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ABSTRACT

Internet of Things (IoT) devices combine network connectivity, cheap hardware, and actuation to
provide new ways to interface with the world. In spite of this growth, little work has been done to
measure the network properties of IoT devices. Such measurements can help to inform systems
designers and security researchers of IoT networking behavior in practice to guide future research.

Unfortunately, properly measuring the IoT ecosystem is not trivial. Devices may have different
capabilities and behaviors, which require both active measurements and passive observation to
quantify. Furthermore, the IoT devices that are connected to the public Internet may vary from
those connected inside home networks, requiring both an external and internal vantage point to
draw measurements from. In this thesis, we demonstrate how IoT measurements drawn from a
single vantage point or mesaurement technique lead to a biased view of the network services in
the IoT ecosystem. To do this, we conduct several real-world IoT measurements, drawn from both
inside and outside home networks using active and passive monitoring.

First, we leverage active scanning and passive observation in understanding the Mirai botnet—
chiefly, we report on the devices it infected, the command and control infrastructure behind the
botnet, and how the malware evolved over time. We then conduct active measurements from inside
16M home networks spanning 83M devices from 11 geographic regions to survey the IoT devices
installed around the world. We demonstrate how these measurements can uncover the device types
that are most at risk and the vendors who manufacture the weakest devices. We compare our
measurements with passive external observation by detecting compromised scanning behavior from
smart homes. We find that while passive external observation can drive insight about compromised
networks, it offers little by way of concrete device attribution. We next compare our results from
active external scanning with active internal scanning and show how relying solely on external
scanning for IoT measurements under-reports security important IoT protocols, potentially skewing
the services investigated by the security community. Finally, we conduct passive measurements of
275 smart home networks to investigate IoT behavior. We find that IoT device behavior varies by
type and devices regularly communicate over a myriad of bespoke ports, in many cases to speak
standard protocols (e.g., HTTP). Finally, we observe that devices regularly offer active services
(e.g., Telnet, rpcbind) that are rarely, if ever, used in actual communication, demonstrating the need
for both active and passive measurements to properly compare device capabilities and behaviors.

Our results highlight the need for a confluence of measurement perspectives to comprehensively
understand IoT ecosystem. We conclude with recommendations for future measurements of IoT
devices as well as directions for the systems and security community informed by our work.
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CHAPTER 1: INTRODUCTION

The Internet has grown tremendously in the last decade. The number of Internet connected devices
has greatly increased, from 2 billion devices in 2006 to an estimated 200 billion devices today [1].
Internet speeds have significantly improved [2], enabling faster and more reliable communication
worldwide. Advancements in cloud-computing have granted developers easy access to high-end
computation, storage, and communication [3]. Coupled with Internet growth are advancements in
our computing devices themselves. Devices have shrunk in size and increased in capability; flagship
mobile devices today offer faster computation, more storage, and more memory than high-end
laptops from just five years prior at a fraction of the cost. Ubiquitous sensing enables innovation in
a variety of cyber-physical systems.

It comes as no surprise that the combination of these advancements would eventually find their
way into consumer products. Aptly named “The Internet of Things (IoT)”—these devices combine
network connectivity, cheap hardware, and control into physical systems to provide users with new
ways to interface with the world. Examples of these systems can now be found almost everywhere.
Smart TVs and streaming devices, like the Roku TV and Google Chromecast, enable us easy
access to high quality programming without the need for cable television [4, 5]. Voice assistants,
such as the Amazon Echo and Google Home, provide us access to gaming, banking services, and
even fully fledged home automation using only our voices [6]. Smart thermostats and cameras
allow full control over the comfort, security, and safety of our homes. These are just a handful of
examples. IoT devices have permeated our daily lives and shifted the ways in which we interact
with computing. Outside of sheer innovation, these devices have also brought large economic
development: the IoT industry is estimated to add $11 trillion dollars to the U.S. economy by
2025 [7].

In spite of this growth, there is little work done in measuring the network properties and behaviors
of IoT devices. Taken alone, these measurements can inform us about the network services that IoT
devices offer and subsequently, how devices use those services in practice, driving our understanding
of the types of IoT devices deployed in the world and the vendors that manufacture them. Beyond
this, they can also inform other researchers, like those in the systems and security communities,
about how devices behave in practice to inform future security systems and guide future research.

Properly measuring the IoT ecosystem, however, is not trivial. Typically, researchers turn to
active measurements of the public IPv4 space to understand the distributions and security posture of
Internet connected devices. Tools like ZMap [8], Censys [9], Shodan [10], and Masscan [11] have
transformed our access to these kinds of data, with full IPv4 scans available almost daily and freely
to researchers. However, active scanning measurements are not without limitations. Although active
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scanning enumerates the network services available on devices in a network, it cannot provide
insight into how frequently those services are used in practice, or which devices communicate via
those services.

Conversely, passive measurements—analogous to that of a network tap or a large darknet—
can help researchers answer questions beyond simply enumerating device capabilities. Instead,
researchers can focus on the behavior of devices: answering questions about the network layer
services that devices use to frequently communicate and why. Research in passive measurement has
driven insight into many aspects of device behavior, from inferring DoS activity [12] to checking
user security behaviors [13]. Unfortunately, passive measurements taken in isolation may miss all
capabilities of devices in a network. For example, even though a device communicates solely on
port 80/HTTP, it may also offer other services like 23/Telnet or 22/SSH that could place it at a
higher security risk.

Of equal importance to varying measurement techniques (e.g., active versus passive) are drawing
measurements from representative vantage points. In the context of IoT, measurements drawn
only from the public Internet are limited, as many IoT devices are hidden behind network address
translators (NATs) to internal networks. For example, it is unlikely to find devices expressly designed
for home automation (e.g., smart lightbulbs) connected directly to the public Internet. To capture the
properties of these devices, we must also draw measurements from inside home networks. However,
measurements of the inside of networks are challenging to achieve. Collecting such measurements
requires the voluntary participation of users as well as soliciting enough participants to measure
these properties at scale. The value of these measurements, however, is clear: local network traffic
often contains detailed information that is unavailable from application layer scanning alone (e.g.,
MAC addresses, DHCP leases, and UPnP discovery probes), offering a closer perspective to IoT
device capabilities and behavior.

Thesis Statement: Understanding the network properties of IoT devices requires a combi-
nation of active and passive monitoring from both external and internal vantage points to the
devices’ local networks. A failure to consider all measurement perspectives leads to biased
view of the network services in the IoT ecosystem.

In this thesis, we present measurements of the IoT ecosystem using active and passive techniques
drawn from both inside and outside home networks. In the process, we compare each combination of
vantage point and technique and demonstrate how relying on a single combination of vantage point
and technique leads to differences in network services offered by devices. We argue that relying on
a single vantage point and technique obscures the complex interplay between devices, vendors, and
device behavior, and that only a confluence of measurement perspectives can adequately capture the
networking behavior of the ecosystem as a whole. Our results have direct implications for future
measurements of the IoT ecosystem, but can also inform security researchers and practitioners
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about the fractured mix of architectures, devices, vendors, and behaviors that lead to a weakened
IoT ecosystem.

We will leverage the described techniques and vantage points to conduct our IoT measurements.
Chapter 2 shows how active probing of the public IPv4 space can be used to identify weak IoT
devices and vendors, while Chapter 4 describes its shortcomings. Chapter 3 demonstrates how
active probing inside networks can drive insight into the vendors that frequently produce insecure
IoT devices. In contrast, Chapter 5 shows how passive observation both internally and externally
can augment active scanning to provide deeper insight into network behaviors of IoT devices.

1.1 SUMMARY OF RESULTS

This thesis contains three separate measurements of the home IoT ecosystem from varied vantage
points and techniques and highlights the benefits each measurement has on understanding the IoT
ecosystem.

1.1.1 Measuring the Impact of Mirai

The Mirai botnet, composed primarily of embedded and IoT devices, took the Internet by storm
in late 2016 when it overwhelmed several high-profile targets with massive distributed denial-of-
service (DDoS) attacks. In Chapter 2, we measure the Mirai botnet from a myriad of measurement
perspectives, including both through active scanning for device attribution and passive measurement
through honeypots and a DNS tap of a large, U.S. ISP.

• Active probing can be used to identify 31.5% of the IoT devices scanning for the Mirai
signature on the public Internet. We observe that vulnerable devices were primarily networked
storage, routers, cameras, media devices, and printers. We show that many of the worlds
top consumer electronic manufacturers—such Huawei, Dahua, ZTE, Cisco, ZyXEL, and
MikroTik lacked protections to mitigate a threat like Mirai.

• We reverse engineer thousands of malware samples drawn from our passive, low-interaction
honeypots, and track the evolution of the Mirai malware itself. We observe Mirai variants for
7 different architectures and show how the malware grew to support new infection vectors
and targets over time.

• Through external, passive observation of DNS requests to Mirai’s command and control (C2)
infrastructure, we identify clusters of suspicious domains beyond the ones explicitly included
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in malware samples, document evidence of competing botmaster control, and attribute C2
infrastructure to observed attacks.

1.1.2 Measuring Home IoT Networks with Active Scanning

In Chapter 3, we provide the first large-scale empirical analysis of IoT devices in real-world
homes by leveraging data collected from user-initiated network scans of 83M devices in 16M
households from 11 geographic regions. Our analysis is driven by active scans of devices inside

home networks. We find the following:

• IoT adoption is widespread globally: on several continents, more than half of households
already have at least one IoT device. In North America, this number is even higher—66.3%
of homes have at least one IoT device.

• IoT devices in homes are manufactured by over 14.3K device vendors, of which 29% appear
in only one home. Some device types are dominated by a handful of vendors (for example,
Amazon and Google for voice assistants), while others are split across many vendors. Certain
vendors are also only prevalent in certain regions, adding to the complexity of mitigating
harm in the ecosystem.

• The security posture of devices varies heavily across regions, device types, and vendors. For
example, although only 17% of TP-Link devices in North America have guessable passwords,
nearly half do in Eastern Europe and Central Asia, highlighting the challenges in addressing
these security flaws: there cannot be a one-size-fits-all approach.

• Passive, external observation through a large darknet can inform researchers of malicious
scanning behaviors of home networks, however, are limited in their ability to attribute flaws
to specific devices.

• IoT devices are staple, end-user products. However, for most homes, the types of devices
adopted are not the ones actively discussed by the security community—illustrating a gap in
where our work can be most effective.

1.1.3 Limitations of External Scanning

In Chapter 4, we combine our datasets from Chapter 2 and Chapter 3. We then outline the
limitations of relying only on external scanning of the public IPv4 space to measure the IoT
ecosystem, we did in Chapter 2 and as others have done in their research [14]. We find:
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• Active, external scanning of the public IPv4 space under-reports the prevalence of several
IoT critical protocols. For example, 8443/MQTT is frequently used in IoT devices and
appears on 1.5% of devices inside home networks, but on near 0% of IoT devices connected
publicly. Relying only on external scanning to network insight into IoT devices skews our
understanding of the IoT ecosystem.

• Although distributions of device types are different in aggregate between external scanning
and internal scanning, we find that IoT device identification through HTTPS only matches
closely the distribution of device types found inside home networks (ρ = 0.97). Even in
this case, the external IoT device type population excludes several device type (like work
appliances) which have a high prevalence inside local networks.

1.1.4 Measuring Home IoT Behavior with Passive Observation

To conclude this thesis, we measure the home IoT ecosystem via both passive observation and
active observation inside homes. We instrument Princeton IoT Inspector [15] to collect passive
traces of communication within homes and actively probe IoT devices inside them. We recruit
275 participants to measure IoT devices in their homes for a period of 3 weeks. We detail our results
in Chapter 5. We find:

• Device behavior varies by device type and aligns with its function. For example, smart home
IoT devices like lightbulbs and switches communicate with only a small number of devices
on the local network (14%), while storage devices communicate with more than half of the
devices on the network (52%).

• IoT devices communicate over a myriad of specialized ports, in many cases to speak standard
protocols (e.g., HTTP). In investigating these ports, we find 44% are largely offered by a
single manufacturer for a specific device type, which highlights a lack of standardization in
networking behavior and presents complications for comprehensive active measurements.

• 73% of IoT devices have at least one active service (observed through active scanning),
however, devices utilize only an average of 19% of the services they offer, highlighting that
device capabilities through active probing are much wider than device behavior through
passive observation alone.

• External, passive observation of IoT devices captures only a small fraction of the behaviors of
IoT devices internally and skews heavily towards a handful of popular protocols: DNS, HTTP,
and HTTPS, highlighting that external behavior does not match internal device behavior.
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Taken together, this thesis highlights the need for a confluence of vantage points and techniques in
measuring network properties of the IoT ecosystem. Beyond measurement, our results also inform
the security and systems communities about future directions in improving IoT safety. Our results
in Chapter 3 highlight a gap between the devices investigated by the security research community
and those with the lowest security profiles, pointing to an area for security researchers to have
immediate impact. Our results from Chapter 5 show how IoT devices receive control commands
from many other devices besides smartphones (voice assistants, other IoT devices), which can
inform how to build better isolation schemes for hardening local networks. Finally, we also show
how device behavior varies by device type, which opens up possibilities for systems designers to
improve existing IoT policy engines [16, 17]. We detail these lessons learned and future directions
in Chapter 6.

1.2 THESIS ROADMAP

The remainder of this thesis is composed of five chapters. In Chapter 2, we conduct active and
passive measurements of the Mirai botnet. In Chapter 3, we demonstrate how active measurements
drawn from inside 16M help to uncover a fractured IoT ecosystem that spans device types, ven-
dors, and world regions. In Chapter 4, we combine our datasets from the previous two chapters
and highlight the limitations of external, active scanning. Chapter 5 demonstrates how passive
measurements can be used to infer device behavior, and presents a comparison between active and
passive measurements in real-world smart homes. In Chapter 6, we conclude with implications of
this thesis for the measurement and security communities. We hope the results of this thesis will
enable principled research in IoT measurement, and prove useful for the measurement and security
communities as we continue to measure and improve the growing IoT ecosystem.
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CHAPTER 2: MEASURING THE IMPACT OF MIRAI

2.1 INTRODUCTION

Starting in September 2016, a spree of massive distributed denial-of-service (DDoS) attacks
temporarily crippled Krebs on Security [18], OVH [19], and Dyn [20]. The initial attack on Krebs
exceeded 600 Gbps in volume [18]—among the largest on record. Remarkably, this overwhelming
traffic was sourced from hundreds of thousands of some of the Internet’s least powerful hosts—
Internet of Things (IoT) devices—under the control of a new botnet named Mirai.

While other IoT botnets such as BASHLITE [21] and Carna [22] preceded Mirai, the latter was
the first to emerge as a high-profile DDoS threat. What explains Mirai’s sudden rise and massive
scale? A combination of factors—efficient spreading based on Internet-wide scanning, rampant use
of insecure default passwords in IoT products, and the insight that keeping the botnet’s behavior
simple would allow it to infect many heterogeneous devices—all played a role. Indeed, Mirai has
spawned many variants that follow the same infection strategy, leading to speculation that “IoT
botnets are the new normal of DDoS attacks” [23].

In this chapter, we investigate the precipitous rise of Mirai and the fragile IoT ecosystem it has
subverted. We draw from a diverse set of measurement vantage points and techniques, including
active Internet-wide banner scans, IoT honeypots, C2 milkers, and large passive observation from a
DNS tap of a large, U.S. ISP. We focus on three aspects of Mirai’s rise: the devices that comprised
the botnet, the evolution of Mirai, and which malware variants were used in conducting attacks.
These unique datasets enable us to conduct the first comprehensive measurements of the Mirai
botnet and posit technical and non-technical defenses that may curb future attacks.

We track the outbreak of Mirai and find the botnet infected nearly 65,000 IoT devices in its first
20 hours before reaching a steady state population of 200,000–300,000 infections. These bots fell
into a narrow band of geographic regions and autonomous systems, with Brazil, Columbia, and
Vietnam disproportionately accounting for 41.5% of infections. We confirm that Mirai targeted a
variety of IoT and embedded devices ranging from DVRs, IP cameras, routers, and printers, but
find Mirai’s ultimate device composition was strongly influenced by the market shares and design
decisions of a handful of consumer electronics manufacturers.

By statically analyzing over 1,000 malware samples, we document the evolution of Mirai into
dozens of variants propagated by multiple, competing botnet operators. These variants attempted
to improve Mirai’s detection avoidance techniques, add new IoT device targets, and introduce
additional DNS resilience. We find that Mirai harnessed its evolving capabilities to launch over
15,000 attacks against not only high-profile targets (e.g., Krebs on Security, OVH, and Dyn), but
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Figure 2.1: Mirai Timeline—Major attacks (red), exploits (yellow), and events (black) related to
the Mirai botnet.

also numerous game servers, telecoms, anti-DDoS providers, and other seemingly unrelated sites.
While DDoS was Mirai’s flavor of abuse, future strains of IoT malware could leverage access
to compromised routers for ad fraud, cameras for extortion, network attached storage for bitcoin
mining, or any number of applications. Mirai’s reach extended across borders and legal jurisdictions,
and it infected devices with little infrastructure to effectively apply security patches. This made
defending against it a daunting task.

Finally, we look beyond Mirai to explore the security posture of the IoT landscape. We find that
the absence of security best practices—established in response to desktop worms and malware over
the last two decades—has created an IoT substrate ripe for exploitation. However, this space also
presents unique, nuanced challenges in the realm of automatic updates, end-of-life, and consumer
notifications. Without improved defenses, IoT-based attacks are likely to remain a potent adversarial
technique as botnet variants continue to evolve and discover new niches to infect. In light of this,
Mirai seems aptly named—it is Japanese for “the future.”

This chapter includes a subset of work that appeared at the USENIX Security Symposium in
2017.

2.2 THE MIRAI BOTNET

Mirai is a worm-like family of malware that infected IoT devices and corralled them into a DDoS
botnet. We provide a brief timeline of Mirai’s emergence and discuss its structure and propagation.

Timeline of events Reports of Mirai appeared as early as August 31, 2016 [24], though it was
not until mid-September, 2016 that Mirai grabbed headlines with massive DDoS attacks targeting
Krebs on Security [18] and OVH [25] (Figure 2.1). Several additional high-profile attacks later
targeted DNS provider Dyn [20] and Lonestar Cell, a Liberian telecom [26]. In early 2017, the
actors surrounding Mirai came to light as the Mirai author was identified [27]. Throughout our
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Figure 2.2: Mirai Operation—Mirai bots scan the IPv4 address space for devices that run telnet or
SSH, and attempt to log in using a hardcoded dictionary of IoT credentials. Once successful, the
bot sends the victim IP address and associated credentials to a report server, which asynchronously
triggers a loader to infect the device. Infected hosts scan for additional victims and accept DDoS
commands from a command and control (C2) server.

study, we corroborate our measurement findings with these media reports and expand on the public
information surrounding Mirai.

Another significant event in this timeline is the public release of Mirai’s source code on
hackforums.net [28]. We rely on this code to develop our measurement methodology (Section 3.2).
Furthermore, as we detail later (Section 2.5), this source code release led to the proliferation of
Mirai variants with competing operators. One notable variant added support for a router exploit
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through CPE WAN Management Protocol (CWMP), an HTTP-based protocol that enables auto-
configuration and remote management of home routers, modems, and other customer-premises
equipment (CPE) [29]. This exploit led to an outage at Deutsche Telekom late November 2016 [30],
with the suspected attacker later arrested in February 2017 [31]. In this work, we track Mirai’s
variants and examine how they influenced Mirai’s propagation.

Botnet structure & propagation We provide a summary of Mirai’s operation in Figure 2.2, as
gleaned from the released source code. Mirai spread by first entering a rapid scanning phase (¬)
where it asynchronously and “statelessly” sent TCP SYN probes to pseudorandom IPv4 addresses,
excluding those in a hard-coded IP blacklist, on Telnet TCP ports 23 and 2323 (hereafter denoted
TCP/23 and TCP/2323). If Mirai identifies a potential victim, it entered into a brute-force login

phase in which it attempted to establish a Telnet connection using 10 username and password pairs
selected randomly from a pre-configured list of 62 credentials. At the first successful login, Mirai
sent the victim IP and associated credentials to a hardcoded report server ().

A separate loader program (®) asynchronously infected these vulnerable devices by logging
in, determining the underlying system environment, and finally, downloading and executing
architecture-specific malware (¯). After a successful infection, Mirai attempted to conceal its
presence by deleting the downloaded binary and obfuscating its process name in a pseudorandom
alphanumeric string. As a consequence, Mirai infections did not persist across system reboots. In
order to fortify itself, the malware additionally killed other processes bound to TCP/22 or TCP/23, as
well as processes associated with competing infections, including other Mirai variants, .anime [32],
and Qbot [33]. At this point, the bot listened for attack commands from the command and control
server (C2) while simultaneously scanning for new victims.

Malware phylogeny While not directly related to our study, the Mirai family represents an
evolution of BASHLITE (otherwise known as LizardStresser, Torlus, Gafgyt), a DDoS malware
family that infected Linux devices by brute forcing default credentials [21]. BASHLITE relied on
six generic usernames and 14 generic passwords, while the released Mirai code used a dictionary of
62 username/password pairs that largely subsumed BASHLITE’s set and added credentials specific
to consumer routers and IoT devices. In contrast to BASHLITE, Mirai additionally employed a fast,
stateless scanning module that allowed it to more efficiently identify vulnerable devices.

2.3 METHODOLOGY

Our study of Mirai leverages a variety of network vantage points: a large, passive network
telescope, Internet-wide scanning, active Telnet honeypots, logs of C2 attack commands, passive
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Role Data Source Collection Site Collection Period Data Volume

Growth and size Network telescope Merit Network, Inc. 07/18/2016–02/28/2017 370B packets,
avg. 269K IP-
s/min

Device composition Active scanning Censys 07/19/2016–02/28/2017 136 IPv4 scans,
5 protocols

Ownership & evolution Telnet honeypots AWS EC2 11/02/2016–02/28/2017 141 binaries
Telnet honeypots Akamai 11/10/2016–02/13/2017 293 binaries
Malware repository VirusTotal 05/24/2016–01/30/2017 594 binaries
DNS—active Georgia Tech 08/01/2016–02/28/2017 290M RRs/day
DNS—passive Large U.S. ISP 08/01/2016–02/28/2017 209M RRs/day

Attack characterization C2 milkers Akamai 09/27/2016–02/28/2017 64.0K attack
commands

DDoS IP addresses Akamai 09/21/2016 12.3K IP ad-
dresses

DDoS IP addresses Google Shield 09/25/2016 158.8K IP ad-
dresses

DDoS IP addresses Dyn 10/21/2016 107.5K IP ad-
dresses

Table 2.1: Data Sources—We utilized a multitude of data perspectives to empirically analyze the
Mirai botnet.

DNS traffic, and logs from DDoS attack targets. In this section, we discuss our data sources and
the role they play in our analysis. We provide a high-level summary in Table 2.1.

2.3.1 Active Scanning

While Mirai is widely considered an IoT botnet, there has been little comprehensive analysis of
infected devices over the botnet’s entire lifetime. In order to determine the manufacturer and model
of devices infected with Mirai, we leveraged Censys [9], which actively scans the IPv4 space and
aggregates application layer data about hosts on the Internet. We focused our analysis on scans of
HTTPS, FTP, SSH, Telnet, and CWMP between July 19, 2016 and February 28, 2017.

A number of challenges make accurate device labeling difficult. First, Mirai immediately disables
common outward facing services (e.g., HTTP) upon infection, which prevents infected devices from
being scanned. Second, Censys scans often take more than 24 hours to complete, during which
devices may churn to new IP addresses. Finally, Censys executes scans for different protocols on
different days, making it difficult to increase label specificity by combining banners from multiple
services. We navigated these constraints by restricting our analysis to banners that were collected
within twenty minutes of scanning activity (the time period after which we expire a scan). This
small window mitigates the risk of erroneously associating the banner data of uninfected devices

11



Protocol Banners Devices Identified

HTTPS 342,015 271,471 (79.4%)
FTP 318,688 144,322 (45.1%)
Telnet 472,725 103,924 (22.0%)
CWMP 505,977 35,163 (7.0%)
SSH 148,640 8,107 (5.5%)

Total 1,788,045 587,743 (31.5%)

Table 2.2: Devices Identified—We identified device type, model, and/or vendor for 31.5% of active
scan banners. Protocol banners varied drastically in device identifiability, with HTTPS certificates
being most descriptive, and SSH prompts being the least.

with Mirai infections due to DHCP churn.
Post-filtering, our dataset included 1.8 million banners associated with 1.2 million Mirai-infected

IP addresses (Table 2.2). We had the most samples for CWMP, and the least for SSH. We caution
that devices with open services that are not closed by Mirai (e.g., HTTPS and FTP) can appear
repeatedly in Censys banner scans during our measurement window (due to churn) and thus lead
to over counting when compared across protocols. As such, we intentionally explored protocols
in isolation from one another and limited ourselves to measurements that only consider relative
proportions rather than absolute counts of infected hosts.

Finally, we processed each infected device’s banner to identify the device manufacturer and
model. We first applied the set of regular expressions used by Nmap service probes to fingerprint
devices [34]. Nmap successfully handled 98% of SSH banners and 81% of FTP banners, but
matches only 7.8% of the Telnet banners. In order to increase our coverage and also accommodate
HTTPS and CWMP (which Nmap lacks probes for), we constructed our own regular expressions
to map banners to device manufacturers and models. Unfortunately, we found that in many cases,
there was not enough data to identify a model and manufacturer from FTP, Telnet, CWMP, and
SSH banners and that Nmap fingerprints only provide generic descriptions. In total, we identified
device type and/or model and manufacturer for 31.5% of banners (Table 2.2).

