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ABSTRACT

This thesis proposes a full-stack, cross-layer datacenter architecture based

on in-network computing and near-memory processing paradigms. The

proposed datacenter architecture is built atop two principles: (1) utilizing

commodity, off-the-shelf hardware (i.e., processor, DRAM, and network

devices) with minimal changes to their architecture, and (2) providing

a standard interface to the programmers for using the novel hardware.

More specifically, the proposed datacenter architecture enables a smart

network adapter to collectively compress/decompress data exchange

between distributed DNN training nodes and assist the operating system

in performing aggressive processor power management. It also deploys

specialized memory modules in the servers, capable of performing general-

purpose computation and network connectivity.

This thesis unlocks the potentials of hardware and operating system

co-design in architecting application-transparent, near-data processing

hardware for improving datacenter’s performance, energy efficiency, and

scalability. We evaluate the proposed datacenter architecture using a

combination of full-system simulation, FPGA prototyping, and real-system

experiments.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The Internet is about to celebrate its fortieth birthday.1 In the past four

decades, the Internet has transformed many businesses and created many

more. Online services are part of our daily lives, and the Internet has

become as essential as other household utilities like water, electricity, and

telephone services. While writing this thesis, the world is wrestling with

the COVID-19 pandemic, which sadly has taken many lives, and more is

counting. From the technology point of view, the COVID-19 pandemic has

accelerated the departure from conducting in-person businesses by relying on

the Internet. Video conference meetings and virtual classrooms are the new

norms in universities, and enterprise is demanding immediate support for

conducting their business online. Even construction companies are looking

for ways to reduce the on-site visits of their engineers by making 3D models

of the construction sites and feeding them to their engineers. The question

of interest here is, how are all these services delivered to the users? All we

know, the Internet services, from large-scale web services to small enterprise

applications, are powered on by datacenters.

Although it is possible to run a wide range of Internet services on

user devices (e.g., desktops, smartphones, or laptop computers), server-

side computing (i.e., running applications on a datacenter) offers several

advantages that makes it attractive, even for conventional applications.

Sharing hardware resources in the datacenters reduces per user computation

cost. Moreover, server-side computing hugely simplifies software deployment

and updates. Instead of reaching out to millions of user devices, a datacenter

1In 1983, ARPAnet started using TCP/IP, which is the backbone of the modern
Internet to this date
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deployment of an application can be updated once and without any

interruption in the user experience. Moreover, the computation model

of many applications, such as social networks, demands a centralized

database to reduce the amount of data exchange between user devices and

the database. Similar to the software advantages, since a datacenter is often

managed by one company, hardware upgrades and accelerators’ deployment

are cheaper. They can be done without upgrading the hardware of millions

of user devices.

Unquestionably, datacenters are playing a vital role not only in our digital

world but also in our safety, productivity, and, more importantly, helping

to perform environmentally friendly computation. Although datacenters

consume hundreds of megawatts of power, the watts per operation inside

datacenters are hugely lower than that of a desktop server. However, the

end of Dennard scaling, the slowdown of Moore’s law, and explosion in data

volumes make it extremely challenging to design datacenters that can supply

the computation demand for future Internet-scale and cloud workloads. The

current datacenters resemble a collection of individual servers connected over

a scale-out network fabric. We should embrace the fact that sooner or later,

the performance of individual servers stops scaling. Then the only path

forward would be to scale out by increase the number of servers. However,

not only the networking cost of connecting more and more servers increases

exponentially, the communication overhead of distributing applications on

more servers can diminish the effectiveness of having more servers. The main

message of this thesis is to promote a datacenter architecture that resembles

a large-scale computer system (i.e., a warehouse-scale computer [1]) instead

of a collection of individual servers. In this thesis, we propose to blur

the boundaries between processors, memory, and networking by performing

computation not only on the CPU but also inside the network and memory of

datacenter servers. The proposed architectures consider full-stack, hardware,

and operating system co-optimization.

The applications that run on an enterprise datacenter can be broadly

classified into two categories: (i) online, latency-critical applications (i.e.,

“online applications” such as web serving, web search, social media, and

online gaming), and (ii) data-intensive, throughput applications (i.e.,

“throughput applications” such as data analytics, classification, and graph

processing applications). The performance metric for online applications is

2



to perform a task within a deadline, and as long as the task (e.g., a web

request) is processed within that deadline, we have satisfactory performance.

On the other hand, the amount of work performed in unit time is all that

matters for throughput applications. Next, we discuss the implications of

running online and throughput applications in datacenters.

The deadline for processing an online request is perceived as a metric

for measuring user experience satisfaction. It is often defined as the high

percentile ranks (e.g., 95th or 99th percentile) of the end-to-end response

time.2 Online applications often operate at a massive scale where a single

request can activate thousands of servers. Operating at this scale as

well as having tight SLO requirements make online services extremely

sensitive to hardware and software performance variations. Our studies

show that processor power management and network stack processing are

the two important sources of performance variations in online servers.

In fact, because of the performance variations and the reactive nature

of software-managed power management policies, online service providers

avoid employing aggressive processor power management policies on online

servers [2, 3]. That is, online servers are always kept on at their highest

performance level regardless of their current load level. The lack of processor

power management leads to significant energy wastes when the online servers

are underutilized.

The Internet network service model is based on a best-effort model

with soft states. This service model implies that when a packet leaves a

server’s boundaries, there is no guarantee when the packet arrives at the

destination server. The datacenter network architecture evolved around the

same principles. For example, Ethernet, which is the predominant network

technology inside datacenters, does not even guarantee the delivery of a

packet. Even though lossless network technologies such as Infiniband [4] or

lossless Ethernet [5] exist, the packet transmission and reception are still

software managed and vulnerable to software performance variability. Until

a few years ago, this variability in the network latency was not a concern

due to the huge performance discrepancy between the network and CPU.

However, in the past decade, while the performance of the CPU (as well as

2End-to-end response time is defined as the difference between the time that a request
leaves a client device and the time that a response is received at the client. In the
datacenter context, we consider front end servers as clients
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memory) has stagnated, the network bandwidth has been doubling every 12

to 15 months, even beating the Moore’s law for processors performance [6].

However, the network hardware organization of servers has been intact

since the construction of the first modern datacenters [7]. That is, sending

and receiving network packets involves several costly PCIe transactions

and memory copies. For a small size network packet, PCIe transactions

and memory copies can take up to 90% of the end-to-end network packet

latency [8, 9].

In general, the main performance bottleneck in today’s datacenter is

data movement. Datacenters deploy high-end general-purpose processors,

GPUs, and application-specific accelerators that are starving for data to

process. For better or worse, all the data in datacenters is networking

data. Network Interface Cards (NICs) are gateways for bringing data in

the server and sending it out. Such a strategic location of the NIC makes

it attractive for pre- or partial processing of the ingress and egress data

to accelerate applications or make proactive power management decisions.

Besides networking overhead, over 40∼60% of processor cycles are wasted on

waiting for DRAM accesses across various datacenter applications [10, 11].

A naive solution for reducing data movement within a system is to bring

intelligence inside the memory and perform computation inside or near

memory. Such computation paradigm, known as near-memory processing,

has been studied for several decades [12, 13, 14, 15, 16]. Nevertheless, none

of these previous proposals got commercialized due to two main reasons.

First, the previous near-DRAM processing proposals require significant

changes in the processor and DRAM architecture, neither is embraced

by industry [17]. Second, there was no volume market for near-DRAM

processing as the processor, or memory manufacturers could rely on Moore’s

law and wait for several months to build a higher-performance chip at the

same cost. However, now, in the post Moore’s law era, even a few percentage

performance or power improvement in a datacenter server can save millions

of dollars in the long term [18].

In this thesis, we aim to architect a datacenter that minimizes inter-

and intra-server data movement and proactively adjusts the processor

speed based on the load on the server to maximize energy efficiency.

We propose architectures that leverage in-network computing and near-

memory processing technologies. More specifically, this thesis is organized
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into four parts. Part I discusses two in-network computing architectures

for proactive processor management (Chapter 2) and distributed deep

neural network (DNN) acceleration (Chapter 3). Part II discusses two

near-memory processing architectures for accelerating distributed data-

intensive applications (Chapter 4) and an ultra-low latency network interface

architecture (Chapter 4). Part III discusses the thesis’ contributions to the

open-source community, where we have developed a parallel, distributed

simulation framework based on a state-of-the-art architectural simulator

(Chapter 6). Part IV concludes this thesis by discussing a future research

direction.

1.2 Thesis Contributions

This thesis’s key contribution is redefining the division of tasks between

processor, memory, and NIC in a server under the umbrella of OS and

architecture co-design. Conventionally, memory was used only for storing

data, network was used only for inter-server communication, and CPU was

the only unit for performing the computation. What we propose is to break

the boundaries between processor, memory, and network to first, reduce

the data movement within and across the servers, and second, and more

importantly, build a specialized warehouse-scale computer with a tailored

hardware and OS architectures for large-scale computing.

More specifically, here is the list of this thesis’ contributions:

• Implementing a full-stack, in-network computing framework for

proactive processor power management on a full-system simulator

(Chapter 2).

• Building an FPGA prototype of an in-network compression/decompression

framework for minimizing communication overhead of distributed

training (Chapter 3).

• Implementing a full-stack, application transparent near-memory

processing framework for accelerating data-intensive applications on

a full-system simulator as well as on an experimental FPGA memory

module.
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• Implementing a full-stack, ultra low latency near-memory network

interface architecture on a full-system simulator.

• Developing and open-sourcing a full-system simulator for modeling

computer clusters at the instruction level.

1.3 Bibliographic Notes

This thesis is built atop a chain of co-related projects conducted under

the supervision of Professor Nam Sung Kim, and got published in top

computer architecture venues. Chapter 2 is derived from a best paper

nominee article published in the IEEE International Symposium on High-

Performance Computer Architecture (HPCA 2017) [19]. Chapter 3 is the

product of collaboration with Professor Hadi Esmaeilzadeh,3 Professor

Alexander Schwing,4 and Dr. Ren Wang5 and is derived from a conference

paper published in the IEEE International Symposium on Microarchitecture

(MICRO 2018) [20]. Chapter 4 is the product of collaboration with Professor

Wen-mei Hwu,6 Professor Deming Chen,7 Professor Daehoon Kim,8 and

several researchers at IBM research and is based on a best paper nominee

article published at MICRO 2018 [21]. Chapter 5 is based on a conference

paper published in MICRO 2019 [22]. Finally, Chapter 6 is based on a best

paper nominee article published in the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS 2017) [23].

3UCSD
4UIUC
5Intel Research
6UIUC
7UIUC
8Daegu Gyeongbuk Institute of Science and Technology (DGIST)
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Part I

In-NIC Computing for Higher

Energy Efficiency and Lower

Communication Cost
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The long latency and limited bandwidth of transferring data within

a computer and across computers have become a critical bottleneck to

improving performance and energy efficiency. In-network computing is an

attractive solution for reducing data movement by performing computation

near the data. Offloading computation to the network devices is essential

to overcome the computation bottleneck in terabits per second network

devices: A modern server-class CPU requires ∼15ns [24] to access L3 cache.

At the same time, a 200Gbps NIC can deliver cacheline size packets9 every

2.4ns! Currently, in-network computing is used in production datacenters in

the form of offloading network functions to SmartNICs. Microsoft deploys

SmartNICs in its Azure fleet [25], and Amazon uses them in its AWS Nitro

systems for accelerating network function virtualization [26].

For better or worst, all the data inside a datacenter is network data. This

means that the data that is to be processed in a server crosses a server’s NIC

at least once. This property makes the network devices an attractive place

for performing structural computing. Unlike temporal computing 10 that

involves fetching data from memory before performing the computation,

in structural computing, logic (i.e., structure) is fixed on an ASIC chip,

or a reconfigurable fabric such as FPGA, and data is streamed through

the structure. Therefore, data movement is no longer a bottleneck in

structural computing. A range of network applications can benefit from the

structural computing opportunity at the NIC. For example, Microsoft uses

a bump-in-the-wire FPGA device for accelerating virtual filtering [25] or

AWS’s Nitro accelerate encryption and decryption of network data inside

the SmartNIC. Besides facilitating structural computing, since NIC is the

point of entry/exit to/from a server, in-NIC computing can enable early

prediction of the processor’s future processing demand.

Leveraging the unique characteristics of in-network computing, in this

part, we discuss two proposals for not only accelerating the performance of

networking applications but also improving the energy efficiency of network-

connected computers. In Chapter 2 we propose to use in-NIC computing

for efficient power management of servers in datacenters. In Chapter 3,

we take an initial step toward reducing inter-node communication overhead

in distributed deep neural network (DNN) training by proposing an in-

9Assuming 64 Bytes cachelines
10i.e., von Neumann style computing
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network accelerator for compression and decompression of inter-node gradient

updates.
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CHAPTER 2

IN-NETWORK COMPUTING FOR POWER
MANAGEMENT

In datacenters, servers are demanded to be not only energy-efficient but also

capable of processing every request from clients in a certain amount of time

(or satisfy a Service Level Objective (SLO)). To improve energy efficiency,

servers may deploy an aggressive power management policy which frequently

transitions system hardware components such as processors and memory to

low-performance/sleep states when request rates are low. However, such

servers may not respond to all the requests from clients without violating

a given SLO especially when request rates suddenly surge. This is because

transitioning a hardware component from a low-performance/sleep state to

a high-performance state incurs a significant performance penalty; if we

account for the overhead of system software associated with these transitions,

the performance penalty is even higher [27]. Such a performance penalty can

increase high-percentile response time. This in turn discourages servers from

deploying an aggressive power management policy and thus wastes energy at

low utilization.

Tackling this challenge, starting with an intuitive observation that the rate

of network packets from clients can significantly affect the utilization and

thus performance/sleep states of processor cores in servers, we propose NCAP,

Network-driven, packet Context-Aware Power management for Client-

server architecture. NCAP enhances a network interface card (NIC) and its

driver such that it can examine received and transmitted network packets,

determine the rate of network packets containing “latency-critical” requests,

and proactively transition a processor to an appropriate performance or

sleep state. To demonstrate the efficacy, we evaluate on-line data-intensive

(OLDI) applications and show that a server deploying NCAP consumes

37∼61% lower processor energy than a baseline server while satisfying a

given SLO at various load levels.
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2.1 Introduction

In a client-server architecture, when servers receive requests sent from clients,

the servers process the requests and send back responses to the clients. In

particular, for OLDI applications such as web search, servers need to reduce

high-percentile response time and satisfy a given SLO [28]. At the same time,

these servers must improve their energy efficiency.

The processor is the most power-consuming component even in servers with

many DRAM modules (DIMMs). For example, the processors in a Google

server consume two-third of the total server power at peak utilization and

∼40% when the server is idle [1]. To maximize energy efficiency, therefore, it

is important for a power management policy [29, 30] to fully exploit various

sleep and performance states supported by modern processors. Depending on

the current performance demand, cores in a processor can operate at various

performance states by increasing or decreasing their voltage/frequency (and

thus power consumption). Moreover, idle cores in a processor can transition

to various sleep states by turning off their clock, decreasing their voltage to

a level that barely maintains their architectural states after turning off their

clock, or turning off both their clock and power supply.

Transitioning a processor core from a sleep or low-performance state

to a high-performance state, however, incurs a significant performance

penalty. If we account for the overhead of system software layers associated

with these transitions, the performance penalty is even higher [27]. Such

a notable performance penalty can substantially increase high-percentile

response time and discourages server operators from deploying an aggressive

power management policy that frequently transitions processor cores to a

low-performance or sleep state [2, 31, 32].

It is intuitive that the rate of network packets from clients can significantly

affect the utilization and thus performance/sleep states of processor cores in

servers. For example, as a server suddenly receives many network packets

containing “latency-critical” requests from clients, its processor cores need

to operate at a high-performance state so that it can process the requests

and send responses back in time. However, if necessary processor cores have

been in a sleep or low-performance state, the server needs to transition these

processor cores to a high-performance state. If a server occasionally receives

only a few network packets enclosing latency-critical requests from clients, it

11



should transition unnecessary processor cores to a low-performance or sleep

state.

In this chapter, we propose NCAP, Network-driven, packet Context-Aware

Power management for client-server architecture. Specifically, we first show a

strong correlation between the rate of received/transmitted network packets

and the utilization and performance/sleep state of processors in servers after

analyzing the complex interplay between them.

Second, we propose to enhance a NIC and its driver such that NCAP can (1)

examine received/transmitted network packets; (2) detect latency-critical

requests in the network packets; (3) speculate the completion of requested

services; (4) predict an appropriate processor performance or sleep state;

and (5) proactively transition a processor to an appropriate performance

or sleep state. Especially, NCAP overlaps a large fraction of a notable

performance penalty of transitioning processor cores to a high-performance

state with a long latency of transferring received network packets from a

NIC to the main memory. Consequently, NCAP allows server operators to

deploy an aggressive power management policy without notably increasing

high-percentile response time. Note that NCAP does not simply respond to

a high rate of any network packets (e.g., network packets associated with

VM/container migrations and storage server operations), as it selectively

considers latency-critical network packets.

Lastly, we demonstrate the effectiveness of NCAP for two representative

OLDI applications with notably dissimilar characteristics: Apache and

Memcached at various load levels using dist-gem5. To establish the SLO,

we take a baseline server that always operates its processor cores at the

highest performance state and measure its 95th percentile response time at a

high-load level [33]. At medium- to high-load levels, a server deploying NCAP

consumes 37∼61% lower processor energy than the baseline server, while

satisfying the SLO. At low- to medium-load levels, it consumes 21∼49%

lower processor energy than a server employing the most energy-efficient,

SLO-satisfying power management policy among the state-of-the-art power

management policies supported by Linux.

12



Figure 2.1: An example of voltage/frequency changes and performance overhead
due to PLL relocking time; the shaded region depicts the duration that a processor
core must halt.

2.2 Background

2.2.1 Processor Power Management

For power management, processors support performance (P) and sleep (C)

states that are interfaced with the OS by advanced configuration and power

interface (ACPI) [34].

P state. The deeper the P state is, the lower the power consumption

is at the expense of lower performance. A core in P0 state operates at a

voltage/frequency point that offers the maximum sustainable performance

under thermal and power constraints.

The current Linux kernel offers three static P-state management policies

(i.e., performance, powersave, and userspace governors), and one dynamic

P-state management policy (i.e., ondemand governor) [29]. Amongst these

governors, the performance governor always operates the cores at P0,

whereas the powersave governor always operates the cores at the deepest P

state. Lastly, the userspace governor enables a user to set the P state of

processor cores. In contrast, the ondemand governor periodically adjusts the

P state based on the utilization of cores.

Figure 2.1 illustrates a typical sequence of changing P state of a core.

To increase voltage/frequency, voltage is ramped up to a target level at the

rate of 6.25mV/µs (for Intel processors) before the frequency is raised. To

decrease voltage/frequency, frequency is reduced before voltage is decreased.

In Intel i7-3770 processors, for example, a transition from the lowest to

highest voltage/frequency (∼50µs) takes much longer time than a transition

from the highest to lowest voltage/frequency (∼5µs) [27], because of the
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Figure 2.2: 95th percentile latency of Apache for various invocation periods of
the ondemand governor.

latency of ramping up voltage before raising frequency. In both cases, the core

must halt for 5µs (i.e., PLL re-locking time) while changing frequency. Note

that frequency becomes unpredictable and unstable when the PLL attempts

to relock the feedback loop of its oscillator to another frequency level.

Figure 2.2 shows the 95th percentile latency of Apache for three load levels

and various periods of invoking the ondemand governor. See Sec. 2.5 for

our detailed evaluation methodology. As the minimum invocation period

for the ondemand governor is hard coded to 10ms in the Linux kernel, we

recompiled the Linux kernel after changing the minimum period to 1ms.

As shown, the best invocation period varies under different load levels and

reducing the invocation period does not always improve the response time

due to the performance penalty of frequently invoking the ondemand governor

and changing voltage/frequency. This is the key reason that the minimum

invocation period is hard coded to 10ms [35].

C state. C0, C1, C3, and C6 states denote idle, halt, sleep, and off states.

The deeper the C state is, the lower the power consumption is at the expense

of higher performance penalty due to longer wake-up latency. The current

Linux kernel provides two C-state management policies (i.e., ladder and

menu governors [29]). The ladder governor first transitions a processor core

to C1 state and then a deeper C state if the sleep time was long enough.

The menu governor records how long a processor core has been in a C state

in the past and predicts how long it will stay in the C state in the future.

Then, it chooses the most energy-efficient C state based on the prediction

and wake-up penalty. Currently, the menu governor is used by default.

The current Linux kernel invokes cpuidle loop when the scheduler run
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queue does not have any schedulable job. This function consists of an infinite

while loop that repeatedly checks whether or not the run queue has any

schedulable job. If there is any newly arrived job, the scheduler is invoked

and the jobs in the run queue are executed after being prioritized by the

scheduler’s policy. Otherwise, the control is delegated to the C state governor

(i.e., menu governor) to reduce the power consumption of idle cores. In C0

state the core waits for a job dispatched to the run queue while executing

NOP in a kernel while loop. The C state governor is to apply a chosen C

state to a core based on its policy. To transition the core from a C state,

MWAIT and MONITOR are used in x86 architecture, as cores in C1 – C6 states

cannot check whether or not there is a job to do. MONITOR arms the address

monitoring hardware using an address region specified in EAX register. When

a store occurs in the specified region, it transitions the core to a P state. One

of the C states is denoted by a specific number as a parameter to MWAIT. As

MWAIT and MONITOR are privilege (level 0) instructions, they can be executed

only in the kernel space and incur a performance penalty of 6–60µs in Intel

i7-3770 processors [36].

2.2.2 Network Stack

TCP/IP is the most widely used communications protocol for high-

performance computing (HPC) despite its well-known overheads. The

Ethernet, as the backbone of a data-center network, is tightly coupled

with the TCP/IP layers. However, in addition to bandwidth, low-latency

communication is desired to satisfy a given SLO for OLDI applications. The

major contributor to the end-to-end TCP/IP packet latency is the network

software layers and multiple long latency PCIe transactions to deliver a

received packet from a NIC to the main memory and processor (Fig. 2.3).

More specifically, the sequence of receiving a packet from a NIC is as

follows. (1) Before receiving any packet, the NIC driver creates a descriptor

(or ring buffer) in the main memory (rx-desc-ring in Fig. 2.3), which

contains the metadata of received packets, and initializes the descriptors

to point to a receive kernel buffer (SKB in Fig. 2.3). Subsequently, the NIC

driver informs the NIC DMA engine of the start address of rx-desc-ring.

(2) When a packet is received, based on the descriptor information, the
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Figure 2.3: The sequence of receiving a packet from NIC.

NIC performs a DMA transfer to copy the packet to the associated SKB

(step 1 in Fig. 2.3). (3) The NIC will generate a hardware interrupt to

the processor. The interrupt handler of the NIC examines the NIC to

determine the interrupt cause, which is done by reading a NIC register called

interrupt cause read register (ICR) through a PCIe bus ( 2 and 3 in Fig. 2.3).

Some NICs use interrupt moderation technique to reduce the number of

interrupts posted to a processor by coalescing several hardware interrupts to

one interrupt. Although this technique reduces the load on the processor,

it increases the end-to-end latency of delivering each packet [37]. (4) After

identifying the cause of the interrupt, the interrupt handler enqueues the

request for processing the received packet and schedules a SoftIRQ ( 4 in

Fig. 2.3). (5) The SoftIRQ handler passes the received packet’s SKB to higher

layers in network stack and reallocates another SKB for the used descriptor

( 5 in Fig. 2.3). (6) The packet will be copied into a user space buffer after

it is processed by the software layers in the network stack ( 6 in Fig. 2.3).

For NCAP, we leverage the latency of steps 1 , 2 , and 3 to hide the

performance penalty of transitioning cores from a sleep or low-performance

state to a high-performance state. Our experiment running Apache shows

that these steps consume 86µs on average.
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2.3 Correlation between Network Activity and

Processor Power Management

In many cases, network packets received by a server contain requests to

be processed by processor cores. Thus, as a server receives more network

packets, the processor utilization will increase. For example, suppose a client

sends a request to an OLDI server. As HTTP requests are encapsulated

in TCP packets, the request should go through the server network layers

before a processor core in the server can start to process the request.

Subsequently, the application will decode the request, bring the requested

values from the main memory and send them to the client through one or

more TCP packets. The key OLDI processing code along with the network

software layers (for both receiving requests and transmitting responses)

can overwhelm the processor, especially when the server receives a burst of

requests. Thus, we hypothesize that the rate of received and transmitted

network packets substantially affects the power management of the processor,

as the utilization of the processor typically determines the P and C states of

the processor.

To demonstrate the correlation amongst the rate of network packets,

processor core utilization, and dynamic power management policies, we

use dist-gem5 (Chapter 6) to run Apache. See Sec. 2.5 for our detailed

evaluation methodology.

In Fig. 2.4 we simulate one server and fifteen clients, run Apache, and

measure the server’s (1) network transmit and receive bandwidth utilization

(denoted by BW(tx) and BW(rx)); (2) processor core utilization (U(core));

(3) processor core frequency (F(core)); and (4) processor core time spent in

C1, C3, and C6 states (TC1(core), TC3(core) and TC6(core)). BW(rx) and

BW(tx) at each point are normalized to the maximum BW(rx) and BW(tx)

during the entire application runtime, respectively. The ondemand governor

dynamically changes P state (F(core)) every 10ms (i.e., the minimum period

supported by the ondemand governor).

Figure 2.4 (top) shows that a burst of HTTP requests from clients causes

a surge in BW(rx), leading to an increase in U(core) and eventually a surge

in BW(tx) for sending the requested responses. The increase in U(core)

is due to the processing of (1) received and transmitted packets in the

network software layers and/or (2) requests by the clients; one core processes
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Figure 2.4: Top: Network bandwidth (BW(tx) and BW(rx)), core utilization
(U(core)), and resulting core frequency (F(core)). Bottom: core time spent in
C1, C2, and C3 states (TCx).

received network packets while another core can process requests. In this

experiment, we observe that the ondemand governor does not immediately

react to a sudden increase in U(core), because it can increase F(core)

only at the end of every 10ms period to amortize the performance penalty

of invoking the ondemand governor and changing F(core) (Sec. 2.2.1).

Furthermore, the ondemand governor increases F(core) only after detecting

high U(core) in the previous period. Consequently, if the previous period

exhibits low U(core), there is a significant delay in increasing F(core)

(i.e., the maximum delay of up to the period of invoking by the ondemand

governor), significantly increasing the response time.

Analyzing the BW(rx) burst marked with a dotted box in Fig. 2.4 (top),
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we observe the surge of BW(rx) for 6ms at time 177ms (and that of U(core)

shortly after that of BW(rx)). Subsequently, we observe the surge of BW(tx)

for 9ms at time 181ms. The average BW(rx), BW(tx), and U(core) during

this surging period is 42%, 47%, and 48%, respectively. A perfect ondemand

governor would have boosted F(core) at time 177ms, keep F(core) high for

14ms, and reduce F(core) at time 191ms. However, the ondemand governor

increases F(core) from 0.8 to 3.1 GHz at 188ms (i.e., 11ms late) and reduce

F(core) at 198ms (i.e., 7ms late).

Figure 2.4 (bottom) shows that entering C states is also highly correlated

with the bursts of HTTP requests and their duration. During the idle period

between two request bursts, the processor core often transitions to C6 state

to reduce power consumption. This shows that the menu governor is effective

in transitioning a processor core to a C state when the processor core has

been idle for a certain period. However, as depicted in Fig. 2.4 (bottom), the

processor core frequently transitions to C6 state before a surge of BW(rx).

That is, the processor core for processing network packets (and possibly

requests) is in a C state. Thus, the menu governor needs to transition the

processor core from the C state to a P state before any code execution.

Furthermore, some transitions to C states are very short during the surges

of BW(rx). These short transitions to C states can hurt the power efficiency

of the processor [38]. Analyzing the BW(rx) surge marked with a dotted box

in Fig. 2.4 (bottom), we see that core 0, 1, 2, and 3 are in C3, C6, C6, and

C6 for 2µs, 337µs, 111µs, and 2.12ms, respectively. At the very beginning of

the surge, the cores transition to C3 and C6 states 10 and 5 times and stay in

these C states for 30µs and 31µs, respectively, on average. After 2ms from

the beginning of the surge period, the menu governor does not transition the

processor cores to C states anymore until the BW(rx) and subsequent BW(tx)

surging periods end.

The rate of network packets is inherently unpredictable at the low- to

medium-levels of request rates (or simply load levels). That is, the network

packet rate suddenly increases and decreases after it stays low for a long

period. On the other hand, as discussed in Sec. 2.2.1, a server experiences

long latency to transition processor cores from a deep C or P state to P0

state before it can process received requests. Such long latency increases

high-percentile response time for next bursts of requests, and thus may

entail SLO violation. Consequently, server operators may simply deploy the
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(a) Enhanced NIC (b) Request Monitor

Figure 2.5: NCAP comprised of (a) enhanced NIC; (b) REQMonitor in NIC.

performance governor that always operates processor cores at P0 state and

thus waste energy at low- to medium-load levels.

2.4 NCAP Power Management

In this section, we explain NCAP that is developed based on our observations

from Sec. 2.3. More specifically, NCAP, which aims to assist the ondemand and

menu governors, leverages a low-level network packet context to proactively

transition cores to an appropriate C or P state. This can significantly improve

both response time and energy efficiency compared with the default ondemand

and menu governors.

Figure 2.5 depicts the key aspects of NCAP. In the enhanced NIC (Fig. 2.5a),

REQMonitor and txBytesCounter observe received and transmitted network

packets. If REQMonitor and txBytesCounter detect a significant increase in

the rate of received network packets (encapsulating latency-critical requests)

and decrease in the rate of transmitted network packets, DecisionEngine

triggers a special interrupt sent to the processor. Subsequently, the

enhanced interrupt handler of the NIC driver running on a processor

core proactively transitions necessary processor cores to P0 state (i.e., the

highest-performance state) if the processor cores have been in deep P (low-
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Algorithm 1: Decision engine algorithm in NIC.

1 @(MITT expiration)
2 if ReqRate > RHT & level ! = FCONS then
3 ICR | = ITRX | ITHIGH
4 post interrupt
5 level = FCONS
6 else if [reqRate < RLT & txRate < TLT] for 1 ms & level > 0 then
7 ICR | = ITLOW
8 post interrupt
9 level −−

10 @(reqCnt changes)
11 if (currentTime − LastInterrupt) > CIT & reqCnt > 0 then
12 ICR | = ITRX
13 post interrupt

Algorithm 2: Enhanced NIC interrupt handler driver.

1 if ICR & ITHIGH then
2 set Fcore(max)
3 disable ondemand for one sampling period
4 disable menu governor
5 else if ICR & ITLOW then
6 if Fcore > min then
7 set Fcore(Fcore − (max − min) / FCONS)
8 disable ondemand for one period
9 enable menu governor

performance) states (Alg. 2). Furthermore, if a request is received and the

DecisionEngine observes a long interval between the past interrupts and

the current time, it speculates that the processor cores are in C states and

immediately generates an interrupt to proactively transition these processor

cores to active state. Such immediate C and P state changes for such events

allow a server deploying NCAP to service a large number of requests abruptly

sent from clients in a timely manner and consume lower energy than a server

adopting the ondemand and menu governors.

2.4.1 Context-Aware Packet Rate Detection

As observed in Sec. 2.3, it is likely that OLDI applications need high-

performance right after a surge in the rate of network packets enclosing

latency-critical requests received by servers. A naive approach to respond

to such an event is to transition processor cores from their C states to P0

state as soon as the rate of “any” received network packets exceeds a certain

threshold value. Such a naive approach, however, has some limitations.

First, certain types of network packets received by servers are not latency-
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critical. One example is a packet containing a request to update the content

of a web page (i.e., a PUT request in Hypertext Transfer Protocol (HTTP)).

Another example is network packets of “off-line” data analytic applications

that consume high off-chip network bandwidth but do not have SLO to

satisfy. Second, the network packet length of most latency-critical requests

is often very short [39], and thus the aggregate size of a burst of network

packets containing latency-critical requests may not surpass the threshold

value set to operate processor cores at P0 state. On the contrary, the naive

approach may unnecessarily transition processor cores to P0 state, as simply

observing the received network packet rate lacks a context (i.e., whether or

not the received network packets are latency-critical).

