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ABSTRACT

We study the problem of allocating indivisible goods to agents in a fair and efficient

manner. We consider different notions of fairness such as envy-freeness up to one good

(EF1) and envy-freeness up to any good (EFX) in conjuction with Pareto-optimality (PO).

We present polynomial time algorithms for computing allocations that are EF1 and PO

when (i) the number of agents is constant, and (ii) the number of different values that every

agent has for the goods is constant. We also show that when there are exactly two values

for the goods, an allocation that is EFX, PO and gives a 1.067-approximation to the Nash

Social Welfare (NSW) can be computed in polynomial time. We also present algorithms that

satisfy a different notions of fairness, like equitability up to one good (EQ1), and equitability

up to any good (EQX) along with PO in some of these cases. On the complexity front, we

show that the problem of computing EF1 and PO allocations belongs to class PLS. Further

we show that deciding if EFX and PO allocations exist is NP-hard, even where there are at

most two non-zero values for the goods.

We next consider the problem of computing the Nash Social Welfare maximizing allocation

for the case of public goods subject to a cardinality constraint. We show that the NSW

problem is NP-hard, even when the valuations are all binary. Next, we present a linear-factor

approximation algorithm and polynomial time algorithms when the number of agents or the

number of goods to be picked is constant. Finally we present NSW-preserving reductions

from the model of private goods to that of public goods, and from the public goods model

to that of public decision making, thus showing how the models are related.

Lastly, we study the problem of computing approximate Nash equilibria in imitation

games. An imitation game is represented by two payoff matrices (A,B), in which B is the

identity matrix, implying that the second player gets a positive payoff only if she “imitates”

the first. We show that much like the general case, for any c > 0, computing a 1
nc

-approximate

NE of imitation games remains PPAD-hard, where n is the number of moves available to the

players. On the other hand, we design a polynomial-time algorithm to find ε-approximate

NE for any given constant ε > 0 (PTAS). The former result also rules out the smooth

complexity being in P, unless PPAD ⊂ RP.
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CHAPTER 1: FAIR AND EFFICIENT ALLOCATION OF PRIVATE GOODS

1.1 INTRODUCTION

The problem of fair division has been extensively studied in various fields, including eco-

nomics and computer science [1, 2]. It concerns allocating resources to agents in a fair and

efficient manner, and has various practical applications such as rent division, division of

inheritance, course allocation and government auctions. One of the main notions of fairness

is envy-freeness [3], under which every agent prefers their own bundle of goods over that

of any other. The standard notion of economic efficiency is Pareto optimality (PO). An

allocation is said to be PO if no other allocation makes an agent better off without making

someone else worse off.

Much of the work has focused on divisible goods, which can be allocated fractionally,

starting with the work of [4] who studied the cake cutting problem. In the divisible goods

setting, envy-free and Pareto optimal allocations always exist [5], and can be obtained in

polynomial time [6, 7]. On the other hand, when the goods are indivisible, no such guarantees

can be made. In fact, envy-free allocations need not even exist, for instance in the simple

case of one good and two agents.

Fair division of indivisible goods is an important problem since it models several practical

scenarios such as course allocation [8]. Since envy-free allocations don’t always exist in

this setting, a relaxation called envy-freeness up to one good (EF1) was defined by [9]. An

allocation is said to be EF1 if every agent prefers their own bundle over the bundle of any

other agent after removing at most one good from the other agent’s bundle. It is known

that EF1 allocations always exist for monotone valuations and can be found in polynomial

time [10]. A stronger notion of fairness, called envy-free upto any item (EFX) requires every

agent to prefer their bundle over the bundle of any other agent after removing any good from

the other agent’s bundle. A natural question to ask is whether the two notions of fairness

(EF1 or EFX) and efficiency (PO) can be achieved together.

One question was answered in the positive by [11], showing that for indivisible goods under

additive valuations, an allocation that maximizes the Nash Social Welfare (NSW), is also

EF1 and PO. However, the problem of computing an allocation that maximizes NSW is not

only NP-hard [12], but also APX-hard [13] (hard to approximate). Recently, [14] bypassed

this barrier and devised a pseudopolynomial time algorithm that computes an allocation

that is both EF1 and PO. For binary valuations, [15] give a polynomial time algorithm to

compute NSW maximizing allocation, hence also an allocation that is EF1 and PO. The
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polynomial time algorithm of [10] gives an EF1 allocation that is also PO. The existence of

EFX allocations is known for identical valuations [16], for 3 agents [17], and when there are

at most one of two possible values for the goods [18]. To the best of our knowledge existence

of EFX and PO allocations is not known for non-binary or non-identical valuations.

Apart from these results, nothing much is known about the complexity of the problem of

finding an EF1 and PO allocation in the case of indivisible goods under additive valuations.

We make algorithmic progress in the study of this problem by considering two special cases:

(i) where the number of agents is constant, and (ii) where for every agent, the number of

different values at which she values the goods is constant. We also present polynomial time

algorithms that compute allocations that combine other fairness notions (like equitability up

to one good) along with PO in these special cases. We also show that the when the agents’

values for the goods are only one of two possible values, we can find an allocation that is

both EFX and PO in polynomial time.

These settings strictly generalizes the case of binary valuations. Eliciting the values that

agents have for goods is often a tricky task, as agents may not be able to assert exactly

what values they have for different goods. A simple protocol that the entity in-charge of

the allocation can do is to ask each agent to “rate” the goods on a small integral scale, of

say 0-5; or ask them which goods they value “highly” or value “somewhat”. Based on these

responses, the valuation functions of the agents can be established.

We also make progress on the complexity-front. We show that the problem of computing

an EF1 and PO allocation is in the complexity class Polynomial Local Search (PLS) [19].

We show this by carefully analyzing the algorithm of [14] and show that it has the structure

of a local-search problem. We also show that checking if EFX and PO allocations exists for a

given fair division is NP-hard, even when there are at most 2 non-zero values for the goods.

Finally we introduce a model of fair division where in addition to private goods, some goods

are shareable, and give utility to multiple agents at the same time. We show that in this

setting, EF1 allocations always exist.

1.2 PRELIMINARIES

A fair division instance is a tuple (N,M, {vi}i∈N), where N = [n] is the set of n agents,

M = [m] is the set of indivisible items, and for each agent i ∈ N , vi : M → Z≥0 is a utility

function, with vij denoting the value that agent i has for good j. We assume that for every

good j, there is some agent i such that vij > 0. We further assume that the valuation

function is additive, that is, for every agent i ∈ N , and for S ⊆ M , vi(S) =
∑

j∈S vij.

An allocation x of goods to agents is a n-partition of the goods x1, x2, . . . , xn, where agent i
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owns the bundle of goods xi, and gets a total value of vi(xi). Similarly, a fractional allocation

x ∈ [0, 1]n×m is a fractional assignment of the goods to agents such that for each good j ∈M ,∑
i∈N xij ≤ 1.

We call a fair division instance (N,M, {vi}i∈N) a:

1. binary instance if for all i ∈ N and j ∈M , vij ∈ {0, 1}.

2. {a, b}-instance, if there exist a, b ∈ Z+, where a > b, such that for all i ∈ N and j ∈M ,

vij ∈ {a, b}.

3. {0, a, b}-instance, if there exist a, b ∈ Z+, where a > b, such that for all i ∈ N and

j ∈M , vij ∈ {0, a, b}.

4. sparse-valued instance, if for every i ∈ N , |{vij : j ∈M}| = si is a constant.

We now define some notions of fairness. An allocation x is said to be:

1. envy-free up to one good (EF1) if for all i, h ∈ N , there exists a good j ∈ xh s.t.

vi(xi) ≥ vi(xh \ {j}).

2. envy-free up to any good (EFX) if for all i, h ∈ N and for all goods j ∈ xh we have

vi(xi) ≥ vi(xh \ {j}).

3. equitable up to one good (EQ1) if for all i, h ∈ N , there exists a good j ∈ xh s.t.

vi(xi) ≥ vh(xh \ {j}).

4. equitable up to any good (EQX) if for all i, h ∈ N and for all goods j ∈ xh we have

vi(xi) ≥ vh(xh \ {j}).

An allocation y dominates an allocation x if for all i ∈ A, vi(yi) ≥ vi(xi) and there exists

h ∈ A s.t. vh(yh) > vh(xh). An allocation is said to be Pareto optimal (PO) if no allocation

dominates it. Further, an allocation is said to be fractionally Pareto optimal (fPO) if no

fractional allocation dominates it.

A Fisher market or a market instance is the tuple (N,M, {vi}i∈N , e), where the first three

terms are interpreted as before, and e is the set of agents’ budgets. In this model, agents

can fractionally share goods. Each agent spends his money on goods in way to maximize his

total value. A market equilibrium is an fractional allocation x of the goods to the agents and

a set of prices p = (p1, . . . , pm) for the goods, such that (i) all goods are fully allocated, i.e.,

for all j,
∑

i∈A xij = 1, (ii) budget of all agents is exhausted, for all i ∈ A,
∑

j∈I xijpj = ei,

and (iii) agents only spend money on goods that give them maximum bang-per-buck (mbb),

i.e., xij > 0 implies vij/pj = argmaxj′∈Ivij′/pj′ . The First Welfare Theorem [20] shows that
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for a market equilibrium (x, p), the allocation x is fPO. Let mbbi be the set of all goods

giving maximum bang-per-buck for the agent i at the prices p.

An allocation is said to be price envy-free up to one good (pEF1) if for all agents i, h there

is a good j ∈ xh such that p(xi) ≥ p(xh \ {j}). Similarly we can define the notion of pEFX.

In a market equilibrium allocation (x, p), since the goods owned by every agent are in their

maximum bang per buck set, if (x, p) is pEF1 (resp. pEFX), then x is EF1 (resp. EFX).

An allocation is said to be ε-price envy-free up to one good (ε-pEF1) if for all agents i, h

there is a good j ∈ xh such that (1 + ε)p(xi) ≥ p(xh \ {j}). An agent i ε-envies an agent h

if the above condition is violated. For sufficiently small ε, if an allocation is ε-pEF1, then it

is also EF1.

We call the agent i with minimum p(xi) a least spender. In a market equilibrium (x, p),

for agents i = i0, . . . , i` and goods j1, . . . , j`, consider a path P = (i = i0, j1, i1, j2, . . . , j`, i`),

where for all 1 ≤ `′ ≤ `, j′` ∈ mbb(`′−1) ∪ x`′ . Here P has length 2`. Define the level of an

agent h to be the length of the shortest such path from i to h. Define alternating paths to

be such paths where the edges are between agents at a lower level to agents at a strictly

higher level. For a least spender i, define C`
i to be the set of all alternating paths of length

`. Call Ci =
⋃
C`
i the component of i, the set of all goods and agents reachable from the

least spender i through alternating paths. We say an agent i ε-path-envies agent h ∈ Ci

along an alternating path P = (i, . . . , j, h) if p(xh \ {j}) > (1 + ε)p(xi). Note that if i does

not ε-path-envy an agent h ∈ Ci, then i does not ε-envy h.

1.3 COMPUTING AN EF1 AND PO ALLOCATION IS IN PLS

In this section we show that the problem of computing an EF1 and PO allocation for a

fair division instance ([n], [m], {vi}i∈[n]) is in the complexity class PLS. The algorithm A of

[14] finds an EF1 and PO allocation in time poly(n,m, vmax), where vmax = maxi,j vij. We

closely follow the algorithm A and show that it has the structure of a local search problem.

We first describe A at a high level. The algorithm always maintains an integral market

equilibrium and follows the steps below:

1. Round the values vij as v′ij = (1 + ε)blog1+ε vijc, where ε = 1
mv4max

2. Compute an initial integral market equilibrium (x0, p0), where the price of good j is

the value v′ij if xij = 1

3. Consider alternating paths from the least spender i, starting from shortest to longest,

and if i ε-path-envies h along a path P = (i, . . . , h′, j, h), then swap j from h to h′.
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4. Compute the least spender again and repeat step 3.

5. If (x, p) is 3ε-pEF1, return (x, p)

6. If not, and i does not ε-envy any agent in Ci, then raise prices until:

(a) A new mbb edge gets added from an agent in Ci to a good outside Ci.

(b) i does not price-envy any other agent.

(c) An agent not in Ci becomes the new least spender.

7. If event (b) occurs first then return (x, p), else repeat from step 2.

The following are arguments made in the run-time analysis of A, which we will use to

show PLS-membership of this problem.

1. The spending of the least spender does not decrease.

2. Except possibly in the last step, the price of every good is an integral power of (1 + ε).

Further the price of every good always lies between 1 and pmax = poly(m, vmax).

3. An agent can be a least spender for poly(m,n) steps until the least spender changes or

a price rise step occurs.

4. If i ceases to be a least spender, then when i becomes least spender again she would

have strictly gained a new good or her spending would have increased by a factor of

1 + ε.

We now show that computing an EF1 and PO allocation is in the complexity class PLS.

First note that by the above arguments this problem is equivalent to computing an ε-pEF1

and PO market allocation (x, p) for the corresponding ε-rounded instance, where ε is appro-

priately chosen. To show membership in PLS, we first need to describe the solution space,

the cost function, and the neighbourbood structure.

Solution space. For an allocation x of goods [m] to agents [n] and a vector of prices

p = (p1, . . . , pm), call a configuration (x, p) to be valid if:

- x is integral

- (x, p) is on mbb

- All prices pj are of the form (1 + ε)qj , where qj is an integer between 0 and log1+ε pmax
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Then let the set of solutions S be given by:

S = {(x, p)|(x, p) is a valid configuration} (1.1)

Note that since allocations are integral and prices are integral powers of (1 + ε) and

bounded, the solution space is finite.

Cost function. Let δ(x, p) = 1 if a valid allocation (x, p) is 3ε-pEF1, else 0. The cost

function is a lexicographic function given by cost(x, p) = (δ(x, p),mini∈[n] p(xi)) if (x, p) ∈ S,

and equal to (−1,−1) if (x, p) /∈ S.

Neighborhood structure. The neighbourhood structure is described by a polynomial time

algorithm N . Each solution (x, p) has a single neighbor. If (x, p) /∈ S, then its neighbor

N(x, p) = (x0, p0). If (x, p) ∈ S, then N(x, p) = (x′, p′), which is the allocation obtained

by running A from step 3 from the allocation (x, p) until the spending of the least spender

strictly increases. Let i be the least spender at (x, p).

Suppose a price-rise step does not take place in subsequent iterations. Then observe that

after at most poly(n,m) iterations, the least spender gets a good. Either the spending of the

least spender has increased, or the least spender has changed but has the same spending.

In the former case N halts. In the latter case, notice that after n + 1 identity changes of

the least spender (without a price rise step) and without a spending increase, some agent

i′ must have become the least spender twice. Between these two events, either she gains a

good (thus increasing the spending), or her spending increases by a factor of (1 + ε).

Now suppose a price-rise step takes place. Then either i is still the least spender or a new

agent i′ outside Ci is the new least spender with a larger spending. In either case N halts.

Suppose i′ has the same spending as i before the price-rise. Then either the spending of

the least spender will strictly increase in polynomially many steps as argued before, or only

price-rise steps keep happening with the same spending of the least spender. But observe

that in each such step, the number of least spenders strictly decreases. Thus, in at most n

such consecutive price rise steps the spending of the least spender will increase.

The above arguments show that the spending of the least spender strictly increases after

polynomially many steps, implying that N is a polynomial time algorithm.

Membership in PLS. We need to show the existence of three polynomial time algorithms:

- A: Which outputs a solution (x0, p0)

- B: Which on input (x, p) computes the cost(x, p)

- C: Which on input (x, p) computes a neighbor which a strictly larger cost.
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Algorithms A and B are trivial and in polynomial time. Now observe that each solution

(x, p) has only one neighbor (x′, p′), and that it has a strictly larger cost since spending of

the least spender at (x′, p′) is strictly more than the spending of the least spender at (x, p),

or the latter is EF1. Thus algorithm N itself is algorithm C. Finally note that any local

maxima of (S, cost, N) is an integral market allocation (x, p) where δ(x, p) = 1, i.e., it is

3ε-pEF1, and thus EF1, even for the original valuations. Similarly, as is argued for the

analysis of A, the allocation is also PO for the original valuations. Therefore, computing

and EF1 and PO allocation for integral, additive valuations is in the complexity class PLS.

