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ABSTRACT 

 The addition of habitat structures is a popular management strategy in reservoirs meant to 

mitigate the negative effects of passive and anthropogenic physical habitat degradation on 

sportfish populations and angler satisfaction.  However, mechanisms linking the direct effect of 

habitat management strategies on aquatic communities and predator/prey interactions, and the 

ability of habitat management strategies to meet objectives, remains unclear.  We conducted a 

series of replicated pond experiments using plastic fish attractors (Artificial) and coarse woody 

habitat (CWH) to test hypotheses linking the direct impact of habitat material type and spatial 

arrangement on aquatic invertebrates and the growth, condition, and survival of largemouth bass 

(Micropterus salmoides) and bluegill (Lepomis machrochirus), independent of habitat amount.  

Patterns of invertebrate community colonization and daily secondary production were similar 

between ponds containing Artificial or CWH structures and was not influenced by habitat spatial 

arrangement.  Moreover, the growth, condition, and survival of largemouth bass and bluegill 

sunfish were similar in ponds containing Artificial or CWH structures, and between ponds that 

differ in habitat spatial arrangement.  Our results suggest that other factors such as habitat 

amount, or the presence of alternative physical habitats, are more important to fishes and aquatic 

invertebrates than habitat material type or spatial arrangement.  Management agencies and 

stakeholders should focus on maintaining existing physical habitat abundance and diversity, and 

the relative cost and longevity of introducing different physical habitat types at the appropriate 

spatial extent may be more important than habitat material type or spatial arrangement. 
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CHAPTER 1: LITERATURE REVIEW 

Substantial modification of natural ecosystems by humans has resulted in pervasive 

habitat degradation and loss, and has been identified as a primary driver of species extinction and 

declining biodiversity worldwide (Kovalenko et al. 2012).  Habitat loss in lentic ecosystems can 

be attributed to direct anthropogenic disturbances such as lakeshore development and removal of 

littoral physical habitat (Schindler et al. 2000; Marburg et al. 2006).  Degradation of physical 

habitat also occurs passively through physical breakdown by wind action and water abrasion 

(Czarnecka 2016) and chemical breakdown through nutrient leaching and decomposition by 

microbes and certain xylophagous invertebrate taxa (Harmon et al. 1986).  Physical habitat, such 

as coarse woody habitat (CWH), can also become unavailable due to sedimentation and 

inundation by fine particle sediments that occurs as reservoirs age (Moring et al. 1986).  These 

direct and indirect processes result in increasingly simplified and homogenous reservoir 

ecosystems that are capable of supporting fewer species and individuals, are more vulnerable to 

stochastic events, and are more susceptible to biological invasions that may accelerate species 

extinction and extirpation (McCann 2000).  Moreover, substantial declines in ecosystem integrity 

and biodiversity can result in lost natural resources and ecosystem services that are economically 

beneficial to humans (Christensen et al. 1996). 

Intentional removal and degradation of physical habitat in reservoir littoral zones is 

problematic for fisheries, as littoral zones contain physical habitat that is critical to fisheries 

(Lewin et al. 2004).  Littoral zones within reservoirs are shallower and more protected than more 

exposed pelagic habitats, and are therefore important spawning areas for economically important 

species such as crappie (Pomoxis spp.), muskellunge (Esox masquinongy), and bluegill sunfish 

(Lepomis machrochirus) (Werner and Hall 1988; Zorn et al. 1998).  Other species such as 
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largemouth bass (Micropterus salmoides) and yellow perch (Perca flavescens) can spawn by 

utilizing littoral habitat directly (Wills et al 2004; Sass et al. 2006).  As such, habitat degradation 

and loss negatively affect fishes and other aquatic communities because of the decoupling of the 

biological and physical conditions to which they are adapted.  Moreover, natural recruitment of 

new sources of physical habitat in reservoirs, usually in the form of riparian CWH, occurs at a 

prohibitively slow rate (Guyette and Cole 1999). 

Physical habitat introduction is one of only a few tools that fisheries managers have 

available to enhance fisheries because of low availability of littoral physical habitat.  Both 

natural (e.g. trees, aquatic vegetation) and artificial (e.g. limestone rip-rap, tires, plastic fish 

attractors) habitat types are added to public and private waters by local, state, and federal 

agencies, universities, and other non-governmental organizations (Bassett 1994).  Despite 

prolific use of habitat additions as a management tool based on knowledge that fish abundances 

are higher around habitats in reservoirs at certain times of the year, the effects of habitat 

additions on productivity and space use remain largely understudied.  A wide variety of physical 

habitat types and strategies exist that differ in material type, complexity, land spatial extent and 

distribution.  Moreover, many physical habitat introductions occur without a priori management 

objectives and without appropriate pre- and post-introduction monitoring (Bolding et al. 2004) 

making difficult to determine the effect of physical habitat management in reservoirs and to 

compare strategies across broad spatial and temporal scales (Wiens 1989).   

There exists a need to understand whether physical habitat of differing material types and 

spatial arrangement have the same effect on colonizing macroinvertebrates and fishes.  Physical 

habitats of differing material type vary in surface complexity and convolution (Sanson et al. 

1995), three dimensional architecture (Jeffries 1993; Johnson et al. 1988) and rate of 
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decomposition (Harmon et al. 1986), all of which interact to influence the quality and quantity 

food resources (Claflin 1968; Santos et al. 2011) and refuge space (Hesterberg et al. 2017) and 

have been shown to influence individual and community level responses by macroinvertebrates 

(Jeffries 1993; Magoulick 1998) and fishes (Johnson et al. 1988; Diehl 1992).  How these 

mechanisms and responses interact to influence long term macroinvertebrate community 

dynamics and fish growth and survival remains speculative.  Therefore, it would be useful to 

fisheries managers, and in situations where habitat management is a primary objective, to 

understand the relative ability of habitats that differ in material type to meet management goals 

in reservoirs.   

 Aquatic ecologists have confronted the ambiguity and confounding nature around 

definitions of physical habitat complexity by designing and testing metrics that attempt to 

objectively quantify physical habitat (Morse et al. 1985; Dibble, Killgore, and Dick 1996; 

Newbrey et al. 2005; Warfe, Barmuta, and Wotherspoon 2008).  For example, Morse et al. 

(1985) estimated the fractal dimension of several plant species using a grid method.  Fractal 

dimension is unitless and can be applied across multiple scales, and therefore may be useful 

when comparing structural complexity between habitat types at different scales of measure.   

 The qualitative and often study-dependent nature around how physical habitat complexity 

is defined poses significant barriers to valid quantitative comparisons among studies, which in 

turn makes the task of detecting mechanisms and interpreting broad-scale effects of physical 

habitat additions on aquatic ecosystems difficult.  This poses obvious challenges for fisheries 

managers, who are expected to make difficult management decisions based on incomplete 

information and limited financial resources.  
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CHAPTER 2:  INFLUENCE OF HABITAT MATERIAL TYPE ON 

MACROINVERTEBRATE COMMUNITIES AND LARGEMOUTH BASS GROWTH 

A. Introduction 

Lentic ecosystems, such as lakes and reservoirs, are important sources of outdoor 

recreation that attract millions of anglers and generate billions of dollars annually in the United 

States (FAO 2009).  However, inland fisheries within these ecosystems, and the aquatic food-

webs that sustain them, are threatened by declining physical habitat quantity and quality as a 

result of multiple passive and active mechanisms unrelated to fishing activities, including 

reservoir aging and sedimentation (Moring et al. 1986) and anthropogenic disturbance 

(Christensen et al. 1996).  Physical habitat is important in reservoirs because physical habitat, 

such as aquatic vegetation and coarse woody habitat (CWH) influences fish distribution and 

activity (Scheuerell and Schindler 2004; Ahrenstorff, Sass, and Helmus 2009), predator and prey 

interactions (Savino and Stein 1982), and food resource availability (Pardue 1973).  Collectively, 

these interactions between aquatic organisms and habitat drive fish growth (Schindler et al. 

2000) and reproductive output (Wills et al. 2004).  The importance of physical habitat is so great 

that loss of physical habitat poses a greater threat to inland fisheries sustainability than fishing 

pressure and harvest (Arlinghaus et al. 2016). 

Some studies have demonstrated a positive effect of habitat introductions through 

increased fish growth (Pardue 1973; Wege and Anderson 1979) and increased attraction by 

fishes (Rold et al. 1996; Santos et al. 2008).  Similarly, the removal of physical habitat has been 

shown to have negative effects on fish populations and fish growth in lakes (Sass et al. 2006) and 

in streams (Angermeier and Karr 1984).  As such, physical habitat additions are a popular 

management strategy in lakes and reservoirs that seeks to mitigate the effects of habitat 



 
 

5 

 

degradation and loss by providing refuge to juvenile sport fishes and forage organisms, increase 

angler satisfaction, provide spawning substrate, or reduce erosion (Bassett 1994; Tugend et al. 

2002; Arlinghaus et al. 2016).  Both natural (e.g. trees, aquatic vegetation) and artificial (e.g. 

limestone rip-rap, tires, plastic fish attractors) habitat types are added to public and private 

waters by multiple management agencies and stakeholder groups to meet various objectives 

(Santos et al. 2011).   

Despite evidence for positive effects of physical habitat additions and negative effects of 

physical habitat removals in controlled experiments, the ability of physical habitat additions to 

meet management objectives or to provide long-term benefits to aquatic communities over 

relevant ecological scales has not been demonstrated in lakes and reservoirs (Bolding et al. 2004) 

or in stream ecosystems (Bernhardt et al. 2005; Palmer et al. 2010). The diversity of introduced 

structure types poses significant barriers to effective evaluation of physical habitat management 

strategies because responses to physical habitat is influenced by system-specific environmental 

conditions (Nilsen and Larimore 1973; Walters et al. 1991), fish species (DeBoom and Wahl 

2013), interstitial space (Hesterberg et al. 2017), and the availability of alternative sources of 

physical habitat (Wills et al. 2004).   Furthermore, the benefits of habitat management strategies 

in lakes and reservoirs are often assumed or inferred in the absence of hypothesis-driven pre- or 

post-manipulation monitoring of aquatic communities at the appropriate spatial and temporal 

scales (Bolding et al. 2004; Tugend et al. 2002).  As such there exists a need to isolate and 

evaluate the various interacting aspects of physical habitat quality (Tokeshi and Arakaki 2012) 

and subsequent responses by the target species or communities in order to make defendable 

conclusions pertaining to the effect of habitat management in inland fisheries. 
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The influence of habitat material type on responses by aquatic communities in lakes and 

reservoirs has received less attention compared to other aspects of physical habitat management, 

such as architectural complexity and physical habitat density (Crowder and Cooper 1982; Bettoli 

et al. 1992; DeBoom and Wahl 2013; Johnson et al. 1988).   Habitat material type influences 

surface complexity and convolution as well as habitat surface area (Dibble et al. 1996; Thomaz 

et al. 2008) and has been shown to influence colonization dynamics by periphyton, fungi, and 

macroinvertebrates  in streams (Dudley and D’Antonio 1991; Jeffries 1993; Sanson et al. 1995; 

Casartelli and Ferragut 2018) and in lentic habitats (Bowen et al. 1998; Smokorowski et al. 

2006).  Habitat material type also influences the rate at which habitat decays (Harmon et al. 

