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ABSTRACT

Information transfer in neurons takes place through action potentials (spikes)

which are metabolically expensive. A neural coding approach was developed

by Johnson et al. (2016) that is optimal, high-fidelity, energy-efficient and

well matches the experimental spiking behavior of real neurons. This coder,

called a neural source-coder, uses an adaptive threshold to internally recon-

struct the stimulus. The spikes are timed to minimize coding error. These

spikes are generated by a deterministic firing rule. However, some random

variability in spike timing is observed in real data. It seems reasonable to

account for the variability by adding a stochastic component to the deter-

ministic model.

Previously, the source-coding neuron used a constant threshold for gener-

ating spikes, while the stochastic neural encoder uses a partially randomized

threshold. In this thesis we explore this random component and its success

in explaining and recreating experimentally obtained spike-train statistics

(from P-type electrosensory afferents of weakly electric fish). We also take a

close look at the growth in variance of inter-spike intervals (ISIs) and the de-

viation of the stochastic source-coding neuron from an ideal DC-block system

with infinite memory. The stochastic source-coding neuron model was able

to achieve very accurate reconstructions of P-type weakly electric fish spike-

time statistics (inter-spike interval histograms, serial correlation coefficients)

with a very simple model consisting of only four free tuning parameters. We

were also able to demonstrate a markedly slower growth in variance consis-

tent with experimental data but which Poisson spike trains fail to capture.

We were also able to derive mathematical correspondence for the observed

experimental behavior such as the SCC trends, the rate of growth in variance

of the ISIs and the power spectrum of the spike trains at low frequencies.

The simulations back the mathematical findings illustrating the success of

the model at creating statistically accurate and realistic spike trains.
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CHAPTER 1

INTRODUCTION

Information transfer in biological systems is attributed to networks of neu-

rons. Neural coding studies the information flow from the external stimulus

to the brain’s response. Since every physiologically vital decision is conveyed

in our biology through neural coding, bettering our understanding of the neu-

ral code is paramount. Modelling neuron spikes allows us to quantitatively

characterize the flow of information and how external stimulus is represented

in action potentials (spikes). Neural coding comprises of encoding (which

is the map from external stimulus and the neuronal response) and decoding

(which is the reverse map from response to stimulus). Our stochastic source-

coding neuron model is based on a deterministic model [1]. The stochastic

source-coding neuron model (Figure 1.1) is similar to the deterministic one

in that it is also made up of an encoder and decoder. The encoder generates

spikes given a stimulus s(t), and the decoder filters the spikes with a recon-

struction filter h(t) and generates an internal reconstruction r(t). Johnson

et al. [1] postulated that the decoder is the neuron’s time-varying thresh-

old, modeled as a low-pass filter to mimic a post-synaptic RC-membrane.

The encoder tracks the coding error s(t) − r(t) and fires a spike whenever

the error reaches a stimulus-dependent firing threshold γ(s, t). For a fixed

spike-rate R, spikes are timed to minimize the mean-squared reconstruction

(coding) error by optimization of the threshold. The difference between the

deterministic and the stochastic encoder is that the former does not just have

a deterministic threshold γ(s) but also a stochastic component γ(s) + x[i(t)]

where i is an integer denoting the spike number (details in subsequent sec-

tions).

Following [1], we make the simple supposition that noise is added to the

stimulus-dependent threshold γ(s). To make the stochastic source-coding

neuron realistic, we adjust the threshold noise statistics to best match the

1



Figure 1.1: The stochastic source-coding neuron. The stimulus is
represented by s(t). h(t) is the reconstruction filter. The error signal
e(t) = s(t)− r(t) is then compared to the stochastic threshold γ + x(t),
with spikes firing every time the threshold is crossed.

data observed from real neurons. While the most common assumption is

that neuronal spike-times follow a Poisson process [2], here we consider non-

renewal statistics, in particular anti-correlated ISIs [3], and our findings

strongly argue against the renewal assumption (for electrosensory afferent

spike trains at the very least). A dynamic or adaptive threshold was orig-

inally proposed as an empirical mechanism that generates negative serial

correlations in the ISI sequence [4]. Anti-correlations also stabilize the mean

spike firing rate and have been presumed to serve the ethologically impor-

tant function of weak-signal detection [5, 3], particularly in sequential or

real-time tasks [6, 7]. While sensory neurons in several model systems are

known to exhibit such correlations (see [7, 8] for a review), the P-type pri-

mary electroreceptor afferents of a weakly electric fish demonstrate some of

the strongest known anti-correlations [3] and have been successfully modeled

using a dynamic threshold [9, 5, 10]. The proposed source-coding neuron was

developed from observations of P-type spike trains [11], albeit deterministi-

cally, and has been shown to produce dynamic threshold behavior. It was

therefore reasonable to expect (and consequently observed) that a stochas-

tic extension of the source-coding neuron will also exhibit anti-correlations,
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and it is of interest to ask how these correlations can be introduced into a

spike-train model, and to determine their effects on spike-time statistics.

