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ABSTRACT 

Organizational and social factors remain elusive and latent contributors to incidents and accidents 

in high-consequence industries, such as nuclear power, aviation, oil and gas, and healthcare. Probabilistic 

Risk Assessment (PRA) is a formal methodology for estimating risk emerging from the interactions of 

equipment failure and human error. This research is the product of a line of a collaborative study to 

theorize and quantify the explicit incorporation of organizational and social factors into PRA of complex 

technological systems, specifically for Nuclear Power Plants (NPPs) to; (a) make risk assessments more 

accurate, and (b) improve risk management and prevention by identifying and ranking critical 

organizational/social factors based on their influences on the technical system risk.  

For NPPs, PRA can be used to generate three levels of risk information, including risk from reactor core 

damage (Level 1 PRA), the risk from loss of containment integrity (Level 2 PRA), and risk to the population 

and environment (Level 3 PRA). This dissertation is the product of multidisciplinary and collaborative PRA 

research activities, covering six journal manuscripts, and theorizes and quantifies organizational/social 

factors from two levels of analysis:  

1. Meso-Level; meso-level organizational factors contribute to incidents or accidents in Level 1

PRA (e.g., Core Damage Frequency (CDF) in NPPs). Chapters 2 to 4 of the thesis cover the

following contributions to the meso-level analysis:

a. Presents a discourse on the incorporation of organizational factors into PRA by

summarizing key questions associated with the incorporation of organizational factors

into PRA, framing the ongoing debates surrounding the topic, providing a categorical

review of literature, and highlighting the directions of research required to reach a

resolution for each question;

b. Expands the granularity of the Socio-Technical Risk Analysis (SoTeRiA) theoretical

framework.

c. Advances the Integrated PRA (I-PRA) methodological framework to operationalize the

SoTeRiA theoretical framework by developing the Data-Theoretic (DT) input module,

which has two sub-modules: (1) DT-BASE, for developing detailed theory-based causal

relationships in the Socio-Technical Risk Analysis (SoTeRiA) theoretical framework,

equipped with a software-supported BASEline quantification utilizing information

extracted from literature, industry reports, and regulatory standards, and (2) DT-SITE,

conducting data analytics to refine and measure the causal factors of SoTeRiA based on
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system-specific historical event databases and using Bayesian analysis to update the 

baseline quantification. The methdology is applied using NPP database.  

d. Applies DT-BASE to theorize and quantify a causal model of an NPP’s organizational

“training system” and performs sensitivity analysis to identify critical factors. The

computational platform of DT-BASE eases the execution of theory-building to expand

theoretical details in SoTeRiA.The results indicate that among all the causal factors,

“Program Design,” “Training Procedures/Facility,” and “Instructor Performance” are

identified as the first, second, and third most important factors, respectively.

e. Applies DT-SITE, using the “training system” causal model from DT-BASE, to conduct

text mining of Licensee Event Reports (LERs) from the U.S. nuclear power industry to

generate the probability of “poor training quality.” Using the results of DT-SITE, the

resulting probability of “poor training quality,” is estimated as 7.03E-07.

2. Macro-Level; macro-level social factors contribute to consequences of emergency response in

Level 3 PRA (e.g., population radiological dose exposure). Chapters 5 and 6 of the thesis cover

the following contributions to the macro-level analysis:

a. Develops a macro-level socio-technical risk analysis theoretical framework of factors

influencing emergency response to a radiological hazard, considering onsite and offsite

response organization performance, socio-technical infrastructure, multi-hazard

interactions, and population protective action performance. The advanced theoretical

framework contributes to the comprehensiveness of Level 3 PRA by considering a

broader set of influencing factors and their multi-level interrelationships, providing

opportunities for improved root cause analysis and development of radiological

emergency response plans.

b. Develops an external integration between a radiological hazard and social vulnerability, a

commonly used indicator in natural hazard research, and conducts risk importance

measure analysis. The results reveal that the Center for Disease Control (CDC) Social

Vulnerability Index (SVI) theme contributions to socio-technical risk can vary

significantly by location.

c. Introduces an internally-integrated methodological framework for building and validating

an HRA-based Population Departure Time Model (PDTM), and integrating it with the

transportation evacuation model to generate model-based Evacuation Time Estimates

(ETEs) and evacuation speed estimates as inputs to Level 3 PRA model. This integrated

methodology makes an advancement toward the explicit incorporation of social factors
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into Level 3 through the explicit incorporation of social factors into departure time and 

evacuation speed estimations. The integrated methodology can help (i) create a more 

realistic estimation of risk from Level 3 PRA by contributing to a more realistic 

representation of population evacuation performance and (ii) provide the opportunity to 

conduct importance ranking of the social factors, influencing departure time and 

evacuation speed, with respect to their impacts on risk. 

d. Applies the internally-integrated methodology for Level 3 PRA in a case study using

results from the 2017 Sequoyah SOARCA study.

Lastly, to justify the ‘market value’ of PRA, and provide incentives for companies to make investments in 

PRA, for example, investing in the explicit incorporation of organizational/social factors, Chapter 7 of 

this dissertation analyzes the monetary value of PRA.  
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CHAPTER 1: INTRODUCTION 

This dissertation is the product of my multidisciplinary and collaborative research activities as a 

graduate research assistant in the Socio-Technical Risk Analysis (SoTeRiA) Research Laboratory1 in the 

Department of Nuclear, Plasma, and Radiological Engineering (NPRE) at the University of Illinois at 

Urbana-Champaign (UIUC). The SoTeRiA Research Laboratory’s focus has been on advancing 

Probabilistic Risk Assessment (PRA) for complex technological systems, specifically for Nuclear Power 

Plants (NPPs). As shown in Figure 1.1, the SoTeRiA Research Laboratory’s three key areas of scientific 

contributions include Area (I) spatiotemporal coupling of physical failure mechanisms with human/social 

performance and the incorporation of this coupling into classical PRA using the Integrated PRA (I-PRA) 

methodology; Area (II) incorporating big data analytics into PRA, and Area (III) integrating safety risk 

and financial risk. 

Figure 1.1: SoTeRiA Research Laboratory Scientific Contributions to the Evolution of Probabilistic Risk 

Assessment (PRA) 

The three areas of scientific contributions in Figure 1.1 have been operationalized in multiple 

research projects (listed under Research & Development Topics in Figure 1.1) in the SoTeRiA  

Research Laboratory. Among the projects associated with Area I, I was involved in “Level 3 PRA,” 

addressing the spatiotemporal coupling of radiological hazard progression with population response 

(Chapters 5 & 6). With respect to the projects related to Area II, I contributed to the research topic of the 

“data-theoretic methodology for human and organizational factors in PRA,” addressing the use of big data 

1 https://soteria.npre.illinois.edu/ 
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analytics for PRA to tackle the challenges associated with the heterogeneous nature of human/social data 

related to risk scenarios (Chapters 2, 3, & 4). For the projects related to Area III, I was involved in the 

research topic of the “monetary value of risk-informed applications,” addressing the interface of financial 

analysis and safety risk analysis, with consideration of organizational and regulatory factors (Chapter 7). 

These collaborative research activities were funded from 2015 to 2020 by the National Science 

Foundation (NSF) under Grant No. 1535167.  

In the finalization of the chapters of this thesis, all the feedback and comments received from my 

Ph.D. committee members, Professors Zahra Mohaghegh, Arden Rowell, Cathy Blake, Dan Morrow, 

Cheri Ostroff, and Mr. Ernie Kee, on my technical report submitted for my Ph.D. preliminary exam, are 

incorporated.  

Chapter 2 is a published journal article (Pence & Mohaghegh, 2020) and presents a discourse on 

the incorporation of organizational factors into PRA, a research topic related to Area II (in Figure 1.1). 

The research in this chapter was conducted and published under the guidance of my primary advisor 

Professor Zahra Mohaghegh. My role in this research was in conducting the categorical review associated 

with each key question and synthesizing discussions with Professor Mohaghegh for identifying the four 

key open questions associated with this topic, framing ongoing debates by considering differing 

perspectives around each question, leveraging the results of the literature review to justify the selection of 

each question and to analyze the challenges related to each perspective, and highlighting the directions of 

research required to better address each question. The paper published in this chapter benefited from a 

review by Dr. Pegah Farshadmanesh (a postdoctoral research associate in the SoTeRiA Laboratory) and 

an industry expert Ernie Kee (one of my Ph.D. committee members). This chapter sets the stage for 

Chapters 3 and 4 and discusses the future work that is needed to advance the incorporation of 

organizational factors into PRA.  

Chapter 3 is a published journal article (Pence et al., 2019) and the result of collaborative work 

that advances an Integrated PRA (I-PRA) methodological framework for operationalizing the Socio-

Technical Risk Analysis (SoTeRiA) theoretical framework (Mohaghegh & Mosleh, 2009) to quantify and 

incorporate underlying organizational/social factors into risk scenarios. The topic of this chapter is related 

to Area II (in Figure 1.1). My role in this research was in the development of the methodology for the 

Data-Theoretic module of I-PRA, which has two sub-modules: (i) DT-BASE and (ii) DT-SITE. The 

research of this chapter was conducted and published under the guidance of Professor Zahra Mohaghegh. 

In addition, other experts and researchers contributed to the content of this chapter, as follows: the 

development of the DT-BASE computational algorithm was done in collaboration with senior research 

scientist Dr. Seyed Reihani and graduate research assistant Yicheng Sun. Undergraduate researcher 

Xuefeng Zhu provided programming support to build the DT-BASE web application. By receiving 
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feedback from Professor Cheri Ostroff (one of my Ph.D. committee members) and in collaboration with 

Industry Expert Ernie Kee (one of my Ph.D. committee members), I developed a theoretical causal model 

of the “training system” at an NPP and generated the baseline quantification using DT-BASE. In 

collaboration with Dr. Mehmet Ertem2, a postdoctoral researcher in the SoTeRiA Laboratory, Corrective 

Action Program (CAP) data from an NPP were analyzed to search for training-related concepts as a 

preliminary demonstration of DT-SITE. Leveraging these results, Dr. Tatsuya Sakurahara, a graduate 

research assistant3 in the SoTeRiA Research Laboratory, implemented Bayesian updating to combine DT-

BASE and DT-SITE results. Leveraging an importance measure approach developed by Dr. Tatsuya 

Sakurahara, I conducted the importance measure ranking of causal factors in DT-BASE.  

  Chapter 4 is a published journal article (Pence et al., 2020) and the result of collaborative work 

that leverages the training system causal model developed and quantified by DT-BASE in Chapter 3 to 

focus on the advancement of DT-SITE. The topic of this chapter is related to Area II (in Figure 1.1). My 

role in this chapter was in conducting the literature review and categorization, contributing to the 

development of the methodological framework for DT-SITE, developing the methodology for collecting 

and pre-processing unstructured text data from Licensee Event Reports (LERs), identifying theory-based 

seed terms based on the DT-BASE causal model, annotation of LERs, and leveraging the results of DT-

SITE to establish the probability of training-system related events in LERs. The research of this chapter 

was conducted and published under the guidance of Professors Zahra Mohaghegh and Cathy Blake (one 

of my Ph.D. committee members). In addition, other experts and researchers contributed to the content of 

this chapter, as follows: undergraduate researchers, Nalin Gadihoke, and Nimay Desai helped with the 

development of data extraction tools for the LER database. Dr. Pegah Farshadmanesh, a postdoctoral 

research associate in SoTeRiA Research Laboratory, supported the development of the DT-SITE 

methodology. In collaboration with Dr. Pegah Farshadmanesh, we annotated 282 LERs to evaluate seed 

terms, 200 LERs to develop a gold standard, and estimated inter-rater reliability for both annotations. 

Industry Expert Ernie Kee supported the interpretation of the LER database. Professor Cathy Blake and 

her graduate student (Jinmo Kim) supported the data cleaning of extracted LERs, feature generation, and 

machine learning processes, and performed k-fold cross-validation of DT-SITE. Leveraging the results of 

DT-SITE, I generated a ratio for finding the unbiased probability of poor training quality, considering the 

real number of events involving training as a contributor, and an estimation of nuclear industry-wide 

operator, operations, and maintenance demands during the data collection period.  

Chapters 5 and 6 are associated with Area (I) (in Figure 1.1) on the research topic of Level 3 

PRA. Chapter 5 is a published journal article (Pence et al., 2018b) and the result of collaborative work on 

 
2 Currently an Assistant Professor at Eskisehir Osmangazi University 
3 Currently a Research Assistant Professor in the SoTeRiA Research Laboratory in NPRE 
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the development of a Geographic Information System (GIS)-based socio-technical risk map by combining 

the Center for Disease Control (CDC) Social Vulnerability Index (SVI) with a location-specific 

radiological hazard. The research of this chapter was conducted and published under the guidance of 

Professor Zahra Mohaghegh, and first started in a study by Ian Miller (Miller, 2015; Miller et al., 2015), 

an NPRE graduate student in the SoTeRiA Research Laboratory, for his Master’s thesis. I was involved in 

the origination of the idea of this topic and its execution by Ian Miller. Ian Miller generated the 

radiological plume model using the MELCOR Accident Consequence Code System (MACCS) and 

information from the 2012 Surry Power Station (SPS) State-of-the-Art Reactor Consequence Analysis 

(SOARCA).  In collaboration with James Whitacre (a GIS specialist at UIUC), Ian Miller developed a 

model for creating the MACCS polar grid in GIS for importing peak dose data. As a result, he created an 

integrated socio-technical risk map. To publish the journal paper cited in Chapter 5, I expanded this 

research by establishing a macro-level framework theorizing the influence of social factors given a 

radiological hazard. I also re-ran the methodology using a different database (CDC SVI) to generate an 

integrated risk map for the SPS. Also, with collaboration with Dr. Tatsuya Sakurahara, I developed and 

applied an importance measure analysis methodology using CDC SVI data to rank the criticality of social 

factors with respect to a radiological hazard.   

Chapter 6 is a manuscript to be submitted to a journal of risk analysis in April 2020 and is the 

result of collaborative work to advance and operationalize the macro-level theoretical causal framework 

from Chapter 5 and presents a new use of Human Reliability Analysis (HRA) for theorizing and 

quantifying Population Error (PE) associated with population departure time delay. My main role in this 

chapter was (i) advancing the macro-level theoretical framework and (ii) developing the integrated 

methodological framework to quantify the theoretical framework, covering multiple phases of hazard-

population interactions (i.e., population departure delay, evacuation/transportation, and radiological 

exposure), and (iii) building and validating the HRA-based Population Departure Time Model (PDTM). 

The research of this chapter was conducted under the guidance of Professor Zahra Mohaghegh. In 

addition, other experts and researchers contributed to the content of this chapter, as follows: Dr. 

Kazumasa Shimada, a visiting researcher from the Japan Atomic Energy Agency (JAEA), supported the 

development of the integrated methodological framework. Dr. Kazumasa Shimada, in collaboration with 

Dr. Seyed Reihani and Dr. Tatsuya Sakurahara, ran two elements of the methodological framework using 

available software codes: the transportation model using the MultiAgent Transport Simulation (MATSim) 

and Level 3 PRA using MACCS (with information from the 2017 Sequoyah SOARCA study), and 

developed a computational interface among the HRA-based PDTM, MATSim, and MACCS. Dr. 

Kazumasa Shimada and Dr. Tatsuya Sakurahara conducted the Morris method screening analysis of 

MACCS input parameters and advanced the sampling-based uncertainty quantification for MATSim and 
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MACCS. The content of this chapter benefited from a review by Ha Bui (a graduate research assistant in 

the SoTeRiA Research Laboratory).  

While the goals of the previous chapters are to make risk assessments more accurate and improve 

risk management and prevention, without a justified representation of the ‘market value’ PRA, there are 

not enough incentives for companies to go ‘beyond-compliance’ and to make investments in PRA, for 

example, investing in the explicit incorporation of organizational/social factors. Therefore, Chapter 7 

introduces a methodology to evaluate the monetary value of PRA. Chapter 7 is a published journal article 

(Pence et al., 2018a) and is associated with Area (III) in Figure 1.1. The benefits of PRA are not only 

experienced in terms of safety but also through the monetary value achieved through the use of Risk-

Informed Performance-Based Applications (RIPBAs) that support decision-making (e.g., expanding the 

safe operational envelope of NPPs) and can lead to cost savings. Chapter 7 introduces a methodology to 

evaluate the monetary value of PRA through the systematic causal modeling of the net value of RIPBAs, 

considering some of the organizational and regulatory factors and demonstrates the methodology for one 

RIPBA called Risk-Managed Technical Specifications (RMTS). The research of this chapter was 

conducted and published under the guidance of Professor Zahra Mohaghegh and was first started in a 

study by a graduate student Marzieh Abolhelm in the SoTeRiA Research Laboratory (Abolhelm et al., 

2014). I was involved in the origination of the idea of this topic and its execution by Marzieh Abolhelm. 

Marzieh Abolhelm collaborated with Dr. Seyed Reihani (research scientist) and Dr. Mehmet Ertem 

(postdoctoral research associate in the SoTeRiA Research Laboratory) on the development of the 

methodology, and implementation of the methodology in a case study for RMTS using data from a 

partnering NPP and with additional feedback obtained from industry expert Ernie Kee. To publish the 

journal paper covered in Chapter 7, I expanded this research as follows (i) advancing theoretical 

justifications for evaluating the monetary value of PRA considering RIPBAs, (ii) expanding the 

theoretical relationship between risk and safety in the SoTeRiA theoretical framework, (iii) advancing the 

causal model of the net value of RMTS and its interactions with PRA, (iv) updating the details of the 

systematic scenarios associated with maintenance and regulatory strategies, (v) updating some of the 

quantitative analysis for the case study. The paper published in this chapter benefited from a critical 

review by Professor Arden Rowel (one of my Ph.D. committee members).  

Chapter 8 provides concluding remarks and summarizes the theoretical and practical relationships 

among the topics of Chapters 2 to 7.  
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CHAPTER 2: A DISCOURSE ON THE INCORPORATION OF ORGANIZATIONAL FACTORS 

INTO PROBABILISTIC RISK ASSESSMENT: KEY QUESTIONS & CATEGORICAL 

REVIEW1 

ABSTRACT 

This paper2 presents a discourse on the incorporation of organizational factors into Probabilistic 

Risk Assessment (PRA)/Probabilistic Safety Assessment (PSA), a topic of debate since the 1980s that has 

spurred discussions among industry, regulatory agencies, and the research community. The main 

contributions of this paper include (1) identifying the four key open questions associated with this topic; 

(2) framing ongoing debates by considering differing perspectives around each question; (3) offering a

categorical review of existing studies on this topic to justify the selection of each question and to analyze

the challenges related to each perspective; and (4) highlighting the directions of research required to reach

a final resolution for each question. The four key questions are: (I) how significant is the contribution of

organizational factors to accidents and incidents? (II) how critical, with respect to improving risk

assessment, is the explicit incorporation of organizational factors into PRA? (III) what theoretical bases

are needed for explicit incorporation of organizational factors into PRA? and (IV) what methodological

bases are needed for the explicit incorporation of organizational factors into PRA? Questions I and II

mainly analyze PRA literature from the nuclear domain. For Questions III and IV, a broader review and

categorization is conducted of those existing cross-disciplinary studies which have evaluated the effects

of organizational factors on safety (not solely PRA-based) to shed more light on future research needs.

2.1.  INTRODUCTION 

Beginning in the mid-1900s, complex, high-energy, and high-consequence technologies (e.g., 

Nuclear Power Plants (NPPs)) were developed and grew into profitable industries. In response to the 

safety concerns of NPPs, in 1975, Probabilistic Risk Assessment (PRA)/Probabilistic Safety Assessment 

(PSA) was established to evaluate (i) what can go wrong? (ii) how likely is it to go wrong? and (iii) if it 

does go wrong, what are the consequences? (Kaplan & Garrick, 1981). Contemporarily, and in separate 

research disciplines, theories on the nature of socio-technical systems emerged, expanding the theoretical 

scope of “social” performance beyond the individual, to consider the whole organization as part of the 

1 This chapter is a reprint with permission of the publisher of an article published in Risk Analysis: Pence, J., 
Mohaghegh, Z., 2020. A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: 
Key Questions and Categorical Review. Risk Analysis n/a. https://doi.org/10.1111/risa.13468 
2 It should be noted that throughout this dissertation, “in this paper” means “in this chapter.” 
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“socio-technical system” (Emery F.E. et al., 1960; Trist, 1981). From the lineage of socio-technical 

systems theory, “organizational factors” have come to be known as the social aspects (e.g., organizational 

culture, behavior) and structural features (e.g., safety practices), within the control of an organization, that 

contribute to organizational performance (Ostroff et al., 2003; Schein, 1990). This paper is the product of 

a line of research by the authors on the advancement of a socio-technical risk analysis (Mohaghegh, 2007; 

Mohaghegh et al., 2009; Mohaghegh & Mosleh, 2009a, 2009b; Pence et al., 2015; Pence et al., 2014; 

Pence et al., 2019b; Pence et al., 2017), which explicitly incorporates organizational factors into PRA. In 

this paper, “explicit” incorporation of organizational factors refers to the model-based or mechanistic 

(e.g., (Rios, 2004)) integration of organizational performance with PRA. The ideal goals of explicit 

incorporation of organizational factors into PRA are to (a) make risk assessments more accurate by 

considering the effects of organizational factors in the estimation of human error and equipment failure 

probabilities, and (b) improve risk management and prevention strategies by identifying and ranking 

critical organizational factors based on their influences on the technical system (e.g., Core Damage 

Frequency (CDF) in NPPs) and their impacts on Risk-Informed Performance-Based Applications 

(RIPBAs). For example, one RIPBA for NPPs is Generation Risk Assessment (GRA) (Blanchard et al., 

2004; Wang et al., 2007)), and the influence of organizational factors could be considered for the 

elements and structure of production loss scenarios (e.g., Balance of Plant (BOP)) in GRA (Kee et al., 

2009). The theoretical and methodological aspects of explicit incorporation of organizational factors are 

further analyzed in Sections 2.2 to 2.5 of this paper. 

This review article presents a discourse on the incorporation of organizational factors into PRA 

and makes the following contributions: 

a) Identifying Four Key Questions: Four key questions associated with the incorporation of 

organizational factors into PRA are identified based on (1) evidence from academic, industry, and 

regulatory literature, and (2) authors’ research experience in the field of socio-technical risk analysis 

as well as industry experience on PRA applications. The four key questions are: (I) how significant 

are the contributions of organizational factors to accidents and incidents? (II) how critical is the 

explicit incorporation of organizational factors into PRA with respect to improving risk assessment? 

(III) what theoretical bases are needed for explicit incorporation of organizational factors into PRA? 

and (IV) what methodological bases are needed for the explicit incorporation of organizational 

factors into PRA? Sections 2.2 to 2.5 of the paper cover Questions I to IV.  

b) Framing Ongoing Debates from Multiple Perspectives: This paper does not provide final answers to 

the four questions; instead, supported by the existing literature, it frames the existing debate by 

considering multiple perspectives around each open question to provide conceptual reasoning as to 

why the risk analysis community may not have come to conclusions for these key questions. 
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Sections 2.2 to 2.5 begin by listing the differing perspectives related to each question, followed by 

their explanations and key terms, as well as discussions on the challenges associated with each 

perspective. Perspectives are given that may seem contestable to the reader – this is to frame the 

discourse so that differing viewpoints can be used to explore the current state of organizational 

factors in risk analysis and to identify associated challenges. 

c) Reviewing and Categorizing Existing Studies: This paper offers a thorough review of existing 

studies to justify the selection of each question and analyze the challenges related to each 

perspective by discussing state-of-the-art approaches in practice and research. For Questions I and II 

(Sections 2.2 and 2.3), PRA reports and literature, mainly from the nuclear domain, are analyzed. 

For Questions III and IV (Sections 2.4 and 2.5), a broader review and categorization of existing 

cross-disciplinary studies that have evaluated the effects of organizational factors on safety (not 

solely PRA-based studies) is conducted. For Questions III and IV, existing studies from 2008 to 

20183 are reviewed, categorized, and their gaps are highlighted based on their theoretical (i.e., the 

underlying organizational theory) and methodological bases of incorporating organizational factors 

into risk/safety analysis. A summarized review of pre-2008 studies that incorporate organizational 

factors into risk analysis is provided in this section to set the stage for the review and categorization 

of existing studies (from 2008 to 2018) in Sections 2.4 and 2.5 of this paper. 

d) Highlighting a Research Agenda: This paper highlights the directions of research that need to be 

taken in order to reach a final resolution for Questions I to IV based on the discourse around each 

question, viewpoints from multiple perspectives, and insights from a categorical review of existing 

studies. 

 

Mohaghegh et al., (2007, 2009, 2010) reviewed existing theoretical frameworks and quantitative 

techniques related to the incorporation of organizational factors into risk models and they categorized 

them into two generations (Mohaghegh, 2007; Mohaghegh, 2009; Mohaghegh, 2010a, 2010b; 

Mohaghegh et al., 2009; Mohaghegh & Mosleh, 2007, 2009a, 2009b): 

• The nature of first-generation theories and quantitative techniques is characterized in terms of 

“deviations from normative performance” (Rasmussen, 1997). For example, Reason’s Swiss 

Cheese Model (Reason, 1990b, 1997) is a well-known metaphor for describing how organizational 

effects can contribute to the occurrence of accidents. According to Reason, the accident sequence 

starts with failed or missing defenses in the organization (e.g., managerial decisions), and these 

 
 
 
3 Some journal articles were available in 2018 but were part of 2019 publication volumes.  
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defects create latent conditions that are transmitted along organizational pathways. There have been 

several static quantitative frameworks, based on Reason’s concept, that aim at modeling and 

quantifying the impact of organizational factors on system risk. Examples are WPAM (Davoudian 

et al., 1994a, 1994b), SAM (Paté-Cornell & Murphy, 1996) and similar models (Øien, 2001), 

Omega Factor Model (Galán et al., 2007; Mosleh & Golfeiz, 1999), ASRM (Luxhøj, 2004), ORIM 

(Øien, 2001), I-Risk (Papazoglou et al., 2003), and Causal Modeling of Air Safety (Roelen et al., 

2003).  

• The second-generation approaches to develop organizational models for risk analysis frameworks 

focus on modeling the “actual behavior” of organizations. These approaches are evolving and 

attempt to represent the underlying organizational mechanisms of accidents. On the theoretical side, 

Rasmussen (Rasmussen, 1997) cites the self-organizing nature of High Reliability Organizations 

(Rochlin et al., 1987) and Learning Organizations (Senge, 1990; Weick & Sutcliffe, 2001) as 

concepts useful in analyzing the managerial and organizational influences on risk. The Normal 

Accident Theory (Perrow, 1984), which views accidents as being caused by interactive complexity 

and close coupling, can also be considered in the second generation of theories for organizational 

safety. Second-generation quantitative techniques primarily address the dynamic aspects of 

organizational influences. For example, Cooke (2004), Leveson (2004), and Marais (2006) use the 

System Dynamics approach (Forrester, 1961; Sterman, 2000) to describe the dynamics of 

organizational safety, but these models do not include detailed PRA-style models of the technical 

system (Cooke, 2004; Leveson, 2004; Marais et al., 2006; Sterman, 2000). Yu et al., (2004) also 

use a System Dynamics approach to incorporate the effects of organizational factors into nuclear 

power plant PRA models (Yu et al., 2004). The interconnection between PRA and System 

Dynamics, however, is not established. 

 

Integrating concepts from multiple disciplines, Mohaghegh et al., (2007, 2009) introduced a set of 

thirteen principles (Table 2.1) for the field of organizational risk analysis or Socio-Technical Risk 

Analysis (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a). These principles are distributed in the 

following four groups; Group I, II, and III relate to theory building, and Group IV relates to developing 

methodological techniques. In summary, these principles address two requirements for incorporating 

emergent organizational safety behavior into PRA: (i) the integration of a theoretical model of how 

organizations perform, considering causal factors with their corresponding level of analysis and relational 

links; (ii) the adaptation of appropriate techniques (i.e., modeling and measurement), capable of capturing 

complex interactions of causal factors within their possible ranges of variability and across different 

levels of analysis, to quantify the theoretical framework.  
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Table 2.1: Socio-Technical Risk Analysis Principles (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a) 
Table 2.1 (cont.)  

Groups Principles 

I. Designation & Definition of Objectives 
(A) Unknown-of-Interest 

(B) Multidimensional Performance Objectives 

II. Modeling Perspective 

(C) Safety Performance and Deviation 

(D) Multilevel Framing 

(E) Depth of Causality and Level of Detail 

(F) Model Generality 

III. Building Blocks 

(G) Basic Unit of Analysis 

(H) Factor Level and Nature 

(I) Factor Selection 

(J) Link Level, Nature, and Structure 

(K) Dynamic Characteristics 

IV. Techniques 
(L) Measurement Techniques 

(M) Modeling Techniques 

 

Concerning the first requirement, a theoretical framework, called Socio-Technical Risk Analysis 

(SoTeRiA) (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a), was developed using the theory-building 

principles (Groups I, II, and III in Table 2.1) and based on a multi-level organizational performance 

model developed by Ostroff et al., (Ostroff et al., 2013; Ostroff et al., 2003). SoTeRiA is a theoretical 

causal framework for explicitly integrating both the social aspects (e.g., safety culture) and the structural 

features (e.g., safety practices) of one organization with technical system PRA. Section 2.4 of this paper 

provides a review and categorization of studies from 2008 to 2018 with respect to their theoretical bases.  

Operationalization and quantification of theoretical frameworks require the development of 

appropriate techniques (Principle IV in Table 2.1), including modeling and measurement techniques. 

With respect to modeling techniques (Principle IV-M), Mohaghegh (2007, 2010) developed a hybrid 

approach (Mohaghegh, 2007, 2010a) by combining a probabilistic method, i.e., Bayesian Belief Network 

(BBN), and a dynamic simulation-based technique, i.e., System Dynamics, with classical PRA methods, 

i.e., Event Tree (ET) and Fault Tree (FT), to quantify SoTeRiA. Section 2.5 of this paper provides a 

review and categorization of studies between 2008 and 2018 with respect to their modeling techniques.  

Measurement techniques (Principle IV-L in Table 2.1) relate to data analysis (i.e., data extraction 

and interpretation) for the factors and the links in the SoTeRiA framework. Review and analysis of 

measurement methods for organizational factors in risk/safety studies are not included in the scope of this 
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paper. The readers are referred to Mohaghegh (2007) and Mohaghegh and Mosleh (2009b) for a multi-

dimensional measurement perspective for organizational factors in safety/risk analysis (Mohaghegh, 

2007; Mohaghegh & Mosleh, 2009b). More recent developments of measurement techniques for 

organizational factors as well as a review of existing studies (from 2008 to 2018) that develop and apply 

machine learning-related techniques for measuring organizational factors in safety/risk analysis is 

available in (Pence et al., 2020). 

 

2.2.  (QUESTION I) HOW SIGNIFICANT ARE THE CONTRIBUTIONS OF ORGANIZATIONAL 

FACTORS TO ACCIDENTS AND INCIDENTS? 

The ongoing debate about the significance of organizational contributions to accidents and incidents 

relates to the following three differing perspectives: 

• (P.I.1) Organizational factors are not major contributors to incidents or accidents. The major 

contributors are equipment failures, primarily associated with equipment design flaws rather than 

due to maintenance program/organizational deficiencies.  

• (P.I.2) Organizational factors are reasonable contributors to incidents and accidents, but there are 

many barriers between them and technical system failures. There are latent failures associated 

with organizational factors, making the detection and control of organizational deficiencies 

challenging.  

• (P.I.3) Organizational factors are significant contributors to accidents and incidents. 

 

The first perspective (P.I.1) can be framed by an early interpretation of the “defense-in-depth” 

philosophy (AEC, 1957), which takes a structuralist view of accident progression where multiple physical 

barriers are seen as the primary defenses in preventing, blocking and containing damage or mitigating 

consequences of an accident or incident (Chierici et al., 2016; Saleh et al., 2014). The defense-in-depth 

philosophy was updated after the Three Mile Island (TMI) accident in 1975, identifying organizational 

factors as root cause contributors (Alvarenga & Frutuoso-e-Melo, 2015; IAEA, 2014b; Omoto, 2015), 

where it was stated that “the principal deficiencies in commercial reactor safety today are not hardware 

problems, they are management problems” (Rogovin, 1980). As traditional defense-in-depth definitions 

have been evolving, engineering-based approaches for identifying the root causes of technological system 

failures have also needed to change. Initially, analysts considered linear cause-effect modeling (Petroski, 

1985), primarily looking “for an intuitive understanding of the physical world” (Carroll, 1995). Such a 

linear and reductionistic approach has not provided an accurate understanding of the complex causality of 

accidents or incidents, and the desire to find a single root cause from this first perspective was referred to 

by Carroll (1995) as root cause seduction (Carroll, 1995). Øien (2001), on the other hand, described post-
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accident analyses as exercises in “qualitative retrospective hindsight” (Øien, 2001), and indicated that it 

could be challenging to judge the level of contribution from organizational contributing factors versus 

non-organizational contributing (purely technical) factors. Therefore, regardless of highlighting the 

effects of organizational factors in the current defense-in-depth philosophy, there have been some 

challenges in properly identifying organizational root causes in the aftermath of operational incidents and 

accidents (Omoto, 2015). These challenges, leading to the emergence of the second perspective (P.I.2), 

have been mainly due to (i) cultural biases associated with traditional engineering-based mindsets and 

result from a structuralist view of accident progression, and (ii) a lack of clarity as to the meaning of 

organizational factors and their paths of influence on incidents/accidents. Achieving clarity as to the 

meaning of organizational factors and their paths of influence requires the development of theoretical 

causal frameworks for organizational factors and their connections to safety/risk models. Section 2.4 

(associated with Question III) elaborates on the theoretical bases needed for this topic.  

Another challenge that is highlighted in the second perspective (P.I.2) relates to the latent nature 

of organizational factors as it generates (i) a delay in learning from operational experience when it comes 

to organizational factors and (ii) delayed effects of decision-making outcomes. Latent failures (i.e., 

resulting from a time lag between errors and consequences (Reason, 1990b)) of organizational factors can 

generate an incident or accident, given local triggering conditions (Reason, 1990a) (e.g., initiating 

events). These latent failures of organizational factors can differ in time and space from the actual event 

and are, therefore, more difficult to identify (IAEA, 1997). The other challenge embedded in the second 

perspective (P.I.2) is that those in management positions do not like to be blamed, so investigating and 

reporting on managerial and other organizational weaknesses are limited. As discussed by Perrow (1984), 

accident investigations typically start with an assumption of operator failure; otherwise, if technical 

designs were responsible, shutdowns and retrofitting costs would ensue. However, if management were 

found to be responsible, it would threaten those in charge (Perrow, 1984). Dekker and Nyce (2014) 

discuss the contradictory nature of having those in power be responsible for assigning causation after an 

accident (Dekker & Nyce, 2014), referring to Sagan (1994), who stated that “even when failures cannot 

be hidden, the interpretation of accidents and lessons favored by the most powerful actors will often take 

precedence… this is why so many technological accidents are blamed on the most proximate cause—

human error by operators—rather than deeper causes such as faulty design or mismanagement by higher 

authorities” (p. 237) (Sagan, 1994). Bier (1999) also adds that “it is important to bear in mind that risk 

analysts will frequently be employed by exactly the management whose performance must be evaluated, a 

situation that may create further difficulties for analysts interested in quantifying the effects of 

management and organizational factors on risk” (Bier, 1999). Underlying these points is another 
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challenge; that there may be a pessimistic perspective on the feasibility of changing organizational 

factors, so there is less effort put into investigating these root causes. 

The third perspective (P.I.3) considers that organizational factors are significant contributors to 

accidents and incidents. Root cause analyses conducted by diverse industries and governmental agencies 

show that organizational factors were contributors to incidents and accidents in complex systems 

(Columbia Accident Investigation Board, 2003; IAEA, 2014a; Johnson, 2004; Kurokawa et al., 2012; 

Meshkati, 1991; Paté‐Cornell, 1993; Vaughan, 2009; Waring, 2015). There have been some longitudinal 

studies have also been conducted to quantify the degree of influence of organizational factors on NPP 

incidents and accidents. For example, in 1985, the Institute of Nuclear Power Operations (INPO) 

conducted an analysis of 180 significant event reports received between 1983 and 1984, and their analysis 

showed that 92% of root causes were human-related and that the majority had their “origins in either 

maintenance-related activities, or in fallible decisions taken within the organizational and managerial 

domains” (Reason, 1990a). Another empirical study was conducted in 2002, when the Nuclear Regulatory 

Commission (NRC) and Idaho National Engineering and Environmental Laboratory published 

NUREG/CR-6753, which conducted a review of Licensee Event Reports (LERs) from 1992 to 1997 that 

were associated with events identified in the Accident Sequence Precursor (ASP) program that had a 

Conditional Core Damage Probability of 1.0E-5 or more (Gertman et al., 2002). It was found that 37 out 

of 48 events included human error as a root cause (Gertman et al., 2002). Among the 37 events, 23 were 

quantitatively evaluated, where it was determined that the average human error contribution to change in 

risk was 62% (Gertman et al., 2002). Schroer and Modarres (2013) analyzed LERs between the years 

2000 and 2011, finding that there were 392 LERs documented events affecting multiple reactor units on a 

site, and of those entries, 44% were due to organizational dependencies (Schroer, 2012; Schroer & 

Modarres, 2013). On the other hand, in a 2014 study by the NRC to explore the relationship between 

safety culture and safety performance in U.S. NPPs, no statistically significant correlation was found 

between safety climate survey results and measures of accident and incident rates (Morrow et al., 2014).  

Based on the review of literature, it can be concluded that the first perspective (P.I.1) is not valid, 

but both the second perspective (P.I.2) and third perspective (P.I.3) need further analysis to be accurately 

stated. Although the existing studies clearly acknowledge the influence of organizational factors on 

incidents/accidents, they could not generate information on the risk importance measures of 

organizational contributing factors (i.e., the factors under the control of the operating organization) versus 

those for non-organizational contributors (i.e., those beyond the control of the operating organization, 

such as flaws in equipment design and material properties). Therefore, it would be challenging to make a 

solid conclusion on the degree of significance of organizational factors based on these quantitative 

studies. For example, the risk importance ranking conducted by Gertman et al., (2002) was at the level of 
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human error events and not in respect to the underlying organizational factors. The conclusions of their 

study indicated that “latent errors, including those associated with maintenance, were important 

contributors to the significance of the highest conditional core damage probability events that have 

occurred in recent years” (Gertman et al., 2002). The authors highlighted that “analyses may be needed to 

better understand the impact of smaller, less-significant errors and the mechanisms by which they are 

combined to produce larger, more significant effects,” and that “dependencies among latent and active 

human errors should be investigated to determine impacts on failure probabilities” (Gertman et al., 2002). 

Both challenges, i.e., importance analysis and dependency treatment, can be better addressed by explicit 

incorporation of organizational factors into risk models (discussed in Section 2.2) and require the 

development of new methodologies (discussed in Section 2.5). As Gertman et al., (2002) state, “the 

typical methods used to determine contributors to risk or importance to risk require evaluation of the risk 

equations generated in a PRA… this limits the results to only the risk elements that are explicitly 

modeled… a considerable amount of additional analysis is needed to get to contributors that are implicitly 

in the model through data or assumptions” (Gertman et al., 2002). 

In order to reach a final resolution on Question I, there is a need for the explicit incorporation of 

organizational factors into risk models to help conduct a risk importance ranking (e.g., (Groth et al., 2010; 

Øien, 2001)) of underlying organizational factors. The concept of explicit incorporation is explained in 

Section 2.3 (associated with Question II). The resolution of Question I also requires the development of 

theoretical causal frameworks that (i) help generate an explicit connection of organizational root causes to 

risk models and (ii) can be leveraged to achieve a higher resolution of data collection for organizational 

factors contributing to safety-related events, resulting in improved root cause analyses. Section 2.4 

(associated with Question III) analyzes the needs associated with the theoretical bases of incorporating 

organizational factors into risk models. Finally, the resolution of Question I requires methodologies for 

conducting importance ranking, as well as techniques for categorizing, coding, and counting the 

underlying organizational factors in industry event data. Section 2.5 (related to Question IV) evaluates the 

methodological bases that are needed for this topic. 

 

2.3.  (QUESTION II) HOW CRITICAL IS THE EXPLICIT INCORPORATION OF 

ORGANIZATIONAL FACTORS INTO PRA WITH RESPECT TO IMPROVING RISK 

ASSESSMENT?  

The ongoing debate on the criticality of incorporating organizational factors into PRA with respect to 

the contribution to risk assessment relates to the following differing perspectives: 

• (P.II.1) Although the incorporation of organizational factors into PRA could be beneficial for risk 

management, it is not critical for risk assessment because the effects of organizational factors are 
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already implicitly (or explicitly through some of the external Performance Shaping Factors 

(PSFs) in HRA) considered in PRA scenarios through both human error and equipment reliability 

data and assumptions. 

• (P.II.2) Explicit incorporation of organizational factors into PRA is critical for risk assessment (in

addition to risk management) because this explicit incorporation can help generate a more

realistic estimation of human error and equipment failure probabilities.

As mentioned in the introduction, in this paper, explicit incorporation of organizational factors

refers to the model-based or mechanistic (e.g., (Rios, 2004)) integration of organizational performance 

with PRA. There is a reasonable consensus in the research community that the current generation of PRA 

does not include an explicit representation of organizational factors (Ghosh & Apostolakis, 2005; 

Modarres et al., 1992; Mohaghegh & Mosleh, 2009a; Renn, 1998). Relating to this topic, the Electric 

Power Research Institute (EPRI) workshop report (Julius et al., 2002) states that “some organizational 

factors are currently included in most PRAs and HRAs, either implicitly or explicitly” and discusses the 

bases for the implicit assumption, as follows: (1) “each individual plant examination (IPE) implicitly 

assumed that their organizational factors were in line with standard policies for all licensee holders in the 

US when evaluating the basic human error probabilities even though many organizational factor terms 

were not explicitly addressed” (e.g., see discussion in (Davoudian et al., 1994b)), (2) “initial models for 

control room operator actions incorporated generic organizational factors via use of simulator data, 

models that were based on simulator data, or judgment of the analysts,” and (3) “it is reasonable to 

assume that some organizational factors were considered explicitly in the modeling, particularly in the 

HRA” (Julius et al., 2002). Julius et al., (2002) also identify five elements in PRA that are “likely to be 

affected by organizational factors” (Julius et al., 2002) (see Table 2.2). These elements are either related 

to human reliability or equipment reliability (Julius et al., 2002). 

Table 2.2: EPRI Mapping of Organizational Factors into HRA/PRA; Adapted from (Julius et al., 2002) 

Table 2.2 (cont.) 

Causal 

Structure 
Element [Type] Definition 

Human 

Reliability  

Analysis (HRA) 

Human Error Type 

[A] 
Contributions to safety-related equipment unavailability 

Human Error Type 

[B] 
Actions leading to IE 

Human Error Type 

[C] (Response)
Actions taken in response to accidents 
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Table 2.2 (cont.)   

Causal 

Structure 
Element [Type] Definition 

Human Error Type 

[C] (Recovery) 

Actions taken by plant personnel to use equipment, which 

might not have been initially available. 

Equipment Reliability Analysis/CCF 

Analysis 

Equipment failure rates, including common cause failures 

that can go into the post-initiating event system models and 

initiating events 

 

The EPRI report by Julius et al., (2002) is an example of references acknowledging the status of 

the implicit (and partially explicit) incorporation of organizational factors into current classical PRA, 

highlighted in the first perspective (P.II.1). However, the first perspective (P.II.1) cannot be accepted 

because this degree of inclusion of organizational factors may not be adequate for a realistic risk 

assessment, as explained in the following reasons: 

a) Organizational PSFs in current HRAs are quantified using expert judgment, generating challenges for 

the realistic estimation of Human Failure Event (HFE) probabilities. For example, in NUREG-1792, 

Kolaczkowski et al., (2005) state that although some PSFs help analysts to consider organizational 

factors (e.g., crew dynamics, characteristics, and potential biases and informal rules), “the state-of-the-

art as to how to identify and understand important organizational influences and how to use that 

information in determining HEPs is not yet adequate” (Kolaczkowski et al., 2005). As another 

example, Hendrickson et al., (2012) state that “without such techniques to ensure the proper inputs and 

necessary understanding to properly judge the influencing factors and crew behavior, too much 

speculation or unsubstantiated judgments may be required by the HRA analyst, leading to undesirable 

variability in HRA results” (Hendrickson et al., 2012). Therefore, because there is no comprehensive 

guidance for the treatment of organizational factors in HRA (Hendrickson et al., 2012), over-reliance 

on subjective expert opinion for determining PSF states may lead to inaccuracies in HRA probabilities. 

Based on the authors’ opinion, in order to have a more accurate quantification of organizational PSFs 

and not solely rely on expert judgment, there is a need for the explicit modeling of underlying 

organizational mechanisms associated with organizational PSFs in HRA.  

b) Without explicit incorporation of organizational factors into HRA, the treatment of dependencies 

among PSFs is challenging. The EPRI report by Julius et al., (2002) acknowledges that in traditional 

HRA methods, “organizational factors appear in these models as PSFs, at the discretion of the 

analysts, but the full implications of such PSFs in terms of a new form of dependency in operator 

response, and corresponding impact on operator error probabilities are not considered” (Julius et al., 

2002). Several studies have extended classical HRAs by adding additional external PSFs related to 

17



 
 

organizational factors (see the review from (Alvarenga et al., 2014) and Section 2.4 for a more detailed 

analysis of these studies). While these studies move toward improved resolution in HRA models, they 

are still limited in the treatment of dependencies. Determining the state of an added PSF requires 

additional consideration of dependencies with other PSFs, and without the consideration of such 

dependencies, using these models in HRA may result in inaccurate estimations of HEPs. Laumann and 

Rasmussen (2016) state that “all PSFs should be looked at as organizational factors since it is an 

organization that could maintain or modify conditions that affect all of these factors” (Laumann & 

Rasmussen, 2016). Based on this statement and considering the logic of Blackman & Boring (2017) on 

indirect dependencies in HRA, organizational dependencies should play a much more significant role 

in the realism of human error probabilities (Blackman & Boring, 2017). This concept, however, goes 

beyond the scope of traditional HRA guidance and practice (where external organizational PSFs are 

represented at an abstract level of analysis) and requires model-based/explicit incorporation of 

underlying organizational mechanisms associated with PSFs. 

c) Implicit incorporation of organizational factors would lead to an over-reliance on generic historical 

data for probability estimations and could not adequately reflect (i) plant-specific information or (ii) 

organizational changes in estimating HFE or equipment BE (specifically Common Cause Basic Event 

(CCBE)) probabilities. Most equipment reliability techniques in PRA use data-driven approaches that 

do not explicitly include underlying physical failure mechanisms or organizational/maintenance 

models. Ghosh and Apostolakis (2005) state that “many of the mechanisms of organizational 

contributions to unreliability are not captured (at least not explicitly) in plant PSAs and, hence, are 

sources of uncertainty and incompleteness in PSAs and may lead the plant to unanalyzed conditions” 

(Ghosh & Apostolakis, 2005). In this regard, Gertman et al., (2002) state that “latent errors are seldom 

explicitly modeled in PRAs; instead, they are combined into a single equipment failure event” 

(Gertman et al., 2002), which is part of a practice where “maintenance records are examined and 

overall failure rates are ascribed to the various components” (Julius et al., 2002). This means that 

“some phenomena or failure mechanisms may be omitted because their potential existence has not 

been recognized or no agreement exists on how a PRA should address certain effects, such as the 

effects on risk resulting from ageing or organizational factors… furthermore, PRAs typically do not 

address them” (Drouin et al., 2017). Shen et al., (2012) emphasize that Common Cause Failure (CCF) 

analysis is an important aspect in PRA because maintenance deficiencies (and other factors in the 

organizational environment) “which are not modeled explicitly in the PRA, can defeat redundancy and 

make failures of multiple redundant components more likely than would be the case if these factors 

were absent” (Shen et al., 2012). One key challenge of implicit consideration of organizational factors 

in empirical equipment reliability and CCF models is that the historical data do not reflect new 
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maintenance policies, organizational changes, operational changes over time, or unobserved failure 

mechanisms (i.e., failure mechanisms that have not led to failure or have the potential to lead to failure 

over time). This is highlighted in the EPRI report by Julius et al., (2002), which states that the 

“advantage of defining an explicit relationship between organizational factors and the various elements 

of the PRA is that changes in organizational effectiveness can be accounted for in the estimates of core 

damage frequency, or the risk of operating the plant” (Julius et al., 2002). Besides, plants may record 

maintenance events with diverse quality, where “the ease in which the plant-specific data can be 

interpreted and the subsequent quality of the resulting parameter estimates are a function of how well 

the plant personnel recorded the necessary information” (Atwood et al., 2003). Similar to equipment 

failure probabilities, the probability estimation for HFEs is also challenged by an overreliance on 

generic historical data. As Julius et al., (2002) state, “many of the current HRA methods are not plant 

specific and therefore cannot reflect effects of organizational change or even the actual plant; it’s 

organization or personnel… there is a need to improve HRA methods to reflect both plant-specific 

influences and incorporate organizational factors in a more explicit manner into the HRA models” 

(Julius et al., 2002). In order to improve the realism of estimated probabilities for HFEs, equipment 

basic events, and more specifically, CCBEs, there is a need for explicit incorporation of underlying 

physical and organizational failure mechanisms into PRA that can help avoid overreliance on data. As 

defined by Siu et al., (2015), realism “addresses the degree to which an analysis represents the 

technical and organizational system relevant to the decision problem” (Siu et al., 2015). Ongoing 

research by some of the authors of this paper assesses the value of incorporating physical failure 

mechanisms for CCF analysis (Sakurahara et al., 2019b) and future work will advance this research to 

underlying organizational factors.  

Although the abovementioned deficiencies highlight the value of explicit incorporation of 

organizational factors for improving risk assessment and support the second perspective (P.II.2), a final 

resolution to Question II can only be achieved when research is capable of quantitatively identifying 

“how” critical is the explicit incorporation of organizational factors with respect to the realism of the 

estimated risk from PRA. This can be done by comparing the estimated risk in a selected scenario from 

the current classical PRA model to that of a PRA model that has an explicit consideration of key 

organizational factors. This requires advancing a research agenda for the explicit incorporation of 

organizational factors. The following two sections highlight the needs, including developing proper 

theoretical (Section 2.4) and methodological (Section 2.5) bases, to reach this goal.  
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2.4.  (QUESTION III) WHAT THEORETICAL BASES ARE NEEDED FOR AN EXPLICIT 

INCORPORATION OF ORGANIZATIONAL FACTORS INTO PRA? 

 

The two perspectives that have contributed to the ongoing debate regarding the required theoretical 

basis for the explicit incorporation of organizational factors into PRA are: 

• (P.III.1) For the explicit incorporation of organizational factors into PRA, the need for developing 

a theoretical model of organizational performance should not be overemphasized. 

• (P.III.2) Explicit incorporation of organizational factors into PRA requires theoretically well-

defined models of organizational performance. 

The first perspective (P.III.1) considers that the explicit incorporation of organizational factors is 

important, but there is no need for excess emphasis on the theoretical foundations of models; instead, the 

goal of explicit incorporation should/can be addressed by using surrogate models (or simplistic models) 

of organizational factors. For example, in classical HRA, organizational factors are aggregated and 

simplified as organizational-related PSFs. The organizational-related PSFs are mainly based on “lists” of 

organizational factors (e.g., (Haber et al., 1990; Sasou & Reason, 1999)). In efforts to improve the 

incorporation of organizational factors, several studies proposed conceptual approaches for adding layers 

of underlying causality to organizational-related PSFs; for example, using influence diagrams to depict 

availability of operating instructions, and training quality (Embrey, 1992; Galán et al., 2007) or the 

aggregated performance of training department and quality assurance department (Mosleh et al., 1997). 

Since 2008, there have been additional studies with the same purpose of extending PSFs of HRA to 

incorporate organizational factors. These references are categorized in Section 2.4 as studies that use a 

“list of factors” as their theoretical basis for modeling organizational influences. The issues with these 

extended HRA studies are that they are (1) not modeling the underlying organizational mechanisms 

associated with the PSFs (French et al., 2011), (2) not adequately capturing dependencies among PSFs (as 

stated in Section 2.3), and (3) over-relying on expert opinion for quantifying organizational PSFs (also 

explained in Section 2.3); therefore, these models have challenges with respect to achieving the ideal 

goals (listed in Section 2.1) of incorporating organizational factors into PRA. 

On the other hand, the second perspective (P.III.2) emphasizes the development of theoretically 

well-defined models of organizational performance for the explicit incorporation of organizational factors 

into PRA. In order to explore the second perspective (P.III.2), this paper conducts a thorough review of 

the existing studies (from 2008 to 2018) and, leveraging the SoTeRiA theory-building principles (Groups 

I, II, and III in Table 2.1), analyzes the theoretical bases of organizational models in the existing studies. 

The review in this section summarizes the literature and categorizes the existing studies based on the 

maturity of their theoretical bases for organizational factors. The categorization in this section is an 
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advanced version of the categorization developed for studies before 2007 (summarized in Section 2.1), 

considering the research improvements after 2008. The review does not include studies before 2008, but 

some of them are used to define the categorization schema. The scope of the review in is not limited to 

PRA studies; instead, a broader review is conducted of existing cross-disciplinary studies that have 

evaluated the effects of organizational factors on safety, in general, to shed more light on future research 

needs.  

In this review, the theoretical basis (a in Figure 2.1) of each study is classified by its type of 

characterization (b in Figure 2.1), type of sub-characterization (c in Figure 2.1), and formalization (d in 

Figure 2.1). As Figure 2.1 presents, the studies are further grouped into quantified versus not quantified (e 

in Figure 2.1) to highlight whether (or not) the studies have made the attempt to quantify their developed 

theoretical frameworks. If quantified, their methods of quantification are analyzed and categorized 

(Figure 2.2) in Section 2.5. Tables 2.3 and 2.4 summarize the descriptions of the categories highlighted in 

Figure 2.1, and a complete list of the associated studies is available in a supplementary dataset (available 

at https://osf.io/c7rmn/), herein referenced as (Pence & Mohaghegh, 2019). 

 

 
Figure 2.1: Categorization of existing studies (from 2008 to 2018) with respect to their theoretical bases  

Table 2.3: Descriptions of Types of Characterization (b in Figure 2.1) and Sub-Characterization (c in Figure 

2.1) 

Table 2.3 (cont.)  

Types of 

Characterization & 

Sub-

Characterization 

Descriptions of Types of Characterizations (b in Figure 2.1) and 

Sub-Characterizations (c in Figure 2.1) 

(A.1) List of factors This characterization represents studies that use lists of factors to identify “what” 

organizational factors might compose a theory, but are not themselves complete and 
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Table 2.3 (cont.)  

Types of 

Characterization & 

Sub-

Characterization 

Descriptions of Types of Characterizations (b in Figure 2.1) and 

Sub-Characterizations (c in Figure 2.1) 

stand-alone theories (Sutton & Staw, 1995). For example, in safety/risk assessments, lists 

of factors have been developed for PSFs (e.g., (Swain & Guttmann, 1983)), and Risk 

Influencing Factors (RIFs) (e.g., (Rosness, 1998; Seljelid et al., 2007)); however, they 

alone are not theories of human performance. Since theory is a continuum (Weick, 

1995), and due to the lack of theoretical development for organizational factors in 

safety/risk analysis, lists of factors are characterized as simplified theories (associated 

with perspective III.1 explained at the beginning of this section) in this review paper. 

Lists of factors can include classifications, which are the “identification and assignment 

of organization forms to formally recognized classes” (McKelvey, 1978), and the 

“sorting of objects based on some criteria selected among the properties of the classified 

objects” (Hjørland & Nissen Pedersen, 2005). Classification schemes “demonstrate how 

entities are assigned to categories and how categories are differentiated from each 

another” (Niknazar & Bourgault, 2017). Classification can be a useful practice because it 

helps to depict the differences among organizations that can be conceptually derived or 

extracted from data (Rich, 1992b). For example, a classification for organizational 

factors in NPP safety was developed by Jacobs and Haber (1994), which included twenty 

factors/dimensions under five categories: culture, communications, decision-making, 

administrative knowledge, and human resource administration (Jacobs & Haber, 1994). 

Classifications in the reviewed studies are either derived from (i) experts through 

elicitation, (ii) group model building, verified by experts or extracted from surveys or 

verified by surveys or extracted from literature or combined from existing lists of factors 

or extending existing lists of factors or (iii) identified from operational experience data. 

Lists of factors can also include taxonomies, which is a specific scheme to express 

similarity between elements in a hierarchical way, where similarities are grouped into 

populations, and nested into broader categories (Jeffrey, 1973). According to Rich 

(1992), hierarchical taxonomies should have at least five nested subgroups if they are to 

create a meaningful analysis, and a “theoretical empirical process builds the taxonomy 

on the basis of an underlying theory” (Rich, 1992b). Hempel (1965) defines taxonomy as 

using types of concepts, for arranging phenomena into categories in an either-or notion 

(Hempel, 1965) (e.g., either a factor is safety-related or is not safety-related). Taxonomy 

has also been defined as “an empirical tool for building complex filing systems that 

allow both the ordering and retrieval of large amounts of data” (Rich, 1992a). 
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Table 2.3 (cont.)  

Types of 

Characterization & 

Sub-

Characterization 

Descriptions of Types of Characterizations (b in Figure 2.1) and 

Sub-Characterizations (c in Figure 2.1) 

Taxonomies in the existing safety studies (Pence & Mohaghegh, 2019) are derived in 

diverse ways and from diverse sources including existing theoretical frameworks, 

combining existing factors, combining existing taxonomies, extracting from literature, or 

verifying by experts.  

(A.2) Depicting 

Deviation from 

Normative 

Performance 

This characterization considers first-generation theories (see Section 2.1) of “how” 

organizational factors contribute to deviations from normal performance, but do not 

depict the actual behavior or structure. This category includes Reason’s metaphor for 

organizational accidents (Reason, 1995, 1997), where defects in processes and 

interacting elements are considered to influence organizational pathways (e.g., 

considering Reason’s pathogen metaphor (Reason, 1990a)). This category refers to 

accident causation theories that extend beyond solely human actions to multiple 

sequential actions or events that contribute to error conditions. Some of the papers in this 

category use the Human Factors Analysis and Classification System (HFACS) 

(Wiegmann & Shappell, 2001), which is an advanced version of Reason’s Swiss Cheese 

metaphor, where “types” and “levels” of latent failures are defined in a more detailed 

way (e.g., preconditions for unsafe acts, unsafe supervision, and organizational 

influences (Reason, 1990b)). For a discussion on the differences between metaphor and 

theory, readers are referred to (Le Coze, 2013). Supplementary data (Pence et al., 2019a) 

for this paper provides a complete list of existing studies under Category A.2. 

(A.3) Depicting 

Actual Performance 

This characterization considers second-generation theories (see Section 2.1) of actual 

performance. Theories under this characterization attempt to depict “what” mechanisms 

are “generating behavior in actual dynamic work context” (Rasmussen, 1997), “why” 

contextual factors (e.g., organizational culture and climate) shape behavior and structure, 

and “how” they impact actual performance (Mohaghegh, 2007; Ostroff et al., 2013; 

Whetten, 1989b). The holistic and explicit inclusion of contextual factors, therefore, 

provides the background for studying behavior and structure leading to actual 

performance. There are two types of sub-characterization (c in Figure 2.1) for A.3 (A.3.1 

and A.3.2), discussed below. 

(A.3.1) Depicting 

Organizational 

Behavior 

Studies in this category use theory that mainly try to “understand, explain, predict, and 

change human behavior as it occurs in the organizational context” (Wagner et al., 1995). 

Organizational behavior refers not only to individual or group behavior but individual 

and group behavior in organizations (Stroh et al., 2003). Some important dimensions 
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Table 2.3 (cont.)  

Types of 

Characterization & 

Sub-

Characterization 

Descriptions of Types of Characterizations (b in Figure 2.1) and 

Sub-Characterizations (c in Figure 2.1) 

associated with behavioral theories are adaptive behavior (discussed in (Rasmussen, 

1997)), complexity and tight coupling (Perrow, 1984), non-linear and interacting 

behaviors (Leveson, N.G., 2011), and social control perspectives (Rasmussen & 

Suedung, 2000). Supplementary data (Pence et al., 2019a) for this paper provides a 

complete list of existing studies under Category A.3.1. 

(A.3.2) Depicting 

Organizational 

Behavior, Structure 

& Context 

This sub-characterization refers to the studies that consider a combination of behavioral, 

structural, and contextual aspects in their theoretical bases of organizational factors. The 

structural theory of organizations was summarized by Mintzberg (1980), who discussed 

the five parts of an organization: operating core, strategic apex, middle line, 

technostructure, and support staff (Mintzberg, 1980). Structural theories encompass the 

hierarchy, formal rules, policies, procedures (Ostroff, 2018), environments (internal or 

external), roles, and design of organizations (Mintzberg, 1989). Structural studies of 

organizations are also moving toward the adoption of network theory (Le Coze, 2013) 

and social network theory (Barling & Frone, 2004). The structure of an organization is 

closely related to its context (Pugh et al., 1969), and Ostroff (2018) provides an overview 

of context in organizational studies and states that “structure and practices are contrived 

aspects of context” (Ostroff, 2018). Context (Roberts et al., 1978) is defined as the 

“situational opportunities and constraints that affect the occurrence and meaning of 

organizational behavior as well as functional relationships between variables” (Johns, 

2006). Ostroff (2013) states that “internal context is created within the social collective 

through its people, structural choices, norms/practices, leadership, and/or use of 

technology,” proposing four meta-dimensions of organizational context: “physical and 

technological; structure and practices, culture and climate, and person-based (influential 

agents, the personal characteristics of others, and collective attitudes and behaviors)” 

(Ostroff et al., 2013). Ostroff (2013) maintains that organizational structures include 

hierarchy, formal rules, policies, procedures, and that “all organizations have a structure 

of authority and regulatory mechanisms that coordinate work effort and provide channels 

for carrying out organizational decisions” (Ostroff et al., 2013). Category A.3.2 

considers theories that account for functional relationships between variables of context, 

organizational structures, and behaviors. Supplementary data (Pence et al., 2019a) for 

this paper provides a complete list of existing studies under Category A.3.2  
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As Figure 2.1 shows, criterion (d) considers the formalization of theories under each type of 

characterization or sub-characterization. The formalized category refers to the case where a formalization 

process is utilized in the study to bridge qualitative theoretical bases with more formal models. For 

example, some studies have utilized a process modeling technique to explain the process of transferring 

theoretical bases from the abstract level to more detailed functional causal levels. Examples of process 

modeling techniques include; business process modeling (Williams, 1967) and flowcharts (ASME, 1947). 

Although formalization techniques are related to Principle IV-M (Table 2.1) and belong to modeling 

techniques (rather than theory-building bases), which are the focus of Section 2.5 of this paper, they are 

included in this section because they are considered to be the bridging methods that prepare theories to be 

operationalized by quantitative techniques (reviewed and categorized in Section 2.5). Mohaghegh et al., 

(2009) state that formalization processes (1) facilitate the use of a quantitative modeling technique (i.e., 

the techniques that are covered in Section 2.5), (2) are generalizable for diverse types of work processes 

and organizations, and (3) help to effectively communicate the theoretical model (Mohaghegh et al., 

2009). In this paper, those studies that do not use formalization methods or do not explain how they use 

one of the formalization techniques to generate their models, are considered as Not Formalized. 

Formalization processes not only facilitate the use of quantitative techniques but also add theoretical 

justification to the resulting models. It should be noted that some studies use more than one technique for 

formalization (e.g., combining influence diagram and hierarchical techniques (e.g., (Vinnem et al., 

2012)). Six main types of formalization techniques identified in the literature are described in Table 2.4.  

Table 2.4: Descriptions of Six Main Formalization Techniques (d in Figure 2.1) 

Table 2.4 (cont.)  

Types of 

Formalization (d in 

Figure 2.1) 

Formalization Type Description (d in Figure 2.1) 

1. Causal Loop 

Diagram 

Causal loop diagram refers to a technique to visualize and communicate systems 

thinking, by creating links and feedback loops between system elements (Forrester, 

1961). If these studies proceeded with quantification, they used statistical inference, 

System Dynamics (SD) (e.g., (Rong et al., 2016)), or the combination of SD and BBN 

(e.g., (Kazemi et al., 2017)) as their modeling technique (explained in Section 2.5). 

Supplementary data (Pence et al., 2019a) for this paper provides a complete list of 

existing safety studies that used causal loop diagrams.  
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Table 2.4 (cont.)  

Types of 

Formalization (d in 

Figure 2.1) 

Formalization Type Description (d in Figure 2.1) 

2. Hierarchical 

Techniques 

2.
a.

 G
en

er
ic

 H
ie

ra
rc

hi
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l S
tru

ct
ur

es
 

This approach reflects generic hierarchical structures of nested layers of constructs that 

depict multi-level classifications of factors, including structured taxonomies. If studies 

used this approach to formalize their theoretical bases and were also quantified, they 

used BBN (Vinnem et al., 2012), DBN (Ashrafi & Anzabi Zadeh, 2017), ABM (e.g., 

(Nan & Sansavini, 2016), or statistical inference (e.g., (Zhou et al., 2018)) as their 

quantitative modeling techniques (covered in Section 2.5). For example, Vinnem et al., 

(2012) use a combination of generic hierarchical structure and influence diagram 

(Formalization Type #3) to formalize RIFs (Vinnem et al., 2012) and proceed to 

quantification using BBN. Supplementary data (Pence et al., 2019a) for this paper 

provides a complete list of existing safety studies that used generic hierarchal 

structure.  