1.4 POLYNOMIAL TIME ALGORITHMS FOR SPECIAL CASES

1.4.1 Constantly many agents

We assume n, the number of agents is constant.

Theorem 1.1. Given a fair division instance I = ([n], [m], {vi}i∈[n]), where n is constant,

an EF1 and PO allocation can be found in polynomial time.

Proof. (Sketch) It was shown in [21] that the number of fPO allocations (up to cycles in

the allocation graph of the Fisher Market equilibrium) is polynomial if n is constant. From

[14], we know that for any fair division instance, there always exists an allocation that is

EF1 and fPO. We first convert the instance into a non-degenerate one, where there is no

multiplicative relationship between any of the values. This ensures that there are no cycles

in the allocation graph at the Fisher Market equilibrium. Thus, in polynomial time we can

enumerate all fPO allocations, round them to integral allocations (this can be done in at

most 2n ways, which is constant since n is constant), and check if the allocation is EF1.

Since an EF1 and PO allocation is guaranteed to exist, this algorithm finds it in polynomial

time. QED.

1.4.2 Sparse-value instances

In this section we consider fair division instances where the number of utility values per

agent is constant. Recall that an instance (N,M, {vi}i∈N) is called sparse-valued instance,

if for every i ∈ N , |{vij : j ∈M}| = si is a constant.

An important consequence of this is that the number of different utility values an agent

gets in any allocation is at most poly(n,m). For any agent i, and any ` ∈ {0, 1, . . . , si}, let
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v`i be the different utility values, and let m`
i be the number of goods with value v`i . Then

agent i’s utility is:

ui = m1
i v

1
i + · · ·+msi

i v
si
i (1.2)

Since each m`
i ≤ m, the number of possible utility values i can get in any allocation is at

most (m+ 1)si , which is poly(m) since si is constant.

Finding EF1 and fPO allocations. We use this fact crucially in our algorithm presented

below, which computes an EF1 and fPO allocation in polynomial time for sparse-valued

instances.

Our algorithm starts with a welfare maximizing integral allocation (x, p), where pj = vij

for j ∈ xi. We call the agent with the least spending the LS agent, and denote by L the

set of LS agents. The algorithm first explores if there is an alternating path P = (i = i0 →
j1 → i1 → · · · → j` → i` = h), from some LS agent i, such that p(xh \ {j`}) > p(xi), i.e. an

alternating path along which the pEF1 condition is violated for the LS agent. When such a

path is encountered, the algorithm swaps j` from h to i`−1. When there is no such path from

i, the component Ci of the LS agent is pEF1. We denote by CL the union of all components

of LS agents. Suppose the overall allocation is not pEF1, then the algorithm raises the prices

of all goods in the CL until either (i) a new mbb edge gets added from an agent h ∈ CL

to a good j /∈ CL (corresponding to β1, or (ii) the spending of an agent h /∈ CL becomes

equal to the spending of the agents in L (corresponding to β2). The algorithm proceeds as

before from step 2. Note that at each step, we maintain a market equilibrium (x, p), which

guarantees that the allocation is always fPO. Further, when the allocation terminates it is

pEF1, and hence EF1.

We now show that the algorithm terminates in polynomial time. First we note that:

Lemma 1.1. The spending of the least spender(s) does not decrease as the algorithms pro-

gresses. Also, an LS agent stops being the LS only when she gets a good. Further at any

price rise event with price rise factor β, the spending of the least spender(s) rises by a factor

of β.

Next we argue that:

Lemma 1.2. The number of iterations with the same LS and no price rise events is poly(n,m).

Proof. To see this, we count the number of alternating paths from a LS i to an agent k which

owns a good j which is then transferred to an agent h. The number of such paths is at most

n2m, thus there are at most poly(n,m) swaps with the same LS and no price rise. QED.
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Algorithm 1.1 Compute EF1+fPO allocation in sparse instances

Input: Fair division sparse instance ([n], [m], {vi}i∈[n])
Output: An integral allocation x

1: Let (x, p) : initial integral market allocation, where pj = vij for j ∈ xi.
2: Let L = {i ∈ [n] : i ∈ argmaxh∈[n]p(xh)} be set of the LS agents
3: while (x, p) is not pEF1 and CL 6= ∅ do
4: if ∃i ∈ L,∃ alt. path i→ j1 → i1 → · · · → j` → i`, s.t. p(xi` \ {j`}) > p(xi) then
5: Transfer j` from i` to i`−1

6: Repeat from Step 2

7: if (x, p) is pEF1 then return x
8: else
9: β1 = minh∈CL,j /∈CL

αh
vhj/pj

. Factor by which prices of goods in CL are raised until a

new mbb edge appears from an agent in CL to a good outside CL
10: β2 = mini∈L,h/∈CL

p(xh)
p(xi)

. Factor by which prices of goods in CL are raised until a a
new agent outside CL becomes a new LS

11: β = min(β1, β2)
12: for j ∈ CL do
13: pj ← βpj

14: Repeat from Step 2

Finally we argue that every agent can be least spender for only poly(n,m) iterations. By

time-step we mean an a swap or a price rise event. We say ‘at time step t’, to refer to the

state of the algorithm just before the event at t happens. We denote by (xt, pt) the allocation

and price vector at time step t.

Lemma 1.3. Let t0 be a time-step where agent i ceases to be a LS, and let t` be the first

subsequent time step where i becomes the LS again. Then:

vi(x
t`
i ) > vi(x

t0
i ) (1.3)

Proof. From Lemma 1.1, i must have received some good j at time step t0. Since j ∈ mbbi
at t0, vij > 0. Suppose i does not lose any good in any subsequent iterations, then xt`i ⊇
xt0i ∪{j}, and hence vi(x

t`
i ) > vi(x

t0
i ). On the other hand suppose i does lose some goods. Let

t1, . . . , tk−1 be time steps (in order) when i experiences price rise; tk be a subsequent time step

where i loses a good j′ for the last time, and tk+1, . . . , t`−1 price rise events subsequent to that,

until finally at the event t` agent i becomes the LS again. Let β1, . . . , βk−1, βk+1, . . . , β`−1 be

price rise factors at the corresponding events.

For every price rise step with price rise factor β that i experiences, her spending increases

9



by a factor β. Together with the fact that i does not lose any good after tk, we have:

pt`(xt`i ) ≥ (β`−1β`−2 · · · βk+1)ptk(xtki \ {j′}) (1.4)

If ik is the LS at tk, then for i to lose j′ it must be the case that:

ptk(xtki \ {j′}) > ptk(xtkik) (1.5)

Finally from Lemma 1.1, we also must have:

ptk(xtki ) ≥ (βk−1βk−2 · · · β1)pt0(xt0i ) (1.6)

Putting equations 1.4, 1.5 and 1.6 together, we get:

pt`(xt`i ) ≥ (β`−1β`−2 · · · βk+1)(βk−1βk−2 · · · β1)pt0(xt0i ) (1.7)

Let αti denote the mbb-ratio of i at the time step t. Observe that in every price rise event

with price rise factor β, the mbb ratio of any agent experiencing the price rise decreases by

a factor β. Thus:

αt`i =
αt0i

(β`−1β`−2 · · · βk+1)(βk−1βk−2 · · · β1)
(1.8)

Using the fact that the allocation is always on mbb-edges, and using equations 1.7 and 1.8

we have:

vi(x
t`
i ) = αt`i p

t`(xt`i )

>
αt0i

(β`−1β`−2 · · · βk+1)(βk−1βk−2 · · · β1)
(β`−1β`−2 · · · βk+1)(βk−1βk−2 · · · β1)pt0(xt0i )

= αt0i p
t0(xt0i )

= vi(x
t0
i )

(1.9)

as required. QED.

Consider any agent i. From Lemma 1.3, it is clear that every time an agent i becomes the

LS again her utility has strictly increased compared to her utility the last time she was a

LS. Using the fact that the number of utility values of any agent are poly(m), we conclude

that for any agent the number of times she stops being an LS and becomes LS again is at

most poly(m). This means that after poly(n,m) iterations, there will be no changes in the

set of least spenders. But we know from Lemma 1.2, that any agent can be the LS for at
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Algorithm 1.2 Compute EQ1+fPO allocation in sparse instances

Input: Fair division sparse instance ([n], [m], {vi}i∈[n]) with positive values
Output: An integral allocation x

1: Let (x, p) : initial integral market allocation, where pj = vij for j ∈ xi.
2: Let i ∈ argmaxh∈[n]vh(xh) be a LU agent
3: while (x, p) is not EQ1 and Ci 6= ∅ do
4: if ∃ alt. path i→ j1 → i1 → · · · → j` → i`, s.t. ve`(xi` \ {j`}) > vi(xi) then
5: Transfer j` from i` to i`−1

6: Repeat from Step 2

7: if (x, p) is EQ1 then return x
8: else
9: β = minh∈Ci,j /∈Ci

αh
vhj/pj

. Factor by which prices of goods in Ci are raised until a

new mbb edge appears from an agent in Ci to a good outside Ci
10: for j ∈ Ci do
11: pj ← βpj

12: Repeat from Step 2

most poly(n,m) iterations until a price rise event happens or she stops being the LS. This

shows that Algorithm 1.1 terminates in polynomial time. Thus we conclude:

Theorem 1.2. Given a sparse fair division instance I = ([n], [m], {vi}i∈[n]), an allocation

that is both EF1 and fPO can be computed in polynomial time.

Finding EQ1 and fPO allocations. We now present an algorithm that finds an EQ1

and fPO allocation given a sparse fair division instance with positive values. We require the

values to be positive because in the presence of zero values instances might not even admit

an allocation that is both EQ1 and PO. The algorithm is similar to Algorithm 1.1, except

that we use valuations instead of the spending of the agents since we want to achieve an

allocation that is EQ1 (and not EF1). We refer to the agent(s) with the least utility as the

LU agent(s).

Suppose the algorithm terminates with (x, p). Since the allocation is always on mbb-

edges, by the Second Welfare theorem it is fPO. Further the algorithm only terminates if

the allocation is EQ1 (line 7). We argue that the algorithm terminates in poly(n,m) time.

We first note that the utility of the LU agent never decreases through the course of the

algorithm. Also, an LU agent stops being an LU agent only if she gets a good. Further by

analysis similar to Lemma 1.2, the number of iterations with the same LS and no price rise

steps is bounded by poly(n,m). Similar to Lemma 1.3, we show:
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Lemma 1.4. Let t0 be a time-step where agent i ceases to be an LU agent, and let t` be the

first subsequent time step where i becomes the LU agent again. Then:

vi(x
t`
i ) > vi(x

t0
i ) (1.10)

Proof. From Lemma 1.1, i must have received some good j at time step t0. Since j ∈ mbbi
at t0, vij > 0. Suppose i does not lose any good in any subsequent iterations, then xt`i ⊇
xt0i ∪{j}, and hence vi(x

t`
i ) > vi(x

t0
i ). On the other hand suppose i does lose some goods. Let

t1, . . . , tk−1 be time steps (in order) when i experiences price rise; tk be a subsequent time

step where i loses a good j′ for the last time, and tk+1, . . . , t`−1 price rise events subsequent

to that, until finally at the event t` agent i becomes the LU agent again.

Since i does not lose any good after tk, we have:

vt`i (xt`i ) ≥ vi(x
tk
i \ {j′}) (1.11)

If ik is the LS at tk, then for i to lose j′ it must be the case that:

vtki (xtki \ {j′}) > vitk (xtkik) (1.12)

Finally since the utility of the LU agent does not decrease, we also must have:

vitk (xtkik) ≥ vi(x
t0
i ) (1.13)

Putting equations 1.11, 1.12 and 1.13 together, we get:

vi(x
t`
i ) > vi(x

t0
i ) (1.14)

as required. QED.

Consider any agent i. From Lemma 1.4, it is clear that every time an agent i becomes the

LU agent again her utility has strictly increased compared to her utility the last time she was

the LU agent. Using the fact that the number of utility values of any agent are poly(m), we

conclude that for any agent the number of times she stops being an LU agent and becomes

the LU agent again is at most poly(m). This means that after poly(n,m) iterations, there

will be no changes in the set of least utility agents. But we know from Lemma 1.2, that any

agent can be the LU agent for at most poly(n,m) iterations until a price rise event happens

or she stops being the LU agent. This shows that Algorithm 1.1 terminates in polynomial

time. Thus we conclude:
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Algorithm 1.3 Compute EFX+fPO allocation in {a, b}-instances

Input: Fair division {a, b}-instance ([n], [m], {vi}i∈[n])
Output: An integral allocation x

1: Scale values to {1, k}.
2: Let (x, p) : initial integral market allocation, where pj = vij for j ∈ xi.
3: Let i ∈ argmaxh∈[n]p(xh) be the LS agent
4: while (x, p) is not pEF1 and Ci 6= ∅ do
5: if ∃ alternating path i→ j1 → i1 → · · · → j` → i`, s.t. p(xi` \ {j`}) > p(xi) then
6: Transfer j` from i` to i`−1

7: Repeat from Step 3

8: if ∀h /∈ Ci, ∀j ∈ xh : p(xh \ {j}) ≤ p(xi) then return x
9: else
10: Raise prices of goods in Ci by k
11: Repeat from Step 3

Theorem 1.3. Given a sparse fair division instance I = ([n], [m], {vi}i∈[n]) with positive

values, an allocation that is both EQ1 and fPO can be computed in polynomial time.

1.5 RESULTS FOR BIVALUED INSTANCES

We now turn our attention to {a, b}-fair division instances.

1.5.1 EFX and PO allocations in polynomial time

In this section we present a polynomial time algorithm that returns an allocation that is

EFX and fPO for {a, b}-instances. Let k = a/b > 1. Let us first scale the valuations to

{1, k} since both properties EF1 and fPO are scale-invariant.

Our algorithm starts with a welfare maximizing integral allocation (x, p), where pj = vij

for j ∈ xi. We call the agent with the least spending the LS agent. The algorithm first

explores if there is an alternating path P = (i = i0 → j1 → i1 → · · · → j` → i` = h), where

i is the LS agent, such that p(xh \ {j`}) > p(xi), i.e. an alternating path along which the

pEF1 condition is violated for the LS agent. When such a path is encountered, the algorithm

swaps j` from h to i`−1. When there is no such path, the component Ci of the LS agent is

pEF1. Suppose the overall allocation is not pEFX then, the algorithm raises the prices of

all goods in the component of the LS agent by a factor of k, and the algorithm proceeds as

before. At each step, we maintain a market equilibrium (x, p), which guarantees that the

allocation is always fPO.

We first show:
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Lemma 1.5. Algorithm 1.3 terminates in polynomial time.

Proof. We first argue that the number of iterations with the same least spender i without

any price rise steps is poly(n,m). To see this, we count the number of alternating paths from

i to an agent k which owns a good j which is then transferred to an agent h. The number of

such paths is at most n2m, thus there are at most poly(n,m) swaps with the same LS and

no price rise.

Next we argue that the number of identity changes of the LS agent without a price rise

step is poly(n,m). First note that the spending of the least spender never decreases in the

execution of the algorithm. Next, observe that in the absence of price rise steps an agent

stops being a least spender only if she gets a good. Suppose at the allocation x, the LS i

gets a good j and ceases to be the LS. Subsequently, suppose at the allocation x′, i loses a

good j′ for the last time. After this, at an allocation x′′ suppose i becomes the LS again.

Let h be the LS at x′. Let p be the price vector. Now observe that:

p(x′′i ) ≥ p(x′ \ {j′}) > p(x′`) ≥ p(xi) (1.15)

The first inequality holds because j′ is the last good that i loses. The second inequality

holds because j′ is removed from i only because i violated the pEF1 condition at x′. The

third inequality holds because the spending of the LS does not decrease.

Hence when i becomes the LS again, her utility has strictly increased. Since all utility

values are integers, the increase in i’s utility is by at least 1. In any allocation x, if si

(resp. ti) is the number of goods in xi that are valued at b (resp. a) by i, the utility of i is

ui = sib + tia. Since 0 ≤ si, ti ≤ m, the number of different utility values i can get in any

allocation is at most m2. Thus, for any agent i, the number of utility increases can be at

most m2. This means that without price rises, any agent can become the least spender only

m2 times. Thus the number of identity changes of the LS in the absence of price rise steps

is poly(n,m).