2.3.2 Telnet Honeypots

To track the evolution of Mirai’s capabilities, we collected binaries installed on a set of Telnet
honeypots that masqueraded as vulnerable IoT devices. Mechanically, we presented a BusyBox
shell [35] and IoT-consistent device banner. Our honeypots logged all incoming Telnet traffic
and downloaded any binaries that attackers attempted to install on the host via wget or tftp (the
methods of infection found in Mirai’s original source). In order to avoid collateral damage, we
blocked all other outgoing requests (e.g., scanning and DoS traffic).
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We logged 80K connection attempts from 54K IP addresses between November 2, 2016 and
February 28, 2017, collecting a total 151 unique binaries. We filtered out executables unrelated to
Mirai based on a YARA signature that matched any of the strings from the original source code
release, leaving us with 141 Mirai binaries. We supplemented this data with 293 binaries observed
by honeypots operated by Akamai, which served a similar purpose to ours, but were hosted on a
different public cloud provider. As a final source of samples, we included 594 unique binaries from
VirusTotal [36] that we scanned for using the YARA rules mentioned above. In total, we collected
1,028 unique Mirai samples.

We analyzed the binaries for the three most common architectures—MIPS 32-bit, ARM 32-
bit, and x86 32-bit—which account for 74% of our samples. We extracted the set of logins and
passwords, IP blacklists, and C2 domains from these binaries, identifying 67 C2 domains and
48 distinct username/password dictionaries (containing a total 371 unique passwords).

2.3.3 Passive & Active DNS

Following the public release of Mirai’s source code, competing Mirai botnet variants came into
operation. We disambiguated ownership and estimate the relative size of each Mirai strain by
exploring passive and active DNS data for the 67 C2 domains that we found by reverse engineering
Mirai binaries. We also leveraged our DNS data to map the IP addresses present in attack commands
to victim domain names.

From a large U.S. ISP, we obtained passive DNS data consisting of DNS queries generated by
the ISP’s clients and their corresponding responses. More specifically, we collected approximately
209 million resource records (RRs)—queried domain name, and associated RDATA—and their
lookup volumes aggregated on a daily basis. For our active DNS dataset, we obtained 290 million
RRs per day from Thales, an active DNS monitoring system [37]. Both datasets cover the period of
August 1, 2016 to February 28, 2017.

Using both passive and active DNS datasets, we performed DNS expansion to identify shared
DNS infrastructure by linking related historic domain names (RHDN) and related historic IPs
(RHIPs) [38]. This procedure began with the seed set of C2 domains and IPs extracted during
reverse engineering of our honeypotted binaries. For a given seed foo.com, we identified the IP
addresses that foo.com previously resolved to and added them to a growing set of domains and IPs.
We additionally performed the reverse analysis, starting from an IP and finding any domain names
that concurrently resolved it. Thus, even from a single domain name, we iteratively expanded the set
of related domain names and IP addresses to construct a graph reflecting the shared infrastructure
used by Mirai variants. In total, we identified 33 unique DNS clusters that we explore in detail in
Section 2.5.
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2.3.4 Attack Commands

To track the DDoS attack commands issued by Mirai operators, Akamai ran a “milker” from
September 27, 2016–February 28, 2017 that connected to the C2 servers found in the binaries
uploaded to their honeypots. The service simulated a Mirai-infected device and communicated
with the C2 server using a custom bot-to-C2 protocol, which was reverse engineered from malware
samples prior to source code release. In total, Akamai observed 64K attack commands issued
by 484 unique C2 servers (by IP address). We note that a naive analysis of attack commands
overestimates the volume of attacks and targets: individual C2 servers often repeat the same attack
command in rapid succession, and multiple distinct C2 servers frequently issued the same command.
To account for this, we heuristically grouped attack commands along two dimensions: by shared
C2 infrastructure and by temporal similarity. We collapsed matching commands (i.e., tuples of
attack type, duration, targets, and command options) that occur within 90 seconds of each other,
which yielded 15,194 attacks from 146 unique IP clusters. Our attack command coverage includes
the Dyn attack [20] and Liberia attacks [26]. We did not observe attack commands for Krebs on
Security and OVH, which occurred prior to the milker’s operation.

2.3.5 DDoS Attack Traces

Our final data source consists of network traces and aggregate statistics from Akamai and Google
Shield (the providers for Krebs on Security) and Dyn. These attacks cover two distinct periods
in Mirai’s evolution. We used this data to corroborate the IP addresses observed in attacks versus
those found scanning our passive network telescope, as well as to understand the volume of traffic
generated by Mirai. From Akamai, we obtained an aggregate history of all DDoS attacks targeting
Krebs on Security from 2012–2016, as well as a small sample of 12.3K IPs related to a Mirai
attack on September 21, 2016. For Google Shield, we shared a list of IP addresses observed by
our network telescope and in turn received aggregate statistics on what fraction matched any of
158.8K IP addresses involved in a 1-minute Mirai HTTP-flood attack on September 25, 2016.
Finally, Dyn provided us with a set of 107.5K IP addresses associated with a Mirai attack on
October 21, 2016.

2.4 DEVICES AND GEOGRAPHY

In this section, we detail the botnet’s composition, including the devices it ultimately infected
and where in the world those devices were.
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2.4.1 Device Composition

While cursory evidence suggested that Mirai targets IoT devices—Mirai’s dictionary of default
usernames and passwords included routers, DVRs, and cameras [39], and its source compiled to
multiple embedded hardware configurations—we provide an in-depth analysis of both the intended
device targets and successful infections.

To understand the types of devices that Mirai targeted, we analyzed the credentials hardcoded into
the binaries we collected. We observed a total 371 unique passwords, and through manual inspection,
we identified 84 devices and/or vendors associated with these passwords. Many passwords were
too generic to tie to a specific device (i.e., “password” applies to devices from a large number of
manufacturers), while others only provided information about underlying software (e.g., “postgres”)
and not an associated device. The devices we identified were primarily network-attached storage
appliances, home routers, cameras, DVRs, printers, and TV receivers made by dozens of different
manufacturers (Table 2.3).

Mirai’s intended targets do not necessarily reflect the breakdown of infected devices in the wild.
We leveraged the device banners collected by Censys to determine the models and manufacturers
of infected devices. Our results across all five protocols indicate that security cameras, DVRs,
and consumer routers represent the majority of Mirai infections (Table 2.4). The manufacturers
responsible for the most infected devices we could identify are: Dahua, Huawei, ZTE, Cisco,
ZyXEL, and MikroTik (Table 2.5). We note that these results deviate from initial media reports,
which stated that Mirai was predominantly composed of DVRs and cameras [40, 41, 42].

Our data indicates that some of the world’s top manufacturers of consumer electronics lacked
sufficient security practices to mitigate threats like Mirai, and these manufacturers will play a key
part in ameliorating vulnerability. Unfortunately, as discussed in the previous section, the menagerie
of devices spanned both countries and legal jurisdictions, exacerbating the challenge of coordinating
technical fixes and promulgating new policy to safeguard consumers in the future.
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ID Max Lookup Vol. Notes

6 61,440 Attacked Dyn, other gaming related attacks
1 58,335 The original botnet. Attacked Krebs on Security, OVH
2 36,378 Attacked Lonestar Cell. Scans TCP/7547 and TCP/5555, removes DoD from

blacklist, adds DGA
13 9,657 —
7 9,467 Scans TCP/7547

Table 2.6: Cluster Size Estimate and Characteristics—We highlight the top five clusters by max
single-day lookup volume within a large U.S. ISP, which provides an indicator of their relative size.
Each cluster is additionally labeled with observed evolutionary patterns and associated attacks.

2.5 OWNERSHIP AND EVOLUTION

After the public release of Mirai’s source code in late September 2016, multiple competing
variants of the botnet emerged. We analyze the C2 infrastructure behind Mirai in order to uncover
the relationships between strains, their relative sizes, and the evolution of their capabilities.

2.5.1 Ownership

In order to identify the structure of Mirai command and control servers, we turned to active
and passive DNS data, which we used to cluster C2 IPs and domains based on shared network
infrastructure. Seeding DNS expansion with the two IPs and 67 domains that we collected by reverse
engineering Mirai binaries, we identified 33 independent C2 clusters that shared no infrastructure.
These varied from a single host to the largest cluster, which contained 112 C2 domains and 92 IP
addresses. We show the connectivity of the top six clusters by number of C2 domains in Figure 2.3.
The lack of shared infrastructure between these clusters lends credence to the idea that there are
multiple active bot operators during our study period.

While Figure 2.3 provides a rough sense of Mirai C2 complexity, it does not indicate the number
of bots that each cluster controlled. To estimate botnet membership, we measured the DNS lookup
volume per cluster. In Figure 2.4, we show the top clusters of domains based on the volume of DNS
lookups at a large, name-redacted ISP. This single perspective is not comprehensive, but it allows
us to observe the rise and fall of different botnets over time, and may provide a hint of their relative
sizes. A prime example is cluster 1, which was the initial version of the Mirai botnet involved in the
early, high-profile attacks on Krebs on Security and OVH. Although it dominated in lookup volume
in late September and early October, it gave way to newer clusters, 2 and 6, in mid-October. We
provide a list of the largest clusters by lookup and their unique characteristics in Table 2.6.

While we cannot conclusively link each of these clusters to distinct operators, we note that each
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Figure 2.3: C2 Domain Relationships—We visualize related C2 infrastructure, depicting C2
domains as nodes and shared IPs as edges between two domains. The top six clusters by C2 domain
count consisted of highly connected components, which represent agile, long-lived infrastructures
in use by botmasters.
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Figure 2.4: C2 Cluster Lookup Volume—The DNS lookup volume of C2 DNS clusters in a large
U.S. ISP establishes the relative size of the botnet behind each cluster and chronicles its rise and fall.
Note, for example, cluster 1 which represents the original botnet in use for the early high profile
attacks on Krebs and OVH and the emergence of a myriad of clusters after the public source release.

cluster utilized independent DNS infrastructure and evolving malware, underscoring the challenge
of defending against these attacks through bespoke mitigations. Our results also confirm the recent
findings of Lever et al., who observed that the naming infrastructure used by malware is often active
weeks prior to its operation [43]. In all cases, the first occurrence of DNS/IP lookup traffic for a
cluster far preceded the date that the domains were used as C2 infrastructure for the botnet. For
example, even though the peak lookup for cluster 2 occurred on October 21, 2016, the first lookup
of a C2 domain in this cluster occurred on August 1, 2016 (Table 2.6). This also significantly
predated the first binary collected for this cluster (October 24, 2016), and the first attacks issued by
the cluster (October 26, 2016). These results suggest that careful analysis of DNS infrastructure can
potentially guide preventative measures.

2.5.2 Evolution

Although the Mirai ecosystem exploded after the public source code release on September
30, 2016, this was not the botnet’s first major evolutionary step. Between August 7, 2016 and
September 30, 2016—when the source code was publicly released—24 unique Mirai binaries were
uploaded to VirusTotal, which we used to explore the botnet’s initial maturation. Several key
developments occurred during this period. First, we saw the underlying C2 infrastructure upgrade
from an IP-based C2 to a domain-based C2 in mid-September. Second, the malware began to delete
its executing binary, as well as obfuscate its process ID, also in mid-September. We additionally
saw a number of features added to make the malware more virulent, including the addition of more
passwords to infect additional devices, the closing of infection ports TCP/23 and TCP/2323, and
the aggressive killing of competitive malware in a sample collected on September 29, 2016.

After the public release, we observed the rapid emergence of new features, ranging from improved
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Figure 2.5: Password Evolution—The lineage of unique password dictionaries, labeled with their
associated clusters, depicts many malware strains modifying the default credential list to target
additional devices. The node marked (*) indicates the released source code password dictionary
and serves as the foundation for the all divergent password variants

infection capabilities to hardened binaries that slow reverse engineering efforts. Between November
2, 2016 and February 28, 2017, we observed 48 new sets of usernames and passwords, as well as
changes to the IP blacklist. We note that while many actors modified the set of credentials, they often
did so in different ways (Figure 2.5). This is true for other features as well. In one example, a variant
evolved to remove U.S. Department of Defense blocks from the initial scanning blacklist. The
malware further evolved to use new infection mechanisms. Most notably, in late November 2016,
Mirai variants began to scan for TCP/7547 and TCP/5555, two ports commonly associated with
CWMP [29, 44]. Additionally, one malware strain began to using domain generation algorithms
(DGA) in the place of a hardcoded C2 domain, though this feature was short lived. By November
2016, packed binaries had emerged.

Techniques to improve virulence and to aide in reliability were not simply limited to the client
binaries. We found evidence of operators using DNS to avoid or attempt to evade detection as
well. Recent work by Lever et al. demonstrated how attackers abuse the residual trust inherited by
domains to perform many, seemingly unconnected types of abuse [45]. Mirai was no different from
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other types of malware—we found evidence that at least 17% of Mirai domains abused residual
trust. Specifically, these domains expired and were subsequently re-registered before they were
used to facilitate connections between bots and C2 servers. This serves as a reminder that although
Mirai is unique in many ways, it still shares much in common with the many threats that came
before it.

By combining the malware we observed with our DNS data, we can also measure the evolution of
the C2 clusters in Table 2.6. We note that cluster 2—the third largest by lookup volume—evolved to
support many new features, such as scanning new ports TCP/7547 and TCP/5555, adding DGA, and
modifying the source code blacklist to exclude Department of Defense (DoD) blocks. This is not to
say, however, that evolution guaranteed success. Cluster 23, which can be seen clearly in Figure 2.5,
evolved very rapidly, adding several new passwords over its active time. Despite this evolution, this
cluster was 19th out of 33 clusters in terms of lookup volume over time and was unable to capture
much of the vulnerable population. We also note that not all successful clusters evolved either;
for example, cluster 6, which showed no evolutionary trend from its binaries, received the highest
lookup volume of all the clusters.

2.6 MIRAI’S DDOS ATTACKS

The Mirai botnet and its variants conducted tens of thousands of DDoS attacks during our
monitoring period. We explore the strategies behind these attacks, characterize their targets, and
highlight case studies on high-profile targets Krebs on Security, Dyn, and Liberia’s Lonestar Cell.
We find that Mirai bore a resemblance to booter services (which enable customers to pay for DDoS
attacks against desired targets), with some Mirai operators targeting popular gaming platforms such
as Steam, Minecraft, and Runescape.

2.6.1 Types of Attacks

Over the course of our five month botnet infiltration, we observed Mirai operators issuing
15,194 DDoS attack commands, excluding duplicate attacks (discussed in Section 3.2). These
attacks employed a range of different resource exhaustion strategies: 32.8% were volumetric,
39.8% were TCP state exhaustion, and 34.5% were application-layer attacks (Table 2.7). This
breakdown differs substantially from the current landscape of DDoS attacks observed by Arbor
Networks [46], where 65% of attacks are volumetric, 18% attempt TCP state exhaustion, and 18%
are higher-level application attacks. While amplification attacks [47] make up 74% of attacks issued
by DDoS-for-hire booter services [48], only 2.8% of Mirai attack commands relied on bandwidth
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Attack Type Attacks Targets Class

HTTP flood 2,736 1,035 A
UDP-PLAIN flood 2,542 1,278 V
UDP flood 2,440 1,479 V
ACK flood 2,173 875 S
SYN flood 1,935 764 S
GRE-IP flood 994 587 A
ACK-STOMP flood 830 359 S
VSE flood 809 550 A
DNS flood 417 173 A
GRE-ETH flood 318 210 A

Table 2.7: C2 Attack Commands—Mirai launched 15,194 attacks between September 27, 2016–
February 28, 2017. These include [A]pplication-layer attacks, [V]olumetric attacks, and TCP
[S]tate exhaustion, all of which are equally prevalent.

amplification, despite built-in support in Mirai’s source code. This absence highlights Mirai’s
substantial capabilities despite the resource constraints of the devices involved.

2.6.2 Attack Targets

Studying the victims targeted by Mirai sheds light on its operators. We analyzed the attack
commands issued by Mirai C2 servers (as detailed in Section 3.2) to examine who Mirai targeted.
In total, we observed 15,194 attacks issued by 484 C2 IPs that overlapped with 24 DNS clusters
(Section 2.5). The attacks targeted 5,046 victims, comprised of 4,730 (93.7%) individual IPs, 196
(3.9%) subnets, and 120 (2.4%) domain names. These victims ranged from game servers, telecoms,
and anti-DDoS providers, to political websites and relatively obscure Russian sites (Table 2.8).

The Mirai source code supports targeting of IPv4 subnets, which spreads the botnet’s DDoS
firepower across an entire network range. Mirai issued 654 attacks (4.3%) that targeted one or more
subnets, with the three most frequently targeted being Psychz Networks (102 attacks, 0.7%), a
data center offering dedicated servers and DDoS mitigation services, and two subnets belonging to
Lonestar Cell (65 combined attacks, 0.4%), a Liberian telecom. We also saw evidence of attacks
that indiscriminately targeted large swathes of the IPv4 address space, including 5 distinct /8
subnets and one attack on /0 subnet—the entire IPv4 space. Each of the /8 and /0 subnets, (with
the exception of the local 10.0.0.0/8) contain a large number of distributed network operators and
total IP addresses, which drastically exceed the number of Mirai bots. As such, the Mirai attacks
against these subnets likely had modest impact.

If we exclude targeted subnet (due to their unfocused blanket dispersion across many networks),
we find that Mirai victims were distributed across 906 ASes and 85 countries. The targets were

23



Target Attacks Cluster Notes

Lonestar Cell 616 2 Liberian telecom targeted by 102 reflection
attacks.

Sky Network 318 15, 26, 6 Brazilian Minecraft servers hosted in Psychz
Networks data centers.

1.1.1.1 236 1,6,7,11,15,27,28,30 Test endpoint. Subject to all attack types.
104.85.165.1 192 1,2,6,8,11,15,21,23,26,27,28,30 Unknown router in Akamai’s AS.
feseli.com 157 7 Russian cooking blog.
minomortaruolo.it 157 7 Italian politician site.
Voxility hosted C2 106 1,2,6,7,15,26,27,28,30 C2 domain from DNS expansion. Exists in

cluster 2 seen in Table 2.6.
Tuidang websites 100 — HTTP attacks on two Chinese political dis-

sidence sites.
execrypt.com 96 — Binary obfuscation service.
auktionshilfe.info 85 2,13 Russian auction site.
houtai.longqikeji.com 85 25 SYN attacks on a former game commerce

site.
Runescape 73 — World 26 of a popular online game.
184.84.240.54 72 1,10,11,15,27,28,30 Unknown target hosted at Akamai.
antiddos.solutions 71 — AntiDDoS service offered at react.su.

Table 2.8: Mirai DDoS Targets—The top 14 victims most frequently targeted by Mirai run a
variety of services. Online games, a Liberian cell provider, DDoS protection services, political sites,
and other arbitrary sites match the victim heterogeneity of booter services. Many clusters targeted
the same victims, suggesting a common operator.

heavily concentrated in the U.S. (50.3%), France (6.6%), the U.K. (6.1%), and a long tail of other
countries. Network distribution was more evenly spread. The top 3 ASes—OVH (7.8%), Cloudflare
(6.6%) and Comcast (3.6%)—only accounted for 18.0% of victims.

The three most frequently targeted victims were Liberia’s Lonestar Cell (4.1%), Sky Network
(2.1%), and 1.1.1.1 (1.6%). We examine Lonestar Cell in depth in Section ??. Sky Network is a
Brazilian company that operates servers for Minecraft (a popular game), which is hosted by Psychz
Networks. The attacks against Psychz began on November 15, 2016 and occurred sporadically until
January 26, 2017. 1.1.1.1 was likely used for testing [49]. Additional game targets in the top 14
victims included a former game commerce site longqikeji.com, and Runescape, another popular
online game. The prevalence of game-related targets along with the broad range of other otherwise
unrelated victims shares many characteristics with previously studied DDoS booter services [50].

For volumetric and TCP state exhaustion attacks, Mirai optionally specified a target port, which
implied the type of service targeted. We find a similar prevalence of game targets—of the 5,450 at-
tacks with a specified port, the most commonly attacked were 80 (HTTP, 37.5%), 53 (DNS, 11.5%),
25565 (commonly Minecraft servers [51, 52], 9.2%), 443 (HTTPS, 6.4%), 20000 (often DNP3,
3.4%), and 23594 (Runescape game server, 3.4%).

Interestingly, the 7th most common attack target was an IP address hosted by Voxility that
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was associated with one of the Mirai C2 servers, and we note that 47 of 484 Mirai C2 IPs were
themselves the target of a Mirai DDoS attack. By clustering these 484 C2 IPs by attack command,
we identified 93 unique clusters, of which 26 (28%) were targeted least once. This direct adversarial
behavior reaffirms the notion of multiple, competitive botnet operators.

2.7 DISCUSSION

Mirai has brought into focus the technical and regulatory challenges of securing a menagerie of
consumer-managed, interfaceless IoT devices. Attackers are taking advantage of a reversal in the last
two decades of security trends especially prevalent in IoT devices. In contrast to desktop and mobile
systems, where a small number of security-conscious vendors control the most sensitive parts of
the software stack (e.g. Windows, iOS, Android)—IoT devices are much more heterogeneous and,
from a security perspective, mostly neglected. In seeking appropriate technical and policy-based
defenses for today’s IoT ecosystem, we draw on the experience of dealing with desktop worms
from the 2000s.

Security hardening The Mirai botnet demonstrated that even an unsophisticated dictionary
attack could compromise hundreds of thousands of Internet-connected devices. While randomized
default passwords would be a first step, it is likely that attacks of the future will evolve to target
software vulnerabilities in IoT devices much like the early Code Red and Confickr worms [53, 54].
To mitigate this threat before it starts, IoT security must evolve away from default-open ports
to default-closed and adopt security hardening best practices. Devices should consider default
networking configurations that limit remote address access to those devices to local networks or
specific providers. Apart from network security, IoT developers need to apply ASLR, isolation
boundaries, and principles of least privilege into their designs. From a compliance perspective,
certifications might help guide consumers to more secure choices as well as pressure manufacturers
to produce more secure products.

Automatic updates Automatic updates—already canonical in the desktop and mobile operating
system space—provide developers a timely mechanism to patch bugs and vulnerabilities without
burdening consumers with maintenance tasks or requiring a recall. Automatic updates require a
modular software architecture by design to securely overwrite core modules with rollback capabili-
ties in the event of a failure. They also require cryptographic primitives for resource-constrained
devices and building PKI infrastructure to support trusted updates. Apart from these challenges,
patching also requires the IoT community to actively police itself for vulnerabilities, a potentially
burdensome responsibility given the sheer diversity of devices. Bug bounties can help in this
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respect: roughly 25% of all vulnerabilities patched by Chrome and Firefox came from bug bounties
in 2015 [55], while Netgear launched a bug bounty for its router software in January, 2017 [56].
In the event of a zero-day exploit that disables automatic updates, IoT developers must provide a
secure fallback mechanism that likely requires physical access and consumer intervention.

The Deutsche Telekom infection and subsequent fix provide an excellent case study of this point.
DT’s routers had a vulnerability that enabled the botnet to spread via its update mechanism, which
provides a reminder that basic security hardening should be the first priority. However, since DT
did have an automatic update mechanism, it was also able to patch devices rather swiftly, requiring
minimal user intervention. Implementing automatic updates on IoT devices is not impossible, but
does take care to do correctly.

Notifications Notifications via out-of-band channels serve as a fallback mechanism to bring
devices back into security compliance or to clear infections. Recent examples include alerting
device administrators via CERT bulletins, emailing the abuse contact in WHOIS records, and
in-browser warnings to site owners that a page is compromised [57, 58, 59]. Notifications in the
IoT space are complicated to say the least. IoT devices lack both a public indication of ownership
and an established communication channel to reach consumers. Were consumers reachable, there
must also be a clear and simple update path to address the problem. As a minimum alternative,
IoT devices could be required to register an email address with the manufacturer or with a unified,
interoperable monitoring platform that can alert consumers of serious issues. This is a space where
IoT requires non-technical intervention. The usability challenge of acting on notifications remains
an open research problem.

Facilitating device identification Even when device models or firmware versions are known
to be vulnerable, detecting such devices on the network can be extremely difficult. This made
our investigation more challenging, but it also makes it hard for network operators to detect
vulnerabilities in their or their customers’ devices. To mitigate this, IoT manufacturers could adopt
a uniform way of identifying model and firmware version to the network—say, encoding them in a
portion of the device’s MAC address. Disclosing this information at layer 2 would make it visible
to local network operators (or to the user’s home router), which could someday take automated
steps to disable remote access to known-vulnerable hardware until it is updated. Achieving this in a
uniform way across the industry would likely require the adoption of standards.

Defragmentation Fragmentation poses a security (and interoperability) risk to maintaining and
managing IoT devices. We observed numerous implementations of Telnet, FTP, and HTTP stacks
during scanning. The IoT community has responded to this challenge by adopting a handful of
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operating systems, examples of which include Android Thing, RIOT OS, Tock, and Windows for
IoT [60]. This push towards defragmentation would abstract away the security nuances required of
our prescriptive solutions.

End-of-life Even with security best practices in mind, end-of-life can leave hundreds of thousands
of in-use IoT devices without support. Lack of long-term support will yield a two class system of
protected and unprotected devices similar to the current state of Windows XP machines [61]. Over
time, the risk that these devices pose to the Internet commons will only grow unless taken offline.

2.8 RELATED WORK

Since as early as 2005, the security community has been working to understand, mitigate, and
disrupt botnets [62]. For example, Zand et al. proposed a detection method based on identifying
command and control signatures [63], and Gu et al. focused on analyzing network traffic to aid in
detection and mitigation [64, 65]. Unfortunately, mitigation remains a difficult problem as botnets
often evolve to avoid disruption [66].

This work follows in a long line studies that have analyzed the structure, behavior, and evolution
of the botnet ecosystem [67, 68, 69, 70, 71, 72, 73]. Bailey et al. note that each technique used
in understanding botnets has a unique set of trade offs, and only by combining perspectives can
we fully analyze the entire picture [74]. This observation and the seminal work of Rajab et al.,
implicating botnet activity in 27% of all network telescope traffic, inspire our approach [75].

Botnets have historically been used to launch DDoS attacks, and there exists a parallel set of
studies focusing on characterizing and defending against these attacks [76, 77], as well as estimating
their effect [78]. In response to the recent growth of amplification attacks, there have been several
studies investigating vulnerable amplifiers [47, 79, 80]. As DDoS attacks and infrastructure are
becoming more commonplace, attention has turned to exploring the DDoS for hire ecosystem [48].

