
© 2020 Cheng Li

PERFORMANCE BENCHMARKING, ANALYSIS AND OPTIMIZATION OF DEEP
LEARNING INFERENCE

BY

CHENG LI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Wen-mei Hwu, Chair
Assistant Professor Christopher W. Fletcher
Professor David A. Padua
Dr. Wei Tan, Citadel

ABSTRACT

The world sees a proliferation of deep learning (DL) models and their wide adoption in dif-

ferent application domains. This has made the performance benchmarking, understanding,

and optimization of DL inference an increasingly pressing task for both hardware designers

and system providers, as they would like to offer the best possible computing system to serve

DL models with the desired latency, throughput, and energy requirements while maximizing

resource utilization. However, DL faces the following challenges in performance engineering.

Benchmarking — While there have been significant efforts to develop benchmark suites

that evaluate widely used DL models, developing, maintaining, and running benchmarks

takes a non-trivial amount of effort, and DL benchmarking has been hampered in part due

to the lack of representative and up-to-date benchmarking suites.

Performance Understanding — Understanding the performance of DL workloads is

challenging as their characteristics depend on the interplay between the models, frameworks,

system libraries, and the hardware (or the HW/SW stack). Existing profiling tools are

disjoint, however, and only focus on profiling within a particular level of the stack. This

largely limits the types of analysis that can be performed on model execution.

Optimization Advising — The current DL optimization process is manual and ad-hoc

that requires a lot of effort and expertise. Existing tools lack the highly desired abilities to

characterize ideal performance, identify sources of inefficiency, and quantify the benefits of

potential optimizations. Such deficiencies have led to slow DL characterization/optimization

cycles that cannot keep up with the fast pace at which new DL innovations are introduced.

Evaluation and Comparison — The current DL landscape is fast-paced and is rife with

non-uniform models, hardware/software (HW/SW) stacks, but lacks a DL benchmarking

platform to facilitate evaluation and comparison of DL innovations, be it models, frameworks,

libraries, or hardware. Due to the lack of a benchmarking platform, the current practice

of evaluating the benefits of proposed DL innovations is both arduous and error-prone —

stifling the adoption of the innovations.

This thesis addresses the above challenges in DL performance engineering. First we in-

troduce DLBricks, a composable benchmark generation design that reduces the effort of

developing, maintaining, and running DL benchmarks. DLBricks decomposes DL models

into a set of unique runnable networks and constructs the original model’s performance us-

ing the performance of the generated benchmarks. Then, we present XSP, an across-stack

profiling design that correlates profiles from different sources to obtain a holistic and hier-

ii

archical view of DL model execution. XSP innovatively leverages distributed tracing and

accurately capture the profiles at each level of the HW/SW stack in spite of profiling over-

head. Next, we propose Benanza, a systematic DL benchmarking and analysis design that

guides researchers to potential optimization opportunities and assesses hypothetical execu-

tion scenarios on GPUs. Finally, we design MLModelScope, a consistent, reproducible, and

scalable DL benchmarking platform to facilitate evaluation and comparison of DL innova-

tions. This thesis also briefly discusses TrIMS, TOPS, and CommScope which are developed

based on the needs observed from the performance benchmarking and optimization work to

solve relevant problems in the DL domain.

iii

To my family, for their love and support.

iv

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Professor Wen-mei Hwu for his support of my

Ph.D. study. Five years ago, Wen-mei kindly admitted me to University of Illinois at Urbana-

Champaign (UIUC). I am honored to be a member of the IMPACT (Illinois Microarchitecture

Project using Algorithms and Compiler Technology) Research Group ever since. Wen-mei

provided me with valuable guidance on my research. He also encouraged and sponsored

me to attend many conferences and events to present my work and get inspired. Without

Wen-mei, I could not have made it here and become a researcher.

Besides my advisor, I would also like to thank the rest of my doctoral committee: Assistant

Professor Christopher W. Fletcher, Professor David A. Padua, and Dr. Wei Tan, for their

insightful comments and suggestions on my thesis work.

Next I would like to thank Abdul Dakkak, my colleague and collaborator, for teaching

me a lot of research/engineering skills that I will benefit from for the rest of my life. As a

senior member of the research group, Abdul did a great job mentoring me. I am also deeply

grateful to other group members for their support and companionship in this journey.

My sincere thanks also go to my collaborator Jinjun Xiong at IBM Research. Jinjun is

a very good researcher and gives useful feedback on many of my research projects. He is

always willing to help. There were many times when I worked on paper submissions with

tight dealings and Jinjin helped as much as he could until the last minute.

Finally, I would like to acknowledge with gratitude, the love and support of my family

— my parents, Ruihai and Huazhi; my brother and his wife, Bo and Xiaoxu. They are

always there for me no matter what happens. Without their encouragement, I would not

have overcome the challenges I encountered during my study. This thesis would not have

been possible without them. I am extremely lucky to have them in my life.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 DL INFERENCE . 5

CHAPTER 3 DLBRICKS: COMPOSABLE BENCHMARK GENERATION TO
REDUCE DEEP LEARNING BENCHMARKING EFFORT 6
3.1 Motivation . 8
3.2 Design . 14
3.3 Evaluation . 17
3.4 Related Work . 20
3.5 Discussion and Future Work . 21
3.6 Conclusion . 23

CHAPTER 4 XSP: UNDERSTANDING DL PERFORMANCE ACROSS STACK . 24
4.1 ML Profiling on GPUs and Related Work . 26
4.2 XSP Design and Implementation . 28
4.3 Evaluation . 40
4.4 Conclusion . 48

CHAPTER 5 BENANZA: AUTOMATIC µBENCHMARK GENERATION TO
COMPUTE “LOWER-BOUND” LATENCY AND INFORM OPTIMIZATIONS
OF DEEP LEARNING MODELS . 49
5.1 Motivation . 51
5.2 Benanza Design and Implementation . 55
5.3 Evaluation . 62
5.4 Related Work . 72
5.5 Conclusion . 73

CHAPTER 6 MLMODELSCOPE: THE DESIGN AND IMPLEMENTATION
OF A SCALABLE DL BENCHMARKING PLATFORM 74
6.1 Design Objectives . 76
6.2 MLModelScope Design and Implementation 78
6.3 Evaluation . 88
6.4 Related Work . 94
6.5 Conclusion . 95

CHAPTER 7 OTHER RELEVANT WORKS . 96
7.1 TrIMS: Transparent and Isolated Model Sharing for DL Inference 96
7.2 TOPS: Accelerating Reduction and Scan Using Tensor Core Units 99
7.3 CommScope . 101

vi

CHAPTER 8 CONCLUSION . 103

REFERENCES . 104

vii

CHAPTER 1: INTRODUCTION

The past few years have seen a spur of deep learning (DL) innovations. These innovations

span from DL models to software stack optimizations (e.g., frameworks such as MXNet or

PyTorch, libraries such as cuDNN or MKL-DNN) and hardware stack improvements (e.g.

CPU, GPU, FPGA). Among all the innovations, however, DL models are the most rapidly

evolving and prolific. This is true in both academia [1] and industry [2], where models are

tweaked and introduced on a weekly, daily, or even hourly basis. There have been numerous

impressive advances in applying DL in many application domains such as image classification,

object detection, machine translation, etc.

This has resulted in a surge of interest in deploying these DL models within various

computing platforms/devices including commodity servers, accelerators, reconfigurable hard-

ware, mobile and edge devices. Therefore, there is an increasing need for hardware providers,

computer architects, and system/chip designers to benchmark, understand and optimize DL

model inference performance (throughput, latency, system resource utilization, etc.) across

different computing systems. However, DL inference performance engineering faces the fol-

lowing challenges, which stifle the adoption of DL innovations.

Developing, maintaining, and running DL benchmarks — For each DL task of

interest, benchmark suite authors select a small subset (or one) out of tens or even hundreds

of candidate models. Deciding on a representative set of models is an arduous effort as it

takes a long debating process to determine what models to add and what to exclude. For

example, it took over a year of weekly discussion to determine and publish MLPerf v0.5

inference models, and the number of models was reduced from the 10 models originally

considered to 5. Given that DL models are proposed or updated on a daily basis [1, 2], it

is very challenging for benchmark suites to be agile and remain representative of real-world

DL model usage. Moreover, only publicly available models are considered for inclusion

in benchmark suites. Proprietary models are trade secrets or restricted by copyright and

cannot be shared externally for benchmarking. Thus, proprietary models are not included

or represented within benchmark suites. Due to these issues, DL benchmarking has been

hampered in part due to the lack of representative and up-to-date benchmarking suites.

Understanding DL performance across the hardware/software stack — DL

model inference is complex and its performance is impacted by the interplay between differ-

ent levels within the hardware/software (HW/SW) stack — frameworks, system libraries,

and hardware. An example is shown in Figure 1.1. Due to the complexity of model execu-

tion, to be able to identify bottlenecks and locate their sources, one needs a holistic view

1

Pre-proess
Input

Post-process
Output

Predict
Model

Conv

Conv Bias

Concat

Bias

Data FC

Relu

Relu

Malloc CUDNN Transpose FreeCUDNN

flop
count SP

DRAM
Read

DRAM
Write

cudaMalloc ConvKernel cudaFree

M
od

el
Fr

am
ew

or
k

S
ys

te
m

Figure 1.1: DL model performance is impacted by the interplay between different levels within the
HW/SW stack - frameworks, system libraries, and hardware.

of the model execution. However, existing profiling tools or methods only provide partial

views of model execution.

Interpreting DL benchmarking results into possible optimizations — Both in-

dustry and academia have invested heavily in developing benchmarks to characterize DL

models and systems [3–7]. The characterization is followed by optimization to improve

the model performance. However, there is currently a gap between the benchmarking re-

sults and possible optimizations to perform. Researchers use profilers, such as nvprof [8],

Nsight [9], and VTune [10], to profile DL model execution and get low-level GPU and CPU

information. With ample knowledge of how models execute and utilize system resources,

researchers manually identify bottlenecks and inefficiencies within model execution by ex-

amining the profiling results. Researchers then make hypotheses of solutions and try out

different ideas to optimize the model execution — which may or may not pan out. This

manual and ad-hoc process requires a lot of effort, expertise, and guesswork, and slows down

the turnaround time for model optimization and system tuning. Thus, there is a need for a

systematic DL benchmarking and subsequent analysis design that can guide researchers to

optimization opportunities and assess hypothetical execution scenarios.

Consistent, reproducible, and scalable DL experimentation — The DL landscape

is fast-paced and is rife with non-uniform models, HW/SW stacks, but lacks a DL experimen-

tation platform to facilitate the evaluation and comparison of DL innovations, be it models,

frameworks, libraries, or hardware. To consistently evaluate two DL benchmarks requires one

2

to use the same evaluation code and HW/SW environment. However, DL benchmarks are

often developed independently as a set of ad-hoc scripts. Thus, a fair comparison requires

a non-trivial amount of effort. Furthermore, DL benchmarking often requires evaluating

models across different combinations of HW/SW stacks. As HW/SW stacks are increasingly

being proposed, there is an urging need for a DL benchmarking platform that consistently

evaluates and compares different DL models across HW/SW stacks, while coping with the

fast-paced and diverse landscape of DL.

The thesis addresses the above challenges through novel DL benchmarking, analysis, and

optimization designs, and is organized as follows:

• Chapter 2 describes DL inference in detail.

• Chapter 3 presents DLBricks, a composable benchmark generation design that decom-

poses DL models into a set of unique runnable networks and constructs the original

model’s inference performance using the performance of the generated benchmarks.

DLBricks reduces the effort to develope, maintain, and run DL benchmarks.

• Chapter 4 presents XSP, an across-stack profiling design that innovatively leverages

distributed tracing to construct a holistic and hierarchical view of DL model execution

without modification to frameworks. XSP accurately captures the profiles at each

level of the stack in spite of the profiling overhead incurred from the profilers. XSP

addresses the challenge of understanding DL performance across the HW/SW stack

and provides insights that are difficult to discern without it.

• Chapter 5 presents Benanza, a systematic DL benchmarking and analysis design to

inform DL inference optimizations on GPUs. Benanza automatically generates micro-

benchmarks given a set of models, computes their “lower-bound” latencies using the

benchmark data, and informs optimizations of their executions on GPUs. Benanza

guides researchers to optimization opportunities and assesses hypothetical execution

scenarios on GPUs.

• Chapter 6 presents MLModelScope, a consistent, reproducible, and scalable DL ex-

perimentation platform to facilitate evaluation and comparison of DL innovations.

MLModelScope offers a unified and holistic way to evaluate, compare and introspect

DL inference, and provides an automated analysis and reporting workflow to summa-

rize the results.

• Chapter 7 discusses several other works relevant to DL performance which include

TrIMS — removing the model loading overhead from the DL inference by exploiting

3

sharing of models across the memory hierarchy in the cloud, TOPS — leveraging Tensor

Core Units to accelerate non-GEMM primitives that are common in DL operators,

and CommScope — understanding memory transfer behavior across different data

placement and exchange scenarios.

• Chapter 8 offers concluding remarks and points to future directions.

4

CHAPTER 2: DL INFERENCE

A DL model is defined by its graph topology and its weights. The graph topology is

defined as a set of nodes where each node is a function operator with the implementation

provided by a framework (e.g. TensorFlow, MXNet, PyTorch). A DL inference pipeline

includes the pre-processing, prediction, and post-processing steps. Pre-processing is the

process of transforming the user input into a form that can be consumed by the model and

post-processing is the process of transforming the model’s output to compute metrics. If we

take image classification shown in Figure 2.1 as an example, the pre-processing step decodes

the input image into a tensor of dimensions [batch, height, width, channel] ([N ,H,W ,C]),

then performs resizing, normalization, etc. The image classification model’s output is a

tensor of dimensions [batch ∗ numClasses] which is sorted to get the top K predictions

(label with probability).

In the model prediction step, the framework acts as a “runtime” and maps the function

operators into system library calls. The layers executed by a framework are pipelines of

system library calls. The system libraries, in turn, invoke a chain of primitive kernels that

impact the underlying hardware counters. As can be observed, this inference pipeline is

intricate and has many levels of abstraction — frameworks, system libraries, and hardware,

as summarized in Figure 1.1. DL inference performance is impacted by the interplay between

these different HW/SW stack levels. When a slowdown is observed, any one of them can be

suspect.

Figure 2.1: Image classification model inference pipeline.

5

CHAPTER 3: DLBRICKS: COMPOSABLE BENCHMARK GENERATION
TO REDUCE DEEP LEARNING BENCHMARKING EFFORT

This chapter presents DLBricks, a composable benchmark generation design that reduces

the effort of developing, maintaining, and running DL benchmarks. DLBricks decomposes

DL models into a set of unique runnable networks and constructs the original model’s per-

formance using the performance of the generated benchmarks. DLBricks can keep up-to-date

with the latest proposed models, relieving the pressure of selecting representative DL models.

The recent progress made by Deep Learning (DL) in a wide array of applications, such as

autonomous vehicles, face recognition, object detection, machine translation, fraud detec-

tion, etc., has led to increased public interest in DL models. Benchmarking these trained

DL models before deployment is critical, as DL models must meet target latency and re-

source constraints. Hence, there have been significant efforts to develop benchmark suites

that evaluate widely used DL models [3, 4, 11, 12]. An example is MLPerf [3], which is

formed as a collaboration between industry and academia and aims to provide referfence

implementations for DL model training and inference.

However, developing, maintaining, and running benchmarks takes a non-trivial amount of

effort. For each DL task of interest, benchmark suite authors select a small representative

subset (or one) out of tens or even hundreds of candidate models. Deciding on a representa-

tive set of models is an arduous effort as it takes a long debating process to determine what

models to add and what to exclude. For example, it took over a year of weekly discussion

to determine and publish MLPerf v0.5 inference models, and the number of models was

reduced from the 10 models originally considered to 5. Figure 3.1 shows the gap between

the number of DL papers [13] and the number of models included in recent benchmarking

efforts. Given that DL models are proposed or updated on a daily basis [1,2], it is very chal-

lenging for benchmark suites to be agile and representative of real-world DL model usage.

Moreover, only public available models are considered for inclusion in benchmark suites.

Proprietary models are trade secrets or restricted by copyright and cannot be shared exter-

nally for benchmarking. Thus, proprietary models are not included or represented within

benchmark suites.

To address the above issues, we propose DLBricks — a composable benchmark generation

design that reduces the effort to develop, maintain, and run DL benchmarks. Given a set

of DL models, DLBricks parses them into a set of atomic (i.e. non-overlapping) unique

layer sequences based on the user-specified benchmark granularity (G). A layer sequence is

a chain of layers. Two layer sequences are considered the same (i.e. not unique) if they are

6

������

���������

���

������

�� ������

���������� �� ������

���� ���� ���� ����
�

�

��

��

��

�

����

�����

�����

�����

����

#
�
�
�
�
�
�
�
��
�
�
�
�
��

#
�
�
�
�
�
�
��

Figure 3.1: The number of DL models included in the recent published DL benchmark suites
(Fathom [11], DawnBench [6], TBD [12], AI Matrix [4], and MLPerf [3]) compared to the number
of DL papers published in the same year (using Scopus Preview [13]) .

identical ignoring their weight values. DLBricks then generates unique runnable networks

(i.e. subgraphs of the model with at most G layers that can be executed by a framework)

using the layer sequences’ information, and these networks form the representative set of

benchmarks for the input models. Users run the generated benchmarks on a system of

interest and DLBricks uses the benchmark results to construct a performance estimate on

that system.

DLBricks leverages two key observations on DL inference: 1 Layers are the performance

building blocks of the model performance. 2 Layers (considering their layer type, shape, and

parameters, but ignoring the weights) are extensively repeated within and across DL models.

DLBricks uses both observations to generate a representative benchmark suite, minimize the

time to benchmark, and estimate a model’s performance from layer sequences.

Since benchmarks are generated automatically by DLBricks, benchmark development and

maintenance effort are greatly reduced. DLBricks is defined by a set of simple consistent

principles and can be used to benchmark and characterize a broad range of models. Moreover,

since each generated benchmark represents only the nodes of the input model, the input

model’s topology does not appear in the output benchmarks. This, along with the fact

that “fake” or dummy models can be inserted into the set of input models, means that the

generated benchmarks can represent proprietary models without the concern of revealing

proprietary models.

In summary, this work makes the following contributions:

• We perform a comprehensive performance analysis of 50 state-of-the-art DL models on

CPUs and observe that layers are the performance building blocks of DL models, thus a

model’s performance can be estimated using the performance of its layers (Section 3.1.1).

7

• We also perform an in-depth DL architecture analysis of the DL models and make the

observation that DL layers with the same type, shape, and parameters are repeated exten-

sively within and across models (Section 3.1.2).

• We propose DLBricks, a composable benchmark generation design that decomposes DL

models into a set of unique runnable networks and constructs the original model’s perfor-

mance using the performance of the generated benchmarks (Section 3.2).

• We evaluate DLBricks using 50 MXNet models spanning 5 DL tasks on 4 representative

CPU systems (Section 3.3). We show that DLBricks provides a tight performance estimate

for DL models and reduces the benchmarking time across systems. The composed model

latency is within 95% of the actual performance while up to 4.4× reduction in benchmarking

time is achieved on the Amazon EC2 c5.xlarge system.

This chapter is structured as follows. First, we detail two key observations that enable

our design in Section 3.1. We then propose DLBricks in Section 3.2 and describe how it

provides a streamlined benchmark generation workflow which lowers the effort to benchmark.

Section 3.3 evaluates using 50 models running on 4 systems. In Section 3.4 we describe

different benchmarking approaches previously performed. We then describe future work in

Section 3.5 before we conclude in Section 3.6.

3.1 MOTIVATION

DLBricks is designed based on two key observations presented in this section. To demon-

strate and support these observations, we perform a comprehensive performance and archi-

tecture analysis of state-of-the-art DL models. The evaluations in this section use 50 MXNet

models of different DL tasks (listed in Table 3.1) and were run with MXNet (v1.5.1 MKL

release) on an Amazon c5.2xlarge instance (as listed in Table 3.2). We focus on latency

sensitive (batch size = 1) DL inference on CPUs.

3.1.1 Layers as the Performance Building Blocks

A DL model is a directed acyclic graph (DAG) where each vertex within the DAG is a layer

(i.e. operator, such as convolution, batchnormalization, pooling, element-wise, softmax)

and an edge represents the transfer of data. For a DL model, a layer sequence is defined

as a simple path within the DAG containing one or more vertices. A subgraph, on the

other hand, is defined as a DAG composed of one or more layers within the model (i.e.

subgraph is a superset of layer sequence, and may or may not be a simple path). We are

8

Table 3.1: The 50 MXNet models [14] used for evaluation, including Image Classification (IC),
Image Processing (IP), Object Detection (OD), Regression (RG) and Semantic Segmentation (SS)
tasks.

ID Name Task
Num
Layers

1 Ademxapp Model A Trained on ImageNet Competition Data IC 142
2 Age Estimation VGG-16 Trained on IMDB-WIKI and Looking at People Data IC 40
3 Age Estimation VGG-16 Trained on IMDB-WIKI Data IC 40
4 CapsNet Trained on MNIST Data IC 53
5 Gender Prediction VGG-16 Trained on IMDB-WIKI Data IC 40
6 Inception V1 Trained on Extended Salient Object Subitizing Data IC 147
7 Inception V1 Trained on ImageNet Competition Data IC 147
8 Inception V1 Trained on Places365 Data IC 147
9 Inception V3 Trained on ImageNet Competition Data IC 311

10 MobileNet V2 Trained on ImageNet Competition Data IC 153
11 ResNet-101 Trained on ImageNet Competition Data IC 347
12 ResNet-101 Trained on YFCC100m Geotagged Data IC 344
13 ResNet-152 Trained on ImageNet Competition Data IC 517
14 ResNet-50 Trained on ImageNet Competition Data IC 177
15 Squeeze-and-Excitation Net Trained on ImageNet Competition Data IC 874
16 SqueezeNet V1.1 Trained on ImageNet Competition Data IC 69
17 VGG-16 Trained on ImageNet Competition Data IC 40
18 VGG-19 Trained on ImageNet Competition Data IC 46
19 Wide ResNet-50-2 Trained on ImageNet Competition Data IC 176
20 Wolfram ImageIdentify Net V1 IC 232
21 Yahoo Open NSFW Model V1 IC 177
22 AdaIN-Style Trained on MS-COCO and Painter by Numbers Data IP 109
23 Colorful Image Colorization Trained on ImageNet Competition Data IP 58
24 ColorNet Image Colorization Trained on ImageNet Competition Data IP 62
25 ColorNet Image Colorization Trained on Places Data IP 62
26 CycleGAN Apple-to-Orange Translation Trained on ImageNet Competition Data IP 94
27 CycleGAN Horse-to-Zebra Translation Trained on ImageNet Competition Data IP 94
28 CycleGAN Monet-to-Photo Translation IP 94
29 CycleGAN Orange-to-Apple Translation Trained on ImageNet Competition Data IP 94
30 CycleGAN Photo-to-Cezanne Translation IP 96
31 CycleGAN Photo-to-Monet Translation IP 94
32 CycleGAN Photo-to-Van Gogh Translation IP 96
33 CycleGAN Summer-to-Winter Translation IP 94
34 CycleGAN Winter-to-Summer Translation IP 94
35 CycleGAN Zebra-to-Horse Translation Trained on ImageNet Competition Data IP 94
36 Pix2pix Photo-to-Street-Map Translation IP 56
37 Pix2pix Street-Map-to-Photo Translation IP 56
38 Very Deep Net for Super-Resolution IP 40
39 SSD-VGG-300 Trained on PASCAL VOC Data OD 145
40 SSD-VGG-512 Trained on MS-COCO Data OD 157
41 YOLO V2 Trained on MS-COCO Data OD 106
42 2D Face Alignment Net Trained on 300W Large Pose Data RG 967
43 3D Face Alignment Net Trained on 300W Large Pose Data RG 967
44 Single-Image Depth Perception Net Trained on Depth in the Wild Data RG 501
45 Single-Image Depth Perception Net Trained on NYU Depth V2 and Depth in the Wild Data RG 501
46 Single-Image Depth Perception Net Trained on NYU Depth V2 Data RG 501
47 Unguided Volumetric RG Net for 3D Face Reconstruction RG 1029
48 Ademxapp Model A1 Trained on ADE20K Data SS 141
49 Ademxapp Model A1 Trained on PASCAL VOC2012 and MS-COCO Data SS 141
50 Multi-scale Context Aggregation Net Trained on CamVid Data SS 53

9

VGG16 (ID=17).

…

Inception V3 (ID=9).

Figure 3.2: The model architecture of VGG16 (ID=17) and Inception V3 (ID=9). The critical
path is highlighted in red.

only interested in network subgraphs that are runnable within frameworks and we call these

runnable subgraphs runnable networks.

DL models may contain layers that can be executed independently in parallel. The network

made of these data-independent layers is called a parallel module. For example, Figure 3.2a

shows the VGG16 [15] (ID=17) model architecture. VGG16 contains no parallel module and is

a linear sequence of layers. Inception V3 [16] (ID=9) (shown in Figure 3.2b), on the other

hand, contains a mix of layer sequences and parallel modules.

DL frameworks such as TensorFlow, PyTorch, and MXNet execute a DL model by running

the layers within the model graph. We explore the relation between layer performance and

model performance by decomposing each DL model in Table 3.1 into layers. We define a

model’s critical path to be a simple path from the start layer to the end layer with the highest

latency. For a DL model, we add all its layers’ latency and refer to the sum as the sequential

total layer latency, since this assumes all the layers are executed sequentially by the DL

framework. Theoretically, data-independent paths within a parallel module can be executed

in parallel, thus we also calculate the parallel total layer latency by adding up the layer

latencies along the critical path. The critical path of both VGG 16 (ID=17) and Inception

V3 (ID=9) is highlighted in red in Figure 3.2. For models that do not have parallel modules,

the sequential total layer latency is equal to the total layer latency.

For each of the 50 models, we compare both sequential and parallel total layer latency

to the model’s end-to-end latency. Figure 3.3 shows the normalized latencies in both cases.

For models with parallel modules, the parallel total layer latencies are much lower than

the model’s end-to-end latency. The difference between the sequential total layer latencies

and the models’ end-to-end latencies are small. The normalized latencies are close to 1

with a geometric metric mean of 91.8% for the sequential case. This suggests the current

software/hardware stack does not exploit parallel execution of data-independent layers or

overlapping of layer execution, we verified this by inspecting the source code of popular

frameworks such as MXNet, PyTorch, and TensorFlow.

10

���������� ��������

���

���

���

���

���

���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Figure 3.3: The sequential and parallel total layer latency normalized to the model’s end-to-end
latency using batch size 1 on c5.2xlarge in Table 3.2.

The difference between a model’s end-to-end latency and its sequential total layer latency

is due to the complexity of model execution within DL frameworks and the underlying

software/hardware stack. We identified two major factors that may affect this difference:

framework overhead and memory caching. Executing a model within frameworks introduced

an overhead that is roughly proportional to the number of the layers. This is because frame-

works need to perform bookkeeping, layer scheduling, and memory management for model

execution. Therefore, the measured end-to-end performance can be larger than the total

layer latency. On the other hand, both the framework and the underlying software/hard-

ware stack can take advantage of caching to decrease the latency of data-dependent layers.

For memory-bound layers, this can achieve significant speedup and therefore the measured

end-to-end performance can be lower than the total layer latency. Depending on which fac-

tor is dominant, the normalized latency can be larger or smaller than 1. Based on this, we

formulate the 1 observation:

Observation 3.1: DL layers are the performance building blocks of the model perfor-

mance, therefore, a model’s performance can be estimated using the performance of its layers.

Moreover, a simple summation of layer-wise latency is an effective approximation of the end-

to-end latency given the current DL software stack (no parallel execution of data-independent

layers or overlapping of layer execution) on CPUs.

3.1.2 Layer Repeatability

From a model architecture point of view, a DL layer is identified by its type, shape,

and parameters. For example, a convolution layer is identified by its input shape, output

channels, kernel size, stride, padding, dilation, etc. Layers with the same type, shape,

parameters (i.e. only differ in weights) are expected to have the same performance. We

inspected the source code of popular frameworks and verified this, as they do not perform

any special optimizations for weights. Thus in this paper we consider two layers to be the

same if they have the same type, shape, parameters, ignoring weight values, and two layers

are unique if they are not the same.

11

� BN P P P F S

Module 1 Module 2

1 2 2 3

Module 3 Module 4

4 4 4 5

Module 5 Module 6

6 6 6 6 6 7

Module 7 Module 8

8 8

�

�

BN +

BN � BN � BN
64⨯56⨯56

64⨯56⨯56

256⨯56⨯56 256⨯56⨯56

64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 256⨯56⨯56

256⨯56⨯56
256⨯56⨯56 256⨯56⨯56

+

� BN � BN � BN

256⨯56⨯56

256⨯56⨯56
64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 256⨯56⨯56

25
6⨯
56
⨯5
6

256⨯56⨯56 256⨯56⨯56

�

�

BN +

BN � BN � BN
256⨯56⨯56

256⨯56⨯56

512⨯28⨯28 512⨯28⨯28

128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 512⨯28⨯28

512⨯28⨯28
512⨯28⨯28 512⨯28⨯28

+

� BN � BN � BN

512⨯28⨯28

512⨯28⨯28
128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 512⨯28⨯28

51
2⨯
28
⨯2
8

512⨯28⨯28 512⨯28⨯28

�

�

BN +

BN � BN � BN
512⨯28⨯28

512⨯28⨯28

1024⨯14⨯14 1024⨯14⨯14

256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 1024⨯14⨯14

1024⨯14⨯14
1024⨯14⨯14 1024⨯14⨯14

+

� BN � BN � BN

1024⨯14⨯14

1024⨯14⨯14
256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 1024⨯14⨯14

10
24
⨯1
4⨯
14

1024⨯14⨯14 1024⨯14⨯14

�

�

BN +

BN � BN � BN
1024⨯14⨯14

1024⨯14⨯14

2048⨯7⨯7 2048⨯7⨯7

512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 2048⨯7⨯7

2048⨯7⨯7
2048⨯7⨯7 2048⨯7⨯7

+

� BN � BN � BN

2048⨯7⨯7

2048⨯7⨯7
512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 2048⨯7⨯7

20
48
⨯7
⨯7

2048⨯7⨯7 2048⨯7⨯7

Figure 3.4: The ResNet-50 (ID=14) architecture. The detailed ResNet modules 1 − 8 are listed
above the model graph.

� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

��

��

��

���

����� ��

%
�
�
��
�
�

Figure 3.5: The percentage of unique layers in the models in Table 3.1, indicating that some layers
are repeated within the model.

DL models tend to have repeated layers or modules (or subgraphs, e.g. Inception and

ResNet modules). For example, Figure 3.4 shows the model architecture of ResNet-50 with

the ResNet modules detailed. Different ResNet modules have layers in common and ResNet

modules 2, 4, 6, 8 are entirely repeated within ResNet-50. Moreover, DL models are often

built on top of existing models (e.g. transfer learning [17] where models are retrained with

different data), using common modules (e.g. TensorFlow Hub [18]), or using layer bundles

for Neural Architecture Search [19, 20]. This results in ample repeated layers when looking

at a corpus of models. We quantitatively explore the layer repeatability within and across

models.