The requests that are generated by OLDI applications typically have a

predefined format, following a standardized universal protocol. For instance,

HTTP is a unified application protocol that is widely used for OLDI

applications. An HTTP request starts with a request type (e.g., GET, HEAD,

POST, PUT, etc.) which is followed by a requested URL, and other request

header fields. To proactively transition processor cores from a deep C or P

state to P0 state, instead of simply using the received packet rate as a hint,

we exploit the fact that latency-critical requests of OLDI applications often

have a predefined format.

To detect latency-critical requests, we propose REQMonitor (Fig. 2.5b) in

an enhanced NIC. Most online requests are encapsulated in a TCP packet.

The payload field, which includes a request, starts from the 66th byte of

a received TCP packet. REQMonitor compares the first two bytes of the

payload with a set of templates that are stored in NIC internal registers.

These template registers, which are programmable through the operating

system’s sysfs interface [40], can be programmed to store latency-critical

request types such as GET, when running the initialization subroutine of

the NIC driver. Consequently, REQMonitor can determine whether or not

a received network packet is a latency-critical one. If so, REQMonitor

increments reqCnt.

Furthermore, we observe that the significant decrease in the rate of

transmitted network packets subsequently entails to low U(core) and the

ondemand and menu governors eventually transition the processor cores to

deep P or C states in Fig. 2.4, as the processor has completed its service

of the requests. Thus, we also propose txBytesCounter, which counts the
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Figure 2.6: Illustration of NCAP and its interaction with interrupt throttling
timers in a NIC.

number of transmitted bytes to determine txCnt. The rationale behind

using txCnt without any context is that most responses are larger than

the Ethernet Maximum Transmission Unit (MTU) and thus several TCP

packets constituting a single response are transmitted. Detecting such a

long chain of latency-critical response packets requires a complex hardware.

Moreover, even if the transmitted packets are not latency-critical, operating

the processor at P0 state to complete the packet transmission faster allows

the processor cores to transition to a C state sooner. reqCnt and txCnt

will be used for the enhanced MITT to determine reqRate and txRate,

respectively, the use of which will be discussed in Sec. 2.4.3.

2.4.2 Generation of NCAP Interrupt

In order to prevent a NIC from posting too many interrupts to the processor

whenever the NIC receives a packet, NICs employ a set of Interrupt

Throttling Timers (ITTs) to moderate the number of interrupts that a

NIC generates. This is depicted in Fig. 2.6. More specifically, all the

Gigabit Ethernet (GbE) controllers contain five timers to moderate the

interrupt rate: two Absolute Interrupt Throttling Timers (AITTs); two

Packet Interrupt Throttling Timers (PITTs); and one MITT. The AITT

and PITT are triggered by a network event (i.e., whenever a packet is

received or transmitted) to limit the maximum number of interrupts posted

upon receiving or transmitting packets. In contrast, the MITT operates

independently from any interrupt source or network event, and constrains
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the total interrupt rate of a NIC. That is, an interrupt is posted to the

processor when the MITT expires. Before posting an interrupt to the

processor, the NIC sets an ICR (Sec. 2.2.2) with the type of interrupt that it

intends to send to the processor from a set of interrupt types predefined by

the device driver (e.g., IT RX when a received packet is ready to be passed

to the network software layers).

For NCAP to trigger a transition of a processor core from a deep C or P

state to P0 state at appropriate moments, we propose two more interrupt

types, using the unused bits of ICR: IT HIGH and IT LOW, respectively. When

to trigger IT HIGH or IT LOW will be discussed in Sec. 2.4.3.

2.4.3 Decision of P and C State Changes

For NCAP to set an ICR and subsequently post an interrupt to the processor

at the right moment, we propose DecisionEngine depicted in Alg. 1.

Two events trigger DecisionEngine: (1) MITT expiration and (2) ReqCnt

changes. When MITT expires (at every 40 to 100µs), a new ReqRate is

determined by ReqCnt. If ReqRate is greater than a request rate high

threshold (RHT) and frequency is not already set to the maximum (P0 state),

then DecisionEngine posts an interrupt to the processor after setting

IT HIGH and IT RX bits of ICR. On the contrary, if ReqRate and TxRate

are smaller than a request rate low threshold (RLT) and a transmission

rate low threshold (TLT) for 1ms, respectively, DecisionEngine posts an

interrupt to the processor after setting IT LOW bit of ICR. When an interrupt

with IT HIGH and IT RX is posted, NCAP performs a sequence of actions as

follows: (1) increasing frequency to the maximum frequency; (2) disabling

the menu governor; and (3) disabling ondemand governor for one invocation

period. We disable menu governor to prevent short transitions to C states

during a surge period of BW(Rx) (Fig. 2.4). We also disable ondemand

governor for one invocation period to prevent any conflict between NCAP and

ondemand governor decisions. While NCAP sets frequency to the maximum

frequency upon an assertion of IT HIGH, it can be more conservative in

decreasing frequency (i.e., reducing frequency to the minimum over several

steps). FCONS is a parameter to determine the number of steps to reach the

minimum F. That is, the number of required back-to-back interrupts with
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IT LOW to reduce frequency to the minimum. NCAP enables menu governor

when the first IT LOW interrupt is posted.

A change in ReqCnt infers that new requests have been received by NIC. If

the time interval between the current request and the last interrupt posted

to the processor (CurrentTime – LastInterruptTime) is larger than the

processor idle time threshold (CIT), which is typically set by a user or menu

governor, DecisionEngine immediately posts an interrupt with IT RX to the

processor. When the processor has not been interrupted for a long time, NCAP

speculates that processor cores have been in an idle state for a while, and thus

transitioned to a C state (Sec. 2.3). In such an event, NCAP immediately sends

an interrupt to the processor so that the target processor core to process the

request(s) can transition from a C state to an active state and gets ready to

service the requests.

Algorithm 2 shows the enhancements in the NIC hardware interrupt

handler. When an interrupt is received from the NIC, if the IT HIGH bit

of ICR is set, the NIC hardware interrupt handler calls some APIs of the

cpufreq driver, which is responsible for changing frequency in the Linux

kernel, to change frequency to the maximum. Otherwise, if the IT LOW bit is

set, then the NIC hardware interrupt handler determines the next frequency

based on FCONS.

Figure 2.6 overviews NCAP under a certain packet arrival scenario. Assume

that req1 is received after the NIC has been in a long idle period (longer

than CIT). Subsequently, DecisionEngine immediately sends an interrupt

with IT RX to transition a processor core to a P state regardless of the MITT

expiration time. Later, when a burst of requests is received, ReqRate is

re-calculated upon the expiration of MITT. This triggers DecisionEngine

to send an interrupt with IT HIGH to change frequency to the maximum

and disable menu governor. After detecting a low-activity period of 1ms,

DecisionEngine sends one or several interrupts with IT LOW to decrease

frequency, and enable menu governor again, depending on whether a given

policy is aggressive or conservative.
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2.5 Methodology

For our study, we use dist-gem5, which is an enhanced version of gem5 that

supports the simulation of multiple nodes using multiple simulation hosts

and synchronization among these simulated nodes [23]. Chapter 6 explains

dist-gem5 framework in detail. To enable ondemand governor in gem5, we

leverage prior work [41]. More specifically, we enable the P state controller,

a memory-mapped device that provides registers for the ACPI and changes

F of simulated cores. The implemented P state controller with a modified

cpufreq driver in Linux allows ondemand governor to control the current

P state of simulated cores. For our experiment, we run ondemand governor

with an invocation period of 10ms (i.e., the minimum period supported by

the default ondemand governor [42]).

Furthermore, we implement a cpuidle driver for gem5 to enable the menu

governor [30]; a cpuidle driver conveys the information on available C states

to the menu governor. Two key parameters that affect the menu governor’s

decision are the exit latency (i.e., latency associated with transitioning from a

C state to a P state and the residency (i.e., the minimum amount of time the

processor core should spend in a given C state to make the transition worth

the energy penalty). In our experiments, we study the cpuidle behavior with

three C states, C1, C2, and C3 with exit latency of 2µs, 10µs, and 22µs and

residency of 10µs, 40µs, and 150µs, respectively, which are taken from [27].

We model these C states by halting the execution of instructions. Once the

cpuidle driver commands a core to transition to a C state, the instruction

fetch is stalled and it idles as soon as the processor core pipeline is drained.

On the other hand, when it is decided to transition an idle processor core

to a P state, the processor core resumes fetching and executing instructions

after applying an appropriate delay to model the exit latency.

To evaluate NCAP, we model a four-node cluster. We configure each

simulated node using the parameters tabulated in Table 2.1 (similar to

Intel i7-3770 processor). Then we run Memcached [43] and Apache [44] to

get the round trip latency of each request by annotating the source code

of Memcached and Apache clients with gem5 pseudo instructions. This

is not to perturb the system under evaluation by injecting performance-

monitoring functions. We modified the source code to implement open-loop

Memcached and Apache clients and run them on multiple simulated nodes.
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Table 2.1: Processor Configuration.

Parameters Values
Number of cores 4
Number of P and C states 15 and 3
Voltage/frequency at P states 0.65V/0/.8GHz to 1.2V/3.1GHz
Processor max power at P states 12-80W
C1, C3, and C6 transition latency 2, 10, and 22µs
Core static power at C1 1.92-7.11W
Core static power at C3 1.64W
System bus frequency 1.2 GHz
Superscalar 5 ways
Integer/FP ALUs 3/2
ROB/IQ/LSQ entries 128/36/72/42
Branch predictor Bi-Mode
L1I/L1D/L2/L3 size (KB) 64/64/256/4096
L1I/L1D/L2/L3 associativity 2/4/8/8
DRAM 8GB DDR3 1600
Network interface driver Intel 82574GI Gigabit Ethernet
Network link 10Gbps with 1µs latency
Operating System Linux Ubuntu 11.04

This is necessary to prevent (1) client-side queuing bias and (2) dependency

between request bursts, which are the two common pitfalls of the OLDI

benchmarking tools [45]. We set up three clients, each of which sends requests

to one server for Memcached and Apache. With three client nodes, we are

able to achieve the maximum load level that an Apache or Memcached server

can sustain without introducing the client-side queuing delay, which was

shown to often incur misleading long response time for some requests [45].

Scaling up the number of nodes will distribute requests from more clients

to more servers, entailing similar load levels as our setup. To model the

bursty nature of the datacenter traffic [46], we set up each client such that

it periodically sends a burst of requests (e.g., 200 requests per burst) to the

Memcached/Apache server. Depending on the target load level, we change

the period between 1.3 and 20 ms.

We use McPAT [47] to calculate power and energy consumption of

processor cores. For calculating the energy consumption of processor cores

in C states, we make assumptions as follows: In C1, C3, and C6 states,

processor cores consume no dynamic power, while processor cores consume

static power at the voltage used right before transitioning to C1 state, static
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power at 0.6V, and no static power, respectively.

To demonstrate the advantages of NCAP over a software approach to detect

latency-critical requests (e.g., [48]), we also implement the algorithms of

REQMonitor and DecisionEngine hardware in the NIC device driver. The

RX SoftIRQ interrupt handler calls a REQMonitor function (Fig. 2.5b) for

each received packet before sending it to upper network layers and increments

reqCnt if the packet contains a latency-critical request. We also count

txBytes in the TX SoftIRQ interrupt handler and utilize a high-resolution

kernel timer, which expires every 1ms to determine reqRate and txRate. We

transition cores from a C state to P0 state as soon as we detect a burst of

latency-critical requests. The P state change policy is the same as hardware

implementation (Alg. 1).

2.6 Evaluation

In this section, we evaluate the effectiveness of NCAP in reducing both the

response time and energy consumption. We consider four power management

policies of Linux. (1) perf disables C states and uses only the performance

governor. (2) ond disables C states and uses only the ondemand governor. (3)

perf.idle uses both the performance and menu governors. (4) ond.idle

uses the ondemand and menu governors. Then we compare these four policies

with three policies of NCAP running atop ond.idle. (1) ncap.sw is a

pure software-based implementation of NCAP, implementing REQMonitor,

txCounter, and DecisionEngine in the NIC kernel driver. (2) ncap.cons is

NCAP with FCONS set to 5 to reduce frequency conservatively over five steps.

(3) ncap.aggr is NCAP with FCONS set to 1 to reduce frequency aggressively.

We set the threshold values of DecisionEngine as follows: RHT = 35K

request per second (RPS), RLT = 5K RPS, TLT = 5M bit per second (BPS),

and CIT = 500µs, all of which are determined by our experimental analysis

of Memcached and Apache.

Servers are often overprovisioned to meet a given SLO under a certain

high load. Therefore, the SLO is typically set right at the knee of the

latency-load curve [33]. Figure 2.7 plots the 95th percentile latency versus

load. The measured latency of the knee is 3ms and 41ms for Memcached

and Apache, respectively. We measure the response times of requests and
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Figure 2.7: Latency versus load for Apache (left) and Memcached (right).

Figure 2.8: Apache response time distribution (left) and energy consumption
(right) when running Apache at low-load level.

energy consumption after running Apache and Memcached at low-, medium-

and high-load levels (which corresponds to 24K, 45K, and 66K RPS for

Apache and 35K, 127K and 138K RPS for Memcached). We normalize the

measured response times to SLO [31]. The energy consumption of each policy

is normalized to perf. We also plot a 200ms snapshot of server’s BW(rx)

and F(core) for ond.idle and ncap.cons. INT(wake) marks the time that

NCAP sends interrupts to the processor cores in order to proactively transition

processor cores from a deep C or P state to P0 state.

Apache. Figure 2.8 and Fig. 2.9 demonstrate that NCAP improves the

energy efficiency of the Apache server while satisfying the SLO. Analyzing

the energy consumption at the low-load level (Fig. 2.8), we observe that

ond offers 22% lower energy consumption than perf. On the other hand,

perf.idle provides 58% lower energy consumption than perf. This

emphasizes the importance of transitioning cores into a C state when a

server is underutilized. Note that ond.idle give marginally ( 5%) lower
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Figure 2.9: Apache response time distribution (left) and energy consumption
(right) when running Apache at medium-load level.

energy consumption than perf.idle. This is because perf.idle makes

cores process incoming requests as fast as possible at P0 state and then

transitions the cores to a deep C state. This is often more energy-efficient

than a policy that makes cores process the requests at a deep P state, which

consumes lower power but takes a longer time.

While all the seven policies satisfy the SLO at the low-load level, as shown

in Fig. 2.9, perf.idle and ond.idle fail to satisfy the SLO at the medium-

load level. Therefore, perf.idle and ond.idle are not viable policies for our

server configuration. In contrast, NCAP (ncap.aggr and ncap.cons) meets

the SLO at both the low- and medium-load levels. Among conventional

policies (i.e., perf, ond, perf.idle, and ond.idle), ond is the most energy-

efficient one that can satisfy the SLO. Nonetheless, ncap.aggr offers 49%

and 21% lower energy consumption than ond at the low- and medium-load

levels, respectively. Compared with ond, the relative energy reduction by

NCAP diminishes as the load level increases, as the opportunity for cores to

run at a deep P state or transition to a deep C state decreases.

A conservative NCAP (i.e., ncap.cons) can provide lower response time

than an aggressive NCAP (i.e., ncap.aggr). This is because ncap.cons can

prevent cores from hastily transitioning to a deep P state when the inter-

arrival time between BW(rx) bursts is short. Consequently, the response

time disparity between ncap.cons and ncap.aggr is more significant at the

medium-load level than the low-load level.

Compared with ncap.aggr, ncap.cons offers 12% and 31% lower 95th

percentile response time than ncap.aggr, but gives 6% and 3% higher
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Figure 2.10: BW(rx) versus F(core) snapshot of ond.idle (top), and ncap.cons

(bottom) when running Apache at low-load level.

Figure 2.11: BW(rx) versus F(core) snapshot of ond.idle (top), and ncap.cons

(bottom) when running Apache at medium-load level.

energy consumption at the low- and medium-load levels, respectively.

Lastly, the BW(rx) versus F(core) snapshot in Fig. 2.10 and Fig. 2.11

clearly demonstrates the shortcoming of ond and ond.idle as described in

Sec. 2.3, and how NCAP assists ond.idle to quickly meet a sudden processing

demand increase for the Apache server.
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We observe that ncap.sw can neither fulfil SLO nor provide significant

energy reduction, as the load level increases. ncap.sw gives only 11% lower

energy consumption but 25% higher 95th percentile response time than ond

at the medium-load level. Although this increase in response time does not

lead to SLO violations at the given load levels shown in Fig. 2.9, we observe

that ncap.sw fails to satisfy SLO at higher-load levels. This is because at

high-load levels, the overhead of REQMonitor implemented in software and

periodically invoking DecisionEngine can overwhelm the processor cores

and keep them from spending cycles for processing packets and requests.

Even at low-load level, ncap.aggr and ncap.cons have lower response

times than ncap.sw. This demonstrates the effectiveness of proactive power

management using an enhanced NIC.

As the NIC and the processor are always highly utilized at high-load

levels, idle rarely transitions the processor cores to a C state. Moreover,

ond does not change the P state of these cores once ond transitions them

to P0 state. This leaves little opportunity for NCAP to exploit. At such

high-load levels, the hardware implementation of NCAP just generates ITHIGH

interrupt at most every 5ms to set F(core) to the maximum. Note that

REQMonitor and DecisionEngine are not in the critical path and the small

interrupt generation rate of NCAP does not incur any notable overhead over

the default path for packet processing. Therefore, at a high-load level, the

energy consumption and response time of NCAP is identical to perf. Note

that the power management policies for servers are aimed to reduce energy

consumption at low- and medium-load levels without violating a given SLO

for occasional surges in the request rate.

Lastly, depending on a given load level, NCAP implements a “race to halt”

policy as it transitions all the cores to P0 states and race to complete the

task as quickly as possible, then transition the cores to a C state [49]. The

dotted boxes in Fig. 2.10 and Fig. 2.11 clearly show the effectiveness of NCAP

in accomplishing this.

Memcached. Figure 2.12 and Fig. 2.13 show that NCAP improves the

energy efficiency of the Memcached server while satisfying the SLO. We

observer that the response time of the Memcached server is more sensitive to

F(core) than the Apache server. In contrast, the response time of the Apache

server was more sensitive to whether or not the menu governor is enabled

(perf versus perf.idle) than F(core) (perf versus ond). perf.idle gives
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Figure 2.12: Memcached response time distribution (left) and energy consumption
(right) when running Memcached at low-load level.

Figure 2.13: Memcached response time distribution (left) and energy consumption
(right) when running Memcached at medium-load level.

47% and 12% longer 95th percentile response time than perf at the low- and

medium-load levels, respectively. Moreover, and ond gives 83% and 340%

longer 95th percentile response time than perf at the low- and medium-

load levels, respectively. Note that Apache is an I/O-intensive database

application that frequently retrieves a “large” amount of data from a storage

device of a server. In contrast, Memcached is a key-value store application

that retrieves mostly small values from the main memory of the server [39].

Consequently, Memcached is more sensitive to F(core) than Apache. This is

also confirmed by much longer mean response time of Apache (1.7ms) than

Memcached (0.6ms).

Although ond cannot timely react to the BW(rx) surges even at the low-load

level (Fig. 2.14, it can at least identify the high processing demand period
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Figure 2.14: BW(rx) versus F(core) snapshot of ond.idle (top), and ncap.cons

(bottom) when running Memcached at low-load level.

Figure 2.15: BW(rx) versus F(core) snapshot of ond.idle (top), and ncap.cons

(bottom) when running Memcached at medium-load level.

incurred by the BW(rx) surge and set F(core) to high frequency (between

2.3 to 2.6GHz). However, at the medium-load level, ond fails to detect the

high processing demand period and sets F(core) randomly between 1.3 GHz

and 2.6GHz. This observation agrees to a previous study demonstrating that

considering only CPU utilization for DVFS is often inefficient and leads to

SLO violations for servers [33].
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Among the conventional power management policies, perf.idle is the

most energy-efficient one that can satisfy the SLO for Memcached at the all

load levels. As shown in Fig. 2.12 and Fig. 2.13, ncap.cons offers 24% and 9%

lower energy consumption, but 15% and 7% longer 95th percentile response

time than perf.idle at the low- and medium-load levels, respectively. On

the other hand, ncap.aggr offers 34% and 20% lower energy consumption,

but 8% and 14% longer 95th percentile response time than perf.idle at the

low- and medium-load levels, respectively.

Increasing the load level reduces the opportunity for NCAP (and other

conventional adaptive power management policies such as ond) to transition

to a deep P or C state as processor cores are constantly busy. Therefore, the

energy consumption of a server deploying NCAP eventually converges to that

of perf as the load level increases. Besides, even perf.idle can find little

opportunity to transition the processor cores to a C state at high-load levels,

leading to no energy reduction compared with perf.

ncap.sw fails to satisfy the SLO for Memcached, as the absolute maximum

sustained load level of the Memcached server is 2.1X higher than that of the

Apache server (68 RPS versus 143 RPS). This underscores the overhead of

ncap.sw for Memcached at high-load levels.

As expected, Fig. 2.12 shows that the 50th, 90th, and 95th percentile

response times of perf is smaller than perf.idle. However, the 99th

percentile response time of perf.idle is lower than perf. This is because

the response time of OLDI applications is a complex function of the interplay

among several hardware/software components, network traffic patterns and

associated queuing delays. We see that enabling/disabling idle often reshapes

network traffic patterns. This in turn incurs some unexpected severe network

resource contentions between received and transmitted network packets at

the beginning of a BW(rx) surge period, leading to a notable response time

increase for a few requests.

2.7 Discussion

In Sec. 2.6, we illustrated the effectiveness of NCAP in improving the energy

efficiency of servers running two OLDI applications with inherently different

characteristics and QoS requirements at different load levels. A hardware
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implementation of NCAP significantly reduces the energy consumption of

the processor without any SLO violations. Compared with perf, NCAP

significantly reduces energy consumption with comparable overall response

time. As shown, at both low- and medium-load levels, NCAP exhibit some

slack between the achieved 95th percentile latency and the SLO. This slack

can be exploited for further reduction of energy consumption using other

techniques [33, 50].

For NCAP, we are simulating a cluster with just one OLDI server. However,

a production datacenter consists of hundreds or thousands of servers running

OLDI applications. One of key characteristics of large-scale datacenters is

the load imbalance amongst server nodes. Therefore, there is a significant

fraction of underutilized servers even at a high overall load level [33] and

NCAP can achieve energy reduction for such underutilized servers.

The gem5 NIC model that we used for NCAP experiments is a single queue

model without any TCP offload engines (TOE). NCAP can also be applicable

to a server with high-end multi-queue NICs with TOEs. In a multi-queue

NIC, as the target core for packet/request processing is known, NCAP changes

the P and C states of the target core independent from other cores (per-

core versus chip-wide change of P and C states). This can further improve

the effectiveness of NCAP. Because TOEs reduce the load on the processors

processing packets, a server employing TOE-capable NICs can sustain a

higher rate of network packets, compared with a server with a conventional

NIC at the same performance state. NCAP can adapt to such scenarios by

increasing the threshold values (RHT and RLT in Alg. 1). Lastly, as a TOE-

enabled NIC holds packets longer time within the NIC than a conventional

NIC, NCAP has more slack to hide the latency of processor cores transitioning

from a sleep or low-performance state to a high-performance state, which in

turn allows NCAP to deploy a more aggressive policy.

2.8 Related Works

Selective fast performance boost for tail latency. To improve tail

latency of OLDI applications, Hsu et al. propose Adrenaline, a query-

level performance boosting scheme [48]. Adrenaline identifies latency-critical

requests in a network-stack “software layer” and rapidly increase V/F using

36



“special on-chip voltage regulator (VR) and clock delivery circuits” for such

requests to reduce tail latency. In contrast, NCAP does not rely on special

on-chip VR and clock delivery circuits. Furthermore, NCAP detects latency-

critical requests at the lowest network layer (i.e., NIC), which can make much

faster detection and decisions than an upper network layer. Finally, NCAP can

offer higher energy efficiency as it not only quickly increases performance

for latency-critical requests but also proactively decreases performance by

observing the rate of transmitted packets and detecting the end of a burst of

responses.

Selective performance reduction for energy efficiency. Pegasus [33]

and TimeTrader [50] exploit latency slacks of queries that arrive before

deadline to reduce energy consumption without increasing SLO violations

for OLDI applications. They slow down the system and reshape distribution

of latency with the slack. Rubik [51] proposes a DVFS scheme that finds

the lowest performance state of processors that does not violate SLOs using

statistical models.

Energy-efficiency improvement exploiting sleep states. Meisner et

al. propose PowerNap [2] that makes server components quickly transition

between a high-performance state and a sleep state to minimize the idle power

consumption of servers. They demonstrate that PowerNap effectively reduce

idle power consumption for servers with low utilization, but they also argue

that PowerNap can experience frequent transitions between the two states

and thus increase high-percentile response time for OLDI applications [31].

Thus, they recommend leveraging low-performance states instead of low-

power sleep to improve energy efficiency for OLDI services. Later, Rossi et

al. [52] show that although making processors operate at low-performance

states can decrease energy consumption by up to 15%, it increases high-

percentile response time of OLDI applications by 70%. Liu et al. propose

SleepScale that effectively combine various performance and sleep state [32].

Queuing-theoretic analyses of performance and energy. All the

aforementioned proposals in this section formulate and tackle server energy-

efficiency challenges using queuing-theoretic analysis approaches in which it

is challenging to capture the interplay between low-level system hardware

and software layers of the computing stack and evaluate schemes modifying

such system hardware and software layers. In contrast, NCAP is devised

and evaluated based on our full-system simulator that can simulate many
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nodes connected by a network and run the full-system software stack on the

simulated system hardware.

2.9 Conclusion

In this chapter, first we made three observations as follows. (1) A sudden

increase or decrease in network packet rate is highly correlated with the

utilization, and thus performance and sleep states of processor cores. (2)

The latency-critical requests of OLDI applications are often encapsulated in

network packets with a predefined format. (3) The latency to deliver received

network packets from a NIC to the processor is notable in network hardware

and software layers. Subsequently, based on these three observations, we

proposed NCAP, network-driven, packet context-aware power management

that enhances a NIC and its driver to assist existing power management

policies to improve the energy efficiency of OLDI applications without

violating the SLO. More specifically, the enhanced NIC and its driver can

detect network packets encapsulating latency-critical requests, speculates

the start and completion of a request burst, and predicts the optimal

performance and power states of processor cores to proactively transition

processor cores from a sleep or low-performance state to a high-performance

state. We demonstrate the effectiveness of NCAP for two OLDI applications:

Apache and Memcached at various load levels using an enhanced full-system

simulator. At low- to medium-load levels, a server deploying NCAP consumes

61-37% lower processor energy than the baseline while satisfying a given

SLO. Further-more, NCAP can provide notably lower energy consumption

with faster 95th percentile response time than an approach that detects and

reacts to latency-critical requests in a network software layer.
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CHAPTER 3

IN-NETWORK COMPUTING FOR
COMMUNICATION ACCELERATION

Single node Deep Neural Network (DNNs) training can take weeks or

months. And even distributed training can take a long time with a

large fraction of the training time wasted in communicating weights and

gradients over the network. State-of-the-art distributed training algorithms

use a hierarchy of worker and parameter server nodes. The aggregators

repeatedly receive gradient updates from their allocated group of the

workers, and send back the updated weights. In this chapter, we propose

an in-network computing architecture for accelerating communication of

gradient updates in distributed DNN training. To maximize the benefits

of in-network acceleration, the proposed solution, named INCEPTIONN (In-

Network Computing to Exchange and Process Training Information Of

Neural Networks), uniquely combines hardware and algorithmic innovations

by exploiting the following three observations. (1) Gradient updates are

tolerant to precision loss therefore they lend themselves better to aggressive

lossy compression algorithms. (2) Compressing and decompressing gradients

inside software is costly and can increase the overall training time compared

to a setup without compression. (3) The centralized parameter server can

become a bottleneck with compression as it needs to compress/decompress

multiple streams from their allocated worker group.

To reduce the communication overhead in distributed DNN training,

we propose a lightweight, hardware-friendly lossy-compression algorithm

for floating-point gradients, which exploits the unique characteristics in

their values. This compression technique significantly reduces the gradient

communication without accuracy loss and with a low-complexity, bump in

the wire hardware implementation in the NIC. To maximize the compression

ratio and avoid the bottleneck at the parameter servers, we also propose a

ring based, decentralized training algorithm where each worker collectively

aggregates the gradient values in a distributed manner. The proposed
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Figure 3.1: (a) Hierarchical structure of the stat-of-the-art distributed training.
(b) INCEPTIONN in the conventional hierarchy. (c) Hierarchical use of INCEPTIONN.

decentralized training algorithm leverages the associative property of the

aggregation operator and enables our in-network accelerators to (1) apply

compression for all network communication between worker nodes, and (2)

avoid all-to-one communication pattern and prevent one node from being a

bottleneck.

3.1 Introduction

Distributed training [53, 54, 55, 56, 57, 58, 59, 60, 61] is the only path

forward for supplying the ever-increasing computation demand of DNN

applications. However, distributing training suffers from costly inter-node

communication that is proportional to the DNN size (e.g., the wight size

of AlexNet and ResNet-50 are 232 MB and 98 MB, respectively). Moving

forward, employing application-specific accelerators such as TPU or FPGA

based accelerators further cuts the computation time and signifies the

communication cost [62, 63]. As shown in Fig. 3.1(a), a state-of-the-art

distributed training framework [58, 64, 65] uses a hierarchical structure

of worker and parameter server nodes. In each training iteration, the

parameter servers gather the gradient updates from their sub-nodes, send

the cumulative gradients to the higher level parameter server, and send back

the aggregated weights downwards. This communication at each iteration

involves sending and receiving hundreds of megabytes in real-world DNN

models (e.g., 525 MB for VGG-16 [66]), imposing significant pressure on

the network. In this chapter, we aim to reduce this communication cost by
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compressing the network data inside each server’s NIC.

Using a general-purpose compression algorithm and offloading it to

the NIC hardware provides little gains due to a small compression ratio.

Furthermore, the hardware complexity can affect the NIC’s line rate. In

this chapter, we instead propose a hardware-algorithm co-designed solution,

dubbed INCEPTIONN1, that offers a lossy compression technique for gradients,

an accelerator architecture for in-network compression/decompression, and

a decentralized distributed training algorithm to maximize the benefits

the in-network accelerator. INCEPTIONN design exploits the following

observations: (1) Gradients are more tolerant of precision loss compared to

weights. Therefore, gradients lend themselves better to lossy compression

with large compression ratios without requiring techniques to alleviate their

loss. (2) Compressing and decompressing gradients in software is costly

and can increase the overall training time compared to a setup without

compression. (3) The centralized parameter server can become a bottleneck

with compression as it needs to compress/decompress multiple streams from

their allocated worker group.

Leveraging these observations, INCEPTIONN comes with a hardware-

friendly and simple lossy-compression algorithm for single precision floating-

point gradient values. This specialized compression algorithm exploits a

unique characteristic of gradient values: the values usually fall in the range of

-1∼1 and the distribution peaks near zero. Given this observation, our lossy

compression algorithm is tailored for the common case where floating-point

values are in the -1∼1 range. The compression algorithm is optimized for

simple hardware implementation in the NIC. We also developed a set of

standard API’s inside Open-MPI framework for seamless integration of the

in-NIC accelerators with the network software stack.

In a centralized distributed training framework, workers send gradient

updates to the parameter server, and the parameter server sends wights back

to the workers. Because weights are not amenable to lossy compression,

we can only apply compression for half of the network communications.

Moreover, the all-to-one communication pattern from workers to the

parameter server requires compressing/decompressing multiple streams

at the parameter server, which complicates the accelerator design. To tackle

1INCEPTIONN: In-Network Computing to Exchange and Process Training Information
Of Neural Networks
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these challenges, INCEPTIONN implements a decentralized, aggregator-free

training algorithm, which only communicates gradients between worker

nodes (see Fig. 3.1(b and c)). The training algorithm is based on this

insight that the aggregation operator (which is typically sum) is associative.