Since the emergence of IoT devices, security researchers have warned of their many inherent
security flaws [81]. Researchers have found that IoT devices contain vulnerabilities from the
firmware level [82, 83] up to the application level [84, 85, 86, 87]. Mirai is also not the first of its
kind to target IoT devices—several precursors to Mirai exist, all of which exploit the weak password
nature of these devices [22, 33, 88, 89, 90]. As a result of these widespread security failures, the
security community has been quick to design systems to secure these kinds of devices. In one
example, Fernandes et al. proposed Flowfence, which enables data flow protection for emerging IoT
frameworks [91]. Much more work is needed if we are to understand and secure this new frontier.

In this work, we utilize a multitude of well-established botnet measurement perspectives, which
substantiate concerns about IoT security. We demonstrate the damage that an IoT botnet can inflict
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upon the public Internet, eclipsing the DDoS capabilities of prior botnets. We use previously
introduced solutions as guidelines for our own proposals for combating the Mirai botnet, and IoT
botnets at large.

2.9 LIMITATIONS AND CONCLUSION

The Mirai botnet was the first highly publicized security incident that primarily focused on IoT
and embedded device. It took the Internet by storm in late 2016 when it overwhelmed several
high-profile targets with some of the largest distributed denial-of-service (DDoS) attacks on record.
Although our measurements were able to track its emergence, evolution, and the devices it targeted
and infected, our analysis suffered from several limitations. A major limitation is that, our device
identification capabilities limited by what is available through active probing of external services—
we were only able to identify 31.5% of the devices scanned, with vastly differing identification rates
per protocol. Beyond this, we observe many devices were routers—which may or may not be the
device that was ultimately infected. As routers serve as gateways to internal networks, it is possible
that a device behind the NAT was compromised as part of the Mirai scanning operation, and that
this was lost using only our external measurement perspective. In the next chapter, we address these
limitations by presenting IoT distributions captured from inside the home.

We find that while IoT devices present many unique security challenges, Mirai’s emergence was
primarily based on the absence of security best practices in the IoT space, which resulted in a fragile
environment ripe for abuse. As the IoT domain continues to expand and evolve, we hope Mirai
serves as a call to arms for those concerned about the security of an IoT-enabled world.
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CHAPTER 3: MEASURING HOME IOT NETWORKS WITH ACTIVE SCANNING

3.1 INTRODUCTION

In the previous chapter, we saw how active scanning of the public IPv4 space is useful in
identifying IoT device vendors, device types, and their server capabilities. However, we also
observed two important shortcomings. The first is a growing challenge to identify devices from
their public fingerprint—we could only identify 31.5% of devices out of all collected banners during
our measurement period. The second is that the majority of devices identified were routers, which
in this case serve as a measurement “black hole”. What this means is that we cannot if the router
itself was compromised, or a device behind the router was compromised, sitting inside the network
that the router serves as an exit point for. In fact, in the context of home IoT devices, most such
devices do not sit publicly on the Internet, but rather are hidden behind NATs, obscured from public
scanning.

Beyond DDoS attacks, the weak security posture of many popular IoT devices has enabled
attackers to conduct a litany of attacks, such as compromising local networks [92, 93] and breaking
into homes [94, 95]. However, despite much attention to IoT in the security community [94, 96, 97,
98, 99], there has been little investigation into what devices consumers are adopting and how they
are configured in practice.

In this chapter, we provide a large-scale empirical analysis of 83M IoT devices in 16M real-world
homes. We partner with Avast Software, a popular antivirus company, whose consumer security
software lets customers scan their local network for IoT devices that support weak authentication or
have remotely exploitable vulnerabilities. inventory of devices it finds.

Leveraging data collected from user-initiated network scans in 16M households that have agreed
to share data for research and development purposes, we describe the current landscape of IoT
devices and their security posture.

IoT devices are widespread. More than half of households have at least one IoT device in three
global regions and in North America more than 66% of homes have a network-connected device.
Media devices like smart televisions are most common in seven of eleven global regions, but there
is significant variance otherwise. For example, surveillance cameras are most popular in South
and Southeast Asia, while work appliances prevail in East Asia and Sub-Saharan Africa. Home
assistants are present in 10% of homes in North America but have yet to see significant adoption in
other markets. There is a long tail of 14K total manufacturers, but surprisingly we find that 90% of
devices worldwide are produced by only 100 vendors. A handful of companies like Apple, HP, and
Samsung dominate globally, but there also exist a set of smaller vendors with significant regional
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adoption. For example, Vestel, a Turkish manufacturer, is the third largest media vendor in North
Africa and the Middle East, but has negligible broader adoption.

A surprising number of devices still support FTP and Telnet with weak credentials. In Sub-
Saharan Africa, North Africa, the Middle East, and Southeast Asia, around half of devices support
FTP and in Central Asia, nearly 40% of home routers use Telnet. Similar to the regional differences
in device type and manufacturer popularity, there are dramatic differences in the use of weak
credentials. For example, while less than 15% of devices with FTP allow weak authentication in
Europe and Oceania, more than half do in Southeast Asia and Sub-Saharan Africa. Interestingly,
this is not entirely due to manufacturer preference. While less than 20% of TP-Link home routers
allow access to their administration interface with a weak password in North America, nearly half
do in Eastern Europe, Central Asia, and Southeast Asia. About 3% of homes in our dataset are
externally visible and more than half of those have a known vulnerability or weak password.

Our results indicate that IoT is not a security concern of the future, but rather one of today. We
argue that there already exists a complex ecosystem of Internet-connected embedded devices in
homes worldwide, but that these devices are different than the ones considered by most recent work.
We hope that by shedding light on the devices consumers are purchasing, we enable the security
community to develop solutions that are applicable to today’s homes.

This chapter in its entirety appeared at the USENIX Security Symposium in 2019.

3.2 METHODOLOGY AND DATASET

Our study leverages several network vantage points, including data collected from Avast, a
passive network telescope, and active Internet-wide scans. In this section, we discuss these datasets
and the role they play in our analysis.

3.2.1 WiFi Inspector

Avast Software is a security software company that provides a suite of popular antivirus and
consumer security software products like Avast Free Antivirus. Avast software is sold on a freemium
model: the company provides a free basic version of their product and charges for more advanced
versions. Avast estimates that their software runs on 160 M Windows and 3 M Mac OS computers,
and makes up approximately 12% of the antivirus market share [100].

As of 2015, all antivirus products from Avast include a tool called WiFi Inspector that helps users
secure IoT devices and other computers on their home networks. WiFi Inspector runs locally on the
user’s personal computer and performs network scans of the local subnet to check for devices that
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(a) Data Sharing Consent (b) WiFi Inspector Drawer

(c) WiFi Inspector Initiation

Figure 3.1: WiFi Inspector—WiFi Inspector allows users to scan their local network for insecure
IoT devices. Data sharing back to Avast for research purposes is an explicit part of the installation
process, and presented to the user in plain English. For ease of reading, we duplicate the text shown
in panel (a) in Appendix A.1.

accept weak credentials or have remotely exploitable vulnerabilities. Scans can also be manually
initiated by the end user. WiFi Inspector alerts users to security problems it finds during these scans
and additionally provides an inventory of labeled IoT devices and vulnerabilities in the product’s
main interface (Figure 3.1). We next describe how WiFi Inspector operates:

Network Scanning To inventory the local network, WiFi Inspector first generates a list of scan
candidates from entries in the local ARP table as well through active ARP, SSDP, and mDNS scans.
It then probes targets in increasing IP order over ICMP and common TCP/UDP ports to detect
listening services.1 Scans terminate after the local network has been scanned or a timeout occurs.

1WiFi Inspector scans several groups of TCP/UDP ports: common TCP ports (e.g., 80, 443, 139, 445); TCP ports
associated with security problems (e.g., 111, 135, 161); common UDP ports (e.g., 53, 67, 69); and ports associated with
services that provide data for device labeling (e.g., 20, 21, 22). When hosts are timely in responding, the scanner will
additionally probe a second set of less common ports (e.g., 81–85, 9971). In total, the scanner will target up to 200 ports
depending on host performance. The scanner will identify devices so long as they are connected to the network.
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After the discovery process completes, the scanner attempts to gather application layer data (e.g.,
HTTP root page, UPnP root device description, and Telnet banner) from listening services.

Detecting Device Types To provide users with a human-readable list of hosts on their network,
WiFi Inspector runs a classification algorithm against the application-and transport-layer data
collected in the scan. This algorithm buckets devices into one of fourteen categories:

1. Computer

2. Network Node (e.g., home router)

3. Mobile Device (e.g., iPhone or Android)

4. Wearable (e.g., Fitbit, Apple Watch)

5. Game Console (e.g., XBox)

6. Home Automation (e.g., Nest Thermostat)

7. Storage (e.g., home NAS)

8. Surveillance (e.g., IP camera)

9. Work Appliance (e.g., printer or scanner)

10. Home Voice Assistant (e.g., Alexa)

11. Vehicle (e.g., Tesla)

12. Media/TV (e.g., Roku)

13. Home Appliance (e.g., smart fridge)

14. Generic IoT (e.g., toothbrush)

We consider devices in the latter eleven categories to be IoT devices for the remainder of this work.
Because the classifier greatly affects the results of this work, we describe the algorithm in detail in
Section 3.2.2.

Manufacturer Labeling To generate a full device label, WiFi Inspector combines device type
with the device’s manufacturer (e.g., Nintendo Game Console). Avast determines manufacturer
by looking up the first 24 bits of each device’s MAC address in the public IEEE Organizationally
Unique Identifier (OUI) registry [101]. We note that at times, the vendor associated with a MAC
address is the manufacturer of the network interface rather than the device. For example, MAC
addresses associated with some Sony Playstations belong to either FoxConn or AzureWave, two
major electronic component manufacturers, rather than Sony. In this work, we manually resolve
and document any cases that required grouping manufacturers together.
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Checking Weak Credentials WiFi Inspector checks for devices that allow authentication using
weak credentials by performing a dictionary-based attack against FTP and Telnet services as well
as web interfaces that use HTTP basic authentication. When possible, WiFi Inspector will also try
to log into HTTP-based administration interfaces that it recognizes. The scanner attempts to log in
with around 200 credentials composed of known defaults (e.g., admin/admin) and commonly used
strings (e.g., user, 1234, love) from password popularity lists, leaks, vendor and ISP default lists,
and passwords checked by IoT malware. WiFi Inspector immediately notifies users about devices
with guessable logins.

Checking Common Vulnerabilities In addition to checking for weak credentials, WiFi Inspector
checks devices for vulnerability to around 50 recent exploits that can be verified without harming
target devices (e.g., CVE-2018-10561, CVE-2017-14413, EDB-ID-40500, ZSL-2014-5208, and
NON-2015-0211). Because there is bias towards more popular manufacturers in these scans, we do
not provide ecosystem-level comparisons between different vulnerabilities.

3.2.2 Device Identification Algorithm

A significant portion of our work is based on identifying the manufacturers and types of IoT
devices in homes. We describe the algorithm that Avast has developed in this section:

Classifier WiFi Inspector labels device type (e.g., computer, phone, game console) through a
set of expert rules and a supervised classification algorithm, both of which run against network
and application layer data. Classification is typically possible because manufacturers often include
model information in web administration interfaces as well as in FTP and Telnet banners [102].
Additionally, devices broadcast device details over UPnP and mDNS [103]. WiFi Inspector uses
expert rules—regular expressions that parse out simple fields (e.g., telnet banner or HTML title)—
to label hosts that follow informal standard practices for announcing their manufacturer and model.
This approach, while not comprehensive, reliably identifies common devices [14, 102]. WiFi
Inspector contains approximately 1,000 expert rules that are able to identify devices from around
200 manufacturers. We show a sample of these rules in Table 3.1. However, these rules only
identify 60% of devices from a random sample of 1,000 manually-labeled devices. To categorize
the remaining devices, WiFi Inspector leverages an ensemble of four supervised learning classifiers
that individually classify devices using network layer-data, UPnP responses, mDNS responses, and
HTTP data. Therefore, when identifying a device, WiFi Inspector first tries the expert rules, and in
the case of no match, next applies the ensemble of four supervised classifiers.
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The network classifier is built using a random forest, which aggregates the following network
features of a device:

1. MAC address

2. Local IP address

3. Listening services (i.e., port and protocol)

4. Application-layer responses on each port

5. DHCP class id and hostname
The UPnP, mDNS and HTTP classifiers leverage raw text responses. The classifier treats each
response as a bag-of-words representation, and uses TF-IDF to weight words across all responses.
This representation is fed as input to a Naı̈ve Bayes classifier.

Training and Evaluation To train the supervised algorithm, Avast collected data on approx-
imately 500K random devices from real-world scans. 200K of these were manually classified
through an iterative clustering/labeling process, where experts clustered devices based on network
properties and labeled large clusters, winnowing and re-clustering until all devices were labeled.
The remaining 300K devices were labeled using the expert rules. To tune model parameters, we
performed five-fold cross-validation across the original training set. However, because the initial
clustering was used to help identify devices in the clustering/labeling step, the dataset is not used
for validation. Instead, Avast curated a validation set of 1,000 manually labeled devices, whose
labels were never used for training. The final classifier achieves 96% accuracy and 92% coverage
with a 0.80 macro average F1 score (Table 3.2). We mark devices we cannot classify as “unknown”.
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Classifier Coverage Accuracy Macro F1

Supervised Ensemble 0.91 0.95 0.78
Network 0.89 0.96 0.79
UPnP 0.27 0.91 0.37
mDNS 0.05 0.94 0.25
HTTP 0.14 0.98 0.23

Final Classifier 0.92 0.96 0.80

Table 3.2: Device Classifier Performance—Our final classifier combines the supervised classifier
and expert rules, and achieves 92% coverage and 96% accuracy against a manually labeled set of
1,000 devices.

3.2.3 Avast Dataset

Avast collects aggregate data about devices, vulnerabilities, and weak credentials from WiFi
Inspector installations of consenting users for research and development purposes. Users are
informed about this data collection in simple English when they install the product (Figure 3.1)
and can opt out at any time. We worked with Avast to analyze aggregate data about the types of
devices in each region. No individual records or personally identifiable information was shared
with our team. Although WiFi Inspector supports automatic vulnerability scans, we only use data
from user-initiated scans in this paper so that we can guarantee that users knowingly scanned their
networks. In addition, we exclude scans of public networks by only analyzing networks that were
marked as home networks in Windows during network setup. We detail the ethical considerations
and our safeguards in Section 3.2.6.

We specifically analyze data about devices found in scans run between December 1–31, 2018
on Windows installations. This dataset consists of data about 83 M devices from 15.5 M homes
spanning 241 countries and territories, and 14.3 K unique manufacturers. For installations with
multiple scans during this time period, we use the latest scan that found the maximum number of
devices. We aggregate each country into 11 regions, defined by ISO 3166-2 [104]. As shown in
Table 3.3, WiFi Inspector is more popular in Europe and South America than in North America.
Because of this market share, as well as significant regional differences in IoT deployment, we
discuss regions separately.

Threats to Validity While WiFi Inspector is installed in a significant number of homes, the
dataset is likely colored by several biases. First, the data is predicated on users installing antivirus
software on their computers. There is little work that indicates whether users with antivirus software
have more or less secure practices. Second, we only analyzed data from installations on Windows
machines due to differences between Mac and Windows versions of the software. This may skew
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Region Homes Devices

North America 1.24 M (8.0%) 9.2 M (11.1%)
South America 3.2 M (20.9%) 18 M (21.6%)
Eastern Europe 4.2 M (27.2%) 18.8 M (22.6%)
Western Europe 2.9 M (19.1%) 15 M (18.0%)
East Asia 543 K (3.5%) 3 M (3.7%)
Central Asia 107 K (0.7%) 500 K (0.6%)
Southeast Asia 813 K (5.3%) 3.6 M (4.3%)
South Asia 824 K (5.3%) 6.6 M (7.7%)
N. Africa, Middle East 1.2 M (7.5%) 6.1 M (7.3%)
Oceania 124 K (0.8%) 680 K (0.8%)
Sub-Saharan Africa 266 K (1.7%) 1.8 M (2.2%)

Table 3.3: Regional Distribution of Homes—The 15.5M homes and 83M devices in our dataset
are from geographically diverse regions. Because this breakdown is representative of Avast market
share rather than organic density of homes and devices, we limit our analysis to within individual
regions.

the households we study to different socioeconomic groups or introduce other biases. Third, WiFi
Inspector actively notifies users about problems it finds. As a result, users may have patched
vulnerable hosts, changed default passwords, or returned devices to their place of purchase. This
may skew our results to indicate that homes included in this study are more secure than in practice.

3.2.4 Network Telescope

While WiFi Inspector scans can identify the types of devices present in home networks, the data
does not provide any insight into whether devices have been compromised. To understand whether
devices are infected and scanning to compromise other devices (e.g., as was seen for Mirai [102]),
we consider the IP addresses scanning in a large network telescope composed of approximately
4.7 million IP addresses. We specifically analyze the traffic for a 24 hour period on January 1, 2019
for scan activity using the methodology discussed by Durumeric et al. [105]: we consider an IP
address to be scanning if it contacts at least 25 unique addresses in our telescope on the same port
within a 480 second window. In total, we observe 1.7 M scans from a total of 529 K unique IP
addresses from 1.4 billion packets during our measurement period. Of the 500,716 homes scanned
by WiFi Inspector on this day, 1,865 (0.37%) were found scanning on the network telescope.
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3.2.5 Internet-Wide Scanning

We further augment the WiFi Inspector data with data collected from Internet-wide scans
performed by Censys [106] to understand whether the vulnerabilities present on gateways (i.e.,
home routers) could be remotely exploitable. Similarly to our network telescope data, we investigate
the intersection between Censys and Avast data for a 24-hour period on January 30, 2019 to control
for potential DHCP churn. We also check whether devices that accept weak credentials for
authentication present login interfaces on public IP addresses. We discuss the results in Section 3.4.

3.2.6 Ethical Considerations

WiFi Inspector collects data from inside users’ homes. To ensure that this data is collected in line
with user expectations, we only collect statistics about homes where the user explicitly agreed to
share data for research purposes. This data sharing agreement is not hidden in a EULA, but outlined
in simple English. We show the dialogue where users acknowledge this in Figure 3.1. We note that
this is an explicit opt-out process. The data sharing agreement is the last message shown to the user
before the main menu, meaning users do not need to wait and remember to turn off data collection
at a later time.

In order to keep up to date information on the devices in a home, WiFi Inspector runs periodic,
automated scans of the local network. Automated scans do not perform any vulnerability testing or
password weakness checks; they only identify devices through banners and MAC addresses. We
limit our analysis to homes where a user explicitly manually initiated a network scan.

To protect user privacy and minimize risk to users, Avast only shared aggregate data with our
team. This data was aggregated by device manufacturer, region, and device type. The smallest
region contained over 100,000 homes. We never had access to data about individual homes or users;
no personally identifiable information was ever shared with us. Avast did not collect any additional
data for this work, nor did they change the retention period of any raw data. No data beyond the
aggregates in this paper will be stored long term.

Internally, Avast adheres to a strict privacy policy: all data is anonymized and no personally
identifiable information is ever shared with external researchers. All handling of WiFi Inspector
data satisfies personal data protection laws, such as GDPR, and extends to data beyond its territorial
scope (i.e., outside of the European Union). Specific identifiers like IP addresses are deleted in
accordance with GDPR and only collected when explicitly necessary for the security function of
the product.
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Figure 3.2: Devices per Region—There is significant variance in device usage across regions. The
largest presence is in North America, where homes have a median seven hosts. Conversely, homes
in South Asia have a median two hosts. The number of devices per home starts at two as all homes
require at least one computer and one router to be included.

3.3 IOT IN HOMES

It is vital that the security community understands the types of IoT devices that consumers install
and their respective regional distributions given their increasing security and privacy implications.
In this section, we provide one of first large-scale analyses of these devices based on scans from
15.5 M homes.

The presence of IoT devices varies by region. For example, while more than 65% of homes in
North America have an IoT device, fewer than 10% of homes in South Asia do (Figure 3.2). Media
devices (i.e., smart TVs and streaming devices) are the most common type of device in seven of
the eleven regions, in terms of both presence in homes (2.5%–42.8%) and total number of devices
(16.6%–59.0%). Four regions differ: surveillance devices are most common in South and Southeast
Asia, while work appliances are most common in East Asia and Sub-Saharan Africa. We show the
most popular devices in each region in Table 3.4.

Despite differences in IoT popularity across regions, there are strong correlations between regions
for the types of devices that are popular.2 In other words, the most popular types of devices are
similar across regions. Still, certain pairs of regions differ. For example, homes in all Asian regions

2To quantify the preference for difference types of devices across regions, we leverage a Spearman’s rank correlation
test across each pairwise region, taking the rank ordered list of device types for each region as input (Table 3.5).
Per Cohen’s guidelines, we find all regions rank ordered distributions are strongly correlated (>0.7 coefficient) with
p-values < 0.05 [107], indicating little change in the rank order of device type distributions across regions.
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South America 81 – 87 85 90 85 88 87 90 90 92

E. Europe 88 87 – 95 95 93 93 94 98 98 96
W. Europe 92 85 95 – 90 88 83 87 92 95 89
East Asia 88 90 95 90 – 90 93 92 93 98 99

Central Asia 76 85 93 88 90 – 93 90 94 90 93
Southeast Asia 77 88 93 83 93 93 – 99 95 96 95

South Asia 81 87 94 87 92 90 99 – 97 92 95
N. Africa, Middle East 87 90 98 92 93 94 95 97 – 96 95

Oceania 93 90 98 95 98 90 96 92 96 – 96
Sub-Saharan Africa 86 92 96 89 99 93 95 95 95 96 –

Table 3.5: Regional Similarities—We calculate the similarity regions by computing the Spearman’s
rank correlation test over each region’s rank order list of most popular types of devices. We show the
most similar region (green) and least similar region (red) by row. Correlation coefficients presented
are out of 100. In all cases, p-values were < 0.05.

are least similar to homes in North America. On the other hand, homes in geographically similar
regions (e.g., South Asia and Southeastern Asia) are highly correlated, even when they differ from
the global distribution. The fact that distinct regions have unique preferences for device types points
to deeper differences between regions, making it harder to reason about IoT in aggregate and more
challenging to generalize findings from one region to others.

We also considered the relative popularity of types of devices within each region. Even in areas
with similar rank order popularity, the proportion of device types in those regions varies (Figure 3.3).
We compute a pairwise proportion test across each region to quantify the differences between
regions and find that nearly all regions have varying proportions of IoT device types, except when a
device type accounts for fewer than 1% of devices. We discuss each region below.

3.3.1 North America

North America has the highest density of IoT devices of any region: 66.3% of homes have an IoT
device compared to 34% globally. Similar to other regions, media devices (e.g., TVs and streaming
boxes) and work appliances account for the most devices in North American homes. Nearly half of
homes have one media device and one third have a work appliance (Table 3.4). Media devices are
also the most prolific, accounting for 44.9% of IoT devices in North America. In contrast, work
appliances only account for 28% of devices (Table 3.4). There is a long tail of manufacturers that
produce media devices in the U.S., and the most popular vendor, Roku, only accounts for 17.4% of
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Figure 3.3: IoT Device Distribution by Region—IoT device type distributions vary between
different geographic regions. For example, Surveillance devices are most prevalent in Asia, whereas
Home Automation devices only appear in North America and Europe.

media devices (Table A.1). Second most popular is Amazon (10.2%). In contrast, there are only a
handful of popular work appliance vendors—HP is the most common and accounts for 38.7% of
work appliances in North America.

Though popular in every region, a considerably higher number of homes in North America
contain a game console. This is one of the reasons that a smaller fraction of IoT devices are media-
related than in Western and Northern Europe. There are three major vendors of game consoles:
Microsoft (39%), Sony (30%),3 and Nintendo (20%).

North America is the only region to see significant deployment of home voice assistants like
Amazon Echo [108] and Google Home [109]. Nearly 10% of homes now have a voice assistant and
the device class accounts for 7.5% of IoT devices in the region. Two thirds of home assistants are
Amazon produced, the remaining one third are Google devices. North America is also one of the
only region to see automation devices, which are present in 2.5% of homes. There are four major
manufacturers in this space, Nest4 (44.2%), Belkin (15.1%), Philips (14.4%), and Ecobee (9.8%).

3Sony PlayStation devices are split across three vendors in this distribution primarily due to their network cards
being manufactured by two third party vendors, Azurewave (11.6%) and Foxconn (9%).

4A classification error misclassifies Nest products as mobile devices. We manually correct this in our analysis since
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These vendors sell products such as the Nest Thermostat [110], Wemo smart plug [111], Philips
Hue Smart Lights [112], and the Ecobee Smart Thermostat [113].

The relative ranking of IoT device type popularity generally does not change as more IoT
devices are added to North American homes. To quantify this, we calculate the Spearman rank
correlation for each pairwise set of homes based on the number of devices and observe only slight
deviations from the overall regional distribution. As more devices are added to the network, the
correlation coefficients for North America hover between 0.98–1.0, indicating minimal change.
Despite minimal change in the relative ranking of IoT device types, we note that the fraction of each
device type does vary as more IoT devices are added to the home. For example, for homes with one
IoT device, voice assistants make up only 3.9% of all devices, down from 7.3% across all homes.
Game consoles are also more popular in homes with only one IoT device, up from 13.9% to 16.5%.

3.3.2 Central and South America

South American homes are the least similar to North America of any region (Table 3.5). While
the most common types of IoT devices in both regions are media devices (51.7% vs 44.9%) and
work appliances (24% vs 28%), significantly fewer South American homes have an IoT device
(32% vs 66%) and there are significantly more surveillance devices: 13.3% vs 3.7% of devices
(Table 3.4). Prior research uncovered that there is an increased reliance on surveillance devices
in Brazil and surrounding regions to deter violence [114, 115], which may offer one explanation.
The only other device type we commonly see are game consoles (9.8% of devices). No other class
appears in more than a fraction of a percent of homes.