Thus, there is substantial evidence, both computational and experimen-

tal, that noise in neural systems serves to enhance coding and processing of

sensory signals. Johnson [12] argues and shows by simulations that while the

addition of stochastic spike firing will only increase encoding error for single

neurons, it could lead to greatly reduced encoding error in a population of

neurons.

In this thesis our primary focus is on a neural coding model that generates

spike trains with all statistics closely resembling those of experimentally ob-

tained ones while at the same time avoiding overly convoluted mathematical

modelling with a plethora of exception handling and many parameters that

usually lead to over-fitting. The strength and success of the model lie in the

fact that it explains almost all statistically significant spike-train characteris-

tics with a handful of model parameters. We briefly touch upon related work

in the field in Chapter 2, which shall clearly establish the relevance and in-

genuity of the model. Chapter 3 describes the model with a particular focus

on the stochastic threshold. In Chapter 4 we take a step further from the

simplifying assumptions in Chapter 3 and aim to encompass more detailed

statistics and variance growth. Chapter 5 includes all the results and their

comparison with the experimentally obtained data. Finally we conclude our

findings in Chapter 6 and touch upon some future directions and applications

for the model.
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CHAPTER 2

RELATED WORK

Coding by sensory neurons is presumed to be constrained by metabolic en-

ergy [13, 14, 15, 16, 17, 18, 19], which places limits on the excitability of

neurons. Thus, an energy constraint would demand that neurons put out

as few spikes as possible. On the other hand, sensory processing requires

high-fidelity coding in the transduction process in order to preserve informa-

tion about critical stimulus features. Out of necessity, high-fidelity coding

would demand a high spike rate. Thus there is an energy fidelity trade-off.

In [11, 20] our group proposed a biophysically plausible coding framework

suggesting that the trade-off is obtained by optimally timing spikes, so that

coding fidelity is maximized for a given constraint on the firing rate of the

neuron. In this framework, it was shown that the neuron’s dynamic threshold

is an internal reconstruction of the stimulus and maintains an ongoing esti-

mate of the coding error. This neural coding mechanism is broadly similar to

lossy source-coding in digital systems, where the coding error is minimized

for a fixed bit rate [21].

Other work has investigated neural coding strategies which balance a trade-

off between coding fidelity and expended energy. Some approaches aim to

maximize spike-train entropy subject to a constraint on the energy or spike

rate [22, 23], and these approaches can be used to study inter-spike interval

codes [24]. An alternative method has been to characterize the neurons as

communication channels which maximize a ratio of bits transmitted to energy

expended [25, 26, 27]. This is a channel-coding approach, as opposed to a

source-coding approach [28].

The source-coding neuron has some elements in common with previous ap-

proaches that employ adaptive or dynamic thresholds [29, 10, 9, 30] to gen-

erate spike trains that capture either the serial corrections in the inter-spike

intervals (ISIs) or match spike times. In most previous work the integrator

is reset after a spike is output [29, 10], and only a few previous reports do
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not reset the integrator [9, 30]. None of these adaptive or dynamic thresh-

old models incorporate an energy constraint or optimize coding fidelity. An

alternative interpretation of a feedback signal is the noise-shaping neuron hy-

pothesis proposed by Shin et al. [31, 32, 33]. The noise-shaping hypothesis

proposes that the feedback filter is specifically designed to adapt the neuron’s

input/output function to the input signal statistics and filter out encoding

noise from the signal band. The term noise-shaping is used in the same sense

as noise-shaping in oversampled delta-sigma modulation [34]. While there

are similarities between the noise-shaping neuron and the source-coding neu-

ron, previous work on the noise-shaping neuron [32] is not concerned with

coding fidelity or an energy constraint.

In [11, 20] the source-coding neuron was deterministic. Here we provide a

stochastic extension, which is an important step in modelling neural systems.

Physiological neurons exhibit some variability in their spike times even when

stimulated repeatedly with a deterministic stimulus [35, 36]. On the other

hand, the spikes generated by the source-coding neuron are deterministically

timed so as to minimize coding error. Thus, for the same stimulus and a

fixed spike-rate R, any jittered set of spike times will increase coding error.

When studying neuronal noise, a classical view is that neurons are simply

inherently noisy due to the underlying biophysics, and that neuronal net-

works function despite these noisy mechanisms [37]. Over the last twenty

years, however, many studies have investigated the enhancement of neurons

and neural networks by the addition of noise. The idea of noise-enhanced

processing is similar to the concept of dithering in quantization [38], and

is often termed stochastic resonance [39, 40, 41]. Additive threshold noise

has been shown to enhance processing in both single neuron models [42] and

populations of neuron models [43, 44]. In particular, additive noise in a pop-

ulation of neuron models improves the signal-to-noise ratio of reconstructed

waveforms when using a simple summing architecture [43]. Experimental

evidence for stochastic resonance in neuronal systems has been observed in a

range of systems such as cutaneous mammalian mechano-receptors [43] and

cricket sensory systems [45].

