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ABSTRACT 

Genetic advances account for less than 2% of global annual crop yield growth, with nitrogen (N) 

fertilizer use comprising the remaining 98% and its use expected to increase to 138Tg to meet crop 

demand by 2030. This overapplication of N fertilizer results in direct economic and environmental 

consequences as plants only take up 30-50% of the available soil N, with the rest being lost to the 

environment. To combat this, many studies have focused on improving the N use efficiency of 

plants through understanding the mechanisms and pathways involved in the N-responsive long-

distance signaling pathways between roots and shoots. These studies, however, often fall short of 

integrating data across time and space due to various biological constraints, while others attempt 

to use time series models not designed for biological systems. Here, I propose a new time series 

model that is suitable for biological systems, accounting for these constraints. This model was 

applied to unevenly spaced, multivariate time-series data from root and shoot tissue in Arabidopsis 

thaliana in response to a N signal. From 2,173 shoot and 568 root differentially expressed genes, 

the model predicted 3,078 significant granger-causal interactions. Of these, 2,012 interactions have 

a root causal gene while 1,066 interactions have a shoot casual gene. Of the total 1,007 different 

causal genes from either organ, 384 have been known or predicted to produce a mobile gene 

product, possibly involved in N signaling. The interactions were then globally explored using a 

bioinformatics pipeline that included gene ontology term analysis, network analysis, transcription 

factor binding, as well as exploring causal genes involved in known N-responsive signaling 

pathways and interactions. Further, an A. thaliana grafting method is put forward to validate 

selected bioinformatically-supported predictions. Future directions are then discussed with respect 

to using the time series model to integrate shoot metabolite data to root/shoot transcriptomic data 

to identify possible N-responsive gene-metabolite relationships. 
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CHAPTER 1: INTRODUCTION 

 

Nitrogen (N) is one of the necessary macronutrients for plants, and is required in the 

greatest amount (Marschner, 2011). Ironically, while N comprises 78% of the atmosphere, non-

leguminous plants are unable to assimilate it from there as they lack a system to break the triple 

bond in the atmospheric N molecule (Ranjan and Yadav, 2019). As such, plants take up N from 

soil through reactive species such as ammonium and nitrate. During the Green Revolution, it was 

shown that crop yields increase with increasing amounts of N fertilizers (Sinclair and Ruffly, 

2012). This crop yield response to N is in part due to improved genetics through engineering and 

breeding efforts (Kant et al., 2011) However, the global annual increase in yield from genetics has 

slowed to below 1% in wheat and rice, 1.6% in maize, while absolute yield is falling in developing 

countries (Fischer et al, 2009). Even considering this, global crop yield growth is projected to keep 

pace with an increase in N fertilizer use from 101Tg of N in 2010 to a projected 138Tg of N in 

2030 (Heffer and Prud’homme 2016). This increase in N use is quite drastic given that it was 

previously believed before the turn of the century that N fertilizer use would not approach 130-

150 million tons until 2050 (Matson, Naylor, and Ortiz-Monasterio 1998). Unfortunately, plants 

only take up 30-50% of available soil N (McAllister et al., 2012), with the remaining added N 

being lost to the environment through leaching, greenhouse gas emission, and denitrification 

(Good and Beatty, 2011). Given the overapplication of N fertilizers to keep pace with an increase 

in demand for crop yield, there is a direct economic and environmental need to increase the 

nitrogen use efficiency (NUE) of crops.  
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 NUE can be broadly defined as the “grain production per unit of N available in the soil” 

(Moll et al., 1982). It is comprised of the two components: N uptake efficiency (NUpE) and N 

utilization efficiency (NUtE) (Han et al., 2015). NUE is a genetically complex phenotype and has 

been the target of numerous approaches to improve this trait through specific experiments that 

target the uptake, transport, assimilation and/or remobilization of N. However, only incremental 

gains have been realized (Han et al., 2016; Stahl et al., 2017; Selvaraj et al., 2017) as these 

improvements have only been limited in focus to investigating just one part of the NUE equation. 

It is now recognized that to improve NUE, a more holistic approach is needed. One such approach 

is to focus on genes and regulators that influence targets across N uptake, transport, assimilation 

and remobilization (Kant, 2018). Previous studies have attempted to do this by focusing on long-

distance N-signaling between roots and shoots (Takei et al., 2004; Osugi et al., 2017), combined 

engineering of NUpE and NUtE (Snyman et al., 2015; DoVale et al., 2012), or simultaneous 

analysis of the N-responsive transcriptome, proteome and metabolome (Simons et al., 2014; Xin 

et al., 2019).  

 Communication is necessary in all biological organisms to report and coordinate systems 

status and response. Given that plants are sessile organisms, communication is especially 

necessary in order to coordinate responses between root and shoots. This communication allows 

plants to coordinate a response to the changing environment such as time of day, temperature, 

pathogens, pests and soil nutrient availability. The signals involved can travel from small distances 

of a few micrometers between two cells to dozens of meters from the roots to the leaves of the 

tallest redwood trees. Much research in plants has been performed to identify and understand these 

signals and their pathways. This has resulted in the identification of RNAs (Marin-Gonzalez and 
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Suarez-Lopez, 2012), peptides (Takahashi et al., 2019), lipids (Barbaglia and Hoffman-Benning, 

2016), hormones (Blazquez et al., 2020), nutrient derived metabolites (e.g. amino acids, Dinkeloo 

et al., 2018), and even nutrients and ions themselves (Liu et al., 2009, Choi et al., 2017), that act 

as signals produced in response to abiotic and biotic perturbations. Other studies have focused on 

how electrical (Choi et al., 2017), hydraulic (Zwieniecki et al., 2004) and structural (Thompson, 

2006) mechanisms are designed to promote and propagate these signals. 

 In particular, N signaling is well studied in order to shed light on how plants coordinate 

NUpE and NUtE. This has enabled researchers to identify targets for the improvement of NUE. 

Nitrate is the predominant form of N present in soils and one of the two primary forms of N taken 

up by plants (Kant et al., 2011). Starting from its uptake from the soil into roots, before its 

assimilation, nitrate can act as a long-distance signal in plants. Nitrate can be loaded into and 

unloaded from the xylem by nitrate transporters in the NPF gene family (Kant, 2018). Nitrate 

accumulation in shoots can then trigger an auxin signal that travels to the roots to repress root 

branching (Forde, 2002). This root-to-shoot-to-root communication that coordinates NUpE and 

NUtE is one of many that has been researched and observed in response to biotic and abiotic signal 

(Walch-Liu et al., 2005, Wang and Ruan, 2015, Chen et al., 2016). This feedback can involve a 

diverse array of known N signaling molecules and pathways including C-terminally encoded 

peptides (CEP) (Notaguchi and Okamoto, 2015) and CEP receptors (Ohkubo et al., 2017), 

transcription factors such as NLP7 and HY5 (Castaings et al., 2009, Chen et al., 2016), hormones 

including cytokinin (Ruffel et al., 2011, Kiba et al., 2011), and even RNAs (Ham and Lucas, 2017). 

The presence of these diverse signals involved in N signaling suggests that whole plant N signaling 

may be more complex than expected and most likely could involve signaling molecules and 
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pathways yet to be discovered (Ruffel and Gojon, 2017). These findings present new questions 

such as: How does the whole plant coordinate these different signaling pathways? How does the 

plant regulate these pathways to integrate NUpE and NUtE? And can we predict emergent 

properties of long-distance N-signaling through identification of causal, molecular relationships 

between organs? 

These aforementioned studies on N signaling have been focused on NUpE and/or NUtE 

but do not consider integrating the data across time and space. The causal and target cells and 

tissues in signaling are physically separated, especially so in long distance signaling. 

Consequently, it takes time for a signal to propagate across this physical separation. Some studies 

do sample across time points in different parts of the plant and provide thorough descriptions of N 

signaling and response in either organ (Varala et al., 2018). While these studies do capture the 

transient effect of N on either NUpE or NUtE in specific organs, they fall just short of integrating 

the data across both time and space.  

 Time series data is important for elucidating the order in which biological processes and 

responses are activated, and is used to infer causality (Bar-Joseph et al., 2012). In biology, time 

series experiments are usually designed to capture the initial dynamic phase and later steady phase 

in a response to a perturbation. This results in unevenly spaced time points with dense early 

sampling and sparse late sampling (Colón et al., 2010; Krouk et al., 2010; Spellman et al., 1998; 

Zhu et al., 2000; Gargouri et al., 2015). Furthermore, sampling in biology is constrained to other 

external factors such as cost and labor. Attempts to capture transient responses to perturbations 

given these constraints often result in short, unevenly spaced time series data. Unfortunately, no 

statistical model exists to account for these unique features in biological time series data. Existing 
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time series models have been designed to be used for weather and financial data which are not 

only sampled at regular intervals, but also on the order of hundreds, if not thousands. Given these 

restrictions, biological studies have attempted to use other methods to analyze time series data. K-

means clustering has been used to identify differentially expressed genes over developmental time 

in Zea mays (Chen et al., 2014), or those responding to drought stress in Arabidopsis thaliana 

(Bechtold et al, 2016). While clustering does identify when groups of genes are 

activated/repressed, it fails in predicting any causal relationships between specific gene-gene pairs. 

Network analysis using Bayesian networks and dynamic Bayesian networks have been used to 

predict relationships between genes but fall short of establishing causality. Other studies transform 

irregularly spaced time series data in equally spaced time series (Hamilton, 1994) such as 

approximating a continuous time series from the irregular data (Maller et al., 2008), or resampling 

to estimate missing data points at regular intervals between the observed time points (Remondini 

et al., 2005; Erdogan et al., 2005; Broersen & Bos, 2006; Thiebaut & Roques, 2005). 

Unfortunately, transforming the time series data has drawbacks that include the possibility of 

changing the causal relationships in multivariate time series, or data loss if time points are too 

close together or data dilution if time points are far apart thus biasing any estimate of statistical 

significance (Eckner 2014). Meanwhile, other studies have analyzed time series data but neglected 

to detrend the series (e.g Zhao et al., 2006; Gargouri et al., 2015). The trend of a time series is 

defined as an intrinsic property of the data that is driven by the same mechanisms that generate the 

data (Wu et al., 2007), e.g. the seasonal effect of temperature throughout the year. By detrending 

a time series, the remaining observations can behave independently with less correlation and little 
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information about the long-term trend (You et al., 2018). That is, a steady-baseline is produced 

around which a time series can oscillate, resulting in better predictions (Leise, 2017). 

 In this thesis, I present a new times series model that is suitable for time series analysis in 

biological systems and can establish granger-causal relationships from short, unevenly spaced time 

series data. This new model was applied to root and shoot transcriptome data to predict thousands 

of causal gene-gene relationships involved in long-distance N signaling, uncovering thousands of 

novel gene-gene relationships. Model predictions were then explored using a bioinformatics 

pipeline resulting in a number of candidate relationships for experimental validation (Chapter 2). 