The vendor distribution of media devices in Central and South America differs from the global
distribution. Two vendors appear in the top 5 for this region that do not appear in any other region.
First is Arcadyan, a Taiwanese company that primarily manufactures cable boxes in this category,
and is often found in LG Smart TVs. The second is Intelbras, a Brazilian company that manufactures
DVRs and smart video players. Intelbras accounts for 11% of the surveillance cameras in the region,
though they are third to Hikvision and Dahua.

3.3.3 Europe

Eastern and Western Europe are both most similar to Oceania, primarily due to the three regions
sharing a similar fraction of storage devices (Table 3.4). Still, the regions vary in terms of their
IoT usage: 53.5% of Western European homes have at least one IoT device, compared to 25.2% in
Eastern European homes.

Nest does not sell mobile devices.
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Manufacturers in Western Europe are similar to the global distribution with a handful of excep-
tions. Sagemcom and Free, two French companies that sell media boxes and IP cameras, are the
first and third largest media vendors in Western Europe, accounting for 15.7% and 9.3% of all
devices compared to 5.7% and 3.2% globally. The markets of both companies are highly localized,
as 99% of their devices in our dataset are located in Western and Northern Europe. In other device
categories, such as work appliances, game consoles, and home automation, there is limited variance
from the global distribution. Outside of North America and Oceania, Western Europe is the only
other region where more than 1% of homes have a home automation device.

There are significantly more surveillance devices in Eastern Europe than Western Europe (14%
versus 5.6% of devices). Eastern Europe is also unlike most other regions in that its rank ordered
device type distribution changes as more IoT devices are added over time. For homes with one
IoT device, surveillance devices only make up 5.3% of all IoT devices, but this changes drastically
for homes with 3 IoT devices, where the number of surveillance devices shoots up to 13.8%. The
fraction of surveillance devices continually increases as more IoT devices are added to Eastern
European homes. In homes with 10 IoT devices, surveillance devices are the most popular device,
accounting for 42.7% of all devices.

3.3.4 Asia

We analyze the four regions (East, Central, South, and Southeast) of Asia separately as they
have different IoT profiles. For example, surveillance devices make up 54.5%, 37%, and 30.3%
of devices in South, Southeast, and Central Asia (Figure 3.3), whereas only 9.1% of devices are
surveillance related in East Asia. This is not due to a large number of homes with cameras, but
rather that other types of IoT devices are sparse. For example, only 9% of S.E. Asian Homes
and 2.5% of South Asian homes contain a media device whereas more than 40% homes in North
America and Western Europe do. Similar to other regions, Hikvision is the most prevalent vendor
of surveillance devices in S.E. Asia and South Asia, making up 25.8% and 34.7% of surveillance
devices in each region respectively. Unlike other regions, a private5 vendor accounts for 15.5% of
all surveillance devices in Southern Asia.

East and Central Asia are more similar to Eastern Europe and Africa than they are to South and
Southeast Asia. East Asia, for example, is most similar to Sub-Saharan Africa because its largest
device type is work appliances, which make up 44.5% of the devices in the region. Central Asia
more closely follows Eastern Europe with media devices accounting for 54.2% of devices. All
Asian regions do have one thing in common: they are all the least similar to North American homes,

5Private vendors are ones that have paid an additional fee to IEEE to keep their MAC address mapping off of the
public OUI list.

44



indicating fundamental differences in IoT device usage between the Asian countries and North
America.

3.3.5 Africa and Middle East

The North Africa, Middle East (combined) region is most similar to Eastern Europe. Media
devices are the most prevalent, appearing in 9.4% of homes and accounting for 35.7% of devices.
Again, we observe a local media vendor with a large presence: Vestel, a Turkish TV manufacturer,
is the third largest media vendor after Samsung and LG. Surveillance devices make up 28.5% of
their overall devices, and appear in 5.2% of homes. Sub-Saharan Africa is distinct in that work
appliances are most popular (50% of devices). 11% homes in the region have at least one work
appliance. The most popular vendor is HP (33.6%), followed by a long tail of other manufacturers.

3.3.6 Oceania

Oceania ranks third to North America and Western Europe in terms of fraction of homes that
contain an IoT device (49.2% of homes). Similar to other regions, the most popular device type
in the region are media devices, which are found in 30.7% of homes. This is followed by work
appliances (19.8% of homes) and gaming consoles (10.1% of homes). Oceania is one of the only
regions that contains home automation devices, appearing in 0.7% of homes in our dataset. Similar
to North America and Western Europe, Oceania has a moderate number of voice assistant devices,
which appear in 3.2% of homes and account for 4.2% of all devices. Unlike North America and
Western Europe, homes in Oceania contain many networked storage devices. They account for
4.3% of all devices, which is most similar to homes in Eastern Europe and East Asia.

3.3.7 IoT Device Vendors

While we find devices from 14.3K unique vendors, 90% of all devices globally are manufactured
by 100 vendors (Figure 3.4). Globally, there are 4,157 vendors (29%) that only appear in one
home. Unlike device type distributions, which are consistent across region, vendor distributions
vary heavily across device type (Figure 3.5). Some device types are dominated by a small handful
of vendors. For example, Amazon and Google account for over 90% of voice assistant devices
globally. Other device types like media devices and surveillance devices are split across many
vendors. Media devices are the most heterogeneous by vendor: the top 10 vendors only account for
60% of devices.
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Figure 3.5: IoT Vendors per Region and Device Type—Some device types are almost entirely
dominated by one or two vendors. For example, Amazon and Google produce 91.9% of voice
assistants and Hikvision produces 18.6% of surveillance devices.

Regional differences in vendor preferences may cause the observed variance in vendor distribu-
tions across device types. To measure this, we compute the pairwise Spearman’s correlation for
each vendor distribution across every pair of regions (e.g. vendor distribution for voice assistants in
North America vs. East Asia). We then aggregate6over device type by taking the average correlation
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Device Type Mean Correlation
Top-10

Mean Correlation

Game Console 0.43 0.49
Voice Assistant 0.23 0.26
Home Automation 0.98 0.98
Surveillance 0.07 0.28
Work Appliance 0.04 0.22
Storage 0.05 -0.03
Media 0.04 0.09
Router 0.01 0.02
Mobile Device 0.01 0.03

Table 3.6: Vendor Correlation by Device Type—We show the mean correlation in rank ordered
vendor distributions per device type across every pair of regions across all vendors as well as the
top 10 vendors in each category. The correlations in bold are statistically significant, and indicate
consistency in vendors for these device types across all regions in our dataset.

across each pair of regions (Table 3.6).
We observe that device types dominated by a handful of vendors globally (Figure 3.5) show

moderate to strong correlations across all regions, indicating stability in popular vendors across
geographic areas. For example, game consoles are dominated by three major players (Microsoft,
Sony, Nintendo) in almost every region across the world. In contrast, there are a number of
device types, such as media and storage devices, for which there are no correlations across region,
even when looking only at the top 10 vendors. This indicates that for these device types, regions
have differing vendor preferences. This result aligns with our investigation of individual regions,
where we observed many regions prefer local media vendors that are less prevalent in the global
distribution.

3.4 HOME SECURITY

Beyond understanding the landscape of IoT devices, we investigate the security profile of devices
in homes, including devices that allow weak authentication, the security profile of home routers,
and the presence of homes that exhibit scanning behavior on a large darknet.

Many IoT devices act as embedded servers: 67.5% of devices provide at least one TCP- or
UDP-based service. Many of these services are not surprising—network printers necessarily run

6We note that correlation coefficients are not additive, so to aggregate we convert the respective correlation r-values
to z-values using a Fisher’s Z transform [116], take the average of the Z values, and convert back to an r-value. In
addition, we could only compare rank order for vendors who appeared in all 11 regions in the dataset. There were three
device categories (wearables, home appliances, generic IoT) for which no vendors appeared in all regions; we could not
compute correlations in these cases.
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Port Service Devices

1900 UPnP 46.2%
80 HTTP 45.7%
5353 mDNS 39.2%
8080 HTTP Alt. 26.9%
443 HTTPS 21.1%
9100 JetDirect 19.5%
515 LPR 16.5%
631 IPP 11.8%
554 RTSP 11.8%
8008 HTTP Alt. 11.1%

Port Service Devices

139 SMB 10.6%
8443 HTTPS Alt. 9.5%
8009 HTTP Alt. 9.3%
445 SMB 8.7%
7676 Custom 8.2%
49152 – 7.9%
21 FTP 7.8%
5000 UPnP 7.8%
23 Telnet 7.1%

Table 3.7: Popular IoT Services—We show the common open ports in IoT devices in our dataset.
The most popular protocols are related to device discovery (UPnP, mDNS) and device administration
(HTTP, HTTPS).

services like IPP. However, we also note that devices commonly support older protocols like Telnet
(7.1% of IoT devices) and FTP (7.8%). The most common protocol is Universal Plug and Play
(UPnP), which is prevalent on 46.2% of devices. We also observe HTTP and mDNS on nearly half
of devices. We show the top protocols in Table 3.7.

3.4.1 Weak Device Credentials

WiFi Inspector identifies devices that allow authentication with weak default credentials by
attempting to log in to FTP and Telnet services with a small dictionary of common default credentials
(Section 3.2). We find that 7.1% of IoT devices and 14.6% of home routers support one of these
two protocols. Of those, 17.4% exhibit weak FTP passwords and 2.1% have weak Telnet passwords.
In both cases, admin/admin is most common and accounts for 88% of weak FTP and 36% of weak
Telnet credentials (Table 3.8). The credential is used by FTP devices from 571 vendors and from
160 Telnet vendors.

Regions vary in terms of vulnerable IoT device populations. In the smallest case, 14.7% of FTP
devices in Western Europe support weak default credentials while more than 55% of FTP devices
in Sub-Saharan Africa that are weak. A similar, though not as drastic range exists for Telnet. North
America has the smallest vulnerable population of Telnet devices (0.5%), Central Asia and South
America share the largest vulnerable Telnet population (4.9% of all IoT Telnet devices), primarily
because of their reliance on surveillance devices, which have the weakest Telnet profile of all IoT
devices.

Nearly all of the IoT devices that support FTP are work appliances (76%), storage (9.1%), media
(7.6%), and surveillance devices (5.1%). Media and surveillance devices appear in the list due
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Credential %

admin/admin 88.3%
admin/ 5.9%
Administrator/ 1.4%
sysadm/sysadm 0.9%
root/ 0.7%
root/root 0.4%
user/ 0.4%
meo/meo 0.3%
admin/password 0.3%
admin/ttnet 0.3%
other 1.0%

(a) Weak FTP Credentials

Credential %

admin/admin 35.6%
root/xc3511 16.0%
vodafone/vodafone 10.4%
guest/guest 7.8%
admin/1234 7.5%
root/hslwificam 3.9%
root/vizxv 3.7%
root/oelinux123 2.2%
admin/4321 1.8%
admin/ 1.6%
other 9.5%

(b) Weak Telnet Credentials

Table 3.8: Most Popular Weak FTP and Telnet Credentials—admin/admin accounts for the
88.3% and 35.6% of the weak FTP and Telnet credentials.

to their global popularity—unlike storage and work appliances where 29% and 23% of devices
support FTP respectively, only 1% of media devices and 4% of surveillance devices support FTP.
This aligns with the business need for work and storage devices to facilitate user file transfer, and
also explains why there is little variance in the types of devices that support FTP across regions.

Storage devices are the device type most likely to support FTP, though only a small fraction of
them use weak credentials. There are two regional exceptions—East Asia and Sub-Saharan Africa
(Table 3.9), which exhibit 12.2% and 10.1% of storage devices with weak credentials respectively.
We observe this is primarily due to one vendor, ICP Electronics, which has a large market presence
in the two regions: 12.1% and 10.1% of storage devices in East Asia and Sub-Saharan Africa
respectively. 74% of ICP storage devices exhibit weak default credentials.

A surprising number of home routers also support FTP (10.2%). TP-Link is responsible for the
most routers with weak FTP credentials (Table 3.10)—regions that rely on TP-Link routers thus
have a higher rate of devices with weak FTP credentials. Of all TP-Link devices across all regions,
9.3% offer an open FTP port, and 62.8% of those devices are protected by weak credentials.

Unlike FTP, there is little reason for any IoT devices to support Telnet in 2019. Yet, we find both
that surveillance devices and routers consistently support the protocol. Surveillance devices have
the weakest Telnet profile, with 10.7% of surveillance devices that support Telnet exhibiting weak
credentials. This aligns with anecdotal evidence that suggests that these kinds of devices are easy to
hack [102].
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3.4.2 Home Routers

Nearly every home in our dataset has a home router. Similar to most types of IoT devices, there
are regional differences and a long tail of vendors globally (Table 3.9). In total, we see home routers
from 4.8 K vendors. TP-Link is the most popular manufacturer globally (15% of routers) and is
the top provider in five regions: South America, Central Asia, Eastern Europe, South Asia, and
Southeast Asia. Arris is the most popular router vendor in North America (16.4%)—likely because
popular ISPs like Comcast supply Arris routers to customers. Huawei is the most popular vendor in
Sub-Saharan and North Africa, accounting for 19.8% and 25.6% of all routers respectively.

Weak FTP/Telnet Credentials More than 93% of routers have HTTP administration interfaces
on port 80. We also find that many routers support DNS over UDP (66.5%), UPnP (63.4%), DNS
over TCP (42.1%), HTTPS (42.2%), SSH (19.7%), FTP (10.8%), and Telnet (14.6%). Of the
devices that support FTP and/or Telnet, 12% have weak FTP and 1.6% have weak Telnet credentials.
1.2% of all routers exhibit a weak FTP credential and 0.2% exhibit of all routers have a weak Telnet
credential. For FTP, TP-Link routers had the weakest profile: 55.3% of their routers with an open
FTP port exhibited a weak credential. For Telnet, D-Link routers were the weakest—6% of all open
routers had a weak credential, and 35.3% of all D-Link routers had an open Telnet port. We show a
breakdown by region in Table 3.10.

Weak HTTP Administration Credentials WiFi Inspector attempts to login to the HTTP inter-
faces for devices from a small number of common vendors, including TP-Link—the most common
router manufacturer. In our dataset, there are 3.8 M TP-Link home routers, of which 82% have an
HTTP port open to the local network. WiFi Inspector was able to check for weak default credentials
on 2.5 M (66%) of the devices with HTTP. Overall, 1.2 M (30%) of TP-Link routers exhibit weak
HTTP credentials. Nearly all (99.6%) use admin/admin. The number of TP-Link routers with
guessable passwords varies greatly across regions (Table 3.9). For example, only 6% of TP-Link
routers in North America have weak passwords while around 45% do in South and Central Asia,
and East and South Europe.

External Exposure To understand whether routers with weak default credentials are also exposed
on the public Internet, we joined the WiFi Inspector dataset with Internet-wide scan data from
Censys [106] for devices on a single day—January 30, 2019.7 A small number of home routers
host publicly accessible services: 3.4% expose HTTP, 0.8% FTP, 0.7% Telnet, and 0.8% SSH.
Open gateways are primarily located in three regions—Central America (29.3%), Eastern Europe

7We perform this analysis for January because of GDPR restrictions on Avast data.
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(20.6%), and Southeast Asia (17.2%). Of routers that are externally exposed, we find that 51.2% of
them are exposed with a vulnerability—far higher than the fraction non-externally available routers
in our dataset with a weakness or vulnerability (25.8%). The most popular router vendor in these
regions is TP-Link, which is also the vendor responsible for the most externally exposed routers
(19.7%). We note this is not simply because TP-Link is the largest vendor—a proportion test across
regions shows that TP-Link routers appear in the set of externally exposed routers at a higher rate
than that of non-externally exposed routers.

3.4.3 Scanning Homes

While scan data can provide insight into the vulnerability of hosts, it typically does not indicate
whether hosts have been compromised. We analyzed the homes from WiFi Inspector that were
seen performing vulnerability scans in a large network telescope (Section 3.2) on January 1, 2019
to better understand infected devices. Of the 500.7 K homes that WiFi Inspector collected data
from that day, 1,865 (0.37%) homes were found to be scanning for vulnerabilities. Scans most
frequently target TCP/445 (SMB, 26.7% homes) followed by TCP/23 (Telnet, 11.3%), TCP/80
(HTTP, 10.7%), and TCP/8080 (HTTP, 9.4%). In addition to checking credentials, WiFi Inspector
also checks devices for a handful of recent, known vulnerabilities (CVEs, EDBs, and others). 1,156
(62%) of scanning homes contained at least one known vulnerability—conversely, 7.2 M (46.8%)
non scanning homes in our dataset contain at least one known vulnerability. To test the differences
between these populations, we used a proportions t-test at a confidence interval of 95%. We observe
that the two sets are statistically significantly different (p-value: 2.31 ∗ 10−39), indicating that
scanning homes have a higher vulnerability profile than homes globally. This trend also holds
for the number of vulnerable devices in scanning homes (9.7%) compared to homes globally
(5.7%). Unfortunately, we were unable to determine why homes without known vulnerabilities
were seen scanning. This is likely due to devices being compromised through means outside of our
measurement vantage point, for example, vulnerabilities that we do not test for.

Although the overall vulnerability profile of devices in scanning homes is higher, this is not true
of all specific vulnerabilities. Of the 25 vulnerabilities observed in scanning homes, 17 appeared
at a ratio that was not statistically significantly different than devices globally. The remaining
eight vulnerabilities were statistically significantly different, though six appear at a smaller rate in
scanning homes than globally. The two vulnerabilities that appeared at a higher rate in scanning
homes were both related to EternalBlue—a leaked NSA exploit targeting SMB on Windows that
was primarily responsible for the WannaCry outbreak that impacted millions of Windows devices
in 2017 [117]. Specifically, we identify 5.2% of devices within scanning homes that are vulnerable
to EternalBlue, and further, 1.3% of devices in scanning homes are already compromised, and
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communicating through a backdoor. This additionally explains some fraction of the SMB scanning
we observed on the darknet, as machines compromised via EternalBlue often scan for other hosts
running vulnerable SMB servers. We note that although these homes contain vulnerable devices,
we cannot claim that they are scanning as a result of these devices—for one, we do not have full
vulnerability coverage, and two, it is an outstanding challenge to attribute device behavior from
our vantage point. Still, the presence of any scanning homes in general indicates a threat landscape
larger than simply publicly accessible devices, and one that should be considered by the security
community.

3.5 DISCUSSION

There are some immediate next steps. As outlined in Section 3.4, much of the devices that support
weak credentials are manufactured by a handful of popular vendors across all regions (Table 3.10).
The security community can start addressing these challenges by encouraging the largest offending
vendors to adopt better security practices. On the policy end, law enforcement and legal entities
have started to provide legal disincentives for weak security practices. In light of the Mirai attacks,
the U.S. Federal Trade Commission has prompted legal action against D-Link [118] for putting U.S.
consumers at risk.

A larger question remains on how to address the long tail of vendors. As described in Section 3.3,
regions often have vastly different preferences for vendors across device types. As a result, working
to improve the security of devices based solely on the global distribution may inadvertently leave
smaller regions with divergent preferences less secure.

Finally, it is not immediately clear how to measure the impact of compromise on home security. In
our work, we measured the prevalence of scanning, though this is just one indication of compromise.
Furthermore, we only observed 0.37% of homes scanning; amounting to only 1.8 K homes on a
single day. In spite of all the data collected within homes in this paper, we could not effectively
identify why certain homes were compromised. Researchers have proposed systems to enable
auditing of home IoT setups [99, 119], but there is still more work to be done.

3.6 RELATED WORK

Our work builds on research from a number of areas, primarily in home network measurement
and IoT security.

54



Home Network Measurement Early research in home network measurement primarily focused
on debugging networks—projects like Netalyzer [120] were conceived to enable users to debug their
home Internet connectivity [121, 122, 123]. A number of follow on papers leveraged Netalyzer-like
scans to investigate the state of devices in homes [103, 121, 124], as well to try and understand the
implications of a connected home on user behavior [125].

Most similar to our work is presented by Grover et al. who installed home routers with custom
firmware in 100 homes across 21 countries to measure the availability, infrastructure, and usage
of home networks [126, 127]. Their work focuses on the network properties of home networks
on aggregate, and also is able to measure networks continuously based on their position in the
network. Our work instead focuses on the devices behind the NAT in their ubiquity and their
security properties, with particular attention spent on IoT devices.

Recent work has built off of network scanning to enable rich device identification. Feng et al. built
a system that leverages application layer responses to perform device identification without machine
learning, similar to our hand curated expert rules [14]. This work has built off a number of papers
that leverage banners and other host information to characterize hosts [128, 129, 130, 131, 132].
Other rule based engines have been used in other work on active, public scan data based on probing
for application banners [102, 106].

Home IoT Security Home IoT security has been of recent interest to researchers in light of
its growing security and privacy implications, from the systems level up through the application
layer. Ma et al. investigated the rise of the Mirai botnet [102], which was largely composed of IoT
devices compromised due to weak credentials and used to launch massive DDoS attacks. This is
not isolated to only attackers—researchers have been breaking the home IoT devices since their
conception [6, 133, 134, 135? ]. Notably, Fernandes et al. outlined a number of challenges in
Samsung SmartThings devices, from their access control policy to their third-party developer inte-
gration [94]. In response, researchers have built systems to enable security properties in home IoT,
such as information flow tracking and sandboxing [96, 97], improving device authentication [136],
and enabling auditing information [99, 119]. Most recently, Alrawi et al. synthesized the security
of home IoT devices into a SoK, where they present a systematization of attacks and defense on
home IoT and outline how to reason about home IoT risk [137].

Internet-Wide IoT Scanning There has been a wealth of recent work that has used Internet-
wide scanning for security analysis, including analyzing embedded systems on the public Internet
(e.g., [8, 102, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]). In contrast to these works, we
focus on devices inside of homes that are not visible through Internet-wide scanning.
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3.7 CONCLUSION

In this chapter, we conducted the first large-scale empirical analysis of IoT devices on real-world
home networks. Leveraging internal network scans of 83M IoT devices in 16M homes worldwide,
we find that IoT devices are widespread. In several regions, the majority of homes now have at least
one networked IoT device. We analyzed the types and vendors of commonly purchased devices
and provided a landscape of the global IoT ecosystem. We further analyzed the security profile of
these devices and networks and showed that a significant fraction of devices use weak passwords on
FTP and Telnet, are vulnerable to known attacks, and use default HTTP administration passwords
that are left unchanged by users. We hope our analysis will help the security community develop
solutions that are applicable to IoT devices already in today’s homes.
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CHAPTER 4: LIMITATIONS OF EXTERNAL SCANNING

4.1 INTRODUCTION

In the previous chapter, we showed how IoT devices are now staple, end-user products in
many regions. We showed that two thirds of North American homes contain at least one IoT
device [148] and that IoT devices are dispersed globally. The research community has spent much
time investigating home devices, analyzing device identification [14, 129, 132, 149, 150, 151],
understanding device security and privacy [94, 98, 102, 137], and enumerating their networking
capabilities [15, 148, 152]. However, there has been little investigation into how best to study and
measure the IoT ecosystem. Prior research leveraged a multitude of measurement techniques and
vantage points to investigate home IoT devices, leaving researchers with a fractured and sometimes
disparate view of the ecosystem taken from different measurements.

Two competing vantage points have primarily driven IoT measurements at scale. The first is
Internet-wide scanning, as we employed in Chapter 2, and that others have used to perform device
identification and enumerate vulnerable devices [14, 102]. The second is private network scanning,
which we leveraged in Chapter 3, and that others have used to capture the security and privacy
risks of home IoT devices [15, 152]. Still, little is known about how these two vantage points
compare with each other, specifically with regards to their IoT populations. How different are the
IoT populations between external scanning and internal scanning, by device type, services offered,
and scale?

In this chapter, we investigate these questions by comparing two vantage points: active, home
network scans through a collaboration with Avast, and active external scans of the public IPv4
space, drawn from Censys [9]. In this context, active scanning means probing devices for their
capabilities, through a SYN scan and application layer handshake. We collect scans from both
datasets from a single day, May 2 2020, spanning 6.1 M IoT devices connected publicly and 1.8 M
IoT devices connected locally, sourced from 941 K homes.

Internet-wide scanning and internal home scanning offer different distributions of IoT devices.
Although routers are the most prevalent from both vantage points, device distributions internally are
diverse, containing media devices (20.7%), work appliances (6.7%), and camera (3.4%). Conversely,
IoT devices connected publicly skew mainly towards routers (92%), with smaller fractions of storage
devices (4.3%) and media devices (1.5%). Many of the devices inside home networks that appear at
a high frequency (e.g., media devices and cameras) have historically been vulnerable to security
risks [] and have been used in high profile attacks (Chapter 2).

The services offered by devices also differs between the two vantage points. For example,
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71.8% of IoT devices inside home networks have an open 80/HTTP port for remote communication,
compared to only 15.8% of IoT devices connected publicly. Instead, externally connected devices are
more likely to support 7547/CWMP, a router protocol; in part due to the skew in our dataset towards
routers, and 443/HTTPS for secure communication via HTTP. Services offered by devices also differ
between the two vantage points. In some cases, the external perspective of IoT devices under-reports
the services that are available internally. For example, MQTT, a popular IoT control protocol,
appears on near zero publicly accessible devices but 1.5% of devices internally, highlighting that
relying only on certain vantage points may skew our understanding of the ecosystem.

Our results highlight the potential biases in measurements of home IoT devices and underscore
the need for holistic measurements as the ecosystem continues to develop.

4.2 BACKGROUND AND RELATED WORK

Our work compares and contrasts several measurement techniques for understanding real-world
IoT deployment. In this section, we describe the prior work in the space and the techniques used.

4.2.1 Active Measurement

There is a long history of researchers using active scanning for network measurement through
tools like nmap [153]. Recently, active measurement has been used to measure a wide variety of
topics using tools like ZMap [8], and Massscan [11]. These tools dramatically reduced the time
needed to discover open services on the public Internet, and researchers have used to understand
the impact of natural disasters [8], track high profile vulnerabilities [154], and understand attacker
behavior [102]. Most related to our work, several studies have used scanning to uncover security
problems in embedded systems and IoT devices [138, 139, 143, 146, 147]. Active measurement
forms the foundation of search engines like Censys and Shodan [9].