Jones et al. [11], who introduced the deterministic source-coder, reported

that the model added or deleted some spikes in comparison with experimental

data. However, by and large, we noticed that spikes from the deterministic

source-coding neuron were simply jittered in comparison to the measured
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spike times. Here, we incorporate a mechanism that induces timing jitter

in a source-coding neuron, and we study whether it has any benefits when

representing sensory signals.
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CHAPTER 3

A STOCHASTIC EXTENSION TO THE
SOURCE-CODING NEURON

The deterministic source-coding neuron was able to explain many spike time

characteristics such as the anti-correlations in spike trains (non-renewal),

key features observed in peristimulus time histograms (PSTH), short-term

adaptation, and a DC-block in the power spectral density of the spike train. A

better model must account for the variance in spike trains, and reproduce the

experimental ISI histogram and serial correlation coefficients (SCC), hence

our motivation for a stochastic threshold extension of the source-coder.

3.1 Stochastic Source-Coding Neuron

In this section we introduce a stochastic threshold neuron model and obtain

general expressions for the serial correlation coefficients for ISIs of the spike

train generated by it. This model improves over [12] in that we now have

mathematical justification for the choice of the noisy threshold spectrum. We

were also able to quantitatively identify how the model parameters affected

the output spike-train. As a result, a wider array of spike-time statistics

were incorporated in our fits and the accuracy was much higher. Figure 1.1

delineates a schematic for the stochastic neural coder.

Let s(t) = s denote a constant signal input to the neuron and x[i] denote

the randomness in the firing threshold of the neuron (see Figure 3.1.) Assume

x[i] to be a wide-sense stationary process with a known correlation function

Rx.

We can write the reconstructed signal as

r(t) = (s+ A− γ) exp(− t
τ

) ∗
∑
i

δ(t− ti), (3.1)
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Figure 3.1: The reconstruction signal r(t). At t = t0, when the threshold is
crossed, a spike is fired and r(t) jumps by A to a value of s+ A/2 + x0. It
then linearly decays until the error signal e(t) = r(t)− s(t) crosses the value
A/2− x1.

where γ denotes the instantaneous threshold value, ti is the ith spike time, τ is

the time constant of the reconstruction filter and x[i] represents the threshold

perturbation (jitter) at the time of the ith spike. Since x is stationary, the

x[i] are identically distributed and are correlated by the function Rx.

Due to wide-sense stationarity of x,

Rx(i, j) = Rx(j − i). (3.2)

Consider t ∈ [ti, ti+1]:

r(t) = (s+ A/2 + x[i]) exp

(
−t− ti

τ

)
. (3.3)

Linearizing the exponential via a first-order Mclaurin series approximation

yields:

r(t) = (s+ A/2 + x[i])

(
1− t− ti

τ

)
. (3.4)
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The linear function holds from t = ti to t = t−i+1 (that is, just before the

i+ 1th spike).

r(t−i+1) = s− (A/2− x[i+ 1]) (3.5)

r(t−i+1) = (s+ A/2 + x[i])

(
1− ti+1 − ti

τ

)
(3.6)

∆i+1 = ti+1 − ti = [r(ti+1)− r(ti)]/[(s+ A/2 + x[i])/τ ], (3.7)

which assuming linearity, can be written as:

∆i+1 =
[A− x[i+ 1] + x[i]]

m
, (3.8)

where m ≈ 1
τ
{s+ A/2} and x[i] << s+ A/2.

Using the above results for the ISIs, we shall obtain the SCCs. Since the

x[i] all have the same mean,

E[∆i+1] =
A

m
, (3.9)

Cov[∆i+1,∆i+1] = E[{∆i+1 − E[∆i+1]}2] (3.10)

=
E[x[i+ 1]2 + x[i]2 − 2x[i+ 1]x[i]]

m2
(3.11)

Cov[∆i+1,∆i+1] =
2

m2
{Rx(0)−Rx(i+ 1− i)} (3.12)

=
2

m2
{Rx(0)−Rx(1)} (3.13)
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Cov[∆i+1,∆i+2] =
E[x[i+ 1]x[i+ 2]− x[i+ 2]2 − x[i]x[i+ 2] + x[i+ 1]x[i])]

m2

(3.14)

Cov[∆i+1,∆i+2] =
Rx (i+ 2− (i+ 1)) + Rx (i+ 1− i)−Rx (0)−Rx (i+ 2− i)

m2

(3.15)

=
1

m2
{2Rx (1)−Rx (0)−Rx (2)} . (3.16)

Similarly, we have:

Cov [(ti+1 − ti) , (ti+k+1 − ti+k)] =
Rx (i+ k − i) + Rx (i+ k + 1− (i+ 1))

m2

− Rx (i+ k + 1− i) + Rx (i+ k − (i+ 1))

m2

(3.17)

=
1

m2
{2Rx (k)−Rx (k + 1)−Rx (k − 1)} .

