∗ = 0.1. The Reynolds 

number for 𝐿𝑦 = 10𝜎 is approximately 𝑅𝑒 = 𝜌0𝛾̇𝐿𝑦
2  𝜂⁄ ≈ 2.3. This is well below 

the threshold (325 ≤ 𝑅𝑒𝑐𝑟 ≤ 370) at which we would expect the breakdown of 

hydrodynamic stability as suggested by experiments for plane Couette flow [34], 

[70]. However, we see transient amplification of the kinetic energy.  

The instances of subcritical transition can be seen in cases with 𝐿𝑦
∗ = 25𝜎 

and 𝛾̇∗ = 2.5 (Fig. 3d), and 𝐿𝑦
∗ = 50𝜎 and 𝛾̇∗ = 0.5 (Fig.  19b). In Fig.  19b, we 

see that for 𝑁 = 200 and 𝑁 = 500 the perturbation field decays exponentially.  
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Fig.  19: The kinetic energy of the time-varying velocity perturbations for LJ fluid at the 

state point (𝜌∗, 𝑇∗) = (0.8442, 0.722) for (a) 𝛾̇∗ = 0.1 and (b) 𝛾̇∗ = 0.5  and (c) 𝛾̇∗ = 1.5 

and (d) 𝛾̇∗ = 2.5. 

However, for 𝑁 = 1000, |𝐯|2 does not decay but rather fluctuates around a constant 

value. This is because the Reynolds number 𝑅𝑒 = 284, which very close to the 

transition regime for Couette flow (𝑅𝑒~320 at the lower end). Near this region, we 

no longer observe a transient decay of perturbations as the flow is no longer stable. 

In Fig.  19c and Fig.  19d we see that for the larger systems, |𝐯|2 increases. The 

fluid is no longer stable and thus a transition is taking place which is illustrated by 

the lack of exponential decay of the perturbation field. Table 3 provides further 

evidence from the Reynolds numbers, which are greater than 320. This indicates 

(a) (b) 

(c) (d) 



 

75 
 

that the fluid flow is in the regime where transient growth of perturbations is 

generally observed.  

The Reynolds numbers for the range of strain-rates considered and several 

channel widths are shown in Table 3. One possible reason for this transient growth 

in kinetic energy at subcritical Reynolds numbers is that stochastic forcing 

facilitates the transfer of energy from the mean flow to the perturbation field, which 

may potentially be greater than the sum of all the contributions of the normal modes 

being independently excited by a stochastic forcing field [28]. Thus, despite 

exponential stability, in some cases, we observe transient growth. 

In summary, the observations drawn from Fig.  19 are precisely those 

characterizing instability based on the Reynolds-Orr equation [69].  Therefore, it is 

not necessarily true that the magnitude of perturbations becomes smaller as the 

system size increases. This is only the case if the inequality in Eq. (5.29) is satisfied. 

Otherwise, as we approach the critical Reynolds number the perturbations will 

cease to decay. In particular, observations from Fig.  19c and Fig.  19d indicate that 

as the system size increases, the Reynolds number increases leading to growth 

(rather than decay) of the perturbation field.  

5.3.4 Shear Thinning and ‘String’ – Phase Instability  

Fig.  20 illustrates the stress strain-rate response and the density profiles before and 

after the onset of shear-thinning. From Fig.  20a, it is observed that all the fluids 

that undergo shear-thinning are characterized by a dramatic change in the slope of 

the response plot.  The peaks of the response curves are the reduced critical strain-

rates, 𝛾̇𝑐𝑟
∗  at which that change occurs. For the Lennard-Jones (LJ) fluid at a reduced 

density 𝜌∗ = 0.8442 and a reduced temperature of 𝑇∗ = 0.722, which corresponds 

to the triple-point of Argon, 𝛾̇𝑐𝑟
∗ ≈ 1.0. The cause of shear-thinning is the molecular 

alignment in the direction of the flow leading to the saw-toothed profile after the 

onset of shear-thinning (Fig.  20c) as opposed to a homogeneous density profile 

(Fig.  20b), which are shown for the LJ fluid at (𝜌∗, 𝑇∗) = (0.8442, 0.722). Fig.  