Therefore, the gradients can be aggregated gradually by a group of workers.

The intuition is to let each worker node to receive partial gradient aggregates

from another node in a circular manner and add its contribution to the partial

sum. This way, we do not need to have a centralized parameter server for

aggregating all gradient values. This algorithm enables the distributed nodes

only to communicate gradients and equally share the load of aggregation,

which provides more opportunities for compressing gradients and improved

load balancing among the nodes.2 Figure 3.1(b) and (c) depict the view of

our algorithm when it is deployed at different hierarchies.

INCEPTIONN combines lossy compression algorithm for gradients, in-NIC

compression accelerator, and decentralized distributed training algorithm

and constructs a cross-stack solution for alleviating the communication

bottleneck in distributed DNN training without affecting the training

accuracy. We implement an FPGA prototype of INCEPTIONN and train

state-of-the-art DNN models such as AlexNet [67], VGG-16 [66], ResNet-

50 [68]. INCEPTIONN reduces the communication time by 70.9∼80.7% while

achieving the same level of accuracy.

3.2 Communication in Distributed Training

State-of-the-art distributed training algorithms are based on a hierarchical

worker-aggregator (i.e., parameter server) approach as illustrated in

Fig. 3.2 [58, 64, 65, 63]. In these algorithms, worker and parameter

servers construct a hierarchical structure where the leaves are the workers

that compute the gradients, and the parameter servers collect the calculated

gradients to update the weights in the model and send back the updated

weights to the worker nodes.

The hierarchical parameter server approach has two advantages: (1)

2Disclaimer: developing the decentralized training algorithm is not among the
contributions of this thesis. We discuss it here because of its synergistic ties with the
in-NIC compression/decompression acceleration. Please refer to [20] for more information
about our decentralized training algorithm
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Figure 3.2: Parameter server approach for distributed training.
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Figure 3.3: (a) The size of weights (or gradients). (b) The percentage of the
time spent to exchange g and w in total training time with a conventional worker-
aggregator approach.

the hierarchical reduction tree organization effectively distributes the

aggregation workload to multiple nodes, and (2) reduces the size of system-

wide communication by doing the intermediate aggregations. However, the

all-to-one traffic pattern between parameter servers and worker nodes can

create communication and computation bottlenecks. Figure 3.3 reports the

exchanged weight/gradient size and the fraction of communication time

when training state-of-the-art DNN models on a five-node cluster with

10Gb Ethernet connections. For instance, per each iteration, AlexNet

requires 233 MB of data exchange for each of gradients and weights. Due

to the large size of data exchange, 75% of training time for AlexNet goes

to the communication. Some recent DNNs (e.g., ResNet-50: 98 MB)

that have smaller sizes than AlexNet are also included in our evaluations

(Sec. 3.7). Nonetheless, as the complexity of tasks moves past simple object
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recognition, the DNNs are expected to grow in size and complexity [69]. The

communication/computation ratio becomes even larger as the specialized

accelerators deliver higher performance and reduce the computation time

and/or more nodes are used for training.

3.3 Gradients for Compression

To reduce the communication overhead, INCEPTIONN aims to develop

a compression accelerator in NICs. Utilizing conventional compression

algorithms for acceleration is suboptimal since the algorithms’ complexity

will impose high hardware cost and latency overhead. Thus, in designing

the compression algorithm, we leverage the following algorithmic properties:

(1) the gradients have significantly larger amenity to aggressive compression

compared to weights, and (2) the gradients mostly fall in the range between -

1.0 and 1.0 and the distribution peaks tightly around zero with low variance.

These characteristics motivate the design of our lossy compression for

gradients.

3.3.1 Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training are normally

32-bit floating-point values, whereas they are 16- or 32-bit fixed-point values

in the inference phase [70, 71]. It is widely known that floating-point values

are not very much compressible with lossless compression algorithms [72].

For instance, using Google’s state-of-the-art lossless compression algorithm,

Snappy, not only offers a poor compression ratio of ∼1.5, but also increases

the overall time spent for the training phase by a factor of 2 due to the

computing overhead of compression. Thus, we employ a more aggressive

lossy compression, exploiting tolerance of DNN training to imprecise values

at the algorithm level. While lossy compression provides higher compression

ratios and thus larger performance benefits than lossless compression, it will

affect the prediction (or inference) accuracy of trained DNNs. To further

investigate this, we perform an experiment using a simple lossy compression

technique: truncating some Least Significant Bits (LSBs) of the g and w

values. Figure 3.4 shows the effect of the lossy compression on the prediction
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(a) AlexNet (b)

Figure 3.4: Impact of floating-point truncation of weight w only, gradient g
only, and both w and g on training accuracy of AlexNet and Handwritten Digit
Classification (HDC). Floating-point truncation drops the LSB mantissa or even
exponent bits of the 32-bit IEEE FP format. xb-T represents truncation of x
LSBs.

accuracy of both trained AlexNet and a handwritten digit classification

(HDC) net. This result shows that the truncation of g affects the predictor

accuracy significantly less than that of w, and the aggressive truncation of w

detrimentally affects the accuracy for complex DNNs such as AlexNet. This

phenomenon seems intuitive since the precision loss of w is accumulated over

iterations while that of g is not.
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Figure 3.5: Distribution of AlexNet gradient values at early, middle, and final
training stages.
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3.3.2 Tightness of Dynamic Range in Gradients

In designing the lossy compression algorithm, we leverage the inherent

numerical characteristics of gradient values, i.e., the values mostly fall in

the range between -1.0 and 1.0 and the distribution peaks tightly around

zero with low variance. We demonstrate the properties, analyzing the

distribution of gradients at three different phases during the training of

AlexNet. As plotted in Fig. 3.5, all the gradient values are between -1 and 1

throughout the three training phases and most values are close to 0. We also

find a similar distribution for other DNN models. Given this observation,

we focus on the compression of floating-point values in the range between

-1.0 and 1.0 such that the algorithm minimizes the precision loss.

Our lossy compression algorithm (Sec. 3.4) is built upon these two

properties of gradients, and exclusively aims to deal with gradients. However,

the gradients are only communicated in one direction in the conventional

distributed training while the updated weights are passed around in the

other direction. Therefore, before delving into the details of our compression

technique and its hardware, we first discuss our training algorithm that

communicates gradients in all the directions. Hence, this algorithm can

maximize the benefits of INCEPTIONN’s in-network acceleration of gradients.

3.4 Compressing Gradients

Compression. Algorithm 3 elaborates the procedure of compressing a 32-bit

floating-point gradient value (f) into a compressed bit vector (v) and a 2-bit

tag indicating the used compression mechanism (t). Note that this algorithm

is described based on the standard IEEE 754 floating-point representation

which splits a 32-bit value into 1 sign bit (s), 8 exponent bits (e), and 23

mantissa bits (m). Depending on the range where f falls in, the algorithm

chooses one of the four different compression mechanisms. If f is larger than

1.0 (i.e., e ≥ 127), we do not compress it and keep the original 32 bits

(NO COMPRESS). If f is smaller than an error bound, we do not keep any

bits from f (0BIT COMPRESS). When the gradient values are in the range

(error bound < f < 1.0), we should take a less aggressive approach since we

need to preserve the precision. The simplest approach would be to truncate

some LSB bits from the mantissa. However, this approach not only limits the
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Algorithm 3: Lossy compression algorithm for single-precision
floating-point gradients.
Input : f : 32-bit single-precision FP value
Output : v: Compressed bit vector (32, 16, 8, or 0 bits)

t: 2-bit tag indicating the compression mechanism

1 s ← f [31] // sign
2 e ← f [30 : 23] // exponent
3 m ← f [22 : 0] // mantissa
4 if (e ≥ 127) then
5 v ← f [31 : 0]
6 t← NO COMPRESS // 2’b11
7 else if (e < error bound) then
8 v ← {}
9 t← 0BIT COMPRESS // 2’b00

10 else if (error bound ≤ e < 127) then
11 n shift← 127− e
12 shifted m← concat(1’b1, m) >> n shift
13 if (e ≥ error bound + d(127− error bound)/2e) then
14 v ← concat(s, shifted m[22 : 8])
15 t← 16BIT COMPRESS // 2’b10
16 else
17 v ← concat(s, shifted m[22 : 16])
18 t← 8BIT COMPRESS // 2’b01
19 end
20 end

maximum obtainable compression ratio since we need to keep at least 9 MSB

bits for sign and exponent bits, but also affects the precision significantly as

the number of truncated mantissa bits increases. Instead, our approach is to

always set e to 127 and to not include the exponent bits in the compressed

bit vector. Normalizing e to 127 is essentially multiplying 2(127−e) to the

input value; therefore, we need to remember the multiplicand so that it can

be decompressed. To encode this information, we concatenate a 1-bit “1” at

the MSB of m and shift it to the right by 127 − e bits. Then we truncate

some LSB bits from the shifted bit vector and keep either 8 or 16 MSB bits

depending on the range of value. Consequently, the compression algorithm

produces a compressed bit vector with the size of either 32, 16, 8, or 0 and

2-bit tag indicating the used compression mechanism.

Decompression. Algorithm 4 describes the decompression algorithm

that takes a compressed bit vector v and a 2-bit tag t. When t is NO -

COMPRESS or 0BIT COMPRESS, the decompressed output is simply 32-bit v

or zero, respectively. If t is 8BIT COMPRESS or 16BIT COMPRESS, we should

reconstruct the 32-bit IEEE 754 floating-point value from v. First, we obtain
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Algorithm 4: Decompression algorithm.

Input : v: Compressed bit vector (32, 16, 8, or 0 bits)
t: 2-bit tag indicating the compression mechanism

Output : f : 32-bit single-precision FP value

1 if (t = NO COMPRESS) then
2 f ← v[31 : 0]
3 else if (t = 0BIT COMPRESS) then
4 f ← 32’b0
5 else
6 if (t = 8BIT COMPRESS) then
7 s← v[7]
8 n shift← first1 loc from MSB (v[6 : 0])

m← concat(v[6 : 0] << n shift, 16’b0)
9 else if (t = 16BIT COMPRESS) then

10 s← v[15]
11 n shift← first1 loc from MSB (v[14 : 0])

m← concat(v[14 : 0] << n shift, 8’b0)
12 end
13 e← 127− n shift
14 f ← concat(s, e, m)
15 end

the sign bit s by taking the first bit of v. Then we find the distance from

MSB to the first “1” in v, which is the multiplicand used for setting the

exponent to 127 during compression. Once we get the distance, e can be

calculated by subtracting the distance from 127. The next step is to obtain

m by shifting v to left by the distance and padding LSBs with zeros to fill

the truncated bits during compression. Since we now have s, e, and m, we

can concatenate them together as a 32-bit IEEE 754 floating-point value

and return it as the decompression output.

3.5 In-Network Acceleration of Gradient Compression

After applying the compression algorithm in Sec. 3.4, we may significantly

reduce the amount of data exchanged among nodes in INCEPTIONN, but our

final goal is to reduce the total training time. In fact, although researchers

in the machine learning community have proposed other compression

algorithms [73, 74, 75, 76, 77], most of them did not report the total training

wall-clock time after evaluating only the compression ratio and the impact

of compression on training accuracy. Directly running these compression

algorithms in software, though reducing the communication time, can place

48



heavy burden on the computation resources and thus seriously increase

computation time. Specifically, such compression algorithms need to run

on the CPUs as GPUs cannot offer efficient bit manipulation (e.g., packing

some bits from floating-point numbers) compared to CPUs. Prior work [78]

shows GPUs offer only ∼50% higher throughput at lower compression ratios

than Snappy [79].

Figure 3.6 shows that the training time increases by a factor of 2∼4×
even when using the fastest lossless (Snappy) and lossy (SZ [80]) compression

algorithms. Even a simple lossy truncation operation significantly increases

the computation time, because simply packing/unpacking a large number

of g values also significantly burdens the CPUs. This in turn considerably

negates the benefit of reduced communication time as shown in Fig. 3.6,

only slightly decreasing the total training time. Therefore, to reduce both

communication and computation times, we need hardware-based compression

for INCEPTIONN.

3.5.1 Accelerator Architecture and Integration with NIC

NIC architecture. To evaluate our system in a real-world setting, we

implement our accelerators on a Xilinx VC709 evaluation board that offers

10Gbps network connectivity along with programmable logic. We insert the

Figure 3.6: Impact of software-based lossless (Snappy) and lossy (SZ)
compression algorithms on the total training time of AlexNet and HDC. “Base”
denotes baseline without compression. xb-T represents truncation of x LSBs.
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Figure 3.7: Overview of NIC architecture integrated with compressor and
decompressor.

accelerators within the NIC reference design that comes with the board.

Figure 3.7 illustrates this integration of the compression and decompression

engines. For output traffic, as in the reference design, the packet DMA

collects the network data from the host system through the PCIe link. These

packets then go through the Compression Engine that stores the resulting

compressed data in the virtual FIFOs that are used by the 10G Ethernet

MACs. These MACs drive the Ethernet PHYs on the board and send or

receive the data over the network. For input traffic, the Ethernet MACs

store the received data from the PHYs in the virtual FIFOs. Once a complete

packet is stored in the FIFOs, the Decompression Engine starts processing and

passing it to the packet DMA for transfer to the CPU. Both engines use the

standard 256-bit AXI-stream bus to interact with other modules.

Although hardware acceleration of the compression and decompression

algorithms is straightforward, their integration within the NIC poses

several challenges. These algorithms are devised to process streams

of floating-point numbers, while the NIC deals with TCP/IP packets.

Hence, the accelerators need to be customized to transparently process

TCP/IP packets. Furthermore, the compression is lossy, the NIC needs to

provide the abstraction that enables the software to activate/deactivate the

lossy compression per packet basis. The following discusses the hardware

integration and Sec. 3.5.2 elaborates on the software abstraction.

Compression Engine. Not to interfere with the regular packets that should

not be compressed, the Compression Engine first needs to identify which packets

are intended for lossy compression. Then, it needs to extract their payload,

compress it, and then reattach it to the packet. The Compression Engine

processes packets in bursts of 256 bits, which is the number of bits an

AXI interface can deliver in one cycle. Our engines process the packet in

this burst granularity to avoid curtailing the processing bandwidth of the
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NIC. Our software API marks a packet compressible by setting the Type of

Service (ToS) field [81] in the header to a special value. Since the ToS field is

always loaded in the first burst, the Compression Engine performs the sequence

matching at the first burst and identifies the compressible packets. If the

ToS value does not match, compression is bypassed. The Compression Engine

also does not compress the header and the compression starts as soon as the

first burst of the payload arrives.

Figure 3.8 depicts the architecture of the compression hardware. The

payload burst feeds into the Compression Unit equipped with eight Compression

Blocks (CBs), each of which performs the compression described in Alg. 3.

Each CB produces a variable-size output in the size of either 32, 16, 8, or 0

bits, which need to be aligned as a single bit vector. We use a simple binary

shifter tree that produces the aligned bit vector of which possible size is from

0 to 256. The 2-bit tags of the eight CBs are simply concatenated as a 16-bit

vector. Finally, the aligned bit vector and tag bit vector are concatenated

as the final output of the Compression Unit, of which size is at least 16 bits

and can go up to 272 bits. For each burst, the Compression Unit produces
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a variable-size (16 – 272) bit vector; therefore, we need to align these bit

vectors so that we can transfer the 256-bit burst via the AXI interface. The

Alignment Unit accumulates a series of compressed bit vectors and outputs a

burst when 256 bits are collected.

Decompression Engine. Similar to the Compression Engine, the Decompression

Engine processes packets in the burst granularity and identifies whether or

not the received packet is compressed through the sequence matching of

the ToS field at the first burst. If the packet is identified as incompressible

or the burst is header, decompression is bypassed. The payload bursts

of compressible packets is fed into the decompression hardware, of which

its architecture is delineated in Fig. 3.9. Since the compressed burst

that contains 8 FP numbers can overlap two consecutive bursts at the

Decompression Engine, reading only a single burst could be insufficient to

proceed to the decompression. Therefore, the Decompression Engine has a

Burst Buffer that maintains up to two bursts (i.e., 512 bits). When the

Burst Buffer obtains two bursts, it feeds the 16-bit tag to the Tag Decoder

to calculate the size of the eight compressed bit vectors. Given the sizes,

the eight compressed bit vectors are obtained from the buffered 512 bits.
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Since each compressed bit vector has a variable size of either 32, 16, 8 or 0

bits, the possible size of the eight compressed bit vectors is from 0 and 256.

These eight compressed bit vectors (0 – 256) and the tag bit vector (16)

are fed into the eight Decompression Blocks (DBs) in the Decompression Unit,

which executes the decompression algorithm described in Alg. 4. Then, the

Decompression Unit simply concatenates the outputs from the eight DBs and

transfers it via the AXI interface. For the next cycle, Burst Buffer shifts away

the consumed bits and reads the next burst if a burst (i.e., 256 bits) has

been consumed and the left bits are fewer than a burst.

3.5.2 APIs for Lossy Compression of Gradients

As mentioned previously, we identify the context of a TCP/IP packet [19] by

utilizing the ToS field in the IP header. ToS is an 8-bit field in the header

of a TCP/IP packet and is used to prioritize different TCP/IP streams. We

tag packets that need to be compressed/decompressed with a reserved ToS

value of 0x28. For each socket connection, we can call the setsockopt function

to set the ToS field or update it on the fly.

Figure 3.10 demonstrates how we tag TCP/IP packets that need to

be compressed or decompressed in the OpenMPI framework. It shows

a scenario where we co-run DNN training application and some other
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networking applications on a server. To properly tag TCP/IP packets

that require compression/decompression, we introduce MPI collective -

communication comp, which is a specialized MPI collective communication

API set. We implement our INCEPTIONN algorithm described in Sec. 3.4

without compression with the default MPI collective communication APIs.

MPI collective communication comp propagates a variable down to the

OpenMPI networking APIs and sets the ToS option of the corresponding

TCP sockets used for communication. We do not modify the Linux kernel

network stack and the packets with ToS set to 0x28 reach to the NIC like

regular TCP packets. Inside the NIC, a simple comparator checks the ToS

field of each incoming packet; if the ToS field is set to 0x28, then the packet is

sent to the compression engine, otherwise we do not perform compression for

the outgoing packet. On a receiver node NIC, we have the same comparator

for incoming packets. If the ToS field is set to 0x28, then we perform

decompression on the packet. Otherwise, the received packet is a regular

Ethernet packet and is directly sent to the processor for reception.

3.6 Methodology

3.6.1 DNN Models

Table 3.1 enumerates the list of evaluated DNN models with the used hyper-

parameters for training.

AlexNet. AlexNet [67] is a CNN model for image classification, which

consists of five convolutional layers and three fully connected layers with

rectified linear unit (ReLU) as the activation function. Before the first and

the second fully connected layers, the dropout layers are applied. The model

size of AlexNet is 233 MB. For our experiments, we use 1,281,167 training

and 50,000 test examples from the ImageNet dataset [82].

Handwritten Digit Classification (HDC). HDC [83, 84, 85, 86, 87]

is a DNN model composed of five fully-connected layers, which performs

Handwritten Digits Recognition. The dimension of each hidden layer is

500 and the model size is 2.5 MB. The used dataset is MNIST [88], which

contains 60,000 training and 10,000 test images of digits.
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Table 3.1: Hyperparameters of different benchmarks.

Hyperparameter AlexNet HDC ResNet-50 VGG-16
Per-node batch size 64 25 16 64
Learning rate (LR) -0.01 -0.1 0.1 -0.01

LR reduction 10 5 10 10
Num of LR reduction iterations 100000 2000 200000 100000

Momentum 0.9 0.9 0.9 0.9
Weight decay 0.00005 0.00005 0.0001 0.00005

Number of training iterations 320000 10000 600000 370000

ResNet-50. ResNet [68] is a state-of-the-art DNN model for the image

classification task, which offers several variants that have different number

of layers. Our experiments use the most popular variant, ResNet-50, which

contains 49 convolution layers and 1 fully connected layer at the end of the

network. ResNet-50 has a model size of 98 MB and uses the ImageNet dataset.

VGG-16. VGG-16 is another CNN model for image classification, which

consists of 13 convolutional layers and 3 fully connected layers. VGG-16 also

uses ImageNet dataset and its model size is 525 MB.

3.6.2 Distributed DNN Training Framework3

We develop a custom distributed training framework in C++ using NVIDIA

CUDA 8.0 [89], Intel Math Kernel Library (MKL) 2018 [90], and OpenMPI

2.0 [91]. Note that INCEPTIONN can be implemented in publicly released

DNN training frameworks such as TensorFlow [92]. However, our custom

distributed execution framework is more amenable for integration with

software and hardware implementation of our lossy compression algorithm.

In our custom training framework, all the computation steps of DNN

training such as forward and backward propagations are performed on the

GPU (also CPU compatible), while communication is handled via OpenMPI

APIs. Besides, our framework implements diverse distributed training

architectures and communication algorithms using various types of OpenMPI

APIs to exchange gradients and weights.

3Disclaimer: this is not among the contributions of this thesis. Please refer to [20] for
more information about the decentralized training algorithms that authors have developed
for this work

55



3.6.3 Measurement Hardware Setup

We use a cluster of four nodes, each of which is equipped with a NVIDIA

Titan XP GPU, an Intel Xeon CPU E5-2640 @2.6GHz, 32GB DDR4-

2400T [93], and a Xilinx VC709 board that implements a 10Gb Ethernet

reference design along with our compression/decompression accelerators.

We employ an additional node as an aggregator to support the conventional

worker-aggregator based approach. We also extend our cluster up to eight

nodes to evaluate the INCEPTIONN’s scalability, while the rest of experiments

are performed on the four-node cluster due to limited resources. All nodes

are connected to a NETGEAR ProSafe 10Gb Ethernet switch [94]. We

designed the compression/decompression accelerators such that they do not

affect the operating frequency (100 MHz) and bandwidth while successfully

demonstrating the full functionality with the modified NIC driver and

OpenMPI APIs. Our distributed training framework runs concurrently on

every node in our cluster and all performance evaluations are based on the

real wall clock time. As we discover that the 10Gb Ethernet reference design

implemented in a Xilinx VC709 board can achieve only ∼2.1 Gb due to

inefficiency in its driver and design, we use Intel X540T1 10Gb Ethernet

NICs [95] to measure the total training and communication times when we

do not deploy hardware compression. That is, we use the Intel X540T1

NIC for all the baseline measurements. To measure the communication time

after deploying hardware compression, we first measure the breakdown of

communication time (e.g., driver time, NIC hardware time, and TX/RX

time through links) from both NICs based on Xilinx VC709 board and Intel

X540T1 10Gb Ethernet NICs. Then, we scale the TX/RX time through the

link of the Intel NIC based on a compression ratio corresponding to a given

iteration to calculate the total communication time while accounting for the

compression/decompression time.
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3.7 Evaluation

3.7.1 Performance Improvement with INCEPTIONN

We implement the conventional worker-aggregator training algorithm in a

cluster of four workers and one aggregator, as the reference design. Table 3.2

shows a detailed breakdown of the training time of AlexNet, HDC, ResNet-50

and VGG-16, on the cluster. We report both the absolute and normalized time

for 100 iterations of training. Irrespective of which DNN model we consider,

Table 3.2 shows that (1) less than 30% of the wall clock time is spent for

local computations including the forward/backward propagations and update

steps, and (2) more than 70% of the time is used for communication, which

clearly indicates that the communication is the bottleneck.

Figure 3.11 first compares the training time of the reference design

(WA) with that of the INCEPTIONN (INC), when both run for the same

number of iterations/epochs without applying compression. We also provide

the training time breakdown between computation and communication.

This result shows that even in a small cluster without compression, the

INCEPTIONN’s training algorithm offers 52%, 38%, 49%, and 31% shorter

total training time than the worker-aggregator based algorithm for AlexNet,

HDC, ResNet-50 and VGG-16, respectively. This is due to 55%, 39%, 58%,

and 36% reduction in communication time in comparison with the reference

design.

Intuitively, INCEPTIONN is much more communication-efficient, because it

not only removes the bottleneck link, but also enables concurrent utilization

Table 3.2: Detailed time breakdown of training different benchmarks using
the worker-aggregator based five-node cluster. Measurements are based on 100-
iteration training time in seconds.

Steps
AlexNet HDC ResNet-50 VGG-16

Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.
Forward pass 3.13 1.6% 0.08 4.9% 2.63 3.5% 32.25 4.3%

Backward pass 16.22 8.3% 0.07 4.3% 4.87 6.5% 142.34 17.3%
GPU copy 5.68 2.9% - - 2.24 3.0% 12.09 1.5%

Gradient sum 8.94 4.6% 0.09 5.2% 3.68 4.9% 19.89 2.4%
Communication 148.71 75.7% 1.36 80.2% 60.58 80.2% 583.58 70.9%

Update 13.67 7.0% 0.09 5.3% 1.55 2.1% 30.50 3.7%
Total training time 196.35 100.0% 1.7 100.0% 75.55 100.0% 823.65 100.0%
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Figure 3.11: Comparison of training time between the worker-aggregator
based approach (WAx) and the INCEPTIONN (INCx) with and without hardware-
based compression in NICs. WA denotes the worker-aggregator baseline without
compression, and WA+C denotes WA integrated with our compression only on
gradient communication with an error bound of 2−10. INC denotes INCEPTIONN

baseline without compression, and INC+C denotes with our compression given an
error bound of 2−10. Training time is measured in a cluster of four workers for
INCx and one more aggregator for WAx. Note that these measurements are based
on the same number of training iterations.

of all the links among nodes. Besides, this balanced gradient exchange also

contributes to the reduction of computation time as the gradient summation

is done by all the nodes in a distributed manner, whereas the worker-

aggregator based algorithm burdens the designated aggregator nodes to

perform the aggregation of the gradients collected from a group of subnodes.

Furthermore, Fig. 3.11 compares the training time of the reference

design and INCEPTIONN system, when both are equipped with our gradient

compression (WA+C, INC+C). From the result, we see that the

conventional worker-aggregator based approach can still benefit from our

compression with a ∼ 30.8% reduction in communication time compared

to its baseline (WA), although only one direction of communication is

applicable for compression. On the other hand, our gradient-centric

INCEPTIONN algorithm offers maximized compression opportunities such

that INCEPTIONN with hardware compression (INC+C) gives ∼ 80.7% and

∼ 53.9% lower communication time than the conventional worker-aggregator

baseline (WA) and INCEPTIONN baseline (INC), respectively. Therefore, the

full INCEPTIONN system (INC+C) demonstrates a training time speedup

of 2.2 ∼ 3.1× over the conventional approach (WA) for the four models
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trained over the same number of epochs.

3.7.2 Effect of INCEPTIONN Compression on Final Accuracy

The accuracy loss in gradients due to lossy compression may affect the final

accuracy and/or prolong the training because of the necessity to run more

epochs to converge to the lossless baseline accuracy. To understand the

effect of our lossy compression on accuracy (and on prolonged training), we

take the conventional worker-aggregator system (WA) and the INCEPTIONN

system (INC+C), and train the models until both systems converge to the

same level of accuracy. Table 3.3 presents the total number of epochs and the

final speedup of INCEPTIONN system over the conventional training system to

achieve the same level of accuracy. From this, we observe that only a modest

number of more epochs (1 or 2) are required to reach the final accuracy

and thus INCEPTIONN system still offers a speedup of 2.2× (VGG-16) to 3.1×
(AlexNet) over the convention approach, which matches the performance in

Sec. 3.7.1. Furthermore, we find that the extra number of training epochs is

small but essential, without which an accuracy drop of ∼ 1.5% might incur.

3.7.3 Evaluation of INCEPTIONN Compression Algorithm

Figure 3.12 compares the compression ratios among various lossy compression

schemes, and the impact of these compressions on relative prediction

accuracy of DNNs which are trained through our training algorithm for the

same number of epochs. Specifically, we evaluate truncation of 16, 22, and

24 LSBs of gradients and INCEPTIONN compression with the absolute error

bound of 2−10, 2−8 and 2−6. We observe that the näıve truncation of floating-

point values only provides low constant compression ratios (i.e., 4× at most)

Table 3.3: Speedup of INCEPTIONN over the conventional approach when both
achieve the same level of accuracy. We use the same notations with Fig. 3.11.

AlexNet HDC ResNet-50 VGG-16
WA INC+C WA INC+C WA INC+C WA INC+C

Training Time 175h 56h 170s 64s 378h 127h 847h 384h
# of Epochs 64 65 17 18 90 92 74 75

Speedup 1 3.125 1 2.66 1 2.98 1 2.2
Final Accuracy 57.2% 57.2% 98.5% 98.5% 75.3% 75.3% 71.5% 71.5%
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while suffering from substantial accuracy loss (i.e., up to 62.4% degradation

in prediction accuracy of trained ResNet-50). This is due to the fact that

the compression errors introduced by näıve truncation are uncontrolled and

open ended. Moreover, the potential of truncation is limited by the length of

the mantissa. Dropping more bits will perturb the exponent (e.g., “24b-T”

in Fig. 3.12), which results in a significant loss of accuracy of trained DNNs.

In general, the truncation methods are only suitable for simpler DNNs such

as HDC and are not suitable for complex DNNs such as AlexNet, VGG-16, or

ResNet-50.

Figure 3.12: Comparison of (a) compression ratio and (b) impacts on prediction
accuracy of DNNs trained by INCEPTIONN training algorithm with various lossy
compression schemes. Note that the accuracy is based on the same epochs of
training (without extra epochs) for each model. (“Base” denotes the baseline
without compression. The number on top of each “Base” bar denotes the absolute
prediction accuracy. xb-T represents truncation of x LSBs. “INC” bars are the
results of INCEPTIONN lossy compression with a given error bound.)
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Table 3.4: The bitwidth distribution of compressed gradients. The compressed
gradients are composed of two bits for indication tag and compressed data bits (0,
8, 16, or 32 bits).

2-bit 10-bit 18-bit 34-bit

AlexNet
INC(2-10) 74.9% 3.9% 21.1% 0.1%
INC(2-8) 82.5% 14.8% 2.6% 0.1%
INC(2-6) 93.0% 7.0% 0.0% 0.1%

HDC
INC(2-10) 92.0% 6.5% 1.5% 0.0%
INC(2-8) 95.7% 3.4% 0.9% 0.0%
INC(2-6) 98.1% 1.6% 0.4% 0.0%

ResNet-50
INC(2-10) 81.6% 17.9% 0.5% 0.0%
INC(2-8) 92.3% 7.7% 0.1% 0.0%
INC(2-6) 97.6% 2.4% 0.0% 0.0%

VGG-16
INC(2-10) 94.2% 0.9% 4.9% 0.0%
INC(2-8) 96.2% 3.8% 0.0% 0.0%
INC(2-6) 97.3% 2.7% 0.0% 0.0%

In contrast, our lossy compression shows much higher compression ratios

(i.e., up to 14.9×) as well as better preserves the training quality than the

truncation cases even for those complex DNNs. Figure 3.12 shows that the

errors induced by compression are well controlled by our algorithm and the

average compression ratios are boosted by the relaxation of a given error

bound. With the most relaxed error-bound (2−6), almost all benchmarks

demonstrate a compression ratio close to 15× and the final accuracies of

trained DNNs are only degraded slightly, i.e., < 2% in absolute accuracy.

Note that this slight drop of accuracies incurs only when DNNs are trained

for the same number of epochs as their lossless baselines and such drop can

be easily compensated by negligible extra epochs of training, as discussed in

Sec. 3.7.2.

To further understand the significant gains from our compression

algorithm, we analyze the bitwidth distribution of compressed gradients.

Table 3.4 reports the collected statistics. When the error bound is 2−6,

for all the evaluated models, our algorithm compresses larger than 90% of

gradients into two-bit vectors. Even with 2−10 as the error bound, 75% to

94% of gradients are compressed into the two-bit vectors. Leveraging this

unique value property of gradients, our lossy compression algorithm achieves

significantly larger compression ratio than general-purpose compression

algorithms.