4.2.2 Home IoT Measurements

Our work draws on early home network measurement infrastructure, which primarily focused
on debugging home networks. Early projects like Netalyzer [120] helped users debug their home
networks [121, 122, 123] and were subsequently used to measure device distributions in homes
around the world [103, 121, 124]. Recent work in home IoT measurement has also leveraged
active and passive measurement data to perform IoT device identification [128, 129, 130, 131, 132].
Recent tools, like IoT Inspector [15] (which we leverage in this work) offer users the ability to
inspect their home networks for potential security and privacy concerns. Other recent work in home

58



IoT networks has primarily focused on giving users finer grained control over device to device
communication and using SDN to enforce network policy [16, 17, 132, 155].

4.3 METHODOLOGY

Our study leverages measurements of IoT devices from both an internal and external vantage
point. In this section, we detail our collection mechanisms for each data perspective and provide
each source.

4.3.1 Active Internal Scans

We collect active, internal scans of home networks by partnering with Avast, a security software
company that provides popular antivirus and consumer security software products. Avast estimates
that their software runs on 160 M Windows and 3 M-Mac OS computers and accounts for 12% of
the antivirus market share. Avast products contain a tool, called WiFi Inspector, which enables
users to inventory their local network. To do this, WiFi Inspector collects all entries from the local
computer’s ARP table and subsequently probes devices over common TCP/UDP ports to detect
listening services. It then performs device identification, using a combination of regular expression
based rules and machine learning based on banners collected while probing each device and DHCP
hostnames. In addition, Avast also stores the device type of each device found on the internal
network, using a combination of regular expression based rules and supervised machine learning.
We collect active, internal scan data for a single day—May 2, 2020, which amounts to 941 K homes
and 1.8 M IoT devices inside of those homes.

4.3.2 Active External Scans

We collect active, external scan data from Censys [9], a company that performs active Internet-
wide scans built onto of ZMap [8]. Censys scans the public, IPv4 space for many popular pro-
tocols [156] over both TCP and UDP and performs an application layer handshake if ports are
available, for example, making an HTTP GET / request if the IP address is available on port 80. We
collect data from the same 24 hour period on May 2, 2020, to control for potential DHCP churn
when comparing to our active internal scan dataset. In total, our active external scan dataset contains
scans for 122 M IP addresses which were each scanned on 49 different popular protocols, such as
FTP, Telnet, SSH, and HTTP.
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Port Protocol Avast Rank (%) Censys Rank (%)

80 HTTP 1 (30.16%) 1 (46.57%)
445 SMB* 2 (25.82%) 20 (1.01%)
53 DNS 3 (14.22%) 7 (5.85%)
443 HTTPS 4 (12.35%) 2 (38.31%)
8080 HTTP 5 (6.36%) 6 (6.14%)
22 SSH 6 (4.97%) 4 (15.91%)
631 IPP 7 (3.79%) 24 (0.23%)
23 Telnet 8 (3.49%) 17 (2.38%)
21 FTP 9 (3.04%) 5 (9.07%)
7547 CWMP 10 (1.65%) 3 (19.34%)
8888 HTTP 11 (1.31%) 18 (2.11%)

Table 4.1: Port Distributions in Aggregate—Services as they appear from an external perspective
do not always reflect the distribution of services inside home networks.
* We note that 445/SMB appears highly on this list due to Avast’s customer base, which skews
towards Windows users.

4.4 COMPARING EXTERNAL AND INTERNAL VANTAGE POINTS

Active scanning of the public IPv4 space has served as a mechanism in much IoT measurement,
such as device type attribution for security incidents [102] and building IoT device signatures [14].
However, many devices are obscured behind NATs, and scanning the public Internet does not
provide a full picture of IoT devices. As a result, IoT research based on only the public IPv4
Internet is skewed towards devices that appear readily on the public Internet. In this section, we
detail findings in comparing the device distributions and server capabilities of devices through an
external vantage point (through Censys) and an internal vantage point (through Avast).

4.4.1 Comparing Port Distributions in Aggregate

To begin we simply compare the active services across all devices found on the public internet
versus devices found inside home networks (Table 4.1). In aggregate, Avast and Censys share
49 ports that are scanned for active services over both TCP and UDP. We rank order these services
by the fraction of devices that support each service and compute a Spearman’s rank correlation test
between the two lists. We find a correlation of ρ = 0.61, indicating a medium correlation between
the two lists per Cohen’s guidelines [107].

Some top services are shared across both the external and internal vantage points, for example,
80/HTTP is the top service for both vantage points, however, they make up a much larger fraction
of external hosts than internal hosts (46.6% vs. 30.2%). This is likely because many externally
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Protocol % IPv4 Responded % IPs Labeled

7547/CWMP 19.34% 16.29%
21/FTP 9.07% 6.79%
22/SSH 15.91% 2.38%
23/Telnet 2.38% 20.62%
443/HTTPS 38.31% 3.71%

Table 4.2: Active IoT Labeling— We leveraged five protocols for identifying devices on the public
IPv4 space. We show the fraction of IPs that support each protocol and the fraction of those IPs
that we could ultimately label. We identified 6.1 M IoT devices on the public Internet. Devices that
support Telnet and CWMP were the most descriptive in their banners, while devices that support
SSH were the least descriptive.

connected devices are web servers that host content for users to browse to, whereas HTTP is typically
only used inside local networks for remote configuration or remote control of devices. Conversely,
some services appear much higher inside home networks than others—IPP (Internet Printing
Protocol) appears on 3.8% of devices inside home networks, however, only appears on 0.2% of
devices publicly. Some protocols, however, are near equivalent in both vantage points—8080/HTTP,
23/Telnet, and 8888/HTTP are some notable examples—highlighting some similarities between
the two.

4.4.2 Collecting Publicly Available IoT Devices

Although port distributions vary across the external and internal perspectives, it is not particularly
surprising. Naturally, the distribution of devices inside homes vastly differs from the distribution
of devices outside them—for example, most homes do not have servers, whereas many publicly
connected computing devices are servers. To address this shortcoming of comparison, we instead
focus only on the IoT devices that are connected both internally and externally. We thus build a
subset of active hosts that we can identify as IoT devices connected to the public Internet. Although
several studies have leveraged active, external scan data for IoT device identification [14, 102, 151],
we could not locate any freely available tools to perform this task. In lieu of a de facto solution
for device identification, we implemented the technique described in Ma et al. which leverages
banner data from five protocols—CWMP, FTP, SSH, Telnet, and HTTPS—to make predictions
about device types [102]. To do this, we primarily utilize the regular expression database provided
by the Nmap project [34], which has curated over 3000 regular expressions on these protocols with
labeled banner data. Ma et al. augmented this dataset with labels manually curated for those found
to be scanning in the Mirai botnet, particularly via HTTPS and CWMP, which we were able to
obtain from the researchers. We note that Nmap splits their identification into 28 device types [34],
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Port Protocol Avast Rank (%) Censys Rank (%)

80 HTTP 1 (71.88%) 3 (15.84%)
53 DNS 2 (36.57%) 8 (2.55%)
443 HTTPS 3 (30.18%) 2 (26.7%)
8080 HTTP 4 (14.47%) 7 (5.85%)
445 SMB* 5 (12.57%) 11 (0.44%)
22 SSH 6 (12.17%) 6 (7.12%)
631 IPP 7 (9.92%) 12 (0.35%)
23 Telnet 8 (8.31%) 5 (9.23%)
21 FTP 9 (7.44%) 4 (11.56%)
7547 CWMP 10 (3.9%) 1 (59.29%)
8888 HTTP 11 (2.42%) 14 (0.27%)
8883 MQTT 12 (1.55%) 37 (0.0%)

Table 4.3: Port Distribution Comparisons for IoT Devices—We show the most prevalent services
offered by IoT devices in our Avast and Censys datasets. Services as they appear from an external
perspective do not always reflect the distribution of services inside home networks.
* We note that 445/SMB appears highly on this list due to Avast’s customer base, which skews
towards Windows users.

however, Avast only contains 11 IoT device types. We aggregate Nmap’s device types into the
device types that Avast uses, combining for example “broadband router” and “router” into “router”.

We compiled these rules into a device identification tool that runs on active data collected by
Censys to build our IoT dataset. In the context of this work, we define an IoT device as not a general
purpose computing device (e.g., a computer or server) or a mobile phone (e.g., iPhone or Android
device). Table 4.2 shows both the fraction of IPs that support each protocol we investigated as well
as the fraction that we could label. In sum, our Censys data consists of 114 M IP addresses, of
which we were able to identify 5.3%, or 6,053,986 as an IoT device. We will release our dataset
and device identification code as an open source package at publication time.

4.4.3 IoT Server Capabilities

Externally available IoT devices offer different services than those connected inside homes.
Avast and Censys both scan devices for a common 44 ports that range over TCP and UDP for each
respective IoT dataset. We rank order these services by the fraction of total devices that offer each
service and compute a Spearman’s rank correlation test, which is a non-parametric test used to
identify the correlation between two ranked lists. We find a correlation of r = 0.73, indicating a
medium correlation between the two lists per Cohen’s guidelines [107], highlighting that although
the lists are similar, they are not identical.
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Device Type % Internal Devices % External Devices

Router 61.9% 92.3%
Media 20.7% 1.5%
Work Appliances 6.7% 0.7%
Camera 3.4% 0.6%
Generic IoT 1.1% 0.4%
Storage 0.9% 4.3%

Table 4.4: Device Type Distributions—Device type distributions internally and externally vary.
Notably, internal networks contain more media devices (20.7%), work appliances (6.7%), and
surveillance devices (3.4%) than the outside world.

The most commonly offered services inside homes are those that skew towards home-network
services. Table 4.3 shows the services from Avast that appear on at least 1% of devices, and their
corresponding rank in the Censys dataset. Many of the top active services are shared—for example,
80/HTTP, 53/DNS, and 443/HTTPS all appear in the top 10 services for both perspectives. In some
cases, the services that differ in popularity can be explained by their context. For example, 631/IPP,
Internet Printing Protocol, is more prevalent inside of homes (9.9%) than outside of homes (0.35%),
as there are more printers within home networks than there are connected to the outside world. In a
similar case, 8883/MQTT is commonly used by companion apps to control and communicate with
smart home IoT devices and is far more prevalent inside homes (1.55%) than outside of homes
(0.0%). MQTT is associated with multiple vulnerabilities [157], and despite its low prevalence in
external scans, its prevalence inside homes warrants closer attention from the research community.

4.4.4 Comparing Device Type Distributions

IoT device type distributions differ between the external and internal vantage points. Table 4.4
shows the fraction of devices that each device type accounts for in both our internal and external
datasets. In both cases, routers are the most common device, accounting for 61.9% of devices inside
homes and 92.3% of tagged devices on the public Internet. However, other device types are more
prevalent inside homes, such as media devices (20.7%), work appliances (6.7%), and surveillance
devices (3.4%). All of these device types appear on a smaller scale on the public Internet.

An important limitation of our IoT device identification on Censys data is that it relies on specific
regular expressions over a fixed set of protocols. As such, device distributions taken in aggregate are
not a random sample of IoT devices connected to the public Internet, but rather a biased perspective
based on both the protocols scanned and the regular expressions used. For example, our collected
IoT dataset is heavily skewed towards routers, in part because they are often easier to identify, but
also because one protocol we scan for is 7547/CWMP, which is typically only offered by routers. To

63



account for this bias, we analyze and compare device type distributions per protocol we used for
active device identification. Table 4.5 shows the device distributions for both external and internal
probes accounting for all protocols scanned. In our discussion, we explicitly exclude 7547/CWMP as
it only encompasses routers.
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FTP. Device type distributions for devices that support 21/FTP are moderately correlated, with a
Spearman rank correlation of r = 0.7. For external devices, we find that 9% of public IP addresses
externally have an open FTP services at port 21, of which we could label 6.8% as a type of IoT
device. These were mainly comprised of routers (95%), storage devices (2.3%), and cameras (1.7%).
Devices that supported FTP on internal networks were also primarily routers (73%), however, work
appliances (e.g., printers) were far more prevalent than they appeared externally, accounting for
20.2% of devices. Both perspectives shared a small fraction of camera and media devices, likely
indicating these types of devices are unlikely to host an FTP server.

SSH. Devices that support 22/SSH were the least descriptive in our external dataset—we were
only able to identify 2.4% as an IoT device. These were primarily router devices (97.9%), which
aligns with the internal perspective (88.3%). Unfortunately, we were unable to identify many other
devices through SSH, indicating the protocol is not useful in measuring IoT devices on the public
Internet using NMap regular expressions alone. Because of a lack of a full distribution, we do not
present a correlation value for SSH.

Telnet. The smallest fraction of externally connected devices supported 23/Telnet (2.4%),
however, it was the most descriptive protocol—we were able to identify 20.6% of devices as an IoT
device. Device type distributions were moderately correlated, with a Spearman rank correlation
of r = 0.7. Again, routers are the most prevalent IoT device available in both internal (82%) and
external (94.1%) networks. Unlike devices that support FTP, however, we find many media devices
(2.5%) and work appliances (3.7%) connected to the public Internet that support Telnet. Given the
prevalence of media devices and work appliances inside home networks, Telnet remains a useful
protocol in capturing a diverse set of externally connected IoT devices.

HTTPS. The most diverse set of IoT devices comes from 443/HTTPS. 38.3% of external host
support HTTPS, of which we labeled 3.7% as an IoT device. Device type distributions were the
strongest amongst all protocols, with a correlation of r = 0.97 to the distribution found inside home
networks. Although routers are still the most prevalent device, they account for a smaller fraction of
devices (63%) compared to both internal devices that support HTTPS (73%) and all other protocols
externally. Instead, we find a larger fraction of networked storage devices (24%), media devices
(8%), and cameras (2.8%) connected to the public Internet and available over HTTPS. We find
443/HTTPS to be a particularly useful protocol in measuring IoT devices on the public Internet,
especially as more devices rely on HTTPS for remote management services.
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Port Protocol Fraction Devices

7547 CWMP 37.51%
80 HTTP 25.38%
443 HTTPS 17.76%
53 DNS 9.37%
8080 HTTP 8.85%
161 SNMP 8.77%
22 SSH 7.62%
21 FTP 5.18%
23 TELNET 4.24%
3389 RDP 1.75%

Table 4.6: Externally Available Ports for Routers—We find 6% of the homes scanned from our
single day snapshot are externally available on at least one service and serve a variety of ports and
protocols. CWMP is the most prevalent protocol, appearing on 37.5% of the externally available
homes and indicating that many such devices are routers.

4.4.5 Homes from Public Scanning

In our dataset, approximately 56,550 (6%) of homes scanned from our single day snapshot
were shared between Censys and Avast, meaning we obtained scan data from both the external
perspective and the internal perspective. We expect many of these devices to be routers or gateways.
To verify this hypothesis, we enumerate the distribution of services available on these machines
in Table 4.6. The top service is 7547/CWMP, a router management protocol, followed by 80/HTTP,
443/HTTPS, and 161/SNMP, all of which are typically used routers to manage local networks.

However, routers simply serve as an entry point to networks which will typically contain other
devices; we identify a median 4 devices per home in the intersection. To provide a lower bound
estimate for the number of in-home devices that are obscured from active external scanning, we
compute a simple calculation based on the number of externally available routers. Specifically, we
start with the number of devices that externally support 7547/CWMP, as this is a strong signal these
devices are routers. These devices account for 22 M devices through active, external scans. We
then scale this figure by the fraction of routers that are not externally exposed (94%), as well as
the fraction of routers that do not support CWMP (62.5%), drawn from our measurements from
Avast. This provides us with an estimate of the number of devices that support CWMP on the
public Internet. Scaling this value by 4 (the median number of devices per home), we estimate that
3.9 B home devices are obscured from measurement through active external scanning. This largely
eclipses the number of hosts that are available through a daily scan (115 M). Again, we note that this
is a lower bound, as it only takes into account devices that support CWMP, and furthermore assumes
that the distribution of homes from Avast is identical to a global home distribution. However, it

67



does underscore the need for deeper measurement into home networks as they continue to mature.

4.4.6 Limitations of Active Scanning

Our active measurements are not without limitations. Both our external and internal IoT device
samples are biased due to their specific measurement mechanism. For example, 445/SMB appears
at rank 5 for Avast, only because their customer base skews towards Windows users. Similarly,
available service comparisons are limited to those scanned by Censys—Avast scans for over
200 ports over TCP and UDP for which Censys scans are simply a subset. Notably, Censys does not
scan for some protocols that are prevalent on local networks, like 1900/UPNP, which is supported
by 37.2% of devices inside of homes.

There is also a concern that we could not perform the same device identification techniques for in-
home devices and external devices, potentially leading to additional skew in device distributions. At
best, we restricted our analysis to scans done on specific ports, however, this remains an outstanding
limitation of this work. Even considering this, identification for protocols were able to capture a
diverse set of IoT devices, for example, those that had an available service over 443/HTTPS, and
can prove useful in leveraging external scan data as a proxy for home IoT measurement.

4.5 DISCUSSION AND CONCLUSION

In this chapter, we combined and compared two measurements of home IoT devices: active
measurements of 6.1 M IoT devices collected from the public IPv4 space and active measurements
of 1.8 M IoT devices within 941 K homes. We identified the differences in IoT populations between
active external scanning and active internal scanning and provided data on device type distributions
and offered services.

Our results echo a sentiment present in many aspects of Internet measurement—relying on a
single data perspective alone may present a biased view of the measured ecosystem. To combat this,
we complemented the measurements from an external perspective with an internal perspective, and
observed relying only on the external perspective would under-report the prevalence of certain types
of IoT devices, such as medias and cameras, many of which have historically posted security and
privacy risks [5, 102]. Furthermore, external scanning under-reports several IoT critical protocols
(such as MQTT, which has historically caused security issues), highlighting that relying only on the
external perspective may skew our understanding of the prevalence of these services and devices.
Finally, to further reduce the bias in measuring device distribution, we investigated IoT device type
distributions for each protocol independently. We found that device identification through HTTPS
provides the largest diversity in IoT device types and most closely resembles devices found in home
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networks (Table 4.5), highlighting one area where external scanning may be useful as a proxy for
IoT measurements at large.

Our measurement methodology, however, is not without limitations. The IoT population surveyed
through active, external scanning is limited to only devices that have been tagged with specific
regular expressions, either by us or through the NMap project. As a result, our IoT device
population is inherently biased by the devices to those that are previously tagged, and likely misses
newer IoT devices. It is thus challenging to conclude that the distributions presented here are
absolute ground truth—rather, they serve as one comparison using current state of the art device
identification techniques. Several device identification techniques that leverage machine learning
on local networks have been reported in the last five years [148, 150]; one direction for future work
would be to leverage models trained on SYN traffic from known in-home IoT devices and apply it
to the public Internet to augment current regular expression based techniques.

Our measurements highlight the need for diverse vantage points when building IoT-focused
systems. We hope our results will prove useful to future researchers as the IoT ecosystem continues
to develop.
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CHAPTER 5: MEASURING HOME IOT BEHAVIOR WITH PASSIVE OBSERVATION

5.1 INTRODUCTION

Our analysis of home IoT devices has thus far relied on active scanning, meaning we probe
devices for their server capabilities and use the resultant data for analysis. However, IoT devices
perform many tasks, such as device discovery, capability enumeration [? ], and even relaying
home automation events. Thus, beyond their capabilities as server devices, IoT devices are also
clients on the network. Previous work has investigated IoT client behavior, with the focus on
privacy [15]. Specifically, Huang et al. built IoT Inspector [15], which observes communication
between IoT devices and the outside world. It provides users with a focused breakdown of the
potentially privacy sensitive information that IoT devices send to ad networks and third-party data
aggregation services. It does this by leveraging passive observation—IoT Inspector serves as a
voluntary man-in-the-middle and records traffic between devices and the gateway. However, their
system focuses specifically on communication outside the network—to the best of our knowledge,
no one has studied what happen inside the NAT of smart home IoT networks.

In this chapter, we analyze the traffic of 275 smart homes over a three week period through
an instrumented version of IoT Inspector. We augment the system by observing communication
between all devices, not just between a single device and the gateway. This enables us observe IoT
traffic in context, and characterize IoT device behavior today. In addition, we add active scanning to
IoT Inspector, which we then leverage to compare the passive vantage point from the active point,
showing that a single measurement technique alone cannot holistically capture the behavior of IoT
devices.

Devices regularly communicate with other local devices: 65% of inspected devices communicated
with at least one other device inside the network. Device networking behavior varies by device
type: for example, for example, smart home devices communicate with a median 12% of devices on
the network, while storage devices communicate with a median 56% of devices. Similarly, certain
device types communicate frequently with other device types: smart home devices most frequently
communicate with home assistants (48% of communication) while media devices most frequently
communicate with other media device (51%).

Devices inside home networks support a host of services and protocols—73% of devices inside
home networks offer at least one active service via TCP. Many of these services are used to run
common services over bespoke ports determined by device type and manufacturer: 44% of ports
used in communication are specific to a single manufacturer and device type. For example, Sonos
speakers use port 1400 to host an HTTP administrator interface, and Google Home products use
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port 8008 to receive HTTP-based commands. The lack of consistency in the networking services
of home IoT devices complicates active measurements, which often rely on a priori knowledge of
open ports to scan (e.g., the Censys scan list [156]).

Most alarming is that devices rarely use all services they offer: devices only use an average of
19% of services offered in normal operation. Worse, many unused services are security critical,
such as 22/ssh (12.5% of devices), 23/telnet (2.3% of devices) and 111/rpcbind (2.3%),
increasing the attack surface of devices without offering new functionality. Relying only on active
measurements may over-report the prevalence of certain ports and protocols even when they are
rarely used.

Our results highlight potential biases in measurements of home IoT devices and underscore the
need for holistic measurements as the ecosystem continues to grow. We will make our device-
to-device measurements available to researchers and hope that our results will help to inform the
research community as we continue to build tools to measure real-world IoT devices at scale.

5.2 BACKGROUND AND RELATED WORK

Our work compares two varying measurement techniques for understanding real-world IoT
deployment. In this section, we describe prior work in the space and the techniques used.

5.2.1 Passive Measurement

Early Internet research leveraged passive measurements from telecommunication networks to
measure traffic patterns and Internet delay times [158, 159]. Passive measurement has also been used
to measure important network or security incidents in enterprise networks [160, 161]. For example,
Zeek [161] and other similar intrusion detection systems use passive monitoring of network traffic
to alert on security incidents and intrusions in real time. Studies have also leveraged passively
collected darknet data to study security incidents like inferring DoS attacks at scale [12, 102] and
tracking Internet wide scanning events [105, 162]. Most recently, DeKoven et al. leveraged passive
data at on university residential network to investigate if following best practices adequately protects
users from security threats [13].

5.2.2 Home IoT Measurements

Most similar to our work are three studies. The first, from Kumar et al. leveraged a corporate
dataset of 83 M devices from around the world and characterized their device properties as well as
their security profiles [148]. This data was primarily collected through active probing of devices on
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Figure 5.1: IoT Inspector Workflow—We extended IoT Inspector to capture not only external
traffic (flow a, from an IoT device to a cloud service), but also to record internal traffic (flow b,
device to device traffic). We also extended IoT inspector to perform an active, internal probe of all
the devices connected to the internal network (Figure 5.1c).

the network. In contrast, work from Mazhar et al. instrumented the gateway software in 200 homes
to collect passive data and investigate similar device properties [152]. Our vantage point enables us
to compare and contrast these results directly within homes, and also outline the limitations of each
approach in home IoT measurement. Finally, Huang et al. leveraged

5.3 METHODOLOGY

Our study primarily leverages Princeton IoT Inspector [15] to collect IoT traffic and device
capabilities. Through IoT inspector, we are able to capture both active and passive measurements of
IoT devices within the same home. IoT Inspector is an open-source tool that enables users to better
understand their home IoT network traffic. Previously, IoT Inspector has been used to measure
privacy tracking via smart TVs [5] and improve privacy through traffic shaping [163]. IoT Inspector
works by serving as a voluntary man-in-the-middle between devices in the home network and the
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gateway, thus logging any external communications that home IoT devices may make over the
course of running the tool.

In order to leverage IoT Inspector to compare differing measurement techniques in homes, we
augmented the tool to capture other measurement data. We first extended the tool’s capability to
not only collect external communications, but to also log all device-to-device traffic on the internal
network. To do this, we had IoT Inspector serve as a man-in-the-middle between all devices,
not just the device and the gateway, and logged metadata about each flow, such as the transport
layer protocol, the ports communicated on, the number of bytes transferred, and which devices
communicated with which other devices. We also labeled each device with its device type and
device vendor by querying Fingerbank [164], an API that collects crowdsourced labeled fingerprints
of devices and provides details based on a TCP handshake and DHCP lease data.

We also extended IoT inspector to collect active services offered by each device on the home
network through a SYN scan. We could not scan every device on every port over TCP, as this may
unintentionally cripple low powered IoT devices. We thus determined which ports to scan by
leveraging those used by ZMap [8], and Avast WiFi Inspector, but augmented this list with ports
that are typically used by IoT devices. To determine these, we leveraged an IoT dataset collected
by Alrawi et al. which contains PCAPs and active scans of an IoT testbed containing 45 devices
from 2018 [137]. In total, we extended IoT inspector to scan 329 ports on the internal network. A
full diagram of our modified version of IoT Inspector is shown in Figure 5.1.

We deployed this version of IoT Inspector and collected data for a 3 week period, from May
8th to May 31st, 2020. In sum, our IoT Inspector dataset contains internal and external scans
from 275 homes and covers 3,308 devices. We plan to release the dataset used in this chapter at
publication time, and rolling IoT Inspector data is available for researchers.