Thus, for polynomial run time, all that remains to be shown is that the number of price

rise steps by a polynomial in n,m. For this, we observe that the set of pEF1-violators before

a price rise step does not increase during the execution of the algorithm. This is because

if a new agent becomes an pEF1-violator after a swap step, she will cease to be an pEF1-

violator in subsequent iterations before a price rise event. Also due to a price rise no new

agent can become an pEF1-violator, since the spending of the non-pEF1-violator agents only

increases in a price rise step. Thus, the goods belonging to the set of pEF1-violators have

not experienced any price rise step, and their prices are either 1 or k. At a price rise step

t, let αt1, . . . , α
t
n be the mbb-ratios of the agents. For any good j /∈ Ci0 , where i0 is the LU
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agent, for every agent i, the mbb-ratio of i must at least be the bang-per buck i gets from

j. Thus before any price rise step t, for every agent i and any good j /∈ Ci0 :

αti ≥
vij
pj
≥ 1

k
(1.16)

Consider the potential function given by:

φ(t) =
∑
i∈[n]

logk α
t
i (1.17)

Before the first price rise step, all the mbb-ratios are 1. Hence α0
i = 1 for every i ∈ [n]. So,

φ(0) = 0. From Equation 1.36, we have for all price rise steps, φ(t) ≥ n logk(1/k) = −n.

Also after a price rise step, at least one agent’s mbb-ratio value decreases by a factor k, thus

φ(t+ 1) ≤ φ(t)− 1. Thus, the number of price rise steps is at most n. Hence the algorithm

terminates in polynomial time. QED.

Let (x, p) be the output of Algorithm 1.3. Since (x, p) is a market equilibrium outcome,

we know x is fPO by the First Welfare Theorem. Additionally, we claim that (x, p) is pEFX.

First we show that we can rescale prices to {1, k}.

Lemma 1.6. Given a fair division {a, b}-instance I = ([n], [m], {vi}i∈[n]). Let (x, p) be the

output of Algorithm 1.3. Then there exists a set of prices q such that (x, q) is also a market

equilibrium for I with appropriate initial endowments, and for every j ∈ [m], qj ∈ {1, k}.

Proof. Note that initially all prices are either 1 or k. Since all price rises are by a factor of

k, final prices are of the form pj = ksj , for sj ∈ Z≥0. Let j0 be the smallest priced good with

pj0 = ks, and let j0 ∈ xi. Then ∀j ∈ xi : pj ∈ {ks, ks+1}. By mbb condition for any agent

h 6= i for j′ ∈ xh and j ∈ xi:
vhj′

pj′
≥ vhj

pj
(1.18)

which gives:

pj′ ≤
vhj′

vhj
pj ≤ ks+2 (1.19)

Thus all pj ∈ {ks, ks+1, ks+2}. Either all pj ∈ {ks, ks+1}, or ∃j ∈ xh : pj = ks+2. Then by

mbb condition for any good j′:
vhj
pj
≥ vhj′

pj′
(1.20)

which gives:

pj′ ≥
vhj′

vhj
pj ≥ ks+1 (1.21)
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Thus either all pj ∈ {ks, ks+1} or all pj ∈ {ks+1, ks+2}. In either case we can scale the prices

to belong to {1, k}. QED.

Using this we show:

Lemma 1.7. The allocation (x, p) returned by Algorithm 1.3 is pEFX.

Proof. Let us first scale the prices to {1, k} using Lemma 1.6. Suppose (x, p) is not pEFX.

Then there must be an agent h and some good j ∈ xh s.t. p(xh \ {j}) > p(xi), where i is the

least spender. If h /∈ Ci, the algorithm would not have halted (negation of condition in line

8 holds). Therefore h is in Ci. This means that along all alternating paths P = (i → j1 →
i1 → · · · → h′ → j → h), it is the case that p(xh \ {j}) ≤ p(xi). One of two of the following

cases must hold:

1. There is some alternating path P = (i→ j1 → i1 → · · · → h′ → j → h), with pj = 1.

Then for all j′ ∈ xh with pj′ = 1:

p(xi) ≥ p(xh \ {j} = p(xh)− 1 = p(xh \ {j′}) (1.22)

and for all j′ ∈ xh with pj′ = k:

p(xi) ≥ p(xh \ {j} = p(xh)− 1 > p(xh)− k = p(xh \ {j′}) (1.23)

which means that the pEFX condition is satisfied for h.

2. Suppose along all alternating paths P = (i→ j1 → i1 → · · · → h′ → j → h), it holds

that pj = k. If for all goods j′ ∈ xh not reachable along any alternating path, it holds

that pj′ = k, then the pEFX condition is satisfied for h:

p(xi) ≥ p(xh \ {j}) = p(xh)− k = p(xh \ {j′}) (1.24)

On the other hand suppose there is a good j′ ∈ xh that is not reachable from i via any

alternating path, with pj′ = 1. Consider any alternating path P = (i → j1 → i1 →
· · · → h′ → j → h). Then it must be the case that j′ /∈ mbbh′ . If αh′ is the mbb-ratio

of h′, then this means:

αh′ =
vh′j
pj

>
vh′j′

pj′
(1.25)

which gives vh′j > kvh′j′ which is not possible when vh′j, vh′j′ ∈ {1, k}.

Thus, in fact the pEFX condition is satisfied for h, and the allocation (x, p) is pEFX. QED.
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The Nash Social Welfare (NSW) of an allocation x, denoted by NSW(x) is defined to be

the geometric mean of the agent utilities. Together with a result of [15], we show that our

algorithm also gives an approximation guarantee to the NSW.

Lemma 1.8 ([15]). For a fair division instance with identical valuations, any EFX allocation

provides a 1.067-approximation to the Nash Social Welfare.

We show that:

Lemma 1.9. Given a fair division {a, b}-instance I = ([n], [m], {vi}i∈[n]), let (x, p) be the

allocation output by Algorithm 1.3. If x∗ is the optimum NSW allocation, then:

NSW(x) ≥ 1

1.067
NSW(x∗) (1.26)

Proof. Recall that (x, p) is an pEFX and fPO allocation. Let αi be the mbb-ratio of agent i in

(x, p). We consider a scaled fair division instance I ′ = ([n], [m], {v′i}i∈[n]), where v′ij = 1
αi
vij.

Since the NSW function is scale-invariant, if x∗ is the MNSW allocation for I, x∗ is also the

MNSW allocation for I ′; further if x is a β-approximation to the MNSW value in I ′, then

x is also a β-approximation to the MNSW value in I. We also have by the mbb-condition

that for every agent i, v′i(xi) = p(xi), and that v′i(x
∗
i ) ≤ p(x∗i ). Thus:

NSW(x) =
( ∏
i∈[n]

v′i(xi)
)1/n

=
( ∏
i∈[n]

p(xi)
)1/n

(1.27)

and

NSW(x∗) =
( ∏
i∈[n]

v′i(x
∗
i )
)1/n ≤

( ∏
i∈[n]

p(x∗i )
)1/n

(1.28)

Next we consider an instance I ′′ = ([n], [m], {v′′i }i∈[n]) with identical valuations, v′′ij = pj for

all i, j. Since (x, p) is pEFX for the instance I, x is EFX for the instance I ′′. Let X be the

set of all integral allocations. By Lemma 1.8, we have:

( ∏
i∈[n]

v′′i (xi)
)1/n ≥ 1

1.067
max
y∈X

( ∏
i∈[n]

v′′i (yi)
)1/n

(1.29)

which gives:

( ∏
i∈[n]

p(xi)
)1/n ≥ 1

1.067
max
y∈X

( ∏
i∈[n]

p(yi)
)1/n ≥ 1

1.067

( ∏
i∈[n]

p(x∗i )
)1/n

(1.30)
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Algorithm 1.4 Compute EQX+fPO allocation in {a, b}-instances

Input: Fair division {a, b}-instance ([n], [m], {vi}i∈[n])
Output: An integral allocation x

1: (x, p) : initial integral market allocation, where pj = vij for j ∈ xi.
2: Let i ∈ argmaxh∈[n]vh(xh) be the LU agent
3: while x is not EQX and Ci 6= ∅ do
4: if ∃ alternating path i→ j1 → i1 → · · · → j` → i`, s.t. vi`(xi` \ {j`}) > vi(xi) then
5: Transfer j` from i` to i`−1

6: Repeat from Step 2

7: if x is EQX then return x
8: else
9: Raise prices of goods in Ci by a/b
10: Repeat from Step 2

Equations 1.27, 1.28 and 1.30 together give:

NSW(x) ≥ 1

1.067
NSW(x∗) (1.31)

as claimed. QED.

From Lemma 1.5, 1.7 and 1.9 we can conclude:

Theorem 1.4. Given a fair division {a, b}-instance I = ([n], [m], {vi}i∈[n]), an allocation

that is both EFX and fPO can be computed in polynomial time. Further the allocation

produced also approximates the Nash Social Welfare to a factor of 1.067.

1.5.2 EQX and PO allocations in polynomial time

In this section we present a polynomial time algorithm that returns an allocation that is

EQX and fPO for {a, b}-instances. Let k = a/b > 1.

Our algorithm starts with a welfare maximizing integral allocation (x, p), where pj = vij

for j ∈ xi. We call the agent with the least utility the LU agent. The algorithm first explores

if there is an alternating path P = (i = i0 → j1 → i1 → · · · → j` → i` = h), where i is the

LU agent, such that vh(xh \ {j`}) > vi(xi), i.e. an alternating path along which the EQX

condition is violated for the LU agent. When such a path is encountered, the algorithm

swaps j` from h to i`−1. When there is no such path, the component Ci of the LU agent

is EQ1. Suppose the overall allocation is not EQX then, the algorithm raises the prices of

all goods in the component of the LU agent by a factor of k, and the algorithm proceeds as

before.
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We first show correctness:

Lemma 1.10. Let (x, p) be the allocation returned by Algorithm 1.4. Then x is EQX and

fPO.

Proof. Since (x, p) is a market equilibrium outcome, we know x is fPO by the First Welfare

Theorem. We can use Lemma 1.6 to scale all prices to {1, k}. Suppose x is not EQX. Then

there is an agent h such that for all j ∈ xh, vh(xh \ {j}) > vi(xi). If h /∈ Ci, then the

algorithm would not have halted. This means that h ∈ Ci.
Since the algorithm has halted, along all alternating paths P = (i → j1 → i1 → · · · →

h′ → j → h), it is the case that vh(xh \{j}) ≤ vi(xi). One of two of the following cases must

hold:

1. There is some alternating path P = (i→ j1 → i1 → · · · → h′ → j → h), with vhj = b.

Then for all j′ ∈ xh:

vi(xi) ≥ vh(xh \ {j} = vh(xh)− b = vh(xh \ {j′}) (1.32)

and for all j′ ∈ xh with vhj′ = a:

vi(xi) ≥ vh(xh \ {j} = vh(xh)− b > vh(xh)− a = vh(xh \ {j′}) (1.33)

which means that the EQX condition is satisfied for h.

2. Suppose along all alternating paths P = (i→ j1 → i1 → · · · → h′ → j → h), it holds

that vhj = a. If for all goods j′ ∈ xh not reachable along any alternating path, it holds

that vhj′ = a, then the EQX condition is satisfied for h:

vi(xi) ≥ vh(xh \ {j}) = vh(xh)− a = vh(xh \ {j′}) (1.34)

On the other hand suppose there is a good j′ ∈ xh that is not reachable from i via any

alternating path, with vhj′ = b. Note that this means there are two goods j, j′ ∈ xh s.t.

vhj = a, and vhj′ = b. By mbb condition, we must have pj = k and pj′ = 1. Consider

any alternating path P = (i → j1 → i1 → · · · → h′ → j → h). Then it must be the

case that j′ /∈ mbbh′ . If αh′ is the mbb-ratio of h′, then this means:

αh′ =
vh′j
pj

>
vh′j′

pj′
(1.35)

which gives vh′j > kvh′j′ which is not possible when vh′j, vh′j′ ∈ {1, k}.
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This shows that the returned allocation x is EQX. QED.

We now show:

Lemma 1.11. Algorithm 1.4 terminates in polynomial time.

Proof. Using similar arguments as made in Lemma 1.5, we can conclude that the number

of swaps without an change in the identity of the LU agent is poly(n,m), and also that the

number of identity changes of the LU agent without a price rise step is poly(n,m). Thus for

polynomial run time, we only need to bound the number of price rise steps by a polynomial

in n,m.

For this, we observe that the set of EQ1-violators before a price rise step does not increase

during the execution of the algorithm. This is because if a new agent becomes an EQ1-

violator after a swap step, she will cease to be an EQ1-violator in subsequent iterations

before a price rise event. Also due to a price rise no new agent can become an EQ1-violator

since the utility of all agents remains the same. Thus, the goods belonging to the set of

EQ1-violators have not experienced any price rise step, and their prices are either a or b.

At a price rise step t, let αt1, . . . , α
t
n be the mbb-ratios of the agents. For any good j /∈ Ci0 ,

where i0 is the LU agent, for every agent i, the mbb-ratio of i must at least be the bang-per

buck i gets from j. Thus before any price rise step t, for every agent i and any good j /∈ Ci0 :

αti ≥
vij
pj
≥ b

a
(1.36)

Consider the potential function given by:

φ(t) =
∑
i∈[n]

logk α
t
i (1.37)

Before the first price rise step, all the mbb-ratios are 1. Hence α0
i = 1 for every i ∈ [n].

So, φ(0) = 0. From Equation 1.36, we have for all price rise steps, φ(t) ≥ n logk(b/a) = −n.

Also after a price rise step, at least one agent’s mbb-ratio value decreases by a factor k, thus

φ(t+ 1) ≤ φ(t)− 1. Thus, the number of price rise steps is at most n. Hence the algorithm

terminates in polynomial time. QED.

From Lemmas 1.10 and 1.11 we conclude:

Theorem 1.5. Given a fair division {a, b}-instance I = ([n], [m], {vi}i∈[n]), an allocation

that is both EQX and fPO can be computed in polynomial time.
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1.5.3 Checking existence of allocations that are EFX and PO

In the previous sections we showed that for {a, b}-instances, allocations that are EFX and

fPO always exist, and that we can find them in polynomial time. However, if we consider

a generalize the class of valuations slightly to {0, a, b}, EFX and PO allocations are no

longer guaranteed to exist. Consider the following instance with 2 agents a1, a2 and 3 goods

{g1, g2, g3}:

g1 g2 g3

a1 2 1 0
a2 2 0 1

Table 1.1: An instance for which EFX+PO allocations do not exist

In any PO allocation, g2 has to be allocated to a1, and g3 has to be allocated to a2. Thus,

the only PO allocations are ({g1, g2}, {g3}), and ({g2}, {g1, g3}). However neither of them are

EFX, since in the first allocation a2 envies a1 after removing g2, and in the second allocation

a1 envies a2 after removing g3.

Having established that EFX and PO allocations need not exist in {0, a, b}-instances, a

natural questions to ask is what is the complexity of checking if an EFX and PO allocation

exists or not? We show that this problem is NP-hard.

Theorem 1.6. Given a fair division instance I = ([n], [m], {vi}i∈[n]), checking if I admits

an allocation that is both EFX and PO is NP-hard.

We reduce from 2P2N3SAT. An instance of 2P2N3SAT consists of a 3SAT formula

over n variables x1, x2 . . . , xn in conjunctive normal form. There are m distinct clauses

C1, C2, . . . , Cm, with three literals per clause. Additionally, each variable xi appears exactly

twice negated and exactly twice unnegated in the formula. Given an instance of 2P2N3SAT,

deciding if there exists a satisfying assignment is known to be NP-complete.

Given a 2P2N3SAT-instance: {xi}i∈[n], {Cj}j∈[m], we construct a fair division instance with

2n+m agents and 7n+m goods, and all values are in {0, 1, 3} as follows:

1. For every variable xi, create two agents Ti and Fi. Also create 7 goods: dTi , d
F
i , gi, y

T
i ,zTi ,

yFi , z
F
i . Both Ti and Fi value gi at 3. Ti values dTi , y

T
i , z

T
i at 1, and Fi values dFi , y

F
i , z

F
i

at 1. Ti and Fi value all other goods at 0.