20c gives the characteristic profile of the so-called ‘string’-phase [5], [7]. In this  
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Fig.  20: Response and structural features of shear-thinning and the ‘string’-phase. (a) 

Stress strain-rate responses for different Lennard-Jones state-points [35], (b) homogeneous 

density profile for 𝛾̇∗ = 0.5, and (c) saw-tooth density profile in the ‘string’-phase after the 

onset of shear-thinning for 𝛾̇∗ = 2.5. (b) and (c) correspond to the fluid at a state with a 

reduced density 𝜌∗ = 0.8442 and a reduced temperature of 𝑇∗ = 0.722 [43]. 

(a) 

(b) 

(c) 
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phase, particles organize themselves into columns in the direction of flow with 

hexagonal symmetry [34], [70]. 

5.3.5 The Nature of Perturbations 

In the event of transient growth of the kinetic energy, what we observe is that, rather 

than the development of vortices, the particles align themselves in the direction of 

the flow resulting in shear-thinning. This phenomenon is illustrated in Fig.  21, 

where we have plotted the density correlations ⟨𝛿(𝑡)𝛿(𝑡 + 𝑠)⟩. As the strain-rate 

increases, the density correlations decay more slowly. In fact, what we observe is 

that the stochastic fluctuations of the shear stress augment the density fluctuations 

leading to the formation of the ‘string’-phase. By observing shear stress 

autocorrelations, 𝑅(𝑡), in Fig.  22 and, in particular, Fig.  22c and Fig.  22d, we 

notice that the ‘string’-phase is accompanied by prevalent fluctuations in the shear 

stress, in contrast to the amorphous phase (Fig.  22a and Fig.  22b). Consistent with 

well-established observations, shear stress fluctuations (related to velocity 

perturbations) are slow in 2D. The ‘string’-phase instability is a manifestation in 

2D Couette flow as an artifact of the thermostatting mechanism in the SLLOD 

equations [6], [10] due to the confinement of velocity perturbations in the xy-plane. 

In fact, in 3D Couette flow the presence of rapid fluctuations in velocity 

perturbations along with the presence of fluctuations in the y and z directions 

perpendicular to the direction of the flow, leads to the formation of streamwise 

vortices that result in the disappearance of the ‘string’-phase [34]. These 

observations allude to the fact that 3D disturbances along with rapid fluctuations in 

the shear stress, and the formation of vortices, are necessary for the emergence of 

turbulence at subcritical Reynolds numbers and the prevention of an ordering 

transition from the amorphous to the ‘string’-phase. 
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Fig.  21: Density correlations and for LJ fluid at the state point (𝜌∗, 𝑇∗) = (0.8442, 0.722) 

for (a) 𝛾̇∗ = 0.1 and (b) 𝛾̇∗ = 0.5  and (c) 𝛾̇∗ = 1.5 and (d) 𝛾̇∗ = 2.5. 
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Fig.  22: Shear stress autocorrelation for LJ fluid at the state point (𝜌∗, 𝑇∗) =

(0.8442, 0.722) for (a) 𝛾̇∗ = 0.1 and (b) 𝛾̇∗ = 0.5  and (c) 𝛾̇∗ = 1.5 and (d) 𝛾̇∗ = 2.5. 
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5.4 Conclusions 

In this chapter, we study the dissipation of kinetic energy of perturbations in a 

molecular fluid undergoing Couette flow, with the particles interacting via the 

Lennard-Jones potential. By employing the Lees-Edwards periodic boundary 

conditions and the Poincaré inequality, we obtain a stochastic Langevin-equation-

type generalization to the classical exponential decay of the perturbation field, as 

shown in Eq. (5.22). We illustrate the intimate connection between the relation Eq. 

(5.22) and the FT by showing that the random term in Eq. (5.22) is simply the 

dissipation function that is the cornerstone of the FT.  

We demonstrate how under the assumption of Maxwell dynamics the 

variance can be used to establish a lower bound on the critical Reynolds number at 

which the transition to turbulence occurs. This value of 𝑅𝑒 depends on the molar 

mass of the fluid and is obtained by solving a 4th-order polynomial equation. We 

highlight reasons as to the nature of this fluid dependence and the departure from 

experimental observations at continuum scales. 