1986) which can be an important mechanism regulating colonization by periphyton (Hax and 

Golladay 1993) and macroinvertebrates (Magoulick 1998) in stream ecosystems.  Thus, habitat 

material type could influence ecosystem productivity because of the relative ability of different 

physical habitat types to provide food resources to fish species occupying higher trophic levels, 

such as bluegill (L. machrochirus) and largemouth bass (M. salmoides), which are popular sport 

fishes sought by anglers that occur in most reservoir ecosystems in the continental United States.   

 Several studies have observed differences in fish use of structures that differ in habitat 

material type (Rold et al. 1996; Magnelia et al. 2008; Santos et al. 2011).  In a large reservoir in 

Brazil, fish colonization between artificial reefs constructed from PVC, ceramic, and concrete 

substrates was influenced by fish species, fish size, and time of year (Santos et al. 2011).  Both 

Rold et al. (1996) and Magnelia et al. (2008) found more individuals across all fish species 

occupying cedar trees and juniper trees compared to plastic artificial attractors, respectively, in 

reservoirs in the United States.  Differences in fish use were attributed to habitat-specific 

differences in periphyton and macroinvertebrate colonization (Santos et al. 2011) as well as 
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differences in structural complexity and interstitial space (Magnelia et al. 2008; Rold et al. 

1996).   

These studies suggest that natural habitat types (e.g. CWH) are better at attracting fishes 

compared to artificial habitat types; however, the reasons attributed to these differences, such as 

differences in complexity and macroinvertebrate colonization, were not specifically tested.  

Therefore, manipulative experiments in controlled environments linking fish and 

macroinvertebrate responses to habitat material type may help identify the relative effectiveness 

of different habitat types to meet management objectives.  This could provide useful information 

to managers in charge of physical habitat management that seek to maximize the effect of 

management decisions at the smallest cost (Bolding et al. 2004). 

The objective of our experiment was to determine the effect of habitat material type on 

macroinvertebrate colonization and fish growth.  Specifically, we introduced plastic fish 

attractors or natural CWH in ponds to compare (1) patterns in macroinvertebrate community 

colonization and structure between habitat material types through time, and (2) determine 

whether habitat material type influences largemouth bass growth, condition, and survival.  We 

predicted macroinvertebrate community composition to differ and for macroinvertebrate 

community abundance and diversity to be greater among communities colonizing CWH 

structures compared to plastic fish attractors.  We also predicted largemouth bass growth, 

condition, and survival would be greater in ponds with CWH structures compared to ponds with 

plastic fish attractors.   

B. Methods 

 To test our predictions, we conducted a pond experiment at the Sam Parr Biological 

Station of the Illinois Natural History Survey (Kinmundy, IL) using ten 0.04 ha replicate 
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drainable ponds during Summer/Fall 2017. We used a one-factor completely randomized 

experimental design.  Five were ponds assigned the plastic fish attractor habitat type (Artificial) 

and five ponds were assigned a coarse woody habitat type (CWH).  

Our plastic fish attractors were Safe Haven™ structures manufactured by the Mossback 

Fish Habitat Company (Springdale, AR).  These artificial structures are made of recycled 

polyvinyl chloride and consist of a single hollow trunk (height: 1.3 m, diameter: 0.11 m) and 24 

textured composite limbs (width: 1.3 m) radiating from the trunk horizontally.  We selected 

white oak (Quercus alba) as our CWH source in order to control for differences among wood 

species and their potential to affect colonizing invertebrates (Nilsen and Larimore 1973; 

Magoulick 1998).  Live Q. alba (bole diameter < 0.15 m) were harvested and the leaves were 

removed manually.  Bare trees were cut and trimmed into sections (length: 1.3 m, width: 1.3 m) 

to correspond to the physical dimensions of the artificial structures.  Each CWH structure 

consisted of three or four Q. alba sections fastened together with zip-ties.  We also added two 

detachable sections of Q. alba to each CWH structure to facilitate macroinvertebrate sampling.  

The surface area provided by each habitat type was measured.  Random branch sampling (Jessen 

1955) was used to estimate CWH structure surface area and to keep available surface area for 

macroinvertebrate colonization consistent between habitat treatments.  Six Artificial structures or 

six CWH structures were driven vertically into the bottom and spaced four meters apart in a 2 x 3 

array in the center each pond.  The estimated amount of habitat (m2 ± SE) added to each pond 

did not differ by treatment (Artificial:  8.76 ± 0.26, CWH: 8.55 ± 0.21; t8 = 0.99, P = 0.35).  

Filtered water (mesh size: 300 μm) was pumped from Stephen A. Forbes Reservoir into each 

pond until all structures were completely submerged.  After ponds were filled, we allowed for a 
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one month conditioning period to allow macroinvertebrate communities to develop and colonize 

the benthic zone and structures of each pond naturally prior to fish introduction.   

Fifty juvenile largemouth bass obtained from Jake Wolfe Memorial Fish Hatchery 

(Topeka, IL) were introduced into each pond in August 2017 after the conditioning period.  

Mean initial total length of largemouth bass (mm ± SE) did not differ between treatments 

(Artificial:  94.3 ± 0.6, CWH:  94.6 ± 0.6; t8 = -0.25, P = 0.81).  Ponds were drained two months 

after fish introduction in October 2017 into a cement catch basin, where all surviving largemouth 

bass were counted, measured (mm), and weighed (g).  We calculated mean daily growth rate 

(mm·day-1), mean condition (Fulton’s K), and survival (# recovered/50) of largemouth bass for 

each pond. 

We conducted three temporal sampling events to document changes in macroinvertebrate 

community abundance and composition through time.  Macroinvertebrates were sampled 

monthly beginning in August 2017 after the conditioning period and immediately prior to fish 

introduction (pre-fish introduction) and was repeated two more times in September and October 

2017 (post-fish introduction).  Benthic macroinvertebrates were sampled at three fixed locations 

in each pond using a stovepipe sampler (diameter: 0.19 m; Turner and Trexler 1997), filtered 

through a 250 μm sieve, and preserved in a solution of 0.1% Rose Bengal and 90 % ethanol for 

processing in the laboratory.  Macroinvertebrates colonizing habitat structures were sampled 

from two limbs of two habitat structures in each pond during each sampling event (i.e. 4 habitat 

structure samples/pond/sampling event) by carefully sliding a mesh bag (mesh size: 300 μm) 

over a single detachable habitat limb to prevent macroinvertebrate escape and carefully removing 

the limb from the structure.  The detached habitat limb was transported to the pond bank where 

the surface area contained inside the bag was scrubbed with a brush and rinsed with tap water 
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into an enamel pan to dislodge and collect colonizing macroinvertebrates.  The contents of the 

pan were transferred into a sample bottle and preserved in a solution of 0.1% Rose Bengal and 

90% ethanol for processing in the laboratory.  We also measured the surface area sampled of 

each habitat limb to derive standardized measures of macroinvertebrate abundance and biomass.   

After colonizing macroinvertebrates were collected, all habitat limbs were returned to 

their respective habitat structures to prevent manipulation of available habitat surface area.  We 

designed our temporal sampling schedule so that two limbs from each habitat structure were 

sampled, and that each habitat structure was sampled exactly once over the course three 

sampling events.  Prior to macroinvertebrate sampling, we measured several abiotic parameters 

of each pond during each sampling event to characterize pond environmental conditions.  

Dissolved oxygen (mg·L-1) and water temperature (ºC) were measured with a YSI probe and 

water clarity (m) was measured with a Secchi disk.  Dissolved oxygen, water temperature, and 

water clarity were averaged over the three sampling events for each pond to derive a single mean 

value for subsequent statistical analyses. 

In the laboratory, macroinvertebrate samples were split by passing each sample through a 

600 μm and a 250 μm sieve.  Macroinvertebrates retained by the 600 μm sieve were separated 

from detritus with forceps and an enamel pan, identified, and counted using a dissecting 

microscope (12x magnification).  Macroinvertebrates retained by the 250 μm sieve were 

subsampled (10% subsample), identified, and counted using a dissecting microscope (25x 

magnification).  Only individuals with a head segment were counted.  Macroinvertebrate taxa 

were typically identified to the family level, whereas non-insect taxa (e.g. ostracods, nematodes, 

leeches) were identified to the class/order level using keys from Merritt and Cummins (1996) 

and Thorp and Covich (1991).  A maximum subsample of 20 individuals per taxonomic group 
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were measured for total length (TL; mm) using a digitizing pad and ImageJ software (Schneider 

et al. 2012) for both the 600 μm and 250 μm samples.  TL was converted to taxa-specific dry 

mass (DM; mg) using published length-to-dry mass regression equations (Eckblad 1971; Meyer 

1989; Benke et al. 1999; Baumgärtner and Rothhaupt 2003; Edwards et al. 2009).  Standardized 

measures of abundance and biomass were estimated for each structure and benthic sample by 

summing the counts and biomass estimates for the associated 600 μm and 250 μm samples 

corrected for subsample size and dividing by the area (m2) sampled (Smokorowski et al. 2006).  

Aquatic worms (Oligochaeta), although highly abundant, were excluded from our analyses 

because our sampling and preservation methods precluded us from obtaining reliable estimates 

of abundance and biomass (Howmiller 1972).  Abundance of Oligochaeta in macroinvertebrate 

samples did not noticeably differ between habitat types. 

Mean abundance (N·m-2) and mean biomass (mg·m-2) of macroinvertebrates were 

estimated separately for benthic and structure communities in each pond by averaging the three 

stovepipe samples and four habitat structure samples, respectively, collected during each 

sampling event.  We were also interested in comparing mean taxa richness between 

macroinvertebrate communities colonizing Artificial and CWH habitat structures; however, we 

sampled significantly more habitat area of Artificial habitat limbs compared to CWH habitat 

limbs (ANOVA habitat F1,117 = 78.9, P < 0.001).  Therefore, we compared mean rarefied taxa 

richness (E (Sn); Hurlbert 1971) between habitat types, which accounts for biases associated with 

differences in  sampling effort (Gotelli and Colwell 2001).   Taxa-specific counts were used to 

estimate mean diversity of macroinvertebrate communities colonizing habitat structures using 

Shannon’s H’ (Pielou 1966).   Mean rarefied taxa richness and mean diversity were calculated in 

the same manner as mean abundance and biomass. 
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Statistical Analysis 

 A repeated measures analysis of variance (RM-ANOVA) using linear mixed models was 

used to test the effect of habitat material type on mean abundance, mean biomass, mean rarefied 

species richness, and mean diversity of macroinvertebrate communities through time.  Sampling 

date and habitat type were fixed effects and individual ponds were the random effect in each 

model.  Abundance was square root transformed to meet the assumptions of analysis of variance.  

If differences in response metrics were detected, Tukey’s HSD was used to determine which 

groups differed.  To visualize differences in macroinvertebrate community structure between 

habitat types through time, we used non-metric multidimensional scaling (NMDS; Minchin 

1987) based on 4th root transformed Bray-Curtis dissimilarity matrices, and differences between 

macroinvertebrate community groups were determined using permutational multivariate analysis 

of variance (PERMANOVA; Anderson 2001) using 9999 permutations.  If the PERMANOVA 

detected differences in community structure, we performed a similarity percentage analysis 

(SIMPER; Clarke 1993) to identify which macroinvertebrate taxa contribute most to changes in 

macroinvertebrate community structure.   