Lastly, we find that the compression ratio of the gradients is not necessarily

proportional to the reduction in communication time, as shown in Fig. 3.11
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where the compression with an error bound of 2−10 should have compressed

the communication time by a factor of 5.5 ∼ 11.6×. This is because we do

not reduce the total number of packets and the network stack overhead such

as sending network packet headers remains the same. Consequently, the use

of more relaxed error bounds (e.g., 2−8 and 2−6) only provides marginally

additional reduction in the overall communication time.

3.7.4 Scalability Evaluation of INCEPTIONN Training
Algorithm

We also evaluate the scalability of our INCEPTIONN training algorithm

by extending our cluster up to eight worker nodes. Since we had only

four GPUs available at our disposal, we only measured the gradient

exchange time for the scalability experiments. The gradient exchange time

consists of both gradient/weight communication and gradient summation

time, and represents the metric in the scalability evaluation, because only

communication and summation overheads scale with the number of nodes,

while the time consumed by other DNN training steps such as forward pass,

backward pass, weight update are constant due to their local computation

nature.

Figure 3.13 compares the gradient exchange time between the INCEPTIONN

baseline (INC) and the worker-aggregator baseline approach (WA), both

without compression across different number of worker nodes. As shown

in Fig. 3.13, the gradient exchange time increases almost linearly with the

number of worker nodes in the WA cluster; however, it remains almost

constant in the INCEPTIONN cluster, especially when training larger models

such as AlexNet, VGG-16, and ResNet-50 where the network bandwidth is the

bottleneck. This phenomenon seems intuitive, since in WA cluster both the

communication and summation loads congest the aggregator node, while the

INCEPTIONN approach balances these two loads by distributing them evenly

among worker nodes. Analytically, by adopting the communication models

in [96], the gradient exchange time in a WA cluster is: (1 + log(p)) ·α+ (p+

log(p)) · n · β + (p− 1) · n · γ, where p denotes the number of workers, α the

network link latency, n the model size in bytes, β the byte transfer time, and

γ the byte sum reduction time. In practice, for distributed DNN training,
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Figure 3.13: Scalability of INCEPTIONN training algorithm (INC) as compared to
the conventional worker-aggregator based algorithm (WA) with different number
of worker nodes. Gradient exchange time consists of both gradient/weight
communication and gradient summation time. All values are normalized against
four-node WA case.

the first term is negligible compared to the second and third term, due to

the large model size n and the limited network bandwidth β. The above

equation explains clearly why the conventional WA approach is not scalable

with increasing number of nodes p, i.e., the gradient exchange time is linear

in cluster size. In contrast, the communication-balanced INCEPTIONN offers

the gradient exchange time of: 2(p − 1) · α + 2(p−1
p

) · n · β + (p−1
p

) · n · γ,

where the effect of large cluster size p cancels in the second and third terms,

making INCEPTIONN much more scalable.
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3.8 Related Work

Acceleration for ML. There has been a large body of work that leverage

specialized accelerators for machine learning. Most of the work have

concentrated on the inference phase [71, 97, 98, 99, 100, 101, 102, 103, 104,

105, 106, 107, 108, 109, 110, 111, 112] while INCEPTIONN specifically aims

for accelerating the training phase. Google proposes the TPU [71], which is

an accelerator with the systolic array architecture for the inference of neural

networks. Microsoft also unveiled Brainwave [110] that uses multiple FPGAs

for DNN inference. Eyeriss is also an accelerator for CNN inference of which

compute units set a spatial array connected through the reconfigurable

multicast on-chip network to support varying shape of CNNs and maximize

data reuse.

While the inference phase has been the main target of ML acceleration,

the community has recently started looking into the acceleration of training

phase [71, 113, 63, 114, 115]. ScaleDeep [113] and Tabla are ASIC and FPGA

accelerators for the training phase while offering higher performance and

efficiency compared to GPUs, which are the most widely used general-

purpose processors for ML training. Google Cloud TPU [71] is the

next-generation TPU capable of accelerating the training computation

on the Google’s distributed machine learning framework, Tensorflow [116].

CoSMIC [63] provides a distributed and accelerated ML training system

using multiple FPGA or ASIC accelerators. Others [114, 115] focus on

the acceleration of neural nets training with approximate arithmetic on

FPGA. These ML training accelerators are either single-node solutions or

accelerators deployed on the centralized training systems based on worker-

aggregator approach, while INCEPTIONN provides a decentralized gradient-

based training system and an efficient in-network gradient compression

accelerators.

Gradient reduction techniques. There has been a series of work that

proposes techniques for gradient reductions [73, 74, 75, 118, 62]. Quantization

techniques for gradients [73, 74, 75, 118] provide algorithmic solutions to

reduce the gradient precision while preserving the training capability. Deep

Gradient Compression [62] is a complementary approach that reduces the

amount of communication by skipping the communication of the gradients

in each iteration. It will only communicate the gradients if the locally
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accumulated gradient exceeds a certain threshold. These works do not change

the worker-aggregator nature of distributed training, nor propose in-network

acceleration of compression.

3.9 Conclusion

Communication is a significant bottleneck in distributed training. The

community has pushed forward to address this challenge by offering

algorithmic innovations and employing the higher speed networking fabric.

However, there has been a lack of a solution that conjointly considers

these aspects and provides an interconnection infrastructure tailored for

distributed training. INCEPTIONN is an initial step in this direction that

co-design hardware and algorithms to provide an in-network accelerator for

the lossy compression of gradients and maximize its benefits by introducing

a decentralized distributed training algorithm.
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Part II

Near-Memory Processing Using

Commodity DRAM
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Near-memory processing was in fact a hot research topic in late 1990

and early 2000 [119, 16, 120, 13]. Many papers has been published in

that time frame, proposing to integrate DRAM and processor logic on a

same die. However, none of those proposals got commercialized because

of two main reasons. First, integrating DRAM and processing logic was

too disruptive for chip manufacturing. The transistors parameters that are

used for memory devices are different from the ones used for processing

logic, and integration of DRAM and logic on a same chip compromises the

reliability of the memory or the speed of the CPU [121]. Moreover, such

proposals lack a standard interface for programming the processing logic

on the memory which was unattractive for the industry [17]. Introduction

of the 3D stack memory technologies in late 2000s renewed interest in

the declining near-memory processing research. Researchers proposed to

enable the logic layer in 3D DRAM produces to perform computation. The

logic layer then could utilize the abundant memory bandwidth of Through

Silicon Vias (TSVs) to accelerate memory intensive applications, such as

graph processing or machine learning kernels, by offloading the memory

intensive regions of the code to the near-memory processors. Although 3D

stack memory technology resolves the difficulties of integrating memory

and logic on a same die, it still suffers from lacking a standard interface

for programming the near-memory processors. Moreover, Datacenters are

optimized for cost while the cost per capacity of 3D stack memory devices

cannot match that of the commodity DRAM products. Above all, the logic

layer underneath the DRAM layers has a limited thermal design power

(TDP) and area which makes it impossible to implement high-performance

processing logic (such as out-of-order processors) in the logic layer [122]. All

these reasons together makes near-memory proposals based on 3D stacked

memories only attractive for mobile platforms with small memory capacity

and computing requirements.

DRAM cost is in a race with processor costs these days and its hard

to tell which one cost more when assembling a high-end server. This is

why it is important to use commodity DRAM modules in datacenters to

reduce the hardware cost. In this part, we introduce “memory module

based” near-memory architecture that enables near-memory processing on

commodity DRAM modules. The key idea is to enhance the buffer device of

a commodity DRAM module (i.e., Dual Inline Memory Module (DIMM))
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with processing logic. These specialized DIMMs can perform computation on

the data stored in the main memory independently form the host CPU. More

specifically, we introduce Memory Channel Network (MCN) in Chapter 4. MCN

seamlessly integrates near-memory processing within a server with scale-out

processing of data-intensive applications across servers in a datacenter. The

memory address space of the near-memory processors in MCN DIMMs is

separate from the host CPU address space and MCN DIMMs communicate

with the host CPU using a message passing model. The address space

separation and message passing communication model is motivated by the

execution model of large-scale data-intensive applications. Such applications

are often programmed on top of popular distributed computing frameworks

such as MPI, Hadoop, and Spark where each worker process has its own

address space. In Chapter 5 we introduce NetDIMM, which complements MCN

architecture. One shortcoming in MCN is that in an MCN-enabled cluster,

if an application does not fit inside one server, then MCN DIMMs need to

communication with each other over the long latency PCIe NICs. Our

measurements shows that over 90% of the network hardware latency is

contributed by the PCIe bus and frequent memory copies between NIC,

DRAM, and CPU. NetDIMM integrates a full blown NIC inside the buffer

device of a commodity DIMM. Compared to a conventional PCIe NIC,

NetDIMM reduces data movement for networking, completely removes PCIe

bus from networking data path, and accelerate memory copies in the network

software stack by supporting in-memory buffer cloning. MCN and NetDIMM

together propose a novel, scalable server architecture with a revolutionary

network architecture.
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CHAPTER 4

APPLICATION TRANSPARENT
NEAR-MEMORY PROCESSING OF
DATA-INTENSIVE APPLICATIONS

The physical memory capacity of servers is expected to increase drastically

with the deployment of the forthcoming non-volatile memory technologies.

This is a welcomed improvement for the emerging data-intensive applications.

For such servers to be cost-effective, nonetheless, we must cost-effectively

increase computation throughput and memory bandwidth commensurate

with the increase in memory capacity without compromising the application

readiness. Tackling this challenge, we present Memory Channel Network

(MCN) architecture in this chapter. Specifically, first, we propose an MCN

DIMM, an extension of a buffered DIMM where a small but capable processor

called MCN processor is integrated with a buffer device on the DIMM for

near-memory processing. Second, we implement device drivers to give the

host and MCN processors in a server an illusion that they are independent

heterogeneous nodes connected through an Ethernet link. These allow

the host and MCN processors in a server to run a given data-intensive

application together based on popular distributed computing frameworks

such as MPI and Spark without any change in the host processor hardware

and its application software, while offering the benefits of high-bandwidth

and low-latency communication between the host and MCN processors over

the memory channels. As such, MCN can serve as an application-transparent

framework which can seamlessly unify the near-memory processing within a

server and the distributed computing across such servers for data-intensive

applications. Our simulation running the full software stack shows that a

server with eight MCN DIMMs offers 4.56× higher throughput and consume

47.5% less energy than a cluster with nine conventional nodes connected

through Ethernet links, as it facilitates up to 8.17× higher aggregate DRAM

bandwidth utilization. Lastly, we demonstrate the feasibility of MCN with

an IBM POWER8 system and an experimental buffered DIMM.
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4.1 Introduction

The performance of servers running emerging data-intensive applications

such as big-data analytic is often limited by the DRAM capacity and DDR

bandwidth. The expected deployment of emerging memory technologies such

as 3D XPoint [123] to servers will relieve the ever-increasing pressure on

demanding larger memory capacity for such applications. However, for such

servers to be cost-effective, we must increase the compute throughput and

available memory bandwidth commensurate with the increase in memory

capacity of servers.

As part of such effort, researchers have proposed various near-memory

processing architectures that tightly integrate a processor with memory to

expose higher bandwidth to the processor [15, 124, 125, 126, 127, 14, 128,

129, 130, 131, 132]. Such near-memory processing architectures, nonetheless,

require significant changes in target applications especially to orchestrate the

communication between the host and near-memory processors [16, 133, 15,

126]. This hurts application readiness and thus creates a big hurdle for wide

adoption.

Tackling the application readiness challenge for near-memory processing,

we start with an observation that many emerging data-intensive applications,

which can benefit from near-memory processing, are often built upon

distributed computing frameworks such as Hadoop [134], Spark [135] and

MPI [136]. These distributed computing frameworks distribute given input

data of an application and have many servers process the input data in

parallel. As such, the high-level processing model of the recent near-

memory processing architectures was inspired by the distributed computing

frameworks [127, 15].

In this chapter, building on the distributed computing frameworks and

exploiting high bandwidth and low latency of DDR interfaces, we propose

Memory Channel Network (MCN). Specifically, MCN aims to give the

host and near-memory processors connected through a DDR interface in

a server the illusion that these processors are connected through Ethernet

links. Therefore, MCN can provide a standard and application-transparent

communication interface not only between the host and near-memory

processors in a server, but also among such servers, seamlessly unifying

near-memory processing with distributed computing for data-intensive
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applications. MCN consists of the following hardware and software

components.

(HW) MCN DIMM. We architect an MCN processor and place it in a

buffer device of a buffered DIMM (between a host-side Memory Controller

(MC) and its associated DRAM devices on the DIMM). We refer to this

buffered DIMM as MCN DIMM. For an MCN processor, we may take a small

but capable Application Processor (AP), such as Qualcomm Snapdragon

835 [137], as the MCN processor and then implement a simple MCN interface

in it. The MCN interface in the buffered device is similar to a network

interface but takes a DDR PHY instead of an Ethernet PHY, interfacing

between a host-side MC and an MCN processor. Lastly, each MCN processor

runs a lightweight OS with the network software layers essential for running

a distributed computing framework.

(SW) MCN driver. We develop a special device driver, referred to as

MCN driver, for the host and MCN processors to give them the illusion that

they are computer nodes connected through an Ethernet interface. An MCN

driver is similar to a NIC driver, but it intercepts a network packet from the

network software layer in the OS and redirects it to MCs instead of a NIC, if

the network packet is destined to an MCN DIMM. Unlike a conventional NIC

generating an interrupt to inform a host of new network packets, a memory

interface (and MC) does not have a corresponding mechanism. Hence, we

implement a special mechanism in the host-side MCN driver to determine

whether any MCN DIMM is sending any network packet to the host or other

MCN DIMMs.

These MCN DIMMs and associated drivers together allow a server to run

an application based on a distributed computing framework without any

change in the host processor hardware, distributed computing middleware,

and application software, while offering the benefits of high-bandwidth and

low-latency communications between the host and the MCN processors over

memory channels. Furthermore, each MCN processor accesses its DRAM

devices on the same MCN DIMM through its (local) memory channels

isolated from the (global) memory channel shared with other DIMMs.

Therefore, multiple MCN DIMMs can concurrently operate. That is, the

aggregate memory bandwidth for processing is proportional to the number

of MCN DIMMs. As such, MCN can serve as an application-transparent

near-memory processing platform, as well as unify near-memory processing

71



in a server with the distributed computing across multiple servers.

To further increase the utilized bandwidth and decrease the communication

latency between MCN DIMMs, we propose optional software and hardware

optimization techniques. Specifically, we optimize the MCN driver and some

of the OS network layers, leveraging unique properties of MCN over the

traditional Ethernet. We also show that additional communication efficiency

can be achieved by changing the host-side MC to exploit a special signal of

the recent and future memory interfaces. We use this signal to interrupt the

host MC when an MCN DIMM has outgoing packets.

We model MCN DIMMs, develop MCN drivers, adapt some OS network

layer, and demonstrate the full functionality in a full-system simulator

running the entire software stack. Our evaluation shows that MCN offers

456.5% and 78.1% improvement in the network bandwidth and the latency

compared with a conventional 10GbE network, respectively. Furthermore, an

MCN-enabled server with 8 MCN DIMMs increases the aggregate memory

utilization bandwidth for distributed applications by up to 8.17× compared

with a conventional server.

Atop the simulation study, as a proof of concept, we take an experimental

buffered DIMM which consists of an FPGA device and several DDR3 DRAM

devices, implement an MCN processor on the experimental buffered DIMM,

and demonstrate the feasibility of the MCN concept after plugging the DIMM

into a memory channel of an IBM POWER8 system and installing the

developed MCN drivers on the both IBM POWER8 host and the MCN

DIMM.

4.2 Background

4.2.1 Memory Sub-System

Buffered DRAM modules. To strike a balance between memory capacity

and bandwidth, multiple DRAM devices that operate in tandem compose a

rank, and one or more ranks are packaged on a memory module. A popular

memory module called Dual-Inline Memory Module (DIMM) has 64 data

I/O (DQ) pins (plus 8 DQ pins for a DIMM supporting ECC). A memory

channel connects an MC to one or more DIMMs. In a server class processor,
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Figure 4.1: IBM Centaur DIMM.

an MC drives hundreds of DRAM devices and delivers Command/Address

(C/A) signals through a memory channel to them. Considering the GHz

operation frequency range of a modern DRAM device, this in turn leads

to a serious signal integrity problem. For example, a C/A pin from a

memory controller has to drive 144 DRAM devices (18×4 devices per rank

supporting ECC multiplied by 8 ranks) when 8 ranks are populated per

channel, whereas a data pin is connected to 8 DRAM devices, which is an

order of magnitude fewer. Therefore, DIMMs for servers typically employ a

buffer per DIMM, such as Registered DIMM (RDIMM) [138] or Load-Reduce

DIMM (LRDIMM) [139], to reduce this huge capacitive load imposed to an

MC and alleviate the signal integrity problem. Figure 4.1 depicts another

DIMM type with a buffer, Centaur DIMM (CDIMM) [140]. Each CDIMM

with a tall form factor comprises up to 80 commodity DDR DRAM devices

and a Centaur device which provides a 16MB eDRAM L4 cache, memory

management logic, and an interface between DDR and IBM proprietary

memory interfaces. Note that the bandwidth available to the CPU remains

constant as the memory channel is shared by all the DIMMs although the

memory capacity increases with more DIMMs per channel.

OS memory management for kernel space drivers. For virtual to

physical address mappings, an OS manages hierarchical page tables, each

with two or more levels, depending on a processor architecture [141]. During

the booting process, the Linux kernel is responsible for setting up page tables

and turning on the Memory Management Unit (MMU). By default, the Linux

kernel and users assume that any virtual page can be mapped to any physical

page. However, it is desirable to (D1) reserve a specific range of physical
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memory space exclusively for an (memory-mapped) I/O device and its driver,

and (D2) allow the driver to access this physical memory range with virtual

addresses since every address issued by the processor is a virtual address after

the MMU is turned on.

In the Linux kernel, we can accomplish (D1) by editing the Device Tree

Blob (DTB). A DTB is a set of attributes of the hardware components in

a given system and is fetched during the booting process. Specifically, a

node in a DTB represents a hardware component and describes information

such as the number and type of CPUs, base physical addresses and sizes of

memory devices, I/O devices, etc. To reserve a specific region of physical

memory, we create a new node in the device tree, wherein a physical address

range is explicitly enumerated and is tagged as reserved memory. At boot

time, the kernel will exclude this physical address range from mapping to

other processes, thereby creating a memory map hole. Later, the reserved

memory region can be assigned to a device driver by setting the memory -

region parameter.

4.2.2 Network Sub-system1

OS network layer. TCP/IP is the most commonly used protocol for

the distributed computing frameworks. An application sends and receives

data through a TCP socket using tcp sendmsg() and tcp recvmsg()

system calls, respectively. When a user application calls tcp sendmsg(),

the data is copied to a kernel buffer, fragmented into several segments of

Maximum Transmission Unit (MTU) size, undergoes TCP/IP processing,

and eventually sent to a NIC for transmission. The MTU limit exists since

sending a packet a large data size at once is vulnerable to random transient

errors in traditional physical links, such as the Ethernet links, and increases

the probability and the overhead of re-transmitting the packet. In Linux, the

default value of MTU is 1500 bytes. On the receiver side, the segments of a

message are reassembled inside the Linux kernel and the complete message

is copied to the user-space application.

NIC and driver. Figure 4.2 shows the interactions between a processor,

memory, and a NIC when a network packet is received or transmitted. Once

1Please also refer to Sec. 2.2.2
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Figure 4.2: Network sub-system architecture.

an outgoing packet is processed in the TCP/IP stack, it is written to a

transmission ring (TX ring) buffer ( A ) in the physical memory. Then, the

NIC driver informs the NIC of the available packets in the TX ring ( B ).

Later, the NIC reads the ready-to-transmit descriptors from the TX ring and

DMA-transfers the data from the memory to the NIC buffers( C ). Finally,

the packet is sent out ( D ).

Similar to the TX ring, the NIC driver manages a circular ring buffer

in the memory for the incoming packets (RX ring in Fig. 4.2). When a

packet is received ( 1 ), the NIC DMA-transfers the data to the next available

buffer in the RX ring ( 2 ). When the DMA-transfer is done, a HW interrupt

is sent to the processor ( 3 ). Upon receiving the HW interrupt, the NIC

driver schedules a softIRQ. When the softIRQ handler eventually executes,

it prepares a socket buffer by assembling the data inside the RX ring ( 4 )

and send it to a higher network layer for further processing. Note that

once a NIC starts receiving packets, switching to a polling-based approach

is often preferred to a pure interrupt-based approach. This is because the

performance cost of handling many hardware interrupts is notable which can

bottleneck the throughput of a high bandwidth network [142].

4.3 Memory Channel Network

The overall design of MCN is depicted in Fig. 4.3. The MCN DIMMs and

MCN drivers are designed with two key objectives in mind. First, they should

run applications based on the existing distributed computing frameworks

without any change in the host processor hardware, distributed computing
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Figure 4.3: MCN Overview.

middleware, and application software. That is, MCN does not require any

modification in the host processor and commodity DRAM architectures since

it limits all hardware changes to a buffer device in a DIMM. Second, each

MCN processor accesses its DRAM devices on the same MCN DIMM through

its (local) memory channel isolated from the (global) memory channel which

is shared with other DIMMs, as depicted in Fig. 4.3(b). Therefore, multiple

MCN DIMMs can be concurrently accessed by an MCN processor through its

local MCs, multiplying the aggregate memory bandwidth for processing [124,

143], as shown in Fig. 4.3(a) and (b). This is in contrast to a traditional

memory sub-system, where the memory bandwidth for processing remains

constant regardless of the number of DIMMs per memory channel; because

multiple DIMMs share a global memory channel and the host processor

can access only one DIMM at a time through the shared global memory

channel. As such, MCN can serve as an application-transparent near-memory

processing platform, as well as unify the near-memory processing in a node
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with the distributed computing across multiple such nodes, as illustrated in

Fig. 4.3(d).

4.3.1 MCN DIMM Architecture

An MCN DIMM, also referred to as an MCN node, consists of an MCN

processor and its associated DRAM devices. A host-side MC treats

MCN DIMMs as buffered DIMMs (Sec. 4.2.1) and thus supports a mix

of multiple MCN and conventional DIMMs per memory channel, as depicted

in Fig. 4.3(b).

In this work, we propose to place a small low-power but capable mobile

processor used in APs on a buffer device2 of each DIMM. For example,

four ARM Cortex A57 cores with 2MB LLC, implemented in Samsung

Exynos 5433, consume ∼2mm×2mm space and Thermal Design Power

(TDP) of ∼1.8W after scaling the size and power in 20nm technology [145]

to the size and power in 10nm technology. A Qualcomm Snapdragon 835

AP incorporates a quad-core 2.45GHz ARM Cortex A57 CPU, a 710MHz

Adreno 540 GPU, two 1866MHz (LP) DDR4 memory channels, and a

UFS2.1 storage interface. Even with other components specific for mobile

applications such as an LTE modem, a camera image signal processor (ISP),

digital signal processors, etc., the Snapdragon 835 AP operates at TDP of

5W or less [137] and it is implemented on a small (∼8mm×8mm) die in 10nm

technology [146]. Lastly, if the power constraint of DIMMs prevents us from

taking more capable processors such as Tegra R© SoC [147] for MCN DIMMs,

then we can bring an external power cable to DIMMs as NVDIMMs [148]

do.

Figure 4.3(a) depicts the MCN processor architecture which implements

a DDR interface and a 96KB SRAM buffer in a typical quad-core mobile

processor. A DDR interface consisting of DDR PHY and a protocol engine

repeats DRAM C/A and DQ signals from/to a host MC as a typical buffer

device does. It also performs two operations that are specific to the MCN.

First, upon receiving a memory-write request from a host MC, it retrieves

a command, a host physical memory address and 64-byte data from the

captured C/A and DQ signals, translates the address to an SRAM address

2The size and TDP of an IBM Centaur buffer device is ∼10mm×10mm and 20W in
22nm technology [144]
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and writes the data to the SRAM. Second, when servicing a memory-read

request from a host MC, it performs operations similar to handling a memory-

write request except that it reads data from the SRAM and generates DQ

signals while following a given DDR protocol. Note that this DDR interface

differs from the DDR interface between the MCN MC and DRAM devices

on the MCN DIMM; we denote the former as the host DDR interface and

the later as the MCN DDR interface. The SRAM serves as a communication

buffer between the host and MCN processor, and is exposed to both the host

and MCN processor as a part of their respective physical memory space,

referred to as host and MCN physical memory space. The DDR interface

and the SRAM together operate as an MCN interface similar to a NIC in a

conventional node.

Figure 4.4 describes three regions of the SRAM buffer. We implement a

circular TX buffer using tx-start and tx-end pointers, pointing to the start

of the valid data and end of the valid data, respectively. Based on the area

from McPAT in 22nm technology, we calculate that the size of this buffer

is 0.074mm2 in 10nm technology. TX and RX circular buffers store MCN

messages which are sent to or received from the host processor, respectively.

The tx-poll and rx-poll fields are used for handshaking between the host

and MCN processors. We will describe the detailed usage of these control bits

and the circular buffers in Sec. 4.3.2. When the OS network layer running

on an MCN processor sends a network packet, the MCN driver, which is

perceived as a regular Ethernet interface (Sec. 4.3.2), sends the network

packet to a specific MCN physical memory address, where the SRAM buffer

is mapped. When the MCN MC receives any memory request to the MCN

physical memory space corresponding to the SRAM buffer, it re-directs the

memory request to the SRAM buffer, which is connected to the MCN MC

through an on-chip interconnect, instead of sending it to the DRAM devices

on the MCN DIMM.

Lastly, similar to a conventional NIC, we implement a HW interrupt

mechanism in the MCN interface to notify the MCN processor of any received

packet in a SRAM RX buffer (IRQ in Fig. 4.3(a)). Upon receiving an interrupt

from the MCN interface, the MCN processor starts a transfer of the packets

from the RX SRAM buffer to the kernel memory space of the MCN driver

using memcpy function. The memory copy operation can be accelerated using

a custom DMA engine (Sec. 4.4.2).
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4.3.2 MCN Drivers

The MCN drivers run on both the host and the MCN DIMMs to create an

illusion of the existence of an Ethernet interface between the host and MCN

processors. An MCN driver exposes itself as a regular Ethernet interface to

the upper OS network layers, therefore, MCN does not require any changes

in the OS network stack. This is a key advantage for MCN as there is a

resistance towards the changes in the TCP/IP stack [149, 150].

Network organization. As shown in Fig. 4.3(b), we can populate a host

memory channel with multiple MCN DIMMs (also referred to as MCN

nodes). The host-side driver (i.e., the driver running on the host processor),

creates a virtual Ethernet interface for each MCN node installed on the host

memory channels. That is, a virtual point-to-point connection is provided

between the host and each MCN node, as shown in Fig. 4.3(c). We refer

to each of the virtual Ethernet interfaces created on the host as a host-side

interface. We then assign a MAC address, which is a unique 48-bit ID

assigned to a network device, to each virtual Ethernet interface. Note that

an MCN-side driver (i.e., a driver running on an MCN processor) creates

one virtual Ethernet interface, as an MCN node only has one point-to-point

connection to the host. We refer to a single virtual Ethernet interface created

on an MCN node as an MCN-side interface.

To facilitate the MCN communication, we assign an IPv4 address [151]

to each of the host-side and MCN-side interfaces. From the host point of

view, all of the MCN nodes are locally connected. We assign a unique IP

addresses to each host-side interface (and the corresponding MCN node) and

set the subnet mask of each interface to 255.255.255.255. This means that

the host forwards a packet to a host-side interface if and only if the entire

destination-IP address of the packet matches with the IP address of the

interface. However, an MCN node does not have a direct connection to the

other MCN nodes and outside world. Therefore, a packet that is generated

from an MCN node and is destined to another MCN node (or outside world),

has a different destination-IP address than the host’s IP address. To support

MCN to MCN and MCN to outside world accesses, we set the subnet mask

of the MCN-side interfaces to 0.0.0.0. This means that all the outgoing

packets from an MCN node is forwarded to the host, regardless of its IP

address. Note that within an MCN node, a packet with its destination-IP
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Figure 4.4: SRAM buffer of MCN interface.

set to localhost3 does not get forwarded to the host as the kernel first checks

if a packet belongs to a loopback network interface; if there is no match, then

it enumerates the other available interfaces.

This setup ensures that the host arbitrates all the traffic to the MCN nodes,

including the traffic between the MCN nodes. This network organization

also supports the communication between MCN nodes connected to different

hosts by having the source host to forward the packet to the host of the

destination MCN node through a conventional NIC.

Driver. Figure 4.5 illustrates that the MCN-side driver is composed of

three main components: (C1) a packet forwarding engine, (C2) a memory

mapping unit, and (C3) a polling agent. Upon initialization, the network

driver creates a network device object, sets it up as an Ethernet device,

and registers the device with the kernel, thereby making a network interface

visible to the host OS. The memory mapping unit accounts for the memory

interleaving across different host memory channels and ensures that the

physical address space of the SRAM buffers are accessible to the host and

MCN processors through the virtual memory. Finally, the polling agent

is responsible for periodically polling the SRAM buffers to check for new

incoming packets.

Packet transmission and reception. In this sub-section we explain the

3In the IPv4 standard, 127.0.0.0 through 127.255.255.255 addresses are reserved for
loopback purposes
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Figure 4.5: Overview of MCN driver.

flow of sending a packet from an MCN node and receiving it on the host.

Since the host and MCN nodes run symmetric drivers, except for some minor

differences, the flow is mirrored for a host to send a packet to an MCN node.

The transmission flow of a packet received at the MCN-side driver from

the network stack is as follows (please refer to Fig. 4.4). (T1) Read tx-start

and tx-end from the SRAM buffer. (T2) If there is enough space available

in the TX buffer, write the packet length followed by the packet data to

the TX memory space, starting from the address pointed by tx-end. As

shown in Fig. 4.4, we call the combination of a packet length and data an

MCN message. (T3) Update tx-end and also set tx-poll to a non-zero

value, indicating that a new packet is enqueued in the TX buffer. Memory

fences are used to ensure that the packet data has been copied correctly,

prior to setting the control bits. Note that, if there is not enough space

available in the TX buffer, the driver returns NETDEV TX BUSY as described

in < linux/netdevice.h >.

Because a conventional DDR interface does not provide a signal that can

serve as an interrupt or allow a transaction to be initiated by a DIMM, we

propose to adopt a (host-side) polling agent to notify the host processor of

incoming packets as a high-speed NIC do. The polling agent periodically

reads the tx-poll field of the SRAM across all the MCN nodes, checking

whether there are any pending packets in any of the MCN nodes. If a pending

packet is detected, the host-side driver follows the following steps to receive

a packet. (R1) Read the tx-start and tx-end pointers. (R2) Read the

cache line at tx-start. (R3) Retrieve the packet length and the packet
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destination MAC address (dst-mac). In an Ethernet packet, the first six

bytes of the data construct the destination MAC address [152]. (R4) Send

the packet to the packet forwarding engine. (R5) If the tx-start pointer

moved by the number of bytes read from the TX SRAM buffer is not equal

to tx-end, it means that there are still available packets in the TX buffer,

so start over from R2. Otherwise, reset tx-poll, and then exit.

Packet forwarding engine. As discussed earlier, the host processor is

responsible for routing packets between MCN nodes. When the host receives

a packet from either another host or an MCN node, it first inspects the

packet to check its destination MAC address (dst-mac). Depending on the

value of the dst-mac, we have one of the following scenarios. (F1) dst-mac

matches the MAC address of the host-side interface: Allocate a socket buffer

(sk buff), copy the received packet data from the RX SRAM buffer to the

sk buff, and send it up to the network stack for processing. (F2) dst-mac

is the reserved address for broadcast: Perform F1 and F4 actions. Also

transmit the received packet to all the connected MCN nodes, except the

source node, by performing T1-T3 steps for each MCN node. (F3) dst-mac

matches the MAC address of one of the MCN-side interfaces: Transmit the

received packet to the destination MCN node by performing T1-T3 steps.

(F4) dst-mac does not match the host interface or any MCN-side interfaces:

The packet is sent to a conventional NIC interface using dev queue xmit

function in Linux kernel. If a packet is received at an MCN-side interface,

MCN always sends the packet up to the network stack for processing by

taking the actions explained in F1.