Furthermore, we provide computational evidence of this phenomenon by 

running NEMD simulations using SLLOD dynamics in LAMMPS. It is observed 

that the decay of the perturbation field is dependent on the strain-rate and the system 

volume (or the number of particles in the fluid). In general, in the laminar regime 

of the flow, we see an exponential albeit non-monotonic decay owing to 

fluctuations in the shear stress. Additionally, there are instances of large increases 

in the perturbation field owing to negative instances of shear stress as predicted by 

the FT. We formulate the dissipation function and the rate of entropy production 

and demonstrate the system’s tendency to violate the second law of 

thermodynamics, which strongly influences the stability of the system, as 

particularly evident in small systems. As the system size increases, we see that the 

decay is faster and the magnitude of fluctuations is smaller.  For larger system sizes, 

we also see that the perturbations do not decay. This is expected to be due to the 

onset of turbulence and the formation of vortices in the stream-wise direction. 
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Chapter 6 

Conclusion and Future Research  

Concluding remarks on the topics presented in the dissertation are provided in this 

chapter, followed by a discussion on some future research directions. It was 

highlighted that in sub-continuum flows, fluids exhibit exotic properties not 

observed at continuum scales. In this dissertation, the focus was on the viscosity of 

the fluid and its tendency to spontaneously violate the second law of 

thermodynamics.  

 In Chapter 3, we focused on the shear thinning characteristics of a fluid 

composed of Lennard-Jones particles. Based on NEMD observations, we reported 

that at a critical strain rate, the fluid undergoes dramatic shear thinning. Although 

the fluid is inherently homogeneous and isotropic, at the critical strain rate it begins 

to align in the direction of the flow and form ‘strings’. The layering of the fluid 

results in a drop in friction between fluid layers causing a dramatic change in the 

slope of the stress-deformation response and a corresponding drop in viscosity. In 

light of these observations, we used the BGK approximation to the Boltzmann 

equation to obtain a strain rate dependent constitutive model for the shear stress. 

From this model, we obtained a model for the viscosity which resembles the Cross 

model but absent empirical fitting constants. We also established the existence of 

scaling behavior in the LJ fluid by unifying the rheological behavior of the LJ fluid 

at several state points through the effective molecular collision frequency, which 

forms the basis of the BGK approximation. We expressed this parameter entirely 

in terms of measurable fluid properties, i.e. its density, temperature and Newtonian 

viscosity. Finally, within the framework of thermomechanics, such fluids must be 

treated as quasi-linear to accurate capture their non-Newtonian behavior.  

 Chapter 4 delved into the stochastic nature of the sub-continuum flows and 

the implications of instantaneous violations of the second law of thermodynamics. 

We developed a theoretical framework to generalized continuum theories to 

microscale flows via the fluctuation theorem (FT) and demonstrated the importance 
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of the shear stress in bridging the gap between these two distinct scales. In 

particular, we showed how random fluctuations in the shear stress play a critical 

role in the microscale dynamics of the flow. Via density perturbations of the 

Navier-Stokes equations, we illustrated the interplay between these important 

factors and their decoupling at the continuum limit.  Subsequently, we studied and 

characterized the randomness in the shear stress and local density fluctuations, and 

the nature of these fluctuations. This was achieved by analyzing their temporal and 

spectral characteristics. We developed a range of models for atomic fluids that 

could potentially enhance the current state of simulations in micro and nano-fluidics 

by enriching conventionally deterministic models by introducing crucial statistical 

effects.  

 Building upon the observations and conclusions of Chapter 4, in Chapter 5 

we investigated how stochastic fluctuations in the shear stress affected the flow 

stability of the fluid. Using the Poincare inequality and the Navier-Stokes 

equations, we generalized the conventional exponential stability of the kinetic 

energy of velocity perturbations to a stochastic Langevin equation that incorporates 

the fluid’s tendency to spontaneously violate the second law of thermodynamics. 

We discussed the intricate connection of this equation to the FT via the dissipation 

function. The latter forms the basis of the FT and explicitly arises in the governing 

equation for velocity perturbations. Owing to the analytical nature of this equation, 

we solved this model for the variance of velocity perturbations and obtained a fluid-

dependent lower bound on critical Reynolds number for the onset of turbulence, 

thus shedding some light on the nature of subcritical transitions in Couette flow. 

We substantiated our theoretical analyses with computational evidence with cases 

of exponential decay and transient amplification of the kinetic energy of velocity 

perturbations. We discussed reasons for their occurrence and the nature of these 

perturbations as applicable to Couette flow of atomic fluids.  