2. For every clause Cj = `1 ∨ `2 ∨ `3, create one agent Dj and a good ej. Dj values ej at

1. If for any k ∈ [3], `k = xi for some i ∈ [n] then Dj values yTi , z
T
i at 1; and if for any

k ∈ [3], `k = ¬xi for some i ∈ [n] then Dj values yFi , z
F
i at 1. Dj values all other goods

at 0.
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Suppose there exists a satisfying assignment that satisfies the formula. Under this assign-

ment, let X ∈ {x1, . . . , xn} be the set of variables set to True. Then we create an assignment

of goods as follows: For every xi set to True, we assign gi, d
T
i to Ti and dFi , y

F
i , z

F
i to Fi.

For every xi set to False, we assign gi, d
F
i to Fi and diy

F
i , z

F
i to Fi. We also assign ej to Dj

for every j ∈ [m]. Since the assignment satisfies all clauses, there exists one literal which is

True in every clause Cj. If this literal is an unnegated variable, say xi, then we assign one

of yTi or zTi (whichever is left) to Dj. If this literal is a negated variable, say ¬xi, then we

assign one of yFi or zFi (whichever is left) to Dj. Notice that every item has been assigned

to an agent that values it at the highest among all agents. Thus this allocation maximizes

the utilitarian Social Welfare, and this is PO. Further, it is also EFX. This is because under

this assignment for every i ∈ [n], if xi is True, Ti gets the highest utility of 4 and does not

envy any agent, and in this case Fi gets a value of 3 and thus does not envy Ti even after

removing dTi from Ti’s bundle. An analogous argument holds when xi is False. Next, for

each j ∈ [m], Dj gets a value of at least 2, and the number of goods belonging to Dj valued

at 1 by an agent Dj′ , for j 6= j′ is at most 2 since all the clauses are distinct. Thus the

maximum utility Dj has for goods allocated to Dj′ is 2, and thus Dj does not envy Dj′ for

any j, j′ ∈ [m]. Finally note that Dj can have a value of at most 2 for the goods owned by

Ti or Fi for any i, j, and hence there will be no envy. Thus the allocation is EFX.

Suppose on the other hand every assignment of True or False to the variables is unsatisfy-

ing, i.e., under any assignment there is always some clause Cj all of whose literals are False.

Suppose there exists an EFX and PO allocation of goods to agents. Since the allocation is

PO, for every i ∈ [n], dTi must be assigned to Ti, d
F
i must be assigned to Fi, gi must be

assigned to either Ti or Fi. Also, for each j ∈ [m], ej must be assigned to Dj. Suppose for

some i ∈ [n], gi is allocated to Ti. Then, because Fi must not envy Ti after removing dTi from

the bundle of Ti, Fi must have utility at least 3. This is only possible if both yFi and zFi are

allocated to Fi. Similarly, if gi is allocated to Fi, then for the allocation to be EFX, yTi and

zTi both must be allocated to Ti. Now consider the assignment defined from the allocation

in the following manner: if gi is allocated to Ti, set xi to True. If gi is allocated to Fi, set xi

to False. By our assumption, this assignment leaves one at least one clause Cj unsatisfied,

which means all literals in that clause evaluate to False. If xi is a literal appearing in Cj,

then Dj values yTi , z
T
i , but since xi is set to False, both these goods are owned by Ti. If xi is

a literal appearing in Cj, then Dj values yTi , z
T
i , but since xi is set to False, both these goods

are owned by Ti. Similarly, if ¬xi is a literal appearing in Cj, then Dj values yFi , z
F
i , but

since xi is set to True, both these goods are owned by Fi. Thus, all goods except ej that Dj

values belong to other agents, with there being at least one agent (some Ti or Fi for some

i ∈ [n]) who owns two such goods. Clearly Dj will envy this agent (Ti or Fi) after removing
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one good (dTi or dFi ) from their bundle. Thus, the allocation is not EFX, which contradicts

our assumption on the existence of an allocation that is EFX and PO.

This shows that checking if a fair division instance admits an EFX and PO allocation is

NP-hard.

1.6 PRIVATE AND SHAREABLE GOODS

Up until now we considered private goods, i.e., in an integral allocation only agent i derives

utility from goods allotted to her. In this section we introduce shareable goods, which are

goods collectively owned by a group of agents. Our model consists of agents divided up into

disjoint teams or groups, and a set of shareable goods along with private goods. If a shareable

good j is assigned to a team, all members of that team derive (the same) utility from j.

One can see that this model has wide practical applicability. For instance, the teams could

be different groups within the CS department in an university, like Theory group, Systems

group and so on. A shareable good could be a lounge, or a printer whose access is reserved

to members of teams that the good is allotted to. We now study the model formally:

Definition 1.1 (Fair division with shareable goods). An instance of the fair division problem

with shareable goods is a tuple (N,G,Mp,Ms, v
p, vs) where the relevant terms are defined

below:

Agents. N = [n] is the set of agents. Let G = {G1, G2, . . . , Gk} be a partition of the

agents into k groups. Let g : N → [k] be the group indicator function that maps an agent

to the number of the group he belongs to, i.e., for an agent i ∈ N , g(i) = l iff i ∈ Gl.

Goods. Mp and Ms are the sets of private and shared goods respectively.

Utilities. Each agent i ∈ N has her own utility function over the set of private goods,

vpi : N ×Mp → Z+. Further each group h has their common utility function over the set

of shared goods vsh : G ×Ms → Z+. For ease of notation, we will define a utility function

vi : Mp ∪ Ms → Z+ for every agent i ∈ N , which is either vpi or vsg(i) depending on the

argument.

Allocations. An allocation x = (π, σ) is an assignment of private goods to agents and

shared goods to groups. Here π : N → 2Mp and σ : G → 2Ms . For an agent i ∈ N , denote

by πi the set of private goods allocated to i, i.e. π(i), and σi the set of shareable goods

allocated to g(i), i.e. σ(g(i)). When necessary, we will write σh instead of σ(h) for a group

h ∈ G. Note that {πi}i∈N form a partition of Mp, and {σh}h∈G form a partition of Ms.

Further define xi = πi ∪ σi.
Valuations. Valuations are assumed to be additive, An agent derives value from both the
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Algorithm 1.5 Compute EF1 allocation in shareable goods setting

Input: Fair division instance with shareable goods (N,G,Mp,Ms, v
p, vs)

Output: An integral allocation x

1: Order the groups as G1, G2, . . . Gk

2: Order agents within each group h according to some ordering ≺h
3: Define the order ≺ as follows: i ≺ i′ iff g(i) < g(i′); or g(i) = g(i′) = h and i ≺h i′
4: Sort agents according to ≺ and relabel them as 1, 2, . . . , n
5: P ←Mp . Set of unpicked private goods
6: πi = ∅ for all i ∈ N . Allocation of private goods
7: h = 1 . Initialize the identity of the head agent to 1
8: while P 6= ∅ do
9: πh ← πh ∪ {j} where j ∈ argmaxj′∈Pv

p
hj′ . Give h his favorite unpicked private good

10: P ← P \ {j} . Update the set of unpicked private goods
11: if h < n then h← h+ 1 else h← 1 . Move to the next agent

12: S ←Ms . Set of unpicked shared goods
13: σh = ∅ for all h ∈ G . Set of shareable goods
14: h = k . Initialize the identity of the head group to k
15: while S 6= ∅ do
16: σh ← σh ∪ {j} where j ∈ argmaxj′∈Sv

s
hj′ . Give h their fav. unpicked shareable good

17: S ← S \ {j} . Update the set of unpicked shareable goods
18: if h > 1 then h← h− 1 else h← k . Move to the next group

19: return Allocation x given by xi = πi ∪ σg(i) for each i ∈ N

private goods he gets and the shared goods his team gets. We define vi(xi) = vi(πi)+vi(σi) =∑
j∈πi vi(j) +

∑
j∈σi vi(j).

Pareto optimality. An allocation x is said to be Pareto optimal if there is no other

allocation y s.t. for all i ∈ N vi(yi) ≥ vi(xi) and there exists j ∈ N s.t. vi(yj) > vi(xj)

Envy freeness up to one good (EF1). An allocation x = (π, σ) is EF1 iff for every pair

of agents i, k ∈ N : there is a good j ∈ xk s.t. vi(xi) ≥ vi(xk \ {j}).
It is not even immediately clear that EF1 allocations exist in the shareable good setting.

We show that EF1 allocations always exist, and that we can compute an EF1 allocation in

polynomial time using Algorithm 1.5. The algorithm first fixes an arbitrary ordering of the

agents, in which all agents of a group are consecutive. In the first phase, the private goods

are allocated to the agents in a round-robin fashion, i.e., following the fixed order, every

agent is asked to pick her favourite good among the set of remaining private goods. Once

the private goods are all allocated, the algorithm starts allocating the shareable goods in

a round-robin fashion, starting from the group of agents which appeared last in the order.

Once again, following the fixed (reverse) order, each group is asked to pick their favourite

good from the set of remaining shareable goods until all goods are allocated.
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We now show that this algorithm runs in polynomial time and produces an EF1 allocation.

Theorem 1.7. Algorithm 1.5 terminates in polynomial time with an allocation x = (π, σ)

which is EF1 for the fair division instance (N,G,Mp,Ms, v
p, vs) with shareable goods. Fur-

ther π is EF1 for the private goods fair division instance (N,Mp, v
p) and σ is EF1 for the

fair division instance (G,Ms, v
s).

Proof. Clearly this algorithm runs in polynomial time, since in each iteration one good is

allotted, and so the algorithm terminates in |Mp|+ |Ms| steps.

Next we show the allocation x = (π, σ) returned by the algorithm is EF1. First note that

the allocation π is EF1 for (N,Mp, v
p). This is because any agent i does not envy any agent

i′ > i, since in every round i picks his favourite private good before i′. Also no agent i′

envies any agent i < i′ after the removal of the first good that i picked, since apart from

that good, in every round, the good that i′ picks is better for her than the good picked by

i in the next round. Thus π is EF1 for (N,Mp, v
p). An identical argument shows that σ is

EF1 for (G,Ms, v
s).

To show (π, σ) is EF1 for I = (N,G,Mp,Ms, v
p, vs), consider any two agents i and i′. One

of the following two cases must hold without loss of generality:

1. g(i) = g(i′). If i and i′ belong to the same group, they get the same value from the

set of shareable goods. Since they are EF1 towards each other when only their private

goods are considered, they are EF1 towards each other in the instance I as well.

2. g(i) < g(i′). This means that in every round, i picks a private good before i′ does; and

in every round, the group g(i′) picks a shareable good before the group g(i) does. This

also means that except the first shareable good j′ that g(i′) picks, in every round g(i)

picks a shareable good that is better for i than the shareable good picked by g(i′) in

the next round. Thus i does not envy i′ after the removal of j′. Similarly, except the

first private good j picked by i, in every round i′ picks a private good that is better for

i′ than the private good picked by i in the next round. Thus i′ does not envy i after

the removal of j. This means that the allocation is EF1 in the instance I.

Hence Algorithm 1.5 terminates in polynomial time with an EF1 allocation for a fair division

instance with shareable goods. QED.

1.7 EF1 ALLOCATIONS ON AN ALLOCATION GRAPH

In this section we consider the problem of deciding if EF1 allocations exist when goods

must be allocated along a given allocation graph between agents and goods. That is, we are
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given a bipartite graph G with edges only from goods to agents, and the constraint that a

good j can be allocated to an agent i only if there is an edge from j to i in G. The problem

studied so far can be viewed as a special case of this problem where G is a complete bipartite

graph. The decision problem is formally defined as follows:

Definition 1.2 (AllocGraphEF1). An instance of the problem is the tuple (N,M, v,G), where

N = [n] is the set of agents, M = [m] is the set of goods and v : N×M → R is the valuation

function, and G = (N,M,E) is a bipartite graph. The problem is to decide if there exists

an allocation of goods to agents x that is (i) EF1 and (ii) respects the allocation graph, i.e.

j ∈ xi ⇒ (i, j) ∈ E.

Theorem 1.8. AllocGraphEF1 is NP-complete, even for constantly many agents.

Proof. It is easy to see membership in NP: Guess an allocation x and check if it satisfies

the conditions (i) and (ii) in Definition 1.2. Since both guessing and checking can be done

in polynomial time, this problem is in NP.

Next we show this problem is NP-hard by a reduction from Partition. An instance of

Partition is a set of positive integers A = {a1, . . . , an} with 2t =
∑n

i=1 ai. The partition

problem asks if there is a set S ⊆ A s.t. sum(S) = t, where sum(X) =
∑

s∈X s. We

construct an instance of AllocGraphEF1 from an instance of Partition as follows. Consider

n = 3 agents, m = n+ 2 goods, and valuations v given by:

1 2 . . . n n+ 1 n+ 2
1 a1 a2 . . . an t t
2 a1 a2 . . . an t t
3 0 0 . . . 0 t t

Table 1.2: Fair division instance created in the reduction

Define the graphG = ([n], [m], E) by E = {(i, j) | i ∈ {1, 2}, j ∈ [n]}∪{(3, n+1), (3, n+2)}.
This completely defines the instance ([n], [m], v, G) of AllocGraphEF1.

Suppose an EF1 allocation x = (x1, x2, x3) respecting G exists. Then the set of goods [n]

is partitioned among agents 1 and 2, and agent 3 gets goods n + 1 and n + 2. Let x1 = S.

Because the allocation is EF1,

v1(x1) = sum(S) ≥ v1(x3 \ {g}) = t, where g ∈ {n+ 1, n+ 2} (1.38)

and

v2(x2) = sum([n] \ S) ≥ v2(x3 \ {g}) = t, where g ∈ {n+ 1, n+ 2} (1.39)
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Thus we have sum(S) ≥ t and 2t− sum(S) ≥ t. This means that sum(S) = t, which is a

partition of A. Now suppose on the other hand a set S exists with sum(S) = t. Then consider

the allocation x1 = {j : aj ∈ S}, x2 = {j : aj /∈ S}, x3 = {n + 1, n + 2}. It is easy to see

that this allocation is both EF1 and respects G. Since the instance of AllocGraphEF1 can be

constructed in polynomial time from the instance of Partition, this shows that AllocGraphEF1

is NP-hard.

Thus, AllocGraphEF1 is NP-complete. QED.

1.8 DISCUSSION

In this chapter we studied algorithmic and complexity results for several problems of fair

division of private goods. We summarize our results and discuss some interesting open

questions for future work.

We presented polynomial time algorithms that find fair and efficient allocations for re-

stricted cases of the problem, where the fairness notion was typically EF1 or EQ1, which

was strengthened to EFX or EQX in some cases. Could we show polynomial time algorithms

for other restricted cases, such as when all values are integral powers of the same number?

While EFX allocations do not exist for {0, a, b}, can we find allocations that are envy-free

up to any positively valued good? On the complexity side, we showed the membership of

the problem of computing EF1 and PO allocations in PLS. Could we show that the problem

is PLS-complete? Another interesting question is whether these results for the model of

goods can be extended to chores. Finally we introduced the natural model of fair division

of shareable goods, which certainly warrants further study. A natural question is whether

EF1 can be achieved in conjunction with PO in such settings.
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CHAPTER 2: FAIR AND EFFICIENT ALLOCATION OF PUBLIC GOODS

2.1 INTRODUCTION

Most work on fair resource allocation and fair division [4] has focused on private goods, as

elaborated in the previous chapter. Naturally, however, we encounter many cases in real life

where resources are not private, and where multiple agents can derive utility from a single

good. We refer to such resources as public goods, and natural examples include public roads,

parks, etc.

In real life scenarios, there are often constraints that come with the problem of allocating

goods, such as constraints on the number of goods, constraints arising from agents’ valuations

and so on. In such situations a natural question to ask is: ‘How can public goods be allocated

efficiently and fairly subject to given constraints?’. We present two motivating examples:

1. n residents of a city have to choose k out of m projects for the year: each resident has

a different non-negative value for a project. Typically k < n here.

2. n friends need to decide a set of k movies to watch together, out of a total of m movies:

each person has a different non-negative value for each movie. Typically k > n here.