Memory mapping unit. By default, ioremap (Sec. 4.2.1) creates a page

mapping that is tagged as uncacheable in the ARM architecture. While

this prevents the coherency issues, the maximum size of a memory access to

an uncacheable memory space is double word (i.e., 64 bits). The memory

access size along with the strict memory request ordering limit the memory

bandwidth utilization. For the bulk memory transfers needed in MCN, it is

desirable to access memory in cache line granularity. This can be done using

memremap with a MEMREMAP WC flag. This allows the MC’s ability to perform

a write combining which groups all consecutive write requests into a cache

line granularity inside its write queue. On the other hand, read requests to

consecutive memory addresses cannot be merged inside the MC read queue as

it violates the memory consistency model. Thus, the MCN host-side driver
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Figure 4.6: MCN memory interleaving for two channels.

uses an uncacheable memory mapping with the write combining support

for the TX buffer and a cacheable memory mapping for the RX buffer. It

explicitly invalidates the cache lines in the range of RX buffer after receiving

a packet.

While accessing an MCN SRAM buffer, we must be cognizant of the

memory channel interleaving performed by the memory sub-system, wherein

the successive cache lines in the physical address space are mapped evenly

across all the MCs of the host processor. This is to maximize the memory

channel parallelism when there is spatial locality between the memory

accesses. Without accounting for the memory interleaving, a näıve memcpy

would incorrectly spread the packet data across MCN DIMMs in different

memory channels although it should send them to a particular MCN DIMM’s

address space. To efficiently tackle this challenge, we propose memcpy to mcn

and memcpy from mcn functions that perform memory copying such that the

64-byte blocks within the address space of the MCN DIMMs are interleaved

in a manner that reflects the memory interleaving of the host processor.

This allows the driver to send a packet data to an appropriate memory

channel and thus MCN DIMM. Figure 4.6 illustrates an example of how

memcpy to mcn and memcpy from mcn functions map a host processor view

of the physical address space to an MCN processor view with two memory

channels. As there is an MCN driver assigned to each memory channel and

a typical distributed application sends packets to multiple (MCN) nodes, all

the memory requests from these MCN drivers still concurrently utilize all

the memory channels.
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4.4 Bandwidth and Latency Optimization

In Sec. 4.3, we described a basic implementation to enable the MCN

concept without any changes in the software stack and the host processor

architecture. In this section, we identify some inefficiencies in the näıve

MCN implementation and exploit some unique properties of a memory

channel to further increase the bandwidth and decrease the latency of MCN.

Specifically, we first propose to optimize the software stack which does not

demand any hardware change. Second, we propose to optimize the memory

sub-system architecture if we are permitted to slightly change the host

processor architecture as well.

4.4.1 Software-Stack Optimization

In this section, we first exploit the features in the OS and conventional

processors, and propose an efficient polling mechanism to reduce the

communication latency between the host and MCN processors. Second, we

exploit the fact that the Bit Error Rate (BER) of a memory channel is orders

of magnitude lower than that of a network link and propose to bypass the

checksum calculation to detect any error in a received packet and adopt a

larger frame size for the packets.

Efficient polling mechanism. In Sec. 4.3.2, we proposed a näıve polling

approach using a tasklet. However, a core running such a polling function

can neither sleep nor accept a timer to reschedule. Consequently, it will

overwhelm the core by rescheduling itself rapidly. To more efficiently

support a polling mechanism, we propose to use a High-Resolution (HR)

timer which reschedules a polling function call at a specific time with

a nanosecond resolution. Specifically, whenever an HR-timer routine is

invoked, it schedules a tasklet for running the polling function and then

exits. Hence, any function called inside an HR-timer should be very short

(i.e., scheduling a tasklet). Note that a tasklet is interruptible and does

not negatively impact a high priority process.

Bypassing checksum. The network stack inspects a Cyclic Redundancy

Check (CRC) value or checksum of a packet to detect any error before it

delivers the packet to the next network layer. Since the checksum calculation

for each packet consumes the host and MCN processors cycles, it often limits
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the maximum bandwidth and the minimum latency. To reduce such an

overhead, the network stack typically supports an interface to offload the

checksum calculations to a hardware in the NIC. We propose a much simpler

mechanism to efficiently handle checksum calculations. Since a memory

channel is protected by an ECC (and CRC in DDR4), we do not need to

redundantly generate a checksum value for an MCN message. Therefore, we

disable the header checksum checking in the TCP/IP stack without affecting

the reliability of the TCP packets.

Large frame size and TCP segmentation offload (TSO). The standard

MTU of an Ethernet frame is 1.5KB, as discussed in Sec. 4.2.2. A larger

MTU can better amortize the protocol processing software overhead and

improve the network performance. Although the network stack can support

a larger MTU, it often uses the default size as a larger packet going through

the conventional Ethernet links is more likely to be corrupted and incur

a higher cost for a re-transmission. However, MCN can efficiently deploy

a larger frame size as the BER of a memory channel is typically multiple

orders of magnitude lower than that of an Ethernet link. Exploiting such an

advantage, we propose to increase the MTU of MCN to 9KB. This can be

done by configuring the interface via the Linux ifconfig utility. The unique

MCN message format described in Sec. 4.3.2 seamlessly supports any MTU

size.

Even with a large MTU size, the network stack may still need to divide a

bulk user data chunk into multiple MTU-sized packets. Each of these packets

undergoes TCP/IP processing and pays the overhead of segmentation. To

optimize bulk data transfer, modern NICs support TCP segmentation offload

(TSO) [153], that offloads the segmentation to the NIC hardware. The driver

of a TSO enabled NIC provides a TCP/IP header along with a large data

chunk to the NIC. The TSO enabled NIC performs the following actions to

send the data chunk. (O1) Divide the data chunk into several MTU sized

segments. (O2) Copy the TCP/IP header at the beginning of each data

segment. (O3) Calculate and set the Total Length, Header Checksum, and

Sequence Number fields of each TCP/IP header [154, 151]. (O4) Send out

each MTU sized packet. The MCN drivers support TSO by ensuring that

there is sufficient space in the TX and RX buffers for the largest possible user

data chunk allowed by the network stack. Since MCN can also bypass the

checksuming, we simply set the Total Length field of the TCP/IP header
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to the user data chunk size and then transmit the unsegmented packet to the

destination MCN node.

4.4.2 Memory Sub-System Optimization

In this section, we identify two bottlenecks to accomplish a higher bandwidth

and lower latency in MCN: the lack of an interrupt mechanism to notify the

host processor of the received packets from MCN DIMMs and a memory-

to-memory copy accelerator to efficiently transfer the packet data from (to)

the host processor to (from) an SRAM buffer in an MCN node. To tackle

these limitations, we propose to slightly change the memory sub-system of

the host processor as a set of optional optimization.

Supporting interrupt from MCN DIMMs. In Sec. 4.4.1, we proposed

to adopt a high-resolution timer to more efficiently implement the polling

agent. However, whenever the HR-timer is called, an interrupt is asserted,

which incurs a performance overhead if the polling fails and no packet is

received. If the timer interval is increased to minimize the overhead, then

the average packet transmission latency increases as well. Additionally, upon

receiving an HR-timer interrupt, the driver scans across all the MCN DIMMs

on all channels, which further increases the overhead of the polling.

To further reduce the host-side polling overhead, we propose to leverage

an existing interrupt-like signal (ALERT N in the DDR4 standard [155]).

Specifically, we may re-purpose an ALERT N signal to serve as an interrupt

from the MCN-DIMMs installed on a memory channel to the host processor.

First, an MC receiving an ALERT N from a memory channel must identify

which DIMM on the channel has asserted it. Second, the MC relays the

signal to a core as an interrupt. Third, the host-side drivers of the MCN

DIMMs installed on the memory channel poll the MCN DIMMs on the

channel, as for the polling case. This mechanism not only eliminates the

need for periodic polling, but also allows the MCN drivers to immediately

know which memory channel it should check.

Memory-to-memory DMA. The host (MCN) processor is responsible

for copying packets between SRAM buffers and the host (MCN) physical

memory space with the MCN specific memcpy functions. Consequently, the

host and MCN processors issuing many memory requests often become a
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bottleneck, especially when they exchange many packets. This bottleneck can

be resolved by implementing MCN DMA engines (MCN-DMA) in the memory

controller of both the host and MCN processors.

More specifically, we use one DMA engine for each MCN node and one

for each memory channel of the host processor. While an MCN side DMA

engine maintains only one RX and one TX ring buffers, a host side DMA

engine maintains separate ring buffers for each of the MCN nodes installed

on the corresponding memory channel. For the packet transmission, the

MCN driver initiates the DMA transfer by writing the destination MCN

node number (always set to 0 in an MCN-side driver) and the transfer size

to the corresponding DMA engine configuration space. The DMA engine is

cognizant of the memory channel interleaving and writes a packet from the

TX ring to the corresponding MCN node address space. When an MCN node

has a new packet, utilizing the DIMM interrupt mechanism explained in the

previous sub-section, the DMA engine receives an interrupt from the MCN

DIMM, reads the available packets from its address space, and populates

the RX ring with the received data. When the DMA transfer is finished,

the host MCN driver is interrupted. The newly arrived packets in the RX

ring are read and routed based on the packet forwarding engine explained in

Sec. 4.3.2.

4.5 Methodology

Proof of concept demonstration. As a proof of concept, we developed

a prototype MCN system using an experimental buffered DIMM [156] and

an IBM POWER8 S824L system shown in Fig. 4.7(a) and (b), respectively.

The prototype MCN DIMM couples two 32GB DDR3-1066 DIMMs with

an Intel (Altera) Stratix V FPGA that directly interfaces with the host

memory channel, the IBM Differential Memory Interface (DMI). We

implemented an MCN DIMM architecture based on a soft IP core, NIOS

II embedded processor [157] acting as an MCN processor in the FPGA.

We also implemented the MCN SRAM buffer with BRAM blocks, custom

glue logic to connect the buffer with DMI/Avalon interface, and used Intel’s

Avalon [158] as the internal bus in the FPGA. Finally, we developed the

MCN drivers for the IBM host processor and the NIOS II processor based
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Figure 4.7: (a) ConTutto FPGA board (b) plugged into an IBM S824L system
alongside regular CDIMMs. (c) MCN implementation block diagram.

on the descriptions in Sec. 4.3. Figure 4.7(c) depicts the prototype system

architecture.

We use McPAT [47] in 22nm technology for power estimation.

Simulator and benchmarks. A NIOS II processor implemented with

FPGA and operating at 266MHz has very limited computing capability.

Besides, we have only one experimental buffered DIMM. This prevents us

from evaluating the full potential of MCN. Thus, we take a full-system

simulation approach to further evaluate the effectiveness of MCN. To model

a baseline distributed system with multiple nodes connected by 10GbE

network, we first take dist-gem5 [23, 159, 160] and run the entire software

stack in the full-system mode. Second, we implement the MCN DIMM

architecture in dist-gem5 and port the MCN drivers implemented for the

prototype system to a simulated processor architecture (i.e., ARMv8 ISA).
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Table 4.1: System configuration.

Parameters Values
Cores (# cores, freq): MCN/Host (4, 2.45GHz)/(8, 3.4GHz)
Superscalar 3 ways
ROB/IQ/LQ/SQ entries 40/32/16/16
Int & FP physical registers 128 & 192
Branch predictor/BTB entries BiMode/2048
MCN Caches (size, assoc): I/D/L2 32KB,2/32KB,2/1MB,16ways
Host Caches: I/D/L2/L3 32KB,2/32KB,2/256KB,16/8MB,16
L1I/L1D/L2 latency,MSHRs 1/2/12 cycles, 2/6/16 MSHRs
DRAM DDR4-3200MHz/8GB
Operating system Linux Ubuntu 14.04 (kernel 4.3)
Network 10GbE/1µs link latency

Table 4.2: Different MCN configurations.

mcn0 baseline MCN with HR-timer polling implementation
mcn1 mcn0 + MCN DIMM interrupt mechanism
mcn2 mcn1 + IPv4 checksum bypassing
mcn3 mcn2 + MTU increasing to 9KB
mcn4 mcn3 + enabling TSO
mcn5 mcn4 + enabling MCN-DMA

Table 4.1 summarizes the dist-gem5 system configuration.

Various optimization levels we used for the evaluation is described in

Table 4.2. The same notations are used in the figures in Sec. 4.6.1.

We use iperf [161] to compare the achieved bandwidth of MCN with

the baseline 10GbE network. We run one iperf server and four iperf

clients that simultaneously communicate with the server. To the collect

round-trip latency, we run ping with various payload size. We evaluate

communication intensive benchmarks from NAS Parallel Benchmark

(NPB) [162], CORAL [163], and BigDataBench [164] benchmark suites.

4.6 Evaluation

4.6.1 Network Bandwidth and Latency

Figure 4.8 shows the achieved iperf bandwidth of MCN with different

optimization levels, normalized to that of 10GbE. We show the bandwidth
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Figure 4.8: Network bandwidth for various MCN configurations when running
iperf, normalized to 10GbE network.

for the following iperf setups: host-mcn runs the iperf server on the

host and runs the iperf clients on the MCN DIMMs; mcn-mcn runs the

iperf server on an MCN DIMM and runs the iperf clients on the host

and the remaining MCN DIMMs. Compared with 10GbE, mcn0, which

is the basic MCN implementation, improves the bandwidth by 30.3% and

7.8% for the host-mcn and mcn-mcn configurations, respectively. Replacing

polling mechanism with interrupt does not have a notable effect on the

achieved iperf bandwidth as iperf is not compute intensive and the polling

agent does not interfere with the iperf processes. However, disabling IPv4

checksum calculation, increasing MTU size from 1.5KB to 9KB, enabling

TSO, and enabling MCN-DMA, each in turn offer extra 3.0%, 99.6%, 31.4%,

and 30.6% bandwidth improvements for host-mcn configuration.

In general, the achieved bandwidth of host-mcn is higher than mcn-mcn

configuration. The reason is that there is no point-to-point communication

channel between two MCN DIMMs and the mcn-mcn traffic have to be routed

through the host-side MCN driver (Sec. 4.3.2). The achieved bandwidth of

mcn-mcn is 10.5%, 17.2%, and 20.1% lower than host-mcn configuration

when employing mcn3, mcn4, mcn5 optimization levels, respectively.

Figure 4.9 illustrates the round-trip latency of a ping (ICMP) request,

with various payload size, from host to an MCN DIMM (i.e., host-mcn),

normalized to the round-trip latency of a 16-byte ping request between

two hosts connected with a 10GbE network. As shown, MCN significantly
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Figure 4.9: Round-trip latency between host and an MCN node normalized to
10GbE for different MCN configurations across various packet sizes.

reduces the latency between the nodes. For host-mcn, compared with 10GbE,

mcn0 reduces the round-trip latency by 62.2-75.4% across different packet

sizes. Although the mcn-mcn communication is less efficient than the host-

mcn configuration, the optimized MCN implementations always offers lower

latency than 10GbE. As shown in Fig. 4.10, for mcn-mcn configuration,

mcn5 reduces the round-trip latency by 52.2-79.0% across different packet

sizes, compared with 10GbE.

Table 4.3 reports the latency breakdown of different hardware/software

components for 10GbE and mcn0 when transmitting and receiving a TCP

Figure 4.10: Round-trip latency between two MCN nodes normalized to 10GbE
for different MCN configurations across various packet sizes.
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Table 4.3: Breakdowns of the end-to-end latencies for transmitting and receiving
a single TCP 1.5KB/9KB packet.

Size Type Driver-TX DMA-TX PHY DMA-RX Driver-RX Total

1.5KB
10GbE 0.017 0.001 0.479 0.001 0.500 1
MCN-0 0.075 0 0 0 0.245 0.320

9KB
10GbE 0.019 [0.503 (MEM-to-MEM)] 0.478 1
MCN-0 0.073 0 0 0 0.692 0.765

packet with different size. For 10GbE, Driver-TX includes the time for

setting up DMA and notifying NIC about a packet ready for transmission;

DMA-TX/DMA-RX includes the time for transferring a packet from DRAM/NIC

to NIC/DRAM; PHY includes the time spent in the PCIe bus, the NIC

hardware, the Ethernet link, and the Ethernet switch; Driver-RX includes

interrupting processor, clearing the RX ring buffer, and sending packet up

to the network stack for processing. For MCN, Driver-TX includes the time

that takes to write the packet to the RX buffer. MCN does not have DMA-TX,

PHY and DMA-RX components and Driver-RX includes the overhead of polling

and reading from the RX buffers. We normalize all the latency components

to the 10GbE case. As illustrated in the Table 4.3, removing PHY is the

biggest contributor to the end-to-end latency reduction for MCN. Driver-TX

and Driver-RX are higher than 10GbE because now the host/MCN CPU

manually copies the packets inside the drivers to/from the SRAM buffer

instead of using a DMA engine.

4.6.2 Performance and Energy

Figure 4.11 shows the normalized aggregate memory bandwidth utilization

of an MCN-enabled server with different number of MCN DIMMs. We

normalize the aggregate bandwidth to the utilized memory bandwidth of the

application when running on a conventional server. Across all applications,

on average, a server with 2, 4, 6, and 8 MCN DIMMs improves the aggregate

memory bandwidth by 1.76×, 2.6×, 3.3×, and 3.9× compared with a

conventional server. This shows the effectiveness of MCN in scaling the

aggregate memory bandwidth of a server as a near-memory processing

framework. Note that adding regular DIMMs to the server just increases the

memory capacity and the aggregate memory bandwidth remains unchanged.

Figure 4.12 shows the energy efficiency of MCN compared with a

92



Figure 4.11: Aggregate memory bandwidth of an MCN-enabled server.

Figure 4.12: Energy efficiency of MCN.

conventional scale-out cluster connected through the 10GbE network.

A corresponding scale-out system for an MCN server with 2, 4, 6, and 8

MCN DIMMs has 2, 3, 4, and 5 nodes configured with the parameters shown

in Table 4.1, respectively; that is to compare the energy consumption of

a scale-out system with an MCN server when the total number of cores

in both setups is the same. We evenly distribute MCN DIMMs on the

host memory channels. Across all the applications, on average, MCN

offers 23.5%, 37.7%, 45.5%, and 57.5% lower energy consumption compared

with a 2, 3, 4, and 5 node 10GbE scale-out cluster, respectively. Most

of the data-intensive distributed applications are more energy-efficient to

run on an MCN server with a mix of high-performance and near-memory

mobile processors, compared with a scale-out counterpart with an identical
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number of cores [165]. However, not all the benchmarks show energy

improvement when running on an MCN server. This shows the importance

of supporting the conventional scale-out distributed computing and near-

memory acceleration at the same time.

To show the effectiveness of MCN in scaling memory bandwidth, memory

capacity, and compute capability of a conventional server all together,

we compare the execution time of running NPB on a conventional server

with running NPB on an MCN-enabled server with the same number of

cores in both configurations. Figure 4.13 shows the execution time of MPI

applications from NPB running on an scale-up setup, where it has 4, 8, 12,

and 16 cores on a single chip, and on an MCN-enabled server, where it

has 1, 2, or 3 MCN DIMMs installed. The execution time is normalized

to running the application on a conventional server with 4 cores. “0,” “1,”

“2,” and “3” on the x-axis represents the baseline server with 4, 8, 12, and

16 cores and an MCN-enabled server with 0, 1, 2, and 3 MCN DIMMs,

respectively. As shown in Fig. 4.13, on average, a server with 1, 2, and 3

MCN DIMMs improves the execution time of NPB applications by 27.2%,

42.9%, and 45.3% compared with running them on a scale-up setup with 4,

8, 12, and 16 cores. Note that increasing the number of MPI processes of an

application does not always improves the execution time of the application,

as for mg and lu. However, here our focus is on how the higher aggregate

memory bandwidth of an MCN-enabled server impacts the execution time

of an MPI application.

Figure 4.13: Normalized NPB execution time when running on a conventional
scale-up server and on an MCN-enabled server.
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We noticed that the performance of ep (Embarrassingly Parallel) is not

sensitive to the memory bandwidth and it only scales with the number

of MPI processes. Therefore, MCN does not provide any speedup for ep.

Also, a scale-out server with 8 cores executes cg faster than a server with

one MCN DIMM. cg performs many irregular communication between MPI

processes. As the overhead of inter-process communication in a scale-up

server is lower than an MCN server, the speedup of having higher aggregate

memory bandwidth is offset by the overhead of frequent MCN to host

communication.

4.6.3 Demonstration with ConTutto Platform

To demonstrate support for existing distributed computing framework APIs,

we have cross-compiled the latest version of OpenMPI (v3.0.0) for the NIOS II

ISA. We successfully tested various MPI applications over MCN by treating

the MCN node as a regular worker node with its own IP address in the

local area network. The MPI application needs to be compiled separately for

the POWER8 and NIOS II processors, but no modification is needed in the

application’s source code and the execution process is entirely transparent

from the programmer’s perspective. Figure 4.14 shows a screenshot of our

prototype system running MPI. The NIOS II terminal is running tcpdump

at the bottom half of the screen. Note that the purpose of building this

proof-of-concept system is to demonstrate that the concept and developed

driver work on a commercial system. As the prototype MCN DIMM is built

using an FPGA and the MCN processor is a very low-performance soft IP

core (NIOS II), we cannot obtain any meaningful performance evaluation.

4.6.4 Discussion

In Sec. 4.6.1, we demonstrated that MCN is capable of surpassing the

performance of a conventional 10GbE network. However, with the given

bandwidth and latency of the memory channel, we can potentially improve

the MCN bandwidth to surpass higher bandwidth networks too.

A NIC employs several techniques to achieve high bandwidth: (T1) utilizes

several offload engines [153, 166, 167]; (T2) uses highly optimized driver

and OS software stack (e.g., DPDK [168] or mTCP [169]), with special
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Figure 4.14: Screenshot of an MPI “Hello World” program running on our proof-
of-concept system.

purpose network processing libraries such as RDMA; (T3) distributes the

packet processing tasks on several CPU cores; and (T4) uses the aggregate

memory bandwidth of a processor by interleaving DMA data across multiple

memory channels.

We identified two bottlenecks toward utilizing MCN to its full capabilities.

First, the TCP congestion control is implemented for slow, long latency

network connections and sometimes takes several seconds to reach to the

full bandwidth utilization. Also, TCP frequently sends ACK messages to

the sender. Sending and receiving ACK messages consumes both CPU

cycles and network bandwidth. Based on our evaluation results, sending and

receiving ACK messages incurs up to ∼25% overhead in a TCP connection,

which is aligned with the previous studies [170]. Second, an MCN DIMM

can only use a single channel bandwidth and cannot interleave the memory

accesses across multiple memory channels. That being said, the maximum

theoretical MCN bandwidth is 12.8GB/s, which is the maximum bandwidth

of a single memory channel. Although the bandwidth of each MCN node is

limited to the bandwidth of a single memory channel, it is far from being a

bottleneck as the bandwidth of a single memory channel alone is more than

100Gbps. Nonetheless, each MCN DIMM can communicate with the host

or each other independently, providing aggregate bandwidth proportional to

the total number of memory channels in the system.

As a future work, we consider the use of an specialized TCP/IP stack
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for MCN that resembles a user space TCP stack such as mTCP. When

communicating between MCN DIMMs, the MCN network stack does not

rely on the conventional TCP/IP stack and instead resembles a shared

memory communication channel between the host and MCN nodes.

The network architecture of the current datacenters follows a hierarchical

model with the servers as the leaf nodes. A rack, as the basic building block

of a datacenter, consists of several servers connected together using a top of

rack switch. As reported in several industry papers, the bandwidth of a top

of rack switch ranges from 1 to 10Gbps, while the top of rack switches are

connected together through 40 to 100Gbps connections [6, 171]. As shown in

Sec. 4.6.1, even a basic MCN implementation provides higher bandwidth and

lower latency than its 10GbE counterpart. We propose to replace a rack with

an MCN-enabled server that interconnect leaf nodes (i.e., MCN nodes) using

a low-cost, energy-efficient interconnect to improve the energy efficiency of

running IO intensive applications (Sec. 4.6.2) while reducing the datacenter

cost.

4.7 Related Work

Near-DRAM processing. The traditional processor-in-memory (PIM)

architectures integrate a processor and DRAM onto a single die [172, 173,

174, 13, 16, 119, 12]. These architectures can reduce energy consumption

and increase the throughput of data transfers between the processor and

DRAM, but suffer from high fabrication costs and low yields [175, 133]. The

integration issue was mitigated by the emerging 3D die-stacking technology,

reopening opportunities for near-DRAM processing architectures [176,

177, 143, 178, 127, 179, 180, 14, 15, 181, 128, 182, 183]. Among these

architectures, NDA [178] 3D-stacks accelerators atop a DRAM device and

is similar to MCN because both build on a standard DRAM interface and

DIMM architecture. However, NDA requires a programmer to manually

handle the communication between the host processor and accelerators

using a dedicated programming model for the accelerators. As a cheaper

alternative to using 3D die-stacking technology and providing large memory

capacity, Chameleon [124] proposes to place accelerators in the buffer devices

of DIMMs. It is similar to MCN because accelerators are integrated in a
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buffer device, but it suffers from the same limitation as NDA. In contrast,

MCN is unique because it does not require technology integration, 3D

die-stacking, or a new programming model.

Cache coherent interconnect. IBM’s Coherent Accelerator Processor

Interface (CAPI) [184] is a high speed communication standard, designed

for I/O attached accelerators to work in a cache-coherent fashion with

traditional processors. As CAPI leverages existing point-to-point PCIe

I/O channels, it needs to rely on a customized hardware to manage the

coherency and it cannot provide the bandwidth scaling benefit with more

accelerator modules like MCN. Besides, CAPI relies on kernel extensions

and a CAPI application library to expose the accelerator to the host

application, thus requiring the user to modify or rewrite the application in

order to leverage the accelerators. Intel Quick Path Interconnect(QPI) [185]

supports a cache coherency protocol for attached devices. Although QPI is

a high speed point-to-point interconnect, it suffers from the same limitations

as PCIe (long latency, limited to one device per channel, etc.). Intel

HARP [186] architecture leverages the QPI and couples an FPGA with an

Intel processor. Like CAPI, accelerators in HARP have access to the cache

coherency mechanisms and unified address space, but leveraging accelerators

in HARP also requires using Intel provided APIs and libraries or using

OpenCL, which would once again require modifying or rewriting the target

application.

4.8 Conclusion

In this chapter, we proposed MCN consisting of MCN DIMMs and MCN

drivers. MCN allows us to run applications based on distributed computing

frameworks, such as MPI, without any change in the host processor hardware,

distributed computing middleware and application software, while offering

the benefits of high-bandwidth/low-latency communication between host and

MCN processors. Furthermore, MCN can serve as an application-transparent

near-DRAM processing platform since the memory bandwidth for processing

multiplies with the number of MCN DIMMs. As such, MCN can unify

the near-DRAM processing in a node with the distributed computing across

multiple nodes. Our evaluation showed that a node with MCN can provide up
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to 58.7% higher performance than multiple conventional nodes connected by

a 10GbE network when running various MPI-based distributed applications.

Lastly, we demonstrated a proof of MCN concept with an IBM POWER8

system and an experimental buffered DIMM.
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CHAPTER 5

ULTRA-LOW LATENCY NEAR-MEMORY
NETWORK INTERFACE ARCHITECTURE

Optimizing bandwidth was the main focus of designing scale-out networks

for several decades, and this optimization trend has served the traditional

Internet applications well. However, the emergence of datacenters as single

computer entities has made latency as important as bandwidth in designing

datacenter networks. PCIe interconnect is known to be latency bottleneck

in communication networks as its latency overhead can contribute to up to

∼90% of the overall communication latency. Despite its overheads, PCIe is

the de facto interconnect standard in servers as it has been well established

and maintained for more than two decades. In addition to PCIe overhead,

data movements in network software stack consume thousands of processor

cycles and make ultra-low latency networking more challenging. Tackling

PCIe and data movement overheads, in this chapter, we propose NetDIMM,

a near-memory network interface card capable of in-memory buffer cloning.

NetDIMM places a network interface card chip into the buffer device of a

dual in-line memory module and leverages the asynchronous memory access

capability of DDR5 to share the memory modules between the host processor

and near-memory NIC. Our evaluation shows NetDIMM, on average, improves

per-packet latency by 49.9% compared with a baseline network deploying

PCIe NICs.

5.1 Introduction

Traditionally, the main design requirement for scale-out networks was high

bandwidth. To ensure fairness and avoid congestion, network transport

protocols such as TCP [187] have thrived. For the past three decades,

such network architecture has served well throughput oriented Internet

applications such as file and email servers. Even for interactive web
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applications, such as web search, that are sensitive to the per packet delivery

time, a response time of several hundreds of milliseconds is considered

acceptable as long as it can satisfy a service level objective, often defined as

99th percentile response time. This throughput oriented network design has

driven the development of high bandwidth network devices such as 100Gb+

Ethernet network interface cards (NIC).

The proliferation of datacenters and emerging applications over the past

few years has changed network design requirements. In addition to high

bandwidth, low-latency communication has become a primary metric for

evaluating the next generation of scale-out networks. Ultra-low latency

applications such as in-memory caching, high-performance computing, and

financial trading [188, 46, 189] benefit from even sub microsecond latency

improvements in the network hardware and software stack.

Ethernet, as the backbone of datacenter networking technology, is

tightly coupled with the TCP/IP protocol to ensure reliable and fair

communication between nodes in a datacenter. The deployment of TCP

offload engines [190, 191, 192, 193] along with more efficient implementation

of the software stack [194, 195, 169, 196, 168, 197, 198] has significantly

reduced the computational overhead in the software stack of Ethernet

networks. For instance, RDMA over converged Ethernet (RoCE) protocol

technically offloads the whole network software stack to the Ethernet NIC

device by implementing a priority flow control inside the NIC to make the

Ethernet lossless [199]. A RoCE network can achieve node to node latency

as low as ∼1.3µs [200] by minimizing the software stack overhead. These

technological advancements have made it possible to achieve end-to-end

network latency that is close to hardware limits.

PCIe is a widely used and well-established server I/O interconnect

technology. PCIe is used to connect off-chip storage, network, and accelerator

devices to the processor chip. A bleeding edge ×16 PCIe Gen 4.0 provides

a theoretical bandwidth of 31.51GBps. PCIe has a layered architecture

and the protocol overhead at each layer reduces the usable bandwidth

and adds to the latency overhead [201]. Therefore, PCIe interconnect

is known to be the bottleneck especially in low-latency communication

networks [202, 203, 204, 38, 8]. Frequent transactions over PCIe interconnect

are the main contributor to the end-to-end network latency of software-stack

optimized networks. For example, the PCIe sub-system contributes to
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Figure 5.1: State-of-the-art network interface architectures vs. NetDIMM.

77.2∼90.6% of the overall network latency for sending packets of various size

over an ExaNIC 10Gbps NIC [8]. Besides the PCIe overhead, data copying

from DMA buffers to application memory space is a major bottleneck in

network sub-system that can constitute 18∼92% of the per-byte operation

overhead for different network protocols [9, 205].

To confront the PCIe and memory movement bottlenecks, previous

works have proposed several solutions: (S0) reducing the number of PCIe

transactions needed for packet transmission and reception [202, 203, 38], (S1)

integrating the network interface card to the processor chip [206, 122], (S2)

integrating a large memory buffer to the NIC [207, 208], (S3) adding

processing units to the NIC and offloading the software to the NIC

logic [209, 25], and (S4) developing zero copy networking [205]. Although

these techniques can alleviate some of the network overhead, each has several

drawbacks. S0 proposals mostly minimize the number of PCIe transactions

for small packets. Moreover, the NIC is still connected to the processor

through a PCIe interconnect and at least one round-trip over PCIe is needed

for sending or receiving a packet. S1 designs are costly due to the area and

power overhead for the processor chip. Furthermore, NIC and processor

chips are often manufactured by different vendors and it is not practical

to integrate them into one chip. Lastly, integrated NIC can pollute on-

chip CPU resources when receiving large packet sizes (Sec. 5.5.3). Even

though S2 and S3 can accelerate some applications, these techniques cannot

benefit general-purpose applications and are often hard to manage/program.