6.1 Major Outcomes 

In summary, the major outcomes of this research are as follows: 
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1. Atomic fluids undergo a strain-rate dependent ordering transition from an 

amorphous to a ‘string’-phase that leads to shear thinning. 

2. The shear stress and viscosity are accurately captured by a model similar to 

the Cross viscosity model. 

3. The effective molecular collision frequency from the BGK approximation 

to the Boltzmann equation acts as a universal scaling constant that unifies 

the rheological behavior of the LJ fluid at several state points. 

4. Shear stress fluctuations and density perturbations play a crucial role in 

dynamics of microscale flows. 

5. The FT is a key tool that allows us to generalize continuum laws to sub-

continuum scales via the dissipation function. 

6. Owing to FT, the stability of microscale flows, as characterized by the 

kinetic energy of velocity perturbations, is governed by a stochastic 

Langevin equation which reduces to classical exponential stability at 

continuum scales. 

7. The introduction of stochastic fluctuations in the shear stress enriches the 

classical exponential model by facilitating the establishment of a tighter 

lower bound on the critical Reynolds number for the onset of turbulence.  

8. The critical Reynolds number in (7) is fluid-dependent and much closer to 

experimental observations.  

9. The theoretical and computational evidence [in (6) - (8)] provide insight 

into the nature of subcritical transitions to turbulence as commonly 

observed in simulations and experiments of Couette flow.  

6.2 Future Directions 

6.2.1 Flow in Porous Media 

Scale-dependent homogenization of flow in spatially-random porous media under 

Dirichlet and Neumann boundary conditions was considered in [71]. In this study, 

estimates on the size of the Representative Volume Element (RVE) of a 

conventional continuum Darcy’s Law  
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𝑞𝑖 =
1

𝜂
Κ𝑝𝑖 (6.1) 

were obtained; here  𝑞𝑖 is the fluid flux and Κ is the permeability. This approach 

may be generalized to account for the existence of nano-channels in which 

spontaneous violations of the second law may occur, Fig.  23. In this case, a 

modification of Darcy’s law to the form 

𝑞𝑖 =
1

𝜂
(Κ +ℳ)𝑝𝑖 (6.2) 

is expected; here ℳ is the randomness in permeability. MD can provide insight 

into fluctuations in the narrow channels and potentially allow one to probe the 

appropriate type of randomness consistent with the FT. This would further our 

understanding of fluid flow in large networks of micro/nano-channels (e.g. 

capillaries in biological systems, nano-foams, etc).  

 

Fig.  23: Sample porous medium with narrow channels that can potentially result in the 

fluid spontaneously violating the second law of thermodynamics. 
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6.2.2 Micropolar Fluids 

Micropolar fluids are fluids with microscale orientational order, i.e. individual 

material points can undergo rigid rotations in addition to translation, the rotations 

being independent degrees of freedom not dictated by the gradient of velocity field 

[72]. Additionally, such fluids carry couples and do not require the Cauchy stress 

tensor to be symmetric. They are interesting because they possess the basic 

mechanisms relevant to suspensions, liquid crystals, and anisotropic fluids. In these 

physical systems, molecular rotation influences the hydrodynamics of the fluid and 

NEMD is particularly well suited to study these effects [1].  

 

Fig.  24: Schematic of a Couette/Poiseuille flow system with explicit walls. The fluid, in 

this case, is comprised of large diatomic molecules (similar to chlorine gas) that possess 

translation as well as rigid rotation. 
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Our aim is to focus on Couette and Poiseuille flows, for which the solutions are 

analytic and therefore amenable to testing by computer simulation experiments 

[73]. In contrast to an idealized NEMD study using Lees-Edwards Periodic 

Boundary Conditions, we will investigate explicit wall-driven flows as shown in 

Fig.  24. 

 NEMD is particularly suited for this study as large molecules (such as 

polymer chains, ellipsoidal suspensions, etc) are naturally allowed to rotate in 

addition to translation. This offers a more realistic scenario as molecules such as 

water and chlorine inherently possess structure (see Fig.  25). 

 

Fig.  25: Chlorine (left) and water (right) molecular models. Simulations incorporating 

these structures and treating them as rigid bodies have the potential to offer more realistic 

insights into fluid behavior in micro and nano-fluidic engineering applications.  