I then report preliminary attempts to experimentally validate model-predicted causal relationships 

using mutant plant lines and grafting, and follow with a discussion about future directions (Chapter 

3). Throughout this thesis, statistical terms are introduced that may be beyond the scope of a typical 

plant molecular biologist. These terms are underlined within the main text and defined in an 

included glossary at the end (Appendix B).  
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CHAPTER 2: GRANGER-CAUSAL TESTING FOR IRREGULARLY SAMPLED TIME 

SERIES WITH APPLICATION TO NITROGEN SIGNALING IN ARABIDOPSIS1 

 

ABSTRACT 

Motivation: Identification of system-wide causal relationships can contribute to our 

understanding of long-distance, intercellular signaling in biological organisms. Dynamic 

transcriptome analysis holds great potential to uncover coordinated biological processes between 

organs. However, many existing dynamic transcriptome studies are characterized by sparse and 

often unevenly spaced time points that make the identification of causal relationships across organs 

analytically challenging. Application of existing statistical models, designed for regular time series 

with abundant time points, to sparse data may fail to reveal biologically significant, causal 

relationships. With increasing research interest in biological time series data, there is a need for 

new statistical methods that are able to determine causality within and between time series data 

sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene 

relationships from unevenly spaced, multivariate time series data from two different tissues of 

Arabidopsis thaliana in response to a nitrogen signal.  

Results: This work delivers a statistical approach for modelling irregularly sampled bivariate 

signals. The approach embeds engineering functions that allow fitting of the model’s dependence 

structure to the specific sampling time. Using Maximum-Likelihood to estimate the parameters of 

 
1 This chapter has been submitted for review in its entirety to the journal of ‘Bioinformatics’, and is available as a 

preprint on BioRxiv. It is referred to later in the dissertation as “Heerah, S., Molinari, R., Guerrier, S., and Marshall-

Colon, A. 2020. “Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling 

in Arabidopsis.” BioRxiv, January, 2020.06.15. https://doi.org/10.1101/2020.06.15.152819.” Some minor changes in 

the content has been made, and some figures and tables have been modified in comparison to the original manuscript. 
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this model for each bivariate time series, it is then possible to use bootstrap procedures for small 

samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to 

Arabidopsis thaliana data, the proposed approach produced 3,078 significant interactions, in 

which 2,012 interactions were from root causal genes and 1,066 interactions were from shoot 

causal genes. Many of the predicted causal and target genes are known players in local and long-

distance nitrogen signaling, including genes encoding transcription factors, hormones, and 

signaling peptides. Of the 1,007 total causal genes (either organ), 384 are either known or predicted 

mobile transcripts, suggesting that the identified causal genes may be directly involved in long-

distance nitrogen signaling through intercellular interactions. The model predictions and 

subsequent network analysis identified nitrogen-responsive genes that can be further tested for 

their specific roles in long-distance nitrogen signaling.  

Availability: The method was developed with the R statistical software and is made available 

through the R package “irg” hosted on the GitHub repository (https://github.com/SMAC-

Group/irg). A sample data set is made available as an example to apply the method and the 

complete Arabidopsis thaliana data can be found at: https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE97500.   

 

INTRODUCTION 

Time series data are important for understanding the biological processes that are activated at 

different times and for inferring causality (Bar-Joseph et al., 2012). Many time series studies are 

designed to capture both dynamic and stationary phases in response to perturbations, which result 

in unevenly spaced time points, with dense sampling early and sparse sampling at later time points 

https://github.com/SMAC-Group/irg
https://github.com/SMAC-Group/irg
https://github.com/SMAC-Group/irg
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500
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(Spellman et al., 1998; Colón et al., 2010; Krouk et al., 2010; Gargouri et al., 2015; Zhu et al., 

2000). In biology, this is a commonly used sampling scheme to efficiently capture transient 

transcriptional and metabolic responses. However, the analysis of this irregular data is challenging, 

since traditional time-lagged or cross-correlation analyses, designed for regularly spaced intervals, 

cannot be used. To date, it can be argued that no statistical approach has been able to 

comprehensively account for these unique features common to many biological time series (see 

e.g. Rehfeld et al., 2011). 

Among the current approaches, methods designed for time-independent or regularly-

spaced processes have been used to analyze unevenly-spaced time series data. For example, 

“static-based” clustering methods like hierarchical clustering and K-means have been used to 

organize and identify genes differentially expressed over developmental time in Zea mays (Chen 

et al., 2014), or in response to drought stress in Arabidopsis thaliana (Bechtold et al., 2016). 

However, clustering methods are not suitable to predict causal relationships between genes. Hence, 

other employed approaches include, among others, the transformation of irregularly sampled data 

into evenly spaced time series (Hamilton, 1994), in which the irregularity of the time interval can 

be approximated by forced regular intervals (Maller et al., 2008), or (resampling) strategies that 

estimate missing data points to fill in lags between observations (Broersen and Bos, 2006; Thiebaut 

and Roques, 2005; Remondini et al., 2005). Other methods directly address the irregular nature of 

the processes but do not consider the multivariate dependence and, consequently, the causal 

relation between signals (see e.g. Erdogan et al., 2005; Eyheramendy et al., 2018). These 

approaches have different drawbacks (Eckner, 2014) including: i) an inability to capture the 

variable nature of multivariate dynamic transcriptome experiments; and ii) resampling strategies 



10 

 

often change the (Granger) causal relationship of the multivariate time series (Bahadori and Liu, 

2012). All of these approximations can lead to incorrect correlations and predictions, and are 

unable to determine causal relationships within or between time series. Another commonly used 

approach in the analysis of (biological) time series is to perform a correlation analysis which 

however often does not account for non-stationary features of the data (Gargouri et al., 2015; Zhao 

et al., 2006). Indeed, the latter form of analysis can be highly misleading if, for example, the mean 

and/or variance of the series change over time which can often be the case for many experimental 

settings. 

In response to the above limitations, this work puts forward a statistical approach that 

provides a general framework to determine Granger-Causality (Granger, 1969) for (short) 

irregularly sampled bivariate signals. We use this proposed approach to describe causal gene-gene 

relationships from above- (shoot) and belowground (root) organs of Arabidopsis thaliana in 

response to a nitrogen signal. While the proposed approach can be used to investigate possible 

relationships within the same organ, this would require significant additional computational time 

and resources. Even if we consider the computational constraints, investigating within tissue 

causality would not address the goal our work: to understand the long-distance signaling and 

response relay to uncover how the root and the shoot coordinate their nitrogen response. Moreover, 

within tissue causality was recently explored by (Varala et al., 2018).  Through identification and 

bioinformatic exploration of the detected causal relationships between organs, we achieve a greater 

understanding of the underlying molecular and biochemical pathways involved in the long-

distance nitrogen-signal response. This increase in understanding of nitrogen-responsive 

biochemical pathways in different plant tissues may help to predict emergent plant properties under 



11 

 

nitrogen sufficiency and deficiency. Further testing of model-predicted causal relationships may 

uncover new molecules, pathways, and processes involved in the root-to-shoot-to-root nitrogen-

signal relays, providing biological insight into complex, whole-plant nitrogen response. 

 

GRANGER-CAUSAL ANALYSIS FOR IRREGULAR DATA 

An irregularly spaced time series is a sequence of observations that are observed in time in a strictly 

increasing manner but where the spacing of observation times is not necessarily constant. More 

formally, let 

 

(𝑡𝑖 ∶ 𝑖 = 1, … , 𝑛) ∈ 𝑇𝑛, 

 

denote a strictly increasing time sequence of length n where: 

 

𝑇𝑛 = {(𝑡1 < ⋯ < 𝑡𝑛): 𝑡𝑖 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛} 

 

In addition, let (𝑋𝑖: 𝑖 = 1, . . . , 𝑛) ∈ 𝑅𝑛
 and (𝑌𝑖: 𝑖 = 1, . . . , 𝑛) ∈ 𝑅𝑛

 denote two sequences of real-

valued random variables (for example transcript or metabolite levels) such that we can denote a 

bivariate irregularly spaced time series with n time points, as (𝑡𝑖, Xi, Yi : i = 1,...,n), where 𝑡𝑖  denotes 

the time at which Xi and Yi are to be observed. In the context of this paper, we focus on those 

random sequences that are observed at the same points in time (i.e. the sequences (𝑡𝑖: 𝑖 = 1, … , 𝑛) 

correspond for both series). However, this condition can also be relaxed as a result of the research 

developed in this work. 
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As highlighted previously, the literature on irregularly spaced time series is not abundant 

and methods available to practitioners for estimation and inference in these cases are lacking as 

well. In this section we therefore put forward a pertinent statistical model that we will denote as 

𝐹 = {𝐹θ: θ ∈ Θ ⊂ 𝑅𝑝}, with θ being the vector containing the parameters of this model. The latter 

model needs to deal with irregularly spaced bivariate time series and should allow testing for 

Granger causal links between the series themselves. In order to achieve this goal, we firstly define 

μ𝑖
(𝑥)

 and μ𝑖
(𝑦)

 as the expected values of 𝑋𝑡𝑖
and 𝑌𝑡𝑖

, respectively. These quantities represent, in the 

case of dynamic transcriptome and metabolome data, the natural (deterministic) variation in gene 

expressions due, for example, to changes in environmental conditions or natural cycles. If we were 

considering evenly spaced observations, it would appear reasonable to consider the class of 

AutoRegressive Moving Average (ARMA) models to describe the variations of (𝑋𝑡𝑖
) around its 

mean (see e.g. Box et al., 2015, for details). A commonly used model within this class, especially 

when dealing with small sample sizes, is the first-order autoregressive model, i.e. an AR(1), which 

is defined as 

𝑋𝑡𝑖
− μ𝑖

(𝑥)
= ρ (𝑋𝑡𝑖−1

− μ𝑖−1
(𝑥)

) + 𝑊𝑡𝑖
, 

 

where ρ represents the parameter which explains the dependence between consecutive 

observations and 𝑊𝑡𝑖
is an independent sequence of random variables with a certain (finite) 

variance σ2. This model approximates many covariance structures delivering a behavior that is 

often reasonable for biological and natural phenomena. In order to determine whether another time 

series (signal) has an impact on the time series under consideration, the above model can be 

extended as follows: 
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𝑋𝑡𝑖
− μ𝑖

(𝑥)
= ρ (𝑋𝑡𝑖−1

− μ𝑖−1
(𝑥)

) + λ  (𝑌𝑡𝑖−1
− μ𝑖−1

(𝑦)
) + 𝑊𝑡𝑖

, 

 

where λ represents the impact that the time series (𝑌𝑡𝑖
) has on the time series (𝑋𝑡𝑖

). In general terms, 

we can say that (𝑌𝑡𝑖
) Granger-causes (𝑋𝑡𝑖

) if the latter model explains the behavior of (𝑋𝑡𝑖
) better 

than the previously defined AR(1) model that only depends on the sequence (𝑋𝑡𝑖
). The concept of 

Granger Causality was introduced in Granger (1969) and the goal of the biological study 

considered in this work would therefore be to perform a statistical test to confirm the stronger 

explanatory power of the second model over the first. 

However, these models are not well-adapted to irregularly spaced time series that are the 

focus of this work. For example, the parameter ρ, that measures the relation between consecutive 

observations, remains constant regardless of the distance in time between 𝑋𝑡𝑖
and 𝑋𝑡𝑖−1

 (as well as 

the parameters λ and σ2). For this reason, the next sections put forward a new framework for these 

settings. 