Moreover, such NIC architectures still suffer from PCIe overhead. Regarding

S4, although zero copy networking eliminates the data copying from DMA

to application buffers, it introduces several problems including security

breaches, main memory exhaustion, and extra virtual memory operation

overheads that can nullify its benefits [9, 210].

In this work, we propose Network attached DIMM (NetDIMM), a novel
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near-memory network interface card that utilizes a high speed DDR5 channel

to interconnect a near-memory NIC to the processor. NetDIMM integrates a

NIC into the buffer device of a dual inline memory module (DIMM) and

uses the low-latency, high-bandwidth memory channel to communicate with

the processor. NetDIMM leverages the asynchronous memory access support of

DDR5 specification to seamlessly expose its local memory capacity to the host

processor as if it is part of the host processor address space. Furthermore,

NetDIMM supports in-memory buffer cloning that provides the performance

of zero copy networking without its drawbacks. More specifically, NetDIMM

makes the following contributions:

• Eliminate the PCIe bottleneck in the network sub-system. NetDIMM uses

the memory channel instead of PCIe link to interconnect a NIC to the

processor.

• In-memory acceleration of network stack data movements. NetDIMM

accelerates the DMA between NIC and DRAM by placing the NIC close

to the DRAM modules. Furthermore, NetDIMM performs in-memory

buffer cloning to accelerate data movements in the network stack.

• Application-transparent network stack acceleration. NetDIMM runs the

kernel software stack with minimal modification in the Linux kernel.

Therefore NetDIMM can run unmodified userspace applications.

• Reducing memory interference from the network traffic. NetDIMM

reduces the host memory channel utilization by using the local memory

channels of NetDIMM for transferring packets between the memory and

NIC. NetDIMM also split header and payload of packets that reduces

on-chip resource pollution.

Figure 5.1 compares NetDIMM with the state-of-the-art NIC architectures.

NetDIMM significantly improves the communication latency by eliminating

costly PCIe transactions and leveraging the physical proximity of NIC and

DRAM for data movement. Based on our evaluation results, across various

packet sizes, NetDIMM on average reduces the one-way network latency

between two servers by 49.9% and 25.9% compared with servers employing

PCIe and integrated NICs, respectively. We also replay traces from three

Facebook production clusters and observe 25.3∼40.6% average per packet
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latency reduction when replacing PCIe NICs with NetDIMM across different

clusters. Lastly, we show that depending on the network application running

on a server, co-running applications that use the same memory channel as

NetDIMM can experience up to 30.9% lower memory access latency while in

worst case experiencing 15.4% higher memory access latency compared with

running the workloads on a system with an integrated NIC.

5.2 Background

5.2.1 Network Architecture

Despite a large body of research, the innovations in Internet network

architecture have been limited to incremental updates and its architecture

has remained more or less the same since the creation of the Internet. The

main reason for this resistance to changes is the multi-provider nature of

the network ecosystem that any change in the existing architecture needs a

consensus among several stakeholders. Moreover, this network architecture

has been reliably working for several decades and radical changes in it have

become increasingly difficult.

Figure 5.2 shows the overall network hardware architecture of a server. A

NIC is connected to a processor over a PCIe link. Modern NICs use the

Data Direct I/O (DDIO) technology [211, 212] to reduce memory bandwidth

utilization when sending and receiving network packets. That is, when a

packet is received at a NIC, a DMA engine transfers the packet to a buffer

inside processor’s last level cache (LLC) instead of moving it all the way to

DRAM. When transmitting a packet with a DDIO enabled NIC, the packet

buffer is allocated in LLC and DMA engine reads the packet from LLC.

However, the DDIO share is usually 10% of the LLC capacity [212] (i.e., a

few megabytes) and often this space is exhausted by a NIC at high RX/TX

rates. Moreover, sharing the DDIO space between several network functions

can result in a phenomenon known as DMA leakage [213]. The DDIO can

cause cache pollution for other applications if there is no upper limit for its

LLC share [214].

An Ethernet NIC employs a circular ring buffer (i.e., descriptor ring) inside

the main memory to let the processor and NIC produce and consume packets
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Figure 5.2: Server network architecture.

at different rates. Because interrupt handling and interrupt moderation

can delay the packet processing for several microseconds, ultra-low latency

networks are usually deployed in (adaptive) polling mode [168, 215]. Here we

explain NIC, CPU, and memory interactions when transmitting (TX) and

receiving (RX) a packet using an Ethernet NIC with a polling driver. Before

any transmission or reception (i.e., during the system boot up), the NIC

driver allocates RX and TX descriptor rings, initializes them and sends their

information to the NIC. (T1 - @Driver) The transmit function of the driver

is called and the driver checks the status of the NIC. (T2 - @Driver) The

driver sets up a DMA transfer by writing into a NIC configuration register.

(T3 - @NIC) The DMA device fetches the next available TX descriptor from

DRAM (or LLC if the DDIO is enabled) and then performs another DMA to

transfer the packet to the NIC. (T4 - @NIC) The packet is transmitted over

the Ethernet link and the TX ring tail pointer is updated. (R0 - @NIC) The

packet is received at the destination NIC. (R1 - @NIC) The next available

RX descriptor is fetched from DRAM or LLC (R2 - @NIC) The packet is

DMAed to the RX descriptor buffer. (R3 - @NIC) The RX descriptor ring

information is updated. (R4 - @Driver) The polling driver is notified of a

new packet reception. (R5 - @Driver) A new socket buffer (i.e., SKB) is

created and initialized with the data in the RX ring buffer. The Ethernet

header is removed, and the rest of the packet is sent to an upper network

layer.

5.2.2 Asynchronous Memory Access

In this subsection, we discuss nonvolatile dual-inline memory module

(NVDIMM) protocols. We specifically talk about NVDIMM-P and how

DDR5 specification manages to interact with such memory technology. The

NVDIMM technology offers persistence and high memory capacity while
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using the memory channel, that is the fastest interconnect in the system,

to interface with the processor. Based on JEDEC standard, there are three

types of NVDIMMs:

(1) NVDIMM-N consists of byte-addressable DRAM modules and a backup

NAND flash device. In NVDIMM-N, the host DDR memory controller only

addresses the DRAM part of the NVDIMM-N. NVDIMM-N has the access

time of a regular DDR DIMM from the host perspective.

(2) NVDIMM-F directly exposes the NAND flash storage to the processor

and removes the DRAM devices. NVDIMM-F cannot be accessed with

regular DDR timing and the memory channel has to slow down to meet

the NVDIMM-F timing.

(3) NVDIMM-P uses a novel memory channel protocol that allows

asynchronous, out-of-order completion of the memory accesses to have

the best features of both NVDIMM-N and NVDIMM-F. NVDIMM-P

exposes both DRAM and NAND flash to the host processor address space.

Because the NAND flash (or any other persistence memory technology such

as 3D-XPoint [123]) has different access timing compared with DRAM,

a conventional DDR protocol cannot be used to access the persistent

memory region. DDR5 specification is designed to comprehend the

heterogeneous media type and support a mixture of convectional DIMM

and NVDIMM-P. To facilitate NVDIMM-P accesses, DDR5 specification

supports asynchronous memory transactions [216]. Figure 5.3(b) compares

the timing of a cacheline read from DRAM and NVDIMM-P in the DDR5

standard. As shown, to access a cacheline from NVDIMM-P, depending on

the location of the data (if it is cached in the buffer device of NVDIMM-P

or not), a read access has non-deterministic latency. A read request to

NVDIMM-P starts with a read request (i.e., XRD in Fig. 5.3(b)) command

that includes the full address of the requested data and a request ID.

Unlike DRAM operations, each NVDIMM-P request has an ID to facilitate

out-of-order access completion. When the XRD command is received at

NVDIMM-P, the media data read command is immediately issued. Once the

data is ready in the media, a ready command (i.e., RDY) is issued on the

response pins (i.e., RSP) with the ID of the original request. The memory

controller then issues a send (i.e., SEND) command to read the data. The

data appended with the request ID is available on the data bus (i.e., DQ)

after a specific amount of time.
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Figure 5.3: (a) NVDIMM-P architecture, (b) asynchronous memory access for
NVDIMM-P.

5.2.3 Linux Memory Management

Memory Address Mapping. Different systems use different physical

memory address mapping and decode different bits in the physical address to

calculate the channel, rank, bank, row and column of the address location in

the DRAM. If there are DIMMs installed on multiple memory channels, then

the memory mapping can operate at three different modes as follows: single

channel, multi-channel, and flex channel modes. In single channel mode, the

memory channel bits are mapped to the most significant bits of the physical

address and sequential addresses are mapped to one memory channel. In

multi-channel mode, sequential memory addresses are interleaved between

multiple memory channels. Flex mode provides a flexible memory mapping

configuration where a part of address space can work in multi-channel mode

and the rest in single channel mode. Flex mode is especially useful in

asymmetric memory configuration where different DIMM types (e.g., DDR5

or NVDIMM-P) are installed on memory channels [217].

Linux Kernel Memory Allocation. Due to hardware limitations,

different parts of physical memory should be treated differently by the

Linux kernel. Linux groups physical memory locations into four primary

memory zones: ZONE DMA: contains pages that can be used for DMA;

ZONE DMA32: contains pages that can be used for DMA by 32-bit devices;

ZONE HIGHMEM: contains “high memory” [218] pages that cannot be

mapped into the kernel address space in 32-bit machines; ZONE NORMAL:

contains regularly mapped pages in the system.
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kmalloc() is used to allocate memory in kernel, similar to malloc() in

userspace. kmalloc() can allocate memory from a specific memory zone

based on the input arguments. There are also several APIs for allocating

memory in page granularity in Linux. These APIs are especially used in the

network stack for allocating the paged area of the network socket buffers [219].

The core function for page allocation is alloc pages(). There are several

wrapper APIs to allocate pages from a specified NUMA node and/or memory

zone.

5.3 Motivation

As we discussed in Sec. 5.2.1, to send a packet over a conventional NIC,

several PCIe and memory channel transactions need to take place. More

specifically, in a client-server application, 16 one-way PCIe transactions are

needed for completing one request-response transfer. Several research studies

have proposed new NIC and DMA architectures to reduce the number of PCIe

transactions when sending and receiving network packets, especially for small

packets [202, 203, 38]. Although such architectures improve the network

latency, they still require several PCIe round-trips to send and receive packets

to and from the NIC, respectively.

CPU and NIC integration is a promising approach for solving the overheads

mentioned above. Figure 5.4 shows the one-way latency of sending packets

of different size from one node to another through a 40Gb Ethernet link. For

more information on our evaluation methodology please refer to Sec. 5.5.1.

We evaluate four different NIC configurations: discrete NIC (dNIC), which

represents a conventional PCIe Gen3×8 NIC (i.e., Fig. 5.1(left)); dNIC

with zero copy transmission and reception (dNIC.zcpy); a NIC integrated

into CPU chip (iNIC) (i.e., Fig. 5.1(middle)); and iNIC with zero copy

transmission and reception (iNIC.zcpy). The figure also shows PCIe

contribution to the overall packet transmission and reception (pcie.overh

in Fig. 5.4). As shown, iNIC improves the network latency by 21.3∼38.6%

compared with dNIC. The latency improvement is more signified for smaller

packets and mainly comes from faster accesses to the I/O registers. Figure 5.4

clearly shows the benefit of removing PCIe link between the CPU and NIC

for low-latency networking.
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Figure 5.4: One-way latency comparison of different NIC configurations for
packets of various sizes: discrete NIC (dNIC), discrete NIC with zero copy
(dNIC.zcopy), integrated NIC (iNIC), and integrated NIC with zero copy
(iNIC.zcpy). pcie.overh shows the overhead of PCIe interconnect for discrete
NIC configurations.

We enable zero copying by letting NIC to access application buffers as

DMA buffers. Zero copy improves iNIC network latency by 28.8% and 52.3%

for 10Byte and 2000Byte packets, respectively. As expected, memory copy

overhead increases with packet size and larger packets benefit more from zero

copy networking. On the other hand, the PCIe overhead is more for smaller

packets. For dNIC.zcpy, 40.9% and 34.3% of the overall network latency is

spent in PCIe interconnect when transferring 10Byte and 2000Bytes packets,

respectively.

Although iNIC.zcpy seems to be an ideal ultra-low latency network

architecture, it has several limitations: (L1) Zero copy networking can

introduce security breaches [210]. Also pinning application pages to the

memory can cause main memory exhaustion and the overhead of virtual

memory operations and buffer management can nullify the gains of zero copy

networking [9]. (L2) Integrating a full-blown NIC into CPU significantly

increases the area and power of the processor. It is specifically challenging

as often NIC and CPU are manufactured by different vendors. (L3) Most

importantly, iNIC can pollute on-chip resources, such as LLC, at high

network rates or cause memory interference for co-running applications.

Furthermore, storing the payload of received packets on the processor chip
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Figure 5.5: iperf bandwidth at different memory pressure levels.

is waste of precious on-chip resources for network functions that only require

packet header to be processed by the CPU [220]. Note that (L3) is not

specific to iNIC and dNIC also has the same problem.

To illustrate the memory and cache interference caused by network

packets, we study the sensitivity of network bandwidth to the cache

and memory interference. Figure 5.5 depicts the sensitivity of network

bandwidth to the pressure on the memory system. In this experiment, we

use two machines, each equipped with a Xeon E5-2660 processor, three

DDR4 memory channels, and an Intel 40Gbps XL710-QDA1 NIC. We use

Intel Memory Latency Checker (MLC) [221] tool to inject dummy memory

requests to the memory sub-system at different rates. We set the ratio of

memory read to write requests to 1. In Fig. 5.5, the X-axis shows the delay

between injected memory requests (higher values lower the interference

at the memory sub-system) and Y-axis shows the achieved iperf [161]

TCP bandwidth at different memory interference levels. iperf bandwidth

significantly drops when the memory pressure from MLC increases. For

example, at the maximum memory pressure, which corresponds to 15.1GBps

per memory channel, iperf only delivers ∼27.9% of the achieved bandwidth

without any interference from MLC. This experiment shows how sensitive

network bandwidth is to the interference at the memory sub-system.

Moreover, Fig. 5.5 can be interpreted from another angle: the network

traffic can cause severe interference at the memory sub-system. However,

here we could not show that because TCP flows from iperf regulate the
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transmission rate based on the processing capability of the receiver node.

Therefore, before we see any major degradation on the local application

performance, the iperf bandwidth decreases.

Figure 5.4 and Fig. 5.5 illustrate the inefficiencies in the network

architecture of current servers. Ideally, we want to completely remove

the PCIe transactions and exchange data between the processor and NIC

over an interconnect with lower latency without jeopardizing the network

bandwidth. Furthermore, to reduce the memory interference, we want

to decrease the host memory sub-system utilization when sending and

receiving packets to and from NIC; which involves preventing a NIC from

injecting all the received traffic to LLC. Instead, we want a mechanism which

collectively brings different bytes of a received packet to the processor on the

application’s demand. PCIe is a standard and well-developed interconnection

technology that has been around for three decades. One key requirement

for a replacement is that it should be a standard and well-established

interconnection technology. Introducing a new and specialized interconnect

is costly and error prone. Also, the new interconnect should seamlessly work

with memory channel and processor cache hierarchy to facilitate quick data

delivery to the CPU.

Memory channel has the lowest latency among off-chip interconnects

in a modern server. Besides low latency, memory channel provides high

bandwidth. For example, a DDR4 channel provides 12.8GBps (i.e.,

102.4Gbps) bandwidth. The latency of transferring a 4KB page over a

DDR4 channel and a ×8 PCIe link are ∼200ns and ∼2µs, respectively.

More importantly, the memory channel is a standard and well maintained

interconnect that can be find on the motherboard of any server. We leverage

these unique features of the memory channel and propose a near-memory

network interface card architecture by placing a NIC into the buffer device

of a DIMM. This design solves all the limitations of dNIC and iNIC: (1)

eliminating the PCIe overhead by utilizing memory channel and internal

DIMM interconnects for packet transmission and reception; (2) supporting

in-memory buffer cloning to copy packets from application to DMA buffers

and vice versa; (3) decoupling header and payload of packets to reduce LLC

pollution and (4) using a separate memory channel to access network buffers

in the DRAM to reduce the host memory channel interference.
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Figure 5.6: NetDIMM architecture.

5.4 Network-Attached DIMM

Motivated by the explanation in Sec. 5.3, we propose NetDIMM, a low-

latency, near-memory network architecture. Building atop the NVDIMM-P

architecture (Sec. 5.2.2) and based on the near-memory processing concept,

NetDIMM improves the data transfer latency between the processor, memory,

and NIC. In this section, we explain the hardware and software components

of NetDIMM in detail.

5.4.1 NetDIMM Hardware Architecture

Inspired by the asynchronous, out of order memory access support of DDR5

specification (Sec. 5.2.2), we architect a NIC that is placed on the buffer

device of a DIMM. Figure 5.6 overviews the overall architecture of NetDIMM.

Figure 5.6(c) shows a system with two memory channels where each memory

channel is occupied with three DIMMs in total. Out of these three DIMMs,

there are two conventional DDR5 DIMMs, and one NetDIMM. Note that the

figure only shows an example system and there is no requirement for the

number of NetDIMMs on a memory channel. For example, a system can

have one NetDIMM installed on one of the DDR5 slots. The DDR5 support of

asynchronous memory request completion allows mixing DRAM and NetDIMM

on a same memory channel [222]. As shown in Fig. 5.6(b), the organization

of NetDIMM is similar to the organization of an NVDIMM-P depicted in

Fig. 5.3(a).

Figure 5.6(a) shows the internal architecture of NetDIMM buffer device. It

consists of the following main components: (nNIC) An integrated network

interface card; (nMC) one (or several) memory controller(s) to access
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Figure 5.7: Spatial and temporal locality of NIC memory accesses from host
processor perspective.

the NetDIMM local DRAM modules; (nController) logic that extends the

NVDIMM-P controller with NetDIMM routing and management logic; (DDR5

PHY interface) DDR5 physical interface and protocol engine. The DDR5

physical interface contains a protocol engine that repeats DRAM CA, DQ,

and RSP signals similar to a typical NVDIMM-P device; (nCache) a dual-

port SRAM buffer for caching RX data resided in the local DRAM modules;

(nPrefetcher) a next-line prefetcher for pre-loading RX packets to nCache

from the local DRAM modules; (RowClone enabled DRAM) DRAM devices

that support in-memory data copying.

We expose the local DRAM capacity of NetDIMM to the host memory

address space, therefore, the local NetDIMM memory is managed by the host

operating system. This is similar to the unified address space of NVDIMM-P.

We explain NetDIMM memory management in Sec. 5.4.2. Because both nNIC

and PHY can independently access the local DRAM modules through nMC,

we need arbitration between the memory accesses from nNIC and PHY.

nController does this arbitration by giving priority to the nNIC accesses.

Because of the following reasons, the access time to the local DRAM from

the host MC is non-deterministic: (R1) the host MC does not know the state

of the NetDIMM local DRAM modules; (R2) nMC is shared between nNIC

and PHY. Thus, the access time of the local DRAM modules depends on the

current state of the local DRAM modules, the current nNIC traffic, and the

current requests from PHY.
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We make a key observation that the memory access pattern between the

host processor and NIC is very regular and has spatial and temporal locality.

Figure 5.7 plots the relative address and relative arrival time of memory

requests, generated by the DMA engine of a 40GbE NIC, when receiving six

1514 Byte packets. For detailed experimental setup please refer to Sec. 5.5.1.

As illustrated, each packet arrival generates a burst of memory requests to

DMA buffers. Each burst consists of 24 cachelines1 (24 * 64 = 1536 Bytes)

that arrive at the host memory controller in a short time interval, which for

example is 143ns for the third packet. nCache and nPrefetcher components

exploit the unique characteristics of this memory access pattern to improve

the host MC access latency to the NetDIMM address space.

Once a packet is received at nNIC from the outside, nNIC notifies

nController. nController implements the same functionality of a DMA

engine in a conventional NIC. Upon receiving the notification from nNIC,

nController reads the next available descriptor buffer from nMC and depletes

the RX buffer of nNIC to the descriptor ring resided in the NetDIMM local

DRAM modules. In Sec. 5.4.2 we explain how the descriptor ring is allocated

on NetDIMM. While transferring the RX packets to the NetDIMM local DRAM

space, the nController writes the first cacheline of each received packet to

nCache. The rationale for only caching the first cacheline of received packets

is that for all transport protocols, the header size is less than 64 Bytes

(i.e., one cacheline) and only the header of a received packet is needed for

processing the packet in the network software stack2. Moreover, as explained

in Sec. 5.3, some network functions, such as forwarding and firewall, do not

need the packet payload as the application makes forwarding decisions only

based on the header information. The maximum header size of a TCP/IP

packet is 52Bytes [154], so caching the first 64Bytes of a received packet

includes all the headers. The rest of the packet is only accessed when copying

it to a userspace buffer. Storing an entire received packet in nCache is not

efficient as the reuse distance of the payload of a received packet is much

longer than its header.

Assuming a maximum transmission unit (MTU) size of 1500 Bytes, each

Ethernet packet can carry 1∼24 cachelines. When the payload of a received

packet is accessed (e.g., to be copied to an application buffer), a stream

1We assume that the cacheline size is 64Bytes
2Assuming that nNIC has checksum offloading support
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of consecutive read requests is received to NetDIMM PHY, similar to the

access pattern shown in Fig. 5.7. This access pattern is easy to predict by

a simple next-line prefetcher. We add this prefetcher, shown as nPrefetcher

in Fig. 5.6(a), to NetDIMM. nPrefetcher prefetches the next n cachelines and

stores them in nCache. Therefore, even if NetDIMM does not cache the payload

of RX packets in nCache, in the worst case, reading an entire RX packet

may only experience one nCache miss. We disable nPrefetcher for the first

cacheline of RX packets which contains the header. This is because we do not

want to pollute nCache when only the header of a received packet is accessed

by the host processor. We add a one-bit flag for each cacheline of nCache,

that is set when the first cacheline of a newly arrived packet is stored in

nCache. nPrefetcher checks this flag and prefetches next n cachelines if the

flag is not set. nCache resets the flag after the first access to each cacheline.

When a read request is received from the global memory channel,

nController checks if the requested data is cached in nCache. If it is a

hit, the data is read from nCache and immediately sent to the host MC.

Otherwise, nController creates a read request and sends it to nMC. Once

the data is read from the local DRAM through nMC, it will be sent to the

host using the asynchronous protocol explained in Sec. 5.2.2. When a write

request is received from the global memory channel, nController constructs

a memory write request and send it to nMC. The write requests do not

use nCache as they are immediately queued in the nMC write queue upon

arrival.

nCache is an inclusive, set associative cache structure. nCache is more like

a large data buffer and its data is removed from it once it is accessed. This

is because once the RX packet is read from NetDIMM, it is going to be stored

in a host processor cache or in another location in the main memory. In

either case, that memory address is unlikely to be accessed in a near future.

Therefore, there is no value in keeping that data in nCache. We use random

replacement policy to make space in an nCache set if all the blocks in the set

are occupied. Note that all cachelines in nCache are clean and there is no

need for writing a victim cacheline back to nMC. To ensure the coherency

of nCache with local DRAM data, nController snoops the addresses of write

requests received from PHY or nNIC and invalidates the matching cachelines

in nCache.

Conventionally, copying one memory location to another involves a
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Figure 5.8: In-memory buffer cloning acceleration.

processor to read data over its memory channels into its cache hierarchy and

then write it back through the memory channels to the destination memory

location. This makes memory copying an expensive operation. For example,

copying a 4KB page over a DDR3 memory channel takes ∼1µs [223]. Because

of the limitation of zero-copy drivers (discussed in Sec. 5.3), we envision an

in-memory data copy acceleration mechanism to swiftly clone application

buffers to DMA buffers and vise versa on NetDIMM. To this extent, we utilize

an extended implementation of RowClone [223] mechanism. RowClone is

an in-memory bulk data copying mechanism that utilizes DRAM internal

architecture to accelerate memory-to-memory copying on a single DIMM.

Figure 5.8 illustrates a high-level overview of in-memory clone-capable

DRAM devices. Depending on the location of the source and destination

addresses, there are three modes for cloning a page: Fast parallel mode

(FPM): source and destination pages share a bank sub-array. In this case

buffer cloning can be done by two back to back activation of the source

and destination pages. FPM mode is highlighted with green arrows in

Fig. 5.8; Pipeline serial mode (PSM): source and destination pages are on

different banks but on a same DRAM device. In this case cloning happens

by pipelining cacheline copy operations over the internal bus of DRAM

chips. PSM mode is highlighted with the red arrow in Fig. 5.8; General

cloning mode (GCM): otherwise, NetDIMM reads source to the NetDIMM buffer

device and writes them back in pipeline mode to the destination address

(highlighted by blue arrows in Fig. 5.8). GCM is similar to the operation

of a conventional DMA engine near the memory chips. FPM is the fastest

while GCM is the slowest and most general mechanism. That being said, it

is important to intelligently allocate source and destination pages to a same

sub-array within a DRAM device in order to extract the maximum benefit

from the in-memory page cloning. In Sec. 5.4.2 we explain how NetDIMM
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implements an intelligent memory allocation scheme to efficiently move data

from DMA buffers to application buffers.

5.4.2 NetDIMM Software Architecture

In this subsection, we explain required software stack changes to enable

NetDIMM. Overall, we try to have the minimum amount of changes possible

in the network software stack and Linux kernel. The changes in the software

stack includes implementation of a new Linux memory allocation API,

changing the physical memory address mapping, and implementation of a

NetDIMM driver. The TCP/IP layers remain unchanged except for the API

for SKB allocation. Note that we developed a userspace NetDIMM driver

for our evaluations. However, to show the feasibility and generality of our

implementation, we also developed a Linux kernel NetDIMM driver that runs

the full Linux kernel software stack and unmodified userspace applications.

We use our Linux kernel driver for explanation here.

Handling NetDIMM local memory region. Before we talk about

NetDIMM driver, we first need to discuss how we use the local DRAM modules

on NetDIMM. To leverage the operating systems memory management

functionality, keep the amount of changes in the software stack at minimum,

and make NetDIMM application-transparent, we expose the local memory

capacity of NetDIMM to the host processor as if it is part of the host physical

memory address space. The local memory capacity of a NetDIMM can be

seen as a memory node in a NUMA system, and despite different access

timing, NetDIMM’s memory space is part of the host (global) address space.

We reveal this heterogeneity in the memory system to Linux by creating

a new memory zone called NETi where i is the NetDIMM number in the

system. Note that a system can have multiple NetDIMMs installed on memory

channels and each need a different memory zone. Defining a memory zone

in Linux is not expensive and new memory zones have been added to Linux

when necessary [224].

In addition to defining new memory zones, it is also important to

intelligently allocate DMA and application buffers on a same bank and

sub-array to extract the maximum performance out of NetDIMM’s in-memory

buffer cloning capability (cf. Fig. 5.8). To achieve this, we need to expose
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the internal memory organization of NetDIMM to the memory scheduler.

Figure 5.9(a) shows our assumptions about the size and organization of

a memory rank in NetDIMM, which is based on a Micron MT40A512M16

DRAM device [225]. Each rank consists of eight ×8 DRAM devices, each

device consists of 16 banks, each bank is divided into 512 sub-arrays, and

each sub-array consists of 128 rows. The capacity of each rank, device, bank,

sub-array, and row is 8GB, 64MB, 128KB, and 1KB, respectively. Based on

this organization, the physical memory address mapping for NetDIMM looks

like Fig. 5.9(b). Assuming a page size of 4KB, Fig. 5.9(c) illustrates the

geometric location of consecutive pages stored in a memory rank. As shown,

the pages that are physically stored on a same bank and sub-array are spaced

every 128KB (or 32 pages). Thus, it is easy to check if two pages are on

a same sub-array and bank. We implement alloc netdimm pages(zone,

hint) that allocates a page on NetDIMM zone and the same sub-array as

hint address. If hint is set to -1, then the API only considers the zone

requirement. Note that this is a best effort API and it is possible that the

allocated pages are not on the same sub-array as the hint address.

Another complexity in handling the local memory area of NetDIMM is

the memory channel interleaving of physical addresses in a systems with
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multiple memory channels. Memory channel interleaving increases the

memory throughput by parallelizing memory accesses over several memory

channels. However, we need to disable the memory channel interleaving

for the NetDIMM address space because the global memory channels are not

visible to nNIC (Fig. 5.6). Therefore, the NetDIMM address space should be

exposed to the host in single channel mode so the host processor sees the

NetDIMM physical address as a continuous memory chunk. We leverage the

Flex channel interleaving mode (cf. Sec. 5.2.3) to divide the physical address

space into two parts. One part contains all conventional DDR DIMMs that

operate in multi-channel mode and another part contains NetDIMMs address

space operating in single channel mode. Figure 5.10 depicts the unified

address space of the conventional DIMMs and NetDIMMs and their memory

channel interleaving modes.

NetDIMM Driver. We use Intel e1000 GbE driver as a base to develop

NetDIMM driver. Because NetDIMM is not a PCIe device, ioremap() API is

used to create a configuration space for NetDIMM similar to the configuration

space of a conventional PCIe NIC. Using this techniques, we can configure

all the features of a full-blown NIC without the need for writing a new driver

from scratch.

When a NIC interface is initialized, it creates transmit (TX) and receive

(RX) descriptor ring buffers and initializes their buffer pointers by allocating

DMA buffers. Moderns NICs support scatter-gather DMA operation, so a

DMA buffer can span over multiple pages that are not physically contiguous.

NetDIMM requires that the physical location of descriptor rings and their

corresponding DMA buffers to be on the memory zone of the corresponding
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NetDIMM. To benefit from in-memory cloning acceleration, applications are

also required to allocate their network data buffers on NetDIMM memory

zone. For both TX and RX rings, we use alloc netdimm pages(zonei,

-1) to allocate descriptor ring data structures for NetDIMMi. For RX

and TX DMA buffers, we allocate them on the fly based on the location

of application buffers. However, calling alloc netdimm pages for each

packet can deteriorate the network latency and bandwidth. As shown

on Fig. 5.9(a) each NetDIMM rank has 512 * 16 = 8K distinct sub-arrays.

To accelerate the on-demand memory allocation, NetDIMM pre-allocates

two pages from each distinct sub-array and stores them in a hash table

called allocCache. Considering that NetDIMM has two memory ranks,

each NetDIMM pre allocates 32K pages (i.e., 128MB) for on-demand DMA

buffer allocation. This corresponds to 0.8% of capacity overhead for a

16GB NetDIMM. allocCache immediately returns a page allocated on a

specific sub-array. NetDIMM driver refills allocCache concurrently in the

background, thus, the on-demand allocation of DMA buffers are not in the

critical path of packet RX and TX.

One complication here is that an application should have knowledge about

the physical layer to know which NetDIMM is serving its packet streams. To

resolve this, we add a flag to the SKB header (or any other type of network

data structure used for networking) called COPY NEEDED. We allocate the

SKBs that belong to the connection establishment on the regular kernel

address space and set the COPY NEEDED flag in the SKB header. At the

transmit function of NetDIMM driver, if COPY NEEDED flag is set, the driver first

copies the SKB data to an allocated TX DMA buffer on the corresponding

NetDIMM and then initiates the packet transmission. Each SKB has a pointer

to the socket that the packet is associated with. We add a new field to

“struct sock” called “struct zone struct skb zone” and set it to NETi

in the NetDIMM driver. Therefore, after the first packet transmission, each

connection has enough information to allocate the SKB and paged buffers of

the TX packets on a corresponding NetDIMM memory zone. Note that COPY -

NEEDED flag is also used as a fallback mechanism in case the memory space

on a NETi zone is exhausted and the SKB and TX buffers are allocated on

different memory zones. This is a rare event and does not happen frequently.