Figure 3.5 shows the percentage of unique layers within each model in Table 3.1. We

can see that layers are extensively repeated within DL models. For example, in Unguided

Volumetric Regression Net for 3D Face Reconstruction (ID=47) which has 1029 lay-

ers, only 3.9% of the total layers are unique. We further look at the repeated layers within

12

����������� ��������� �������� ����������� ������� ����������� ���� ������� ��������� ��������� �����

� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

��

��

��

���

����� ��

%
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�

Figure 3.6: The type distribution of the repeated layers.

each model and Figure 3.6 shows their type distribution. As we can see Convolution, Ele-

mentwise, BatchNorm, and Norm are the most repeated layer types in terms of intra-model

layer repeatability. If we consider all 50 models in Table 3.1, the total number of layers is

10, 815, but only 1, 529 are unique (i.e. 14% are unique).

������� ����������

� ��� ��� ��� ��� ���

� � �� �� �� �� �� �� �� �� ��

�

�

��

��

��

��

��

��

��

��

��

� � �� �� �� �� �� �� �� �� ��
�

�

��

��

��

��

��

��

��

��

��

����� ��

�
�
�
�
�
��

Figure 3.7: The Jaccard Similarity grid of the models in Table 3.1. Solid red indicates two models
have identical layers, and black means there is no common layer.

We illustrate the layer repeatability across models by quantifying the similarity of any two

models listed in Table 3.1. We use the Jaccard similarity coefficient; i.e. for any two models

M1 and M2 the Jaccard similarity coefficient is defined by |L1∩L2|
|L1∪L2| where L1 and L2 are the

13

layers of M1 and M2 respectively. The results are shown in Figure 3.7. Each cell corresponds

to the Jaccard similarity coefficient between the models at the row and column. As shown,

models that share the same base architecture but are retrained using different data (e.g.

CycleGAN* models with IDs 26− 35 and Inception V1* models with IDs 6− 8) have many

common layers. Layers are common across models within the same family (e.g. ResNet*)

since they are built from the same set of modules (e.g. ResNet-50 is shown in Figure 3.4),

or when solving the same task (e.g. the image classification task category). Based on this,

we formulate the 2 observation:

Observation 3.2: Layers are repeated within and across DL models. This enables us to

decrease the benchmarking time since only a representative set of layers need to be evaluated.

The above two observations suggest that if we can decompose models into layers, and

then take the union of them to produce a set of representative runnable networks, then

benchmarking the representative runnable networks is sufficient to construct the performance

of the input models. Since we only look at the representative set, the total runtime is less

than running all models directly, thus DLBricks can be used to reduce benchmarking time.

Since layer decomposition elides the input model topology, models can be private while their

benchmarks can be public. The next section (Section 3.2) describes how we leverage these

two observations to build a benchmark generator while having a workflow where one can

construct a model’s performance based on the benchmarked layer performance. We further

explore the design space of benchmark granularity and its effect on performance construction

accuracy.

3.2 DESIGN

This section presents the design of DLBricks , a composable benchmark generation system

for DL models. The design is motivated by the two observations discussed in Section 3.1.

DLBricks explores not only layer level model composition, but also sequence level composi-

tion where a layer sequence is a chain of layers. The benchmark granularity (G) specifies the

maximum numbers of layers within any layer sequence in the output generated benchmarks.

G is introduced to account for the effects of model execution complexity (e.g. framework

overhead and caching as discussed in Section 3.1.1). Thus, a larger G is expected to increase

the accuracy of performance construction. On the other hand, a larger G might decrease

the layer repeatability across models. Therefore, a balance needs to be struck (by the user)

between performance construction accuracy and benchmarking time speedup.

14

{PM1
, …, PMn

}

Performance
Constructor

4

{PS1
, …, PSk

}3

{M1, …, Mn}

{S1, …, Sk}

Running Benchmarks

Benchmark
Generator

Benchmark
Granularity

1 1

2

6

5

§4
.1

§4
.2

P
erform

ance C
onstruction W

orkflow

B
enchm

ark G
eneration W

orkflow

Legend:

Figure 3.8: DLBricks design and workflow.

The design and workflow of DLBricks is shown in Figure 3.8. DLBricks consists of a

benchmark generation workflow and a performance construction workflow. To generate

composable benchmarks, one uses the benchmark generation workflow where: 1 the user

inputs a set of models (M1, ...,Mn) along with a target benchmark granularity. 2 The

benchmark generator parses the input models into a representative (unique) set of non-

overlapping layer sequences and then generates a set of runnable networks (S1, ...,Sk) using

these layer sequences’ information. 3 The user evaluates the set of runnable networks on

a system of interest to get each benchmark’s corresponding performance (PS1 , ...,PSk
). The

benchmark results are stored and 4 are used within the performance construction workflow.

5 To construct the performance of an input model, the performance constructor queries the

stored benchmark results for the layer sequences within the model, and then 6 computes

the model’s estimated performance (PM1 , ...,PMk
). This section describes both workflows in

detail.

15

3.2.1 Benchmark Generation

The benchmark generator takes a list of models M1, . . . ,Mn and a benchmark granularity

G. The benchmark granularity specifies the maximum sequence length of the layer sequences

generated. This means that whenG = 1, each generated benchmark is a single-layer network,

whereas when G = 2 each generated benchmark contains at most 2 layers.

To split a model with the specified benchmark granularity, we use FindModelSubgraphs

(Algorithm 3.1). The FindModelSubgraphs takes a model and a maximum sequence length

and iteratively generates a set of non-overlapping layer sequences. First, the layers in the

model are sorted topologically and then call the SplitModel function (Algorithm 3.2) with

the desired begin and end layer offset. This SplitModel tries to create a runnable DL

network (i.e., a valid DL network) using the range of layers desired, if it fails (e.g., a

network which cannot be constructed due to input/output layer shape mismatch1), then

SplitModel creates a network with the current layer and shifts the begin and end posi-

tions. The SplitModel returns a list of runnable DL networks (Si, . . . , Si+j) along with the

end position to FindModelSubgraphs. The FindModelSubgraphs terminate when no other

subsequences can be created.

Algorithm 3.1 The FindModelSubgraphs algorithm.

Input: M (Model), G (Benchmark Granularity)
Output: Models

1: begin← 0,Models← {}
2: verts← TopologicalOrder(ToGraph(M))
3: while begin ≤ Length(verts) do
4: end←Min(begin+G, Length(vs))
5: sm← SplitModel(verts, begin, end)
6: Models←Models+ sm [“models”]
7: begin← sm [“end”] + 1
8: end whilereturn Models

The benchmark generator applies the FindModelSubgraphs for each of the input models.

A set of representative (i.e. unique) runnable DL networks (S1, . . . , Sk) is then computed.

We say two sequences S1 and S2 are the same if they have the same topology along with

the same node parameters (i.e. they are the same DL network modulo the weights). The

unique networks are exported to the frameworks’ network format and the user runs them

1An example invalid network is one which contains a Concat layer, but does not have all of the Concat
layer’s required input layers.

16

with synthetic input data based on each network’s input shape. The performance of each

network is stored (PSi
. . . , PSk

) and used by the performance construction workflow.

Algorithm 3.2 The SplitModel algorithm.

Input: verts, begin, end
Output: 〈“models”, “end”〉 . Hash table

1: vs← verts [begin : end]
2: m← CreateModel(vs) . Creates a valid model return
〈“models”→ {m} , “end”→ end〉 . Hash table with keys: “model” and “end”
ModelCreateException

3: m← {CreateModel({verts [begin]})} . Creates a model with a single node
4: n← SplitModel(verts, begin+ 1, end+ 1) . Recrusively split the model return
〈“models”→ m+ n [“models”] , “end”→ n [“end”]〉

3.2.2 DL Model Performance Construction

DLBricks uses the performance of the layer sequences to construct an estimate to the

end-to-end performance of the input model M . To construct a performance estimate, the

input model is parsed and goes through the same process 1 in the Figure 3.8. This creates

a set of layer sequences. The performance of each layer sequence is queried from the bench-

mark results (PSi
, . . . , PSk

). DLBricks supports both sequential and parallel performance

construction. Sequential performance construction is performed by summing up all the re-

sulting queried results, whereas parallel performance construction sums up the results along

the critical path of the model. Since current frameworks exhibit a sequential execution strat-

egy (from Section 3.1.1), sequential performance construction is used within DLBricks by

default. Other performance constructions can be easily added to DLBricks to accommodate

different framework execution strategies.

3.3 EVALUATION

This section demonstrates that DLBricks is valid in terms of performance construction

accuracy and benchmarking time speedup. We explore the effect of benchmark granularity

on the constructed performance estimation as well as the benchmarking time. We evaluated

DLBricks with 50 DL models (listed in Table 3.1) using MXNet (v1.5.1 using MKL v2019.3)

on 4 different Amazon EC2 instances. These systems are recommended by Amazon [21]

17

Table 3.2: Evaluations are performed on the 4 Amazon EC2 systems listed. The c5.* systems
operate at 3.0GHz, while the c4.* systems operate at 2.9GHz. The systems are ones recommended
by Amazon for DL inference.

Instance CPUS Memory (GiB) $/hr

c5.xlarge 4 Intel Platinum 8124M 8GB 0.17
c5.2xlarge 8 Intel Platinum 8124M 16GB 0.34
c4.xlarge 4 Intel Xeon E5-2666 v3 7.5GB 0.199
c4.2xlarge 8 Intel Xeon E5-2666 v3 15GB 0.398

� � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��������� ���������� ��������� ����������

����

����

�

��

����� ��

�
�
��
�
�
�
(�
)

Figure 3.9: The end-to-end latency of all models in log scale across systems.

for DL inference and are listed in Table 3.2. To maintain consistent CPU evaluation, the

systems are configured to disable CPU frequency scaling, turbo-boosting, scaling-governor,

and hyper-threading. Each benchmark is run 100 times and the 20th percentile trimmed

mean is reported.

3.3.1 Performance Construction Accuracy

We first ran the end-to-end models on the 4 systems to understand their performance

characteristics, as shown in Figure 3.9. Then, using DLBricks, we constructed the latency

estimate of the models based on the performance of their layer sequence benchmarks. Figure

3.10 shows the constructed model latency normalized to the model’s end-to-end latency for

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=1

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=2

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=3

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=4

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=5

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Benchmark Granularity=6

Figure 3.10: The constructed model latency normalized to the model’s end-to-end latency for the
50 model in Table 3.1 on c5.2xlarge. The benchmark granularity varies from 1 to 6. Sequence 1
means each benchmark has one layer (layer granularity).

18

all the models with varying benchmark granularity from 1 to 6 on c5.2xlarge. We see that

the constructed latency is a tight estimate of the model’s actual performance across models

and benchmark granularities. E.g., for benchmark granularity G = 1, the normalized latency

ranges between 82.9% and 98.1% with a geometric mean of 91.8%.

As discussed in Section 3.1.1, the difference between a model’s end-to-end latency and

its constructed latency is due to the combinational effect of model execution complexity

such as framework overhead and caching, thus the normalized latency can be either below

or above 1. For G = 1 (layer granularity model decomposition and construction), where

a model is decomposed into the largest number of sequences, the constructed latency is

slightly less accurate compared to other G values. Using the number of layers in Table 3.1

and the model end-to-end latency in Figure 3.9, we see no direct correlation between the

performance construction accuracy, number of model layers, or end-to-end latency.

Figure 3.11 shows the geometric mean of the normalized latency (the constructed latency

normalized to the end-to-end latency) of all the 50 models across systems and benchmark

granularities. Model execution in a framework is system-dependent, thus the performance

construction accuracy is not only model-dependent but also system-dependent. Overall, the

estimated latency is within 5% (e.g., G = 3, 5, 9, 10) to 11% (G = 1) of the model end-to-end

latency across systems. This demonstrates that DLBricks provides a tight estimate to the

input models’ actual performance across systems.

3.3.2 Benchmarking Time Reduction

DLBricks decreases the benchmarking time by only evaluating the unique layer sequences

within and across models. Recall from Section 3.1.2 that for all the 50 models, the total

number of layers is 10, 815, but only 1, 529 are unique (i.e. 14% are unique). Figure 3.12

shows the speedup of the total benchmarking time across systems as benchmark granularity

varies. The benchmarking time speedup is calculated as the sum of the end-to-end latency

of all models divided by the sum of the latency of all the generated benchmarks. Up to

4.4× benchmarking time speedup is observed for G = 1 on the c5.xlarge system. The

speedup decreases as the benchmark granularity increases. This is because as the benchmark

granularity increases, the chance of having repeated layer sequences within and across models

decreases.

Figure 3.11 and Figure 3.12 suggest a trade-off exists between the performance construc-

tion accuracy and benchmarking time speedup and the trade-off is system-dependent. For

example, while G = 1 (layer granularity model decomposition and construction) produces

the maximum benchmarking time speedup, the constructed latency is slightly less accurate

19

��������� ���������� ��������� ����������

� � � � ��
����

����

����

����

����

��������� �����������

�
�
�
�
�
�
�

�
�
��
�
���
�
�
�
�
��
�
�
�

Figure 3.11: The geometric mean of the normalized latency (constructed vs end-to-end latency) of
all the 50 models on the 4 systems with varying benchmark granularity from 1 to 10.

��������� ���������� ��������� ����������

� � � � ��
���

���

���

���

���

���

��������� �����������

�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

Figure 3.12: The speedup of total benchmarking time for all the models across systems and bench-
mark granularities.

comparing to other G values on the systems. Since this accuracy loss is small, overall G = 1

is a good choice of benchmark granularity configuration for DLBricks given the current DL

software stack on CPUs.

3.4 RELATED WORK

To characterize the performance of DL models, both industry and academia have invested

in developing benchmark suites that characterize models and systems. The benchmarking

methods are either end-to-end benchmarks (performing user-observable latency measurement

on a set of representative DL models [3, 4, 6]) or are micro-benchmarks [4, 5, 22] (isolating

common kernels or layers that are found in models of interest). The end-to-end benchmarks

target end-users and measure the latency or throughput of a model under a specific workload

scenario. The micro-benchmark approach, on the other hand, distills models to their basic

atomic operations (such as dense matrix multiplies, convolutions, or communication rou-

20

tines) and measures their performance to guide hardware or software design improvements.

While both approaches are valid and have their use cases, their benchmarks are manually

selected and developed. As discussed, curating and maintaining these benchmarks requires

significant effort and, in the case of lack of maintenance, these benchmarks become less

representative of real-world models.

DLBricks complements the DL benchmarking landscape as it introduces a novel bench-

marking methodology which reduces the effort of developing, maintaining, and running DL

benchmarks. DLBricks relieves the pressure of selecting representative DL models and copes

well with the fast-evolving pace of DL models. DLBricks automatically decomposes DL mod-

els into runnable networks and generates micro-benchmarks based on these networks. Users

can specify the benchmark granularity. At the two extremes, when the granularity is 1

a layer-based micro-benchmark is generated, whereas when the granularity is equal to the

number of layers within the model then an end-to-end network is generated. To our knowl-

edge, there has been no previous work solving the same problem and we are the first to

propose such a design.

Previous work [23] also decomposed DL models into layers, but uses the results to guide

performance optimization. DLBricks focuses on model performance and aims to reduce

benchmarking effort. DLBricks shares similar spirit to synthetic benchmark generation [24].

However, to the authors’ knowledge, there has been no previous work on synthetic benchmark

generation for DL.

3.5 DISCUSSION AND FUTURE WORK

Generating Overlapping Benchmarks — The current DLBricks design only considers

non-overlapping layer sequences during benchmark generation. This may inhibit some types

of optimizations (such as layer fusion). A solution requires a small tweak to Algorithm 3.1

where we increment the begin by 1 rather than the end index of the SplitModel algorithm

(line 7). A small modification is also needed within the performance construction step to

pick the layer sequence resulting in the smallest latency. Future work would explore the

design space when the generated benchmarks can overlap.

Adapting to Framework Evolution — The current DLBricks design is based on the

observation that current DL frameworks do not execute data-independent layers in parallel.

Although DLBricks supports both sequential and parallel execution (assuming all data-

independent layers are executed in parallel as described in Section 3.2.2), as DL frameworks

start to have some support of parallel execution of data-independent layers, the current

21

design may need to be adjusted. To adapt DLBricks to this evolution of frameworks, one

can adjust DLBricks to take user-specified parallel execution rules. DLBricks can then use

the parallel execution rules to make a more accurate model performance estimation.

Sparse Models — The current DLBricks design assumes the input models are dense

models. In a sparse model where the layers’ weights are sparse tensors2, the sparsity pattern

(i.e., the distribution of non-zeros) of a layer’s weights affects the performance of the layer. To

adapt DLBricks to sparse models, we need to consider the sparsity pattern of layer weights

when identifying layers as performance building blocks (Section 3.1.1) or exploring their

repeatability (Section 3.1.2). Recall that the sparsity of model layers is fixed in inference,

we can use the sparsity pattern signature and encode it within the layer description. This

would allow us to avoid unifying layers with different sparsity patterns and correctly reflect

the sparsity effects and their influence on the layer performance. Future work would explore

this encoding.

Other Systems — While this work focuses on CPUs, we expect the design to hold for

GPUs and other AI chips. As stated in Observation 1 in Section 3.1.1, a simple summation

of layer-wise latency is an effective approximation of the model’s end-to-end latency given

the current DL software stack on CPUs. On GPUs and AI chips, a summation of layer-wise

latency may no longer be effective due to the more aggressive DL optimizations done on these

systems. Thus, to accommodate DLBricks to GPUs or AI chips, the execution strategy used

in the benchmark generation and performance construction needs to be modified to reflect

the DL model execution on those systems. Future work would explore the design for GPUs

and other AI chips.

Other Use Cases — We are also interested in other use cases that are afforded by the

DLBricks design — model/system comparison and advising for the cloud. For example, it is

common to ask questions such as, given a DL model, which system should I use? or given a

system and a task, which model should I use? Using DLBricks, system providers can curate

a continuously updated database of the generated benchmarks results across different system

offerings. The system providers can then perform a static performance estimate of the user’s

DL model (without running it) and give suggestions as to which system to choose. This

catalog of benchmark performance can also be shared to the public through secured APIs.

2input feature maps are still treated as dense tensors

22

3.6 CONCLUSION

The fast-evolving landscape of DL poses considerable challenges in the DL benchmarking

practice. While benchmark suites are under pressure to be agile, up-to-date, and repre-

sentative, we take a different approach and propose a novel benchmarking design — aimed

at relieving this pressure. Leveraging the key observations that layers are the performance

building block of DL models and the layer repeatability within and across models, DLBricks

automatically generates composable benchmarks that reduce the effort of developing, main-

taining, and running DL benchmarks. Through the evaluation of state-of-the-art models

on representative systems, we demonstrated that DLBricks provides a trade-off between

performance construction accuracy and benchmarking time speedup. As the benchmark

generation and performance construction workflows in DLBricks are fully automated, the

generated benchmarks and their performance can be continuously updated and augmented

as new models are introduced with minimal effort from the user. Thus DLBricks copes with

the fast-evolving pace of DL models.

23

CHAPTER 4: XSP: UNDERSTANDING DL PERFORMANCE ACROSS
STACK

This chapter proposes XSP — an across-stack profiling design that gives a holistic and

hierarchical view of ML model execution. XSP leverages distributed tracing to aggregate

and correlate profile data from different sources. XSP introduces a leveled and iterative

measurement approach that accurately captures the latencies at all levels of the HW/SW

stack in spite of the profiling overhead.

Machine learning/deep learning (ML) models are increasingly being used to solve problems

across many domains such as image classification, object detection, machine translation,

etc. This has resulted in a surge of interest in optimizing and deploying these models on

many hardware types including commodity servers, accelerators, reconfigurable hardware,

mobile/edge devices, and ASICs. As a result, there is an increasing need to profile and

understand the performance of ML models.

Characterizing ML model inference is complex as its performance depends on the interplay

between different levels of the HW/SW stack — frameworks, system libraries, and hardware

platforms. Figure 4.1 shows an example model inference pipeline on GPUs. At the top,

there is the 1 model-level evaluation pipeline. Components at the model-level include input

pre-processing, model prediction, and output post-processing. Within the model prediction

step are the 2 layer-level components — layer operators including convolution (Conv), batch

normalization (BN), softmax, etc. Within each layer are the 3 GPU kernel-level components

— a sequence of CUDA API calls or GPU kernels invoked by the layer. Because of the

complexities of model inference, one needs a holistic view of the execution to identify and

locate performance bottlenecks.

Existing profiling tools or methods only provide a partial view of model execution. To

capture a holistic view of model execution, one has to switch between an array of tools. Take

the current ML profiling on GPUs for example. To measure the model-level latency, one

inserts timing code around the model prediction step of the inference pipeline. To capture

the layer-level information, one uses the ML framework’s profiling capabilities [25,26]. And,

to capture GPU kernel information, one uses GPU profilers such as NVIDIA’s nvprof [8] or

Nsight [9]. The output profiles from the different tools are disjoint; e.g., the GPU kernels

are not correlated with the layers. As a result, one cannot construct Figure 4.1 and identify

that the three GPU kernels shown come from the first Conv layer, for example. This same

issue exists when profiling ML model execution on CPUs.

To correlate profiled events with model layers, vendors modify ML frameworks and instru-

24

Input
Pre-Process

Output
Post-Process

Model
Prediction

…BNData SoftMaxReluConv

Kernel1
Name=ShuffleTensor

Grid=>������@
%ORFN >��������@

Kernel2
Name=OffsetComp

Grid=>������@
%ORFN >��������@

Kernel3
Name=VoltaCUDNN_128x64

Grid=>������@
%ORFN >�������@

GPU Metrics
SP Flop Count=62GFlop

DRAM Read Bytes=12.1MB
DRAM Write Bytes=296MB

Achieved Occupancy=13.2%

Model1

GPU Kernel3

Layer2

Figure 4.1: The model-, layer-, and GPU kernel-level profile of MLPerf ResNet50 v1.5 (Table 4.8)
on Tesla V100 (Table 4.7) with batch size 256 using NVIDIA GPU Cloud TensorFlow v19.06. The
layers executed are data (Data), convolution (Conv), batch normalization (BN), relu (Relu), etc.
The 3 GPU kernels from the first Conv layer are shown along with the GPU metrics of Kernel 3.

ment them to work with their profilers. For example, NVIDIA GPU Cloud [27] (NGC) hosts

frameworks which are instrumented with NVTX [28] markers. The NVTX markers are added

around each layer in the framework and are captured along with GPU events by Nvidia’s

nvprof and Nsight profilers. However, this approach only annotates GPU kernel-level in-

formation with layer names and lacks the layer-level profiling reported by the framework.

Moreover, using these instrumented frameworks creates vendor lock-in — making the profil-

ing and analysis dependent on the vendor’s frameworks and profilers. This is not an option

for ML models developed or deployed using customized or non-vendor supported frameworks.

To address the above issue, we propose XSP [29] — an across-stack profiling design along

with a leveled experimentation methodology. XSP innovatively leverages distributed tracing

to aggregate and correlate the profiles from different sources into a single timeline trace.

Through the leveled experimentation methodology, XSP copes with the profiling overhead

and accurately captures the profiles at each HW/SW stack level. Users can use XSP to

have a smooth hierarchical step-through of model performance at different levels within

the HW/SW stack and identify bottlenecks. Unlike existing approaches, XSP requires no

framework modifications. We implement the profiling design for GPUs and couple it with

an across-stack analysis pipeline. The analysis pipeline consumes the across-stack profiling

trace and performs 15 types of automated analyses (Table 4.1). These analyses allow us to

characterize ML models and their interplay with frameworks, libraries, and hardware. The

25

consistent profiling and automated analysis workflows in XSP enable systematic comparisons

of models, frameworks, and hardware.

This chapter makes the following contributions:

• We propose XSP, an across-stack profiling design that innovatively leverages distributed

tracing to aggregate profile data from different profiling sources and construct a holistic

view of ML model execution.

• We introduce a leveled experimentation methodology that allows XSP to accurately cap-

ture the profile at each HW/SW stack level despite the profiling overhead.

• We implement the design for GPU ML model inference and couple it with an analysis

pipeline that performs 15 types of automated analyses to systematically characterize ML

model execution.

• We conduct comprehensive experiments to show the utility of XSP. We use 65 state-of-

the-art ML models from MLPerf Inference, AI-Matrix, and TensorFlow and MXNet model

zoos. We evaluate the models on 5 representative systems that span the past 4 GPU

generations (Turing, Volta, Pascal, and Maxwell) and present performance insights that

would otherwise be difficult to discern absent XSP.

4.1 ML PROFILING ON GPUS AND RELATED WORK

Researchers leverage different tools and methods to profile ML model execution at each

specific level of the HW/SW stack on GPUs. Figure 4.1 illustrates the model-, layer-, and

GPU kernel-level profiling levels on GPUs.

1 Model-level profiling measures the steps within the model inference pipeline. There

exist active efforts by both research and industry to develop benchmark suites [3,4] to mea-

sure and characterize models under different workload scenarios. For model-level profiling,

researchers manually insert timing code around inference steps such as input pre-processing,

model prediction, and output post-processing. Researchers then use the results as reference

points to compare models or systems.

2 Layer-level profiling measures the layers executed by the ML framework using the

framework’s profilers [25,26]. These framework profilers are either built-in to the framework

or are community-contributed framework plugins. The layer index, name, latency, and

memory allocations are captured by the framework profiler as it is executing the layers.

Researchers explicitly enable the framework’s profiler in their code to get the layer-level

profile in a framework-specific format.

3 GPU kernel-level profiling measures the low-level GPU information. Using NVIDIA’s

nvprof and Nsight profilers, researchers capture the executed GPU kernels information such

26

as their name, latency and metrics. NVIDIA’s nvprof and Nsight profilers are built on top

of the NVIDIA CUPTI library [30], which provides an API to capture CUDA API, GPU

kernel, and GPU metric information.

The disconnect between the above profiling levels prohibits researchers from being able

to have a holistic view of model execution — thus, limiting the types of analysis which

can be performed. Take the MLPerf_ResNet50_v1.5 model in Figure 4.1 for example. One

can use the aforementioned profiling tools to get the most time-consuming layer (the 208th

layer which is named conv2d 48/Conv2D) and the most time-consuming GPU kernel (volta

scudnn 128x64 relu interior nn v1). However, because of the lack of correlation between

the GPU kernels and the layers, no other useful analysis can be performed. E.g, one can-

not figure out the GPU kernels invoked by the most time-consuming layer, or correlate the

most time-consuming GPU kernel to a specific layer within the model. Knowing the corre-

lation between layers and GPU kernels enables more meaningful analyses and informs more

optimization opportunities.

Currently, other than modifying framework source code, no tool or method exists to cor-

relate the GPU kernel-level profile to the layer-level profile. For example, to be able to

correlate GPU kernels to a certain layer, researchers manually instrument the framework’s

source code with NVTX markers to annotate layers [31]. The NVTX markers are captured

by the nvprof or Nsight profilers and kernels within the markers’ ranges belong to the anno-

tated layers. Since the correlation between GPU kernels and layers is highly desired, NVIDIA

provides modified versions of frameworks as Docker containers (NGC) where the frameworks

are already instrumented with NVTX markers. While the profile captured in this approach

correlates GPU kernels with layers, it lacks critical layer-level profiling (such as memory al-

locations performed by a framework for a layer). Furthermore, current implementations [31]

introduce barriers which inhibit frameworks from performing certain optimizations (such as

layer-fusion) since the NVTX layer marking is performed by surrounding each layer with

a “start NVTX marker” layer and an “end NVTX marker” layer. Finally, using vendor

frameworks is not an option for profiling ML models developed with customized frameworks

— a common practice when using user-defined layers.

To overcome the unknown correlation between layers and GPU kernels without vendor

lock-in, there have been efforts [5,22] to develop fine-grained micro-benchmarks of represen-

tative layers. These micro-benchmarks target convolution or RNN layers and are purposely

built for algorithm developers, compiler writers, and system researchers. Using layer param-

eters of popular models, these micro-benchmark measure each layer in isolation. Thus, they

do not reflect how layers are executed by frameworks. At best, micro-benchmarks give a

lower-bound estimate of how layers would perform in an ideal scenario. This lower-bound

27

can be used to pinpoint potential optimizations in the HW/SW stack [23]. Recent bench-

mark suites take a multi-tier approach [4, 7] and provide a collection of benchmarks that

cover both end-to-end model and layer benchmarking.

We believe a profiling design which captures ML model executions at different HW/SW

stack levels and correlates profile data from the different sources — coupled with automated

analyses of the results — would boost the productivity of researchers and help understand

the model/system performance and identify the bottlenecks. The authors are unaware of

any previous work on the aforementioned across-stack profiling. Hence, we design XSP.

4.2 XSP DESIGN AND IMPLEMENTATION

4.2.1 Across-Stack Profiling Through Distributed Tracing

To incorporate profile data from different sources and to create a holistic hierarchical view

of ML model execution, XSP leverages distributed tracing [32–34]. This section presents

XSP’s across-stack profiling design.

Distributed tracing is a technique originally conceived for distributed applications, e.g.,

the ones built using a micro-service architecture. In distributed tracing terminology, a timed

operation representing a piece of work is referred to as a span. Each span contains a unique

identifier (used as its reference), start/end timestamps, and user-defined annotations such

as name, key-value tags, and logs. A span may also contain a parent reference to establish

a parent-child relationship. Each service in a distributed application has a tracer — some

code to create and publish spans. Spans are published to a tracing server which is run on a

local or remote system. The tracing server aggregates the spans published by the different

tracers into one application timeline trace.

We observe similarities between distributed tracing and across-stack profiling. Based on

this observation, we propose XSP, an across-stack profiling design. Profiling across stack

levels can be represented using the distributed tracing terminology by: 1 each profiler within

a stack is turned into a tracer, 2 the profiled events each form a span, 3 each span is tagged

with its stack level, and 4 the parent-child relationship is encoded using a parent reference.

The conversion from the profiled events to spans can be performed online while the profiler is

running, or can be performed off-line by processing the output of the profiler. The published

spans across the stack levels are aggregated by a tracing server into a single timeline trace.

Multiple tracers (or profilers) can exist within a stack level, e.g. both CPU and GPU tracers

can co-exist at system library or hardware level. As a feature supported by distributed

tracing, tracers can be enabled or disabled at runtime.

28

During span creation, we can, in some cases, associate it with a parent (e.g. map the

layer-level spans to the model prediction span). In other cases, because of the use of disjoint

profilers, manually associating the child span with its immediate parent is not possible

(e.g. map the GPU kernel-level spans to the CPU layer-level spans). To reconstruct the

missing parent-child relationship of the profiled events captured by different profilers, XSP’s

profile analysis builds an interval tree [35] and populates it with intervals corresponding to

the spans’ start/end timestamps. Using the interval tree, XSP reconstructs the parent-child

relationship by checking for interval set inclusion (if the interval span s1 contains the interval

span s2 and the level of s1 is one level higher than the level of s2, then s1 is a parent of

s2). It is possible that there are parallel events where it may be ambiguous to determine

a span’s parent. In those cases, XSP requires another profiling run where the parallel

events are serialized to get the missing correlation information. This can be performed by

specifying environment variables without modifications to the application — e.g. setting

either CUDA LAUNCH BLOCKING=1 for GPUs using CUDA or OMP NUM THREADS=1 for CPUs

using OpenMP.