5.3.1 Ethical Considerations

We levied a number of ethical considerations when conducting our work. Our usage of IoT
Inspector is approved by our institution’s IRB, and we follow industry-standard security and privacy
practices. An important consideration is whether deploying our modified version of IoT inspector
inside of a home may unintentionally break otherwise working IoT devices. Outside of thorough
testing within local testbeds in our lab, we also clearly outline the risks of participating in this
research whenever a new user installs IoT Inspector. Furthermore, per IoT Inspector’s original
design [15], we give users full control over the devices they wish to inspect—specifically, when a
user installs IoT Inspector, no devices are inspected by default, and users can opt-in to having their
device inspected by the tool. IoT Inspector does not capture any local traffic from devices that are
not marked to be inspected. IoT Inspector also uses a heuristic to identify non-IoT devices (e.g.,
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Figure 5.2: Devices in Homes—Homes in our dataset contain a median 19 devices, which is
significantly higher than previous studies in smart homes. Of these, a median 15.5 (82%) are
inspected by our tool, and of those, a median 10 (65%) generate local network traffic.

general purpose computers, cellphones) based on MAC addresses, and will not allow inspection of
those devices without a manual override from the user.

5.4 PASSIVE OBSERVATION OF HOME IOT DEVICES

In this section, we detail our results collected through IoT Inspector in measuring 275 smart home
networks containing 3,308 devices. These smart home networks are spread across 28 countries,
including United States (46% of the networks), Canada (19%), and Sweden (15%). Using this
dataset, we first present results in characterizing device behavior, quantifying the volume and types
of traffic that are generated by home IoT devices. We then discuss the distinction between server
capabilities (i.e., through active probing) and client behavior (i.e., through passive measurements.)

5.4.1 Homes and Devices in Aggregate

Homes in our dataset contain several devices connected to the local network. Figure 5.2 shows
the absolute numbers of devices in each home, split by the total number of devices, the devices
that were specifically inspected by the user, and the devices that ultimately generate local traffic.
We note that users have the ability to inspect specific devices on the network, so our perspective
contains only a fraction of the local network traffic occurring in each home. Homes contain a
median 19 devices, with some homes containing up to 50 devices. We note that this is higher than
homes measured in other contexts [148, 152], likely because IoT Inspector attracts power users of
IoT devices [15]. As such, our results cannot be seen as a snapshot of an “average home”, but rather
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Device Type Devices Top OUI

Home IoT 768 (19.1%) Espressif (30.9%)
Media 459 (16.8%) Sonos (25.7%)
Voice Assistant 487 (12.1%) Google (83%)
Camera 116 (2.8%) Wyze (57%)
Television 102 (2.5%) Roku (41%)
Work Appliance 68 (1.7%) Xerox (50%)
Game Console 33 (0.8%) Nintendo (64%)
Storage 28 (0.7%) Synology (82%)

Unknown 1437 (35.7%) —

Total 4030 —

Table 5.1: IoT Device Type Distributions—Homes in our dataset sport a wide range of devices
and contain a median 19 devices, of which we could label 71% as an IoT device. The most common
type of device are smart home IoT devices (19.1%), such as thermostats, smart plugs, and smart
lights.

as an analysis of homes with heavier network deployments. Users inspected a median 15.5 (82%)
devices in their homes, of which a median 10 (65%) generated local traffic during inspection. Users
inspected devices in their homes for a median 307 minutes (5.1 hours).

Devices in our dataset span various device types and manufacturers. Table 5.1 shows a distribution
of the types of devices in our dataset as well as the top vendor per category. We identify vendor
by the Organizationally Unique Identifier (OUI) field of the device MAC address [101]. Although
homes also contain other device types not listed here, such as mobile phones and computers, we
specifically exclude general purpose computing devices as our focus is on home IoT traffic. The
largest fraction of devices we could label were general smart home IoT devices (19.1%), such as
thermostats (4%), lightbulbs (3.5%), and smart plugs (1.4%). This is followed by media devices
(16.8%), like the Google Chromecast and Amazon Fire Stick, and home assistants (12.1%), such
as the Google Home and Amazon Echo devices. In sum, our dataset consists of 2365 IoT devices
produced by 190 manufacturers.

5.4.2 Local Device Communication

Devices frequently communicate with other devices on the local network. To quantify this,
we track flows, which in this context are the 5-tuple combination of {device ip, device port,

remote ip, remote port, transport protocol}. Devices communicate with a median 15.8%
other devices on the network, however, a long tail of devices are much chattier—10% of devices
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Figure 5.3: Fraction Local Devices—Devices in aggregate communicate with a median 15% of
devices on the network, with variance aligned with their function. Storage devices, for example,
communicate with a median 52% of devices, compared to smart home IoT devices which only
communicate with a median 14% of devices.
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Figure 5.4: Bytes per Flow—Devices generate a median 1317 bytes per flow, again with variance
across devices type. Voice assistants send the largest number of bytes per flow (5823 bytes/flow),
while smart home IoT devices send the fewest (351 bytes/flow).

communicate with at least 50% of the devices on the network (Figure 5.4, Figure 5.3). Device flows
are typically small in aggregate, with devices sending a median of 1317 bytes per flow.
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Device behavior is distinct depending on device type. We observe differences in the volume of
communication, the types of devices communicated with, and the ports used in communication
across types. Table 5.2 shows the types of devices communicated with by fraction of flows and
fraction of devices per device type. We discuss each device type in detail below:

Home IoT. Smart home IoT devices, such as lightbulbs and smart plugs, communicate with the
fewest other devices on the local network, account for the plurality of devices in our dataset (19.1%).
They communicate with a median 12% of devices on the network . They primarily communicate
with other home IoT devices (14% of devices) and voice assistants (14%). Communication with
voice assistants accounts for up the largest fraction of flows (48% of flows). Home IoT devices have
a small network fingerprint, only sending a median of 351 bytes per flow, and primarily sending
traffic over UDP (56%). Most communication with home IoT devices occurs over 443/HTTPS
(26%) and 80/HTTP (13%), which are related to remote device control.

Media. Media devices, like Google Chromecasts or Sonos speakers, account for 16.8% of devices
in our dataset. They communicate with a median 23% of devices on the network, mainly with other
media devices (47% of devices, 51% of flows), voice assistants (9% of devices) and computers (5%
of devices). Media devices send a median 820 bytes per flow and communicate over a long tail of
ports specific to the manufacturer of the device. For example, Sonos speakers have a port open at
1400/HTTP for remote control—we observe that to be their primary mechanism of communication.

Voice Assistants. Voice assistants, like the Amazon Echo and Google Home, account for 12.1%
of devices in our dataset. Voice assistants communicate with a median 20% of devices on the
network, and most prevalently communicate with other voice assistants (41% of devices) and
computers (10%). For example, we observe Google Home devices frequently communicating
over UDP for device discovery with other Google Home devices. Voice assistants send the most
flows to IoT devices (28%), and communicate primarily over 443/HTTPS (15%), 60000 (5.2%)
and 8008/HTTP (5%). Port 60000 is primarily used by Amazon devices, potentially for remote
control1.

Camera. Cameras communicate with a small fraction of devices on the network (median 15%)
and primarily speak to IoT devices (11%) or computers (10%). In terms of number of flows, camera
devices largely speak to computers (31% flows) or storage devices (9% of flows), likely to live
stream or upload files taken from the device. Aligned with this, camera devices have a relatively

1https://forums.developer.amazon.com/questions/183535/network-congestion-from-192168491.html
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high number of bytes per flow—1864 bytes per flow—compared to other specialized devices like
IoT devices (351 bytes/flow) and gaming consoles (162 bytes/flow).

Television. Smart TVs communicate with a higher fraction of the network than devices in aggre-
gate (21% of devices) and send a relatively volume of traffic per flow (1088 bytes/flow). Television
devices communicate mainly with other television devices (23% devices, 26% of flows), computers
(16% of devices, 11% of flows) and voice assistants (11% of devices, 14% of flow). Most television
traffic in our dataset is generated by Roku TV, which enables a remote control port on 8060/HTTP,
and accounts for 65.6% of flows. However, TVs communicate over a long tail of services, with
some TV flows occurring over 139/SMB and 111/rpcbind, both of which seem unlikely to be
related to TV core function. Unfortunately, we do not collect application layer data through IoT
Inspector and cannot attribute this traffic to malicious behavior, previous research has observed
tracking behavior built into smart TVs [5]; understanding this ecosystem may be an area for future
work.

Work Appliance. Work appliances, such as printers and scanners, account for only a small
fraction of our dataset (1.7%), and communicate with a lower fraction of devices than devices in
aggregate (12.2%). They primarily receive communication from computers (18% of devices) and
media devices (14%), however, this is due to media devices regularly communicating with many
devices on the network. Computers are typically used to send remote print jobs, either using a
standard printing protocol (e.g., 631/IPP) or through an open remote interface (80/HTTP).

Gaming. Gaming consoles account for a small fraction of our dataset (0.8%) and communicate
infrequently with other devices (they account for 0.01% of measured flows in aggregate). From a
network vantage point they appear to be largely self contained.

Storage. Storage devices appear the least frequently in our dataset (0.7% devices), however, they
generate the second largest volume of traffic per flow (3022 bytes/flow) and communicate with the
largest fraction of devices (52%) on the network. They primarily communicate over 554/RTSP,
with many storage devices likely serving as streaming box or for use in file transfer.

5.4.3 Characterizing Communication.

We expected most initiated traffic to be skewed towards simple discovery protocols (e.g., SSDP,
UPnP) or UDP-based heartbeat protocols. Instead, we find that most initiated local flows were
TCP-based (55%) on a variety of non-standard ports. Table 5.3 shows the most commonly used
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Port Service Protocol Frac. Devices

8009 TCP HTTP 12.5%
80 TCP HTTP 9.9%
1400 TCP HTTP 4.8%
10001 UDP – 4.6%
8008 TCP HTTP 4.4%
9000 TCP – 2.9%
8060 TCP HTTP 2.2%
10001 TCP – 2.0%
55443 TCP – 2.0%
161 UDP SNMP 1.9%

Table 5.3: Port Distribution by Usage—IoT devices communicate over a variety of standard and
nonstandard ports, often to speak standardized protocols (e.g., HTTP). Of the top 10 services logged,
80% occurred over TCP.

ports from our flow collection, meaning these ports were the most actively used in communication
on the local network. We observe 63% of local protocols leveraged TCP and 37% leveraged UDP.
We manually investigated these flows, and identified many distinct, nonstandard ports used to speak
popular protocols. For example, devices regularly use ports 80, 8008, 8009, and 8060 to host
web servers. While it is not a new result that IoT devices leverage nonstandard ports for common
protocols [15], it highlights an associated measurement challenge with IoT networks as vendors
increasingly leverage bespoke ports.

In many cases, the usage of bespoke ports can be traced to a combination of manufacturers
and device types. To illustrate this, we compute both the manufacturer distribution and device
type distribution for each port used for communication in our dataset. We then take manufacturer
and the device type that account for the highest fraction of devices for each port and plot them
against each other in Figure 5.5. We observe four broad categories of ports, which we analyze per
quadrant—quadrant I (upper-right), II (upper-left), III (bottom-left), and IV (bottom-right).

The largest fraction of ports (44%) fell into quadrant I, meaning they were largely used by a single
device type and a single manufacturer. An example of this is port 1400/TCP, which the company
Sonos uses to host a web server for remote control. The second largest fraction was quadrant IV
(28%), which are ports shared by a small number of device types but many manufacturers. One such
example is 53/UDP, which are typically offered by routers made by several vendors to service DNS
queries. The third largest fraction were ports in quadrant III (24%), which are ports that are used
by many device types and manufacturers. These are “standard” ports and protocols, for example,
80/TCP and 443/TCP are found in this quadrant. Finally, the fewest ports appear in quadrant II
(4%), which are used by a singular manufacturer but spanning multiple device types.
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Figure 5.5: Ports by Manufacturer and Device Type—IoT devices communicate over a host of
nonstandard ports and protocols, often dictated by their device type and manufacturer. Points in
the upper right quadrant represent ports that are largely offered by a single manufacturer and for
a specific device type. In our dataset, 44% of ports used in communication fell into this category,
pointing to a fractured networking ecosystem with little standardization.

These results serve two functions. For one, the existence of bespoke ports can make device
identification on home networks for some devices easier—a device running a webserver at port 1400
is likely a Sonos speaker, for instance. However, these results also highlight that without a priori
knowledge of the devices in the network and their corresponding services, application layer insight
remains an outstanding measurement challenge. Without complete knowledge of what devices use
what ports and what ports serve what purposes, it could be difficult for network administrators—
such as ISPs, home users, and vendors of home gateways—to develop comprehensive firewall rules
that would block potentially malicious or sensitive traffic.
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Device Type Top External Top Internal Fraction Observed

Smart Home IoT 53/UDP (47.5%) 443/TCP (26%) 35%
Media 80/TCP (40%) 80/TCP (12.7%) 6%
Voice Assistant 53/UDP (56%) 443/TCP (15%) 27%
Camera 53/UDP (38%) 53/UDP (29%) 75%
Television 53/UDP (44%) 8060/TCP (66%) 22%
Work Appliance 53/UDP (82%) 80/TCP (48%) 12.5%
Game Console 3074/UDP (30.4%) 55280/TCP (16%) –
Storage 53/UDP (19.3%) 554/UDP (17%) 42%

Table 5.4: External vs. Internal Communication—We show the distinctions between an external
passive perspective and an internal passive perspective, as well as the fraction of used ports we
observe from an external perspective alone. Devices have different external and internal services
that they most commonly use, which varies by device type. A passive, external perspective alone
would miss the rich internal communication that happens between devices—in the largest case, 94%
of ports used by media devices would be missed by relying on a passive external perspective.

5.5 COMPARING INTERNAL AND EXTERNAL BEHAVIORS

Prior research has found that measuring the external footprint of a device through passive
observation can product security and privacy insights. For example, using this view, Huang et al.
were able to identify the IoT devices that communicate via TLS or use outdated version of TLS and
highlight the tracking and advertising ecosystem that underlies home IoT devices [15]. Although
these case studies are important in themselves, we note that the type of traffic generated by IoT
devices inside home networks are significantly different than those generated to the outside world.
This is not inherently surprising, but highlights that relying solely on passive observation from an
external vantage point cannot adequately capture the full behavior of IoT devices.

The protocols that devices typically communicate with externally are 53/UDP (69%), 443/TCP
(68%), and 80/TCP (43%), with a long tail of services that account for fewer than 20% of devices in
our dataset. These services are used for for DNS, HTTPS, and HTTP-based communication to the
outside world, which aligns with previous research into the top protocols used by IoT devices [137].
However, there is a significant difference between the protocols used to communicate externally
and those used to communicate internally, varied again by device type. (Table 5.4). For example,
although smart home IoT devices primarily communicate to the external world via DNS (53/UDP),
they most often communicate inside home networks over HTTPS (443/TCP), which accounts
for 26% of local flows with these devices. In other cases, we observe that external and internal
behaviors align more closely. Camera devices in particular exhibited similar behavior inside home
networks compared to their external fingerprint.

Beyond the top protocols, however, we find that some protocols would never be observed from
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Port Protocol % Devices

8008 HTTP 36%
8443 MQTT 36%
80 HTTP 31%
443 HTTPS 17%
8080 HTTP 12%
1843 – 11%
1443 – 11%
22 SSH 8%
8060 – 6%
139 SMB 6%

Port Protocol % Devices

445 SMB 6%
7000 RTSP 5%
8888 HTTP 4%
515 LPD 4%
631 IPP 4%
554 RTSP 4%
9100 CUPS 3%
8081 HTTP 3%
1080 SOCKS 3%
6467 – 3%

Table 5.5: Active Services on IoT Devices—63% of IoT devices offer a TCP-based service on at
least one of the ports we scanned for. Devices primarily run an HTTP or HTTPS based webserver
for remote control, however, several services are offered.

a passive external perspective. Table 5.4 shows the fraction of services per device type that were
observed using an external perspective alone. In some cases, relying only on an external perspective
would miss almost all the behaviors of the device—for example, 94% of ports used by media
devices were not captured through observing external communication. However, some device types
are almost entirely encompassed by external observation, for example, 75% of services used by
cameras are captured via external perspectives. We note camera devices also rarely communicate
with other devices on the local network (15%), so the majority of their traffic is external facing.

These results highlight that IoT device behaviors cannot be captured by their external footprint
alone, and are typically more complex than what is measured from that perspective alone.

5.6 COMPARING DEVICE BEHAVIOR AND CAPABILITIES

Previous studies of IoT deployments and measurements have primarily leveraged active scans [137,
148, 149], which typically involve a SYN scan and some application layer probing for labeling
devices and enumerating device capabilities. We next answer a related question: what are the
differences between offered services (i.e., server capabilities) compared to how the device is used
in practice?

To begin, we conduct a SYN scan of IoT devices connected to the local network. We scan for a
select number of ports drawn from previous studies of home IoT devices. Of the 2365 IoT devices
inspected in our scans, we find 1756 (73%) respond to our SYN on at least one port. We note that
because our scanning list is fixed a priori, we are likely under reporting the fraction of devices that
have a TCP-based service available. IoT devices in our dataset run a median 2 services, however,
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Device Type Fraction Ports Used

Television 61%
Camera 41.3%
Router 37.5%
Gaming Console 25%
Smart Home IoT 17.1%
Media 16.8%
Work Appliance 13.3%
Voice Assistant 12.2%
Storage 12%

Table 5.6: Fraction Ports Used by Device Type—The fraction of used ports varies by device type.
Television, cameras, and routers are more likely to support ports that were used in our measurements,
compared to storage devices and voice assistants.

3% of devices in our dataset run more than 10 services, indicating a wide range of offered protocols.
Table 5.5 shows the distribution of ports, protocols, and the fraction of devices that support each
protocol. The most prevalent ports were 8008 (36%), 8443 (36%), 80 (31%) and 443 (17%), all of
which are used to host web servers for remote control of the device.

We next compare these active services to the services that are used in-context, and observe
that only an average of 19% of services offered per device are actively used. However, this may
simply be a result of our measurement apparatus—for example, the port may only be used for very
specific operations that occur infrequently, and may not have occurred in the time we captured
traffic from the device. To control for this, we sorted each active port by the fraction of devices that
did not leverage the port during communication, and only examined ports that were used by at least
10 devices in our dataset.

Similar to our previous results, the fraction of unused ports differs by device type (Table 5.6).
Specialized devices, like storage and voice assistants, offered the least fraction of used ports, with
12% and 12.2% used respectively. Conversely, television and camera devices typically offered ports
that were used in practice: 61% of ports offered by TVs were used in our measurements, and 41.3%
ports offered by cameras were used in our measurements.

The vendors that built devices with the lowest fraction of used ports primarily build media devices
and cameras (Table 5.7). In the largest case, Amcrest devices did used an average of (92%) of
offered ports, and Roku devices used an average of 88% of ports offered by the devices. Conversely,
several higher profile IoT vendors, such as Amazon, offer ports that do not serve device function.
For example, Amazon voice assistants regularly come with 1080/TCP and 8888/TCP open, despite
never using them in our measurements.

We next investigate what specific services are offered but least frequently used by devices in our
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Vendor Most Popular Type Average Ports Used

Amcrest Media 92%
Roku Media 88%
Dahua Camera 50%
Lite-On Media 40%
Philips Smart Home IoT 37%
Canon Work Appliance 28%
SONY Media 27%
Dish Media 25%
Samsung Media 23%
Vizio Media 23%

Table 5.7: Vendors with Highest Used Port Fraction—The top vendors that serve used ports in
our measurements primarily manufacturer media devices (70%). In the largest case, The top vendor,
Amcrest, on average only did not use 8% of ports during our measurements.

Port Unused Expl?

22/SSH 100% 5

9100/CUPS 100% 3

8081/HTTP 100% 5

111/rpcbind 100% 5

6466 100% 5

6467 100% 5

8222 100% 5

1080/SOCKS 100% 5

8889 100% 5

Port Unused Expl?

7000 97% 5

8443 97% 3

1843 97% 5

23/Telnet 96% 5

8888/HTTP 95% 5

515/LPD 94% 3

443/HTTPS 93% 5

139/SMB 92% 3

631/IPP 91% 3

Table 5.8: Unused Services on IoT Devices—Many popular services offered by IoT devices
remain unused during our measurement period. Although some services can be explained due to
protocols that are used intermittently (e.g., a printing protocol), we observe many IoT devices offer
services that are not used in normal function and place these devices at an elevated security risk.
For example, 2.3% of devices support 23/Telnet, despite 96% of these devices never using the
protocol once.

dataset. Table 5.8 shows the top 18 unused ports as well as the fraction of devices that did not use
the port during our measurement period. We then manually investigated each port to identify if the
lack of usage could be easily explained by our measurement methodology. We find that IoT devices
offer many services that are rarely if ever used during our measurement period. For example, 12.5%
of IoT devices offer an SSH server on port 22; however, we find this port was never used in our on
any device in our measurements.

Some unused protocols could be explained due to bias from our measurement vantage point. For
example, printing protocols, such as 9100/CUPS, 515/LPD, and 631/IPP may only be used when a
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print job arrives, which may not have occurred during our measurements. However, some unused
ports are more difficult to justify, especially when many of these ports are associated with security
vulnerabilities. For instance, 2.6% of devices support 111/rpcbind, which has a long chain of
exploits and CVEs and is never used in our local flow measurements2. Similarly, 2.3% of devices
support 23/Telnet, which has been a consistent threat for IoT devices due common, weak default
credentials [102]. These ports increase the attack surface of devices, and simply the existence of
unused ports can lead to a host of security and privacy challenges [165].

These security and privacy risks are compounded by the challenges in identifying unused ports.
First, researchers need to conduct both active scans (i.e., to identify open ports) and passive traffic
analysis (i.e., to identify used ports). Moreover, many of the unused protocols are on bespoke ports,
such as 10001 and 55443 (Section 5.4.3), further complicating the effort to develop firewall rules
(e.g., by ISPs, home users, or automated systems on gateways) that can block potentially malicious
traffic.

5.7 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of our work and outline areas of future work drawn
from our results.

Exercising Full Device Behavior. Although IoT Inspector presents a useful snapshot of local
network flows, it is only able to collect measurements while running, and users typically close the
application after 307 minutes. In the context of this work, this points to a key limitations regarding
our device behavior analysis: there is always a possibility that the full networking capabilities IoT
devices are not exercised during our measurement period. Thus our results about devices not using
every port for proper device function are limited to only our measurement collection period—it is
possible that devices may have eventually used those services with longer measurement periods. In
spite of that, we find it questionable that many IoT devices require more than a handful of network
services to properly function, and argue that offering more services than required poses a security
risk to those devices.

As such, an area of future work is in de-bloating the networking behavior of IoT devices by
removing any networking function that are not core to the device behavior. Prior work has leveraged
tools like symbolic execution and software analysis techniques to find bugs and security flaws in
firmware and control applications [166, 167], however, little work exists in understanding the full
networking capabilities of these devices in every action, either through network based fuzzing or

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1816, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-1999-1349, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8779
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protocol enumeration [168]. Recent work has investigated automatically generating firewall rules
from IoT traffic, but much work needs to be done to understand if this can be done at scale [169].

Security vs. Usability The prevalence of device-to-device communications on the local network
presents a unique challenge that highlights the tension between security and usability. On one
hand, local communication appears to facilitate cooperation among devices. For example, 14% of
Home IoT devices communicated with voice assistants presumably to allow for voice control of
such devices. Many of these communications do not require prior authentication. Previous work
has shown that any device or applications could communicate with, for instance, Google voice
assistants on 8008/HTTP [165] or Roku TVs on 8060/HTTP [5].

Although this openness in communication may promote the usability of multiple IoT devices
in tandem, it introduces potential security and privacy risks. As Acar et al. observed in a lab
environment, a malicious IoT device or a malicious app on a computer may control (e.g., shutting
down) or access sensitive information (e.g., precise location of users) from another device [165].
While our analysis does not have sufficient evidence for such malicious activities in the wild, the
open and prevalent nature of device-to-device communication does raise an alarm and call for future
research in this area.

Standardizing Networking Behavior. In our results, we observed IoT devices frequently com-
municating on a myriad of nonstandard ports for common protocols, such as HTTP. From a
measurement perspective, this adds an additional challenge in measuring home IoT networks—it
requires a priori knowledge of the services running on each port to measure application layer prop-
erties of the device. An area of future research is to properly enumerate these services (in-context)
and build a growing set of port-to-protocol mapping for finer grained measurements with these
devices.

Inferring Network Roles by Behavior. Many recent studies have focused on building better
local network policies as home networks continue to grow in size [132, 155]. However, each study
relies on knowing what devices are on the network a priori, and for the user to define “correct” and
“incorrect” behavior on the network through specially crafted policies and rules. Our results suggest
that IoT devices exhibit different behavior based on their device type. For example, smart home
devices sent 94% fewer bytes per flow than voice assistants. Many of these behavioral properties of
devices—the fraction of devices they communicate with, their outbound flow rates, the fraction of
packets sent via TCP vs. UDP, their port distribution—may be useful in automatically inferring
their device type as well as their default “normal” network behavior. Using these observations, an
area of future work may be to leverage local network behavior of devices to automatically infer
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and implement network policies that protect devices on the network, thereby limiting the potential
damage of a compromised device.

5.8 CONCLUSION

In this chapter, we collected both passive and active measurements of 3,308 devices collected
from 275 smart homes over a three-week period. We found that IoT device behavior varies by
device type, and furthermore, manufacturers often leverage bespoke ports for common protocols,
which complicates active measurements of the home IoT devices. Finally, we compared passive
observation with active scans of local IoT networks, and identified several services that are offered
by a wide spread of devices but rarely used, pointing to evidence of bloated networking capabilities
on IoT devices. We conclude with a discussion of limitations and future work. We hope our results
will be useful for the measurement and IoT communities as the ecosystem continues to develop.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we demonstrated how drawing network measurements from a single vantage
point or technique leads to a biased view of the network services present in the IoT ecosystem.
We performed measurements from several vantage points and techniques, and showed how the
capabilities and behaviors of devices change based on the chosen measurement perspective.

In Chapter 2, we documented how active scanning could be used to identify devices that had been
infected with Mirai malware, and showed that many of world’s top commercial electronics vendors
did not follow best practices and lacked adequate protection from the attack. We also showed how
passive, external observation through a DNS tap aided in understanding the command-and-control
infrastructure behind the botnet, lending evidence to competing botmasters and enabling us to track
the impact of the vulnerability over time.