2.
b.

 H
ie

ra
rc

hi
ca

l O
rg

an
iz

at
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l S

tru
ct

ur
es

 

This approach reflects hierarchical organizational structures, depicting authority, rank, 

and ordered representations of organizations. From the general systems theory 

perspective, hierarchy is used to arrange the complexity of an organization from its 

basic (i.e., individual) units to higher levels, developing a level of abstraction to 

represent each layer (Boulding, 1956). Hierarchical organizational structures can also 

consider the perspective of social distance, where hierarchy is created by maintaining a 

distance between groups (e.g., Congress and its constituents) (Bezrukova et al., 2009; 

Bogardus, 1925). For example, Accimap is a qualitative technique for accident 

analysis that models the hierarchical structure of levels of decision making 

(Rasmussen & Suedung, 2000). If studies used hierarchical organizational structures to 

formalize their theoretical bases and were also quantified, they used Structural 

Equation Modeling (SEM) (e.g., (Du & El-Gafy, 2012)) or ABM (e.g., (Du & El-Gafy, 

2012)) as their quantitative modeling techniques (covered in Section 2.5). 

Supplementary data (Pence et al., 2019a) for this paper provides a complete list of 

existing safety studies that used hierarchical organizational structures.  
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Table 2.4 (cont.)  

Types of 

Formalization (d in 

Figure 2.1) 

Formalization Type Description (d in Figure 2.1) 

2.
c.

 A
na

ly
tic

 H
ie

ra
rc

hy
 P

ro
ce

ss
 (A

H
P)

 
Analytic Hierarchy Process (AHP) is a multi-criteria decision-making technique for 

evaluating alternatives by decomposing problems into hierarchical structures (Saaty, 

1987). It should be noted that the Analytic Network Process (ANP) is a similar 

approach to AHP. However, ANP allows for considering more complex structures, 

including dependencies and feedback (Saaty, 2004). If studies used AHP (e.g., (Liu et 

al., 2018)) to formalize their theoretical bases, and were also quantified, they used 

statistical inference or data envelopment analysis as their quantitative modeling 

techniques (covered in Section 2.5), where studies that used ANP for formalization 

(e.g., (Akyuz, 2017; Zhan et al., 2017)) used statistical inference (e.g., (Tseng & Lee, 

2009)) or BBN (e.g., (Ping et al., 2018)) as their quantitative modeling techniques 

(covered in Section 2.5). Supplementary data (Pence et al., 2019a) for this paper 

provides a complete list of existing safety studies using AHP.  

2.
d.

 H
ie

ra
rc

hi
ca

l C
on

tro
l T

he
or

et
ic

 

This group of studies uses hierarchical control-theoretic approaches, which are 

grounded on hierarchical control theories (Ashby, 1961), to formalize hierarchical 

relationships (e.g., (Leveson & Stephanopoulos, 2014)). For example, the System-

Theoretic Accident Model and Processes (STAMP) considers that socio-technical 

systems can be modeled as a hierarchical control structure, considering the constraints, 

control loops, and processes of the system (Leveson, 2004). The System-Theoretic 

Process Analysis (STPA) (Leveson, N., 2011) is a hazard analysis technique 

commonly used with STAMP for identifying inadequacies in control systems and 

determining the causes of hazards; however, less experimentation has been done for 

applying STPA for organizational factors. If studies used hierarchical control theoretic 

approaches to depict the process of formalization of their theoretical bases, they were 

not quantified. Supplementary data (Pence et al., 2019a) for this paper provides a 

complete list of existing safety studies that used hierarchical control theoretic.  

3. Influence Diagram 

Influence diagrams are directed acyclic graph (DAG) structures with no feedback 

loops, where nodes (representing factors) are connected by edges (arcs) (Harary, 

2005). There are different types of influence diagrams, which can be differentiated by 

the types of nodes (e.g., decision node, chance node) and edges (e.g., informational 

influence, conditioning influence) (Howard & Matheson, 2005). If the studies that 

used qualitative influence diagrams to formalize their theoretical bases proceeded to 

quantification, they used either BBN (e.g., (Vinnem et al., 2012)), which is a 

quantitative type of influence diagram, Dynamic BBN (e.g., (Ashrafi & Anzabi Zadeh, 
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Table 2.4 (cont.)  

Types of 

Formalization (d in 

Figure 2.1) 

Formalization Type Description (d in Figure 2.1) 

2017)), Fuzzy Cognitive Maps (Soner et al., 2015), or Agent Based Modeling (ABM) 

(e.g., (Stroeve et al., 2011)) as their modeling techniques (covered in Section 2.5). 

Supplementary data (Pence et al., 2019a) for this paper provides a complete list of 

existing safety studies using influence diagrams.  

4. Path Diagram 

Path diagrams are flowcharts used to describe the causal connections between 

variables using arrows (Wright, 1921), and are commonly used in Path Analysis and 

SEM (Tarka, 2018). If studies used Path Diagram to depict the process of 

formalization of their theoretical bases and were also quantified, they used SEM (e.g., 

(Mirzaei Aliabadi et al., 2018)), SEM and CFA (e.g., (Fenstad et al., 2016)) or DEA 

(e.g., (Tseng & Lee, 2009)) as their quantitative modeling techniques (covered in 

Section 2.5). Supplementary data (Pence et al., 2019a) for this paper provides a 

complete list of existing safety studies that used path diagrams.  

5. Structured Analysis 

and Design 

Technique (SADT) 

SADT is a formalization technique where an activity transforms inputs (I) to outputs 

(O), given the resources (R) and the control/criteria (C) (Heins, 1993; Marca & 

McGowan, 1987). If studies used SADT to depict the process of formalization of their 

theoretical bases and were also quantified, they used BBN or statistical inference as 

their quantitative modeling technique (covered in Section 2.5). SADT is used to 

formalize organizational causal theories (Mohaghegh et al., 2009), where the inputs 

include, but are not limited to, information, hardware, raw materials, and people. 

Hollnagel (2012) added aspects or features to the SADT approach in the Functional 

Resonance Analysis Method (FRAM) (Hollnagel, 2012), which is used for 

formalization in one study, that proceeded to quantification using statistical inference 

(Asadzadeh & Azadeh, 2014). Other studies used the SADT formalization technique 

and proceeded with quantification (covered in Section 2.5) using BBN (e.g., 

(Asadzadeh & Azadeh, 2014; Mohaghegh et al., 2009; Trucco et al., 2008)). 

Supplementary data (Pence et al., 2019a) for this paper provides a complete list of 

existing safety studies using SADT.  

6. Vroom’s Expectancy 

Theory 

This theory is used to structure relationships between expectancies (E), 

instrumentalities (I), states (S), and valences (V) (Vroom, 1964). Vroom’s theory of 

expectancy is used for describing the processes of rational decision making of an 

individual, based on the strength of desire (i.e., valence) for a given outcome 

(Sharpanskykh, 2007). For example, Vroom’s theory is used to formalize the decision-

making options around a specific task in an aviation setting (Sharpanskykh & Haest, 
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Table 2.4 (cont.)  

Types of 

Formalization (d in 

Figure 2.1) 

Formalization Type Description (d in Figure 2.1) 

2015). If studies used Vroom’s expectancy theory to depict the process of 

formalization of their theoretical bases and were also quantified, they used ABM (e.g., 

(Sharpanskykh, 2007)) as their quantitative modeling techniques (covered in Section 

2.5). Supplementary data (Pence et al., 2019a) for this paper provides a complete list 

of existing safety studies using Vroom’s expectancy theory.  

 

The review of the literature in this section supports the value of the second perspective (P.III.2) 

that emphasizes the importance of generating theoretically well-defined models of organizational 

performance. The review also provides some resolution on the selection of theoretical bases and 

highlights that theories under Category A.3.2 in Figure 2.1 (Depicting Behavior, Structure & Context) 

have a higher degree of maturity. As Sutton and Staw (1995) discuss, studies based on a list of factors 

(A.1 in Figure 2.1) do not reflect adequate theoretical bases. The issues of using a list of organizational 

factors associated with PSFs in HRA are also explained at the beginning of Section 2.4. Between the 

other two types of characterization (b in Figure 2.1), theories of actual performance of organizations can 

more adequately depict the mechanisms “generating behavior in an actual dynamic work context” 

(Rasmussen, 1997). Because the language of PRA is built on systematic, scenario-based, functional logic 

based on “scientific, mechanistic calculations” (Bley et al., 1992), theoretical bases for organizational 

factors should also move toward mechanistic theorization (i.e., descriptions of the rules that govern the 

production of the dependent variable) (Rios, 2004). Through mechanistic theoretical bases, which can 

depict those underlying mechanisms of actual organizational behavior, models can become more than 

abstractions or metaphors that contribute to parsimoniousness and simplicity by “postulating very few 

elements… to account for largescale, complex phenomena” (Rios, 2004). Theoretical frameworks 

associated with Category A.3.2 in Figure 2.1 that depict the relationships between factors of behavior, 

structure, and context are more capable of providing a mechanistic representation of “why” a set of 

factors are “expected to be strong predictors” (Sutton & Staw, 1995) of risk/safety outcome. For example, 

theories that represent actual behavior, structure, and context can establish the underlying root causes of 

the actual dynamics of culture and climate, which “operate as contextual variables… by setting the stage 

for the development of normative behavior in organizations” (Ostroff et al., 2013). Among the studies in 

Category A.3.2, those that showed the feasibility of their theoretical bases, by formalizing as well as 

quantifying them, are the most promising (see Category A.3.2.1.1 in Figure 2.1, and associated studies in 

(Pence & Mohaghegh, 2019)).  
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Although there has been progress in studies in Category A.3.2.1.1, Question III remains open as 

state-of-the-art theories in this category are still far from achieving the necessary level of 

comprehensiveness that considers the breadth, depth, and detail of underlying organizational root causes 

of incidents and accidents. As Whetten (1989b) states, a comprehensive and well-defined theory should 

include all relevant constructs while being careful to exclude factors that have little effect on the model 

output (Whetten, 1989a). Here we consider Kozlowski and Klein’s (2000, p.27) definition of a construct 

as “an abstraction used to explain an apparent phenomenon” (Kozlowski & Klein, 2000). In the existing 

studies under Category A.3.2.1.1, there are three main perspectives on the level of abstraction and 

apparent phenomena: (i) the individual/agent perspective (e.g., (Sharpanskykh, 2012)), (ii) the 

organizational/global perspective (e.g., (Li et al., 2009)), and (iii) the combinatory viewpoint (e.g., 

(Mohaghegh & Mosleh, 2009a)). The individual/agent perspective is a bottom-up perspective, as it 

emphasizes that local behavior of individual agents/actors emerges to create global effects and cannot be 

analyzed in the aggregate, whereas the organizational/global perspective is a top-down viewpoint as it 

considers that organizational structures and global factors (e.g., culture) should be theorized as 

aggregations that influence local effects. The combinatory perspective considers that the theories for 

organizational factors in risk analysis must consider both the bottom-up and top-down performance 

influencing factors in order to identify the interdependencies between emergent group and global 

phenomena. The existing studies in Category A.3.2.1.1 that are associated with type (i), e.g., 

(Sharpanskykh, 2012), are limited in their explainability of organizational phenomena. The existing 

studies associated with type (ii), e.g., (Li et al., 2009), arbitrarily mix levels of analysis without theoretical 

justification and do not ground the model with a clear connection to human performance or human error. 

Related to the combinatory perspective in Category A.3.2.1.1, the SoTeRiA theoretical framework 

(Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a) requires more development to add details to the 

important factors at the individual, group, and organizational levels and would benefit from sensitivity 

analysis to exclude factors (or sub-factors) that have fewer effects on the emergent outcomes.  

Further, for all reviewed studies in Category A.3.2.1.1, and in general for all theoretical 

frameworks for organizational factors, there is an urgent need to focus on the scientific rigor and 

reproducibility of organizational theories. Schwaninger and Hamann (2005) state that “in theory building, 

the quality and robustness of the theoretical propositions developed, i.e., “scientific rigour,” should be the 

principal concern… only hypotheses capable of clashing with facts are regarded as scientifically 

legitimate” (Schwaninger & Hamann, 2005). This concept raises a challenging question: how can the 

validity of theories of organizational factors connected to PRA be evaluated? The basis for theoretically 

well-defined models of organizational factors should begin with similar criteria to model-based HRA 

methods, for instance; (1) content validity, (2) reliability, (3) traceability (transparency) (e.g., 
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reproducibility (Haas, 2016; King, 1995)), (4) validity (construct validity), (5) adaptability/scalability, and 

(6) usability (Hendrickson et al., 2012; Mosleh et al., 2010). However, these criteria have not yet been 

analyzed for modeling organizational factors in PRA and require future research. In support of resolving 

Question III, the authors plan to conduct research on the many multidisciplinary approaches of theory-

building (e.g., (Chermack, 2007; Corbin & Strauss, 2008; Glaser, 1992; Sterman, 2000; Weed, 2005; 

Weick, 1989)) to address the open issues associated with comprehensiveness and validity of theoretical 

bases of organizational factors. 

 

2.5.  (QUESTION IV) WHAT METHODOLOGICAL BASES ARE NEEDED FOR THE EXPLICIT 

INCORPORATION OF ORGANIZATIONAL FACTORS INTO PRA? 

 

As Figure 2.1 shows, the existing organizational theoretical frameworks that are used for safety 

analysis are grouped as quantified or not quantified (e in Figure 2.1). If quantified, their methodological 

bases of quantification are analyzed in this section. As stated in Section 2.1, the quantification of 

organizational theoretical frameworks requires the development of appropriate techniques (Principles IV 

in Table 2.1) including modeling and measurement techniques. This section covers the ongoing debate on 

the required modeling techniques. A discussion on measurement techniques is available in (Pence et al., 

2020).  

The two perspectives that have contributed to the ongoing debate regarding the required modeling 

techniques for the explicit incorporation of organizational factors into PRA are: 

• (P.IV.1) PRA techniques (ET and FT) are static; thus, it is not possible to quantify the influence of 

organizational factors, which are highly dynamic (e.g., considering feedback loops and delays in 

organizational performance), on risk/safety by explicitly incorporating organizational factors into 

PRA scenarios.  

• (P.IV.2) Combining appropriate techniques with PRA FTs/ETs could generate integrated modeling 

techniques, capable of quantifying organizational theoretical frameworks that are explicitly 

connected to PRA elements, leading to the quantification of the effects of organizational factors on 

risk/safety. 

 

The first perspective (P.IV.1) uses the static nature of modeling techniques in PRA as a 

justification for the impossibility of analyzing the effect of highly dynamic organizational factors on 

risk/safety (through explicitly connecting them with PRA scenarios); however, recent progress in 

simulation-based PRA (Siu, 2019), simulation-based HRA (e.g., (Diaconeasa & Mosleh, 2018)), and 

Integrated PRA (I-PRA) (Bui, Ha et al., 2019a; Mohaghegh et al., 2013; Sakurahara et al., 2013b; 
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Sakurahara, T. et al., 2017; Sakurahara, T. et al., 2018; Sakurahara, Tatsuya et al., 2018a; Sakurahara et 

al., 2014; Sakurahara et al., 2015) reject the validity of the first perspective (P.IV.1). 

I-PRA is an example of an integrated modeling technique (relevant to the concept of the 

integrated modeling technique highlighted in the second perspective (P.IV.2)) that is used for the 

incorporation of physical failure mechanisms (Sakurahara et al., 2013a; Sakurahara, Tatsuya et al., 2017; 

Sakurahara, T.  et al., 2018; Sakurahara et al., 2014; Sakurahara et al., 2015) The current applications of I-

PRA not only have generated the possibility of incorporating the dynamic nature of underlying physical 

phenomena but also their unified computational platform has facilitated the treatment of dependent 

failures and CCFs (Sakurahara, Tatsuya et al., 2018b)). Another value of I-PRA is the explicit 

incorporation of dynamic interactions between physical failure mechanisms and human performance into 

PRA (Bui et al., 2017; Bui, H. et al., 2019; Sakurahara, T. et al., 2018; Sakurahara et al., 2019a). Pence et 

al. (2020) demonstrated I-PRA for the incorporation of organizational factors (Pence et al., 2020).  

As Mohaghegh et al., (2009) state, the intention of integrated approaches is to combine 

appropriate modeling techniques, capable of capturing complex interactions of organizational causal 

factors within their possible ranges of variability and across different levels of analysis, to quantify the 

theoretical organizational frameworks and to integrate them with the PRA ETs/FTs in order to analyze the 

effects of organizational factors on risk/safety. To further evaluate the second perspective (P.IV.2) and to 

analyze the characteristics and types of modeling techniques that are needed to be integrated for 

quantifying organizational theoretical frameworks associated with risk/safety analysis, this paper 

conducts a categorical review of the existing studies (from 2008 to 2018) and evaluates their modeling 

techniques. The review in this section summarizes the literature of modeling techniques and categorizes 

the existing studies (Figure 2.2). The review does not include studies before 2008, but some of them are 

used to define the categorization schema. The scope of review is not limited to PRA studies; instead, a 

broader review is conducted of existing cross-disciplinary studies, which evaluates the effects of 

organizational factors on safety, in general, is conducted to shed more light on future research needs.  

In this review, the modeling technique basis (a in Figure 2.2) in each study is classified by its type 

of characterization (b in Figure 2.2), type of sub-characterization (c in Figure 2.2), and operationalization 

techniques (d in Figure 2.2). Table 2.5 summarizes the descriptions of the types of characterization (b) 

highlighted in Figure 2.2, and a complete list of associated studies is available in the supplementary data 

(Pence & Mohaghegh, 2019) for this paper. 
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Figure 2.2: Categorization of existing studies (from 2008 to 2018) with respect to their bases for 

modeling techniques 

 

Table 2.5: Descriptions of Types of Characterization (b in Figure 2.2)  
Table 2.5 (cont.)  

Types of 

Characterization  

(b in Figure 2.2) 

Descriptions of Characterization Type (b in Figure 2.2) 

(B.1) Regression-

Based/Statistical 

Inference 

The aim of techniques under this type of characterization is to evaluate relationships using 

statistical analyses of actual data to distinguish causation from spurious correlation (Simon, 

1954). The process involves defining a set of variables and their relationships, then testing 

all of the relations simultaneously. This is practiced by applying various techniques such as 

Path Analysis (Wright, 1934), SEM (McLntosh & Gonzalez-Lima, 1994), and Confirmatory 

Factor Analysis (CFA) (Mueller & Hancock, 2001). Despite some differences among these 

techniques, the underlying concept is that the analyst calculates the covariance among the 

variables in a proposed model (using the actual data) and compares it with the expected 

covariance (the restriction that the modeler places). The comparison indicates to what extent 

the model fits the actual data. As Figure 2.2 shows, the regression-based/statistical inference 

techniques are static, i.e., there is no explicit inclusion of time in their governing equations. 

There are a variety of operationalization techniques in the existing studies associated with 

regression-based/statistical inference, which are summarized under Category B.1.1.1 in 
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Table 2.5 (cont.) 

Types of 

Characterization 

(b in Figure 2.2) 

Descriptions of Characterization Type (b in Figure 2.2) 

(Pence & Mohaghegh, 2019). Since the underlying principle of these techniques is the same, 

and in order to avoid the complexity of the figure, Figure 2.2 only includes SEM as a 

representative technique. 

(B.2) 

Probabilistic 

Network 

The dominant probabilistic technique, used in the reviewed studies, is Bayesian Belief 

Network (BBN) also known as Bayesian Networks, Belief Nets, Causal Nets, or Probability 

Nets. BBNs “are directed acyclic graphs in which the nodes represent propositions (or 

variables), the arcs signify direct dependencies between the linked propositions, and the 

strengths of these dependencies are quantified by conditional probabilities” (Pearl, 1986). 

The use of BBNs in safety/risk analysis has grown significantly in the past 30 years. The 

supplementary data (Pence & Mohaghegh, 2019) for this paper includes studies (from 2008 

to 2018) that use BBN for analyzing the effects of organizational factors on safety; however, 

for a general review of BBN applications in HRA, readers are referred to (Mkrtchyan et al., 

2015). As Figure 2.2 shows, BBN (B.2.1.1) is categorized as a static probabilistic technique, 

while Dynamic BBN (DBN) (B.2.2.1) is a temporal/dynamic probabilistic technique. 

Dynamic BBN applies the same concept as BBN but includes the dimension of time (Dean 

& Kanazawa, 1989). A DBN can dynamically model probability distributions over semi-

infinite collections of random variables, without changing the network over time (Murphy & 

Russell, 2002). Arcs/edges within one slice of time are considered instantaneous causation, 

and in DBN, arcs can skip across slices of time, meaning that parent nodes can be in the 

same time slice or in a previous time slice to the child node (Murphy & Russell, 2002). 

(B.3) Fuzzy-

Based 

Another dynamic/temporal modeling technique, utilized in the existing studies, is 

Intuitionistic Fuzzy Cognitive Maps (IFCM) (Iakovidis & Papageorgiou, 2011; 

Papageorgiou & Iakovidis, 2009) (B.3.1.1)). Fuzzy modeling techniques leverage a 

“nonlinear mapping of an input data (feature) vector into a scalar output (i.e., it maps 

numbers into numbers)” (Mendel, 1995) using fuzzy set theory and fuzzy logic (Klir & 

Yuan, 1996). A fuzzy set is “a class of objects with a continuum of grades of membership” 

(Zadeh, 1965), and fuzzy logic is the coordination of mathematical and/or imprecise or 

ambiguous information (i.e., nonlinear models) (Ross, 2005). Fuzzy modeling techniques 

map crisp/precise inputs into crisp outputs using four components: rules, fuzzifier, inference 

engine, and defuzzifier (Mendel, 1995; Ross, 2005). Supplementary data (Pence et al., 

2019a) for this paper provides a complete list of existing safety studies using fuzzy-based 

method. 
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Table 2.5 (cont.)  

Types of 

Characterization  

(b in Figure 2.2) 

Descriptions of Characterization Type (b in Figure 2.2) 

(B.4) 

Mechanistic/ 

Simulation-Based 

The mechanistic/simulation-based approaches that are used in the existing studies are 

categorized into temporal/dynamic and spatiotemporal, where both time and space are 

explicitly included in the governing equations of the model. SD (B.4.1.1) is a dynamic 

simulation-based technique that has been used by several existing studies (e.g., (Gajdosz et 

al., 2013)). SD is used for modeling nonlinear behavior and dynamics of complex systems 

considering stocks, flows, feedback loops, time delays, table functions and a set of equations 

(Forrester, 1994; Forrester, 1997; Forrester, 2007; Sterman, 2000). Another technique under 

the mechanistic and simulation-based method is ABM that has either temporal (B.4.1.2) 

(e.g., (Sharpanskykh & Stroeve, 2011)) or spatiotemporal (B.4.2.1) (e.g., (Lu et al., 2016)) 

properties. This modeling technique is based on a set of equations or rules that govern the 

behavior of individual agents that create emergent observables (Grimm & Railsback, 2013). 

ABMs have autonomous multi-level agents that can have a discrete number of states varying 

over time and space, depending on the rulesets employed in the model. Supplementary data 

(Pence et al., 2019a) for this paper provides a complete list of existing safety studies using 

mechanistic/simulation-based approaches. 

(B.5) Hybrid/ 

Multimethod 

Hybrid/multimethod techniques refer to the cases, where a combination of two different 

types of methods is used to get benefit from diverse modeling technique capabilities. For 

example, some studies (e.g., (Mohaghegh, 2010a)) used a combination of SD and BBN 

which is a temporal method, and another study (e.g., (Liang et al., 2018)) integrated ABM 

and SD, which is a spatiotemporal method. 

 

Although the reviews of literature in this section support the value of perspective (P.IV.2), there 

are still some open questions regarding the selection of modeling techniques that need to be integrated 

with PRA. The review highlights that the choice of modeling techniques highly depends on (i) the amount 

of data, (ii) amount of detailed knowledge about the phenomena, and (iii) the nature of underlying 

theoretical bases. Regression/statistical inference techniques require vast amounts of data, especially 

when the scope of organizational processes/factors increases. BBN has several advantages as a modeling 

technique for organizational factors: (a) it is a suitable technique where objective data are lacking and the 

use of expert opinion and soft evidence is required, (b) it can be linked mathematically to classical PRA 

techniques (ET and FT), and (c) has several of formalization techniques that are mentioned in Section 2.4, 

e.g., SADT and Influence Diagram, which can be converted to BBN (Mohaghegh et al., 2009). However, 

the static nature of BBN could generate limitations for modeling organizational factors.  
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The literature review in this section highlights the importance of selecting a modeling technique 

that can capture the temporal aspects of organizations. Mohaghegh et al., (2009) state that dynamic effects 

of organizations must be explicitly modeled to capture the (1) delay in influences, (2) temporal changes in 

factors and links (e.g. temporal cycles) (e.g., entrainment (Ancona & Chong, 1992)), (3) composite time 

effects (e.g., time scale variation and feedback loops), or (4) the changes in direction and strength of links 

as functions of time. As discussed in Section 2.2, organizational factors are latent factors established prior 

to an accident with the potential to influence human error or equipment failure. For example, Julius et al., 

(2002) state that “it has been noted that (organizational) changes may cause delayed effects with the 

major effect occurring after two years” (Julius et al., 2002). From this perspective, the dynamics of 

organizations are not similar to the dynamic tasks in HRA (e.g., (Swain & Guttmann, 1983), but instead 

are related to the underlying context, structure, and behavior of the organization over a longer timescale 

than the PRA mission time. With respect to the “latency” of organizational failures, the calibration of the 

timescale of organizational factors remains an ongoing area of research. 

Although DBNs “allow feedback loops and recurrent regulatory structures to be modeled while 

avoiding the ambiguity about edge directions common to static Bayesian networks” (Grzegorczyk & 

Husmeier, 2009), they have some deficiencies. For example, the transient modeling approach in DBNs 

has limitations for modeling long-term time scales (e.g., lifecycle), because of the computational 

complexity generated by large causal models. Further, existing DBN tools are limited in their ability to 

control the granularity of multiple timescales, which presents challenges in supporting the multi-level 

analysis of organizational factors. With respect to IFCM techniques, they are limited by a lack of time 

delay between nodes and cannot handle more than one relationship between nodes (Papageorgiou & 

Salmeron, 2013).  

On the other hand, the temporal methods that are mechanistic/simulation-based (i.e., B.4.1.1, 

B.4.1.2, and B.4.2.1 in (Pence & Mohaghegh, 2019)) are limited in their ability to be connected with PRA 

elements. Besides, the modelers sometimes do not have detailed knowledge regarding all elements of 

organizational mechanisms associated with safety/risk and this makes using a purely 

mechanistic/simulation-based modeling technique quite challenging or impossible. In this case, hybrid 

modeling techniques, or multimethod techniques, Categories B.5.1.1 and B.5.2.1 in (Pence & 

Mohaghegh, 2019), provide the most desirable techniques for the explicit incorporation of organizational 

factors into safety/risk analysis. For example, Mohaghegh proposed an integration of SD and BBN 

(Category B.5.1.1), where BBN is used for those parts of the organizational phenomena that enough 

information is not available to build a simulation-based model using SD and there are uncertainties 

associated with those parts/aspects of the phenomena (Mohaghegh et al., 2009).  
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Another type of mechanistic/simulation-based technique is ABM (Category B.4.1.2 in (Pence & 

Mohaghegh, 2019)) which can depict the temporal dimension of an organization. A recent study (Bui, Ha 

et al., 2019b) has connected an ABM-based model of human performance (for the external control room 

of power plants) to PRA; however, ABM models of organizational factors have not yet been connected to 

PRA elements. Where models that use SD deal with continuous processes, ABMs deal mostly in discrete 

time (Borshchev & Filippov, 2004). For ABM, to approach real-time analysis, discretization would 

require an infinite number of time steps, creating a tradeoff between numerical accuracy and simulation 

speed (Barnes & Chu, 2015). One of the modeling benefits of ABM is the possibility of depicting the 

spatial dimension, in addition to time (Category B.4.2.1 in (Pence & Mohaghegh, 2019)). The authors 

have begun to theorize the spatial dimension of human and organizational factors in socio-technical risk 

analysis (Pence & Mohaghegh, 2015); however, the criticality of explicitly modeling space for 

organizational safety/risk analysis is still an open area of debate.  

Another criterion that influences selecting a specific type of mechanistic/simulation-based 

modeling technique relates to the nature of theoretical bases. As discussed in Section 2.4, there are three 

theoretical perspectives associated with theories of actual behavior, structure and context, the (i) 

individual/agent perspective, (ii) organizational/global perspective, and (iii) combinatory viewpoint. The 

individual/agent perspective can be better operationalized using ABM techniques, which are decentralized 

or bottom-up models (i.e., global system dynamics are not defined) (Borshchev & Filippov, 2004), where 

individual agents monitor variables locally, so they are not averaged over time (Parunak et al., 1998). For 

the organizational/global perspective, SD is a better candidate modeling technique as it can consider 

global structural dependencies and their associated data and equations (Borshchev & Filippov, 2004), 

which result in an averaging of critical system variables, assumptions of homogeneity, and lumping 

parameters (Parunak et al., 1998).  

From the combinatory viewpoint, hybrid/multimethod techniques are better candidates as they 

allow the modeler to use different modeling techniques for different aspects of organizational 

performance. For example, the hybrid category of SD and ABM (Category 5.2.1 in (Pence & Mohaghegh, 

2019)) enables the combination of individual (i.e., bottom-up) and system-level (i.e., top-down) 

dynamics, where individual processes can change a system state, alter system information, and in turn 

affect individual agents in a continuous cycle of information exchange (Liang et al., 2018). 

Hybrid/Multimethod modeling techniques allow for the combination of multiple theoretical perspectives 

through the integration of probabilistic, rule-based behavior, and equation-based modeling techniques. 

Each combination of modeling techniques (e.g., SD and BBN, SD and ABM), can have a variety of 

integrated designs (Swinerd & McNaught, 2012; Vincenot et al., 2011; Wallentin & Neuwirth, 2017), and 

therefore, future research is needed to explore the accuracy and efficiency of hybrid/multimethod 
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configurations, especially the challenges associated with their uncertainty quantification and 

computational demand. 

 

2.6.  CONCLUDING REMARKS  

This paper is the product of a line of research by the authors to explicitly incorporate 

organizational factors into Probabilistic Risk Assessment (PRA)/Probabilistic Safety Assessment (PSA). 

In this paper, “explicit” incorporation of organizational factors refers to the model-based or mechanistic 

integration of organizational performance with PRA. The ideal goals of explicit incorporation of 

organizational factors into PRA are to; (a) make risk assessments more accurate in order to avoid 

underestimating or overestimating risk, and (b) improve risk management and prevention strategies by 

identifying and ranking critical organizational factors based on their influences on the technical system 

(e.g., Core Damage Frequency (CDF) in NPPs) and their impacts on Risk-Informed Performance-Based 

Applications (RIPBAs). Plant-specific, configuration-specific RIPBAs leverage the investment in 

developing and maintaining PRA by utilizing risk information and performance data in operational 

decision making to help create cost savings for NPPs while maintaining safety. Risk information and 

performance data are used in decision-making for operational flexibility, efficiency, and strengthening 

regulatory-plant cooperation. Explicit models of organizational factors could be incorporated into 

RIPBAs such as Risk-Informed Asset Management (RIAM) (Liming & Kee, 2002), Risk-Informed 

Business Modeling (Liming & Grantom, 2000), and Risk-Informed Project Prioritization (Koc et al., 

2009), and other RIPBAs (e.g., (Liming, 2015)). In RIAM, for example, organizational factors can be 

used in the development of probabilistic models for corporate management decisions related to change 

management, asset allocation for plant improvements, and plant-wide maintenance planning.  

This review article presented a discourse on the incorporation of organizational factors into PRA 

and made the following contributions: (1) identifying four key open questions associated with this topic; 

(2) framing ongoing debates by considering differing perspectives around each question; (3) offering a 

thorough review and categorization of existing studies on this topic to justify the selection of each 

question and to analyze the challenges related to each perspective by discussing state-of-the-art 

approaches in practice and in research (for supplementary data of the literature review see (Pence & 

Mohaghegh, 2019)); and (4) highlighting the directions of research that need to be taken in order to reach 

a final resolution for each question. The following summarizes Questions I to IV, their associated 

perspectives, the conceptual reasoning as to why the risk analysis community may not have come to 

conclusions for these key questions, the challenges associated with each, and the directions of research 

that need to be taken in order to reach a final resolution: 
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(Question I) How significant are the contributions of organizational factors to accidents and incidents?  

• Perspective (P.I.1): Organizational factors are not major contributors to incidents or accidents. 

The major contributors are equipment failures, primarily associated with equipment design flaws 

rather than due to maintenance program/organizational deficiencies.  

• Perspective (P.I.2): Organizational factors are reasonable contributors to incidents and accidents, 

but there are many barriers between them and technical system failures. There are latent failures 

associated with organizational factors, making the detection and control of organizational 

deficiencies challenging.  

• Perspective (P.I.3): Organizational factors are significant contributors to accidents and incidents. 

Based on the review of literature, it can be concluded that the first perspective (P.I.1) is not valid, 

but both the second perspective (P.I.2) and third perspective (P.I.3) need further analysis to be accurately 

stated. Although the existing studies acknowledge the influence of organizational factors on 

incidents/accidents, they could not generate information on the risk importance measures of 

organizational contributing factors (i.e., the factors under the control of the operating organization) versus 

those for non-organizational contributors (i.e., those beyond the control of the operating organization, 

such as flaws in equipment design and material properties). Therefore, it would be challenging to make a 

solid conclusion on the degree of significance of organizational factors based on these quantitative 

studies.  

In order to reach a final resolution on Question I, there is a need for the explicit incorporation of 

organizational factors into risk models to help conduct risk importance ranking of underlying 

organizational factors. The resolution of Question I also requires the development of theoretical causal 

frameworks that (i) help generate an explicit connection of organizational root causes to risk models and 

(ii) can be leveraged to achieve a higher resolution of data collection for organizational factors 

contributing to safety-related events, resulting in improved root cause analyses. Question III analyzed the 

needs associated with the theoretical bases of incorporating organizational factors into risk models. 

Finally, the resolution of Question I requires methodologies for conducting importance ranking, as well as 

techniques for categorizing, coding, and counting the underlying organizational factors in industry event 

data. Question IV evaluated the methodological bases that are needed for this topic. 

 

(Question II) How critical is the explicit incorporation of organizational factors into PRA with respect to 

improving risk assessment?  

• Perspective (P.II.1): Although the incorporation of organizational factors into PRA could be 

beneficial for risk management, it is not critical for risk assessment because the effects of 

organizational factors are already implicitly (or explicitly through some of the external 
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Performance Shaping Factors (PSFs) in HRA) considered in PRA scenarios through both human 

error and equipment reliability data and assumptions. 

• Perspective (P.II.2): Explicit incorporation of organizational factors into PRA is critical for risk 

assessment (in addition to risk management) because this explicit incorporation can help generate 

a more realistic estimation of human error and equipment failure probabilities.  

The first perspective (P.II.1) cannot be accepted because the degree of inclusion of organizational 

factors in current PRAs and HRAs may not be adequate for a realistic risk assessment for the following 

reasons: (a) organizational PSFs in current HRAs are quantified using expert judgment, generating 

challenges for the realistic estimation of HFE probabilities, (b) without explicit incorporation of 

organizational factors into HRA, treatment of dependencies among PSFs is limited, and (c) implicit 

incorporation of organizational factors would lead to overreliance on historical generic data for 

probability estimations and could not adequately reflect (i) plant-specific information or (ii) 

organizational changes in estimating HFE or equipment basic events (specifically CCBE) probabilities. 

Although the abovementioned deficiencies highlight the value of explicit incorporation of organizational 

factors for improving risk assessment and support the second perspective (P.II.2), a final resolution to 

Question II can only be achieved when research is capable of quantitatively identifying “how” critical is 

the explicit incorporation of organizational factors with respect to the realism of the estimated risk from 

PRA. This can be done by comparing the estimated risk in a selected scenario from the current classical 

PRA model to that of a PRA model that has an explicit consideration of key organizational factors. This 

requires advancing a research agenda for the explicit incorporation of organizational factors. 

 

(Question III) What theoretical bases are needed for the explicit incorporation of organizational factors 

into PRA? 

• Perspective (P.III.1): For the explicit incorporation of organizational factors into PRA, the need 

for developing a theoretical model of organizational performance should not be overemphasized. 

• Perspective (P.III.2): Explicit incorporation of organizational factors into PRA requires 

theoretically well-defined models of organizational performance. 

The first perspective (P.III.1) cannot be fully accepted because overly simplified models are (1) 

incapable of modeling the underlying organizational mechanisms, (2) not adequately capturing 

dependencies among underlying organizational mechanisms, and (3) over-relying on expert opinion for 

quantification; therefore, these models have challenges with respect to achieving the ideal goals (listed in 

Section 2.1) of incorporating organizational factors into PRA. The review of literature in Section 2.4 

supports the value of the second perspective (P.III.2), emphasizing the importance of generating 

theoretically well-defined models of organizational performance, and providing some justification that 
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theories Depicting Behavior, Structure & Context (Category A.3.2 in Figure 2.1) have a higher degree of 

maturity. However, Question III remains open because state-of-the-art theories in this category are still far 

from achieving the necessary level of comprehensiveness that considers the breadth, depth, and detail of 

underlying organizational root causes of incidents and accidents. This perspective raises a challenging 

question: how can the validity of theories of organizational factors connected to PRA be evaluated? The 

basis for theoretically well-defined models of organizational factors should at least begin with similar 

criteria to model-based HRA methods, for instance; (1) content validity, (2) reliability, (3) traceability 

(transparency) (e.g., reproducibility), (4) validity (construct validity), (5) adaptability/scalability, and (6) 

usability. However, these criteria have not yet been analyzed for modeling organizational factors in PRA 

and require future research. 

Establishing appropriate theoretical bases for organizational factors in safety/risk scenarios will 

help (1) reduce the overreliance on data that do not adequately reflect plant-specific information on 

organizational changes in the estimation of human failure events or equipment reliability, (2) establish a 

scientific connection between cognitive-based HRA and underlying organizational factors, and (3) use the 

underlying pathways of causality in root cause analysis to uncover deeper layers of deficiencies (e.g., 

managerial factors as root cause contributors) that can be used in RIPBAs.  

 

(Question IV) What methodological bases are needed for the explicit incorporation of organizational 

factors into PRA? 

• Perspective (P.IV.1): PRA techniques (ET and FT) are static; thus, it is not possible to quantify 

the influence of organizational factors, which are highly dynamic (e.g., considering feedback 

loops and delays in organizational performance), on risk/safety by explicitly incorporating 

organizational factors into PRA scenarios.  

• Perspective (P.IV.2): Combining appropriate techniques with PRA FTs/ETs could generate 

integrated modeling techniques, capable of quantifying organizational theoretical frameworks that 

are explicitly connected to PRA elements, leading to the quantification of the effects of 

organizational factors on risk/safety. 

Recent progress in simulation-based PRA, simulation-based HRA, and Integrated PRA (I-PRA) 

can be used to reject the validity of the first perspective (P.IV.1). The literature review in Section 2.5 

supports perspective (P.IV.2); however, there are still some open questions regarding the selection of 

modeling techniques that need to be integrated with PRA. The selection of an appropriate technique 

highly depends on (i) the amount of data, (ii) amount of detailed knowledge about the phenomena, and 

(iii) the nature of underlying theoretical bases. For example, techniques such as BBN have been 

demonstrated as suitable for mathematically linking to classical PRA, but their static nature could 
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generate limitations for modeling organizational factors. Therefore, it is important to select a modeling 

technique that can capture the temporal aspects of organizations. Mechanistic/simulation-based are 

limited in their ability to be connected with PRA elements, especially when modelers do not have detailed 

knowledge regarding all elements of organizational mechanisms associated with safety/risk. In this case, 

hybrid modeling techniques, or multimethod techniques, Categories B.5.1.1 (integration of SD and BBN) 

and B.5.2.1 (integration of SD and ABM) in (Pence & Mohaghegh, 2019), provide the most desirable 

techniques for the explicit incorporation of organizational factors into safety/risk analysis because they 

allow the modeler to use different modeling techniques for different aspects of organizational 

performance. One of the modeling benefits of ABM is the possibility of depicting the spatial dimension, 

in addition to time; however, the criticality of explicitly modeling space for organizational safety/risk 

analysis is still an open area of debate.  

Another criterion that influences selecting a specific type of mechanistic/simulation-based 

modeling technique relates to the nature of theoretical bases. Hybrid/Multimethod modeling techniques 

also allow for the combination of multiple theoretical perspectives through the integration of probabilistic, 

rule-based behavior, and equation-based modeling techniques. Each combination of modeling techniques 

can have a variety of integrated designs, and therefore, future research is needed to explore the accuracy 

and efficiency of hybrid/multimethod configurations, especially the challenges associated with their 

uncertainty quantification and computational demand. Modeling techniques for organizational factors 

require further advancement in order to address: (a) what temporal fidelity is necessary for organizational 

performance models? (b) Is spatial fidelity important for understanding organizational contributions to 

risk? (c) how practical (i.e., computationally expensive) are predictive modeling methods? (d) how can 

organizational performance models be validated? Forthcoming publications by the authors will explore 

these and other open questions discussed in this paper. 
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CHAPTER 3: DATA-THEORETIC METHODOLOGY AND COMPUTATIONAL PLATFORM 

TO QUANTIFY ORGANIZATIONAL FACTORS IN SOCIO-TECHNICAL RISK 

ANALYSIS1 

 

ABSTRACT 

Organizational factors, as literature indicates, are significant contributors to risk in high-

consequence industries. Therefore, building a theoretical framework equipped with reliable modeling 

techniques and data analytics to quantify the influence of organizational performance on risk scenarios is 

important for improving realism in Probabilistic Risk Assessment (PRA). The Socio-Technical Risk 

Analysis (SoTeRiA) framework theoretically connects the structural (e.g., safety practices) and behavioral 

(e.g., safety culture) aspects of an organization with PRA. An Integrated PRA (I-PRA) methodological 

framework is introduced to operationalize SoTeRiA in order to quantify the incorporation of underlying 

organizational failure mechanisms into risk scenarios. This research focuses on the Data-Theoretic 

module of I-PRA, which has two sub-modules: (i) DT-BASE: developing detailed causal relationships in 

SoTeRiA, grounded on theories and equipped with a semi-automated baseline quantification utilizing 

information extracted from academic articles, industry procedures, and regulatory standards, and (ii) DT-

SITE: conducting automated data extraction and inference methods to quantify SoTeRiA causal elements 

based on site-specific event databases and by Bayesian updating of the DT-BASE baseline quantification. 

A case study demonstrates the quantification of a nuclear power plant’s organizational “training” causal 

model, which is associated with the training/experience in Human Reliability Analysis, along with a 

sensitivity analysis to identify critical factors.  

 

3.1. INTRODUCTION AND STATEMENT OF OBJECTIVES  

Organizational factors can either help or hinder safety performance (Reason, 1990), and they 

have been identified as significant contributors to incidents (NRC, 2008) and major accidents (CSB, 

2014; IAEA, 1992, 2014). Probabilistic Risk Assessment (PRA) (NRC, 1975), a formal methodology for 

estimating risk emerging from the interactions of equipment failure and human error, utilizes Human 

Reliability Analysis (HRA) (Mosleh, A. & Chang, 2004; Swain & Guttmann, 1983) for modeling and 

quantifying human error in risk scenarios. Despite the overwhelming evidence from the fields of 

organizational psychology and management science that strongly relates organizational factors such as 

safety culture, leadership style and priorities, and reward practices to safety, injuries, and accidents (Beus 

 
1 This chapter is a reprint with permission of the publisher of an article published in Reliability Engineering & System 
Safety: Pence, J., Sakurahara, T., Zhu, X., Mohaghegh, Z., Ertem, M., Ostroff, C., Kee, E., 2019. Data-theoretic 
methodology and computational platform to quantify organizational factors in socio-technical risk analysis. Reliability 
Engineering & System Safety 185, 240-260. doi: https://doi.org/10.1016/j.ress.2018.12.020  
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et al., 2010; Haber, S.B. et al., 1990; Haber, S. et al., 1991; Hofmann & Morgeson, 1999; Nahrgang et al., 

2011; Zohar & Luria, 2005), organizational performance models are not explicitly incorporated into HRA 

or PRA (Forester et al., 2009; Ghosh & Apostolakis, 2005). HRA provides an estimation of individual 

human error based on the states of internal Performance Shaping Factors (PSFs) (e.g., fatigue, cognitive 

mode) and external PSFs (e.g., physical work environment, teamwork, managerial and organizational 

factors) (Swain & Guttmann, 1983). The external organizational PSFs in HRA techniques are represented 

at an abstract level of analysis that does not “explicitly” consider underlying mechanisms. “Explicit” 

incorporation/ consideration of underlying mechanisms refers to the model-based integration of 

organizational performance and processes with HRA to analyze the effects on human error due to changes 

in underlying organizational contributing factors. It has been argued that “all PSFs should be looked at as 

organizational factors since it is an organization that could maintain or modify conditions that affect all of 

these factors” (Laumann & Rasmussen, 2016). However, due to the complexity of organizational 

performance modeling, the integration of organizational mechanisms with PSFs of HRA has been a 

challenging topic. This paper is a product of a line of research to incorporate organizational factors into 

HRA and PRA to (1) explicitly assess the risk due to specific organizational weaknesses, (2) find and 

rank the critical organizational root causes of failure, which help efforts to take effective corrective 

action, and (3) avoid the possibility of underestimating the risk associated with human error. This figure 

provides a literature review of studies in the field of risk analysis, specifically associated with PRA, that 

evaluated the influence of organizational factors on technological system risk and safety.  

In the last two decades, many researchers have studied organizational factors in the context of 

risk analysis by evaluating; their role in historical incidents and accidents (Ghosh & Apostolakis, 2005; 

Kontogiannis & Malakis, 2012), their classification (Haber, S.B. et al., 1990) and use in regulatory 

applications (Marcus et al., 1990), their implicit consideration in existing HRA guidance (Alvarenga et 

al., 2014; Laumann & Rasmussen, 2016; Li et al., 2012), their application in frameworks for equipment 

reliability (Øien, Knut, 2001) considering multi-level phenomenology (Modarres et al., 1992; Vinnem et 

al., 2012), and their potential use as performance indicators (EPRI, 2001; Nichols & Marcus, 1990). In 

Mohaghegh’s review of existing theoretical frameworks and quantitative techniques related to the 

incorporation of organizational factors into risk models, she categorizes them in two generations 

(Mohaghegh, 2007; Mohaghegh, 2009; Mohaghegh, 2010a, 2010b; Mohaghegh et al., 2009; Mohaghegh 

& Mosleh, 2007; Mohaghegh & Mosleh, 2009a, 2009b). The nature of first-generation theories and 

quantitative techniques is characterized in terms of “deviations from normative performance” 

(Rasmussen, 1997). For example, Reason’s Swiss Cheese Model (Reason, 1990, 1997) is a well-known 

metaphor for describing the organizational effects on the occurrence of accidents. According to Reason, 

the accident sequence starts with failed or missing defenses in the organization (e.g., managerial 
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decisions), and these defects create latent conditions that are transmitted along organizational pathways. 

Similarly, there have been several static quantitative frameworks, based on this theoretical concept, that 

aim at modeling and quantifying the impact of organizational factors on system risk. Examples are 

WPAM (Davoudian et al., 1994a, 1994b), SAM (Paté-Cornell & Murphy, 1996) and similar models 

(Øien, Knut, 2001), Omega Factor Model (Galán et al., 2007; Mosleh, Ali & Golfeiz, 1999), ASRM 

(Luxhøj, 2004), ORIM (Øien, Knut, 2001), I-Risk (Papazoglou et al., 2003), and Causal Modeling of Air 

Safety (Roelen et al., 2003). The second-generation approaches to develop organizational models for risk 

analysis frameworks focus on modeling the ‘actual behavior’ of organizations. These approaches have 

been evolving and attempt to represent the underlying organizational mechanisms of accidents. On the 

theoretical side, Rasmussen (Rasmussen, 1997) cites the self-organizing nature of High Reliability 

Organizations (Rochlin et al., 1987) and Learning Organizations (Senge, 1990; Weick, K. & Sutcliffe, 

2001) as concepts useful in analyzing the managerial and organizational influences on risk. The Normal 

Accident Theory (Perrow, 1984), which views accidents caused by interactive complexity and close 

coupling, can also be considered in the second generation of theories for organizational safety. Second-

generation quantitative techniques primarily address the dynamic aspects of organizational influences. For 

example, Cooke (2004), Leveson (2004), and Marais (2006) use the System Dynamics approach 

(Forrester, 1961; Sterman, 2000) to describe the dynamics of organizational safety, but these models do 

not include detailed PRA-style models of the technical system (Cooke, D.L., 2004; Leveson, 2004; 

Marais et al., 2006; Sterman, 2000). Yu et al. (2004) also use a System Dynamics approach to incorporate 

the effects of organizational factors into nuclear power plant PRA models (Yu et al., 2004). The 

interconnection between PRA and System Dynamics, however, is not established. 

More recently, concepts from resilience engineering have been added to the second-generation 

socio-technical models. While the concept of resilience is beneficial for describing the adaptive nature of 

organizations (Vogus & Sutcliffe, 2007), the benefits of resilience compared to a reliability approach in 

risk analysis have not yet been adequately analyzed (Hollnagel et al., 2013). The theoretical relationships 

between resilience and organizational safety in high-consequence industries remain underdeveloped and 

require further research; however, it should be acknowledged that various factors (e.g., capabilities of 

organizations (Dekker, 2014)) from resilience engineering can be useful to enhance organizational safety 

methods (Haavik et al., 2016; Øien, K et al., 2010). Recent studies in safety and risk analysis continue to 

emphasize the need for organizational modeling techniques, with a systematic perspective, that can 

include a broader set of influencing factors (IAEA, 2014) and is capable of capturing an organization’s 

adaptive performance, emergent phenomena, and success paths (Hollnagel, 2014). 

Integrating concepts from multiple disciplines, Mohaghegh introduced a set of thirteen principles 

(Table 3.1) for the field of organizational risk analysis or Socio-Technical Risk Analysis (Mohaghegh, 
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2007; Mohaghegh & Mosleh, 2009a). These principles are distributed in the following four categories; 

Categories I, II, and III relate to theory building, and Category IV relates to developing methodological 

techniques. In summary, these principles address two requirements for incorporating emergent 

organizational safety behavior into PRA: (i) the integration of a theoretical model of how organizations 

perform, considering causal factors with their corresponding level of analysis and relational links; (ii) the 

adaptation of appropriate techniques (i.e., “modeling” and “measurement”), capable of capturing complex 

interactions of causal factors within their possible ranges of variability and across different levels of 

analysis, to quantify the theoretical framework.  

 

Table 3.1: Socio-Technical Risk Analysis Principles (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a) 

Table 3.1 (cont.)  

Categories Principles 

I. Designation & Definition of Objectives 
(A) Unknown-of-Interest 

(B) Multidimensional Performance Objectives 

II. Modeling Perspective 

(C) Safety Performance and Deviation 

(D) Multilevel Framing 

(E) Depth of Causality and Level of Detail 

(F) Model Generality 

III. Building Blocks 

(G) Basic Unit of Analysis 

(H) Factor Level and Nature 

(I) Factor Selection 

(J) Link Level, Nature, and Structure 

(K) Dynamic Characteristics 

IV. Techniques 
(L) Measurement Techniques 

(M) Modeling Techniques 
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Figure 3.1: Socio-Technical Risk Analysis (SoTeRiA) Theoretical Framework (Mohaghegh, 2007) 

 

With respect to the first requirement, a theoretical framework, called Socio-Technical Risk 

Analysis (SoTeRiA) (Figure 3.1) (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a), was developed 

based on the theory-building principles (Categories I, II, and III in Table 3.1) and based on a multi-level 

organizational performance model developed by Ostroff (Ostroff, Cheri et al., 2013; Ostroff, Cheri et al., 

2003). SoTeRiA is a theoretical causal framework for explicitly integrating both the social aspects (e.g., 

safety culture; Node 8 in Figure 3.1) and the structural features (e.g., safety practices; Node 7 in Figure 

3.1) of one organization with technical system PRA (i.e., Node 1 in Figure 3.1). The SoTeRiA framework 

is further explained in Section 3.2.1, but for more details on the development of SoTeRiA, readers are 

directed to Refs. (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a).  

Operationalization and quantification of SoTeRiA required the development of appropriate 

techniques (Principles IV in Table 3.1), including “modeling” and “measurement” techniques. With 

respect to modeling techniques (Principle IV-M), Mohaghegh and Mosleh developed a hybrid approach 

(Mohaghegh, 2010a; Mohaghegh et al., 2009) by combining a probabilistic method, i.e., Bayesian Belief 

Network (BBN), and a deterministic/dynamic simulation technique, i.e., System Dynamics, with classical 

PRA methods, i.e., Event Tree (ET) and Fault Tree (FT), to quantify SoTeRiA. This paper introduces the 

Integrated PRA (I-PRA) methodological framework (explained in Section 3.2.1 and instantiated in Figure 

3.2) that is an advancement of the original work by Mohaghegh and Mosleh (Mohaghegh et al., 2009) and 

is based on an adaptation of the I-PRA approach which has been already applied for incorporating 

physical failure mechanisms into PRA for GSI-191 (Mohaghegh, Zahra et al., 2013) and fire PRA 

(Sakurahara, Tatsuya et al., 2017; Sakurahara et al., 2015).  

Measurement techniques (Principle IV-L in Table 3.1) relate to data analytics (i.e., data extraction 

and interpretation) for the factors and the links in the SoTeRiA framework. Mohaghegh and Mosleh 

(Mohaghegh & Mosleh, 2007; Mohaghegh & Mosleh, 2009b) highlighted the importance of integrating 

subjective and objective measurement techniques for SoTeRiA. In the application of SoTeRiA, one of the 
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challenges was the unstructured nature of data for organizational risk analysis. This research develops a 

Data-Theoretic approach, which is the focus of this paper and builds the data input module of the I-PRA 

framework. The Data-Theoretic is an approach where “data analytics” are guided by “theory." Theory 

enhances the accuracy and completeness of “causality” being analyzed from data and helps avoid 

potentially misleading results from solely data-oriented approaches. 

Section 3.2.2 covers the foundation, methodology, and computational platform for the Data-

Theoretic approach. The Data-Theoretic approach not only contributes to the development of new 

measurement techniques for the SoTeRiA framework but also makes theoretical contributions to 

SoTeRiA. The SoTeRiA framework (Figure 3.1) covers high-level paths of causality while still requiring 

further theory building to generate more detailed causal factors, sub-factors, and their interactions. The 

computational platform of the Data-Theoretic approach eases the execution of theory-building principles 

to expand theoretical details in SoTeRiA. As an example, the Data-Theoretic approach is applied for the 

organizational training processes of a Nuclear Power Plant (NPP) (Section 3.3), and a theoretical causal 

model is built and quantified for “training,” which is one of the factors related to Node 7 in SoTeRiA 

(Figure 3.1). The training quality would influence the state of Experience/Training PSF in HRA, and 

consequently, would affect the risk estimated from the I-PRA framework. The scope of this paper is on 

one organization, and future work by the authors will address multiple organizations and inter-

organizational factors. 

3.2. INTEGRATED PROBABILISTIC RISK ASSESSMENT METHODOLOGY FOR SOCIO-

TECHNICAL RISK ANALYSIS  

The central risk assessment technique used in this research is Probabilistic Risk Assessment 

(PRA). This systematic risk methodology was originally developed for the nuclear power industry (NRC, 

1975) and has grown into a technical discipline with a wide range of applications. In classical PRA, a 

static PRA logic, consisting of ET and FT (see the site-specific PRA module in Figure 3.2), represents the 

causal relationships among the Initiating Events (IEs), system failures (e.g., SYSA, SYSB), component 

failures (e.g., basic event “b”), and human failure events (e.g., basic event “a”) that can result in 

undesirable system end states (e.g., core damage in NPPs) (U.S. Nuclear Regulatory Commission, 1983). 

These static PRA techniques have limitations in their capabilities to account for the dynamic evolution of 

risk scenarios (Siu, 1994).  

To overcome the limitations of classical PRA, dynamic PRA (also referred to as simulation-based 

PRA) methodologies have been developed (Aldemir, 2013; Hsueh & Mosleh, 1996; Siu, 1994). Although 

a fully-dynamic PRA may generate more realism in risk modeling, it would not be economically efficient 

or practical for NPPs in the short term because (i) classical PRA is widely utilized by both the nuclear 
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industry and the regulatory agency and would require a significant amount of time and resources to 

transition to fully-dynamic PRA, and (ii) the need for reaching the degree of realism that a fully-dynamic 

PRA could generate has not yet been scientifically justified for either the industry or the regulatory 

agency. Therefore, as a more feasible short-term alternative, the authors developed the Integrated PRA (I-

PRA) methodological framework (Figure 3.2). I-PRA generates a “unified” computational framework to 

integrate simulation modules of underlying failure mechanisms associated with areas of concern (e.g., 

fire, seismic) with classical PRA (i.e., logic-based ET, FT). I-PRA is equipped with an interfacing 

methodology, including uncertainty analysis, Bayesian updating and dependency treatment, to more 

comprehensively capture information on the relationships between PRA scenarios and the underlying 

failure mechanisms. For instance, the influences of underlying contributing factors (e.g., material 

properties, room configuration) on the plant risk metrics (e.g., core damage frequency) are explicitly 

captured through I-PRA unified platform; hence, the importance measure analysis for the input 

parameters at the failure mechanism level, more directly related to the design parameters than the PRA 

basic events, can be performed. Development of a unified computational framework, which seamlessly 

integrates the plant PRA model with the underlying failure mechanisms, can also improve the treatment 

of dependent failures in PRA (as discussed in another publication by the authors (Sakurahara, Tatsuya et 

al., 2018b)). Another advancement of I-PRA is the “explicit” incorporation of interactions between 

physical failure mechanisms and human performance (Bui et al., 2017; Sakurahara, Tatsuya et al., 2018a). 

For example, a fire-induced scenario at NPPs is a socio-technical process involving two-directional 

interactions between fire progression and human actions for manual fire detection and suppression: (i) 

influences of fire progression (e.g., dense smoke, high temperature) on the human performance and (ii) 

influences of manual action (e.g., spray of suppressant, activation of smoke purge) on fire progression. In 

the existing Fire PRAs, those physics-human interactions are “implicitly” treated by a simplified and 

conservative approach based on the competition between two timings, time-to-cable-damage and time-to-

suppression (NRC & EPRI, 2005). In contrast, I-PRA creates an “explicit” interface between a 

Computational Fluid Dynamics (CFD)-based fire model (Fire Dynamics Simulator; FDS) and the human 

performance model through modifications to the Heat Release Rate (HRR) curve. The methodological 

development of I-PRA, mainly for the incorporation of physical failure mechanisms and their interface 

with human performance, is covered in the authors’ previous publications for several applications, such as 

(1) risk-informed resolution of Generic Safety Issue 191 (GSI-191) (Kee et al., 2016; Mohaghegh, Z. et 

al., 2013; O’Shea & Mohaghegh, 2016), (2) Fire PRA (Sakurahara, Tatsuya et al., 2018a; Sakurahara, T. 

et al., 2018; Sakurahara et al., 2015), and (3) Seismic PRA (Farshadmanesh et al., 2018).  

This paper adapts I-PRA for the quantification and operationalization of SoTeRiA (Figure 3.1) to 

quantify the incorporation of organizational failure mechanisms into classical PRA. The I-PRA 
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framework (Figure 3.2) quantifies the incorporation of underlying organizational failure mechanisms (i.e., 

simulation module in Figure 3.2) into risk scenarios in classical PRA (i.e., the site-specific PRA module 

in Figure 3.2). Section 3.2.1 explains key modules of I-PRA, in relationship with different nodes in the 

SoTeRiA framework, to clarify how I-PRA is designed to operationalize SoTeRiA. The focus of this 

paper is on the Data-Theoretic module of I-PRA that is explained in detail in Section 3.2.2. The 

implementation of the Data-Theoretic approach for NPPs is included in Section 3.3. 

3.2.1. Integrated PRA Modules to Quantify the SoTeRiA Framework  

The SoTeRiA framework (Figure 3.1) theorizes multiple levels of ‘internal’ mechanisms, 

including individual, unit, group, and organization (Nodes 2 to 9 of Figure 3.1), and their interactions 

with the ‘external’ environment, including physical, regulatory, business, and sociopolitical climates 

(Nodes 10 to 16 in Figure 3.1), along with their causal influences on technical system risk (PRA; Node 1). 

Because different organizations can have unique organizational designs at multiple levels of performance 

(e.g., management, supervisor, team), it is the analyst’s choice to determine the boundary among levels 

(e.g., between unit and group).  

Based on SoTeRiA, the first step in developing a socio-technical risk model is to build the 

scenarios for the technical “system risk” (Node 1 in Figure 3.1). The system risk is modeled in the site-

specific PRA module in I-PRA (Figure 3.2). The second step is to identify the safety critical tasks (Node 

2 in Figure 3.1) that affect the elements of risk scenarios. For example, maintenance performance is a 

safety critical task since it affects hardware failure. The next step is to model the work processes (e.g., 

maintenance work processes) that lead to safety critical performance. This helps create the “unit process 

model” (Node 3 in Figure 3.1). Next, human performance models for individuals involved in the work 

processes of the unit process model need to be developed. This research is not implying the development 

of a separate model for each human; instead it considers modeling each team (who conducts similar tasks 

in its work processes) in the aggregate. For example, regarding a group of maintenance technicians 

performing similar categories of tasks in the maintenance unit, team performance would be modeled in 

the aggregate level. Lastly, the organizational aspects such as safety culture (Node 8 in Figure 3.1) and 

safety climate (Nodes 5 and 6 in Figure 3.1), and structural features such as safety practices (Node 7 in 

Figure 3.1) of the supporting organization are linked to human performance models.  

Another safety critical task includes operator performance that can be associated with a unit (e.g., 

an operator action in a main control room) or that can refer to an individual action in risk scenarios. In the 

I-PRA framework (Figure 3.2), an operator action, basic event “a,” stands for an example of a safety 

critical task, although I-PRA can cover other safety critical tasks (e.g., maintenance performance) related 

to the site-specific PRA. Node 4 in Figure 3.1, “individual Performance Shaping Factors” (PSFs) refers to 
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the PSFs in the HRA of I-PRA (Figure 3.2), and the remaining organizational nodes in the SoTeRiA 

framework (Figure 3.1) help model organizational failure mechanisms (#1.5, #2.5 and #3) in I-PRA.  

As Figure 3.2 shows, I-PRA is a multi-level risk assessment framework that begins with the Data-

Theoretic module extracting and formalizing the organizational data required for the simulation of 

underlying organizational mechanisms (#3) that affect the states of PSFs (e.g., a1, a2, and a3) and that, 

therefore, influence the probability of human errors (e.g., event “a” in the FT) in the site-specific PRA 

module. Through the interface module, the “spatio-temporal simulation of organizational failure 

mechanisms” (#3) is connected to the associated PSFs in the site-specific PRA module. In the interface 

module, the uncertainties associated with input data are characterized and propagated by the uncertainty 

analyzer (#4 in Figure 3.2) to make the simulation module probabilistic and ready to be connected to the 

site-specific PRA model.  

The Data-Theoretic module uses the high-level causal relationship of SoTeRiA (Figure 3.1) as a 

preliminary causal structural shell in Element 1.5 to guide the analyst when adding more detailed causal 

constructs. Elements 1.1 to 1.4 of DT-BASE are the steps for adding more detailed causal constructs and 

quantifying the targeted causal model in Element 1.5. The scope of the targeted causal model in Element 

1.5 can include adding details to one node of Figure 3.1 or adding details to multiple nodes of Figure 3.1 

while preserving the high-level interconnections among those nodes (based on the causal connection of 

SoTeRiA in Figure 3.1). In this paper, the scope of the targeted causal model is Training, which is related 

to Node 7 in Figure 3.1. The targeted causal model that is gradually built and quantified through Elements 

1.1 to 1.4 of DT-BASE forms the organizational causal input model in Element 1.5 as the input to DT-

SITE. The quantification of the organizational causal input model is updated through DT-SITE Elements 

2.1 to 2.4 to generate an updated version of the same causal model in Element 2.5, ready to provide input 

for the simulation module. In other words, the organizational causal input model in Element 2.5, a 

targeted-scope model of SoTeRiA (Figure 3.1) with more detailed levels of causality, gives the input 

information (i.e., the causal structures and their associated measures) for the spatio-temporal simulation 

module (#3), where the analyst can add temporal and/or spatial dimensions.  
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Figure 3.2: Integrated Probabilistic Risk Assessment (I-PRA) Methodological Framework for 

Socio-Technical Risk Analysis 
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For example, the hybrid modeling approach by Mohaghegh and Mosleh (Mohaghegh et al., 2009) 

added the temporal dimension to the quantification of SoTeRiA by combining the System Dynamics 

technique with BBN. Ongoing research by the authors is focusing on the incorporation of spatial aspects, 

in addition to temporal, to socio-technical risk analysis (Bui et al., 2016; Bui et al., 2017; Pence et al., 

2015a; Pence et al., 2015b).  

The modeler has the choice of connecting the quantified organizational causal input model (#2.5 

in Figure 3.2) directly to the PSFs through the interface module or of making it temporal or spatio-

temporal in the simulation module and then letting the simulation outputs pass to the interface module. 