To profile asynchronous functions, XSP captures two spans for each asynchronous function

denoting their asynchronous launch (called a launch span) and future execution (called an

execution span). XSP correlates the two spans using a correlation identifier which is inserted

as a span tag during span creation. XSP uses the launch span’s parent as the parent of the

asynchronous function and uses the execution span to get the performance information or

find child spans. E.g., to profile asynchronous GPU kernels, XSP captures both the kernel

launch and execution spans (as detailed in Section 4.2.2).

4.2.2 Across-stack Profiling on GPUs

While the across-stack profiling design presented above is general, this paper focuses on

the profiling of ML models on GPUs across the model, layer, and GPU kernel level:

1 Model-level profiling — To profile at the model granularity, XSP provides tracing

APIs — startSpan and finishSpan — which can be placed within the inference code to

measure code regions of interest. For example, to measure the time spent running the model

prediction using the framework C APIs, one places the tracing APIs around the calls to TF

SessionRun for TensorFlow or MXPredForward for MXNet. This only requires adding two

extra lines in the user’s inference code.

2 Layer-level profiling — To profile at the layer granularity, XSP uses the ML frame-

work’s existing profiling capability. During runtime, XSP enables the framework profiler,

converts the profile results into spans, and publishes them to the tracing server. In Ten-

29

sorFlow, enabling layer profiling requires calling the framework’s prediction function with

the profiling option enabled. This option is controlled by the RunOptions.TraceLevel

setting which is passed to the TF SessionRun function in TensorFlow. In MXNet, the

MXSetProfilerState function enables and disables layer profiling. Similar mechanisms ex-

ist for other frameworks such as Caffe, Caffe2, PyTorch, and TensorRT. The layer spans are

set to be the children of the model prediction span, and hence each layer are directly corre-

lated to the model prediction step. Since XSP leverages the existing framework’s profiling

capabilities, profiling at the layer level require no modification to the framework’s source

code.

3 GPU kernel-level profiling — To obtain the GPU profile, XSP uses NVIDIA’s

CUPTI library [30]. The CUPTI library captures the CUDA API calls, GPU activities

(GPU tasks such as kernel executions and memory copies), and GPU kernel metrics (low-

level hardware counters such as GPU achieved occupancy, flop count, and memory read/write

for GPU kernels). Similar to Nsight or nvprof (which are built on top of CUPTI), one can

specify with XSP which CUDA APIs, GPU activities, or metrics to capture. At runtime,

XSP converts the captured CUPTI information into spans and publishes them to the tracer

server (asynchronously to avoid added overhead). If profiling GPU metrics is enabled, the

metrics are added as metadata to the corresponding kernel’s span.

GPU kernels are often launched asynchronously by the ML frameworks or libraries. There-

fore, for each kernel two spans are created within the XSP timeline. The CUPTI Callback

API allows one to register a callback function when the code being profiled calls a CUDA

function. XSP uses the CUPTI callback API to capture the CUDA API cudaLaunchKernel

as the launch span. The CUPTI Activity API allows one to asynchronously collect a trace

of the GPU activity. XSP uses the CUPTI activity API to capture the effective kernel dura-

tion as the execution span. XSP uses the kernel launch span to associate it with the parent

layer span and use the execution span to get the kernel performance information. The two

spans are correlated by the correlation id provided by CUPTI. Since this correlation can

potentially be expensive, we perform correlation during profile analysis which aggregates the

information from two GPU kernel spans.

4.2.3 Dealing with Profiling Overhead through Leveled Experimentation

Profiling always comes with overhead. We observe that creating spans online adds neg-

ligible overhead per span (and no overhead exists if the profile is converted offline). Thus,

XSP incurs only the profiling overhead introduced by the integrated profilers. For example,

layer-level profiling adds overhead to the model prediction depending on how many layers

30

are executed. And as with the existing NVIDIA profilers, the GPU-level profiling incurs

overhead, which can be substantial depending on if GPU metric profiling is enabled and the

types of GPU metrics to capture. GPU memory metrics are especially expensive to profile

and can slow down execution by over 100×. This is due to the limited number of GPU

hardware performance counters, which require GPU kernels to be replayed multiple times

to capture the user-specified metrics.

…BN
4.2ms

Data
1.2ms

SoftMax
0.1ms

Relu
2.1ms

Conv
5.1ms

ShflTens
0.1ms

OffstComp
0ms

VoltaCUDNN_128x64
4.9ms

M/L

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms
M

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms Pr
ofi

lin
g

O
ve

rh
ea

d
15

7m
s

…BNData SoftMaxReluConv
5.1ms

M/L/G

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms Pr
ofi

lin
g

O
ve

rh
ea

d
21

5.
2m

s

Pr
ofi

lin
g

O
ve

rh
ea

d
0.

24
m

s

M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling

Figure 4.2: XSP profiles for MLPerf ResNet50 v1.5 with batch size 256 on Tesla V100 (Table VI)
with the model-level (M), model-/layer-level (M/L), and model-/layer-/GPU kernel-level (M/L/G)
profiling. At each level, the green components correctly measure the latency whereas the rest incur
profiling overhead.

31

Profilers at a specific stack level accurately capture the events within that level. And,

since tracers in XSP can be enabled or disabled depending on the characterization target,

the profiling overhead can be controlled by picking the profiling level. For an event at level

n (where level 1 is the model level), the profiling overhead introduced at level n+ 1 can be

quantified by subtracting the latency of the event when profilers up to level n are enabled

from the latency when profilers up to level n+1 are enabled. We refer to the profiling practice

which uses traces from multiple runs with different profiling levels as leveled experimentation.

Through leveled experimentation, XSP gets the accurate timing of the profiled events at all

stack levels.

To demonstrate the profiling overhead and the leveled experimentation, we use the MLPerf

ResNet50 v1.5 model running on the Tesla V100 system (Table 4.7) as an example. Fig-

ure 4.2 shows the model’s XSP profiles at different profiling levels. We can enable the

model-level profiling (M) to get the baseline model prediction latency of 275.1ms. To fur-

ther measure the latency of each layer, we enable both the model- and layer-level profiling

(M/L). While the layer-level profiling adds overhead to the model prediction latency, it ac-

curately captures the latency of each layer. We can quantify this overhead by subtracting

the model prediction latency in the model-level profile from the model prediction latency

in the model-/layer-level profile. We find that the layer-level profiling introduces a 157ms

overhead. We can further perform the GPU kernel-level profiling along with the model-

/layer-level profiling to get a hierarchical view of the model execution (M/L/G). Enabling

the GPU kernel-level profiling adds extra overhead to the model prediction latency — mak-

ing the model prediction step (with the added overhead) take 490.3ms. If we look at the

first convolution layer, the GPU profiling of the 3 child kernels incurs a 0.24ms overhead.

We verified the layer and GPU kernel latencies measured by XSP against what framework

and NVIDIA’s profilers report.

4.2.4 Extensibility

Care was taken to ensure that XSP’s design is extensible. Other profiling tools or methods

can be integrated into XSP by implementing XSP’s tracer interface. Thus, XSP can be

extended with more tracers at each stack level or extended to capture more stack levels.

For example, one can integrate CPU profilers into XSP to capture both CPU and GPU

information within the same timeline. One can also add an ML library profiling level between

the layer- and GPU kernel-level to measure the cuDNN API calls. Adding an application

profiling level above the model level to measure whole applications (possibly distributed

and using more than one ML model) is naturally supported by XSP as it uses distributed

32

Table 4.1: The 15 analyses performed by MLModelScope. The analyses require profiling informa-
tion from one or more levels (M: model-level profile, L: layer-level profile, and G: GPU kernel-level
profile.)

Analysis
Profiling
Provider

End-to-End
Benchmarking

Framework
Profilers

NVIDIA
Profilers MLModelScope

Analysis 1 Model throughput and latency M 3 7 7 3

Analysis 2 Layer information L 7 3 7 3

Analysis 3 Layer latency L 7 3 7 3

Analysis 4 Layer allocated memory L 7 3 7 3

Analysis 5 Layer type distribution L 7 3 7 3

Analysis 6 Layer aggregated latency L 7 3 7 3

Analysis 7 Layer aggregated allocated memory L 7 3 7 3

Analysis 8 GPU information G 7 7 3 3

Analysis 9 GPU roofline G 7 7 3 3

Analysis 10 GPU aggregated information G 7 7 3 3

Analysis 11 Layer aggregated GPU information L/G 7 7 7 3

Analysis 12 Layer aggregated GPU metrics L/G 7 7 7 3

Analysis 13 GPU vs CPU latency L/G 7 7 7 3

Analysis 14 Layer roofline L/G 7 7 7 3

Analysis 15 Model roofline M/L/G 7 7 3 3

tracing. As new profilers are introduced into XSP, one can add more types of analyses to

the automated analysis pipeline.

4.2.5 Integration within MLModelScope Runtime

We integrated XSP within MLModelScope [36], an open-source framework and hardware

agnostic, extensible, and customizable framework for evaluating ML models at scale. For

distributed tracing, we use Jaeger [37] — a production grade [38] distributed tracing library.

XSP uses the frameworks’ C-level API directly to avoid the added overhead introduced by

scripting languages. Consequently, the model inference latency captured at the model level

is as close to the bare metal performance as possible. We wrap the C API calls with tracing

points to capture the model latency, pass the required options for the framework’s layer-level

profiling, and extend XSP to use the CUPTI library.

We also modified the user interface of MLModelScope. Users control the profiling granu-

larity (model, framework, GPU API and activity, and GPU metrics) of the model evaluation

through MLModelScope’s command line, library, or web interface. We also added a profile

ingestion pipeline within XSP which is described in detail in Section 4.2.6.

4.2.6 Across-Stack Analysis

We couple XSP with an automated analysis pipeline which consumes the profiling traces

published to the tracing server. We define 15 analyses that capture across-stack characteris-

tics of ML model execution on GPUs as listed in Table 4.1. The 15 analyses are grouped into

33

1 2 4 8 16 32 64 128 256 512
0

200

400

600

800

BatchSize

In
pu
ts
/s
ec

Figure 4.3: The throughput of MLPerf ResNet50 v1.5 across batch sizes on Tesla V100.

3 categories based on the profiling information required. Since meaningful characterization

requires multiple runs, the pipeline takes traces from a user-defined number of evaluations,

correlates the information, and computes the trimmed mean value (or other user-defined

statistical summaries) for the same performance value (e.g. latency) across runs. This

automated analysis pipeline allows users to systematically and efficiently characterize and

compare ML models.

To illustrate the analyses, we use the TensorFlow MLPerf ResNet50 v1.5 model (ID = 7

in Table 4.8) from the MLPerf Inference v0.5 release. The model is run within the NGC

TensorFlow container v19.06 on an AWS P3 [39] instance (Tesla V100 in Table 4.7). The

P3 instance is equipped with a Tesla V100-SXM2 GPU and achieves a peak throughput of

15.7 TFlops and 900 GB/s global memory bandwidth. Batch size 256 is used in Sections

4.2.6 and 4.2.6, since the model achieves maximum throughput at that batch size. Using

XSP, one can perform analyses that are either difficult or impossible using existing tools or

methods.

Using Model-level Profile

Both model throughput and latency are important to researchers who want to understand

a model’s end-to-end performance. Using only the model-level profiling, XSP automates

the computation of a model’s throughput and latency across batch sizes and generate a

Analysis 1 model information table. XSP then computes the model’s optimal batch size

given a user-defined metric (e.g. a latency target). By default XSP computes the optimal

batch size by evaluating the model across batch sizes and selecting the batch size where

doubling it does not increase the model’s throughput by more than 5%. Figure 4.3 shows the

throughput of MLPerf ResNet50 v1.5 across batch sizes. XSP computes the optimal batch

size as 256, where the model achieves a maximum throughput of 930.7 images/second. The

corresponding batch latency is 275.05ms. Absent XSP, researchers insert timing functions

34

Conv2D (58.56%)

Add (11.43%)
Mul (11.26%)

Relu (9.71%)

AddN (6.93%)

Other (2.11%)

Mul (22.66%)
Conv2D (22.66%)

Add (22.52%)

Relu (19.62%)

AddN (9.88%)

Other (2.65%)

Add (23.5%)
Mul (22.65%)

Conv2D (22.65%)

Relu (20.94%)

AddN (5.56%)

Other (4.72%)

(a)

(b)

(c)

Figure 4.4: Layer statistics for MLPerf ResNet50 v1.5 on Tesla V100: (a) Analysis 5 layer type

distribution, (b) Analysis 6 layer latency aggregated by type, (c) Analysis 7 layer memory alloca-
tion aggregated by type.

around the model prediction code, perform multiple evaluations, and write scripts to compute

the model’s throughput, latency, and optimal batch size.

Using Model- and Layer-level Profiles

Using both the model- and layer-level profiles enables the characterization of layers exe-

cuted by the ML framework. The measured layers may be different from the ones statically

defined in the model graph, since a framework may perform model optimization at runtime.

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

200

400

600

800

Layer Index

A
llo
c
M
em

(M
B
)

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

2000

4000

6000

8000

Layer Index

La
te
nc
y
(υ
s) (a) (b)

Beginning Middle End Beginning Middle End

Figure 4.5: The (a) Analysis 3 latency and (b) Analysis 4 memory allocation for each layer in
MLPerf ResNet50 v1.5 with batch size 256 on Tesla V100. To understand the performance trend,
we divide the model execution into 3 intervals based on the layer index: beginning, middle, and
end.

35

Using the data captured, XSP generates a Analysis 2 layer information table reporting index,

name, shape, latency, and allocated memory of all the layers. For example, Table 4.2 shows

the top 5 most time-consuming layers for MLPerf ResNet50 v1.5.

XSP further uses the profile data to visualize both the Analysis 3 latency per layer and

Analysis 4 allocated memory per layer in layer execution order. Figure 4.5 shows the two

analyses for MLPerf ResNet50 v1.5 at the optimal batch size. We observe that a layer

latency and memory allocation trend exists — the model latency can be mostly attributed

to the early executed layers. Similarly, the memory allocation is high for the early stage

of the model execution, and less so during the middle and end stages. This is because the

early stage of MLPerf ResNet50 v1.5 requires more compute and memory (e.g. dimensions

of tensors are larger, operators are more expensive, etc.).

We can group the layer information by layer type to derive useful layer execution statis-

tics such as Analysis 5 the number of times each layer type is executed (Figure 4.4a), the

Analysis 6 layer latency aggregated by type (Figure 4.4b), and the Analysis 7 layer mem-

ory allocation aggregated by type (Figure 4.4c). We observe that MLPerf ResNet50 v1.5

mostly comprises of Add, Conv2D, Mul, and Relu layers. This is because of the ResNet mod-

ules which have the pattern of Conv → BN → Relu. The ResNet modules get executed by

TensorFlow as a Conv2D → Mul → Add → Relu layer sequence. This same group of layers

dominates both latency and memory allocation, with Conv2D being the most time-consuming

layer type.

Absent XSP, researchers use the framework profiler to gather layer-level information.

Through manually parsing and aggregating the profiling output across runs, researchers can

perform Analysis 2-7. However, since the output format of a framework profiler is framework-

dependent, the analysis scripts developed in this case are also framework-specific.

Using Model-, Layer-, and GPU Kernel-level Profiles

To distill fine-grained performance information, XSP uses model-, layer- and GPU kernel-

level profiles to generate a Analysis 8 GPU kernel information table summarizing all the

kernels in the model prediction. An example is shown in Table 4.3 where the top 5 most

time consuming GPU kernel calls for MLPerf ResNet50 v1.5 are listed. The 5 kernels per-

form either matrix multiplication or convolution. All the GPU metrics supported by the

NVIDIA profiling tools [40] can be captured through XSP, here we focus on flop count sp,

dram read bytes, dram write bytes, and achieved occupancy:

• flop count sp — the total number of single-precision floating-point operations exe-

36

� �� ��� ��� ��� ���

�

�

��

��

���������� ��������� (����/����)

�
��
��
�
�
���

�
�
��
�
�
�
�
�
�

(�
�
�
�
�
/�
)

Figure 4.6: The Analysis 9 roofline analysis for the GPU kernels in MLPerf ResNet50 v1.5 with
batch size 256 on Tesla V100. Kernels within the blue region are memory-bound, whereas the ones
within the orange region are compute-bound.

cuted by a kernel.

• dram read bytes — the total number of bytes read from the GPU’s DRAM to its L2

cache in a kernel.

• dram write bytes — the total number of bytes written from the GPU’s L2 cache to

its DRAM in a kernel.

• achieved occupancy — the ratio of the average active warps per active cycle to the

maximum number of warps per streaming multiprocessor. The achieved occupancy

is an indicator to the level of parallelism for a kernel.

Using both the kernel flop and memory access metrics, XSP calculates the kernel arith-

metic intensity and arithmetic throughput. These parameters are used to perform GPU

kernel roofline [41] analysis. A kernel’s arithmetic intensity is the ratio between the number of

flops and the number of memory accesses: arithmetic intensity = flop count sp

dram read bytes+dram write bytes
.

A kernel’s arithmetic throughput is the ratio between the number of flops and the latency:

arithmetic throughput = flop count sp

kernel latency
. Using the GPU’s theoretical FLOPS and memory

bandwidth, we compute the ideal arithmetic intensity using the equation:

ideal arithmetic intensity = peak FLOPS

memory bandwidth
. The Tesla V100 GPU, for example, has a

peak throughput of 15.7 TFLOPS and a global memory bandwidth of 900 GB/s, hence an

ideal arithmetic intensity of 15.7 TFLOPS
900 GB/s

= 17.44 flops/byte. A kernel is memory-bound if

its arithmetic intensity is less than the GPU’s ideal arithmetic intensity (blue region) and

is compute-bound otherwise (orange region). Analysis 9 visualizes the roofline analysis of all

the GPU kernels (shown in Figure 4.6). As expected, the most time-consuming kernels are

convolution kernels which are all compute-bound.

37

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

20

40

60

80

Layer Index

G
Fl
op
s

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

100
200
300
400
500
600

Layer Index

M
B

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

100

200

300

400

500

Layer Index

M
B

(a) (b) (c)

Figure 4.7: The Analysis 12 total GPU kernel (a) flops, (b) DRAM reads, and (c) DRAM writes
per layer for MLPerf ResNet50 v1.5 with batch size 256 on Tesla V100.

XSP creates a table of Analysis 10 GPU kernel information aggregated by name, as shown

in Table 4.4. The aggregated kernel latency, flops, and DRAM reads and writes are cal-

culated as the sum of all the kernel instances with the same name. The aggregated ker-

nel achieved occupancy is calculated as the weighted sum (by kernel latency) of achieved

occupancy of all the kernel instances with the same name. The aggregated kernel arith-

metic intensity and throughput are calculated using the aggregated flops and memory ac-

cesses. For MLPerf ResNet50 v1.5, we observe that the most time consuming GPU ker-

nel is volta scudnn 128×64 relu interior nn v1 from the cuDNN [42] library, which is

compute-bound and takes 30.87% of the overall model prediction latency. The 2nd and 3rd

most time consuming kernels are scalar product op and scalar sum op and are defined by

the Eigen [43] library, are memory-bound, and take 10.33% and 9.59% of the model inference

latency, respectively.

Since each GPU kernel can be correlated to the layer that invokes it, XSP aggregates

the information of GPU kernels within each layer and builds a table of Analysis 11 GPU

kernel information aggregated by layer. A layer’s kernel latency, flops, DRAM reads and

writes are calculated by adding the corresponding values of all the kernels invoked by that

layer. The layer’s achieved occupancy is calculated as the weighted sum (by kernel latency)

of the achieved occupancy of all the kernels within the layer. As an example, Table 4.5

shows the aggregated GPU kernel information for the top 5 most time-consuming layers in

MLPerf ResNet50 v1.5.

Using this data, XSP visualizes the Analysis 12 total flops, DRAM reads and writes per

layer (shown in Figure 4.7 (a), (b) and (c) respectively). Subtracting a layer’s total GPU

kernel latency from the its overall latency computes the Analysis 13 time not spent per-

forming GPU computation. We call this difference the layer’s non-GPU latency. Figure 4.8

shows the layer’s GPU and non-GPU latency normalized to the overall layer latency for

MLPerf ResNet50 v1.5. The layer arithmetic intensity and throughput are calculated using

the layer’s total flops and memory accesses. A Analysis 14 roofline analysis of all the layers

is performed in Figure 4.9. We observe that the Conv2D layers are the most compute and

memory intensive. The Conv2D, MatMul, BiasAdd, and Softmax layers are compute-bound,

whereas the other layers (Add, Mul, and Relu) are memory-bound.

38

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

20

40

60

80

100

Layer Index

G
P
U
/C
P
U
La
te
nc
y

 N
or

m
al

ize
d

La
te

nc
y

Figure 4.8: The Analysis 13 normalized GPU and Non-GPU latency per layer for
MLPerf ResNet50 v1.5 with batch size 256 on Tesla V100.

XSP aggregates all the GPU kernel information within a model and computes a table

of the Analysis 15 total GPU kernel latency, flop, and memory access information for the

model (shown in Table 4.6). Similar to the layer aggregation, the model kernel latency,

flops, DRAM reads and writes are calculated as the sum of all kernels invoked by the model.

XSP computes the model’s achieved occupancy as the weighted sum (by kernel latency)

of the achieved occupancy of all the kernels invoked. The model’s arithmetic intensity

and throughput are calculated using the model’s total flops and memory accesses. This

information is used to classify the entire model as either compute- or memory-bound.

Figure 4.10 visualizes the roofline analysis for MLPerf ResNet50 v1.5 across batch sizes

on Tesla V100. We see that the model is compute-bound except for batch sizes 16 and 32

where it is memory-bound. Looking into the data in Analysis 2,8,10 we find that the kernels

invoked for the convolution layers sometimes vary across batch sizes. This is because the

cuDNN library relies on heuristics to choose the algorithm used for a convolution layer. The

heuristics depend on the layer input parameters, available memory, etc. For batch sizes less

than 16, the cuDNN convolution API uses the IMPLICIT GEMM algorithm and invokes the

GPU kernel cudnn::detail::implicit convolve sgemm. This kernel has high arithmetic

intensity and dominates the model’s latency. For batch sizes greater than 16, the cuDNN

convolution API chooses a different algorithm — IMPLICIT PRECOMP GEMM algorithm, which

invokes the GPU kernel volta scudnn 128x64 relu interior nn v1. Although this kernel

is compute-bound, for batch sizes less than 64 it has a relatively low arithmetic intensity.

Thus, for both batch sizes 16 and 32, this kernel’s arithmetic intensity is not high enough to

compensate for the effects of the other memory-bound kernels. The result is that the overall

model is memory-bound for batch sizes 16 and 32. We also observe that the overall GPU

achieved occupancy for the model increases as the batch size approaches the optimal batch

size.

Analysis 8 and Analysis 10 are currently the most common types of analyses performed

39

Table 4.2: The top 5 most time consuming layers in Analysis 2 for MLPerf ResNet50 v1.5 with
batch size 256 on Tesla V100. In total, there are 234 layers of which 143 take less than 1 ms.

Layer
Index

Layer
Name

Layer
Type

Layer
Shape

Latency
(ms)

Alloc Mem
(MB)

208 conv2d 48/Conv2D Conv2D 〈256, 512, 7, 7〉 7.59 25.7
221 conv2d 51/Conv2D Conv2D 〈256, 512, 7, 7〉 7.57 25.7
195 conv2d 45/Conv2D Conv2D 〈256, 512, 7, 7〉 5.67 25.7

3 conv2d/Conv2D Conv2D 〈256, 64, 112, 112〉 5.08 822.1
113 conv2d 26/Conv2D Conv2D 〈256, 256, 14, 14〉 4.67 51.4

Table 4.3: The top 5 most time-consuming kernels in Analysis 8 for MLPerf ResNet50 v1.5 on
Tesla V100. In total, 375 kernels are invoked of which 284 take less than 1ms.

Kernel Name
Layer
Index

Layer
Kernel
Latency

(ms)
Kernel
Gflops

Kernel
DRAM
Reads
(MB)

Kernel
DRAM
Writes
(MB)

Kernel
Achieved

Occupancy
(%)

Kernel
Arithmetic
Intensity

(flops/byte)

Kernel
Arithmetic
Throughput
(Tflops/s)

Memory
Bound?

volta cgemm 32x32 tn 221 6.04 77.42 40.33 43.86 12.18 876.97 12.82 7

volta cgemm 32x32 tn 208 6.03 77.42 43.93 43.81 12.19 841.59 12.83 7

volta scudnn 128x128 relu interior nn v1 195 5.48 59.20 27.71 8.40 15.49 1,563.30 10.80 7

volta scudnn 128x64 relu interior nn v1 3 4.91 62.89 11.55 283.05 13.20 203.58 12.81 7

volta scudnn 128x128 relu interior nn v1 57 4.56 59.24 34.83 37.64 15.15 779.55 12.99 7

by researchers using NVIDIA’s profilers. Less common, but still possible, analyses without

XSP are roofline analyses Analysis 9 and Analysis 15 as they require non-trivial scripts. The

scripts parse and aggregate the GPU profilers’ outputs across multiple model evaluations

to compute the roofline model. Analyses Analysis 11-14 cannot be performed using existing

tools as they require both the layer- and GPU kernel-level profiles and their results to be

correlated.

4.3 EVALUATION

We profile and characterize 55 state-of-the-art TensorFlow ML models (Table 4.8) se-

lected from the MLPerf Inference [3], AI-Matrix [4], and TensorFlow model zoo [44–46].

The models solve computer vision tasks including image classification, object detection, in-

stance segmentation, semantic segmentation, and super resolution. To compare TensorFlow

against MXNet, we select an additional 10 MXNet models from the MXNet Gluon model

Table 4.4: The top 5 most time-consuming kernels in Analysis 10 for MLPerf ResNet50 v1.5 on
Tesla V100. 30 unique kernels are invoked in total.

Kernel Name
Kernel
Count

Kernel
Latency

(ms)

Kernel
Latency

Percentage
Kernel
Gflops

Kernel
DRAM
Reads
(MB)

Kernel
DRAM
Writes
(MB)

Kernel
Achieved

Occupancy
(%)

Kernel
Arithmetic
Intensity

(flops/byte)

Kernel
Arithmetic
Throughput
(Tflops/s)

Memory
Bound?

volta scudnn 128x64 relu interior nn v1 34 84.95 30.87 1,053.63 4,429.64 5,494.22 22.58 101.25 12,40 7

Eigen::TensorCwiseBinaryOp<scalar product op> 52 28.43 10.33 2.85 4,181.23 6,371.12 49.72 0.26 0.10 3

Eigen::TensorCwiseBinaryOp<scalar sum op> 51 26.38 9.59 2.64 4,063.49 6,052.22 49.69 0.25 0.10 3

Eigen::TensorCwiseBinaryOp<scalar max op> 48 24.71 8.98 0 3,773.84 5,699.95 98.39 0 0 3

volta scudnn 128x128 relu interior nn v1 4 23.02 8.37 276.64 671.68 335.01 15.96 262.08 12,02 7

40

Table 4.5: The top 5 most time-consuming layers in Analysis 11 for MLPerf ResNet50 v1.5 on
Tesla V100.

Layer
Index

Layer
Latency

(ms)

Kernel
Latency

(ms)
Layer
Gflops

Layer
DRAM
Reads
(MB)

Layer
DRAM
Writes
(MB)

Layer
Achieved

Occupancy
(%)

Layer
Arithmetic
Intensity

(flops/byte)

Layer
Arithmetic
Throughput
(Tflops/s)

Memory
Bound?

208 7.59 7.45 79.74 362.67 548.50 19.43 83.46 10.70 7

221 7.57 7.43 79.74 368.11 551.70 19.43 82.68 10.73 7

195 5.67 5.55 59.20 36.51 17.99 15.80 1,036.10 10.67 7

3 5.08 4.91 62.89 11.55 284.21 13.23 202.78 12.80 7

113 4.67 4.57 59.22 76.65 21.36 15.31 576.17 12.94 7

Table 4.6: The Analysis 15 GPU kernel information aggregated within MLPerf ResNet50 v1.5

across batch sizes on Tesla V100.

Batch
Size

Model
Latency

(ms)

Kernel
Latency

(ms)
Model
Gflops

Model
DRAM
Reads
(MB)

Model
DRAM
Writes
(MB)

Model
Achieved

Occupancy
(%)

Memory
Bound?

1 6.21 5.01 7.94 192.49 194.16 22.65 7

2 6.83 5.93 16.08 290.41 354.54 22.47 7

4 8.51 7.68 30.95 659.11 720.15 26.39 7

8 12.80 11.60 60.66 1,676.07 1,496.81 31.97 7

16 21.90 20.14 118.04 3,969.19 3,024.09 35.58 3

32 40.03 37.14 232.78 7,711.50 5,823.97 38.76 3

64 74.03 67.72 429.08 10,932.22 9,268.27 43.18 7

128 142.89 131.79 873.63 16,071.32 16,105.40 44.48 7

256 275.05 254.25 1,742.39 23,185.11 31,095.45 43.15 7

� �� ��� ��� ��� ���

�

�

��

��

���������� ��������� (����/����)

�
��
��
�
�
���

�
�
��
�
�
�
�
�
�

(�
�
�
�
�
/�
)

Figure 4.9: The Analysis 14 roofline analysis for all the layers in MLPerf ResNet50 v1.5 with
batch size 256 on Tesla V100.

Table 4.7: Five systems with Turing, Volta, Pascal, and Maxwell GPUs are selected for evaluation.
We calculate the ideal arithmetic intensity of each system using the theoretic Flops and memory
bandwidth reported by NVIDIA.

Name CPU GPU
GPU

Architecture
Theoretical

FLOPS (TFLOPS)
Memory Bandwidth

(GB/s)
Ideal Arithmetic

Intensity (flops/byte)

Quadro RTX Intel Xeon E5-2630 v4 @ 2.20GHz Quadro RTX 6000 Turing 16.3 624 26.12
Tesla V100 (AWS P3) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla V100-SXM2-16GB Volta 15.7 900 17.44
Tesla P100 Intel Xeon E5-2682 v4 @ 2.50GHz Tesla P100-PCIE-16GB Pascal 9.3 732 12.70
Tesla P4 Intel Xeon E5-2682 v4 @ 2.50GHz Tesla P4 Pascal 5.5 192 28.34
Tesla M60 (AWS G3) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla M60 Maxwell 4.8 160 30.12

41

����������

��
�

�
�

�

� � �� �� �� �� ��

�

�

��

��

���������� ��������� (����/����)

�
��
��
�
�
���

�
�
��
�
�
�
�
�
�

(�
�
�
�
�
/�
)

Figure 4.10: The roofline analysis for MLPerf ResNet50 v1.5 across batch sizes on Tesla V100

using Analysis 15 .

zoo [47] (Table 4.10) that are comparable to the TensorFlow models. We evaluated the

models using NGC TensorFlow container v19.06, and NGC MXNet container v19.06 on 5

representative GPU systems listed in Table 4.7. This section presents insights about the

models, frameworks, and GPU systems using the XSP’s analyses described in Section 4.2.6.

4.3.1 Model Evaluation

Using the model- and layer-level profiling data, we look at all 55 TensorFlow models in

Table 4.8. Models solving the same task are clustered together and are then sorted by their

reported accuracy. The table shows each model’s accuracy, model graph size, online latency

(batch size is 1), maximum throughput, optimal batch size (described in Section 4.2.6), and

percentage of latency attributed to convolution layers.