(3.18)

Using the above results, we can simplify our expressions for the serial cor-

relation coefficient (ρk) of the kth lag as follows:

ρk =
Cov(∆i,∆i+k)

Cov(∆i)
, (3.19)

=
E[{∆i − E[∆i]}{∆i+k − E[∆i+k]}]

E[(∆i − E[∆i])2]
. (3.20)

ρ0 = 1, (3.21)

ρ1 = −1

2

Rx (0)− 2Rx (1) + Rx (2)

Rx (0)−Rx (1)
, (3.22)

ρk = −1

2

Rx(k − 1)− 2Rx(k) + Rx(k + 1)

Rx (0)−Rx(1)
, k ≥ 2. (3.23)
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3.2 Sum of SCCs

We can now determine
∑∞

1 ρk. Let us first transform the ρk as follows:

zk = −2ρk (Rx (0)−Rx (1)) , where k > 1, (3.24)

then zk is a moving-average process defined as

zk = Rx (k − 1)− 2Rx (k) + Rx (k + 1) , (3.25)

from which, it is easy to show that

N∑
k=1

zk = Rx (N + 1)−Rx (N) + Rx (0)−Rx (1) . (3.26)

When N →∞, (Rx (N + 1)−Rx (N))→ 0. Thus,

lim
N→∞

N∑
k=1

zk = Rx (0)−Rx (1) . (3.27)

Hence, from Equations 3.24 and 3.27, we obtain the limiting sum of the

ISI serial correlation coefficients for the spike-train from a linearized source-

coding neuron

∞∑
k=1

ρk = −1

2
. (3.28)

Note that the serial correlation coefficients (SCCs) given by Equations

3.21-3.23 are, to the first order, independent of the slope m of the reconstruc-

tion filter (the decay rate of the adaptive threshold) and the reconstruction

filter gain A. Thus, the observed correlation structure of the spike-train is

determined solely by the noise statistics of the signal and the noise statistics

of the firing threshold (A/2+x(t)). Equation 3.28 explains a very remarkable

result observed in the power spectrum density of P-type afferent spike trains,

namely a spike train power spectrum with a low frequency block (DC-block).

Cox, Lewis and Lewis [46] predicted a DC-block for spike trains having SCC

statistics that sum to -0.5. Chacron et al. [47] verified this behavior in their

model of spike trains with negative ISI correlations. Thus, the fact that nega-

tive ISI correlations decrease the power at low frequencies perfectly describes
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the experimentally observed P-type electrosense data and our model of the

stochastic neuron coder.

3.3 Spike-time Statistics Assuming Filtered White

Noise

In this section, we limit the threshold perturbations to a filtered white noise

(Gauss-Markov or Ornstein-Uhlenbeck) process. The stochastic firing thresh-

old could be a result of noisy (probabilistic) transitions between various states

in voltage-gated ion channels, resulting in spike-time jitter. Since there are

thousands of individual channels present along the axon and at the synapses,

the law of large numbers suggests that the aggregate effect on the membrane

potential will be approximately Gaussian. Thus, a Gauss-Markov threshold

process is a valid assumption. The primary justification for using a Gaussian

random process, however, was the observed ISI histograms of experimental

data. The ISI histograms are typically unimodally distributed, but certain

neurons exhibit bi-modal spreads. A strong attestation to our model is that

we were able to re-create these trends by appropriately filtering the Gauss-

Markov threshold process without introducing any additional parameters or

exceptions.

P-type afferent data display either of two major trends in their ISI and the

serial correlation coefficients. The trends we observe in SCCs are:

1. The first lag value is lower than -0.5 and the subsequent lags oscillate

before damping down to zero.

2. The first lag value is higher than -0.5 and the subsequent lags are all

negative as they approach zero.

We used Equation 3.22 to obtain a mathematical expression for the first

lag of the SCCs for a filtered threshold, (note that filtration of the threshold

does not yet have a known, explicit biophysical mechanism in the neuron).

The two major trends in the SCCs can be reproduced as derived in the

subsequent analysis.
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3.3.1 Correlated low-pass filtered threshold noise

We begin with a Gaussian noise threshold and proceed to filter it with a

first-order RC (resistor-capacitor) low-pass. Denoting the impulse response

as h[n] and the filtered threshold correlation as r[k],

h[n] = anu[n], (3.29)

where |a| < 1 and u[n] is the discrete Heaviside step function.

r[k] =
∞∑

n=−∞

(anu[n])(an−ku[n− k]), (3.30)

=
∞∑
n=k

(an)(an−k), (3.31)

= ak

[
∞∑
m=0

(a2)m

]
, (3.32)

= ak
[

1

1− a2

]
. (3.33)

Plugging these results into Equation 3.22, yields

ρ1 = −1

2
{1− a} (3.34)

0 ≤ a ≤ 1 (3.35)

0 ≤ 1− a ≤ 1 (3.36)

ρ1 ≥ −
1

2
. (3.37)

The first lag is greater than -1/2 and −1/2 < ρi < 0 for i > 1, which is one

of the two observed forms of SCCs obtained from P-type electric fish data

(Figure 5.1).

Additionally, looking at the auto-correlation function for a low-pass filtered

Gaussian noise, as shown in Figure 3.2, we see that Rx(n) > 0 for all integer

n. Thus, using Equation 3.22:

ρ1 = −1

2

{
1 +

Rx (2)−Rx (1)

Rx (0)−Rx (1)

}
, (3.38)

13



0 2 4 6 8 10

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

Low-pass Autocorrelation

Figure 3.2: The auto-correlation function Rx(n) where x is a first order,
all-pole low-pass filtered Gaussian noise with a = 0.4.