This choice depends on criteria such as the level of available resources (e.g., computational resource, data 

availability) and the desired level of accuracy and resolution in the system risk estimation. The authors 

recommend that the first phase of risk estimation be done without adding spatio-temporal dimensions, 

followed by advanced risk Importance Measure analysis (Sakurahara, T. et al., 2017) to determine the risk 

significance of each failure mechanism. In the next phase, the spatio-temporal dimensions can be added to 

the risk-significant failure mechanisms identified by the risk Importance Measure analysis. 

The key performance measures (e.g., Ka1, Ka2, Ka3 in Figure 3.2) refer to the measured 

performance outputs of the organizational model that help define the states of PSFs. For example, the 

quality of organizational training affects the state of training/experience PSF in HRA. Thus, the estimated 

quality of training from the organizational model is a key performance measure associated with the 

training/experience PSF in I-PRA. In the interface module, by having the probability distributions of the 

key performance measures resulting from the uncertainty analysis, the probability of each state of PSFs 

(e.g., low, nominal, high) is generated (#5 in Figure 3.2) by estimating the probability that the associated 

key performance measure exceeds threshold values (See discussion in Section 3.3.3). This paper focuses 

on the development of the Data-Theoretic module, explained in Section 3.2.2, and its application (Section 

3.3) for modeling the quality of NPP training. A more detailed explanation and advancement of other 

modules of the I-PRA framework is the focus of Chapter 4.  

3.2.2. Methodological and Computational Developments for the Data-Theoretic Module of Integrated 

PRA   

The role of the Data-Theoretic module in the I-PRA framework is the execution of measurement 

techniques (Principle IV-L in Table 3.1) to extract and interpret organizational data associated with the 

structure and state (or value) of factors, sub-factors, and links in the SoTeRiA framework. Based on the 

evaluation of measurement techniques for organizational safety/risk frameworks (Mohaghegh & Mosleh, 

2009b), two common categories of methods including “subjective” and “objective” are listed. In the 

subjective measurement, the state of a factor is based on employees’ perception. The subjective 
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measurement is often taken by surveys or interviews conducted with the entire organization, a random 

sample, or specific members (e.g., supervisors and managers). In contrast, the objective measurement 

refers to the case where a person (or a group) measures the factor using checklists and/or by inspections 

and auditing (compliance-based). Auditors only get a snapshot of the organization, and often a limited 

number of subjects are audited. Perception surveys (subjective measurements) can capture some aspects 

of the reality that are overlooked by objective auditing. However, subjective measures also have their own 

limitations and biases. For example, employees’ perceptions can be influenced by supervisors’ 

interpretations (Mohaghegh & Mosleh, 2009b). Individual-level subjective measurements through 

surveys are usually limited to a set of factors; otherwise, they can be time consuming and expensive. 

Correlation between individual-level and organizational-level aggregation (Ostroff, C., 1993) relies on in-

group agreement (Klein et al., 1994); however, when factors are ‘elusive’ and unknown to individuals at 

the time of subjective measurement, it is not possible to gather meaningful data for highly granular 

organizational factors. Previous studies have introduced empirical data analysis for associating 

organizational factors with performance indicators (Nichols & Marcus, 1990) and cause codes (Schroer & 

Modarres, 2013) from industry data, however, these methods do not use theory to guide their analysis, 

and are not designed to be integrated with HRA or PRA methods. Readers are referred to Ref. 

(Mohaghegh & Mosleh, 2009b) for a more detailed review of methods for measuring organizational 

factors at different levels of analysis. Neither a subjective or objective measurement approach alone has 

been proven to be a reliable approach for measuring the systematic multi-level relationships of 

organizational factors, and therefore, hybrid integration of these methods is required (Mohaghegh & 

Mosleh, 2009b). In order to address this challenge, this research proposes a new measurement method 

called the Data-Theoretic approach, having its preliminary development published in Ref. (Pence et al., 

2017).  

The Data-Theoretic module of I-PRA executes the Data-Theoretic approach, covering two main 

parts: (1) DT-BASE (#1 in Figure 3.2; the white boxes on the left in the Data-Theoretic module) that 

focuses on the development of detailed causal relationships in SoTeRiA, based on a theory-building 

process (explained in Section 3.2.2.1.1) and equipped with a semi-automated baseline quantification 

utilizing analyst interpretation of generic information extracted from articles and standards; (2) DT-SITE 

(#2 in Figure 3.2; the light blue boxes on the right in the Data-Theoretic module) that relates to 

conducting automated data extraction and inference methods (text mining) to quantify SoTeRiA causal 

elements based on site-specific event databases and by Bayesian updating of the baseline quantification 

established by DT-BASE. The Data-Theoretic approach is advancing measurement techniques for 

organizational factors in the following ways:  
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1. It guides “data analytics” with “theory.” The problem with solely data-oriented approaches is that, 

due to the lack of guidance from an underlying theory, analysts can be misled by data, creating what 

Lazer (2014) calls “big data hubris,” mistaking correlation for causation and “algorithm dynamics 

issues,” when an algorithm is not capable of capturing the theoretical construct of interest (Lazer et 

al., 2014). In the Data-Theoretic approach, the theoretical causal structure of the SoTeRiA 

framework (Figure 3.1) and the contextual keywords of each node in SoTeRiA guide data analytics; 

therefore, the underlying theory supports the completeness of causal factors, the accuracy of their 

causal relationships, and helps avoid the potentially misleading results of a solely data-oriented 

approach. Bar-Yam (2013) emphasized that (a) big data is critical for addressing complex systems, 

(b) theoretical modeling is essential to the scientific process for understanding complex systems, and 

(c) theory makes data more useful (Bar-Yam, 2013). 

2. It combines different sources and types of information, for example (i) information pieces from 

academic literature, practical industry procedures, and regulatory standards are integrated through 

DT-BASE elements, (ii) analysts’ “subjective” interpretation of information in DT-BASE is 

combined with “objective” event data extracted in DT-SITE, and (iii) “generic” information 

obtained in DT-BASE is integrated with “site-specific” information extracted in DT-SITE. 

3. It uses text mining (in DT-SITE), in addition to expert opinion (in DT-BASE), as a measurement 

technique. Although lack of data has been mentioned as one of the key reasons for making slow 

progress in the incorporation of organizational factors into PRA (Ghosh & Apostolakis, 2005; Li et 

al., 2012), this research provides a new perspective by highlighting that data is available for 

organizational factors; however, the data has a nature that is different from tabular equipment 

reliability data. Archival data, documents, and texts serve as primary organization-level data. The 

Communicative Constitution of Organization (CCO) is a widely-accepted multidisciplinary 

perspective of organizational communication theory, which asserts that “organizations are 

constituted (and maintained) through human communication” (Cooren et al., 2011). For example, 

organizational documents in circulation at NPPs are tangible data structures that move forward 

through space and time, and these documents are what constitute the organization (Ashcraft et al., 

2009; Güney & Cresswell, 2012; Taylor et al., 1996). The extraction, interpretation, and analysis of 

communicative symbols present a new opportunity for analyzing organizational safety performance 

and risk contribution. Through the communication process, organizations produce, synthesize, and 

store a large volume of textual information used for regular business activities and compliance 

purposes. This large and complex volume of information (big data) needs a new measurement 

technique to analyze its contents. Data of organizational communications are a compilation of 

operational experience documents such as Corrective Action Program (CAP) entries, Licensee Event 
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Reports (LERs), Root Cause Analysis (RCA) documents, and maintenance logs. Because these 

documents are unstructured and heterogeneous, it is necessary to incorporate data analytic 

techniques such as text mining for socio-technical risk analysis (Pence et al., 2015a; Pence et al., 

2014). Text mining is widely used for big data due to its ability to extract information from 

unstructured textual information (Berman, 2013; Ding et al., 2011; Tao et al., 2013). 

Sections 3.2.2.1 and 3.2.2.2 explain the status of methodological and computational developments for 

DT-BASE and DT-SITE, respectively.  

 

3.2.2.1. DT-BASE Elements of the Data-Theoretic Module  

The following sub-sections explain the five methodological elements of DT-BASE, including: 

 

• Manual Extraction of Evidence and Building Causal Constructs (# 1.1 in Figure 3.2) 

• Analyst’s Qualitative-Quantitative Interpretation of Each Piece of Evidence (#1.2 in Figure 3.2) 

• Developing Aggregated Conditional Probabilities based on Multiple Evidence Entries (#1.3 in 

Figure 3.2) 

• Developing Conditional Probabilities for Extended Causality (#1.4 in Figure 3.2)  

• Integration in a Bayesian Belief Network Computational Platform (#1.5 in Figure 3.2) 

 

The above methodological elements are computationally implemented following the flowchart in 

Figure 3.3, which has three phases: (i) Data Entry, (ii) Aggregation, and (iii) Bayesian Belief Network 

Platform. Figure 3.3 maps DT-BASE elements (the box at the top of Figure 3.3) to the computational 

flowchart sequence (below the box in Figure 3.3) and uses color-coding to show the relationships between 

DT-BASE elements and flowchart phases. Elements #1.1. and #1.2 of DT-BASE are executed in phase (i) 

of the flowchart (Figure 3.3). Elements #1.3 and #1.4 of DT-BASE are conducted in phase (ii) of the 

computational flowchart. Phase (iii) of the flowchart (Figure 3.3) executes element #1.5 of DT-BASE. 
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Figure 3.3: DT-BASE Module on the Top of the Figure Surrounded by a Solid Black Line and the 

Associated Computational Flowchart Below Each Phase: (i) Data Entry (Associated with 1.1 and 1.2 in 

Figure 3.2); (ii) Aggregation (Associated with 1.3 and 1.4 in Figure 3.2), and (iii) BBN (Associated with 

1.5 in Figure 3.2) 

3.2.2.1.1. Manual Extraction of Evidence and Building Causal Constructs (Element #1.1 in Figure 3.2) 

For element #1.1 of DT-BASE (Figure 3.2), the SoTeRiA framework (Figure 3.1) provides the 

initial causal structure, and the analyst utilizes a theory-building process, along with their interpretation of 

“evidence” extracted from references, to expand causal constructs associated with the nodes in SoTeRiA. 

In this paper, “evidence” means a textual statement in a reference that supports the causal construct between 

two factors (e.g., cause “Bi” (i=1, 2, …n) or the parent node, effect “C” or the child node, and the edge 

(causal link) between Bi and C in Figure 3.4).  
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Figure 3.4: Causes (Parent Nodes) and Effect (Child Node) in a Simple Theoretical Causal Construct  

 

Theory building (e.g., (Chermack, 2007; Corbin & Strauss, 2008; Weed, 2005)) does not have a 

purely rule-based prescriptive process, and therefore, this element of DT-BASE (#1.1) cannot be fully 

automated. The theory-building process in this research not only utilizes the socio-technical risk analysis 

principles (Principles I, II, II, and IV-M in Table 3.1) (Mohaghegh, 2007), but also is consistent with 

Sterman’s (2000) conceptualization of an iterative learning process (Sterman, 2000) and reflects Weick’s 

(1989) perspective on the intuitive nature of theory-building (Weick, K.E., 1989). Element #1.1 of DT-

BASE has the following five-step manual theory-building process as well as computational features that 

help in structuring the causal model:  

• Step 1: Identifying the unknown of interest, i.e., the selected target node/organizational factor (e.g., 

training). This step refers to Principle I.A. in Table 3.1.  

• Step 2: Identifying the literature (i.e., regulatory and industry standards as well as academic articles) 

associated with the selected organizational factor.  

• Step 3: Locating the selected organizational factor within the SoTeRiA framework (Figure 3.1). For 

example, “training” is an organizational factor associated with Node 7 in SoTeRiA. 

• Step 4: Identifying logical abstract-level phases (e.g., plan, do, check, act) evolving and leading to the 

performance quality of the selected organizational factor. This helps develop causal levels at the abstract 

level of analysis.  

• Step 5: Developing theoretical causal constructs for the organizational mechanisms leading to the 

performance quality of the selected organizational factor by satisfying theory-building principles 

(Principles II and III in Table 3.1) and by utilizing semi-formal process modeling techniques (e.g., 

business process modeling (Williams, 1967), flowcharts (ASME, 1947), etc.). Although semi-formal 

modeling techniques are related to Principle IV-M (Table 3.1) that is focused on modeling techniques 

(rather than theory building), they can be considered as the bridging techniques that help turn a theory 

into a causal model equipped with a formal modeling technique (e.g., BBN). Semi-formal process 

modeling techniques help expand the causalities from the abstract level of analysis (developed in Step 

4) to more detailed functional and task levels. We refer the readers to Mohaghegh and Mosleh 

(Mohaghegh et al., 2009) for the details on the application of semi-formal process modeling 

techniques for the development of multi-level causalities. In this research, the Structured Analysis and 

Design Technique (SADT) (Heins, 1993; Marca & McGowan, 1987) (Figure 3.5) is used as the 
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selected process modeling technique due to its (1) ease of conversion from a ‘semi-formal’ to ‘formal’ 

(e.g., BBN) technique, (2) ease of communicating the model and results, and (3) the generality of the 

technique for different organizational factors (Mohaghegh, 2007). In SADT, the activity transmits the 

inputs (I) to the outputs (O), given the resources (R) and the control/criteria (C) (Mohaghegh et al., 

2009). The inputs can include, but are not limited to, information, hardware, raw materials, and people. 

Outputs are the products of the process. Resources are the things needed to perform the activity, such 

as tools, equipment, and people. Controls/criteria include requirements such as job control 

mechanisms, constraints, procedures, applicable rules and regulations, and standards that are used to 

direct, control, and judge the conduct of an activity. The SADT input-output structure can be 

converted to a BBN causal structure, as demonstrated by Mohaghegh and Mosleh (Mohaghegh et al., 

2009), and is implemented in Section 3.3 of this paper to build and quantify the training causal model.  

Figure 3.5: Structured Analysis and Design Technique (Marca & McGowan, 1987) 

The computational feature of element #1.1 of DT-BASE is a part of the data entry phase (i.a., i.b., 

i.c., and i.d.) in Figure 3.3 and helps the analyst add the causal constructs, in the right location and at the 

right level of analysis, to gradually build the final structure of the organizational causal input model 

(delivered to element #1.5 in Figure 3.2). As Figure 3.3 shows, the analyst picks a reference (e.g., from 

academic literature, practical industry procedures, or regulatory standards), and based on their 

interpretation of each piece of evidence and following the theory-building steps (Step 3 to Step 5 listed 

above), they add the causal construct to the model. 

Section 3.3.1. further explains element #1.1 by applying it in the case study to build the causal 

model for training in NPPs.  

 

3.2.2.1.2. Analyst’s Qualitative-Quantitative Interpretation of Each Piece of Evidence (Element #1.2 in 

Figure 3.2) 

Once element #1.1 of DT-BASE (Figure 3.2) has been executed for a causal construct (i.e., a 

minimum of two nodes and an edge in Figure 3.4), the analyst is prompted through element #1.2 to enter 
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a set of information based on their interpretation of the evidence supporting the causal construct. The 

computational execution of element #1.2 is included in the data entry phase (i.e., i.h., i.i.) of Figure 3.3. 

Because SoTeRiA is explicitly modeling “performance quality” for each node, the analyst first defines the 

“states” of each node based on their potential quality states (or the existence of a specific quality); for 

example, “good/high” (or true or existent) (State 1) and “bad/poor/low” (or false or absent) (State 2). For 

each causal construct, the analyst is then prompted to enter the following information:  

• Reference information: The analyst imports reference information (.ris file) or enters the title, 

year, authors’ names, type of publication, publisher, etc. into data fields. In DT-BASE, evidence 

dependencies are managed through a bibliometric analysis which cross-compares reference 

information to find potential overlaps and avoids double counting of evidence. Current 

dependencies considered are: same author or authors, same institution, and concurrent 

publications (i.e., which may indicate similar subject populations or case studies). This 

information is presented to the analyst to guide them to remove potential information 

dependencies based on the entered references. In other words, the current scope of dependency 

treatment is “binary”, meaning that, if a potential overlap is identified between two references, 

they are counted only once; otherwise, both of them are included in the DT-BASE. 

• Keywords associated with the parent node and child node (see Figure 3.4): The relevant 

keywords for each node are created as tags in the entry. Multiple keywords can be added to 

represent the context of a factor. Synonyms and alternative industry-specific phrasing should be 

included to account for the textual context in other data sources.  

• A verbatim copy of the textual statement explaining the causal relationship: The exact statement, 

which supports the relationship between the two nodes, is copied as supporting evidence.  

Next, the analyst is prompted to provide the following subjective quantitative values associated with 

the piece of evidence: 

• [M1, EV] Credibility of the reference source (e.g., Journal Impact Factor): The weight or impact 

factor of the publication, based on a “low estimate point” and a “high estimate point” from zero to 

one, where the current value used is the median.  

• [M2, EV] Weight between node Bi and node C indicated in the evidence: The analyst’s 

interpretation of the author’s statement about the strength of causal influence of Bi on C. M2, EV is 

represented by a numerical scale from zero to one. For the example of Bi (State 1) affecting C 

(State 1) (see Figure 3.4), M2, EV refers to the conditional probability of C, given Bi, as in, Pr(C | 

Bi). Language may include that “it is very likely Bi causes C.” It is also possible that the reference 

has a numerical analysis and that the results show the strong or weak influence of Bi on C.  
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• [M3, EV] Analyst confidence level in the subject matter material: The analyst’s familiarity with the 

two nodes and their causal relationship. M3, EV ranges from zero to one.  

In order to support consistency among different analysts with respect to their judgments for M1, M2, 

and M3, this research utilizes a set of natural language expressions that are associated with probabilities, 

initially developed by Wallsten (Wallsten et al., 1986) and adapted by the International Panel on Climate 

Change (IPCC) (Mastrandrea et al., 2010; Stocker, 2014). The IPCC probability language has seven 

categories of probability values to describe a degree of belief in a proposition; “virtually certain, very 

likely, likely, medium likelihood, unlikely, very unlikely, extremely unlikely” (Morgan, 2014; Stocker, 

2014). The categories and ranges are shown in Table 3.2. Because these categories were developed for the 

context of climate change and have not been calibrated or measured to specifically address NPP contexts, 

future research is needed to conduct sensitivity analysis to determine whether changing categorical bin 

thresholds make a significant difference to PRA results, and if so, additional effort is needed to calibrate 

these bins for nuclear power industry applications. For example, future work will consider specific 

questions to assist individuals in assessing their confidence likelihood for M3.  

Table 3.2. Mapping Between Probability Words and Probability Values (Adapted from (Stocker, 2014)) 

Table 3.2 (cont.)    

Lower Bound Upper Bound M1 M2 M3 

0.99 1 

Virtually 

Certainly 

Credible 

Virtually Certain Virtual Certainty in Confidence 

0.9 0.99 

Very 

Likely 

Credible 

Very Likely Very Likely Confident 

0.66 0.9 
Likely 

Credible 
Likely Likely Confident 

0.33 0.66 

Medium 

Likelihood 

of 

Credibility 

Medium Likelihood Medium Likelihood of Confidence 

0.1 0.33 
Unlikely 

Credible 
Unlikely Unlikely Confident 

0.01 0.1 

Very 

Unlikely 

Credible 

Very Unlikely Very Unlikely Confident 
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Table 3.2 (cont.)    

Lower Bound Upper Bound M1 M2 M3 

0 0.01 

Extremely 

Unlikely to 

be 

Credible 

Extremely Unlikely Extremely Unlikely to be Confident 

 

As step (i.i.) of the data entry phase of Figure 3.3 shows, to introduce a measure of 

incompleteness uncertainty into the causal model, a Leak Variable (LV) is introduced at each ‘layer’ of 

causality. The LV stands for nodes that are not included in the model. The analyst can enter a value for 

LV edge probability. The meaning of LV edge probability is explained in Section 3.2.2.1.4, where it is 

used in the extended causality equation. The analyst can create as many evidence entries as literature 

supports. The next step of the DT-BASE approach performs aggregation as each piece of evidence is 

added.  

3.2.2.1.3. Developing Aggregated Conditional Probabilities based on Multiple Evidence Entries (Element 

#1.3 in Figure 3.2) 

Element #1.3 of DT-BASE, which relates to the second phase (ii.b.) of the computational 

flowchart (Figure 3.3), focuses on the estimation of aggregated conditional probabilities when the 

analyst’s interpretations of multiple evidence entries are elicited for the same conditional probability. In 

Element #1.2, based on each piece of information 𝐸𝑉!,#, the analyst provides 𝑀$,	&'!,# that indicates the 

strength of the causal relationship between the factors Bi and C and can be treated as an estimate of the 

conditional probability Pr(C|Bi), if there is only one piece of information available. In Element #1.3, the 

aggregated estimate of Pr(C|Bi) is estimated by combining 𝑀$,	&'!,# derived from multiple pieces of 

information 𝐸𝑉!,#; 𝑗 ∈ {1, … , 𝐾}. 

To compute the aggregated conditional probabilities, this research uses two axiomatic approaches 

for aggregating multiple experts’ probability estimates that have been commonly used in PRA: arithmetic 

mean (Eq. 3.1) and geometric mean (Eq. 3.2) (Cooke, R. & Shrader-Frechette, 1991; Kaplan, 2000), 

formulated as follows: 

𝑃𝑟(𝐶|𝐵!) = ∑ 𝑤&'!,#𝑀$,	&'!,# 						∀𝑖 ∈ 𝐼	,
(
#)*            ( 3.1 ) 

𝑃𝑟(𝐶|𝐵!) = ∏ 𝑀$,	&'!,#

+$%!,#(
#)* 						∀𝑖 ∈ 𝐼	,		                  ( 3.2 ) 
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where 𝑤&'!,# is the normalized weight, representing the relative quality of different pieces of information 

(Kaplan, 2000). Considering that quality of 𝑀$,	&'!,# estimate is influenced by both (i) quality of the 

original evidence (e.g., literature), measured by 𝑀*,	&'!,#, and (ii) quality of the analyst who interpreted the 

original evidence, measured by 𝑀,,	&'!,#;  𝑤&'!,# is formulated as a function of 𝑀*,	&'!,# and 𝑀,,	&'!,#: 

𝑤&'!,# =
-&,	$%!,#×	-(,	$%!,#

∑ -&,	$%!,#×	-(,	$%!,#
)
#*&

			∀𝑖 ∈ 𝐼, 𝑗 = 1,… , 𝐾	 ( 3.3 ) 

The selection between the arithmetic mean (Eq. 3.1) and geometric mean (Eq. 3.2) could depend 

on the applications. For instance, as suggested by Morton et al. (Morton et al., 2014), the arithmetic mean 

may generate a misleading output when there is a large dispersion between the experts’ assessment as the 

extreme estimates dominate the result; under such a situation, the geometric mean can generate a more 

stable and reasonable output that captures the ‘center’ of the group’s opinion. More detailed guidelines for 

when to use which aggregation method need to be developed in future research. 

In these aggregation equations, index ‘i’ (i=1, 2,…, I) is used to denote one instance (parent node) 

that has a shared effect on C, pertaining to one causal relationship (i.e., Pr(C|Bi) in Figure 3.4). Index ‘j’ 

(j=1, 2,…, K) denotes one evidence entry that is related to the causal relationship between Bi and C. K 

stands for a total number of evidence entries. The analyst decides between the two aggregation methods. 

In Eq. 3.3, the normalization factor Z is developed to normalize the weight for each piece of evidence 

based on the combination of M1,EV and M3,EV so that the resultant value obeys probability axioms.     

3.2.2.1.4. Developing Conditional Probabilities for Extended Causality (Element #1.4 in Figure 3.2) 

Element #1.4 of DT-BASE focuses on the estimation of the conditional probability of the child 

node given multiple parent nodes (i.e., 𝑃𝑟(𝐶|𝐵*, 𝐵$, …	, 𝐵0)	in Figure 3.4) based on the aggregation of 

estimated values from element #1.3 (i.e., 𝑃𝑟(𝐶|𝐵*), 𝑃𝑟(𝐶|𝐵$), ..., 𝑃𝑟(𝐶|𝐵0)). The estimated conditional 

probabilities build the Conditional Probability Table (CPT), which is an input to the next step of the 

methodology, i.e., the Bayesian Belief Network (BBN) platform (element #1.5 explained in Section 

3.2.2.1.5). Element #1.4 of DT-BASE is made computational in the second phase (ii.d.) of the flowchart 

shown in Figure 3.3. 

In element #1.2 (Section 3.2.2.1.2), the analyst is asked to elicit information for each piece of 

evidence of the causal relationship between one parent (Bi) and the child node (C), implicitly assuming 

that a single parent can lead to the child (C). This assumption is related to the concept of Independence of 

Causal Influence (ICI) (Dıez & Druzdzel, 2006; Pearl, 2014). Therefore, a common aggregation model 

that is used in element #1.4 of DT-BASE is the Noisy-OR (Dıez & Druzdzel, 2006; Galán et al., 2007; 

Heckerman & Breese, 1996; Mkrtchyan et al., 2016; Pearl, 2014) that governs the following relationship: 
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𝑃𝑟(𝐶|𝐵*, 𝐵$, …	, 𝐵0) = 	1 −∏ (1 − 𝑧!)	!∈2 ,			    ( 3.4 ) 

where, “i”shows all configurations of parent nodes that are present, and zi is the probability of C given that 

only cause Bi is present (i.e., Pr(C|Bi)), utilizing the probabilities being aggregated in Section 3.2.2.1.3.  

For multi-state variables, the Noisy-OR representation of causal influence can be extended to the 

Noisy-MAX representation with the same ICI assumption. Diez’s definition of Noisy-MAX (Díez & Galán, 

2003) is as follows: 

𝑃𝑟(𝐶 ≤ 𝑐|𝒃) = ∏ 𝑃𝑟(𝐶 ≤ 𝑐|𝐵! = 𝑏! , 𝐵3! = 0)! 	, ( 3.5 ) 

where; 𝒃 is a configuration of parent nodes and B–i represents all factors other than Bi. It should be noted 

that 𝑃𝑟(𝐶 ≤ 𝑐|𝐵! = 𝑏! , 𝐵3! = 0) also considers conditional influence towards C given that only cause Bi 

is present. The CPT can then be computed by applying the following equation to each configuration of the 

parent nodes:  

𝑃𝑟(𝐶|𝐵*, 𝐵$, …	, 𝐵0) = C 𝑃𝑟
(𝐶 = 0|𝒃)																																				𝑐 = 0

𝑃𝑟(𝐶 ≤ 𝑐|𝒃) − 𝑃𝑟(𝐶 ≤ 𝑐 − 1|𝒃), 𝑐 > 0 			.	  ( 3.6 ) 

Using Eq. 3.4 and Eq. 3.6, the CPT can be calculated for binary-state nodes using Noisy-OR and 

for multi-state nodes using Noisy-MAX, respectively.  

The effects of LV and the associated incompleteness uncertainty can be considered by defining an 

edge probability that refers to the conditional probability of C, given that not any of Bi exists and only LV 

exists (Dıez & Druzdzel, 2006), as it is shown in Eq. 3.7. In that case, the aggregated conditional 

probability is estimated from Eq. 3.8.  

𝑧4 = 𝑃𝑟(𝐶|𝑛𝑜𝑡	𝑎𝑛𝑦	𝐵! 	𝑒𝑥𝑖𝑠𝑡𝑠	𝑒𝑥𝑐𝑒𝑝𝑡	𝐿𝑉)			,                ( 3.7 ) 

𝑃𝑟(𝐶|𝐵*, 𝐵$, …	, 𝐵0, 𝐿𝑉) = 	1 − (1 − 𝑧4)∏ (1 − 𝑧!)!∈2 , ( 3.8 ) 

It should be noted that the Noisy-OR method and the concept of ICI generate limitations for 

capturing factor interactions (Mkrtchyan et al., 2016). Future research will evaluate the possibility of 

using more advanced methods to address these limitations.  

3.2.2.1.5. Integration in a Bayesian Belief Network Computational Platform (Element #1.5 in Figure 3.2) 

In element #1.5 of DT-BASE (Figure 3.2), the results of quantitative interpretations and 

measurements that are generated in elements # 1.2, #1.3, and #1.4 of DT-BASE, are combined with the 

causal model structure constructed in element #1.1 to develop organizational causal input model (built in 

the BBN environment) that provides input for the spatio-temporal simulation module of the I-PRA 
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framework. As mentioned in Section 3.2.2.1.1., a semi-formal modeling technique (i.e., SADT) is used in 

element #1.1 of DT-BASE to transition theoretical constructs to a formal modeling technique structure 

(i.e., BBN’s probabilistic modeling environment). Other aspects of modeling techniques (associated with 

Principle IV-M) such as space and time will be executed in the simulation module (#3) of I-PRA.  

Element #1.5 is executed in the third phase of the computational flowchart (Figure 3.3), where 

information is integrated into a BBN platform to calculate the probability of the final target node (i.e., the 

child node in the last layer of the causal model) based on the CPT developed in phase (ii) of Figure 3.3. 

BBN, widely used in HRA research, provides graphical formalism and structure, a probabilistic 

representation of uncertainty, structuration of interrelationships, accommodation of diverse data sources, 

and representation of belief for factor influences (Mkrtchyan et al., 2015, 2016) in the organizational 

causal input model (#1.5 in Figure 3.2). Readers are referred to Ref. (Nielsen & Jensen, 2009) for more 

background on BBN.  

The computational platform of DT-BASE is an open-source web application powered by the MEAN 

full-stack framework (MongoDB, ExpressJS, AngularJS, NodeJS) (Haviv, 2016). DT-BASE is developed 

as a web application to enable a scientific network for collaborative model building where analysts can 

build and share modular theoretical models. Using a client-server architecture, multiple analysts can 

collaborate on a single causal model.  

 

3.2.2.2. DT-SITE Elements of the Data-Theoretic Module  

As the I-PRA framework (Figure 3.2) shows, the output of element #1.5 of DT-BASE, the 

organizational causal input model, provides the causal factors, their related keywords, and causal 

relationships as inputs for the elements of DT-SITE. At this stage of the research, the causal model 

structure that is developed at the end of DT-BASE (element #1.5) does not change based on the data 

analysis in DT-SITE, but its quantification is updated using the DT-SITE analysis. Depending on the 

scope and availability of site-specific data, it is possible that some nodes in the updated organizational 

causal input model (element #2.5) are only quantified by DT-BASE, while others are quantified by 

Bayesian integration of DT-BASE and DT-SITE analyses. Future research will evaluate the value of 

adding an element in DT-SITE to consider updating the causal model (i.e., adding/deleting nodes or 

causal paths) based on the data analysis in DT-SITE.  

Currently, DT-SITE has the following five methodological elements: 

• Automated Extraction of Information; Text Mining (#2.1 in Figure 3.2) 

• Generating Conditional and Marginal Probabilities for BBN (#2.2 in Figure 3.2) 

• Developing Aggregated Conditional and Marginal Probabilities based on Multiple Data Sources 

(#2.3 in Figure 3.2) 
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• Bayesian Integration of SITE and BASE Probabilities (# 2.4 in Figure 3.2)  

• Integration in a Bayesian Belief Networks Computational Platform (#2.5 in Figure 3.2) 

DT-SITE is still in an early stage of development, and its computational platform has not yet been 

integrated with DT-BASE in the Data-Theoretic Module. The following sub-sections explain the purpose 

of each of the current five elements of DT-SITE, and Section 3.3 demonstrates its limited-scope 

implementation for the NPP case study.  

3.2.2.2.1. Automated Extraction of Information; Text Mining (Element #2.1 in Figure 3.2) 

The DT-SITE element for the automated extraction of information includes the following two steps: 

i. Information Searching: Factors, causal relationships, keywords, and contextual statements from 

element #1.5 of DT-BASE are used to guide the text mining (Aggarwal & Zhai, 2012), to extract 

semantic ‘safety-oriented’ terminology from organizational communications. This step 

implements computational approaches for pre-processing unstructured textual information to 

ensure that extracted information maintains conformity to the original texts. At this stage of 

research, text mining is designed for one specific type of database, i.e., the NPP incident 

reporting system called the Corrective Action Program (CAP), which is also used in Section 3.3 

for the case study. Ongoing research by the authors is focused on the development of more 

advanced text mining that can be applied to other safety-related databases. 

ii. Frequency Development: To convert the outputs of the information searching step to 

frequencies, depending on the type and format of the database, specific subjective and objective 

interpretations should be included in the computational process. Also, each database needs to be 

normalized into performance period timeframes. For instance, the CAP database of NPPs can 

receive thousands of entries in a year. Each CAP entry refers to one incident (or one safety-

related issue) that is represented by a row in a table. For each entry, multiple contributing causes 

are possible and are written in a text narrative. Using the DT-BASE causal factors (from element 

#1.5 of Figure 3.2) as the keywords included in the ‘input file’ of the text mining code, the 

process is guided to find the number of occurrences of a construct (or multiple constructs) in 

each CAP entry. For simplification, at this stage of research, the following assumption is made; a 

factor is counted only once as a contributor despite the number of times it appears in the 

narrative of one entry. For example, 𝑓5&, which stands for the frequency of factor “𝐵*,” refers to 

the number of CAP entries including factor 𝐵* in the data collection period (e.g., one year); 𝑓5&,6  

represents the number of CAP entries which include both B1 and C in the data collection period; 

and 𝑓5&,5+,6  represents the number of CAP entries which simultaneously include B1, B2, and C in 

the data collection period.  
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3.2.2.2.2. Generating Conditional and Marginal Probabilities for BBN (Element #2.2 in Figure 3.2) 

In this element of DT-SITE, frequencies developed in element #2.1 are used to estimate marginal and 

conditional probabilities associated with the CPT values of the BBN model developed in element #1.5 of 

DT-BASE. For instance, consider one parent node B1 and a child node C. The marginal probability of 

node 𝐵*, 𝑃𝑟(𝐵*), can be estimated from the frequency outputs of text mining using Eq. 3.9: 

𝑃𝑟(𝐵*) = 	
7,&
8-./

 ,                 ( 3.9 ) 

where NCAP represents the total number of CAP entries in the same data collection period as 𝑓5&.  

Meanwhile, the conditional probability of the child node C, given a specific state of the parent 

node B1, 𝑃𝑟(𝐶|𝐵*), are defined in Eq. 3.10; 

𝑃𝑟(𝐶|𝐵*) =
9:(5&∩6)
9:(5&)

 .         ( 3.10 ) 

On the right-hand side of this equation, the estimate of the denominator, Pr (B1), is obtained from 

Eq. 3.9. The numerator, 𝑃𝑟(𝐶 ∩ 𝐵*), refers to the probability of joint occurrence of B1 and C, and can be 

estimated based on Eq. 3.11: 

𝑃𝑟(𝐵* ∩ 	𝐶) 	=
7,&,-
8-./

	.         ( 3.11 ) 

When there is more than one parent node in the BBN, for example, three parent nodes in Figure 

3.4, Eq. 3.12 represents the conditional probability, of which the numerator can be estimated based on the 

frequency data obtained by the text mining using Eq. 3.13;  

𝑃𝑟(𝐶|𝐵*, 𝐵$) =
9:(6∩5&∩5+)
9:(5&∩5+)	

 , ( 3.12 ) 

𝑃𝑟(𝐵* 	∩ 	𝐵$ 	∩ 𝐶) =
7,&,,+,-
8-./

	.	( 3.13 ) 

It should be noted that the probabilities estimated by the approach shown in this section are biased 

by (or conditioned on) the number (and quality) of CAP entries, and this bias is further explained in Section 

3.3.3. 

3.2.2.2.3. Developing Aggregated Conditional and Marginal Probabilities based on Multiple Data Sources 

(Element #2.3. in Figure 3.2) 

The mathematical structure of aggregating conditional and marginal probabilities, estimated from 

multiple databases, would be similar to the Arithmetic (Eq. 3.1) or Geometric (Eq. 3.2) aggregation 

methods used in Section 3.2.2.1.3. Similarly, the analyst will have the option to give credibility and 
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importance weights to each database. Since at this stage of the research only one data source (the CAP 

database of an NPP) has been used, this element of DT-SITE has not yet been implemented. Possible 

challenges of element #2.3 would be dealing with dependencies among diverse data sources or conflicting 

information among the data sources. Future research will address these challenges.  

3.2.2.2.4. Bayesian Integration of DT-BASE and DT-SITE Probabilities (Element #2.4 in Figure 3.2) 

In this element of DT-SITE, each conditional probability, estimated from element #2.3, is 

combined with the associated conditional probability estimated from the DT-BASE that is stored in the 

BBN of the organizational causal input model (#1.5). This helps develop the updated conditional 

probabilities and leads to the generation of the updated organizational causal input model (#2.5 in Figure 

3.2). In other words, the updated organizational causal input model (#2.5) has the same causal structure 

developed from element #1.5, but it has the updated (i.e., integration of SITE and BASE) conditional 

probabilities. Note that it also has the marginal probabilities estimated from element #2.3 of DT-SITE. 

The mathematical mechanism for integrating conditional probabilities from DT-SITE and DT-BASE is 

Bayesian updating, as described in Eq. 3.14:  

𝜋S𝑝|𝐷U = 	 4>?|AB	C0(A)
∫ 4>?|ABC0(A)EA

  , ( 3.14 ) 

where 𝜋F(𝑝) refers to the prior distribution of an unknown quantity, p, referring to the conditional 

probability of interest that is needed to be updated. 𝐿S𝐷|𝑝U	stands for the likelihood function for a set of 

new evidence, given that the true value of the unknown quantity is p, and 𝜋S𝑝|𝐷U is the posterior 

(updated) distribution of p, given the set of new evidence 𝐷. In this research, the DT-SITE and DT-BASE 

estimations of p is treated as two pieces of evidence to help find the updated value for the conditional 

probability; hence, 𝐷 = {�̂�5GH& , �̂�H2I&} where �̂�5GH& and �̂�H2I& are the estimate of p generated by DT-

BASE and DT-SITE, respectively. With the assumption of independence between the estimations from 

DT-SITE and DT-BASE, the likelihood function, 𝐿S𝐷|𝑝U, can be formulated as the product of two 

likelihood functions:  

𝐿S𝐷|𝑝U = 	𝐿(�̂�5GH&|𝑝) ∗ 	𝐿(�̂�H2I&|𝑝).  ( 3.15 ) 

In this formulation, 𝐿(𝑃5GH&|𝑝) represents a measure of accuracy of the DT-BASE estimation, 

and 𝐿(𝑃H2I&|𝑝) is a measure of accuracy of the DT-SITE estimation with respect to the conditional 

probability of the specific construct. Depending on the type of knowledge available regarding the 

accuracy of measurements in DT-BASE and DT-SITE, a mathematical model needs to be chosen for the 

likelihood functions. One example of such a likelihood function is demonstrated in Section 3.3.2, where 

the DT approach is applied to a case study for the training causal model.  

79



3.3. APPLICATION OF THE DATA-THEORETIC APPROACH TO DEVELOP AND QUANTIFY 

THE TRAINING CAUSAL MODEL IN NUCLEAR POWER PLANTS 

The focus of this section is on the implementation of the Data-Theoretic approach (Data-

Theoretic Module in Figure 3.2) for a single factor – “training” – as an exemplar among the myriad of 

factors at the ‘organizational-level’ of analysis (i.e., the overall training program that supports different 

groups at an NPP). Based on an independent third-party review at an NPP, ‘training quality’ was 

identified as risk-significant. Because it has not been explicitly modeled and integrated with PRA, 

understanding the contribution of training quality to risk needed additional modeling. The results of this 

research help model the underlying organizational mechanisms associated with the training/experience 

PSF in HRA. Ref. (Whaley et al., 2012) states that, if training is considered to be a performance driver, 

“this PSF might also include the quality of the training provided.” The goal of this research is to go 

beyond the qualitative judgment derived from HRA workbook estimations and to develop a plant-specific 

distribution of training quality utilizing plant CAP data.  

In this research, the training causal model (Figure 3.6) is developed and quantified based on 

theoretical literature and using industry and regulatory guidelines and plant database, receiving validation 

on the structure and contents from training experts at an NPP. By Bayesian integration of generic and site-

specific information, the plant-specific distribution of the training quality (Figure 3.7) estimation is 

generated. More thorough validation regarding the estimated probabilities relates to the Probabilistic 

Validation methodology (Sakurahara, Tatsuya et al., 2018a) under development by the authors for the I-

PRA framework. Probabilistic Validation is a methodology to characterize and propagate sources of 

epistemic uncertainty (e.g., parameter uncertainty, model uncertainty, statistical convergence, analyst’s 

epistemic uncertainty about M1, M2, M3, etc.) in an integrated manner to construct the total epistemic 

uncertainty, associated with the model output, as a measure for the degree of validity of the probability 

estimated from the model. The following subsections cover the implementation of DT-BASE and DT-

SITE elements.  

 

3.3.1. Applying DT-BASE Elements to Model and Quantify Training Quality in Nuclear Power Plants 

This section explains the implementation of DT-BASE elements (#1.1 to #1.5 in Figure 3.2) for the 

development of the “training” theoretical causal model and its generic quantification. As it is stated in 

Section 3.2.2.1.1, the theory-building process in element #1.1 starts with five key steps that are applied in 

the following: 
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• Step 1: Identifying the unknown of interest: The unknown of interest is the target node 

“Training,” which stands for the organization’s ability to provide adequate training to its 

workforce, based on the programmatic, process-based approaches implemented at the NPP. 

“Training Program” is placed at the target node (Level 0) of the causal model (Figure 3.6) 

and is divided into in-house and outsourced training. In this research, we focus on causal 

modeling of in-house training. For simplification, the causal model developed in the scope of 

this paper does not cover some of the contributing factors such as student performance, 

availability of student time, availability of simulator time, cultural factors, or management 

attitudes towards training. Therefore, in the quantification phase, a LV (introduced in Section 

3.2.2.1.2) is considered at each layer of the causal model to represent model uncertainty, 

which implicitly considers the potential of excluding some factors in the causal model. 

• Step 2: Identifying the literature related to training: Starting with the language of industry and 

based on NPP documentation, diverse training categories were identified, such as electrical 

maintenance, mechanical maintenance, chemistry technician, etc. The NPP implements a 

Systematic Approach to Training (SAT), and therefore, each theoretical construct associated 

with SAT was used as an initial search term to identify relevant literature from industry, 

regulatory and academic sources, expanding the scope of search terms. The criteria for adding 

sub-factors was if they were supported by either industry, regulatory or academic sources 

(i.e., written evidence could be found to support the inclusion and placement of each sub-

factor). For example, if some aspects of training were implicitly included in the industry SAT 

but were explicitly included and supported in the academic literature, they could be added. 

The literature is added dynamically as we progress through the remaining steps of the 

methodology. Therefore, the literature review in Step 2 is not final, it is the starting point of 

an iterative process, and the identification of relevant literature continues to process through 

the remaining steps. It should be noted that the Nuclear Energy Institute issued Efficiency 

Bulletin: 17-15 ‘Standardization of the Systematic Approach to Training’ (NEI, 2017), 

provides suggestions to the industry that are not fully incorporated into the training causal 

model shown in this paper. 

• Step 3: Locating the selected organizational factor within the SoTeRiA framework (Figure 3.1): 

Training is a sub-factor of “human resource practices,” which is a factor of “organizational 

structure and practices,” i.e., Node 7 of SoTeRiA; Fig 1. 

• Step 4: Identifying logical abstract-level phases evolving and leading to the quality of 

training: Based on evidence supporting independent causality and cross-level causality, high-

level patterns depicting programs and processes associated with training follow the high-level 
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phases of Analysis, Design, Development, Implementation and Evaluation (ADDIE) 

(Molenda, 2003). The phases of SAT are consistent with those of ADDIE, with the 

differentiation of ‘design and development’ being considered as one phase in SAT. 

Therefore, for the SAT, the phases are; needs assessment, design and development, 

implementation, and evaluation (Kozlowski & Salas, 2009). In the causal model developed in 

this research, “implementation” and “evaluation” are considered as two types of activity 

factors in Level 1 of Fig 6, influencing the quality of “In-House Training.” The other two 

phases including “design and development” and “need assessment” are covered through the 

causal factors affecting “Implementation.” For example, “Program Design” and “Training 

Needs Analysis” are the causal factors in Levels 2 and 2.1 of Figure 3.6, respectively. This 

section only demonstrates the causal model associated with implementation quality, and the 

causal models supporting evaluation factors (e.g., internal evaluation and regulatory 

evaluation in Level 1 of Figure 3.6) are not covered.  

• Step 5: Developing theoretical causal constructs for the organizational mechanisms leading to 

the quality of training: Using the semi-formal process modeling approach of SADT (Figure 

3.5), any activity in Level 1 of Figure 3.6 is affected by its direct causes including the direct 

resource/tool, procedure, and personnel. These causal factors are placed in Level 1.1 of Figure 

3.6. For example, the quality of implementation depends on the quality of “Training 

Procedures (procedure)/Facility (resource/tool)” and the “Instructor Performance”

(personnel). In the SADT approach for the “implementation” activity node, procedure and 

resource/tool are lumped into one factor, i.e., “Training Procedures/Facility,” because enough 

evidence to separately quantify them have not been found. The next level of causality, Level 

1.1.1 in Figure 3.6, includes the sub-factors influencing the quality of resources, procedures, 

and instructors in Level 1.1. For example, “Instructor Performance” is influenced by

“Instructor Training,” “Instructor Time & Preparation,” and “Instructor Knowledge.” Level 2 

of the causal model includes “Program Design,” that is, the activity supporting the factors in 

Level 1.1.1 of the model. Again, based on SADT approach, Level 2.1 covers the direct 

resource/tool (“Training Records Documentation System” in Figure 3.6), procedure

(“Training Needs Analysis” in Figure 3.6), and personnel (“Instructional Technologists” in 

Figure 3.6) that are needed for the activity in Level 2 (i.e., Program and Design). Level 2.1.1 

of the causal model includes the sub-factors influencing the quality of the resource and 

procedures in Level 2.1. Every node and relationship between layers are supported by 

evidence from literature (academic articles, regulatory and industry documents) and standards 

to create a theoretical justification and validation of its placement and inter-relationships
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within the model. For example, Table 3.3 shows a partial list for the industry, regulatory and 

academic references that are used for the factor “Job/Task Analysis” in Level 2.1.2 of the 

causal model. The full implementation information for the ‘Training’ organizational causal 

input model in DT-BASE can be found in the supplementary dataset [dataset] (Pence & 

Mohaghegh, 2018).  

 

It should be noted that the numbers associated with the Levels in Figure 3.6 are used to organize and 

communicate the causal model. However, there is theoretical support for the ordering and arrangement of 

these Levels in the model. The logical order of Levels 0, 1, and 2, is explained in Step 4 (above), and is 

supported by ADDIE (Molenda, 2003) and the SAT (DOE, 2014; NEI, 2017; Yoder, 1993). The logical 

order of levels 1.1, 1.1.1, 2.1, 2.1.1, and 2.1.2 is explained in Step 5 (above) and is structured by SADT 

(Heins, 1993; Marca & McGowan, 1987). 

 

 

Figure 3.6: NPP Training Causal Model Developed based on Element #1.1 of DT-BASE 
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Table 3.3: Example for the Construct of Job/Task Analysis from [dataset] (Pence & Mohaghegh, 2018) 

Table 3.3 (cont.)  

Perspective* Node: Job/Task Analysis 

Industry Perspective 

“The systematic process of examining a task by collecting data from subject-matter 

experts and/or source documents to identify conditions standards references knowledge 

and skills associated with each task element.” [dataset] (Pence & Mohaghegh, 2018) 

Regulatory 

Perspective 

“The result of the job analysis will be a set of typical tasks which represents the training 

content of the job. Skills and knowledge needed for the job can be derived from the 

typical tasks.” (Ref. (Andersson et al., 1979)) 

Academic Perspective 
“Abilities-oriented job analysis is concerned with identifying human attributes 

necessary to perform the job” (Ref. (Levine, 1983)) 

*This example is reduced to one reference for each perspective. 

In element #1.2 of DT-BASE (Figure 3.2), the analyst enters the values for M1, M2, and M3 based 

on his/her interpretation of each piece of evidence and using the probability categories listed in Table 3.2. 

The full M values used for the ‘Training’ organizational causal input model in DT-BASE can be found in 

the publicly available supplementary dataset [dataset] (Pence & Mohaghegh, 2018). As an example of one 

entry in the database, evidence to support the connection between ‘Job/Task Analysis’(JTA) and 

‘Knowledge, Skills and Abilities (KSA) Evaluation’ (i.e., pre-training evaluation of KSAs) is extracted 

from a reference with the following contextual statement; “entry-level requirements should be based on a 

familiarity with the general level of KSAs of the trainees and by a careful review of documents such as 

job descriptions, position descriptions or personnel qualification requirements” (DOE, 1994). Considering 

this piece of evidence, the analyst’s interpretation based on probability language is shown in Table 3.4. 

Another piece of evidence for the same causal edge is shown in Table 3.5 to demonstrate the aggregation 

of conditional probabilities based on multiple evidence in element #1.3.  

Table 3.4: Evidence Entry for the First Reference Supporting the Causality Between ‘Job/Task Analysis' 

(JTA) and 'Knowledge, Skills and Abilities' (KSA) (Source: (DOE, 2014)) 

Table 3.4 (cont.)    

Parameter 
Lower 

Bound 

Upper 

Bound 
Median Memo 

M1 0.9 0.99 0.95 
Official Government Document, Revised in 2014  

(Very Likely Credible) 
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Table 3.4 (cont.)    

Parameter 
Lower 

Bound 

Upper 

Bound 
Median Memo 

M2 0.66 0.9 0.78 
Knowledge, Skills and Abilities are developed after careful 

review of job descriptions (DOE, 2014) (Likely) 

M3 0.66 0.9 0.78 
Analyst is likely confident about the topic of Job Analysis and 

Knowledge, Skills and Abilities (Likely Confident) 

 

Table 3.5: Evidence Entry for the Second Reference Supporting the Causality Between 'Job/Task 

Analysis' (JTA) and 'Knowledge, Skills and Abilities' (KSA) (Source: (Andersson et al., 1979)) 

Parameter 
Lower 

Bound 

Upper 

Bound 
Median Memo 

M1 0.66 0.9 0.78 
International Government Document, Over 30 Years Old  

(Likely Credible) 

M2 0.66 0.9 0.78 

“The result of the job analysis will be a set of typical tasks which 

represents the training content of the job. Skills and knowledge 

needed for the job can be derived from typical tasks” (Andersson 

et al., 1979) (Likely) 

M3 0.66 0.9 0.78 
Analyst is likely confident about the topic of Job Analysis and 

KSA (Likely Confident) 

 

The analyst interpretation process is repeated with multiple evidence entries, generating unique 

M1, M2, and M3 values for each entry. For the training causal model, a minimum of three references were 

entered for each causal connection. Each piece of evidence can be seen in the Training model database 

[dataset] (Pence & Mohaghegh, 2018). Once all evidence is added to support causality, element# 1.3. of 

DT-BASE (Figure 3.2) is performed using either Arithmetic (Eq. 3.1) or Geometric (Eq. 3.2) aggregation 

methods. For example, considering two evidence entries in Tables 3.4 and 3.5, and adding a third 

evidence, where M1 = 0.945, M2 = 0.995, and M3=0.78, the results of arithmetic and geometric 

aggregations for the conditional probability of good quality KSA, given a good quality JTA has been 

performed, are Pr (KSA|JTA) = 0.86 and Pr (KSA|JTA) = 0.85, respectively.  

The resulting conditional probabilities for each causal relationship in the network are then 

extended in element #1.4 of DT-BASE to generate the CPT for the BBN (Element #1.5) using ICI 

modeling (explained in Section 3.2.2.1.4). In this example, the Noisy-OR method (Eq. 3.4) is used. Using 

the evidence entries in the Training causal model (Pence & Mohaghegh, 2018), the CPT for the target 
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node Training Implementation is shown in Table 3.6. It should be noted that the conditional probabilities 

in Table 3.6 are not direct representations of the outcome (success or failure) of a training program, 

instead they are indicators of the quality of the elements comprising a training program; for example, the 

50% probability shown in Table 3.6 is a conditional probability of having “poor training implementation” 

given “poor quality training procedure” and “poor quality instructor performance.” In this example, an 

LV is assigned to each layer based on probability language, considering it is ‘unlikely’ that the model is 

complete, with a lower bound of 0.1 and an upper bound of 0.33 to represent model uncertainty. 

Integration in a BBN computational platform (Element #1.5) is performed using the DT-BASE web 

application (Pence & Mohaghegh, 2017).  

Table 3.6: Conditional Probability Table for Training Implementation Target Node 

Training Procedure Good Quality Poor Quality 

Instructor Performance Good Quality Poor Quality Good Quality Poor Quality 

Training 

Implementation 

Good 

Quality 
0.98 0.93 0.87 0.51 

Training 

Implementation 
Poor Quality 0.02 0.07 0.13 0.50 

 

3.3.2. Applying DT-SITE Elements to Model and Quantify Training Quality in Nuclear Power Plants  

This section explains the results of implementing DT-SITE elements (Figure 3.2) to quantify the 

training causal model utilizing plant-specific data. Since DT-SITE has not yet been integrated into the DT-

BASE application, a preliminary text mining approach, in the form of a keyword search, was run in 

MATLAB Simulink software (Pence et al., 2015a). Using string search functions in MATLAB, each CAP 

entry was analyzed for the occurrence of keywords from the training causal model, and the results were 

mapped to a matrix resembling the conditional probability table of the training causal model. The 

approach was applied to one full year (2013-2014) of CAP data from one NPP, which initially included 

fifty thousand initial entries and follow-up entries. The algorithm, applied only to ‘initial’ CAP entries 

(i.e., not corrective actions or resolutions) totaling around fifteen thousand, searched for keywords 

associated with nodes in the causal model (Figure 3.6), finding the occurrence and co-occurrence of 

theoretical constructs within each entry of CAP. Using truth tables, the results are stored in a CPT, 

serving as the new frequency dataset. Frequencies were converted to probabilities by dividing the total 

number of entries during the data collection period of one year (see Section 3.2.2.2.2) (Pence et al., 
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2015a). The resulting conditional probabilities were used to calculate the probability of the target node 

probability of the Training BBN (Figure 3.6).  

This simplified word search approach is applicable for CAP entries because of the format of the 

CAP entries, where ‘cause identification’ is explicitly separated from other text data. Therefore, using 

MATLAB Simulink string search functions, it was possible to analyze each entry for the occurrence of 

keywords and assign matches in a matrix which resembled the conditional probability tables of our causal 

models. In future work, a more rigorous text mining will be developed to expand DT-SITE applicability 

to more unstructured datasets (e.g., Licensee Event Reports (LERs), root cause analysis documents, and 

maintenance logs) which require preprocessing for cleaning text. 

Because of the difficulty in obtaining CAP data, and the use of CAP data for only one year from 

one NPP in this example, the accuracy of estimated probabilities is dependent on the quantity of CAP 

entries, as well as the quality of CAP entries. To partially overcome the limitation of data quantity, as 

explained in Section 3.2.2, a two-step methodology is used in this research, where DT-BASE is used to 

generate the preliminary causal model and quantification based on generic information from literature and 

analyst interpretation, and DT-SITE then analyzes the plant-specific data (i.e., CAP data in this case 

study) to update the causal model using a Bayesian approach. With this approach, the lack of plant-

specific data is partially addressed by combining it with generic information from the literature. The 

authors also plan to improve these estimates in future work by increasing the CAP dataset size and 

considering the quality of CAP data entries (as also mentioned in Section 3.3.3). Also, ongoing research 

by the authors focuses on developing a methodology to quantify the degree of confidence in the 

probability estimates by characterizing the epistemic uncertainty associated with limited data size, the 

relevancy of the data, and subjective interpretation of information.  

Since DT-SITE has not yet been integrated into the DT-BASE application, it is not feasible at this 

stage of the research to integrate each conditional probability of SITE and BASE in element #2.4 of DT-

SITE in order to develop an updated organizational causal input model (Element #2.5 in Figure 3.2). 

Therefore, for this example, only the “target node” probability from DT-BASE and DT-SITE are 

integrated using the Bayesian method explained in Section 3.2.2.2.4. Bayesian updating is performed 

using the open source program OpenBUGS (Spiegelhalter et al., 2007) to integrate the target node 

probability resulted from DT-BASE (Section 3.3.1) [dataset] (Pence & Mohaghegh, 2018) and the target 

node probability resulting from a simplified demonstration of DT-SITE using a sample dataset (Pence et 

al., 2015a).  

In this Bayesian updating, the unknown of interest is Pr (Training Quality = Poor), denoted as 

PTQ. A non-homogeneous population is assumed over PTQ, as the evidence extracted from literature in the 

DT-BASE (Section 3.3.1) can include information from multiple sources and contexts. The population 
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variability over PTQ is represented by the beta distribution with two hyperparameters, α, and β. The beta 

distribution is a convenient choice because; (i) its range is [0, 1], which is consistent with the theoretical 

range of the PTQ, and (ii) it does not impose strong assumptions on the shape of the probability 

distribution. For two hyperparameters, α and β, independent flat hyper-prior distributions spread over all 

positive values are developed (Atwood, 1996; Smith et al., 2009). Under this setting, the Bayes’ theorem 

is formulated as follows: 

𝜋S𝛼, 𝛽|𝐷U ∝ ∫ 𝐿S𝐷|𝑃IJU	𝜑S𝑃IJ|𝛼, 𝛽U𝑑𝑃IJ912
∙ 𝜋F(𝛼, 𝛽)								(3.16) 

where 

 𝜋S𝛼, 𝛽|𝐷U: Posterior distribution of the hyper parameters α and β 

 𝐿S𝐷|𝑃IJU: Likelihood function for the evidence 𝐷, given the true value PTQ 

 𝜑S𝑃IJ|𝛼, 𝛽U: Probability distribution for the hyper parameters α and β (beta distribution) 

 𝜋F(𝛼, 𝛽): Prior distribution of the hyper parameters α and β 

 

After computing the posterior distribution for α and β based on Eq. 3.16, the updated probability 

distribution for PTQ is obtained using the law of total probability.  

As mentioned in Section 3.2.2.2.4, the likelihood function should be chosen based on the types of 

evidence available for informing the estimation of the unknown of interest. In this case study, the 

available evidence consists of the PTQ estimates generated by DT-BASE and DT-SITE, 𝐷 =

_�̀�IJ,5GH& , �̀�IJ,H2I&a. As shown in Eq. 3.16, if we assume that the PTQ estimates from DT-BASE and DT-

SITE are independent, the likelihood function is written as follows: 

𝐿S𝐷|𝑃IJU = 	𝐿S�̀�IJ,5GH&|𝑃IJU ∗ 	𝐿S�̀�IJ,H2I&|𝑃IJU				(3.17) 

In Eq. 3.17, both pieces of evidence, �̀�IJ,5GH& and �̀�IJ,H2I&, are outputs from the BBN model; 

thus, an additive or multiplicative model would be a reasonable choice for the likelihood function that 

represents the degree of model error (Droguett & Mosleh, 2000; Droguett & Mosleh, 2008). The selection 

between additive and multiplicative models depend on the nature of the problem and available evidence. 

At this stage of research, for demonstration of the methodology, the multiplicative error model is selected 

as the likelihood function. Based on this model, �̀�IJ,!; 𝑖 ∈ {𝐵𝐴𝑆𝐸, 𝑆𝐼𝑇𝐸}, is represented by the product of 

the true value of the unknown quantity and the error term: �̀�IJ,! = 𝑃IJ ∙ 𝐸!. The likelihood function for 

each piece of evidence is given as the lognormal distribution shown in Eq. 3.18: 

𝐿S�̀�IJ,!|𝑃IJU =
*

√$CL!9M12,!
𝑒𝑥𝑝 e− *

$ f
N0 9M12,!3>N0 912ON0 P!B

L!
g
$
h ; 𝑖 ∈ {𝐵𝐴𝑆𝐸, 𝑆𝐼𝑇𝐸}	,	 (3.18) 
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where bi and σi stand for the bias factor and the logarithmic standard deviation of the error term Ei, 

respectively. For example, the analyst can assume that the causal models developed for DT-BASE and 

DT-SITE have no systematic bias concerning the true value (bBASE = bSITE = 1). Meanwhile, σi for each 

model can be estimated by considering upper and lower bounds for �̀�IJ,!, which need to be entered by the 

analyst or estimated by performing uncertainty propagation in the DT-BASE and DT-SITE models. When 

the upper and lower bounds of �̀�IJ,! are entered as PTQ,i;upp and PTQ,i;low, then σi can be estimated from Eq. 

3.19 by considering the 95th and 5th percentiles of the lognormal likelihood equal to the upper and lower 

bounds: 

𝜎! =
*

Q3&(F.ST)
𝑙𝑛 k

912,!;566	
912,!;789

	 ,								(3.19) 

where Φ–1 is the inverse cumulative distribution function of the standard normal distribution. The 

implementation of Bayesian updating and the multiplicative error model is further explained in Section 

3.3.2 in the context of the NPP case study. As the conversation-text cycle progresses in an organization, a 

new piece of evidence can be generated. Using BBN inference techniques, the new piece of evidence can 

be conditioned in the BBN engine to provide real-time updating for the target node probability of the 

BBN model.  

The results from BASE and SITE are treated as two independent pieces of evidence: �̀�IJ,5GH& = 

0.0296 and �̀�IJ,H2I& = 0.00023. σi is estimated using Eq. 3.19, assuming: (i) the upper bound and lower 

bounds of the target node probability estimates are 0.1 and 0.005, respectively, and (ii) DA-BASE and 

DT-SITE models have the common σi, because the structure of the causal model developed for DT-BASE 

is unchanged for DT-SITE. Using OpenBUGS, the posterior distributions for hyperparameters 𝛼 and 𝛽 

are computed, and the expected beta distribution for the integrated probability of the poor quality of 

training target node is obtained by calculating the mean of the family of beta distributions over the 

posterior distributions of hyperparameters. The Bayesian integration of DT-BASE and DT-SITE results in 

the expected beta distribution shown in Figure 3.7, with a median of 0.0039.  

Figure 3.7: DT-BASE and DT-SITE Bayesian Integration for Poor Training Quality Distribution: 

OpenBUGS Output 
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3.3.3. Sensitivity Analysis & Extended Discussion  

One of the advantages of the I-PRA framework is that sensitivity and importance measure 

analyses can be used to obtain the ranking of organizational risk-contributing factors based on their 

contribution to human errors and system risk. To illustrate this advantage, sensitivity analysis is 

conducted to rank factors based on their influence on the target node probability, i.e., Pr (Training Quality 

= Poor). This study uses the Fussell-Vesely Importance Measure (FV-IM) method, developed in classical 

PRA (Van der Borst & Schoonakker, 2001; Vesely et al., 1983) and extended to BBN by Groth et al. 

(Groth et al., 2010). The FV-IM method measures the sensitivity of the model output (i.e., target node 

probability, PTQ) to individual factors by: 

𝐼5!
U' =

9123912|,!*;88<	25=7!>?
912

,   (3.20) 

where 𝐼5!
U' is the FV-IM computed for the factor Bi, 𝑃IJ is the nominal output of the target node 

probability, where each causal node has its nominal/realistic state, and 𝑃IJ|5!)VWWE	JXYN!Z[ is the target 

node probability computed by conditioning that the node Bi has a ‘Good Quality’ with certainty. 

Conceptually, Eq. 3.20 assesses how much the target node probability decreases (i.e., the probability of 

Poor Quality of Training decreases) when each child node has a perfectly ‘Good Quality’; hence, 𝐼5!
U' 

indicates the importance of each factor in terms of improving the training quality. In the commercial BBN 

software GeNIe Modeler, the set evidence function is used to compute Eq. 3.20 for each factor by setting 

the occurrence of ‘Poor Quality’ to 0 for each node in the model to see the changed probability of the 

training implementation target node, Pr (Training Quality = Poor), which is logged in Table 3.7.  

Table 3.7: DT-BASE Fussell-Vesely Importance Measure Results (‘Node’ Set Evidence_Poor = 0) 

Table 3.7 (cont.)    

Level of Causality in Figure 3.6  Node (Poor Quality = 0) FV-IM Ranking 

2. Training Program Design 26.8% 1 

1.1. Training Procedure 25.7% 2 

1.1. Instructor Performance 21.5% 3 

1.1.1. Training Sequence 12.0% 4 

1.1.1. Training Method 12.0% 5 

1.1.1. Training Setting 12.0% 6 

1.1.1. Training Content 12.0% 7 

1.1.1. Training Structure 11.8% 8 

1.1.1. Training Media 11.8% 9 

1.1.1. Instructor Training 11.8% 10 
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Table 3.7 (cont.)    

Level of Causality in Figure 3.6  Node (Poor Quality = 0) FV-IM Ranking 

1.1.1. Instructor Knowledge 11.7% 11 

1.1.1. Instructor Time Preparation 11.7% 12 

2.1. Training Records Documentation System 10.3% 13 

2.1. Training Needs Analysis 9.9% 14 

2.1. Instructional Technologist 6.2% 15 

2.1.1. Performance Analysis 4.3% 16 

2.1.1. Training Objectives 2.9% 17 

2.1.1. Knowledge, Skills, and Abilities Evaluation  2.2% 18 

2.1.2. Job/Task Analysis 1.9% 19 

2.1.2. Conditions & Standards 1.8% 20 

 

It should be noted that due to the limited data set used in this analysis, the FV-IM differences 

identified below 1% are not interpreted as significant. As additional data is included in future work for 

this type of analysis, these small differences can be evaluated in a more meaningful way for risk 

management. The FV-IM results (Table 3.7) for the DT-BASE model reveal the following: 

• Among all the causal factors, “Program Design,” “Training Procedures/Facility,” and “Instructor 

Performance” are identified as the first, second, and third most important factors, respectively.  