Model latency percentage of convolution layers — Using the model- and layer-level

profile data, we calculate the percentage of model latency attributed to convolution layers

(Tensorflow’s Conv2D and DepthwiseConv2dNative layers) with each model’s optimal batch

size on Tesla V100. This is shown in the last column of Table 4.8. We observe that: 1 the

convolution layer latency percentage ranges between 36.3% and 80.2% for image classification

models. This suggests that convolution layers still dominate (but not exclusively) the latency

of image classification models — even on recent GPUs. This is not true for 2 object detection

models, which (except for Faster RCNN NAS) attribute only 0.6% to 14.9% of latency to

convolution layers. For these models, the dominating layer type is Where, which reshapes

a tensor with respect to a user-defined operator. For 3 instance segmentation models,

convolution layers dominate the model latency; except for Mask RCNN Inception v2 whose

latency is also dominated by Where layers. For 4 semantic segmentation models, the model

latency is affected by both the convolution layers and the memory-bound layers (such as

42

Table 4.8: We use 55 TensorFlow models from MLPerf, AI-Matrix, and TensorFlow Slim, Detection
Zoo, DeepLab for evaluation. These models are sorted by the reported accuracy and solve different
tasks: Image Classification (IC), Object Detection (OD), Instance Segmentation (IS), Semantic
Segmentation (SS), and Super Resolution (SR). We measured the peak throughput achieved on
Tesla V100 and find the optimal batch size for each model. Online latency is defined as the model
latency for batch size 1. Graph size is the size of the frozen graph for a model.

ID Name Task Accuracy
Graph Size

(MB)
Online

Latency (ms)
Max Throughput

(Inputs/Sec)
Optimal

Batch Size
Convolution

Percentage (%)

1 Inception ResNet v2 IC 80.40 214 23.24 346.6 128 68.8
2 Inception v4 IC 80.20 163 17.29 436.7 128 75.7
3 Inception v3 IC 78.00 91 9.85 811.0 64 72.8
4 ResNet v2 152 IC 77.80 231 14.05 466.8 256 60.5
5 ResNet v2 101 IC 77.00 170 10.39 671.7 256 60.9
6 ResNet v1 152 IC 76.80 230 13.70 541.3 256 69.6
7 MLPerf ResNet50 v1.5 IC 76.46 103 6.22 930.7 256 58.7
8 ResNet v1 101 IC 76.40 170 10.01 774.7 256 69.9
9 AI Matrix ResNet152 IC 75.93 230 14.61 468.0 256 61.8

10 ResNet v2 50 IC 75.60 98 6.23 1,119.7 256 58.1
11 ResNet v1 50 IC 75.20 98 6.19 1,284.6 256 67.5
12 AI Matrix ResNet50 IC 74.38 98 5.99 1,060.3 256 57.9
13 Inception v2 IC 73.90 43 6.45 2,032.0 128 68.2
14 AI Matrix DenseNet121 IC 73.29 31 12.80 846.4 32 49.3
15 MLPerf MobileNet v1 IC 71.68 17 3.15 2,576.4 128 52.0
16 VGG16 IC 71.50 528 21.33 687.5 256 74.7
17 VGG19 IC 71.10 548 22.10 593.4 256 76.7
18 MobileNet v1 1.0 224 IC 70.90 16 3.19 2,580.6 128 51.9
19 AI Matrix GoogleNet IC 70.01 27 5.35 2,464.5 128 62.9
20 MobileNet v1 1.0 192 IC 70.00 16 3.11 3,460.8 128 52.5
21 Inception v1 IC 69.80 26 5.30 2,576.6 128 63.7
22 BVLC GoogLeNet Caffe IC 68.70 27 6.53 951.7 8 55.1
23 MobileNet v1 0.75 224 IC 68.40 10 3.18 3,183.7 64 51.1
24 MobileNet v1 1.0 160 IC 68.00 16 3.01 4,240.5 64 55.4
25 MobileNet v1 0.75 192 IC 67.20 10 3.05 4,187.8 64 51.8
26 MobileNet v1 0.75 160 IC 65.30 10 2.81 5,569.6 64 53.1
27 MobileNet v1 1.0 128 IC 65.20 16 2.91 6,743.2 64 55.9
28 MobileNet v1 0.5 224 IC 63.30 5.2 3.55 3,346.5 64 63.0
29 MobileNet v1 0.75 128 IC 62.10 10 2.96 8,378.4 64 55.7
30 MobileNet v1 0.5 192 IC 61.70 5.2 3.28 4,453.2 64 63.3
31 MobileNet v1 0.5 160 IC 59.10 5.2 3.22 6,148.7 64 63.7
32 BVLC AlexNet Caffe IC 57.10 233 2.33 2,495.8 16 36.3
33 MobileNet v1 0.5 128 IC 56.30 5.2 3.20 8,924.0 64 64.1
34 MobileNet v1 0.25 224 IC 49.80 1.9 3.40 5,257.9 64 60.6
35 MobileNet v1 0.25 192 IC 47.70 1.9 3.26 7,135.7 64 61.2
36 MobileNet v1 0.25 160 IC 45.50 1.9 3.15 10,081.5 256 68.4
37 MobileNet v1 0.25 128 IC 41.50 1.9 3.15 10,707.6 256 80.2
38 Faster RCNN NAS OD 43 405 5079.32 0.6 4 85.2
39 Faster RCNN ResNet101 OD 32 187 91.15 14.67 4 13
40 SSD MobileNet v1 FPN OD 32 49 47.44 33.46 8 4.8
41 Faster RCNN ResNet50 OD 30 115 81.19 16.49 4 10.8
42 Faster RCNN Inception v2 OD 28 54 61.88 22.17 4 4.7
43 SSD Inception v2 OD 24 97 50.34 32.26 8 2.5
44 MLPerf SSD MobileNet v1 300x300 OD 23 28 47.49 33.51 8 0.8
45 SSD MobileNet v2 OD 22 66 48.72 32.4 8 1.3
46 MLPerf SSD ResNet34 1200x1200 OD 20 81 87.4 11.44 1 14.9
47 SSD MobileNet v1 PPN OD 20 10 47.07 33.1 16 0.6
48 Mask RCNN Inception ResNet v2 IS 36 254 382.52 2.92 4 29.2
49 Mask RCNN ResNet101 v2 IS 33 212 295.18 3.6 2 42.4
50 Mask RCNN ResNet50 v2 IS 29 138 231.22 4.64 2 40.3
51 Mask RCNN Inception v2 IS 25 64 86.86 17.25 4 5.7
52 DeepLabv3 Xception 65 SS 87.8 439 72.55 13.78 1 49.2
53 DeepLabv3 MobileNet v2 SS 80.25 8.8 10.96 91.27 1 42.1
54 DeepLabv3 MobileNet v2 DM0.5 SS 71.83 7.6 9.5 105.21 1 41.5
55 SRGAN SR - 5.9 70.29 14.23 1 62.3

43

Table 4.9: In-depth characterization of the 37 image classification models listed in Table 4.8 at the
optimal batch sizes on Tesla v100. The model execution is partitioned into beginning (B), middle
(M) , and end (E) intervals based on layer index. The most intensive stages for latency, memory
allocation, flops and memory access are shown.

ID

Batch
Latency

(ms)

GPU
Latency

Percentage
(%)

GPU
Gflops

GPU
DRAM
Read
(GB)

GPU
DRAM
Write
(GB)

GPU
Achieved

Occupancy
(%)

Arithmetic
Intensity

(Flops/byte)

Arithmetic
Throughput

(TFlops)
Memory
Bound?

Latency
Stage

Allocated
Memory

Stage
flops
Stage

Memory
Access
Stage

1 400.06 94.77 2,910.44 50.64 38.74 39.74 32.56 7.68 7 M M M M
2 324.49 93.92 2,492.92 27.25 24.48 33.79 48.19 8.18 7 M M M M
3 86.39 88.05 552.22 10.54 8.18 34.6 29.50 7.26 7 M M M B
4 593.97 96.32 3,954.06 58.90 65.44 43.51 31.80 6.91 7 E E M E
5 412.37 94.90 2,725.14 39.08 44.62 42.88 32.56 6.96 7 E E M E
6 517.11 95.90 3,947.38 51.17 54.77 42.78 37.26 7.96 7 E E M E
7 275.05 92.43 1,742.39 24.40 32.61 43.15 30.62 6.85 7 B E M E
8 360.90 94.29 2,720.62 33.87 37.12 42.19 38.32 7.99 7 E E M E
9 591.47 96.29 4,034.74 63.70 72.16 43.9 29.70 7.08 7 B M B M

10 245.07 91.74 1,480.10 21.84 28.29 42.96 29.52 6.58 7 E E M E
11 213.52 90.42 1,477.33 18.79 22.76 42.29 35.56 7.65 7 E E M E
12 257.80 91.89 1,561.76 24.86 33.39 44.26 26.81 6.59 7 B M B M
13 68.27 83.62 363.33 9.67 7.32 40.23 21.38 6.36 7 B B M B
14 40.24 93.32 150.02 10.13 7.93 44.94 8.30 4.00 3 B B B B
15 51.57 79.76 148.18 7.08 6.81 52.58 10.67 3.60 3 M M M M
16 399.31 94.98 2,655.39 24.38 33.23 26.14 46.10 7.00 7 B B M E
17 464.47 95.61 3,207.02 26.44 37.65 24.91 50.04 7.22 7 B B M E
18 51.59 79.73 148.18 6.97 6.75 52.59 10.80 3.60 3 M M M M
19 56.08 80.20 259.14 7.63 6.18 42.16 18.76 5.76 7 M B M B
20 38.48 79.55 108.93 6.51 6.19 52.32 8.58 3.56 3 M M M B
21 53.35 79.43 252.06 7.21 5.61 41.74 19.67 5.95 7 M B M B
22 9.08 80.00 20.26 0.73 0.84 33.87 12.97 2.79 3 E B E B
23 20.82 73.14 45.10 4.86 4.11 52.73 5.03 2.96 3 M M M M
24 14.92 78.26 38.17 3.24 2.88 48.92 6.23 3.27 3 M M M M
25 15.69 72.61 33.10 3.52 3.08 52.02 5.01 2.91 3 M M M M
26 11.30 71.86 23.14 2.31 2.17 51.01 5.17 2.85 3 M M M M
27 9.86 77.23 24.39 1.90 1.84 47.78 6.54 3.20 3 M M M M
28 20.00 71.93 52.03 2.99 2.85 43.87 8.91 3.62 3 B M B M
29 7.75 71.35 14.80 1.26 1.35 47.12 5.68 2.68 3 M M M M
30 15.07 71.75 38.22 2.08 2.09 43.27 9.17 3.53 3 B M B M
31 10.91 71.38 26.62 1.29 1.42 41.43 9.83 3.42 3 B M B M
32 6.52 68.69 15.36 0.76 0.51 37.31 12.11 3.43 3 B B B B
33 7.44 70.48 17.05 0.71 0.88 39.88 10.73 3.25 3 B M B M
34 11.95 53.93 14.79 1.25 1.42 44.25 5.52 2.30 3 B M B M
35 9.09 53.68 10.87 0.84 1.02 43.46 5.82 2.23 3 B M B M
36 25.36 60.78 36.75 3.26 3.09 42.39 5.79 2.38 3 B M B M
37 23.71 70.01 23.81 1.87 2.31 39.8 5.69 1.43 3 M M B M

Transpose, Add, and Mul). Finally, 5 the super resolution model SRGAN is dominated by

convolution layers.

GPU latency, flops and memory accesses — Using the model-, layer-, and GPU

kernel-level profiling, we perform an in-depth analyses of the 37 image classification models

at their optimal batch sizes on Tesla V100. Table 4.9 shows the model’s latency at the

optimal batch size, GPU latency percentage (i.e. the latency due to GPU kernel execution

normalized to the model latency), GPU metrics, and arithmetic intensity and throughput. It

also shows the most intensive stage for latency, memory allocation, GPU flops, and memory

access throughout the model execution. We find that across the models the GPU latency

percentage varies from 53.68% to 95.61% and is roughly proportional to the number of flops

and memory accesses (the sum of GPU DRAM reads and writes). We also observe that

models with high batch latency tend to have a high GPU latency percentage. This either

suggests that the GPU saturates for these models or that the models are not well optimized

for GPU execution. The low GPU latency percentage for some models shows that the time

44

Table 4.10: Characterization of 10 MXNet models, which are comparable to the TensorFlow ones
listed in Table 4.8 (labeled with the same ID). The online latency is measured at batch size 1 and
the others are measured at the model’s optimal batch size on Tesla V100. The online latency and
maximum throughput are normalized to TensorFlow’s.

ID Name

Normalized
Online

Latency

Optimal
Batch
Size

Normalized
Maximum

Throughput

GPU
Latency

Percentage
GPU
Gflops

GPU
DRAM
Read
(GB)

GPU
DRAM
Write
(GB)

GPU
Achieved

Occupancy
(%)

Arithmetic
Intensity

(Flops/byte)

Arithmetic
Throughput

(TFlops)
Memory
Bound?

4 ResNet v2 152 1.76 256 1.03 97.00 4,116.42 49.05 52.62 46.91 38.61 7.95 7

5 ResNet v2 101 1.59 256 1.02 96.77 2,882.65 32.33 36.16 46.38 40.14 7.96 7

6 ResNet v1 152 1.68 256 0.90 96.20 3,828.11 51.29 55.00 49.40 34.35 7.54 7

8 ResNet v1 101 1.60 256 0.91 95.67 2,589.76 33.93 37.84 49.57 34.42 7.45 7

10 ResNet v2 50 1.41 256 1.03 97.10 1,636.10 17.03 22.60 46.98 39.37 7.60 7

11 ResNet v1 50 1.32 256 0.96 94.90 1,339.50 18.37 24.04 51.97 30.12 6.76 7

18 MobileNet v1 1.0 224 1.00 256 1.54 93.75 298.38 6.91 8.29 63.53 18.71 4.96 7

23 MobileNet v1 0.75 224 0.95 64 1.76 79.49 45.00 3.47 2.73 63.38 6.92 4.08 3

28 MobileNet v1 0.5 224 0.87 64 1.35 81.01 51.47 1.99 1.82 48.68 12.88 4.49 3

34 MobileNet v1 0.25 224 0.93 64 1.64 64.32 13.77 0.81 0.90 50.57 7.64 2.88 3

spent within non-GPU code (framework overhead, GPU stalls due to synchronization, etc.)

is high.

Batch size vs GPU achieved occupancy — The GPU achieved occupancy is a partial

indicator of GPU utilization. Table 4.6 shows that as a model’s batch size approaches the

optimal, its overall achieved GPU occupancy increases.

Roofline analysis — Figure 4.12 shows the roofline analysis for all 37 image classification

models with their optimal batch sizes on Tesla V100. Out of 37 models, 20 are memory-

bound. Models with low compute and memory requirements tend to be memory-bound and

have lower accuracy, e.g. some variants of MobileNet which target edge devices. All models

achieve at most 52% of the theoretical peak throughput, suggesting that there is room for

optimizations.

Latency, memory allocation, flops, and memory access trend — To understand the

performance trend within model execution, we divide the model execution into 3 intervals,

beginning, middle, and end, based on the layer index. Each stage includes one third of the

total layers. We then compute the total latency, flops, and memory accesses within each

interval and identify which interval dominates. The last 4 columns in Table 4.9 show the

results of the 37 image classification models on Tesla V100. The demanding intervals vary

across models and suggest that one can potentially interleave multiple model executions to

increase GPU utilization.

4.3.2 ML Framework Evaluation

To compare ML frameworks, 10 MXNet models are selected from the MXNet model

zoo [47]. We choose 6 variants of ResNet which are compute-intensive and are compute-

bound (at the optimal batch size), and 4 variants MobileNet which are less compute-intensive

and are memory-bound. The models (shown in Table 4.10) are comparable to the TensorFlow

45

System 1 System 2 System 3 System 4 System 5

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

Th
ro
ug
hp
ut

(in
pu
ts
/s
)

1 2 4 8 16 32 64 128 256

5
10

50
100

500
1000

Batch Size

Lo
g
G
P
U
La
te
nc
y
(m
s)

(a)

(b)

System 1 System 2 System 3 System 4 System 5

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

Th
ro
ug
hp
ut

(in
pu
ts
/s
)

1 2 4 8 16 32 64 128 256

5
10

50
100

500
1000

Batch Size

Lo
g
G
P
U
La
te
nc
y
(m
s)

System 1 System 2 System 3 System 4 System 5

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

Th
ro
ug
hp
ut

(in
pu
ts
/s
)

1 2 4 8 16 32 64 128 256

5
10

50
100

500
1000

Batch Size

Lo
g
G
P
U
La
te
nc
y
(m
s)

System 1 System 2 System 3 System 4 System 5

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

Th
ro
ug
hp
ut

(in
pu
ts
/s
)

1 2 4 8 16 32 64 128 256

5
10

50
100

500
1000

Batch Size

Lo
g
G
P
U
La
te
nc
y
(m
s)

System 1 System 2 System 3 System 4 System 5

1 2 4 8 16 32 64 128 256
0

200

400

600

800

Batch Size

Th
ro
ug
hp
ut

(in
pu
ts
/s
)

1 2 4 8 16 32 64 128 256

5
10

50
100

500
1000

Batch Size

Lo
g
G
P
U
La
te
nc
y
(m
s)

Quadro_RTX Tesla_V100 Tesla_P100 Tesla_P4Tesla_P4 Tesla_M60

Figure 4.11: The throughput and latency (log scale) of MLPerf ResNet50 v1.5 across batch sizes
and systems.

models. We perform the comparison between the TensorFlow and MXNet frameworks on

Tesla V100. The online latency and maximum throughput in the Table 4.10 are normalized

to the corresponding values using TensorFlow. We use XSP to compute the optimal batch

size for each MXNet model. Except for model 18, the optimal batch size for all MXNet

models match the corresponding TensorFlow models.

Compute-bound models — Table 4.10 shows that the online latency (batch size 1) of

MXNet ResNets is higher than that of the corresponding TensorFlow model. After looking

into the analysis results, we find that while the total GPU kernel latencies of TensorFlow

and MXNet ResNets are about the same, the MXNet ResNets have a much higher non-GPU

latency. MXNet ResNet v1 50, for example, has a non-GPU latency of 4.44ms (55.1% of

the total online latency) whereas it is only 2.18ms for TensorFlow ResNet v1 50 (35.3%

of the total). We observe that as the batch size increases (and the model becomes more

compute-bound) the percentage of the non-GPU latency decreases and MXNet ResNets

achieve about the same maximum throughput as TensorFlow ResNets. At the optimal

batch size, TensorFlow and MXNet ResNets have comparable GPU latency percentage,

flops, memory accesses, achieved occupancy, and roofline results. This suggests that MXNet

incurs a fixed overhead for model execution which is more pronounced for small batch sizes.

46

��
��

��
��

��

��

��

����

����
�� ��

��

��
��

�

�

�

�

�

�
��

� �� �� �� �� ��

�

�

��

��

���������� ��������� (����/����)

�
��
��
�
�
���

�
�
��
�
�
�
�
�
�

(�
�
�
�
�
/�
)

Figure 4.12: The roofline analysis for the 37 image classification models with their the optimal
batch sizes on Tesla V100.

Memory-bound models — For the less compute-intensive MobileNets, we observe that

MXNet achieve the same online latency as the corresponding TensorFlow model. However,

as the batch size increases (and the models become memory-bound). we find that MXNet

MobileNets has fewer memory accesses and therefore a higher achieved GPU occupancy

compared to the TensorFlow models. As a result, MXNetMobileNets achieve between 35%

and 74% more throughput at their optimal batch sizes (shown in Table 4.10). Further GPU

kernel-level analysis attributes the cause to the Eigen library. The Eigen library is used by

TensorFlow (but not MXNet) for element-wise layers and it incurs excessive DRAM reads

and writes. This becomes a performance-limiting factor for memory-bound models.

4.3.3 System Evaluation

We use XSP to evaluate MLPerf ResNet50 v1.5 on all 5 GPU systems in Table 4.7 using

the NGC TensorFlow container. We fix the software stack (TensorFlow, cuDNN, cuBLAS,

CUDA version, etc.) on all 5 systems to be the same. Figure 4.11a shows the throughput

across systems and batch sizes. Figure 4.11b shows the GPU latency (the total latency

of all the GPU kernel calls) in log scale for the 5 systems across batch sizes. Although

the Quadro RTX GPU has a slightly higher peak FLOPS compared to Tesla V100, it has a

much lower memory bandwidth. Hence, Quadro RTX struggles on memory-bound layers and

performs slightly worse when compared to Tesla V100. We observe that the performance at

each batch size differs across systems. The performance also scales differently across systems

with respect to the batch size.

Looking at the GPU kernel-level profile for each system, we find that the GPU kernels

invoked are system-dependent — even with the same batch size and software stack. Both

Quadro RTX and Tesla V100 call the same set of GPU kernels, while the other 3 systems use

47

a different set of GPU kernels. This is because the same cuDNN API may use different GPU

kernels for different GPU systems. For example, the convolution layers for batch size 256

on Tesla P100, Tesla P4, and Tesla M60 invoke the maxwell scudnn * kernels, whereas

on Quadro RTX and Tesla V100 the volta scudnn * kernels are invoked. This implies that

cuDNN uses optimized kernels for GPU generations after Volta. Furthermore, because of

the cuDNN algorithm selection heuristics, the distribution of the kernel calls differs across

systems. For example, Tesla V100 calls the volta scudnn 128x64 relu interior nn v1

kernel 34 times whereas Quadro RTX calls it 18 times (the other 16 being dispatched to the

volta scudnn 128x128 relu interior nn v1 kernel).

4.4 CONCLUSION

A big hurdle in optimizing and deploying ML workloads is understanding their perfor-

mance characteristics across the HW/SW stack. The analyses currently performed on ML

models and systems are largely limited by the lack of correlation between profiles from dif-

ferent profiling tools or methods. This paper proposes XSP, an across-stack profiling design

that aggregates profile data from different sources and correlates them to construct a holistic

and hierarchical view of ML model execution. While the across-stack profiling design is gen-

eral, this paper focuses on how it enables in-depth automated profiling and characterization

of ML models on GPUs. We use XSP’s profiling and analysis capabilities to systematically

characterize 65 state-of-the-art ML models. Through the 15 types of analysis introduced,

we derive meaningful insights that would otherwise be difficult to discern without XSP.

We show that XSP helps researchers understand the sources of inefficiency in ML models,

frameworks, and systems.

48

CHAPTER 5: BENANZA: AUTOMATIC µBENCHMARK GENERATION
TO COMPUTE “LOWER-BOUND” LATENCY AND INFORM

OPTIMIZATIONS OF DEEP LEARNING MODELS

This chapter presents Benanza, a sustainable and extensible benchmarking and analysis

design that speeds up the characterization/optimization cycle of DL models on GPUs. Ben

anza consists of four major components: a model processor that parses models into an inter-

nal representation, a configurable benchmark generator that automatically generates micro-

benchmarks given a set of models, a database of benchmark results, and an analyzer that

computes the “lower-bound” latency of DL models using the benchmark data and informs op-

timizations of model execution. The “lower-bound” latency metric estimates the ideal model

execution on a GPU system and serves as the basis for identifying optimization opportunities

in frameworks or system libraries.

Both industry and academia have invested heavily in developing benchmarks to character-

ize DL models and systems [3–7]. Characterization is followed by optimizations to improve

the model performance. However, there is currently a gap between the benchmarking re-

sults and possible optimizations to perform. Researchers use profilers, such as nvprof [8],

Nsight [9], and VTune [10], to profile and get low-level GPU and CPU information. With

ample knowledge of how models execute and utilize system resources, researchers manually

identify bottlenecks and inefficiencies within model execution using the profilers. Researchers

then make hypotheses of solutions, and try out different ideas to optimize the model execu-

tion — which may or may not pan out. This manual and ad-hoc process requires a lot of

effort and expertise and slows down the turnaround time for model optimization and system

tuning.

����� ������ �����

� � � � � � � � � ��
�

��

��

��

��

���

����� �����

%
�
�
�
�
��
�

�
�
��
�
�
�
��
�

Figure 5.1: The GPU kernel time breakdown for all 30 models (listed in Table 5.1) on Tesla V100
(Table 5.3) using batch size 1. Both cuDNN and cuBLAS invoke child GPU kernel(s) asyn-
chronously in the model executions, we therefore measure the time of kernels launched by cuDNN
and cuBLAS APIs rather than the time of the API itself.

49

Thus there is a need for a systematic DL benchmarking and subsequent analysis design

that can guide researchers to potential optimization opportunities and assess hypothetical

execution scenarios. Since for GPUs model execution latency is determined by the hardware,

framework, and system libraries (primarily cuDNN [42] and cuBLAS [48] for DL), answers

to the following questions are highly desired by researchers: Question 1 what is the poten-

tial latency speedup if optimizations are performed? Question 2 Are independent layers

executed in parallel? Question 3 Are convolution layers using the optimal convolution al-

gorithms? Question 4 Are there any inefficiencies or unexpected behavior in a framework?

Does the execution Question 5 fuse layers or Question 6 leverage Tensor Cores, and what

are the benefits? We motivate our design by answering these 6 questions, while ensuring the

sustainability and extensibility of the design.

To answer these questions, we first propose a new benchmarking metric: “lower-bound”

latency. The “lower-bound” latency estimates the ideal latency of a DL model given a

software and hardware stack, and is based on the following observations: (1) DL models are

executed as layers in frameworks and thus layers form the performance building blocks of DL

models. (2) Frameworks delegate execution of common layers to either cuDNN or cuBLAS

(shown in Figure 5.1). The “lower-bound” latency is defined in terms of the latencies of

the cuDNN and cuBLAS API functions invoked by model layers (framework overhead and

memory transfers are ignored). We refine the “lower-bound” latency and define it under

sequential execution mode (all layers are executed sequentially) and parallel execution mode

(data-independent layers are executed asynchronously).

This chapter presents Benanza (pronounced bonanza) — an sustainable and extensible

benchmarking and analysis design. Benanza consists of a set of modular components: (1) a

model processor to process input ONNX models into a set of unique layers (layers are con-

sidered the same if they have the same layer type, shape, and parameters), (2) a benchmark

generator to automatically generate parameterized cuDNN and cuBLAS micro-benchmarks

from the unique layers, (3) a performance database to store historical benchmark results, and

(4) an analyzer to compute the “lower-bound” latency of DL models and inform potential

optimizations (Question 1-6).

Benanza is architected to be sustainable. The benchmarking workflow of Benanza is

highly automated and minimizes the benchmark development and maintenance effort. Ben

anza uses the observation that DL models have repeated layers (i.e. non-unique) within

and across models to decrease the time to benchmark. When a new model is introduced,

only the newly un-benchmarked layers that do (not in the performance database) need to

be benchmarked. Although the focus of the chapter is on NVIDIA GPUs using cuDNN

and cuBLAS, the design proposed is extensible and users can incorporate other benchmark

50

runtimes that target other software libraries or hardware such as: frameworks’ API or MKL-

DNN for CPUs.

In summary, this paper makes the following contributions:

• We propose a “lower-bound” latency metric for DL models based on the observation that

the latency of a DL model is bounded by the latencies of the cuDNN and cuBLAS API

calls corresponding to the model layers. The “lower-bound” latency metric estimates the

ideal latency of a model given a specific GPU hardware and software stack.

• We present Benanza, a novel benchmarking and analysis system designed to automatically

generate micro-benchmarks given a set of models; compute their “lower-bound” latencies

using the benchmark data; and inform optimizations of their execution on GPUs. Benan

za is sustainable and extensible to cope with the fast evolution of DL innovations.

• Using Benanza, we characterized the “lower-bound” latencies of 30 ONNX models (shown

in Table 5.1) using MXNet, ONNX Runtime, and PyTorch on 7 systems (shown in Ta-

ble 5.3). We performed a comprehensive “lower-bound” latency analysis as we vary the

model, execution mode, batch size, and system. E.g., when using parallel execution mode,

up to 2.87×(with a geometric mean of 1.32× across models) latency speedup could be made

to MXNet using batch size 1 on the Tesla V100 system.

• We identified optimization opportunities through Benanza in cuDNN convolution algo-

rithm selection (up to 1.32× geometric mean speedup across models), inefficiencies within

MXNet (up to 1.15× speedup across models) and PyTorch (up to 2.3× speedup using batch

size 1) frameworks, and layer fusion and Tensor Cores (up to 1.09× and 1.72× speedup for

ResNet50-v1 respectively). We further demonstrated that when performed jointly, these

optimizations achieve up to 1.95× speedup for ResNet50-v1 across systems and batch sizes.

5.1 MOTIVATION

5.1.1 DL Model Execution and ONNX Format

A DL model is an execution graph where each vertex is a layer operator (e.g. convolution,

activation, normalization, pooling, or softmax). These layer operators (or layers for short)

are functions defined by a DL framework. A framework executes a model by traversing the

model graph in topological order and enqueuing the layers into an execution queue. Although

sequential evaluation is always valid, frameworks strive to execute data-independent layers

within the queue in parallel. Through careful execution scheduling, a framework can overlap

communication with computation, increase utilization, etc. Regardless of the execution

strategy, however, layer execution latency is the limiting factor for model execution. As

51

such, layers are not only the building blocks by which developer define models, but are also

the atomic components that define a model’s performance characteristics.

Each framework provides its own API, layer definition semantics, model storage format,

and model executing strategy. To increase interoperability between frameworks, there have

been concerted efforts [49, 50] to standardize layer definitions and model exchange format.

A leading effort is the Open Neural Network Exchange Format (ONNX), which has wide

industry and framework backing. Frameworks such as Caffe2, CNTK, MXNet, Paddle, Py-

Torch, and TensorRT readily support ONNX, and converters exist for other frameworks such

as TensorFlow and Caffe. To perform a fair comparison between frameworks (by evaluating

them using the same ONNX model), and more importantly, to make Benanza framework-

agnostic, we choose ONNX as the model input format for Benanza. ONNX hosts all their

models publicly [51] and, we select 30 vision models out of the 32 models available at the

time of writing for evaluation (the 2 models not selected are non-vision models). The se-

lected models cover an array of tasks and are listed in Table 5.1. We refer to these models

by their IDs throughout the paper.

5.1.2 cuDNN and cuBLAS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 25 27 28 29 30
0
20
40
60
80

100

%
S
u
p
p
or
te
d

Figure 5.2: The percentage of layers supported by cuDNN and cuBLAS (also covered by Benanza)
for each model in Table 5.1.

Much like BLAS or LAPACK are the backbone of HPC computing, cuDNN and cuBLAS

are the backbones of the GPU software stacks for DL. cuDNN is a GPU-accelerated li-

brary and provides highly tuned implementations of DL layers such as convolution, pooling,

normalization, activation. cuBLAS is a GPU-accelerated BLAS library and provides fast

implementations of GEMM and GEMV. The DL layers supported by each API are listed in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 25 27 28 29 30
0
20
40
60
80

100

%
U
n
iq
u
e

Figure 5.3: The percentage of unique layers within the 30 models

52

Table 5.1: The 30 ONNX models used are vision models which encompass image classification (IC),
object detection (OD), face recognition (FR), emotion recognition (ER), semantic segmentation
(SS), or hand digit recognition (HR) tasks.