It has been demonstrated that the micropolar fluid model agrees well with NEMD 

results for Poiseuille flow. The objectives and foci of a future study would be as 

follows: 

1. To investigate the influence of molecular rotation on fluid hydrodynamics 

and examining the consistency of micropolar theory in modeling fluids 

comprised of large molecules and comparing the computational with 

analytical results available in the literature to verify our models. 

2. Flow stability/instability of large molecules via the stress-deformation 

response, where it is expected that the rotation of the molecules would 

impact the flow stability and the critical Reynolds number at which the 

transition to an unstable flow occurs. Additionally, the research should 

clarify whether the ‘string-phase’ instability occurs in wall-driven flows. 
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3. Effects of walls (for example, slip-length) on the structure and flow 

dynamics of the fluid, and the extent of these effects depending on the 

channel size. In poromechanics, one would expect the structure of the walls 

of channels to affect the hydrodynamics of the flow, especially for very 

small channels. As the channel size increases, these effects should decrease. 

The goal would be to fully grasp the nature of these effects and their 

dependence on channel width. 

4. Rheological properties/anisotropic fluid behavior with the aim to develop a 

model for stress and couple-stress viscosities that account for the geometry 

of molecules in addition to strain-rate dependence. 

5. Extend (4) to fluid mixtures (i.e. colloidal suspensions) so that volume 

fractions are also considered. 

  



 

88 
 

References 

 

[1]  J. Delhommelle and D. J. Evans, "Poiseuille flow of a micropolar fluid," 

Molecular Physics, vol. 100, no. 17, pp. 2857-2865, 2002.  

[2]  D. M. Heyes, "Shear thinning of the Lennard-Jones fluid by molecular 

dynamics," Physica A: Statistical Mechanics and its Applications, vol. 133, 

no. 3, pp. 473-496, 1985.  

[3]  D. M. Heyes, "Structural changes in simple liquids during extreme shearing," 

Chemical Physics Letters, vol. 127, no. 5, pp. 515-520, 1986.  

[4]  D. M. Heyes, "The nature of extreme shear thinning in simple liquids," 

Molecular Physics, vol. 57, no. 6, pp. 1265-1282, 1986.  

[5]  D. M. Heyes, "Non-Newtonian behaviour of simple liquids," Journal of Non-

Newtonian Fluid Mechanics, vol. 21, no. 2, pp. 137-155, 1986.  

[6]  J. Delhommelle, J. Petravic and D. J. Evans, "Reexamination of string phase 

and shear thickening in simple fluids," Physical Review E, vol. 68, no. 3, p. 

031201, 2003.  

[7]  J. Delhommelle, J. Petravic and D. J. Evans, "Non-Newtonian behavior in 

simple fluids," The Journal of Chemical Physics, vol. 120, no. 13, pp. 6117-

6123, 2004.  

[8]  D. J. Evans, "Molecular dynamics simulations of the rheological properties 

of simple fluids," Physica A: Statistical Mechanics and its Applications, vol. 

118, no. 1-3, pp. 51-68, 1983.  

[9]  A. Baranyai and P. T. Cummings, "Fluctuations close to equilibrium," 

Physical Review E, vol. 52, no. 3, p. 2198, 1995.  



 

89 
 

[10]  D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 

Cambridge University Press, 2008.  

[11]  S. Bair, C. McCabe and P. T. Cummings, "Comparison of nonequilibrium 

molecular dynamics with experimental measurements in the nonlinear shear-

thinning regime," Physical Review Letters, vol. 88, no. 5, p. 058302, 2002.  

[12]  S. T. Cui, S. A. Gupta, P. T. Cummings and H. D. Cochran, "Molecular 

dynamics simulations of the rheology of normal decane, hexadecane, and 

tetracosane," The Journal of Chemical Physics, vol. 105, no. 3, pp. 1214-

1220, 1996.  

[13]  S. T. Cui, P. T. Cummings, H. D. Cochran, J. D. Moore and S. A. Gupta, 

"Nonequilibrium molecular dynamics simulation of the rheology of linear and 

branched alkanes," International Journal of Thermophysics, vol. 19, no. 2, 

pp. 449-459, 1998.  