Another real-life problem setting is one that involves public decisions instead of public

goods. Suppose there are n agents who face m issues, each with a few alternatives, and they

have to collectively decide upon one alternative for each issue. Of course, different agents

might derive different value from different alternatives. In such situations, a natural question

to ask is ‘How can decisions be made on public issues that are both efficient and fair to the

agents?’

We study one solution concept for the above problems of resource allocation: the alloca-

tion that achieves the maximum Nash Social Welfare (MNSW). The Nash Social Welfare

(NSW) of an allocation is the geometric mean of the utilities that the agents get under that

allocation. This was proposed by Nash as a solution to the Bargaining problem [22].

The NSW maximizing allocation satisfies a desirable efficiency property: it is Pareto-

optimal. This holds because if there were another allocation under which no agent is worse

off and at least one agent benefits, then that allocation would have a larger NSW.

In the context of public goods, Fain et. al. [23] study the a variation of the NSW called the

smoothed NSW, which use as an objective function in a local-search algorithm to compute

an allocation that satisfies a certain desirable fairness property called the core. Conitezer

et. al. [24] show that the MNSW allocation in the setting of public decisions always satisfies
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a fairness property called proportionality up-to one issue. They also give polynomial time

algorithms that compute allocations that satisfy other fairness properties like approximate

Round-Robin-Share in conjunction with proportionality.

Computationally, it is known that the problem of finding the MNSW allocation is NP-

hard, even in the case of private goods. Since the case of private goods reduces to the case of

public decision making, [24] the hardness follows through. For the setting of public goods,

[25] show that computing an allocation that maximizes the smoothed NSW even when all

the values are binary is NP-hard.

In this work, we study the problem of maximizing NSW for public goods. In this problem,

there are n agent and m goods, out of which k goods need to be chosen in a manner

that maximizes the NSW. We first present NSW-preserving reductions between the various

models of resource allocation considered so far: private goods, public goods, and public

decisions. We then investigate the computational complexity of the problem. Since the

cases of k < n and k > n correspond to different scenarios, as illustrated through the

examples in the preceding discussion, we consider them separately. We show that for both

cases, the problem is NP-hard, even when all the values are binary. Next we present a

linear factor approximation algorithm for general additive valuations. Finally, we present

polynomial time algorithms for two special cases: when the number of types of agents is

constant, and when the number of types of goods is constant.

2.2 PRELIMINARIES

Private goods. In this model, we have a set N = [n] of n agents and a set M = [m] of m

private goods. The (non-zero) value an agent i has for good j is denoted by vij. We assume

the valuations are additive, hence the value that agent i gets from a subset S ⊆M , denoted

by vi(S), is equal to
∑

j∈S vij. An instance I of the public goods model is specified by the

tuple (N,M, {vi}i∈N). Given such an instance, an allocation x is an n-partition {x1, . . . , xn}
of M , where xi is the set of goods allocated to agent i.

The Nash Social Welfare (NSW) of an allocation x is defined as the geometric mean of

the product of the utilities of the agents,

NSW(x) =
(∏
i∈N

vi(x)
)1/n

=
(∏
i∈N

∑
j∈xi

vij
)1/n

(2.1)

Public goods. In this model, we have a set N = [n] of n agents and a set M = [m] of m

public goods. The (non-zero) value an agent i has for good j is denoted by vij. We assume
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the valuations are additive, hence the value that agent i gets from a subset S ⊆M , denoted

by vi(S), is equal to
∑

j∈S vij. Additionally, there is a cardinality constraint on the number

of public goods that can be selected, specified by the natural number k. An instance I of

the public goods model is specified by the tuple (N,M, k, {vi}i∈N). Given such an instance,

an allocation x is simply a subset of M of cardinality at most k.

The Nash Social Welfare of an allocation x is given by:

NSW(x) =
(∏
i∈N

vi(x)
)1/n

=
(∏
i∈N

∑
j∈x

vij
)1/n

(2.2)

Public decisions making. In this model, we have a set N = [n] of n agents and a set M =

[m] of m public issues. Each issue j has a set of kj alternatives Aj = {(j, 1), (j, 2), . . . , (j, kj)}.
The (non-zero) value an agent i has for the alternative (j, `) of issue j is denoted by vi(j, `).

An instance I of the public decision making model is specified by the tuple (N,M, {Aj}j∈M , {vi}i∈N).

Given such an instance, an allocation x consists of a single decision xj ∈ [kj] for each issue

j ∈ [m]. We assume the valuations are additive, hence the value that agent i gets from an

allocation x, denoted by vi(x), is equal to
∑

j∈M vi(j, xj).

The Nash Social Welfare of an allocation x is given by:

NSW(x) =
(∏
i∈N

vi(x)
)1/n

=
(∏
i∈N

∑
j∈M

vi(j, xj)
)1/n

(2.3)

In all models, the maximum Nash Social Welfare (or MNSW) solution is the defined to

be any allocation which maximizes the NSW. We also refer to the product of the agents’

utilities as the Nash product.

2.3 RELATING THE MODELS

In this section, we show how the three models are related. We show NSW-preserving

reductions from the private goods model to the public goods model, and from the public

goods model to the public decision making model.

2.3.1 Private goods to public goods

Let I = (N,M, {vi}i∈N) be an instance of private goods model. From this instance we

show how to construct an instance I ′ = (N ′,M ′, k, {v′i}i∈N ′) of the public goods model, such
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that given the MNSW solution of I ′, we can compute the MNSW solution of I in polynomial

time.

To construct I ′, we create n + m agents, denoted by N ′ = [n + m]. The first n agents

here correspond to the n agents in I. The last m agents are dummy agents used in the

NSW-preserving construction. We next create nm public goods: for each good j ∈ M , we

create n copies j1, j2, . . . , jn, one for each agent n ∈ N . That is, M ′ =
⋃
j∈M{ji}i∈N . We set

the cardinality constraint k = m. The valuations are given as follows: for an agent i ∈ N ′,
and public good j` ∈M ′:

v′i(j`) =


vij, if ` = i and i ∈ [n]

1, if i = n+ j

0, otherwise

(2.4)

Essentially this means that each agent i ∈ [n] values exactly one copy ji for each j ∈ M
at vij, and for each good j ∈M , there is exactly one dummy agent who values all copies of

j.

Let x′ be an allocation of public goods in the instance I ′. Suppose there is an index j ∈ [m]

for which two goods ji and ji′ are chosen in x′. Since we exactly m goods are picked in x′,

there is some index j′ ∈ [m], for which no good j′i is picked in x′ for any i ∈ [n]. But this

means that the agent n+ j′ gets zero utility in x′, and NSW(x′) = 0. On the other hand, if

for each j ∈ [m], exactly one copy is chosen in x′, then each agent n+j gets a utility of 1. For

i ∈ [n], m ∈ [m], define xij to be 1 if ji ∈ x′, and 0 otherwise. Let xi = {j ∈ M : xij = 1}.
It is easy to see that the {xi}i∈N form an n-partition of M , and hence x = {xi}i∈N is an

allocation of private goods in the instance I. Additionally, we have for any i ∈ [n]:

vi(xi) =
∑
j∈M

vijxij

=
∑
j∈M

vij1(ji ∈ x′)

=
∑
j∈M

v′i(ji)1(ji ∈ x′)

= v′i(x
′)

(2.5)

Thus, we have NSW(x) = NSW(x′)(n+m)/n. If x′ is the NSW maximizing allocation for

the public goods instance I ′, and NSW(x′) = 0, then the NSW of any allocation in I is also

0. If NSW(x′) > 0, then by the above construction we can compute from x′ in polynomial
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time the NSW maximizing allocation x for the private goods instance I.

2.3.2 Public goods to public decision making

Let I = (N,M, k, {vi}i∈N) be an instance of the public goods model. From this instance

we show how to construct an instance I ′ = (N ′,M ′, {Aj}j∈M ′{v′i}i∈N ′) of the public decision

making model, such that given the MNSW solution of I ′, we can compute the MNSW

solution of I in polynomial time.

Let V = maxi,j vij. To construct I ′, we first create a set N ′ of n + mT agents, where

T = 2mn logmV . The first n agents here correspond to the n agents in I. The last

mT agents are agents used for the construction, and are of two types: we have kT agents

{n+ 1, . . . , n+ kT} of type A, and (m− k)T agents {n+ kT + 1, . . . , n+mT} of type B.

We next create m public issues: for each good j ∈ M , we create an issue j with two

alternatives (j, 1) and (j, 2). That is, M ′ = [m], and Aj = {(j, 1), (j, 2)} for j ∈M ′.

The valuations are given as follows: for an agent i ∈ N ′, and an alternative (j, c) of the

issue j ∈M ′, where c ∈ {1, 2}:

v′i(j, c) =



vij, if c = 1 and i ∈ [n]

1, if n < i ≤ n+ kT and c = 1

1, if n+ kT < i ≤ n+mT and c = 2

0, otherwise

(2.6)

Essentially this means that each agent i ∈ [n] values the ‘1’ decisions of the issue j ∈ M ′

at vij, the agents of type A value only the ‘1’ decisions, and agents of type B value only the

‘2’ decisions.

Let x′ be an allocation for the instance I ′. For c ∈ {1, 2}, let Sc be the set of issues j with

decision c in x′. That is, Sc = {j ∈ [m] : x′j = c}. Let k′ = |S1|. Then we have:

NSW(x′) =
( ∏
i∈[n]

v′i(x
′) · (k′)kT · (m− k′)(m−k)T

)1/(n+mT )
(2.7)

We now explain how we can relate x′ to the public goods instance I. Intuitively, the

decision (j, 1) corresponds to selecting the public good j, and (j, 2) corresponds to not

selecting j. Let x = S1 ⊆M be a set of public goods of cardinality k′. Then for any i ∈ [n]

we have that vi(x) = v′i(x
′), since v′i(j, 2) = 0 for every j ∈ [m]. Thus:

NSW(x′) =
(
NSW(x)n · (k′)kT · (m− k′)(m−k)T

)1/(n+mT )
(2.8)
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However, x might not satisfy the cardinality constraint |x| ≤ k in I. We show however

that in the corresponding to the optimal NSW allocation x′ of I ′, the allocation x of I

constructed in the above manner in fact satisfies |x| = k.

To see this, we first denote by W` the Nash product of the MNSW allocation for the

public goods instance I` = (N,M, `, {vi}i∈N), for 0 ≤ ` ≤ m. Clearly we have 0 = W0 ≤
W1 ≤ . . .Wm ≤ (mV )n. We also assume that Wk ≥ 1. Next, let us define a function

g : [m] → Z, given by g(a) = ak(m − a)m−k. Then if x′ is an NSW maximizing allocation

for I ′, Equation 2.8 becomes:

NSW(x′) = (Wk′ · g(k′)T )1/(n+mT ) (2.9)

Let G1 and G2 denote the largest and second-largest values that g attains over its domain.

We observe that g increases in [0, k], and decreases in [k,m]. Hence:

G1 = g(k) = kk(m− k)m−k

G2 = max(g(k − 1), g(k + 1))
(2.10)

Note that:

log g(k)− log g(k − 1)

= k(log k − log(k − 1)) + (m− k)(log(m− k)− log(m− k + 1))

> k · 1

k − 1
2

+ (m− k) · −1

m− k
≥ 1

2k − 1
≥ 1

2m

(2.11)

and:
log g(k)− log g(k + 1)

= k(log k − log(k + 1)) + (m− k)(log(m− k)− log(m− k − 1))

> k · −1

k
+ (m− k) · 1

m− k − 1
2

≥ 1

2(m− k)− 1
≥ 1

2m

(2.12)

using standard properties of logarithms. Thus:

logG1 − logG2 >
1

2m
(2.13)

Then we have:

T (logG1 − logG2) > 2mn logmV · 1

2m
≥ logWm (2.14)
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which gives GT
1 > Wm ·GT

2 , and thus for all k′ ∈ [m] \ {k}:

Wk · g(k)T ≥ Gt
1 > Wm ·GT

2 ≥ Wk′ · g(k′)T (2.15)

This means that the quantity Wk′ · g(k′)T is maximized when k′ = k. Referring back to

Equation 2.9, we conclude that in the optimum NSW allocation x′ of I ′, the corresponding

subset x has cardinality exactly k. Further x also maximizes the NSW among all allocations

of the instance I satisfying this cardinality constraint. Thus, x in fact is the MNSW alloca-

tion for I. Since the number of agents and goods created in the reduction are polynomially

many in the size of the instance I, and all other computations can also be carried out in

polynomial time, this is a polynomial time NSW-preserving reduction.

2.4 HARDNESS OF NSW IN THE PUBLIC GOODS MODEL

In this section we show NP-hardness of computing NSW maximizing allocation given a

public goods instance I = (N,M, k, {vi}i∈N). We consider the cases k < n and k ≥ n

separately because they are each interesting in their own right.

2.4.1 Case 1 : k < n

Consider the following reduction from set cover. The set cover problem takes as input a

universe U of elements, a family F of subsets of U . The problem asks to find the minimum

set of subsets from F such that their union covers all U . It is well known that this problem

is NP-hard. To reduce this to an instance of NSW we create an agent i for each element in

U . Corresponding to each subset in F , we create an item such that if an element belongs

to this subset, the corresponding agent has a value 1 for this item. Now, for any k, if the

maximum NSW is non-zero then there is a set cover of size k. This shows that the problem

of computing the MNSW allocation is NP-hard when k < n, even when all agent’s valuations

are binary.

2.4.2 Case 2 : k ≥ n

We show that computing the NSW maximizing allocation for instance I when k ≥ n is

NP-hard, even when all agents’ valuations are binary. That is, for all agents i and items j,

vij ∈ {0, 1}. We consider the decision version of the NSW problem, called PGNSW, where

34



in addition to I, we are also given an integer T , and we are asked to decide if there is an

allocation with Nash product at least T .

We reduce from exact regular set packing (ERSP). In the input to this problem, there

are n elements X = {x1, . . . , xn}, family of subsets F = {F1, . . . , Fm} where each Fj ⊆ X

and |Fj| = d. The problem is to compute a subfamily F ′ ⊆ F , |F ′| = k, s.t. for all

Fi 6= Fj ∈ F ′, Fi ∩ Fj = ∅. Let (X,F , d, k) be an instance of ERSP.

We construct an instance of PGNSW as follows. We create a set N = [n] of n agents. We

create are m + p public goods M = {g1, . . . , gm} ∪ {d1, . . . , dn}. For any agent i and good

gj, the value is vi(gj) = 1 if xi ∈ Fj else 0. For any agent i and good dj, vi(dj) = 1. We

need to decide if there is an allocation of exactly k + n items, that gives Nash product at

least (n+ 1)dknn−dk.

We claim that ERSP is a yes-instance iff PGNSW is a yes-instance.

(⇒) Let F ′ be the ERSP solution. |F ′| = k. Then for every Fj ∈ F ′, we pick gj, and also

pick all dj’s. We have picked k + n items. Each picked gj gives value to exactly d agents,

and no agent gets value from two different gj’s because of set disjointness. So exactly dk

agents get value of 1 from picked gj’s and every agent gets a value of n from the dj’s. So the

Nash product is exactly (n+ 1)dknn−dk = T , as required by PGNSW.

(⇐) Suppose there is an allocation x1∪x2 of k+n items that gives Nash product at least

T , where x1 ⊆ {g1, . . . , gm} and x2 ⊆ {d1, . . . , dn}, where |x1| ≥ k, |x2| ≤ n, |x1∪x2| = k+n.