 

The Proposed Model 

The first step required to address the problem of modelling irregularly spaced time series consists 

in integrating the distance in time between observations within the model specification. Assuming 

an appropriate technique is used to estimate μ𝑖
(𝑥)

 (e.g. splines or other semi- or non-parametric 

approaches), we denote the centered observations as �̃�𝑡𝑖
≔ 𝑋𝑡𝑖

− μ𝑖
(𝑥)

 and the distance in time as 
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δ𝑡𝑖
≔ 𝑡𝑖 − 𝑡𝑖−1, with 𝛿𝑡𝑖

∈ 𝑅+by definition. Based on this, the AR(1) model for irregularly spaced 

data can be represented as follows: 

 

(1) �̃�𝑡𝑖
= 𝑓(𝛿𝑡𝑖

)�̃�𝑡𝑖−1
+ 𝑊𝑡𝑖

,  

 

where f(·) is a deterministic function, possibly known up to some parameter values, that plays the 

same role as the constant ρ but takes into account the distance between observations. The 

independent sequence (𝑊𝑡𝑖
) is usually considered as being Gaussian (although other distributions 

can be considered) for multiple reasons, one of which is estimation feasibility. A Gaussian 

distribution only depends on mean and covariance parameters that are independent from each 

other, and can therefore be defined separately. Other distributions often jointly contribute to both 

the mean and the variance of the process and can therefore make the definition of the likelihood 

more complex, and/or add more parameters to be estimated which would be theoretically and 

numerically impossible for short signals. Without loss of generality, we will make this assumption 

and therefore state that 𝑊𝑡𝑖
∼ 𝒩 (0, 𝑔(δ𝑡𝑖

)) with g(·) being another deterministic function. Both 

the functions f(·) and g(·) need to respect certain properties which will be discussed further on. 

The model defined in (1) could be extended in several ways, for example, by considering a 

dependence between �̃�𝑡𝑖
and �̃�𝑡𝑖−𝑗

 with j > 1 or between �̃�𝑡𝑖
and 𝑊𝑡𝑖−𝑗

as in general ARMA models 

(as well as considering non-Gaussian distributions for 𝑊𝑡𝑖
 as mentioned earlier). However, given 

the small sample sizes usually encountered in dynamic transcriptome and metabolome studies, it 

is rather unlikely that more complex models can be appropriately estimated and the model in (1) 

is a very reasonable approximation for more general dependence structures. 
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Considering the extension of AR(1) processes to irregularly spaced settings, we can 

consider the same extension when modelling the joint behavior of two time series. For this purpose, 

we define the following bivariate model, which is a natural extension of a vector AR(1) model for 

irregularly spaced data: 

 

(2) 𝒁𝒊 = 𝑨(𝛿𝑡𝑖
)𝒁𝒊−𝟏 + 𝑽𝒊 

 

Where 

 

 

 

and where h(·) is another deterministic function (which may depend on unknown parameters). In 

addition, we have 𝑉𝑖~ ≔ ~[𝑊𝑡𝑖
, 𝑈𝑡𝑖

]
⊺

 with (𝑉𝑡𝑖
, 𝑖 = 1, . . . , 𝑛) ∈ 𝑅𝟚×𝑛  denoting a bivariate 

independent sequence with distribution 𝑉𝑡𝑖
~𝒩(0, Σ𝑖), with 0 being a two-dimensional zero vector 

and 

 

(3)    

 

It can be observed how the matrix 𝑨(𝛿𝑡𝑖
) plays the main role in describing the dependence 

“within” and “between” the two time-series. Indeed, on one hand the functions f1(𝛿𝑡𝑖
) and f2(𝛿𝑡𝑖

) 
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determine to what extent the time series depend on themselves to describe the behavior of their 

future observations while the functions h1(𝛿𝑡𝑖
) and h2(𝛿𝑡𝑖

), on the other hand, determine the degree 

of dependence between the two time series. Also, within this setting it is possible to recognize the 

idea of Granger causality where one is interested in assessing whether past values of a certain time 

series can significantly increase the explanation of the behavior of another time series. In general, 

this assessment is based on statistical tests which are typically related to characteristics of the 

matrix A(𝛿𝑡𝑖
). In fact, if this matrix is diagonal, this implies that the two time-series are independent 

from each other (under the Gaussian assumption) while if it is full this entails that the two time-

series are also inter-dependent. Moreover, if the matrix is upper or lower triangular, this would 

imply that only one of the series depends on itself and on the other series (the latter therefore only 

depending on itself). 

Considering the above modelling framework, there is a need to estimate the unknown 

parameters in the model and test whether the estimated models appear to explain the data 

sufficiently well to draw reliable conclusions. Firstly, to estimate these kinds of models we propose 

a likelihood approach based on the assumption of a jointly normal distribution of the observations 

which, for the bivariate series, gives the following conditional distribution: 

 

(4)  

 

 

where Σi is defined in (3), and 
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 . 

 

If we denote the unconditional distribution of Zi as l(Zi), then the likelihood function is given by 

 

(5)  𝐿(𝜽) = 𝑙(𝑍1) ∏ 𝑙(𝒁𝒊|𝒁𝒊−𝟏)

𝑛

𝑖=2

 , 

 

where, using (4), we have 

 

𝑙(𝑍𝑖|𝑍𝑖−1) =
1

2π|Σ𝑖|
1
2

exp (−
1

2
(𝑍𝑖 − μ�̃�)

𝑇Σ𝑖
−1(𝑍𝑖 − μ�̃�)). 

 

Applying the log(·) function to L(θ) and fixing l(Z1) as constant (neglecting constant terms) we 

obtain the following estimating equation which defines the Maximum Likelihood Estimator 

(MLE): 

 

(6)   

 

where 

𝑄𝑛(θ) =
1

𝑛 − 1
∑ log(Σ𝑖)

𝑛

𝑖=2

+ (𝑍𝑖 − μ�̃�)
𝑇Σ𝑖

−1(𝑍𝑖 − μ�̃�) . 
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Under a set of conditions (see Model Conditions in the Appendix), the estimator defined in (6) 

has appropriate statistical properties. Among these conditions there are constraints on the 

deterministic functions that characterize the dependence structure of the model defined in (2). For 

this reason, we define these functions accordingly taking from the domain of (navigation) 

engineering (see e.g. Titterton et al., 2004). In the latter field, a model that is often used is the 

discrete-time first-order Gauss-Markov model that can be defined as: 

 

�̃�𝑡𝑖
= exp (−

δ𝑡𝑖

ϕ
) �̃�𝑖−1 + 𝑊𝑡𝑖

, 

 

where φ ∈ R+ is a parameter that determines the “range” of dependence in the data and 

 

𝑊𝑡𝑖
∼ 𝒩 (0,  σ2 [1 − exp (−

2δ𝑡𝑖

ϕ
)]). 

 

Having been mainly proposed to deal with time series measured at different frequencies, the idea 

behind this model is very close to the structure of an exponential model for spatial data (see e.g. 

Ripley, 2005). Indeed, the latter explains the dependence in space through an exponential structure 

and roughly corresponds to the above-mentioned Gauss-Markov process when considering δti as a 

measure of Euclidean distance. The above model therefore gives an explicit form to the functions 

f·(·) and g·(·) mentioned earlier but of course other explicit forms can be envisaged. 

While the above defined functions characterize the dependence of a time series on itself, it 

is still necessary to give an adequate form to the function h·(·) that describes the behavior of a 
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signal based on another. Given the short time series available, we decided to impose a reasonable 

structure to this behavior which allowed the dependence of a signal on the other signal to grow 

exponentially over time (reaching its maximum) and then decay exponentially. While we 

considered the impact of past values of a time series on its future values as a function only of their 

distance in time, we postulated that the impact of another time series is not constant but increases 

and then decreases as a function of the distance in time over the chosen experimental time-frame. 

This behavior can be justified from a biological point of view since genes have been shown to 

influence the expression of other genes in a “hit and run” manner (Doidy et al., 2016). The causal 

gene physically interacts with the target gene then dissociates, but the transient target gene’s 

expression continues to be affected after the dissociation. For this reason, we proposed the 

following function: 

 

ℎ(δ𝑡𝑖
) ≔ ψ  exp [−

(δ𝑡𝑖
− γ)

2

η
], 

 

where ψ ∈ (−1,1) is a parameter that describes the “intensity” and “direction” of the dependence 

of a time series on the other while γ ∈ R+ denotes the distance in time at which the dependence of 

a time series on another is maximal. Finally, η ∈ R+ plays a similar role to φ in the previously 

defined function h·(·). 

As stated earlier, other explicit (more complex) forms can be defined for these functions. 

However other forms would probably require more parameters to characterize them and would be 

complicated (if not impossible) to estimate in practice given the small sample sizes collected in 
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many experimental settings such as the one considered in this work. Hence, in order to balance 

model complexity with practical feasibility, we applied the above functions to understand the 

relationship between different root and shoot signals since they can be considered as appropriate 

approximations to the underlying dependence structure. 

 

Testing Procedure 

Once the model is defined, the goal of this work is therefore to understand which structure of the 

matrix A(δ𝑡𝑖
) in (2) best describes the observed data (e.g. diagonal, lower/upper triangular). In this 

perspective, we are interested in making a decision on the following set of hypotheses: 

 

 H0 : A(δ𝑡𝑖
) is diagonal. 

 HA : A(δ𝑡𝑖
) is lower triangular. 

 

Hence, the null hypothesis H0 states that neither signal has an impact on the other (i.e. no Granger 

causality in the bivariate time series) while the alternative HA states that the first signal Granger-

causes the second. This alternative can of course be changed to “A(δ𝑡𝑖
) is upper triangular” 

therefore reversing the direction of dependence. 

The MLE defined in (6) estimates the parameters of the proposed model using the 

likelihood function in (5). Based on the latter, a commonly used test to determine the performance 

of a more “simple” model (such as the one considered in the null hypothesis stated above) with 

respect to a more “complex” model (such as the one in the alternative hypothesis) is the likelihood-

ratio test whose statistic is given by 



21 

 

 

𝐿𝑅𝑇 ≔ −2 log (
𝐿(θ̃0)

𝐿(�̃�1)
) = 2 (𝑄𝑛(θ̃0) − 𝑄𝑛(θ̃1)) , 

 

where θˆ0 and θˆ1 represent the estimated parameters of the models under the null and alternative 

hypothesis respectively. In order to perform this test one needs to derive the distribution of the 

LRT statistic under the null hypothesis which is asymptotically chi-squared with 𝑝⋆ degress of 

freedom, where 𝑝⋆represents the number of extra parameters contained in θ1 ∈ Rp1 with respect to 

θ0 ∈ Rp0 (i.e.𝑝⋆ ≔ 𝑝1 − 𝑝0). Using this distribution and the observed LRT statistic one can then test 

the null hypothesis thereby concluding whether or not a signal Granger-causes the other. 

 

Implementation 

As highlighted before, the sample sizes coming from target biological applications are typically 

small (i.e. 5 < n < 20 time points) and it therefore seems unreasonable to make use of asymptotic 

properties in these cases. For this reason, Monte-Carlo-based techniques appear to be a natural 

alternative that consider the small sample distribution of the test statistics of interest. More 

specifically, we propose to use parametric bootstrap to derive the small sample distribution of the 

LRT statistic under the null hypothesis as described in Algorithm 1. 

 

Algorithm 1: Parametric Bootstrap for LRT Statistic 

  Result: Estimated LRT distribution under H0 . 