Student’s t-test was used to test the effect of habitat type on mean daily growth rate, 

condition, and survival of largemouth bass.  Model selection was used to evaluate the ability of 

pond environmental conditions to explain additional variation in our fish response metrics by 

comparing simple and multiple linear regression models that included habitat type only against 

models that included habitat and one additional pond condition factor.  We only included one 

additional pond condition factor in candidate models in order to avoid model overfitting.  

Candidate models were ranked for each fish response variable based on Akaike’s Information 

Criterion (AICc) corrected for low sample size, and model weights (Wi) were calculated using 
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methods described in Burnham and Anderson (2004).  Pond environmental condition factors 

were mean temperature (Temperature, °C), mean Secchi depth (Secchi depth, m), mean 

dissolved oxygen (Dissolved Oxygen, mg·L-1), mean benthic macroinvertebrate biomass 

(Benthic biomass, mg·m-2), and mean structure macroinvertebrate biomass (Structure biomass, 

mg·m-2).  Mean benthic macroinvertebrate biomass was estimated by averaging standardized 

measures of macroinvertebrate biomass of the three stovepipe samples collected in each pond 

over the three sampling periods.  Mean structure macroinvertebrate biomass was estimated by 

averaging measures of macroinvertebrate biomass of the four limbs sampled in each pond over 

the three sampling periods.  All analyses were performed in R (v. 3.6.2; R Core Team 2019) 

using the tidyverse, Rmisc, lmer, AICcmodavg, and vegan packages (Hope 2013; Bates et al. 

2015; Oksanen et al. 2019; Wickham et al. 2019; Lenth 2020).    

C. Results 

Macroinvertebrates 

 A total of 34,501 macroinvertebrates were identified from pond benthic zones and habitat 

structures, and 13,721 individuals (40%) were measured to estimate biomass.  Habitat structures 

were colonized by 23 macroinvertebrate taxa over the course of the experiment, three of which 

were the most dominant for both habitat types.  By abundance, 93% of all individuals identified 

from habitat structures were non-biting midges (Chironomidae), ostracods (Ostracoda), and 

nematodes (Nematoda).  Less dominant but still relatively common taxa included predatory 

midges (Ceratopogonidae), snails (Physidae), water scavenger beetles (Hydrophilidae), and 

leeches (Hirudinea).  Almost all taxa were found colonizing both Artificial and CWH structures 

at some point during the experiment;  Caenid mayflies (Ephemeroptera), water boatmen 

(Corixidae), and single specimens of both crawling water beetles (Haliplidae) and 
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backswimmers (Notonectidae) were only found colonizing Artificial structures, while spread-

winged damselflies (Lestidae) and a single whirligig beetle (Gyrinidae) were found only on 

CWH structures.   

 Macroinvertebrates colonized all habitat structures rapidly after ponds were filled and the 

structures submerged.  Mean abundance in August prior to fish introduction was similar between 

habitat types (P > 0.05; Figure 2.1A).  Mean abundance (square root transformed) changed 

through time on both habitat types (RM-ANOVA time F2,22 = 52.27, P < 0.01; Figure 2.1A);  

Abundance increased on both habitat types one month after fish introduction (Table 2.1, 

September), which was followed by a decrease in mean abundance on both habitat types two 

months after fish introduction (Table 2.1, October).  The interaction between time and habitat 

was significant (RM-ANOVA habitat × time F2,22 = 5.25, P < 0.01; Figure 2.1A), indicating that 

patterns in mean abundance differed between habitat types through time.  Mean abundance did 

not differ between habitat types before fish introduction (August, P > 0.05; Figure 2.1A) or one 

month after fish introduction (September, P > 0.05; Figure 2.1A), but macroinvertebrate 

communities were more abundant on CWH structures compared to Artificial structures two 

months after fish introduction (October, P = 0.01; Figure 2.1A).    

Mean biomass followed a similar pattern compared to mean abundance.   Mean biomass 

in August prior to fish introduction was similar between habitat types (P > 0.05; Figure 2.1A) 

and changed significantly through time for both habitat types (RM-ANOVA time F2,22 = 21.06, P 

< 0.001; Figure 2.1B).  Mean biomass increased on both habitat types one month after fish 

introduction (Table 2.1, September) and decreased on both habitat types two months after fish 

introduction (Table 2.1, October).  However, unlike abundance, patterns in mean biomass did not 

differ between habitat types (RM-ANOVA habitat × time F2,22 = 2.52, P = 0.08; Figure 2.1B).  
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Diverging patterns between mean abundance and mean biomass of macroinvertebrates in 

October may be driven by differences the relative size of certain macroinvertebrate taxa between 

habitat types.  For example, Hirudinea and Physidae were more abundant on CWH structures 

compared to the Artificial structures two months after fish introduction (Table 2.1), but 

individual Hirudinea (5.53 mg) and Physidae (0.81 mg) colonizing Artificial structures were 

larger than Hirudinea (0.35 mg) and Physidae (0.55 mg) colonizing CWH structures (Table 2.1). 

Rarefied taxa richness was similar between habitat types in August prior to fish 

introduction (P > 0.05) and changed significantly through time (RM-ANOVA time F2,22 = 119.5, 

P < 0.001; Figure 2.1C).  Overall, rarefied taxa richness was higher on Artificial structures 

compared to CWH structures (RM-ANOVA habitat F1,22 = 21.9, P < 0.01; Figure 2.1C).  

Rarefied taxa richness increased significantly on both habitat types one month after fish 

introduction (P < 0.01), which was driven by the colonization of habitat structures by Baetidae, 

Caenidae, Coenagrionidae, and Lestidae, and to a lesser degree by the appearance of a few 

individuals of Dytiscidae, Haliplidae, and Corixidae (Table 2.1).  Rarefied taxa richness was 

higher among macroinvertebrate communities colonizing Artificial structures compared to CWH 

structures one month after fish introduction (P < 0.01).  Patterns of change in rarefied taxa 

through time differed between habitat types (RM-ANOVA habitat × time F2,22 = 3.69, P = 0.04; 

Figure 2.1C); rarefied taxa richness decreased slightly on Artificial structures in October two 

months after fish introduction, whereas rarefied taxa richness increased slightly on CWH 

structures during the same time period, although two months after fish introduction differences 

were not significant between habitat types (P > 0.05).   Despite converging patterns in rarefied 

taxa richness between habitat types, rarefied taxa richness remained higher on Artificial 

structures compared to CWH structures in October two months after fish introduction (P = 0.04).   
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 Like rarefied taxa richness, diversity of macroinvertebrate communities was similar 

between habitat types in August prior to fish introduction (P = 0.96; Figure 2.1D).  Community 

diversity generally increased through time (RM-ANOVA time F2,22 = 6.94, P < 0.01; Figure 

2.1D).  These changes were the result of the combined effects of increasing taxa richness, 

decreasing relative abundance of Ostracoda, and increasing relative abundance of Physidae 

through time for both habitat types (Table 2.1).  Despite changing community diversity through 

time, patterns of change were somewhat different between habitat types (RM-ANOVA time F2,22 

= 3.15, P = 0.07; Figure 2.1D).  Community diversity on Artificial structures increased 

significantly between the beginning and end of the experiment (Tukey’s HSD, P < 0.01), 

whereas the change in community diversity on CWH structures was similar before and after fish 

introduction (Tukey’s HSD, P = 0.86).   

Macroinvertebrate community structure changed through time (PERMANOVA; time 

pseudo-F2,24 = 16.0, P < 0.001).  The NMDS ordination plot shows clear separation between 

sampling events, and rates of change in macroinvertebrate community structure appear to 

decrease over time (Figure 2.2).  Changes in macroinvertebrate community structure in 

September one month after introduction were primarily driven by increases in abundance of 

Ostracoda, Physidae, Chironomidae, and Ceratopogonidae, respectively (SIMPER:  43% 

observed cumulative dissimilarity), whereas changes in community structure in October two 

months after fish introduction were driven by decreasing abundance of Ostracoda, Nematoda, 

and Chironomidae, and increasing abundances of Leptoceridae and Hydracarina (SIMPER: 42% 

observed dissimilarity) compared to September one month after fish introduction.  After 

accounting for changes through time, macroinvertebrate communities differed between habitat 

types (PERMANOVA; habitat pseudo-F2,24 = 2.78, P = 0.04).  Differences in macroinvertebrate 
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community structure between habitat types in August prior to fish introduction were driven 

primarily by Ostracoda, Collembola, and Hydracarina (SIMPER: 38% observed dissimilarity) 

whereas differences were driven by Baetidae, Hydracarina, and Physidae in September one 

month after fish introduction (SIMPER: 22% observed dissimilarity) and by Chironomidae, 

Nematoda, and Leptoceridae in October two months after fish introduction (SIMPER:  31% 

observed dissimilarity).  NMDS does show some separation between habitat types within 

sampling events, but the difference is less extreme than differences between sampling events 

(Figure 2.2).  Moreover, the difference in macroinvertebrate community structure between 

habitat types within sampling events did not change (PERMANOVA; habitat × time pseudo-F2,24 

=, P = 0.10) and is supported by NMDS (Figure 2.2).  A permutational test of homogeneity of 

multivariate dispersion between groups was insignificant (F5,24 = 0.42 P = 0.85) suggesting that 

differences in community structure between habitat types were not related to differences in group 

dispersion (Warton et al. 2012). 

Largemouth Bass 

 Mean daily growth of largemouth bass was similar between ponds with Artificial habitat 

structures compared to ponds with CWH structures (t8 = 0.36, P = 0.73; Figure 2.3A).  Mean 

condition of largemouth bass also did not differ between habitat types (t8 = 0.36, P = 0.73; Figure 

2.3B).  The number of largemouth bass recovered from each pond was highly variable (mean:  

34, range: 23–43), but was not influenced by habitat type (t8 = -0.77, P = 0.46; Figure 2.3C).   

Pond environmental conditions were generally poor predictors of largemouth bass growth, 

condition, and survival.  Our AICc analysis showed the greatest support for candidate models 

that included habitat type only as a fixed effect for each fish response variable (Table 2.2) and all 

candidate models that included an additional pond condition factor as a fixed effect showed 
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significantly less support (all ΔAICc > 2, Wi > 0.6; Burnham and Anderson 2004).  After habitat 

type, candidate models including mean pond temperature showed the next best support for 

largemouth bass growth and condition, while a candidate model including mean dissolved 

oxygen showed the next best support for largemouth bass survival (Table 2.2).   

D. Discussion 

Macroinvertebrates  

We found that macroinvertebrate communities colonizing a plastic fish attractor were 

very similar to macroinvertebrate communities colonizing CWH structures.  These results 

contrast with our original hypotheses that predicted macroinvertebrate abundance, biomass, and 

diversity of macroinvertebrates would be higher among communities colonizing CWH 

structures.  Previous research has shown differences in periphyton (Dudley and D’Antonio 1991; 

Hax and Golladay 1993) and macroinvertebrate colonization (Hax and Golladay 1993; 

Magoulick 1998) as a function of habitat material.  However, these studies were conducted in 

streams rather than ponds.  Multiple studies have shown differences in macroinvertebrate 

colonization as a function of water velocity (Hax and Golladay 1993; Nilsen and Larimore 1973) 

which may in part explain why our results diverged from work in streams.  Moving water 

accelerates physical habitat decomposition due to physical abrasion that increases surface area 

available for colonization (Hax and Golladay 1993) and increases light penetration and oxygen 

transport which may further accelerate decomposition by colonizing organisms (Harmon et al. 