First note that for all i,
∑

i vi(x1) ≤ d|x1|. This is true because each item in x1 gives value

to exactly d agents, and the requires sum is just the number of edges in the graph between

agents and items, which is at most d times number of items. Let M be the set of agents

that x1 gives positive utility to. Then 1 ≤ |M | ≤ d|x1| since in the best case all goods in x1

give utility to disjoint sets of agents. Also note that vi(x2) = |x2|. Let |x2| = z. Then the

Nash product is: ∏
i∈M

(z + vi(x1))
∏
i/∈M

z (2.16)

Now consider
∑

i∈M ln(z + vi(x1)). By concavity of log, with weights 1/|M |, we have

∑
i∈M

1

|M |
ln(z + vi(x1)) ≤ ln

(∑
i∈M(z + vi(x1))

|M |

)
≤ ln

(
z +

d|x1|
|M |

) (2.17)

Thus: ∏
i∈M

(z + vi(x1)) ≤
(
z +

d|x1|
|M |

)|M |
(2.18)
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So the Nash product becomes:

NSW =
∏
i∈M

(z + vi(x1))
∏
i/∈M

z

≤
(
z +

d|x1|
|M |

)|M |
zn−|M |

= zn
(

1 +
d|x1|
z|M |

)|M | (2.19)

Now consider the problem of maximizing this function:

zn
(

1 +
dy

zm

)m
(2.20)

subject to the constraints:

z ≤ n, y + z = k + n, 1 ≤ m ≤ dy (2.21)

Consider the function g(x) = (1 + t
x
)x for t > 0. Let f(x) = ln g(x). Then:

f ′(x) = ln

(
1 +

t

x

)
− t

x+ t
(2.22)

Since for all x > 1, lnx ≥ 1− 1/x, f ′(x) > 0. Thus f is increasing so g is also increasing for

any t > 0. So its maximum will be attained at the maximum allowed value for m. In our

Nash product bound, this is when m = dy. So the bound becomes:

zn
(

1 +
1

z

)dy
(2.23)

subject to the constraints:

z ≤ n, y + z = k + n (2.24)
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Now define exp f(z) = zn(1 + 1
z
)c−dz, where c = (k + n)d. Then for z ≥ 1:

f ′(z) =
n

z
+

c− dz
1 + 1/z

· −1

z2
− d ln

(
1 +

1

z

)
=
n

z
+

d

z + 1
− c

z(z + 1)
− d ln

(
1 +

1

z

)
=
n− c
z

+
d+ c

z + 1
− d ln

(
1 +

1

z

)
≥ n− c

z
+
d+ c

z + 1
− d

z

=
d+ c

z + 1
− c+ d− n

z

(2.25)

For our purposes it is enough to take d = 3, since ERSP remains NP-complete when

d = 3 (this follows from the fact that Maximum Independent Set (MIS) is NP-complete for

3-regular graphs [26], and a straightforward reduction from MIS to ERSP). Also note that

3k ≤ n. Then this bound becomes:

f ′(z) =
3n+ 3k + 3

z + 1
− 2n+ 3k + 3

z

=
1

z(z + 1)
[zn− 2n− 3k − 3]

≥ 1

z(z + 1)
[zn− 3n− 3]

(2.26)

So for z ≥ 4 and n ≥ 4, f ′(z) > 0. Thus f is increasing in this range, and so g is also

increasing in this range. So the maximum will be either at z = n or at z = 1, 2 or 3.

Assuming log of the Nash product wrt base 2:

f(1) = 3(n+ k − 1)

f(2) = n+ 3(n+ k − 2) log
3

2

f(3) = n+ 3(n+ k − 3) log
4

3

f(n) = n log n+ 3k log(1 + 1/n)

(2.27)

Now using 3k ≤ n, for n ≥ 16, f(n) ≥ f(i) for i ∈ {1, 2, 3}. To see this note:

n log n ≥ 4n =⇒ f(n) > 3n+ n ≥ 3(n+ k − 1) = f(1)

n log n ≥ 4n =⇒ f(n) > n+ 3n ≥ n+ 4n log(3/2) ≥ f(2)

n log n ≥ 4n =⇒ f(n) > n+ 3n ≥ n+ 4n log(4/3) ≥ f(3)

(2.28)
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Thus the optimum is at z = n, for n ≥ 16. This means:

NSW = zn
(

1 +
3|x1|
z|M |

)|M |
≤ zn

(
1 +

1

z

)3(k+n−z)

≤ nn
(

1 +
1

n

)3k

= nn−3k(n+ 1)3k = T

(2.29)

Thus if x1 ∪ x2 gives Nash product at T , it can only be equal to T . The equality is when

|x1| = k, |x2| = n, and |M | = 3k. Thus, all n dummy items are picked, k items out of

{g1, . . . , gm} are picked, and exactly 3k agents get utility from the k items. Since each of the

k items gives utility to exactly 3 agents, this means that all items give utility to different

agents. Thus the sets Fj corresponding to picked items j are disjoint, and there are exactly

k. So this is a yes-instance for ERSP, as required.

Clearly the decision problem is in NP. So this shows:

Theorem 2.1. Given an instance I = ([n], [m], k, {vi}i∈[n]) of the public goods model, where

k ≥ n, for n ≥ 16, computing the NSW maximizing allocation is NP-hard, even when all

values are binary. The corresponding decision version is NP-complete.

2.5 APPROXIMATION ALGORITHMS

In this section we present an algorithm that approximates the maximimum NSW to a

linear factor.

Let I = ([n], [m], k, {vi}i∈[n]) be an instance of the public goods model with k ≥ n.

We claim that the round-robin style Algorithm 2.1 provides an O(n)-approximation to the

maximum NSW.

Theorem 2.2. Given an instance I = ([n], [m], k, {vi}i∈[n]) of the public goods model with

k ≥ n, Algorithm 2.1 computes an O(n)-factor approximation to the maximum Nash Social

Welfare in polynomial time.

Proof. Let k = nr + d, where r, d ∈ Z≥0, and 0 ≤ d < n. Let x be the allocation returned

by the algorithm and let x∗ be the set of k goods that maximize the NSW for the instance

I. Since for each agent i, at least the best r goods for i are picked in x. Further |x∗| ≤ k.
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Algorithm 2.1 Compute allocation that gives O(n)-approx. to max. NSW

Input: Public goods model instance ([n], [m], {vi}i∈[n])
Output: An allocation x

1: x← ∅
2: Let r = b k

n
c

3: for ` = 1 to r do
4: for i = 1 to n do
5: Let j ∈ argmax[m]\xvij
6: x← x ∪ {j} . Pick the best unpicked good for i

7: for i = 1 to k − nr do
8: Let j ∈ argmax[m]\xvij
9: x← x ∪ {j} . Pick the best unpicked good for i

return x

Thus it holds for every agent i:

vi(x
∗) ≤

(
1 +

⌊k
r

⌋)
vi(x) (2.30)

Now note that:

1 +
⌊k
r

⌋
≤ 1 +

k

r
= 1 + n+

d

r
≤ 1 + n+ d ≤ 2n+ 1 (2.31)

Thus we can approximate the NSW:

NSW(x) =

(
n∏
i=1

(vi(x))

) 1
n

≥

(
n∏
i=1

(
1

2n+ 1
vi(x

∗)

)) 1
n

=
1

2n+ 1
NSW(x∗)

(2.32)

as claimed. QED.

2.6 POLYNOMIAL TIME ALGORITHMS FOR SPECIAL CASES

In this section we present two polynomial time algorithms for computing the MNSW

allocation for two special cases of the public goods model with binary valuations.
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2.6.1 Constantly many types of agents

Consider an instance I = (N,M, k, {vi}i∈N) of the public goods model, where the valua-

tions are binary. We say that two agents i and h have the same ‘type’ if for all goods j ∈M ,

vij = vhj. Suppose there are t different types of agents, with w` agents of type `, for ` ∈ [t].

Let us rename v` to be the utility function of agents of type `. We now present an algorithm

to compute the optimal NSW allocation for I, when t is constant.

Note that in any allocation x, all agents of the same type receive the same utility. Hence:

NSW(x) =
(∏
`∈[t]

(vi(x)w`
)1/n

(2.33)

Also note that since the valuations are binary, for any allocation x and any agent i,

vi(x) ≤ k.

Our algorithm populates a table T [u1, . . . , ut, j], for 0 ≤ ui ≤ k for every i ∈ [t], and

j ∈ M . We store in T [u1, . . . , ut, j] the lowest possible value k′ such that there a subset S

of goods of cardinality |S| = k′, which gives each agent i a utility of ui, i.e., vi(S) = ui for

all i ∈ [t], and j is the largest index item in S. Then we have:

T [u1, . . . , ut, j] = 1 + min
j′<j

T [u1 − vij, . . . , ut − vtj, j′] (2.34)

Thus we can populate the table T using dynamic programming. The size of table is

(k+1)t×m, which is polynomial in the size of the instance I, since t is a constant. Together

with the fact that at most m cells need to be visited to compute the expression on the left

in in Equation 2.34, we conclude that the entire table T can be filled in polynomial time.

To compute the MNSW value, all that remains to be done is to iterate over all cells

T [u1, . . . , ut, j] of the table which satisfy T [u1, . . . , ut, j] ≤ k, and output the cell which

maximizes which maximizes
∏

i∈[t] u
wi
i , which can again be done in polynomial time. The

allocation itself can be computed using standard techniques used in dynamic programming

algorithms to keep track of the partial solution.

2.6.2 Constantly many types of goods

Consider an instance I = (N,M, k, {vi}i∈N) of the public goods model, where the valua-

tions are binary. We say that two goods j and j′ have the same ‘type’ if for all agents i ∈M ,

vij = vij′ . Suppose there are t different types of goods. We can characterize an allocation

by the number of items of each type picked. So an allocation can be written as a vector in

t dimensions, with each dimension representing the number of items of the particular type,
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i.e., an allocation x can be associated with a vector (n1, . . . , nt), where n` is the number of

goods of type ` in x, for ` ∈ {0, 1, . . . , t}. Since for each `, we have that 0 ≤ n` ≤ k, the

number of such vectors is (k + 1)t. To find the optimum NSW, we can now enumerate over

all possible vectors and compute the corresponding NSW. This takes poly(n,m)-time since

the number of such vectors is poly(n,m) since t is constant.

2.7 DISCUSSION

In this chapter we studied a model of fair division of public goods. We now summarize

our results and discuss some interesting open questions for future work.

We showed how the public goods model is related to the models of private goods and public

decisions, by presenting Nash Social Welfare preserving reductions between the models. We

notice however that our reductions are not approximation-preserving reductions, in the sense

that an approximation to the NSW in one model does not give an approximation in another

model. Constructing such reductions is an interesting question which might also shed light

on the complexity of approximating the NSW in these models, given that we also showed

computing the NSW is an NP-hard problem.

We also presented a linear-factor approximation algorithm for the NSW problem. We

notice that a similar round-robin style algorithm will approximate the NSW to a linear-factor

for the case of subadditive valuations functions as well. Whether this bound is optimal or

can be improved is also an interesting question for future work.
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CHAPTER 3: APPROXIMATE NASH EQUILIBRIA OF IMITATION
GAMES

In this chapter we study the problem of computing Nash equilibria in imitation games.

This work appeared in AAMAS 2020 [27].

3.1 INTRODUCTION

Nash equilibrium is arguably one of the most fundamental solution concepts in game

theory [28]. It is a state in which no individual can gain by deviating unilaterally. In the

previous two decades or more, the field of algorithmic game theory has extensively studied

the computability of Nash equilibrium in various games, especially in two-player finite games

[29, 30, 31]. Such a game can be represented by two payoff matrices (A,B), one for each

player, where a play can be thought of as the first player choosing a row and the second

choosing a column.

Computing a Nash equilibrium (NE) of a general two-player game was shown to be PPAD-

complete by a series of remarkable results in 2006 [29, 32, 31]; PPAD is a complexity class

introduced in [29]. Even computing ε-approximate NE (ε-NE) for ε = 1
poly(n)

remains PPAD-

complete [31], where n is the number of rows/columns in A and B; at an ε-NE no player

can achieve more than ε additive gain by deviating unilaterally. On the other hand, for a

constant ε, a quasi-polynomial-time algorithm to find ε-NE is known since 2003 [33], but

there has been no improvement on this front since then. Recently, this result was shown

to be optimal assuming the exponential time hypothesis for PPAD [34]. In the light of

these negative results, various subclasses of two-player games, like win-lose games, sparse

games and constant-rank games have been analyzed both for exact and approximate NE

[35, 36, 37, 38] (see Section 3.1.1 for a detailed discussion).

In this chapter we study the complexity of finding an (approximate) NE for one such

subclass called imitation games. In such a game [39] one of the players, say the second

player, is an imitator. The imitator gets a payoff of 1 only when she “imitates” the strategy

of the other player, and 0 otherwise, and thus her payoff matrix B is an identity matrix.

Imitation games are interesting because the symmetric NE of a symmetric bimatrix game

are in one-to-one correspondence with the NE strategies of the imitator in an imitation game

([40, 41]). They have also been employed to study the complexity of various computational

problems, like providing an alternate proof of the Kakutani fixed point theorem that is brief

and elementary [40], relating the Lemke-Howson and Lemke paths’s algorithm [39], and

other problems on equilibria of two player games (e.g., [42, 41, 43, 44]).
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The problem of finding an exact NE in imitation games is PPAD-complete since the same

problem on symmetric games reduces to it. However, to the best of our knowledge, the

complexity of finding an approximate NE remains unknown. Here we obtain the following

set of results concerning imitation games: settling the complexity of approximate NE for

imitation games (and in doing so, symmetric games), and the smoothed complexity. We also

obtain results for a stronger notion of approximation, called approximate well-supported Nash

equilibrium (wsNE). At an ε-wsNE players play a pure strategy with positive probability

only if it gives maximum payoff within an additive ε.

Our contributions.

- We design a polynomial-time algorithm to find an ε-approximate-well-supported NE

for a constant ε > 0 (PTAS), that runs in time nO(1/ε)poly(L), where L is the bit-size

of the input (see Section 3.3).

- We show PPAD-hardness for the problem of finding a 1
nc

-approximate-well-supported

NE, and thereby also for 1
nc

-approximate NE, for any c > 0. This hardness result rules

out any FPTAS for this problem unless PPAD ⊂ P (see Section 3.4).

In showing the above, we also prove that computing a symmetric 1
nc

-approximate-well-

supported NE of a symmetric game is also PPAD-hard, for any c > 0.

- Towards beyond worst-case complexity, we infer that the above PPAD-hardness result

together with a result of [31] rules out the smoothed complexity being in P unless

PPAD ⊂ RP.

3.1.1 Related work

The Lemke-Howson algorithm [45] is the oldest known algorithm to find an exact Nash

equilibrium in general two-player games, and is also the only non-enumerative algorithm for

the problem. However it was shown to take exponentially many steps in the worst-case [46].

Efficient algorithms were obtained for special cases, like zero-sum games where B = −A
[47], when rank of A or B is a constant [33, 48], or when rank(A+B) = 1 [38].

The complexity of finding NE was shown to be PPAD-complete, even for 1/poly(n) ap-

proximation [29, 30, 31], that is, an FPTAS for this problem is unlikely unless PPAD ⊂ P.

This was followed by a number of results showing PPAD-hardness for important subclasses:

exact NE in constant-rank games [44], exact as well as approximate NE in sparse games

([35]), win-lose games ([36]), and most recently sparse win-lose games ([49]). The hardness
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of several related decision problems about Nash equilibria in symmetric win-lose bimatrix

games were considered in [50]. On the other hand efficient algorithms were obtained to find

approximate NE for sub-classes like low rank games [37, 51] (FPTAS), and when (A+B) is

sparse [52] (PTAS).

Towards constant approximation a nO(logn/ε2)-time algorithm is known for ε-NE [33], and

is the best possible assuming exponential time hypothesis for PPAD [34]. While [53] showed

existence of 1
2
-NE with support size at most two, [54] gave an efficient algorithm to find

3
4
-NE, and more generally 2+λ

4
-NE, where λ is the minimum expected payoff to any player

at any Nash equilibrium. There have been several other approaches to compute an ε-NE for

constant ε, see for e.g. [55, 56, 57]), with ε = 0.3393 being the best so far. Computing ε-NE

in subclasses has also been studied, relying on the properties of the payoff matrices. See

for example [58] for a polynomial time algorithm to compute a (1
3

+ δ)-NE for a symmetric

game, and [57] for a polynomial time algorithm to compute a 1
2
-NE in win-lose games.

Turning to approximate-well-supported Nash equilibrium, [53] showed that computing

5/6-wsNE is possible in polynomial time, assuming a graph theoretic conjecture. A poly-

nomial time algorithm to compute a ε-wsNE where ε is just above 0.6619 was shown in

[59]. For special cases, [60] provided polynomial time algorithms (based on the solvability of

zero sum games) for constructing a 1
2
-wsNE for win-lose games and 2

3
-wsNE for normalized

games. For symmetric games, [61] provided a linear programming approach to compute a

(1
2

+ δ)-wsNE, for an arbitrarily small constant δ > 0, in polynomial time.