ID Name Task MACs # Layers Year

1 Arcface [52] FR 12.08G 412 2018
2 BVLC-Alexnet [53] IC 656M 24 2012
3 BVLC-Caffenet [53] IC 721M 24 2012
4 BVLC-Googlenet [54] IC 1.59G 143 2014
5 BVLC-RCNN-ILSVRC13 [55] IC 718M 23 2013
6 Densenet-121 [56] IC 2.87G 910 2016
7 DUC [57] SS 34.94G 355 2017
8 Emotion Ferplus [58] ER 877M 52 2016
9 Inception-v1 [59] IC 1.44G 144 2015

10 Inception-v2 [60] IC 2.03G 509 2015
11 LeNet [61] HR 796K 12 2010
12 MobileNet-v2 [62] IC 437M 155 2017
13 Resnet18-v1 [63] IC 1.82G 69 2015
14 Resnet18-v2 [64] IC 1.82G 69 2016
15 Resnet34-v1 [63] IC 3.67G 125 2015
16 Resnet34-v2 [64] IC 3.67G 125 2016
17 Resnet50-v1 [63] IC 3.87G 175 2015
18 Resnet50-v2 [64] IC 4.10G 174 2016
19 Resnet101-v1 [63] IC 7.58G 345 2015
20 Resnet101-v2 [64] IC 7.81G 344 2016
21 Resnet152-v1 [63] IC 11.30G 515 2015
22 Resnet152-v2 [64] IC 11.53G 514 2016
23 Shufflenet [65] IC 127M 203 2015
24 Squeezenet-v1.1 [66] IC 352M 66 2016
25 Tiny Yolo-v2 [67] OD 3.13G 32 2016
26 Vgg16-BN [15] IC 15.38G 54 2014
27 Vgg16 [15] IC 15.38G 41 2014
28 Vgg19-bn [15] IC 19.55G 63 2014
29 Vgg19 [15] IC 19.55G 47 2014
30 Zfnet512 [68] IC 1.48G 22 2013

Table 5.2. And, while there is a wide array of DL frameworks, common between them is the

reliance on these primitives defined by cuDNN and cuBLAS. In fact, all major DL frame-

works, such as MXNet, PyTorch, ONNX Runtime, and TensorFlow, rely on cuDNN/cuBLAS

API functions for the implementation of common layers.

Figure 5.2 shows the percentage of layers supported by cuDNN and cuBLAS for each

model in Table 5.1. Most layers within DL models are covered by the cuDNN and cuBLAS

API. The layers that are not supported are non-compute operators (such as concatenate,

which joins two tensors across a specified axis) or datatype manipulations (such as reshape,

which changes the dimensions of a tensor). For example, the cuDNN and cuBLAS functions

support 70% of the layers within Inception-v2 (ID = 10). This is because Inception-v2

53

Table 5.2: Eleven layer types are supported by cuDNN and two layer types are
supported by cuBLAS. Each API may have auxiliary functions to setup its ar-
guments (e.g. cudnnSetTensor4dDescriptor to specify a tensor’s dimensions and
cudnnSetConvolution2dDescriptor to configure the convolution API). The convolution, RNN,
and GEMM APIs have Tensor Core support.

Layer Type cuDNN / cuBLAS API
Tensor Core

Support

Convolution cudnnConvolutionForward 3

Activation cudnnActivationForward 7

BatchNorm cudnnBatchNormalizationForwardInference 7

Conv+Bias+Activation cudnnConvolutionBiasActivationForward 3

RNN cudnnRNNForwardInference 3

Dropout cudnnDropoutForward 7

Pooling cudnnPoolingForward 7

Softmax cudnnSoftmaxForward 7

Add cudnnAddTensor 7

Element-wise cudnnOpTensor 7

Rescale cudnnScaleTensor 7

GEMM cublas*Gemm / cublasGemmEx 3

GEMV cublasSgemv 7

makes heavy use of unsqueeze — a tensor reshape layer; 27% of the layers in Inception-v2

are unsqueeze layers.

Given a specific DL software stack (e.g. framework, cuDNN, cuBLAS, and other CUDA

libraries) and GPU hardware, the cuDNN and cuBLAS functions invoked by a model are

fixed. Most common layers are supported by cuDNN and cuBLAS and the latency attributed

to cuDNN and cuBLAS functions is significant with respect to the model’s end-to-end la-

tency. Figure 5.1 shows that for the 30 vision models, the time spent within the cuDNN and

cuBLAS API calls dominates the model execution time. The “other” time is due to either

memory operations, synchronization, the framework’s choice of not using cuDNN API for

certain operations, or other framework code that is neither cuDNN nor cuBLAS.

Based on the above observations, we propose a “lower-bound” latency metric for DL

models. The “lower-bound” metric is defined by the latencies of the cuDNN and cuBLAS

functions executed for the model layers within a specific software/hardware stack. The

“lower-bound” latency is computed under different execution scenarios to determine if opti-

mizations can be made, pinpoint where optimizations are, and quantify the potential benefits

of optimizations, as detailed in Section 5.2.

54

5.2 BENANZA DESIGN AND IMPLEMENTATION

Benanza consists of four main components: Model Processor, Automatic Benchmark Gen-

erator, Performance Database, and Analyzer. The components are shown in Figure 5.4 and

are used in the benchmarking and analysis workflows:

• Benchmarking workflow: 1 The Model Processor takes ONNX models, parses them,

performs shape inference, and finds the set of unique layers within the models. Two layers

are considered the same (non-unique) if they have the same operator type and parameters

(i.e. only differ in weight values). 2 The Automatic Benchmark Generator then gen-

erates micro-benchmarks for each unique layer. The generated micro-benchmarks measure

the latency (or the GPU kernel metrics if profiling mode is enabled) of the corresponding

cuDNN or cuBLAS function calls for the layers. 3 The micro-benchmarks are then run on

systems of interest and the results are stored in the Performance Database.

• Analysis workflow: 4 The user runs the target model using a framework on a system of

interest with utilities provided by Benanza to get the model execution profile (i.e. the end-

to-end latency, cuDNN and cuBLAS logs, and Nsight profile). 5 The user then specifies

the model and system to Benanza. The model is parsed into layers and the Analyzer

queries the latencies of each layer from the Performance Database (using the layers and

system information provided) to compute the Question 1 “lower-bound” latency under

different execution scenarios. By analyzing the model execution profile and the computed

“lower-bound”, the Analyzer informs optimizations in: Question 2 parallel execution of

independent layers, Question 3 convolution algorithm selection, Question 4 framework

inefficiency, Question 5 layer fusion, and Question 6 Tensor Core usage.

5.2.1 Benanza Model Processor

The 1 Model Processor parses ONNX models into Benanza’s internal representation (IR).

The IR wraps around the ONNX Protobuf and has the same layer coverage. Since ONNX

models do not have layer shapes information embedded (except for the input layers), shape

inference [69] is performed to determine the shape of each layer. Layers in the IR (referred

to as layers and correspond to the ONNX nodes) are annotated with the inferred shapes.

Benchmarks are generated for each layer using its type, shape (i.e. all input dimensions),

and parameters information 1.

We observe that layers with the same type, shape, and parameters (i.e. only differ in

weight values) are repeated extensively within and across models. Figure 5.3 shows that

1The current design focuses on dense layers. Refer to Section 3.5 for discussion on sparse layers.

55

 Model Profile Benanaz Analyzer

ONNX Model Processor

Shape InferModel Parser Layer Unifier

Automatic Benchmark Generator

Algorithm Instantiation

cuDNN and cuBLAS
Benchmarks Data Type Instantiation

Benchmark Runtime

Performance DB

Titan_Xp

…Tesla_T4

Tesla_V100

End-to-end Latency
 §IV.A: What is the ideal
(“lower-bound”) latency of the
model on a system?

!1

 §IV.C: Are there any
inefficiencies model execution
by frameworks?

!4

 §IV.A: Do independent
layers within the model run in
parallel?

!2

 §IV.D: What is the
latency improvements of
performing layer fusion?

!5 §IV.E: What are the
latency benefits of using
Tensor Cores?

!6

 §IV.B: Are the
convolution layers using the
optimal algorithms?

!3

Nsight Profile

cuDNN & cuBLAS Log

Analysis WorkflowBenchmarking Workflow

Tesla_K80 Tesla_M60

Figure 5.4: The Benanza design and workflow. Question 1-6 are represented as Q1-6.

most models have a low percentage of unique layers — indicating that layers are repeated

extensively within the model. For example, ResNet50-v1 (ID=17) has 175 layers but only

47 (26.9%) are unique. The number of unique layers across models of similar architecture

is also low. The ResNet*-v1 models (ID=13, 15, 17, 19, 21) are built from the same modules

and have a total of 1229 layers, of which only 60 (5.6%) are unique. Across all 30 models,

the total number of layers is 5754, but only 1031 (18%) are unique. We exploit this layer

repeatability to optimize the benchmark generation and minimize the time to benchmark.

Thus, the Model Processor unifies the repeated layers across the input models and produces

a set of unique layers. The time saved can be used to explore other algorithms and data

types (Sections 5.2.2 and 5.2.2) benchmarks.

5.2.2 Automatic Benchmark Generator

The 2 Automatic Benchmark Generator uses the set of unique layers (produced by the

Model Processor) and generates C code to invoke the benchmark runtime using each layer’s

type, shape, and parameters information.

The Benchmark Runtime

Benanza provides a benchmark runtime that measures the latency of the cuDNN or

cuBLAS API required to execute each layer (as shown in Table 5.2). The runtime also

sets up the function arguments for each API. The setup time is not included in the latency

measurement. The runtime uses the Google Benchmark [70] library — a micro-benchmarking

support library. The Google Benchmark library dynamically determines the number of iter-

ations to run each benchmark and ensures that the reported latency results are statistically

56

stable. Generated benchmarks are linked with the cuDNN/cuBLAS libraries, and are run

on systems of interest.

Algorithm Instantiation

The convolution layers map to the cudnnConvolutionForward API (Table 5.2). The

convolution API takes one of the following 8 algorithms as an argument: Implicit GEMM

(IGEMM), Implicit PreComputed GEMM (IPGEMM), GEMM, Direct (DRCT), FFT, Tiled

FFT (TFFT), Winograd (WING), and Winograd Non-Fused (WINGNF). These algorithms

have different compute and memory characteristics [71, 72]. The optimal algorithm to use

depends on the system, layer shape, and layer parameters (e.g. filter size, stride, dilation,

etc.) [42]. For inference, most frameworks (e.g. MXNet, PyTorch, TensorFlow) rely on the

cuDNN provided heuristic function (cudnnGetConvolutionForwardAlgorithm) to choose

the convolution algorithm. The heuristic function suggests an algorithm given the layer’s

shape, parameters, data type, system, etc. To explore the design space of algorithm selection,

by default, for each layer Benanza generates benchmarks using all algorithms applicable to

the layer.

Data Type Support

Benanza can be configured to generate micro-benchmarks that target different data types.

Both float16 and float32 are generated by default, but benchmarks can be instantiated

for other data types. The float16 benchmarks use Tensor Cores when the API function

(see Table 5.2) and system (see Table 5.3) supports it.

Layer Fusion Support

Benanza can be configured to generate micro-benchmarks that target the cuDNN fused

API (cudnnConvolutionBiasActivationForward) to perform the convolution, bias, and

activation layer sequence. Two fusion pattern rules are currently handled by Benanza:

Conv→Bias→Activation and Conv→Bias. The Conv→Bias→Activation maps directly to

the fused API. Fusing Conv→Bias is implemented through the fused API using CUDNN

ACTIVATION IDENTITY as the activation function and requires cuDNN version ≥ 7.1. For

older cuDNN versions, the Conv→Bias is implemented as two calls — a cudnnConvolution

Forward followed by a cudnnAddTensor. Users can extend Benanza’s fusion support by

registering new fusion patterns as the cuDNN fused API evolves.

57

Integration with CUPTI

Benanza can be configured to generate benchmarks that integrate with low-level GPU

profiler libraries such as NVIDIA’s CUPTI [30]. This allows Benanza to capture detailed

GPU metrics [40] of benchmarks such as flops, memory transfers, etc. In this mode, the user

specifies the metrics of interest, the number of benchmark iterations for warm-up, and the

number of iterations to measure. Benanza does not use the Google Benchmark in this mode

since a fixed, small number of profiling runs suffice for statistically stable measurement of

the metrics. The profiling outputs (name, timing, and metric values of GPU kernels) are

stored as metadata to the corresponding benchmark entry in the Performance Database.

5.2.3 Performance Database

The 3 benchmarking results are collected and published to Benanza’s Performance Database.

Each entry within the database is indexed by the system, data type, and layer (type, shape,

and parameter information). The Analyzer queries the database to get the benchmark laten-

cies. If a query is a miss, then a warning with the information about the missing benchmark

is issued to the user and the user is asked if they wish the Automatic Benchmark Generator

to generate the missing benchmarks.

5.2.4 Benanza Analyzer

The 4 user runs the target model using a framework on a system of interest with util-

ities provided by Benanza to get the model execution profile. The model execution profile

contains information about the model’s end-to-end latency, cuDNN and cuBLAS logs, and

Nsight profile (which contains cuDNN/cuBLAS API calls and function backtrace informa-

tion). Capturing the model end-to-end latency requires the user to place the provided timing

functions within their application code. To capture the usage of cuDNN and cuBLAS func-

tions within a framework, Benanza launches the user code with the CUDNN_LOGINFO_DBG

and CUBLAS_LOGINFO_DBG environment variables. These environment variables enable the

cuDNN and cuBLAS loggers respectively. Utilities to run the user code using NVIDIA’s

Nsight profiler are also provided. The results from Nsight are parsed and correlated with

the cuDNN and cuBLAS logs.

The 5 user then inputs the model execution profile along with the ONNX model, system,

data type. The model is parsed by the Model Processor into layers. Then, the Benan

za Analyzer queries the Performance Database for the benchmark latencies of each layer

58

maxpool_2 MaxPool
10.228µs

conv_4 Conv
30.511µs

conv_5 Conv
30.719µs

conv_7 Conv
30.231µs

maxpool_3 MaxPool
10.102µs

relu_4 Relu
8.046µs

concat_1 Concat

relu_5 Relu
8.045µs

conv_6 Conv
47.652µs

relu_6 Relu
8.122µs

relu_7 Relu
7.963µs

conv_8 Conv
41.912µs

relu_8 Relu
8.017µs

conv_9 Conv
30.465µs

relu_9 Relu
8.017µs

...

...

Layer Name Layer Type

Benchmark Latency

Legend:

Figure 5.5: The first parallel module of Inception-v1 in Figure 5.7 visualized by the Benanza
Analyzer. The layers are annotated with the name, type, and latency used for the “lower-bound”
calculation. The critical path used in the parallel mode is highlighted in red.

using the user-specified system and data type (by default float32). Due to algorithm

(Section 5.2.2) instantiation, multiple benchmarks may exist for a layer. The Analyzer,

therefore, selects the benchmark result achieving the lowest latency. The following analyses

are then performed:

Sequential and Parallel “Lower-Bound” Latency (Question 1,2)

DL models may contain layer sequences which can be executed independently in parallel.

The sub-graph formed by these data-independent layer sequences is called a parallel module.

For example, a parallel module in Inception-v1 is shown in Figure 5.5. A framework may

execute the independent paths within the parallel module either sequentially or in parallel.

Thus, the Analyzer computes the “lower-bound” latency of a model using two execution

modes: sequential and parallel.

The sequential mode assumes that independent layers are executed sequentially, and there-

fore is defined as the sum of each layer’s benchmark latency. The parallel strategy assumes

that data-independent layers are executed in parallel. Therefore, the parallel “lower-bound”

latency is defined by the model’s critical path — the simple path from the start to the end

59

layer with the highest latency. Finding the critical path of a graph is a longest path problem

and is NP-hard. Since a DL model forms a directed acyclic graph (DAG), the critical path

can be framed as a shortest path problem [73]. To compute the critical path we construct

a weighted DAG from the model graph where the edge weight between two nodes (layers)

is negative of the latency of the layer at the tail of the edge. Computing the shortest path

from the start to the end layer of the constructed weighted DAG produces the critical path

of the model. The parallel “lower-bound” latency is the sum of layers latencies along the

critical path. Benanza visualizes the critical path of the model (e.g. Figure 5.5), and the

difference between the sequential and parallel “lower-bound” latencies indicates the profit of

executing independent layers in parallel. Other analyses performed by Benanza leverage the

sequential and parallel “lower-bound” latencies, and the benefits can be calculated in terms

of either sequential or parallel mode.

Convolution Algorithm Selection (Question 3)

The Analyzer uses the parsed cuDNN log in the model execution profile to determine if the

cuDNN algorithm used by the framework for each layer is optimal (recall from Section 5.2.2

that benchmark results using all available algorithms for layers exist in the Performance

Database). Cases where the algorithm choice is sub-optimal are reported to the user along

with how much end-to-end latency improvement could be gained if algorithm selection was

ideal. The user can act upon these suggestions by forcing the framework to use specific

algorithms.

Framework Inefficiency Inspection (Question 4)

The expected cuDNN and cuBLAS API calls are known to the Analyzer from the “lower-

bound” latency computation. The Analyzer compares the model execution profile against the

expected execution to pinpoint inefficiencies within the framework. The user is presented

with any deviation observed in cuDNN or cuBLAS API invocation’s parameters or their

execution order. CUDA API functions and CUDA kernels executed between cuDNN or

cuBLAS API calls, are also presented to the user — along with their backtraces.

Layer Fusion Analysis (Question 5)

If the user enables the benchmark generation for layer fusion (as described in Section 5.2.2),

then the Analyzer can be used to determine the potential profitability if layer fusion is em-

60

ployed. The Analyzer traverses the model layers and looks for the fusion pattern rules (listed

in Section 5.2.2). If one of these patterns is found, then the corresponding fused operation’s

latency is queried from the database and is used in the “lower-bound” computation (in ei-

ther sequential or parallel model). If the benchmark is unavailable, or failed to run, then

the latencies of the non-fused layers are used. The difference between the non-fused “lower-

bound” latency and the fused “lower-bound” latency determines the profitability of layer

fusion.

Tensor Core Analysis (Question 6)

The Analyzer determines if the target model execution utilizes Tensor Cores by looking

at kernel names in the model execution profile. 2 Kernel names that match the _[ish]\d+*

Regular-expression use Tensor Cores. E.g., kernels with names trt volta int8 i8816cudnn *

use Tensor Cores. By default, benchmarks targeting both float16 and float32 are gen-

erated. When benchmarks are run on systems with Tensor Core support, the difference

between the “lower-bound” latency of float32 and float16 informs the profitability of

using Tensor Cores and float16.

5.2.5 Sustainability and Extensibility

Sustainability of Benanza is ensured by providing an automated benchmark generation

and analysis workflow design along with a continuously updated Performance Database.

Benchmarking requires limited effort, as the micro-benchmarks are automatically generated,

and the user only needs to compile and run the generated code on systems of interest. The

Performance Database is continuously updated with new benchmark results. A big insight of

the proposed design is that there is ample layer repeatability within and across models. This

keeps the number of unique layers and thus the number of Performance Database entries in

check over time. For new models, only the newly introduced unique layers are benchmarked.

For example, consider a scenario where all models in Table 5.1 except for ResNet*-v2

have already been benchmarked and the results are in the Performance Database. Using our

design, benchmarking the ResNet*-v2 models requires measuring all the ResNet*-v2 layers

that are not within the Performance Database. Evaluating this hypothetical scenario results

in a 75% reduction (30 minutes) in benchmarking time on the Tesla V100 system for batch

size 32. The saving would be even larger on slower systems. By storing and reusing the

2Similar to DLProf [74], determining the Tensor Core utilization from the kernel names can identify
cuDNN kernels that use Tensor Cores, but will not identify custom kernels or kernels outside of cuDNN.

61

micro-benchmark results in the Performance Database we minimize the time cost of running

micro-benchmarks.

Benanza is extensible. As shown in Figure 5.4, Benanza is designed as a set of modular

components. As new cuDNN functions are introduced, users update the Benanza runtime

accordingly. For example, if a new cuDNN convolution algorithm is added, then the user

can just add it to the list of algorithms to instantiate in the convolution benchmark imple-

mentation. If a new cuDNN/cuBLAS API or a fused API is added, then a user needs to

add the benchmark implementation for the new API using the templates provided by Ben

anza as a basis. Users can also extend the Automatic Benchmark Generator to support

other runtimes that target other software libraries or hardware, and leverage most of the

other analysis components unmodified. These runtimes can target the frameworks’ Python

or C++ API or other DL libraries (e.g. MIOpen [75] on AMD GPUs, or MKL-DNN [76] on

CPUs). Through the novel benchmarking and analysis design, Benanza copes well with the

fast evolving pace of DL innovations.

5.3 EVALUATION

We implemented Benanza and evaluated its design by answering Question 1-6 . We

evaluated 30 ONNX models (listed in Table 5.1) in the MXNet (v1.5.1), ONNX Runtime

(v0.5.0), and PyTorch (v1.3) frameworks. Experiments were run on the 7 systems listed

in Table 5.3. All systems use Ubuntu 18.04.3 LTS, CUDA 10.1.243, cuDNN Version 7.6.3,

and CUDA Driver 430.26. The micro-benchmarks were compiled with GCC 7.4.0. We

first computed the float32 “lower-bound” latency in both sequential and parallel modes.

Then we used the Analyzer to uncover and explore optimization opportunities — cuDNN

heuristics, framework inefficiencies, layer fusion, and usage of Tensor Cores, and show their

impact on the end-to-end latency.

5.3.1 “Lower-Bound” Latency vs. Measured Latency

We measured the inference latency of the 30 models using MXNet, ONNX Runtime,

and PyTorch on the Tesla V100 system. Figure 5.6 shows the measured latency across all

models and Figure 5.10 compares the latencies using different frameworks. Due to the lack of

support of some ONNX operators by ONNX Runtime [77] and PyTorch [78], not all models

run within these frameworks. As MXNet is the fastest in general, subsequent sections of the

paper (with the exception of Section 5.3.3) focus on informing optimizations in MXNet..

62

Table 5.3: We used 7 GPU systems for evaluation. The systems cover the past GPU generations
(from Kepler to the latest Turing). Amazon Web Service (AWS) is used for 4 of the systems and
the other 3 are local machines. The 4 Turing and Volta GPUs support Tensor Cores and their
theoretical Tensor Core performance — Tensor TFLOPS(tera floating point operations per second
— are listed.

Name CPU GPU (Release Year)
GPU

Architecture
GPU Memory

Capacity, Bandwidth
Theoretical

FP32 TFLOPS
Theoretical

Tensor TFLOPS

Tesla K80 (AWS P2) Intel Xeon CPU E5-2686 v4 Tesla K80 (2014) Kepler 12 GB, 480 GB/s 5.6 7

Tesla M60 (AWS G3) Intel Core i9-7900X CPU Tesla M60 (2015) Maxwell 7 GB, 160.4 GB/s 4.8 7

TITAN Xp Intel Xeon CPU E5-2686 v4 TITAN Xp (2017) Pascal 12 GB, 547.6 GB/s 12.2 7

TITAN V Intel Core i7-7820X CPU TITAN V (2017) Volta 12 GB, 672 GB/s 14.9 110.0
Tesla V100 (AWS P3) Intel Xeon CPU E5-2686 v4 Tesla V100 SXM2 (2018) Volta 16 GB, 900 GB/s 15.7 125.0
Quadro RTX Intel Xeon CPU E5-2630 v4 Quadro RTX 6000 (2019) Turing 24 GB, 624 GB/s 16.3 130.5
Tesla T4 (AWS G4) Intel Xeon Platinum 8259CL CPU Tesla T4 (2019) Turing 15 GB, 320 GB/s 8.1 65.0

� � � � � � � � � ��

�
�
�
��

�
�
�
�
�
��
��

�
�
��
�
�
�
(�
�
)

Figure 5.6: The measured latency of all ONNX models using batch size 1 with MXNet backend on
Tesla V100 in Table 5.3.

Sequential Mode vs Parallel Mode (Question 1,2)

The difference between the “lower-bound” latency and the measured latency indicates the

optimization opportunities in the framework and its use of the cuDNN and cuBLAS APIs.

A model’s “lower-bound” latency normalized to its measured latency is referred to as its

Benanza Ratio (BR). Figure 5.7 shows the BR in sequential (BRsequential) and parallel mode

(BRparallel) in MXNet across all models using batch size 1 on the Tesla V100 system.

The BRsequential across models has a geometric mean of 0.88, thus a potential latency

speedup of 1.0
0.88

= 1.14× can be made to the measured model execution. The BRparallel across

models has a geometric mean of 0.76, indicating a potential latency speedup of 1.0
0.76

= 1.32×.

The difference between a model’s parallel and sequential “lower-bound” latency depends on

the existence of parallel modules within the model and how compute-intensive the data-

independent paths are. Models without parallel modules have the same sequential and

parallel “lower-bound” latency, thus the BRsequential is equal to the BRparallel. For models

with compute-intensive parallel modules, such as the Inception models (ID=4, 9, 10), the

potential speedup of the latency (or 1
BRparallel

) is 2.87×, 2.69×, and 2.45× respectively. The

BRsequential and BRparallel of LeNet (ID=11) are both low because LeNet is a simple model

which has low latency (0.33ms as shown in Figure 5.6) and the MXNet overhead and other

non-compute portion is high, thus its BR is low.

63

���������	
���		�	

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �

�

��

��

��

��

��

�
��� �����

�
��
�
��
��
	

��
�	

�
�

B
en

an
za

 R
at

io

Figure 5.7: The Benanza Ratio in sequential and parallel mode of 30 models in MXNet using batch
size 1 on Tesla V100.

� � � � �� ��

�����_��� �����_��� �����_�� �����_�

�����_���� ������_��� �����_��

�
��

��
���

����� ����

�
�
��
�
�
�
(�
�
)

Figure 5.8: The measured latency of ResNet50 v1 in MXNet across batch sizes and systems.

The sequential “lower-bound” latency of the models with parallel modules (e.g. Inception

and ResNet models) is closer to their measured latency when compared to the parallel

“lower-bound” latency (BRparallel < BRsequential < 1). This suggests that parallel modules

are executed sequentially in MXNet, even though the data-independent layers could be run

in parallel. We verified the sequential execution behavior in MXNet by inspecting the model

execution profile. Thus we evaluated the benefits of the latter optimizations in terms of the

sequential “lower-bound” latency.

Batch Sizes and Systems

To demonstrate Benanza’s functions across batch sizes and systems, we evaluated the

“lower-bound” latency of all models using different batch sizes from 1 to 32 on represen-

tative systems (shown in Table 5.3). We select batch size 32, since some models cannot

be run using batch sizes beyond 32 due to GPU memory limitations. Figure 5.8 shows

the measured latency of ResNet50-v1 on all systems in log scale. As expected, latencies

are reversely correlated to the compute capability of the system (e.g. theoretical FP32

64

B
en

an
za

 R
at

io

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

��	

��

���

��
�� ����

�
��
�
��
��
	

��
�	

�
�

Figure 5.9: The BRsequential of ResNet50-v1.

����� ����������� �������

� � � � � � � � � ��
���

���

���

���

���

���

����� �����

�
�
��
�
���
�
�
�
�
��
�
�
�

Figure 5.10: The measured latency of all ONNX models with MXNet, ONNX Runtime, and Py-
Torch backends (normalized to MXNet latency) using batch size 1 on Tesla V100.

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

��	

��

���

��
�� ����

�
��
�
��
��
	

��
�	

�
�

B
en

an
za

 R
at

io

Figure 5.11: The geometric mean of the BRsequential of all models.

65

TFLOPS in Table 5.3). ResNet50-v1 has a higher latency on Quadro RTX when compared

to Tesla V100, since Quadro RTX has an on-chip (global) memory bandwidth of 624 GB/s

whereas Tesla V100 has an on-chip memory bandwidth of 950 GB/s.

Figure 5.9 shows the BRsequential of ResNet50-v1 across batch sizes and systems. The

results suggest that ResNet50-v1’s optimization opportunities are system and batch size

dependent. Both Tesla V100 and TITAN V are highly optimized to run ResNet50-v1 across

batch sizes, since their BR is high — ranging from 0.86 to 1.0. The BR for Tesla T4

and Quaro RTX is high for batch sizes 1 to 4 but drops beyond that. ResNet50-v1 is less

optimized on the other systems and has a low BR.

The geometric mean of the BRsequential for all the models across systems and batch sizes

is shown in Figure 5.11. Both Tesla V100 and TITAN V still have a high BR (0.76 − 0.88).

A drop was still observed for Tesla T4 and Quaro RTX at batch size 4. Tesla M60 and

TITAN Xp have a BR between 0.63 and 0.72. The oldest GPU generation, Tesla K80, has

the lowest BR and is the least optimized.

Overall, the current software stack (latest MXNet, cuDNN, and CUDA libraries used in

the evaluation) is more optimized for the recent GPU generations (Turing and Volta) using

smaller batch sizes. Compared to Volta, the software stack is less optimized for Turing.

This is possibly because Turing is newly released, and we expect optimizations that target

Turing to increase. Moreover, the low BR for the older GPUs suggest that vendors prioritize

optimizations for newer GPU generations over older ones.

5.3.2 cuDNN Convolution Heuristics (Question 3)

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

�
��
�

�
��
�
�
�

�
��
�

�
��
�
�
�

�
��
�

�
��
�
�
�

��
�
�
�

��
�
�
������ ��������� ����� ���������

� � � � � � � �
���

���

���

���

���

���

���

����������� ������

�
��
�
�
�
�
�

Figure 5.12: The cuDNN heuristic selects 8 non-optimal convolution layer algorithms for
ResNet50 v1 using batch size 32 on Tesla V100. Up to 2.75× speedup can be achieved if selection
was ideal.

Using the Benanza Analyzer, we observed that heuristics employed by cuDNN (and sub-

66

�����_��� �����_��� �����_�� �����_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
����

����

����

����

����

����� ����

�
�
�
�
�
�
�

Figure 5.13: The latency speedup for ResNet50-v1 if layer fusion was performed.

sequently the frameworks) are not always optimal. For example, Figure 5.12 shows the

convolution layer latencies using the algorithms informed by cuDNN heuristics (labeled as

cuDNN Heuristic) normalized to using the optimal algorithm (labeled as Ideal Algorithm)

for ResNet50 v1 using batch size 32 on Tesla V100. The algorithm choices are listed in

Section 5.2.2. Figure 5.13 shows the latency speedup for ResNet50 v1 across batch sizes and

systems by using the optimal convolution algorithm for all convolution layers. Figure 5.14

shows the geometric mean of the latency speedup for all models by using the optimal algo-

rithms. At batch size 32, the speedup ranges between 1.14× and 1.32× across GPUs. Both

the latest and older GPU architectures can benefit from better algorithm heuristics.

5.3.3 Inefficiencies in Frameworks (Question 4)

We used Benanza to identify the inefficiencies in MXNet and PyTorch. We then imple-

mented the optimizations informed by Benanza and show the latency speedup after the

framework modifications.

MXNet ONNX Model Loader

We observed through the Analyzer that there are layers in the model execution profile

where the cuDNN API arguments deviate from what is expected. An inspection of the

Analyzer’s parsed Nsight profile pointed to an image_2d_pad_constant_kernel GPU ker-

nel function being invoked before every convolutional layer. Non-zero padding leads to the

observed deviation between the expected and actual cuDNN API calls. We inspected the

MXNet source code and found that padding layers are inserted during the loading of ONNX

67

�����_��� �����_��� �����_�� �����_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

����� ����

�
�
�
�
�
�
�

Figure 5.14: The geometric mean of the latency speedup for all models by using the optimal
convolution algorithm.

models in MXNet. ONNX supports specifying asymmetric padding3 as attributes in convo-

lution layers [79], whereas MXNet does not. Therefore, MXNet must insert padding layers

before convolution layers where asymmetric padding is used when loading ONNX models.