Rx (2)−Rx (1)

Rx (0)−Rx (1)
≤ 0. (3.39)

Thus, ρ1 ≥ −1
2

as expected.

3.3.2 Correlated high-pass filtered noise

Similar to the low-pass case, denote the the first-order high-pass filter re-

sponse as hhp[n] and an auto-correlation as rhp[k],

hhp[n] = (−b)nu[n], (3.40)
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Figure 3.3: The auto-correlation function Rx(n) where x is a first order,
all-pole high-pass filtered Gaussian noise.

where |b| < 1, b > 0 and u[n] is the discrete Heaviside step function.

rhp[k] =
∞∑

n=−∞

((−b)nu[n])((−b)n−ku[n− k]), (3.41)

=
∞∑
n=k

((−b)n)((−b)n−k), (3.42)

= (−b)k
[
∞∑
m=0

(b2)m

]
, (3.43)

= (−b)k
[

1

1− b2

]
. (3.44)

Plugging these results into Equation 3.22, yields

ρ1 = −1

2
{1 + b} (3.45)

0 ≤ b ≤ 1 (3.46)

1 ≤ 1 + b ≤ 2 (3.47)

ρ1 ≤ −
1

2
. (3.48)

15



The first lag is lesser than -1/2 and subsequent lags alternate between positive

and negative as we observe in experimental data (Figure 5.3).

Additionally, we see in Figure 3.3 that the Rx(n) exhibit alternation be-

tween positive and negative values as theoretically predicted. Considering

ρ1,

ρ1 = −1

2

{
1 +

Rx (2)−Rx (1)

Rx (0)−Rx (1)

}
, (3.49)

because Rx(0), Rx(2) are positive while Rx(1) is negative,

Rx (2)−Rx (1)

Rx (0)−Rx (1)
≥ 0, (3.50)

which also yields ρ1 ≤ −1
2
.

When the bandwidth and cut-off frequency of the filter are adjusted ap-

propriately, we are able to achieve a bi-modality in the ISI histograms of the

simulated spike trains, even though the original input noise to the filter was

a uni-modal Gaussian noise. This is also observed in the P-type afferent data

and hence strongly reinforces the theoretical idea of having a filtered noise

as the threshold perturbation.

16



CHAPTER 4

GROWTH IN VARIANCE

4.1 Limitations of Linear Approximation

In Chapter 3, our theoretical derivations were based on a linear approxi-

mation of the exponentially decaying reconstruction. Although successful

in explaining some major trends in data, a closer look at some finer details

pointed out some significant differences from experimental data. Most im-

portantly, our previous finding that the sum of SCCs should be exactly -0.5

is not necessarily the case. We show here that the memory leakage in recon-

struction and the growth in variance are strongly linked to the sum of SCCs

deviating from the idealistic -0.5. In the current section, we re-derive our ex-

pressions with a tighter approximation which showcases the “imperfections”

in the sum of SCCs and yields the growth of variance that we observe in the

experimental data.

4.2 Logarithmic Approximation Using Small Noise

Let s(t) = s denote a constant signal input to the neuron and x[n] denote the

randomness in the firing threshold of the neuron. Assume x[n] to be a zero

mean, wide-sense stationary process with a known correlation function Rx[n]:

Rx[m,n+m] = Rx[n]. (4.1)

We can write the reconstructed signal as:

r(t) = (s+ A− γ) exp

(
− t
τ

)
∗
∑
i

δ(t− ti), (4.2)

17



where γ is the instantaneous threshold, and ti is the ith spike time; x[i] rep-

resents the threshold perturbation (jitter) at the time of the ith spike. Since

x[n] is stationary, the x[i] are identically distributed and are correlated ac-

cording to the function Rx.

Consider t ∈ [ti, ti+1), :

r(t) = (s+ A/2 + x[i]) exp

(
−t− ti

τ

)
(4.3)

at t = ti+1

r(t−i+1) = (s+ A/2 + x[i]) exp

(
−ti+1 − ti

τ

)
. (4.4)

Also, we know that spike time ti+1 occurs at the instant that the error signal

exactly equals the threshold A/2 + x[i+ 1].

r(t−i+1) = s− A/2 + x[i+ 1]. (4.5)

Using Equations 4.4 and 4.5 and rearranging, gives us an expression for the

inter-spike interval (ISI),

ti+1 − ti = τ

{
ln

(
s+ A/2 + x[i]

s− A/2 + x[i+ 1]

)}
. (4.6)

Letting α = 1/(s+A/2), β = 1/(s−A/2) and approximating ln(1 + x) = x

gives:

ti+1 − ti = τ

{
ln

(
β(1 + αx[i])

α(1 + βx[i+ 1])

)}
(4.7)

∆i+1 = τ

{
ln

(
β

α

)
− βx[i+ 1] + αx[i]

}
(4.8)

E[∆i+1] = τ

{
ln

(
β

α

)}
(4.9)

Cov(∆k,∆k+l) = E[∆k − E[∆k]][∆k+l − E[∆k+l]] (4.10)

Cov(∆k,∆k+l) = (α2 + β2)Rx(l)− αβ(Rx(l + 1) + Rx(l − 1)). (4.11)
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Also note that