1986).  Moreover, moving water increases rates of dispersion and encounters of novel habitats 

through macroinvertebrate drift (Stoneburner and Smock 1979) that does not occur in lentic 

habitats.    
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The effect of habitat decomposition and conditioning on macroinvertebrate colonization 

of CWH structures was likely not an important factor influencing macroinvertebrate colonization 

in our experiment (Bowen et al. 1998; Smokorowski et al. 2006).  Oak (Quercus spp.) is a very 

hard wood species relative to other common deciduous species, such as maple (Acer spp.) and 

elm (Ulmus spp.) and is primarily composed of lignin and cellulose that are not easily 

metabolized by most fungi and unicellular organisms (Scheffer 1966).  Moreover, deciduous 

hardwoods such as oak contain organic compounds that initially provide resistance to 

colonization by fungi and microbes, which are not only important drivers of wood decay,  but are 

themselves food resources for many scraping and collecting macroinvertebrate taxa (Dudley and 

Anderson 1982).  Chemical and physical breakdown of CWH also releases nitrogen and 

dissolved organic carbon compounds that are readily usable by aquatic organisms (Harmon et al. 

1986), although the net effect of these two competing mechanisms on our macroinvertebrate 

community metrics is unknown.  Our CWH structures did not exhibit symptoms of 

decomposition (separation of bark from the cambium layer, bark softening, etc.) which may in 

part explain the general lack of differences in macroinvertebrate communities colonizing the 

Artificial and CWH structures.  However, we did find some evidence of diverging patterns 

between macroinvertebrate communities colonizing Artificial and CWH structures related to 

differences in abundance and size structure in the final month of the experiment.    

Both habitat types represent a hard and stable substrate that are important subsidies in 

aquatic ecosystems where physical habitat is lacking (Schneider and Winemiller 2008) such as 

the clay and silt dominated experimental ponds used in this experiment.  As such, all habitat 

structures were colonized rapidly by periphyton and opportunistic macroinvertebrates, and at 

least initially, may not have been subject to the intra- and interspecific competitive mechanisms 
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that are mediated by various physical and chemical properties of the substrate being colonized 

(Harmon et al. 1986; Hax and Golladay 1993).  Moreover, macroinvertebrate taxa differ in their 

ability to disperse and colonize new habitat sources because of differences in life-history 

characteristics and feeding habits (Thorp and Covich 1991).   This may explain in part the 

observed increase in taxa richness and diversity through time, as certain taxa such as Trichoptera 

and Ephemeroptera, as well as predatory Odonata and Coleoptera became more abundant as 

time progressed.  Stochastic variability inherent to natural ecosystems may also have influenced 

the lack of detectable differences between our habitat treatments.  Variability in our estimates of 

abundance, biomass, and diversity among ponds, and between structures within ponds, was high 

(Table 2.1).  Ten experimental units combined with the short time frame of the experiment may 

have had low statistical power to detect changes in macroinvertebrate communities colonizing 

the two habitat types (Peterman 1990). 

Largemouth Bass 

   Our results do not support the contention that habitat material type influenced the 

growth, condition, and survival of largemouth bass.  Thus, physical habitat amount/complexity 

may be more important to largemouth bass than the material from which it is constructed or 

composed.  The majority of studies evaluating the impact of physical habitat on fishes focused 

on manipulating physical habitat abundance/complexity (Pardue and Nielsen 1979; Crowder and 

Cooper 1982; Bettoli et al. 1992; Miranda and Hubbard 1994; Sass et al. 2006).  Experiments 

evaluating fish use of different habitat material types while attempting to control for habitat 

amount have primarily focused on observational studies via scuba and snorkeling surveys 

(Bryant 1992; Santos et al. 2011) and sonar (Baumann et al. 2016); no studies have evaluated the 
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direct effect of habitat material type on largemouth bass growth, condition, and survival while 

attempting to control for habitat amount/complexity.   

 Others have suggested differences in primary production and food resource quality 

between different habitat material types in lakes (Bowen et al. 1998; Smokorowski et al. 2006), 

which could influence largemouth bass growth, condition, and survival (Ludsin and DeVries 

1997).  We did not detect systematic differences in abundance and biomass of macroinvertebrate 

prey between habitat types, and food resource availability would have been similar between 

habitat types.  Mean TL and growth rate of all largemouth bass by the end of our experiment 

(133 mm, 0.61 mm·day-1) was generally less than that reported by others evaluating young-of-

year largemouth bass growth (Stone and Modde 1982; Miller and Storck 1984; Maceina and 

Isely 1986) but was similar to non-piscivorous young-of-year largemouth bass (Ludsin and 

DeVries 1997).   This suggests largemouth bass growth was more related to food resource 

quality or quantity.  Alternatively, largemouth bass were not able to optimally exploit the food 

resources available to them.  We found that macroinvertebrate prey biomass on habitat structures 

was higher compared to numbers reported by others in lakes (Bowen et al. 1998; Smokorowski 

et al. 2006) and macroinvertebrate food resources may have been higher than what is typically 

reported in the field; however, that models included Benthic Biomass or Structure Biomass of 

macroinvertebrates showed very little support (Table 2.2).  This suggests that largemouth bass 

were not able to optimally exploit the macroinvertebrate prey resources available to them.  The 

largemouth bass were sufficiently large to make an ontogenetic shift to piscivory at the time of 

introduction (Bettoli et al. 1992; Ludsin and DeVries 1997).  Moreover, fish prey are a more 

energy dense food resource than macroinvertebrates (Keast and Eadie 1985) and would have 

been preferred if they had been available.  Lack of optimal forage may also explain why mean 
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condition of all largemouth bass declined from 145 to 117 by the end of the experiment 

(Anderson 1984).  Decreasing condition through time may have also contributed to the relatively 

high mortality rate of largemouth bass (Miranda and Hubbard 1994). 

 Growth and colonization by American Pondweed (Potamogeton nodosus) occurred 

rapidly during our experiment and densities were highly variable between experimental ponds; 

some experimental ponds had over 50% pond surface area coverage, while other experimental 

ponds had little to no colonization (personal observation by the authors).  Aquatic macrophytes 

are another important source of physical habitat in aquatic ecosystems and has important 

implications for growth and survival of largemouth bass (Bettoli et al. 1992; Olson et al. 1998).  

We did not control nor account for the growth of this physical habitat subsidy, which may have 

contributed to the variability in our fish and macroinvertebrate response metrics and potentially 

masked the effect of our physical habitat introductions.   

Management implications 

Our results suggest, at least in the short term, that habitat material type has little effect on 

macroinvertebrate abundance and diversity.  In eutrophic reservoirs characteristic of agricultural 

watersheds in the midwestern United States, it is likely that all physical habitat introductions will 

be colonized quickly by biofilm and other primary producers, followed quickly by opportunistic 

macroinvertebrates (Bowen et al. 1998).  Within a matter of months, these habitats could provide 

an important local food subsidy and refuge to prey fishes and early life-stage sport fishes 

(Tugend et al. 2002).  However, physical habitat usually occupies a small proportion of reservoir 

area relative to open water habitats, and the effect of localized changes in primary and secondary 

production on system-level productivity of macroinvertebrates (Smokorowski and Pratt 2007; 
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Helmus and Sass 2008) and fishes (Sass et al. 2012) over broad spatial and temporal scales has 

not been reliably demonstrated (Lodge et al. 1998).   

The effects of habitat introductions may not be beneficial in reservoirs where habitat, 

whether in the form of aquatic vegetation, CWH, or benthic substrate may not be limiting (Wills 

et al. 2004).  Thus, knowledge of each water body and surveys of available physical habitat 

should be performed prior to any habitat introduction in order to allocate limited money and 

resources to reservoirs where physical habitat management is likely to produce the greatest 

effect.   

 If physical habitats of differing material type provide comparable resources for 

macroinvertebrates and sport fishes, the decision to add either habitat type may become a matter 

of cost-benefit analysis.  CWH is a relatively cheap and readily obtainable renewable resource 

that can be introduced quickly and efficiently.  However, the complex branching structure of 

CWH that influences its value as a food resource and refuge for fishes can degrade quickly (i.e. 

within a few years depending on the wood species) due to chemical, biological, and physical 

breakdown due to wind and wave action (Czarnecka 2016).  Relatively hard woods, such as oak 

(Quercus spp.) and cedar (Cedrus spp.), may be more cost-effective alternatives to soft woods 

such as Christmas trees (Pinus, Abies spp.) that are common sources of CWH introductions in 

reservoirs (Bassett 1994; Bolding et al. 2004).  If longevity of physical habitat is of primary 

concern, CWH introductions may be most cost-effective in coves and inlets that are more 

protected from wind and wave action, potentially reducing the rate of habitat degradation 

compared to more exposed main channel littoral habitats.  On the other hand, physical habitat 

constructed from artificial materials (e.g. plastic, PVC, drain tile, etc.) is far more resistant to 

chemical and biological degradation and is likely to be more robust to physical breakdown 
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compared to organic CWH.  However, artificial substrates are more expensive (e.g. our 

Mossback Safe Haven™ structures are currently listed at $100 retail) and require more effort and 

resources to construct and introduce relative to natural sources of physical habitat (Pardue and 

Nielsen 1979; Tugend et al. 2002).  Considering the size of large reservoirs in the United States, 

the budgetary requirements necessary to introduce physical habitat at the appropriate spatial 

scale may not be feasible for many fisheries management agencies.   
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E. Figures and Tables 
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Figure 2.1.  Mean (± SE) abundance, biomass, rarefied taxa richness, and diversity 

of macroinvertebrates communities colonizing Artificial habitat structures (solid 

circles) and CWH habitat structures (open circles) over time.  The vertical dotted 

line represents the time of largemouth bass introduction.  Asterisks represent 

significant differences between habitat types based on Tukey’s HSD (α = 0.05). 
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Figure 2.2.  NMDS plot of macroinvertebrate community structure based on 4th root 

transformed Bray-Curtis distances.  Closed symbols represent communities colonizing 

Artificial habitat structures and open symbols represent communities colonizing CWH 

habitat structures during August (circles), September (squares) and October (triangles).   
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Table 2.1.  Mean abundance (N·m-2) and biomass (mg·m-2) of the most abundant macroinvertebrate taxa collected from each habitat type over the three sampling events in 2017.  Numbers in 
parentheses are standard errors of the means.  Means were computed from the estimated abundance and biomass of four limbs sampled within each pond (i.e. experimental unit) within each habitat 

treatment (n = 5 ponds per treatment).  Instances where taxa-specific abundance was estimated, but not biomass, were a result of individuals that could not be accurately measured to estimate 

biomass.  Taxa not listed but were occasionally present in small numbers were Gyrinidae, Haliplidae, Culicidae, Corixidae, and Notonectidae.  