[14]  A. Berker, S. Chynoweth, U. C. Klomp and Y. Michopoulos, "Non-

equilibrium molecular dynamics (NEMD) simulations and the rheological 

properties of liquid n-hexadecane," Journal of the Chemical Society, Faraday 

Transactions, vol. 88, no. 13, pp. 1719-1725, 1992.  

[15]  H.-C. Tseng, J.-S. Wu and R.-Y. Chang, "Shear thinning and shear dilatancy 

of liquid n-hexadecane via equilibrium and nonequilibrium molecular 

dynamics simulations: Temperature, pressure, and density effects," The 

Journal of Chemical Physics, vol. 129, no. 1, p. 014502, 2008.  

[16]  Y.-R. Jeng, C.-C. Chen and S.-H. Shyu, "A molecular dynamics study of 

lubrication rheology of polymer fluids," Tribology Letters, vol. 15, no. 3, pp. 

293-299, 2003.  

[17]  X. Xu, S. A. Rice and A. R. Dinner, "Relation between ordering and shear 

thinning in colloidal suspensions," Proceedings of the National Academy of 

Sciences, vol. 110, no. 10, pp. 3771-3776, 2013.  



 

90 
 

[18]  H. Farhat and B. C. Eu, "Monte Carlo method and the nonequilibrium 

structure and non-Newtonian viscosity of a sheared simple liquid," The 

Journal of Chemical Physics, vol. 110, no. 1, pp. 97-108, 1999.  

[19]  R. Laghaei, A. Eskandari Nasrabad and B. C. Eu, "Statistical-mechanical 

theory of rheology: Lennard-Jones fluids," The Journal of Chemical Physics, 

vol. 123, no. 23, p. 234507, 2005.  

[20]  K. Y. Volokh, "An investigation into the stability of a shear thinning fluid," 

International Journal of Engineering Science, vol. 47, no. 5-6, pp. 740-743, 

2009.  

[21]  K. Y. Volokh, "Navier-Stokes model with viscous strength," Comp. Model. 

Eng. Sci, vol. 92, pp. 87-101, 2013.  

[22]  S. A. Orzag, "Numerical simulation of incompressible flows within simple 

boundaries, I. Garlekin (spectral) representation," Stud. Appl. Math, vol. 50, 

pp. 293-327, 1971.  

[23]  S. A. Orszag and L. C. Kells, "Transition to turbulence in plane Poiseuille and 

plane Couette flow," Journal of Fluid Mechanics, vol. 96, no. 1, pp. 159-205, 

1980.  

[24]  V. A. Romanov, "Stability of plane-parallel Couette flow," Functional 

Analysis and its Applications, vol. 7, no. 2, pp. 137-146, 1973.  

[25]  A. Lundbladh and A. V. Johansson, "Direct simulation of turbulent spots in 

plane Couette flow," Journal of Fluid Mechanics, vol. 229, pp. 499-516, 

1991.  

[26]  N. Tillmark and P. H. Alfredsson, "Experiments on transition in plane Couette 

flow," Journal of Fluid Mechanics, vol. 235, pp. 89-102, 1992.  



 

91 
 

[27]  S. Grossmann, "The onset of shear flow turbulence," Reviews of Modern 

Physics, vol. 72, no. 2, p. 603, 2000.  

[28]  B. F. Farrell and P. J. Ioannou, "Stochastic forcing of the linearized Navier–

Stokes equations," Physics of Fluids A: Fluid Dynamics, vol. 5, no. 11, pp. 

2600-2609, 1993.  

[29]  S. C. Reddy and D. S. Henningson, "Energy growth in viscous channel 

flows," Journal of Fluid Mechanics, vol. 252, pp. 209-238, 1993.  

[30]  K. M. Butler and B. F. Farrell, "Three‐dimensional optimal perturbations in 

viscous shear flow," Physics of Fluids A: Fluid Dynamics, vol. 4, no. 8, pp. 

1637-1650, 1992.  

[31]  H. B. Squire, "On the stability for three-dimensional disturbances of viscous 

fluid flow between parallel walls," Proceedings of the Royal Society of 

London. Series A, Containing Papers of a Mathematical and Physical 

Character, vol. 142, no. 847, pp. 621-628, 1933.  

[32]  A. W. Lees and S. F. Edwards, "The computer study of transport processes 

under extreme conditions," Journal of Physics C: Solid State Physics, vol. 5, 

no. 15, p. 1921, 1972.  