In Chapter 3, we measured leveraged active scans of the inside of 16M home networks and
showed the diversity of IoT devices and vendors in regions around the world. We found that security
threats, such as weak, guessable passwords on open services, are widespread and vary heavily
based on device type, region, and vendor. Furthermore, we leveraged a large, passive darknet to
quantify IoT device compromise, finding that while the darknet was able to help identify potentially
compromise home networks, we could not use it to perform any deeper device attribution. Our
results point to a fractured IoT ecosystem, and furthermore, that the types of devices studied by the
security community are rarely the ones that are at larger risk of network vulnerability.

In Chapter 4, we combined our datasets from Chapter 2 and Chapter 3 and demonstrated that
relying on active, external scanning alone under-reports IoT device types and security critical
protocols that are prevalent inside homes. However, we also observe that active external scanning
through only HTTPS served as a reasonable proxy for IoT device type distributions inside home
networks, highlighting an opportunity for future research to collect a large array of IoT devices.

Finally, in Chapter 5, we conducted passive measurements from inside 275 smart homes, and
observed that IoT devices regularly communicate with other IoT devices on the local network.
Furthermore, we found that device behavior depends heavily on both the type of device and the
manufacturer of the device. In comparing external device behavior to internal device behavior, we
show that that a passive, external perspective would miss a significant fraction of the protocols
commonly used by devices—in the largest case, 94% of protocols communicated by media devices
would not be observed through passive, external observation. In combining an active and passive
approach, we find that devices regularly support server capabilities that are rarely used in normal
communication, with a median 50% of services unused per device during our measurements. Worse,
many unused services are security critical (e.g., 23/Telnet, 111/rpcbind), increasing the attack
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surface of these devices while adding little to no additional function.

6.1 LESSONS LEARNED AND FUTURE WORK

To conclude, we discuss some high-level lessons learned over the course of this research and
implications for the measurement and security communities.

6.1.1 Recommendations for Measurement

With each measurement, we observed a fractured, heterogenous ecosystem spanning architectures,
devices, vendors, behaviors, and world regions. We offer some suggestions and future directions for
how to conduct these measurements:

Combining Measurement Techniques is Necessary. Measurements drawn from a single van-
tage point or technique cannot capture the complexity of the IoT ecosystem. As shown in Chapter 5,
IoT devices often communicate on protocols that are different than the ones they offer as servers,
and this behavior varies depending on external communication versus internal communication. As
such, any future research should draw on multiple techniques—both active scanning and passive
measurement—wherever possible when measuring the IoT ecosystem.

Local Network Measurement is Key. IoT measurements should be drawn from where the IoT
devices are: inside local networks. As we showed in Chapter 5, IoT devices on local networks are
relatively chatty, and access to this data can help to solve device identification which informs IoT
device distributions. This is not to say external measurements cannot be useful—as we showed
in Chapter 2, external measurements were used for device identification and attribution for IP
addresses we observed to be scanning. However, our identification results were limited, as we were
only able to label 31.5% of devices across all services and protocols. Comparatively, we were able
to label (using active scanning) 91% of devices scanned inside local networks. In addition, we
showed in Chapter 4 how IoT device distributions connected externally did not typically reflect the
device type distributions inside home networks. Tools like IoT Inspector (Chapter 5) can aid in
collecting measurements to drive future research.

6.1.2 Directions for Systems and Security

Beyond our discussion about proper measurement of the IoT ecosystem, our measurements
themselves offer future directions and recommendations for the security community.
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Improving Local Network Protections. We were surprised to learn that devices already com-
municate frequently over the local network, and not simply to perform menial tasks like device
discovery or service enumeration. Instead, local network communication is rich, with devices
communicating over many TCP-based application layer services to send data and issue control
commands to other devices. We posit this will only increase as we add more devices to our local
networks. As such, it becomes imperative to challenge our current local network assumptions: that
all devices that enter are trusted, and any device can or should freely be able to communicate with
other devices. Some work in this space has already been published [16, 17, 169], however, it is
not informed by real world measurements or real world traffic. Many of these systems also make
inherent assumptions about device network behavior that are not necessarily true—for example,
HanGuard [170] and Hestia [17] both assume network level interaction primarily occurs between a
device to a controller (e.g., smart hub, mobile device). Unfortunately, this is not true in practice—
devices frequently communicate with other IoT devices on local network, in some cases to receive
control commands (e.g., voice assistant to a smart home IoT device).

An area of future work is to leverage our measurements of in-home networks to automatically
infer network policies that improve security without compromising functionality. We observed that
many devices, for example, offer protocols that are never used in regular communication. New,
defensive standards for local networks can infer these services are unused, and automatically block
any traffic flowing to each device on these ports. Furthermore, we showed that device behavior is
distinct across device type and manufacturer, highlighting an opportunity for additional, automated
network policy generation.

Informing Investigation with Real-World Data. Recent security research has focused on new
home IoT devices, such as smart locks and home automation. Our results suggest that while these
devices are growing in importance in western regions, they are far from the most common IoT
devices around the world. Instead, home IoT is better characterized by smart TVs, printers, game
consoles, and surveillance devices—devices that have been connected to our home networks for
more than a decade. Furthermore, these are the kinds of devices that still support weak credentials
for old protocols: work appliances are the device type with the highest fraction of weak FTP
credentials; surveillance devices are the worst for telnet credentials. Improving the security posture
of these devices remains just as important as ensuring that new technologies are secure—our home
networks are only as secure as their weakest link.
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APPENDIX A:

A.1 AVAST DATA SHARING POLICY

The first panel in Figure 3.1 presents users with a text blurb about WiFi Inspector’s data sharing
policy. For ease of reading, we have copied that text below here:

Nearly every software product you use collects information about you. Search engines,
games, everything. We do the same. This allows us to provide better products and
services for you. But we promise to respect your privacy. We also promise that we
will never publish or share any of your personal information outside Avast, nor allow
anyone else to use it to contact you for marketing purposes without your consent.

We do use the information that we collect to help us understand new and interesting
trends. We may share this information with third parties outside Avast. However,
before we do that, we will remove anything that identifies you personally. For more
information, read our Privacy Policy.

If after installing this product, you’d prefer not to participate in data sharing with
Avast and third parties, you can opt-out at any time by unchecking the “participate in
data-sharing” box in the settings.

92



A
.2

D
E

V
IC

E
L

A
N

D
SC

A
PE

R
ou

te
rs

G
am

in
g

A
ut

om
at

io
n

St
or

ag
e

Su
rv

ei
lla

nc
e

W
or

k
A

ss
is

ta
nt

M
ed

ia

N.America

16
.4

A
rr

is
39

.2
M

ic
ro

so
ft

44
.2

N
es

t
24

.9
W

D
ig

ita
l

12
.1

H
ik

vi
si

on
38

.8
H

P
63

.2
A

m
az

on
17

.4
R

ok
u

8.
1

C
is

co
19

.7
N

in
te

nd
o

15
.1

B
el

ki
n

14
.1

Sy
no

lo
gy

7.
3

D
ah

ua
10

.3
Fo

xC
on

n
32

.0
G

oo
gl

e
10

.2
A

m
az

on
5.

2
Sa

ge
m

co
m

11
.6

A
zu

re
w

av
e

14
.4

Ph
ill

ip
s

5.
9

Se
ag

at
e

6.
3

D
-L

in
k

8.
4

A
m

az
on

1.
7

U
nk

no
w

n
9.

9
Sa

m
su

ng
4.

6
A

ct
io

nt
ec

9.
4

So
ny

9.
8

ec
ob

ee
3.

9
IC

P
5.

8
Su

ga
8.

0
E

ps
on

0.
8

St
re

am
U

5.
9

A
pp

le
4.

3
T

P-
L

in
k

9.
0

Fo
xC

on
n

2.
7

E
np

ha
se

3.
0

W
D

5.
3

Fl
ir

7.
5

C
an

on
0.

4
A

pp
le

5.
8

G
oo

gl
e

S.America

22
.2

T
P-

L
in

k
43

.7
M

ic
ro

so
ft

33
.5

Ph
ili

ps
25

.0
W

D
ig

ita
l

20
.8

H
ik

vi
si

on
29

.2
H

P
39

.1
G

oo
gl

e
26

.0
Sa

m
su

ng
7.

7
A

rr
is

13
.6

So
ny

13
.0

B
el

ki
n

14
.7

Sa
ge

m
co

m
16

.3
D

ah
ua

18
.0

E
ps

on
27

.5
A

m
az

on
13

.6
A

rc
ad

ya
n

7.
0

Te
ch

ni
co

lo
r

10
.7

A
zu

re
w

av
e

12
.1

–
13

.1
Sy

no
lo

gy
8.

4
–

9.
0

Fo
xC

on
n

6.
2

–
7.

5
G

oo
gl

e
6.

5
H

ua
w

ei
9.

6
Fo

xC
on

n
5.

9
SM

A
9.

7
D

-L
in

k
8.

2
In

te
lb

ra
s

7.
1

B
ro

th
er

3.
7

T
I

6.
3

L
G

4.
6

M
itr

as
ta

r
6.

6
N

in
te

nd
o

4.
7

E
np

ha
se

8.
5

Se
ag

at
e

4.
0

C
is

co
5.

7
Sa

m
su

ng
3.

2
D

el
l

5.
0

In
te

lb
ra

s

EastAsia

12
.9

N
E

C
45

.9
N

in
te

nd
o

49
.0

Ph
ili

ps
37

.2
Sy

no
lo

gy
28

.5
H

ik
vi

si
on

13
.4

C
an

on
56

.2
G

oo
gl

e
8.

6
Pa

na
so

ni
c

11
.9

B
uf

fa
lo

21
.9

So
ny

7.
0

B
el

ki
n

13
.4

B
uf

fa
lo

10
.5

D
ah

ua
11

.1
E

ps
on

32
.6

A
m

az
on

7.
5

A
m

az
on

8.
4

T
P-

L
in

k
8.

9
Fo

xC
on

n
4.

8
B

el
ki

n
12

.1
IC

P
8.

6
D

ah
ua

10
.6

M
oi

m
st

on
e

2.
1

X
ia

om
i

6.
9

Fo
xC

on
n

5.
5

E
FM

8.
0

A
zu

re
w

av
e

4.
2

G
on

gj
in

E
le

c
8.

8
I-

O
D

at
a

5.
0

Pa
na

so
ni

c
9.

3
Fo

xC
on

n
0.

7
T

C
L

6.
3

G
oo

gl
e

4.
4

H
ua

w
ei

4.
9

M
ic

ro
so

ft
4.

2
SM

A
8.

2
Q

N
A

P
2.

4
B

ili
an

9.
2

H
P

0.
7

O
nk

yo
5.

9
So

ny

CentralAsia

49
.5

T
P-

L
in

k
22

.8
M

ic
ro

so
ft

11
.1

Fn
-L

in
k

37
.4

Sy
no

lo
gy

43
.2

H
ik

vi
si

on
23

.7
H

P
21

.3
A

m
az

on
37

.2
Sa

m
su

ng
16

.6
H

ua
w

ei
20

.9
Fo

xC
on

n
11

.1
C

am
br

id
ge

14
.0

D
-L

in
k

16
.2

D
ah

ua
10

.0
Y

ea
lin

k
17

.0
A

m
az

on
28

.6
L

G
6.

4
C

am
br

id
ge

17
.7

A
zu

re
w

av
e

11
.1

T
P-

L
in

k
13

.5
W

D
ig

ita
l

11
.0

C
is

co
9.

4
C

an
on

6.
4

D
-L

in
k

6.
9

Fo
xC

on
n

5.
3

D
-L

in
k

12
.5

So
ny

–
–

7.
7

IC
P

6.
2

C
is

co
7.

5
E

ps
on

4.
3

M
-C

ub
e

–
–

3.
0

Z
T

E
10

.0
L

ite
on

–
–

4.
1

Q
N

A
P

3.
2

IC
P

6.
9

X
E

R
O

X
4.

3
T

I
–

–

EastEurope

23
.9

T
P-

L
in

k
37

.3
M

ic
ro

so
ft

40
.3

Ph
ili

ps
26

.7
Sy

no
lo

gy
20

.6
H

ik
vi

si
on

27
.7

H
P

44
.9

G
oo

gl
e

30
.8

Sa
m

su
ng

7.
3

Z
T

E
14

.7
So

ny
25

.1
Ph

ili
ps

15
.9

W
D

ig
ita

l
18

.7
D

ah
ua

10
.8

Fo
xC

on
n

23
.7

A
m

az
on

17
.0

L
G

7.
1

H
ua

w
ei

13
.2

Fo
xC

on
n

5.
4

SM
A

14
.0

Sa
ge

m
co

m
12

.0
C

is
co

7.
1

C
an

on
7.

6
A

m
az

on
5.

4
Fo

xC
on

n
6.

6
D

-L
in

k
11

.0
A

zu
re

w
av

e
3.

2
eQ

-3
9.

7
IC

P
4.

3
C

is
co

5.
6

E
ps

on
2.

4
T

I
4.

7
G

oo
gl

e
3.

8
A

su
s

9.
5

N
in

te
nd

o
3.

2
M

ur
at

a
7.

6
Q

N
A

P
3.

4
IC

P
4.

9
Sa

m
su

ng
2.

3
Te

le
m

ed
ia

3.
3

N
ew

eb

WestEurope

18
.0

Sa
ge

m
co

m
30

.6
M

ic
ro

so
ft

33
.1

Ph
ili

ps
38

.7
Sy

no
lo

gy
37

.1
Fr

ee
39

.0
H

P
48

.6
A

m
az

on
15

.7
Sa

ge
m

co
m

16
.1

Fr
ee

22
.5

N
in

te
nd

o
17

.7
A

le
rt

m
e.

co
m

17
.7

W
D

ig
ita

l
8.

0
H

ik
vi

si
on

11
.6

C
an

on
37

.2
G

oo
gl

e
14

.1
Sa

m
su

ng
5.

7
AV

M
14

.9
So

ny
6.

1
eQ

-3
7.

2
IC

P
7.

0
H

ik
vi

si
on

9.
2

Fo
xC

on
n

6.
4

A
pp

le
9.

3
Fr

ee
5.

2
H

ua
w

ei
11

.5
Fo

xC
on

n
5.

7
H

ag
er

5.
7

Te
ch

ni
co

lo
r

6.
3

D
ah

ua
9.

0
E

ps
on

0.
7

A
pp

le
8.

4
G

oo
gl

e
3.

8
T

P-
L

in
k

8.
3

A
zu

re
w

av
e

4.
8

SM
A

4.
5

Q
N

A
P

5.
1

D
-L

in
k

4.
1

B
ro

th
er

0.
6

Te
le

m
ed

ia
6.

2
G

oo
gl

e

Ta
bl

e
A

.1
:M

os
tP

op
ul

ar
Ve

nd
or

pe
r

R
eg

io
n

pe
r

D
ev

ic
e

Ty
pe

,1
—

W
e

sh
ow

th
e

fiv
e

m
os

tp
op

ul
ar

ve
nd

or
s

pe
rd

ev
ic

e
ty

pe
ac

ro
ss

th
e

el
ev

en
re

gi
on

s
in

ou
rd

at
as

et
.W

e
ex

cl
ud

ed
tw

o
de

vi
ce

ty
pe

s,
w

ea
ra

bl
e

an
d

ho
m

e
ap

pl
ia

nc
es

,a
s

th
ey

w
er

e
ba

re
ly

pr
es

en
ti

n
ou

rd
at

as
et

an
d

sp
lit

tin
g

up
th

ei
rv

en
do

rd
is

tr
ib

ut
io

n
by

re
gi

on
pr

ov
id

ed
on

ly
a

ha
nd

fu
lo

fd
ev

ic
es

in
ea

ch
re

gi
on

.

93



R
ou

te
rs

G
am

in
g

A
ut

om
at

io
n

St
or

ag
e

Su
rv

ei
lla

nc
e

W
or

k
A

ss
is

ta
nt

M
ed

ia

EastEurope
23

.9
T

P-
L

in
k

37
.3

M
ic

ro
so

ft
40

.3
Ph

ili
ps

26
.7

Sy
no

lo
gy

20
.6

H
ik

vi
si

on
27

.7
H

P
44

.9
G

oo
gl

e
30

.8
Sa

m
su

ng
7.

3
Z

T
E

14
.7

So
ny

25
.1

Ph
ili

ps
15

.9
W

D
ig

ita
l

18
.7

D
ah

ua
10

.8
Fo

xC
on

n
23

.7
A

m
az

on
17

.0
L

G
7.

1
H

ua
w

ei
13

.2
Fo

xC
on

n
5.

4
SM

A
14

.0
Sa

ge
m

co
m

12
.0

C
is

co
7.

1
C

an
on

7.
6

A
m

az
on

5.
4

Fo
xC

on
n

6.
6

D
-L

in
k

11
.0

A
zu

re
w

av
e

3.
2

eQ
-3

9.
7

IC
P

4.
3

C
is

co
5.

6
E

ps
on

2.
4

T
I

4.
7

G
oo

gl
e

3.
8

A
su

s
9.

5
N

in
te

nd
o

3.
2

M
ur

at
a

7.
6

Q
N

A
P

3.
4

IC
P

4.
9

Sa
m

su
ng

2.
3

Te
le

m
ed

ia
3.

3
N

ew
eb

WestEurope

18
.0

Sa
ge

m
co

m
30

.6
M

ic
ro

so
ft

33
.1

Ph
ili

ps
38

.7
Sy

no
lo

gy
37

.1
Fr

ee
39

.0
H

P
48

.6
A

m
az

on
15

.7
Sa

ge
m

co
m

16
.1

Fr
ee

22
.5

N
in

te
nd

o
17

.7
A

le
rt

m
e.

co
m

17
.7

W
D

ig
ita

l
8.

0
H

ik
vi

si
on

11
.6

C
an

on
37

.2
G

oo
gl

e
14

.1
Sa

m
su

ng
5.

7
AV

M
14

.9
So

ny
6.

1
eQ

-3
7.

2
IC

P
7.

0
H

ik
vi

si
on

9.
2

Fo
xC

on
n

6.
4

A
pp

le
9.

3
Fr

ee
5.

2
H

ua
w

ei
11

.5
Fo

xC
on

n
5.

7
H

ag
er

5.
7

Te
ch

ni
co

lo
r

6.
3

D
ah

ua
9.

0
E

ps
on

0.
7

A
pp

le
8.

4
G

oo
gl

e
3.

8
T

P-
L

in
k

8.
3

A
zu

re
w

av
e

4.
8

SM
A

4.
5

Q
N

A
P

5.
1

D
-L

in
k

4.
1

B
ro

th
er

0.
6

Te
le

m
ed

ia
6.

2
G

oo
gl

e

SouthAsia

24
.2

T
P-

L
in

k
64

.9
M

ic
ro

so
ft

26
.3

Ph
ili

ps
20

.1
W

D
ig

ita
l

34
.3

H
ik

vi
si

on
33

.1
H

P
44

.8
G

oo
gl

e
17

.1
Fo

xC
on

n
7.

4
H

ua
w

ei
8.

7
Fo

xC
on

n
24

.1
SM

A
14

.5
Sy

no
lo

gy
18

.4
D

ah
ua

16
.6

C
an

on
33

.8
A

m
az

on
16

.9
Sa

m
su

ng
7.

4
D

-L
in

k
5.

7
A

zu
re

w
av

e
14

.0
M

at
ri

x
14

.5
Sy

no
lo

gy
18

.4
D

ah
ua

8.
1

Fo
xC

on
n

2.
7

H
P

8.
3

L
G

7.
3

Te
nd

a
3.

6
So

ny
1.

3
E

sp
re

ss
if

10
.6

Se
ag

at
e

3.
0

C
is

co
6.

0
E

ps
on

2.
5

D
el

l
6.

1
G

oo
gl

e
2.

7
H

ai
er

2.
0

N
in

te
nd

o
1.

3
X

ia
om

i
10

.3
W

D
2.

1
IC

P
3.

6
R

ic
oh

1.
8

In
te

l
5.

5
N

ew
eb

S.E.Asia

18
.9

T
P-

L
in

k
44

.6
M

ic
ro

so
ft

34
.7

In
sp

ur
36

.4
Sy

no
lo

gy
24

.7
H

ik
vi

si
on

15
.4

H
P

49
.1

G
oo

gl
e

19
.7

Sa
m

su
ng

14
.3

H
ua

w
ei

11
.6

N
in

te
nd

o
18

.9
Ph

ili
ps

19
.4

W
D

ig
ita

l
17

.2
D

ah
ua

13
.9

Fo
xC

on
n

21
.7

A
m

az
on

10
.8

Fo
xC

on
n

12
.0

Z
T

E
11

.5
Fo

xC
on

n
18

.6
R

f-
L

in
k

8.
6

IC
P

4.
8

C
is

co
9.

7
E

ps
on

2.
7

T
I

10
.6

Z
T

E
5.

3
Fi

be
rh

om
e

10
.2

A
zu

re
w

av
e

8.
2

SM
A

7.
5

Q
N

A
P

4.
0

IC
P

9.
5

C
an

on
2.

6
H

P
10

.5
L

G
4.

3
M

ik
ro

tic
6.

5
So

ny
2.

0
B

el
ki

n
6.

6
D

-L
in

k
3.

8
PL

U
S

7.
3

R
ic

oh
2.

3
D

el
l

4.
1

N
ew

eb

Oceania

19
.3

Te
ch

ni
co

lo
r

43
.7

M
ic

ro
so

ft
30

.3
Ph

ili
ps

21
.0

Sy
no

lo
gy

16
.8

H
ik

vi
si

on
23

.5
H

P
85

.3
G

oo
gl

e
17

.7
G

oo
gl

e
15

.4
H

ua
w

ei
15

.0
N

in
te

nd
o

20
.3

B
el

ki
n

15
.9

H
yB

ro
ad

13
.9

D
ah

ua
19

.3
Fo

xC
on

n
8.

0
A

m
az

on
12

.2
R

ok
u

12
.1

Sa
ge

m
co

m
11

.1
Fo

xC
on

n
16

.4
L

ifi
13

.1
W

D
ig

ita
l

3.
7

D
-L

in
k

14
.1

E
ps

on
1.

3
A

pp
le

10
.0

A
pp

le
7.

6
T

P-
L

in
k

10
.3

A
zu

re
w

av
e

10
.1

E
np

ha
se

9.
5

IC
P

3.
4

B
ai

ch
ua

n
10

.2
C

an
on

1.
3

A
pp

le
8.

6
Sa

m
su

ng
4.

7
N

et
co

m
m

9.
3

So
ny

6.
2

SM
A

6.
5

Se
ag

at
e

3.
0

Y
ea

lin
k

6.
5

B
ro

th
er

0.
6

L
ite

on
6.

8
So

no
s

N.Africa,ME

25
.6

H
ua

w
ei

26
.0

M
ic

ro
so

ft
27

.3
Ph

ili
ps

29
.1

A
sk

ey
19

.5
H

ik
vi

si
on

29
.4

H
P

27
.6

G
oo

gl
e

20
.9

Sa
m

su
ng

23
.2

T
P-

L
in

k
18

.7
Fo

xC
on

n
10

.6
SM

A
19

.2
W

D
ig

ita
l

15
.3

D
ah

ua
9.

7
Fo

xC
on

n
21

.3
A

m
az

on
17

.2
L

G
8.

4
Z

T
E

16
.6

So
ny

8.
1

L
ifi

9.
7

IC
P

5.
4

C
is

co
7.

2
C

an
on

1.
9

D
el

l
5.

4
V

es
te

l
6.

1
D

-L
in

k
12

.2
A

zu
re

w
av

e
3.

2
Se

rc
om

m
9.

1
Sy

no
lo

gy
4.

3
To

pw
el

l
4.

3
Sa

m
su

ng
1.

9
A

pp
le

3.
8

Sa
ge

m
co

m
4.

7
Z

yx
el

7.
7

L
ite

on
2.

7
Z

T
E

7.
7

V
Te

ch
4.

0
IC

P
3.

9
K

on
ik

a
1.

8
H

P
2.

7
A

pp
le

S-SAfrica

19
.7

H
ua

w
ei

40
.7

M
ic

ro
so

ft
21

.1
SM

A
24

.7
Sy

no
lo

gy
39

.0
H

ik
vi

si
on

33
.6

H
P

33
.8

G
oo

gl
e

24
.1

Sa
m

su
ng

12
.0

T
P-

L
in

k
14

.5
Fo

xC
on

n
17

.6
T

I
19

.2
W

D
ig

ita
l

16
.3

D
ah

ua
8.

5
C

an
on

28
.8

A
m

az
on

7.
4

L
G

8.
1

U
bi

qu
iti

13
.9

So
ny

10
.8

Ph
ili

ps
10

.1
IC

P
2.

8
C

is
co

8.
4

Y
ea

lin
k

7.
3

H
P

7.
4

L
G

6.
7

M
ik

ro
tic

9.
7

A
zu

re
w

av
e

3.
9

H
P

9.
3

Q
N

A
P

2.
2

IC
P

6.
3

Fo
xC

on
n

2.
9

D
el

l
5.

8
A

pp
le

6.
5

D
-L

in
k

8.
4

N
in

te
nd

o
2.

9
H

ag
er

7.
8

Se
ag

at
e

1.
7

PL
U

S
5.

3
R

ic
oh

2.
2

A
pp

le
5.

2
Sa

ge
m

co
m

Ta
bl

e
A

.2
:M

os
tP

op
ul

ar
Ve

nd
or

pe
r

R
eg

io
n

pe
r

D
ev

ic
e

Ty
pe

,2
—

W
e

sh
ow

th
e

fiv
e

m
os

tp
op

ul
ar

ve
nd

or
s

pe
rd

ev
ic

e
ty

pe
ac

ro
ss

th
e

el
ev

en
re

gi
on

s
in

ou
rd

at
as

et
.W

e
ex

cl
ud

ed
tw

o
de

vi
ce

ty
pe

s,
w

ea
ra

bl
e

an
d

ho
m

e
ap

pl
ia

nc
es

,a
s

th
ey

w
er

e
ba

re
ly

pr
es

en
ti

n
ou

rd
at

as
et

an
d

sp
lit

tin
g

up
th

ei
rv

en
do

rd
is

tr
ib

ut
io

n
by

re
gi

on
pr

ov
id

ed
on

ly
a

ha
nd

fu
lo

fd
ev

ic
es

in
ea

ch
re

gi
on

.