However, the MXNet ONNX model loader adds padding layers before every convolution

layer (regardless of the use of asymmetric padding). A non-intrusive optimization is to only

insert padding layers if asymmetric padding is used. With this simple one-line optimization,

we observed up to 1.15× latency speedup for ResNet50-v1 (shown in Figure 5.15).

PyTorch cuDNN Wrapper

Using Benanza we observed that there were excessive calls to cudaStreamWaitEvent be-

tween cuDNN API calls. Using the Nisight’s backtrace information from the model execution

profile, we identified the PyTorch source file that introduces these synchronizations. Upon

further study of the source code, we found that all cuDNN functions are invoked by a cuDNN

wrapper in PyTorch. The wrapper manages a pool of cuDNN handles and is designed to en-

able invoking cuDNN functions from different CPU threads. cuDNN functions managed by

the same handle are synchronized and executed sequentially. In the current PyTorch (v1.3),

however, only a single handle is used for inference, which forces synchronization before each

cuDNN function call. The synchronizations cause 100µs stalls on average between cuDNN

functions, thus the latency saved through this optimization is a function of the number of

layers in a model. We modified PyTorch to elide the cuDNN wrapper and only synchronize

3The numbers of zero values to add before or after each spacial dimension are not guaranteed to be the
same.

68

�����_��� �����_��� �����_�� �����_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
����
����
����
����
����
����
����
����
����

����� ����

�
�
�
�
�
�
�

Figure 5.15: The speedup achieved for ResNet50 v1 by applying the MXNet optimization described
in Section 5.3.3 across batch sizes and systems.

before and after performing inference. Figure 5.16 shows the speedup achieved by this opti-

mization for batch size 1. MobileNet-v2 (ID=12) achieves a 2.3× speedup, since it has low

latency and a large number of layers.

5.3.4 Layer Fusion (Question 5)

We used Benanza to evaluate the potential benefits of layer fusion. Figure 5.17 shows

the latency speedup from layer fusion for ResNet50-v1 across the systems and batch sizes.

ResNet50-v1 has the layer sequence pattern Conv→Bias→BatchNorm→Activation. Benan

za reports that the Conv→Bias sequence can be fused for better latency and performs the

fusion analysis (Section 5.2.4). In all, 64 (18%) layers were fused and up to 1.09× speedup

was achieved over the measured latency across systems for ResNet150-v1. By inspecting the

model execution profile, we found no indication that MXNet, ONNX Runtime, or PyTorch

perform layer fusion using the cuDNN fused API.

5.3.5 Tensor Cores (Question 6)

We used Benanza to evaluate the potential benefits of using float16 and Tensor Cores

available on recent GPU architectures. While the cuDNN Tensor Core API supports both

NHWC and NCHW layouts, NVIDIA recommends the use of NHWC. We use Benanza to generate

benchmarks targeting both the NHWC and NCHW and evaluated the “lower-bound” latency

speedup, as shown in Figures 5.19 and 5.18 respectively. As expected, using the NHWC

achieves higher speedup. Internally, the cuDNN API implements NCHW convolutions in terms

of NHWC with an implicit transposition. As compute dominates (i.e. larger batch sizes), the

relative overhead of the transposition becomes small; hence, NCHW and NHWC have similar

69

performance for larger batch sizes. Figure 5.20 shows the end-to-end latency speedup by

using Tensor Cores(NHWC). TITAN V achieves significant speedup (up to 1.72×). We can see

that Telsa T4 benefits most from Tensor Cores for smaller batch sizes (i.e. might be best

used for low-latency inference).

� � � � � � �� �� �� �� �� �� �� �� �� �� �� ��
���

���

���

���

���

���

���

����� �����

�
�
�
�
�
�
�

Figure 5.16: The speedup achieved by removing unnecessary cuDNN API synchronizations in
PyTorch on Tesla V100 using batch size 1.

�����_��� �����_��� �����_�� �����_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
����

����

����

����

����

����

����

����� ����

�
�
�
�
�
�
�

Figure 5.17: The latency speedup for ResNet50-v1 if layer fusion was performed.

5.3.6 Parallel Execution, Algorithm Selection, Layer Fusion, and Tensor Cores
(Question 1,2,3,5,6)

Benanza can be used to perform the above analysis jointly. To demonstrate this, we

analyzed the latency speedup when using parallel execution of data-independent layers,

optimal algorithm selection, layer fusion, and Tensor Cores (NHWC). Figure 5.21 shows the

latency speedup for ResNet50-v1 across batch sizes and systems. Up to a 1.95× and 1.8×
speedup can be achieved by TITAN V and Tesla V100 respectively. We can surmise, from

the previous analysis, that most of the profit for TITAN V is attributed to its use of Tensor

Cores. Quadro RTX and Telsa T4 achieve marginal speedup over the Tensor Core results.

70

�����_� �����_����

������_��� �����_��

� � �� �� �� �� ��

���

���

���

���

���

���

����� ����

��
�
�
�
�-
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.18: The “lower-bound” latency speedup if Tensor Cores (NCHW) were used for ResNet50-v1.

�����_� �����_����

������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

����� ����

��
�
�
�
�-
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.19: The “lower-bound” latency speedup for ResNet50-v1 if Tensor Cores (NHWC) were
used.

�����_� �����_����

������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

����� ����

�
�
�
�
�
�
�

Figure 5.20: The latency speedup for ResNet50-v1 if Tensor Cores (NHWC) were used.

71

�����_� �����_����

������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

����� ����

�
�
�
�
�
�
�

Figure 5.21: The latency speedup for ResNet50-v1 if parallel execution, optimal algorithm selec-
tions, layer fusion, and Tensor Cores (NHWC) were used.

5.4 RELATED WORK

DL Benchmarking : There has been no shortage of work on developing benchmarks to char-

acterize DL models. These DL benchmarks either take a model as a black-box and measure

the user-observable latency and throughput (end-to-end benchmarks) or delve deeper into

models to characterize the layer or kernel performance (micro-benchmarks). The end-to-end

benchmarks [3,4,6] provide a corpus of models that are deemed to be of value to characterize

for industry and research. Micro-benchmarks [4,5,22,80] distill DL models into their layers

or kernels, and are hand-curated. Micro-benchmarking enables easy measurements of layers

within popular DL models and integrates easily with profiling tools. In [81], the author

present a design that enables benchmarking DL models across the abstraction levels of in-

ference pipeline and introduce a hierarchical profiling methodology (enabling framework-,

model-, and hardware-profiling). In [7], the authors propose a benchmark suite to enable

fair comparison of DL techniques at different levels of granularity. At the operator level, [7]

takes ONNX models and generates micro-benchmarks that target the framework’s Python

API to measure the latency of each operator. Benanza also takes ONNX models as input,

but generates lower-level cuDNN and cuBLAS micro-benchmarks to compute the “lower-

bound” latency of the model, and perform analysis. To my knowledge, there is no previous

work which generates micro-benchmarks from model layers and couples it with an analysis

workflow to inform optimizations.

Performance Advising : [41] introduces the roofline model to analyze inherent limitations

of an application running on a system and indicate priority of optimizations. There is past

work on using profiling to inform users of possible compiler-level optimizations [82] or proper

72

usage of APIs [83,84]. Profilers and IDEs such as NVIDIA’s Nvprof [8], Intel’s VTune [10],

Oracle’s Solaris Studio [85], Microsoft’s Roslyn [86], and IBM’s XL [87], provide low-level

profiling reports and some suggestions on how to address bottlenecks. To my knowledge,

there has been no work on combining the microbenchmarking and profiling results to inform

optimizations in the DL domain.

5.5 CONCLUSION

This chapter presents Benanza, a sustainable and extensible DL benchmarking and anal-

ysis design that automatically generates layer-wise benchmarks for DL models to compute

the “lower-bound” latency and inform optimizations on GPUs. We use Benanza to evaluate

a set of 30 models using different frameworks on 7 GPUs, and pinpointed the optimizations

in parallel layer execution, cuDNN algorithm selection, framework inefficiency, layer fusion,

and Tensor Core usage. The results show that Benanza fills a significant gap within the char-

acterization/optimization cycle and can boost the productivity of DL model, framework, and

library developers.

73

CHAPTER 6: MLMODELSCOPE: THE DESIGN AND IMPLEMENTATION
OF A SCALABLE DL BENCHMARKING PLATFORM

In this chapter, we first identify 10 design features which are desirable within a DL bench-

marking platform. These features include: performing the evaluation in a consistent, repro-

ducible, and scalable manner, being framework and hardware agnostic, supporting real-world

benchmarking workloads, providing in-depth model execution inspection across the HW/SW

stack levels, etc. We then present MLModelScope, a DL benchmarking platform that realizes

10 design objectives. MLModelScope proposes a specification to define DL model evalua-

tions and techniques to provision the evaluation workflow using the user-specified HW/SW

stack. MLModelScope defines abstractions for frameworks and supports the board range of

DL models and evaluation scenarios.

The emergence of Deep Learning (DL) as a popular application domain has led to many in-

novations. Every day, diverse DL models as well as hardware/software (HW/SW) solutions,

are proposed — be it algorithms, frameworks, libraries, or hardware. DL innovations are in-

troduced at such a rapid pace [1] that being able to evaluate and compare these innovations

quickly is critical for their adoption. As a result, there have been concerted community

efforts in developing DL benchmark suites [3, 4] where common models are selected and

curated as benchmarks.

DL benchmark suites require significant effort to develop and maintain and thus have

limited coverage of models (usually a few models are chosen to represent a DL task). Within

these benchmark suites, model benchmarks are often developed independently as a set of

ad-hoc scripts. To consistently evaluate two models requires one to use the same evaluation

code and HW/SW environment. Since the model benchmarks are ad-hoc scripts, a fair

comparison requires a non-trivial amount of effort. Furthermore, DL benchmarking often

requires evaluating models across different combinations of HW/SW stacks. As HW/SW

stacks are being proposed, there is an urgent need for a DL benchmarking platform that

consistently evaluates and compares different DL models across HW/SW stacks, while coping

with the fast-paced and diverse landscape of DL.

DL model evaluation is a complex process where the model and HW/SW stack must work

in unison, and the benefit of a DL innovation is dependent on this interplay. Currently, there

is no standard to specify or provision DL evaluations, and reproducibility is a significant

“pain-point” within the DL community [88–90]. Thus, the benchmarking platform design

must guarantee a Feature 1 reproducible evaluation along with Feature 2 consistent

evaluation.

74

Aside from Feature 1-2 , the design should: be Feature 3 frameworks and hardware

agnostic to support model evaluation using diverse HW/SW stacks; be capable of perform-

ing Feature 4 scalable evaluation across systems to cope with the large number of evalu-

ations due to the many model/HW/SW combinations; support different Feature 7 bench-

marking scenarios which mimic the real-world workload exhibited in online, offline, and

interactive applications; have a Feature 8 benchmarking analysis and reporting work-

flow to analyze benchmarking results across runs and generate summary reports; enable

Feature 9 model execution inspection to identify bottlenecks within a model-, framework-

, and system-level components. Other features such as Feature 5 artifact versioning,

Feature 6 efficient evaluation workflow, and Feature 10 different user interfaces are

also desirable to increase the design’s usability.

We propose MLModelScope [36], a scalable DL benchmarking platform design that realizes

the above 10 objectives and facilitates benchmarking, comparison, and understanding of DL

model execution. MLModelScope achieves the design objectives by proposing a specifica-

tion to define DL model evaluations; introducing techniques to consume the specification

and provisioning the evaluation workflow with the specified HW/SW stack; using a dis-

tributed scheme to manage, schedule, and handle model evaluation requests; supporting

pluggable workload generators; defining common abstraction API across frameworks; pro-

viding across-stack tracing capability that allows users to inspect model execution at different

HW/SW abstraction levels; defining an automated evaluation analysis workflow for analyz-

ing and reporting evaluation results; and, finally, exposing the capabilities through a web

and command-line interface.

We implement MLModelScope and integrate it with Caffe, Caffe2, CNTK, MXNet, Py-

Torch, TensorFlow, TFLite, and TensorRT frameworks. MLModelScope runs on ARM,

PowerPC, and x86 and supports CPU, GPU, and FPGA execution. We bootstrap MLMod-

elScope with over 300 models covering different DL tasks such as image classification, object

detection, semantic segmentation, etc. MLModelScope is open-source, extensible, and cus-

tomizable.

We showcase MLModelScope’s benchmarking, inspection, and analysis capabilities using

several case studies. We use MLModelScope to evaluate 37 DL models and compare their

performance on 4 systems under different benchmarking scenarios. We perform compar-

isons to understand the correlation between a model accuracy, size, achieved latency, and

maximum throughput. We then use MLModelScope’s tracing capability to identify the bot-

tlenecks of the evaluation and use its “zoom-in” feature to inspect the model execution at

different HW/SW levels. We demonstrate how, using the analysis workflow, one can easily

digest the evaluation results produced by MLModelScope to understand model-, framework-,

75

and system- bottlenecks. To the authors’ knowledge, we are the first to describe the design

and implementation of a scalable DL benchmarking platform.

6.1 DESIGN OBJECTIVES

In this section, we detail 10 objectives for a DL benchmarking platform design to cope

with the fast-evolving DL landscape. These objectives informed MLModelScope’s design

choices.

• Reproducible Evaluation (Feature 1) — Model evaluation is a complex process where the

model, dataset, evaluation method, and HW/SW stack must work in unison to maintain the

accuracy and performance claims. Currently, model authors distribute their models and

code (usually ad-hoc scripts) by publishing them to public repositories such as GitHub.

Due to the lack of standard specification, model authors may under-specify or omit key

aspects of model evaluation. As a consequence, reproducibility is a “pain-point” within the

DL community [88]. Thus, all aspects of evaluation must be specified and provisioned by

the platform design to guarantee reproducible evaluation.

• Consistent Evaluation (Feature 2) — The current practice of publishing models and code

also poses challenges to consistent evaluation. The ad-hoc scripts usually have a tight

coupling between model execution and the underlying HW/SW — making it difficult to

quantify or isolate the benefits of an individual component (be it model, framework, or

other SW/HW components). A fair apple-to-apple comparison between model executions

requires a consistent evaluation methodology rather than running ad-hoc scripts for each.

Thus the design should have a well-defined benchmarking specification for all models and

maximize the common code base that drives model evaluations.

• Framework/Hardware Agnostic (Feature 3) — There are many DL frameworks (e.g. Ten-

sorFlow, MXNet) and hardware (e.g. CPU, GPU, FPGA) and each has its own use scenar-

ios, features, and performance characteristics. To have broad support, the design must be

framework and hardware agnostic. Furthermore, the design must be able to fully function

without framework modifications.

• Scalable Evaluation (Feature 4) — DL innovations, such as models, frameworks, libraries,

compilers, and hardware accelerators are introduced at a rapid pace [1, 2]. Being able to

quickly evaluate and compare the benefits of DL innovations is critical for their adoption.

Thus the ability to perform DL evaluations with different model/HW/SW setups in parallel

and have a centralized management of the benchmarking results is highly desired. For

example, choosing the best hardware out of N candidates for a model is ideally performed

in parallel and the results should be automatically gathered for comparison.

76

• Artifact Versioning (Feature 5) — DL frameworks are continuously updated by the DL

community, e.g. the recent versions TensorFlow at the time of writing are v1.15 and v2.0.

There are many unofficial variants of models, frameworks, and datasets as researchers

might update or modify them to suite their respective needs. To enable management

and comparison of model evaluations using different DL artifacts (models, frameworks,

and datasets), the artifacts used for evaluation within a benchmarking platform should be

versioned.

• Efficient Evaluation Workflow (Feature 6) — Before model inference can be performed,

the input data has to be loaded and transformed into a form that the model expects (pre-

processing stage). After the model prediction, the post-processing stage transforms the

model’s output(s) to a form that can be used to compute metrics. The data loading and

pre-/post-processing can take a non-negligible amount of time, and become a limiting factor

for quick evaluations [91]. Thus the design should handle and process data efficiently in

the evaluation workflow.

• Benchmarking Scenarios (Feature 7) — DL benchmarking is performed under specific sce-

narios. These scenarios mimic the usage of DL in online, offline, or interactive applications

on mobile, edge, or cloud systems. The design should support common inference scenarios

and be flexible to support custom or emerging workloads as well.

• Benchmarking Analysis and Reporting (Feature 8) — Benchmarking produces raw data

which needs to be correlated and analyzed to produce human-readable results. An auto-

mated mechanism to summarize and visualize these results within a benchmarking platform

can help users quickly understand and compare the results. Therefore, the design should

have a benchmarking result analysis and reporting workflow.

• Model Execution Inspection (Feature 9) — The complexity of DL model evaluation makes

performance debugging challenging as each level within the HW/SW abstraction hierarchy

can be a suspect when things go awry. Current model execution inspection methods rely

on the use of a concoction of profiling tools (e.g. Nvidia’s Nsight System or Intel’s Vtune).

Each profiling tool captures a specific aspect of the HW/SW stack and researchers manually

correlate the results to get an across-stack view of the model execution profile. To ease

inspecting model execution bottlenecks, the benchmarking platform design should provide

a coherent, tracing capability across all levels of HW/SW stack.

• Different User Interfaces (Feature 10) — While the command-line is the most common

interface in the current benchmarking suites, having other UIs, such as web UI, to accom-

modate other use cases can greatly boost productivity. While a command-line interface is

often used in scripts to quickly perform combinational evaluations across models, frame-

works, and systems, a web UI, on the other hand, can serve as a “push-button” solution

77

FPGA System 2

ResNet 50

FPGA Agent

System 3

C
P

U

MXNet v1.5.1 Agent PyTorch v1.3 Agent Intel Caffe v1.0 AgentTensorFlow v2.0 Agent

User Input
Model Manifest System Requirements Benchmarking Scenario++

Client
Web Interface Command Line Interface

1

Evaluation Database

Tracing Server

Distributed Registry
Agent Key-Values Model Key-Values

 Artifact Storage

Model
Graph+Weights

Evaluation Dataset

Server

Analyzer

Load Generator

System 1

2

3

GPUCPU

TensorFlow v1.15.0 Agent

RPC Handler

Built-in Model Manifests

BVLC AlexNet ResNet 50 v1

SSD MobileNet …

Tracing Hooks

Data
Manager

4

9

8

7

6

5

S
ystem

 N

Caffe v1.0 Agent

Pipeline
Executor

Pipeline
Operators

i

i

a

b

c d

e

Legend
i Initialization Workflow

a Analysis Workflow

RPC Handler

ResNet 50
Runner

ResNet 50
BitFile

Dispatcher

REST Server

1 Evaluation Workflow

Loggers

TensorFlow v1.15.0 Predictor

Framework Wrapper

TensorFlow v1.15.0 library

Figure 6.1: The MLModelScope design and workflows.

to benchmarking and provides an intuitive flow for specifying, managing evaluations, and

visualizing benchmarking results. Thus the design should provide UIs for different use

cases.

6.2 MLMODELSCOPE DESIGN AND IMPLEMENTATION

We propose MLModelScope, a DL benchmarking platform design that achieves the ob-

jectives Feature 1-10 set out in Section 6.1. To achieve Feature 4 scalable evaluation, we

design MLModelScope as a distributed platform. To enable Feature 7 real-world bench-

marking scenarios, MLModelScope deploys models to be either evaluated using a cloud (as

in model serving platforms) or edge (as in local model inference) scenario. To keep up with

the fast pace of DL, MLModelScope is built as a set of extensible and customizable modular

components. We briefly describe each component here and will delve into how they are used

later in this section. Figure 6.1 shows the high level components which include:

• User Inputs are the required inputs for model evaluation and include: a model manifest

(a specification describing how to evaluate a model), a framework manifest (a specification

describing the software stack to use), the system requirements (e.g., an X86 system with

32GB of RAM and an NVIDIA V100 GPU), and the benchmarking scenario to employ.

78

• Client is either the web UI or command-line interface which users use to supply their

inputs and initiate the model evaluation by sending a REST request to the MLModelScope

server.

• Server acts on the client requests and performs REST API handling, dispatching the

model evaluation tasks to MLModelScope agents, generating benchmark workloads based

on benchmarking scenarios, and analyzing the evaluation results.

• Agents run on different systems of interest and perform model evaluation based on re-

quests sent by the MLModelScope server. An agent can be run within a container or as a

local process and has logic for downloading model assets, performing input pre-processing,

using the framework predictor for inference, and performing post-processing. Aside from the

framework predictor, all code in an agent is common across frameworks.

• Framework Predictor is a wrapper around a framework and provides a consistent

interface across different DL frameworks. The wrapper is designed as a thin abstraction

layer so that all DL frameworks can be easily integrated into MLModelScope by exposing a

limited number of common APIs.

• Middleware consists of a set of support services for MLModelScope including: a dis-

tributed registry (a key-value store containing entries of running agents and available mod-

els), an evaluation database (a database containing evaluation results), a tracing server (a

server to publish profile events captured during an evaluation), and an artifact storage server

(a data store repository containing model assets and datasets).

Figure 6.1 also shows MLModelScope’s three main workflows: i initialization, 1-9 eval-

uation, and a-e analysis. The initialization workflow is one where all agents self-register by

populating the registry with their software stack, system information, and available models

for evaluation. The evaluation workflow works as follows: 1 a user inputs the desired model,

software and hardware requirements, and benchmarking scenario through a client interface.

The 2 server then accepts the user request, resolves which agents are capable of handling

the request by 3 querying the distributed registry, and then 4 dispatches the request to

one or more of the resolved agents. The agent then 5 downloads the required evaluation

assets from the artifact storage, performs the evaluation, and 6-7 publishes the evaluation

results to the evaluation database and tracing server. A summary of the results is 8 sent

to the server which 9 forwards it to the client. Finally, the analysis workflow allows a user

to perform a more fine-grained and in-depth analysis of results across evaluation runs. The

MLModelScope server handles this workflow by a-d querying the evaluation database and

performing analysis on the results, and e generating a detailed analysis report for the user.

This section describes the MLModelScope components and workflows in detail.

79

6.2.1 User Input

All aspects of DL evaluation — model, software stack, system, and benchmarking sce-

nario — must be specified to MLModelScope for it to enforce Feature 1 reproducible and

Feature 2 consistent evaluation. To achieve this, MLModelScope defines a benchmarking

specification covering the 4 aspects of evaluation. A model in MLModelScope is specified

using a model manifest, and a software stack is specified using a framework manifest. The

manifests are textual specification and the system and benchmarking scenario are user-

specified options when the user initiates an evaluation. The benchmarking specification is

not tied to a certain framework or hardware, thus enabling Feature 3 . As the model, soft-

ware stack, system, and benchmarking scenario specification are decoupled, one can easily

evaluate the different combinations, enabling Feature 4 . For example, a user can use the

same MLPerf_ResNet50_v1.5 model manifest (shown in Listing 6.1) to initiate evaluations

across different TensorFlow software stacks, systems, and benchmarking scenarios. To boot-

strap the model evaluation process, MLModelScope provides built-in model manifests which

are embedded in MLModelScope agents (Section 6.2.4). For these built-in models, a user can

specify the model and framework’s name and version in place of the manifest for ease of use.

MLModelScope also provides ready-made Docker containers to be used in the framework

manifests. These containers are hosted on Docker hub.

Model Manifest

The model manifest is a text file that specifies information such as the model assets (graph

and weights), the pre- and post-processing steps, and other metadata used for evaluation

management. An example model manifest of ResNet50 v1.5 from MLPerf is shown in

Listing 6.1. The manifest describes the model name (Lines 1-2), framework name and

version constraint (Lines 4-6), model inputs and pre-processing steps (Lines 7-21), model

outputs and post-processing steps (Lines 22-28), custom pre- and post-processing functions

(Lines 29-30), model assets (Lines 31-34), and other metadata attributes (Lines 35-38).

Framework Constraints Models are dependent on the framework and possibly the frame-

work version. Users can specify the framework constraints required by a model. For example,

an ONNX model may work across all frameworks and therefore has no constraint, but other

models may only work for TensorFlow versions greater than 1.2.0 but less than 2 (e.g. Lines

4–6 in Listing 6.1). This allows MLModelScope to support models which use specific or

custom frameworks.

Pre- and Post-Processing To perform pre- and post-processing for model evaluation,

80

1 name: MLPerf_ResNet50_v1 .5 # model name
2 version: 1.0.0 # semantic version of the model
3 description: ...
4 framework: # framework information
5 name: TensorFlow
6 version: ’ | =1.12.0 <2.0’ # framework ver constraint
7 inputs: # model inputs
8 - type: image # first input modality
9 layer_name: ’input_tensor ’

10 element_type: float32
11 steps: # pre -processing steps
12 - decode:
13 data_layout: NHWC
14 color_mode: RGB
15 - resize:
16 dimensions: [3, 224, 224]
17 method: bilinear
18 keep_aspect_ratio: true
19 - normalize:
20 mean: [123.68 , 116.78 , 103.94]
21 rescale: 1.0
22 outputs: # model outputs
23 - type: probability # first output modality
24 layer_name: prob
25 element_type: float32
26 steps: # post -processing steps
27 - argsort:
28 labels_url: https://.../ synset.txt
29 preprocess: [[code]]
30 postprocess: [[code]]
31 model: # model sources
32 base_url: https:// zenodo.org/record /2535873/ files/
33 graph_path: resnet50_v1.pb
34 checksum: 7b94a2da05d ...23 a46bc08886
35 attributes: # extra model attributes
36 training_dataset: # dataset used for training
37 - name: ImageNet
38 - version: 1.0.0

Listing 6.1: MLPerf ResNet50 v1.5 model manifest.

arbitrary Python functions can be placed within the model manifest (Lines 29 and 30 in

Listing 6.1). The pre- and post-processing functions are Python functions which have the

signature def fun(env, data). The env contains metadata of the user input and data is

a PyObject representation of the user request for pre-process-ing or the model’s output for

post-processing. Internally, MLModelScope executes the functions within a Python subin-

terpreter [92] and passes the data arguments by reference. The pre- and post-processing

functions are general; i.e. the functions may import external Python modules or download

and invoke external scripts. By allowing arbitrary processing functions, MLModelScope

works with existing processing codes and is capable of supporting arbitrary input/output

modalities.

Built-in Pre- and Post-Processing An alternative way of specifying pre- and post-

81

processing is by defining them as a series of built-in pre- and post-processing pipeline steps

(i.e. pipeline operators) within the model manifest. For example, our MLModelScope imple-

mentation provides common pre-processing image operations (e.g. image decoding, resizing,

and normalization) and post-processing operations (e.g. ArgSort, intersection over union,

etc.) which are widely used within vision models. Users can use built-in operators to define

the pre- and post-processing pipelines within the manifest without writing code. Users define

a pipeline by listing the operations within the manifest code (e.g. Lines 7–21 in Listing 6.1

for pre-processing). The pre- and post-processing steps are executed in the order they are

specified in the model manifest.

Model Assets The data required by the model are specified in the model manifest file; i.e.

the graph (the graph_path) and weights (the weights_path) fields. The model assets can

reside within MLModelScope’s artifact repository, on the web, or the local file system of the

MLModelScope agent. If the model assets are remote, then they are downloaded on demand

and cached on the local file system. For example, the TensorFlow ResNet50 v1.5 model

assets in Listing 6.1 are stored on the Zenodo [93] website (Lines 31-34) and are downloaded

prior to evaluation.

Framework Manifest & System Requirements

The framework manifest is a text file that specifies the software stack for model evalu-

ation; an example framework manifest is shown in Listing 6.2. To maintain the software

stack, and guarantee isolation, the user specifies the docker containers using the containers

field. Multiple containers can be specified to accommodate different systems (e.g. CPU or

GPUs). At the MLModelScope initialization phase (i), MLModelScope agents (described in

Section 6.2.4) register themselves by publishing their HW/SW stack information into the

distributed registry (described in Section 6.2.5). The MLModelScope server uses this in-

formation during the agent resolution process. The server finds agents satisfying the user’s

hardware specification and model/framework requirements. Evaluations are then run on one

of (or, at the user request, all of) the agents. If the user omits the framework manifest in

the user input, the server uses the model and system information as constraints.

Benchmarking Scenario

MLModelScope provides a set of built-in benchmarking scenarios. The benchmarking

scenarios include batched inference and online inference with a configurable distribution of

time of request (e.g. Poisson distribution of requests). The MLModelScope server generates

82

1 name: TensorFlow # framework name
2 version: 1.15.0 # semantic version of the framework
3 description: ...
4 containers: # containers
5 amd64:
6 cpu: carml/tensorflow:1-15-0_amd64 -cpu
7 gpu: carml/tensorflow:1-15-0_amd64 -gpu
8 ppc64le:
9 cpu: carml/tensorflow:1-15-0_ppc64le -cpu

10 gpu: carml/tensorflow:1-15-0_ppc64le -gpu

Listing 6.2: An example TensorFlow framework manifest.

1 // Opens a predictor.
2 ModelHandle ModelLoad(OpenRequest);
3 // Close an open predictor.
4 Error ModelUnload(ModelHandle);
5 // Perform model inference on user data.
6 PredictResponse Predict(ModelHandle , PredictRequest , PredictOptions);

Listing 6.3: The predictor interface consists of 3 API functions.

an inference request load based on the benchmarking scenario option and sends it to the

selected agent(s) to measure the corresponding benchmarking metrics of the model (detailed

in Section 6.2.3).

6.2.2 MLModelScope Client

A user initiates a model 1 evacuation or a analysis though the MLModelScope client.

To enable Feature 10 , the client can be either a website or a command-line tool that users

interact with. The client communicates with the MLModelScope server through REST

API and sends user evaluation requests. The web user interface allows users to specify a

model evaluation through simple clicks and is designed to help users who do not have much

DL experience. For example, for users not familiar with the different models registered,

MLModelScope allows users to select models based on the application area — this lowers

the barrier of DL usage. The command-line interface is provided for those interested in

automating the evaluation and profiling process. Users can develop other clients that use

the REST API to integrate MLModelScope within their AI applications.

6.2.3 MLModelScope Server

The MLModelScope server interacts with the MLModelScope client, agent, the middle-

ware. It uses REST API to communicate with the MLModelScope clients and middleware,

83

and gRPC (Listing 6.4) to interact with the MLModelScope agents. To enforce Feature 4 ,

the MLModelScope server can be load balanced to avoid it being a bottleneck.

In the 1-9 evaluation workflow, the server is responsible for 2 accepting tasks from the

MLModelScope client, 3 querying the distributed registry and resolving the user-specified

constraints to find MLModelScope agents capable of evaluating the request, 4 dispatching

the evaluation task to the resolved agent(s) and generating loads for the evaluation, 8 col-

lecting the evaluation summary from the agent(s), and 9 returning the result summary to

the client. The load generator is placed on the server to avoid other programs interfering

with the evaluation being measured and to emulate real-world scenarios such as cloud serving

(Feature 7).

In the a-e analysis workflow, the server again a-b takes the user input, but, rather than

performing evaluation, it c queries the evaluation database (Section 5.2.3), and then ag-

gregates and analyzes the evaluation results. MLModelScope enables Feature 8 through an

across-stack analysis pipeline. It d consumes the benchmarking results and profiling traces

in the evaluation database and performs the analysis. Then the server e sends the analysis

result to the client. The profiling and automated analysis workflows in MLModelScope allow

users to systematically compare models, frameworks, and system offerings.