  Initialize h  =  0,  H  ≥  100 and a zero vector LRTboot of dimension H;  

while h ≤ H do 
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1. ℎ =  ℎ + 1; 

2. Simulate a bivariate time series (𝑍𝑖
(ℎ)

) of the same sample size as the original 

signals from the model 𝐹θ̂0
; 

3. Estimate θ0  and θ1  from the simulated sample (𝑍𝑖
(ℎ)

) to obtain  �̂�𝟎
(𝒉)

 and �̂�𝟏
(𝒉)

 

respectively; 

4. Compute 𝐿𝑅𝑇𝑏𝑜𝑜𝑡
(ℎ)

= 2 (𝑄𝑛(θ̂0
(ℎ)

) − 𝑄𝑛(θ̂1
(ℎ)

)) 

 

The parametric bootstrap approach allows for a good approximation (for large H) of the 

LRT statistic distribution under the null hypothesis by using the empirical distribution of the 

 values. Given this distribution, it is possible to obtain an approximate p-value (see Davison 

and Hinkley, 1997) as follows 

 

𝑝-value ≈
1

𝐻 + 1
 (1 + ∑ 𝟏

{𝑳𝑹𝑻𝒃𝒐𝒐𝒕
(𝒉)

>𝑳𝑹𝑻}

𝐻

ℎ=1

  ). 

 

If this p-value is smaller than a chosen level of significance α, then we can reject the null hypothesis 

H0 that there is no Granger causality in favor of the specific alternative hypothesis HA being tested. 

Given this testing framework, there are a couple of issues that need to be considered, the 

first of which is the computational burden of Algorithm 1. In fact, the above defined p-value needs 

to be computed for all possible bivariate signal combinations and alternative hypotheses resulting 

in 2×NX ×NY tests, where NX and NY are the number of measured expressions in the two considered 
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signals. Considering that the computational complexity to obtain the above p-value, given our 

assumptions, is approximately of order 𝒪(𝑛𝐻), the final algorithmic complexity of the entire 

procedure would be of order 𝒪(𝑛𝐻𝑀) with 𝑀 = 𝑁𝑋 × 𝑁𝑌 and 𝑁𝑋, 𝑁𝑌 ≫ 103. This implies that 

the time required to obtain the results can be considerable. Another issue consists in the multiple 

testing framework this procedure entails, which therefore has consequences in terms of False 

Discovery Rate (FDR). Indeed, each (𝑋𝑡𝑖
) signal is tested 2𝑁𝑌 times (and vice-versa for the (𝑌𝑡𝑖

) 

signals) which would require to compare the p-value to the level 
α

(2𝑁𝑋𝑁𝑌)
 if applying, for example, 

a Bonferroni correction. If the sizes 𝑁𝑋 and 𝑁𝑌are considerable, this would require increasing the 

number of simulations H in a proportional manner consequently increasing the computational 

burden. Unless one uses the asymptotic approximation to obtain a p-value (which would be highly 

unreliable for the small sample sizes used in these settings), there is currently no way of avoiding 

such a computational bottleneck. 

 

RESULTS AND DISCUSSION 

The described approach was applied to the time-evolved transcriptome of Arabidopsis roots and 

shoots (the (𝑋𝑡𝑖
) and (𝑌𝑡𝑖

) signals respectively) whose measurements were made through an 

experimental setup described more in detail in the Appendix along with the chosen pre-processing 

(Appendix A: Supplemental, Supplemental Methods). These signals, each of length n = 10 and 

collected at higher frequencies in the initial experimental phase, generate 1,234,264 possible gene 

pairs from significantly differentially expressed root and shoot genes. Using H = 103, we applied 

the procedure described in “Granger-Causal Analysis for Irregular Data” which produced a final 

list of 3,078 gene pair interactions whose details are listed in Supplemental Table 1 (only p-values 
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equal to zero were considered to reduce FDR as much as possible given computational constraints). 

Out of these interactions, 2,012 had a predicted root-to-shoot direction of influence meaning that 

the root gene was identified as the (Granger) causal gene, or the influencer on the expression of 

the shoot gene. The remaining 1,066 interactions had a predicted shoot-to-root direction of 

influence. In addition, the approach predicted 1,616 positive interactions (i.e. ψ > 0) and 1,462 

negative interactions (i.e. ψ < 0). Due to the limited and irregular number of samples across time, 

we choose to classify the time of influence at which the maximum influence between two genes 

occurred (measured by the γ parameter) into three general groups: Early (0-15 min), Middle (20-

45 min), and Late (60-120 min). Based on this, among the 3,078 interactions, 2,502 occur Early, 

548 occur during the Middle time frame, and 28 occur Late. In the following paragraphs we 

analyze only some of the model-predicted interactions in terms of their known properties and/or 

based on how they have a coherent biological interpretation. To do so, we will use the term 

“causal” to indicate genes that impact another gene, the latter being referred to as “target”. 

 

Global analysis of model-predicted interactions reveal links between biological processes and 

pathways 

Gene Ontology (GO) term analysis was performed to understand what pathways and processes 

were influenced across tissues over time (see Appendix A: Supplemental, Supplemental Methods). 

As highlighted also in Fig. 1, at early time points (0 - 15 minutes), causal root-genes reflect the 

early nitrogen response, while target-shoot genes reflect post-transcriptional and translational 

processes (see Supplemental Tables 2 and 11). At later time points there is a shift in metabolism 

in which causal root-genes are involved in degradation and catabolic processes (45 - 120 minutes) 
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(GO enrichment p-value < 0.01), while the predicted shoot target genes are involved in peptide 

biosynthesis (15 - 45 minutes) (GO enrichment p-value < 0.01) and sugar/carbohydrate response 

and signaling (45 - 120 minutes) (GO enrichment p-value < 0.01) (see Supplemental Tables 3, 4, 

12 and 13). GO analysis of the causal shoot-genes reflect the synthesis of shoot-derived signals, 

such as peptides and hormones, while the identified target root-genes are involved in phosphorus 

metabolic processes (0 - 15 minutes), lateral root development (15 - 45 minutes), and response to 

cytokinin (45 - 120 minutes) (see Supplemental Tables 5-10). This analysis reflects much of the 

current knowledge about long distance nitrogen signaling between roots and shoots (Ruffel et al., 

2011; Ko and Helariutta, 2017; Poitout et al., 2018). 

 

 

Figure 1: Selected enriched GO terms for root causal, shoot causal, root target and shoot target 

genes. 
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Model predictions are supported by in planta observations 

A gene network was constructed where nodes (1,322 nodes) represent genes and edges (3,078 

edges) constitute the model-predicted interactions described above (see Appendix A: 

Supplemental, Supplemental Methods). Network analysis revealed that the gene interaction 

network with model-defined edges closely follows a power law distribution (R2 = 0.92), indicative 

of a scale-free biological network (Barabási, 2003; Albert, 2005). The validity of this finding was 

supported by a simulation of 103 randomly generated networks using the same number of nodes 

and edges whose R2 values for the power law distribution were all between 0 and 0.35 (see Fig. 2). 

Network analysis for out-degree identified causal hub genes that are predicted to be highly 

influential in the temporal root-shoot transcriptomes in response to nitrogen treatment. Taking into 

consideration directionality, the top ten hubbiest genes in the network, based on out-degree, 

include three transcription factors previously implicated in the Arabidopsis nitrogen response: 

AFB3 (AT1G12820) (Vidal et al., 2013b, 2014; Xu and Cai, 2019), BT1 (AT5G63160) (Vidal et 

al., 2013a; Araus et al., 2016; Sato et al., 2017), and WRKY38 (AT5G22570) (Scheible et al., 

2004; Gaudinier et al., 2018) (see Supplemental Table 14). Other network hubs include the TF 

RD21A (AT1G47128) that is involved in autophagy and senescence which are key nitrogen 

turnover processes; and the RNA binding protein CID10 (AT3G49390), which is a poly(A) 

binding protein (PABP) potentially involved in mRNA stability or degradation (see Supplemental 

File 1). Further investigation of the interaction network revealed a number of previously identified 

genes and gene-gene relationships involved in local and long-distance nitrogen signaling, namely 

those involved in transcriptional regulation and in long-distance signaling by hormones and 

peptides, which are described in detail in the following sections. 
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Figure 2: A: Node degree distribution for the network generated from model predictions (R2 = 

0.92). B: Node degree distribution for a randomly generated network (R2 = 0.18). C: Histogram of 

the R2 values for the node degree distribution of 1,000 randomly generated networks (0 ≤ R2 < 

0.35). 

 

Regulators of nitrogen processes 

The transcription factors TGA1 and TGA4 were shown to be involved in mediating the primary 

nitrate response in roots by regulating the expression of the nitrate transporters NRT1.1 and 

NRT2.2, and also by coordinating the root developmental response to nitrate (Alvarez et al., 2014). 

From our analysis, root-expressed TGA1 is predicted to influence the expression of ten shoot 

genes, while shoot-expressed TGA1 is predicted to influence the expression of four root genes (see 

Table 1). To further investigate these predicted relationships, promoter analysis using FIMO from 

MEME Suite (Bailey and Machanick, 2012) was performed (as outlined in Appendix A: 

Supplemental, Supplemental Methods). At least one TGA1 binding motif had a significant 
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occurrence (FIMO p-value < 0.0001) in the putative promoters of two of the targeted shoot genes: 

a protease-associated RING/U-Box zinc finger family protein (AT1G71980) and HSFB2A heat 

shock transcription factor B2A (AT5G62020). The TGA1 motif also had a significant occurrence 

(FIMO p-value < 0.0001) in the three root target genes: a phosphoglycerate mutase-like family 

protein (AT3G01310), BAP1 BON association protein 1 (AT3G61190) and a copper amine 

oxidase family protein (AT4G12290). DAP-seq (DNA Affinity Purification and sequencing) is an 

experimental technique allowing for the discovery of transcription factor binding sites on genomic 

DNA in vitro. A recent DAP-seq experiment showed that TGA1 actively binds to three shoot 

genes, AT1G71980, CIPK1 (AT3G17510) and an unknown protein (AT4G21215), as well as the 

three root target genes from the promoter analysis (O’Malley et al., 2016) (see Tab. 1). 

Furthermore, the model-predicted targets of TGA1, Phosphoglycerate mutase-like family protein 

(AT3G01310), and alpha/beta-Hydrolases superfamily protein (AT5G18640) were predicted to be 

direct targets of TGA1 in a TARGET (Transient Assay Reporting Genome-wide Effects of 

Transcription factors) assay experiment in root protoplasts by Brooks et al. (2019). A TARGET 

assay can identify candidate transcription factor targets based on TF-induced changes in gene 

expression (Brooks et al., 2019). These in-planta results provide support for the predicted 

interactions between TGA1 and its target genes within the same tissue, but additional studies will 

be needed to test if these interactions occur directly or indirectly between tissues. 