When receiving a packet from NetDIMM, similar to a PCIe NIC, once nNIC

finished moving a received packet to a DMA buffer, it needs to notify the
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Algorithm 5: Packet TX and RX handling at NetDIMM driver.
1 TX:
2 txDesc[next].dma = allocCache[txSKB.data] // DMA buffer allocation
3 if txSKB.COPY NEEDED then
4 copy txDesc[next].dma← txSKB.data // slow path
5 set skb zone to NETi
6 flush txDesc[next].dma to memory
7 else
8 flush txSKB.data to memory // fast path
9 set txDesc[next] size and flags // total size is 64 bits

10 flush txDesc[next] size and flags // kick off transmission
11 RX:
12 invalidate rxDesc[next] // to fetch fresh data from NetDIMM
13 rxSKB.data = allocCache[rxDesc[next].dma] //RX buffer allocation
14 netdimmClone(rxSKB.data, rxDesc[next].dma, rxDesc[next].size) //

in-memory buffer cloning
15 send rxSKB to upper network layers for processing
16 Polling Agent:
17 clean TX buffers after a successful transmission
18 if newly arrived packet then
19 call RX

host processor. To notify the processor about newly received packets or

packet transmission completions, a NIC typically uses an interrupt signal or

a polling agent. The interrupt approach is mostly used for high bandwidth

network connections where the network latency is not critical. On the other

hand, a polling mechanism is mainly used by userspace network stacks and

low-latency networks to prevent interrupt processing and context switching

overheads (cf. Sec. 5.2.1).

NetDIMM driver implements an efficient polling agent using a high-

resolution kernel timer. Note that polling NetDIMM is more efficient than

polling a PCIe NIC as accessing I/O registers on a NetDIMM is much faster

than a PCIe NIC. After the polling driver detects a packet arrival, it calls

the RX routine of the driver as shown in Alg. 5. NetDIMM uses memory flush

and invalidate instructions to enforce coherency between processor caches

and NetDIMM local memory. The netdimmClone(dst, src, size) function

shown in Alg. 5 is the API for in-memory buffer cloning. It writes dst, src,

and size values to a set of NetDIMM registers and NetDIMM clones src to

dst buffer inside the memory.
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Table 5.1: System configuration.

Parameters Values
Cores (# cores, freq): (8, 3.4GHz)
Superscalar 3 ways
ROB/IQ/LQ/SQ entries 40/32/16/16
Int & FP physical registers 128 & 192
Branch predictor/BTB entries BiMode/2048
Caches (size, assoc): I/D/L2 32KB,2/64KB,2/2MB,16ways
L1I/L1D/L2 latency,MSHRs 1/2/12 cycles, 2/6/16 MSHRs
DRAM DDR4-2400MHz/16GB/2 channels
Network/Switch latency/#NetDIMM 40GbE/100ns/1
PCIe performance ×8 PCIe 4 [8]

5.4.3 Physical Feasibility of NetDIMM

One question that we still need to answer is how feasible it is to integrate

a full-blown NIC into the buffer device of a DIMM in terms of power and

thermal specifications. There are products [140, 156, ?, 226, 148] and

academic research proposals [178, 21] that add processing power to the

buffer device of conventional DIMMs. Centaur DIMM (CDIMM) [140] is a

buffered DIMM, designed by IBM to scale the memory capacity of POWER

processors. CDIMM comprises of up to 80 DDR DRAM devices and a

Centaur device that consists of a 16MB L4 cache, four memory controllers,

and other controlling logic. The TDP of an IBM Centaur buffer device is

20W in 22nm technology. On the other hand, a modern XXV710 Intel PCIe

Ethernet controller incorporating 2×40Gbps ports has a TDP of 6.5W [227].

Therefore, considering the specification of the current DIMM products, it is

feasible to integrate a NIC chip into the buffer device of a DIMM. Lastly,

we always can connect an external power cable to DIMMs similar to an

NVDIMM [148]. Moreover, we can use a similar connector for the network

cable in NetDIMM.

5.5 Evaluation

5.5.1 Methodology

We evaluated NetDIMM using gem5 [160] along with analytical models for PCIe

interconnect [8, 228] and memory controller [229]. Because the overhead of
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Linux kernel software stack fades the latency improvements of NetDIMM, we

implement a set of bare-metal drivers for our PCIe NIC, integrated NIC and

NetDIMM models using gem5 that resemble low-latency userspace drivers and

use them for latency evaluations. We configure gem5 as shown in Table 5.1.

To model NetDIMM memory access latency, we instantiate an isolated

memory controller that models nMC shown in Fig. 5.6(c). The nMC model

is used to access the NetDIMM memory zone. A memory request from host

to NetDIMM is first queued in a host MC. Once it is chosen to be sent to

the DRAM, instead of performing a regular memory access, after a tCMD

delay, the host MC forwards the memory request to a corresponding nMC.

The memory request access is completed once the nMC sends a response to

the host MC. For the network DMA operations, the memory accesses are

directly sent to the nMC model.

For performance evaluations, we use network traces from three Facebook

production clusters. Each cluster has different packet size and traffic

patterns: first cluster is for database applications with their packet size

uniformly distributed between 64 Bytes and 1514 Bytes (MTU is set to 1514

Bytes), second cluster is for webserver where ∼90% of the packet sizes are

smaller than 300 Bytes, and third cluster is uses for hadoop servers where

∼41% of packets are less than 100Bytes and ∼52% are 1514 Bytes [230].

The traffic pattern of database cluster is mostly inter-cluster and inter-

datacenter, webserver is mostly inter-cluster but intra-datacenter, and

hadoop is intra-cluster. The traces are publicly available by Facebook [231].

We randomly pick one node in each cluster and use several dummy nodes

to replay the ingress and egress data traffic to and from the node under

test. We simulate the Clos network topology of Facebook datacenter using

the dist-gem5 [23] switch model. We assume all the network devices in the

datacenter has a bandwidth of 40Gbps. We implement an L3 Forwarding

(L3F) and a deep packet inspection (DPI) network functions as two network

functions with extremely different packet processing behaviors to evaluate

the impact of NetDIMM on the performance of server memory sub-system.

We use the Facebook traces to exercises these network functions. L3F

forwards received packets only based on their header information while the

DPI processes the entire header and payload to make a forwarding decision.
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5.5.2 Network Latency and Bandwidth

Figure 5.11: One-way network latency breakdown for packets of various sizes
when using a PCIe NIC. X-axis is not drawn to scale.

Figure 5.12: One-way network latency breakdown for packets of various sizes
when using an integrated NIC. X-axis is not drawn to scale.

Figures 5.11-5.13 show one-way network latency breakdown of various

sized packets between two nodes directly connected together by PCIe NICs,

iNICs, and NetDIMMs, respectively. rxCopy and txCopy respectively show the

overhead of memory copy and allocation at RX and TX drivers, rxDMA and

txDMA show the DMA overhead at NIC hardware, wire shows the physical

layer overhead, and I/O reg acc represents the overhead of CPU/NIC

register accesses. txFlush and rxInvalidate represent cache flush and

cache invalidate overheads of NetDIMM driver, respectively. NetDIMM reduces

the one-way network latency by 46.1%, 52.3%, and 49.6% for 64B, 256B,
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Figure 5.13: One-way network latency breakdown for packets of various sizes
when using NetDIMM. X-axis is not drawn to scale.

and 1024B packets compared with a PCIe NIC, which translates to 0.97µs,

1.33µs, and 1.54µs lower network latency, respectively. As shown in Fig. 5.12

and Fig. 5.13, because of eliminating the PCIe interconnect, I/O reg acc

is significantly reduced for iNIC and NetDIMM compared with that of PCIe

NIC. NetDIMM adds txFlush and rxInvalidate overheads to the end-to-end

network latency. These two components combined add 9.7∼15.8% overhead

to the total network latency. Nonetheless, on average NetDIMM delivers

26.0% lower latency than iNIC across different packet size. This shows that

the in-memory buffer cloning not only makes up for the overhead of CPU

cache operations, but also improves the overall network latency compared

with an integrated NIC.

One caveat of NetDIMM is that unlike a PCIe NIC, it is located on

one memory channel and it cannot utilize multiple memory channels

when communicating with the host processor and memory. However, our

simulation results show that NetDIMM delivers 40Gbps bandwidth just like

our PCIe and integrated NIC models. This is not a surprise as the nominal

bandwidth of a DDR4 memory channel is 12.8GBps or 102.4Gbps, which is

far more than 40Gbps. In fact DDR5 memory channel’s projected bandwidth

is twice more than that of a DDR4 channel which can sustain any bandwidth

of what the current or under development PCIe NICs can deliver.
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Figure 5.14: Per packet normalized network latency for different network
switching latency, using servers with NetDIMM and replaying Facebook cluster
traces.

5.5.3 Performance Evaluation

Figure 5.14 shows the average per packet network latency for each cluster

with servers using NetDIMM normalized to the latency of PCIe NIC and iNIC

configurations. We set the latency of network switches inside the simulated

Clos network to 25ns, 50ns, 100ns, and 200ns to measure the performance

sensitivity of NetDIMM to different network configurations. On average, across

different clusters, NetDIMM improves the end-to-end packet latency of PCIe

NIC configuration by 40.6%, 36.0%, 33.1%, and 25.3% when switch latency

is 25ns, 50ns, 100ns, and 200ns, respectively. NetDIMM improves the average

end-to-end packet latency of different clusters employing iNIC by 8.1∼15.3%

for different switch configurations. As expected, NetDIMM latency reduction is

more highlighted when lower latency network switches are used. Fortunately,

the latency of network switch products is improving and today’s ultra-low

latency network switches offer port to port latency of less than 6ns [232].

Among all clusters, webserver benefits the most from NetDIMM because

over 90% of its packets are less than 300Bytes and NetDIMM is more effective

when transferring small packets. In addition, webserver traffic is within the

datacenter and it traverses lesser hops to reach a destination compared with

database traffic that is mostly inter-datecenter. Although hadoop traffic

is local to the cluster, its packets are skewed to either small- or MTU-

sized packets, therefore, NetDIMM latency reduction is the lowest for hadoop

amongst the other two clusters.
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Figure 5.15: Normalized memory access latency observed by a co-running
application when running deep packet inspection (DPI) and L3 forwarding (L3F);
using servers with NetDIMM and replaying Facebook cluster traces.

Figure 5.15 shows the normalized memory access latency observed by a

co-running application when running a DPI and L3F on servers with NetDIMM.

The values are normalized to that of iNIC. Because DPI makes forwarding

decisions based on the packet payload, the processor should fetch the entire

packet to its caches and process both header and payload. Because an

iNIC directly brings the received packets to the LLC, it does not consume

memory channel bandwidth and if the processor is not congested, each

received packet can be processed and forwarded before it gets evicted to the

DRAM. However, L3F only needs packet header to decide where to forward a

received packet, which is naturally done by nCache at NetDIMM. Based on this

packet processing behavior, DPI and L3F are two ends of packet processing

spectrum and any other applications falls between these two. Figure 5.15

shows that NetDIMM increases the memory access time by 5.7%∼15.4% when

running DPI and improves it by 9.8%∼30.9% when running L3F compared

with iNIC configuration. On average, NetDIMM improves the memory access

latency by 9.3%, 2.4%, and 13.6% for database, webserver, and hadoop

clusters respectively.

5.6 Related Works

Novel Network Architecture. Kim et al. [207, 233] proposed a caching

mechanism inside NIC to reduce data communication over the PCI channel.

The NIC cache is implemented using on-board DRAM devices and is
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managed by the operating system. Although this network architecture

reduces the PCIe traffic, incoming packets still need to traverse the PCIe

interconnect to reach the CPU. Furthermore, designing an efficient software

managed data cache is challenging. Flajslik et al. [38] performed a detailed

study on different sources of latency overhead in the network stack and found

that minimizing the number of PCIe transactions is the key in designing

a low latency NIC. They proposed a new NIC architecture called NIQ to

reduce the communication latency, especially for small packets, by employing

techniques such as embedding packets inside the buffer descriptors, custom

polling, and creative use of caching policies. FlexNIC [209] is a network DMA

interface design that reduces the packet processing overhead by enabling NIC

to perform simple operations on the packets while exchanging them with the

main memory. Offloading optimization is orthogonal to NetDIMM design and

can be applied to NetDIMM to further improve the network performance. Liao

et al. [202] proposal decouples the DMA descriptor management from other

NIC functionality and moves it to processor side. This design aims to reduce

the number of PCIe transactions and handle DMA buffers more efficiently.

Larsen et al. [203] also introduced an integrated DMA engine to minimize

the descriptor management overhead and PCIe transactions. Binkert et

al. [206] proposed SINIC, which integrates a simple NIC into the processor

die. SINIC uses PIO to exchange data between the processor, main memory

and NIC. Although SINIC is effective in reducing the network latency, it

has a high area cost. Furthermore, it is not suitable for high bandwidth

communication due to the lack of a DMA engine and other capabilities of

modern NICs. Compared with these works, NetDIMM completely removes

the PCIe link between NIC and the processor, places a full-blown NIC near

memory, and implements in-memory buffer cloning which in turn solves all

the overheads of a conventional network sub-system.

Minnich et al. [234] proposed a memory-integrated NIC called MINI, that

places a NIC behind the main memory DRAM modules. MINI implements

a pseudo dual-port DRAM to share the DRAM space between the host and

NIC. This requires arbitration signals between the host and NIC memory

controllers. MINI need to redesign DRAM and memory controller interfaces

to port to a new system architecture. MEMONet [235] and DIMMNET-

2 [236] plug a NIC into a memory channel slot. Although these designs solve

the PCIe bottleneck, they do not share the NIC and host address space and
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explicitly copy packets over the host memory channel for packet transmission

and reception. Furthermore, these NICs can be used on a single memory

channel system. On the other hand, NetDIMM seamlessly exposes its local

memory address space to the host, minimizes the data movement between

host and NIC, supports multi-channel memory systems, and lastly, NetDIMM

does not require any change to the processor architecture and memory sub-

system.

Novel Interconnection Technology. Alian et al. [21] introduced memory

channel network (MCN) concept where they add a general-purpose mobile

processor to a DIMM and expose the near-memory processors to the host

processor as if they are connected through an Ethernet interface. They use

memory channel to interconnect the remote nodes to the host processor.

NetDIMM uses a similar concept to connect NIC, processor, and memory

together. Open Coherent Accelerator Processor Interface (OpenCAPI),

Cache Coherent Interconnect for Accelerators (CCIX), and Gen-Z are

new interconnect standards under development that are mainly used to

tightly couple processors and accelerators such as GPUs and FPGAs.

CCIX is developed based on PCIe specifications and has PCIe drawbacks.

The combination of DDR and such interconnection technologies provides

unprecedented bandwidth and reduces data movement overhead by directly

accessing the memory. Although CCIX, OpenCAPI and Gen-Z are three

different standards, these are introduced and emerged to solve similar

problems and they may merge into each other in the future. However,

DDR standard is maintained and developed for over two decades and is

the standard interconnection technology for memory. Moreover, the serial

interconnects such as CCIX, OpenCAPI and Gen-Z cannot match the

latency of a parallel DDR memory channel.

5.7 Conclusion

For decades, the focus of scale-out network system design was to optimize

its bandwidth. However, with the emergence of ultra-low latency datacenter

applications, a need for low latency scale-out networks has unfolded. In this

chapter, building upon the near-memory processing concept and leveraging

the asynchronous memory access of NVDIMM-P protocol, we designed
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and evaluated a near-memory NIC architecture called NetDIMM. NetDIMM

integrates a full-blown NIC into the buffer device of an in-memory buffer-

cloning capable DIMM. We developed supporting logic and a device driver

to make the near-memory NIC available to applications running on a host

processor. Finally, we implemented a new memory zone for NetDIMM’s

local memory space and developed Linux kernel APIs to facilitate memory

allocation from these memory zones. Such memory allocation significantly

reduced the amount of data movement when processing network packets.

Compared with a conventional PCIe NIC, NetDIMM improves the network

latency by up to 52.9% without compromising the network bandwidth.
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Part III

System Simulation and

Modeling
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CHAPTER 6

PARALLEL/DISTRIBUTED SIMULATION
OF COMPUTER CLUSTERS

When analyzing a distributed computer system, we often observe that the

complex interplay among the processor, node, and network sub-systems can

profoundly affect the performance and power efficiency of the distributed

computer system. Therefore, to effectively cross-optimize hardware and

software components of a distributed computer system, we need a full-

system simulation infrastructure that can precisely capture this complex

interplay. Responding to the aforementioned need, we present dist-gem5,

a flexible, detailed, and open-source full-system simulation infrastructure

that can model and simulate a distributed computer system using multiple

simulation hosts. Then we validate dist-gem5 against a physical cluster and

show that the latency and bandwidth of the simulated network sub-system

are within 18% of the physical one. Compared with the single threaded and

parallel versions of gem5, dist-gem5 speeds up the simulation of a 63-node

computer cluster by 83.1× and 12.8×, respectively.

6.1 Introduction

Single-thread performance of processors has not significantly improved

as technology scaling has approached the fundamental physical limit.

Meanwhile, emerging applications require computation across larger data

sets. Consequently, distributed computing models such as MapReduce and

MPI have thrived. This has increased the importance of building efficient

distributed computer systems. The complex interplay among processor,

node, and network sub-systems can strongly affect the performance

and power efficiency of a distributed computer system. In particular,

we observe that all the hardware and software layers of the network,

including interface technology (e.g., Ethernet, RapidIO, and InfiniBand),
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switch/router capability, link bandwidth, topology, traffic patterns, and

protocols, significantly impact the processor and node utilization. Therefore,

to build distributed computer systems that provide high-performance and

power efficiency, a system architect must develop optimizations that cut

across processor, node, and network sub-systems. Such cross-optimizations

requires a detailed full-system simulator that can precisely models the entire

distributed system. Currently, our community lacks a proper research

infrastructure to study the interplay of these sub-systems. That is, we can

evaluate them independently with existing tools, but not together.

gem5 is one of the most widely used full-system simulators [160]. gem5

can boot an operating system (OS), allowing researchers to evaluate various

processor architectures while reflecting complex interactions between the

processor and the OS. Several research groups have actively enhanced gem5 to

support various important features such as DVFS [41] and GPU models [237].

These features are now part of the official release of gem5. While the current

official release of gem5 supports thread-based parallelism within a single host

process , it does not support parallelism across multiple simulation hosts yet.

Consequently, it can only model and simulate a limited number of nodes.

In this chapter, we present dist-gem5, a distributed version of gem5,

consolidating two independent development efforts, pd-gem5 [159] and

multi-gem5 by the University of Illinois and ARM Ltd, to support the

simulation of multiple nodes using multiple simulation hosts. The primary

distinctions between dist-gem5 and pd-gem5 are as follows. (1) dist-gem5

uses a single channel (TCP socket) to forward both synchronization and

data messages between a switch node and a full-system node. This prevents

data messages from bypassing synchronization messages (due to the strict

ordering between TCP packets) and thus any straggler packets [159, 238].

(2) dist-gem5 improves the check-pointing feature of pd-gem5. (3) pd-gem5

is tightly coupled with the Ethernet protocol, whereas dist-gem5 is protocol

agnostic and can be easily extended to work with other network technologies.

Our goal is to develop dist-gem5 that can provide a scalable, fast

and detailed simulation infrastructure for modeling and evaluating large

computer clusters. We observe that it is not scalable to use one physical

simulation host to model and evaluate a large computer cluster, limiting

the number of nodes that we can model and evaluate. In simulating a

computer cluster, if the number of simulated nodes is more than that of
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physical cores of a simulation host, we demonstrate that dist-gem5 with

multiple simulation hosts can offer considerably lower simulation time than

dist-gem5 with a single simulation host (parallel/distributed simulation

using many cores across multiple simulation hosts versus parallel simulation

using multiple cores in a simulation host). A parallel/distributed simulation

of a 63-node computer cluster offers 12.8× lower simulation time that

running the same simulation using one simulation host. This shows that

parallel simulation that has been proposed in previous works [239, 240, 241]

is not sufficient for simulating emerging large-scale computing systems.

In this chapter, we first introduce dist-gem5 and describe its components

in detail (Sec. 6.2). Then we verify that modeling a computer cluster using

dist-gem5 generates exactly the same results as if we model the cluster

using a single-threaded gem5 with the same configurations (Sec. 6.3.1).

That is, dist-gem5 simulation is deterministic although it uses multiple

simulation hosts connected by physical network with varying latency and

bandwidth over time. Note that the goal of this writing is not to validate the

existing performance models of gem5. Therefore, we focus on demonstrating

that dist-gem5 can precisely model and evaluate the network sub-system

performance of a physical computer cluster (Sec. 6.3.2). Then we evaluate the

speedup and scalability of dist-gem5 by simulating 3- to 63-node computer

clusters (Sec. 6.3.3). To evaluate the synchronization overhead of dist-gem5,

we simulate a 16-node computer cluster and sweep synchronization quantum

from 0.5 to 128µs (Sec. 6.3.4). In Sec. 6.4, we use dist-gem5 and evaluate

the scalability of the main five kernels of MPI implementation of NAS

parallel benchmarks [162], and study dist-gem5’s speedup and scalability.

Section 6.5 discusses related works to dist-gem5.

6.2 dist-gem5 Architecture

Figure 6.1 shows dist-gem5 simulating an eight-node server rack connected

by a Top-of-Rack (TOR) network switch using three simulation hosts. Each

gem5 instance (process) is shown as a box labeled with the gem5 logo, which

can simulate a node in a full-system mode or a network switch. In Fig. 6.1

“p” prefix stands for “physical” and “s” prefix stands for “simulated.” For

example, “sNIC” stands for “simulated NIC.” dist-gem5 simulates such a
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Figure 6.1: dist-gem5 modeling a computer cluster using 3 simulation hosts.

computer cluster as follows: One gem5 instance simulates a network switch on

one simulation host (“pHost 1” in Fig. 6.1). Eight gem5 instances running on

the other two simulation hosts (“pHost0” and “pHost1” in Fig. 6.1) simulate

eight nodes of the simulated cluster. As is the case in Fig. 6.1, dist-gem5

may dedicate a physical core of a simulation host to run just a network switch

to prevent a process simulating the network switch from being the simulation

bottleneck, or it may run a network switch model within a gem5 process that

simulates a node in full-system mode. In this way, dist-gem5 can model and

simulate a distributed computer system in any given network topology (e.g.,

star, ring, and mesh topology) at any scale.

6.2.1 Core Components

In this sub-section, we will describe four core components of dist-gem5: (1)

packet forwarding, (2) synchronization, (3) distributed checkpointing, and

(4) the network switch model. These enhancements allow us to precisely

model and efficiently simulate a distributed computer system in a desired

network topology.

Packet forwarding. dist-gem5 forwards each network packet generated

by a simulated NIC device to a port of a simulated network switch. The

forwarded packets travel through TCP sockets, which establish physical

communication channels between gem5 processes. When a packet arrives at
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Figure 6.2: Distributed check-pointing in dist-gem5.

a gem5 process simulating a network switch, it traverses through the entire

simulated network topology (i.e., one or more simulated Ethernet switches

connected through simulated Ethernet links). After that, the simulated

packet is forwarded to the target simulated NIC device(s) through a TCP

socket of a simulation host. Figure 6.1 depicts in-flight forwarded packets

(represented by small envelopes) between the simulated NIC of node#4 and

port#4 (dark green port) of the simulated switch.

dist-gem5 launches a dedicated receiver thread that runs in parallel

with the main simulation thread within each gem5 process. The main

simulation thread is responsible for progressing the simulation by processing

the event queue. The receiver thread processes all incoming packets and

inserts the corresponding receive frame events into the event queue without

interrupting the main simulation thread. Note that receiver thread does not

perform any work independent from the main simulation thread. It is just

an auxiliary thread that frees the main simulation thread from polling on a

TCP connection. Such asynchronous processing of incoming packets helps

to hide the extra overhead of packet forwarding with respect to the total

simulation time.

Simulation accuracy and packet forwarding. The simulated time of

parallel gem5 processes may progress at different rates. It is due to the varying

numbers of events that need to be processed by each gem5 and the potential

differences in the physical hardware resources (including varying load levels

of shared resources). We must ensure that each network packet created by a

simulated NIC arrives at the target gem5 process(es) “on time” (i.e., before
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the simulated time in the target gem5 process passes the expected receive

time). The expected time of receiving a packet (denoted by er) depends

on the simulated time at which the packet is sent (st) and the latency (lat)

and bandwidth (bw) of the simulated network link. We can compute er as

follows:

er = st+ lat+
ps

bw

where ps is the packet size.

Figure 6.2 illustrates a quantum-based synchronization technique that

we use to ensure timely packet delivery between gem5 processes. The x-

axis is the wall-clock time while the thick horizontal arrows represent the

progress in simulated time of two gem5 processes (where the upper one sends a

simulated packet to the lower one). The quantum (“q”) defines the amount of

simulated time that any gem5 process can proceed freely before it has to wait

for all the others at a global synchronization barrier. The synchronization

barrier must also flush the inter gem5 processes communication channels.

That is, every in-flight forwarded packet must arrive at the target gem5

process before the barrier completes. These imply the following invariant

property: a forwarded packet always arrives at the target before the target

gem5 completes simulating the quantum in which the simulated send time of

that packet falls.

If we keep the quantum equal to (or less than) the simulated network link

latency, then the expected delivery time will always fall in a future quantum

when the packet arrives at the target. This ensures that no packet will miss

the expected delivery time. However, synchronization barriers incur runtime

overhead. That is, the less frequent the synchronization is, the smaller the

overhead is. This implies that the optimal choice for the quantum size is the

simulated network link latency.

Distributed checkpointing. Checkpoints can substantially reduce the

simulation time needed for system explorations. We can start the simulation

of an application in fast-forward mode (i.e., fast functional simulation mode)

and dump a checkpoint when we reach a Region of Interest (ROI). The

checkpoint stores all the pertinent simulation states. Then we can restore the

simulation states at the beginning of a ROI and run simulations in detailed

mode.
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Figure 6.3: Distributed check-pointing in dist-gem5.

In case of dist-gem5, a global checkpoint consists of all the per-

process checkpoints taken by the parallel gem5 processes. However, a

per process checkpoint captures only the internal state of a single gem5

process, while dist-gem5 also contains external states on inter-process

communications. In-flight forwarded packets between gem5 processes may

cause the dist-gem5 checkpoint to be incomplete. Hence, dumping a

checkpoint needs coordination among the parallel gem5 processes. The white

boxes in Fig. 6.3 show the key steps to create a checkpoint in gem5. The

“serialize()” step performs the actual checkpoint write. Prior to serialization,

the simulator needs to be in a consistent state. The “drain()” step progresses

the simulation as little as possible just to reach the next consistent state.

dist-gem5 needs two extra synchronization steps shown in the blue

boxes in Fig. 6.3. First, we need a global synchronization barrier to notify

every gem5 process that they need to dump a checkpoint. When a global

synchronization completes, the inter-process communication channels are

empty. However, during the subsequent drain() step simulation may

proceed and new packets may get forwarded. Therefore, dist-gem5 uses

another global synchronization just before serialize() to flush the inter-

process communication channels again. As an optimization for simulation

speed during fast-forwarding, dist-gem5 provides an option to disable

synchronization and start it after restoring from a checkpoint or before

entering a ROI.

Network switch. We implement an Ethernet switch device (“EtherSwitch”)

in gem5, which operates at layer 2 of the Open Systems Interconnection (OSI)
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Figure 6.4: (a) EtherSwitch architecture. (b) Sample hierarchical tree topology
modeling with dist-gem5.

model. Figure 6.4(a) shows the architecture of EtherSwitch. EtherSwitch

learns [242] the MAC address of the connected device to each port and

constructs a MAC Address Table (MAT). Then it uses MAT information

to forward incoming packets to the correct port(s) based on the packet’s

destination MAC address. If there is no entry for a MAC address in MAT,

EtherSwitch broadcasts the packet to all of its ports. Each MAT entry has

a Time-to-Live (TTL) parameter. If a MAT entry is not used for TTL time

units, then EtherSwitch removes that entry from MAT. Users can configure

the switching delay, switching bandwidth, FIFO size of output port, and

TTL as command line parameters.

To guarantee deterministic simulation, we have to make sure that packets

get routed in the same order (with respect to simulated time) inside

EtherSwitch. As soon as a packet is received on an input port (“IPORT”

in Fig. 6.4(a)), the packet is enqueued in one or several in-ordered output

queues (“IOOQ” in Fig. 6.4(a)). IOOQ is different from a simple FIFO in a

sense that it tags each packet with its entry time and its associated input

port. If two packets have a same entry time stamps, then IOOQ reorders

them based on their input ports. With this, it is guaranteed that there

is no reordering happening inside EtherSwitch when two packets reach

EtherSwitch at a same simulated time.
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Network topology exploration. EtherSwitch enables users to

construct different Ethernet network topology by instantiating several

EtherSwitch simObjects and connect them together via Ethernet link

(“EtherLink”) simObjects in gem5. Figure 6.4(b) shows how a two-level

hierarchical network topology can be modeled using dist-gem5. The entire

network topology can be modeled inside one gem5 process (what we have

in Fig. 6.4(b)) or be distributed over several gem5 processes that each can

potentially simulates a full-system node. In the Fig. 6.4(b), we have nine

EtherSwitches, i.e., 1× eight-port 10GbE aggregate (“Aggr”) switch and

8× seventeen-port (sixteen downlink ports, one uplink port) 1GbE network

switches. Each downlink port of TOR switches is connected to a “DistIface”

which connects the downlink port to a node’s NIC.

Although the current networking protocol supported by dist-gem5 is

Ethernet, because its synchronization and packet delivery are protocol

agnostic, dist-gem5 can easily be extended to model other networking

technologies (e.g., InfiniBand).

6.2.2 Deterministic Execution

Non-determinism in simulation may jeopardize confidence in results. The

released gem5 provides deterministic simulation execution. dist-gem5

introduces a new source of potential non-determinism in the form of non-

deterministic physical communication among gem5 processes. The delivery

time for messages traveling through TCP sockets can vary substantially

depending on the current state of the physical system. We need to make

sure that non determinism in the physical arrival time of any forwarded

packet does not affect the simulated timing at the target gem5.The quantum-

based synchronization flushes the in-flight messages at each global barrier.

This implies that we only need to consider non-deterministic message arrivals

between two synchronization barriers (i.e., within the “active quantum”). As

discussed in the previous section, expected packet delivery always falls into

a future quantum so the order of simulated receive events are not affected by

the physical arrival time of the forwarded packets. In other words, the total

order and simulated timing of all receive events is independent from that of

the physical packet arrivals. This ensures that dist-gem5 simulations are
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Table 6.1: Parameters of each simulated node.

Parameters Values
Number of cores 4
Superscalar 4 ways
Integer/FP ALUs 3/2
ROB/IQ/LSQ entries 128/36/72/42
Branch predictor Bi-Mode
L1I/L1D/L2 size (KB) 64/64/2048
L1I/L1D/L2 associativity 2/4/8
DRAM 8GB DDR3 1600
Network interface driver Intel 82574GI Gigabit Ethernet
Network link 10Gbps with 1µs latency
Operating System Linux Ubuntu 14.04

deterministic.

6.3 Evaluation: Determinism, Network Sub-System

Validation, and Speedup

In this section, we show evaluation results for dist-gem5 runs. First, we

demonstrate that dist-gem5 is deterministic and its simulation results

are identical to the single threaded gem5 simulation model. Second, we

show that dist-gem5 can accurately simulate a physical cluster. Third,

we study the speedup improvement of dist-gem5. Lastly, we vary the

synchronization quantum size to analyze the impact of the synchronization

overhead of dist-gem5 on the speedup. Unless stated otherwise, we

configure dist-gem5 nodes with the parameters tabulated in Table 6.1 for

our experiments.

6.3.1 Verification of Determinism

We verify dist-gem5’s synchronization, in-order packet delivery, and

deterministic simulation using an equivalent gem5 model. Currently, gem5

can simulate a two-node computer cluster connected with an EtherLink

together (“dual” mode configuration). We construct an identical simulated

clusters to dist-gem5 by instantiating several full-system nodes and connect

them to an EtherSwitch model using several EtherLinks. Figure 6.5

illustrates our gem5 model for simulating an eight-node computer cluster
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Figure 6.5: gem5 modeling of an eight-node computer cluster.