Smoothed analysis is a beyond-worst-case analysis technique which was introduced in [62].

It seeks to show that worst-case instances are sparse and scattered. That is, the smoothed

complexity of a problem is in P, if any instance can be solved in polynomial time after

subjecting it to independent random perturbations. Using PPAD-hardness for computing

1/poly(n)-NE, [31] shown that unless PPAD ⊂ RP, it is unlikely that smoothed complexity

of computing a NE is polynomial. Towards the average case, [63] considered random two-

player games where all payoffs are i.i.d. random variables in [0, 1] following either the normal

or the uniform distribution. They show that with probability at least 1−O(1/ log n), there

exists a Nash equilibrium with support of size two. Using this observation, they present

a O(m2n log log n + n2m log logm)-expected time Las Vegas algorithm for finding a Nash

equilibrium in such games. It was shown by [64] that in random bimatrix games, where each

player’s payoffs are bounded and independent random variables with common expectations,

the completely mixed uniform strategy profile is an Õ( 1√
n
)-NE with high probability.

The computational complexity of finding Nash equilibria in imitation games has not been

studied to the best of our knowledge.
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3.2 PRELIMINARIES

Let [m] = {1, 2, . . . ,m} for any m ∈ N. For a, b ∈ R, the interval [a, b] is the set

{x : a ≤ x ≤ b}, and (a, b) is the set [a, b] \ {a, b}. A m × n matrix M with entries from

set S is denoted as M ∈ Sm×n, and its entries are denoted with the corresponding lowercase

letter indexed by the row and column numbers. That is, for an m× n matrix M , its (i, j)th

entry is denoted by mij ∈ S, where i ∈ [m] and j ∈ [n]. For a constant c, M + c and cM

are the matrices M ′ and M ′′ of dimensions m× n given by m′ij = mij + c and m′′ij = c ·mij,

respectively, for all i ∈ [m], j ∈ [n]. We denote by I an identity matrix, whose dimension

will be clear from the context. A vector x is a m × 1 matrix whose ith entry is denoted by

xi. The support of a vector x denoted by supp(x) is the set of indices with positive value,

that is, supp(x) = {i ∈ [m] : xi > 0}. Denote by ∆m the set of all probability vectors of

dimension m. Formally,

∆m = {x : ∀i ∈ [m] xi ≥ 0, and
m∑
i=1

xi = 1} (3.1)

A vector x ∈ ∆m is said to be uniform if for all i ∈ [m], xi > 0 =⇒ xi = 1/|supp(x)|. A

vector x ∈ ∆m is said to be fully uniform if for all i ∈ [m], xi = 1/m.

A bimatrix game or a two player game consists of two players, the row player and the

column player. The row player has a m pure strategies, denoted by the set [m] and the

column player has n pure strategies, denoted by [n]. The game is specified by two m × n
payoff matrices A,B whose entries are reals. If the row player chooses a strategy i ∈ [m]

and the column player chooses a strategy j ∈ [n], then they receive payoffs equal to aij and

bij respectively. The players can randomize over their pure strategies, giving rise to a mixed

strategy. Formally, a mixed strategy for the row player (resp. column player) is a probability

vector x ∈ ∆m (resp. y ∈ ∆n). Any (x,y) ∈ ∆m × ∆n is called a strategy profile. For a

strategy profile (x,y), the expected payoff of the row player is xTAy and that of the column

player is xTBy.

Nash’s celebrated theorem, when applied to bimatrix games, states there always exists a

strategy profile so that neither player can increase her payoff by unilaterally deviating from

the strategy profile. Such a strategy profile is called a Nash Equilibrium (NE, for short)

([28]).

Definition 3.1. (Nash Equilibrium) Let (A,B) be a bimatrix game where A,B ∈ [0, 1]m×n.

A strategy profile (x∗,y∗) ∈ ∆m×∆n is a Nash equilibrium of (A,B), if for all x ∈ ∆m and
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for all y ∈ ∆n, it holds that:

(x∗)TAy∗ ≥ xTAy∗ and (x∗)TBy∗ ≥ (x∗)TBy (3.2)

Note that at the Nash equilibrium a player will give positive probability only to pure

strategies that give her the maximum payoff against the strategy of the other player. Math-

ematically, (x∗,y∗) is a Nash equilibrium if and only if for all i ∈ [m] and j ∈ [n]:

x∗i > 0 =⇒ (Ay∗)i = max
k∈[m]

(Ay∗)k

y∗j > 0 =⇒ ((x∗)TB)j = max
k∈[n]

((x∗)TB)k
(3.3)

Observe that the Nash equilibria of a bimatrix game are invariant under scaling by positive

constants, that is, the set of NEs of the game (A,B) is the same as the set of NEs of the

game (αA, βB), for α, β > 0. The NEs also remain invariant under shifting, that is, the set

of NEs of the game (A,B) is the same as the set of NEs of the game (A+α,B+ β), for any

α, β. Thus, it is standard practice to normalize the matrices and assume that all the entries

belong to [0, 1].

As it is hard to compute exact Nash equilibria, a natural notion to consider is that of

approximate equilibria. For ε > 0, an ε-approximate Nash Equilibrium (ε-NE for short)

is a strategy profile in which neither player has an incentive of more than ε of deviating

unilaterally.

Definition 3.2. (ε-approximate Nash Equilibrium) Let (A,B) be a bimatrix game where

A,B ∈ [0, 1]m×n. For an arbitrary ε > 0, a strategy profile (x̃, ỹ) ∈ ∆m × ∆n is an ε-

approximate Nash equilibrium if:

∀x ∈ ∆m : x̃TAỹ ≥ xTAỹ− ε

∀y ∈ ∆n : x̃TBỹ ≥ x̃TBy− ε
(3.4)

A stronger notion of approximation of a Nash equilibrium is the ε-approximate-well-

supported Nash equilibrium (ε-wsNE for short), in which neither player has an incentive

of more than ε to unilaterally deviate from any of the pure strategies used in her mixed

strategy.

Definition 3.3. (ε-approximate well-supported Nash Equilibrium) Let (A,B) be a bimatrix

game where A,B ∈ [0, 1]m×n. For an arbitrary ε > 0, a strategy profile (x̄, ȳ) ∈ ∆m ×∆n is
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an ε-well-supported Nash equilibrium if:

∀i ∈ [m] : x̄i > 0 =⇒ (Aȳ)i ≥ max
k∈[m]

(Aȳ)k − ε

∀j ∈ [n] : ȳj > 0 =⇒ (x̄TB)j ≥ max
k∈[n]

(x̄TB)k − ε
(3.5)

It is easy to see that every ε-wsNE is also ε-NE, but not vice versa. However as is observed

in [65], the two approximate notions of Nash equilibrium are polynomially equivalent:

Lemma 3.1. ([65]) From every ε2/8-approximate Nash equilibrium of a bimatrix game, we

can compute in polynomial time an ε-approximate-well-supported Nash equilibrium of the

same game.

Symmetric bimatrix games are a subclass of bimatrix games in which both players have

the same set of pure strategies, and the payoffs depend only on the strategies chosen and

not the players who play them, that is, B = AT . Nash ([28]) showed that every symmetric

game has a symmetric Nash equilibrium (y∗,y∗).

An imitation game ([39]) is a bimatrix game in which the column player is an imitator,

that is, she gets a payoff of 1 only when she picks the same strategy as the row player,

otherwise her payoff is 0. Thus, the payoff matrix of the imitator is the identity matrix, that

is, B = I.

Definition 3.4. (Imitation game, I-equilibrium) An imitiation game is a bimatrix game

(A, I), where A ∈ [0, 1]n×n. An I-equilibrium of an imitation game is a mixed strategy y for

the imitator such that supp(y) ⊆ argmaxk∈[n](Ay)k.

The symmetric Nash equilibria of any symmetric game (A,AT ) are in one-to-one corre-

spondence with the I-equilibria of the imitation game (A, I). Thus any efficient algorithm

computing Nash equilibria of imitation games can be used to efficiently compute symmet-

ric Nash equilibria of symmetric games. The following properties about Nash equilibria of

imitation games are well-known (and appear in different forms in [39], [43] and [42]).

Lemma 3.2. Let A ∈ [0, 1]n×n be a payoff matrix and let y ∈ ∆n be a mixed strategy. Then

(y,y) is a symmetric NE of (A,AT ) if and only if y is an I-equilibrium of (A, I).

Proof. Observe that from equation 3.3, (y,y) is a symmetric NE of (A,AT ) if and only if for

all i ∈ [n] : yi > 0 =⇒ (Ay)i = maxk∈[n](Ay)k, which holds if and only if i ∈ supp(y) =⇒
i ∈ argmaxk∈[n](Ay)k, which is true if and only if y is an I-equilibrium of (A, I). QED.

Lemma 3.3. For any Nash equilibrium (x∗,y∗) ∈ ∆n × ∆n of an imitation game (A, I)

where A ∈ [0, 1]n×n, supp(y∗) ⊆ supp(x∗).
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Proof. Let (x∗,y∗) be a Nash equilibrium of an imitation game (A, I). From equation 3.3,

for all i ∈ [n], y∗i > 0 =⇒ ((x∗)T I)i = maxk∈[n]((x
∗)T I)k > 0. Thus, i ∈ supp(y∗) =⇒ i ∈

supp(x∗), and hence supp(y∗) ⊆ supp(x∗). QED.

Next we observe that imitation games always have a Nash equilibrium (x∗,y∗) where x∗

is uniform. As we shall see in Section 3.3, this fact will be useful in constructing a PTAS

for computing an approximate-well-supported Nash equilibrium in an imitation game.

Lemma 3.4. For any imitation game (A, I) where A ∈ [0, 1]n×n, there exists a Nash equi-

librium (x̂, ŷ) ∈ ∆n ×∆n where x̂ is uniform.

Proof. By Nash’s theorem ([28]), we know that there exists at least one Nash equilibrium

(x∗,y∗) ∈ ∆n × ∆n of (A, I). From Lemma 3.3, if for some i ∈ [n], y∗i > 0, then x∗i > 0.

Together with equation 3.3, we have for all i ∈ [n]:

y∗i > 0 =⇒ x∗i > 0 =⇒ (Ay∗)i = max
k∈[n]

(Ay∗)k (3.6)

Consider a mixed strategy x̂ for the row player given by x̂i = 1/|supp(y∗)| ⇐⇒ y∗i > 0.

Clearly x̂ is a uniform vector in ∆n. We also have that for all i ∈ [n]:

y∗i > 0 ⇐⇒ x̂i = max
k∈[n]

x̂k > 0 (3.7)

Set ŷ = y∗. Now equations 3.6 and 3.7 together with equation 3.3 imply that (x̂, ŷ) is a

Nash equilibrium of (A, I) where x̂ is uniform. QED.

3.3 POLYNOMIAL TIME ALGORITHM FOR CONSTANT APPROXIMATE NE

We now present a polynomial-time approximation scheme (PTAS) for the problem of

computing a well-supported approximate Nash Equilibrium of an imitation game. Let (A, I)

be an imitation game where A ∈ [0, 1]n×n is the payoff matrix of the row player and I, the

n× n identity matrix is the payoff matrix of the column player. Given a constant ε ∈ (0, 1),

we will show how to compute an ε-approximate well-supported Nash Equilibrium (x̄, ȳ) in

nO(1/ε)poly(L) time, where L is the bit-size of the input, that is, the sum of the bit-sizes of

the n2 entries of A.

Recall that an ε-wsNE of an imitation game (A, I) is a mixed strategy profile (x̄, ȳ) ∈
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∆n ×∆n such that for all i ∈ [n] and for all j ∈ [n]:

x̄i > 0 =⇒ (Aȳ)i ≥ max
k∈[n]

(Aȳ)k − ε

ȳj > 0 =⇒ x̄j ≥ max
k∈[n]

x̄k − ε
(3.8)

We assume ε ∈ (0, 1) is a constant given to us in binary. Let ` = d1
ε
e. Since ` ≥ 1

ε
, any

1/`-wsNE is also an ε-wsNE. From Lemma 3.4, we know that there exists a NE (x∗,y∗) of

(A, I) where x∗ is uniform, that is, x∗i > 0 =⇒ x∗i = 1
|supp(x∗)| .

We separately analyze the problem depending on the size of the support of the row player’s

strategy in any Nash equilibrium. In Section 3.3.1 we discuss the case where there exists

a Nash equilibrium (x∗,y∗) where x∗ is uniform and has support of size less than `. In

Section 3.3.2, we discuss the case where in every Nash equilibrium (x∗,y∗) with x∗ uniform,

the support of x∗ is of size at least `. Our algorithm, presented in Section 3.3.3 finds a
1
`
-approximate-well-supported Nash equilibrium by solving a finite set of linear programs,

which are presented in the next two sections, of which one is guaranteed to be feasible. Using

the solution to this feasible program we recover the desired ε-approximate well-supported

Nash equilibrium of the imitation game (A, I).

3.3.1 Support less than `

Let S be a subset of [n] of cardinality m. Consider the following linear program LP1(S)

with variables (Π,x = (x1, . . . ,xn),y = (y1, . . . ,yn)):

LP1(S)

∀i ∈ S : Π = (Ay)i

∀i /∈ S : Π ≥ (Ay)i

∀i ∈ S : xi = 1/m

∀i /∈ S : xi = 0

∀j /∈ S : yj = 0
n∑
j=1

yj = 1

(3.9)

Proposition 3.1. The imitation game (A, I) has a Nash equilibrium (x∗,y∗) where x∗ is

uniform and has a support of size less than ` if and only if there is a set S ⊆ [n] of size

49



less than ` such that LP1(S) is feasible. Further any (x,y) in its feasible region is a Nash

equilibrium.

Proof. (⇒) Let (x∗,y∗) be a Nash equilibrium of (A, I) where x∗ is uniform and has a support

of size m < `. Then consider the linear program LP1(S) where we set S = supp(x∗). We

claim that (Π,x∗,y∗) lies in the feasible region of LP1(S), where Π = maxk∈[n](Ay∗)k . This

is true because:

- Since (x∗,y∗) is a NE, by Equation 3.3, x∗i > 0 =⇒ (Ay∗)i = maxk∈[n](Ay∗)k, thus

for all i ∈ S, Π = (Ay∗)i, and for all i /∈ S, Π ≥ (Ay∗)i.

- Since (x∗,y∗) is a NE of an imitation game, by Lemma 3.3, we have that supp(y∗) ⊆
supp(x∗), equivalently y∗j = 0 for j /∈ S.

(⇐) Suppose on the other hand there is set S ⊆ [n] of cardinality m < ` such that LP1(S)

is feasible. Let (x,y) be any point in its feasible region. Then we have for all i ∈ [n]:

- If xi > 0, then i ∈ S, which implies that Π = (Ay)i = maxk∈[n](Ay)k

- If yi > 0, then i ∈ S, which implies that xi = 1/m = maxk∈[n] xk

Thus by equation 3.3, (x,y) is a Nash equilibrium of (A, I) where x is a uniform vector with

a support of size less than `. QED.

3.3.2 Support at least `

Suppose every NE (x∗,y∗) of (A, I) where x∗ is uniform has a support of size at least

`. For a set S ⊆ [n], with |S| = `, consider the following linear program with variables

(Π,y = (y1, . . . ,yn)):

LP2(S)

∀i ∈ S : Π = (Ay)i

∀i /∈ S : Π ≥ (Ay)i

∀j : yj ≥ 0
n∑
j=1

yj = 1

(3.10)
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Proposition 3.2. If every Nash equilibrium (x∗,y∗) of the imitation game (A, I) where x∗

is uniform is such that |supp(x∗)| ≥ `, then there exists a set S ⊆ [n] of size exactly ` such

that LP2(S) is feasible. Further for every (Π, ȳ) in its feasible region, there exists a uniform

x̄ ∈ ∆n such that (x̄, ȳ) is a 1
`
-approximate well-supported Nash equilibrium.

Proof. Let (x∗,y∗) be some Nash equilibrium of the imitiation game (A, I) where x∗ is

uniform, which we know exist thanks to Lemma 3.4. We further assume that |supp(x∗)| ≥ `.