 

Long-distance signaling by hormones and peptides 

Cytokinin Response Factors (CRFs): Transcription factors (TF) with previously described 

regulatory roles in nitrogen uptake and assimilation include members of the ERF, bZIP, and NLP  
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 GENE ID GENE DESCRIPTION INFLUENCE FIMO DAP 

SEQ 

TARGET 

SHOOT AT1G55890 Tetratricopeptide repeat (TPR)-like 

superfamily protein 

Positive    

 AT1G71980 Protease-associated (PA) RING/U-box 

zinc finger family protein 

Negative Y Y  

 AT1G73100 SDG19, SUVH3, SU(VAR)3-9 

homolog 3 

Positive    

 AT2G15230 ATLIP1, LIP1, lipase 1 Negative    

 AT3G06780 glycine-rich protein Positive    

 AT3G17510 CIPK1, SnRK3.16, CBL-interacting 

protein kinase 1 

Negative  Y  

 AT4G21215 unknown protein Negative  Y  

 AT5G04840 bZIP protein Negative    

 AT5G18640 alpha/beta-Hydrolases superfamily 

protein 

Negative   Y 

 AT5G62020 AT-HSFB2A, HSFB2A, heat shock 

transcription factor B2A 

Negative Y   

ROOT AT3G01310 Phosphoglycerate mutase-like family 

protein 

Negative Y Y Y 

 AT3G61190 BAP1, BON association protein 1 Negative Y Y  

 AT4G12290 Copper amine oxidase family protein Positive Y Y  

 AT5G28770 AtbZIP63, BZO2H3, bZIP 

transcription factor family protein 

Negative    

 Table 1: TGA1 target genes in root and shoot with which genes have a TGA1 motif 

occurrence of p < 0.0001 from the FIMO promoter analysis, and genes to which TGA1 has been 

shown to physically bind based on DAP-seq and TARGET experiments. “Y” indicates existing 

evidence for a predicted interaction from a specific experiment, whereas empty cells indicate 

possible avenues of future investigation. 

 

TF families (Konishi and Yanagisawa, 2013; Krapp et al., 2014; Vidal et al., 2015; Varala et al., 

2018; Brooks et al., 2019). Of particular interest are the ERF TFs CRF 1-5. These CRFs were 

previously implicated in nitrogen signaling, targeting genes involved in nitrogen uptake and 

assimilation (Varala et al., 2018; Brooks et al., 2019). In our analysis, CRF5 expressed in the shoot 

was predicted to positively influence the expression of a heavy metal transport/detoxification 
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protein (AT5G03380) expressed in the root. Using Elefinder (Hudson, 2005), CRF5 has been 

shown to bind to the GCC-box motif (GCCGCC) (Fujimoto et al., 2000; Sakuma et al., 2002; 

Liang et al., 2010) which is over-represented in the 2kb promoter region of AT5G03380 (E-value 

= 5.85 · 10−4, see Appendix A: Supplemental, Supplemental Methods), indicating potential for a 

physical protein-DNA binding interaction. Shoot-expressed CRF3 is a predicted target of the 

causal root-expressed gene AT4G34419 (an unknown protein) in which AT4G34419 positively 

influences the expression of CRF3. Root-expressed CRF4 is predicted to influence the expression 

of the shoot genes SAUR-like auxin responsive protein family (AT4G34750), and Late 

embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family (AT3G44380). CRF4 is 

predicted to positively influence both of these genes during the early time interval. Like CRF5, 

CRF4 binds to the GCC-box motif, and this motif is overrepresented in the 2kb upstream region 

of AT4G34750 (E-value = 1.43 · 10−2, see Appendix A: Supplemental, Supplemental Methods). 

Root CRF4 is also predicted to negatively influence the shoot gene Homeobox Protein 6 (HB6, 

AT2G22430) during the middle time interval. CRF4 was shown to bind to HB6 via DAP-Seq 

(O’Malley et al., 2016). HB6 is a known negative regulator of the abscisic acid (ABA) signaling 

pathway (Himmelbach et al., 2003; Fujita et al., 2011). The ABA pathway is a phytohormone 

signaling pathway that was previously implicated in coordinating the long-distance nitrogen 

response (Kiba et al., 2011; Guan, 2017). A recent study by Varala et al. (2018) showed that CRF4 

targets the TFs SNZ1 and CDF1, which in turn target HB6. The overexpression of CRF4 decreased 

the rate of nitrate uptake and altered root architecture in response to nitrogen treatment compared 

to WT plants (Varala et al., 2018). In CRF4 overexpressors, there was a decrease in primary root 

length and lateral root number under low nitrate conditions. Lateral root development has been 
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shown to be inhibited under low nitrate conditions, which trigger ABA accumulation (Signora et 

al., 2001; Vidal et al., 2010; Léran et al., 2015; Sun et al., 2017). Thus, the results of our analysis 

suggest a coherent type 4 feed-forward loop (Mangan and Alon, 2003) in which root CRF4 

represses shoot HB6 which represses whole plant ABA signaling (see Fig. 3), and may have 

physiological consequences for the observed changes in lateral root formation (Varala et al., 2018). 

 

 

 

Figure 3: CRF4 interaction pathway, with flat-head arrows indicating negative interactions, 

pointed-head arrows indicating positive interactions, dashed arrows representing predicted 

interactions from the model, and solid arrows representing known interactions. 

 

Arabidopsis Response Regulators (ARRs): The cytokinin signaling pathway is triggered by 

nitrogen and has been shown to be involved in the coordination of both root-to-shoot and shoot-

to-root nitrogen-responses. In the shoots, cytokinins stimulate cell division and differentiation, 

whereas in the roots cytokinins reduce the activity of nitrogen uptake (Sakakibara et al., 2006). 

Cytokinins have also been shown to induce the expression of ARRs, which then regulate cytokinin 
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signaling through feedback (To et al., 2007, 2004). For example, ARR4 (AT1G10470) is a Type-

A response regulator that negatively regulates the cytokinin response (To et al., 2007). In our study, 

root ARR4 is predicted to influence the expression of three shoot genes (see Supplemental Table 

1), including a transmembrane amino acid transporter family protein (ATAVT1B; AT3G54830). 

During the middle time interval, root expressed ARR4 is predicted to negatively influence the 

expression of AVT1 in shoots. Yeast AVT1 homologues have been implicated in the vacuolar 

uptake of large neutral amino acids including glutamine, asparagine, isoleucine, and tyrosine 

(Russnak et al., 2001; Tone et al., 2015) where they are stored in the vacuole under high nitrogen 

conditions (Sekito et al., 2008). When nitrogen starvation occurs, several AVT genes are 

upregulated to facilitate the export of the stored amino acids from the vacuole to the cytoplasm for 

protein synthesis (Fujiki et al., 2017). The analysis detected a relationship between ARR4 and 

AVT1B suggesting a potential mechanism by which cytokinin-induced ARR4 in the root may 

provide a long-distance signal to regulate shoot vacuolar amino acid import under high nitrogen 

conditions, like those used in this study. 

 

Peptides: Signal peptides have been implicated in the whole plant response to nitrogen (Tabata et 

al., 2014; Ohkubo et al., 2017; Oh et al., 2018). In the present study, seven peptides were uncovered 

as causal genes involved in 20 interactions (see Supplemental Table 16). ATPSK4 is a 

Phytosulfokine 3 precursor and was shown to influence plant growth and cellular longevity, in 

particular root growth (Matsubayashi et al., 2006). CLE (Clavata3/ESR-related) peptides have 

long been known to be involved in long distance nitrogen-signaling in legumes and have also been 

shown to be involved in nitrogen-signaling in Arabidopsis (Bidadi et al., 2014; Okamoto et al., 
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2016). In the present study, three CLE peptides are present in the predicted long-distance signaling 

network; CLE3 (AT1G06225), CLE4 (AT2G31081), and CLE27 (AT3G25905). CLE3 is a 

predicted causal gene expressed in the shoot that influences the root-expressed gene AT5G52530 

(dentin sialophosphoprotein-protein related), while CLE4 is a causal root-gene predicted to 

influence the expression of four shoot-expressed genes either negatively (AT5G67510 Translation 

protein SH3-like family protein; AT1G55890 Tetratricopeptide repeat (TPR)-like superfamily 

protein) or positively (AT3G61620 RRP41, 3’-5’-exoribonuclease family protein; AT5G18640 

alpha/beta-Hydrolases superfamily protein). Lastly, CLE27 is a Clavata family gene that was 

previously shown to be repressed by auxin (Wang et al., 2016). In our study, CLE27 is a shoot 

expressed causal gene predicted to positively influence the expression of AT5G03380 (Heavy 

metal transport/detoxification superfamily protein) in the root. Devil/Rotundifolia Like (DVL) 

peptides are non-secretory peptides, conserved in plants, that can act as small signaling molecules 

and influence development in Arabidopsis (Wen et al., 2004). MTDVL1 was previously shown to 

be involved in symbiosis in Medicago truncatula, in which it has a negative regulatory role in 

nodulation (Combier et al., 2008). Two Devil peptides were identified in our analysis: DVL4 and 

DVL11. Of the four interactions involving DVL11, root DVL11 is predicted to be the causal gene 

influencing three shoot genes. Of these, DVL11 is predicted to positively influence the expression 

of ICK1, a cyclin-dependent kinase inhibitor family protein (AT2G23430). ICK1 is a known key 

regulator in development, and can inhibit entry into mitosis (Weinl et al., 2005). Root DVL4 is 

also predicted by the analysis to influence three shoot genes. Specifically, root DVL4 is predicted 

to positively influence shoot TCP-1/cpn60 chaperonin family protein (AT3G13470) at a middle 

time point. A previous study explored the transcriptional landscape of a DVL4 overexpressor line 
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and showed that overexpression of DVL4 resulted in the upregulation of a number of genes 

encoding transcription factors (Larue et al., 2010). Our re-analysis of the microarray data from this 

study (see Appendix A: Supplemental, Supplemental Methods) revealed that TCP1 was 

downregulated in DVL4 overexpressor plants compared to wild type Arabidopsis plants, providing 

support for a gene-gene interaction between DVL4 and TCP1 (see Fig. 4); however, this needs 

further exploration in the context of a nitrogen-signal. 

 

 

Figure 4: Bar chart of the normalized gene expression obtained from GSE8975 via GEO2R for 

TCP-1 in DVL4 overexpressor (OX) and wild-type (WT) Arabidopsis plants (t-test: p-value < 

0.05). 