6.2.4 Agent and Framework Predictor

A MLModelScope agent is a model serving process that is run on a system of interest

(within a container or on bare metal) and handles requests from the MLModelScope server.

MLModelScope agents continuously listen for jobs and communicate with the MLMod-

elScope server through gRPC [94] as shown in Listing 6.4. A framework predictor resides

within a MLModelScope agent and is a wrapper around a framework and links to the frame-

work’s C library.

During the initialization phase (i), a MLModelScope agent publishes its built-in mod-

els and HW/SW information to the MLModelScope distributed registry. To perform the

assigned evaluation task, the agent first 5 downloads the required evaluation assets us-

ing the data manager, it then executes the model evaluation pipeline which performs the

pre-processing, calls the framework’s predictor for inference and then preforms the post-

processing. If profiling is enabled, the trace information is published to the 6 tracing server

to get aggregated into a single profiling trace. 7 the benchmarked result and the profiling

trace are published to the evaluation database. Aside from the framework predictor, all the

other code — the data manager, pipeline executor, and tracing hooks — are shared across

agents for different frameworks. While the default setup of MLModelScope is to run each

84

agent on a separate system, the design does not preclude one from running agents on the

same system as separate processes.

Data Manager

The data manager manages the assets (e.g. dataset or model) required by the evaluation

as specified within the model manifest. Assets can be hosted within MLModelScope’s artifact

repository, on the web, or reside in the local file system of the MLModelScope agent. Both

datasets and models are downloaded by the data manager on demand if they are not available

on the local system. If the checksum is specified in the model manifest, then the checksum

is verified after download. Model assets are stored using the frameworks’ corresponding

deployment format.

Pipeline Executor and Operators

To enable Feature 6 efficient evaluation workflow, MLModelScope leverages a streaming

data processing pipeline design to perform the model evaluation. The pipeline is composed

of pipeline operators which are mapped onto light-weight threads to make efficient use mul-

tiple CPUs as well as to overlap I/O with compute. Each operator within the pipeline forms

a producer-consumer relationship by receiving values from the upstream operator(s) (via in-

bound streams), applies the specified function on the incoming data and usually producing

new values, and propagates values downstream (via outbound streams) to the next opera-

tor(s). The pre- and post-processing operations, as well as the model inference, form the

operators within the model evaluation pipeline.

Framework Predictor

Frameworks provide different APIs (usually across programming languages e.g. C/C++,

Python, Java) to perform inference. To enable Feature 2 consistent evaluation and maximize

code reuse, MLModelScope wraps each framework’s C inference API. The wrapper is minimal

and provides a uniform API across frameworks for performing model loading, unloading,

and inference. This wrapper is called the predictor interface and is shown in Listing 6.3.

MLModelScope does not require modifications to a framework and thus pre-compiled binary

versions of frameworks (e.g. distributed through Python’s pip) or customized versions of a

framework work within MLModelScope.

85

1 service Predict {
2 message PredictOptions {
3 enum TraceLevel {
4 NONE = 0;
5 MODEL = 1; // steps in the evaluation pipeline
6 FRAMEWORK = 2; // layers within the framework and above
7 SYSTEM = 3; // the system profilers and above
8 FULL = 4; // includes all of the above
9 }

10 TraceLevel trace_level = 1;
11 Options options = 2;
12 }
13 message OpenRequest {
14 string model_name = 1;
15 string model_version = 2;
16 string framework_name = 3;
17 string framework_version = 4;
18 string model_manifest = 5;
19 BenchmarkScenario benchmark_scenario = 6;
20 PredictOptions predict_options = 7;
21 }
22 // Opens a predictor and returns a PredictorHandle.
23 rpc Open(OpenRequest) returns (PredictorHandle){}
24 // Close a predictor and clear its memory.
25 rpc Close(PredictorHandle) returns (CloseResponse) {}
26 // Predict receives a stream of user data and runs
27 // the predictor on each element of the data according
28 // to the provided benchmark scenario.
29 rpc Predict(PredictorHandlePredictorHandle , UserInput)
30 returns (FeaturesResponse) {}
31 }

Listing 6.4: MLModelScope’s minimal gRPC interface.

MLModelScope design supports agents on ASIC and FPGA. Any code implementing the

predictor interface shown in Listing 6.3 is a valid MLModelScope predictor. This means

that FPGA and ASIC hardware, which do not have a framework per se, can be exposed

as a predictor. For example, for an FPGA the Open function call loads a bitfile into the

FPGA, the Close unloads it, and the Predict runs the inference on the FPGA. Except for

implementing these 3 API functions, no code needs to change for the FPGA to be exposed

to MLModelScope.

Tracing Hooks

To enable Feature 9 , MLModelScope leverages XSP (Chapter 4) to capture the profiles

at different levels of granularity (model-, framework-, and system-level). A tracing hook in

XSP is a pair of start and end code snippets and follows the standards [33] to capture an

interval of time. The captured time interval along with the context and metadata is called a

trace event. and is published to the tracing server (Section 6.2.5). Trace events are published

86

asynchronously to the tracing server, where they are aggregated using the timestamp and

context information into a single end-to-end timeline.

The trace granularity is a user-specified option (part of the benchmarking scenario) and

allows one to get a holistic and hierarchical view of the execution profile. For example, a user

can enable model- and framework-level profiling by setting the trace level to framework, or

can disable the profiling all together by setting the trace level to none. Through MLMod-

elScope’s trace, a user can get a holistic view of the model evaluation to identify bottlenecks

at each level of inference.

6.2.5 Middleware

The MLModelScope middleware layer is composed of services and utilities that support

the MLModelScope Server in orchestrating model evaluations and the MLModelScope agents

in provisioning, monitoring, and aggregating the execution of the agents.

Distributed Registry

MLModelScope leverages a distributed key-value store to store the registered model man-

ifests and running agents, referred to as the distributed registry. MLModelScope uses the

registry to facilitate the discovery of models, solve user-specified constraints for selecting

MLModelScope agents, and load balances the requests across agents.

Evaluation Database

In the benchmarking workflow, after completing a model evaluation, the MLModelScope

agent uses the user input as the key to store the benchmarking result and profiling trace in the

evaluation database. MLModelScope summarizes and generates plots to aid in comparing the

performance across experiments. Users can view historical evaluations through the website

or command line using the input constraints.

Tracing Server

The tracing server accepts profiling data published by the MLModelScope agent’s trace

hooks. As stated in Section 6.2.4, user-specified options control the granularity (model,

framework, or system) of the trace events captured (Lines 4–9 in Listing 6.4).

87

Table 6.1: Four systems with Volta, Pascal, Maxwell, and Kepler GPUs are selected for evaluation.

Name CPU GPU
GPU

Architecture
GPU Theoretical
Flops (TFlops)

GPU Memory
Bandwidth (GB/s)

Cost
($/hr)

AWS P3 (2XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla V100-SXM2-16GB Volta 15.7 900 3.06
AWS G3 (XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla M60 Maxwell 9.6 320 0.90
AWS P2 (XLarge) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla K80 Kepler 5.6 480 0.75
IBM P8 IBM S822LC Power8 @ 3.5GHz Tesla P100-SXM2 Pascal 10.6 732 -

6.2.6 Extensibility and Customization

MLModelScope is built from modular components and is designed to be extensible and

customizable. Users can disable components, such as tracing, with a runtime option or con-

ditional compilation, for example. Users can extend MLModelScope by adding components

such as models, frameworks, or tracing hooks.

Adding Models As models are defined through the model manifest file, no coding is re-

quired to add models. Once a model is added to MLModelScope, then it can be used through

its website, command line, or API interfaces. Permissions can be set to control who can use

or view a model.

Adding Frameworks To use new or custom versions of a built-in framework requires no

code modification but a framework manifest as shown in Listing 6.2. To add support for

a new type of framework in MLModelScope, the user needs to implement the framework

wrapper and expose the framework as a MLModelScope predictor. The predictor interface

is defined by a set of 3 functions — one to open a model, another to perform the inference,

and finally, one to close the model — as shown in Listing 6.3. The auxiliary code that forms

an agent is common across frameworks and does not need to be modified.

Adding Tracing Hooks MLModelScope is configured to capture a set of default system

metrics using the system-level tracing hooks, as described in Chapter 4. Users can configure

these existing tracing hooks to capture other system metrics. For example, to limit profiling

overhead, by default, the CUPTI tracing hooks capture only some CUDA runtime API,

GPU activities (kernels and memory copy), and GPU metrics. They can be configured to

capture other GPU activities and metrics, or NVTX markers. Moreover, users can integrate

other system profilers into MLModelScope by implementing the XSP tracing interface.

6.3 EVALUATION

Previous sections discussed in detail how MLModelScope’s design and implementation

achieves the Feature 1-6 and Feature 10 design objectives. In this section, we focus on eval-

uating how MLModelScope handles Feature 7 different benchmarking scenarios, Feature 8

88

Table 6.2: 37 TensorFlow image classification models from MLPerf, AI-Matrix, and TensorFlow
Slim are used for evaluation and are sorted by accuracy. We measured the online latency, 90th

percentile latency, maximum throughput at the optimal batch size for each model.

ID Name
Top 1

Accuracy
Graph Size

(MB)

Online
TrimmedMean
Latency (ms)

Online
90th Percentile
Latency (ms)

Max Throughput
(Inputs/Sec)

Optimal
Batch Size

1 Inception ResNet v2 80.40 214 23.95 24.2 346.6 128
2 Inception v4 80.20 163 17.36 17.6 436.7 128
3 Inception v3 78.00 91 9.2 9.48 811.0 64
4 ResNet v2 152 77.80 231 14.44 14.65 466.8 256
5 ResNet v2 101 77.00 170 10.31 10.55 671.7 256
6 ResNet v1 152 76.80 230 13.67 13.9 541.3 256
7 MLPerf ResNet50 v1.5 76.46 103 6.33 6.53 930.7 256
8 ResNet v1 101 76.40 170 9.93 10.08 774.7 256
9 AI Matrix ResNet152 75.93 230 14.58 14.72 468.0 256

10 ResNet v2 50 75.60 98 6.17 6.35 1,119.7 256
11 ResNet v1 50 75.20 98 6.31 6.41 1,284.6 256
12 AI Matrix ResNet50 74.38 98 6.11 6.25 1,060.3 256
13 Inception v2 73.90 43 6.28 6.56 2,032.0 128
14 AI Matrix DenseNet121 73.29 31 11.17 11.49 846.4 32
15 MLPerf MobileNet v1 71.68 17 2.46 2.66 2,576.4 128
16 VGG16 71.50 528 22.43 22.59 687.5 256
17 VGG19 71.10 548 23.0 23.31 593.4 256
18 MobileNet v1 1.0 224 70.90 16 2.59 2.75 2,580.6 128
19 AI Matrix GoogleNet 70.01 27 5.43 5.55 2,464.5 128
20 MobileNet v1 1.0 192 70.00 16 2.55 2.67 3,460.8 128
21 Inception v1 69.80 26 5.27 5.41 2,576.6 128
22 BVLC GoogLeNet 68.70 27 6.05 6.17 951.7 8
23 MobileNet v1 0.75 224 68.40 10 2.48 2.61 3,183.7 64
24 MobileNet v1 1.0 160 68.00 16 2.57 2.74 4,240.5 64
25 MobileNet v1 0.75 192 67.20 10 2.42 2.6 4,187.8 64
26 MobileNet v1 0.75 160 65.30 10 2.48 2.65 5,569.6 64
27 MobileNet v1 1.0 128 65.20 16 2.29 2.46 6,743.2 64
28 MobileNet v1 0.5 224 63.30 5.2 2.39 2.58 3,346.5 64
29 MobileNet v1 0.75 128 62.10 10 2.3 2.47 8,378.4 64
30 MobileNet v1 0.5 192 61.70 5.2 2.48 2.67 4,453.2 64
31 MobileNet v1 0.5 160 59.10 5.2 2.42 2.58 6,148.7 64
32 BVLC AlexNet 57.10 233 2.33 2.5 2,495.8 64
33 MobileNet v1 0.5 128 56.30 5.2 2.21 2.33 8,924.0 64
34 MobileNet v1 0.25 224 49.80 1.9 2.46 3.40 5,257.9 64
35 MobileNet v1 0.25 192 47.70 1.9 2.44 2.6 7,135.7 64
36 MobileNet v1 0.25 160 45.50 1.9 2.39 2.53 10,081.5 256
37 MobileNet v1 0.25 128 41.50 1.9 2.28 2.46 10,707.6 256

result summarization, and Feature 9 inspection of model execution. We installed MLMod-

elScope on the systems listed in Table 6.1. Unless otherwise noted, all MLModelScope agents

are run within a docker container built using NVIDIA’s TensorFlow NGC v19.06 container

with the TensorFlow v1.13.1 library. All evaluations were performed using the command-line

interface and are run in parallel across the systems.

6.3.1 Benchmarking Scenarios

To show that MLModelScope allows users to choose from different models and system

offerings for the same DL task, we compared the inference performance across the 37 Ten-

89

sorFlow models (Table 6.2) and systems (Table 6.1) under different benchmark scenarios.

For each model, we measured its trimmed mean latency1 and 90th percentile latency in on-

line (batch size = 1) inference scenario, and the maximum throughput in batched inference

scenario on the AWS P3 system. The model accuracy achieved using the ImageNet validation

dataset and the model size is listed. A model deployer can use this accuracy and performance

information to choose the best model on a system given the accuracy and target latency or

throughput objectives.

Model Accuracy, Size, and Performance We examined the relationship between the

model accuracy and both online latency (Figure 6.3) and maximum throughput (Figure

6.2). In both figures, the area of the circles is proportional to the model’s graph size. In

Figure 6.2 we find a limited correlation between a model’s online latency and its accuracy

— models taking longer time to run do not necessarily achieve higher accuracies; e.g. model

15 vs 22. While large models tend to have longer online latencies, this is not always true;

e.g. model 14 is smaller in size but takes longer to run compared to models 3, 5, 8, etc.

Similarly, in Figure 6.3, we find a limited correlation between a model’s accuracy and its

maximum throughput — two models with comparable maximum throughputs can achieve

quite different accuracies; e.g. models 2 and 17. Moreover, we see both figures show that the

graph size (which roughly represents the number of weight values) is not directly correlated

to either accuracy or performance. Models closer to the upper left corner (low latency and

high accuracy) in Figure 6.2 are favorable in the online inference scenarios, and models closer

to the upper right corner (high throughput and high accuracy) in Figure 6.3 are favorable

for batched inference. Users can use this information to select the best model depending on

their objectives.

Model Throughput Scalability Across Batch Sizes When comparing the model on-

line latency and maximum throughput (Figures 6.2 and 6.3 respectively), we observed that

models which exhibit good online inference latency do not necessarily perform well in the

batched inference scenario where throughput is important. We measured how the model

throughput scales with batch size (referred to as throughput scalability) and present this

model characteristic in Figure 6.5. As shown, the throughput scalability varies across mod-

els. Even models with similar architectures can have different throughput scalability (e.g.,

models 4 and 6, models 5 and 8, and models 10 and 11). In general, smaller models tend to

have better throughput scalability. However, there are exceptions, for example, models 16

and 17 are large and have good throughput scalability.

Model Performance Across Systems Overall, the ResNet 50 class of models offer a

1Trimmed mean is computed by removing 20% of the smallest and largest elements and computing the
mean of the residual.

90

��

��

��
��

��
��

��
��

��

��
��

��
��

��

��

��

���� �

�

�

�
� �

�
� �

� � �� �� �� ��

��

��

��

��

��

������ ������� (��)

�
�
�
�
�
�
�
�
��
�
�

Figure 6.2: Accuracy vs online latency.

����
��

��

����

����

��

��

��

��

��

��

��

��

��

��

��

�
�

�

� ���� ���� ���� ���� �����

��

��

��

��

��

������� ���������� (������/�)

�
�
�
�
�
�
�
�
��
�
�

Figure 6.3: Accuracy vs maximum throughput.

���� ��� ���� ��� ��� ���

��� ��� �� ������ ��� ���� ������ ���

� � � � ��

�
��

��
���

���
����

����� ����

�
�
��
�
�
�
�
�
��
�
�
�
(�
�
)

Figure 6.4: The batched latency of ResetNet 50 across the GPUs and CPUs listed in Table 6.1.

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

1
2
4
8
16
32
64
128
256

1 9 17 26 33

Figure 6.5: The throughput improvement (over batch size 1) heatmap across batch sizes on AWS
P3 for the 37 models in Table 6.2. The y−axis shows the batch size, whereas the x−axis shows the
model ID.

balance between model size, accuracy, performance and are commonly used in practice.

Thus, we use ResNet 50 in online inference as an example to show how to use MLModelScope

to choose the best system given a model. We evaluated ResNet 50 across all CPUs and GPUs

listed in Table 6.1 and the results are shown in Figure 6.4. On the CPU side, IBM S822LC

Power8 achieves between 1.7× and 4.1× speedup over Intel Xeon E5-2686. The P8 CPU

is more performant than Xeon CPU [95], with the P8 running at 3.5 GHz and having 10

cores each capable of running 80 SMT threads. On the GPU side, as expected, V100 GPU

achieves the lowest latency followed by the P100. The M60 GPU is 1.2× to 1.7× faster than

the K80. When this information is coupled with the pricing information of the systems, one

can determine which system is most cost-efficient given a latency target and benchmarking

scenario. For example, given that K80 costs 0.90$/hr and M60 costs 0.75$/hr on AWS, we

can tell that M60 is both more cost-efficient and faster than K80 — thus, M60 is overall

better suited for ResNet 50 online inference when compared to K80 on AWS.

6.3.2 Model Execution Inspection

MLModelScope’s evaluation inspection capability helps users to understand the model

execution and identify performance bottlenecks. We show this by performing a case study of

“cold-start” inference (where the model needs to be loaded into the memory before inference)

of model 32. The cold-start inference is common on low-memory systems and in serving

schemes that perform one-off evaluation. We choose BVLC AlexNet because it is easy to

see the effects of the “cold-start” inference scenario using Caffe on the AWS P3 and IBM

92

volta_sgemm_128x64_tn

A
W

S
P3

0 10 20 30 40

FC6
14.89ms

Copy 144MB to GPU using PCIe3

volta_sgemm_32x32_sliced1x4_nn

IB
M

 P
8

Copy 144MB to GPU using NVLink

FC6
7.47ms

maxwell_sgemm_128x64_tn

gemmk1_kernel

conv fc normdropout softmax activation pooling computememcpy overhead
0 2 4 6 8 10 12 14

ms

ms

Figure 6.6: The MLModelScope inspection of “cold-start” BVLC AlexNet inference with batch size
64 running Caffe v0.8 using GPU on AWS P3 and IBM P8. The color-coding of layers signify the
layer type.

Table 6.3: The ResNet 50 layer information using AWS P3 (Tesla V100 GPU) with batch size 256.
The top 5 most time-consuming layers are summarized from the tracing profile. In total, there are
234 layers of which 143 take less than 1ms.

Layer
Index

Layer
Name

Layer
Type

Layer Shape Dominant GPU Kernel(s) Name
Latency
(ms)

Alloc Mem
(MB)

208 conv2d 48/Conv2D Conv2D 〈256, 512, 7, 7〉 volta cgemm 32x32 tn 7.59 25.7
221 conv2d 51/Conv2D Conv2D 〈256, 512, 7, 7〉 volta cgemm 32x32 tn 7.57 25.7
195 conv2d 45/Conv2D Conv2D 〈256, 512, 7, 7〉 volta scudnn 128x128 relu interior nn v1 5.67 25.7

3 conv2d/Conv2D Conv2D 〈256, 64, 112, 112〉 volta scudnn 128x64 relu interior nn v1 5.08 822.1
113 conv2d 26/Conv2D Conv2D 〈256, 256, 14, 14〉 volta scudnn 128x64 relu interior nn v1 4.67 51.4

P8 GPU systems with batch size 64. The results are shown in Figure 6.6. We see that

IBM P8 with P100 GPU is more performant than AWS P3 which has V100 GPU. We used

MLModelScope’s model execution inspection capability to delve deeper into the model and

to reveal the reason. We “zoomed” into the longest-running layer (fc6) and find that most

of the time is spent performing copies for the (fc6) layer weights. On AWS P3, the fc6

layer takes 39.44ms whereas it takes 32.4ms on P8. This is due to the P8 system having

an NVLink interconnect which has a theoretical peak CPU to GPU bandwidth of 40 GB/s

(33 GB/s measured) while the AWS P3 system performs the copy over PCIe-3 which has a

maximum theoretical bandwidth of 16 GB/s (12 GB/s measured). Therefore, despite P3’s

lower compute latency, we observed a lower overall layer and model latency on the P8 system

due to the fc6 layer being memory bound.

93

Using MLModelScope’s model execution inspection, it is clear that the memory copy is

the bottleneck for the “cold-start” inference. To verify this observation, we examined the

Caffe source code. Caffe performs lazy memory copies for layer weights just before execution.

This causes compute to stall while the weights are being copied — since the weights of the

FC layer are the biggest. A better strategy — used by Caffe2, MXNet, TensorFlow, and

TensorRT — is to eagerly copy data asynchronously and utilize CUDA streams to overlap

compute with memory transfer.

6.3.3 Benchmarking Analysis and Reporting

We used MLModelScope’s analysis workflow to perform an in-depth analysis of the 37

models and to show MLModelScope’s benchmarking analysis and reporting capabilities. All

results were generated automatically using MLModelScope and further results are available

at for the reader’s inspection. As an example, we highlight the model-layer-GPU ker-

nel analysis of ResNet 50 using batch size 256 (the optimal batch size with the maximum

throughput) on AWS P3. MLModelScope can capture the layers in a model and correlate

the GPU kernel calls to each layer; i.e. tell which GPU kernels are executed by a certain

layer. Table 6.3 shows the top 5 most time-consuming layers of ResNet 50 as well as the

dominant kernel within each layer. Through the analysis and summarization workflow, users

can easily digest the results and identify understand model-, framework-, and system-level

bottlenecks.

6.4 RELATED WORK

To my knowledge, this is the first work to describe the design and implementation of a

scalable DL benchmarking platform. While there have been efforts to develop certain aspects

of MLModelScope, the efforts have been quite dispersed and there has not been a cohesive

system that addresses Feature 1-10 . For example, while there is active work on proposing

benchmark suites, reference workloads, and analysis [3, 4], they provide Feature 7 a set of

benchmarking scenarios and a simple mechanism for Feature 8 analysis and reporting of the

results. The models within these benchmarks can be consumed by MLModelScope, and we

have shown analysis which uses the benchmark-provided models. Other works are purely

model serving platforms [96, 97] which address Feature 4 scalable evaluation and possibly

Feature 5 artifact versioning but nothing else. Finally, systems such as as [89, 98, 99] track

the model and data from their use in training till deployment to ensure either Feature 1

reproducible or Feature 2 consistent evaluation.

94

6.5 CONCLUSION

Evaluating, comparing, and analyzing the performance of DL innovations is critical for

their adoption. This chapter first identifies 10 design objectives of a DL benchmarking plat-

form. It then describes the design and implementation of MLModelScope — an open-source

DL benchmarking platform that achieves these design objectives. MLModelScope offers a

unified and holistic way to evaluate and inspect DL models, and provides an automated

analysis and reporting workflow to summarize the results. We demonstrate the usability

and effectiveness of MLModelScope by using it to evaluate a set of models and show how

model, hardware, and framework selection affects model accuracy and performance under

different benchmarking scenarios. We are actively working on curating automated analysis

and reports obtained through MLModelScope.

95

CHAPTER 7: OTHER RELEVANT WORKS

This chapter presents other relevant works in DL performance understanding and opti-

mization. Specifically, we propose TrIMS to mitigate the model loading overhead in DL

inference, TOPS to leverage TCUs for non-GEMM operations, and CommScope to under-

stand memory transfer behaviors across different scenarios.

7.1 TRIMS: TRANSPARENT AND ISOLATED MODEL SHARING FOR DL
INFERENCE

Today, many business-logic and consumer applications rely on DL inferences as core com-

ponents within their application pipelines. These pipelines tend to be deployed to the cloud

through serverless computing, since they abstract away low-level details such as system setup

and DevOps while providing isolation, decentralization, and scalability, all the while being

more cost-effective than dedicated servers. User code which defines the pipeline (acting as

glue code) is commonly deployed through Function as a Service (FaaS) [100–103] onto the

cloud and is made available through HTTP endpoints. Since FaaS executes arbitrary user

code, the host system must execute the code in isolation — through virtual machines (VMs)

or containers.

While serverless 1 is an emerging and compelling computing paradigm for event-driven

cloud applications, use cases of the current FaaS offerings are limited. Currently, serverless

functions run as short-lived VMs or containers, and thus are not ideal for long running

jobs. FaaS functions are also unable to work efficiently with data or distributed computing

resources [104,105], thus are not ideal for functions that require large data.

Recent work has proposed extensions to the FaaS infrastructure to expand its usage within

DL domains and facilitate it to leverage heterogeneous hardware. In [104], the authors

advocate for code fluidity, where user functions are shipped to the data rather than the

data being downloaded by the code. The advantages for this are three-fold. a It avoids

the overhead of copying data over slow interconnects (such as networks). b Leveraging

heterogeneous hardware becomes attractive if data overhead is reduced and isolation is

guaranteed. Finally, c, since user functions that use the same data are routed to the same

system, it exposes an opportunity for sharing constant data across functions.

1Cloud provider runs the server, and dynamically manages the allocation of machine resources

96

58.73

15.37

50.63

45.88

10.45

58.75

9.83

7.63

7.74

7.04

7.2

12.85

8.24

56.92

58.04

51.26

11.55

AlexNet

GoogLeNet

CaffeNet

RCNN-ILSVRC13

Inception-v3

Inception-v4

InceptionBN-v2

ResNet101

ResNet101-v2

ResNet152

ResNeXt50-32x4d

SqueezeNet

SqueezeNet-v1.1

VGG16

VGG16_SOD

VGG19

WRN50-v2

MXNet C
PU

MXNet G
PU

Caffe
 CPU

Caffe
 GPU

Caffe
2 CPU

Caffe
2 GPU

TF CPU
TF GPU

8.45

12.9

9.67

9.85

8.87

7.07

3.47

10.63

11.22

8.29

13.33

14.8

14.3

25.1

26.81

25.2

12.18

1.36

2.24

1.03

1.17

3.33

5.17

0.89

2.65

2.64

3.34

1.74

5.82

3.44

5.71

2.19

5.63

2.33

0.77

0.61

0.79

0.75

1.16

1.3

1.03

1.25

1.23

1.39

1.14

0.41

0.41

0.88

0.89

0.93

1.1

Model Loading Input Processing Compute

Figure 7.1: Percentage of time spent in model loading, inference computation, and image prepro-
cessing for online DL inference (batchsize = 1) using CPU and GPU for MXNet, Caffe, Caffe2,
and TensorFlow on an IBM S822LC with Pascal GPUs. The speedup of using GPU over CPU for
inference compute is shown between the pie charts. Inference time for all frameworks is dominated
by model loading except for small models. For TensorFlow, GPU initialization overhead impacts
the end-to-end time and achieved speedup.

Both a and b allow users to minimize data copy overhead and accelerate the computation

97

using heterogeneous hardware. Yet, after removing the inter-node data copy overhead, intra-

node data movement becomes a contributing factor to latency. This is even more true for

heterogeneous devices, since data must be copied onto the device. This makes heterogeneous

devices, such as GPUs, less attractive for accelerating latency-sensitive inference — even

though they would offer a significant compute speed advantage, as shown in Figure 7.1. For

c, we observe that DL models are shared extensively across user pipelines. For example,

Google reported that 41 natural language translation models can accommodate over 75% of

their translation requests in [106]. Because model parameters are constant, we can use data

sharing across Faas functions to share DL models within a model catalog, hence eliminating

the model loading overhead, decreasing the end-to-end latency, and reducing the memory

footprint (since there is only one instance of a model in memory for many users) for DL

inferences.

In [91], we propose a Transparent and Isolated Model Sharing (TrIMS) scheme to lever-

age the data sharing opportunity introduced by collocating user code with model catalogs

within FaaS — it minimizes model loading and data movement overhead while maintaining

the isolation constraints and increasing hardware resource utilization. We also introduce

the TrIMS’s model resource manager (MRM) layer which offers a multi-tiered cache for DL

models to be shared across user FaaS functions. By decreasing model loading and data move-

ment overhead, TrIMS decreases latency of end-to-end model inference, making inference on

GPU a viable FaaS target. TrIMS also increases memory efficiency for cloud data centers

while maintaining accuracy. In [91] we focus on online prediction within latency sensitive

FaaS functions. Specifically, we make the following contributions:

• We characterize the overhead for DL model inference across popular DL frameworks

on both CPUs and GPUs and identify model loading as the bottleneck.

• We propose TrIMS to mitigate the model loading overhead faced by collocating user

code with model catalogs within FaaS, and increase the hardware resource utilization

by sharing DL models across all levels of the memory hierarchy in the cloud environ-

ment — GPU, CPU, local storage, and remote storage. To our knowledge, this work

is the first to propose sharing DL models across isolated FaaS functions.

• We implement TrIMS within Apache MXNet [107] and evaluate the impact on GPU

inference performance for a representative set of models and systems. We show that

TrIMS provides 1.12× – 24× speedup on small (less than 600MB) models and 5× –

210× speedup on large (up to 6GB) models and is within 20% of ideal speedup (with

ideal being that model loading and data movement taking no time), and gives 8×

98

system throughput improvement.

• TrIMS eliminates a substantial part of the non-compute components of the end-to-end

latency, making DL model inference on GPU and other novel compute accelerators

more viable.

• We architect TrIMS so that it can be easily integrated with existing FaaS systems and

DL frameworks without user code changes. TrIMS is designed to be compatible with

existing framework usage patterns, and requires minimal modifications for framework

developers.

• While we use DL inference as the motivating application, TrIMS is not restricted to

DL. TrIMS can be generalized to any application where one can share data across FaaS

functions, be it a common database, knowledge base, or dataset.

7.2 TOPS: ACCELERATING REDUCTION AND SCAN USING TENSOR CORE
UNITS

Deep learning’s reliance on matrix-multiplication (GEMM) for compute has driven both

research and industry to develop matrix-multiplication accelerator hardware — collectively

called Tensor Core Units (TCUs). TCUs are designed to accelerate Multilayer Percep-

trons (MLP), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN)

or Deep Neural Network (DNN) in general. TCUs come under the guise of different mar-

keting terms, be it NVIDIA’s Tensor Cores [108], Google’s Tensor Processing Unit [109],

Intel’s DLBoost [110], Apple A11’s Neural Engine [111], Tesla’s HW3, or ARM’s ML Pro-

cessor [112]. They vary in the underlying hardware implementation [113–116], and are

prevalent [108,117,118] in both cloud and edge devices.

To show the theoretical benefits of TCUs, consider the NVIDIA Volta V100 GPUs archi-

tecture. Using V100 Tensor Cores, one achieves a 8× throughput increase per Streaming

Multiprocessors (SM) over previous Pascal GP100 generation. This throughput increase is

because each V100 SM is capable of performing 1024 half precision operations per cycle us-

ing the TCUs whereas the GP100 SM is capable of performing 128 half precision operations

per cycle without the TCUs. The throughput increase is enabled by the fact that the V100

dedicates a large chip area of the SM subcore to TCUs (Figure 7.2).