• From Level 1.1. of the causal model (Figure 3.6), “Training Procedures/Facility” is ranked more 

important than “Instructor Performance,” with a 4% difference. 

• In Level 1.1.1 of the causal model (Figure 3.6), there are small differences among the estimated 

FV-IMs, and so the factors are considered at the same level of significance.   

• In Level 2.1 of the causal model (Figure 3.6), among the sub-factors influencing the quality of 

“Program Design,” “Training Records Documentation System” and “Training Needs Analysis” are 

identified as more important than “Instructional Technologists.” These two factors may require 

more attention for the improvement of the training program. For example, Training Records and 

Documentation Systems manage information to help maintain employee licenses, qualifications, 

and certifications by scheduling training and continuing training. Training Records and 

Documentation Systems may also keep track of attendance/completion for crediting, and of 

performance evaluation results to inform the next cycle of training scheduling. 

The importance ranking results provide insights for decision-makers responsible for resource 

allocation in order to develop effective strategies for improving operator training and decreasing human 

errors. It also gives the analyst the important factors that require more accurate data extraction and 

interpretation in order to generate more accurate practical recommendations for improvement policy. 
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Future work will address methodological advancements in sensitivity analysis for the Data-Theoretic 

Module in the I-PRA (Figure 3.2): (i) conducting multi-way (Sakurahara, T et al., 2014) and global 

sensitivity methods (Cheng et al., 2017; Sakurahara, T. et al., 2017; Sakurahara, T. et al., 2018; 

Sakurahara, T. et al., 2014) to account for the influences of non-linearity and interactions among multiple 

input parameters; and (ii) integration of DT-BASE and DT-SITE into one computational platform to run 

the sensitivity analysis on a single causal model. The ongoing research by the authors is focusing on the 

integration of the DT-BASE and DT-SITE into one computational platform so that the Bayesian updating 

of DT-BASE and DT-SITE (explained in Section 3.2.2.2.4) can be conducted at the level of conditional 

probabilities (rather than at the level of target node that is the case in Section 3.3.2) to develop one 

updated training causal model to be used for the SA.  

As mentioned in Section 3.2.2.2.2, the estimated marginal probabilities are biased by the number 

(and quality) of CAP entries; therefore, Pr (Training Quality = Poor) = PTQ is also biased by CAP entries. 

Future research should focus on resolving this bias; for example, by the following conceptualization. The 

ideal goal is to find the unbiased probability of “Poor Training Quality” (P), which can be defined as of 

A'/NDemand where (A') stands for the real number of incidents involving operator training as a contributor, 

during the data collection period and, (NDemand) represents the total number of operator demands during 

the data collection period. With this definition, (P) takes on values between 1.0 (every demanded action 

involves training issues) and 0.0 (training is never a contributor). Eq. 3.21 shows the relationship between 

(P), which is the unbiased probability of poor training quality, and the output of the Data-Theoretic (PTQ) 

(i.e., the biased probability of poor training) which is associated to ‘A/NCAP’ (i.e., the ratio of all training 

issues (A) to all reported incidents during the data collection period (NCAP)). In Eq. 3.21, A'/A stands for 

the quality of the CAP program in terms of accurately identifying training contributions. If all incidents 

involving training are correctly identified (A'/A) = 1; if there is any under-reporting, A'/A > 1 and (P) is 

correspondingly increased. To calculate (P), future research will focus on the application of a 

qualitative/qualitative strategy to assign a value to the quality of NPP CAP programs. Another required 

term to estimate (P) is the value of (NDemand) in Eq. 3.21, and its estimation also needs further empirical 

research. 

𝑃 = 	 G\
8@AB=C<

	= 	 G
8-./

	× 	 8-./
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	× 	G’
G

                                   (3.21) 

As stated in Section 3.2.1, to operationalize the entire I-PRA framework (Figure 3.2), the key 

performance measures (e.g., Ka1, Ka2, Ka3 in Figure 3.2), indicating the measured performance outputs of 

the organizational model, need to be generated to help define the states of PSFs in HRA. For instance, in 

the training case study, a key performance measure associated with the training/experience PSF in I-PRA 

needs to be generated. Ongoing research by the authors is on developing a methodology for using the 

estimated training quality distribution (Figure 3.7) from the Data-Theoretic Module, along with the 
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analysis in Eq. 3.21, to develop a plant-specific training indicator that can be used as a key performance 

measure in I-PRA. By developing threshold values that can be associated with the low, nominal, and high 

training/experience PSFs in the Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-

H) HRA method (Gertman et al., 2005), the authors plan to develop a technique for calibrating the model 

outputs and mapping them to the states of PSFs for the same plant’s risk scenarios. It should be noted, 

however, that the scope of the training causal model in this paper is not specific to one procedural action, 

and therefore, additional research is needed to develop causal factors associated with task-specific 

training quality that creates an interface to the PSFs of HRA. The authors envision that updating the states 

of PSFs (#5 in Figure 3.2) in the interface module of I-PRA would not only help develop site-specific 

human error probabilities but would also help address issues of HRA dependencies (Blackman & Boring, 

2017; Gertman et al., 2005) as well as dependency among human actions. 

Because it is not practical to connect all organizational factors to all PSFs in HRA, future 

research will focus on developing a structured approach to analyze the following items: (a) which HEPs 

need to be connected to the underlying organizational mechanisms, (b) which PSFs need to be connected 

to the underlying organizational mechanisms, (c) what organizational factors should be explicitly and 

causally modeled, and (d) the depth of causality and level of details that selected organizational factors 

should be expanded to. With respect to items (a) and (b), because the Data-Theoretic approach is 

developed for integration with PRA, importance measure analysis (e.g., Fussell-Vesely importance 

measure, Risk Achievement Worth, and Birnbaum importance measure (Cheok et al., 1998)) can be used 

to identify human failure events that significantly contribute to risk. Within each of these events, the 

dominant PSFs could be identified based on (i) existing guidance, task type, operating context, and/or (ii) 

a quantitative sensitivity analysis which aims to assess the sensitivity of the system risk estimate to each 

PSF. At this point, the Data-Theoretic approach can be applied for developing detailed causal models for 

those important HEPs and their dominant PSFs. Item (c) relates to the first step of the theory building 

process in Element #1.1 of DT-BASE and, as it is mentioned in Section 3.2.2.1.1, this step is associated 

with Principle I.A (i.e., identifying unknown of interest) in Table 3.1. The selection of dominant 

organizational factors associated with a specific PSF can be conducted using data (if available) and/or 

organizational science literature. Item (d) relates to Step 5 of theory building in Element #1.1 of DT-

BASE as well as Principle II.E in Table 3.1. The depth of causality and level of detail in this context need 

to be determined by the analyst, considering several aspects, such as (i) risk importance of each causal 

factor, (ii) availability of data at each level of causality, and (iii) usefulness in accident prevention (e.g., 

the level of causal factors that are more effective for risk management). It should be noted that the process 

of model development and data analytics for Data-Theoretic approach is iterative. In other words, the 
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analyst needs to start with a certain level of causality, by conducting risk importance measure and 

sensitivity analyses, to identify the causal factors where extension and quantification is needed  

To produce a more accurate distribution of training quality (Figure 3.7), the authors are executing 

uncertainty analysis with respect to the analysts’ manual extraction and interpretation of generic 

information in DT-BASE (Section 3.2.2.1). In the current training case study, the point values of the 

evidence weighting variables M1, M2, and M3 are used. However, there are potential issues associated 

with different meanings by different analysts and with different contextual interpretations (Bjerga et al., 

2016; Morgan, 2014). In this paper, the authors make the assumption that subjectivity and between-

analyst variability is allowable for theory-building if the associated uncertainty is explicitly identified and 

characterized. The authors have ongoing research to incorporate uncertainty analysis techniques in the 

DT-BASE code to consider the entire range of probability values for M1, M2, and M3. 

The boundary between ‘good’ and ‘poor’ in the performance outcome nodes (e.g., safety critical 

tasks) in the SoTeRiA framework is reasonably clear; however, as the analyst gets further from the 

performance outcome nodes, the boundary between good and poor in the causal factors involves expert or 

analyst subjective judgment and uncertainty. The current stage of this research does not focus on 

analyzing the uncertainty involved in the measurement of good versus poor in each single factor; instead, 

the goal of this paper is to the develop a unified platform to quantitatively connect underlying 

organizational causal factors (as well as their associated variability and uncertainty) to the safety 

performance outcome (e.g., estimated risk). The next stage of the research will focus on running 

sensitivity analysis with respect to these variabilities and uncertainties to prioritize the critical areas that 

need more in-depth studies. Future research will also consider running sensitivity analysis with respect to 

underlying assumptions (e.g., unbiased estimates, lognormally distributed uncertainties, etc.) in the 

methodology and application to provide additional justification for the identified critical assumptions.  

3.4. CONCLUDING REMARKS  

Organizational factors have an ever-present underlying influence on socio-technical systems and 

have been identified as important contributors to incidents and accidents in diverse industries. Due to the 

complexity of organizational performance modeling, the integration of organizational mechanisms into 

Probabilistic Risk Assessment (PRA) has been a challenge. This paper is a product of a line of research to 

incorporate organizational factors into Human Reliability Analysis (HRA) and PRA to (a) explicitly 

assess the risk due to specific organizational weaknesses, (b) find and rank the critical organizational root 

causes of failure, which enhances risk management, and (c) avoid the possibility of under-or-over 

estimating the risk associated with human error. 
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Two requirements for incorporating emergent organizational safety behavior into PRA include: 

(i) the integration of a theoretical model of how organizations perform, considering causal factors with 

their corresponding level of analysis and relational links; (ii) the adaptation of appropriate techniques 

(i.e., “modeling” and “measurement”), capable of capturing complex interactions of causal factors within 

their possible ranges of variability and across different levels of analysis, to quantify the theoretical 

framework.  

To meet the first requirement in this research, the Socio-Technical Risk Analysis (SoTeRiA) 

(Figure 3.1), a multi-level theoretical framework that connects the structural and behavioral aspects of an 

organization with PRA, is used (Mohaghegh, 2007). Regarding the “modeling” techniques, this research 

introduces the Integrated PRA (I-PRA) methodological framework (Figure 3.2) to operationalize 

SoTeRiA and to improve the realism of risk estimations by quantifying the incorporation of human and 

organizational performance into PRA. I-PRA preserves plant-specific PRA models while generating a 

probabilistic interface to connect the model of underlying failure mechanisms to PRA. This makes I-PRA 

economically efficient and practical for adoption by the nuclear industry. Regarding “measurement” 

techniques, this research develops the Data-Theoretic approach, the focus of this paper, which is executed 

in the data input module of I-PRA (Figure 3.2). The Data-Theoretic is an approach where “data analytics” 

are guided by “theory" to enhance the accuracy and completeness of “causality” being analyzed from 

data. The Data-Theoretic approach not only contributes to the development of a new “measurement” 

technique for organizational factors, but also makes theoretical contributions by expanding the theoretical 

causal details of SoTeRiA.  

The Data-Theoretic module of I-PRA (Figure 3.2) has two sub-modules including DT-BASE and 

DT-SITE, and their elements are explained in detail in Sections 3.2.2.1 and 3.2.2.2. The Data-Theoretic 

approach is advancing the measurement of organizational factors in the following ways: (1) it combines 

different sources and types of information: (a) articles from academic literature, practical industry 

procedures and regulatory standards from industry are integrated through DT-BASE elements, (b) 

analysts’ “subjective” interpretation of information in DT-BASE is combined with “objective” event data 

extracted in DT-SITE, and (c) “generic” information obtained in DT-BASE is integrated with “plant-

specific” information extracted in DT-SITE; (2) it guides “data analytics” with “theory.” The theoretical 

causal structure of the SoTeRiA framework and the contextual keywords of each node in SoTeRiA guide 

data analytics; therefore, the underlying theory supports the completeness of causal factors, the accuracy 

of their causal relationships, and helps avoid the potentially misleading results of a solely data-oriented 

approach; (3) it uses text mining (in DT-SITE), in addition to expert opinion (in DT-BASE), as a 

measurement technique. Although lack of data has been suggested as one of the key reasons for making 

slow progress in the incorporation of organizational factors into PRA, this research provides a new 
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perspective by highlighting that data is available for organizational factors; however, this data is different 

from tabular equipment reliability data. Organizational data are a compilation of textual operational 

experience documents such as Corrective Action Program (CAP) entries, Licensee Event Reports (LERs), 

root cause analysis documents, and maintenance logs that are unstructured and heterogeneous; therefore, 

it is necessary to use text mining as a data analytics technique for socio-technical risk analysis. 

A case study in this paper demonstrates the implementation of DT-BASE elements for the 

development of the theoretical causal model for organizational “training” (Figure 3.6) and for its generic 

quantification. The case study also explains the application of DT-SITE elements to quantify the causal 

model for training, utilizing plant-specific CAP data. The Bayesian integration of DT-BASE and DT-

SITE results has generated the distribution of poor training quality (Figure 3.7) with a median of 0.0039. 

An importance measure analysis is performed on the causal model for training, and as a result, “Program 

Design,” which is highly influenced by the quality of “Training Records Documentation System,” is 

identified as the most important factor. More detailed results of the ranking of the factors are included in 

Table 3.7. This type of ranking contributes to more scientific and in-depth root cause analysis and more 

effective prevention of system failures caused by human errors or organizational factors. The causal 

model for training is not only theoretically validated but is also verified on its structure and contents by 

training experts at a Nuclear Power Plant (NPP). However, it should be noted that there are several 

assumptions and simplifications that were made in this analysis, and these are highlighted throughout the 

paper; hence, the numerical outputs of the case study, presented in this paper, are only for demonstration 

and should not be used directly in the context of specific practical applications. In ongoing research, the 

authors are conducting a Probabilistic Validation (Sakurahara, Tatsuya et al., 2018a) methodology to 

evaluate and measure the epistemic uncertainty (or the degree of confidence) associated with the 

estimated probability from the model as a measure of validation.  

The computational platform of DT-BASE is an open-source web application (Pence & 

Mohaghegh, 2017) to enable a scientific network for collaborative model building. Using a client-server 

architecture, multiple analysts can work in parallel on a single causal model. Ongoing research by the 

authors focuses on advancing several modules of I-PRA (Figure 3.2), as follows: (a) developing advanced 

safety-oriented text mining that can be applicable for a wide range of unstructured organizational 

communications such as root cause analysis documents, work packages, training records, management 

systems, maintenance reports, and policy documents for DT-SITE; (b) integrating DT-SITE and DT-

BASE into one computational platform to improve the Bayesian updating (See discussion in Section 

3.3.3); (c) adding uncertainty analysis into the DT-BASE code (See discussion in Section 3.3.3); (d) 

advancing spatio-temporal methodologies (Bui et al., 2016; Bui et al., 2017; Pence & Mohaghegh, 2015; 

Pence et al., 2015b) for the simulation module (#3 in Figure 3.2) of I-PRA and facilitating the interface of 
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the Data-Theoretic module and the simulation module; (e) developing methodologies for updating PSFs 

(# 5 in Figure 3.2) of existing HRA techniques based on the results of organizational causal modeling 

(See discussion in Section 3.3.3); (f) applying Data-Theoretic approach to other factors of SoTeRiA, such 

as the quality of organizational safety procedures and safety culture; and (g) developing global sensitivity 

analysis and importance measure analyses (Sakurahara, T. et al., 2017; Sakurahara, T et al., 2014) for the 

Data-Theoretic approach to increase the validity of the ranking of factors in the training causal model 

(See discussion in Section 3.3.3).  

The topic of analyzing organizational influence on the risk of technological systems is a complex 

multidisciplinary research area. Although this paper provides a scientific contribution from the 

perspectives of modeling and measuring of organizational factors in PRA, many critical challenges 

remain, requiring future research. Some of these challenges may include: (i) the need for comprehensive 

calibration and integration of organizational mechanisms into HRA and PRA across the lifecycle (i.e., 

design, construction, operation, decommissioning), (ii) the need to include inter-organizational and 

broader factors in organizational performance models, (iii) dealing with a wider variety and larger volume 

of unstructured data sources (e.g., Licensee Event Reports, Root Cause Analysis reports, etc.), and 

calibrating those data sources to explicitly consider data quality and bias, (iv) dealing with dependencies 

among diverse data sources and amongst underlying performance shaping factor models, (v) 

implementing quantitative techniques for handling complex interactions in a causal model growing 

exponentially, (vi) considering the role of automated data analytics and data mining techniques in the 

building of theoretical causal models, (vii) methodological advancement of sensitivity analysis and 

importance measure analysis in the I-PRA framework, and (ix) Probabilistic Validation to characterize 

and propagate sources of epistemic uncertainty. Forthcoming publications by the authors will provide 

more thorough reviews of studies associated with theorizing, modeling, and measuring organizational 

factors, considering their impact on technological system risk to comprehensively adopt knowledge from 

diverse disciplines for the advancement of PRA. 
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CHAPTER 4: DATA-THEORETIC APPROACH FOR SOCIO-TECHNICAL RISK ANALYSIS: 

TEXT MINING LICENSEE EVENT REPORTS OF U.S. NUCLEAR POWER PLANTS1 

 

ABSTRACT 

This paper is a product of a line of research that uses the Socio-Technical Risk Analysis (SoTeRiA) 

theoretical framework and Integrated PRA (I-PRA) methodological framework to theorize and quantify 

underlying organizational mechanisms contributing to socio-technical system risk scenarios. I-PRA has an 

input module that executes the Data-Theoretic (DT) approach, where “data analytics” can be guided by 

“theory.” The DT input module of I-PRA has two sub-modules: (1) DT-BASE, for developing detailed 

grounded theory-based causal relationships in SoTeRiA, equipped with a software-supported BASEline 

quantification utilizing information extracted from academic articles, industry procedures, and regulatory 

standards, and (2) DT-SITE, using data analytics to refine and measure the causal factors of SoTeRiA based 

on industry event databases and using Bayesian analysis to update the baseline quantification. This paper 

focuses on the advancement of DT-SITE, contributing to the integration of text mining with the 

measurement of organizational factors for PRA, and demonstrating the following methodological elements 

and steps in DT-SITE: (Element 2.1) Text mining: (Step i) collect and pre-process unstructured text data, 

(Step ii) identify theory-based seed terms based on DT-BASE causal model, (Step iii) generate features, 

and (Step iv) build and evaluate classifiers (e.g., by using Support Vector Machine [SVM]); and (Element 

2.2) Estimating probabilities and their associated uncertainties. The DT-SITE methodology is applied in a 

case study targeting the “training system” in Nuclear Power Plants (NPPs) and using Licensee Event 

Reports (LERs) from the U.S. nuclear power industry, where LER-specific data extraction and pre-

processing tools are developed.  

 

4.1. INTRODUCTION AND STATEMENT OF OBJECTIVES 

Organizational factors remain elusive and latent contributors to incidents and accidents in high-

consequence industries, such as nuclear power, aviation, oil and gas, and healthcare. Probabilistic Risk 

Assessment (PRA)/Probabilistic Safety Assessment (PSA) (NRC, 1975) is a formal methodology for 

estimating risk emerging from the interactions of equipment failure and human error, where Human 

Reliability Analysis (HRA) (Mosleh & Chang, 2004; Swain & Guttmann, 1983) is used for modeling and 

quantifying human error in risk scenarios. This paper is the product of a line of research on the advancement 

of ‘socio-technical’ risk analysis to explicitly incorporate organizational factors into PRA/HRA. In this 

 
1 This chapter is a reprint with permission of the publisher of an article published in Safety Science: Pence, J., 
Farshadmanesh, P., Kim, J., Blake, C., & Mohaghegh, Z. (2020). Data-theoretic approach for socio-technical risk 
analysis: Text mining licensee event reports of U.S. nuclear power plants. Safety Science, 124, 104574. doi: 
https://doi.org/10.1016/j.ssci.2019.104574  
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research, the explicit incorporation of organizational factors refers to the model-based or mechanistic 

integration (e.g., (Rios, 2004)) of organizational performance with PRA elements, allowing for more 

accurate analysis of the contribution of organizational factors to human error (i.e., through HRA), 

equipment failure, and Common Cause Failures (CCFs). For example, organizational factors, such as the 

training quality of a maintenance crew, may influence labor-centric maintenance performance, which in 

turn can affect physical failure mechanisms (e.g., stress corrosion) of equipment.  

Mohaghegh et al., (2007, 2009, 2010) reviewed existing theoretical frameworks and quantitative 

techniques related to the explicit incorporation of organizational factors into risk models (Mohaghegh, 

2007; Mohaghegh, 2009; Mohaghegh, 2010a, 2010b; Mohaghegh et al., 2009; Mohaghegh & Mosleh, 

2007, 2009a, 2009b) and highlighted two requirements for incorporating emergent organizational safety 

behavior into PRA: (i) the integration of a theoretical model of how organizations perform, considering 

causal factors with their corresponding level of analysis and relational links, and (ii) the adaptation of 

appropriate techniques (i.e., “modeling” and “measurement”), capable of capturing complex interactions of 

causal factors within their possible ranges of variability and across different levels of analysis, to quantify 

the theoretical framework.  

For the first requirement, a theoretical framework, called Socio-Technical Risk Analysis 

(SoTeRiA) (Figure 4.1) (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a), was developed based on a 

multi-level organizational performance model developed by Ostroff (Ostroff et al., 2003). SoTeRiA is a 

theoretical causal framework for explicitly integrating both the social aspects (e.g., safety culture) and the 

structural features (e.g., safety practices) of an organization with a technical system PRA. SoTeRiA 

theorizes multiple levels of internal mechanisms, including individual, unit, group, and organization (Nodes 

2 to 9 in Figure 4.1), and their interactions with the external environment, including physical, regulatory, 

business, and sociopolitical climate (Node 10 and Nodes 12 to 16 in Figure 4.1). Pence et al., (2019) 

expanded the SoTeRiA framework to include the performance of an organization’s “training system” (i.e., 

within Node 7, Organizational Structure & Practices in Figure 4.1), which is applied in Section 4.4 of this 

paper.  

Figure 4.1: Socio-Technical Risk Analysis (SoTeRiA) theoretical framework (Mohaghegh, 2007; Mohaghegh & 
Mosleh, 2009a) 
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Operationalizing and quantifying SoTeRiA requires the development of appropriate “modeling” 

and “measurement” techniques. With respect to modeling techniques, Mohaghegh et al. (2007, 2009, 2010) 

developed a hybrid technique that combines the probabilistic method of Bayesian Belief Network (BBN) 

and a dynamic simulation-based technique (i.e., system dynamics) (Mohaghegh, 2007, 2010a; Mohaghegh 

et al., 2009) with the classical PRA methods to quantify SoTeRiA causal factors (Mohaghegh, 2007, 

2010a). The previous publication (Pence et al., 2019b) by some of the authors of this paper introduced the 

Integrated PRA (I-PRA) methodological framework (briefly explained in Section 4.3 and instantiated in 

Figure 4.2) that is an advancement of the original work by Mohaghegh et al., (Mohaghegh et al., 2009) and 

is based on an adaptation of the I-PRA approach which has been already applied for incorporating physical 

failure mechanisms into PRA for the risk-informed resolution of Generic Safety Issue 191 (Bui et al., 2019; 

Mohaghegh et al., 2013) and fire PRA (Sakurahara et al., 2017; Sakurahara et al., 2018a; Sakurahara et al., 

2018b; Sakurahara et al., 2015).  

Pence et al., (2019) created the input module of the I-PRA framework by developing the Data-

Theoretic (DT) approach, where “data analytics” can be guided by “theory.” (Pence et al., 2019b) The Data-

Theoretic input module of I-PRA has two sub-modules: (i) DT-BASE, for developing detailed grounded 

theory-based causal relationships in SoTeRiA, equipped with a software-supported BASEline 

quantification utilizing information extracted from academic articles, industry procedures, and regulatory 

standards, and (ii) DT-SITE, using data analytics to refine and measure the causal factors of SoTeRiA based 

on industry event databases and using Bayesian updating to modify the baseline quantification. Pence et 

al., (2019) covered the methodological elements of DT-BASE in detail, and briefly highlighted the 

methodological elements of DT-SITE. (Pence et al., 2019b). This paper focuses on the advancement of the 

DT-SITE methodological steps (see Section 4.3), contributing to the integration of text mining with the 

measurement of organizational factors for PRA.  

To clarify how the approach proposed in this paper fills the gaps in the existing studies, Section 4.2 

provides a thorough review of related studies. Section 4.3 covers the methodological and computational 

development of the Data-Theoretic input module, focusing on DT-SITE. In Section 4.4, the DT-SITE 

methodology is applied in a case study using Licensee Event Reports (LERs) from the U.S. nuclear power 

industry. LERs are submitted to the Nuclear Regulatory Commission (NRC) when “reportable events” 

occur at Nuclear Power Plants (NPPs), such as technical specification-required shutdown, or other events 

affecting plant safety barriers/functions. NPPs are required to submit LERs under Title 10 of the Code of 

Federal Regulations (10 CFR) Part 50.73, and guidelines for LER reporting are provided in NUREG 1022, 

rev. 3 (NRC, 2013a). LERs are standardized, semi-structured forms with header information, data entry 

fields, checkboxes, and free text fields. The free text fields of LERs are the source of unstructured data used 
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in this paper. LERs are available in a public, searchable database containing LERs from 1980 to the present.2 

The LER database is a key source of event data (e.g., initiating events, equipment failure, human errors) 

and provides insights on plant operational experience, which can support industry and regulatory decision-

making. In the case study of this paper (Section 4.4), LER-specific data extraction and pre-processing tools 

are developed and conducted, theory-based seed terms from a pre-existing DT-BASE model are leveraged 

for feature selection, Support Vector Machine (SVM)-based classifiers are built and evaluated, the 

probability of having “training deficiency” as one of the causes of reported events are estimated, and 

preliminary uncertainty analysis is conducted using multiple runs of k-fold cross-validation. 

 

4.2. REVIEW OF RELATED STUDIES  

Section 4.2.1 covers the review of the studies (from 2000 to 2018) that utilize machine learning-

related techniques for the measurement of organizational factors in safety/risk analysis. Although the 

review of studies in Section 4.2.1 has generated some lessons learned to support the proposed method in 

Section 4.3, none of the existing studies were found to be associated with PRA. Therefore, Section 4.2.2 

has broadened the review to include all existing machine learning studies (not specifically for organizational 

factors) that have been conducted from 2000 to 2019 under the field of PRA. The review in Section 4.2.2 

generates additional information to compare different techniques and justify the selection of the 

methodology in Section 4.3. Lastly, because this paper specifically uses the U.S. nuclear industry LER 

dataset, the authors have conducted a review of data analysis studies from 2000 to 2018 that have analyzed 

LERs. Some of the LER studies included PRA-related machine learning analysis and are therefore covered 

in Section 4.2.2. The rest of the LER studies are related to PRA but did not use machine learning analysis, 

and they are reviewed in Section 4.2.3. The review in Section 4.2.3 helps identify what measurement 

techniques have been applied previously and identifies the challenges of analyzing LERs.  

 

4.2.1. Review of Studies that Developed and/or Applied Machine Learning-Related Techniques for 

Organizational Factors in Safety/Risk Analysis  

Table 4.1 reviews the existing studies (from 2008 to 2018) that develop and/or apply machine 

learning-related techniques for measuring organizational factors in safety/risk analysis. The following list 

covers the definitions of columns in Table 4.1 that are the same for the columns in Table 4.2 and 4.3 in 

Sections 4.2.2 and 4.2.3, respectively: 

a. Data Source refers to the source of raw or pre-processed/aggregated data (e.g., LERs) that 

are used in the study. 

 
2 https://lersearch.inl.gov/LERSearchCriteria.aspx  
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b. Data Type can be unstructured (e.g., non-tabular or free text data) or structured (e.g., tabular 

or numerical data). 

c. Data Format refers to the formatting, representation, or coding of the data (e.g., binary 

classification, binned/categorical, numerical variable, free text). 

d. Type of Process refers to the primary knowledge discovery process being applied to the 

data. In this paper, the process of “text mining” refers to the entire Knowledge Discovery 

from Databases (KDD) process that includes selection, pre-processing, transformation, 

machine learning, interpretation, and evaluation (Fayyad et al., 1996). Machine learning 

processes are further divided into (i) “supervised,” where labeled/classified data is provided, 

(ii) “semi-supervised,” where labeled and unlabeled data are provided, and (iii) 

“unsupervised” where no labeling is provided (Han et al., 2011). Labels indicate the target 

category that a piece of data belongs to (e.g., if an email should be labeled in the category 

of “spam” or “non-spam”) and are often generated by annotators’ judgment. In addition to 

machine-learning processes, the review in this paper includes a Natural Language 

Processing (NLP)-related study in Table 4.2. NLP is used to analyze linguistic concepts of 

text, including part-of-speech (e.g., noun, verb) and grammatical structure (e.g., phrase, 

noun phrase) (Kao & Poteet, 2007). Another non-machine learning type of process is the 

parametric process that uses traditional statistical analyses such as regression that assumes 

an a priori statistical model (Han et al., 2011). Table 4.1 and Table 4.2 (in Section 4.2) do 

not cover parametric processes and focus only on studies using machine learning or NLP 

approaches but Table 4.3 (in Section 4.2.3) covers studies that use parametric processes for 

LERs. 

e. Sub-type of Process refers to the different approaches available within each type of process. 

For example, for unsupervised machine learning algorithms, clustering is a common 

approach, while in supervised machine learning, classification is a common approach. The 

difference between clustering and classification is that classification uses labeling as an 

input to the machine learning process to differentiate between targeted categories, while 

clustering does not use labeling, but divides data into groups based on similarities in data 

attributes (Ethem, 2014). Additional sub-types of processes are included in Tables 4.1 and 

4.2.  

f. Type of Technique refers to the specific toolkit or algorithm that is utilized to operationalize 

the type of process, which varies in Tables 4.1 and 4.2.  
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Table 4.1: Review of studies (from 2000 to 2018) that developed and/or applied machine learning-related 

techniques for organizational factors in safety/risk analysis 

Citation 

(a) 

Data 

Source(s) 

(b) 

Data Type 

(c) 

Data Format 

(d) 

Type of 

Process 

(e)  

Sub-type 

of Process 

(f)  

Type of 

Technique 

(Tirunagari 

et al., 

2012) 

Marine 

Accident 

Reports 

Unstructured Free Text 

Unsupervised 

Machine 

Learning 

Clustering 

Self-

Organizing 

Map (SOM) 

(Moura et 

al., 2017) 

Multi-attribute 

Technological 

Accidents 

Dataset 

(MATA-D) 

(from (Moura 

et al., 2016)) 

Structured 

Binary 

Classification 

(presence or 

absence) 

Unsupervised 

Machine 

Learning 

Clustering SOM 

(Yu et al., 

2018) 

Multi-attribute 

Railway 

Accidents 

Dataset 

(MARA-D) 

Structured 
Binary 

Classification 

Unsupervised 

Machine 

Learning 

Clustering SOM 

(Doell et 

al., 2015) 
MATA-D Structured 

Binary 

Classification 

Unsupervised 

Machine 

Learning 

Association 

Rule 

Market 

Basket 

Analysis 

(Feng et 

al., 2014) 

Historical 

Data 
Structured Binned/Categorical 

Semi-

Supervised 

Machine 

Learning 

Bayesian 

Network 

Structure 

Ant Colony 

Optimization 

(ACO) 

 

The literature review in this section (summarized in Table 4.1) highlights the following results:  

(i) There are a limited number of studies that leveraged machine learning for measuring 

organizational factors in safety/risk analysis. One reason is that unlike the well-established and 

standardized practices for collecting data on equipment, there are no safety-oriented data 

collection schemas for measuring organizational factors in risk analysis. Without a granular data 

collection system, organizational factors are measured as high-level abstractions, labeled in the 

aggregate, and do not include the underlying root cause contributors to organizational weaknesses. 

Data collection practices are also different in industries that have more frequent 
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accidents/incidents with lower consequences (e.g., rail accident/incident data (Yu et al., 2018)), 

which create differences in the availability and quality of data. Machine learning techniques can 

face practical difficulties when the number of observations limits datasets, or when there are 

deficiencies in an organization’s recording and reporting practices. In the nuclear industry, for 

example, there are no formalized data collection standards for organizational factors. For 

analyzing organizational factors, methods and concepts from diverse disciplines should be adopted 

in an interdisciplinary framework (e.g., SoTeRiA in Figure 4.1), allowing for more comprehensive 

coverage of the path of influence on safety performance (Mohaghegh, 2007). Therefore, for the 

measurement of organizational factors, methodologies should be capable of dealing with limited 

or unstructured data, as well as differentiate between a wide array of theoretical constructs. 

(ii) Among the studies that use machine learning to quantify organizational factors for safety/risk 

analysis, none of them were connected to, or performed analysis for PRA frameworks. This paper 

is a first-of-its-kind PRA-related study that develops a machine learning method for the 

quantification of organizational factors.  

(iii) Among the studies that used machine learning to quantify organizational factors for safety/risk 

analysis, none of them used LER as their data source. The proposed method in this paper uses 

LER database.  

(iv) All existing studies, except Tirunagari et al. (2012), that leveraged machine learning for measuring 

organizational factors in safety/risk analysis, were conducted on structured data. The method in 

Section 4.3 of this paper is developed for unstructured free-text data. The data format in Tirunagari 

et al. (2012) is also similar to the data format in this paper, i.e., free text data; however, the type 

of process and the type of technique proposed in Section 4.3 are different from the ones used by 

Tirunagari et al. (2012). The main reason for using a supervised machine learning approach in this 

study, rather than unsupervised processes, is the goal of the Data Theoretic approach; to guide 

data analytics with the theory (i.e., the theoretical causal model developed under the DT-BASE). 

This will be further explained in Section 4.3.  

 

 

4.2.2. Review of Studies that Conceptualized or Applied Big Data Analytics and Machine Learning for 

PRA  

Section 4.2.2.1 reviews the literature that conceptualized big data analytics and machine learning 

for PRA (primarily in NPP-related studies) but did not reach the stages of methodological development or 

application. Section 4.2.2.2 reviews existing studies (from 2000 to 2019) that developed and/or applied 

machine learning approaches for PRA, primarily for NPPs.  
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4.2.2.1. Studies that Conceptualized Big Data Analytics and Machine Learning for PRA 

Smith et al., (2012) discussed the potential values of machine learning for advanced PRAs to 

support small modular reactors (Smith et al., 2012). Siu et al., (2013) discussed the role that content 

analytics and text analytics plays in supporting regulatory decision-making, and the Nuclear Regulatory 

Commission’s (NRC’s) plan to initiate scoping studies to explore the application of advanced data analytics 

techniques to support PRA activities (Siu, N et al., 2013). Pence et al., (2014) initiated a discussion on the 

potential role of big data analytics and the internet of things in measuring and performing real-time 

monitoring of safety performance in the changing landscape of risk. Pence et al., (2014) considered topics 

of big data for measuring organizational factors for PRA (Pence et al., 2014), identifying potential uses for 

“dark data” (i.e., data not generally used for other purposes (Heidorn, 2008)), and a discussion on how to 

leverage the information that organizations collect, process, and store for regular business activities for risk 

analysis. Wishart et al., (2015) discussed the challenges of data storage for PRA, where traditionally, 

Microsoft Excel and Access were used to manage some PRA datasets. When a large volume of data is 

collected, the memory limits of these tools can be reached, which might affect the processing power of 

computational resources (Wishart et al., 2015). Wishart et al., (2015) also discussed the collection and use 

of plant walkdown data (e.g., structured forms, unstructured field notes or images for fire and flooding 

PRA) and equipment condition data as potential datasets (Wishart et al., 2015). Cha et al., (2015) discussed 

the role of big data in Operations and Maintenance (O&M) for NPPs (Cha et al., 2015). Some studies 

discussed big data for analyzing equipment reliability (e.g., (Yeliseyeva & Malovik, 2017)), software 

reliability (e.g., (Liu et al., 2017)), and big data in virtual plant/physics models (e.g., (Wu, 2019)). In 2017 

and 2018, workshops were held to discuss the uses of big data for NPPs, with several presentations on big 

data analytics in PRA (Smidts et al., 2019). Farley et al., (2018) discussed the potential for machine learning 

to support the front-end and back-end of dynamic PRA analysis, for example by analyzing the action 

possibility space of human operators using NLP tools to identify the most relevant procedures and 

maintenance records (Farley et al., 2018). Szilard et al., (2018) discussed the potential uses of computational 

algorithms, such as machine learning and Artificial Intelligence (AI), to be used in the nuclear industry for 

automated risk-informed plant processes. For example, the automatic analysis of failure data can be used 

for maintenance rule monitoring by evaluating plant event reports to screen functional failures and 

maintenance preventable actions (Szilard et al., 2018). Al Rashdan et al., (2018) discussed the potential 

uses of data analytics for online monitoring of equipment and systems in support of risk management, but 

specific methods were not clarified (Al Rashdan et al., 2018). Groth and Bensib (2018) discussed potential 

sources of big data from the main control room, sensor arrays, industry operational experience, and plant 

operational data, that could provide trend analytics and diagnostics, resulting in online status visualizations 
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and decision support tools (Groth, Katrina & Bensi, 2018). Keusseyan (2018) stated that big data can be 

used to leverage resources for engineering, operations, maintenance, management, and regulatory oversight 

(Keusseyan, 2018). Several papers discussed the potential use of text mining for analyzing procedures for 

HRA (Boring et al., 2018; Rasmussen et al., 2018). Leveraging relevant literature on severe accidents of 

NPPs from the Google Scholar database, Zhao and Smidts (2019) discussed the use of machine learning 

approaches for content analysis in the development of knowledge base, which could be used to support 

HRA and PRA (Zhao & Smidts, 2019).  

 

4.2.2.2. Studies that Developed and/or Applied Machine Learning Approaches for PRA  

Table 4.2 covers the review of existing studies that developed and/or applied machine learning 

approaches for PRA, primarily for NPPs. The definitions of the columns of Table 4.2 (“a” to “f”) are 

consistent with the definitions of columns in Table 4.1, listed at the beginning of Section 4.2.1.  

 

Table 4.2: Review of studies that developed and/or applied machine learning approaches for PRA 
Table 4.2 (cont.)      

Citation 
(a) 

Data Source(s) 

(b) 

Data Type 

(c) 

Data 

Format 

(d) 

Type of 

Process 

(e)  

Sub-Type of 

Process 

(f)  

Type of 

Technique 

(Di Maio 

et al., 

2015, 

2016b) 

Simulink, 

Dynamic Event 

Tree (DET) 

 

Structured 

Multiple-

Valued 

Logic 

(MVL) 

Unsupervised 

Machine 

Learning 

Clustering 

Modified 

Binary 

Differential 

Evolution 

(MBDE), K-

Means 

Clustering 

Algorithm 

 

(Osborn et 

al., 2013) 

Analysis of 

Dynamic Accident 

Progression Trees 

(ADAPT)/MELC

OR/MELCOR 

Accident 

Consequence Code 

System (MACCS) 

Codes 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Clustering Mean Shift 
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Table 4.2 (cont.)      

Citation 
(a) 

Data Source(s) 

(b) 

Data Type 

(c) 

Data 

Format 

(d) 

Type of 

Process 

(e)  

Sub-Type of 

Process 

(f)  

Type of 

Technique 

(Mandelli 

et al., 

2013) 

Adaptive 

Sampling of 

ADAPT/ 

Reactor Excursion 

and Leak Analysis 

Program 

 (RELAP)-5/ Risk 

Analysis and 

Virtual 

Environment 

(RAVEN) 

 Outputs 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Clustering 

Symbolic 

Aggregate 

approXimati

on 

 (SAX), 

Time Series 

Knowledge 

Representati

on (TSKR) 

(Sen et al., 

2015) 
BISON/RAVEN Structured 

Numerical 

Values 

Unsupervised 

Machine 

Learning 

Clustering 

 

(Various) 

SciKit-

Learn3 

Library 

Algorithms 

 

(Maljovec 

et al., 

2016) 

Nuclear 

Simulation 

Datasets 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Clustering 

Hierarchical 

Clustering, 

Topological 

Clustering  

(Al-

Dahidi et 

al., 2015) 

NPP 

Multidimensional 

Transient Events 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Clustering 

Cluster-

based 

Similarity 

Partitioning 

and Serial 

Graph 

Partitioning 

and Fill-

reducing 

 
3 https://scikit-learn.org 
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Table 4.2 (cont.)      

Citation 
(a) 

Data Source(s) 

(b) 

Data Type 

(c) 

Data 

Format 

(d) 

Type of 

Process 

(e)  

Sub-Type of 

Process 

(f)  

Type of 

Technique 

Matrix 

Ordering 

Algorithms 

(CSPA-

METIS) 

(Mandelli, 

D. et al., 

2018) 

RAVEN, Monte-

Carlo 

Structured  

 

Numerical 

Values  

Unsupervised 

Machine 

Learning 

Clustering 

Hierarchical 

clustering, 

K-means 

Algorithm, 

Mean-Shift 

Algorithm 

(Cogliati 

et al., 

2016) 

RAVEN 

Structured  

(Time 

Dependent 

Data) 

Numerical 

Values 

Unsupervised 

& Supervised 

Machine 

Learning 

Clustering, 

Dimensionalit

y Reduction 

(Various) 

SciKit-

Learn1 

Library 

Algorithms 

(Tian et 

al., 2018) 

Transient Datasets, 

Linear 

Interpolation 

Dataset 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Neural 

Network (NN) 

Multilayer 

Perceptron 

(MLP) 

(Worrell 

et al., 

2019) 

Consolidated Fire 

and Smoke 

Transport 

(CFAST) 

simulations 

Structured 
Numerical 

Values 

Unsupervised 

Machine 

Learning 

Metamodel 

Regression 

Tree, l-

Nearest 

Neighbor 

(kNN) 

Regression, 

Support 

Vector 

Machine 

(SVM)  
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Table 4.2 (cont.)      

Citation 
(a) 

Data Source(s) 

(b) 

Data Type 

(c) 

Data 

Format 

(d) 

Type of 

Process 

(e)  

Sub-Type of 

Process 

(f)  

Type of 

Technique 

(Wang, Z. 

et al., 

2018) 

Seismic Fragility 

Curve Simulations 
Structured 

Numerical 

Values 

Unsupervised 

Machine 

Learning 

Artificial 

Neural 

Network 

(ANN) 

ANN python 

package 

Neurolab4  

 

(Zou et 

al., 2018) 

National Nuclear 

Safety 

Administration 

(NNSA) 

Experience 

Feedback Platform 

Structured 
Binned/ 

Categorical 

Unsupervised 

Machine 

Learning 

Clustering, 

Association 

Rule Mining 

Group 

Average 

Clustering 

Method 

(Di Maio 

et al., 

2016a; Di 

Maio et 

al., 2017a, 

2017b) 

Event Scenario 

Data  
Structured 

Binned/ 

Categorical 

Semi-

Supervised 

Machine 

Learning 

Clustering 

Semi-

Supervised 

Self-

Organizing 

Maps 

(SSSOMs) 

(Ham & 

Park, 

2018; 

Park et al., 

2018) 

Korean Nuclear 

Event Evaluation 

Database (NEED) 

Incident Reporting 

System 

Structured 
Binned/ 

Categorical 

Supervised 

Machine 

Learning 

Classification 

Classificatio

n And 

Regression 

Tree 

(CART) 

(Lee et al., 

2018) 

ADAPT/MELCO

R/Radiological 

Assessment 

System for 

Consequence 

Analysis 

(RASCAL) 

Structured 
Binned/ 

Categorical 

Supervised 

Machine 

Learning  

Classification 

Convolution

al Neural 

Network 

(CNN) 

(Mandelli, 

Diego et 

al., 2018) 

Spambase Data 

Set5 
Unstructured Free Text 

Supervised 

Machine 

Learning 

Classification 
Logistic 

Regression 

 
4 https://code.google.com/archive/p/neurolab/ 
5 https://archive.ics.uci.edu/ml/datasets/Spambase 
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Table 4.2 (cont.)      

Citation 
(a) 

Data Source(s) 

(b) 

Data Type 

(c) 

Data 

Format 

(d) 

Type of 

Process 

(e)  

Sub-Type of 

Process 

(f)  

Type of 

Technique 

(Young et 

al., 2004) 
LER Unstructured Free Text 

Unsupervised 

Machine 

Learning 

Clustering IN-SPIRE6 

(Siu, 

Nathan & 

Coyne, 

2018; Siu, 

N et al., 

2016) 

LER Unstructured Free Text 

Supervised 

Machine 

Learning 

Classification 

IBM Watson 

Content 

Analytics 

(ICA) 

Version 2.2 

(Zhao et 

al., 2018) 
LER Unstructured Free Text 

Natural 

Language 

Processing 

(NLP) 

Part of Speech 

Tagging, 

Dependency 

Parser 

Stanford 

CoreNLP 

API7 

The literature review in this section (summarized in Table 4.2) highlights the following results:  

i. There are a limited number of studies using machine learning to quantify PRA model elements, and 

none of the studies included organizational factors, as highlighted in Section 4.2.1 as well. The 

application of machine learning approaches for PRA primarily analyzed physical phenomena (e.g., 

using data sources resulted from MELCOR [severe nuclear accident progression code], BISON 

[nuclear fuel performance code], Consolidated Fire and Smoke Transport (CFAST) [zone-based fire 

model]), where machine learning was used to cluster the simulation outcomes. In these studies, the 

data are not historical events and instead are the results of simulation codes; therefore, the main 

challenge is dealing with large volume of data rather than processing heterogeneous data.  

ii. Several studies leveraged the Risk Analysis and Virtual Environment (RAVEN) computational 

platform to operationalize machine learning for time-dependent data resulted from simulations that 

were equipped with sampling and uncertainty analysis (e.g., ADAPT/RELAP/RAVEN; (Mandelli et 

al., 2013).  

iii. Among the PRA-oriented machine learning/NLP studies, nine (i.e., (Al-Dahidi et al., 2015; Ham & 

Park, 2018; Mandelli, Diego et al., 2018; Park et al., 2018; Siu, Nathan & Coyne, 2018; Siu, N et al., 

 
6 https://in-spire.pnnl.gov/ 
7 https://stanfordnlp.github.io/CoreNLP/api.html 
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2016; Young et al., 2004; Zhao et al., 2018; Zou et al., 2018))8 used historical event data rather than 

results of simulation codes. Among these nine studies, four used unstructured free text data, three of 

which used LERs, and among these three, one used NLP instead of machine learning (i.e., (Zhao et 

al., 2018)). This indicates that there are limited studies using text mining approaches for PRA. The 

Data-Theoretic methodology in this paper offers a text mining approach for PRA, where the 

supervised machine learning process is conducted on unstructured free text data from LERs to 

perform classification using the SVM technique. SVM, compared to Logistic Regression (e.g., used 

by (Mandelli, Diego et al., 2018)) has been shown to perform better for highly imbalanced/skewed 

datasets (Musa, 2013). A dataset is considered imbalanced/skewed when classification (i.e., labeled) 

categories are disproportionately represented in a dataset (Chawla, 2009). In the case of the LER 

dataset used in the case study of this paper, data is highly imbalanced/skewed (i.e., the classified 

categories are relatively rare/unusual occurrences, composing a “minority” category), making it 

difficult for machine learning to detect the minority category from the regular/“majority” category 

(Köknar-Tezel & Latecki, 2009; Wang, B.X. & Japkowicz, 2010)). Modifying the classifier is one 

approach for improving classifier accuracy for imbalanced/skewed data (Wang, B.X. & Japkowicz, 

2010). This paper modifies the classifier to address the imbalanced/skewed data issue of LERs and 

is discussed in Section 4.4. Compared to the well-known/open source machine learning algorithms 

for SVM and Logistic Regression, the performance evaluations of commercial software packages 

(e.g., IN-SPIRE, IBM Watson Content Analytics [ICA]), used by (Young et al., 2004) and (Siu, 

Nathan & Coyne, 2018; Siu, N et al., 2016), are limited due to a lack of open source, repeatable, and 

reproducible evaluations. Additional research is needed to compare the performance evaluation of 

machine learning techniques for unstructured data to justify the best selection for PRA.  

 

4.2.3. Review of Parametric Data Analysis Conducted on the U.S. Nuclear Industry Licensee Event Reports  

Three LER studies used machine learning methods (or NLP) and are covered in Section 4.2.2.2. 

The rest of existing LER studies used parametric data analysis and are covered in Table 4.3. The definitions 

of the columns of Table 4.3 (“a” to “d”) are consistent with the definitions of columns in Table 4.1 that are 

listed at the beginning of Section 4.2.1, with the addition of “Application Area,” which indicates the focus 

of the analysis for NPP-related studies. 

 

 

 
8 It should be noted that in the study by Zhao et al., (2018), the NLP toolkit was used for entity recognition, coreference, and basic 
dependencies but was not implemented as part of a machine learning process. This study is included in Table 4.2 (rather than Table 
4.3) since it had some level of sophistication, similar to the LER studies in Table 4.2, compared to the LER studies in Table 4.3 
that used parametric approaches. 
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Table 4.3: Review of non-machine learning studies that analyzed U.S. nuclear industry LERs 
Table 4.3 (cont.)     

Citation(s) 
Application 

Area 

(a) 

Data 

Source(s) 

(b) 

Data Type 

(c) 

Data Format 

(d) 

Type of 

Process 

(Braverman et 

al., 2000) 

Age-related 

degradation of 

structures and 

passive 

components 

Coded LERs, 

NRC 

Corresponden

ces, 

NUREGS, 

Industry 

Reports 

Structured Binned/Categorical Parametric  

(Gertman et 

al., 2002) 

Human 

Performance 

Coded LERs, 

Augmented 

Inspection 

Team (AIT) 

Reports 

Structured Binned/Categorical Parametric  

(Hallbert et 

al., 2006) 

Human 

Performance 

Coded LERs, 

AIT Reports, 

other reports 

Structured Binned/Categorical Parametric  

(USNRC, 

2018) 

Accident 

Sequence 

Precursor (ASP) 

Program 

Coded LERs Structured Binned/Categorical Parametric  

(Schroer & 

Modarres, 

2013) 

Multi-Unit 

Dependencies 
Coded LERs Structured Binned/Categorical Parametric  

(Modarres et 

al., 2017) 

Multi-Unit 

Dependencies 
Coded LERs Structured Binned/Categorical Parametric  

(Zhou & 

Modarres, 

2017) 

Multi-Unit 

Dependencies 
Coded LERs Structured Binned/Categorical Parametric  

(Germain, 

S.W.S., 2014) 

Industry Trends 

Program, 

Standardized 

Plant Analysis 

Coded LERs Structured Binned/Categorical Parametric  
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Table 4.3 (cont.) 

Citation(s) 
Application 

Area 

(a) 

Data 

Source(s) 

(b) 

Data Type 

(c) 

Data Format 

(d) 

Type of 

Process 

Risk (SPAR) 

Models 

(Nie et al., 

2008; Nie et 

al., 2009) 

Aging 

Degradation of 

Passive 

Components, 

Seismic 

Capability 

Evaluation 

Coded LERs Structured Binned/Categorical Parametric 

(Šimić et al., 

2015) 

Event Group 

Ranking 
Coded LERs Structured Binned/Categorical Parametric 

(Germain, 

S.S. et al., 

2017) 

Outage Risk 

Management 
Coded LERs Structured Binned/Categorical Parametric 

(Groth, K.M. 

& Mosleh, 

2012) (Groth, 

KM & 

Mosleh, 2009) 

Human 

Performance 

Coded LERs, 

Human Events 

Repository 

Analysis 

(HERA) and 

Human 

Factors 

Information 

System 

(HFIS) 

Structured Binned/Categorical Parametric 

(Fleming & 

Lydell, 2004) 

Pipe Failure 

Rates and 

Rupture 

Frequencies 

Coded LERs, 

PIPExp 
Structured Binned/Categorical Parametric 

The literature review in this section (summarized in Table 4.3) highlights the following results: 

i. The majority of studies that conducted data analysis on LERs used (a) coded LERs (structured data)

and (b) a parametric type of process.
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a. All the studies listed in Table 4.3 used “coded” LERs for their analysis. The coding of text 

data is a manual process of assessing each document/data entry to interpret if specific 

themes or theoretical concepts emerge (Saldaña, 2015). For example, Hallbert et al., (2006) 

used a worksheet of predefined subevent codes (e.g., for identifying attributes associated 

with work type, personnel, human action type) for qualitatively analyzing LER events, 

where detailed codes for ‘personnel’ were used to identify the involvement of operations 

(e.g., operations supervisors (O-S), control room operators (CR)) and maintenance and 

testing (e.g., maintenance supervision/planning (M-S)) personnel in LER events (Hallbert 

et al., 2006). The qualitative coding results in a new “structured” set of binned/categorical 

data, summarizing the statistics of the LERs, and the resulting categories are then 

quantitatively analyzed. The reliability of human coders contributes to the overall quality 

of coded LERs; however, the existing studies listed in Table 4.3 did not consider the quality 

of human coders in their analysis. One potential reason for this lack of consideration of 

coder quality is that without standardized terminology or guidance on interpreting the 

language representing specific categories in LERs, it would be difficult for coders to reach 

consensus and identify targeted concepts and categories. For example, considering 

synonyms (i.e., variations in industry vocabulary) and polysemy (i.e., words with multiple 

meanings) in LER texts, diverse interpretations may emerge. In the case study (Section 

4.4) of this paper, LERs are “annotated” (rather than coded). Annotation is the manual 

process of labeling qualitative concepts in text, which can be conducted at multiple levels 

of analysis (i.e., word, sentence, paragraph, section, document/data entry) (Weiss et al., 

2010). Annotated labels provide targeted areas for machine learning algorithms to leverage 

semantic and NLP techniques in text mining. While coding is conducted on the entire 

dataset and the quantitative results (i.e., coded LERs) are statistically analyzed, annotations 

can be performed on a subset of data, and the results provide guidance for machine learning 

algorithms being conducted on the entire dataset (or larger dataset). In text mining, 

annotations are also used as a benchmark for evaluating the performance of machine 

learning algorithms, and therefore, the reliability of human annotators must be explicitly 

measured. In this paper, a theoretical causal model (developed in DT-BASE) is used to 

standardize terminologies of organizational factors and provide guides for annotators. In 

addition, the kappa statistic (Landis & Koch, 1977) is used to measure the inter-rater 

reliability of annotators. Further explanations are provided in Sections 4.3 and 4.4. This 

paper is the first study to conduct annotation and measure inter-rater reliability of 

annotations on LERs. 
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b. Compared with parametric processes, machine learning methods are able to scale-up 

human annotation efforts so that skewed and rarely occurring information is not 

overlooked, better compensate for the ordinality of LER data, analyze larger volumes of 

data, and corroborate manual coding/annotations with automated approaches. Among all 

the studies that conducted data analysis on LERs, three of them used machine learning 

approaches (Siu, Nathan & Coyne, 2018; Siu, N et al., 2016; Young et al., 2004)) as 

highlighted by Table 4.2. Among these studies, two applied the supervised machine 

learning process of classification for analyzing LERs (Siu, Nathan & Coyne, 2018; Siu, N 

et al., 2016); however, their process was not guided by a theoretical framework. The Data-

Theoretic methodology introduced in Section 4.3 makes unique contributions to studies of 

LERs by offering a supervised machine learning process that is guided by a theoretical 

causal framework. Further explanations are provided in Sections 4.3 and 4.4.  

ii. With respect to application areas, most studies in Table 4.3 that analyzed coded and structured LER 

data were focused on analyzing equipment failure and human error. The application areas of the 

LER studies in Table 4.2 that conducted machine learning included (i) high-level exploration of 

LER language (Young et al., 2004) and (ii) exploratory analysis on initiating events (Siu, Nathan 

& Coyne, 2018; Siu, N et al., 2016), while the one study, using NLP, had the application area of 

(iii) exploratory analysis on LER causal language (Zhao et al., 2018). In 2007, Galán et al., 

conceptualized the use of LERs for measuring the occurrence of component failures due to 

organizational factors; however, the study did not implement any approach, nor did it propose a 

quantitative method for classifying data in LER entries (Galán et al., 2007), and therefore, was not 

included in Table 4.3. Section 4.3 of this paper proposes the first-of-its-kind machine learning 

method to quantitatively analyze LERs for the application area of organizational factors. 

   

4.3. METHODOLOGICAL AND COMPUTATIONAL DEVELOPMENTS FOR THE DATA-

THEORETIC INPUT MODULE OF INTEGRATED PRA (I-PRA): ADVANCEMENT OF DT-SITE  

Pence et al., (2019) introduced the Integrated PRA (I-PRA) methodological framework (Figure 4.2) 

to quantify the SoTeRiA theoretical causal framework (Figure 4.1) (Pence et al., 2019b). As Figure 4.2 

shows, I-PRA is a multi-level risk assessment framework that begins with the Data-Theoretic module 

extracting and formalizing the organizational data required for the simulation of underlying organizational 

mechanisms (Element 3 in Figure 4.2) that affect the states of Performance Shaping Factor (PSF) (e.g., a1, 

a2, and a3) and that, therefore, influence the probability of human errors (e.g., event “a” in the FT) in the 

site-specific PRA module. Through the interface module, the “Spatiotemporal Simulation of Organizational 

Failure Mechanisms” (Element 3 in Figure 4.2) is connected to the associated PSFs in the site-specific PRA 
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module. In the interface module, the uncertainties associated with input data are characterized and 

propagated by the uncertainty analyzer (Element 4 in Figure 4.2) to make the simulation module 

probabilistic and ready to be connected to the site-specific PRA model.  

Pence et al., (2019) created the input module of the I-PRA framework by developing the Data-

Theoretic (DT) approach, where “data analytics” can be guided by “theory” (Pence et al., 2019b). The Data-

Theoretic input module of I-PRA has two sub-modules: (i) DT-BASE (Element 1 in Figure 4.2; the white 

boxes on the left in the Data-Theoretic input module) that focuses on the development of detailed causal 

relationships in SoTeRiA, based on a theory-building process and equipped with a software-supported 

BASEline quantification utilizing analyst interpretation of generic information extracted from articles and 

standards; and (ii) DT-SITE (Element 2 in Figure 4.2; the light blue boxes on the right in the Data-Theoretic 

input module) that relates to conducting data analytics (text mining) to quantify SoTeRiA causal elements 

based on industry event databases and by Bayesian updating of the baseline quantification established by 

DT-BASE.  

The Data-Theoretic module uses the high-level causal relationship of SoTeRiA (Figure 4.1) as a 

preliminary causal structural shell in Element 1.5 (Figure 4.2) to guide the analyst when adding more 

detailed causal constructs. Elements 1.1 to 1.4 of DT-BASE are the steps for adding more detailed causal 

constructs and quantifying the targeted causal model in Element 1.5. The scope of the targeted causal model 

in Element 1.5 can include adding details to one node of Figure 4.1 or adding details to multiple nodes of 

Figure 4.1 while preserving the high-level interconnections among those nodes (based on the causal 

connection of SoTeRiA in Figure 4.1). In this paper, the scope of the targeted causal model is the “training 

system” (i.e., Systematic Approach to Training (NEI, 2017)) of NPPs, which is related to Node 7 in Figure 

4.1. The targeted causal model that is gradually built and quantified through Elements 1.1 to 1.4 of DT-

BASE forms the Organizational Causal Input Model in Element 1.5 as the input to DT-SITE. The 

quantification of the Organizational Causal Input Model is updated through DT-SITE Elements 2.1 to 2.4 

to generate an updated version of the same causal model in Element 2.5, ready to provide input for the 

simulation module. In other words, the Organizational Causal Input Model in Element 2.5, a targeted-scope 

model of SoTeRiA (Figure 4.1) with more detailed levels of causality, gives the input information (i.e., the 

causal structures and their associated measures) for the spatio-temporal simulation module (Element 3 in 

Figure 4.2), where the analyst can add temporal and/or spatial dimensions. The key performance measures 

(e.g., Ka1, Ka2, Ka3 in Figure 4.2) refer to the measured performance outputs of the organizational model 

that help define the states of PSFs. For example, the quality of organizational training affects the state of 

training/experience PSF in HRA. Thus, the estimated quality of training from the organizational model is 

a key performance measure associated with the training/experience PSF in I-PRA. In the interface module, 

by having the probability distributions of the key performance measures resulting from the uncertainty 
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analysis, the probability of each state of PSFs (e.g., low, nominal, high) is generated (Element 5 in Figure 

4.2) by estimating the probability that the associated key performance measure exceeds threshold values.  

 

Figure 4.2: Integrated PRA (I-PRA) methodological framework for quantifying SoTeRiA 

 

Pence et al., (2019) covered the methodological elements of DT-BASE in detail, and briefly 

highlighted the methodological elements of DT-SITE. (Pence et al., 2019b). This paper focuses on the 

advancement of the DT-SITE methodological steps (see Section 4.3.1) and their applications for NPPs 

(Section 4.4). The Data-Theoretic approach advances measurement techniques for organizational factors in 

the following ways:  

1. It guides “data analytics” with “theory.” Theory enhances the accuracy and completeness of causality 

being analyzed from data and helps avoid potentially misleading results from solely data-oriented 
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approaches. In the Data-Theoretic approach, the theoretical causal structure of the SoTeRiA 

framework (Figure 4.1) and the contextual keywords of each node in SoTeRiA provide the categories 

for labeling data, which can be used to train the classifier in supervised machine learning, so that the 

underlying theory supports the completeness of causal factors and their causal relationships in text 

mining results.  

2. It combines different sources and types of information from academic literature, practical industry 

procedures, and regulatory standards in DT-BASE elements, considering the analysts’ “subjective” 

interpretation of the information. The “generic” information obtained in DT-BASE is then integrated 

with industry-specific information extracted from industry event databases in DT-SITE. 

3. It uses text mining (in DT-SITE), in addition to expert opinion (DT-BASE), as a measurement 

technique. This research leverages available data for organizational factors, even though the data has 

a different nature than tabular numerical formatting. Archival data, documents, and texts serve as 

primary organization-level data. The Communicative Constitution of Organization (CCO) is a widely-

accepted multidisciplinary perspective of organizational communication theory, which asserts that 

“organizations are constituted (and maintained) through human communication” (Cooren et al., 2011). 

For example, organizational documents in circulation at NPPs are stable data that move forward 

through space and time, and these documents are what constitute the organization (Ashcraft et al., 

2009; Güney & Cresswell, 2012; Taylor et al., 1996).  

 

4.3.1. DT-SITE Elements of the Data-Theoretic Input Module in I-PRA 

As the I-PRA framework (Figure 4.2) shows, the output of Element 1.5 of DT-BASE (i.e., the 

Organizational Causal Input Model) provides the causal factors, their related keywords (i.e., synonyms, 

categories, labels), and causal relationships as inputs for the elements of DT-SITE. Pence et al., (2019) 

proposed the following five methodological elements for DT-SITE: 

• Text Mining (Element 2.1 in Figure 4.2) 

• Estimating Conditional and Marginal Probabilities Considering their Associated Uncertainties 

(Element 2.2 in Figure 4.2) 

• Developing Aggregated Conditional and Marginal Probabilities based on Multiple Data Sources 

(Element 2.3 in Figure 4.2) 

• Bayesian Integration of SITE and BASE Probabilities (Element 2.4 in Figure 4.2)  

• Integration in the Organizational Causal Input Model/BBN Computational Platform (Element 

2.5 in Figure 4.2) 

In the previous research by some of the authors of this paper, a simplified keyword search was 

implemented to fulfill Element 2.1 in DT-SITE (Pence et al., 2019b; Pence, J et al., 2017). Pence et al., 
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(2019) also developed general methodologies for Elements 2.2, 2.3, 2.4, and 2.5, focusing on updating 

conditional and marginal probabilities of a BBN that was developed and quantified from the DT-BASE for 

the Organizational Casual Input Model (Pence et al., 2019b). Section 4.3.1.1 advances the methodological 

steps of text mining (Element 2.1) in DT-SITE. Section 4.3.1.2 elaborates on Element 2.2 and provides 

explanations on how to use the results of text mining (Element 2.1) to estimate the target node probability 

(and its associated uncertainty) of the Organizational Causal Input Model. Future research will further 

advance Elements 2.2, 2.3 and 2.4 to use the results of text mining for the update of the conditional 

probabilities of the BBN developed in DT-BASE.   

 

4.3.1.1. Text Mining (Element 2.1 in Figure 4.2) 

Element 2.1 of DT-SITE establishes a bridge between the different nomenclatures used in industry, 

regulatory, and academic settings (i.e., the casual factors and relationships built in DT-BASE) to the 

language used in textual artifacts from industry-wide event reporting systems. This paper proposes four 

methodological steps for Element 2.1 in DT-SITE:  

• Collect and pre-process unstructured free text data (Step i of Element 2.1 in Figure 4.2),  

• Identify and evaluate theory-based seed terms from DT-BASE (Step ii of Element 2.1 in Figure 

4.2),  

• Select features (Step iii of Element 2.1 in Figure 4.2), and 

• Build and evaluate classifiers (Step iv of Element 2.1 in Figure 4.2). 

 

The flowchart in Figure 4.3 demonstrates the computational implementation of the four steps of 

Element 2.1 (text mining) and Element 2.2 of DT-SITE. The following sub-sections explain in detail the 

four steps of Element 2.1 and the computational flowchart. Section 4.3.1.2 covers the explanation of 

Element 2.2. 
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Figure 4.3: Computational flowchart of DT-SITE Element 2.1 (Steps i-iv) and Element 2.2 

 

4.3.1.1.1. Collect and pre-process unstructured free text data (Step i of DT-SITE Element 2.1 in Figure 4.3) 

Textual data requires pre-processing, including data cleaning (e.g., removing non-ASCII 

characters), data formatting (e.g., usable text files), and data management (e.g., file labeling). Once the 

dataset has been collected in a usable format, text data is pre-processed to identify sentences and terms 

(e.g., using the Stanford CoreNLP toolkit (Manning et al., 2014)). It should be noted that due to the variety 

of data in industry reporting systems, specific computational processes are not provided for Step i, however, 

a detailed case study implementing Step i can be seen in Section 4.4.1.1. 