 

Model predictions contain an over-representation of mobile causal gene products 

The proposed approach, as stated previously, aims at understanding if the expression of one gene 

influences the expression of its target gene through the notion of Granger-Causality. Biologically, 

this influence may be direct or indirect. It has previously been shown that mobile mRNAs that 
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originate from one cell type or organ can translocate to another cell-type or organ and have 

functional activity there (Lough and Lucas, 2006; Banerjee et al., 2009; Luo et al., 2018). To 

identify potential direct, long-distance interactions, we took advantage of two recent publications 

(Thieme et al., 2015; Guan et al., 2016) with extensive lists of experimentally determined mobile 

mRNAs that travel from root-to-shoot and from shoot-to-root. The lists of directional, causal genes 

from our model were intersected with the mobile transcripts identified by these studies. This 

analysis provided support for 204 causal genes involved in 340 predicted root-to-shoot, and 241 

predicted shoot-to-root relationships; meaning that the direction of influence of the causal gene 

was the same in our analysis as that experimentally determined by these studies. An over-

representation analysis (see Appendix A: Supplemental,  Supplemental Methods) was performed 

with the following hypotheses: “H0: the proposed approach (model) is equivalent to detecting 

known mobile transcripts randomly” and (alternative) “HA: the proposed approach (model) detects 

more known mobile transcripts than random selection”. In this case the p-value is 0 allowing us to 

reject the null hypothesis and hence the model is able to detect mobile transcripts which are 

potentially able to interact directly with their target genes. At least 36 of the total causal genes are 

known RNA-binding proteins (Marondedze et al., 2016), and 21 of these are mobile (see 

Supplemental Table 17). In general, RNA-binding proteins can form ribonucleoprotein complexes 

(RNPs) that facilitate phloem transport and long-distance trafficking of RNA molecules (Ham et 

al., 2009; Kehr and Kragler, 2018). An additional 79 causal genes involved in 203 relationships 

(121 root-to-shoot and 82 shoot-to-root) have not been experimentally shown to be mobile but are 

predicted to produce an mRNA molecule that possesses a t-RNA like motif. Guan et al. (2016) 

also hypothesized that some mRNA have a tRNA-like structure in their sequence. This allows the 
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mRNA to fold into a tRNA-like shape that confers some stability to the mRNA strand. This 

stability allows the mRNA to move long distances in the plant. These results suggest that a large 

proportion of the model-predicted causal genes have the potential to influence the expression of 

its target gene (directly or indirectly) via long-distance vascular trafficking. One example of a 

model-predicted gene interaction that may function through interaction of a mobile causal gene 

with its target is the relationship between root derived aconitase 2 (ACO2), predicted to have a 

negative influence on the expression of malate dehydrogenase (MDH2) in the shoot. ACO2 is the 

only isoform of aconitase that is specifically induced by nitrogen treatment. Root ACO2 is 

involved in the TCA cycle, while shoot MDH2 is localized in the mitochondria and involved in 

gluconeogenesis. One possibility is that a direct or downstream gene product of root ACO2 

represses shoot MDH2, resulting in possible down-regulation of shoot gluconeogenesis in 

response to a large, transient nitrogen signal. Although the specific mechanism of this relationship 

needs experimental exploration, it is partially supported by existing data describing the tight 

relationship between carbon and nitrogen metabolism to maintain whole plant C:N balance 

(Palenchar et al., 2004; Zheng, 2009; Goel et al., 2016). Alternatively, aconitase, an iron-sulphur 

protein, has been shown to be a bifunctional enzyme/RNA-binding protein that binds to iron-

responsive elements in target RNA to stabilize the transcript and function in iron homeostasis 

(Hentze and Argos, 1991). Our analysis predicted a positive relationship between ACO2 (causal 

root) and Ironman 1 (target shoot), an Fe-uptake inducing peptide 3 that is involved in the 

regulation of iron deficiency response genes (Grillet et al., 2018). It was previously shown that 

nitrogen treatment induces the expression of genes involved in iron uptake, transport, and 

homeostasis in plants (Wang et al., 2000, 2003), and that the form of nitrogen taken up by roots 
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influences the amount of iron accumulation in leaves (Zou et al., 2001). There is also a well-

established relationship between nitrogen and Fe pathways since Fe is a component of many 

enzymes involved in nitrate assimilation (Wang et al., 2003). 

 

CONCLUSIONS 

This work puts forward an approach to perform Granger-Causal analysis for (small-sample) 

irregularly spaced bivariate signals which overcomes existing limitations in the analysis of 

biological time series data following this common sampling scheme. Based on this new 

framework, (Granger) causal relationships were detected and whole-organism molecular response 

to a nitrogen signal were predicted. The survey of genes with predicted temporal cause-and effect 

relationships enabled discovery of coordinated biological processes and chemical pathways that 

communicate the nitrogen-signal between roots and shoots of plants. These coordinated processes 

can now be further investigated to identify potential regulatory bottlenecks that influence whole 

plant nitrogen uptake/utilization efficiency. The abundance of genes involved in the known 

transcriptional nitrogen-response (nitrogen-transport and assimilation) as both causal and target 

genes indicate that the proposed approach was able to capture whole-plant response to a transient 

nitrogen-treatment across tissues. The predicted cross-organ dependencies provide insights and 

hypotheses about potential signaling cascades that are triggered sequentially as the nitrogen-signal 

propagates from roots-to-shoots-to-roots. Importantly, regulatory factors that have not previously 

been implicated in whole plant nitrogen-response were highlighted by the proposed approach. 

These novel factors can be targets for engineering improvements in plant nitrogen 

uptake/utilization efficiency. The findings from this research will have implications for predicting 



38 

 

causal molecular relationships that influence intercellular, long-distance nitrogen-signaling, and 

the methodological framework proposed in this work is applicable to researchers struggling with 

meaningful integration of dynamic, system-wide transcriptome data.  
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CHAPTER 3: EXPERIMENTAL VALIDATION OF SELECTED INTERACTIONS AND 

FUTURE DIRECTIONS 

 

ABSTRACT 

The time series model predicted 3,078 N-responsive gene-gene interactions. These interactions 

were globally analyzed using a bioinformatics pipeline to identify causal N-responsive genes for 

further analysis. Grafting and physiological measurements were used to validate selected gene-

gene interactions. CRF4 knockout (KO) seedlings were grafted to Col-0 seedlings. Grafting had 

low success rate, with surviving grafts producing adventitious roots from the scion, above the graft 

junction. Physiological observations of 5-week-old CRF4 KO, CRF4 overexpressor (OX) and Col-

0 plants showed that CRF4 OX plants had the largest rosette, while the leaves on CRF4 KO plants 

had curled edges indicating water loss. Gas exchange measurements at 8 weeks showed that while 

there was a 1.4 and 1.9-fold increase of CRF4 KO and CRF4 OX stomatal conductance to Col-0 

stomatal conductance, an ANOVA analysis revealed that this change was not significant. Future 

directions are discussed with respect to using the time series model to integrate shoot metabolite 

data with root and shoot transcriptomic data to identify possible gene-metabolite interactions 

involved in the N response.  

 

INTRODUCTION 

The predicted interactions from the time-series model were attributed as biologically meaningful 

by applying statistical constraints, resulting in 3,078 predicted gene-gene interactions. However, 

further in-silico and in-planta validations can not only increase the confidence in the model 
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predictions but also provide the experimental data to improve the model. One of the major 

challenges, however, is to individually test these thousands of predictions. In Chapter 2, a 

bioinformatic approach was used to validate predictions supported by existing literature, for genes 

that produce known mobile gene products (Guan et al., 2017), transcription factor-target 

interactions (Brooks et al., 2019), and genes involved in known signaling pathways (Varala et al., 

2018, Brooks et al., 2019). This analysis identified promising gene-gene predictions that are ideal 

candidates for experimental validation using different methods including, grafting and 

physiological measurements of mutant plants.  

Cytokinin response factor 4 (CRF4), as described in Chapter 1, has been implicated as a 

key transcription factor hub by various studies to be involved in N uptake and assimilation (Varala 

et al., 2018, Brooks et al., 2019). Varala et al. (2018) have also shown that CRF4 regulates genes 

that alter biomass, root development and nitrate uptake under low N conditions. From the model 

predictions, root CRF4 was predicted to negatively influence shoot Homeobox Protein 6 (HB6) at 

a middle time point. Furthermore, DAP-seq experiments have shown that CRF4 binds to HB6 

(O’Malley et al., 2016). HB6 is a known regulator of the abscisic acid (ABA) hormone signaling 

pathway where it represses ABA production (Himmelbach et al, 2003). The repression of ABA by 

HB6 has been shown to result in repression of stomatal closure in the leaves (Lechner et al., 2011). 

Therefore, CRF4 should positively regulate stomatal closure. Repression or absence of CRF4 gene 

expression should result in reduced stomatal closure through its relationship with HB6 as 

illustrated in Figure 3, Chapter 2. 

In this chapter, I will report my preliminary attempts at experimentally validating model-

predicted relationships using mutant plant lines for CRF4, and I will discuss future directions that 
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integrate metabolomic and transcriptomic data into the model to predict new gene-metabolite 

interactions in the long-distance N signaling pathways.  

 

METHODS 

Plant Material and Preparation 

Arabidopsis thaliana seed stocks for a CRF4 overexpressor (OX) and CRF4 knockout (KO) line, 

both in Col-0 background, were donated by Aaron Rashotte from Auburn University. Seeds were 

surface sterilized using a sterilization mix of 4mL of 100% ethanol, 1mL of bleach and 3mL of 

water. To each 1.5mL Eppendorf tube containing seeds for the experiments, 1mL of this solution 

was added and the tubes were mixed by inversion before incubation for 8 minutes. The solution 

was discarded, and the seeds were washed three times with 70% ethanol. The seeds were air-dried 

in a laminar flow hood for 30 minutes. The seeds were stratified in 1mL of sterile water, tube 

wrapped in foil and stored at 4C for two days before sowing on plates. 

 

Grafting 

Sterilized A. thaliana seeds were grown on 50mL of a half-strength Murashige and Skoog (1/2 

MS) modified basal-salt mixture (Phytotech Labs M524) containing 0.5% w/v sucrose and 2% w/v 

agar. The seedlings were grown for 6 days under short-day conditions (8hrs light, 16hrs dark, 

22C) and the plates were oriented at an angle of about 5-10 degrees. The seedlings were then 

grafted following the methods described previously by Marsch-Martinez (2013). Briefly, cutting 

plates containing approximately 5mL of the MS media, described above, were used with 1% agar 

added. A thin strip was cut out to provide a solid surface for cutting, while the agar was used to 
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support the roots of the seedlings. The cotyledons were first cut from the seedlings, followed by a 

horizontal cut across the hypocotyl. The stock (root) was then moved to a new plate with MS agar, 

followed by the corresponding scion (shoot) to be attached. The scion and the stock were joined 

using tweezers and the end of a plastic dropper. The grafted seedlings were then grown for 10 days 

under short day conditions with the plates angled at 5-10 degrees. On the tenth day, any 

adventitious roots that formed were cut.  

 

CRF4 Stomatal Conductance 

CRF4 OX, CRF4 KO and Col-0 seeds were sown onto soil. Plants were grown under short-day 

conditions (8hrs light, 16hrs dark, 22C). Plants were watered as needed, with every other watering 

with ½ MS solution containing 1% w/v sucrose. Due to a temperature issue with the original 

growth room, the plants were then moved to a new growth chamber after 2 weeks. The plants were 

grown for an additional 6 weeks. Stomatal conductance measurements were taken over two days 

using a portable infrared gas analyzer (LI-6400; Licor Biosciences, Inc., Lincoln, NE, 

http://www.licor.com) by setting the chamber to reflect ambient temperature, relative humidity set 

to 65% and light intensity at 400umolm-2s-1. The tenth leaf on each plant, with three plants from 

each genotype, was measured. After the measurements on the first day, the plants were watered, 

and measurements were repeated on the eleventh leaf the next day. The measurements were 

statistically analyzed in R using ANOVA. 

 

Metabolite Extraction 
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Shoot samples were obtained from the time series experiment performed by Varala et al. (2019) 

as described in Chapter 2. Metabolites were extracted based on the method previously outlined by 

Lisec et al. (2006). Approximately 100mg of frozen tissue was added to screw cap tubes containing 

stainless steel beads. The tissue was homogenized at 4ms-1 in 30 second intervals until the tissue 

was a fine powder. Between intervals, samples were returned to liquid nitrogen to prevent thawing. 