[33]  W. Loose and S. Hess, "Rheology of dense model fluids via nonequilibrium 

molecular dynamics: Shear thinning and ordering transition," Rheologica 

Acta, vol. 28, no. 2, pp. 91-101, 1989.  

[34]  J. L. McWhirter, "The stability of planar Couette flow simulated by molecular 

dynamics," The Journal of Chemical Physics, vol. 118, no. 6, pp. 2824-2836, 

2003.  

[35]  B. V. Raghavan and M. Ostoja-Starzewski, "Shear-thinning of molecular 

fluids in Couette flow," Physics of Fluids, vol. 29, no. 2, p. 023103, 2017.  



 

92 
 

[36]  K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lomdahl, G. 

Dimonte, B. L. Holian and B. J. Alder, "Nanohydrodynamics simulations: an 

atomistic view of the Rayleigh–Taylor instability," Proceedings of the 

National Academy of Sciences, vol. 101, no. 16, pp. 5851-5855, 2004.  

[37]  E. R. Smith, "A molecular dynamics simulation of the turbulent Couette 

minimal flow unit," Physics of Fluids, vol. 27, no. 11, p. 115105, 2015.  

[38]  R. Cerbino, Y. Sun, A. Donev and A. Vailati, "Dynamic scaling for the 

growth of non-equilibrium fluctuations during thermophoretic diffusion in 

microgravity," Scientific Reports, vol. 5, p. 14486, 2015.  

[39]  D. J. Evans, E. G. D. Cohen and G. P. Morriss, "Probability of second law 

violations in shearing steady states," Physical Review Letters, vol. 71, no. 15, 

p. 2401, 1993.  

[40]  D. J. Evans and D. J. Searles, "The fluctuation theorem," Advances in Physics, 

vol. 51, no. 7, pp. 1529-1585, 2002.  

[41]  O. Gonzalez and A. M. Stuart, A First Course in Continuum Mechanics, 

Cambridge University Press, 2008.  

[42]  H. Ziegler and C. Wehrli, "The derivation of constitutive relations from the 

free energy and the dissipation function," in Advances in Applied Mechanics, 

vol. 25, Elsevier, 1987, pp. 183-238. 

[43]  B. V. Raghavan, P. Karimi and M. Ostoja-Starzewski, "Stochastic 

characteristics and Second Law violations of atomic fluids in Couette flow," 

Physica A: Statistical Mechanics and its Applications, vol. 496, pp. 90-107, 

2018.  

  



 

93 
 

[44]  M. Ostoja-Starzewski and A. Malyarenko, "Continuum mechanics beyond 

the second law of thermodynamics," Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, vol. 470, no. 2171, p. 

20140531, 2014.  

[45]  M. Ostoja-Starzewski and B. V. Raghavan, "Continuum mechanics versus 

violations of the second law of thermodynamics," Journal of Thermal 

Stresses, vol. 39, no. 6, pp. 734-749, 2016.  

[46]  D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J. Searles and D. 

J. Evans, "Fluctuations and irreversibility: An experimental demonstration of 

a second-law-like theorem using a colloidal particle held in an optical trap," 

Physical Review Letters, vol. 92, no. 14, p. 140601, 2004.  

[47]  G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, 

"Experimental demonstration of violations of the second law of 

thermodynamics for small systems and short time scales," Physical Review 

Letters, vol. 89, no. 5, p. 050601, 2002.  

[48]  B. D. Todd and P. J. Daivis, "Homogeneous non-equilibrium molecular 

dynamics simulations of viscous flow: techniques and applications," 

Molecular Simulation, vol. 33, no. 3, pp. 189-229, 2007.  

[49]  W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst and 

B. Moran, "Lennard-Jones triple-point bulk and shear viscosities. Green-

Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular 

dynamics," Physical Review A, vol. 22, no. 4, p. 1690, 1980.  

[50]  D. J. Evans and G. P. Morriss, "Nonlinear-response theory for steady planar 

Couette flow," Physical Review A, vol. 30, no. 3, p. 1528, 1984.  

[51]  D. J. Evans and O. P. Morriss, "Non-Newtonian molecular dynamics," 

Computer Physics Reports, vol. 1, no. 6, pp. 297-343, 1984.  