 

4.3.1.1.2. Identify and evaluate theory-based seed terms in DT-BASE (Step ii of DT-SITE Element 2.1 in 

Figure 4.3) 

Supervised algorithms require labeled text. Labels are aligned with text opportunistically from 

other datasets or by manual annotation. The advantage of using the DT-BASE theoretical causal model to 

127



drive text mining efforts is that candidate seed terms (i.e., terminology and vocabulary for specific causal 

factors), drawn from the theoretical constructs (i.e. with context, definitions, synonyms, and industry-

specific language of causal factors) within the Organizational Causal Input Model (Element 1.5 in Figure 

4.2), can be used to scale up human annotation efforts that are then used by the supervised algorithm. 

Identifying the final set of seed terms is an iterative process, where an initial set of seed terms are identified 

(ii.a in Figure 4.3) using the Organizational Causal Input Model (Element 1.5 in Figure 4.2) that is 

developed through the DT-BASE process (Elements 1.1. to 1.4 in Figure 4.2). A sample set of data that 

include the selected seed terms are randomly obtained for annotation (ii.b in Figure 4.3). Next, experts 

perform annotation of the candidate seed term-related data (ii.c in Figure 4.3), evaluating whether the 

sentence is “related” or “not related” to the target node (e.g., in the case study of this paper explained in 

this paper, the target node is NPP “training system”). In this same step, ii.c, inter-rater reliability is 

calculated using the kappa statistic (Cohen, 1960; Landis & Koch, 1977) to determine the level of agreement 

between annotators. See Appendix A for more details on the calculation of inter-rater reliability in this 

paper. The inter-rater reliability results of Cohen’s kappa (Cohen, 1960) have been interpreted as: values ≤ 

0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 

0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement (Landis & Koch, 1977; McHugh, 

2012). A low level of agreement indicates ambiguity in candidate seed terms, lack of knowledge by the 

annotators, or theoretical inconsistencies between the Organizational Causal Input Model and the text data.  

In Step ii.d, if the result of inter-rater reliability analysis is low, the results of annotation are not 

reliable enough to be used in the next step of the algorithm and so before moving to step ii.e, it is 

recommended that the annotators be trained to get a clear understanding of the meaning of the seed terms. 

Then, the same set of seed terms are used to generate another sample of data for the annotators to conduct 

the annotation until the inter-rater reliability rate is improved to a reasonable value. Step ii.e (ii.e in Figure 

4.3) is a process to use the results of annotations to remove candidate seed terms that do not adequately 

identify data related to the target node category. If the number of target node-related data pertaining to a 

specific candidate seed term does not meet the analyst’s threshold criteria (e.g., the ratio of number of target 

node-related data over number of all data in a sample of seed term queries is less than %30), a decision is 

made to remove the seed term. If more seed terms are required, additional candidate seed terms are 

generated (ii.g in Figure 4.3), and then another sample data is selected based on the updated set of candidate 

seed terms, and steps ii.c, and ii.e are rerun. This loop is repeated until adding more candidate seed terms 

does not provide the analyst a reasonable number of additional selected seed terms (i.e., most of added seed 

terms are removed in Step ii.e.). In this case, in Step ii.f., the analyst decides to stop this process and move 

to Step ii.h to call the resulted set of seed terms as “final.” The final seed terms are used in Step iii that is 

discussed in Section 4.3.1.1.3. 
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4.3.1.1.3. Select features (Step iii of DT-SITE Element 2.1 in Figure 4.3) 

Using the final seed terms from Step ii, a sample set of data that includes seed terms is queried (iii.a 

in Figure 4.3). In this paper, this sample set of seed term-queried data is referred to as the “silver standard.” 

The assumption of the silver standard is that any entry containing a seed term is labeled as being in the 

target node category, while any entry that does not contain a seed term is labeled as not being in the target 

node category. Since the seed terms that are used for the generation of the silver standard are based on an 

interactive and annotation-based process in Step ii (explained in Section 4.3.1.1.2), it is reasonable to 

assume that all the data entries that are in the silver standard (i.e., the data entries that contain seed terms) 

are related to the target node category. However, assuming that the silver standard completely covers the 

target node category is not accurate for several reasons, namely,  (i) the theory-based seed terms may not 

be comprehensive, and/or (ii) it is possible that some of the selected seed terms appear in the data as types 

of synonyms that are not known, and/or (iii)  since our data is imbalanced/skewed, removing some of the 

seed terms in Step ii.d may lead to missing a reasonable number of data entries related to the target node 

category. According to Zipf’s law, the word frequency of language typically follows a power law 

distribution (Zipf, 1935). While it is easy to identify the most frequent keywords using keyword searches, 

it is challenging to ensure that all the relevant keywords that appear in the long tail are also captured. 

Machine learning models can be overfit to the initial data set if the entire vocabulary of a collection 

is used rather than a subset of informative features. One of the symptoms of overfitting is that the model 

produces accurate predictions on a training dataset but does not generalize to data in a new test set. 

Overfitting is problematic when working with text because the feature space is typically large (i.e. the 

vocabulary size can be in the order of tens of thousands) and because the feature space is sparse (i.e. most 

features are zeros because a data entry contains only a small subset of the vocabulary terms). To avoid over-

fitting, informative features are selected that represent “characteristics” in data that are likely predictors of 

the target node category (Joachims, 2002). In Step iii.b of the feature selection process, entropy is calculated 

for every word in the dataset and based on the labels from the silver standard. Entropy is widely used in 

feature selection in machine learning (Yang & Pedersen, 1997). The reduction in entropy associated with 

each word (or term) can be used for word ranking, where words providing the greatest reduction in entropy 

are prioritized (Sui, 2013). In this paper, Eq. 4.1 in Yang and Pedersen (1997) is used to identify the most 

informative features (Yang & Pedersen, 1997).  

𝐺(𝑡) = − '𝑃(𝑡)) 𝑃(𝑐!|𝑡) 𝑙𝑜𝑔 𝑃(𝑐!|𝑡) + 𝑃(𝑡̅)
"

!#$
) 𝑃(𝑐!|𝑡̅) 𝑙𝑜𝑔 𝑃(𝑐!|𝑡̅)

"

!#$
1 

      

(4.1) 

where, 𝑃(𝑡) is the probability of word t existing in a document/entry, 𝑃(𝑐!|𝑡) is the conditional probability 

a document is in category i given word t in the document, 𝑃(𝑡̅) is the probability of word t not existing in 
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a document, and 𝑃(𝑐!|𝑡̅) is the conditional probability a document is in category i given word t is not in 

the document. Eq. 4.1 is run for every word for all entries in the dataset. The words are ranked based on 

lowest entropy score, and using this ranking, in step iii.c, the analyst will select r ranked words with the 

lowest entropy as the final set of features that will be used in the classifier in Step iv. 

 

4.3.1.1.4. Build and evaluate classifiers (Step iv of DT-SITE Element 2.1 in Figure 4.3) 

The purpose of this step of the algorithm is to use the features (generated in Section 4.3.1.1.3) to 

build a predictive model (or function or classifier) that can best identify (or classify) the data related to the 

target node category. The assumption is that a function of these features would represent the characteristics 

that could lead to the identification/classification of the target category data, and the purpose of this step of 

the algorithm is to build the right function of the features. In order to build this function (or classifier), 

several candidate techniques (e.g. naïve Bayes, decision tree and SVM) are common. This paper uses SVM 

in the case study (Section 4.4). After a specific technique (e.g., SVM) is selected, k-fold cross validation 

(Anguita et al., 2009) is used to execute the technique on the data and evaluate the error rate of classifier 

performance. The underlying concept of k-fold cross validation is that k-1 folds of data (i.e., “training 

data”9) is used for building the classifier while one fold of data (i.e., “test data”) is used for testing the 

classifier. This process is repeated k times (by changing the folds) so that each fold of data is used for 

testing. In this study, the k-fold cross validation is also run several times (“n” runs in the algorithm) to better 

validate the results and generate more randomness. These “n” runs try to check the model validity by 

capturing the epistemic uncertainty (i.e., uncertainty related to the lack of knowledge or confidence about 

a model (NRC, 2013b)) in the results that are detailed in Section 4.3.1.2 by developing the probability 

distribution of the number of data entries associated with the target node category.     

In Step iv.a of Figure 4.3, the analyst defines the number of runs (n) that the k-fold cross validation 

needs to be repeated. In this paper, the number of runs is based on the analyst’s opinion, but future work 

will discuss the sensitivity of the results to these number of runs. At the start of each run (Step iv.c in Figure 

4.3), the entire dataset is shuffled and divided into ‘k’ mutually exclusive and approximately equal folds. 

In Step iv.e, the classifier is built using (a) the selected classifier building technique (e.g., SVM), (b) the 

features (from Step iii), and (c) the training data. In this step of the algorithm, the selected technique (e.g., 

SVM) is conducted on the training data (i.e., folds 1,2,…i-1, i+1,…k) to build a function of the features 

(i.e., a classifier) that can well present the characteristics of the category-related data (i.e., the label data) in 

the training data. In step iv.d of Figure 4.3, the remaining fold of the data that is not included in the training 

 
9 “Training data” is the data set that is used for building the classifier and is labeled by the silver standard and should 
not be confused with the “training system” causal model from DT-BASE or the target node category of “training 
system” in Section 4. 
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data (i.e., fold i) is used as the test set for the built classifier. The classifier is used to label data in the test 

set (fold i) as ‘related to the target node category’ or ‘not related to the target node category’ (Step iv.f in 

Figure 4.3). This process is repeated for each of the k folds (iv.g and iv.h in Figure 4.3), i.e., the test set 

would change among all k folds. In Step iv.i of Figure 4.3, to evaluate the performance of a classifier, a 

confusion matrix is used to calculate precision, recall, and accuracy for each run. Precision is the ratio of 

the number of data entries correctly predicted as being related to the target node category (i.e., data entries 

labeled as being related to the target node category by the classifier and are also in the silver standard) to 

the total number of data entries predicted by the classifier as being related to the target node category. Recall 

refers to the ratio of the number of data entries correctly predicted as being related to the target node 

category to the total number of data entries marked as being related to the target node in the silver standard. 

Accuracy stands for the ratio of correctly labeled data entries (i.e., the ratio of the summation of the number 

of agreements between the classifier predictions and the silver standard to the total number of data entries 

are recorded for each run. In Steps (iv.j and iv.k in Figure 4.3), this process is repeated for the rest of the n 

runs.  

In Step iv.i, the performance of the classifier is tested against labels generated by the silver standard 

but it is known that the silver standard does not cover all target category data entries. If it was possible to 

annotate the entire database to find all the labeled data, it would be a better test of the performance of the 

classifier. Instead of annotating the entire dataset, in Step iv.l of Figure 4.3, a random sample of data is 

selected and annotated to generate a gold standard. In the literature, a gold standard can be generated by 

annotating either a complete annotation of the entire dataset (e.g., (Akhondi et al., 2014)) or a set of 

randomly sampled data (e.g., (Juckett, 2012)). Ideally, the gold standard should have a high inter-rater 

reliability score (Viera & Garrett, 2005). If an entire dataset is not used for the gold standard, then the 

number of samples for annotations in the gold standard is determined by the analyst, and annotations should 

also have a very high inter-rater reliability score (i.e., (Cohen, 1960; Landis & Koch, 1977)). In Step iv.m 

of Figure 4.3, the classifier predictions are evaluated against the gold standard using a confusion matrix for 

estimating precision, recall, and accuracy. The value of evaluation in Step iv.i is that a larger amount of 

data is used for testing the classifier since the folds are changed k times in the k-fold evaluation process and 

the k-fold runs are repeated “n” times, but the test in Step iv.m is only on one subset of data. The value of 

evaluation in Step iv.m is that the test is against the gold standard rather than silver standard. This paper 

proposes both of these evaluations in the algorithm to get more information on model performance, while 

avoiding the annotations of the entire dataset which requires extensive time and human resources. 

4.3.1.2. Estimating Conditional and Marginal Probabilities Considering their Associated Uncertainties 

(Element 2.2 in Figure 4.3) 
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As it is mentioned at the beginning of Section 4.3.1, the purpose of Element 2.2 of DT-SITE is to 

estimate (from the results of text mining) the conditional and marginal probabilities of the BBN model 

developed in DT-BASE. These probabilities in Element 2.4 are integrated with the probabilities estimated 

in the DT-BASE using Bayesian updating. This paper only covers Element 2.1 (Text mining) and Element 

2.2. In this paper, the scope of Element 2.2 is limited to estimating the target node probability of the BBN 

model because the text mining of this paper is limited to the target node. Future work will extend the text 

mining algorithm to other causal factors in the BBN model.  

In this paper, in each of the n runs of Step iv in Element 2.1 (explained in Section 4.3.1.14), the 

number of data entries related to the target node category is predicted. The predicted number of data entries 

related to the target node is then divided by the total number of data entries in the collection, resulting in 

the probability of data being related to the target node for each run (Step 2.2.a in Figure 4.3). Based on the 

n probabilities estimated from n runs, an initial distribution family should be selected (Step 2.2.b in Figure 

4.3) and fit to the n probabilities (Step 2.2.c in Figure 4.3). A statistical test (e.g., Kolmogorov-Smirnov 

test for a small sample size) is utilized to evaluate the goodness of fit of the selected distribution (Step 2.2.d 

in Figure 4.3). Additional details regarding assumptions for the selected statistical test are provided in 

Section 4.4.2. If the results of the statistical test are not acceptable, another distribution is selected and fit 

to the n probabilities (Step 2.2.c in Figure 4.3). However, if the results of the statistical test are acceptable, 

the fitted distribution is accepted. The distribution resulted from this process represents the epistemic 

uncertainty in the results of the algorithm that is captured through “n” runs in Section 4.3.1.1.4. Future 

research by the authors will focus on more advanced quantification of uncertainties in this study.  

 

4.4. APPLYING THE DT-SITE METHODOLOGY TO ESTIMATE THE PROBABILITY OF 

TRAINING SYSTEM-RELATED EVENTS IN THE LICENSEE EVENT REPORTS OF NUCLEAR 

POWER PLANTS  

This section applies Element 2.1 and 2.2 of the DT-SITE methodology (explained in Section 4.3.1) in 

a case study using LER data from the U.S. nuclear power industry. The case study uses an existing 

Organizational Causal Input Model for the “training system” at an NPP (see Figure 4.4), related to Node 7 

in Figure 4.1. As Figure 4.2 demonstrates, the existing Organizational Causal Input Model in Element 1.5, 

built and quantified using Elements 1.1 to 1.4 of DT-BASE (Pence & Mohaghegh, 2018; Pence et al., 

2019b), provides input to Step ii of Element 2.1. of DT-SITE (as it is explained in Section 4.3.1.1.2). The 

target node of the causal model in Figure 4.4 is the NPP “training system,” which stands for the NPP 

organization’s ability to provide adequate training to its workforce and is based on the Systematic Approach 

to Training (SAT) used at NPPs. Within the training system causal model (Figure 4.4), each factor and 
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causal relationship is supported by either industry, regulatory, or academic sources (i.e., written evidence 

could be found to support the inclusion and placement of each sub-factor) (Pence & Mohaghegh, 2018).  

 
Figure 4.4: Training system causal model developed in Element 1 (i.e., DT-BASE) of the Data-Theoretic 

module of I-PRA methodological framework (Figure 4.2) (Pence & Mohaghegh, 2018; Pence et al., 

2019b) 

 

4.4.1. Applying Text Mining on the LER Database (Element 2.1 in Figure 4.2) 

This case study applies the steps of Element 2.1, introduced in Section 4.3, including: (i) collect 

and pre-process unstructured free text data (Section 4.4.1.1), (ii) identify and evaluate theory-based seed 

terms from DT-BASE (Section 4.4.1.2), (iii) select features (Section 4.4.1.3), and (iv) build and evaluate 

classifiers (Section 4.4.1.4) using the LERs from “Event Date” 1/3/2000 to 1/9/2019, where there are 6,225 

unique LERs accessed from the LERSearch dataset on the NRC website (https://lersearch.inl.gov).  

4.4.1.1. Collect and pre-process unstructured LER data (Step i of DT-SITE Element 2.1 in Figure 4.3) 

The data collection in this study refers to nodes A to D.3 in Figure 4.5, where LERs are downloaded 

from the public website using a python script for (A) setting the path and naming convention of data, (B) 
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setting LER search parameters (e.g., date, NRC region), (C) running web browser automation using 

Selenium10 and ChromeDriver,11 (D) performing web scraping of LERs, where the ‘View Text’ hyperlink 

is used as a decision criteria (D.1), (D.2) LERs without an HTML file are skipped, and (D.3) the rest are 

downloaded to the file path with the naming convention. Once data collection is completed, pre-processing 

begins. For pre-processing, another python script was developed for: (E) section identification and 

extraction using headers in the free text LER (i.e., abstract and cause), (F) performing text cleaning to 

remove HTML, Unicode blocks and unnecessary spacing, (G) running the Stanford CoreNLP Sentence 

Splitter (Manning et al., 2014) on the cleaned dataset, and finally (H) developing a pre-processed LER 

dataset to be used in Step ii of DT-SITE Element 2.1. 

   

 
Figure 4.5: Data collection and pre-processing (Step i of DT-SITE Element 2.1) on LERs (number of 

LERs shown in black boxes) 

 

The python script downloaded all text files associated with the LERs from 2000-2019. Among the 

LERs from 2000 to 2019, there were 60 that were marked “C” (Canceled), meaning that they were formally 

withdrawn, some having a cancelation letter. Two of the canceled reports (LER #s 3252008001 and 

3342014003) have duplicate LER numbers (but with different ML numbers) and are not marked as canceled 

or reused in the LER database. The canceled LERs associated with LER numbers 3252008001 and 

3342014003 were excluded from this study, but the non-canceled LERs associated with those same LER 

numbers are included in the study. All 60 canceled LERs and the two duplicates (listed in Appendix B) are 

excluded from the analysis, bringing the total dataset from 2000 to 2019 to 6,165 LERs. It should be noted 

 
10 https://www.seleniumhq.org/ 
11 http://chromedriver.chromium.org/ 
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that both the ‘Abstract’ and ‘Cause’ sections of LERs were used in this study. Out of the 6,165 LERs, there 

were 98 files where the ‘Cause’ section could not be extracted due to missing or incomplete header 

information (listed in Appendix C), and therefore only the ‘Abstract’ is used. For the 6,165 LERs, the 

abstract and cause sections (only using the abstract sections for LERs in Appendix C) were pre-processed 

and loaded into the Stanford CoreNLP sentence splitter.  

4.4.1.2. Identify and evaluate theory-based seed terms from the DT-BASE training system causal model 

(Step ii of DT-SITE Element 2.1 in Figure 4.3) 

In this step, the terms, definitions, synonyms, and relationships for factors in the training system 

Organizational Causal Input Model (Figure 4.4) are used. Based on keywords from DT-BASE (i.e., from 

(Pence et al., 2019b)), an initial set of candidate seed terms is generated (ii.a in Figure 4.3) to identify the 

“training system” target node (i.e., ‘Level 0’ in Figure 4.4). In this study, the bag of words assumption is 

used (Salton et al., 1975), which means that each feature in Step iii corresponds to a single word, and 

therefore keywords in this step are single words. A sample set of event data that have at least one of the 

candidate seed terms are selected and two independent experts provide annotations identifying if entries are 

related to the target node (“Yes”) or not (“No”). Inter-rater reliability was calculated to determine the level 

of agreement between two annotators. In most cases, the independent annotation process requires 

annotation instructions, but in the current study, the training system causal model (shown in Figure 4.4) 

served as a guide for annotators. Two authors of this paper served as annotators, “Annotator A” and 

“Annotator B,” independently reading and labeling 313 sentences from 282 LERs. Both annotators were 

familiar with industry language in the LER narratives, as well as with the training system causal 

model. Inter-rater reliability (see Table 4.4) was measured using the kappa statistic (Landis & Koch, 

1977), resulting in a score of 0.96 that shows a high agreement. For the supplementary data of this 

annotation see (Pence et al., 2019a). 

Table 4.4: Inter-rater reliability analysis for Annotators A and B on LERs 

Annotator B 

Yes No 

Annotator A 
Yes 182 3 

No 3 125 

As mentioned in Section 4.3.1.1.2, identifying and evaluating candidate seed terms is an iterative 

process whereby experts evaluate sentences that contain seed terms in the context of a dataset, and either 

add or remove seed terms until the “final” set of seed terms is developed. Seed terms considered in this 

project are shown in Table 4.5. To generate Table 4.5, the sentences which contain a seed term and are 

related to the target node are identified as “Yes,” while sentences that contain a seed term but are not related 
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to the target node are identified as “No.” The number of times the seed term is marked as “Yes” is divided 

by the total number of entries randomly sampled for each seed term (“Total”) to provide a percentage of 

those entries that include a seed term and related to the target node (“%Yes”). During this process of 

evaluating candidate seed terms, experts remove candidate seed terms that do not identify the target node 

above a threshold of 0.3 (an assumption made by the analyst). For example, “train” was included as a 

candidate seed term, but in the contexts of LER reports, “train” refers to a redundant technical system (e.g., 

auxiliary feedwater train) and not human “training.” In other cases, while several LERs reported that 

“procedures” were updated as a corrective action, ‘procedure quality’ differs from ‘training quality.’ In 

other words, in the reviewed LERs where inadequate procedural guidance was mentioned, they were only 

considered as ‘training-related’ in cases where the event narrative stated that there was a procedural 

violation. Therefore, if the narrative only refers to a procedural guidance deficiency, it does not imply 

training in all cases, unless stated as a procedure violation, and “procedure” was removed as a candidate 

seed term. These types of definitions and caveats were considered for all candidate seed terms and updated 

accordingly.  

Each seed term evaluated independently for both the abstract and cause sections in Table 4.5. It 

should be noted that in these experiments, seed terms from the abstract and from the cause section were 

sampled separately, as it was not clear at the beginning if the language from these sections would differ; 

however the results showed that the same set of seed terms emerged from both sections, and therefore the 

abstract and cause sections were not separated in the next step.  

Table 4.5: Candidate seed terms evaluated for the training system causal model 
Table 4.5 (cont.)   

 
Included in the Abstract 

Section? 
Included in the Cause Section? Seed 

Term 

(Final) 
Candidate 

Seed Terms 
Yes No Total %Yes Yes No Total %Yes 

experience 3 17 20 15 0 20 20 0 No 

experienced 0 20 20 0 1 19 20 5 No 

familiar 0 0 0 0 10 8 18 56 Yes 

familiarity 1 0 1 100 5 0 5 100 Yes 

instructor 0 0 0 0 1 0 1 100 Yes 

instructors 0 0 0 0 4 0 4 100 Yes 

knowledge 17 3 20 85 16 4 20 80 Yes 

qualification 4 16 20 20 5 15 20 25 No 

requalification 14 1 15 93 20 0 20 100 Yes 
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Table 4.5 (cont.) 

Included in the Abstract 

Section? 
Included in the Cause Section? Seed 

Term 

(Final) 
Candidate 

Seed Terms 
Yes No Total %Yes Yes No Total %Yes 

trained 20 0 20 100 19 1 20 95 Yes 

training 20 0 20 100 20 0 20 100 Yes 

unfamiliar 2 0 2 100 8 1 9 89 Yes 

4.4.1.3. Select features from training-related LERs (Step iii of DT-SITE Element 2.1 in Figure 4.3) 

For feature selection, words were converted to lower case, but stemming was not employed to 

prevent misidentification of terms (e.g., to ensure that ‘training,’ which refers to the target node, was treated 

separately from ‘train’). Although the abstract and cause sections were considered separately to evaluate 

seed terms in Step ii, in this step, both the abstract and cause sections of LERs between 2000 and 2019 are 

used. The silver standard categorization is shown in Table 4.6, where a training-related LER is marked 

“Yes” if it contained at least one seed term in either the abstract or cause section, and an LER that is not 

training-related is marked “No.” In order to develop features, entropy of all words in the LERs is calculated, 

considering categorization from the silver standard, and word ranking is done using Eq. 4.1.12 As a result 

of word ranking, 500 words (the number defined by the analyst) with the lowest entropy were selected as 

the final set of features. Table 4.6 shows an example of six lowest-ranked features, pulled from a random 

set of LERs, to demonstrate the number of times a feature could appear in an LER. When a feature (i.e., a 

word) does not appear in the LER, a zero is recorded in the feature matrix. As with most text classification 

tasks, the feature matrix is sparse, which is also illustrated in Table 4.6 by the number of zeros, for example 

only one of the LERs included the term “training” (Column 2 in Table 4.6), and none of the LERs in this 

sample included the term “trained” (Column 4 in Table 4.6).  

Table 4.6: Example of the six lowest-ranked features (out of 500) 
Table 4.6 (cont.) 

LER # training knowledge trained personnel licensed expectations … 

Training-

Related 

LER? 

2802005003 0 0 0 0 0 0 … No 

5292005006 0 0 0 0 0 2 … No 

12 Eq. 4.1 is performed using the Oracle Data Miner (version 12.2c). 
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Table 4.6 (cont.)        

3342011001 0 1 0 1 0 0 … Yes 

4232010004 0 0 0 1 0 0 … No 

3532000003 0 0 0 0 0 0 … No 

2472000001 0 0 0 4 0 1 … No 

2852011005 0 0 0 0 0 0 … No 

3022006002 0 0 0 12 0 0 … No 

2602009006 2 0 0 2 1 0 … Yes 

3732017006 0 0 0 0 0 0 … No 

 

4.4.1.4. Build and evaluate classifiers for identifying training-related LERs (Step iv of DT-SITE Element 

2.1 in Figure 4.3)  

 

The SVM technique (Vapnik, 1999) was selected for classifying LERs in the DT-SITE sub-module 

since SVMs work well for text classification tasks where data is sparse and skewed (only 1,341 [22%] of 

the 6,165 LERs included a seed term). Data was stored in an Oracle Database 12c Enterprise Edition 

Release 12.2.0.1.0 and the linear SVM was used with Oracle default settings. In this study, 10-fold cross 

validation was used to evaluate the classifier. To perform 10-fold cross validation, LERs were shuffled and 

randomly assigned to ten (approximately) equal segments for each run. In 10-fold cross validation, the 

classifier is built using the first 9 folds of the data (i.e., 9/10ths of the total number of documents) and 

evaluated on the remaining 1/10th of the data (which is called the test set). A second classifier is then built 

using the first 8 folds and the 10th fold and then evaluated using the 9th-fold. This process was repeated for 

each of the segments so that predictions for each LER in each test set are collected such that each LER had 

one prediction. The process of shuffling, random assignment, and prediction for each of the ten test sets, is 

a “run.” Each run provides one prediction (either “training” or “not training”) for each LER. Figure 4.6 

shows the process of 10-fold cross validation for one run.  
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Figure 4.6: Example of 10-fold cross validation for one run 

 

In order to represent some of the epistemic uncertainty associated with SVM accuracy, the 10-fold 

cross validation process was repeated 10 times (10 runs)13. Table 4.7 reports the classifier prediction on the 

number of LERs related to the target node category (i.e., training system-related LERs). The table also 

demonstrates the performance of the SVM classifiers, by reporting precision, recall, accuracy using silver 

standard. 

 

Table 4.7: Reporting the classifier results and evaluating classifier performance based on the silver 

standard     

Run ID Precision Recall Accuracy Estimate of Training System-Related LERs  

1 0.941 0.932 0.972 1,329 

2 0.939 0.928 0.971 1,325 

3 0.940 0.929 0.972 1,325 

4 0.939 0.930 0.972 1,328 

5 0.936 0.936 0.972 1,341 

6 0.932 0.934 0.971 1,345 

7 0.935 0.924 0.970 1,325 

8 0.942 0.924 0.971 1,315 

9 0.942 0.928 0.972 1,321 

10 0.936 0.923 0.970 1,322 

Average 0.938 0.929 0.971 1,328 

 

As Table 4.7 shows, the SVM classifiers showed high performance with respect to the silver 

standard; however, to further evaluate the SVM classifiers, independent sentence-level annotations (See 

 
13 In this study, the number of runs “n” and the number of folds “k” are both ten, however, these two do not have to 
be equal, as these are two independent numbers that are selected by the analyst.  
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Table 4.8) were performed on 200 randomly sampled LERs (with a total of 10,269 sentences) to develop a 

gold standard. Inter-rater reliability score was 0.96 using Cohen’s kappa statistic (Cohen, 1960). For the 

supplementary data of this annotation see (Pence et al., 2019a). 

 

Table 4.8: Consensus between Annotators A and B in manual annotation (gold standard) 

 
Annotator B 

Yes No 

Annotator A 
Yes 160 0 

No 13 10,096 

 

The annotated samples were compared against the outputs of 10 SVM classifiers to generate the 

gold standard confusion matrix (Table 4.9). It should be noted that, in Table 4.9, predicted SVM classifier 

results are based on the aggregation of ten runs. In this table, “Actual” refers to the gold standard developed 

using manual annotations, and “Predicted” refers to the SVM classifier results. For example, in Table 4.9, 

45 (Yes/Yes) represents the entries where the gold standard was annotated “Yes” and the SVM classifier 

predicted “Yes,” showing agreement that the entry was training related. Using the confusion matrix in Table 

4.9, the precision for the gold standard was 1, the recall was 0.672, and the accuracy was 0.890. One of the 

reasons for lower performance when comparing with the gold standard is that the features and classifiers 

are built in this study based on silver standard. Future work will generate more annotated data to provide 

possibilities to use a gold standard when evaluating features and classifiers. Future work will also focus on 

advancing uncertainty analysis in this algorithm to better use the classifier prediction outputs in presenting 

the uncertainty in the estimated probability in Section 4.4.2.       

 

Table 4.9: Confusion matrix for the gold standard (manual annotations)  

 Predicted (SVM Classifier Results) 

Actual (Based on the Gold Standard/Manual Annotations) Yes No 

Yes 45 22 

No 0 133 

 

 

4.4.2. Estimating the Probability of Training System-Related Events in LERs (Element 2.2 in Figure 4.2) 

This step uses the total number of LERs in the data collection period, 6,165, as the denominator, 

and uses the SVM estimation of all ten runs as a numerator to generate ten SVM-based probability estimates 

of LERs from 2000 to 2019 being in the target node category. In this study, the lognormal distribution was 
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selected to represent the ten estimated probabilities. To evaluate the goodness of fit of the selected 

distribution, the Kolmogorov-Smirnov (KS) test was used. The KS test was evaluated at five levels of 

significance (a) (i.e.,  0.2, 0.1, 0.05, 0.02, and 0.01) corresponding to five critical values (0.323, 0.369, 

0.409, 0.457, and 0.489 (Hayter, 2012)), resulting in no rejections for a lognormal distribution with a test 

statistic of 0.234, and a p-value of 0.568 (i.e., threshold value of the significance level where the null 

hypothesis can be accepted for all values of (a) less than the p-value). Given the KS test results, the 

lognormal distribution is accepted. The Cumulative Distribution Function (CDF) and the Probability 

Distribution Function (PDF) are shown in Figure 4.7 and 4.8, respectively. The distribution resulted from 

this process represents the epistemic uncertainty in the results of the algorithm that is captured through “10” 

runs in Section 4.4.1.4. Future research by the authors will focus on more advanced quantification of 

uncertainties in this study. For example, one of the underlying assumptions in this study is that if an LER 

has a “sentence” related to the target node category, it is judged as a target node category-related LER. In 

other words, the judgment at the level of the sentence is assumed to be the judgment at the level of LER. 

Future work will evaluate the selectivity of the results with respect to this assumption.  

 
Figure 4.7: CDF for the probability of “Training System-Related” LERs from 2000 to 2019 

 

 
Figure 4.8: PDF for the probability of “Training System-Related” LERs from 2000 to 2019 

 

The probability estimated in this section is the probability of having training system-related LERs. 

This probability is different from the probability of “Poor Training Quality,” P, which can be defined as of 

A'/NDemand, where A' stands for the real number of events involving training as a contributor, during the data 
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collection period and, NDemand represents the total number of operator, operations, and maintenance demands 

during the data collection period. With this definition, P takes on values between 1.0 (every demanded 

action involves training issues) and 0.0 (training is never a contributor). Eq. 4.2 shows the relationship 

between P, which is the realistic probability of poor training quality, and the probability presented in Figure 

4.8 (i.e., the probability of training system-related LERs) which is represented by A/NLER (i.e., the ratio of 

training issues identified by DT-SITE [A], to all reported incidents during the data collection period [NLER]). 

In Eq. 4.2, A'/A stands for the quality of the LER program in terms of accurately reporting training 

contributions. If all incidents involving training are correctly identified and reported A'/A = 1.  
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Since NLER in the case study is not constrained to any specific NPP, this study proposes an approach for 

calculating NDemand that considers all NPPs in the U.S. by summing the steps of procedures during normal 

operation (𝑆/012_4/), steps of procedures during the outage time (𝑆/012_45), and tasks during maintenance 

processes over a year (MT), to create a ‘nuclear industry-wide’ estimate, as shown in Eq. 4.3.  
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where, 𝑁= is the total number of operating NPP units in the U.S. (e.g., 99) over the period of interest of 𝑛; 

years (e.g., the period of interest in this study is 2000-2019, 𝑛;	= 19.02), nd is the number of operating days 

per year (e.g., 318 days), 𝑑′ is all days on outage per year,	𝑃𝑟𝑜𝑐_𝑂𝑃 is the collection of all procedures 

conducted daily during normal operation (e.g., approximately 120 procedures as a rough estimate using 

information from (Thomas et al., 2016)), 𝑃𝑟𝑜𝑐_𝑂𝑇:< is the collection of all procedures conducted on outage 

days (e.g., approximately 150 procedures as a rough estimate using information from (Thomas et al., 2016)). 

Eq. 4.3 assumes that the procedures (and steps of these procedures) for a plant are the same for every day 

that the plant is operating. However, this is not the case for days a plant is in outage, as it is assumed that 

the procedures vary over the duration of an outage based on the specific causes of the outage. Hence, 

𝑆/012_45!" in Eq. 4.3 is the number of steps in the procedure 𝑃𝑟𝑜𝑐_𝑂𝑇:< on day 𝑑′. It is assumed that MT is 

the number of annual maintenance tasks (e.g., approximately 325,000 maintenance tasks per year as a rough 

estimate using information from (Thomas et al., 2015)). It should be noted that the details of Eq. 4.3 are not 

a complete consideration of all possible demands, and the examples provided are for demonstration, based 

142



on rough and conservative estimates from two reports (i.e., (Thomas et al., 2015; Thomas et al., 2016)). 

Using Eq. 4.3, the average total number of demands is estimated as 992,976,930 for the period of 2000-

2019. Utilizing this number of demands, considering A'/A = 1 in Eq. 4.2, and using the results of 10 SVM 

runs (Table 4.7) for A (i.e., training system-related LERs), probability of “Poor Training Quality,” P is 

estimated as 7.03E-07. Figure 4.9 shows the PDF for the probability of “Poor Training Quality.”    

 

 
Figure 4.9: PDF for the probability of “Poor Training Quality” 

 

For the sake of discussion, this paper makes a simplifying assumption that the steps associated with 

each procedure are similar for all NPPs throughout the U.S.; however, to improve the accuracy of this 

estimation, future research is required to provide details of procedures and their associated steps for each 

plant.  Future work will also analyze how it is possible to have a more realistic estimate of A'/A. The 

probability of “Poor Training Quality” from text mining can be used to estimate the state of training-related 

PSFs in HRA, and that is the focus of ongoing research by some of the authors of this paper.    

 

4.5. CONCLUDING REMARKS 

 

Organizational factors remain elusive and latent contributors to incidents and accidents in high-

consequence industries. This paper is the product of a line of research on the advancement of ‘socio-

technical’ risk analysis to explicitly incorporate organizational factors into PRA/HRA. This paper advances 

the Data-Theoretic input module of the I-PRA framework (Figure 4.2) to support the quantification of 

underlying organizational factors using data analytic techniques. The Data-Theoretic (DT) input module of 

I-PRA has two sub-modules (i) DT-BASE, for developing detailed grounded theory-based causal 

relationships in SoTeRiA, equipped with a software-supported BASEline quantification utilizing 

information extracted from academic articles, industry procedures, and regulatory standards, and (ii) DT-

SITE, using data analytics to refine and measure the causal factors of SoTeRiA based on industry event 

databases and using Bayesian updating to modify the baseline quantification. This paper focuses on the 
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advancement of the DT-SITE methodology, specifically Elements 2.1 and 2.2 (see Section 4.3), 

contributing to the integration of text mining for the measurement of organizational factors and for PRA. 

To clarify how the approach proposed in this paper fills the gaps in the existing studies, Section 4.2 

provided a review of related studies in three different groups: (1) studies that utilize machine learning-

related techniques for the measurement of organizational factors in safety/risk analysis from 2000 to 2018, 

(2) machine learning studies (not specifically for organizational factors) that have been conducted from 

2000 to 2019 under the field of PRA, and (3) parametric studies that analyzed LERs from 2000 to 2018. 

The review of literature highlighted the gaps in the existing studies and the contributions of this paper, as 

follows: 

• None of the reviewed studies (in the three groups) used a supervised machine learning process that 

is guided by a theoretical causal framework, and this paper offers a first-of-its-kind theory-guided 

machine learning method.  

• There are a limited number of studies that leveraged machine learning for measuring organizational 

factors in safety/risk analysis. One of the reasons is that, for the measurement of organizational 

factors, methodologies should be capable of dealing with limited or unstructured data, as well as 

differentiate between a wide array of theoretical constructs. This paper develops and applies a 

machine learning method for the quantification of organizational factors in safety/risk analysis.  

• In studies where machine learning was applied for measuring organizational factors, none were 

connected to or performed analysis for PRA frameworks. This paper is a first-of-its-kind PRA-

related study that develops a machine learning method for the quantification of organizational 

factors 

• The studies applying machine learning or NLP approaches for PRA primarily analyzed physical 

phenomena. Among the PRA-oriented machine learning/NLP studies, nine used historical event 

data rather than results of simulation codes. Among these nine studies, four used unstructured free 

text data, three of which used LERs, and among these three, one used NLP instead of machine 

learning. This indicates that there are limited studies using text mining approaches for PRA. The 

Data-Theoretic methodology in this paper offers a text mining approach for PRA, where the 

supervised machine learning process is conducted on unstructured free text data from LERs to 

perform classification using the SVM technique. SVM, compared to Logistic Regression (used by 

some of the existing studies), has been shown to perform better for highly imbalanced/skewed 

datasets such as LERs. Compared to the well-known/open source machine learning algorithms for 

SVM and Logistic Regression, the performance evaluations of commercial software packages (e.g., 

IN-SPIRE, IBM Watson Content Analytics [ICA]), used by some of the existing studies, are limited 

due to a lack of open source, repeatable, and reproducible evaluations. Additional research is 

144



needed to compare the performance evaluation of machine learning techniques for unstructured 

data to justify the best selection for PRA.  

• The majority of studies that conducted data analysis on LERs used coded LERs (structured data) 

and a parametric type of process.  These studies did not consider the quality of human coders in 

their analysis. In this paper, LERs are “annotated” rather than coded. A theoretical causal model 

(developed in DT-BASE) is used to provide guides for annotators. In addition, the kappa statistic 

is used to measure the inter-rater reliability of annotators.  

• Among all the studies that conducted data analysis on LERs, three of them used machine learning 

approaches. Among these studies, two applied the supervised machine learning process of 

classification for analyzing LERs; however, their process was not guided by a theoretical 

framework. The Data-Theoretic methodology introduced in Section 4.3 makes unique contributions 

to studies of LERs by offering a supervised machine learning process that is guided by a theoretical 

causal framework. With respect to application areas, most studies that analyzed coded and 

structured LER data were focused on analyzing equipment failure and human error. This paper 

proposes the first-of-its-kind machine learning method to quantitatively analyze LERs for the 

application area of organizational factors. 

A case study (Section 4.4) leverages an existing DT-BASE causal model for the quality of an NPP 

“training system” (Figure 4.4 (Pence et al., 2019b)) to demonstrate the DT-SITE text mining step on a set 

of LERs from the U.S. nuclear power industry. A distribution was fit to the SVM classifier results to develop 

the distribution of the probability of “Training System-Related” LERs. A post analysis also is conducted to 

develop the distribution of the probability of having “Poor Training Quality” in NPPs. In this paper, several 

key assumptions are made which have the potential to contribute to uncertainty in the results; for example, 

future research is needed to analyze model uncertainty associated with different classification models (e.g., 

Decision Tree, Naïve Bayes). Another assumption is that LER labels are done based on sentence-level 

labels (i.e., if there is sentence related to training system in a LER, the LER is assumed to be related to 

training system). The accuracy of this and other assumptions needs to be evaluated in future studies.  
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CHAPTER 5: GIS-BASED INTEGRATION OF SOCIAL VULNERABILITY AND LEVEL 3 

PROBABILISTIC RISK ASSESSMENT TO ADVANCE EMERGENCY PREPAREDNESS, 

PLANNING AND RESPONSE FOR SEVERE NUCLEAR POWER PLANT ACCIDENTS1 

 

ABSTRACT 

In the nuclear power industry, Level 3 Probabilistic Risk Assessment (PRA) is used to estimate 

damage to public health and the environment if a severe accident leads to large radiological release. 

Current Level 3 PRA does not have an explicit inclusion of social factors, and therefore, it is not possible 

to perform importance ranking of social factors for risk-informing emergency preparedness, planning and 

response (EPPR). This paper offers a methodology for adapting the concept of social vulnerability, 

commonly used in natural hazard research, in the context of a severe Nuclear Power Plant (NPP) accident. 

The methodology has four steps: (1) calculating a hazard-independent social vulnerability index for the 

local population; (2) developing a location-specific representation of the maximum radiological, hazard 

estimated from current Level 3 PRA, in a Geographic Information System (GIS) environment; (3) 

developing a GIS-based socio-technical risk map by combining the social vulnerability index and the 

location-specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the 

criticality of social factors based on their contribution to the socio-technical risk. The methodology is 

applied using results from the 2012 Surry Power Station (SPS) State-of-the-Art Reactor Consequence 

Analysis (SOARCA). A radiological hazard model is generated from MELCOR Accident Consequence 

Code System (MACCS), translated into a GIS environment, and combined with the Center for Disease 

Control (CDC) Social Vulnerability Index (SVI). This research creates an opportunity to explicitly 

consider and rank the criticality of location-specific SVI themes based on their influence on risk, 

providing input for EPPR. 

 

5.1. INTRODUCTION 

Probabilistic risk assessment (PRA) is a systematic methodology used in risk-informed regulation 

and policy setting by the U.S. Nuclear Regulatory Commission (NRC) (NRC, 2002). PRA provides a 

risk-importance ranking of safety-critical systems and components to more efficiently allocate resources 

for inspections, maintenance, operation, design, and regulation (Kee et al., 2013). For a nuclear power 

 
1 This chapter is a reprint with permission of the publisher of an article published in Risk Analysis: Pence, J., Miller, 
I., Sakurahara, T., Whitacre, J., Reihani, S., Kee, E., & Mohaghegh, Z. (2018). GIS-Based Integration of Social 
Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and 
Response for Severe Nuclear Power Plant Accidents. Risk Analysis, 39(6). doi: https://doi.org/10.1111/risa.13241  
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plant (NPP), PRA can be used to generate three levels of risk information, including risk from reactor 

core damage (Level 1 PRA), risk from loss of containment integrity (Level 2 PRA), and risk to the public 

and environment (Level 3 PRA). NPP license holders maintain plant-specific Level 1 PRAs to estimate 

core damage frequency (CDF) resulting from a combination of initiating events (IE) (e.g., loss of coolant 

accident (LOCA), fire, seismic), and system- and component-level failures. Level 1 PRA is used for 

regulatory oversight, licensing, inspections, and a variety of other applications (NRC, 2002, 2014b). 

Level 2 PRA expands Level 1 PRA results to estimate the mode of containment failure and associated 

large early release frequency (LERF), while specifying amounts and types of radionuclides which are 

released to the environment, referred to as ‘source term’ (NRC, 1983). Level 3 PRA uses the source term 

from Level 2 PRA to analyze the transport of radionuclides through the environment. Level 3 PRA 

estimates the short and long-term consequences of nuclear accidents on public-health (e.g., short-term 

injuries or long-term cancers), environmental contamination, and economic consequences (Miller, 2015). 

While population’s social information is implicitly accounted for in Level 3 PRA in the determination of 

evacuation parameters for each site through evacuation time estimate (ETE) studies, the social factors are 

neither location specific nor explicitly incorporated; therefore, it is not possible to perform sensitivity 

analysis or importance ranking of social factors for risk-informing emergency preparedness, planning, and 

response (EPPR). In this research, a model is said to have an “explicit” incorporation/inclusion of a factor 

(e.g., a social factor) if the factor is a direct input variable in the governing equations that describe the 

model. In contrast, if the factor does not appear directly in the governing equations but is considered 

when assigning values to any of the input variables of the model, the corresponding model is considered 

to have an “implicit” incorporation of the factor. 

The overall objective of EPPR, as defined by NUREG 0654, is “to provide dose savings (and in 

some cases, immediate lifesaving) for a spectrum of accidents that could produce offsite doses more than 

those that are included in the Protective Action Guides (PAGs)” (NRC, 1980). The PAG is defined as 

“the projected dose to an individual from a release of radioactive material at which a specific protective 

action to reduce or avoid that dose is recommended” (EPA, 2017). Protective actions may include shelter-

in-place, relocation, potassium iodide pills, or evacuation (NRC, 2017a). An emergency planning zone 

(EPZ) sets the boundary for EPPR activities and assists decision-makers in identifying which of the 

recommended protective actions (e.g., evacuation or shelter-in-place) are appropriate for each area around 

an NPP. In the U.S., emergency planning regulations documented in 10 CFR 50.47(c)(2) require the 

establishment of two EPZs around each NPP: a 10-mile plume exposure pathway EPZ, and a 50-mile 

ingestion exposure pathway EPZ (NRC, 2017a). Determination of these existing EPZs (Collins et al., 

1978) is based on dose calculations using sequence probabilities and source terms from the “Reactor 
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Safety Study” WASH 1400 (NRC, 1975). Within the EPZs, the corresponding EPPR must ensure that all 

necessary resources are available to protect the population from radiation exposure. 

Performance-based EPPR oversight deals with limited data and prescriptive standards. The U.S. 

NRC has moved toward a risk-informed, performance-based philosophy on regulation (Apostolakis et al., 

2012), but EPPR is one of the areas that has not been adequately addressed. Level 3 PRA research, 

specifically for risk-informing EPPR, is still evolving (Fleming & Nourbakhsh, 2003; Siu, 2006). Without 

risk-informed approaches, the cost of oversight and EPPR requirements may be high, with limitations for 

developing localized safety performance goals (Siu, 2006). While there are vast differences between 

empirical historical accidents and their practical insights for local geographies of NPPs, the fact remains 

that offsite response practices are not explicitly modeled or incorporated into Level 3 PRA consequence 

estimations to improve EPPR performance worldwide (NAS, 2014). More than 30 years after the Three 

Mile Island (TMI) accident, strong parallels can be seen in the 2011 Fukushima Daiichi accident, where 

there was “insufficient implementation of the emergency plan,” “ill-defined delineation of 

responsibilities,” and “insufficient collection, sharing, and dissemination of information” (Omoto, 2013). 

The demographics of the surrounding population (i.e., the attributes (e.g., age, location) of the various 

cohorts and their potential for being exposed to severe health effects) inform planning and analysis of 

offsite response actions (NRC, 2013a). Therefore, the explicit incorporation of location-specific social 

factors of the local population into Level 3 PRA, as it facilitates the analysis and ranking of these factors, 

can drastically affect decisions related to EPPR.  

This paper is part of a line of research by the authors to explicitly incorporate location-specific 

social contributing factors into Level 3 PRA (Miller, 2015; Miller et al., 2015). There have been 

significant studies, by several authors of this paper, regarding the explicit incorporation of social and 

organizational factors into Level 1 PRA (Mohaghegh et al., 2009; Mohaghegh & Mosleh, 2009a, 2009b; 

Pence et al., 2014; Pence et al., 2017). The goal of this study is to initiate the same paradigm of research 

for Level 3 PRA. This paper offers a methodology for combining the concept of social vulnerability (used 

in natural hazard research) with Level 3 PRA (used in severe nuclear accident research and practices) in a 

geographic information system (GIS) environment to “externally” and explicitly integrate social factors 

with Level 3 PRA. Parallel research by the authors focuses on developing a methodology to “internally” 

and explicitly incorporate social factors into Level 3 PRA (Bui, Ha et al., 2016; Bui et al., 2017; Pence, 

Justin et al., 2015).  

Section 5.1.1 discusses state-of-the-art Level 3 PRA codes used in the U.S. nuclear power 

industry. Section 5.2 sets the theoretical ground for the explicit incorporation of social factors into Level 3 

PRA by developing a macro-level socio-technical risk analysis causal framework and by framing the 

nuclear-oriented social vulnerability construct in the causal framework. Section 5.3 explains the proposed 
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methodology for external-explicit integration of social factors with level 3 PRA of NPPs. The difference 

between “internal” and “external” methodological approaches for the incorporation of social factors is 

highlighted in Section 5.3. Section 5.4 demonstrates a case study implementing the methodology using 

results from the 2012 SOARCA study. 

 

5.1.1. Level 3 Probabilistic Risk Assessment (PRA) 

This section introduces the high-level modules of the MELCOR Accident Consequence Code 

System (MACCS) and WinMACCS; a computer code and user interface for Level 3 PRA applied in the 

U.S. Radiological source term inputs can be varied to generate initial conditions for multiple scenarios of 

radiological atmospheric transport and environmental dispersion (NRC, 2014a). The ‘EARLY’ 

calculation module in MACCS quantifies the accumulation of radiation dose for an evacuating population 

by considering doses they receive during normal activity, sheltering, and initial evacuation (Bixler et al., 

2017). In a Level 3 PRA, the consequence model incorporates dose coefficients related to specific organs 

and tissues of the body from concentrations of radionuclides. Dose rate, which is the same as exposure 

rate, is usually measured as rems or Sieverts per hour. Level 3 PRA considers two types of exposures: 

acute and chronic. Acute exposure involves a significant exposure received over a short period, i.e., a 

high exposure rate. Chronic exposures involve exposure at a low rate received over an extended period 

over a lifetime (NRC, 2013a). This paper focuses on the inclusion of social factors in Level 3 PRAs, and 

therefore readers are directed to Refs. (Bixler et al., 2017; NRC, 2015, 2017b) for more details on hazard 

modeling in MACCS. 

Census and economic data provide an input for the SECtor POPulation and Economic Estimator 

(SECPOP). SECPOP is a MACCS preprocessor to evaluate census, land use, and economic data to create 

a site file that can be used for different applications. Advancements to the economic analysis portion of 

SECPOP include the Regional Economic Accounting (REAcct) framework, a gross domestic product 

(GDP)-based model that can use GIS-linked data to perform analysis at multiple levels of resolution 

(Outkin et al., 2015). Currently, the population is modeled into cohorts; population segments which can 

be based on starting location and customized by time-related parameters such as delay to shelter, delay to 

evacuation, the speed of evacuation, duration of the beginning phase of evacuation, and duration of the 

middle phase of evacuation (NRC, 2013b). In EPPR practice, emergency alert system (EAS) sirens are 

used to notify the public about the emergency, and “an emergency notification message will be distributed 

to residents in the EPZ via text alerts, TV, and radio” (NRC, 2017c). In the 2012 Surry Power Station 

(SPS) State-of-the-Art Reactor Consequence Analysis (SOARCA) study, six cohorts were assigned, 

which included the general public, shadow evacuation, schools, special facilities (e.g., hospitals, nursing 

homes, prisons), tail evacuation, and non-evacuating population (NRC, 2013b). Newer Level 3 PRA 
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studies have increased the number of cohorts, for example, there are nine cohorts in the 2017 Sequoyah 

SOARCA study (NRC, 2017c). In the Sequoyah SOARCA study, it is assumed that a portion of a cohort 

may disregard the EAS (NRC, 2017c). However, defining the governing parameters for each cohort, and 

specifically for the general public, is challenging.  

Simulation is used to generate ETEs in MACCS using two methods: (a) radial simulation (i.e., all 

movement radially outward), and (b) network evacuation (i.e., traffic follows major roadways). A set of 

network evacuation speed multipliers are visualized in WinMACCS to “better reflect the spatial and 

temporal response of individual cohorts” (NRC, 2014a). Current approaches leverage existing ETE 

studies and national telephone surveys, but without a detailed understanding of emergent population 

evacuation behavior and road traffic patterns, assigned speeds may not provide the level of realism 

needed for Level 3 PRA estimations. The 2017 SOARCA study for Sequoyah has begun to address these 

concerns by including a seismic roadway impact analysis which considers the loss of roadways with 

bridges and potential flooding in low lying areas (NRC, 2017c). Further, the Sequoyah study considers 

ETEs based on the number of vehicles, available evacuation routes, and roadway capacity at the available 

exit points of the EPZ, leveraging information from multiple ETE studies, and confirmatory analysis 

using the RtePM code (NRC, 2017c). RtePM is a GIS-based web application that allows for on-the-fly 

analyses of evacuation routes and time estimates based on time of day, average demographic information, 

people per vehicles, percent evacuating, and percent going to shelters (VMASC, 2013). 

 

5.2. THEORETICAL DEVELOPMENT FOR EXPLICIT INCORPORATION OF SOCIAL FACTORS 

INTO LEVEL 3 PRA 

Lack of explicit incorporation of social factors in PRA may lead to (a) underestimating risk due to 

inadequate quantification of common cause failures (CCFs) (Sakurahara et al., 2017) and dependencies 

associated with shared organizational and social failure mechanisms, (b) inadequate risk management due 

to a lack of understanding of the underlying social risk contributing factors and their causal paths of 

influence on system risk, and (c) inefficient resource allocation due to lack of risk importance ranking of 

social factors. There are two key requirements for explicit incorporation of social factors into PRA: (i) the 

integration of a theoretical model of how socio-technical systems perform, considering causal factors with 

their corresponding level of analysis and relational links, and (ii) the adaptation of appropriate 

methodological techniques, capable of capturing complex interactions of causal factors within their 

possible ranges of variability and across different levels of analysis, to quantify the theoretical framework 

(Pence et al., 2017; Sakurahara et al., 2017). This section focuses on the development of the theoretical 

causal framework, and Section 5.3 introduces the methodology.  
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For many years, the explicit incorporation of underlying social and organizational failure 

mechanisms into Level 1 PRA has been a challenging area of research (Bier, 1999; Ghosh & Apostolakis, 

2005; Mohaghegh & Mosleh, 2009a; Pence, J et al., 2015; Pence et al., 2017). The Socio-Technical Risk 

Analysis (SoTeRiA) framework (Mohaghegh, 2007; Mohaghegh & Mosleh, 2006; Mohaghegh & 

Mosleh, 2009a) (Figure 5.1), grounded on “theories” rather than on a set of factors or accident data, was 

developed to address this challenge. SoTeRiA theorizes multiple levels of ‘internal’ mechanisms, 

including individual, unit, group, and organization (Nodes 2 to 9 in Figure 5.1), and their interactions with 

the ‘external’ environment, including physical, regulatory, business, and sociopolitical climates (Nodes 

10 to 16 in Figure 5.1), along with their causal influences on technical system risk (PRA; Node 1). 

Further details about the theoretical development and quantifications of SoTeRiA can be found in related 

publications by the authors (Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a; Pence et al., 2017). 

Figure 5.1: Socio-Technical Risk Analysis (SoTeRiA) Theoretical Framework 

The scope of SoTeRiA (Figure 5.1) was limited to one organization (e.g., the NPP) and Level 1 

PRA. In this research, the scope of SoTeRiA is expanded for use in EPPR applications. Figure 5.2 shows 

a ‘macro-level’ SoTeRiA theoretical framework, which extends the scope of SoTeRiA to the regional 

area surrounding an NPP to demonstrate the relationships between physical environmental factors (i.e., 

technological hazard in the phase of Level 3 PRA), onsite organizations modeled in SoTeRiA 

(Mohaghegh, 2007; Mohaghegh & Mosleh, 2009a), offsite response organizations (OROs), the 

population, and critical public infrastructure in relation to the three phases of PRA (Levels 1, 2, and 3). In 

Figure 5.2, the onsite organization (SoTeRiA) module stands for nodes 1-9, 11, and 13-16 from the 

SoTeRiA framework (Table 5.1), covering the human actions, team processes, and organizational factors 

that contribute to onsite performance.  
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Figure 5.2: Macro-level Socio-Technical Risk Analysis Theoretical Framework for EPPR Applications  

 

As Figure 5.2 indicates, one of the modules that interacts with population response is critical 

public infrastructure (Module 18), which includes the availability and quality of the built environment 

(e.g., energy and water systems, communication networks, transportation systems) and service 

infrastructure (hospitals, fire and police departments) (Nan et al., 2011; Zio, 2014). OROs (Module 19) 

support the population response (Module 17) by providing services, e.g., transportation management, 

firefighting, search and rescue, environmental cleanup, media relations, international affairs, financial 

management, mass care, resource support, public health, evacuation support, notification, 

recommendations, and tools and equipment (Sullivan et al., 2013). The performance of OROs and 

availability of critical public infrastructure will influence the population response to an accident (Module 

17).  

The population response module is designed to predict the behavior of large groups. The concept 

of performance shaping factors from human reliability analysis (Swain & Guttmann, 1983) can be used to 

consider the possible internal and external factors affecting human performance. Human reliability 

analysis (HRA) is mainly developed for individual-level (Kirwan, 1994; Swain & Guttmann, 1983) and 

crew-level (Parry et al., 2013) performance modeling, and the expansion of HRA to the regional-level 

human performance prediction requires further research. The focus of this paper, however, is on framing 

and operationalizing social vulnerability as a construct among others within the population response 

module (Module 17), where several factors influence the behavior of a population during a severe nuclear 
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accident. Other modules, e.g., offsite physical environmental factors (Module 10), also affect the 

influencing factors of population response (Module 17), which include the social vulnerability construct.  

In the nuclear power domain, vulnerability can be categorized into two areas: (i) vulnerability as a 

measurement of ‘risk’ (e.g., regional risk assessment (Baklanov & Mahura, 2001; Baklanov et al., 2013; 

Baklanov et al., 2008; Rigina & Baklanov, 2002) and post-accident mental health effect assessment 

(Kunii et al., 2016; Mashiko et al., 2017; Solomon & Bromet, 1982)), or (ii) vulnerability compared with 

NPP risk assessments, where exposure to risk is viewed from the perspective of the local population (e.g., 

environmental justice, NPP siting (Alldred & Shrader-Frechette, 2009; Cousins et al., 2013; Kosmicki, 

2013; Kyne, 2015; Kyne & Bolin, 2016; Satterfield et al., 2004; Shrader-Frechette, 2013)). This paper, 

however, adapts the concept of social vulnerability, developed by Cutter et al. (2003) in the context of 

natural hazards (Bakkensen et al., 2017; Cutter et al., 2003), for the context of a severe nuclear accident. 

Cutter et al. have defined social vulnerability as a representation of social factors that “influence or shape 

the susceptibility of various groups to harm and that also govern their ability to respond,” which “also 

includes place inequalities – those characteristics of communities and the built environment, such as the 

level of urbanization, growth rates, and economic vitality, that contribute to the social vulnerability of 

places” (Cutter et al., 2003). Section 5.3 explains the methodological approach for the quantification and 

mapping of the social vulnerability construct, and its integration with a radiological hazard in the context 

of a severe nuclear accident.  

Given the large-scale nature of the macro-level SoTeRiA framework (Figure 5.2) and rare-event 

characteristics of NPP accidents, it is difficult to validate the framework empirically, and therefore, it is 

essential that the causal factors and relationships be based on theoretical foundations and principles so 

that the framework is theoretically valid (Mohaghegh, 2007). This theoretical validation was a key 

consideration in the development of SoTeRiA (Table 5.1) for Level 1 PRA. The focus of this paper is on 

the operationalization of the social vulnerability construct of macro-level SoTeRiA (Figure 5.2), and 

future publications will report on theoretical justification and operationalization of the other elements in 

Figure 5.2.  

 

5.3. METHODOLOGICAL DEVELOPMENT FOR EXTERNAL-EXPLICIT INTEGRATION OF 

SOCIAL FACTORS WITH LEVEL 3 PRA 

In this research, a methodological spectrum (Figure 5.3) is introduced regarding the 

operationalization and quantification of incorporating social factors (explained in Section 5.2) into Level 

3 PRA of nuclear power plants. As mentioned in Section 5.1, current Level 3 PRA of NPPs have implicit 

incorporation of social information, represented by the left end of the spectrum in Figure 5.3. In Level 3 

PRA, the implicit incorporation of population response is reflected through ETE analysis. The lack of 
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explicit and location-specific incorporation of social, political, and community information may result in 

an incomplete response model. For example, evacuation efficiency is highly location-specific and socially 

and behaviorally dependent (Cova & Church, 1997; Dash & Gladwin, 2007; Goldblatt & Weinisch, 2005; 

Lindell & Prater, 2007; Miller, 2015; Miller et al., 2015). Without realistic modeling of population 

performance in the evacuation module of the Level 3 PRA code, the time estimates, resource allocations, 

and decisions that are made based on the outputs of these models may be inaccurate. If the social data 

contained in the evacuation model is input as a lump sum (i.e., the social data is incorporated implicitly in 

the evacuation model), there are limitations for updating information about new policies, procedures, and 

plans, or when demographic changes occur that would modify the way the public reacts in an emergency.  

Figure 5.3: A methodological spectrum for the incorporation of social factors into EPPR models 

To overcome the limitations of implicit incorporation of social factors in current Level 3 PRA 

tools, the authors proposed two methodological approaches for explicit incorporation: (a) internal (shown 

on the right side of the spectrum in Figure 5.3), and (b) external (shown in the middle part of the spectrum 

in Figure 5.3). A more accurate approach is an internal method (the right side of the spectrum in Figure 

5.3) that requires developing advanced simulation environment to operationalize the macro-level 

SoTeRiA causal model (Figure 5.2) in order to quantify the effects of underlying social contributing 

factors, associated with the population response module (Module 17), on the evacuation parameters (e.g., 

mobilization time estimates, transient and transient-dependent populations, etc.) in the Level 3 PRA code. 

Developing the internal-explicit methodology is the focus of a parallel research study by the authors (Bui, 

H. et al., 2016; Bui et al., 2017; Pence, Justin et al., 2015). 

As shown in the middle of the spectrum in Fig 3, an approach that is somewhere in-between the 

two ends of the spectrum is the explicit integration of social factors externally to the Level 3 PRA code. 

The focus of this paper is on this external-explicit integration. Demographic aspects are implicitly 

considered in MACCS via cohort modeling; however, there are no input parameter in MACCS that can be 

adjusted to explicitly and internally reflect social vulnerability. Since MACCS parameters and social 
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vulnerability data are inherently spatial, a GIS-based methodology is proposed in this research to create 

an external-explicit integration, including the following steps: 

(1) Calculating a hazard-independent social vulnerability index;  

(2) Developing a location-specific representation of the maximum radiological hazard, estimated 

from current Level 3 PRA, in a GIS environment; 

(3) Developing a socio-technical risk map by combining the social vulnerability index and the 

location-specific radiological hazard; 

(4) Conducting a risk importance measure analysis to rank the criticality of social factors based on 

their contribution to risk. 

The following sub-sections further explain each of the above steps.  

 

5.3.1. Calculating a Hazard-Independent Social Vulnerability Index 

There are several methods for developing a social vulnerability index which can be used to 

quantify the social vulnerability construct (a construct within Module 17 in Figure 5.2). For example, the 

Social Vulnerability Index (SoVI®), developed by Cutter et al., (2003), offers a method for processing 

demographic data to generate a measure of social vulnerability to environmental hazards (Cutter et al., 

2003). SoVI® is a widely-used technique which mainly focuses on age and sociodemographic conditions 

(Tarling, 2017). Another class of social vulnerability index includes the Center for Disease Control 

(CDC) Agency for Toxic Substances and Disease Registry (ATSDR) Social Vulnerability Index (SVI), 

developed by ATSDR Geospatial Research, Analysis, and Service Program (GRASP) (ATSDR, 2018). 

The CDC SVI provides a simplified method that puts more focus on socioeconomic attributes (Flanagan 

et al., 2011). Both SoVI® and the CDC’s SVI use statistical analysis of demographic data to determine 

which areas of the population are most vulnerable to hazards. A comprehensive review of these methods 

can be found in (Tarling, 2017). In this research, the CDC’s SVI is selected because it (i) focuses on 

socioeconomic attributes, which can provide insights into the population’s access to resources, for 

example, private transportation, (ii) is supported and maintained by federal agencies, which helps to 

promote data transparency, and (iii) includes American Community Survey (ACS) data (ATSDR, 2018), 

which provides information from 2012 to 2016 to support analysis with more current outputs. The CDC 

SVI is based on the four high-level themes and associated factors shown in Table 5.1.  
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Table 5.1: The CDC SVI Themes and Census Variables (ATSDR, 2018) 

ID Themes Variables 

1 Socioeconomic Status 

Below Poverty 

Unemployed 

Income 

No High School Diploma 

2 Household Composition & Disability 

Aged 65 or Older 

Aged 17 or Younger 

Civilian with a Disability 

Single-Parent Households 

3 Minority Status & Language 
Minority 

Speak English “Less than Well” 

4 Housing & Transportation 

Multi-Unit Structures 

Mobile Homes 

Crowding 

No Vehicle 

Group Quarters 

 

The CDC SVI has four sub-steps for calculation (Flanagan et al., 2011): 

(1) Each of the 15 variables (except income) is ranked, from highest to lowest, across census tracts in 

the region of analysis. Income is ranked lowest to highest, since a higher value indicates less 

vulnerability. 