1400L of 100% methanol pre-cooled at -20C was added to each sample followed 10L of 0.2mg 

mL-1 Ribitol was added as the internal standard. The samples were vortexed for 10seconds and 

then shaken for 10min at 70C at 950rpm. Afterwards, the samples were centrifuged for 10min at 

11,000g and the supernatant was transferred to a Schott glass vial. 750L of -20C chloroform and 

1500L of 4C dH2O was added to the samples and tubes vortexed for 10 seconds. The samples 

were centrifuged for 15min at 2,200g. The entire upper phase was transferred into fresh 1.5mL 

tubes and dried in a vacuum concentrator before being stored at -80C. 

 

RESULTS 

Grafting 

Grafting CRF4 mutant seedlings to Col-0 seedlings provided limited success. In one instance of 

grafting 20 CRF4 KO seedlings to 20 Col-0 seedlings, only 60% (12 samples) had joined at the 

graft junction with all grafted seedlings producing adventitious roots (Figure 5). Attempting to 

remove these adventitious roots proved to be a difficult challenge as the adventitious roots 

sometimes wrapped over and around the hypocotyl. Often adjusting the grafted plant to get a better 

angle to cut the adventitious root resulted in breaking the graft junction. If the junction survived, 

the junction broke from trying to cut off the adventitious roots. Furthermore, adventitious roots 
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often reappeared at a later date in greater numbers (Figure 6). In other events, as the first leaves 

emerged the scion separated from the stock. 

 

 

Figure 5: Image of a Col-0 scion:CRF4 KO stock 10 days after grafting. Yellow arrow points to 

the graft junction, while the blue arrows point to the adventitious root that formed from the scion 

after grafting.  

 

 

Figure 6: Image of a Col-0 scion:CRF4 KO stock 17 days after grafting (7 days after cutting first 

set of adventitious roots). Yellow arrow points to the graft junction, while blue arrows point to the 

adventitious roots. 
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CRF4 Physiological Observations and Stomatal Conductance 

 CRF4 overexpressor showed the largest rosette after 5 weeks, while Col-0 plants had long 

petioles. CRF4 knockout plants had smaller rosettes and the leaves were curled (Figure 7). Gas 

exchange measurements were conducted on 8-week-old plants over two days. On the first day 

before watering, CRF4 KO and CRF4 OX stomatal conductance had a 1.4 and 1.9-fold change 

compared to Col-0 wild-type control. However, an ANOVA analysis showed that there was no 

significant difference between the day of measurements (p-value = 0.460), genotypes (p-value = 

0.140) or from an interaction of the two (p-value= 0.631) (Figure 8). 

 

 

Figure 7: Image showing CRF4 OX (left), CRF4 KO (middle) and Col-0 (right) plants at 5 weeks 

old. The CRF4 OX plant has the largest rosette while Col-0 has the smallest leaves but longest 

petioles. The CRF4 KO leaves are curling at the edges indicating water loss. 
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Figure 8: Graph showing average stomatal conductance (mmol m⁻² s⁻¹) of CRF4 KO (KO), CRF4 

OX (OX) and Col-0 plants before (19-Nov) and after (20-Nov) watering. While there was a 1.4- 

and 1.9-fold change in stomatal conductance in CRF4 KO and CRF4OX plants compared to Col-

0, there was no significant change between values from an ANOVA analysis. 

 

DISCUSSION AND FUTURE DIRECTIONS 

Grafting is considered an excellent tool to investigate long-distance signaling in plants (Marsch-

Martinez et al., 2013). However, grafting presents its own sets of challenges. With the current 

success rate, the best approach is to graft as many seedlings as possible, with the limitation of both 

the difficulty and time needed to graft seedlings together. Furthermore, with the challenges of the 

growth of adventitious roots post-graft, separation of scion and stock from the growth of the leaves, 

and simply graft junctions not joining, the chance of obtaining successful grafts was low. The 

methods used for grafting (seedling age, sugar concentration) represented the scenarios described 

by Marsch-Martinez (2013) that resulted in the highest success rates. Considering that genotype 
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may play a role in the ideal conditions for a successful graft, further experiments with grafting 

should consider using seedlings at a different developmental age and/or using different sucrose 

concentrations.  

 It was predicted that CRF4 OX plants would have higher stomatal closure, while CRF4 

KO plants would have less stomatal closure compared to wild type plants. This was represented in 

the observed phenotype for the CRF4 KO plants. The leaves in the CRF4 KO plants were curled, 

compared to the leaves of the CRF4 OX and the Col-0 plants. This phenotype is consistent with 

another study that used ABA1 (AT5G67030, ABA Deficient 1) knock-out mutants to show that 

loss of ABA results in altered leaf morphology such as leaf curling (Barrero et al., 2005). Given 

that the degree of stomatal closure is tied to amount water loss in plants, the LICOR experiment 

was set up over a period of two days to obtain results before and after watering. However, there 

was no significant difference in stomatal conductance among the genotypes. There also was no 

significant change in stomatal conductance across the two days. Furthermore, there was a 

temperature issue in the growth chamber in the first 3 weeks. Temperatures approached 30C 

which is detrimental for the seedlings’ early growth and development. The seedlings were moved 

to new chambers with temperatures set to 22C. Unfortunately, two thirds of the seedlings did not 

survive while the remaining plants were used for the initial analysis. Regardless, these results from 

the preliminary analysis open up a number of variables which can be looked at for the future 

experiments. The stomatal behavior is altered in response to temperature and the early 

developmental stages of these plants underwent heat stress, which could impact the stomatal 

density which in turn would affect the conductance (Samakovli at al., 2020). 
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Several recent attempts have been made to correlate metabolite levels with gene 

expression. Although there has been some success in yeast and bacterial systems (Krömer et al., 

2004; Nacher et al., 2006; Seggewiß et al., 2006), it has been more difficult to prove a meaningful 

connection between transcript and metabolites in higher organisms (Baxter et al., 2007; Hirai et 

al., 2004; Howell et al., 2009; Lehmann et al., 2009; Osuna et al., 2007; Sweetlove and Fernie, 

2005). The lack of strong, universal correlation between metabolite and transcript levels may be 

due to a lag between the inception of transcription and the accumulation of the metabolic product 

(Scheible et al., 2004) that has not been accurately captured by the sampling techniques and time 

courses utilized in these studies.  

Amino acids are known to be major components of xylem and phloem sap. In 1989, Cooper 

and Clarkson said that the cycling of amino acids between the root and shoot via the vascular 

system integrate the N status of the whole plant (Cooper et al., 1989). Other studies have shown 

that under exogenous application of amino acids to the roots of soybean and Arabidopsis, nitrate 

uptake and NRT2.1 expression is repressed (Zhuo et al., 1999, Muller et al., 1992, Nazoa et al., 

2003).  

N metabolites have been shown to regulate the expression of genes involved in N uptake, 

acting as a feedback mechanism. It takes time for N metabolites to be produced in response to N 

and to accumulate. However, existing pools of metabolite in the cell also define the rate and 

amount of alteration required for the metabolite pools in response to a stimulus or perturbation 

(Stitt et al., 2010). When amino acids accumulate, they can act as long-distance signals 

communicating the N status of the plant (Liu et al., 2009, Nunes-Nesi et al., 2010). In the case of 

root HY5, sucrose can also act as a long-distance signal in tandem with the shoot HY5 protein 
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(Chen et al., 2016). However, despite this evidence for the regulation of N uptake by downstream 

metabolites, the underlying mechanisms of how metabolites regulate N uptake and N transporter 

gene expression is poorly understood (Nacry et al., 2013). Furthermore, there is conflicting 

evidence over whether or not phloem metabolites, such as amino acids, even regulate N uptake as 

it was shown previously that between N treatments, phloem amino acid levels do not change, and 

are not related to the regulation of N uptake (Tillard et al., 1998). 

One of the major advantages of using the existing time-series transcriptome data is that it 

will establish a temporal dependency between metabolite levels and gene expression levels. This 

functional dependency can be very easily masked when comparing static metabolite levels with 

static transcriptome data, as it fails to capture this time delay response of the adjustment in the 

metabolite levels (Stitt et al., 2010). To overcome this challenge, the new model would then be 

used to integrate the time series metabolite data with the existing transcriptome data in Chapter 2.   

The shoot time series metabolite data would be obtained from the extracted metabolite 

samples using GC-MS and/or LC-MS analysis. Just like the transcriptome data in Chapter 2, the 

shoot time series metabolite data would then be detrended before being integrated into the model. 

The predicted causal relationships for shoot gene-shoot metabolite and root gene-shoot metabolite 

interactions would then be globally analyzed using a bioinformatic pipeline similar to that in 

Chapter 2, and eventually experimentally validated using grafting and/or other methods.  

 

CONCLUSION 

While the results from the preliminary grafting and stomatal conductance experiments fall short 

of validating the CRF4 predicted interactions, they do provide a path forward for validating 
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predicted gene-gene interactions from Chapter 2. With the integration of metabolomic and 

transcriptomic data in the time series model, new gene-metabolite interactions can be identified. 

Together, the resulting predictions and validations can provide avenues forward for further 

research in N signaling and NUE, hopefully allowing us to break past the current limitations in 

genetic engineering so as to improve crop yields. 
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APPENDIX A: SUPPLEMENTAL 

 

MODEL CONDITIONS 

Knowing that the parameters of interest θ are included in the terms μ̃𝑖  and Σ𝑖, a series of conditions 

and assumptions need to be considered to estimate these parameters in a statistically sound 

manner. Aside from the assumption of normality mentioned above, the other assumptions are as 

follows: 

(A1) The functions 𝑓𝑗(⋅), ℎ𝑗(⋅) and 𝑔𝑗(⋅) have known structures for j = 1,2. 

(A2) The mapping θ → 𝐹θ is injective. 

(A3) The process (𝑡𝑖 , 𝑍𝑖) is such that: 

(i) E[𝒁𝒊𝒋
] = 0, ∀i ∈ N+. 

(ii) cov(𝒁𝒊𝒋
, 𝒁𝒊𝒌

) = Σ(|𝑡𝑖  − 𝑡𝑘 |), where Σ(|𝑡𝑖  − 𝑡𝑘 |) is a nonsingular covariance matrix for all 

i,j ∈ N+. 

(A4) The functions fj(·) and hj(·), j = 1,2, jointly denoted as mj(·), are twice continuously 

differentiable and such that: 

(i) 𝑚𝑗(0) = 1 and lim
𝛿→∞

𝑚𝑗(𝛿)  =  0 

(ii) 0 ≤ |𝑚𝑗(δ)| ≤ 1, ∀ δ ∈ R+. 

(A5) The functions gj(·), j = 1,2, are twice continuously differentiable and such that: 

(i) 𝑔𝑗(0) = 0 and  lim
𝛿→∞

𝑔𝑗(𝛿) = σj
2, where 0 < σj2 < ∞. 

(ii) gj (δ) < gj (δ + h), ∀  δ, h ∈ R+ 
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The above assumptions, along with other standard regularity conditions, are necessary in order 

to correctly estimate the model parameters and to test whether these parameters are significant. 