 

94 
 

[52]  A. J. C. Ladd, "Equations of motion for non-equilibrium molecular dynamics 

simulations of viscous flow in molecular fluids," Molecular Physics, vol. 53, 

no. 2, pp. 459-463, 1984.  

[53]  S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," 

Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995.  

[54]  B. D. Todd and P. J. Daivis, Nonequilibrium molecular dynamics: theory, 

algorithms and applications, Cambridge University Press, 2017.  

[55]  J. W. Dufty, A. Santos, J. J. Brey and R. F. Rodriguez, "Model for 

nonequilibrium computer simulation methods," Physical Review A, vol. 33, 

no. 1, p. 459, 1986.  

[56]  R. Zwanzig, "Nonlinear shear viscosity of a gas," The Journal of Chemical 

Physics, vol. 71, no. 11, pp. 4416-4420, 1979.  

[57]  C. H. Kruger and W. G. Vincenti, Introduction to Physical Gas Dynamics,  

John Wlley & Sons, 1965.  

[58]  D. L. Morris, L. Hannon and A. L. Garcia, "Slip length in a dilute gas," 

Physical Review A, vol. 46, no. 8, p. 5279, 1992.  

[59]  S. K. Prabha, P. D. Sreehari, M. Gopal M and S. P. Sathian, "The effect of 

system boundaries on the mean free path for confined gases," AIP Advances, 

vol. 3, no. 10, p. 102107, 2013.  

[60]  W. T. Ashurst and W. G. Hoover, "Argon shear viscosity via a Lennard-Jones 

potential with equilibrium and nonequilibrium molecular dynamics," 

Physical Review Letters, vol. 31, no. 4, p. 206, 1973.  

[61]  I. Borzsak, P. T. Cummings and D. J. Evans, "Shear viscosity of a simple 

fluid over a wide range of strain rates," Molecular Physics, vol. 100, no. 16, 

pp. 2735-2738, 2002.  



 

95 
 

[62]  G. P. Morriss and D. J. Evans, "Application of transient correlation functions 

to shear flow far from equilibrium," Physical Review A, vol. 35, no. 2, p. 792, 

1987.  

[63]  M. Ostoja-Starzewski, "Continuum Physics with Violations of the Second 

Law of Thermodynamics," in Mathematical Modelling in Solid Mechanics, 

Springer, 2017, pp. 181-192. 

[64]  S. Adhikari, "Matrix variate distributions for probabilistic structural 

dynamics," AIAA Journal, vol. 45, no. 7, pp. 1748-1762, 2007.  

[65]  C. Courtney, B. Drinkwater, S. Neild and P. Wilcox, "Global crack detection 

using bispectral analysis," in 9th European NDT Conference ECNDT, 2006.  

[66]  A. J. Hillis, S. A. Neild, B. W. Drinkwater and P. D. Wilcox, "Global crack 

detection using bispectral analysis," Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, vol. 462, no. 2069, pp. 

1515-1530, 2006.  

[67]  I. Elishakoff, Probabilistic Theory of Structures, Courier Corporation, 1999.  

[68]  H. Ziegler, An Introduction to Thermomechanics, vol. 21, Elsevier, 2012.  

[69]  P. J. Schmid, D. S. Henningson and D. F. Jankowski, Stability and transition 

in shear flows. Applied Mathematical Sciences, Vol. 142, American Society 

of Mechanical Engineers Digital Collection, 2002.  

[70]  H.-S. Dou and B. C. Khoo, "Investigation of turbulent transition in plane 

Couette flows using energy gradient method," Advances in applied 

mathematics and mechanics, vol. 3, no. 2, pp. 165-180, 2011.  

  



 

96 
 

[71]  X. Du and M. Ostoja-Starzewski, "On the size of representative volume 

element for Darcy law in random media," Proceedings of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, vol. 462, no. 2074, pp. 

2949-2963, 2006.  

[72]  A. C. Eringen, Microcontinuum field theories: II. Fluent media, vol. 2, 

Springer Science & Business Media, 2001.  

[73]  K. P. Travis and D. J. Evans, "Molecular spin in a fluid undergoing Poiseuille 

flow," Physical Review E, vol. 55, no. 2, p. 1566, 1997.  

[74]  V. Garzó and A. Santos, Kinetic theory of gases in shear flows: nonlinear 

transport, vol. 131, Springer Science & Business Media, 2013.  

 

 

 