(same cluster size as Fig. 6.1). As shown in the figure, all the nodes and

the networking sub-system of the eight-node cluster are modeled using

one gem5 process running on one of the cores of a physical host. We

configure dist-gem5 and gem5 to simulate identical 4-, 8-, and 16-node

computer clusters and run Memcached and httperf on them. For each

cluster configurations, we run one (Memcached or httperf) server on one

of the nodes and run one (Memcached or httperf) client per node on the

remaining nodes. We configure each node with the parameters tabulated

in Table 6.1. The exact configuration of Memcached and httperf servers

are explained in Sec. 6.3.2. For all the dist-gem5 and gem5 experiments

with different configurations, we get exactly the same simulation results.

Simulation results are all the gem5 statistics that report the activities

of different gem5 hardware models, e.g., simulated time, total number of

committed instructions, bandwidth consumption by DRAM and NIC, etc.

Beside verification purposes, the seamless integration of dist-gem5 into

gem5 framework is valuable for simulating a hierarchical network, using a

combination of multi-threaded gem5 processes and dist-gem5, e.g., model

a rack in multi-threaded1 mode on a multi-processor machine and use

dist-gem5 to build up a simulation of multiple racks. This can reduce

the overhead of synchronization among gem5 processes, further improving

dist-gem5’s scalability (Sec. 6.3.3)

1The multithreaded gem5 is not publicly used by the gem5 community yet
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6.3.2 Validation of Network Sub-System Model

We validate dist-gem5 against a physical computer cluster consisting of

four nodes, each of which has one quad-core AMD A10-5800K, two 8GB

DDR3 DIMMs and one Intel 10-Gigabit x540-AT2 Ethernet controller.

Unfortunately, gem5 lacks a 10 Gigabit Ethernet card model, preventing us

from validating it against a 10-Gigabit physical cluster. Therefore, we use

an HP 1410 Gigabit Ethernet switch to connect nodes together and force

our Ethernet network to work with 1-Gigabit per second speed2. We use

Intel DPDK [168] to accurately measure per Ethernet packet latency on

our physical setup. We run five network-intensive applications, including

iperf [161], Memcached [244], httperf [245], tcptest [246], and netperf [247],

and report the average request latency and achieved bandwidth results. We

run three clients (one client per node) which send requests to one server

running on a separate node. Memcached server has 1GB caching capacity

and is warmed up with a 1.2GB scaled dataset. Each of Memcached and

httperf clients sends request to the server at 20% of the maximum load

that the server can sustain. Thus, the total load on the server from three

clients is 60% of the maximum sustained load.

Before validating dist-gem5, we run SPEC CPU2006 benchmarks on

gem5 and the physical machine and tune gem5 parameters to closely model

the physical node. On average, the performance of the tuned gem5 is 6%

higher/lower than the physical setup.

On both physical (denoted by phys) and dist-gem5 clusters, we run three

iperf clients on three separate nodes which send 500B UDP packets to the

fourth node in the cluster. In the physical setup, in order to minimize the

effect of the software network stack on the latency measurements, we use

DPDK to measure round-trip latency of packets at layer 2 of the OSI model.

We sweep iperf client’s bandwidth (using the “–bandwidth” option) and

measure the round-trip latency at different load levels. Figure 6.6 shows the

roundtrip latency versus bandwidth for dist-gem5 and phys. As expected,

the round-trip latency dilates when the aggregated client’s load reaches to

1 Gigabit per second (Gbps). This happens because the packet buffers in

the Ethernet switch start to fill up. We also observe packet drops in both

2Because of the Autonegotiation [243] feature, NICs and the Ethernet switch agree on
a common transmission rate which is the minimum rate supported by all network devices
(here 1Gbps)
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Figure 6.6: Comparison of latency versus bandwidth.

Figure 6.7: Memcached response time distribution.

dist-gem5 and phys at load levels close to 1Gbps. As shown in Fig. 6.6,

dist-gem5 can accurately model the network queuing latency and closely

follows the behavior of the physical cluster.

Figure 6.7 shows the distribution of response time of Memcached for

dist-gem5 and phys. Up until 95th percentile response time, on average,

dist-gem5 has 17.5% lower response time compared with phys. 98th and

99th percentile response times of dist-gem5 are 6% higher than phys. The

response time that we get from dist-gem5 is constantly lower than phys

except for a few requests. We track down the network delay for these requests

and confirm that network latency does not contribute to their high response

time. Instead, these few requests experience an unexpectedly high delay in

the Memcached server. We suspect that Memcached thread load imbalance

causes these unexpected spikes in the response time [248]. Because our focus

for validating dist-gem5 is particularly on the network sub-system, we did
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Table 6.2: Latency and bandwidth comparison.

Benchmark dist-gem5 phys Error
httperf 3.62(ms) 3.68(ms) − 1.6%
tcptest 897.2(Mbps) 958.6(Mbps) −6.4%
netperf 865.5(Mbps) 942.2(Mbps) −8.1%

not strive to tune each node’s parameters to exactly model the physical

systems. Thus, we believe the mismatch in node’s configuration (both

hardware and software) is the main contributor to the discrepancy between

dist-gem5 and phys results.

In addition to iperf and Memcached, we run httperf, tcptest, and

netperf on physical cluster and dist-gem5. httperf is a networking

benchmark tool which implements a Hypertext Transfer Protocol (HTTP)

client that sends request to an Apache web server. We run tcptest and

netperf to measure the maximum sustainable TCP bandwidth of dist-gem5

and phys clusters. Similar to iperf, we run three (httperf, tcptest, and

netperf) clients on three separate nodes in which each of the clients send

requests to one (httperf, tcptest, and netperf) server node. Table 6.2

shows the average httperf request response time and TCP bandwidth

measured by tcptest and netperf for dist-gem5 and phys. Compared

with phys, dist-gem5 just has 1.6% lower latency, and 6.4% and 8.1% lower

bandwidth for httperf, tcptest, and netperf, respectively.

6.3.3 Comparison of Speedup

We evaluate dist-gem5’s speedup by comparing the simulation time of

modeling 3- to 63-node computer clusters using the following simulation

techniques.

Single threaded gem5 (st-gem5 configuration in Fig. 6.8). We model

full-system nodes using one single threaded gem5 process running on

one dedicated physical machine (AMD machine described in Sec. 6.3.2).

Figure 6.5 illustrates an eight-node st-gem5 model.

Parallel gem5 (p-gem5 configuration in Fig. 6.8). We use dist-gem5 to

model each full-system node under a separate gem5 process, but rather than

distributing gem5 processes on several physical hosts, we use one physical

machine to simulate the entire cluster. That is, gem5 processes can run in
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Figure 6.8: Speedup comparison of single threaded, parallel and parallel-
distributed gem5 simulation.

parallel on each of the four cores of the physical machine.

Parallel-distributed gem5 (dist-gem5 configuration in Fig. 6.8). This

is the same as p-gem5, but we use as many physical machines as we need

to assign each gem5 process to one physical core. Table 6.3 shows the

number of physical nodes and cores that we use to simulate the computer

cluster summarized in the first row (“xnys” translates to x nodes and y

EtherSwitches) with st-gem5, p-gem5 and dist-gem5. As we dedicate one

gem5 process to run a EtherSwitch, we set the simulated cluster size equal

to 2m−1 where m is an integer value to utilize all the cores of all the physical

hosts used in dist-gem5 configuration.

We run one httperf client on each simulated node and configure it to

send requests to one unique node in the cluster. This way, independently of

cluster size, the load per node at different cluster sizes is always constant.

Therefore, we can have a fair scalability and speedup evaluation by comparing

the simulation time of different configurations when they perform exactly the

same number of work-units; in our experiments, number of requests serviced

Table 6.3: Breakdowns of the end-to-end latencies for transmitting and receiving
a single TCP 1.5KB/9KB packet.

3n1s 7n1s 15n1s 31n1s 63n1s

st-gem5
#gem5/core 1 1 1 1 1
#phyNodes 1 1 1 1 1

p-gem5
#gem5/core 1 2 4 8 16
#phyNodes 1 1 1 1 1

dist-gem5
#gem5/core 1 1 1 1 1
#phyNodes 1 2 4 8 16
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per second represents the work-unit.

We run one httperf client on each simulated node and configure it to

send requests to one unique node in the cluster. This way, independently of

cluster size, the load per node at different cluster sizes is always constant.

Therefore, we can have a fair scalability and speedup evaluation by comparing

the simulation time of different configurations when they perform exactly the

same amount of work-units; in our experiments, number of requests serviced

per second represents the work-unit.

Figure 6.8 shows the simulation time (wall-clock time) of st-gem5, p-gem5,

and dist-gem5 for simulating three seconds of httperf runtime, normalized

to simulation time of 3n1s configuration. Note that each data-series is

normalized to the simulation time of 3n1s configuration of the same data-

series to show how simulation time scales when scaling simulated cluster size

for each simulation technique. As depicted in Fig. 6.8, simulating 63n1s takes

57.3× and 23.9× longer than simulating 3n1s with st-gem5 and p-gem5,

respectively. On the other hand, it just takes 1.9× longer than 3n1s to

simulate 63n1s with dist-gem5, showing the great scalability of dist-gem5.

Note that the load on the switch process is not constant and linearly scales

with cluster size although we keep the load per full-system node constant

when scaling up the simulated cluster size. Therefore, the slowdown of

dist-gem5 is caused by both synchronization and network switch process

overhead.

One important observation from Fig. 6.8 is that simulation time of p-gem5

scales linearly with number of nodes until 15n1s; 1.9× and 3.9× for 7n1s and

Figure 6.9: Speedup of parallel gem5 (i.e., p-gem5) and parallel-distributed gem5

(i.e., dist-gem5) simulations compared to single-threaded gem5.
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15n1s configurations, respectively, which in turn has approximately 2× and

4× more nodes than 3n1s. However, for 31n1s and 63n1s configurations,

because p-gem5 uses all the available memory in one physical system,

it experiences memory thrashing and its simulation time increases super

linearly; p-gem5 simulation time increases 11.2× and 23.9× for 8× and 16×
increase in the simulated cluster size, respectively. This shows the necessity

of distributed simulation for simulating large-scale clusters.

Figure 6.9 shows the speedup of p-gem5 and dist-gem5 over st-gem5.

Note that p-gem5 is identical to dist-gem5 for 3n1s configuration as

dist-gem5 uses only one physical node to simulate the cluster. For 63n1s

configuration, p-gem5 and dist-gem5 provides 6.5× and 83.1× speedup over

st-gem5, respectively. p-gem5 speedup saturates and does not go over 6.6×
due to the thrashing phenomena that we explained earlier in this section.

6.3.4 Overhead of Synchronization

To evaluate the sensitivity of dist-gem5’s speedup to synchronization

quantum size (hereafter sync-quantum), we run httperf (with the same

setup explained in Sec. 6.3.3) on dist-gem5 simulating a 16-node computer

cluster and sweep Ethernet link delay parameter from 0.5µs to 128µs.

Changing Ethernet link delay effectively changes sync-quantum as the

sync-quantum of dist-gem5 is always set to Ethernet link delay to preserve

the deterministic simulation (Sec. 6.2.2).

The bars in Fig. 6.10 show the normalized simulation time of httperf

Figure 6.10: Simulation time of a 16-node computer cluster running httperf for
different synchronization quantum sizes.
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for different sync-quantum. The simulation times are normalized to the

simulation time of the run with the smallest sync-quantum (0.5µs). Because

we change Ethernet link delay to change sync-quantum, the simulation

results of different quantum sizes are not identical. The line graph in

Fig. 6.10 shows the total number of HTTP requests that are sent to the

Apache servers for each sync-quantum. The variance from average of

total simulated requests across different sync-quantums (i.e., Ethernet link

delays) is at most 2.6%. This small variation indicates that httperf’s

performance is not sensitive to the Ethernet link delay (at least for this

specific experiment that we are running) and the simulated work-units are

approximately the same with different sync-quantums.

As shown in the Fig. 6.10, increasing sync-quantum consistently improves

dist-gem5’s simulation time. This observation is expected as increasing

sync-quantum lowers the synchronization frequency and consequently the

overall synchronization overhead. However, the speedup gains from doubling

sync-quantum decrease as it gets larger. Doubling sync-quantum from

0.5µs to 1µs, 1µs to 2µs, and 2µs to 4µs improves simulation speed by

4.9%, 3.1%, and 2.3%, respectively. Increasing sync-quantum by a factor

of 256× (from 0.5µs to 128µs) improves simulation speed just by 15.7%.

This experiment shows that dist-gem5 synchronization is efficient and does

not incur significant overhead even with small a sync-quantum.

6.4 In-Depth Evaluation: Scalability

In this section, we use dist-gem5 to further evaluate the scalability of

dist-gem5 using the MPI implementation of NAS Parallel Benchmark

(NPB) [162].

We run the small dataset size of NPB comprised of five kernels (i.e., Integer

Sort (IS), Embarrassingly Parallel (EP), Conjugate Gradient (CG), Multi-Grid

on a sequence of meshes (MG), and discrete fast Fourier Transform (FT)). We

compile each with 4 to 128 MPI processes (“NPROC” parameter). We run

each binary on as many simulated nodes as needed to keep the MPI processes

per simulated core equal to one in all configurations. Because each simulated

node has four cores (Table 6.1), we use 1, 2, 4, 8, 16, and 32 nodes for running

a binary with 4, 8, 16, 32, 64, and 128 MPI processes, respectively. Except
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Figure 6.11: Simulation time (Host) and simulated time (Sim) versus number of
processes (i.e., cluster size) for CG.

Figure 6.12: Simulation time (Host) and simulated time (Sim) versus number of
processes (i.e., cluster size) for EP.

for 1 node simulation, we use dist-gem5 to run the kernels.

Figure 6.11 shows simTime (the simulated time that takes to run one

kernel from beginning till end) and also hostTime (wall-clock time that takes

to simulate one kernel), normalized to the single node (i.e., 4 MPI processes)

kernel, of two representative NPB kernels for different simulated cluster sizes

(and consequently different number of MPI processes). As shown in Fig. 6.11,

CG with 4 MPI processes offers the shortest simTime. Increasing the number

of MPI processes (and consequently increasing the cluster size) leads to a

higher simTime for CG. As expected, because of the increase in simTime,

hostTime of CG increases for larger cluster sizes. Compared with the single

node (4 MPI processes) data point, simTime and hostTime of a 32-node

configuration increase by 4.6× and 11.8×, respectively.
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Figure 6.12 shows the scalability results for EP kernel. Unlike CG, EP

benefits from more MPI processes and larger cluster size. simTime of EP

constantly decreases from single-node to eight-node cluster size. Its simTime

starts to increase from 16-node cluster size and beyond. Compared with

single node cluster, EP running on an eight-node cluster offers 58% lower

simTime.

Except for four-node data point, hostTime follows the exact same trend as

simTime: an increase in simTime results in an increase in hostTime and vice

versa. However, at the four-node data point, we see an unexpected increase in

hostTime. The reason for this anomaly roots from the core microarchitecture

of the AMD machines (AMD Bulldozer microarchitecture) that we use to

run our experiments (Sec. 6.3). These machines have two clusters and two

cores per clusters. The cores within a cluster share the front end, the

floating-point unit and the L2 cache. Therefore, running two processes on

different cores of a same cluster can hurt the performance of each processes

due to contention on the share resources. When we simulate a two-node

computer cluster using dist-gem5, we have two gem5 processes simulating

full-system nodes and one simulating an EtherSwitch. The EtherSwitch

process is a very light weighted process compared to the two full-system

processes and effectively we are running two gem5 processes on one physical

host, and consequently one gem5 process per AMD Bulldozer cluster. For

simulating a four-node configuration, we run four full-system gem5 processes

on one AMD machine and run one switch process on a separate machine,

using two physical machines to run the simulation. With this setup, each

pair of full-system gem5 processes shares one AMD Bulldozer cluster which

degrades per gem5 process performance. Furthermore, simulating all gem5

processes in one physical host (two-node simulation) is more efficient than

running on multiple physical hosts (four-node simulation and higher) due

to lower synchronization overheads (off-chip versus on-chip communication).

Sharing processor resources and higher synchronization overhead are the

two contributors to the unexpected increase in the hostTime of the four-

node cluster size. Compared with the four-node, hostTime of the eight-

node configuration is lower as its simTime is significantly lower. After

all, gem5 is an event based simulator and hostTime is a function of the

event frequency and event type. Technically, it is not true to tie hostTime

to simTime and always expect that increasing (decreasing) simTime will
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increase (decrease) hostTime, especially for full-system simulation when we

have complex interactions between the various components within a system.

The other three kernels in NPB exhibits the same scalability behavior of

either CG or EP. MG and IS behave exactly the same as CG and their optimum

simTime point is running on a single node using 4 MPI processes. FT follows

the same scalability pattern as EP and its optimum simTime is when running

on eight nodes using 32 MPI processes.

6.5 Related Work

Wisconsin Wind Tunnel (WWT) was developed to simulate a multi-

processor system using multi-processors [249], and it pioneered the quantum-

based technique to synchronize simulation processes and perform parallel

simulation. SST [250] is an open-source, multi-scale, multi-component

parallel architectural simulator. By importing gem5 along with several other

device models, such as NICs and routers, as components, SST can simulate

HPC systems. However, a proper integration of gem5 with SST is challenging

as gem5 continuously evolves. In contrast, dist-gem5 is part of the official

release of gem5, and thus it does not pose any integration challenge as SST.

Furthermore, SST is not validated as a multi-component simulator and it

relies on validation of components in isolation.

COTson is a full-system simulator for multi-core processors and scale-

out clusters [238]. COTson combines individual node simulators to form

a cluster simulator. It jointly uses a fast functional emulator (i.e., AMD’s

SimNow [251]) and timing models to explore the trade-off between simulation

precision and speed. COTSon supports (i) a dynamic sampling feature,

which keeps track of SimNow’s simulation statistics to identify the phases

of simulated workload and enables/disables timing models based on these

phase changes; and (ii) an adaptive quantum synchronization feature to

support the trade-off between simulation precision and speed. In contrast,

dist-gem5 preserves simulation determinism by setting sync-quantum to the

minimum link delay. Furthermore, dist-gem5 can defer the synchronization

start time to improve simulation speed. A key advantage of COTson is its

high speed as COTson uses SimNow for fast forwarding. However, it is also

a key disadvantage since it can only support x86 ISA. It is critical to support
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ARM ISA with the growing interest in using ARM processors for servers.

The key advantages of dist-gem5 are its ability to simulate multiple ISAs,

open-source code, and its active community.

MARSSx86 is a cycle-level full-system simulator, specifically for multi-core

x86-64 architectures [239]. Similar to COTson, it takes a hybrid simulation

methodology leveraging QEMU for emulation. MARSSx86 supports only a

functional NIC model. In contrast, the gem5’s NIC model is an event-based

one that can be more easily adapted to precisely model the performance

aspects of a NIC.

Graphite is a parallel/distributed simulator for many-core processors [252].

It allows a user to distribute the execution of simulated cores across multiple

nodes. A key advantage is that it uses a dynamic binary translator to directly

execute the simulated code on the native machines for fast functional

simulation. However, it is not a full-system simulator. Thus, it cannot

simulate complex workloads that need OS support. Lastly, it is not intended

to be completely cycle-accurate with a scalable synchronization mechanism

(LaxP2P) based on periodic, random, point-to-point synchronization

between target tiles.

ZSim is a fast, parallel microarchitectural simulator for many-core

simulation [240]. Like Graphite, it uses a binary translation technique

to reduce the overhead of conventional cycle-driven core models. Its key

advantage over Graphite is that it implements a user-level virtualization to

support complex workloads without requiring full-system simulation.

SlackSim implements bounded slack synchronization amongst cores

simulated across multiple physical cores to improve simulation speed [253].

Parallel Mambo [241] is a multi-threaded implementation of an IBM’s full-

system simulator to accelerate the simulation of a PowerPC-based system.

Unlike dist-gem5 that supports simulation of multiple full-system nodes

using multiple simulation hosts, SlackSim and Parallel Mambo can simulate

a system using only one single (multi-core) simulation host.

Lastly, BigHouse is a simulation infrastructure for datacenter systems [254].

It uses a combination of queuing-theoretic and stochastic models to quickly

simulate servers. Instead of application binaries, it uses empirically measured

distribution of arrival and service time of tasks in the system. It is not

appropriate for studies that require microarchitectural and operating system

details.
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6.6 Conclusion

In this chapter we introduced dist-gem5, a distributed version of gem5. We

showed that dist-gem5 can simulate a computer cluster with the network

performance closely followed by the physical network performance. We

showed that dist-gem5 provides 83.1× speedup for simulating a 63-node

server rack using 16 physical hosts over simulating all 63 nodes with one

gem5 process. Currently, dist-gem5 is part of the official release of gem5

and is actively maintained by the gem5 community.

154



Part IV

Conclusion and Future Work
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In this part, we conclude this thesis by discussing a promising future

research line and summarizing the contributions of this thesis.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Future Work

The challenge of next-generation computer systems is the “data supply”

challenge. Data is generated at an unprecedented rate and stored in the

datacenter storage tiers. The data is funneled through the processor pipelines

within the datacenter. Ideally, we want to break the abstractions between

processing elements, memory, and storage and process the data in-place

without moving it to a compute node. In this section, we propose to loosens

the “server” abstraction by implementing a network-attached, software-

defined disaggregated memory (NetSDM) architecture for clusters that run

a diverse set of applications, including AI/ML applications. This section,

specifically focuses on AL/ML workloads as they are the predominant

workloads that run in production datacenters. This proposal is built atop

commodity products.

7.1.1 Motivation

The current data volume that ML/AI training and inference workloads are

dealing with is growing at a phenomenal rate. To feed this huge data to

the processing elements (i.e., CPU, GPU, or accelerators), a large, high

bandwidth, low latency, off-chip memory is required for each processing

element. Currently, the only memory technology that satisfies such high

bandwidth and low latency at a reasonable cost is DRAM. Although non-

volatile memory technologies such as 3D-Xpoint [123] are attractive solutions

to drive down the memory cost, they cannot replace DRAM for low-latency,

ML inference workloads with tight service level objectives. For example,

when running a personalized recommendation inference workload, a machine

157



with 2400MHz DDR4 DIMMs executes SparseLengthSum operations up to

40% faster than a machine with 1600MHz DDR3 DIMMs [255]. This shows

the importance the off-chip memory latency for personalized recommendation

models. As a result, it seems inevitable to use DRAM as the primary memory

technology for such servers.

With gigantic data set size and increasingly heterogeneous datacenter

hardware, it is difficult, inefficient, and costly to manage the memory space

of each processing element in the middleware or applications. Moreover,

with diverse memory capacity requirements of different ML workloads,

pre-configured memory capacity for servers can either make the processing

elements to starve or leave some of the server’s memory capacity stranded.

Moreover, to improve the throughput, several ML models are often co-

located on a single server. The workload co-location puts extra pressure

on the memory capacity required for each server. However, increasing the

memory capacity over the pin-limited memory channel results in signal

integrity degradation and a lower DDR clock frequency. Because ML

workloads are memory latency and bandwidth sensitive, such memory

capacity and performance imbalance can significantly hurt the performance

of ML workloads [256]. We propose to implement a disaggregated memory

architecture called NetSDM not only to resolve the memory capacity wall for

ML workloads but also to improve the scalability and TCO of production

datacenters.

There is a rich literature on software and hardware support for disaggregated

memory. Lim et al. [257] proposed using a memory blade for sharing memory

between servers in a rack to solve the memory capacity limit and reduce

memory provisioning and power cost. They use PCI-Express to connect the

memory blade to the compute nodes. Using a centralized memory blade

can become a bottleneck considering that all the memory accesses in a rack

are forwarded to a single blade server. Furthermore, PCI-Express is not a

scalable interconnect. A large body of previous works used RDMA network

to implement a disaggregated memory system [258, 259, 260, 261]. All these

works suffer from the PCI-Express latency bottleneck as RDMA NICs are

PCIe devices. For example, on average, the hardware latency of a 4KB

RDMA transfer over a 50Gbps InfiniBand link takes ∼4.5s, which is an

order of magnitude slower than local memory access. Furthermore, RDMA’s

efficiency drops for small packets, and a large transfer size is required to
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utilize the network bandwidth. Moreover, RDMA uses a software-managed

asynchronous completion notification mechanism. Handling local memory

misses inside the software wastes processor cycles and is not low latency.

Kwon et al. [262] used NVLINK to implement a disaggregated memory

system for a GPU cluster used for ML training. Although NVLINK has

much higher bandwidth and lower latency than PCI-Express, it is an

expensive, near-range interconnect and is not scalable. Moreover, inference

to ML models runs on CPU servers [256]. Google has taken a software

approach to expand the effective memory capacity of its servers [263]. They

compress cold pages within the memory and store them inside the local

memory. The compressed pages can be uncompressed and used on-demand.

All the previous proposals access the remote (or far) memory in page

granularity, making the random accesses to the remote memory extremely

inefficient and expensive. To design a disaggregate memory system that

works for low-latency ML workloads, a solution should satisfy the following

requirements: (R1) should be scalable to at least the size of a rack (e.g.,

around 64 servers), (R2) have sub microsecond remote memory access

latency, (R3) minimize on-demand remote memory accesses, (R4) support

efficient remote memory sharing, (R5) efficiently use the shared datacenter

network capacity, and (R6) minimize the cost.

7.2 NetSDM Architecture

Processor and networking architecture. The scope of NetSDM is a rack

within a cluster. We assume that there are 64 servers in a rack that are

interconnected using a top of rack switch. The DRAM memory capacity on

each server is divided into two pools at the server’s startup: “local-memory”

and “lent-memory.” The lent-memory is going to be aggregated across all the

servers in the rack to implement a “remote-memory” pool without having a

centralized memory blade. As explained earlier, a centralized memory blade

creates network and memory bottlenecks. We propose to share the memory

channels between local- and lent-memory space but separate the memory

ranks. This is to provide memory channel parallelism for both local- and

remote-memory accesses while reducing memory rank and bank conflicts.

The local-memory space can be configured as a cache for the remote-memory
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or be part of a flat physical memory address space. It is critical to optimize

the local-memory for “latency” as memory-intensive ML workloads are

specifically sensitive to memory latency. Optimally, we want to have the

minimum required local-memory capacity and lend the extra capacity to the

remote memory space. Therefore, it is interesting to consider partitioning

local- and lent-memory across different memory channels, and populate

the local-memory channels with few unbuffered DIMMs (to maximize the

memory latency) and fill the lent-memory channels with maximum capacity

buffered DIMMs (to maximize the memory capacity). Another benefit of

physically separating local- and lent-memory is that the lent-memories can

be put in a low-power mode if they are not used.

For networking, we propose to use integrated Ethernet NICs. Currently,

the Intel Xeon Scalable platform provides chipsets with up to four 10Gbps

integrate Ethernet ports. Such integrate NIC is ideal for ultra-low latency

remote memory accesses without paying PCI-Express overhead. We decide

to use off-the-shelf lossy Ethernet links to minimize the networking cost and

improve the scalability as lossless links have limited scalability (satisfy R2 and

R6). Note that for ML workloads, it is not catastrophic to have occasional

bit errors in data as they are tolerable to accuracy loss. The resiliency of

ML workloads to occasional errors can significantly simplify the design, save

cost, and improve the infrastructure’s performance.

Remote memory prefetcher. The resources within a datacenter are

underutilized, especially the clusters that run user-facing online services such

as personalized recommendation models. The average network utilization of

a datacenter is around 25% [6], and the average memory channel utilization is

less than 20%. Utilizing this abundant, underutilized network and memory

bandwidth, we propose to implement an aggressive, opportunistic remote

memory prefetcher to boost the local-memory hit rate. The remote memory

prefetcher can use conventional next-line or stride prefetching policies or use

an online ML model that learns memory access patterns and sends prefetch

requests based on the program’s dynamic behavior. Using ML to improve

architecture’s performance is an active line of research.

A critical requirement of the remote memory prefetcher is not to hurt the

performance of critical local and remote memory accesses. We propose a

best-effort, fine-grain remote memory access protocol for remote memory

prefetching. The remote memory accesses have two priority levels, high
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priority if it is on-demand remote memory access (i.e., local memory miss),

and low priority if it is a prefetch. In case of congestion, the network switch

or NIC will first drop low priority packets. Small packets with different

priorities also help reducing head of the line queuing delay in the network

for latency-critical network requests. One challenge for fine-grain remote

memory accesses is the high network packet header overhead. The minimum

header size of an Ethernet frame is 14 bytes, which translates to over 20%

of overhead for a 64-byte remote memory access. We propose to utilize

the Reconfigurable Match-action Table (RMT) in programmable switches to

implement a specialized routing protocol for remote memory accesses. For

example, if there are 64 machines in a rack, each machine within a rack can

be uniquely addressed with only one byte instead of six bytes for a regular

MAC address. This can significantly reduce the network packet overhead.

We call these customized packets “remote memory requests”. The aggressive

memory prefetcher can be repurposed to aggressively write-back the local

dirty pages to the remote memory to prevent on-demand page evictions.

Handling local memory misses. To identify that a page is in remote

memory or local memory, we propose to extend each page table entry with a

bit that specifies if a page is remote or local, the MAC address of the remote

memory machine, and the physical address of the remote memory. This is

similar to the extensions needed for having unified address translation for

SSDs [264]. Local-memory misses are purely handled in hardware. A remote

memory request is created and sent over the integrated NIC to the remote

memory machine in the case of a local-memory miss. Note that we can decide

to bring the entire page to the local-memory or have a single access. This can

be determined at runtime, depending on the access pattern of the application.

On-demand remote memory requests cannot be best-effort and need to be

sent out with the highest priority. Moreover, we propose to implement a

NACK protocol between the switch and NIC ports to retry a high-priority

remote memory request in case of a drop.

Centralized controller. We propose a centralized controller that

manages the memory space of the rack, configures the programmable switch,

and performs power management for un-allocated remote memories. The

only time that a server needs to communicate with the centralized controller

is when allocating/deallocating remote memory or need a writable page.

The centralized controller is responsible for allocating the requested memory
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on a remote memory location and populate the server’s page table with the

corresponding information. NetSDM is built atop the existing literature and

management frameworks already implemented by academia and industry.

Memory sharing. We propose to cache a list of sharers in the

programmable switch, so page invalidations can be sent by the programmable

switch as soon as it receives a request for a writable copy of a shared page.

The centralized controller has all the information about sharers in the

cluster. The centralized controller configures the programmable switch to

cache as many sharer information as it can. In rare cases that programmable

switch lacks the information, the packet is forwarded to the controller to be

handled there. Note that writable shared pages are very rare in production

ML workloads.

7.2.1 NetSDM Recap

As a future line of research, this section proposed building NetSDM, a

software-defined, cacheline accessable, disaggregated memory architecture

to expand the available memory capacity of datacenter servers, improve

resource utilization, reduce the deployment cost, and boost the performance

of AI workloads. Four key innovations distinguish NetSDM from the previous

proposals for disaggregate memory: first, NetSDM distributes remote memory

across all servers in the cluster to prevent a server from becoming a network

or memory bottleneck. NetSDM also enables the software to configure the

local memory size of each server. Second, NetSDM aggressively prefetches

from remote memory to reduce the local-memory misses. This aggressive

remote memory prefetching utilizes the unused capacity of the network

and memory channels. Third, NetSDM implements a fine-grain remote

memory access protocol with different priority levels and low network

header overhead. The remote memory accesses are generated within the

hardware and sent out using an integrated NIC. Fourth, NetSDM utilizes

the reconfigurable match-action tables within the top-of-rack programmable

switch to efficiently implement remote page sharing between servers within

a rack.
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7.3 Conclusion

Data movement is the primary performance and energy efficiency bottleneck

in datacenter computing. Both within a server between CPU and DRAM

and also across servers over datacenter network. Near memory processing

proposals for integrating DRAM and CPU logic that has been proposed

several decades ago was both premature and had technical problems.

However, because of shifts in technology and market pull, these ideas

become relevant to extract every bit of performance from the CMOS logic.

Moreover, all the data in the datacenters are network data, where all the

data that is going to be processed in a server cross the network adapter.

Preprocessing of the data inside the network can be used not only for

improving the application’s performance but also for power and resource

management. In this thesis, building atop commodity processors, DRAM

products, and network devices, we architect a specialized datacenter based

on in-network and near-memory computing techniques. Furthermore, this

thesis introduces dist-gem5, a full-system even-driven parallel/distributed

simulator for studying computer clusters.
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