Let S be any `-element subset of supp(x∗). Then LP2(S) is feasible because the point

(Π,y∗) lies in its feasible region, where Π = maxk∈[n](Ay∗)k. This is true, since we have for

all i ∈ [n] if i ∈ S, then x∗i > 0, which in turn implies from equation 3.3 that (Ay∗)i =

maxk∈[n](Ay∗)k = Π.

Now suppose LP2(S) is feasible for some subset S of [n] containing exactly ` elements. Let

(Π, ȳ) be a point in its feasible region. Clearly, Π = maxk∈[n](Aȳ)k. Let x̄ ∈ ∆n be given by

x̄i = 1
`

if i ∈ S, and 0 otherwise. Note that maxk∈[n] x̄k = 1
`
. Then (x̄, ȳ) is a 1

`
-approximate

well-supported Nash equilibrium of (A, I) since it holds that:

- for all i ∈ [n], x̄i > 0 =⇒ i ∈ S =⇒ Π = (Aȳ)i =⇒ (Aȳ)i ≥ maxk∈[n](Ax̄)k − 1
`

- for all i ∈ [n], x̄i ≥ 0. Thus ȳi > 0 =⇒ x̄i ≥ maxk∈[n] x̄k − 1
`

= 0 is also true.

Thus from Definition 3.3, it follows that (x̄, ȳ) is a 1
`
-approximate well-supported Nash

equilibrium, and thus also a ε-wsNE. QED.

3.3.3 PTAS for imitation games

Given an imitation game (A, I) and a constant ε > 0, the following algorithm finds a

ε-approximate-well-supported Nash equilibrium.

Algorithm 3.1 PTAS for Imitation games

1: Compute ` = d1
ε
e.

2: Iterate over all subsets S of [n] of size less than ` and check if LP1(S) is feasible. If yes,
output any point in its feasible region.

3: If not, iterate over all subsets S of [n] of size ` and check if LP2(S) is feasible. Use
Proposition 3.2 to output a 1

`
-wsNE.

Theorem 3.1. Given an imitation game (A, I), where A ∈ [0, 1]n×n, and a constant ε > 0,

Algorithm 3.1 computes an ε-approximate-well-supported Nash equilibrium of (A, I) in time

nO(1/ε)poly(L), where L is the bit size of the matrix A.
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Proof. Correctness. Due to Propositions 3.1 and 3.2, at least one of the linear programs

examined in Steps 2 or 3 of Algorithm 3.1 will be feasible. If the algorithm succeeds in Step

2, then it outputs an exact NE of the imitation game due to Proposition 3.1; and if not, it

outputs a ε-wsNE due to Proposition 3.2 in Step 3.

Complexity. In step 2, Algorithm 3.1 iterates over all subsets of [n] of size less than `,

which are
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
`−1

)
≤ (n + 1)` in number. Checking if an LP is feasible takes

polynomial time in L, the bit size of the input A. Thus step 2 of the algorithm takes time

at most: ∑̀
i=1

(
n

i

)
poly(L) ≤ (n+ 1)`poly(L) = nO(1/ε)poly(L) (3.11)

In step 3, Algorithm 3.1 iterates over all subsets S of [n] of size ` and checks if the

corresponding linear program LP2(S) is feasible. This takes time at most:(
n

`

)
poly(L) ≤ n`poly(L) = nO(1/ε)poly(L) (3.12)

Thus, Algorithm 3.1 runs in time nO(1/ε)poly(L), and computes an ε-approximate-well-

supported Nash equilibrium of the imitation game (A, I). QED.

Having presented a polyomial time approximation scheme (PTAS), we now ask if there is

a fully polynomial time approximation scheme (FPTAS) for the problem of computing an

approximate Nash equilibrium of an imitation game. The results of the next section show

that an FPTAS is unlikely.

3.4 HARDNESS OF 1/NΘ(1) -APPROXIMATION

It was shown in [31] that the problem of computing an ε-approximate-well-supported Nash

equilibrium of a bimatrix game is PPAD-hard for ε = 1
nc

, for any c > 0. In this section we

show that a similar hardness result holds for imitation games as well. We do this by first

showing that it remains hard to compute a 1
nc

-approximate-well-supported symmetric Nash

equilibrium of symmetric games, for any c > 0. Then we show that any polynomial-time

algorithm that computes a 1
nc

-approximate-well-supported Nash equilibrium of an imitation

game (A, I) can be used to compute a 1
nc

-approximate-well-supported Nash equilibrium of

a symmetric game (A,AT ) in polynomial time, for any c ≥ 1, showing PPAD-hardness.

We then extend the result to show that computing an 1
n1/c -wsNE of imitation games is

PPAD-hard as well, for integers c ≥ 1. Therefore this rules out an FPTAS for computing

approximate Nash equilibria of imitation games, unless PPAD ⊂ P.
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Lemma 3.5. For any c > 0, the problem of computing a symmetric 1
nc

-approximate-well-

supported Nash equilibrium of a symmetric game is PPAD-hard.

Proof. Let (A,B) be any bimatrix game where A,B ∈ [0, 1]n×n. Consider the symmetric

game (C,CT ), where C is the following 2n× 2n matrix, where m = 6.

C =

[
O A+m

BT +m O

]
(3.13)

where O is a zero matrix of appropriate dimensions, and m > 0. Let (z̄, z̄) be a symmetric

ε-approximate-well-supported Nash equilibrium of (C,CT ), where 0 < ε < 1. Let x,y be

such that for all i ∈ [n] : xi = z̄i and yi = z̄n+i. Let X =
∑

i∈[n] xi and Y =
∑

j∈[n] yj.

Since z̄ ∈ ∆2n, X + Y = 1. Assume without loss of generality that X ≥ 1/2. We have from

Definition 3.3 that for all i ∈ [n]:

z̄i > 0 =⇒ (Cz̄)i ≥ max
k∈[2n]

(Cz̄)k − ε (3.14)

We have for all i ∈ [n], (Cz̄)i = (Ay)i+mY and (Cz̄)n+i = (BTx)i+mX. Since X ≥ 1/2,

there exists i ∈ [n] such that xi > 0. Then we have that for any j ∈ [n]:

(Ay)i +mY ≥ (BTx)j +mX − ε (3.15)

This gives:

Y ≥ X − ε

m
+

(BTx)j − (Ay)i
m

(3.16)

Since entries of A,B are from [0, 1], (BTx)j − (Ay)i ≥ −1. Thus for m = 6,

Y ≥ 1

2
− ε

m
− 1

m
≥ m− 2

2m
=

1

3
(3.17)

Now consider x̄, ȳ ∈ ∆n such that for all i ∈ [n], x̄i = xi
X

and ȳi = yi
Y

. Since (z̄, z̄) is an

ε-wsNE of (C,CT ), it follows from equation 3.14 that for all i ∈ [n]:

xi > 0 =⇒ (Ay)i +mY ≥ max
k∈[n]

(Ay)k +mY − ε , thus

x̄i > 0 =⇒ (Aȳ)i ≥ max
k∈[n]

(Aȳ)k −
ε

Y
≥ max

k∈[n]
(Aȳ)k − 3ε

(3.18)
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Similarly from equation 3.14 we have for all i ∈ [n]:

yi > 0 =⇒ (BTx)i +mX ≥ max
k∈[n]

(BTx)k +mX − ε , thus

ȳi > 0 =⇒ (BT x̄)i ≥ max
k∈[n]

(BT x̄)k −
ε

X
≥ max

k∈[n]
(BT x̄)k − 2ε

(3.19)

Thus from Definition 3.3, (x̄, ȳ) ∈ ∆n × ∆n is a 3ε-wsNE of (A,B). The entries of the

matrix C are in [0, 7]. By noting that scaling the entries of the payoff matrices by the same

constant causes the approximation factor ε to change only by a constant multiplicatively, we

can observe that a symmetric ε-wsNE of (C,CT ) is also a symmetric ε
7
-wsNE of (D,DT ),

where D = 1
7
C is a matrix with entries in [0, 1]. Thus in fact from any symmetric ε-wsNE

of the symmetric game (D,DT ), we can construct a 21ε-wsNE of the general bimatrix game

(A,B). Since we know from [31] that for any c > 0, computing an 1
nc

-aproximate Nash

equilibrium of a general bimatrix game is PPAD-hard, we conclude because of the above

reduction that the problem of computing a symmetric 1
nc

-wsNE of a symmetric game is

PPAD-hard as well. QED.

We now show our first hardness result for imitation games:

Theorem 3.2. For c ≥ 1, the problem of computing an 1/nc-approximate-well-supported

Nash equilibrium of an imitation game (A, I) is PPAD-hard.

Proof. Let (A, I) be an imitation game where A is an n× n matrix with entries from [0, 1].

Fix c ≥ 1. We first observe that for every strategy profile (x̄, ȳ) that is a 1/nc-approximate

well-supported NE of (A, I), the strategy profile (ȳ, ȳ) is a 1/nc-approximate-well-supported

NE of (A,AT ).

Let ε = 1/nc. By definition of ε-approximate well-supported NE, we have for all i ∈ [n]:

x̄i > 0 =⇒ (Aȳ)i ≥ max
k

(Aȳ)k − ε (3.20)

ȳi > 0 =⇒ x̄i ≥ max
k

x̄k − ε (3.21)

Since x̄ ∈ ∆n, maxk x̄k ≥ 1/n. If maxk x̄k = 1/n, then in fact for each i ∈ [n], x̄i = 1/n >

0. On the other hand suppose maxk x̄k > 1/n. Since ε ≤ 1/n, from equation 3.21 we have

that if ȳi > 0 then x̄i ≥ maxk x̄k − ε > 0. Thus, in either case whenever ȳi > 0, it holds

that x̄i > 0. Thus from equations 3.20 and 3.21 we have for all i ∈ [n]:

ȳi > 0 =⇒ x̄i > 0 =⇒ (Aȳ)i ≥ max
k

(Aȳ)k − ε (3.22)
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Thus, (ȳ, ȳ) is a symmetric 1/nc-approximate-well-supported symmetric NE of (A,AT ).

Therefore, the problem of computing a symmetric 1/nc-approximate-well-supported Nash

equilibrium of the symmetric game (A,AT ) reduces to the problem of computing a 1/nc-

approximate well-supported Nash equilibrium of an imitation game (A, I). Since we know

from Lemma 3.5 that the former is PPAD-hard, the theorem follows. QED.

We now show that the hardness extends to the problem of computing a 1
n1/c -wsNE of an

imitation game, for c ≥ 1.

Theorem 3.3. For c ≥ 1, the problem of computing a 1
n1/c -approximate-well-supported Nash

equilibrium of an imitation game (A, I) is PPAD-hard.

Proof. Let (A, I) be an imitation game, where A ∈ [0, 1]n. Fix an integer c ≥ 1. We

construct an m×m matrix A′, where m = (2n)c, given by:

A′ =

[
1
2
A+ 1

2
H

O O

]
(3.23)

where H is an (m − n) × (m − n) matrix with every entry 1
2
, and O denotes zero matrices

of appropriate size. Since every entry of A is in [0, 1], every non-zero entry of A′ is at least
1
2

and at most 1. Let (x′,y′) be an ε′-wsNE of the imitation game (A′, I), where ε′ = 1
m1/c .

Thus for any i ∈ [m]:

x′i > 0 =⇒ (A′y′)i ≥ max
k∈[m]

(A′y′)k − ε′ (3.24)

and for any j ∈ [m]:

y′j > 0 =⇒ x′j ≥ max
k∈[m]

x′k − ε′ (3.25)

Note that for any i ∈ [n], (A′y′)i ≥ 1
2
, and for any i /∈ [n], (A′y′)i = 0. Thus by the

contrapositive of Equation 3.24, we get that for all i /∈ [n], x′i = 0. Thus supp(x′) ⊆ [n].

Similarly note that since for all j /∈ [n], x′j = 0, it follows from the contrapositive of

Equation 3.25 that y′j = 0. Thus supp(y′) ⊆ [n].

Now we define vectors x ∈ ∆n and y ∈ ∆n given by xi = x′i and yi = y′i, for all i ∈ [n].

Observe that for i ∈ [n]:

(A′y′)i =
m∑
j=1

a′ijy
′
j =

n∑
j=1

(
1

2
aij +

1

2

)
yj =

1

2
(Ay)i +

1

2
(3.26)
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With ε′ = 1
m1/c = 1

2n
, we have from Equation 3.24 for all i ∈ [n]:

xi > 0 =⇒ 1

2
(Ay)i +

1

2
≥ max

k∈[n]

1

2
(Ay)k +

1

2
− 1

2n
(3.27)

Equivalently, for all i ∈ [n]:

xi > 0 =⇒ (Ay)i ≥ max
k∈[n]

(Ay)k −
1

n
(3.28)

Similarly, from Equation 3.25 we have for all j ∈ [n]:

yj > 0 =⇒ xj ≥ max
k∈[n]

xk −
1

2n
≥ max

k∈[n]
xk −

1

n
(3.29)

This in fact shows that (x,y) is an 1
n
-wsNE of the imitation game (A, I). Thus any algorithm

that computes an 1
m1/c -wsNE of (A′, I), where A′ ∈ [0, 1]m×m, can be used to compute an

1
n
-wsNE of (A, I), where A ∈ [0, 1]n×n. Since the latter problem is PPAD-hard due to

Theorem 3.2, the former problem must also be PPAD-hard. QED.

We summarize Theorems 3.2 and 3.3:

Theorem 3.4. For any c > 0, the problem of computing a 1
nc

-approximate-well-supported

Nash equilibrium of an imitation game (A, I) is PPAD-hard.

Recall from Lemma 3.1 that the two notions of approximate Nash equilibria are polyomi-

ally equivalent. Thus we have:

Corollary 3.1. For any c > 0, the problem of computing a 1/nc-approximate Nash equilib-

rium of a imitation game is PPAD-hard.

This implies that a fully polynomial time approximation scheme, that is, an algorithm

which runs in time polynomial in n and 1/ε, for the problem of computing an ε-approximate-

well-supported Nash equilibrium of an imitation game is unlikely, unless PPAD ⊂ P.

This hardness result also rules out the smoothed complexity of computing an approximate

NE in imitation games being in P, as was shown in [31] for general bimatrix games:

Corollary 3.2. It is unlikely that the problem of computing a Nash equilibrium of an imita-

tion game is in smoothed polynomial time, under uniform perturbations, unless PPAD ⊂ RP.

Since an FPTAS is unlikely and so is obtaining smoothed complexity in P, we can ask if

the average case is any easier. Indeed, a result of [64] applied to random imitation games,
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where the payoffs (in [0, 1]) of the row player are chosen independently and randomly from

the same distribution, shows that with high probability, the fully-uniform strategy profile

is an Õ( 1√
n
)-approximate Nash equilibrium. Note that no assumptions are made on the

probability distribution itself.

Theorem 3.5 ([64]). Consider an imitation game (A, I) where A ∈ [0, 1]n×n, in which

the entries of A are chosen independently at random from the same distribution. Then

with probability at least 1 − 1
n

, the fully uniform strategy profile is an ε-approximate Nash

equilibrium, where ε = O

(√
lnn
n

)
.

3.5 DISCUSSION

We studied the complexity of finding approximate Nash equilibria in imitation games.

In general two-player games, the problem of computing an ε-approximate NE, for constant

ε > 0, is known to admit a quasi-polynomial-time algorithm, which is in fact optimal as-

suming the exponential-time-hypothesis for PPAD [34]. In contrast, we showed that for

imitation games this problem can be solved in polynomial time due to our polynomial-time

approximation scheme (PTAS) presented in Section 3.3.

On the other hand we showed that when 1
poly(n)

-approximate NE are considered, the prob-

lem remains PPAD-hard just like the case of general two-player games. We in fact showed

that computing a 1
nc

-approximate NE is PPAD-hard, for any c > 0. In showing this re-

sult we also showed PPAD-hardness of finding a 1
nc

-approximate-well-supported NE in both

symmetric and imitation games, for any c > 0. While the above results rule out smoothed

complexity of the problem being in P (unless PPAD ⊂ RP), in the average case, quite like

general games, the fully uniform strategy is with high probability an Õ(1/
√
n)-approximate

NE of an imitation game.
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