(2) A percentile rank is calculated for each census tract over each of the 15 variables. The percentile 

rank of each given value refers to the ratio of the number of values, lower than the given value, 

over the count of all values in the set, excluding that given value. In other words, the percentile 

rank can be calculated using Eq. 5.1 from Ref. (Flanagan et al., 2011):  
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,                ( 5.1 ) 

where N = the total number of data points, and “Rank” refers to the ranking that is generated for each 

variable across census tracts in Step 1.  

(3) A percentile rank is calculated for each theme, shown in Table 5.1, by adding the tract-level 

percentile ranks of the variables (estimated in Step 2) associated with that theme.  

(4) The overall percentile rank of each tract is estimated by the summation of the percentile ranks of 

the four themes for that tract. Percentiles range from 0 to 1, where higher values indicate greater 

social vulnerability. 

5.3.2. Developing a Location-Specific Representation of the Maximum Radiological Hazard, Estimated 

from Current Level 3 PRA, in a GIS Environment 

The scope of Level 3 PRA and EPPR is inherently spatial, with interrelated events that have 

strong spatial components, and therefore “geographical space is a valuable framework for reasoning about 

many problems that arise in the context of emergency management” (Cova, 1999). Originally used by 

geographers, GIS has been incorporated into many areas of research applicable to emergency 

management, such as natural hazard analysis (Ferretti & Montibeller, 2017), identification of evacuation 

routes, and infrastructure planning (Cova, 1999). GIS tools are well suited for storing and analyzing data 

relating to the built environment, and the vulnerability of the built environment to natural hazards. GIS is 

a powerful tool for querying data, measuring spatial entities, transforming data, creating new data, 

interpolation, generating values of discrete objects, point and route optimization, geostatistical analysis, 

pattern analysis, relationship analysis and geovisualization (Burrough et al., 2015; Peggion et al., 2008).   

In the nuclear domain, GIS techniques have been applied to map radiological hazards, health 

effects, protective action locations, and economic areas (Hammond & Bier, 2015; Mercat-Rommens et 

al., 2015; Silva et al., 2017; Tsai et al., 2012). GIS has been used to analyze and visualize field data from 

historical accidents (Van der Perk et al., 1998), and generate spatial risk analysis based on postulated 

hazards (Rigina & Baklanov, 2001; Rigina & Baklanov, 2002). Several radiological hazard codes are 

designed to generate outputs usable in GIS geodatabase and ‘shapefile’ formats (Grabowski et al., 2009; 

Rentai, 2011; Rigina & Baklanov, 2001; Rigina & Baklanov, 2002). For example, the NRC’s 

Radiological Assessment Systems for Consequence AnaLysis (RASCAL) tool can produce shapefiles for 

GIS (NRC, 2012a). RASCAL, however, is a methodology for representing the early phase of a nuclear 

incident, while MACCS is used to consider short and long-term scenarios (OECD & NEA, 2016).  

In this paper, there are two primary benefits of utilizing GIS: (1) combining diverse streams of 

data (i.e., social vulnerability data and radiological hazard data from MACCS) into one geographically-
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coordinated environment, and (2) visualizing risk analysis results for communicating EPPR to decision-

makers and the larger population. In this step of the proposed methodology, GIS provides the 

environment for a location-specific representation of the maximum radiological hazard estimated from 

Level 3 PRA. As discussed in Section 5.1.1, MACCS is a Level 3 PRA code that is used by the U.S. 

nuclear industry and regulator to model scenarios of radiological atmospheric transport and environmental 

dispersion (NRC, 2014a). Peak dose is an output from MACCS, calculated at an (r, θ) location, 

representing the accumulated (total) dose at a given location. The location-specific dose is the result of all 

direct exposure pathways at that location (not including the ingestion pathway) (NRC, 1997). This 

location-specific peak dose represents the hazard to any persons located in the area. MACCS generates 

peak dose estimate information for the region surrounding an NPP which can be exported as comma-

separated values (CSV) (Miller, 2015). 

In this step of the methodology, the Level 3 PRA code is run without executing any population 

response module. Since the population response model is the only part of Level 3 PRA code that 

implicitly contains social information, there are some dependencies involved in running Level 3 PRA 

code with evacuation module and then integrating the social factors in Step 3 externally to the results. 

Therefore, in this research, the Level 3 PRA code is run with no population response considerations. The 

output of Level 3 PRA code, without executing evacuation module, is based on the source term, plume 

rise, transport, dispersion, and deposition only; thus, the result can be thought of as completely 

independent of the population’s reaction to the radiological hazard. The estimated peak dose from this 

step of the methodology represents the “maximum” radiological hazard to any persons located in the area 

because it is considered that the population do not evacuate and are in one place the entire part of the 

EARLY module of MACCS (EARLY is seven days in the SOARCA study).  

As currently implemented, the MACCS code has an internal geographically coordinated system 

and can use GIS-compatible data but is not compatible with external user-added models through 

commercial and open source GIS platforms. The following sub-steps are used to convert MACCS results 

for GIS compatibility:  

1. Convert and transpose peak dose data: this sub-step transposes the CSV outputs of peak dose 

values from MACCS into single records for each index radius and index angle pair (r, θ). In this 

process, several fields which form the attribute information are added, calculated, and removed 

using the ‘Transpose Fields’ tool in ArcGIS Pro. 

2. Create the polar grid in GIS: this sub-step uses a Python script to create a polar grid using the 

polar grid resolutions from NUREG-1150 (NRC, 1990, 2014a).  
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3. Join peak dose data to the polar grid in GIS: this sub-step conducts a ‘table join’ of peak dose 

data with each cell of the polar grid, linking location-specific hazard information with the polar 

grid feature class. 

 

5.3.3. Developing a Socio-Technical Risk Map by Combining the Social Vulnerability Index and the 
Location-Specific Maximum Radiological Hazard 

Several hazard analysis studies use the relationship shown in Eq. 5.2 for relating hazard and 

vulnerability (Blaikie et al., 2014; Dwyer et al., 2004), in order to estimate the risk of a specific natural 

hazard, at a specific location, and considering the population’s location-specific vulnerability.  

Risk = Hazard × Vulnerability  (5.2) 

This research makes a parallel between PRA and hazard analysis. In this research, the maximum 

radiation dosage frequency at each location is used as “Hazard” in Eq. 5.2. The maximum radiation dose 

frequency at each location is calculated by multiplication of the location-specific maximum radiation dose 

(estimated in Step 2 of the methodology; Section 5.3.2) and LERF (i.e., the output of Level 2 PRA code 

which is the input frequency to the Level 3 PRA code). SVI (estimated in Step 1 of the methodology; 

Section 5.3.1) is used for “vulnerability” in Eq. 5.2 as an indicator of hazard progression. The 

accumulated dose in the population relates to a “degree of hazard progression in the population” (i.e., the 

vulnerability of the population to the hazard) that is associated with population evacuation deficiencies. In 

other words, the “vulnerability” term in Eq. 5.2 is used as a surrogate for the population’s ability to 

evacuate efficiently. Since SVI is an aggregation of many social factors, and because it can act as a term 

for damage susceptibility for diverse groups of people, in this research, the SVI term can be considered as 

a surrogate for population’s ability to evacuate efficiently. If SVI at a location is 1 (i.e., the most 

vulnerable population), the estimated socio-technical risk from Eq. 5.2 is equal to the maximum radiation 

dose frequency at that location. This is reasonable because the location-specific maximum radiation dose 

(estimated in Step 2 of the methodology; Section 5.3.2) is calculated by running the Level 3 PRA code, 

assuming that there is no population evacuation or protection. On the other hand, if SVI is less than 1 

(i.e., a less vulnerable population), the estimated socio-technical risk from Eq. 5.2 proportionally reduces 

(i.e., less accumulation of dose in population).  

Since both radiation hazard and social vulnerability are location-specific, their multiplication 

(based on Eq. 5.2) is performed in a GIS-based environment to estimate and visualize a socio-technical 

risk. An ArcGIS Pro model is developed to calculate the socio-technical risk values using the ‘intersect’ 

geoprocessing tool to combine overlapping spatial areas of the polar grid segments and census tracts to 

create a new field for the socio-technical risk and multiply feature class information for CDC SVI and 
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peak dose at each unique location. It should be noted that most census tract areas are larger than polar grid 

segments, and therefore the granularity of intersected areas more closely follow the polar grid regions, 

meaning that CDC SVI values are distributed across several intersected areas. In future research, 

increased spatial resolution of CDC SVI data can improve the accuracy of this intersection. 

 

5.3.4. Conducting a Risk Importance Measure Analysis to Rank the Criticality of Social Factors Based on 
their Contribution to Risk 

For the socio-technical risk (estimated in Step 3 of the methodology) to be used in risk-informed 

decision making in EPPR and resource allocation, it is valuable to rank the criticality of location-specific 

social factors with respect to their influence on risk. While sensitivity analysis has been conducted for 

SoVI® for the context of natural hazards (Schmidtlein et al., 2008), this step of the proposed 

methodology demonstrates the use of importance measure (IM) analysis to obtain a ranking of CDC SVI 

themes based on their contribution to overall socio-technical risk.  

The IM methodology for this research is developed based on the concept of Fussell-Vesely IM, 

commonly used in classical PRA (Van der Borst & Schoonakker, 2001; Vesely et al., 1983), which 

indicates the importance of each risk contributor in terms of contribution to risk reduction. As discussed 

in Section 5.3.1, the CDC SVI has four themes, each with corresponding variables which compose the 

total percentile rank for each theme. In this research, the risk importance measure of theme i for location 

l, shown as	𝐼𝑀(
(*),	is formalized by Eq. 5.3:  

 

𝐼𝑀(
(*) = !!

(#)%!%&
(#)

!!
(#) ,    (5.3) 

where 𝑅,
(*)is the nominal socio-technical risk value for location l, estimated by considering each theme 

with its nominal/realistic percentile rank, and 𝑅(%
(*) is the socio-technical risk value for location l computed 

with a partial (e.g., ten percent) decrease in the percentile rank of the theme 𝑖, 𝑖 ∈ {1,2,3,4} in Table 5.1. 

Conceptually, Eq. 5.3 assesses how much the socio-technical risk value decreases when the percentile 

rank of each theme is decreased; hence, indicates the location-specific importance of each theme in terms 

of reducing the socio-technical risk. Because existing Level 3 PRA is “implicit” with respect to social 

factors, it is not possible to perform this type of importance ranking of social factors. This type of ranking 

is an important benefit of the “explicit” incorporation of social factors into Level 3 PRA and can be 

valuable for risk-informing EPPR.  
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5.4. APPLICATION OF THE METHODOLOGY FOR THE SURRY POWER STATION 

In this section, the methodology (explained in Section 5.3) is applied in a case study for SPS 

using the 2012 SOARCA study to provide the input parameters for the radiological hazard model (NRC, 

2013b), and the 2016 CDC SVI data for the state of Virginia (CDC et al., 2018).  

Step (1) Calculating Social Vulnerability Index for the SOARCA study:  

Full documentation on the CDC SVI can be found in (ATSDR, 2018). Figure 5.4 shows the total 

population for the region surrounding the SPS. In this paper, the method of graduated colors is used in all 

maps to provide the reader with an idea of how the distribution of values are spread over the 10-mile EPZ. 

As a caveat, the bounds of each graduated level are given on each map, and the ranges for each of the 

quantiles are not the same. It should also be noted that the ‘James River’ is a labeled water feature and is 

excluded from the analysis.  

 

Figure 5.4: Total Population Surrounding the Surry Power Station (Source: CDC SVI) 

 

Figure 5.5 shows a map of the CDC SVI for Virginia focused on the region surrounding SPS. 

Census-tract percentile rankings show only a relative value, given the location within the state of Virginia 

(Bakkensen et al., 2017). The color scheme used in Figure 5.5 is based on splitting the range of possible 

CDC SVIs into quantiles classified using natural breaks (Jenks) in ArcGIS Pro. The CDC SVI shown in 

Figure 5.5 is hazard independent, using demographic and ACS data (CDC et al., 2018). 
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Figure 5.5: Social Vulnerability Census Tracts for the State of Virginia: The Region Near Surry 

Power Station 

Step (2) Developing a location-specific representation of the maximum radiological hazard for the 

SOARCA study: 

The SPS SOARCA study provides the inputs for generating peak dose estimates. The SOARCA 

study claims that while PRA results are specific to SPS, they also serve as a useful representation of other 

operating pressurized water reactor NPPs in the US (NRC, 2012b). In this example, dose in Sv (Sieverts) 

is used as a measure of the radiation hazard. MACCS generates a polar grid of location-specific peak dose 

estimates. The radial distances (0.16, 0.52, 1.21, 1.61, 2.13, 3.22, 4.02, 4.83, 5.63, 8.05, 11.27, 16.09 

kilometers) (r) and angular dimensions (64 angles (θ) and 12 radii) for the polar grid resolution are 

provided by the MACCS Best Practices Guide for the SOARCA study (NRC, 2014a). 

To consider the total risk of a severe nuclear event, a range of accident scenarios are considered, 

sampling from all source terms in the radionuclide inventory. The nuclides are considered at plant 

shutdown from each accident, so source terms are consisted of the same isotopes but differed in the 

respective percentages of each isotope. Other differences between accident scenarios include plume 

release times, plume heat contents, plume release heights, plume mass density, plume mass flow rate, and 

plume segment durations. The scenario in this application is based on the SOARCA Unmitigated long-

term station blackout (LTSBO) scenario and the representative source term that is part of the SOARCA 

study (NRC, 1990, 2012b). The unmitigated LTSBO is chosen because it represents the largest 

contribution to CDF, estimated to be 2×10-5 per reactor year (NRC, 2013b).  

To generate a location-specific representation of a radiological hazard, MACCS is used to model 

atmospheric phenomena, radionuclide decay, and exposure pathways. Protective measures (i.e., 
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evacuation, relocation, shelter-in-place, potassium iodide (KI) pills) are excluded to make the results 

independent of OROs and population response. For the SOARCA study, 28 plume segments are used for 

the LTSBO accident (NRC, 2013b). The plume parameters are given in Volume 2 of the Surry SOARCA 

study (NRC, 2013b). A critical part of the scenario for plume modeling is the explicit consideration of 

weather conditions for a given geographic location. Weather sampling and incorporation of uncertainty 

for MACCS parameters allow for detailed and probabilistic scenarios of hazard progression to be 

developed.  

For this application, no dose threshold mitigative actions are included in MACCS. MACCS is run 

a total of 24 times to produce output files that cover 10 miles of the plume exposure EPZ, which are 

binned into the polar grid resolution listed above. In this example, it is assumed that one individual is 

stationary throughout the entire EARLY module of MACCS (EARLY is seven days in SOARCA), 

estimating the maximum dose they would receive. The second sub-step from Step 2 (introduced in 

Section 5.3.2) is applied a Python script to create a polar grid (Figure 5.6) using the resolutions from 

NUREG-1150 as previously mentioned (NRC, 1990, 2014a).   

 

Figure 5.6: Grid System Generated by the Python Script in ArcGIS Pro 

 

The third sub-step from Step 2 (introduced in Section 5.3.2) is used to join peak dose data with the polar 

grid to generate the location-specific representation of a radiological hazard in GIS (Figure 5.7). 
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Figure 5.7: Map of Radiological Hazard around Surry Power Station due to LTSBO Event 

The results shown in Figure 5.7 indicate that a radiological hazard from SPS is not spatially 

uniform. As seen in Figure 5.7, the radiation hazard is highest near the plant, and because of weather 

sampling, higher levels of peak dose are seen in the northeast, southeast, and west. The GIS-compatible 

hazard data is then combined with the social vulnerability data in the next step to produce a socio-

technical risk map. 

Step (3) Developing a socio-technical risk map for the SOARCA study: 

Based on Step 3 of the methodology (introduced in Section 5.3.3) an ArcGIS Pro model is 

applied to intersect overlapping spatial areas of the polar grid and census tracts, which resulted in 742 

unique areas within the 10-mile EPZ. Using this approach, an external-explicit integration of social 

factors with Level 3 PRA is demonstrated by the intersection of hazard and the CDC SVI. Figure 5.8 

shows that radiation risk to the public is highest near the plant. The two highest categories of risk exist 

within three miles of the plant. The middle level of risk is encompassed within a five-mile range, with the 

exception being the western region, which has been expanded due to higher social vulnerability, as well 

as a higher probability of wind in that direction. There are areas in the 7 to 10-mile radial ring that vary 

between the lowest and second lowest levels of risk.  

The numbers that are generated by the intersection of hazard and vulnerability in Figure 5.8 are 

based on Sieverts (Sv), which should be multiplied by LERF (2×10-5) to represent dose frequency. The 

mean CDC SVI (a percentile rank of combining all four themes) within the 10-mile EPZ shown in Figure 

5.8 is 0.63 (from a range of 0 to 1). With the statistical information for these areas, decision-makers can 

rank specific populations by different criteria related to hazards or social factors to focus their planning 
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efforts. For example, the first 128 intersect areas most at risk lie within the first two radial rings used in 

WinMACCS (within 0.52 km of SPS). 

 All regions that are associated with risk greater than the mean are within 1 mile of the plant. 

Ranking areas outside of 1 mile, decision-makers can find neighborhoods within their area of governance 

to provide extra resources for emergency preparedness purposes. The scope of CDC SVI data at the 

census tract-level does not provide block-level data for developing highly granular risk indicators. 

Increased spatial resolution would improve the analysis and means to communicate the results with 

decision-makers and constituents of larger geographical areas defined by political boundaries. The socio-

technical risk values could also be used to compare the surrounding regions at different NPPs. 

Figure 5.8: Socio-technical risk map of radiological hazard and social vulnerability. 
 

Step (4) Conducting a risk importance measure analysis: 

Using Eq. 5.3, the IM analysis is conducted for all locations within the EPZ to rank location-

specific CDC SVI themes based on their influence on the socio-technical risk indicator. Table 5.2 shows 

the IM results for each census tract within the 10-mile EPZ of SPS. Locations, where peak dose is the 

dominant risk contributor (i.e., closest to the NPP), are excluded from a detailed interpretation of the IM 

results. 

Table 5.2: Importance Measure Results 

Table 5.2 (cont.)     

Census Tract Theme 1 IM Theme 2 IM Theme 3 IM Theme 4 IM 

320.01 10% 23% 10% 6% 
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Table 5.2 (cont.)     

Census Tract Theme 1 IM Theme 2 IM Theme 3 IM Theme 4 IM 

30.02 7% 11% 6% 7% 

320.05 10% 10% 4% 5% 

320.06 3% 2% 1% 2% 

320.07 5% 4% 2% 5% 

321.13 4% 5% 2% 7% 

321.23 8% 6% 2% 6% 

321.24 10% 9% 7% 4% 

321.24 5% 5% 3% 4% 

321.31 10% 9% 8% 7% 

321.32 6% 7% 4% 6% 

322.11 8% 9% 6% 6% 

322.12 2% 2% 1% 2% 

322.23 6% 4% 4% 6% 

322.25 2% 1% 1% 2% 

322.26 3% 2% 1% 2% 

323 8% 4% 3% 7% 

324 7% 7% 2% 7% 

503.06 8% 11% 3% 9% 

505 4% 3% 1% 4% 

509 8% 6% 3% 5% 

510 7% 7% 2% 6% 

511 12% 10% 7% 2% 

801.01 6% 13% 3% 14% 

801.02 2% 1% 1% 2% 

802.02 7% 16% 3% 10% 
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Table 5.2 (cont.)     

Census Tract Theme 1 IM Theme 2 IM Theme 3 IM Theme 4 IM 

802.03 7% 9% 3% 11% 

802.05 4% 4% 2% 5% 

802.06 6% 10% 3% 11% 

803.03 9% 15% 7% 15% 

803.04 5% 12% 2% 15% 

2801.01 7% 6% 1% 6% 

3701 10% 7% 3% 10% 

3702 7% 5% 3% 6% 

3703 8% 3% 2% 8% 

8601 7% 6% 1% 4% 

8602 10% 7% 2% 8% 

 

The results of this analysis reveal that the CDC SVI theme contributions to socio-technical risk 

can vary significantly by location. For instance, for the census tract 320.01 of Newport News county 

(location l1), 𝐼𝑀(
(*') = {10%, 23%, 10%, 6%}, which indicates that Theme 2 (Household Composition & 

Disability) is the most critical risk contributor. For the census tract 803.03 of James City county (location 

l2), 𝐼𝑀(
(*() = {9%, 15%, 7%, 15%}, indicating that Themes 2 (Household Composition & Disability) and 

4 (Housing & Transportation) are the two most critical risk contributors. This ranking could support risk-

informed EPPR to help make more efficient decisions with respect to resource allocation. The locations 

where a specific theme (e.g., Household Composition & Disability, Housing & Transportation) is the 

greatest contributor to risk may require decsion-makers to run more detailed evaluations and perform 

additional data collection and analysis to generate long-term prevention strategies that can address the 

sources of vulnerability (e.g., transportation options, services to support those living with disabilities). 

Future work will perform IM on each variable of the CDC SVI (Table 5.1), in addition to each theme, to 

more comprehensively identify the most critical location-specific social factors contributing to risk. 
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5.5. CONCLUDING REMARKS 

This paper is a part of a line of research by the authors to explicitly incorporate location-specific 

social contributing factors into Level 3 PRA (Miller, 2015; Miller et al., 2015). There have been 

significant studies, by several authors of this paper, regarding the explicit incorporation of social and 

organizational factors into Level 1 PRA (Mohaghegh et al., 2009; Mohaghegh & Mosleh, 2009a, 2009b; 

Pence et al., 2014; Pence et al., 2017). The goal of this study is to initiate the same paradigm of research 

for Level 3 PRA. In the nuclear power domain, Level 3 PRA is used to estimate damages to public health 

and the environment in the case of a severe accident leading to large radiological release. Explicit 

incorporation of social factors, most specifically location-specific social factors into Level 3 PRA, can 

drastically affect decisions related to emergency planning, preparedness, and response (EPPR). In the 

aftermath of the Fukushima Daiichi accident in 2011, there were concerns about the population’s ability 

to respond to a radiological hazard (NAS, 2014), and therefore, understanding the implications of the 

social makeup of the population near an NPP has the potential to give decision-makers information about 

the effects of their decisions.   

This paper adapts the concept of social vulnerability, originally developed in the context of 

natural hazards (Bakkensen et al., 2017; Cutter et al., 2003), for the context of a severe nuclear accident. 

The paper sets the theoretical ground by developing a macro-level socio-technical risk analysis causal 

framework and by framing the nuclear-oriented social vulnerability construct in the causal framework. 

The methodology offered in this paper operationalizes the social vulnerability construct, and makes an 

external-explicit integration of social vulnerability and Level 3 PRA of NPPs, following four steps: (1) 

calculating a hazard-independent social vulnerability index for the local population, (2) developing a 

location-specific representation of the maximum radiological hazard estimated from current Level 3 PRA 

in a geographic information system (GIS) environment, (3) developing a GIS-based socio-technical risk 

map by combining the social vulnerability index and the location-specific radiological hazard, and (4) 

conducting a risk importance measure analysis to rank the criticality of social factors based on their 

contribution to the socio-technical risk.  

The methodology is applied using results from the 2012 Surry Power Station (SPS) State-of-the-

Art Reactor Consequence Analysis (SOARCA). A radiological hazard model is generated from 

MELCOR Accident Consequence Code System (MACCS), translated into a GIS environment, and 

combined with the Center for Disease Control (CDC) Social Vulnerability Index (SVI). The results of this 

analysis reveal that the CDC SVI theme contribution can vary significantly by location. In affected 

locations, different themes such as ‘household composition & disability,’ and ‘housing & transportation’ 

can be greater contributors to socio-technical risk estimates. These results can be used to provide location-

specific information to help EPPR for creating plans to evacuate individuals with special needs and the 
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elderly while estimating the amount and type of supplies that are needed like food, water, medicine, and 

bedding (ATSDR, 2018). This research helps to visualize location-specific radiological risk around an 

NPP that improve risk communication with public and policymakers. Developing an internal-explicit 

methodology to more accurately incorporate social factor into Level 3PRA and first responders’ 

performance model is the focus of a parallel research study by the authors (Bui, H. et al., 2016; Bui et al., 

2017; Pence, Justin et al., 2015). 
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CHAPTER 6: THEORETICAL AND METHODOLOGICAL DEVELOPMENT FOR THE 

EXPLICIT INCORPORATION OF SOCIAL FACTORS INTO EVACUATION TIME 

ESTIMATION AND LEVEL 3 PROBABILISTIC RISK ASSESSMENT OF NUCLEAR POWER 

PLANTS1  

  

 

ABSTRACT 

 

The 2011 Fukushima Daiichi accident revealed several gaps in the U.S. Level 3 Probabilistic Risk 

Assessment (PRA) of Nuclear Power Plants (NPPs); for example, the need to explicitly consider and 

analyze (i) unanticipated socio-technical factors influencing the communication of the Offsite Response 

Organization (ORO) and (ii) the influence of social and psychological factors on the performance of an 

evacuating population. This paper advances a macro-level theoretical causal framework that covers the 

socio-technical factors influencing population and ORO performance given man-made and natural 

hazards. While the long-term goal of this research is to operationalize the full scope of the macro-level 

theoretical causal framework, this paper focuses on population protective action performance and presents 

a new use of Human Reliability Analysis (HRA) for theorizing and quantifying a new indicator for 

Population Error (PE) associated with departure time delay. The methodological developments include 

(A) building and validating an HRA-based Population Departure Time Model (PDTM) using data from 

NPP Evacuation Time Estimate (ETE) studies to provide the distribution of population departure time, 

(B) Integrating PDTM with an evacuation transportation model to generate distributions of evacuation 

time and average speed, (C) Integrating the coupled PDTM-transportation model with the Level 3 PRA 

model (i.e., MELCOR Accident Consequence Code System (MACCS)) of NPPs to create the distribution 

of radiation risk, and (D) conducting sensitivity analysis to rank the criticality of input factors with 

respect to their influence on risk. The integrated methodological framework is demonstrated in a case 

study using information from the 2017 Sequoyah NPP State-Of-the-Art Reactor Consequence Analysis 

(SOARCA) study.  

 

6.1.  INTRODUCTION 

The Nuclear Regulatory Commission (NRC) defines emergency preparedness as the last line of 

defense in a defense-in-depth philosophy for protecting the population from the consequences of a severe 

Nuclear Power Plant (NPP) accident with radiological release to the environment (NRC, 1983). The 

 
1 This chapter is a manuscript to be submitted to a journal of risk analysis in April 2020. 
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Federal Emergency Management Agency (FEMA) is responsible for understanding preparedness for “all-

hazards” under Presidential Policy Directive 8 and the U.S. National Preparedness Goal (DHS, 2015). 

The U.S. Radiological Emergency Preparedness (REP) program, administered by FEMA, provides state, 

local, and Tribal governments “relevant and executable planning, training, and exercise guidance and 

policies necessary to ensure that adequate capabilities exist to prevent, protect against, mitigate the effects 

of, respond to, and recover from incidents involving commercial NPPs” (FEMA, 2016). Under the REP, 

each NPP is required to have a Radiological Emergency Response Plan (RERP) (NRC & FEMA, 2019). 

The planning basis for the REP considers that accident phenomena and the impact of REP improvements 

on offsite consequences should continually be assessed through NRC’s State-of-the-Art Reactor 

Consequence Analyses (SOARCA) research (NRC & FEMA, 2019), that uses “Level 3” Probabilistic 

Risk Assessment (PRA). 

PRA is a “systematic, disciplined theory and language for dealing with rare events, for 

quantifying risks, and making decisions in the face of the uncertainties attendant to these events” (Kaplan 

& Garrick, 1981). Level 1 PRA corresponds to socio-technical system scenarios (i.e., the combination of 

human errors and equipment failures) leading to core damage (measured as Core Damage Frequency 

[CDF]), Level 2 PRA depicts the time and mode of containment failure that leads to the release of 

radioactivity from an NPP (measured as Large Early Release Frequency (LERF) and source term), and 

Level 3 PRA models the transport of radiological plumes and their potential consequences to humans and 

the environment. MELCOR Accident Consequence Code System (MACCS) is the Level 3 PRA model 

used in the U.S. and has three modules for phenomenological modeling: ATMOS (i.e., atmospheric 

transport, dispersion, deposition, and radioactive decay of the radiological hazard), EARLY (i.e., the 

emergency phase protective actions, up to seven days, or a maximum of forty days after radiological 

release), and CHRONC (i.e., intermediate [after the emergency phase up to one year] and long-term [after 

the intermediate phase and up to several decades] protective actions, consequences and economic costs) 

(NRC, 1997). This paper focuses on theoretical and methodological advancements associated with the 

EARLY module. In the EARLY module, an analyst can make assumptions about emergency response 

scenarios that include evacuation, sheltering, and dose-dependent relocation (NRC, 1997).  

Some of the key inputs to MACCS (e.g., evacuation strategies, the number of cohorts that refer to 

segments of the population, departure times, and evacuation speeds) are based on the results of 

Evacuation Time Estimate (ETE) studies. U.S. NPP licensees are required to conduct ETE studies 

(considering variations in time of year, day of the week, time of day demand estimations, roadway 

capacities, and trip generation times) to aide in pre-planning and protective action decision-making (NRC, 

2011a, 2013a, 2013b). As an established practice in the SOARCA report NUREG-1935, licensees 
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leverage information from ETE studies to provide key input parameters into MACCS in order to generate 

site-specific Level 3 PRA models (NRC, 2012). ETE studies include telephone surveys that provide 

information on departure time delays for various scenarios and include transportation model runs that are 

leveraged in MACCS to set network evacuation speeds to “better reflect the spatial and temporal response 

of individual cohorts” (NRC, 2014).  

Despite the progress that has been made for Level 3 PRA, there are still several gaps to address; 

for example, the need to “explicitly” consider and analyze (i) unanticipated socio-technical factors 

influencing the communication of the Offsite Response Organization (ORO) (NAS, 2014), and (ii) the 

influence of social and psychological factors on the performance of an evacuating population, for 

example, as highlighted in (Pence et al., 2018). This paper is part of a line of research on the advancement 

of socio-technical risk analysis for “explicitly” incorporating organizational/social factors into Level 1 

PRA and Human Reliability Analysis (HRA) (Bui et al., 2019b; Mohaghegh, 2007; Mohaghegh et al., 

2009; Mohaghegh & Mosleh, 2009a, 2009b; Pence et al., 2020; Pence et al., 2015; Pence et al., 2014; 

Pence et al., 2019; Pence et al., 2017; Sakurahara et al., 2019), as well as into Level 3 PRA (Pence et al., 

2018). In this research, a model is said to have “explicit” (rather than “implicit”) incorporation of a social 

factor if it is a direct input variable in the governing equations that describe the model (Pence et al., 

2018). In previous Level 3 PRA research by some of the authors of this paper, a methodological spectrum 

(Figure 6.1) was introduced to characterize the level of integration of social factors in Level 3 PRA 

(Miller et al., 2015; Pence et al., 2018). The spectrum (Figure 6.1) depicts the concept of “implicit” of 

social factors in NPP ETE studies on the left, and “explicit” incorporation of social factors into Level 3 

PRA on the right. For studies that consider social factors implicitly, they typically include social factors 

as a lump sum (e.g., population density), and do not consider location-specific variation in social 

vulnerability and demographic factors. Implicit incorporation creates limitations for updating information 

about new policies, procedures, and plans, or when demographic changes occur that would modify the 

way the public reacts in an emergency. The advancement towards explicit, or model-based incorporation 

of social factors can be considered from two perspectives: (i) internal (on the right side of the spectrum in 

Figure 6.1), and (ii) external (the middle of the spectrum in Figure 6.1). Internal incorporation implies the 

development of advanced modeling and simulation to quantify the effects of underlying factors on the 

parameters in Level 3 PRA. External incorporation implies the quantification of independent models, 

where the results are combined after the hazard calculation in a separate modeling environment, for 

example, Pence et al., (2018) generated an explicit-external integration (i.e., the center of the spectrum in 
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Figure 6.1) of Center for Disease Control (CDC) Social Vulnerability Index (SVI) with Level 3 PRA 

(MACCS) radiological hazard outputs in a Geographical Information System (GIS) environment.  

Figure 6.1: Methodological spectrum on the incorporation of social factors into evacuation models 

(Miller et al., 2015; Pence et al., 2018) 

 

This paper continues the line of research toward an “explicit-internal” incorporation of social 

factors into Level 3 PRA (i.e., an advancement toward the right side of the spectrum in Figure 6.1), and 

makes theoretical and methodological contributions as follows: 

• Section 6.2 expands the macro-level theoretical causal framework for socio-technical risk 

analysis of severe nuclear accidents, previously introduced by the authors (Pence et al., 2018), to 

advance the coverage of the socio-technical factors that influence population and ORO 

performance. The advanced theoretical framework contributes to the comprehensiveness of Level 

3 PRA by considering a broader set of influencing factors and their multi-level interrelationships, 

providing opportunities for improved root cause analysis and development of the RERP. One 

element of this causal framework (i.e., population protective action performance) is further 

expanded in Section 6.2.1.1, where an HRA-based theoretical representation of Population Error 

(PE) is introduced for pre-evacuation departure performance. Population departure times, the time 

it might take for a segment of the population to depart in an evacuation (NRC, 2017), are 

important in determining the overall performance of an evacuation (Herrera et al., 2019; 

Tamminga et al., 2011). In NPP radiological emergencies, social factors, such as social context 

(i.e., activities of the population and their location) and social structure (i.e., nature of family ties 

and social networks) can be significant contributors to departure times (Johnson, James H., 1985, 

1986; Johnson, J. H. & Zeigler, 1986; Sorensen, J., 1991); however, social factors are only 

implicitly considered in the existing ETE surveys. Without explicit consideration of social 

factors, it would be hard to analyze their effects on the population departure time to impove 

emergency response.  
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• While the long-term goal of this research is to operationalize the full scope of the macro-level 

theoretical causal framework2 introduced in Section 6.2, the methodological developments of this 

paper focus on the population protective action performance. Section 6.3 introduces a 

methodological framework for (A) building and validating the HRA-based Population Departure 

Time Model (PDTM), and (B) integrating it with the transportation evacuation model to generate 

model-based ETEs and evacuation speed estimates as inputs to (C) MACCS. This integrated 

methodology makes an advancement toward the explicit incorporation of social factors into Level 

3 through the explicit incorporation of social factors into departure time and evacuation speed 

estimations. The integrated methodology can help (i) create a more realistic estimation of risk 

from MACCS by contributing to a more realistic representation of population evacuation 

performance and (ii) provide the opportunity to conduct importance ranking of the social factors, 

influencing departure time and evacuation speed, with respect to their impacts on risk. The results 

provide location-specific insights that can be useful in improving the RERP for areas where 

higher PE potential exists for the departure stage of an evacuation.   

• In Section 6.4, the integrated methodology is applied in a case study using results from the 2017 

Sequoyah SOARCA study.  

 

6.2.  THEORETICAL DEVELOPMENT FOR THE EXPLICIT INCORPORATION OF SOCIO-

TECHNICAL FACTORS INTO LEVEL 3 PRA 

In the aftermath of the 2011 Fukushima Daiichi accident, the National Academy of Sciences 

(NAS) made the following recommendations for enhancing PRAs for U.S. NPPs: (a) scenarios of offsite 

response should consider damage to critical offsite infrastructure (e.g., communication and transportation 

network disruptions), (b) larger scale, regional, and multi-hazard (i.e., natural hazards, such as large 

earthquakes, large floods, and geomagnetic disturbances) and man-made hazards (e.g., the dispersion of 

radioactive materials beyond the 10-mile Emergency Planning Zone (EPZ)) should be expected, (c) the 

social impacts of protective actions should be considered, specifically for special populations such as 

children and the elderly (e.g., a major issue with evacuation was due to a lack of detailed planning for 

vulnerable populations), (d) offsite health (e.g., death, injury, and mental distress resulting from 

evacuations) and social consequences (e.g., disruptions to families and communities, loss of trust) should 

be considered, and (e) PRAs should include quantitative uncertainty estimates for failure event 

 
2 The macro-level theoretical framework considers a region-level (i.e., multiple census tracts) spatial scale, and depicts 

global/generalized phenomena that are composed of multidisciplinary intracomponent interactions (e.g., (Fromm, 

2004)) 
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probabilities (i.e., not prematurely screening out events without scientific justification) (NAS, 2014). The 

NAS mentioned that the “results of PRAs are limited by experts’ ability to recognize all relevant 

phenomena, including potentially important external hazards, and by uncertainties and incompleteness of 

estimates of accident probabilities and consequences” (NAS, 2014). The recommendations from “a” to 

“d” are related to the deficiencies in Level 3 PRA, more specifically associated with the inadequate 

consideration of socio-technical factors influencing ORO and population performance. This section 

focuses on advancing a multidisciplinary framework, equipped with a “theoretical” validation (see (Pence 

et al., 2019)),  to provide more comprehensive coverage of the socio-technical causal factors influencing 

ORO and population performance. When this theoretical framework is quantified with proper 

methodological techniques (the focus of Section 6.3), it can explicitly analyze and rank the effects and 

criticality of the influencing factors and their associated uncertainties (this contributes to recommendation 

“e” mentioned above).    

In a previous research study, some of the authors of this paper began developing a 

multidisciplinary framework for understanding the role of social factors in offsite NPP emergencies and 

emergency response (Pence et al., 2018). The theoretical framework depicted the relationships between 

physical environmental factors (i.e., hazard), onsite organizations, OROs, the population, and critical 

public infrastructure in relation to the three phases of PRA (Levels 1, 2, and 3) (Pence et al., 2018). The 

goal of the framework in (Pence et al., 2018) was to depict the relationship of social vulnerability to a 

radiological hazard, and did not consider the influence of natural hazards on NPP condition, the onsite 

emergency response influence on NPP condition, the NPP condition influence on critical infrastructure 

availability, the differences between various infrastructures (i.e., social infrastructure, utility 

infrastructure, and transportation infrastructures), the influence of radiological hazard on the ORO, etc. 

This section advances the framework from (Pence et al., 2018) into the macro-level theoretical causal 

framework (Figure 6.2) (and the associated processes and tasks shown in Figure 6.3 and Figure 6.4)) to 

have more comprehensive coverage of the influencing factors and their multi-level causal relationships.  

Figure 6.2: Macro-level theoretical causal framework of factors influencing population and ORO 

performance given man-made and natural hazards 
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Given the multidisciplinary nature of the macro-level framework and rare-event characteristics of 

NPP accidents, it is difficult to validate the framework empirically; therefore, it is essential that causal 

factors and relationships are built based on theoretical foundations so that the framework is theoretically 

valid (Mohaghegh, 2007; Pence et al., 2018). Development of the macro-level framework follows the 

theory-building process presented in (Pence et al., 2019); identifying literature associated with each 

factor, manually extracting evidence from literature (i.e., academic articles, regulatory and industry 

documents), locating each factor within the framework, building causal constructs, and justifying their 

directional links from literature. As shown in Table 6.1, the reasoning for each node (factors “i” to “viii” 

in Figure 6.2) as well as the associated directional causality (edges 1 to 18 in Figure 6.2) is justified based 

on literature of emergency response studies related to natural and technological hazards. For succinctness, 

only three references for each edge that connects two theoretical constructs in Figure 6.2 (i.e., an 

influencing factor to target factor) are provided in Table 6.1. In the development of the framework, it was 

found that existing studies are mainly focused on one causal relationship at a time, or do not consider 

broader factors such as the built environment, or do not address multi-hazard interactions in radiological 

emergencies. For example, most natural hazard-related frameworks neglect interactions among different 

typologies of hazards (Lettieri, 2009). Although the existing Level 3 PRA model (MACCS) for nuclear 

hazards explicitly considers the effects of some of the factors in Figure 6.2 (i.e., factors ii, iii, and vi), the 

influences of other critical factors (e.g., factors i, iv, v, vii and viii) are only implicitly considered. The 

goal of the theoretical development in this section is to address these gaps and to improve the 

comprehensiveness and explicitness of the existing Level 3 PRA model with respect to the causal factors 

influencing radiological emergency response.  

Natural hazards (factor i in Figure 6.2) are defined as geophysical processes in the environment 

that can create the potential for damage or losses (Bobrowsky & Bobrowsky, 2013). Types of natural 

hazards include meteorological (e.g., storm, tornado, hurricane), hydrological (e.g., flood), geological 

(e.g., earthquake, volcano, tsunami), and extraterrestrial (e.g., meteor strike, geomagnetic disturbance) 

(Bobrowsky & Bobrowsky, 2013). Natural hazards can affect NPP condition (edge 1 in Figure 6.2) and 

are included as “external hazard” initiating events in Level 1 PRA (NRC, 2009a). NPP condition (factor ii 

in Figure 6.2) refers to the severity of damage to one NPP and the status of the core (e.g., “core damage” 

as modeled in Level 1 PRA) and containment (e.g., “large early release” as modeled in Level 2 PRA), 

which provides the frequency and characterization of radiological source term (NRC, 2013d). The 

radiological hazard (factor iii in Figure 6.2) considers atmospheric transport, dispersion, deposition, and 

radioactive decay of the technological hazard resulting from the NPP accident condition (i.e., source 

term). Natural hazards can damage transportation networks and the built environment (edge 2 in Figure 

6.2), as well as water, energy, and telecommunications infrastructures (edge 3 in Figure 6.2), and 

188



availability for the functions of emergency response (e.g., flooding-induced road inundation) (edge 11 in 

Figure 6.2). The NPP condition will be monitored (edge 4 [factors ii to iv] in Figure 6.2) by the Onsite 

Emergency Response Organization (ERO) (NRC, 2011b) (factor iv in Figure 6.2). The onsite ERO is 

responsible for taking mitigating actions to recover the NPP from an accident condition using Emergency 

Operating Procedures (EOPs) and Severe Accident Management Guidelines (SAMGs) (NEI, 2016a) 

(edge 4 [factors iv to ii] in Figure 6.2). When the NPP condition/radiological source term enter the 

environment (edge 5 in Figure 6.2), the atmospheric transport and deposition of the radiological hazard 

(factor iii in Figure 6.2) begins. In the environment, meteorological natural hazards can influence the 

trajectory and dispersion of the radiological hazard (edge 6 in Figure 6.2). The onsite ERO (factor iv in 

Figure 6.2) declares a General Emergency (GE), which fans out and activates the ORO (factor vii in 

Figure 6.2). The quality and timing of information from the ERO to the ORO will affect ORO 

performance (edge 7 in Figure 6.2) (NRC, 2015). The ORO makes Protective Action Decisions (PADs) 

and provides Protective Action Recommendations (PARs) to the population and performs emergency 

response functions to assist the public in the performance of protective actions (edge 8 in Figure 6.2). 

Significant work has focused on whether or not people will evacuate when directed; however, little work 

has been conducted on choice of protective action alternatives (Sorensen, J.H., 2000). Section 6.2.2.1 

provides more details on the population protective action performance (factor viii).  

The radiological hazard will be monitored in the field by the ORO and can also affect ORO 

Emergency Worker (EW) health through dose exposure (edge 9 in Figure 6.2). The radiological hazard 

will also influence the physical health of the population, which is estimated as dose accumulation (edge 

10 in Figure 6.2). The natural hazard can affect human performance (e.g., low visibility in severe 

weather) of both the ORO (edge 11 in Figure 6.2) and the population (edge 12 in Figure 6.2). 

Transportation network unavailability can impact ORO (edge 13 in Figure 6.2) and population 

performance (edge 14 in Figure 6.2). Water, energy, and telecommunication infrastructure unavailability 

can impact ORO performance (edge 15 in Figure 6.2) and population performance (edge 16 in Figure 6.2) 

(e.g., mobile communication disruptions). Energy and telecommunication availability can affect onsite 

emergency response (edge 17 in Figure 6.2) (e.g., in scenarios of loss of offsite power and for 

communicating to the ORO). Lastly, NPP condition can contribute to the loss of power to the energy grid 

or energy grid disruption (edge 18 [factors ii to v] in Figure 6.2), and loss of offsite power can contribute 

to NPP condition (edge 18 [factors v to ii] in Figure 6.2). For example, in the Fukushima Daiichi 

accident, “prolonged unavailability of offsite electrical power and the failure of on-site power systems 

was a significant contributor to the damage to the reactors and release of radioactivity” (IAEA, 2012). 

The U.S. has responded to this issue with the addition of guidance for diverse and flexible coping 

strategies (FLEX) (NEI, 2012b). 
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Table 6.1: Theoretical justification of the macro-level theoretical causal framework in Figure 6.2  
Table 6.1 (cont.)   

Edge Influencing Factor Target Factor Supporting References 

1 i. Natural Hazard ii. NPP Condition 
(Cruz et al., 2004; Katona & Vilimi, 

2017; NRC, 2009a) 

2 i. Natural Hazard 
vi. Transportation Network & 

Structures Availability 

(Katona & Vilimi, 2017; Lindell et al., 

2019; NEA, 1998) 

3 i. Natural Hazard 

v. Water, Energy, 

Telecommunication 

Availability 

(Cavallin et al., 1994; Katona & Vilimi, 

2017; Preston et al., 2016) 

4 ii. NPP Condition 

iv. Onsite Emergency 

Response Organization 

Performance 

(McKenna, Thomas J., 2000; NEI, 

2012a, 2016b) 

4 

iv. Onsite Emergency 

Response Organization 

Performance 

ii. NPP Condition (IAEA, 2015; INPO, 2015; NEA, 2018) 

5 ii. NPP Condition iii. Radiological Hazard 
(McKenna, T. J. & Glitter, 1988; NEA, 

2016; NRC, 2009b)  

6 i. Natural Hazard iii. Radiological Hazard 
(Levin & Chaves, 2015; Lucas et al., 

2017; Yoshikane et al., 2016) 

7 

iv. Onsite Emergency 

Response Organization 

Performance 

vii. Offsite Response 

Organization (ORO) 

Performance 

(FEMA, 2013a; INPO, 2015; NRC & 

FEMA, 2019)  

8 

vii. Offsite Response 

Organization (ORO) 

Performance 

ii. Population Protective 

Action Performance 

(IAEA, 2006; Lindell, 2000; NRC & 

FEMA, 2019) 

9 iii. Radiological Hazard 

vii. Offsite Response 

Organization (ORO) 

Performance 

(NEA, 2015; NRC, 1991, 2008) 

10 iii. Radiological Hazard 
viii. Population Protective 

Action Performance 

(Bromet, 2014; Cardis & Hatch, 2011; 

Tokonami et al., 2012) 

11 i. Natural Hazard 

vii. Offsite Response 

Organization (ORO) 

Performance 

(Gray & Collie, 2017; Osofsky et al., 

2011; Weinhold, 2010) 

12 i. Natural Hazard 
viii. Population Protective 

Action Performance 

(Lindell Michael & Prater Carla, 2007) 

(Alaeddine et al., 2015; D’Orazio et al., 

2014) 
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Table 6.1 (cont.)   

13 
vi. Transportation Network 

& Structures Availability 

vii. Offsite Response 

Organization (ORO) 

Performance 

(Pederson et al., 2006; Schiff, 1995; Zio 

& Ferrario, 2013) 

14 
vi. Transportation Network 

& Structures Availability 

viii. Population Protective 

Action Performance 

(Chang, L. et al., 2012; Cova & 

Johnson, 2003; Lindell et al., 2019)  

15 

v. Water, Energy, 

Telecommunication 

Availability 

vii. Offsite Response 

Organization (ORO) 

Performance 

(GAO, 2009; Kruchten et al., 2007; 

Pederson et al., 2006) 

16 

v. Water, Energy, 

Telecommunication 

Availability 

viii. Population Protective 

Action Performance 

(El Khaled & McHeick, 2019; Kruchten 

et al., 2007; Pederson et al., 2006)  

17 

v. Water, Energy, 

Telecommunication 

Availability 

iv. Onsite Emergency 

Response Organization 

Performance 

(Pederson et al., 2006; Son et al., 2015; 

Zio & Ferrario, 2013) 

18 ii. NPP Condition 

v. Water, Energy, 

Telecommunication 

Availability 

(Boegli et al., 1978; IAEA, 2012; Kosai 

& Unesaki, 2017) 

18 

v. Water, Energy, 

Telecommunication 

Availability 

ii. NPP Condition 
(IAEA, 2012; NRC, 2003; Thompson et 

al., 2019) 

 

The macro-level framework (Figure 6.2) covers high-level paths of causality and requires further 

theory building to generate more detailed causal factors, sub-factors, and interrelationships. Section 6.2.1 

focuses on factors iv (highlighted in dark grey), vii (highlighted in grey), and viii (highlighted in light 

grey) from Figure 6.2 to develop a more detailed sequence of work processes and tasks associated with 

ORO performance and population response. Future research will be needed to theoretically expand the 

other factors in Figure 6.2.  

 

6.2.1. Theorizing Offsite Response Organization and Population Protective Action Performance 

In this section, the causal relationships between factors iv, vii, and viii from Figure 6.2 are 

expanded in Figure 6.3, based on the combination of three studies (Lindell, 2000; Mileti, D. et al., 1985; 

NRC, 2015), to provide more details on the sequence of the related processes in order to explicitly 

elaborate the phenomenology of information transfer between onsite and offsite organizations and the 

public during the early emergency phase (i.e., the early evacuation period up to seven days after 

radiological release) of an NPP accident. Section 6.2.1.1 further expands factor viii from Figure 6.2 

191



(focusing on events c.1 and c.2 from Figure 6.3) to provide more details related to the population’s tasks 

before departure. 

Figure 6.3: Process Model of Onsite Response, Offsite Response, and Population Response in the Early 

Emergency Phase 

 

Figure 6.3 does not go into detail about the onsite ERO (factor iv in Figure 6.2) but considers 

three onsite actions (i.e., hazard detection (a.1 in Figure 6.3), determination of radiological threat (a.2 in 

Figure 6.3), and declaration of emergency (a.3 in Figure 6.3)) suggested by (Mileti, D. et al., 1985) that 

would be taken immediately after the occurrence of an NPP accident, leading to the declaration of a 

notification of emergency (according to the NRC’s emergency classification system) (NRC & FEMA, 

2019). When the NPP condition (factor ii from Figure 6.2) transitions to an accident state (e.g., core 

damage), onsite ERO performance (factor iv from Figure 6.2) responds with events a.1 to a.2 (in Figure 

6.3), which are events leading to the Onsite Declaration of a General Emergency (a.3. in Figure 6.3). 

Event a.3 results in the communication of information about the NPP accident (edge 7 from Figure 6.2) to 

the ORO (factor vii from Figure 6.2), where the ORO will Receive the Licensee Notification of an 

Emergency (b.1. in Figure 6.3) and initiate ORO events (b.1. to b.10. in Figure 6.3), derived from (NRC, 

2015). The ORO function for Notifying the Public (b.7. in Figure 6.3), results in an emergency warning 

communicated to the population (edge 8 from Figure 6.2), initiating Population Protective Action 

Performance (factor viii from Figure 6.2), leading to population Warning Response (c.1. in Figure 6.3), 

Departure Preparation (c.2. in Figure 6.3), Departure/Evacuation (c.3. in Figure 6.3), and Exposure 

Reduction (c.4. in Figure 6.3), derived from (Lindell, 2000). ORO functions also contribute to 

performance of evacuations (8 from Figure 6.2; b.8 to c.3 in Figure 6.3), supporting evacuees, and 

managing exposure to the population (8 from Figure 6.2; b.10 to c.4 in Figure 6.3), but these functions are 

not covered in this paper and will be included in future research. 
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As shown in Figure 6.3, the ORO is not activated until the ERO declares a General Emergency, 

and population protective actions are not activated until the ORO notifies the public. Therefore, in the 

early emergency phase, the timing of ERO and ORO functions impact the population’s ability to initiate 

protective actions in a timely manner. Based on a review of the literature, Sorensen (1990) stated that 

officials are often slow to make decisions, and delayed decisions can prevent timely warning to the public 

(Sorensen, J.H., 2000). In the 2011 Fukushima Daiichi accident, miscommunication between onsite and 

offsite organizations contributed to misunderstandings and a lack of confidence about emergency 

response efforts, and coordination among central and local governments was hampered by limited and 

poor communication (NAS, 2014). Based on the lessons learned from the Fukushima Daiichi accident, 

the NAS made recommendations for the U.S. nuclear industry to revise or update plans for 

communicating with affected populations in response to long-duration scenarios that include widespread 

loss of critical offsite infrastructure including communications, transportation, and emergency response 

infrastructures, and to improve communication and coordination between onsite and offsite support 

facilities (NAS, 2014).  

Once the ORO has notified the public, population warning response (c.1 in Figure 6.3) will be 

initiated, resulting in processes of population protective action decision-making and preparation (c.2 in 

Fig 2), followed by response (c.3 in Figure 6.3), which includes performing the PAR, or deciding to 

perform an alternative action. PARs are communicated to the population, instructing individuals on how 

to reduce their exposure to radiation, taking into account best estimates of the dynamically evolving 

radiological hazard (plume) (i.e., factor iii from Figure 6.2). The next section focuses on population 

protective action performance (i.e., factor viii from Figure 6.2), specifically focusing on population 

departure, after receiving the ORO’s notification (i.e., edge 8 from Figure 6.2, and b.7 to c.1 in Figure 

6.3).  

 

6.2.1.1. Theorizing Population Departure in Protective Action Performance Given Radiological Hazards  

Golshani et al., (2019) provide a summary of studies on evacuation departure time and destination 

choice (Golshani et al., 2019a, 2019b), and categorize existing studies on evacuation decision-making 

into two groups (i) descriptive statistics, and (ii) predictive modeling (Golshani et al., 2019b). In an 

attempt to generate a predictive model for departure time, this section theorizes tasks and performance 

shaping factors associated with population departure (i.e., factor viii from Figure 6.2, specifically c.1 and 

c.2 from Figure 6.3), considering the influences of location-specific social vulnerability and 

demographics. This theoretical representation is equipped with proper methodological techniques in 

Section 6.3 to be quantified to (i) generate the predictive model for estimating the population departure 

time distribution and (ii) enable the explicit incorporation of the associated social vulnerability factors 
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into Level 3 PRA. The theoretical representation of departure time is developed based on the following 

logical statements:  

I. In NPP ETE studies (NRC, 2005), descriptive statistics are derived from surveys of the population 

within a 10-mile EPZ. ETE studies include information on the percentage of the population that 

intend to depart at specific time intervals in the early emergency phase, based on survey responses. 

This paper specifically focuses on ETE survey results, where a household representative was asked 

to assume that if all household members were at home, for example, at night or on the weekend, 

how long it would take for their household to depart after receiving an emergency notification. ETE 

survey results provide the percentage of the population in each time window, which can be 

considered as the probability of the specific departure time window for that NPP. Time window 

intervals in the ETE studies considered in this paper are; zero to twenty minutes, twenty to forty 

minutes, forty to sixty minutes, sixty to ninety minutes, and more than ninety minutes. These time 

windows and their associated probabilities represent the distribution of departure time for one NPP, 

based on survey results.  

§ The goal of this section is to develop a theoretical basis for creating a model that can 

predict the probability distribution of the departure time (for a given plant) or the 

Probability Mass Function (PMF) of the predefined departure time window intervals.  

II. For each NPP, the reason that the probability varies over the departure time window intervals is 

proposed to be due to variation of the Population Error (PE) probability within the 10-mile EPZ. 

§ PE probability indicates a deviation from ideal or normal conditions and is considered to 

be influenced by social vulnerability and demographic factors that impact the 

population’s performance in the tasks before evacuation begins. Because social 

vulnerability and demographics vary within the 10-mile EPZ, PE probability also varies 

within the 10-mile EPZ.  

III. The percentage of the population departing in a specific time window can be considered to share a 

specific range of PE.  

§ For each NPP, the probability of each departure time window shows the percentage of the 

population that has the range of PE associated with that time window. Therefore, the 

PMF of departure time for an NPP can be considered as the PMF of the “range of PE” 

associated with time windows for that plant. This process is explained in more detail in 

Section 6.3 and depicted in Figure 6.7. 

§ It is assumed that the population with greater error (greater PE probability) will have a 

greater delay in departure time.  
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IV. Based on the ETE studies, the probability of each departure time window varies across NPPs, and, 

in this paper, this variation is proposed to be because the PE range associated with each time 

window varies across plants.  

§ The PE range variation across plants is due to the variation of social vulnerability and 

demographic factors across NPPs. 

V. By having (i) the plant-specific probability distribution of PE within the EPZ and (ii) the expected 

range of PE for each time window of NPPs, it is possible to develop the probability distribution of 

the departure time or the Probability Mass Function (PMF) of the departure time windows for a 

given plant.  

§ In the rest of this section, existing HRA concepts are adapted to establish an HRA-based 

theoretical representation that helps with the development of the plant-specific 

probability distribution of PE within the EPZ. An algorithm is offered in Section 6.3.1 to 

utilize the ETE survey results along with the HRA-based model to generate the expected 

range of PE for each departure time window for NPPs.  

VI. HRA is commonly used to theorize and estimate the probability of humans correctly performing a 

task within a required time period in a given scenario (Mosleh & Chang, 2004; Swain & Guttmann, 

1983). There are a wide-range of HRA approaches (Boring et al., 2010; Hendrickson et al., 2012); 

however, all of them include (i) a qualitative phase (i.e., task analysis and identification of PSFs), 

where human error is theorized based on the deviation of internal PSFs (e.g., fatigue, cognitive 

mode) and external PSFs (e.g., physical work environment, teamwork, managerial and 

organizational factors) from nominal conditions (Swain & Guttmann, 1983) along with (ii) a 

quantitative phase to estimate the human error probability. This section covers the qualitative phase 

of HRA for PE probability, while the quantitative phase is covered in Section 6.3 as a part of the 

integrated methodology. In this paper, HRA is adapted for PE analysis, as follows:  

§ Task Analysis: Task analysis is where actions are broken down into tasks and subtasks 

based on pre-defined characteristics for HRA (Swain & Guttmann, 1983). PEs, however, 

do not have pre-defined characteristics, and therefore, literature is used to identify tasks 

and subtasks. There have been limited studies that explain individual variation in 

response to emergency warnings (Sorensen, J.H., 2000), especially for NPP accidents. 

Lindell and Perry (1992) provided a characterization of a community’s behavioral steps 

for a warning response to general hazards (natural or technological), which included risk 

identification (i.e., does the threat exist?), risk assessment (i.e., is protection needed?), 

risk reduction (i.e., is protection feasible?), and protective response (i.e., what action to 

take?) (Lindell & Perry, 1992). Similarly, Mileti and Sorensen (1990) characterized the 
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generic processes of a population responding to any type of emergency as; hearing the 

warning, understanding the warning, believing credibility of the warning, personalizing 

the warning, confirming the warning, and responding with a protective action (Mileti, 

D.S. & Sorensen, 1990). Lindell and Perry (2012) theorized the Protective Action 

Decision Model (PADM) for environmental hazards and disasters by a generic multistage 

model of psychological processes (i.e., pre-decisional expectations, perceptions of 

threats, and protective action decision making) that influence individual’s behavioral 

response (Lindell & Perry, 2012). Getting some insight from the existing literature 

(summarized above), the following generic tasks are proposed for the population 

following PAR and mapped to the generic HRA task types: (i) observation of the 

notification (i.e., diagnosis task), (ii) the orientation and interpretation of the associated 

risk (i.e., diagnosis task), (iii) the protective action decision (i.e., diagnosis task), and (iv) 

the performance of the protective action (i.e., action task). HRA event trees (Swain & 

Guttmann, 1983) are used to depict the sequence of tasks, considering the success paths 

(branching to the left) and error paths (branching to the right). Recovery paths are 

considered for each task, meaning when there is an error in Task A (to the right of Figure 

6.4), there is a possibility for the population to recover, back to task a, with some error 

(delay). These recovery paths create the opportunity for 16 end states, with varying 

degrees of error, as represented by the success end state, S, and end states E1 (worst case) 

to E15 (less than total success) in Figure 6.4. Task “1” in Figure 6.4, observe notification, 

is similar to the type of information input and elaboration tasks in HRA (e.g., (Chang, 

Y.H.J. & Mosleh, 2007)). In Task “1” skill-based errors (slips) (e.g., (Reason, 1990)) can 

occur, where individuals hear the GE siren, observe the EAS from their landlines and 

mobile devices, or in some cases, observe the notification from media reporting, social 

media, or social interactions. Task “2” in Figure 6.4, orient and interpret risk, can be 

considered as a knowledge-based error (e.g., (Reason, 1990)), and is similar to the type of 

problem-solving or perception tasks in HRA, where individuals, or households, arrive at 

a risk perception of the radiological hazard based on prior knowledge of the NPP and its 

associated emergency response programs. Task “3” in Figure 6.4, decide protective 

action, is similar to the type of decision-making tasks in HRA (e.g., (Chang, Y.H.J. & 

Mosleh, 2007)). In Task “3”, individuals and households consider the ORO notification 

and EAS information in their decision-making process. In this research, it is assumed that 

the PAR is evacuation for the entire EPZ. Task “3” can be considered as a rule-based 

error (mistake), where individuals and households decide on their process for evacuation, 
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considering scenarios associated with the location of other family members, and 

preferences for evacuating after waiting for all members to arrive home. Each sub-event 

scenario associated with Task “3” can add to departure time and are therefore lumped 

into the error category of Task “3.” Task “4,” perform protective action, can be 

considered as a skill-based error (e.g., (Reason, 1990)), and is similar to the type of action 

tasks in HRA (e.g., (Chang, Y.H.J. & Mosleh, 2007)). In Task “4,” individuals or 

households will initiate their process of packing food, clothes, and belongings, wait for 

family members, or embark on additional pre-evacuation travel activities (e.g., picking up 

school children or relatives) (Lämmel et al., 2016). For example, based on a national 

survey of households living in NPP EPZs, Walton and Wolshon (2010) found that 

families desire to evacuate together, and emergency plans should anticipate parents 

attempting to pick up their children from school (Walton & Wolshon, 2010). Related to 

Task “4,” Urbanik (2000) provided an event sequence associated with trip generation 

actions for NPP scenarios for individuals at work (i.e., warning receipt, departure from 

work, arrival at home, departure from home) (Urbanik, 2000), which remains the most 

commonly used event sequence for pre-evacuation actions in ETE studies. Future work 

can use Urbanik (2000) to expand Task “4” to more sub-tasks in the HRA-based analysis 

of PE. After Task “4”, all pre-evacuation tasks for population departure are completed, 

and the stage of evacuation begins.  

Figure 6.4: Conceptual HRA Event Tree of Population Departure Tasks 
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§ Identification of PSFs: PSFs influence the performance of each task; therefore, they 

change the error probability of that task. In Table 6.2, for each task (i.e., Task “1” 

(Observe), Task “2” (Orient), Task “3” (Decide), Task “4” (Act)), selected attributes 

from social vulnerability (ATSDR, 2018) and U.S. Census data are considered as PSFs 

and justified by the literature. For succinctness, only one reference for each PSF is 

provided in Table 6.2. For PSF-1, considering social vulnerability and demographic 

attributes, a surrogate factor of people over age five who speak English “less than well” is 

considered for Task “1” (observe), where the language barrier may cause a delay in 

observing or understanding the warning (Sorensen, J.H., 2000), thereby creating a delay 

(error) in Task “1.” For PSF-2, the elderly (i.e., age 65 and above) have greater potential 

to not receive warning information (Cutter & Barnes, 1982), for example, due to lack of 

audibility or access to technology. In Lindell’s (2000) framework of factors influencing 

population preparation and response, it is stated that household resources, for example, 

the availability of a credit card or ready cash, are important in PAR compliance (Lindell, 

2000). Therefore, for Task “2,” PSF-3, household income, indicated by per capita 

income, is considered as a factor which could influence the orientation (e.g., a level of 

discomfort due to the inability to evacuate to a hotel, and having to go to a mass care 

facility) of an individual or household about the PAR of evacuation. For Task “3,” PSF-4 

considers that the decision to evacuate will be influenced by the lack of access to a 

personal or household vehicle (Lindell & Perry, 2012), where households with no vehicle 

will require additional time to seek alternative transportation options. PSF-5 considers 

that noninstitutionalized households with individuals with a disability may have an 

influence on decision-making (Dash & Gladwin, 2007; Lim et al., 2013). Redlener et al., 

(2008) found that sixty-three percent of parents “would disregard an evacuation order and 

go directly to their child’s school in an attempt to collect their children,” from findings 

that are consistent across the U.S. and independent of household income, education, age, 

or gender (Redlener et al., 2008). Therefore, for Task “4” in Figure 6.4, PSF-6, having 

school children is considered to increase the departure time for some parents that attempt 

to pick up their children from school. For PSF-7, commuters are likely to return home 

before evacuating as a family or group (NRC, 2005). Both PSF-6 and PSF-7 are 

indicators of pre-evacuation actions that would add additional local travel times (e.g., 

(Murray-Tuite & Mahmassani, 2003)) before initiating the actual evacuation.  
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Table 6.2: Performance Shaping Factors (PSFs) for each population departure task 

  

Task Performance Shaping Factor (PSF) References 

(Task “1”) 

Observe 

(PSF-1) Less than well English speaking (Sorensen, J.H., 2000) 

(PSF-2) Persons aged 65 and older (Cutter & Barnes, 1982) 

(Task “2”) 

Orient 
(PSF-3) Per Capita Income (Lindell, 2000) 

(Task “3”) 

Decide 

(PSF-4) No Vehicle (Lindell & Perry, 2012) 

(PSF-5) Non-institutionalized Population with a Disability  (Dash & Gladwin, 2007) 

(Task “4”) 

Act 

(PSF-6) School children (Liu et al., 2012) 

(PSF-7) Commuters (NRC, 2005)  

 

6.3.  METHODOLOGICAL DEVELOPMENT FOR THE EXPLICIT INCORPORATION OF 

SOCIAL FACTORS INTO LEVEL 3 PRA 

 

While the ideal goal of this research is to quantify the entire macro-level theoretical framework in 

Figure 6.2, in this paper, an integrated methodology (Figure 6.5) is developed to quantify a specific scope 

of the macro-level framework by coupling Population Departure Time Model (PDTM) (A in Figure 6.5) 

and transportation model (B in Figure 6.5) with Level 3 PRA (MACCS) (C in Figure 6.5). As discussed 

in Section 6.2, MACCS considers the explicit effects of some of the factors in Figure 6.2 (i.e., factors ii, 

iii, and vi), but the influences of other critical factors (e.g., factors i, iv, v, vii and viii) are only implicitly 

considered. The proposed integrated methodology improves the explicit consideration of factor viii 

(population protective action performance) and edge 14 (the influence of the transportation network 

[factor vi] on population protective action performance [factor viii]) from Figure 6.2. In MACCS, 

population departure time is based on survey responses from a sample set of the population in the EPZ. 