Cov(∆k,∆k) = σ2
1 (4.12)

σ2
1 = (α2 + β2)Rx(0)− 2αβ(Rx(1)). (4.13)

This gives us the serial correlation coefficients at the kth lag as

ρ0 = 1, (4.14)

ρ1 =
(α2 + β2)Rx(1)− αβ(Rx(0) + Rx(2))

(α2 + β2)Rx(0)− 2αβ(Rx(1))
, (4.15)

ρk =
(α2 + β2)Rx(k)− αβ(Rx(k − 1) + Rx(k + 1))

(α2 + β2)Rx(0)− 2αβ(Rx(1))
, k ≥ 2. (4.16)

4.3 Growth in Variance of ISIs

We shall now take a look at higher order intervals and how the variance grows

with respect to the order of the interval

∆k
i = ti+k+1 − ti+1. (4.17)

Denote the kth order variance as:

σ2
k = E[(∆k

i − E[∆k
i ])

2]. (4.18)

Expanding Equation 4.18 using Equations 4.17 and 3.20, we can show that

σ2
k = kσ2

1

{
1 + 2

k−1∑
l=1

(1− l

k
)ρl

}
(4.19)

= kσ2
1

{
1 + 2

k−1∑
l=1

ρl

}
− σ2

1

{
2
k−1∑
l=1

lρl

}
. (4.20)

Hence, we can study the growth in variance of intervals for a spike train by

using the SCCs in the above expression, which has constant and linear terms

in k. We can see from Equation 4.20 that when the sum of SCCs is precisely

-0.5, the linear term in k disappears and we see no growth in variance with

respect to k.
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4.4 Sum of SCCs

The sum of SCCs has interesting implications, and a closed-form expres-

sion provides us with a few insights. Let ρl denote the lth serial correlation

coefficient (SCC),

∞∑
l=1

ρl =
∞∑
l=1

1

2

(α2 + β2)Rx(l)− αβ(Rx(l − 1) + Rx(l + 1))

((α2 + β2)Rx(0)− 2αβ(Rx(1)))
. (4.21)

Simplifying further we obtain:

∞∑
l=1

ρl = −1

2
+

1

2
(α− β)2

[
Rx(0) + 2S∗

(α2 + β2)Rx(0)− 2αβRx(1)

]
, (4.22)

where α = 1/(s+A/2), β = 1/(s−A/2) and S∗ =
∑∞

n=1Rx(n). It has been

shown that a sum of SCCs = -1/2 corresponds to a perfect DC block [47],

which is what we obtain for a white noise, high spike rate assumption for

the model. This is a simple consequence of the relation between the power

spectral density Sxx and the correlation function Rx:

F [Rx] = Sxx (4.23)

Sxx(0) =
∞∑

n=−∞

Rx(n), (4.24)

= 2
∞∑
n=1

Rx(n) + Rx(0), (4.25)

= 2(−0.5) + 1, (4.26)

= 0. (4.27)

Also note that the LHS in Equation 4.26 is identical to the second term in

Equation 4.22. Thus, for a perfect DC block system we can conversely expect

the sum of SCCs to be precisely -0.5.

We attribute the deviation of the sum of SCCs from -0.5 to the memory

leakage of the stochastic source coding model. Not only does this allow us to

explain the growth in variance (previously assumed flat in Chapter 3), but
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it also provides a potential method for deriving our model parameters, such

as the reconstruction filter’s time constant τ and the filter characteristics of

the threshold noise, from experimental data.
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CHAPTER 5

COMPARISON TO EXPERIMENTAL DATA

The stochastic source-coding neuron was compared to the experimentally ob-

tained spike trains from a brown ghost knifefish (Apteronotus leptorhynchus),

which is a species of weakly electric fish in the family Apteronotidae. Afferent

nerve fibers carry stimuli to a particular region of the brain. P-type affer-

ents fire with a per-cycle firing probability [48] that depends on the strength

of the external stimulus, making them ideal for investigating neural coding

when the stimulus is known. The stochastic source-coding neuron was used

to predict spike times from P-type afferents with long-term baseline activity.

Statistics and reconstructed waveforms were computed for each spike train.

We found that the ISI distributions, interval correlations, and spike-time

reliability of experimental data were accurately predicted by our stochastic

source-coding neuron.

5.1 Spike-Train Statistics

ISI histogram, joint-ISI histogram, SCCs and the variance of the kth interval

are the four major statistics we considered for comparing our model to exper-

imental data. We observed that the available data was either uni-modal or

bi-modal. The bimodality was often accompanied by very oscillatory SCCs.

We hypothesized and subsequently observed that we could obtain both trends

by using different filters on a Gaussian noise threshold. Once we “matched”

the ISI distribution and the SCC statistics, the joint-ISIs tended to follow

suit. The low-pass filtered threshold yielded a uni-modal ISI distribution and

a centered joint distribution, plotted in Figure 5.1. The bi-modal ISIs were

obtained through a high-pass digital filter. The joint distribution for the

high-pass case also differed from the low-pass or uni-modal data as shown in

Figure 5.2.
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Figure 5.1: Modelling of experimental spike-time data using a low-pass
filtered noisy threshold. A shows the inter-spike interval histogram for the
experimental data, B is the joint ISI histogram, and C shows the serial
correlation coefficients. The plots in red are the corresponding statistics for
our stochastic source-coding neuron (SSCN) model. D is the ISI histogram
for the SSCN, E represents the joint ISI histogram, and F shows the
simulated SCCs overlapped on the experimental SCCs. The first column
displays the ISI histogram binned at EOD cycles. The electric fish data has
an EOD of around 750 Hz. We used a reconstruction τ of 30 ms for this fit.
The pole location for the first-order low-pass filter was 0.4.