 

SUPPLEMENTAL METHODS 

Plant growth conditions and sampling 

The time-evolved transcriptome of Arabidopsis roots and shoots was obtained as described in 

detail by Varala et al. (2018). Briefly, Arabidopsis thaliana (Col-0) seeds were grown 

hydroponically on 1 mM 𝐾𝑁𝑂3
− or two weeks and then transiently treated with nitrogen (N) (20 

mM 𝐾𝑁𝑂3
− plus 20 mM NH4NO3) or control (20 mM KCl) for two hours. Samples were 

harvested at times 0, 5, 10, 15, 20, 30, 45, 60, 90, and 120 minutes, in which three replicates of 

roots and shoots were separated at harvest and immediately frozen in liquid nitrogen (see Fig.9). 

 

 

Figure 9: Tissue sampling scheme. 

 

Transcriptome analysis 

As described in Varala et al. (2018), total RNA was extracted from approximately 100 mg of 

tissue using the Qiagen RNeasy Kit. RNA was then processed for paired-end Illumina Sequencing 

using standard protocols (Zhong et al., 2011). The upper quartile normalization method from the 

EDASeq package in R was used to normalize the gene expression counts for both shoots and 
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roots. The set of Differentially Expressed Genes (DEGs) (in response to N-treatment vs control 

over time) was derived using the spline fitting model in the limma package in R. The shoot gene 

set was determined at an FDR adjusted p-value < 10−5, resulting in 2173 shoot DEGs, while the 

root gene set was determined at an FDR adjusted p-value < 10−4, resulting in 568 root DEGs (see 

Varala et al., 2018). 

 

Data pre-processing 

The replicates were first combined by taking the average gene expression for each gene at each 

time point. This gave one single time series expression for each gene. Root genes and shoot genes 

were clustered separately using MultiExperiment Viewer (MeV) (Saeed et al., 2003). The gene 

time series were imported and normalized using the “Normalize Genes/Rows” function in MeV. 

This transforms the gene expression values using the mean and standard deviation of each time 

series. The genes were then clustered using the QT clustering algorithm, setting the maximum 

threshold to 0.25, and the minimum cluster population to 5. The list of genes in each cluster was 

then exported. In each cluster, the average gene expression at each time point was subtracted from 

the gene expression value at that time point for each time series. This method resulted in a de-

trending of the root and shoot time series (thereby removing the mean μ𝑖
(𝑥)

). 

 

Bioinformatic validation of the proposed method 

In this section we provide an overview of the validation procedures followed in support of the 

results discussed in Results and Discussion in Chapter 2. Indeed, the proposed method merely 

suggests that a transcript level in one tissue is a result of a transcript in another tissue, but the 
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predicted relationships are not necessarily direct. Functional validation of predicted relationships 

focused on those that are likely caused by a direct, or potentially physical, interaction, such as 

protein:protein; protein:DNA; protein:metabolite, etc. A bioinformatics pipeline was developed 

to provide support for predicted relationships using network analysis, gene ontology, and text-

mining to narrow down a manageable list of candidate genes for experimental testing. 

 

Gene Ontology (GO) Term Analysis 

This analysis was performed using the GO enrichment analysis tool from the Gene Ontology 

Consortium (Ashburner et al., 2000; Consortium, 2019; Mi et al., 2019). This tool returns a p-

value from a Fisher’s exact test in which the null hypothesis is that the biological functions of the 

genes are distributed evenly throughout the subset of genes as compared to the whole genome. A 

significant p-value indicates that the corresponding GO term appears more frequently than 

expected in the gene list compared to the overall genome. In a GO analysis there are many class-

subclass relationships, i.e. the GO term “nitrogen fixation” is a subclass of the “nitrogen cycle 

metabolic process”. A Benjamini-Hochberg False Discovery Rate (FDR) correction is used to 

correct for the multiple testing and a cut-off of 0.05 is suggested by default for significant results 

(Mi et al., 2019). GO terms were filtered using an FDR cut-off of 0.05 except in cases where there 

were too few GO terms (cutoff = 0.1) or no GO terms at the cutoff (no cutoff value). 

 

Network Analysis 

Directed networks were generated where genes are represented as nodes, and the directional 

dependence, as determined by the model, is represented as edges between nodes. Biological 
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networks have been shown to exhibit scale-free behavior such as the distribution in the network 

following a power-law (Albert, 2005). To provide some support towards the hypothesis that the 

proposed model-based network respects this feature, the predicted network was compared to 

random networks to determine how well it followed the power law for scale-free biological 

networks. 103 random networks with the same number of nodes and edges were generated in R 

using the sample gnm function as part of the iGraph package. For each generated random 

network, the R2 was calculated for the degree, in-degree and out-degree. 

 

Promoter Analysis 

The 2KB upstream region was obtained using Elefinder (Hudson, 2005). These regions were then 

used in Elefinder to determine over-represented transcription factor binding motifs. The results 

returned an E-value which is the likelihood of the result being returned by chance based on a 

binomial distribution. To search the 2KB upstream region for the significant occurrence, the 

FIMO tool from the MEME Suite (Bailey and Machanick, 2012) was used. Transcription factor 

binding motifs were first retrieved from the Plant Cistrome and EpiCistrome database (O’Malley 

et al., 2016). Using FIMO, promoter regions obtained from Elefinder were then searched for the 

specific motif using the default settings. 

 

Nitrogen Response 

For purposes of validation, particular attention was given to those genes previously implicated in 

the nitrogen response such as peptides (Araya et al., 2014) and those involved in cytokinin 
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biosynthesis (Takei et al. 2004), carbon/nitrogen balance (Palenchar et al., 2004), primary 

nitrogen metabolism and nitrogen transport (Perchlik and Tegeder, 2017; Krapp et al., 2014). 

 

Microarray Data Analysis 

GEO was searched for datasets with mutants of candidate causal genes. GSE8975, a DVL4 

overexpression experiment, was analyzed using GEO2R using the default settings. The results 

were scanned to see if any target genes were differentially expressed between the wild type and 

mutant plants (p-value < 0.05). 

 

Mobile Causal Gene Testing 

In order to understand how well the proposed method detects known mobile causal genes, we 

performed a bootstrap procedure in which we considered all possible expression pairs (among all 

tested root and shoot expressions) and, from these pairs, we randomly selected the same amount 

of Granger-causal pairs detected by our method. Among these we then randomly selected the 

causal gene in each pair and, once the list of causal genes was completed in this manner, this was 

compared to the list of known mobile genes. The latter list was obtained from the PlaMoM (Plant 

Mobile Macromolecules) database (Guan et al., 2016) and is made up of genes that produce a 

mobile product that has been previously experimentally shown to move from either root to shoot, 

shoot to root, or in both directions. Following this approach, we then counted the number of causal 

genes in the randomly selected list that also appeared in the list of known mobile genes. This 

procedure was repeated 103 times and this distribution of counts was compared to the number of 

causal genes detected by our approach. This showed that the number of known mobile causal 
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genes detected by the proposed method is always significantly higher than a method that simply 

randomly samples the same number of causal genes thereby supporting the validity of the 

proposed analysis. 

 

SUPPLEMENTAL NETWORK 

 A supplemental network file containing the network generated from the network analysis 

described above is made available as a standalone file called “Supplemental File 1.cys” 

 

SUPPLEMENTAL TABLES 

The supplemental tables are made available in a supplemental Excel file called “Supplemental 

Tables.xlsx”. On the next page is a table that collects the name of each sheet in the file and what 

it contains. 
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Sheet Name Description 

Supplemental Table 1 Table showing predicted 3078 root-shoot interactions 

Supplemental Table 2 GO Terms for causal root genes at early time points. 

Supplemental Table 3 GO Terms for causal root genes at middle time points. 

Supplemental Table 4 GO Terms for causal root genes at late time points. 

Supplemental Table 5 GO Terms for causal shoot genes at early time points. 

Supplemental Table 6 GO Terms for causal shoot genes at middle time points. 

Supplemental Table 7 GO Terms for causal shoot genes at late time points. 

Supplemental Table 8 GO Terms for target root genes at early time points. 

Supplemental Table 9 GO Terms for target root genes at middle time points. 

Supplemental Table 10 GO Terms for target root genes at late time points. 

Supplemental Table 11 GO Terms for target shoot genes at early time points. 

Supplemental Table 12 GO Terms for target shoot genes at middle time points. 

Supplemental Table 13 GO Terms for target shoot genes at late time points. 

Supplemental Table 14 
Table showing top 10 hubbiest genes by out-degree, and 

their network node properties. 

Supplemental Table 15 
Nitrogen signal responsive gene families and their members 

appearing in the predicted model interactions. 

Supplemental Table 16 
List of interactions in which the causal gene is a known 

signaling peptide. 

Supplemental Table 17 
List of RNA-binding proteins and their known mobility 

according to the PLAMOM database. 

Table 2: Summary of tables contained in supplemental Excel file.  
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APPENDIX B: GLOSSARY 

 

AutoRegressive (AR) Model: This is a regression model used to predict future values in a time 

series. The order of the regression model defines the number of preceding values used to predict 

the current value. For example, a first order autoregressive model, AR(1), predicts the current 

value using the immediately preceding value in the time series. 

 

AutoRegressive Moving Average (ARMA) Model: A linear combination of the autoregressive 

model and the moving average (MA) model used in time series analysis. The MA model uses the 

previous white noise terms unlike the AR model which uses previous time series values.  

 

Dependence Structure: This refers to the association of observations with variables at previous 

time points. 

 

Deterministic Function: A function that always returns the same results when the same specific 

inputs are used. 

 

Granger Causality: Consider the two time-series 𝑋𝑡  and 𝑌𝑡 . If we are better able to predict 

𝑋𝑡 using Yt, as opposed to not using any information from 𝑌𝑡, then we can say that 𝑌𝑡is causing 

𝑋𝑡.  
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Gauss-Markov Model/Process: A stochastic model with a Gaussian distribution and is 

considered to have a Markov property. A time series can be described as having a Markov property 

if 𝑋𝑡has all the information necessary for predicting 𝑋𝑡+1. 

 

Likelihood Function: A probability density of the data viewed as a function of the parameters. 

 

Maximum Likelihood Estimator: A framework that involves maximizing the likelihood function 

in order to find the parameters that best define the  observed data. 

 

Monte-Carlo-based Techniques: A collection of computational techniques that use simulated 

random numbers for the estimation of functions in a probability distribution.  

 

Multivariate Time Series: This is a time series that is dependent on more than one variable. For 

example, for a time series 𝑋𝑡, the value of X at time t+1 is dependent not only on 𝑋𝑡, but also on 

the information in other time series. 

 


	Introduction
	Granger-Causal Analysis for Irregular Data
	The Proposed Model
	Testing Procedure
	Implementation

	Results and Discussion
	Global analysis of model-predicted interactions reveal links between biological processes and pathways
	Model predictions are supported by in planta observations
	Regulators of nitrogen processes
	Long-distance signaling by hormones and peptides
	Model predictions contain an over-representation of mobile causal gene products

	Conclusions
	Model Conditions
	Supplemental Methods
	Plant growth conditions and sampling
	Transcriptome analysis
	Data pre-processing
	Bioinformatic validation of the proposed method
	Gene Ontology (GO) Term Analysis
	Network Analysis
	Promoter Analysis
	Nitrogen Response
	Microarray Data Analysis
	Mobile Causal Gene Testing


	Supplemental Tables