Taxon 

Pre-fish introduction  Post-fish introduction 

August  September       October 

Artificial  CWH  Artificial  CWH  Artificial  CWH 

Abundance  Biomass  Abundance  Biomass  Abundance  Biomass  Abundance  Biomass  Abundance  Biomass  Abundance  Biomass 

Crustacea 

    Ostracoda 

2753.7 

(623.9) 
 

24.40 

(7.061) 
 

564.9 

(131.3) 
 9.84 (2.389)  

9337.6 

(1454) 
 

247.68 

(58.958) 
 

8711.1 

(2733.2) 
 

186.89 

(56.8) 
 

925.6 

(274.6) 
 14.69 (3.42)  

1712.4 

(522.9) 
 

39.82 

(10.97) 

Gastropoda 

    Physidae 

--  --  0.5 (0.5)  0.44 (0.44)  328 (119.8)  78.9 (41.6)  293 (100.1)  79.3 (37.9)  221.1 (59.2)  180.3 (32.4)  550 (74.6)  303.1 (55.8) 

Hirudinea 22.8 (10)  26.0 (7.3)  4.2 (1.7)  7.9 (4.9)  109.1 (25.2)  640.5 
(214.4) 

 30.1 (11.2)  177.3 (45.1)  19.5 (7.1)  107.9 (41.5)  30.8 (23.1)  10.772 
(7.34) 

Hydracarina 28.3 (20.8)  0.001 

(0.001) 

 --  --  43.6 (24.9)  0.002 

(0.001) 

 34.6 (24.7)  --  56.2 (22.6)  0.002 

(0.001) 

 75.9 (31.2)  0.004 

(0.002) 
Insecta                        

    Coleoptera                        

        Dytiscidae --  --  --  --  1.3 (1.1)  0.02 (0.0)  16.8 (15.3)  --  3.3 (1.4)  0.17 (0.14)  6.4 (4.8)  0.01 (0.01) 

        Hydrophilidae 54.7 (30.9)  6.2 (1.4)  58 (22.6)  26.7(13.2)  42.2 (16.4)  48.6 (33.0)  100.1 (21.0)  68.6 (22.7)  13 (5.1)  5.3 (2.1)  18.1 (4.2)  15.8 (7.3) 

    Diptera                        

        Ceratopogonidae 43.5 (27.1)  3.4 (2.6)  79 (39.1)  3.1 (1.7)  283.4 (67.7)  7.8(4.9)  375.3 (69.3)  5.8 (1.4)  84.7 (39.4)  9.2 (5.9)  267.8 

(146.7) 

 12.9 (4.3) 

       Chironomidae 1856.3 

(839.5) 

 13.9 (4.3)  1716.5 

(417.4) 

 54.7(19.3)  7518.1 

(1629.7) 

 303.0 (95.7)  7166.7 

(1870.5) 

 364.1 

(103.4) 

 2896.4 

(1095.7) 

 30.3 (9.9)  7357.3 

(1029.6) 

 119.6 (19.8) 

    Ephemeroptera                        

        Baetidae --  --  --  --  43.3 (13.1)  2.4 (1.1)  6.6 (4.1)  0.5 (0.4)  15.3 (14.6)  0.96 (0.96)  1.9 (1.2)  0.3 (0.2) 

        Caenidae --  --  --  --  7.5 (6.8)  0.05 (0.04)  --  --  1.2 (1.2)  0.2 (0.2)  1.0 (1.0)  -- 

    Odonata                        

        Aeshnidae 1.6 (1.6)  182 (181.8)  --  --  0.6 (0.6)  --  2.4 (2.3)  --  0.4 (0.4)  1.6 (1.6)  1.9 (1.2)  1.9 (1.9) 

        Libellulidae 3.2 (2.1)  40.1 (33.8)  13.4 (11.9)  0.5 (0.3)  19.9 (7.8)  18.1(17.5)  22.7 (20.5)  12.5 (15.5)  17.9 (8.8)  6.2 (4.6)  18.9 (6.4)  20.9 (14.1) 

        Coenagrionidae --  --  --  --  44.5 (16.6)  0.9 (0.3)  8 (3.5)  0.3 (0.2)  15 (5.1)  6.0 (1.8)  41.5 (12.2)  22.6 (8.4) 

        Lestidae --  --  --  --  --  --  3.2 (3)  0.3 (0.3)  --  --  3.4 (2.4)  0.3 (0.3) 

    Trichoptera                        

        Hydroptilidae --  --  0.7 (0.7)  --  81.4 (45.2)  1.5 (1.0)  24.6 (13.7)  0.4 (0.3)  77.8 (16.9)  1.5 (0.5)  149.3 (32.4)  2.7 (0.9) 

        Leptoceridae --  --  --  --  35.1 (21.5)  0.1 (0.05)  --  --  47.9 (21.6)  0.3 (0.08)  62.5 (38.2)  0.2 (0.2) 

Nematoda 439.5 
(161.9) 

 7.6 (2.8)  652.9 
(305.4) 

 11.2 (5.4)  400.3 
(167.9) 

 6.26 (2.9)  790.6 
(340.3) 

 13.6 (6.037)  93.8 (64.4)  1.6 (1.121)  530 (157.9)  8.3 (2.4) 

Turbellaria --  --  --  --  0.6 (0.6)  0.2 (0.2)  --  --  1.1 (0.7)  0.05 (0.03)  4.1 (2.7)  0.6 (0.4) 

Total 5204.1  303.4  3095.6  114.5  18300.5  1357.1  17601.7  909.7  4493.9  367.3  10844.8  559.6 

 (1107.5)  (181.5)  (742.4)  (35.7)  (1535.7)  (318.7)  (2598.2)  (118.6)  (1350.7)  (78.8)  (1573.2)  (62.2) 
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Table 2.2.  Results of AIC analysis comparing simple linear regression models describing the 

relationship between fish response metrics (Growth; mm·day-1, Condition; Fulton’s K, Survival; 

percent recovered) and pond environmental characteristics (Temperature;  ºC, Secchi Depth; m, 

Dissolved Oxygen; mg·L-1, Benthos Biomass; mg·m-2, Structure Biomass; mg·m-2). 

Fish Response Model AICc ΔAICc Rel Lik Wi 

Growth 

Habitat -11.65 0.00 1.00 0.69 

Habitat + Temperature -7.89 3.76 0.15 0.1 

Habitat + Dissolved Oxygen -7.87 3.78 0.15 0.1 

Habitat + Benthic Biomass -5.71 5.94 0.05 0.04 

Habitat + Structure Biomass -5.70 5.95 0.05 0.04 

Habitat + Secchi Depth -5.69 5.97 0.05 0.03 

      

Condition 

Habitat -34.16 0.00 1.00 0.61 

Habitat + Temperature -31.96 2.20 0.33 0.20 

Habitat + Benthic Biomass -30.28 3.88 0.14 0.09 

Habitat + Dissolved Oxygen -28.36 5.80 0.05 0.03 

Habitat + Secchi Depth -28.25 5.91 0.05 0.03 

Habitat + Structure Biomass -28.22 5.94 0.05 0.03 

      

Survival 

Habitat  -4.34 0.00 1.00 0.61 

Habitat + Dissolved Oxygen -1.49 2.85 0.24 0.15 

Habitat + Secchi Depth -0.81 3.54 0.17 0.10 

Habitat + Benthic Biomass -0.03 4.32 0.12 0.07 

Habitat + Structure Biomass 1.36 5.70 0.06 0.04 

Habitat + Temperature 1.41 5.75 0.06 0.03 
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CHAPTER 3:  THE ROLE OF HABITAT SPATIAL ARRANGEMENT ON 

PREDATOR-PREY INTERACTIONS AND FOOD-WEB RESPONSES 

A.  Introduction 

 

 Physical habitat and its arrangement in space is an important factor influencing the 

structure and function of aquatic food webs in lentic habitats (Bell et al. 1991).   Physically 

complex habitats create unique microhabitats and niche spaces and is often positively correlated 

with population abundance and community diversity of reservoir ecosystems across multiple 

trophic levels (Crowder and Cooper 1982; Schneider and Winemiller 2008).  Mechanisms 

evoked to explain the importance of physical habitat complexity in aquatic ecosystems include 

the regulation of predator-prey encounters and behavior among fishes (Walters et al. 1991; 

DeBoom and Wahl 2013) and increased surface area and surface convolution that provides 

substrate for colonization and refuge for primary producers (Casartelli and Ferragut 2018) and 

macroinvertebrates (France 1997).   

 Despite observational and experimental evidence supporting the importance of physical 

habitat complexity, the effect of the physical habitat complexity is often context-specific and is 

dependent on how physical habitat complexity is defined and quantified (Warfe et al. 2008).  

This ambiguity suggests that physical habitat complexity is itself complex and is influenced by 

multiple interacting components that operate along multiple spatial and temporal scales.  This 

presents a significant barrier to effective management of physical habitat in aquatic ecosystems, 

particularly in reservoirs, because of the wide variety of habitat management strategies that exist 

across political and geographic boundaries (Bassett 1994; Bolding et al. 2004).  Recognizing the 

need for a more comprehensive understanding of habitat complexity, Tokeshi and Arakaki 

(2012) proposed a framework that included five components that should be considered when 
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investiging physical habitat complexity:  1) scale of habitat complexity, 2) diversity of 

complexity generating elements, 3) spatial arrangement of elements, 4) sizes of elements, and 5) 

abundance/density of elements.  A majority field and laboratory studies investigating the effect 

of physical habitat on fishes and invertebrates have focused on manipulating the 

abundance/density of physical habitat (Crowder and Cooper 1982; Savino and Stein 1982; 

Bettoli et al. 1992; Diehl 1992; Everett and Ruiz 1993; Sass et al. 2006; Helmus and Sass 2008; 

Ahrenstorff et al. 2009; DeBoom and Wahl 2013) while other components of physical habitat 

complexity, such as spatial arrangement of elements, have received far less attention.   

 As such, there exists a need to understand how the arrangement of physical habitat across 

the landscape influences long term aquatic community dynamics in reservoirs. 

Habitat spatial arrangement has been shown to be important to population persistence and 

community diversity in terrestrial ecosystems (Bowman et al. 2002; Fahrig 2017) but has 

received comparatively less attention in aquatic ecosystems.  Field and laboratory studies that did 

investigate habitat spatial arrangement in aquatic ecosystems have primarily focused on the 

effects interstitial space (Johnson et al. 1988; Walters et al. 1991) and the vertical 

arrangement/orientation of habitat  (Slack et al. 1988; Johnson 1993; Santos et al. 2008).  Few 

studies have attempted to determine the influence of physical habitat spatial arrangement across 

broader spatial scales; Bryant (1992) observed differences in the use of three different spatial 

arrangements of brush structures by young-of-year, juvenile, and adult largemouth bass (M. 

salmoides) and smallmouth bass (M. dolemieu) in a California reservoir over two years.  This 

study found that a “discrete-open” habitat arrangement was preferred by all life-stages of both 

fish species during both years, and responses were attributed to differences in food resources and 

alternative habitats adjacent to brush structures (Bryant 1992).  Controlled manipulative 
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experiments designed to evaluate mechanisms linking physical habitat spatial arrangement and 

reservoir food-web dynamics are noticeably lacking.  

 Understanding the effect of physical habitat spatial arrangement across broad spatial 

scales is crucial to developing effective habitat management strategies that meet conservation 

and management objectives in reservoirs and other aquatic ecosystems.  Specifically, effects of 

physical habitat spatial arrangement could be integrated with knowledge of system-specific 

aquatic community structure, existing physical habitat quantity and quality, and management 

objectives to more efficiently allocate limited financial and personnel resources required by 

management actions.   