The ISIs in the experimental data are correlated (Figure 5.1) and demon-

strate long-short anti-correlations (see [3]). The source-coding neuron clearly

depicts this long-short anti-correlation pattern. The serial correlation coef-

ficients for the ISI sequence are another way of showing the dependencies

in the intervals (Figure 5.1). The P-type and our stochastic source-coding

neuron both show strong negative correlations at the first lag (ρ1 around

−0.5) . The source-coding neuron was also able to, almost perfectly, match

experimentally observed SCCs as shown in Figure 5.1.

The statistics of the P-type afferents varied considerably over the 53 units

(available experimental data) with baseline activity which were studied. On

average, the power of the added noisy threshold additive noise power, which

best matched the P-type afferent spike train statistics, was relatively small
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Figure 5.2: Modelling of experimental spike-time data using a high-pass
filtered noisy threshold. This particular data sample represents the
damped-oscillatory trend of SCCs observed in electric fish data. A shows
the inter-spike interval histogram for the experimental data, B is the joint
ISI histogram, and C shows the serial correlation coefficients. The plots in
red are the corresponding statistics for our stochastic source-coding neuron
(SSCN) model. D is the ISI histogram for the SSCN, E represents the joint
ISI histogram, and F shows the simulated SCCs overlapped on the
experimental SCCs. The displayed ISI and joint ISI histograms are binned
at the EOD frequency (750 Hz). We used a reconstruction τ of 26 ms for
this fit. The pole location for the first-order high-pass filter was -0.29.

compared to the baseline signal level (-17dB). All observed units showed a

negative correlation between succeeding ISIs (that is ρ1 < 0) and none of

them showed a positive correlation at the first lag. The experimental data

can be primarily divided into two types based on the SCCs.

1. −0.5 < ρ1 < 0, followed by less negative coefficients ρk, k ≥ 2 at higher

lags, gradually increasing to zero (Figure 5.1).

2. −1 < ρ1 < −0.5, followed by alternating positive and negative ρk,

k ≥ 2, gradually diminishing to zero (Figure 5.3).

The source-coding neuron is able to accurately recreate these two major

trends observed in the experimental data. Furthermore, we were able to
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Figure 5.3: Reconstruction of experimental spike-time data using a
high-pass filtered noisy threshold. This particular data sample represents a
highly-oscillatory trend of SCCs observed in electric fish data. A shows the
inter-spike interval histogram for the experimental data, B is the joint ISI
histogram, and C shows the serial correlation coefficients. The plots in red
are the corresponding statistics for our stochastic source-coding neuron
(SSCN). D is the ISI histogram for the SSCN, E represents the joint ISI
histogram, and F shows the simulated SCCs overlapped on the
experimental SCCs. The displayed ISI and joint ISI histograms are binned
at the EOD frequency (750 Hz). We used a reconstruction τ of 60 ms for
this fit. The pole location for the first-order high-pass filter was -0.69.
Compared to the damped SCC sample, the fit for the highly oscillatory
samples tend to have a narrower (higher Q) filter response.

find particular model parameters that yielded statistics almost identical to

experimental data as shown in Figures 5.1, 5.2 and 5.3.

The source-coding neuron is also able to replicate the power spectral den-

sity observed in experimental spike-trains. These spike trains exhibit a high-

pass characteristic, as shown by Johnson [12] in Figure 5.4, in contrast to the

renewal process and linear integrate and fire (LIAF) neuron model, the com-

monly considered standards which have much flatter spectra. This bolsters
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Figure 5.4: Power spectral density of spike trains for various models and
experimental data. Note the power spectrum at low frequencies for
experimental P-type and the neural source-coding model.

support for P-type afferents exhibiting non-renewal statistics. It has been

suggested that power spectra with a high-pass characteristic are related to

the signal-processing concept of noise shaping [49]. Noise shaping can im-

prove the resulting signal-to-noise ratio of a quantizer. The high-pass spectra

are also closely related to the anti-correlated intervals observed in Figure 5.3.

5.2 Model Parameters

Our stochastic source-coding neuron model primarily uses only four param-

eters to fit the experimental data. We used the reconstruction filter time

constant τ , the base spike rate R and a specific filter for the threshold noise

to achieve the fits. The filters chosen were first order low-pass and first order

high-pass digital filters and so the filter design needed only two variables, the

filter gain and the pole of the filter. It was observed that the SCC behavior

is mostly influenced by the pole location while the ISI and joint ISI anti-

correlations are largely determined by the reconstruction τ (although there

is some coupling between all the parameters).
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1. For the first type of SCC behavior, we used a low-pass filtered noise as

the threshold with a pole at 0.4 and a reconstruction τ value of 30 ms

(Figure 3.2).