The integrated methodology uses a model-based approach (A in Figure 6.5) for leveraging social 

vulnerability and demographic data to estimate population departure times. MACCS uses a transportation 

model where evacuation movement is considered in discrete increments or “jumps” from one point to 

another considering distance and speed from one point to another (NRC 1997); while the integrated 

methodology utilizes a transportation model (B in Figure 6.5) to explicitly model traffic flow. 

The integrated methodology connects the PDTM output distribution to a transportation model 

for evacuation (i.e., c.2 to c.3 from Figure 6.3), and the results of the transportation model are 

incorporated into a Level 3 PRA simulation (i.e., c.3 to c.4 from Figure 6.3). Because departure time 

influences evacuation speed, without an explicit model of evacuation, the treatment of dependencies 

between departure time and a data-driven evacuation speed estimation is challenging. Therefore, to 
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consider the effects of social factors (in PDTM; A in Figure 6.5) on risk, the dependency between 

departure time and evacuation speed is considered by explicit modeling of both departure time and 

evacuation speed and integrating their coupling with MACCS Level 3 PRA code. In MACCS, there are 

two types of evacuation simulations: radial evacuation (all movement is radially outward) and network 

evacuation (traffic movement follows major roadways). Keyhole evacuation is a setting for both types of 

evacuation simulations, where site-specific protective actions based on wind direction be considered 

when the entire EPZ is not being evacuated. In this paper, the network evacuation is used without the 

consideration of a keyhole evacuation (i.e., in the case study, it is assumed that the entire EPZ is to be 

evacuated). MACCS inputs also include source term (C.2 in Figure 6.5), weather data (C.3 in Figure 6.5), 

dose coefficient (C.4 in Figure 6.5), and notification time (C.5 in Figure 6.5). 

Figure 6.5: Integrated Methodology for Coupling Population Departure Time Model and 

Transportation Model with Level 3 PRA 

 

Figure 6.5 also shows a set of generic inputs for the transportation model, which includes 

population and demographic data (e.g., population density, number of vehicles per household) (B.2 in 

Figure 6.5), road network data (i.e., link-node and geometry data) (B.3 in Figure 6.5), and a 

geographically defined evacuation area (B.4 in Figure 6.5). Using these inputs, the transportation model 

produces a distribution of average individual vehicle evacuation speeds (B.5 in Figure 6.5) that serve as 

an input to Level 3 PRA (C.1 in Figure 6.5). Based on the reviewed NPP ETE studies in this paper, both 

macroscopic (i.e., Dynamic Network Evacuation (DYNEV)) and mesoscopic (i.e., PTV Vision) 

transportation models have been used. None of the reviewed studies developed an explicit-internal 

incorporation of an ABM transportation model with Level 3 PRA input parameters to estimate risk. 

Because of the dependency between population departure and evacuation speed, the resolution for 

individual vehicle speeds in the simulation is critical, and therefore, an ABM model provides the most 
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granular analysis of individual travel speeds. Further, because the population departure model 

incorporates social factors at a more granular level of analysis and produces a distribution of departure 

time considering the variations across the population within the EPZ, ABM is selected for the 

transportation model to generate a distribution of average evacuation speed that considers evacuees 

optimizing their personal evacuation route (i.e., considering speed calculations for each vehicle in the 

simulation). The integrated methodology analyzes Level 3 PRA outputs (D.1 in Figure 6.5) and conduct 

importance risk ranking with respect to Level 3 PRA input parameters and regarding the input factors in 

PDTM and the transportation model. The importance ranking provides useful information for risk-

informed emergency planning and response. The following sub-sections provides more detailed 

information regarding modules of the integrated methodology.  

6.3.1. Population Departure Times Model (A in Figure 6.5)  

The PDTM (A in Figure 6.5) leverages the task analysis and PSF identification from Section 

6.2.1.1 to provide a predictive model for population departure time distribution. This section covers the 

methodological approaches for two phases of the model: building the model (A.1 in Figure 6.5) and 

validating the model (A.2 in Figure 6.5). Section 6.4 implements these two phases using NPP databases. 

The validated model is also applied for the Sequoyah NPP in Section 6.4.   

(A.1) Building the Population Departure Time Model: the computational flowchart for this step 

is shown in Figure 6.6. First, the NPPs to be included in the study (𝑘 = 1,… ,𝑁!) are identified by the 

analyst (A.1.1 in Figure 6.6). NPP ETE survey data are collected for all NPPs included in the study (A.4 

in Fig 6). Most NPP ETE survey data include EPZ departure times, where respondents are told to assume 

that if all household members were at home, for example, at night or on the weekend, and are asked how 

long it would take for their household to depart after receiving the emergency notification. As discussed 

in Section 6.2.1.1, the NPP ETE survey-generated probabilities are binned into five time window 

intervals, 𝑇" , 𝑙 = 1, 2, … , 5, where T1 to T5 represent (0, 20], (20, 40], (40, 60], (60, 90], and (90, 180], 

respectively (the unit of time is [minutes]). 

For each NPP (A.1.2 in Figure 6.6), the plant center point is located using GIS, and a 10-mile 

buffer around the center point is generated for the EPZ (A.1.3 in Figure 6.6). Using CDC SVI (CDC et 

al., 2018) and U.S. 2010 Census data (B.2 in Figure 6.5), information on each attribute 𝑖 (𝑖 = 1,… , 𝐼) for 

each census tract 𝑗 (𝑗 = 1,… , 𝐽) within the EPZ of each NPP 𝑘 (𝑘 = 1,… , 𝐾), denoted as 𝑎#$!, can be 

exported using GIS (A.1.4 in Figure 6.6). 
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Figure 6.6: Sub-Steps for (A.1) Building (A.2) and Validating the PDTM 

This loop is repeated for each NPP (A.1.5 and A.1.6 in Figure 6.6), resulting in a database of all 

NPP EPZ census tract attribute data. All extracted attribute data points 𝑎#$! are then normalized, and their 

normalized values are used as the correspondent PSFs (A.1.7 in Figure 6.6), as described below. The use 

of PSFs is adapted from common practice in the existing HRA techniques, and PSFs are derived from 

CDC SVI and census data to provide a location-specific indicator of population performance. In the 

existing HRA techniques, the human error/success probability for human action is computed as a function 

of the nominal (or baseline) human error/success probabilities and PSFs. For instance, in the Success 

Likelihood Index Methodology (SLIM) (Embrey et al., 1984), the success rate and human error rate are 

computed by Eq. 6.1 and 6.2, respectively:  

 

𝑙𝑜𝑔%&(𝑆𝑃) = 𝑎'(𝑆𝐿𝐼) + 𝑏' (6.1) 
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𝑙𝑜𝑔%&(𝐹𝑃) = 𝑎((𝐹𝐿𝐼) + 𝑏( (6.2) 

where SP: Success Probability; FP: Failure Probability; SLI: Success Likelihood Index; 𝑎' and 𝑏': 

calibration constants for SLI obtained from two baseline cases (i.e., two sets of known SP and SLI); FLI: 

Failure Likelihood Index; 𝑎( and 𝑏(: calibration constants for SLI obtained from two baseline cases (i.e., 

two sets of known FP and FLI). SLI and FLI can be computed by using different forms of functions of the 

associated PSFs, e.g., linear summation or multiplication of the PSFs. In the context of the offsite 

population response, no information on {SP, SLI} or {FP, FLI} that can be used to calibrate Eqs. 6.1 and 

6.2 is found. Therefore, this study assumes that the SLI computed based on scenario ‘S’ in Figure 6.2 or 

the FLI computed based on scenario ‘E1’ in Figure 6.2 can be used as an approximate representation of 

the population performance in the pre-evacuation action (i.e., delay in their evacuation) and can be 

calibrated against the population departure time distribution. Future research is needed to establish a 

theoretical and methodological basis for estimating the nominal/baseline human error/success 

probabilities and incorporate them into the PDTM. SLI and FLI approaches are considered as two 

alternate models, and their prediction capability is evaluated and compared in model validation (A.2 in 

Figure 6.5) using the goodness-of-fit test.  

To quantify SLI for scenario ‘S’ in Figure 6.2, “success PSFs” are first computed. For each 

attribute data point 𝑎#$! collected from census tract 𝑗 within the EPZ around plant 𝑘, its normalized 

“success” PSF value, 𝑃𝑆𝐹#$!' , is calculated using Eq. 6.3: 

𝑃𝑆𝐹#$!' =
𝑚𝑎𝑥
$,!

𝑎#$! − 𝑎#$!

𝑚𝑎𝑥
$,!

𝑎#$! −𝑚𝑖𝑛$,!
𝑎#$!

(6.3) 

where 𝑖 = 1, 2, … 𝐼; 𝑗 = 1, 2, … 𝐽; and 𝑘 = 1, 2, …𝐾; with 𝐼, 𝐽, and	𝐾 being the total number of attributes 

(i.e., PSFs), the total number of census tracts for plant k, and the total number of plants considered in the 

study. Eq. 6.3 is formulated in a way that, the lower the associated attribute data 𝑎#$! in Eq. 6.3, the 

higher the value of SLI is. For example, in calculating PSF-6 (School Children), the success PSF indicates 

that, if there are less school children in census tract j, less parents will be inclined to pick up their 

children, and therefore increase the SLI, leading to higher SLI and SP. The SLI for population in census 

tract j of plant k is then computed assuming a multiplicative model for 𝑃𝑆𝐹#$!* , as follows:  
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𝑆𝐿𝐼$,! =@ 𝑃𝑆𝐹#$!*
+

#,%
 (6.4) 

This SLI is used as a PE indicator below to build and validate the PDTM. 

Similarly, to quantify FLI for scenario ‘E1’ in Figure 6.2, “failure PSFs” are first computed. For 

each attribute data point 𝑎#$! collected from census tract 𝑗 within the EPZ around plant 𝑘, its normalized 

“failure” PSF value, 𝑃𝑆𝐹#$!( , is calculated using Eq. 6.5: 

𝑃𝑆𝐹#$!( =
𝑎#$! −𝑚𝑖𝑛$,!

𝑎#$!

𝑚𝑎𝑥
$,!

𝑎#$! −𝑚𝑖𝑛$,!
𝑎#$!

(6.5) 

Eq. 6.5 is formulated in a way that, the higher the associated attribute data 𝑎#$! in Eq. 6.5 is, the 

higher the value of FLI is. For example, for PSF-1 (Less than well English speaking), the higher number 

of individuals with less than well English speaking in a census tract may indicate a higher probability of 

error when observing or interpreting emergency notifications, leading to higher FLI and FP. The FLI for 

population in census tract j of plant k is then computed assuming a multiplicative model for 𝑃𝑆𝐹#$(!, as 

follows:   

𝐹𝐿𝐼$,! =@ 𝑃𝑆𝐹#$!(
+

#,%
(6.6) 

This FLI is used as a PE indicator below to build and validate the PDTM. 

The result of A.1.9 is a distribution of the PE indicator (i.e., SLI or FLI) for each NPP in the 

study (A.1.10 in Figure 6.6), which represents the variability across all census tracts in the EPZ that will 

be reflected in the departure time distribution. Once the PE distributions are generated, the development 

subset (𝑘 = 1,… ,𝑁!-) is selected by the analyst (A.1.11 in Figure 6.6). For each NPP (A.1.12 in Figure 

6.6), the probability of each time window (i.e., zero to twenty minutes, twenty to forty minutes, forty to 

sixty minutes, sixty to ninety minutes, and more than ninety minutes) is extracted from ETE survey data 

(A.4 in Figure 6.6). The percentage of the population in each census tract of the EPZ is calculated (A.1.13 

in Figure 6.6). Census tracts are sorted in ascending order of PE, and for each NPP, each time window 

(from ETE survey data) is mapped to a set of census tracts where the cumulative percentage of the 
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population is equal to the time window probability (A.1.14 in Figure 6.6). This loop is performed for each 

NPP (A.1.16. and A.1.17. in Figure 6.6), resulting in PE ranges for time windows of all NPPs in the 

building subset (A.1.18 in Figure 6.6).  

 

Figure 6.7: Assignment of PMF-Based Time Window Bins to the Population Error Distribution for each 

NPP 

 

(A.2) Validating the Population Departure Time Model: The HRA-based PDTM is run for the remaining 

subset of NPPs that were not used in the building subset to serve as the validation subset (𝑘 = 𝑁!- +

1,…𝑁!) (A.2.1 in Figure 6.6) for predicting the PMF of the time windows. Then, the HRA-based PDTM 

is validated by checking whether Logical Statement V from Section 6.2.1.1 can be achieved within a 

reasonable level of prediction error.  

Using the PE ranges from A.1.18 and the PE distribution from A.1.10, the percentage of the 

population for each time window is predicted (A.2.2 in Figure 6.6). Ranges of overlap (i.e., PE values that 

fall in-between two ranges) are considered by assigning a probability weight (i.e., assuming 50% chance 

for either time window). The estimation of PMF for each time window can be regarded as parameter 

estimation for a multinomial process, and using the maximum likelihood estimates, the point estimation 

of PMF for time window 𝑇" and for plant k can be obtained as follows:  

�̂�!," =
𝑦!,.∈0!
𝑁$,!

 (6.7) 

where 𝑦!,.∈0!is the population-adjusted count of the census tracks in EPZ of plant k falling within time 

window Tl; while 𝑁$,! is the total number of census tracks in EPZ of plant k. Eq. 6.7 may generate 

misleading results since, for some of the NPPs, (i) the total number of census tracts is relatively small 

(e.g., less than 20) and (ii) the numerator of Eq. 6.7 can be zero for larger time windows. To address these 

challenges, this paper uses the point estimate based on Bayesian inference using the Dirichlet-multinomial 
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conjugate. Assuming that the prior distribution for �̂�!," , 𝑙 ∈ {1, 2, … , 5}, is represented by a ‘flat’ Dirichlet 

distribution, where all parameters, 𝛼!", are set to 1. Considering the population-adjusted count of the 

census tracks, 𝑦!,.∈0! , 𝑙 ∈ {1, 2, … , 5}, as evidence, the likelihood function can be modeled by a 

multinomial distribution. Using the Dirichlet-multinomial conjugate property, the posterior distribution is 

also a Dirichlet distribution with updated parameters, calculated as follows:  

𝛼!" = 1 + 𝑦!,.∈0! (6.8) 

In this paper, the mean value of the posterior distribution, calculated by Eq. 6.9, is used as the 

point estimate of the time window probability: 

�̂�!," =
1 + 𝑦!,.∈0!

∑ I1 + 𝑦!,.∈0!J
1
",%

 (6.9) 

The result of this calculation (A.2.3) are time window probabilities for each NPP in the validation subset 

(A.2.3 in Figure 6.6).   

To evaluate the probability estimations for each NPP, a goodness-of-fit test is performed (A.2.4 

in Figure 6.6). Leveraging the probabilities of each time window from the NPP ETE survey data (A.4), 

the PMFs for departure time (A.2.3) are evaluated using a goodness-of-fit test, for example Chi-square, to 

determine the level of reasonable error (i.e., the p-value is greater than 0.05) for the PDTM (A.2.5 in 

Figure 6.6). If the goodness-of-fit test is not successful (i.e., the p-value is less than 0.05), the analyst can 

generate an alternative HRA-based PE equation (A.1.8 in Figure 6.6) and re-run the building and 

validation of PDTM. If the goodness-of-fit test is successful (i.e., the p-value is greater than 0.05), the 

PDTM is provided for use. For example, Model 1 and Model 2 discussed above were tested, and Model 2 

had a better goodness-of-fit and is therefore used in Section 6.4. In this paper, a reasonable error 

associated with the PDTM is assumed to be acceptable since the model helps to compensate for a lack of 

data (e.g., for outdated survey results, or in evaluating the EPZ for a new NPP design), and compliments 

surveys by providing more context for departure time estimations based on social vulnerability and 

demographic factors.   

Once the validation (A.2 in Figure 6.5) is successfully executed, the PDTM model (i.e., the HRA-

based PE equation used in A.1.8 and the PE ranges in A.1.18 from Figure 6.6) can be used. In Section 

6.4, the processes of building and validating the model are executed using a set of NPP data, and then the 

validated PDTM is applied for Sequoyah NPP.  

 

6.3.2. Transportation Models (B in Figure 6.5)   

In order to select a proper transportation model for the integrated methodology (Figure 6.5), this 

research conducts a review of NPP-related studies from 2000 to 2019 that discuss evacuation models (or 
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include the development or application of evacuation models) to analyze the challenges of transportation 

modeling for NPP evacuations. For an overview of evacuation models before 2000, see (Longo, 2010). 

The reviewed NPP-related studies fall into four categories:  

a. Studies that discussed NPP evacuations but did not utilize a transportation model: Murray-Tuite 

and Wolshon (2013) provided a review of transportation modeling and identified factors 

contributing to NPP evacuations. Herrerra et al., (2019) evaluated the impact of population sizes 

and network topologies on trip generation times in ETE studies (Herrera et al., 2019). Hammond 

and Bier (2015) evaluated evacuation boundaries and compared them to keyhole evacuation 

strategies (Hammond & Bier, 2015). Four studies utilized optimization-based approaches for 

evaluating population evacuation routes (Guo et al., 2015; Huang et al., 2017; Lv et al., 2013; 

Zou et al., 2018). Goldblatt and Weinisch (2005) provide an overview of computer modeling for 

evacuation simulations for NPPs (Goldblatt & Weinisch, 2005). Deng et al., (2018) develop a 

parametric model to estimate an evacuation index associated with different evacuation 

alternatives to support decision making for NPPs (Deng et al., 2018). 

b. Studies that used macroscopic transportation modeling: Macroscopic transportation models 

consider collective and aggregated (rather than individual) vehicle dynamics (i.e., density and 

velocity for a given location and time) (Helbing et al., 2002). In macroscopic models, traffic is 

represented as a flow (Bayram, 2016), where slowing down processes of fast-moving vehicles 

(encountering slower moving vehicles) and a relaxation process (i.e., adjusting speed towards a 

desired speed) determine flow rates in the model (Paveri-Fontana, 1975). DYNEV is a 

macroscopic transportation model that simulates traffic patterns over a road network during 

evacuations (Urbanik et al., 1988a). DYNEV parameters include vehicle population, network 

capacity, loading time, capacity reduction factor, time intervals, and free-flow velocities (Urbanik 

et al., 1988b). PTV Visum is a macroscopic transportation model that uses Origin-Destination (O-

D) matrices as inputs for planning routes and forecasting traffic (Fellendorf et al., 2000). A 

benefit of macroscopic models is their ability to reduce application run times. Sixty-five NPP 

ETE studies from 2004 to 2018 that were available on NRC ADAMS were reviewed (See 

Appendix D), where 48 studies used versions of the DYNEV macroscopic simulation approach 

(i.e., (Urbanik, 2000)). DYNEV was developed by KLD Associates in the 1980s for FEMA 

(Urbanik et al., 1988a). DYNEV is a macroscopic traffic and evacuation simulation based on a 

gravity model that considers inputs of supply (e.g., evacuation routes, number of lanes, road 

capacity) and demand (e.g., permanent residents, employees, transients, special events), and can 

include multimodal transport (i.e., car and bus) (Weinisch & Brueckner, 2015). I-DYNEV 

differed from DYNEV in the way it computed the number of vehicles leaving a roadway 

207



segment. DYNEV II computes evacuation times and speeds for each link in 5-minute intervals 

(Cohen & Weinisch, 2015). DYNEV II was used to conduct ETE studies for 75% percent of the 

operating nuclear reactors in the U.S. (Cohen & Weinisch, 2015). Leveraging NPP ETE studies 

from 2011 and 2012, Weinisch and Brueckner (2015) used DYNEV to evaluate how varying the 

percentages of the shadow population (i.e., the population within 5 miles outside of the EPZ that 

would voluntarily evacuate) would affect ETEs (Weinisch & Brueckner, 2015). Cohen and 

Weinisch (2015) used DYNEV-II with FEMA’s HAZards US (HAZUS) natural hazard loss 

estimation software to assess the impact of a natural hazard on evacuation (Cohen & Weinisch, 

2015). 

c. Studies that used mesoscopic transportation modeling: Mesoscopic transportation models 

consider a combination of both macroscopic and microscopic models, and are typically developed 

by disaggregating segments of macroscopic models into smaller segments (Bayram, 2016; Zhang 

et al., 2013). Mesoscopic models can produce indicators of traffic congestion and queuing (Zhang 

et al., 2013). PTV Vision combines Visum and Vissim (a microscopic transportation model) into 

a mesoscopic model through a methodology for bridging its different layers (i.e., the O-D matrix 

can be translated to Vissim) (Walker et al., 2012). An example of a mesoscopic model is 

TRANSIMS, which has been used to support evacuation modeling (e.g., (Pasupuleti et al., 

2009)). As mentioned previously, sixty-five NPP ETE studies from 2004 to 2018 that were 

available on NRC ADAMS were reviewed (See Appendix D). 17 of the reviewed ETE studies 

used a combination of microscopic and macroscopic with the PTV Vision toolkit (i.e., (VISION, 

2015)). 

d. Studies that used microscopic transportation modeling: Microscopic transportation models 

consider individual vehicle movements on a second-by-second basis for analyzing traffic 

performance of road networks (FHWA, 2004). Microscopic models can consider specific driver 

and vehicle performance characteristics as well as behavior (Zhang et al., 2013). Compared to 

macroscopic models, microscopic models can require more effort to code, have larger volumes of 

data, and have long run times (Herrera et al., 2019). PTV Vissim a type of microscopic 

transportation model that is a discrete, stochastic, and time-step-based, where each vehicle is a 

single entity that follows rules based on Weidemann (1974) (i.e., four driving modes; free 

driving, approaching, following, braking (Wiedemann, 1974)) (Fellendorf & Vortisch, 2001, 

2010). For a review of microscopic transportation models used in disaster research, see (Henson 

et al., 2009). Lee et al., (2016) utilized PTV Vissim (microscopic simulation), using surveys of 

the local population to generate traffic generation time estimates (Lee et al., 2016). Tuncer (2018) 

used PTV Vissim to evaluate the impact of shadow evacuation on NPP clearance times (Tuncer, 
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2018). Novacko et al., (2014) used PTV Vissim to evaluate the time of evacuation for the Krško 

NPP in Slovenia (Novacko et al., 2014). Agent Based Modeling (ABM) is a type of microscopic 

transportation modeling technique for simulating actions and interactions of autonomous 

individuals, so that emergent behavior can be observed (Zheng et al., 2013). ABMs are defined 

by bottom-up rules to govern individual agent behavior and decision-making, where traffic 

performance can feed back to modify agent behavior (Zheng et al., 2013). Hwang and Heo (2019) 

used the ABM software NetLogo and an extended GIS module to evaluate agent behavior 

patterns in NPP evacuations (Hwang & Heo, 2019). Alexis-Martin (2017) used Netlogo for a 

hypothetical case study to integrate population agents (i.e., nighttime population density from 

census data), radiological plume agents (i.e., generated by the Probabilistic Accident 

Consequence Evaluation (PACE) Numerical Atmospheric Modelling Environment (NAME) 

code), and countermeasure agents (i.e., shelters) to explore gender and radiation exposure, as well 

as demographic subgroup characteristics in hypothetical emergencies (Alexis-Martin, 2017). One 

study applied ABM using the software AnyLogic to simulate the number of residents evacuating 

over time (Amir et al., 2017). One study discussed the use of ABM for an NPP evacuation but did 

not provide information on their methodology (Kyoungseok & Lee, 2016).  

 

The literature review in this section highlights the following results:  

(i) Of the sixty-five reviewed NPP ETE studies, three consulting companies were the main authors of 

the reports (one company authoring 74% of the studies) and applied three types of macroscopic and 

mesoscopic transportation modeling software (see Appendix D). The review of NPP ETE studies 

indicates a lack of multidisciplinary and academic involvement in research on the topic of 

population evacuation for NPPs. As discussed in Section 6.1, licensees can leverage information 

from ETE studies to provide input parameters for MACCS, such as evacuation strategies, 

evacuation speeds, and the number of cohorts (i.e., segments of the population) (NRC, 2012), 

however, the explicit-internal incorporation of social factors beyond surveys and demographic data 

have not been considered (i.e., model-based approaches of population departure performance). 

(ii) There are a limited number of studies that applied ABM for NPP-related evacuations (i.e., (Alexis-

Martin, 2017; Amir et al., 2017; Hwang & Heo, 2019)). Of the ABM studies, one used a 

hypothetical location to conduct the case study (i.e., (Alexis-Martin, 2017)), and two solely relied 

on demographic data without using survey data to inform the assumptions on population behavior 

or evacuation time estimations (i.e., (Alexis-Martin, 2017; Amir et al., 2017)). One ABM study 

created an explicit-external incorporation of population evacuation with a static radiological plume 

209



model using PACE-NAME code (Alexis-Martin, 2017), however, an explicit-internal incorporation 

has not been demonstrated in the literature. 

(iii) Most of the reviewed studies have generated an external model for evacuation and are not 

connected to a radiological hazard model. One study that did include a radiological hazard (i.e., 

using the NRC’s Radiological Assessment Systems for Consequence AnaLysis (RASCAL) tool 

(Hammond & Bier, 2015)) did not include a microscopic, macroscopic, or mesoscopic 

transportation model. Another study that included a radiological hazard (i.e., using PACE-NAME 

(Alexis-Martin, 2017)) generated a static plume that was exported in a GIS environment to create 

an explicit-external integration with the ABM population evacuation model (Alexis-Martin, 2017). 

These studies have not developed an explicit-internal incorporation of social factors (i.e., updating 

evacuation parameters in Level 3 PRA).  

 

In this paper, MultiAgent Transport Simulation (MATSim) is selected as the ABM microscopic 

transportation model (C in Figure 6.5), and the MATSim Evacuation extension (Lämmel et al., 2016) is 

used in the case study demonstration in Section 6.4. MATSim models start with a synthetic population of 

randomly generated individuals informed by census data (Lämmel et al., 2010). Each synthetic population 

member (agent) starts with one or several plans or “intentions” to be tested in the traffic flow simulation 

and scored (Lämmel et al., 2010). For example, part of the agent’s plan can include their delay to 

departure and their predetermined route to safety. The road network (B.3. in Figure 6.5) includes the 

accessible areas for evacuees, where each street is a link that has parameters of length, capacity, and free 

flow speed (Lämmel et al., 2010). Traffic flow in MATSim is a queue simulation, where each link 

considers a first-in-first-out queue with three restrictions; (i) each agent remains for a certain time on the 

link based on free speed travel time, (ii) link flow capacity limits outflow, and (iii) link storage capacity 

limits agents per link (Lämmel et al., 2010). In MATSim, agents choose a travel plan, which initiates a 

network leading calculation, agents then score their simulated route and have the option for re-planning in 

order to optimize their path (Horni et al., 2016). In the evacuation simulation, individuals can optimize 

their routes based on two routing solutions: (a) shortest path based on Dijkstra’s shortest path (Dijkstra, 

1959), and (b) Nash equilibrium, where agents iterate route selection that is most optimal, considering 

congestion (Lämmel et al., 2010). Leveraging the information from these iterations, agents score each 

plan (i.e., shorter the travel time, the higher the score), and keep the score in their memory for comparing 

further iterations (Lämmel et al., 2010). Agents are also able to consider experienced travel plans from 

previous runs to generate new plans and decide if previous plans should be used again, or if new random 

plans should be generated (Lämmel et al., 2010). Mobility simulation, scoring, and re-planning are 

repeated in an analysis-defined number of iterations so that performance improvements can be observed 
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(Lämmel et al., 2016). The MATSim Evacuation extension uses a GIS-based time analysis to compute 

evacuation time and clearance time per each cell in a spatial grid in the user-defined evacuation area 

(Lämmel et al., 2016). Additional details on the operationalization of the MATSim Evacuation extension 

are included in Section 6.4. For more information on MATSim, see https://matsim.org/the-book. Once the 

transportation model is selected (i.e., MATSim), inputs are provided, the transportation model is run, and 

the distribution of average evacuation speed is calculated to prepare for integration with the Level 3 PRA 

code (C in Figure 6.5).  

 

6.3.3. Sensitivity & Importance Measure Analysis (D in Figure 6.5)   

The output analyzer (D.1 in Figure 6.6) is used for interpreting MACCS outputs as risk 

indicators. In this paper, risk is defined by the level of exceedance beyond U.S. Environmental Protection 

Agency (EPA) Protective Action Guidelines (PAGs) (EPA, 2017). It should be noted that PAGs are not 

an established risk criteria, and are not a legal representation or regulation for safe or unsafe conditions 

(EPA, 2017). The EPA PAG for the early phase is used as a risk indicator in this paper for demonstrative 

purposes. The EPA PAG for the early phase, which includes dose during an evacuation PAR, is 1 to 5 

rem (10 to 50 mSv) total effective dose over four days (EPA, 2017). Risk is therefore calculated by the 

cumulative dose exceedance based on the EPA PAG.  

 

The methodological framework proposes an integrated sensitivity analysis (D in Figure 6.5) that 

provides a streamlined approach (D.2 in Figure 6.5), similar to the concept introduced by Bui et al., 

(2019) for Integrated PRA applied for Level 1 PRA (Bui et al., 2019a). The streamlined approach 

provides an initial quantitative screening of influential parameters in Level 3 PRA for identifying the 

level of detailed modeling needed in the (A) PDTM and (B) transportation model. Sensitivity and 

importance measure analysis provide useful information to support decision making. Through the explicit 

inclusion of social factors in the PDTM, importance ranking of social factors can provide useful 

information to support risk-informed emergency preparedness, planning, and response. The following 

provides additional details on the streamlined approach (D.2). 

D.2. Streamlined Approach: the Morris Elementary Effects (EE) method (Campolongo et al., 

2007; Morris, 1991) is used for quantitative screening of MACCS input parameters (e.g., average speed 

and departure time) to identify the most influential factors based on their contribution to MACCS outputs 

(i.e., offsite risk indicators), for example, the probability of radiation dose exceeding 10 mSv. The Morris 

EE method uses the difference quotient of the model output as a sensitivity measure and can address the 

uncertainty of input parameters, non-linearity, and interactions among input parameters using the 

individually-randomized One-At-a-Time (OAT) design (Morris, 1991). In the OAT design for EE 
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computation, the input space is discretized into a p-level grid. In each replication, the initial point in the 

input space is randomly selected from the p-level grid, and additional sampling points are generated by 

varying each input parameter by a preset jump (denoted as Δ) in an OAT manner. For each replication, 

thus, (k + 1) simulation runs are required, where k is the number of input parameters considered in the 

Morris EE analysis. The EE calculation by this procedure is repeated for r times using different initial 

points randomly selected from the p-level grid. The mean value of the EEs indicates the main effects, 

while the standard deviation of the EEs indicates the degree of non-linearity and interactions among input 

parameters. The 95% confidence intervals for the EE mean and standard deviation estimators are 

constructed by the Bootstrapping method (DiCiccio & Efron, 1996). In this research, the p-level grid in 

the quantile space is generated using the R package ‘sensitivity’ (Iooss et al., 2020) and is transformed for 

the input space by the inverse transform method. For the scope of this paper, several MACCS input 

parameters associated with the public evacuation that could significantly impact the risk outputs or could 

induce large uncertainty are selected based on the authors’ expert judgment, and for each of the selected 

input parameters, the upper and lower bounds are determined based on the insights from Sequoyah NPP 

ETE, After Action Report (AAR), and SOARCA studies (ARCADIS, 2013; FEMA, 2013b). 

The results of the streamlined approach can help to provide justification for the prioritization of 

underlying models in the methodological framework so that an adequate scope and level of detail is 

included in the explicit models of social factors in Level 3 PRA. Using the insights from the streamlined 

approach, an analyst can determine which elements of the methodological framework should be advanced 

by developing explicit models, for example, the PDTM, as discussed above. Future work will include the 

development of an advanced importance measure approach that can be used to rank the underlying 

contributing factors of the PDTM (A in Figure 6.5) and transportation model (B in Figure 6.5) based on 

their contribution to risk outputs of Level 3 PRA (D.1 in Figure 6.5).  

 

6.4.  APPLYING THE INTEGRATED METHODOLOGY FOR THE SEQUOYAH NUCLEAR 

POWER PLANT 

In this section, the methodological framework from Section 6.3 is applied, first implementing D.2 

from Figure 6.5 to justify the explicit model-based approaches of PDTM and the transportation model, 

and then starting from A in Figure 6.5 to apply the full methodological framework. The Sequoyah NPP 

2017 SOARCA study (herein referred to as “SOARCA 2017”) (NRC, 2017) is used to provide the 

scenario information and key input parameters in MACCS. SOARCA 2017 provides the Level 3 PRA 

scenario information and input parameters for source term, dose coefficient, and notification time. In 

SOARCA 2017, “Realization 554” is a scenario of early containment failure induced by a large burn in a 

lower compartment that propagated to the dome that is considered to be “maximum-risk” with the highest 
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risk source term and earliest release (i.e., 3.6 hours after the initiating event) (NRC, 2017). Realization 

554 considers that radiological release occurs one hour after the GE siren, and the second release occurs 

six hours after the GE siren (NRC, 2017). Realization 554 is used in this case study. The scenarios in 

SOARCA 2017 include Short-Term Station Blackout (STSBO) and Long-Term Station Blackout 

(LTSBO), where, based on a FEMA exercise AAR (FEMA, 2013b), it was determined that an onsite GE 

would likely be declared two hours after the accident (NRC, 2017) (see a.3 in Figure 6.3). Once the onsite 

GE declaration is made (7 from Figure 6.2), the ORO sequence of tasks would begin (see b.1 to b.7 in 

Figure 6.3). Based on the FEMA AAR (FEMA, 2013b), the time between the ORO receiving the licensee 

notification (b.1 in Figure 6.3) and sounding the GE sirens to notify the public (b.7 in Figure 6.3) was 

estimated at 45 minutes, putting the GE siren and notification of the public at 2.75 hours from the 

accident (NRC, 2017).  

The weather data used in the case study are the same as the data used in SOARCA 2017. 

Sequoyah weather data from 2012 was provided by the Tennessee Valley Authority, which included 

hourly wind direction and speed, precipitation rate, and atmospheric stability class. Using SecPop (NRC, 

2018), demographic data from the 10-mile EPZ is fit to a concentric mesh to provide the population input 

file for MACCS. In the MACCS evacuation module, the network evacuation option was selected without 

keyhole evacuation, and the evacuation directions in the concentric mesh were set based on SOARCA 

2017. Several assumptions were made to develop the case study in MACCS. Delay to shelter was set to 

zero minutes because the case study assumes a nighttime or weekend scenario, where it is likely that most 

household members are at home. A 10-mile EPZ was used as the evacuation boundary in the case study. 

Because the focus of the case study is on evacuation, normal and hot spot relocation parameters were not 

included. The exposure period (exposure duration) was changed from seven days to four days to compare 

with EPA PAG guidance of 10 millisieverts (mSv) per four days (EPA, 2017). In MACCS, the population 

can be modeled into cohorts; population segments which can be based on starting location and 

customized by time-related parameters such as delay to shelter, delay to evacuation, the evacuation speed, 

duration of the beginning phase of evacuation, and duration of the middle phase of evacuation (NRC, 

2013c). In this study, the majority of general cohorts were combined into one group that is expected to 

start evacuating when the GE siren and emergency notification is provided by the ORO. In this case 

study, long-term consequences are not being calculated in MACCS, instead, early dose calculations from 

the EARLY module are being used to demonstrate risk in the early phase as a function of changes in input 

parameters. In this paper, an “early phase” risk metric is considered as the probability that the EPA PAGs 

is exceeded (i.e., 1 to 5 rem (10 to 50 mSv) total effective dose over four days). The EPA PAGs are 

designed to prevent the acute effects of radiological hazards and help to balance protective actions to 

reduce risk (EPA, 2017). 
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Considering Realization 554, the STSBO and LSTSBO scenario timeframes from SOARCA 2017, 

and the assumptions mentioned above, the case study for the Sequoyah NPP is implemented by the 

following: 

1. Perform the streamlined approach (D.2 in Figure 6.5) quantitative screening of a selection of 

MACCS input parameters from SOARCA 2017 to rank the most influential factors; 

2. Run the PDTM (A in Figure 6.5) for the Sequoyah NPP and generate a model-based population 

departure time distribution; 

3. Run the transportation model (B in Figure 6.5) using the PDTM distribution to generate an 

average evacuation speed distribution;  

4. Run MACCS Level 3 PRA (C in Figure 6.5) using SOARCA 2017 inputs, the PDTM 

distribution, and average evacuation speed distribution;  

5. Interpret MACCS outputs using the output analyzer (D.1 in Figure 6.5).  

 

1. Perform the streamlined approach (D.2 in Figure 6.5) quantitative screening a selection of MACCS 

input parameters from SOARCA 2017 to rank the most influential factors; using the SOARCA 2017 

scenario described above, the streamlined approach (D.2 in Figure 6.5) is performed in MACCS, 

considering the six input parameters (X1 to X6) in Table 6.3. These six input parameters are identified, 

based on the authors’ expert judgment, as the potentially influential factors in terms of the risk 

contribution or the potentially significant sources of uncertainty. In this paper, the probability of radiation 

dose exceeding 10 mSv is selected as a risk metric and is used as a model output of interest in the Morris 

EE analysis. This paper focuses on the offsite evacuation and radiation dose to the public during 

evacuation; hence, the MACCS input parameters associated with other processes and aspects (e.g., cancer 

risk-related factors, relocation factors) are not considered. In the OAT design for EE calculation, the 12-

level grid (p = 12) is generated within the upper and lower bounds specified in Table 6.3, and the jump 

level is set at Δ = 6. The number of replications r is selected based on the convergence study, where the 

Morris EE analyses are run with multiple selections of r, and r = 20 is selected in this study as it removes 

an overlap of the 95% confidence intervals between the influential and non-influential factors. In the OAT 

sampling, three shielding coefficients (i.e., cloud shine, ground shine, and inhalation/skin) are treated as a 

completely correlated random variable, represented by X4 in Table 6.3. Similarly, four vertical dispersion 

linear coefficients (i.e., Classes A/B, C, D, and E/F) are treated as a correlated random variable, 

represented by X5 in Table 6.3. 
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Table 6.3: Selected MACCS input parameters considering lower bound and upper bound estimates 

ID Parameter Lower Bound Upper Bound 

X1 GE Siren3 147 min 201 min 

X2 Departure Time4 1 min 180 min 

X3 Evacuation Speed5 1 mph6 61.4 mph7 

X4 Shielding Coefficients 

Cloud Shine: 0.6 Cloud Shine: 0.95 

Ground Shine: 0.095 Ground Shine: 0.359 

Inhalation/Skin: 0.25 Inhalation/Skin: 0.98 

X5 Weather Data: Vertical 

Dispersion Linear 

Coefficient 

A/B 0.0144 m 0.0903 m 

C 0.0814 m 0.0509 m 

D 0.1054 m 0.6590 m 

E/F 0.0985 m 0.6158 m 

X6 Total Population Data sampled from 2009 to 20208 

 

Figure 6.8 shows the results of the streamlined approach using the Morris EE method. Among the 

six selected MACCS input parameters in Table 6.3, X3 (Evacuation Speed) is identified as the most 

influential factor in terms of the impact on the risk output (i.e., the probability of radiation dose exceeding 

10 mSv). The further analysis of the Morris EE outputs demonstrate that the risk output is highly sensitive 

to the lower subspace of X3 (around 1-4 mph), while it is less sensitive to the other subspaces of X3. This 

observation indicates that the risk output is a highly non-linear function of X3, and the results in Figure 

6.8 are dominated by the model behavior with extremely small values of X3. To investigate the model 

behavior when X3 does not have an exceptionally small value, another run of the Morris EE analysis is 

conducted by setting the lower bound of X3 at 5 mph (while the settings of the other input parameters are 

identical to Table 6.3). The results, shown in Figure 6.9, indicate that, when X3 is greater than 5 mph, the 

departure time is the most influential factor for the risk output. These results provide scientific 

justification for advancing the estimation of the departure time and evacuation speed by developing the 

model-based approach, as described below.  

 
3 Assuming that the time from ORO receipt of the GE declaration to sounding of the GE sirens (base value: 36 minutes 
(FEMA, 2013b)) can vary by a factor of two in both decreasing and increasing directions, i.e., 18 minutes and 72 
minutes, respectively (NRC, 2017) 
4 Departure time bounds are from the Sequoyah ETE study (ARCADIS, 2013) 
5 Based on Table 6-6 from SOARCA 2017 (NRC, 2017) 
6 Lower bound evacuation speed comes from SOARCA 2017 (NRC, 2017) 
7 Upper bound evacuation speed comes from the Sequoyah ETE study (NRC, 2017) 
8 Population data was calculated from 2010 demographic data by SecPop (Ref, NRC SecPop). The annual population 
growth rate is set at 0.412% based on SOARCA 2017. 
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Figure 6.8: Streamlined approach results of the Morris Elementary Effect (EE) screening of MACCS 

input parameters (from Table 6.3). The error bars show the 95% confidence intervals 

 
Figure 6.9: Streamlined approach results of the Morris Elementary Effect (EE) screening of MACCS 

input parameters with the lower bound of X3 (Evacuation Speed) being set as 5 mph. The error bars show 

the 95% confidence intervals 

2. Implement the PDTM modules (A.1 and A.2 in Figure 6.5) on a set of NPPs to generate a model-based 

population departure time distribution, and then apply the validated model for Sequoyah NPP; using 14 

NPPs shown in Table 6.4 (𝑘 = 1,… ,14), the PDTM was built and validated. Sub-steps A.1.1 to A.1.7 in 

Figure 6.6 were applied using CDC SVI (CDC et al., 2018) and U.S. 2010 Census data, leveraging the 

task analysis and PSFs identified in Section 6.2.1.1, and using Eqs. 6.1 through 6.7. Table 6.4 shows the 

NPPs included in the study for the building subset (𝑘 = 1,… ,7)  (A.1.11 in Figure 6.6), and the validation 

subset (𝑘 = 8,…14) (A.2.1 in Figure 6.6), including the ETE study ML number (available in NRC 

ADAMS), analyst of the ETE study, total population reported in the ETE study, and departure time 

window survey results (i.e., 0-20 min, 20-40 min, 40-60 min, 60-90 min, 90+ min) (from A.4 in Figure 

6.6).  
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Table 6.4: NPPs included in the case study for building and validating the PDTM 

k Subset ML Number NPP 0-20 min 20-40 min 40-60 min 60-90 min 90+ min 

1 Building ML101110357 Fermi 0.45 0.29 0.14 0.07 0.05 

2 Building ML12088A203 Indian Point 0.40 0.33 0.14 0.09 0.04 

3 Building ML12348A223 Clinton 0.33 0.43 0.13 0.05 0.05 

4 Building ML12348A382 Limerick 0.31 0.44 0.15 0.08 0.02 

5 Building ML12348A384 Dresden 0.31 0.46 0.14 0.05 0.03 

6 Building ML12349A294 Quad Cities 0.28 0.45 0.15 0.09 0.03 

7 Building ML13298A792 Virgil C. Summer 0.39 0.27 0.18 0.09 0.07 

8 Validation ML12048B369 South Texas Project 0.13 0.21 0.16 0.19 0.31 

9 Validation ML12355A267 Three Mile Island 0.22 0.44 0.17 0.13 0.05 

10 Validation ML12348A219 Braidwood 0.34 0.40 0.15 0.07 0.03 

11 Validation ML12348A221 Byron 0.27 0.45 0.18 0.05 0.05 

12 Validation ML12348A385 LaSalle 0.33 0.43 0.14 0.06 0.04 

13 Validation ML12355A240 Peach Bottom 0.26 0.42 0.20 0.09 0.03 

14 Validation ML13254A121 Oyster Creek 0.28 0.41 0.19 0.09 0.03 

Using the development subset (see Table 6.4), sub-steps A.1.12 to A.1.18 in Figure 6.6 are 

applied to develop PE ranges for the time windows. As discussed in Section 6.3.1, Model 2 (M2) is used 

to calculate the worst-case end state E1 from Figure 6.4, using Eq. 6.6. The resulting PE ranges and their 

areas of overlap are included in Table 6.5. The areas of overlap are handled in the validation of the PDTM 

in the next sub-step.  

Table 6.5: PDTM-generated Population Error (PE) ranges from the development subset (running sub-

steps A.1.1 to A.1.18 from Figure 6.6) 

Time Window Lower Bound Upper Bound 

0-20 min 0 3.19E-08 

Overlap between 20-40 min 3.20E-08 3.09E-07 

20-40 min 3.10E-07 1.11E-06 

Overlap between 40-60 min 1.12E-06 4.91E-06 

40-60 min 4.92E-06 7.26E-06 

Overlap between 60-90 min 7.27E-06 3.36E-05 

60-90 min 3.37E-05 4.43E-05 

Overlap between 90-90+ min 4.44E-05 2.06E-04 

90+ min 2.07E-04 1 
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Using the validation subset (see Table 6.4), sub-steps A.2.2 to A.2.6 in Figure 6.6 are applied 

(using departure time survey data from Table 6.4) to test the goodness-of-fit using chi-squared for each 

NPP in the validation subset, shown in Table 6.6.  

Table 6.6: Validation subset NPP goodness-of-fit test results 

Validation Subset NPP Chi-Square p-value 

South Texas Project 0.533 

Three Mile Island 0.829 

Braidwood 0.651 

Byron 0.589 

LaSalle 0.829 

Peach Bottom 0.921 

Oyster Creek 0.138 

Average 0.641 

The validated PDTM was run for Sequoyah, resulting in the predicted time windows in Table 6.7. 

The PDTM results are used as the PMF departure time distribution in the transportation model.  

Table 6.7. PDTM results for the Sequoyah NPP 

Time Windows 0-20min 20-40 min 40-60 min 60-90 min 90+ min 

PDTM Result 0.20 0.36 0.28 0.09 0.06 

3. Run the transportation model using the PDTM distribution to generate an average evacuation speed

distribution; the MATSim Evacuation module and Graphical User Interface (GUI) (see Section 6.3.2) is 

used as the transportation model (B from Figure 6.5). For more information on the MATSim Evacuation 

extension, see (Lämmel et al., 2016). Total population (B.2 from Figure 6.5) for the Sequoyah EPZ 

(97,726) was estimated using SecPop 4.3.0 (NRC, 2018). Open Street Map9 data was used for the road 

network (B.3 from Figure 6.5) and was acquired using Java Open Street Map10 before being converted to 

a MATSim input file. The evacuation area (B.4 from Figure 6.5) is the 10-mile EPZ of the Sequoyah 

NPP. Several assumptions are made in setting up the evacuation simulation; (1) population location is 

uniformly (randomly) distributed within the 10-mile EPZ, (2) persons per vehicle is considered to be 2.11 

(i.e., from the Sequoyah ETE study (ARCADIS, 2013)), (3) “destinations” are set at the intersection of 

9 Open Street Map contributors. (2015). Planet dump [Data file from 12/3/2019] Retrieved from 
https://planet.openstreetmap.org.  
10 https://josm.openstreetmap.de/ 
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the EPZ boundary and major roads (i.e., assuming that vehicles will travel outside of the EPZ to shelters 

or their intended destinations) where evacuation time is only measured until a vehicle leaves the EPZ, and 

(4) the number of agent re-planning (optimization) iterations is set to a default value of 10. In this case 

study, the transportation model was run based on default settings and under normal road network 

conditions (i.e., not considering damage due to a seismic event). Travel time and travel distance of each 

vehicle is divided to find the evacuation speed. The average speed of all vehicles is counted and fit to a 

cumulative frequency distribution. The average evacuation speed distribution serves as the input 

parameter of “ESPEED” in MACCS (B.5 to C.1 in Figure 6.5).  

 

4. Run MACCS using SOARCA 2017 inputs, the PDTM distribution, and average evacuation speed 

distribution; MACCS inputs for source term and dose calculation are based on SOARCA Realization 554. 

In the MACCS calculation, the duration of source term was set up to 20 hours to avoid errors that occur 

when distributions are set for evacuation parameters. The PDTM departure time distribution and 

transportation model-based evacuation speeds were used as inputs in the evacuation module. Because a 

distribution was provided for evacuation speed, a speed multiplier was not set. To account for the 

integration of the evacuation speed outputs from the transportation model (B.5 in Figure 6.5) and the 

PDTM departure time distribution outputs (A in Figure 6.5), one general cohort is used to represent the 

entire population in the EPZ, considering uncertainty from the distributed input parameters for evacuation 

speed and departure time. Because one cohort was used, one notification delay time of 165 minutes (from 

SOARCA 2017) was used. Considerations for other cohort groups such as schools and special facilities 

can also be evaluated using model-based approaches and will be included in future research.  

 

5. Interpret MACCS outputs using the output analyzer (D.1 in Figure 6.5);  

The integrated methodological framework results in a probability of 1.64E-05 that 1.61 people evacuating 

the EPZ will receive a dose in exceedance of the EPA PAG (10 mSv) for the early phase. The results 

indicate that the population will receive a dose between 1 to 10 mSv with a probability of 1.59E-4. While 

the estimated risk in this case study would only affect 0.001% of the population, it indicates that for the 

modeled scenario, a reduction of risk could be achievable. The results of this case study indicate that the 

probability of the population receiving a dose greater than 10 mSv is low, and therefore the protective 

action may be acceptable. Through the integration of the PDTM, sensitivity analysis of social factors can 

be evaluated to determine which types of social investment may contribute to a further reduction of risk. 

Additionally, in future research, the methodological framework will be connected to long-term 

consequence models to provide a more realistic estimation of risk.  
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6.5.  CONCLUSIONS & FUTURE WORK  

This paper is part of a line of research by some of the authors of this paper on the advancement of 

socio-technical risk analysis for explicitly incorporating organizational/social factors into Level 3 PRA 

(Pence et al., 2018). The advancement towards explicit, or model-based incorporation of social factors 

can be considered from two perspectives: (i) internal (on the right side of the spectrum in Figure 6.1), and 

(b) external (the middle of the spectrum in Figure 6.1). Internal incorporation implies the development of 

advanced modeling and simulation to quantify the effects of underlying factors on the parameters in Level 

3 PRA. This paper continues this line of research toward an “explicit-internal” incorporation of social 

factors into Level 3 PRA (i.e., an advancement toward the right side of the spectrum in Figure 6.1).  

A macro-level theoretical causal framework for socio-technical risk analysis of severe nuclear 

accidents is expanded in Section 6.2. One element of the causal framework (i.e., population protective 

action performance) is further expanded in Section 6.2.1.1, where an HRA-based theoretical 

representation of Population Error (PE) is introduced for pre-evacuation departure performance. Without 

explicit consideration of social factors, it would be hard to analyze their effects on the population 

departure time to impove emergency response. While the long-term goal of this research is to 

operationalize the full scope of the macro-level theoretical causal framework introduced in Section 6.2, 

the methodological developments of this paper focus on the population protective action performance. 

Section 6.3 introduced a methodological framework for (A) building and validating the HRA-based 

Population Departure Time Model (PDTM), and (B) integrating it with the transportation evacuation 

model to generate model-based ETEs and evacuation speed estimates as inputs to (C) MACCS. This 

integrated methodology makes an advancement toward the explicit incorporation of social factors into 

Level 3 through the explicit incorporation of social factors into departure time and evacuation speed 

estimations. The integrated methodology can help (i) create a more realistic estimation of risk from 

MACCS by contributing to a more realistic representation of population evacuation performance and (ii) 

provide the opportunity to conduct importance ranking of the social factors, influencing departure time 

and evacuation speed, with respect to their impacts on risk. The results provide location-specific insights 

that can be useful in improving the RERP for areas where higher PE potential exists for the departure 

stage of an evacuation.   

In Section 6.4, the integrated methodology is applied in a case study using results from the 2017 

Sequoyah SOARCA study. 

The case study in Section 6.4 conducted a streamlined screening approach to justify the 

development of the PDTM and transportation model. developed and validated the PDTM using data for 

14 NPPs, ran the PDTM for the Sequoyah NPP, and implemented the methodological framework from 

Section 6.3 using MACCS parameters from the 2017 SOARCA study. The PDTM results were used as an 
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input in a transportation model to generate an average evacuation speed distribution. The PDTM results 

and average evacuation speed distribution were used as inputs to MACCS in addition to SOARCA 2017 

parameters to generate risk results. The estimated risk in this study, or the probability of population dose 

receiving 10 mSv within four days, was estimated at 1.64E-5. The case study provides location-specific 

insights that can be useful in improving the RERP for areas where higher PE potential exists during the 

departure stage of an evacuation. 

Despite progress that has been made for Level 3 PRA, there are still several gaps to address; for 

example, the need to “explicitly” consider and analyze (i) unanticipated socio-technical factors 

influencing the communication of the Offsite Response Organization (ORO) (NAS, 2014), and (ii) the 

influence of social and psychological factors on the performance of an evacuating population, for 

example, as highlighted in (Pence et al., 2018). The incorporation of social factors into Level 3 PRA is a 

complex multidisciplinary research area. This paper does not explicitly consider the content and 

messaging of the ORO notification, or the ORO actions following the notification (e.g., (CastroSilva & 

Medeiros, 2015)). Although this paper provides a scientific contribution in the development of theoretical 

and methodological frameworks for developing model-based approaches to incorporate social and 

psychological factors influencing the performance of an evacuating population in PRA, many critical 

challenges remain, requiring future research. Some of these challenges may include: (i) the consideration 

of other cohort groups such as schools and special facilities using model-based approaches, (ii) evaluating 

other HRA methods to evaluate the accuracy of the PE prediction model, (iii) developing more detailed 

scenarios (i.e., daytime and special events) of departure time estimates to have more realistic simulations 

of mechanisms influencing population performance, (iv) expanding the theoretical framework to consider 

the influence of social media and social networks on the population’s task of orienting and interpreting 

risk in the aftermath of a severe NPP accident given conflicting information, (v) developing model-based 

approaches for the delay of onsite notification to the ORO, and therefore delay in the population receiving 

the warning, and (vi) connecting the methodological framework to long-term consequence models to 

provide a more realistic estimation of risk, (vii) expanding scenarios to consider multi-unit NPP accidents, 

overlapping EPZs of NPPs in the same region (i.e., inter-state and regional transportation network 

dependencies), and the influence of population protective action performance on ORO performance (i.e., 

shadow evacuees impacting travel times of ORO sharing the transportation network). Forthcoming 

publications by the authors will provide further advancement of the theoretical framework and associated 

methodologies for operationalizing its elements. 
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CHAPTER 7: METHODOLOGY TO EVALUATE THE MONETARY BENEFIT OF 

PROBABILISTIC RISK ASSESSMENT BY MODELING THE NET VALUE OF RISK-

INFORMED APPLICATIONS AT NUCLEAR POWER PLANTS* 

ABSTRACT 

Probabilistic Risk Assessment (PRA) used in Nuclear Power Plants serves as a pillar of the U.S. 

Nuclear Regulatory Commission’s Risk-Informed Regulatory framework and is required for new reactor 

licenses to satisfy regulatory safety compliance. The benefits of PRA are not only experienced in terms of 

safety, but also from the monetary value derived from Risk-Informed Performance-Based Applications 

(RIPBAs), where risk estimated from PRA is utilized in decision making to expand the safe operational 

envelope of plants, leading to either an increase in profits or a reduction in costs. This paper introduces a 

methodology to evaluate this monetary value by the systematic causal modeling of the net value of 

RIPBAs and demonstrates the methodology for one of the RIPBAs, called Risk-Managed Technical 

Specifications (RMTS). The key steps of this methodology are: (i) Cost-Benefit Analysis to formulate the 

net value of PRA based on the net value of RIPBAs, (ii) Causal modeling to systematically model the 

operational scenarios leading to costs and benefits associated with RIPBAs, (iii) Uncertainty analysis, and 

(iv) Sensitivity analysis and validation. The results of this research could help decision makers with

evaluating investment strategies in PRA that go ‘beyond-compliance’ to maximize industry profit while

maintaining regulatory safety goals.

7.1. INTRODUCTION 

Risk assessment insights are used by decision-makers in their evaluations of the potential 

outcomes of scenarios and for the mitigation of those that are deemed undesirable. In this paper, ‘risk’ in 

high-consequence industries such as nuclear, space, aviation, healthcare, chemical processing, 

transportation, oil and gas, etc., refers to ‘system risk’. Commercial nuclear power plants have robust 

protective systems, leading to sparse datasets for catastrophic failure such as core damage. A central risk 

assessment technique used for these industries is Probabilistic Risk Assessment (PRA) (NRC, 1975), a 

systematic methodology for quantifying the emerging risk from the interactions of equipment failure and 

human error. PRA is a key pillar of safety policy setting and regulation for the U.S. Nuclear Regulatory 

Commission’s (NRC’s) Risk-Informed Regulatory (RIR) Framework (NRC, 2011a), and following its 

* This chapter is a reprint with permission of the publisher of an article published in Reliability Engineering & System
Safety: Pence, J., Abolhelm, M., Mohaghegh, Z., Reihani, S., Ertem, M., & Kee, E. (2018). Methodology to evaluate
the monetary benefit of Probabilistic Risk Assessment by modeling the net value of Risk-Informed Applications at
nuclear power plants. Reliability Engineering & System Safety, 175, 171-182. doi:
https://doi.org/10.1016/j.ress.2018.03.002
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lead, a growing number of U.S. governmental agencies have begun using, or are evaluating the possibility 

of using PRA for decision making and policy setting.  

In classical PRA, fault trees and event trees are commonly used to model the causal relationships 

among system states, components, and human actions that could generate scenarios leading to a specific 

end state (NRC, 1983). Over the past four decades, classical PRA has improved both theoretically and 

methodologically. An important advancement has been the ability to go beyond individual-level human 

error and to explicitly incorporate the underlying social and organizational root causes of failure, such as 

training quality or organizational culture, into technical system PRA scenarios (Alvarenga et al., 2014; 

Embrey, 1992). To further this advancement, the Socio-Technical Risk Analysis (SoTeRiA) framework 

(Mohaghegh, 2007, 2009; Mohaghegh et al., 2009; Mohaghegh & Mosleh, 2009) was developed. 

SoTeRiA generates a theoretical causal integration for both the social aspects (Safety Culture; Node 8 in 

Figure 7.1) and the structural features (Safety Practices; Node 7 in Figure 7.1) of organizations with 

technical System Risk (Node 1 in Figure 7.1). The development of SoTeRiA was based on a multi-level 

organizational effectiveness theory (Ostroff et al., 2003). It considers the “Financial Outcome” (Node 11 

in Figure 7.1) and “System Risk (PRA)” (Node 1 in Figure 7.1), as two competing outcomes of 

organizational performance. While SoTeRiA has been operationalized in the aviation (Mohaghegh, 

2010a, 2010b; Mohaghegh et al., 2009) and nuclear industries (Pence et al., 2015; Pence et al., 2014), the 

relationship between “Financial Outcome” (Node 11 in Figure 7.1) and “System Risk (PRA)” (Node 1 in 

Figure 7.1) has not yet been modeled in detail. Developing this relationship requires theorizing and 

quantifying all the direct and indirect causal mechanisms between Node 1 and 11 and is the long-term 

goal of the research demonstrated in this paper. For the short term, however, this research focuses on 

evaluating the monetary benefit that PRA, a well-known safety-oriented technique, can generate for NPPs 

through Risk-Informed Performance-Based Applications (RIPBAs).  

Figure 7.1: Socio-Technical Risk Analysis (SoTeRiA) Theoretical Framework 
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Although the connection between financial outcome and safety has long been of interest to 

managers, business scholars, economists, and policy makers (Clarke & Varma, 1999), the economic 

aspects of PRA are only beginning to be investigated by academia. In practice, however, the monetary 

advantages of PRA are being experienced in the nuclear industry, where through several RIPBAs, risk 

estimated from PRA is utilized in decision making to expand the operational envelope of plants, leading 

to either an increase in profits or a reduction in costs. Liming and Kee et al. have used data-driven Cost-

Benefit Analysis (CBA) to estimate the costs of maintenance by leveraging information from empirical 

data of RIPBAs (Kee et al., 2004; Liming, 2015; Liming & Wakefield, 1996). Despite these research 

efforts and the widespread use and successes of PRA in nuclear regulatory decision making and safety 

applications for industry, the net value of PRA has not yet been justified by a model-based approach 

utilizing systematic causal modeling.  

Without a justified representation of the ‘market value’ of PRA, there are few incentives for 

companies to go ‘beyond-compliance’ and to make investments in RIPBAs. To provide industry with a 

reason to go beyond the minimum PRA requirements for demonstrating compliance with regulatory 

safety goals, this research focuses on the development of a model-based methodology to evaluate the 

monetary benefit of PRA through the systematic causal modeling of the net value of RIPBAs, considering 

the associated uncertainties. Sections 7.1.1 and 7.1.2 provide a brief background on RIR, and RIPBAs, 

specifically Risk-Managed Technical Specifications (RMTS). Section 7.2 demonstrates a methodology to 

evaluate the monetary benefit of PRA. Although the key steps of this methodology are applicable to all 

RIPBAs, they are explained through their implementation for Risk-Managed Technical Specifications 

(RMTS) in this paper.  

 

7.1.1. Background on Risk-Informed Regulation  

Initially, the NRC took a prescriptive and deterministic approach to rulemaking and regulation, 

relying on conservative safety margin, defense-in-depth, and design parameters for the evaluation of 

severe accident sequences. The evolution of PRA began in the 1940s and focused on early reactor safety 

approaches and continued into the 1970s when the Reactor Safety Study (NRC, 1975) was issued in the 

aftermath of the Three Mile Island accident. In 1988, a PRA-based Individual Plant Examination (IPE) 

was introduced as part of a severe accident policy (NRC, 1988). In an IPE, PRA was used to gain 

knowledge regarding the scenarios and behaviors in severe accidents, obtain a quantitative estimation of 

the overall probabilities of core damage and fission product release, and learn how to use this information 

to help reduce the overall probabilities by modifying hardware and procedures (OIG, 2006). The issuance 

of NUREG-1150 (NRC, 1990b) and the PRA Policy Statement, from 1990 to 1995, gave more legitimacy 

to the use of PRA in the regulation of the nuclear industry. In 1998, the NRC published Regulatory Guide 
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1.174 to formally develop a framework for RIR to support regulatory decision making using PRA 

information and deterministic criteria rooted in the defense-in-depth philosophy (NRC, 2011a). In 

parallel, the adoption of the Maintenance Rule and an increased focus on the measurement of the 

effectiveness of maintenance activities for components and systems identified by the results of PRA 

resulted in fewer prescriptions in maintenance processes (Modarres, 2009). In the nuclear RIR 

framework, cost was not explicitly addressed, however, implicit considerations of cost through public 

exposure as dollar per person-rem and offsite property damage, are used in the justification of safety 

enhancements and licensing actions (NRC, 1984, 1997) in three NRC guidance documents including 

NUREG/BR-0058 (NRC, 2004b), NUREG/BR-0184 (NRC, 1997), and NUREG-1409 (NRC, 1990a). In 

2012, NUREG 2150 proposed an update to the regulatory framework, highlighting potential uses of CBA 

in more regulatory activities (Apostolakis et al., 2012). The proposed additions include; performing CBA 

for design-enhancement considerations by analyzing a larger set of accident scenarios, and using CBA in 

deliberation for determining policy or economic extent of exercising regulatory authority (Apostolakis et 

al., 2012). These recommendations did not include the cumulative benefit of RIPBAs in the CBA 

associated with PRA. The research initiated in this paper aims to more comprehensively consider the 

monetary value of PRA to support the regulatory framework and to help utilities realize the financial 

benefits of using PRA, thus encouraging greater investment in RIPBAs.  