Although TCUs are prevalent and promise increase in performance and/or energy effi-

ciency and are heavily used within supercomputers [119, 120] to achieve exascale perfor-

mance, they suffer from over specialization. Currently, no algorithm other than GEMM

99

Load/Store SPU

Registers
Control
Cache

FP64 INT FP32 TCUTCU

Figure 7.2: Each subcore (processing block) in the NVIDIA Tesla V100 PCI-E architecture contains
2 TCUs. In total, 640 TCUs are available — achieving a theoretical peek of 113 TFLOPS.

utilizes the NVIDIA TCUs. This results in idle TCUs, low chip utilization, and limits TCUs

applicability to specialized libraries or narrow application domains.

In [121], we expand the class of algorithms that can execute on TCUs— enabling the

TCUs to be used within a wider range of non-GEMM algorithms. We choose reduction and

scan, since a large body of work [122–124] has shown that they are key primitives for data

parallel implementations of radix sort, quicksort, lexical analysis, stream compaction, and

polynomial evaluation. In this work, we formulate a mapping of reduction or scan onto TCUs.

We then introduce algorithms for cache- (warp-), processing element (PE)/core- (block-), and

device- (grid-) level reduction and scan and show their performance on NVIDIA TCUs. We

separate our algorithm description from implementation, making the algorithms, motivation,

methods, and observations generally applicable to a broader range of TCUs and numerical

precision agnostic. While the formulation is the main objective of this work, we show that

an implementation of our algorithms on NVIDIA V100 is either order of magnitude faster

or rival the fastest GPU implementation, with much lower programming complexity. The

key contributions of this work are:

1. We show how to use TCUs to compute both reduction and scan. We believe we are

the first to formulate these algorithms in terms of TCU operations in a manner that

is independent to the underlying TCU architecture.

2. We implement our algorithms onto NVIDIA V100 GPUs and show orders of magnitude

100

speedup over state-of-art algorithms for small segment sizes. Small segements are com-

mon in mathematics (e.g. evaluating polynomials), scientific applications (e.g. finite

difference), and machine learning (e.g. batch norm) applications. For large segments,

we are comparable to the fastest algorithms and achieve 89− 98% of theoretical peak

memory copy bandwidth.

3. We show that our implementation is up to 22% more power efficient and decreases the

utilization of general purpose ALUs.

4. We describe the current usage and programmability of the NVIDIA TensorCore and

evaluate GEMM on the TCUs using cuBLAS [48], CUTLASS [125] and the CUDA

TCU API.

7.3 COMMSCOPE

Data-intensive applications such as machine learning and analytics have created a demand

for faster interconnects to avert the memory bandwidth wall and allow GPUs to be effec-

tively leveraged for lower compute intensity tasks. This has resulted in wide adoption of

heterogeneous systems with varying underlying interconnects, and has delegated the task

of understanding and copying data to the system or application developer. No longer is a

malloc followed by memcpy the only or dominating modality of data transfer; application

developers are faced with additional options such as unified memory and zero-copy memory.

Data transfer performance on these systems is now impacted by many factors including data

transfer modality, system interconnect hardware details, CPU caching state, CPU power

management state, driver policies, virtual memory paging efficiency, and data placement.

CommScope [126] presents a set of microbenchmarks designed for system and application

developers to understand memory transfer behavior across different data placement and

exchange scenarios. CommScope comprehensively measures the latency and bandwidth of

CUDA data transfer primitives, and avoids common pitfalls in ad-hoc measurements by con-

trolling CPU caches, clock frequencies, and avoids measuring synchronization costs imposed

by the measurement methodology where possible. CommScope also presents an evaluation

of CommScope on systems featuring the POWER and x86 CPU architectures and PCIe 3,

NVLink 1, and NVLink 2 interconnects. These systems are chosen as representative config-

urations of current high-performance GPU platforms. CommScope measurements can serve

to update insights about the relative performance of data transfer methods on current sys-

tems. This work also reports insights into how high-level system design choices affect the

101

performance of these data transfers, and how developers can optimize applications on these

systems.

102

CHAPTER 8: CONCLUSION

The performance engineering of DL workloads faces new challenges that stifle the adoption

of DL innovations. This thesis addresses the challenges in (1) reducing the effort to develop,

maintain, and run DL benchmarks, (2) understanding DL performance across different levels

in the HW/SW stack, (3) interpreting DL benchmarking results into optimization opportu-

nities, and (4) evaluating and comparing DL innovations in a consistent, reproducible and

efficient way. First, we introduce DLBricks to address (1). DLBricks is a composable bench-

mark generation design that decomposes DL models into a set of unique runnable networks

and constructs the original model’s performance using the performance of the generated

benchmarks. Second, we present XSP to address (2). XSP is an across-stack profiling design

that captures and correlates profiles from different sources to obtain a hierarchical view of

DL model execution. XSP innovatively leverages distributed tracing and accurately cap-

tures the profiles at each level of the HW/SW stack in spite of profiling overhead. Third, we

present Benanza to address (3). We define a “lower-bound” latency metric that estimates

the ideal latency of a model given a specific GPU hardware and software stack. Benan

za automatically generates micro-benchmarks given a set of models, computes their “lower-

bound” latencies using the benchmark data, and informs the optimizations of their execution

on GPUs. Benanza guides researchers to optimization opportunities and assesses hypothet-

ical execution scenarios on GPUs. Finally, to address (4), we design MLModelScope, a

consistent, reproducible, and scalable DL experimentation platform to facilitate the evalu-

ation and comparison of DL innovations. This thesis also briefly discusses TrIMS, TOPS,

and CommScope which solve relevant problems in DL performance domain. Overall, this

thesis has provided a coherent set of works that address the challenges in the performance

benchmarking, analysis and optimization of deep learning workloads.

103

REFERENCES

[1] J. Dean, D. Patterson, and C. Young, “A new golden age in computer architecture:
Empowering the machine-learning revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29,
Mar. 2018. [Online]. Available: https://doi.org/10.1109/mm.2018.112130030

[2] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning at facebook:
A datacenter infrastructure perspective,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), IEEE. IEEE, Feb. 2018.
[Online]. Available: https://doi.org/10.1109/hpca.2018.00059 pp. 620–629.

[3] “MLPerf Inference,” github.com/mlperf/inference, accessed: 2020-02-20.

[4] W. Zhang, W. Wei, L. Xu, L. Jin, and C. Li, “AI Matrix: A Deep Learning Benchmark
for Alibaba Data Centers,” 2019.

[5] Baidu, “Deepbench,” github.com/baidu-research/DeepBench, accessed: 2020-02-20.

[6] C. Coleman, M. Zaharia, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang,
P. Bailis, K. Olukotun, and C. Ré, “Analysis of DAWNBench, a time-to-accuracy
machine learning performance benchmark,” SIGOPS Oper. Syst. Rev., vol. 53, no. 1,
pp. 14–25, July 2019. [Online]. Available: https://doi.org/10.1145/3352020.3352024

[7] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoefler,
“A modular benchmarking infrastructure for high-performance and reproducible
deep learning,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, May 2019, the 33rd IEEE International Parallel
& Distributed Processing Symposium (IPDPS’19). [Online]. Available: https:
//doi.org/10.1109/ipdps.2019.00018

[8] “NVIDIA nvprof,” docs.nvidia.com/cuda/profiler-users-guide/index.html, accessed:
2019-5-04.

[9] “NVIDIA Nsight System,” developer.nvidia.com/nsight-systems, accessed: 2019-5-04.

[10] “Intel VTune,” software.intel.com/en-us/vtune, accessed: 2019-5-04.

[11] R. Adolf, S. Rama, B. Reagen, G.-y. Wei, and D. Brooks, “Fathom: Reference
workloads for modern deep learning methods,” in 2016 IEEE International Symposium
on Workload Characterization (IISWC), IEEE. IEEE, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/iiswc.2016.7581275 pp. 1–10.

[12] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee, B. Schroeder,
and G. Pekhimenko, “Benchmarking and analyzing deep neural network training,” in
2018 IEEE International Symposium on Workload Characterization (IISWC), IEEE.
IEEE, Sep. 2018, pp. 88–100.

104

https://doi.org/10.1109/mm.2018.112130030
https://doi.org/10.1109/hpca.2018.00059
github.com/mlperf/inference
github.com/baidu-research/DeepBench
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1109/ipdps.2019.00018
https://doi.org/10.1109/ipdps.2019.00018
docs.nvidia.com/cuda/profiler-users-guide/index.html
developer.nvidia.com/nsight-systems
software.intel.com/en-us/vtune
https://doi.org/10.1109/iiswc.2016.7581275

[13] S. Preview, “Scopus preview,” https://www.scopus.com/, accessed: 2019-10-17.

[14] “Wolfram NeuralNet Repository,” https://resources.wolframcloud.com/
NeuralNetRepository/, 2019, accessed: 2019-10-17.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
arxiv.org/abs/1409.1556

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2016. [Online]. Available:
https://doi.org/10.1109/cvpr.2016.308 pp. 2818–2826.

[17] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J Big
Data, vol. 3, no. 1, p. 9, May 2016.

[18] “TensorFlow Hub is a library for reusable machine learning modules ,” https://www.
tensorflow.org/hub, accessed: 2019-10-17.

[19] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey.”
Journal of Machine Learning Research, vol. 20, no. 55, pp. 1–21, 2019.

[20] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “FBNet: Hardware-aware efficient ConvNet design via differentiable
neural architecture search,” CoRR, vol. abs/1812.03443, 2018. [Online]. Available:
arxiv.org/abs/1812.03443

[21] “Recommended CPU Instances,” docs.aws.amazon.com/dlami/latest/devguide/cpu.
html, 2019, accessed: 2019-10-04.

[22] S. Chintala, “ConvNet Benchmarks,” github.com/soumith/convnet-benchmarks, ac-
cessed: 2020-02-20.

[23] C. Li, A. Dakkak, J. Xiong, and W.-M. Hwu, “Benanza: Automatic µBenchmark
Generation to Compute “Lower-bound” Latency and Inform Optimizations of Deep
Learning Models on GPUs.” IEEE, May 2020, the 34th IEEE International Parallel
& Distributed Processing Symposium (IPDPS’20).

[24] M. Hutton, J. Rose, and D. Corneil, “Automatic generation of synthetic sequential
benchmark circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 21,
no. 8, pp. 928–940, Aug. 2002.

[25] “TensorFlow Profiler,” www.tensorflow.org/api docs/python/tf/profiler, accessed:
2020-02-20.

[26] “MXNet Profiler,” mxnet.incubator.apache.org/api/python/profiler/profiler.html, ac-
cessed: 2020-02-20.

105

https://resources.wolframcloud.com/NeuralNetRepository/
https://resources.wolframcloud.com/NeuralNetRepository/
arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvpr.2016.308
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
arxiv.org/abs/1812.03443
docs.aws.amazon.com/dlami/latest/devguide/cpu.html
docs.aws.amazon.com/dlami/latest/devguide/cpu.html
github.com/soumith/convnet-benchmarks
www.tensorflow.org/api_docs/python/tf/profiler
mxnet.incubator.apache.org/api/python/profiler/profiler.html

[27] “NVIDIA GPU-Accelerated Containers,” www.nvidia.com/en-us/gpu-cloud/
containers/, accessed: 2020-02-20.

[28] “NVIDIA Tools Extension,” docs.nvidia.com/cuda/profiler-users-guide/index.html#
nvtx, accessed: 2020-02-20.

[29] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W.-m. Hwu, “Across-stack pro-
filing and characterization of machine learning models on GPUs,” arXiv preprint
arXiv:1908.06869, 2019.

[30] “NVIDIA CUPTI,” developer.nvidia.com/cuda-profiling-tools-interface, accessed:
2020-02-20.

[31] “NVTX Plugins for Deep Learning,” github.com/NVIDIA/nvtx-plugins, accessed:
2020-02-20.

[32] “Trace Context,” www.w3.org/TR/trace-context, accessed: 2020-02-20.

[33] “OpenTracing: Cloud native computing foundation,” opentracing.io, 2019, accessed:
2019-10-04.

[34] “Open Telemetry,” opentelemetry.io, accessed: 2020-02-20.

[35] A. Pal and M. Pal, “Interval tree and its applications,” Advanced Modeling and Opti-
mization, vol. 11, no. 3, pp. 211–224, 2009.

[36] C. Li, A. Dakkak, J. Xiong, and W.-m. Hwu, “The design and implementation of a
scalable dl benchmarking platform,” arXiv preprint arXiv:1911.08031, 2019.

[37] “Jaeger: open source, end-to-end distributed tracing,” www.jaegertracing.io/, 2019,
accessed: 2020-05-20.

[38] “The Cloud Native Computing Foundation,” www.cncf.io, 2019, accessed: 2020-05-20.

[39] “Amazon EC2 P3 Instances,” aws.amazon.com/ec2/instance-types/p3/, 2019, ac-
cessed: 2019-10-04.

[40] “NVIDIA GPU Metrics Reference,” docs.nvidia.com/cuda/profiler-users-guide/index.
html#metrics-reference, accessed: 2020-02-20.

[41] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual per-
formance model for floating-point programs and multicore architectures,” Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2009.

[42] “NVIDIA cuDNN,” developer.nvidia.com/cudnn, 2019, accessed: 2019-10-04.

[43] G. Guennebaud, B. Jacob et al., “Eigen v3,” eigen.tuxfamily.org, 2010.

[44] “TensorFlow-Slim Image Classification Model Library,” github.com/tensorflow/
models/tree/master/research/slim, accessed: 2020-02-20.

106

www.nvidia.com/en-us/gpu-cloud/containers/
www.nvidia.com/en-us/gpu-cloud/containers/
docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx
docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx
developer.nvidia.com/cuda-profiling-tools-interface
github.com/NVIDIA/nvtx-plugins
www.w3.org/TR/trace-context
opentracing.io
opentelemetry.io
www.jaegertracing.io/
www.cncf.io
aws.amazon.com/ec2/instance-types/p3/
docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
developer.nvidia.com/cudnn
github.com/tensorflow/models/tree/master/research/slim
github.com/tensorflow/models/tree/master/research/slim

[45] “TensorFlow Detection Model Zoo,” github.com/tensorflow/models/blob/master/
research/object detection/g3doc/detection model zoo.md, accessed: 2020-02-20.

[46] “TensorFlow DeepLab Model Zoo,” github.com/tensorflow/models/blob/master/
research/deeplab/g3doc/model zoo.md, accessed: 2020-02-20.

[47] “MXNet Gluon Model Zoo,” gluon-cv.mxnet.io/model zoo/index.html, 2020, ac-
cessed: 2020-02-20.

[48] “NVIDIA cuBLAS,” developer.nvidia.com/cublas, accessed: 2020-02-20. [Online].
Available: developer.nvidia.com/cublas

[49] “ONNX: Open Neural Network Exchange,” onnx.ai, 2019, accessed: 2019-10-04.

[50] “Neural Network Exchange Format (NNEF),” www.khronos.org/nnef, 2019, accessed:
2019-10-04.

[51] “ONNX Model Zoo,” github.com/onnx/models, 2019, accessed: 2019-10-04.

[52] J. Deng, J. Guo, and S. Zafeiriou, “ArcFace: Additive angular margin loss
for deep face recognition,” CoRR, vol. abs/1801.07698, 2018. [Online]. Available:
arxiv.org/abs/1801.07698

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems
25. Curran Associates, Inc., 2012.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2015.
[Online]. Available: https://doi.org/10.1109/cvpr.2015.7298594 pp. 1–9.

[55] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,
2013. [Online]. Available: arxiv.org/abs/1311.2524

[56] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,”
CoRR, vol. abs/1608.06993, 2016. [Online]. Available: arxiv.org/abs/1608.06993

[57] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. W. Cottrell,
“Understanding convolution for semantic segmentation,” CoRR, vol. abs/1702.08502,
2017. [Online]. Available: arxiv.org/abs/1702.08502

[58] E. Barsoum, C. Zhang, C. Canton-Ferrer, and Z. Zhang, “Training deep networks
for facial expression recognition with crowd-sourced label distribution,” CoRR, vol.
abs/1608.01041, 2016. [Online]. Available: arxiv.org/abs/1608.01041

107

github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
gluon-cv.mxnet.io/model_zoo/index.html
developer.nvidia.com/cublas
developer.nvidia.com/cublas
onnx.ai
www.khronos.org/nnef
github.com/onnx/models
arxiv.org/abs/1801.07698
https://doi.org/10.1109/cvpr.2015.7298594
arxiv.org/abs/1311.2524
arxiv.org/abs/1608.06993
arxiv.org/abs/1702.08502
arxiv.org/abs/1608.01041

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. [Online].
Available: arxiv.org/abs/1502.03167

[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015.
[Online]. Available: arxiv.org/abs/1512.00567

[61] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. [Online].
Available: https://doi.org/10.1109/5.726791

[62] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available:
arxiv.org/abs/1704.04861

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015. [Online]. Available: arxiv.org/abs/1512.03385

[64] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham: Springer International Publishing, 2016, pp. 630–645.

[65] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices,” CoRR, vol. abs/1707.01083, 2017.
[Online]. Available: arxiv.org/abs/1707.01083

[66] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,
“SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size,” CoRR, vol. abs/1602.07360, 2016. [Online]. Available: arxiv.org/abs/1602.07360

[67] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR, vol.
abs/1612.08242, 2016. [Online]. Available: arxiv.org/abs/1612.08242

[68] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
CoRR, vol. abs/1311.2901, 2013. [Online]. Available: arxiv.org/abs/1311.2901

[69] Onnx, “ONNX shape inference,” https://github.com/onnx/onnx/blob/master/docs/
ShapeInference.md, 2019.

[70] Google, “Google benchmark,” github.com/google/benchmark, 2014.

[71] A. Anderson and D. Gregg, “Optimal DNN primitive selection with partitioned
boolean quadratic programming,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization - CGO 2018, ACM. ACM Press, 2018.
[Online]. Available: https://doi.org/10.1145/3179541.3168805 pp. 340–351.

108

arxiv.org/abs/1502.03167
arxiv.org/abs/1512.00567
https://doi.org/10.1109/5.726791
arxiv.org/abs/1704.04861
arxiv.org/abs/1512.03385
arxiv.org/abs/1707.01083
arxiv.org/abs/1602.07360
arxiv.org/abs/1612.08242
arxiv.org/abs/1311.2901
https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md
https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md
github.com/google/benchmark
https://doi.org/10.1145/3179541.3168805

[72] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning,” CSUR, vol. 52, no. 4, pp. 1–43, Aug. 2019. [Online]. Available:
https://doi.org/10.1145/3320060

[73] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley Professional, 2011.

[74] “NVIDIA DLProf,” https://docs.nvidia.com/deeplearning/frameworks/
dlprof-user-guide/, accessed: 2019-5-04.

[75] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse, M. Nandhimandalam,
K. Nasyrov, I. Perminov, T. Shah, V. Filippov, J. Zhang, J. Zhou, B. Natarajan, and
M. Daga, “MIOpen: An open source library for deep learning primitives,” 2019.

[76] “Mkl-Dnn,” github.com/intel/mkl-dnn, 2019, accessed: 2019-10-04.

[77] Microsoft, “ONNX runtime,” github.com/microsoft/onnxruntime, 2019.

[78] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors and dynamic
neural networks in python with strong gpu acceleration,” vol. 6, 2017.

[79] “ONNX Operator Schemas,” https://github.com/onnx/onnx/blob/master/docs/
Operators.md#Conv, accessed: 2019-5-04.

[80] Intel, “benchdnn,” github.com/intel/mkl-dnn/tree/master/tests/benchdnn, 2019.

[81] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W.-m. Hwu, “Across-stack profiling
and characterization of machine learning models on GPUs,” 2019.

[82] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A survey on
compiler autotuning using machine learning,” CSUR, vol. 51, no. 5, pp. 1–42, Sep.
2018. [Online]. Available: https://doi.org/10.1145/3197978

[83] H. Vandierendonck, S. Rul, and K. De Bosschere, “The paralax infrastructure,”
in Proceedings of the 19th international conference on Parallel architectures and
compilation techniques - PACT ’10, IEEE. ACM Press, 2010. [Online]. Available:
https://doi.org/10.1145/1854273.1854322 pp. 389–399.

[84] A. Haj-Ali, N. K. Ahmed, T. Willke, S. Shao, K. Asanovic, and I. Stoica, “NeuroVec-
torizer: End-to-end vectorization with deep reinforcement learning,” arXiv preprint
arXiv:1909.13639, 2019.

[85] O. Solaris, “Oracle solaris studio code analyzer,” 2019.

[86] K. Ng, M. Warren, P. Golde, and A. Hejlsberg, “The Roslyn project, exposing the c#
and VB compiler’s code analysis,” White paper, Microsoft, 2011.

[87] V. Sarkar, “Automatic selection of high-order transformations in the IBM XL
FORTRAN compilers,” IBM J. Res. & Dev., vol. 41, no. 3, pp. 233–264, May 1997.
[Online]. Available: https://doi.org/10.1147/rd.413.0233

109

https://doi.org/10.1145/3320060
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
github.com/intel/mkl-dnn
github.com/microsoft/onnxruntime
https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv
https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv
github.com/intel/mkl-dnn/tree/master/tests/benchdnn
https://doi.org/10.1145/3197978
https://doi.org/10.1145/1854273.1854322
https://doi.org/10.1147/rd.413.0233

[88] H. E. Plesser, “Reproducibility vs. replicability: A brief history of a confused
terminology,” Front. Neuroinform., vol. 11, p. 76, Jan. 2018. [Online]. Available:
https://doi.org/10.3389/fninf.2017.00076

[89] S. Ghanta, L. Khermosh, S. Subramanian, V. Sridhar, S. Sundararaman, D. Arteaga,
Q. Luo, D. Roselli, D. Das, and N. Talagala, “A systems perspective to reproducibility
in production machine learning domain,” 2018.

[90] L. Li and A. Talwalkar, “Random search and reproducibility for neural architecture
search,” 2019.

[91] A. Dakkak, C. Li, S. G. De Gonzalo, J. Xiong, and W.-m. Hwu, “Trims: Transparent
and isolated model sharing for low latency deep learning inference in function-as-a-
service,” in 2019 IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 372–382.

[92] “Initialization, Finalization, and Threads,” docs.python.org/3.6/c-api/init.html#
sub-interpreter-support, 2020, accessed: 2020-02-28.

[93] “Zenodo - Research. Shared,” www.zenodo.org, 2020, accessed: 2020-02-28.

[94] “gRPC,” www.grpc.io, 2018, accessed: 2019-10-04.

[95] V. V. Elisseev, M. Puzovic, and E. K. Lee, “A study on cross-architectural modelling
of power consumption using neural networks,” Supercomputing Frontiers and Innova-
tions, vol. 5, no. 4, pp. 24–41, 2018.

[96] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar,
S. Ramesh, and J. Soyke, “TensorFlow-serving: Flexible, high-performance ML serv-
ing,” arXiv preprint arXiv:1712.06139, 2017.

[97] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica,
“Clipper: A low-latency online prediction serving system.” in NSDI, 2017, pp. 613–
627.

[98] J. Tsay, T. Mummert, N. Bobroff, A. Braz, P. Westerink, and M. Hirzel, “Runway:
machine learning model experiment management tool,” 2018.

[99] G. Fursin, H. Guillou, and N. Essayan, “Codereef: an open platform for portable
mlops, reusable automation actions and reproducible benchmarking,” ArXiv, vol.
abs/2001.07935, 2020.

[100] “Amazon Lambda,” http://aws.amazon.com/lambda, accessed: 2018-8-04.

[101] “Azure Functions,” https://azure.microsoft.com/en-us/services/functions, accessed:
2018-8-04.

[102] “Google Cloud Functions,” https://cloud.google.com/functions, accessed: 2018-8-04.

110

https://doi.org/10.3389/fninf.2017.00076
docs.python.org/3.6/c-api/init.html#sub-interpreter-support
docs.python.org/3.6/c-api/init.html#sub-interpreter-support
www.zenodo.org
www.grpc.io
http://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/services/functions
https://cloud.google.com/functions

[103] “IBM OpenWhisk,” http://www.ibm.com/cloud-computing/bluemix/openwhisk, ac-
cessed: 2018-8-04.

[104] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tu-
manov, and C. Wu, “Serverless computing: One step forward, two steps back,” 2018.

[105] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method empirical study
of function-as-a-service software development in industrial practice,” PeerJ PrePrints,
vol. 6, p. e27005v1, 2018.

[106] “Google Cloud AI,” https://cloud.google.com/products/machine-learning, accessed:
2018-8-04.

[107] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang, “Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[108] NVIDIA, “Tensor Cores,” https://www.nvidia.com/en-us/data-center/tensorcore, ac-
cessed: 2020-05-04.

[109] Google, “Google Cloud TPU,” https://cloud.google.com/tpu, accessed: 2020-05-04.

[110] WikiChip, “Cascade Lake - Microarchitectures - Intel,” https://en.wikichip.org/wiki/
intel/microarchitectures/cascade lake, accessed: 2020-05-04.

[111] Apple, “A11 Bionic,” https://www.apple.com/iphone-x, accessed: 2020-05-04.

[112] Arm, “Arm Machine Learning Processor,” https://developer.arm.com/products/
processors/machine-learning/arm-ml-processor, accessed: 2020-05-04.

[113] Z. Du, S. Liu, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, Q. Guo, X. Feng,
Y. Chen et al., “An accelerator for high efficient vision processing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 2, pp. 227–
240, 2017.

[114] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on. IEEE, 2017, pp. 1–12.

[115] B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, and D. Brooks, “Deep learning for
computer architects,” Synthesis Lectures on Computer Architecture, vol. 12, no. 4, pp.
1–123, 2017.

[116] Y. Zhu, M. Mattina, and P. Whatmough, “Mobile machine learning hardware at arm:
A systems-on-chip (soc) perspective,” arXiv preprint arXiv:1801.06274, 2018.

[117] Google, “Edge TPU,” https://cloud.google.com/edge-tpu, accessed: 2020-5-04.

111

 http://www.ibm.com/cloud-computing/bluemix/openwhisk
https://cloud.google.com/products/machine-learning
https://www.nvidia.com/en-us/data-center/tensorcore
https://cloud.google.com/tpu
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://www.apple.com/iphone-x
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://cloud.google.com/edge-tpu

[118] P. Pärssinen, “Modern mobile graphics processors,” Science: Internet, Data and
Things (CS-E4000), Spring 2018, p. 211.

[119] Lawrence Livermore National Laboratory, “Sierra Supercomputer,” https://
computation.llnl.gov/computers/sierra, accessed: 2020-05-20.

[120] Oak Ridge National Laboratory, “Summit Supercomputer,” https://www.olcf.ornl.
gov/summit, accessed: 2020-05-20.

[121] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating reduction and
scan using tensor core units,” in Proceedings of the ACM International Conference on
Supercomputing, 2019, pp. 46–57.

[122] G. E. Blelloch, M. A. Heroux, and M. Zagha, “Segmented operations for sparse matrix
computation on vector multiprocessors,” Carnegie-Mellon Univ Pittsburgh PA School
of Computer Science, Tech. Rep., 1993.

[123] T. M. Chan, “More algorithms for all-pairs shortest paths in weighted graphs,” SIAM
Journal on Computing, vol. 39, no. 5, pp. 2075–2089, 2010.

[124] M. D. McCool, A. D. Robison, and J. Reinders, Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

[125] NVIDIA, CUTLASS, https://devblogs.nvidia.com/cutlass-linear-algebra-cuda, ac-
cessed: 2020-05-20.

[126] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu,
“Evaluating characteristics of CUDA communication primitives on high-bandwidth
interconnects,” in Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering - ICPE ’19, ACM. ACM Press, 2019. [Online]. Available:
https://doi.org/10.1145/3297663.3310299 pp. 209–218.

112

https://computation.llnl.gov/computers/sierra
https://computation.llnl.gov/computers/sierra
https://www.olcf.ornl.gov/summit
https://www.olcf.ornl.gov/summit
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda
https://doi.org/10.1145/3297663.3310299

	CHAPTER 1 Introduction
	CHAPTER 2 DL Inference
	CHAPTER 3 DLBricks: Composable Benchmark Generation to Reduce Deep Learning Benchmarking Effort
	Motivation
	Layers as the Performance Building Blocks
	Layer Repeatability

	Design
	Benchmark Generation
	DL Model Performance Construction

	Evaluation
	Performance Construction Accuracy
	Benchmarking Time Reduction

	Related Work
	Discussion and Future Work
	Conclusion

	CHAPTER 4 XSP: Understanding DL Performance Across Stack
	ML Profiling on GPUs and Related Work
	XSP Design and Implementation
	Across-Stack Profiling Through Distributed Tracing
	Across-stack Profiling on GPUs
	Dealing with Profiling Overhead through Leveled Experimentation
	Extensibility
	Integration within MLModelScope Runtime
	Across-Stack Analysis

	Evaluation
	Model Evaluation
	ML Framework Evaluation
	System Evaluation

	Conclusion

	CHAPTER 5 Benanza: Automatic Benchmark Generation to Compute ``Lower-bound'' Latency and Inform Optimizations of Deep Learning Models
	Motivation
	DL Model Execution and ONNX Format
	cuDNN and cuBLAS

	Benanza Design and Implementation
	Benanza Model Processor
	Automatic Benchmark Generator
	Performance Database
	Benanza Analyzer
	Sustainability and Extensibility

	Evaluation
	``Lower-Bound'' Latency vs. Measured Latency
	cuDNN Convolution Heuristics ([hbox, on line, colback=black, enhanced, frame hidden, boxrule=0pt, top=-2pt, bottom=-2pt, right=-2pt, left=-2pt, rounded corners, arc=2pt,options@for=questionbox]white Question 3)
	Inefficiencies in Frameworks ([hbox, on line, colback=black, enhanced, frame hidden, boxrule=0pt, top=-2pt, bottom=-2pt, right=-2pt, left=-2pt, rounded corners, arc=2pt,options@for=questionbox]white Question 4)
	Layer Fusion ([hbox, on line, colback=black, enhanced, frame hidden, boxrule=0pt, top=-2pt, bottom=-2pt, right=-2pt, left=-2pt, rounded corners, arc=2pt,options@for=questionbox]white Question 5)
	Tensor Cores ([hbox, on line, colback=black, enhanced, frame hidden, boxrule=0pt, top=-2pt, bottom=-2pt, right=-2pt, left=-2pt, rounded corners, arc=2pt,options@for=questionbox]white Question 6)
	Parallel Execution, Algorithm Selection, Layer Fusion, and Tensor Cores ([hbox, on line, colback=black, enhanced, frame hidden, boxrule=0pt, top=-2pt, bottom=-2pt, right=-2pt, left=-2pt, rounded corners, arc=2pt,options@for=questionbox]white Question 1,2,3,5,6)

	Related Work
	Conclusion

	CHAPTER 6 MLModelScope: The Design and Implementation of a Scalable DL Benchmarking Platform
	Design Objectives
	MLModelScope Design and Implementation
	User Input
	MLModelScope Client
	MLModelScope Server
	Agent and Framework Predictor
	Middleware
	Extensibility and Customization

	Evaluation
	Benchmarking Scenarios
	Model Execution Inspection
	Benchmarking Analysis and Reporting

	Related Work
	Conclusion

	CHAPTER 7 Other Relevant Works
	TrIMS: Transparent and Isolated Model Sharing for DL Inference
	TOPS: Accelerating Reduction and Scan Using Tensor Core Units
	CommScope

	CHAPTER 8 Conclusion
	REFERENCES