2. For the damped oscillatory SCC type of neurons, we used a high-pass

filter with a pole at -0.29 and a reconstruction τ of 26 ms (Figure 5.2).

3. For the highly oscillatory form, we used a high-pass filter with a pole

at -0.69 and a reconstruction τ of 60 ms (Figure 5.3).

Another metric to look at is the sum of SCCs. It is a good indicator of

how rapidly the variance of the kth ISI grows. The closer the value is to

-0.5, the flatter the curve. Preliminary investigation has shown that we can

directly obtain the reconstruction τ from the SCCs (or sum of SCCs) of an

experimental spike train. This is significant because it allows us to artificially

produce spike-trains of desired length from data that would otherwise be

statistically insufficient for some experiments.

5.3 Growth in Variance

Using the better approximation from Chapter 4, our stochastic source-coding

model gives a variance growth in contrast to the linear approximation that

yields no growth at all. (Since the sum of SCCs is exactly -0.5, the asymptotic

slope from equation is zero (refer to Section 4.4) which does not agree with

experimental results.) Using the parameters we used in the previous sections

to get a close fit for experimental data, we were also able to obtain accurate

slopes for growth in variance for the same neurons. The low-pass noisy

threshold neuron shown in Figure 5.1 has a growth of variance plotted in

Figure 5.5) and the high-pass neuron (Figure 5.3) model’s variance growth

is shown in Figure 5.6
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Figure 5.5: Plot of the growth in variance. This particular data sample
corresponds to the low-pass fit used in Figure 5.1. The model parameters
were exactly the same as those used to generate Figure 5.1.
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Figure 5.6: Plot of the growth in variance. This particular data sample
corresponds to the high-pass fit used in Figure 5.3. The model parameters
were exactly the same as those used to generate Figure 5.3.
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CHAPTER 6

CONCLUSION

This work provides a stochastic extension to the source-coding neuron [1] by

introducing a noisy threshold to jitter the output spike times. The deter-

ministic neural source-coder optimizes metabolic expenditure of spiking and

high fidelity for a given stimulus. To account for variability in observed spike-

trains, a stochastic component was added to the error threshold responsible

for spike times. The signal-to-noise ratio for the threshold was quite high (17

dB) allowing us to make small-signal approximation in the analysis without

sacrificing much precision. Even such a small noise power was able to create

significant deviation in the spike-time statistics in contrast to those obtained

from a deterministic source-coder.

We presume that this stochastic firing threshold is a result of noisy (prob-

abilistic) transitions between various states in voltage-gated ion channels,

resulting in spike-time jitter [50]. Due to the thousands of individual chan-

nels present in the spike initiation zone [51], the law of large numbers suggests

that the aggregate effect on the membrane potential will be approximately

Gaussian. Thus, we assumed that the threshold noise was a low-pass or

high-pass filtered Gauss-Markov process.

The total deviation in spiking threshold from the asymptotic fixed-threshold

A/2 is thus x[n]. These deviations are small compared to the membrane po-

tential, similar to deviations shown by Fontaine et al. [52]. The presence of

weak noise is also compatible with Schwalger and Lindner [53], who reported

that weak noise is sufficient to reproduce similar patterns of ISI correlations.

It should be noted that the observed ISI anti-correlations are a property

of the source-coding mechanism (i.e., the adaptive threshold) and are not

due to a noisy threshold. This is because the source-coding neuron encodes

the error, i.e., difference between a signal and its estimate (reconstruction).

The various patterns of ISI correlations are governed by the characteristics

of the noisy threshold. While a low-pass filtered additive noise source (an
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Ornstein-Uhlenbeck process) could reproduce observed anti-correlations that

were restricted to the range 0 > ρ > −.5, ISI correlations where ρ < −.5
could be reproduced only with a high-pass noise source centered at a fre-

quency precisely half that of the average neuron spike rate. These units tend

to have a bi-modal ISI histogram. The high-pass process introduces a very

pronounced short-long ISI pattern (Figure 5.3).

In addition to accurately explaining anti-correlations, our model is also

able to match the growth in variance as observed from experimental data.

This can be shown to have implications for weak signal detection [3] and

disproves the belief that such spike-trains follow renewal statistics (Poisson

spike-trains for instance have a much higher slope).

The sum of SCCs is also an interesting metric that allows us to quantify

the memory loss of the source-coding neuron. A linear approximation of the

reconstruction yields the sum of SCCs to be exactly -0.5 and thus a zero

asymptotic variance slope. As we see the sum deviate from -0.5 (the sum

of SCCs is always greater than -0.5 as shown in Equation 4.22) the variance

growth is that much more rapid.

Future work can involve showcasing a better weak-signal detection using

our SSCN model spike-train compared to a Poisson spike-train. It would

also be worthwhile to be able to generate the model parameters directly

from experimental data such as the reconstruction filter time constant τ and

the threshold noise profile. Recreating spike-trains in such fashion opens

up a whole new world of data that is statistically identical to experimental

spike-trains and will prove extremely helpful for a wide variety of studies.
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