 

7.1.2. Background on Risk-Informed Performance-Based Applications  

RIPBAs leverage the significant investment that is made in developing and maintaining PRA to 

fully utilize risk information and performance data in operational decision making to create cost savings 

for NPPs (Liming, 2015). RIPBAs can support decision-making for improving operational flexibility, 

efficiency, and strengthening regulatory-plant cooperation. A list of programs, applications and activities 

that use PRA to promote the efficient functioning of NPPs (Liming, 2015) include; Risk-Informed Asset 

Management (RIAM) (Liming & Kee, 2002), Risk-Informed Business Modeling (Liming & Grantom, 

2000), On-Line Maintenance (Kee et al., 2002), Safety-Assured Maintenance Scheduling and Evaluation 

(Erguina, 2004), Risk-Informed Project Prioritization (Koc et al., 2009), Risk-Informed Surveillance 

Frequency Control (RISFC) (Gaertner et al., 2008), Risk-Informed Graded Quality Assurance (Holmberg, 

2002), Risk-Informed In-Service Inspection (RI-ISI) (Corak, 2003; Mitman, 1999; Vinod et al., 2003), 

Risk-Informed Containment Integrated and Local Leak Rate Testing (Petti et al., 2008), Risk-Informed 

Fire Protection (RIFP) (Barry, 2002), Risk-Informed Plant Security Management (RISM) (Suzuki et al., 

2011), Risk-Informed Resolution of Generic Safety Issue 191 (GSI-191) (Fleming et al., 2011; 

Mohaghegh et al., 2013; Morton et al., 2014; Sande et al., 2012), and the RMTS program (Gaertner et al., 
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2006; Kee et al., 2008; NEI, 2006). Section 7.1.2.1 provides a more detailed background on RMTS, 

which is the focus of this paper.  

 

7.1.2.1. Background on Risk-Managed Technical Specifications 

The RMTS program is one of the RIPBAs for evaluating and managing Technical Specifications 

(TS), a set of parameters that control the maintenance, surveillance, and repair of NPP Systems, 

Structures, and Components (SSCs) by defining the critical minimum functional capabilities or 

performance levels of equipment required for plant safety. These functional capabilities are called the 

Limiting Conditions for Operation (LCO) (Hess, 2009; NRC, 1992, 1995a, 2015). When the LCO are not 

met, safety regulations require the licensee to shut down the reactor or to follow other types of remedial 

actions that are commensurate with the provisions of TS. Since, initially, the regulation of LCO did not 

indicate any explicit timing, each licensee developed a set of time limits and specific actions when an 

LCO is not met. These time limits are termed the Allowable Outage Time (AOT) or Completion Time 

(CT). Due to the lack of standardization among plants in developing TS, the NRC established a standard 

or conventional TS for different reactor types in commercial service in the U.S. (NRC, 2012). Despite the 

plant-specific nature of the standard TS, they were developed using conservative engineering judgments 

(Hess, 2009; NRC, 2015). In 1995, the NRC issued a final policy statement on the use of PRA methods 

that utilize risk information in the specification of performance monitoring and maintenance programs 

applied to plant SSCs (NRC, 1995b). In 1998, and under the supervision of the Nuclear Energy Institute 

(NEI), the U.S. nuclear industry formed a Risk-Informed Technical Specifications Task Force (RITSTF), 

to identify useful risk-informed applications and develop implementation guidelines that would be 

acceptable to regulatory authorities. The most ambitious of these applications was RMTS (Kee et al., 

2008), to specify the requirements necessary for identifying configuration-specific TSs for AOTs, and to 

risk-inform the plant TS. As a result of these efforts, a final RMTS methodology was published in EPRI 

report 1013485 (Schnider et al., 2006), which was incorporated into NEI guidance document 06-09, Risk-

Informed Technical Specifications Initiative 4b: Risk-Managed Technical Specifications Guidelines (NEI, 

2006). NEI 06-09 was submitted to the NRC and was approved for use at U.S. NPPs.  

In 2007, RMTS was implemented at a commercial NPP in the U.S. with the purpose of providing 

a risk-informed approach to assign the amount of time allowed for certain equipment, within the scope of 

TS, to be out of service (Yilmaz et al., 2011). In RMTS, the magnitude of the Instantaneous Core Damage 

Probability and Instantaneous Large Early Release Probability, estimated from PRA and associated with 

the real-time plant configurations, is compared to specified risk thresholds in order to calculate an 

appropriate Risk-Informed Completion Time (RICT) to extend the prescriptive CT, or the Front-Stop 

(FS) (Gaertner et al., 2006). Furthermore, the RMTS program requires the development and 
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implementation of compensatory Risk Management Actions (RMA) to mitigate the additional risks 

incurred due to the inoperability of TS (Gaertner et al., 2006). NEI 06-09 (NEI, 2006) specifies two 

configuration-specific action times that must be calculated in order to implement RMTS:  

(a) Risk-Management Action Time (RMAT), which is defined as the time from discovery of a 

condition requiring entry into a TS action, until the threshold of 10-6 = Instantaneous Core 

Damage Frequency; or 10-7 = Instantaneous Large Early Release Frequency is reached. 

Applicable RMAs must be taken no later than the computed RMATs.  

(b) The RICT, which is defined as the time interval from the discovery of a condition requiring entry 

into TS, until the threshold of 10-5 = Instantaneous Core Damage Probability or 10-6 = 

Instantaneous Large Early Release Probability is reached, or 30 days, whichever is shorter. To 

provide a conservative administrative limit to the RICT, an upper limit of 30 days, called the 

Back-Stop, is provided.  

For more detailed background regarding RMTS, we refer the readers to RG 1.174 (NRC, 2011a) and RG 

1.177 (NRC, 2011b), which are updated regulatory documents regarding the development of RMTS, 

taken from NRC’s Regulatory Guides and Standard Review Plan sections focused on risk-informed 

applications.   

7.2. METHODOLOGY TO EVALUATE THE MONETARY BENEFIT OF PROBABILISTIC RISK 

ASSESSMENT: DEMONSTRATION VIA MODELING THE NET VALUE OF RISK-MANAGED 

TECHNICAL SPECIFICATIONS  

To satisfy regulatory safety goals, a basic-level of PRA usage is common in U.S. NPPs and now 

required for new reactor licenses (NRC, 2007). The methodology demonstrated in this section evaluates 

what the monetary benefits, as well as the safety regulatory compliance values, of PRA would be if NPPs 

would use the risk estimated from PRA, through RIPBAs, in operational decision making. This 

methodology provides a model-based approach to evaluate the monetary benefit of PRA by causal 

modeling of the net value of RIPBAs. The key steps of this methodology include:  

Ø Step 1. CBA to formulate the net value of PRA based on the net value of RIPBAs; 

Ø Step 2. Causal modeling to systematically model the operational scenarios considering technical, 

organizational, and regulatory causal factors leading to costs and benefits associated with the net 

value of RIPBAs; 

Ø Step 3. Uncertainty analysis to consider parameter uncertainties and to generate probabilistic 

estimates of the net value of RIPBAs; 
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Ø Step 4. Sensitivity analysis and validation to rank the criticality of factors and to support model 

validation.  

These methodological steps are applicable for all RIPBAs; however, they are explained in the following 

sub-sections through their implementation for RMTS.  

 

7.2.1. Cost-Benefit Analysis  

Based on the principles of CBA (Arrow et al., 1997; Kopp et al., 1997; Shapiro, 2011; Zerbe Jr et 

al., 2010), the Net Value (NV(∙)) of PRA in year t (NV$%&_() and its Present Value (PV) are formulated by 

Eqs. 7.1 and 7.2, respectively: 

𝑁𝑉)*+_, = ∑ 𝐵-_._,/0
-12 +	𝐵)*+_,	4 +	∑ 𝐵-_._,4 	0

-12 − ∑ 𝐶-_._,50
-12 − 𝐶)*+6 	, (7.1) 

𝑃𝑉-𝑁𝑉(∙). = ∑ (𝑁𝑉(∙)7
,12 × (1 + 𝑟)8,),  (7.2) 

where;  

• B9_:_(
;  is the operational monetary benefit from using a RIPBA of type (i) in year t, when it is used 

k times in year t at the NPP; 

• B$%&_(<  is the monetary benefit from avoiding rare events/severe accidents by having a basic-level 

PRA (without having any RIPBAs) in year t; 

• B9_:_(< 	is the monetary benefit from avoiding rare events/severe accidents due to the contribution 

of a RIPBA of type (i) in the change in risk in year t, when the application is used k times in year 

t; 

• C9_:_(
= 	is the cost of developing and maintaining a RIPBA of type (i) in year t, when the 

application is used k times in year t; 

• C$%&> 	is the annual cost† of developing and maintaining the basic-level PRA usage at a given 

NPP; 

• “n” represents the number of years until the end of the NPP license life; 

• “t” is the year index, and t=1,2, …,n;  

• “r” is the annual rate of return, and;  

• “i” is the index for types of RIPBAs at a nuclear power plant, and i=(1, 2, …, N). 

The annual cost of developing and maintaining basic-level PRA usage (C$%&> ) can be extracted 

from the financial data of NPPs. The main conceptual difference between B$%&_(<  and the other two 

 
† This refers to the average annual costs considering the initial costs in developing PRA and yearly maintenance costs.  
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monetary benefit terms (B9_:_(
;  and B9_:_(< ) in Eq. 7.1 is that B$%&_(<  is the monetary benefit from a basic-

level PRA usage (i.e., for a plant without any RIPBA), which is common in U.S. NPPs and now required 

for new reactor licenses (NRC, 2007) to satisfy regulatory safety compliance, while B9_:_(
;  and B9_:_(<  are 

the monetary benefits from RIPBAs, which are beyond basic-level PRA compliance, and where the plant 

can implement them to enhance the value of PRA. The commonality between B$%&_(<  and B9_:_(<  is that 

both relate to the monetary benefits of avoiding costs associated with catastrophic failures. B$%&_(<  is 

related to the contribution of a basic-level PRA to accident prevention and B9_:_(<  relates to the amount of 

change in risk, and therefore, in a reduction of the cost of catastrophic accidents associated with RIPBAs. 

When implementing the RIPBA, if there is no change in the risk of the plant, i.e., no change from the 

basic risk of the plant without any RIPBAs, B9_:_(< 	is “zero”. Due to changes in some operating conditions 

by using RIPBAs (compared to conditions without RIPBAs), there may be changes in risk, leading to a 

positive or negative value of B9_:_(< .  

Estimating the monetary benefit of PRA as a result of avoiding rare events/severe accidents 

(B$%&_(< ) has some challenges, similar to the ones that studies using CBA have highlighted in other 

contexts (Sunstein, 2009), due to uncertainties in estimating the probability of “rare” events and also due 

to uncertainties in evaluating the long-term consequences of severe accidents. The frequency of a 

rare/severe catastrophic event is represented by the Large Early Release Frequency (LERF) estimated 

from PRA, therefore, B$%&_(<  can be estimated as a function of LERF and an average value from existing 

short- and long-term cost estimates of severe nuclear accidents. NUREG/BR-0184 explored average 

estimates for short- and long-term costs, using Murphy’s and Holter’s estimates for low, best, and high 

(10,000 per person-rem; 20,000 per person-rem; and 30,000 per person-rem; respectively) (Murphy & 

Holter, 1982). Murphy and Holter took into account the following elements in their estimates: (i) a cost of 

$2,000 per person-rem conversion value, (ii) a $1.1E+9 (in 1993 dollars) base value cost considering 

cleanup and decontamination, (iii) years required to return site to pre-accident state, and (iv) real discount 

rate (NRC, 1997). Cleanup costs ranged from $3.1E+8 (lower bound) to $1.1E+9 (upper bound), while 

short-term onsite damage costs started at $2.3E+10, continuing at a discounted rate (NRC, 1997). These 

estimates of exposure rates and costs are partially based on the Price-Anderson Act, which helps 

determine liability insurance estimates from public or property damage claims. The NRC’s CBA 

guidelines are being updated to reflect new determinations, probabilities and uncertainties in existing 

policies (Apostolakis et al., 2012), while additional research is being conducted to estimate the cost of 

severe accidents (Pascucci-Cahen & Patrick, 2012; Silva & Okamoto, 2016).  

The operational benefit (B9_:_(
; ) of an RIPBA is a function of (i) increase in revenue due to 

avoiding the revenue loss that a plant without the RIPBA would have, but could be avoided, if the plant 
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had the RIPBA, and (ii) operational cost-savings due to avoiding the costs that a plant without the RIPBA 

would have, but could be avoided, if the plant had the RIPBA. For example, as explained in Section 

7.1.2.1., RMTS is an RIPBA that quantitatively assesses the risk of taking plant equipment out of service 

prior to performing maintenance, where a RICT is used instead of relying on the prescribed Allowed 

Outage Time (AOT) (Kee et al., 2008). The possibility of a longer outage period, by utilizing RICT, 

provides operational flexibility, and therefore; (i) increases production (revenue) by avoiding unnecessary 

shut downs, which a plant without RMTS would have due to passing the prescribed AOT, while 

maintaining safety requirements, and (ii) avoids some additional costs such as outage and regulatory costs 

(Kee et al., 2008; NEI, 2006). Another example of a RIPBA is the risk-informed resolution of Generic 

Safety Issue 191 (Kee et al., 2016; Mohaghegh et al., 2013), where, by using risk information, the NPP 

avoided changing the insulation around the reactor coolant system, i.e., avoided having to be limited to 

standard options for insulation, which reflected increased operational flexibility. While still satisfying the 

safety requirements of the NRC, the costs associated with changing the insulation were avoided (Kee et 

al., 2016).  

The rest of this paper focuses on explaining the next steps of the method through its 

implementation for RMTS. Adopting the cost and benefit terms associated with RIPBAs in Eq. 7.1, 

including the first, third and fourth terms on the right side of Eq. 7.1, and assuming the net value constant 

(averaged) with respect to time, the net value of RMTS can be estimated based on Eq. 7.3. Utilizing Eq. 

7.2 and assuming the net value constant (averaged) with respect to time, the present value RMTS can be 

estimated from Eq. 7.4.   

𝑁𝑉*?@A_. = 𝐵*?@A_./ + 𝐵*?@A_.4 − 𝐶*?@A_.5   (7.3) 

𝑃𝑉-𝑁𝑉*?@A_.. = 𝑁𝑉*?@A_. × 6
28(2B4)!"

4
7  (7.4) 

where 𝑁𝑉)*?@A_. stands for the annual net value of RMTS, 𝐵*?@A_./  is the annual operational monetary 

benefit from using RMTS, 𝐵*?@A_.4  is the annual monetary benefit from avoiding rare events/severe 

accidents due to the contribution of RMTS in the change in risk, and 𝐶*?@A_.5  is the annual cost of 

developing and supporting RMTS. All terms in Eqs. 7.3 and 7.4 are based on the consideration that 

RMTS is used “K” times, on average, per year. The next step of the method is focused on modeling and 

quantifying the terms in Eq. 7.3.  

 

7.2.2. Causal Modeling for Net Value of Risk-Informed Performance Based Applications    

In this research, causal modeling techniques are utilized to model the influencing factors affecting 
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cost and benefit terms in the net value of RIPBAs, and in this case, the net value of RMTS in Eq. 7.3. 

Integrating causal modeling with CBA allows for (a) more accurate consideration of uncertainties, (b) 

sensitivity analysis to analyze the effects of change in the underlying causal factors associated with the 

monetary value, and (c) evaluation of the effects of dependencies due to shared causal factors (i.e., 

technical, organizational and regulatory factors) among multiple RIPBAs and between two performance 

outcomes of profit and safety.  

In this research, a causal model (Figure 7.2) is developed to visualize the interrelationships 

among the causal factors influencing the cost and benefit terms of RMTS (formulated in Eq. 7.3). As 

stated in Section 7.2.1., the annual operational benefit of RMTS in this research is estimated by the 

amount of costs and revenue losses in a “plant without RMTS” that may be avoided if the plant uses 

RMTS, while the annual costs of RMTS are estimated based on a “plant with RMTS”, and therefore, at 

the lowest level of the causal model (Figure 7.2), operational conditions of the plant “with” and “without” 

RMTS are separated. Because of the changes in some operational conditions, the plant using RMTS may 

lead to a change in risk, as Figure 7.2 shows, while satisfying regulatory risk/safety requirements. Part of 

the causal model (presented in Figure 7.2) is quantified in this research utilizing Decision Tree (DT) 

(Magee, 1964) (Figure 7.3). The scope of DT is also highlighted by the module with the dotted outline in 

Figure 7.2. Future research will focus on quantifying other parts of Figure 7.2 to analyze and balance the 

effects of RMTS on both safety/risk and monetary value in a unified causal modeling framework.  

Figure 7.2: Causal Modeling of the Net Value of Risk-Managed Technical Specifications and the 
Interactions with PRA 
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The target node of the causal model in Figure 7.2 is the net value of RMTS, which refers to 

𝑁𝑉*?@A_. in Eq. 7.3. The next layer of this causal model consists of the cost (𝐶*?@A_.5 )	and benefit 

(𝐵*?@A_./ 	and		𝐵*?@A_.4 )	terms as reflected in Eq. 7.3. The next supporting causal layers are developed 

based on the theoretical and operational information of RMTS. As Figure 7.2 shows, the cost of RMTS 

relates to (a) maintenance, (b) staff and labor, (c) research and development, and (d) assets. The 

‘maintenance cost’ is associated with supporting the RMTS software. The staff and labor costs relate to 

the administrative costs associated with running the risk calculations from PRA and reviewing PRA 

model updates that are needed for the RMTS program. The first two cost categories (a and b) increase 

based on the number of “RMTS Usages Per Year”, which refers to index “K” in Eq. 7.3, while the other 

two (c and d) are the initial costs of establishing RMTS, which are distributed over the life of the plant to 

find annual costs. At this stage of the research, due to lack of adequate information, the “cost side” factors 

(grey nodes) in Figure 7.2 are not quantified in detailed layers of causality, and instead, the annual cost of 

developing and maintaining RMTS (𝐶*?@A_.5 ) is used as a lump sum and is based on information from 

industry experts.  

On the benefit side (white nodes) of Figure 7.2, the causal term 𝐵*?@A_.4  refers to the benefit of 

RMTS by its contribution to the reduction of risk, and therefore, to the avoidance of rare events/severe 

accidents. As explained in Section 7.2.1., 𝐵-_._,4  can be positive, negative or zero, depending on the nature 

of the RIPBA, and the change in the operating conditions of the plant due to the RIPBA. Applying RMTS 

allows for online maintenance of inoperable SSCs within the scope of TS, therefore, risk has the potential 

to increase, resulting in a negative value for	𝐵*?@A_.4 . There are, however, several aspects that may lead to 

reduction or no change in risk due to RMTS. Implementation of RMTS requires the employment of 

compensatory RMAs at specific times, according to RICT and RMAT thresholds, to mitigate additional 

risk incurred due to the inoperability of TS. Both the conventional TS thresholds and the thresholds for 

RICT and RMAT are established deterministically and in accordance with the defense-in-depth 

philosophy (NEI, 2006); therefore, the change in the value of risk due to the application of RMTS may 

represent a fairly small number when RMTS applications are compared to cases of similar TS following 

standard or conventional TS requirements. In addition, a longer period of maintenance in RMTS can 

increase the overall quality of maintenance, and therefore, can increase component reliability. However, 

the maintenance quality is not “explicitly” incorporated in plant PRA, and the estimated risk of the plant 

may not adequately reflect the effects of maintenance quality (Mohaghegh, 2007, 2010b). Therefore, at 

this stage of the research, 𝐵*?@A_.4 	is not considered.  

In Figure 7.2, RMTS Operational Benefit (𝐵*?@A_./ ) is decomposed into three causal factors: 
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(i) Revenue Savings: Avoiding loss of revenue due to shut down (mid-cycle outage) required by 

TS; 

(ii) Regulatory Savings: Avoiding the cost of developing and filing a Notice of Enforcement 

Discretion (NOED); 

(iii) Outage Savings: Avoiding extended outage costs (in addition to avoiding the loss of revenue 

during the extended outage).  

As explained in Section 7.1.2.1., RMTS allows the NPP maintenance staff to exceed the FS or 

prescribed AOT and makes more time available to perform maintenance with the plant at-power without a 

significant increase in risk. This results in the prevention of unnecessary plant shutdowns that occur due 

to low-risk, in-service failures, thereby creating Revenue Savings (Belyi et al., 2009). Through the use of 

RMTS, an extra operational envelope and maintenance flexibility are justifiable to the regulator, hence, 

the second category of RMTS operational benefits relate to Regulatory Savings that include the reduction 

of support costs for licensing, engineering, and risk management needed to prepare an NOED for the 

NRC (NRC, 2013). The third category of RMTS operational benefits relate to the reduction of costs 

during the plant extended outage, in addition to the avoidance of loss of power during the extended 

outage. Because the plant has normal staffing levels that may be set to meet “unexpected” maintenance 

(e.g., emergent or upset conditions), during power operation, such staff can address maintenance during 

regular working hours that otherwise would be on overtime during an outage or require longer outage 

duration. These Outage Savings increase when the number of maintenance extended outages that come 

close to exceeding the FS in the TS could be planned more effectively using RMTS. In such cases, the 

plant would benefit by having the capacity for more deliberate problem solving, and if needed, RMTS 

could provide staff with more time for maintenance activities (Yilmaz et al., 2011). 

As the module with the dotted outline in Figure 7.2 shows, DT analysis is used to quantify causal 

relationships associated with Operational Benefit per RMTS usage (𝐵*?@A_2/ ). DT was chosen because 

detailed information regarding the mechanisms of causality is available to generate the scenarios leading 

to costs and losses of revenue. Figure 7.3 shows the DT that depicts operational scenarios, including cost 

scenarios associated with Regulatory cost and related to Outage cost, and Revenue loss scenarios due to 

mid-cycle shutdowns for a plant without RMTS. The summation of the end states of the DT, covering all 

the potential costs and revenue losses (with consideration of the probability of each scenario) that can be 

avoided if RMTS is used once, provides an estimate of the expected operational benefit per RMTS usage 

(𝐵*?@A_2/ ). As Figure 7.2 indicates, the annual Operational Benefit of RMTS (𝐵*?@A_./ ) is a function of 

the number of “RMTS Usages Per Year=K” for a plant with RMTS and the value of expected Operational 

Benefit per RMTS usage (𝐵*?@A_2/ ), estimated from the DT.  
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Figure 7.3: A Decision Tree to Model Operational Benefits of Risk-Managed Technical Specifications 

(RMTS) 

 

The two main scenarios in the DT (Figure 7.3) are: (1) Emergent Maintenance, and (2) Planned 

Maintenance. The top branch (Emergent Maintenance) includes paths where maintenance can or cannot 

be completed before the FS is exceeded, occurring either in peak season, from June 1 to September 30, or 

off-peak season. When the time exceeds the FS, an NOED must be submitted to the NRC to obtain 

approval and avoid a shutdown. The distinction of peak or off-peak season is important to the success of 

NOED approval. Taking the plant off-line during a high electrical load may lead to grid instability. In the 
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case where the NOED is not granted, the cost of preparation of the NOED, plus the impact of lost 

revenue, would be incurred. If the NOED is granted, the plant may continue to operate and only the cost 

of the NOED application would be incurred. The plant also has the option of shutting down, and in this 

case, there would not be any cost of the NOED application, but the impact of the lost revenue would be 

realized. 

In the Planned Maintenance branch of the DT (Figure 7.3), the plant would enter a maintenance 

activity (e.g., surveillance of a planned equipment upgrade) with the assumption that maintenance would 

be completed within the FS. As shown in Figure 7.3, an unexpected issue may arise during the planned 

activity that extends the time for completion beyond the FS, resulting in the same decision branches that 

were developed for the Emergent Maintenance branch previously described. Alternatively, the 

maintenance may be completed within the FS, but due to expediting the activity to achieve completion 

within the FS, it may increase the likelihood of emergent maintenance sometime after finishing the 

Planned Maintenance. In other words, rushing Planned Maintenance may lead to lower quality 

maintenance and that may lead to an increase in the likelihood of emergent maintenance. Again, in this 

case, similar decision branches described for Emergent Maintenance would result. However, if repairs 

work well for the duration of the operating cycle, then no additional costs would result. On the other 

hand, some maintenance may need to be deferred to the outage, resulting in outage costs that are incurred 

for the extension of the outage plus the revenue lost due to the outage extension. Not all such costs may 

be directly attributable to the deferred maintenance as it is possible that emergent conditions during the 

outage may result in an extended outage duration thereby “shadowing” or sharing the cost for the 

extended duration. 

Eqs. 7.5 through 7.10 formulate 𝐵*?@A_2/ based on Figure 7.3. Utilizing the scenarios in the DT, 

𝐵*?@A_2/  is the summation of the expected monetary loss for each scenario “i” (Yi), in a plant without 

RMTS, that could potentially be avoided if the plant had RMTS, and used RMTS in each scenario i=1, 2, 

3…, 22. In other words, Yi , is the expected operational benefit associated with scenario “i” and in a plant 

with RMTS.  

𝐵*?@A_2/ = 𝑌 =	∑ 𝑌--1CC
-12                          (7.5) 

 

Equations that are placed at the end states of scenarios in Figure 7.3, formulate Yi for each 

scenario. Yi can be estimated from the multiplication of the conditional probability of each scenario and 

the dollar loss associated with each scenario. Table 7.1 provides the description of the input variables 

related to the DT in Figure 7.3. In scenarios #7, 20, and 22, using RMTS would not add savings, lower 

costs, or avoid revenue losses, and so there would not be any RMTS operational benefit associated with 

these scenarios.  
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𝑌D =	𝑌CE = 𝑌CC 	= 0			            (7.6) 

 

In the cases of scenarios #1, 4, 8, 11, 14, and 17, using RMTS could lead to Regulatory Savings 

by avoiding the NOED cost. The expected operational benefit (Yi) associated with each of these scenarios 

is the multiplication of the cost of NOED (𝐶) and the conditional probability of each of the scenarios. Eq. 

7.7 formulates the expected operational benefit related to scenario #1. Similarly, the operational benefits 

from scenarios # 4, 8, 11, 14, and 17 can be estimated from the equations that are presented at the end 

states of the associated scenarios in Figure 7.3.     

 

𝑌2 = 𝑋2 ∗ 𝑋C ∗ 𝑋2F	 ∗ 𝑋G	 ∗ 𝑋F ∗ 𝐶           (7.7) 

 

In the case of scenarios #3, 6, 10, 13, 16, and 19, if the plant were to use RMTS, it would lead to 

Revenue Savings by avoiding revenue loss. To estimate the avoided revenue loss, we consider that if a 

reactor is required to shut down due to TS, it would be a specific mid-cycle outage duration (𝑋22) 

associated with each of these scenarios. If the average net electrical production of the fleet is considered 

as 𝑃, the production loss associated with a TS shutdown would be “(𝑋22 ∗ 𝑃)”. Assuming an average net 

revenue from electricity sales as 𝑋2G, the expected revenue loss for a shutdown in scenarios #3, 6, 10, 13, 

16, and 19 would be the multiplication of “(𝑋2G ∗ 𝑋22 ∗ 𝑃)” and the conditional probability of each of 

these scenarios. Eq. 7.8 formulates the expected operational benefit related to scenario #3. Similarly, the 

operational benefits from scenarios # 6, 10, 13, 16, and 19 can be estimated from the equations that are 

presented at the end states of the associated scenarios in Figure 7.3.     

 

𝑌G = 𝑋2 ∗ 𝑋C ∗ 𝑋2F ∗ (1 − 𝑋G	) ∗ (𝑋2G	 ∗ 𝑋22 ∗ 𝑃)         (7.8) 

 

In the case of scenarios # 2, 5, 9, 12, 15, and 18, if the plant were to use RMTS, it would lead to 

both Regulatory Savings and Revenue Savings by avoiding the cost of the NOED and the lost revenue. 

Eq. 7.9 formulates the expected operational benefit related to scenario #2. Similarly, the operational 

benefits from scenarios # 5, 9, 12, 15, and 18 can be estimated from the equations that are presented at the 

end states of the associated scenarios in Figure 7.3.     

 

𝑌C = 𝑋2 ∗ 𝑋C ∗ 𝑋2F	 ∗ 𝑋G	 ∗ (1 − 𝑋F) ∗ [𝐶+	(𝑋2G	 ∗ 𝑋22 ∗ 𝑃	)]	              (7.9) 
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In scenario #21, if the plant would use RMTS, it would lead to Revenue Savings and Outage 

Savings by avoiding both revenue loss and the cost of extended outage. The expected revenue loss for this 

scenario can be estimated by the multiplication of “(𝑋2G ∗ 𝑋2C ∗ 𝑃)” and the conditional probability of 

this scenario. It should be noted that the duration of extended outage (𝑋2C) is different (usually smaller) 

than the mid-cycle outage duration (𝑋22). The expected cost of an outage is estimated by multiplying the 

average cost of the outage per hour (𝐶/), the duration of extended outage (𝑋2C), and the conditional 

probability of this scenario. To estimate the expected operational benefit of RMTS for scenario #21, the 

summation of expected avoided revenue loss and expected avoided cost of the outage is multiplied by a 

shadowing percentage (𝑆). Shadowing percentage is considered because only a specific percentage of 

outage duration is related directly to the deferred maintenance. Eq. 7.10 formulates the expected 

operational benefit related to scenario #2. 

 

𝑌C2 = (1 − 𝑋2 ) ∗ (1 − 𝑋D	) ∗ (1 − 𝑋H	) ∗ 𝑋2E ∗ [𝑆 ∗ ((X13* X12 * 𝑃)	+ (𝐶/* X12 ))] (7. 10) 

 

Table 7.1: Description of Input Variables for Figure 7.3 and for Eqs. 7.3 to 7.10   

Table 7.1 (cont.)   

Parameter Description Point 
Estimates 

Distributions 

X1 
Conditional probability of emergent maintenance, 
given a maintenance ‡ 

- Uniform (0.025, 0.075) 

X2 
Conditional probability of passing Front-Stop, given 
emergent maintenance 

- Uniform (0.009, 0.011) 

X3 
Conditional probability of filing the NOED, given 
peak season and when Front-Stop is passed in an 
emergent maintenance (or a planned maintenance) 

- Uniform (0.985, 0.995) 

X4 
Conditional probability of NOED approval, given 
peak season and when Front-Stop is passed in an 
emergent maintenance (or a planned maintenance) 

- Uniform (0.985, 0.995) 

X5 
Conditional probability of filing NOED, given off 
season and when Front-Stop is passed in an emergent 
maintenance (or a planned maintenance) 

- Uniform (0.54, 0.66) 

X6 
Conditional probability of NOED approval, given off 
season and when Front-Stop is passed in an emergent 
maintenance (or a planned maintenance) 

- Uniform (0.2, 0.6) 

X7 
Conditional probability of passing the Front-Stop in 
planned maintenance 

- Uniform (0.005, 0.015) 

 
‡ This probability excludes the emergent maintenance generated due to rushed planned maintenance.  
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Table 7.1 (cont.)   

Parameter Description Point 
Estimates 

Distributions 

X8 
Conditional probability of occurrence of emergent 
maintenance, following a rushed planned 
maintenance, and when Front-Stop is not passed§ 

- Uniform (0.009, 0.011) 

X9 

Conditional probability of passing Front-Stop, given 
occurrence of emergent maintenance, following a 
rushed planned maintenance, and when Front-Stop is 
not passed 

- Uniform (0.855, 0.945) 

X10 
Conditional probability of extended outage, given no 
increase in emergent maintenance and when Front-
Stop is not passed in a planned maintenance 

- Uniform (0.01, 0.03) 

X11 Mid-cycle outage duration (hour) - Triangular (0, 96, 48) 

X12 Extended outage duration (hour) - Uniform (12, 36) 

X13 Electricity price ($/MW-hour) - 14.0 + Gamma (4.63, 
3.35)** 

X14 Probability of peak season - Uniform (0.425, 0.575) 

S Average shadowing percentage 0.35 - 

𝐶! Average outage cost per hour ($/hour) 25,000 - 

𝑃 Average net electrical production (MW) 900 - 

C Average cost of filing NOED ($) 10,000 - 

K Average RMTS Usages Per Year 10 - 

n Number of years until the end of the NPP license life 20 - 

r Interest Rate 0.07 - 

 

7.2.3. Uncertainty Analysis  

To find the probabilistic monetary value of PRA, uncertainty analysis is required for all the terms 

in Eq. 7.1. In this paper, however, the methodology is explained through the estimation of the 

probabilistic monetary value of RMTS, which is one of the RIPBAs in Eq. 7.1. To estimate the 

probabilistic monetary value of RMTS, uncertainty analysis is required for the terms in Eq. 7.3. As stated 

in Section 7.2.2, in this research, among the three terms in Eq. 7.3, 𝐵*?@A_.4 	has not been considered, and 

𝐶*?@A_.5  is considered only as an average value point estimate with no consideration of uncertainty. This 

section is focused on the probabilistic estimation of the third term in Eq. 7.3, the annual RMTS 

Operational Benefit (𝐵*?@A_./ ), utilizing the DT model (Figure 7.3), explained in Section 7.2.2. In this 

 
§ This probability is suggested by an industry expert considering the reduced percentage of emergent maintenance in 
the plant with RMTS, compared with the one without RMTS. 
** U.S. Energy Information Administration: https://www.eia.gov/electricity/wholesale/   
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study, the number of “RMTS Usages Per Year” is considered as an average value (a point estimate of 

K=10, rather than a distribution), based on information from plant experts, therefore, uncertainty analysis 

is focused on the expected Operational Benefit Per RMTS (𝐵/*?@A_2) utilizing Eqs. 7.5 to 7.10 (as well as 

the associated equations presented at the end states of each scenario in Figure 7.3). At this stage of the 
research, an approximate value of 𝐵/*?@A_. is estimated by the multiplication of “K” and (𝐵/*?@A_2). 

The uncertainty analysis process in this research covers two key elements: (i) Uncertainty 

characterization that relates to developing probability distributions for the input variables of Eqs. 7.5 to 

25, and (ii) Uncertainty propagation in Eqs. 7.5 to 7.10 (as well as the associated equations presented at 
the end states of each scenario in Figure 7.3) to develop a distribution for 𝐵/*?@A_2. Table 7.1 provides the 

distributions considered for the input variables in this research. The ranges and distributions of input 

parameters are derived from information provided by plant experts. Because of limited information, a 

uniform distribution is utilized for most of the input parameters with upper and lower bounds being set to 

the maximum and minimum values based on expert opinion. In the case of mid-cycle outage duration 
(𝑋22), the triangular distribution is used based on the plant expert’s suggestion. Gamma distribution is 

also fitted (utilizing Kolmogorov-Smirnov goodness-of-fit test and outlier analyzer) to electricity price 
data from the U.S. Energy Information Administration (see Table 7.1) to develop the distribution of 𝑋2G 

(EIA, 2017).  

Regarding uncertainty propagation, Monte Carlo simulation is conducted to propagate input 

parameter uncertainties through Eqs. 7.5 to 7.10 (as well as the associated equations presented at the end 

states of each scenario in Figure 7.3) to develop the uncertainty distribution for the expected Operational 

Benefit per RMTS	(𝐵*?@A_2/ ). Table 7.2 provides the expected values and 95% Confidence Intervals for 

𝐵*?@A_2/  and 𝐵*?@A_./  (considering K=10). Figure 7.4 shows a histogram for the distribution of 𝐵*?@A_2/  

that has a short right tail, meaning its value is rarely larger than $50,000. 

As Table 7.2 highlights, the expected value of 𝐵*?@A_2/  is estimated as $17,386. Using this 

number in Eq. 7.3, and assuming “𝐵*?@A_.4 = 0” and considering the annual cost of RMTS 

(𝐶*?@A_.5 )	equal to $35,000*, the annual net value of RMTS (𝑁𝑉*?@A_.) is estimated as $138,860. 

Utilizing this value in Eq. 7.4 and considering interest rate/year (r) equal to 0.07 as recommended by 

NUREG/BR-0184 (NRC, 1997), and a 20-year remaining-life license (n), the PV of RMTS is estimated at 

$1,470,000. Table 7.2 also provides a net benefit-cost ratio of 3.97, serving as a useful way to summarize 

the economics of the RMTS application.  

* Based on information from industry experts and considering that RMTS has a one-time initial investment with
recurring operating costs, observed as an aggregated annual value.
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Table 7.2: Probabilistic Monetary Value of RMTS 

Variable Value 

Expected Operational Benefit Per RMTS: 𝐵"#$%_'!   $17,386.00 

𝐵"#$%_'! 	Standard Deviation  $6,397.40 

𝐵"#$%_'! 	Lower CI Boundary $17,382.00 

𝐵"#$%_'!  Upper CI Boundary $17,390.00 

RMTS Annual Cost: 𝐶"#$%_()  $35,000.00 

RMTS Annual Operational Benefit: 𝐵"#$%_(!   $170,386.00 

RMTS Annual Net Value: 𝑁𝑉"#$%_( $138,860.00 

PV of RMTS Annual Net Value:  𝑃𝑉'𝑁𝑉"#$%_(( $1,470,000.00 

RMTS Net-Earning-to-Cost Ratio 3.97 

 

 

Figure 7.4: Distribution of the Expected Operational Benefit Per RMTS Usage	(B%IJK_2; ) 

7.2.4. Sensitivity Analysis and Validation  

In PRA, verification is typically used more than validation. Verification covers a process of 

independent oversight with a critical review of models and methodologies following regulatory standards 

(NRC, 2009). To achieve partial verification, the method and the case study demonstrated in this paper 

have been reviewed by academic and industry experts of RMTS. Partial empirical validation, using NPP 

financial records, is also included in this research. NPPs that use RIPBAs present the operational benefit 

of PRA, labeled risk savings, within the scope of their accounting statements issued at the end of each 

fiscal period. For example, Table 7.3 shows an average value of $704,773 in the plant’s risk savings per 

year from 2008 to 2013. Based on the opinions of industry experts, the operational benefit from the 

RMTS application is approximately 25% of the annual risk savings of a plant. The operational benefit of 

RMTS, therefore, according to the NPP fiscal reports and expert opinion, is approximately $176,193, 

which is reasonably close to the expected RMTS annual operational benefit estimated using the 
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methodology of this research, $170,386, as listed in Table 7.2.  

Table 7.3: NPP Reported Risk Savings 

Year Historical Recurring Totals Historical One-Time Totals 

2008 $10,400 - 

2009 $87,680 - 

2010 $125,400 - 

2011 $149,800 $2,594,185 

2012 $175,400 $73,800 

2013 $182,400 $124,800 

Total  $731,080 $2,792,785 

Total Historical Savings (2008-2013) Average Savings Per Year 

$3,523,685 $704,773 

 

In this research, Global Sensitivity Analysis (GSA) is also conducted to analyze the effects of 

change in the causal factors associated with 𝐵*?@A_2/ . GSA provides a means to evaluate the contribution 

of each input parameter to the total uncertainty associated with the model output (Sakurahara et al., 2014). 

Instead of a local (one-way) sensitivity analysis, GSA is applied to take the following three aspects into 

consideration when ranking the causal factors: (i) uncertainty associated with the input parameters, (ii) 

nonlinearity and interactions among input parameters within the model, and (iii) uncertainty associated 

with the model output. In GSA, the sensitivity indicator Si
CDF (Liu & Homma, 2010) is used to rank the 

input parameters according to their impact on the Cumulative Distribution Function (CDF) of the model 

output. Assuming the model output “Y” in Eq. 7.5, as a function of its input parameters X= (X1, X2,…, 

X14), and using the Monte Carlo method, the input parameters are randomly sampled from their 

distributions provided in Table 7.1, producing the unconditional model output. This is followed by 

quantification of the empirical CDF of Y, denoted as 𝐹L. To estimate the conditional output, a two-loop 

Monte Carlo method is utilized. In each simulation, input parameter Xi is randomly sampled from its 

distribution, determining the random value of Xi
* (first Monte Carlo loop), while the other input 

parameters are being randomly sampled from their distributions (second Monte Carlo loop), producing 

the CDF for the conditional output denoted as 𝐹L|N!(𝑌). Next, by integrating the absolute difference 

between 𝐹L and 𝐹L|N!(𝑌), the area closed by 𝐹L and 𝐹L|N!(𝑌) is measured. This is denoted by 𝐴(𝑋-) and is 

described in Eq. 7.11.  
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𝐴(𝑋-) = 	∫ | 𝐹L|N!(𝑦) − 𝐹L(𝑦)|𝑑𝑦  (7.11) 

Random samples of 𝑋-∗ are obtained and 𝐴(𝑋-) is replicated; Eq. 7.12 demonstrates the expected 

difference between 𝐹L and 𝐹L|N!(𝑌), where 𝑓P!(𝑋-) denotes the marginal density function of input 

parameter 𝑋-.  

𝐸[𝐴(𝑋-)] = 	 ∫𝑓P!(𝑋-)𝐴(𝑋-)𝑑𝑥- (7.12) 

The moment-independent, and CDF-based sensitivity indicator 𝑆-QRS is derived from Eq. 7.13, where 

𝐸(𝑌) is the expected value of the unconditional model output Y.  

𝑆-
(QRS) = T[+(N!)]

|T(L)|
 (7.13) 

Using the two-loop GSA framework, CDF-based sensitivity indicators are produced for input parameters 

of the model. Table 7.4 reports on the sensitivity indicators associated with input parameters (X1, 

X2,…,X14). As shown in Table 7.4, GSA indicates that input parameters 𝑋22 (Mid-cycle outage duration), 

𝑋2E (Conditional probability of extended outage, when Front-Stop is not passed in a planned 

maintenance), 𝑋2C (Extended outage duration) and 𝑋2G (Electricity price) are ranked as the most 

important contributors to the uncertainty of the model output. 

Table 7.4. Sensitivity Indicators for Input Parameters of the Expected Operational Benefit Per RMTS 

(𝐵*?@A_2/ ) 

Table 7.4 (cont.)   

Ranking Si Xi 

1 1.847E-01 X11 

2 1.172E-01 X10 

3 1.172E-01 X12 

4 1.006E-01 X13 

5 0.671E-01 X7 

6 0.405E-01 X6 

7 0.376E-01 X14 

8 0.127E-01 X8 

9 0.102E-01 X1 

10 0.091E-01 X5 

11 0.075E-01 X9 
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Table 7.4 (cont.)   

12 0.047E-01 X4 

13 0.047E-01 X3 

14 0.045E-01 X2 

 

7.3. DISCUSSION  

The results of GSA can be used to check the accountability of DT model results for the 

Operational Benefits of RMTS. It should be noted that an underlying assumption in developing the DT 

for RMTS considers all potential costs and revenue losses that the NPP would incur in the absence of 

RMTS, and with a level of uncertainty, links them to the Operational Benefit of the application. On the 

other hand, the objective of the RMTS application is to risk-inform the Completion Time (CT) for several 

critical Systems, Structures, and Components (SSCs). Therefore, one could conclude that reducing the 

mid-cycle outage duration, 𝑋22, is the goal of the RMTS application, making this input parameter the 

most important contributor to the variation of the RMTS output, and this is confirmed by the results of 

GSA. 

The next step of this research should focus on conducting more accurate data analysis of NPP and 

NRC databases so that more objective data, in addition to expert opinion, can be used for the input 

parameters (Table 7.1) of the model. Distributions of input parameters will then be obtained by 

conducting a more structured statistical analysis, such as Bayesian inference for integrating all available 

information to estimate the parameters, and a goodness-of-fit test to decide if the developed probability 

distributions are acceptable. This would allow for a more precise development of uncertainty distributions 

for these parameters. As Table 7.1 shows, some of the input parameters are considered as point estimates 

rather than as distributions. For example, the interest rate/year (r) is considered equal to 0.07 along with a 

20-year remaining-life license (n); however, future work should evaluate the effects of uncertainties in 

these parameters.  

At this stage of the research, (𝐵*?@A_.4 ), i.e., the annual monetary benefit of RMTS from avoiding 

rare/severe accidents due to the contribution of RMTS in changing risk, is not quantified. Future research 

is needed to develop a causal model depicting the influences of the operational conditions of the plant 

(with RMTS) on the probabilities of the events in PRA, and ultimately, on the system risk estimated from 

PRA in order to have a more realistic estimate of the change in risk due to RMTS.  

𝐵)*+_,4  is not the focus of the current paper, but the authors have started a line of research to 

explore the effects of regulation and catastrophic failure in terms of population response, and are 

expanding their framework to include NPP investors’ point of view (Bui et al., 2016; Bui et al., 2017; Kee 
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et al., 2017). Future work will dedicate research on more in-depth consideration of diverse types of 

uncertainties in estimating the monetary benefit of PRA as a result of avoiding rare events/severe 

accidents (𝐵)*+_,4 ). 

Future research will also focus on quantifying other modules of the causal model in Figure 7.2. 

Bayesian Belief Network (BBN) (Pearl, 1988) can be a candidate causal modeling technique to facilitate 

further expansion of causal layers in Figure 7.2, for example: (i) Causal modeling of the annual cost of 

developing and maintaining RMTS (𝐶*?@A_.5 ), rather than considering a lump sum average value that is 

used in this paper; (ii) Causal modeling of the relationships between operational conditions of the plant 

with RMTS and the number of “RMTS Usages/Year =K” so that uncertainties and dependencies can be 

better considered. In this paper, a constant value of “K=10” is assumed; and (iii) Causal modeling of the 

underlying socio-technical causal mechanisms (i.e., technical, organizational, and regulatory factors), in 

association with the operational conditions of the plant, that influence the input parameters of the DT 

(Figure 7.3).  

 

7.4. CONCLUSION 

The methodology demonstrated in this research evaluates the monetary benefits of PRA by 

developing causal models of the net value of Risk-Informed Performance-Based Applications (RIPBAs). 

This methodology evaluates the monetary benefit, in addition to safety benefits, that PRA could bring to 

NPPs if they would utilize the risk estimated from PRA through RIPBAs to expand the operating 

envelope and improve operational flexibility and efficiency while maintaining safety performance or 

regulatory compliance, thereby strengthening regulatory-plant cooperation. The key steps of this 

methodology include: (i) Cost-Benefit Analysis (CBA) to formulate the net value of PRA based on the 

net value of RIPBAs, (ii) causal modeling to systematically model the operational scenarios considering 

technical, organizational and regulatory causal factors leading to costs and benefits associated with the net 

value of RIPBAs, (iii) uncertainty analysis to consider parameter uncertainties and to generate a 

probabilistic estimate of the net value of RIPBAs, and (iv) sensitivity analysis and validation. This paper 

demonstrates the feasibility of the methodology via its implementation for Risk-Managed Technical 

Specifications (RMTS), which is one of the RIPBAs used in NPPs. Based on the results, the benefit of 

investment in RMTS is justified from a net-positive perspective. The results of sensitivity analysis 

indicate that 𝑋22 (Mid-cycle outage duration), 𝑋2E (Conditional probability of extended outage, when 

Front-Stop is not passed in a planned maintenance), and 𝑋2C (Extended outage duration) are the most 

important input parameters, and therefore, require further data collection to increase the accuracy of the 

results and observations.  
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Although a solely data-driven approach, which refers to using the average monetary benefit of 

each application from the NPP data over several years, may provide an estimate for the monetary value of 

existing RIPBAs of NPPs, it cannot provide resolution on the causality of how the cost and benefit 

scenarios are associated with each application. Therefore, this research uses a model-based approach that 

integrates causal modeling with CBA, and offers the following advantages: (1) it allows for more accurate 

consideration of uncertainties in technical, organizational and regulatory factors, leading to more accurate 

assessment of the monetary benefit of RIPBAs and PRA, (2) it allows sensitivity analysis to be conducted 

to rank the criticality of influencing factors and to analyze the effects of change in the underlying causal 

factors associated with the monetary value, (3) it sets the stage for future research on the modeling, 

evaluation, and design of new RIPBAs that can balance changes in risk and the monetary gain from 

RIPBAs in NPPs, (4) it enables future research on the quantification of the effects of RIPBAs on both 

monetary benefits and safety (i.e., the risk estimated from PRA) in a unified modeling environment, as 

shown in the causal model developed in Figure 7.2, which facilitates the evaluation of dependencies due 

to shared technical, organizational, and regulatory causal factors among multiple RIPBAs, and between 

the two organizational performance outcomes of profit and safety.  

The goal of demonstrating the benefit of PRA to an organization’s bottom line and safety 

performance is supplemented by a long-term road map for delineating the market value of PRA to support 

wider industry adoption. A possible benefit of PRA in the heavily-regulated commercial nuclear power 

domain is to help show where regulatory initiatives may be unjustified based on the risk reduction against 

the cost of the initiative; and risk assessment can be used to show where greater benefit may be realized at 

less cost to the regulated industry. Although such assessments are not applicable for eliminating 

regulation (NRC, 2011a), they are useful for prioritizing expenditures and for making efficient use of 

existing resources based on safety benefit, for example under 10 CFR 50.69 (NRC, 2004a).  
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CHAPTER 8: CONCLUSIONS 

This dissertation is the product of my multidisciplinary and collaborative research activities as a 

graduate research assistant in the Socio-Technical Risk Analysis (SoTeRiA) Research Laboratory1 in the 

Department of Nuclear, Plasma, and Radiological Engineering (NPRE) at the University of Illinois at 

Urbana-Champaign (UIUC). Figure 8.1 shows a roadmap of research activities discussed in this 

dissertation. The ideal goals of explicit incorporation of organizational/social factors into PRA are to; (a) 

make risk assessments more accurate in order to avoid underestimating or overestimating risk, and (b) 

improve risk management and prevention strategies by identifying and ranking critical 

organizational/social factors based on their influences on the technical system risk (i.e., sensitivity 

analysis and risk importance ranking; viii in Figure 8.1) and by evaluating their monetary impacts through 

Risk-Informed Performance-Based Applications (RIPBAs) (i.e., understanding the costs and benefits of 

RIPBAs with consideration of organizational/social factors; vii.a in Figure 8.1). Therefore, building a 

theoretical framework equipped with reliable modeling techniques and data analytics to quantify the 

influence of organizational/social performance on risk scenarios is important for improving realism in 

PRA and is the motivation for this research (i in Figure 8.1). This dissertation addressed the incorporation 

of organizational/social factors from two levels of analysis: (1) the meso-level (organizational) in Level 1 

PRA (ii to iv in Figure 8.1), and (2) the macro-level (social) in Level 3 PRA (v to vi in Figure 8.1). 

Figure 8.1: Research Roadmap 

Chapter 2, a published journal paper (Pence & Mohaghegh, 2020), focused on the incorporation 

of organizational factors in Level 1 PRA (ii in Figure 8.1), a topic of debate since the 1980s, and 

conducted a comprehensive review and categorization of existing research at the meso-level analysis (i.e., 

1 https://soteria.npre.illinois.edu/ 
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one Nuclear Power Plant (NPP)), to summarize the current state-of-the-art and remaining challenges of 

meso-level theories (ii.a in Figure 8.1), meso-level modeling (ii.b in Figure 8.1), and meso-level 

measurement (ii.c in Figure 8.1) for the incorporation of organizational factors in Level 1 PRA. To 

address some of the critical challenges associated with theory, modeling, and measurement, the Data-

Theoretic approach was developed in Chapter 3, a published journal article (Pence, Sakurahara, Zhu, 

Mohaghegh, Ertem, Ostroff, & Kee, 2019), which emphasized theory-building and causal modeling in the 

DT-BASE module (iii in Figure 8.1). Chapter 4, a published journal article (Pence, Farshadmanesh, Kim, 

Blake, & Mohaghegh, 2020), focused on the DT-SITE module (iv in Figure 8.1), which leveraged the 

results from Chapter 3 to advance meso-level measurement using data analytics.  

Compared to the incorporation of organizational factors in Level 1 PRA, the incorporation of 

social factors into Level 3 PRA (v in Figure 8.1) is in its infancy. Therefore, lessons learned from the 

incorporation of organizational factors in Level 1 PRA (i.e., Chapters 2, 3, and 4) can be leveraged to 

inform the line of research for incorporating social factors in Level 3 PRA (i.e., represented by the dashed 

arrow between ii and v in Figure 8.1). Because research on the incorporation of social factors in Level 3 

PRA is limited, my research aimed to establish a basis for macro-level theory (v.a in Figure 8.1), macro-

level measurement (v.b in Figure 8.1), and macro-level modeling (v.c in Figure 8.1) approaches. Chapter 

5, a published journal article (Pence, Miller, Sakurahara, Whitacre, Reihani, Kee, & Mohaghegh, 2018), 

addressed the lack of explicitness of social factors in Level 3 PRA, initiated a macro-level socio-technical 

risk analysis theory for emergency response applications and offered a methodology for adapting the 

concept of social vulnerability, commonly used in natural hazard research, in the context of a severe NPP 

accident. Chapter 6, a manuscript to be submitted to a journal of risk analysis in May 2020, further 

expanded the macro-level theoretical causal framework for socio-technical risk analysis of severe nuclear 

accidents and leveraging concepts from meso-level research for Level 1 PRA, adapted a Human 

Reliability Analysis (HRA)-based theoretical representation of Population Error (PE) in the development 

of a Population Departure Time Model (PDTM) for Level 3 PRA (vi in Figure 8.1). A methodological 

framework was developed to integrate the PDTM with a transportation model and Level 3 PRA for 

evaluating population radiation exposure.  

An advantage of explicitly incorporating organizational/social factors into PRA is that sensitivity 

and importance measure analyses can be used to obtain the ranking of organizational/social risk-

contributing factors based on their contribution to human/population errors and system risk (viii in Figure 

8.1). While sensitivity and importance measure analyses can be used to improve risk management and 

prevention, without a justified representation of the ‘market value’ PRA, there are few incentives for 

companies to go ‘beyond-compliance’ and to make investments in PRA, for example, investing in the 

explicit incorporation of organizational/social factors (ii.a in Figure 8.1). Therefore, Chapter 7 introduced 
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a methodology to evaluate the monetary value of PRA through the systematic causal modeling of the net 

value of RIPBAs and demonstrates the methodology for one RIPBA at an NPP called Risk-Managed 

Technical Specifications (RMTS) (vii in Figure 8.1).  

Chapters 2 through 7 of this dissertation include conclusion sections that provide summaries of 

chapter contributions and detailed future research directions associated with the research activity 

published in each chapter. In a broader perspective, the methodological and theoretical development 

introduced in this dissertation provide support for modeling and quantifying the unprecedented, 

unimagined, and undesirable risk futures that may emerge in our world: 

• The Data-Theoretic philosophy bridges the gap between an uncertain phenomenology and

unstructured data, emphasizing the importance of theory-building to preserve causality

(e.g., to enhance the capability of explainable artificial intelligence in risk applications).

This research is one step toward the necessary level of comprehensiveness that is needed to

understand the complexities of underlying organizational/social root causes of incidents

and accidents. Continued advancement in the field of socio-technical risk analysis is critical

for understanding how significant organizational/social factors act as contributors to

incidents and accidents. Only through explicit model-based or mechanistic integration of

organizational/social performance with PRA can we find and rank critical

organizational/social root causes of failure, improve efforts to take effective corrective

action, and avoid the possibility of underestimating risk. While this research was

demonstrated in the context of NPPs, meso-level organizational causal models can be

applied in the assessment of organizational performance in the oil and gas, space, aviation,

and healthcare industries. The results of this line of research can help organizations develop

best practices for maintaining safety, improving resilience in unprecedented circumstances,

and increasing the reliability of socio-technical systems in high-consequence endeavors.

• Although the macro-level case studies in this dissertation focus on man-made NPP hazards,

the logic of spatiotemporal hazard-population coupling can be adapted to support risk-

informed emergency response for emergent socio-technical problems resulting from natural

hazards, pandemics, terrorist attacks, and co-evolving multi-hazard scenarios. I hope that

insight from this research can advance the way our institutions anticipate, assess, and

mitigate global catastrophic risks, helping to usher in a new era, void of human-made

accidents, where collaborative research between industry, academia, and regulatory

agencies is leveraged to raise social responsibility for the protection of workers, the public,

and the environment.
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APPENDIX A: INTER-RATER RELIABILITY USING COHEN’S KAPPA 

This appendix explains the calculation of inter-rater reliability using Cohen’s kappa statistic. In the 

annotation process, annotators tag sentences as “related” or “not related” to the target node category. 

Cohen’s kappa (k) measures agreement (i.e., the proportion of agreement after chance agreement is removed 

from consideration) between annotators using Eq. A.1: 

𝑘 = !!"!"
#"!"

= 1 − #"!!
#"!"

,	   (A.1) 

where 𝑝$ is the proportion of sentences where the annotators agreed, and 𝑝% is the proportion of sentences 

where agreement is expected by chance. If annotators are in complete agreement, then 𝑘 = 1. If there is no 

agreement, other than chance agreement (𝑝%), then 𝑘 = 0. One target node category was considered in this 

paper (i.e., training-related in Chapter 4, Section 4.4). Therefore, two annotators reading each piece of data 

have the option to say “Yes” or “No,” that the data is related to the target node category or not. Table A.1 

provides an example from the case study in Chapter 4, Section 4.4, depicting one annotation result.  

Table A.1. Example of Sentence-Level Annotation 

LER Sentence Annotator A Annotator B 

4582006006 
“Training on this condition will be conducted for the 

Operations and Licensing staffs.” 
Yes Yes 

The totals from the annotations (i.e., “Annotator A” and “Annotator B” columns in Table A.1) are used to 

calculate a matrix that includes the number of total agreement (“a” in Table A.1), total disagreement (“d” 

in Table A.1), and disagreement combinations between annotators (“b” [i.e., Yes/No] and “c” [i.e., No/Yes] 

in Table A.1).  

Table A.2. Simple Example of Inter-Rater Reliability 

Annotator B 

Yes No 

Annotator A 
Yes a b 

No c d 

To calculate 𝑝$, considering the matrix in Table A.2, Eq. A.2 is used: 

𝑝$ =
&'(

&'('%')
(A.2) 
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Considering the matrix in Table A.2, Eq. A.3 is used to calculate chance probability that both annotators 

mark “Yes” at random (𝑝*+,) and Eq. A.4 calculates the chance probability that both annotators mark “No” 

at random (𝑝-$): 

𝑝*+, =
&'(

&'('%')
× &'%
&'('%')

    (A.3) 

𝑝-$ =
%')

&'('%')
× (')
&'('%')

   (A.4) 

 

The overall probability of random chance agreement (Yes or No) is calculated using Eq. A.5: 

 

𝑝% = 𝑝*+, + 𝑝-$                    (A.5) 

Sources: 

• Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and psychological 

measurement 20, 37-46. 

• Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. 

biometrics, 159-174. 

• McHugh, M.L., 2012. Interrater reliability: the kappa statistic. Biochemia medica 22, 276-282. 
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APPENDIX B: CANCELLED LICENSEE EVENT REPORTS 

 

The following LER numbers were removed from the dataset due to being canceled (C) [as of March 

2019]: 

3242007004, 3162000001, 4992010004, 4982014001, 4822011010, 4822011003, 4822011001, 

4822009008, 4822009007, 4582007001, 4572010004, 4572010002, 4562011003, 4552010002, 

4542011003, 4402014001, 4232004003, 4002004002, 3612010002, 3542012002, 3542011001, 

3542004011, 3362006007, 3312012001, 3312007001, 3252013003, 3242014002, 3242013002, 

3152014001, 3152012002, 3052009005, 3052007003, 3052005010, 2982014005, 2862013006, 

2852013004, 2852012011, 2852012006, 2852011006, 2852011001, 2852009003, 2852006007, 

2822014002, 2822014001, 2822012004, 2822010003, 2822009006, 2752014001, 2702011002, 

2612015004, 2552011003, 2552010004, 2552007003, 2552005007, 2552005006, 2542005004, 

2372005003, 2202004002, 3252008001 (Duplicate), 3342014003 (Duplicate).  
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APPENDIX C: EXCLUDED LICENSEE EVENT REPORTS 

 

The ‘Cause’ Section of the following LERs could not be identified by the python code. 

3132014002, 3092007001, 2852017001, 2852002001, 2822003002, 2802015002, 2692000007, 

2662012004, 2662012002, 2472002003, 3252006005, 3252008001, 3612004003, 3612004004, 

3612007005, 3612007007, 3612008001, 3612008002, 3612008005, 3612009004, 3622004003, 

3622008001, 3622009001, 3642017003, 3642017004, 3952014004, 3952015001, 4162009003, 

4832002011, 3822019002, 2982018003, 3482018001, 3952016003, 4582002001, 4582005003, 

4582016007, 4582017004, 4582017006, 4572003001, 4582013001, 4582017001, 3952003005, 

3952003006, 3952009003, 3952010003, 3952012003, 3952013001, 3952013002, 3952013003, 

3952013004, 3952013005, 3952013006, 3952014001, 3952014002, 3952014003, 3952015002, 

3952016002, 3952016005, 3952016006, 3952017001, 3952017002, 3952017003, 3952017004, 

3952017005, 3952017006, 3952018001, 3972003002, 3972003004, 4582001002, 4402006001, 

3972004007, 3522005001, 3332003001, 3352003001, 3012012001, 2892000001, 2892002002, 

2932017003, 2982015003, 2472000001, 2472000002, 2472000003, 2472000004, 2472000005, 

2472000006, 2472000007, 2472000008, 2472000009, 2472001001, 2472001002, 2472001003, 

2472001004, 2472001005, 2472001006, 2472001007, 2472002001, 2472002002, 2472003003. 
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APPENDIX D: NUCLEAR POWER PLANT EVACUATION TIME ESTIMATE 
INFORMATION 

Table D.1. Evacuation Time Estimate (ETE) Study Information 

Table D.1 (cont.) 

ML Number Year NPP Code Author 

ML12088A203 2004 Indian Point IDYNEV KLD 

ML101030980 2008 Victoria PTV Vision IEM 

ML090300688 2008 Calvert Cliffs IDYNEV KLD 

ML082830276 2008 River Bend IDYNEV KLD 

ML101110357 2009 Fermi IDYNEV KLD 

ML12048B369 2009 South Texas Project IDYNEV KLD 

ML12202A109 2010 Comanche Peak IDYNEV KLD 

ML123630620 2010 San Onofre IDYNEV KLD 

ML12355A267 2011 Three Mile Island PTV Vision ARCADIS 

ML12348A219 2012 Braidwood PTV Vision ARCADIS 

ML12348A221 2012 Byron PTV Vision ARCADIS 

ML12348A223 2012 Clinton PTV Vision ARCADIS 

ML12348A382 2012 Limerick PTV Vision ARCADIS 

ML12348A384 2012 Dresden PTV Vision ARCADIS 

ML12348A385 2012 LaSalle PTV Vision ARCADIS 

ML12349A294 2012 Quad Cities PTV Vision ARCADIS 

ML12355A240 2012 Peach Bottom PTV Vision ARCADIS 

ML12362A473/2 2012 Browns Ferry PTV Vision ARCADIS 

ML13298A792 2012 Virgil C. Summer DYNEV II KLD 

ML101110357 2012 Oconee DYNEV II KLD 

ML13023A035 2012 Palisades DYNEV II KLD 

ML13037A619 2012 Kewaunee DYNEV II KLD 

ML103630183 2012 Turkey Point` DYNEV II KLD 

ML13007A078 2012 Beaver Valley DYNEV II KLD 

ML13004A003 2012 Nine Mile Point/James A. FitzPatrick DYNEV II KLD 

ML13023A031 2012 Pilgrim DYNEV II KLD 

ML12355A748 2012 Palo Verde DYNEV II KLD 

ML13004A004 2012 R.E. Ginna DYNEV II KLD 

ML13007A119 2012 Davis-Besse DYNEV II KLD 

ML12363A209 2012 Diablo Canyon DYNEV II KLD 
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ML13023A070 2012 Grand Gulf DYNEV II KLD 

ML13037A621 2012 North Anna DYNEV II KLD 

ML13002A335 2012 Duane Arnold DYNEV II KLD 

ML123630597 2012 Brukswick DYNEV II KLD 

ML12363A173 2012 Prarie Island DYNEV II KLD 

ML13037A635 2012 Surry DYNEV II KLD 

ML12363A113 2012 St. Lucie DYNEV II KLD 

ML12363A207 2012 Fort Calhoun DYNEV II KLD 

ML12356A131 2012 Point Beach DYNEV II KLD 

ML13007A115 2012 Perry DYNEV II KLD 

ML13023A048 2012 Arkansas DYNEV II KLD 

ML12362A100 2012 Crystal River DYNEV II KLD 

ML13002A414 2012 Wolf Creek DYNEV II KLD 

ML13023A072 2012 River Bend DYNEV II KLD 

ML12356A204 2012 Columbia DYNEV II KLD 

ML13023A028 2012 Vermont Yankee DYNEV II KLD 

ML12356A170 2012 Monticello DYNEV II KLD 

ML13037A623 2012 Millstone DYNEV II KLD 

ML13003A135 2012 Susquehanna DYNEV II KLD 

ML13052A677 2012 Salem-Hope Creek DYNEV II KLD 

ML13002A366 2012 McGuire DYNEV II KLD 

ML12363A239 2012 Seabrook DYNEV II KLD 

ML12363A056 2012 Robinson DYNEV II KLD 

ML13234A356 2013 Watts Bar PTV Vision ARCADIS 

ML13246A050 2013 Sequoyah PTV Vision ARCADIS 

ML13254A121 2013 Oyster Creek PTV Vision ARCADIS 

ML12346A413 2013 Vogtle PTV Vision IEM 

ML12346A411 2013 Joseph M. Farley PTV Vision IEM 

ML12346A412 2013 Edwin I. Hatch PTV Vision IEM 

ML13002A356 2013 Cooper DYNEV II KLD 

ML13134A308 2013 Bell Bend DYNEV II KLD 

ML16312A330 2016 Harris DYNEV II KLD 

ML17102B193 2017 Duane Arnold DYNEV II KLD 

ML18311A210 2018 Brunswick DYNEV II KLD 
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ML18289A782 2018 Catawba DYNEV II KLD 
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