94



FT
P

Te
ln

et

R
eg

io
n

W
or

k
A

pp
lia

nc
e

St
or

ag
e

Su
rv

ei
lla

nc
e

H
om

e
R

ou
te

r
Su

rv
ei

lla
nc

e
H

om
e

R
ou

te
r

N.America
35

.3
H

P
40

.1
IC

P
49

.8
A

xi
s

63
.8

T
P-

L
in

k
42

.9
D

ah
ua

45
.2

T
P-

L
in

k
13

.9
R

ic
oh

25
.2

W
D

ig
ita

l
13

.4
V

iv
ot

ek
9.

6
Z

T
E

22
.7

PL
U

S
40

.5
Z

yx
el

9.
3

Fo
xC

on
n

10
.0

Q
N

A
P

7.
9

Tr
en

dn
et

8.
0

M
ik

ro
tic

9.
3

M
et

ro
hm

4.
4

–
8.

4
K

yo
ce

ra
6.

7
T

P-
L

in
k

4.
6

D
-l

in
k

4.
3

–
4.

8
–

4.
1

B
el

ki
n

7.
9

Sh
ar

p
5.

5
W

D
2.

9
C

re
st

on
2.

0
T

&
W

3.
7

C
is

co
0.

7
In

te
lb

ra
s

S.America

39
.6

R
ic

oh
24

.2
W

D
ig

ita
l

43
.3

V
iv

ot
ek

40
.3

Te
ch

ni
co

lo
r

51
.4

PL
U

S
44

.5
In

te
lb

ra
s

25
.3

H
P

20
.2

IC
P

30
.6

A
xi

s
28

.5
T

P-
L

in
k

10
.3

C
is

co
21

.6
H

ua
w

ei
22

.8
K

yo
ce

ra
12

.9
Q

N
A

P
6.

9
L

ev
el

O
ne

11
.1

D
-L

in
k

9.
8

M
et

ro
hm

12
.0

B
lu

C
as

tle
3.

3
Sh

ar
p

8.
1

C
is

co
6.

5
D

-L
in

k
7.

4
M

ik
ro

tic
8.

8
D

ah
ua

5.
9

T
P-

L
in

k
1.

2
X

er
ox

7.
3

L
a

C
ie

2.
2

Tr
en

dn
et

4.
7

C
am

eo
3.

3
R

al
in

k
5.

7
L

oo
pc

om
m

EastAsia

39
.9

R
ic

oh
49

.0
I-

O
44

.3
V

iv
ot

ek
62

.4
T

P-
L

in
k

43
.8

PL
U

S
45

.8
N

E
C

17
.6

Sh
ar

p
25

.4
IC

P
27

.8
A

xi
s

14
.1

I-
O

11
.9

M
et

ro
hm

18
.6

H
itr

on
8.

6
H

P
7.

9
Q

N
A

P
8.

7
L

og
ite

c
6.

9
D

ra
yT

ek
10

.8
D

ah
ua

15
.6

H
ua

w
ei

7.
4

K
yo

ce
ra

7.
7

E
FM

4.
3

Im
i

2.
9

co
re

ga
9.

2
IC

P
4.

9
B

uf
fa

lo
5.

6
X

er
ox

1.
7

in
X

tr
on

3.
5

B
uf

fa
lo

1.
8

M
ik

ro
tic

4.
3

C
is

co
4.

7
T

P-
L

in
k

CentralAsia

66
.4

H
P

66
.7

IC
P

39
.1

A
xi

s
92

.6
T

P-
L

in
k

36
.0

PL
U

S
52

.3
D

-L
in

k
9.

3
Fo

xC
on

n
33

.3
Q

N
A

P
17

.4
Z

ho
ng

xi
1.

9
H

ua
w

ei
16

.9
D

ah
ua

35
.2

H
ua

w
ei

11
.5

K
yo

ce
ra

–
–

13
.0

E
zv

is
1.

5
Z

T
E

11
.2

–
8.

8
C

am
br

id
ge

3.
5

R
ic

oh
–

–
13

.0
V

iv
ot

ek
1.

5
M

ik
ro

tic
10

.1
M

et
ro

hm
2.

4
T

P-
L

in
k

3.
1

X
er

ox
–

–
8.

7
–

1.
1

A
su

s
5.

6
iS

to
r

0.
6

E
lte

x

EastEurope

42
.4

K
yo

ce
ra

53
.1

IC
P

31
.6

A
xi

s
45

.8
T

P-
L

in
k

35
.0

PL
U

S
60

.5
D

-L
in

k
25

.9
R

ic
oh

18
.2

Q
N

A
P

20
.3

E
zv

is
14

.6
Z

T
E

26
.5

D
ah

ua
18

.9
H

ua
w

ei
23

.6
H

P
12

.5
W

D
ig

ita
l

12
.5

V
iv

ot
ek

11
.6

Te
ch

ni
co

lo
r

12
.3

M
et

ro
hm

8.
6

T
P-

L
in

k
3.

7
Sh

ar
p

3.
0

W
D

9.
0

Z
ho

ng
xi

8.
3

M
ik

ro
tic

5.
0

C
is

co
2.

8
Z

yx
el

2.
4

Fo
xC

on
n

1.
7

L
a

C
ie

4.
3

D
-L

in
k

7.
5

Sa
ge

m
co

m
2.

5
iS

to
r

1.
8

Z
T

E

WestEurope

27
.9

K
yo

ce
ra

49
.2

IC
P

49
.7

A
xi

s
40

.8
T

P-
L

in
k

35
.5

PL
U

S
65

.6
Z

yx
el

22
.2

H
P

17
.1

W
D

ig
ita

l
11

.0
V

iv
ot

ek
20

.6
A

rc
ad

ya
n

20
.9

D
ah

ua
15

.1
T

P-
L

in
k

18
.8

R
ic

oh
8.

5
Q

N
A

P
10

.8
A

dv
an

ce
V

is
io

n
12

.4
Te

ch
ni

co
lo

r
14

.0
M

et
ro

hm
13

.2
Z

T
E

9.
5

Sh
ar

p
4.

1
W

D
4.

7
D

-L
in

k
6.

9
AV

M
5.

8
iS

to
r

0.
9

–
3.

5
Fo

xC
on

n
3.

8
Sy

no
lo

gy
3.

9
H

ik
vi

si
on

4.
7

M
ik

ro
tic

5.
0

–
0.

8
W

in
st

ar
s

Ta
bl

e
A

.3
:

Ve
nd

or
s

w
ith

W
ea

k
FT

P
an

d
Te

ln
et

C
re

de
nt

ia
ls

by
R

eg
io

n,
1—

W
e

sh
ow

th
e

to
p

fiv
e

ve
nd

or
s

in
ea

ch
de

vi
ce

ty
pe

by
re

gi
on

th
at

ex
hi

bi
tw

ea
k

FT
P

or
Te

ln
et

cr
ed

en
tia

ls
.

In
m

os
tc

as
es

,a
sm

al
lh

an
df

ul
of

ve
nd

or
s

ar
e

re
sp

on
si

bl
e

fo
r

m
os

to
f

th
e

w
ea

k
de

vi
ce

s.

95



FT
P

Te
ln

et

R
eg

io
n

W
or

k
A

pp
lia

nc
e

St
or

ag
e

Su
rv

ei
lla

nc
e

H
om

e
R

ou
te

r
Su

rv
ei

lla
nc

e
H

om
e

R
ou

te
r

SouthAsia

51
.4

H
P

32
.4

W
D

ig
ita

l
61

.5
M

at
ri

x
34

.7
Z

T
E

42
.1

PL
U

S
40

.3
Sm

ar
tli

nk
19

.6
R

ic
oh

17
.6

Q
N

A
P

11
.5

A
xi

s
26

.4
T

P-
L

in
k

18
.4

D
ah

ua
34

.7
D

-L
in

k
10

.5
C

an
on

14
.7

W
D

10
.3

D
-L

in
k

12
.4

D
-L

in
k

11
.3

M
et

ro
hm

5.
4

H
ua

w
ei

5.
6

K
yo

ce
ra

14
.7

IC
P

3.
8

3D
SP

6.
8

Fi
be

rh
om

e
8.

8
–

2.
9

Fi
da

4.
2

Fo
xC

on
n

8.
8

–
2.

6
C

ar
di

oM
E

M
S

3.
0

B
in

at
on

e
4.

6
C

is
co

2.
6

Z
yx

el

S.E.Asia

46
.6

R
ic

oh
39

.9
IC

P
45

.1
V

iv
ot

ek
62

.3
T

P-
L

in
k

45
.7

PL
U

S
36

.6
H

ua
w

ei
19

.5
H

P
25

.4
Q

N
A

P
39

.6
A

xi
s

16
.6

M
ik

ro
tic

16
.2

M
et

ro
hm

24
.6

Z
yx

el
6.

3
Sh

ar
p

11
.6

W
D

ig
ita

l
3.

0
–

7.
6

D
ra

yT
ek

12
.6

D
ah

ua
12

.3
T

P-
L

in
k

6.
3

K
yo

ce
ra

6.
5

W
D

2.
4

M
at

ri
x

3.
3

Sa
ge

m
co

m
5.

3
C

is
co

7.
5

Z
T

E
4.

4
X

er
ox

4.
3

I-
O

1.
2

L
ev

el
O

ne
1.

8
D

-L
in

k
5.

1
–

5.
0

R
ic

he
rL

in
k

Oceania

21
.1

K
yo

ce
ra

65
.1

IC
P

30
.8

A
xi

s
57

.6
T

P-
L

in
k

35
.8

PL
U

S
91

.4
T

P-
L

in
k

18
.3

H
P

15
.1

W
D

ig
ita

l
30

.8
–

32
.4

N
et

C
om

m
18

.9
D

ah
ua

2.
7

D
-L

in
k

17
.9

R
ic

oh
11

.6
Q

N
A

P
30

.8
E

zv
is

3.
6

D
-L

in
k

13
.2

M
et

ro
hm

1.
4

Z
T

E

14
.3

X
er

os
2.

3
–

7.
7

A
da

pt
iv

e
R

ec
og

ni
tio

n
1.

8
B

ill
io

n
9.

4
–

0.
9

N
et

C
om

m

8.
7

Sh
ar

p
2.

3
C

is
co

0.
0

U
T

C
F&

S
1.

8
B

ill
io

n
1.

1
–

0.
9

–

N.Africa,ME

35
.1

K
yo

ce
ra

58
.7

IC
P

34
.8

A
xi

s
81

.9
T

P-
L

in
k

48
.7

PL
U

S
38

.9
T

P-
L

in
k

24
.1

H
P

18
.5

Q
N

A
P

19
.1

V
iv

ot
ek

5.
7

Z
T

E
16

.3
M

et
ro

hm
34

.2
Z

yx
el

23
.7

R
ic

oh
11

.4
W

D
ig

ita
l

10
.3

D
-L

in
k

4.
8

A
sk

ey
11

.8
D

ah
ua

19
.0

H
ua

w
ei

5.
6

Sh
ar

p
4.

9
W

D
3.

4
L

ev
el

O
ne

1.
7

B
oc

a
4.

9
iS

to
r

2.
6

D
-L

in
k

5.
0

Fo
xC

on
n

1.
6

X
er

ox
2.

9
SM

D
0.

8
C

am
eo

3.
6

C
is

co
1.

1
A

ir
Ti

es

S-SAfrica

32
.1

H
P

43
.5

IC
P

72
.5

A
xi

s
30

.7
T

P-
L

in
k

43
.4

PL
U

S
60

.0
Z

yx
el

28
.7

K
yo

ce
ra

16
.5

Q
N

A
P

16
.7

V
iv

ot
ek

28
.0

D
-L

in
k

16
.9

D
ah

ua
17

.4
H

ua
w

ei
26

R
ic

oh
11

.8
W

D
ig

ita
l

2.
9

H
ik

vi
si

on
22

.3
M

ik
ro

tic
14

.0
M

et
ro

hm
7.

3
T

P-
L

in
k

4.
0

Fo
xC

on
n

7.
1

X
er

ox
2.

0
N

et
co

re
6.

6
Z

T
E

5.
9

–
4.

9
Fi

da
3.

0
Sh

ar
p

5.
9

Se
ag

at
e

2.
0

B
os

ch
4.

2
B

ill
io

n
4.

4
iS

to
r

2.
2

Z
T

E

Ta
bl

e
A

.4
:

Ve
nd

or
s

w
ith

W
ea

k
FT

P
an

d
Te

ln
et

C
re

de
nt

ia
ls

by
R

eg
io

n,
2—

W
e

sh
ow

th
e

to
p

fiv
e

ve
nd

or
s

in
ea

ch
de

vi
ce

ty
pe

by
re

gi
on

th
at

ex
hi

bi
tw

ea
k

FT
P

or
Te

ln
et

cr
ed

en
tia

ls
.

In
m

os
tc

as
es

,a
sm

al
lh

an
df

ul
of

ve
nd

or
s

ar
e

re
sp

on
si

bl
e

fo
r

m
os

to
f

th
e

w
ea

k
de

vi
ce

s.

96



REFERENCES

[1] “A guide to the internet of things,” https://www.intel.com/content/dam/www/public/us/en/
images/iot/guide-to-iot-infographic.png.

[2] “In-depth analysis of changes in world internet performance using the speedtest global index,”
https://www.speedtest.net/insights/blog/global-index-2019-internet-report/.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communications of the ACM, 2010.

[4] “Over one third of us households will cut the cord by 2020,” https://www.soda.com/news/
over-one-third-of-us-households-will-cut-the-cord-by-2020/.

[5] H. Mohajeri Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang, N. Feamster, E. W.
Felten, P. Mittal, and A. Narayanan, “Watching you watch: The tracking ecosystem of
over-the-top tv streaming devices,” in ACM Conference on Computer and Communications
Security, 2019.

[6] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates, and M. Bailey,
“Skill squatting attacks on Amazon Alexa,” in 27th USENIX Security Symposium, 2018.

[7] M. . Company, “Unlocking the potential of the internet of things,”
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/
the-internet-of-things-the-value-of-digitizing-the-physical-world,.

[8] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide scanning and
its security applications,” in USENIX Security Symposium, 2013.

[9] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman, “A search engine backed
by Internet-wide scanning,” in 22nd ACM Conference on Computer and Communications
Security, 2015.

[10] “Shodan internet scanner,” https://www.shodan.io/.

[11] R. D. Graham, “Masscan: Mass ip port scanner,” https://github.com/robertdavidgraham/
masscan.

[12] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Inferring internet
denial-of-service activity,” ACM Transactions on Computer Systems (TOCS), 2006.

[13] L. F. DeKoven, A. Randall, A. Mirian, G. Akiwate, A. Blume, L. K. Saul, A. Schulman,
G. M. Voelker, and S. Savage, “Measuring security practices and how they impact security,”
in ACM Internet Measurement Conference, 2019.

[14] X. Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-based engine for discovering
internet-of-things devices,” in 27th USENIX Security Symposium, 2018.

97



[15] D. Y. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feamster, “Iot inspector: Crowdsourcing
labeled network traffic from smart home devices at scale,” ACM Conference on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2020.

[16] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R. Sadeghi, “Home-
snitch: behavior transparency and control for smart home iot devices,” in Conference on
Security and Privacy in Wireless and Mobile Networks, 2019.

[17] S. Goutam, W. Enck, and B. Reaves, “Hestia: simple least privilege network policies for
smart homes,” in Conference on Security and Privacy in Wireless and Mobile Networks,
2019.

[18] B. Krebs, “Krebsonsecurity hit with record DDoS,” https://krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/.

[19] O. Klaba, “Octave klaba Twitter,” https://twitter.com/olesovhcom/status/
778830571677978624.

[20] S. Hilton, “Dyn analysis summary of Friday October 21 attack,” http://hub.dyn.com/dyn-blog/
dyn-analysis-summary-of-friday-october-21-attack.

[21] A. Tellez, “Bashlite,” https://github.com/anthonygtellez/BASHLITE.

[22] Internet Census 2012, “Port scanning/0 using insecure embedded devices,” http://
internetcensus2012.bitbucket.org/paper.html.

[23] M. Mimoso, “IoT botnets are the new normal of DDoS attacks,” https://threatpost.com/
iot-botnets-are-the-new-normal-of-ddos-attacks/121093/.

[24] @unixfreaxjp, “Mmd-0056-2016 - Linux/Mirai, how an old ELF malcode is recycled.”
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html.

[25] OVH, “The DDoS that didn’t break the camel’s VAC*,” https://www.ovh.com/us/news/
articles/a2367.the-ddos-that-didnt-break-the-camels-vac.

[26] B. Krebs, “Did the Mirai botnet really take Liberia offline?” https://krebsonsecurity.com/
2016/11/did-the-mirai-botnet-really-take-liberia-offline/.

[27] B. Krebs, “Who is Anna-Senpai, the Mirai worm author?” https://krebsonsecurity.com/2017/
01/who-is-anna-senpai-the-mirai-worm-author/.

[28] Anna-senpai, “[FREE] world’s largest net:Mirai botnet, client, echo loader, CNC source
code release,” https://hackforums.net/showthread.php?tid=5420472.

[29] J. Blackford and M. Digdon, “TR-069 issue 1 amendment 5,” https://www.broadband-forum.
org/technical/download/TR-069 Amendment-5.pdf.

[30] B. Krebs, “New Mirai worm knocks 900k Germans offline,” https://krebsonsecurity.com/
2016/11/new-mirai-worm-knocks-900k-germans-offline/.

98



[31] BBC, “Router hacker suspect arrested at Luton airport,” http://www.bbc.com/news/
technology-37510502.

[32] EvoSec, “New IoT malware? anime/kami,” https://evosec.eu/new-iot-malware/.

[33] P. Muncaster, “Massive Qbot botnet strikes 500,000 machines through WordPress,” https:
//www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/.

[34] G. Lyon, “Nmap network scanning,” https://nmap.org/book/vscan-fileformat.html.

[35] N. Wells, “Busybox: A swiss army knife for linux.”

[36] VirusTotal, “Virustotal - free online virus, malware, and url scanner,” https://virustotal.com/
en.

[37] A. Kountouras, P. Kintis, C. Lever, Y. Chen, Y. Nadji, D. Dagon, M. Antonakakis, and
R. Joffe, “Enabling network security through active DNS datasets,” in 19th International
Research in Attacks, Intrusions, and Defenses Symposium, 2016.

[38] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, “Building a dynamic
reputation system for DNS,” in 19th USENIX Security Symposium, 2010.

[39] B. Krebs, “Who makes the IoT things under attack?” https://krebsonsecurity.com/2016/10/
who-makes-the-iot-things-under-attack/.

[40] B. Herzberg, D. Bekerman, and I. Zeifman, “Breaking down mirai: An IoT DDoS botnet
analysis,” https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html.

[41] Level 3, “How the grinch stole IoT,” http://www.netformation.com/level-3-pov/
how-the-grinch-stole-iot.

[42] MalwareTech, “Mapping Mirai: A botnet case study,” https://www.malwaretech.com/2016/
10/mapping-mirai-a-botnet-case-study.html.

[43] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A Lustrum of malware
network communication: Evolution and insights,” in 38th IEEE Symposium on Security and
Privacy, 2017.

[44] WikiDevi, “Eltel et-5300,” https://wikidevi.com/wiki/Eltel ET-5300#Stimulating port 5555 .
28from Internet.29.

[45] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis, “Domain-Z: 28
registrations later,” in 37th IEEE Symposium on Security and Privacy, 2016.

[46] Arbor Networks, “Worldwide infrastructure security report,” https://www.arbornetworks.
com/images/documents/WISR2016 EN Web.pdf.

[47] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS abuse.” in 21st
Network and Distributed System Security Symposium, 2014.

99



[48] M. Karami, Y. Park, and D. McCoy, “Stress testing the booters: Understanding and under-
mining the business of DDoS services,” in 25th International Conference on World Wide
Web, 2016.

[49] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston, “Internet background radiation
revisited,” in 10th ACM Internet Measurement Conference, 2010.

[50] M. Karami and D. McCoy, “Understanding the emerging threat of DDoS-as-a-service,” in
6th USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2013.

[51] Minecraft Modern Wiki, “Protocol handshaking,” http://wiki.vg/Protocol#Handshaking.

[52] Gamepedia Minecraft Wiki, “Tutorials/setting up a server,” http://minecraft.gamepedia.com/
Tutorials/Setting up a server.

[53] D. Moore, C. Shannon, and K. Claffy, “Code-Red: A case study on the spread and victims of
an Internet worm,” in 2nd ACM Internet Measurment Workshop, 2002.

[54] H. Asghari, M. Ciere, and M. J. G. Van Eeten, “Post-mortem of a zombie: Conficker cleanup
after six years,” in 24th USENIX Security Symposium, 2015.

[55] M. Finifter, D. Akhawe, and D. Wagner, “An empirical study of vulnerability rewards
programs.” in 22nd USENIX Security Symposium, 2013.

[56] D. Pauli, “Netgear unveils world’s easiest bug bounty,” http://www.theregister.co.uk/2017/
01/06/netgear unveils worlds easiest bug bounty/.

[57] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer et al., “The matter of Heartbleed,” in 14th ACM Internet Measurement
Conference, 2014.

[58] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and V. Paxson,
“You’ve got vulnerability: Exploring effective vulnerability notifications,” in 25th USENIX
Security Symposium, 2016.

[59] F. Li, G. Ho, E. Kuan, Y. Niu, L. Ballard, K. Thomas, E. Bursztein, and V. Paxson, “Rem-
edying web hijacking: Notification effectiveness and webmaster comprehension,” in 25th
International Conference on World Wide Web, 2016.

[60] A. Froehlich, “8 IoT operating systems powering the future,” http://www.informationweek.
com/iot/8-iot-operating-systems-powering-the-future/d/d-id/1324464.

[61] Microsoft, “Support for Windows XP ended,” https://www.microsoft.com/en-us/
WindowsForBusiness/end-of-xp-support.

[62] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup: Understanding, detecting,
and disrupting botnets,” in 1st USENIX Steps to Reducing Unwanted Traffic on the Internet
Workshop, 2005.

100



[63] A. Zand, G. Vigna, X. Yan, and C. Kruegel, “Extracting probable command and control
signatures for detecting botnets,” in 29th ACM Symposium on Applied Computing, 2014.

[64] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering analysis of network
traffic for protocol-and structure-independent botnet detection.” in 17th USENIX Security
Symposium, 2008.

[65] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and control channels
in network traffic,” in 15th Network and Distributed System Security Symposium, 2008.

[66] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon,
“From throw-away traffic to bots: Detecting the rise of DGA-based malware,” in 21st USENIX
Security Symposium, 2012.

[67] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measurements and mitigation
of peer-to-peer-based botnets: A case study on Storm worm,” in 1st USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2008.

[68] J. Wyke, “The ZeroAccess botnet: Mining and fraud for massive financial gain,” Sophos
Technical Paper, 2012.

[69] P. Porras, H. Saı̈di, and V. Yegneswaran, “A foray into Conficker’s logic and rendezvous
points,” in 2nd USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More, 2009.

[70] P. Sinha, A. Boukhtouta, V. H. Belarde, and M. Debbabi, “Insights from the analysis of the
Mariposa botnet,” in 5th Conference on Risks and Security of Internet and Systems, 2010.

[71] P. Barford and V. Yegneswaran, An Inside Look at Botnets, 2007. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-44599-1 8

[72] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel,
and G. Vigna, “Your botnet is my botnet: analysis of a botnet takeover,” in 16th ACM
conference on Computer and Communications Security, 2009.

[73] D. Wang, S. Savage, and G. M. Voelker, “Juice: A longitudinal study of an SEO campaign,”
in 20th Network and Distributed Systems Security Symposium, 2013.

[74] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and M. Karir, “A survey of botnet technology and
defenses,” in Cybersecurity Applications & Technology Conference For Homeland Security,
2009.

[75] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted approach to under-
standing the botnet phenomenon,” in 6th ACM Internet Measurement Conference, 2006.

[76] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense mechanisms,”
SIGCOMM Computer Communications Review.

101



[77] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of Service: Attack and
Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall
PTR, 2004.

[78] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Inferring internet
denial-of-service activity,” ACM Transactions on Computer Systems (TOCS), 2006.

[79] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and M. Karir, “Taming
the 800 pound gorilla: The rise and decline of NTP DDoS attacks,” in 14th ACM Internet
Measurement Conference, 2014.

[80] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from hell? reducing the impact of
amplification DDoS attacks.” in 23rd USENIX Security Symposium, 2014.

[81] B. Schneier, “The Internet of Things is wildly insecure–and often unpatchable,” https:
//www.schneier.com/essays/archives/2014/01/the internet of thin.html.

[82] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale analysis of the security
of embedded firmwares,” in 23rd USENIX Security Symposium, 2014.

[83] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at scale: A
case study on embedded web interfaces,” in 11th ACM Asia Conference on Computer and
Communications Security, 2016.

[84] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home applica-
tions,” in 37th IEEE Symposium on Security and Privacy, 2016.

[85] E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten, “IoT goes nuclear: Creating a
ZigBee chain reaction.”

[86] C. O’Flynn, “A lightbulb worm? a teardown of the philips hue,” Blackhat Security Confer-
ence.

[87] L. Franceschi-Bicchierai, “Hackers makes the first-ever ransomware
for smart thermostats,” https://motherboard.vice.com/en us/article/
internet-of-things-ransomware-smart-thermostat.

[88] Level 3, “Attack of things!” http://www.netformation.com/level-3-pov/attack-of-things-2.

[89] X. Mertens, “Analyze of a Linux botnet client source code,” https://isc.sans.edu/forums/
diary/Analyze+of+a+Linux+botnet+client+source+code/21305.
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