 We conducted a replicated pond experiment designed to evaluate the effect of physical 

habitat spatial arrangement on predator/prey interactions and food-web processes.  Specifically, 

we manipulated the placement of physical habitat structures to create a “clumped” habitat 

arrangement, in which habitat structures are grouped together in a cluster, and a “uniform” 

habitat arrangement, in which habitat structures are dispersed in order to evaluate the effect of 

habitat spatial arrangement on the production of macroinvertebrates and zooplankton as well as 

predator-prey dynamics between adult largemouth bass and young-of-year bluegill.  We 

predicted that prey growth and survival and predator growth would differ between habitat spatial 

arrangements as a result of differences in predator-prey encounter rates and feeding strategies, 

and that the magnitude of this response would be mediated by the relative differences in the 

production of macroinvertebrate and zooplankton communities between habitat spatial 

arrangements. 
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B. Methods 

 We conducted a pond experiment using ten rectangular experimental ponds (0.04 ha; 16 x 

25 m) at the Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, IL, USA.  

Plastic fish attractors (Safe Haven™, Mossback Fish Habitat, Springdale, AR) were used as 

physical habitat because these structures are easily constructed, and habitat surface area and 

complexity are virtually identical between individual structures.  These structures are made of 

recycled polyvinyl chloride and consist of a single hollow trunk (height: 1.3 m, diameter: 0.11 

m) and 24 textured composite limbs (width: 1.3 m) radiating from the trunk horizontally. Ponds 

were randomly assigned one of two habitat treatments (n = 5 ponds/treatment).  One habitat 

arrangement consisted of placing six habitat structures in a 2 x 3 array with structures placed 5 m 

apart in the center of the pond (i.e. Uniform).  The second habitat arrangement consisted of 

placing six habitat structures in the same 2 x 3 array as the Uniform treatment, except habitat 

structures were placed directly adjacent to each other with no overlap between structures (i.e. 

Clumped).  Thus, only habitat spatial arrangement was manipulated while keeping the amount 

and complexity of habitat consistent between treatments (Tokeshi and Arakaki 2012).   

 We selected largemouth bass (M. salmoides) and bluegill (L. machrochirus) as the 

predator and prey species, respectively, because both species are popular sportfish and often 

associate with physical habitat (Johnson et al. 1988).  In August 2018, 4000 young-of-year 

bluegill (mean TL ± SE:  52 ± 0.3 mm) seined from 0.4 ha ponds at the Sam Parr Biological 

Station were divided equally among ponds (n = 400 Bluegill/pond).  Dead bluegill were counted 

and replaced one day after stocking to account for initial stocking mortality.  Thirty adult 

largemouth bass (mean TL ± SE:  310 ± 6 mm) collected by electrofishing from Stephen A. 

Forbes reservoir were tagged with FLOY T-bar tags and divided equally among ponds (n = 3 
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largemouth bass per pond).  Mean total length of bluegill (F9,490 = 1.45; P = 0.17) and largemouth 

bass (F9,20 = 0.61; P = 0.78) did not differ between ponds at the time of introduction.   

 Temporal sampling of ponds began immediately after fish introduction.  

Macroinvertebrates were sampled monthly from habitat structures and the benthic zone of each 

pond.  Macroinvertebrates colonizing habitat structures were sampled from one limb of two 

randomly selected structures in each pond during each of the three sampling events; thus, each 

habitat structure was sampled exactly once over the course of the experiment.  Structure 

colonizing macroinvertebrates were sampled by sliding a mesh bag (mesh size: 300 μm) over the 

structure limb, removing the limb, and scraping the limb and the mesh bag with a brush and tap 

water to dislodge macroinvertebrates, passed through a 250 µm sieve, and preserved in 0.1% 

Rose Bengal and 90% ethanol for laboratory processing.  Concurrently, benthic 

macroinvertebrates were sampled from three fixed sites within each pond with a stovepipe 

sampler (diameter: 0.19 m; Turner and Trexler 1997), passed through a 250 µm sieve, and 

preserved in 0.1% Rose Bengal and 90% ethanol for laboratory processing.  Zooplankton 

communities were sampled bimonthly beginning two weeks after fish stocking with an integrated 

tube sampler (diameter:  70 mm, length: 0.5 m; DeVries and Stein 1992) from four sites within 

each pond; two sites were located away from the habitat structures (> 3 m away) and two sites 

were located directly adjacent to habitat structures (within 10 cm).  Zooplankton sampling sites 

were arranged such that one “away from habitat” and one “adjacent to habitat” site were located 

on each side of the habitat structures in each pond.  Three tube samples were taken consecutively 

at each site and combined to constitute one sample, passed through a 63 μm sieve, and preserved 

in Lugol’s solution for laboratory processing.   
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 Several abiotic metrics were measured in each pond during each sampling event.  Water 

temperature (ºC) and dissolved oxygen (mg·L-1) were measured with a YSI meter.  Water clarity 

was measured with a Secchi disk (m).  Percent coverage by submerged aquatic vegetation (% 

SAV) was estimated visually by standing at end of the walkway found in each pond.  We 

included submerged terrestrial vegetation (e.g. cut-grass), which formed a ring around the wetted 

area in most of the ponds, in our calculation of percent SAV because this habitat subsidy could 

have been used as habitat by the fish and invertebrate communities.  Aquatic and terrestrial 

vegetation was periodically thinned with a vegetation rake to keep aquatic and terrestrial 

vegetation density low relative to the introduced habitat structures.  All abiotic metrics were 

averaged over the entire experiment to derive a single mean value of each abiotic metric for each 

pond.   

 Ponds were drained individually beginning in October 2018 into a concrete catch basin 

where surviving largemouth bass and bluegill were counted, measured (mm) and weighed (g).  

Unexpectedly, introduced bluegill successfully spawned in nine of the ten ponds.  Spawned 

bluegill were collected in the catch basin and were placed in plastic bags and frozen.  The 

number of spawned bluegill were counted in the laboratory, and a maximum subsample of 200 

random individuals were measured (mm) and bulk weighed (g) to estimate the abundance of 

spawned bluegill in each pond because these bluegill were a potential food resource for the 

stocked largemouth bass.   

  In the laboratory, macroinvertebrates samples were split by passing each sample through 

a 600 μm and a 250 μm sieve.  Macroinvertebrates retained by the 600 μm sieve were separated 

from detritus with forceps and an enamel pan.  A dissecting microscope (12x magnification) was 

used to identify and count all macroinvertebrates in the 600 μm sample.  Macroinvertebrates 
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retained by the 250 μm sieve were subsampled (10% subsample), identified, and counted using a 

dissecting microscope (25x magnification).  Only individuals with a head segment were counted.  

Macroinvertebrate taxa were typically identified to the family level, whereas non-insect taxa 

(e.g. ostracods, nematodes, leeches) were identified to the class/order level using keys from  

Merritt and Cummins (1996) and Thorp and Covich (1991).  A maximum subsample of 20 

individuals per taxonomic group were measured for total length (mm) using a digitizing pad and 

ImageJ software (Schneider et al. 2012) for both the 600 μm and 250 μm samples.   Published 

length to dry mass regression equations were used to estimate biomass of macroinvertebrates 

(Eckblad 1971; Meyer 1989; Benke et al. 1999; Baumgärtner and Rothhaupt 2003; Edwards et 

al. 2009).  In instances where only a partial segment of larger individuals was present (e.g. 

Odonata), head-width was measured to obtain estimates of biomass.  Standardized measures of 

abundance (#·m-2) and biomass (mg·m-2) were estimated for each structure and benthic site by 

summing the biomass estimates for the associated 600 μm and 250 μm samples, correcting for 

subsample size, and dividing by the area (m2) sampled.  Mean abundance and biomass of 

macroinvertebrates was then calculated separately for benthic and structure colonizing 

macroinvertebrate communities for each pond over each sampling event by averaging sample 

estimates (i.e. 2 Structure samples/pond; 3 Benthic samples/pond). 

 Zooplankton samples were processed using a FlowCAM®, a semi-automated device used to 

enumerate and identify particles using an algorithm-derived particle image analysis (see Detmer 

et al. 2019 for a detailed description of the device configuration and sample processing method).  

The device is semi-automated because it requires the user to post-process particle images to 

ensure zooplankton were classified into the correct taxonomic group and converted to corrected 

lengths (Detmer et al. 2019).  Zooplankton lengths were then converted to biomass (µg) using 
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length to dry mass regression equations (Bottrell et al. 1976; Dumont et al. 1975; Pace and 

Orcutt 1981; Rosen 1981) and were combined with corrected density estimates to estimate 

zooplankton biomass per sample (µg·L-1).   

  We also estimated daily secondary production of macroinvertebrate and zooplankton 

communities in each pond to evaluate patterns in energy-flow between habitat spatial 

arrangements.  We calculated daily secondary production for three separate invertebrate 

community groups:  benthic colonizing macroinvertebrates (Benthic Production), habitat 

structure colonizing macroinvertebrates (Structure Production), and Zooplankton (Zooplankton 

Production) for each pond.  Daily secondary production in each pond was estimated using the 

following equation (Plante and Downing 1989):   

log(𝑃) = 0.06 + 0.79 log(𝐵) − 0.16log(𝑊𝑚) + 0.05 𝑇 

where production (P; g·m-2·day-1, g·L-1·day-1) is a function of mean population biomass (B; g·m-

2, g·L-1), maximum individual body mass (Wm; mg), and mean water temperature (T; °C).  Mean 

population biomass was estimated for each pond by averaging the mean biomass of invertebrate 

community groups across all sampling periods.  We used the 95th percentile maximum observed 

length in each invertebrate community group for each pond as our estimate of Wm, in order to 

remove the effect of large-bodied outliers on our production estimates.  Mean water temperature 

was estimated for each pond by averaging water temperatures across all sampling periods.   

Statistical Analysis 

 A two-factor repeated measures analysis of variance (RM-ANOVA) was used to evaluate 

patterns in macroinvertebrate and zooplankton community abundance between habitat spatial 

arrangements through time.  Sampling date and habitat spatial arrangement served as fixed 

effects and individual ponds served as the random effect in each model.  Models were fit using 
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taxa-specific abundances of the most abundant taxa within each invertebrate community group as 

well as for Total Macroinvertebrates and Total Zooplankton.  Separate analyses were conducted 

for Benthic and Structure community macroinvertebrates because each respective 

macroinvertebrate community was sampled with different gears.  If a significant interaction 

effect was detected, differences between groups were determined using contrasts and Tukey’s 

Honestly Significant Difference test.  

 Student’s t-test was used to evaluate the effect of habitat spatial arrangement on 

largemouth bass growth (LMB growth; mm·d-1), bluegill growth (BG growth; mm·d-1), bluegill 

survival (BG survival; number of bluegill recovered/number of bluegill introduced), structure 

colonizing macroinvertebrate production  (Structure Production; mg·m-2·day-1), benthic 

colonizing Macroinvertebrate Production (Benthic Production; mg·m-2·day-1), Zooplankton 

Production (ug·L-1·day-1), and the number of spawned BG collected (Spawned BG).   

We used a model selection approach (Akaike’s Information Criterion; AIC) to determine 

whether pond conditions better explain the variation in our fish response metrics.  Models were 

limited to one predictor variable in addition to the grand mean and error terms in order to avoid 

model overfitting because we had only ten observations to fit a model (i.e. ponds were the 

experimental unit).  Models were ranked based on AICc scores corrected for small sample sizes, 

and model weights were calculated according to Burnham and Anderson (2004).  We considered 

models with ΔAICc < 2 to have equal support (Burnham and Anderson 2004).  All analyses were 

performed in R (v. 3.6.2) using the tidyverse, Rmisc, lme4, emmeans, and AICcmodavg 

packages (Hope 2013; Bates et al. 2015; Mazerolle 2019; R Core Team 2019; Wickham et al 

2019; Lenth 2020).    
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C. Results 

 Twenty-seven of the original thirty largemouth bass were recovered at the end of the 

experiment.  All largemouth bass mortalities occurred in different ponds; one mortality occurred 

in a pond with the clumped habitat arrangement, while two mortalities occurred in two ponds 

with the uniform habitat arrangement.  Largemouth bass grew similarly in ponds with the 

uniform and clumped habitat arrangements (Figure 3.2; t8= -1.95, p = 0.09).  Bluegill growth was 

also not different between habitat spatial arrangements (Figure 3.2; t8= 0.87, P = 0.41).  Bluegill 

survival was highly variable between ponds (range: 8% - 44% recovered) and did not differ 

between habitat spatial arrangements. (t8= -0.38, P = 0.72; Figure 3.2).  Introduced bluegill 

successfully spawned in nine of the ten experimental ponds. Spawned bluegill abundance varied 

between ponds, with observed abundances ranging from as few as 50 in one pond to nearly 5,000 

in another.  Spawned bluegill abundance did not differ between habitat arrangements (t8 = -0.23, 

P = 0.82).    

 Benthic colonizing macroinvertebrate communities (i.e. Benthic communities) were 

dominated by nematodes (Nematoda), midges (Ceratopogonidae, Chironomidae), and ostracods 

(Ostracoda), which comprised 94% of all benthic macroinvertebrates collected.  Less abundant 

but relatively commonly encountered taxa included water scavenger beetles (Hydrophilidae), 

fingernail clams (Sphaeridae), and leeches (Hirudinea).  Structure colonizing macroinvertebrate 

communities (i.e. Structure communities) were dominated by non-biting midges 

(Chironomidae), ostracods (Ostracoda), biting midges (Ceratopogonidae), water scavenger 

beetles (Hydrophilidae), and snails (Physidae), which comprised 96% of all structure 

macroinvertebrates collected.  Less numerically dominant but still relatively common taxa 

included leeches (Hirudinea), water mites (Hydracarina), and long-horned caddisflies 
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(Leptoceridae).  Darner dragonflies (Aeshnidae), giant water bugs (Belostomatidae), crayfish 

(Decapoda), backswimmers (Notonectidae, Pleidae), and horseflies (Tabanidae) were only 

found colonizing Benthic communities, whereas phantom midges (Chaoboridae), hydra 

(Cnidaria), tube-making caddisflies (Polycentropodidae), spongeflies (Sisyridae), and a single 

pyralid moth (Pyralidae), and soldier fly (Stratiomyidae) were only found among Structure 

communities.  

 Benthic community abundance changed through time (RM-ANOVA time F2,22 = 4.45, P 

= 0.03; Figure 3.3).  Benthic community abundance generally decreased between week 1 and 

week 4, followed by an increase in abundance in week 8 of the experiment (Figure 3.3).  Overall, 

changes in total Benthic community abundance through time were similar between habitat spatial 

arrangements (RM-ANOVA habitat × time F2,22 = 1.67, P = 0.21; Figure 3.3).  Taxa-specific 

patterns in Benthic community abundance through time were also similar between habitat spatial 

arrangements for Diptera larvae (RM-ANOVA habitat × time F2,22 = 0.51, P =0.61; Figure 3.3),  

Ostracoda (RM-ANOVA habitat × time F2,22 = 0.01, P =0.99; Figure 3.3), and Nematoda (RM-

ANOVA habitat × time F2,22 = 1.38, P = 0.27; Figure 3.3).  Structure community abundance also 

differed through time (RM-ANOVA time F2,22 = 35.2, P < 0.001; Figure 3.3) and followed a 

similar pattern compared to Benthic community abundance, with a decrease in abundance 

between week 1 and week 4 of the experiment (except in the uniform spatial arrangement), 

followed by an increase in abundance in week 8 of the experiment (Figure 3.3).  Taxa-specific 

patterns in Structure community abundance through time were also similar between habitat 

spatial arrangements for Diptera larvae (RM-ANOVA habitat × time F2,22 = 0.73, P =0.49; 

Figure 3.3)  and Nematoda (RM-ANOVA habitat × time F2,22 = 0.18, P = 0.84; Figure 3.3).  

Patterns in abundance of Ostracoda differed between habitat spatial arrangements (RM-ANOVA 
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habitat × time F2,22 = 3.96, P = 0.03; Figure 3.3) because the abundance of Ostracoda was greater 

in the clumped spatial arrangement compared to the uniform spatial arrangement only during the 

week 1 of the experiment (contrast: “Clumped_Structure – Uniform_Structure”, P < 0.05; Figure 

3.3).  Overall, changes in total Structure community abundance through time were similar 

between habitat spatial arrangements (RM-ANOVA habitat × time F2,22 = 2.74, P = 0.09 Figure 

3.3).  Daily secondary production of macroinvertebrates did not differ between habitat 

arrangements among Benthic (t8 = -0.08, P = 0.94; Figure 3.5) and Structure (t8 = -0.59, P = 0.57; 

Figure 3.5) macroinvertebrate communities. 

 Zooplankton communities were dominated by copepod Nauplii, Calanoida, and Rotifera 

in both habitat arrangements, which together comprised 87% and 90% of all individuals 

collected in the clumped and uniform spatial arrangements, respectively.  Less numerically 

dominate yet relatively common taxa included Sididae, Ceriodaphnia, and Cyclopoida.  

Zooplankton abundance changed significantly through time (RM-ANOVA time F3,30 = 24.26, P 

< 0.001; Figure 3.4) with zooplankton abundance decreasing from 726·L-1 and 882·L-1 in the 2nd 

week to 270·L-1 and 274·L-1 in the 4th week for the clumped and uniform habitat arrangements, 

respectively (Figure 3.4).    After the 4th week, zooplankton abundance remained relatively stable 

at around 200·L-1 in both habitat arrangements for the remainder of the experiment (Tukey’s 

HSD, P > 0.05; Figure 3.4).  Patterns in total zooplankton community abundance through time 

were similar between our habitat arrangements (RM-ANOVA habitat × time F3,30 = 2.46, P = 

0.08; Figure 3.4).  Taxa-specific abundances were also similar between habitat spatial 

arrangements through time for copepod Nauplii (RM-ANOVA habitat × time F3,30 = 1.37, P = 

0.27; Figure 3.4), and Calanoida (RM-ANOVA habitat × time F3,30 = 0.34, P = 0.80; Figure 3.4), 

which generally decreased in abundance through time.  Rotifera was the only zooplankton taxa 
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that was more abundant in ponds with the clumped spatial arrangement (RM-ANOVA habitat  

F1,30 = 8.39, P < 0.01; Figure 3.4), and unlike all other zooplankton taxa, generally increased in 

abundance through time (Figure 3.4).  Moreover, patterns in Rotifera abundance through time 

differed between habitat spatial arrangements (RM-ANOVA habitat × time F3,30 = 7.95, P < 0.01; 

Figure 3.4) as a result of Rotifera being more abundant in the clumped spatial arrangement 

compared to the uniform spatial arrangement during the 6th week of the experiment (contrast: 

“Clumped_6th – Uniform_6th”, P < 0.05; Figure 3.4).  Zooplankton production was marginally 

greater in ponds with the clumped habitat spatial arrangement compared to ponds with the 

uniform spatial arrangement (t8 = 2.25, P = 0.06; Figure 3.5). 

 The AIC analysis showed that pond environmental conditions as well as invertebrate 

production and spawned bluegill abundance were not able to account for the variation in our fish 

response metrics relative to habitat spatial arrangement.  A model that included habitat spatial 

arrangement showed greater support than any other predictor variable for LMB growth and BG 

growth, but not for BG survival (Table 3.1).  Moreover, habitat spatial arrangement showed the 

greatest support compared to any other model for LMB growth (ΔAICc > 2; Table 3.1), while all 

other models showed equal support compared to habitat spatial arrangement for BG growth 

ΔAICc < 2; Table 3.1).  The best supported model for BG survival included Dissolved Oxygen; 

however, all other models showed comparable support (ΔAICc < 2; Table 3.1).    

D. Discussion  

We provide the first manipulative experiment designed to determine the effect of physical 

habitat spatial arrangement on aquatic food-webs, independent of physical habitat amount or 

density.  We show that habitat spatial arrangement had little effect on food web processes within 

our ponds.  Bluegill grew at similar rates in both habitat arrangements, although mean bluegill 
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growth was slightly faster in the clumped habitat arrangement compared to the uniform habitat 

arrangement.  Differences in bluegill growth between individual ponds were driven by variability 

in bluegill survival.  Bluegill growth is often negatively related to bluegill density because higher 

densities increases the frequency of interaction with conspecifics and competition for limited 

food resources (Olson et al. 2003).  Our results support this observation, as bluegill growth was 

strongly related to bluegill survival within individual ponds during our experiment.   

 Largemouth bass growth was similar in the uniform habitat arrangement compared to the 

clumped habitat arrangement.  Several explanations exist to explain the variation in largemouth 

bass growth between ponds.  Variation in largemouth bass growth could be attributed to 

differences in survival between treatments (i.e. density-dependent growth).  However, 

largemouth bass survival differed between treatments because of a single individual, and the loss 

of this individual is unlikely to explain the observed variation in largemouth bass growth.  

Moreover, the mean growth rate of largemouth bass in the two ponds with the uniform habitat 

arrangement that experienced mortalities was less (0.33 mm·day-1) than overall mean largemouth 

growth among the three ponds with the uniform habitat arrangement that experienced no 

mortalities (0.38 mm·day-1), which does not support the idea of density-dependent growth of 

largemouth bass.  An alternative explanation is that variation in largemouth bass growth was 

more related to variation in pond environmental conditions as well as invertebrate production 

and spawned bluegill abundance.   Our multiple linear regression analysis supports this 

explanation, as bluegill growth was negatively correlated with largemouth bass growth and was 

the best predictor of largemouth bass growth compared to any other predictor variable.  It is not 

intuitively obvious why this was the case but considering the strong density-dependent growth of 

stocked bluegill in our experiment, largemouth bass growth may have been more directly related 
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to stocked bluegill survival.  However, we did not detect a significant relationship between 

bluegill survival and largemouth bass growth.  The lack of evidence for a relationship appears to 

be driven by a single pond that experienced relatively high bluegill survival and slow largemouth 

growth.  The largemouth bass introduced in this pond were larger at the time of introduction 

(mean TL: 336 mm) and at the time of recovery (mean TL:  362 mm) than any other pond, which 

may explain the slow relative growth of largemouth bass in this pond because largemouth bass 

growth rate is size-dependent (citation).  Removal of this pond from the analysis yields a 

significant positive correlation between bluegill survival and largemouth bass growth, and 

considering the high initial mortality of stocked bluegill in both habitat arrangements, growth of 

largemouth bass may be best explained by the abundance of available forage of stocked bluegill 

after initial stocking mortality.   

Patterns in total macroinvertebrate abundance through time was similar between habitat 

spatial arrangements.  Changes in macroinvertebrate abundance through time appear to be driven 

by increasing abundance of Diptera larvae and decreasing abundance of Ostracoda in both the 

Benthic and Structure macroinvertebrate communities.  Abundance of Nematoda remained 

similar though time in both macroinvertebrate community types and between spatial 

arrangements.  Similarly, changes in total zooplankton abundance through time was similar 

between habitat spatial arrangements.  Except for Rotifera, all zooplankton taxa experienced 

steady and sustained reductions in abundance for both habitat spatial arrangements.  Reductions 

in zooplankton abundance were likely driven by predation by bluegill (Mittelbach 1981; Detmer 

and Wahl 2019), which may explain the observed increases in Rotifera abundance for both 

habitat spatial arrangements because of reduced predation pressure by carnivorous zooplankton 

(Thorp and Covich 1991).  Despite localized differences among certain invertebrate taxa, 
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macroinvertebrate and zooplankton production were similar between habitat types, which may in 

part explain why bluegill growth and survival were similar between habitat arrangements, 

because zooplankton and macroinvertebrates are crucial food resources for bluegill (Olson et al. 

2003).  Despite the importance of macroinvertebrates and zooplankton to bluegill diets, we did 

not find strong evidence that bluegill were influenced by macroinvertebrate or zooplankton 

production.  Bluegill density by the end of the experiment was low compared to similar 

experiments in ponds (Shoup et al. 2012) and thus may have been unable to exploit 

macroinvertebrate and zooplankton food resources at detectable rates.    

 With the exceptions of relationships among our fish response metrics (i.e. largemouth 

bass growth, bluegill growth, bluegill survival), we did not find that pond environmental 

conditions, invertebrate production, and spawned bluegill abundance were able to account for 

variation in fish response metrics compared to habitat spatial arrangement.  One possible 

explanation is that these predictors were unrelated to our fish response metrics.  However, other 

studies have documented changes in fish growth, behavior, or survival as a function of 

vegetation density (Savino and Stein 1982), temperature (Strawn 1961), and water clarity 

(Hoxmeier, Aday, and Wahl 2009).  The observed range of some of our abiotic predictor 

variables, including temperature and dissolved oxygen, was small and did not differ between 

ponds (one-way ANOVA, p > 0.05), making it difficult to detect relationships through linear 

regression analysis.  The observed range in water clarity and vegetation density was sufficiently 

large to detect differences between ponds (one-way ANOVA, p < 0.05), yet neither of these 

predictor variables explained a significant proportion of variation in our fish response metrics.  

Our attempts to control aquatic vegetation growth with a vegetation rake likely mitigated its 

influence on our habitat arrangements. 
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An observational study of fish use of physical habitat showed differences in the number 

of largemouth bass of all age classes congregating around submerged trees arranged in three 

different designs (Bryant 1992).   Thus, our habitat arrangements could influence year-to-year 

reproductive output and recruitment of largemouth bass and bluegill.  Because stocked bluegill 

successfully spawned in nine ponds, our study could shed light on the relative potential of our 

habitat arrangements to influence reproduction of bluegill.  We did not find a difference in 

spawned bluegill abundance between our habitat arrangements, and therefore bluegill 

reproduction may be unrelated to our physical habitat arrangements.  However, we did not 

expect nor account for the possibility of our stocked bluegill to spawn, and more rigorous testing 

of hypotheses related to habitat spatial arrangement and reproductive potential of fishes would be 

valuable.  

Management Implications 

 Independent of physical habitat amount, we did not find that habitat spatial arrangement 

any detectable food-web effects in our experimental ponds.  Thus, general responses of aquatic 

communities to physical habitat introductions and management may be more related to the 

absolute abundance/density of physical habitat (Bettoli et al. 1992; Schindler et al. 2000; Sass et 

al. 2006; Ahrenstorff et al. 2009) than by how that physical habitat is arranged across the 

landscape.  In systems where physical habitat management is a primary objective, we recommend 

that managers determine “how much” physical habitat is needed as opposed to “where” the 

physical habitat is located in space.  Before any action is taken, managers should have an idea of 

how much available physical habitat is present (e.g. aquatic macrophyte density), or first quantify 

the amount of available physical habitat through habitat surveys, because responses to physical 

habitat management is influenced by the amount of physical habitat already present (Bryant 1992; 
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Wills et al. 2004).  This would allow managers to more effectively allocate limited financial and 

personnel resources to systems where physical habitat management has been identified a priori as 

most likely to have the greatest effect (Bolding et al. 2004; Everett and Ruiz 1993).  Furthermore, 

this could reduce the probability of adding too much physical habitat, which would not only 

represent a waste of limited resources, but potentially be counterproductive (Savino and Stein 

1982; Gotceitas and Colgan 1989).   
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E. Figures and Table 
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Figure 3.1.  Photographs of the two habitat spatial arrangements.  The top panel (A) 

is a pond with a uniform habitat spatial arrangement with structures placed apart.  

The bottom panel (B) is a pond with a clumped habitat spatial arrangement with 

structures placed adjacent to each other without overlap. 
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Figure 3.3.  Mean (± SE) taxa abundance of Diptera larvae (Chironomidae + 

Ceratopogonidae), Ostracoda, Nematoda, and Total Macroinvertebrates.  Mean taxa 

abundance is partitioned between individuals colonizing the pond benthos in the clumped 

spatial arrangement (solid circles, solid line) and the uniform spatial arrangement (solid 

triangles, dashed line) and individuals colonizing habitat structures in the clumped spatial 

arrangement (open circles, solid line) and the uniform spatial arrangement (open 

triangles, dashed line) through time.  Note that y-axes are on a log10 scale for Nematoda 

and Total Macroinvertebrates. 
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Figure 3.4.  Mean (± SE) density of copepod nauplii, Calanoida, Rotifera, and Total Zooplankton 

in ponds with the clumped habitat spatial arrangement (black circles, solid line) and the uniform 

habitat spatial arrangement (open triangles, dotted line) through time.  Zooplankton were not 

sampled at the time of introduction.  Asterisks indicated significant differences between habitat 

spatial arrangements (α = 0.05). 
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Table 3.1.  Results of AIC analysis comparing simple linear regression models describing the 

relationship between fish response metrics (LMB Growth; mm·day-1, BG Growth; mm·day-1, BG 

Survival; percent recovered) and pond environmental characteristics (Habitat Spatial 

Arrangement, Temperature; ºC, Secchi Depth; m, Dissolved Oxygen; mg·L-1, Vegetation Density; 

% SAV, Benthic Production; mg·m-2·day-1, Structure Production; mg·m-2·day-1, and  Zooplankton 

Production; ug·L-1·day-1.  Only the top five most supported models are included for each fish 

response metric. 

Fish Response Model AICc ΔAICc Rel Lik Wi 

 LMB Growth Habitat -14.06 0.00 1.00 0.41 

 Secchi Depth -11.55 2.51 0.29 0.12 

 Temperature -10.82 3.24 0.20 0.08 

 Spawned BG  -10.79 3.27 0.19 0.08 

 Zooplankton Production -10.49 3.57 0.17 0.07 

       BG Growth Habitat -14.38 0.00 1.00 0.15 

 Dissolved Oxygen -14.28 0.10 0.95 0.14 

 Spawned BG -13.95 0.42 0.81 0.12 

 Temperature -13.89 0.49 0.78 0.11 

 Benthic Production -13.65 0.73 0.70 0.10 

      BG Survival Dissolved Oxygen  -4.80 0.00 1.00 0.15 

 Benthic Production -4.63 0.17 0.92 0.14 

 Spawned BG -4.55 0.25 0.88 0.13 

 Temperature -4.19 0.62 0.73 0.11 

 Structure Production -3.98 0.83 0.66 0.10 
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CHAPTER 4: SUMMARY AND CONCLUSIONS 

 The modification and disturbance of natural habitats resulting from anthropogenic 

activities has been identified, and will continue to be, a primary threat to biodiversity and 

ecosystem integrity worldwide.   Reservoir ecosystems, although characterized as highly 

modified ecosystems themselves, are subject to the same ecological mechanisms that regulate the 

distribution and abundance of aquatic organisms across broad spatial and temporal scales.  

Furthermore, reservoirs and impoundments are important sources of recreation that generate 

billions of dollars annually.  As such, reservoirs represent a nexus between the natural 

environment and human activity, and therefore are important laboratories for the development of 

multiple-use management strategies that simultaneously meet the needs of society and mitigate 

the negative effects of anthropogenic disturbance on ecosystem integrity.   

 Reservoir ecosystems experience declining habitat quality and quantity as a result of 

several passive and active mechanisms over time, which negatively affect reservoir ecosystems 

leading to declining ecosystem services provided by these ecosystems.  The introduction of new 

sources of physical habitat is a popular management strategy in the United States in order to 

mitigate the loss and degradation of physical habitat in reservoirs; however, several barriers exist 

that preclude the development of effective multiple-use physical habitat management strategies.  

The objectives of my thesis research were to identify and test hypotheses linking the direct effect 

of (1) habitat material type and (2) spatial distribution of physical habitat independent on habitat 

amount on food-web interactions and the growth and survival of largemouth bass (M. salmoides) 

and bluegill (L. machrochirus), which are two popular sportfishes in the United States that 

require physical habitat to complete their life histories.  My research hypotheses were tested 

using a series of replicated pond experiments in order to control the effect of extraneous 
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variables on my research hypotheses, while retaining some comparability between larger 

reservoir ecosystems.  

 In my first chapter, I used plastic fish attractors (Artificial) and natural coarse woody 

habitat (CWH) structures to identify the influence of habitat material type on macroinvertebrate 

community colonization through time, and to determine the influence of habitat material type on 

the growth, condition, and survival of juvenile largemouth bass.  I predicted that 

macroinvertebrate community abundance and diversity would be greater on CWH structures 

compared to Artificial structures and that the growth, condition, and survival of largemouth bass 

would be greater in ponds with CWH structures as a result of relative differences in food 

resource quality and quantity provided by my habitat structures.  I show in my first chapter that 

macroinvertebrate community abundance and composition through time was similar between the 

two habitat types, and that largemouth bass growth, condition, and survival were unrelated to 

physical habitat material type.  

 In my second chapter, I manipulated the distribution of plastic fish attractors into 

“clumped” and “uniform” arrangements to determine the effect of habitat spatial arrangement, 

independent of habitat amount, on (1) predator-prey interactions in a largemouth bass and 

bluegill fish assemblage and (2) the abundance and production of three different invertebrate 

communities.  I also attempted to determine links between invertebrate community production 

and pond conditions on my fish response metrics.  My results show that the growth of 

largemouth bass and bluegill, as well as the survival of bluegill prey, were not influenced by 

habitat spatial arrangement.  I also show that habitat spatial arrangement did not influence the 

production of invertebrate communities in the experimental ponds, and environmental conditions 

were unrelated to my fish response metrics.   
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 My two research experiments demonstrate that independent of habitat amount, habitat 

material type and habitat spatial arrangement had little effect on pond communities and trophic 

interactions.  My results suggests that other factors, such as the absolute abundance of physical 

habitat, or the availability of alternative sources of physical habitat, may be more important to 

aquatic communities and fish growth than from what material the habitat is composed of, or how 

the habitat is spatially distributed.  Fisheries managers and stakeholders in charge of physical 

habitat introduction should have some idea of the amount of physical habitat already present via 

habitat surveys, I recommend that managers identify specific reservoir ecosystems where 

physical habitat may be limiting.  If habitat material type and spatial arrangement are unrelated 

to aquatic ecosystem dynamics, other factors such as the financial cost or relative differences in 

temporal longevity of different physical habitat types may be more relevant to fisheries 

management agencies tasked with producing the greatest effect at the least financial cost. 
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